Science.gov

Sample records for 242-a evaporator located

  1. 242-A evaporator vacuum condenser system

    SciTech Connect

    Smith, V.A.

    1994-09-28

    This document is written for the 242-A evaporator vacuum condenser system (VCS), describing its purpose and operation within the evaporator. The document establishes the operating parameters specifying pressure, temperature, flow rates, interlock safety features and interfacing sub-systems to support its operation.

  2. 242-A evaporator safety analysis report

    SciTech Connect

    CAMPBELL, T.A.

    1999-05-17

    This report provides a revised safety analysis for the upgraded 242-A Evaporator (the Evaporator). This safety analysis report (SAR) supports the operation of the Evaporator following life extension upgrades and other facility and operations upgrades (e.g., Project B-534) that were undertaken to enhance the capabilities of the Evaporator. The Evaporator has been classified as a moderate-hazard facility (Johnson 1990). The information contained in this SAR is based on information provided by 242-A Evaporator Operations, Westinghouse Hanford Company, site maintenance and operations contractor from June 1987 to October 1996, and the existing operating contractor, Waste Management Hanford (WMH) policies. Where appropriate, a discussion address the US Department of Energy (DOE) Orders applicable to a topic is provided. Operation of the facility will be compared to the operating contractor procedures using appropriate audits and appraisals. The following subsections provide introductory and background information, including a general description of the Evaporator facility and process, a description of the scope of this SAR revision,a nd a description of the basic changes made to the original SAR.

  3. 242-A Evaporator waste analysis plan. Revision 4

    SciTech Connect

    Basra, T.S.; Mulkey, C.H.

    1994-09-29

    This waste analysis plan (WAP) provides the plan for obtaining information needed for proper waste handling and processing in the 242-A Evaporator located on the Hanford Site. Regulatory and safety issues are addressed by establishing boundary conditions for waste received and treated at the 242-A Evaporator. The boundary conditions are set by establishing limits for items such as potential exothermic reactions, waste compatibility, and control of vessel vent organic emissions. Boundary conditions are also set for operational considerations and to ensure waste acceptance at receiving facilities. The issues that are addressed in this plan include prevention of exotherms in the waste, waste compatibility, vessel vent emissions, and compatibility with the liner in the Liquid Effluent Retention Facility (LERF). The 242-A Evaporator feed stream is separated into two liquid streams: a concentrated slurry stream and a process condensate. A gaseous exhaust stream is also produced. The slurry contains the majority of the radionuclides and inorganic constituents. This stream is pumped back to the double shell tanks (DSTs) and stored for further treatment after being concentrated to target levels. The process condensate (PC) is primarily water that contains trace amounts of organic material and a greatly reduced concentration of radionuclides. The process condensate is presently stored in the (LERF) until it can be further processed in the Effluent Treatment Facility once it is operational.

  4. 242-A Evaporator Waste Analysis Plan. Revision 5

    SciTech Connect

    Basra, T.S.

    1995-04-13

    This Waste Analysis Plan (WAP) provides the plan for obtaining information needed for proper waste handling and processing in the 242-A Evaporator (Evaporator) located on the Hanford Site. In particular it addresses analysis necessary to manage the waste according to Washington Administrative Code (WAC) 173-303 and Parts 264 and 265 of the Code of Federal Regulations (CFR). Regulatory and safety issues are addressed by establishing boundary conditions for waste received and treated at the 242-A Evaporator. The boundary conditions are set by establishing limits for items such as potential exothermic reactions, waste compatibility, and control of vessel vent organic emissions. Boundary conditions are also set for operational considerations and to ensure waste acceptance at receiving facilities. The issues that are addressed in this plan include prevention of exotherms in the waste, waste compatibility, and vessel vent emissions. Samples from the other streams associated with the Evaporator are taken as required by Process Control Plans but are excluded from this plan because either the streams do not contain dangerous waste or the analyses are not required by WAC 173-303-300.

  5. Atmospheric dispersion of ammonia accidentally released from the 242-A Evaporator, Hanford Site, Richland, Washington

    SciTech Connect

    Daling, P.M.; Lavender, J.C.

    1997-11-01

    Two errors have been identified in the authorization basis for the 242-A Evaporator at the Hanford Site. These errors, which appear in the 242-A Evaporator/Crystallizer Final Safety Analysis Report analysis of ammonia gas concentrations accidentally released from the 242-A Evaporator, are: (1) the vessel ventilation system flow rate used in the previous calculations is a factor of ten higher than the actual flow rate, and (2) the previous calculations did not account for the ammonia source term reduction that would occur via condensation of ammonia vapors, which will remove a large fraction of the ammonia from the exhaust gas stream. The purpose of this document is to correct these errors and recalculate the maximum ground-level concentrations of ammonia released to the environment as a result of potential errors in blending Evaporator feed. The errors offset each other somewhat, so it is unlikely that the 242-A Evaporator has operated outside its current authorization basis. However, the errors must be corrected and the results incorporated into a revision of the 242-A Evaporator/Crystallizer Safety Analysis Report, WHC-SD-WM-SAR-023. An EPA-approved atmospheric dispersion model, SCREEN3, was used to recalculate the maximum ground-level concentrations of ammonia that would be released from the 242-A Evaporator as a result of a feed-blending error. The results of the re-analysis of the 242-A Evaporator`s ammonia release scenario are as follows. The onsite receptor 100 m away from the release point (242-A vessel vent stack) is projected to be exposed to a maximum ground-level concentration of ammonia of 8.3 ppm. The maximally-exposed offsite receptor, located at the nearest Hanford Site boundary 16 km away from the 242-A vessel vent stack, will be exposed to a maximum ground-level concentration of 0.11 ppm ammonia.

  6. Process Control Plan for 242A Evaporator Campaign

    SciTech Connect

    LE, E.Q.

    2000-04-06

    The wastes in tanks 107-AP and 108-AP are designated as feed for 242-A Evaporator Campaign 2000-1, which is currently scheduled for the week of April 17, 2000. Waste in tanks 107-AP and 108-AP is predominantly comprised of saltwell liquor from 200 West Tank Farms.

  7. 1998 242-A interim evaporator tank system integrity assessment plan

    SciTech Connect

    Jensen, C.E.

    1998-03-31

    Portions of the 242-A Evaporator on the Hanford Site must be assessed to meet the requirements of the Washington State Department of Ecology`s Dangerous Waste Regulation, Washington Administrative Code (WAC) 173-303. The assessment is limited to the provisions of Section 173-303-640. This Integrity Assessment Plan (IAP) identifies tasks which will be performed during the assessment phase and describes the intended assessment techniques. The 242-A Evaporator facility processes waste solutions from most of the operating laboratories and plants of the Hanford Site. The waste solutions are concentrated in the evaporator to a slurry of liquid and crystallized salts. This concentrated slurry is returned to the Tank Farms at a significantly reduce volume. The water vapor from the evaporation process is condensed, filtered, and can be pumped through an ion exchange bed before transfer to a retention basin. The non-condensable portion of the vapor is filtered and continuously monitored before venting to the atmosphere. The 242-A Evaporator will be assessed as seven subsystems. Four of the subsystems store, transport or treat Washington State Dangerous wastes, the other three subsystems are integral parts of the process, however, they do not directly store, transfer, or treat listed dangerous wastes. The facility will be inspected, tested, and analyzed through this assessment. The seven subsystems, defined in detail in Appendix B, are: Evaporator Process and Slurry Subsystem; Vapor Condenser Subsystem; Vessel Vent Subsystem; Process Condensate Subsystem; Steam Condensate Subsystem; Raw Water Disposal Subsystem; and Building and Secondary Containment Subsystem.

  8. 242-A evaporator quality assurance project plan: Revision 1

    SciTech Connect

    Tucker, B.J.

    1994-11-04

    The scope of this quality assurance project plan (Plan) is sampling and analytical services including, but not limited to, sample receipt, handling and storage, analytical measurements, submittal of data deliverables, archiving selected portions of samples, returning unneeded sample material to Westinghouse Hanford Company (WHC), and/or sample disposal associated with candidate feed samples and process condensate compliance samples. Sampling and shipping activities are also included within the scope. The purpose of this project is to provide planning, implementation, and assessment guidance for achieving established data quality objectives measurement parameters. This Plan requires onsite and offsite laboratories to conform to that guidance. Laboratory conformance will help ensure that quality data are being generated and therefore, that the 242-A evaporator is operating in a safe and compliant manner. The 242-A evaporator feed stream originates from double-shell tanks (DSTs) identified as candidate feed tanks. The 242-A evaporator reduces the volume of aqueous waste contained in DSTs by boiling off water and sending it to the Liquid Effluent Retention Facility (LERF) storage basin before further treatment. The slurry product is returned to DSTs. Evaporation results in considerable savings by reducing the volume of mixed waste for disposal.

  9. Waste volume reduction factors for potential 242-A evaporator feed

    SciTech Connect

    Sederburg, J.P.

    1995-05-04

    Double-shell tank (DST) storage space requirements have been shown to be highly dependent on the end point of 242-A operations. Consequences to the DST of various waste volumes, and concentrations, are evaluated. Only waste streams that are currently planned to be stored in the DST system before the year 2004 are discussed. As of January 1, 1995, approximately 27-million L (7.2-million gal) of dilute wastes are stored in the DSTs available for evaporator processing. Waste streams planned to be transferred to the DSTs before December 31, 2004, are identified. The DST volume for storing slurry from these wastes is presented in this document. At a final slurry specific gravity of -1.35, 22.5-million L (5.93-million gal) of DST space would be needed on December 31, 2004, to store the product from evaporator processing of these feedstocks. The expected volume needed if the resultant slurry were concentrated to the traditional double-shell slurry feed (DSSF) phase boundary (a specific gravity of {approximately}1.5) would be 17.7-million L (4.67-million gal). An additional 4.8-million L (1.26-million gal) is therefore needed if these wastes are concentrated to a specific gravity of 1.35 instead of the DSSF limit.

  10. Organic emission calculations for the 242-A evaporator vessel vent system

    SciTech Connect

    Bowman, M.R.

    1996-06-20

    This document contains historical calculations originally published in the 242-A Evaporator Dangerous Waste Permit Application, DOE/RL-90-42, Rev 0. They are being released as a supporting document, along with brief explanatory information, to be used as a reference in Rev 1 of the permit application and in other supporting documents, such as the 242-A Evaporator Data Quality Objectives.

  11. Technical support for authorization of 242-A evaporator campaign 97-2, Hanford Site, Richland, Washington

    SciTech Connect

    Daling, P.M.; Lavender, J.C.

    1997-07-01

    An analysis was performed to determine the acceptability of processing 242-A Evaporator/Crystallizer Campaign 97-2 feed. Inhalation unit liter doses (ULDs) were calculated using the methods and data described in the Tank Waste Remediation System Basis for Interim Operation (TWRS BIO) and 242-A Evaporator/Crystallizer Safety Analysis Report. The ULD calculated for the Campaign 97-2 slurry was found to be less than the TWRS BIO evaporator slurry ULD and so would be within the analyzed safety envelope defined in the TWRS BIO. The Evaporator slurry ULD established in the TWRS BIO and supporting documents was calculated using the bounding source strength defined in the 242-A Evaporator SAR. Consequently, the risks and consequences associated with the Campaign 97-2 slurry would be lower than those already accepted by DOE and documented in the TWRS BIO and 242-A Evaporator SAR. The direct radiation exposures from formation of a liquid pool of Campaign 97-2 slurry were demonstrated to be less than the exposures from a pool formed by bounding source strength evaporator slurry as defined in the 242-A Evaporator SAR. This was demonstrated via a comparison of the Campaign 97-2 slurry composition and the 242-A Evaporator SAR bounding source strength. It was concluded that the direct radiation exposures from Campaign 97-2 slurry would be within the analyzed safety envelope in the 242-A Evaporator SAR.

  12. 242-A Evaporator/Liquid Effluent Retention Facility data quality objectives

    SciTech Connect

    Von Bargen, B.H.

    1994-09-29

    The purpose of data quality objectives (DQO) is to determine the most cost effective methods of gathering the essential data necessary to make decisions to support successful operation of the facility. The essential data is defined by such information as sample amount, sample location, required analyses, and how sampling and analyses are performed. Successful operation is defined as meeting the campaign objectives while operating within established requirements. This DQO document addresses that portion of the system from 242-A Evaporator candidate feed tanks through discharge of process condensate to the Liquid Effluent Retention of Facility (LERF). Later revisions will incorporate and integrate the entire system, including the Effluent Treatment Facility (ETF).

  13. 1998 Annual Cathodic Protection Survey Report for the 242-A Evaporator Area

    SciTech Connect

    BOWMAN, T.J.

    1999-12-07

    This report is the second annual cathodic protection report for the 242-A evaporator. The report documents and trends annual polarization survey data, rectifier inspection data, and continuity data from 1994 through mid-1999.

  14. THE FLAMMABILITY ANALYSIS AND TIME TO REACH LOWER FLAMMABILITY LIMIT CALCULATIONS ON THE WASTE EVAPORATION AT 242-A EVAPORATOR

    SciTech Connect

    HU TA

    2007-10-31

    This document describes the analysis of the waste evaporation process on the flammability behavior. The evaluation calculates the gas generation rate, time to reach 25% and 100% of the lower flammability limit (LFL), and minimum ventilation rates for the 242-A Evaporator facility during the normal evaporation process and when vacuum is lost. This analysis performs flammability calculations on the waste currently within all 28 double-shell tanks (DST) under various evaporation process conditions to provide a wide spectrum of possible flammable gas behavior. The results of this analysis are used to support flammable gas control decisions and support and upgrade to Documented Safety Analysis for the 242-A Evaporator.

  15. Process control plan for 242-A Evaporator Campaign 94-2

    SciTech Connect

    Le, E.Q.

    1994-09-01

    242-A Evaporator Campaign 94-2 will process approximately 3.42 million gallons of dilute waste from tanks 101-AP, 107-AP, 108AP, 102-AW, and 106-AW. The process control plant describes activities which will occur during Campaign 94-2. This document also addresses compliance with the tank farm waste compatibility program, the 242-A radiological source term, the criticality prevention specifications, and effluent discharge limits.

  16. Analytical services: 222-S characterization of 242-A Evaporator Slurry, Campaign 94-1. Addendum 1A

    SciTech Connect

    Not Available

    1994-09-13

    During the 242-A Evaporator`s 94-1 campaign, five process samples were collected from the slurry stream for waste characterization. The five samples were collected over a 36 day time span, respectively on May 4, May 9, May 16, May 23, and June 9, 1994. Sample collections were performed per the protocol described in 242-A Evaporator Waste Analysis Plan, WHC-SD-WM-EV-060, Rev. 3 and in 242-A Evaporator Quality Assurance Project Plan, WHC-SD-WM-QAPP-009, Rev. 0. Slurry waste was characterized chemically and radiochemically by the Westinghouse Hanford Company, 222-S Laboratory as directed.

  17. Process control plan for 242-A Evaporator Campaign 95-1

    SciTech Connect

    Le, E.Q.; Guthrie, M.D.

    1995-05-18

    The wastes from tanks 106-AP, 107-AP, and 106-AW have been selected to be candidate feed wastes for Evaporator Campaign 95-1. The wastes in tank 106-AP and 107-AP are primarily from B-Plant strontium processing and PUREX neutralized cladding removal, respectively. The waste in tank 106-AW originated primarily from the partially concentrated product from 242-A Evaporator Campaign 94-2. Approximately 8.67 million liters of waste from these tanks will be transferred to tank 102-AW during the campaign. Tank 102-AW is the dedicated waste feed tank for the evaporator and currently contains 647,000 liters of processable waste. The purpose of the 242-A Evaporator Campaign 95-1 Process Control Plan (hereafter referred to as PCP) is to certify that the wastes in tanks 106-AP, 107-AP, 102-AW, and 106-AW are acceptable for processing through evaporator and provide a general description of process strategies and activities which will take place during Campaign 95-1. The PCP also summarizes and presents a comprehensive characterization of the wastes in these tanks.

  18. Functional design criteria for the 242-A evaporator and PUREX (Plutonium-Uranium Extraction) Plant condensate interim retention basin

    SciTech Connect

    Cejka, C.C.

    1990-01-01

    This document contains the functional design criteria for a 26- million-gallon retention basin and 10 million gallons of temporary storage tanks. The basin and tanks will be used to store 242-A Evaporator process condensate, the Plutonium-Uranium Extraction (PUREX) Plant process distillate discharge stream, and the PUREX Plant ammonia scrubber distillate stream. Completion of the project will allow both the 242-A Evaporator and the PUREX Plant to restart. 4 refs.

  19. Project C-018H, 242-A Evaporator/PUREX Plant Process Condensate Treatment Facility, functional design criteria. Revision 3

    SciTech Connect

    Sullivan, N.

    1995-05-02

    This document provides the Functional Design Criteria (FDC) for Project C-018H, the 242-A Evaporator and Plutonium-Uranium Extraction (PUREX) Plant Condensate Treatment Facility (Also referred to as the 200 Area Effluent Treatment Facility [ETF]). The project will provide the facilities to treat and dispose of the 242-A Evaporator process condensate (PC), the Plutonium-Uranium Extraction (PUREX) Plant process condensate (PDD), and the PUREX Plant ammonia scrubber distillate (ASD).

  20. Engineering work plan for implementing the Process Condensate Recycle Project at the 242-A evaporator

    SciTech Connect

    Haring, D.S.

    1995-02-02

    The 242-A Evaporator facility is used to reduce the volume of waste stored in the Hanford double shell tanks. This facility uses filtered raw water for cooling, de-entrainment pad sprays, pump seal water, and chemical tank make-up. Some of these uses result in the introduction of filtered raw water into the process, thus increasing the volume of waste requiring evaporation and subsequent treatment by the 200 East Effluent Treatment Facility. The pump seal water and the de-entrainment pad spray systems were identified as candidates for a waste minimization upgrade. This work plan describes the activities associated with the design, installation, testing and initial operation of the process condensate recycle system. Implementation of the process condensate recycle system will permit the use of process condensate in place of raw water for the de-entrainment pad sprays and pump seals. This will reduce the amount of low-level liquid waste and generated during facility operation through source reduction and recycling.

  1. High-level waste storage tank farms/242-A evaporator Standards/Requirements Identification Document (S/RID), Volume 2

    SciTech Connect

    Not Available

    1994-04-01

    The High-Level Waste Storage Tank Farms/242-A Evaporator Standards/Requirements Document (S/RID) is contained in multiple volumes. This document (Volume 2) presents the standards and requirements for the following sections: Quality Assurance, Training and Qualification, Emergency Planning and Preparedness, and Construction.

  2. High level waste storage tank farms/242-A evaporator Standards/Requirements Identification Document (S/RID), Volume 6

    SciTech Connect

    Not Available

    1994-04-01

    The High-Level Waste Storage Tank Farms/242-A Evaporator Standards/Requirements Identification Document (S/RID) is contained in multiple volumes. This document (Volume 6) outlines the standards and requirements for the sections on: Environmental Restoration and Waste Management, Research and Development and Experimental Activities, and Nuclear Safety.

  3. High-level waste storage tank farms/242-A evaporator Standards/Requirements Identification Document (S/RID)

    SciTech Connect

    Not Available

    1994-04-01

    The High-Level Waste Storage Tank Farms/242-A Evaporator Standards/Requirements Identification Document (S/RID) is contained in multiple volumes. This document (Volume 3) presents the standards and requirements for the following sections: Safeguards and Security, Engineering Design, and Maintenance.

  4. High-level waste storage tank farms/242-A evaporator Standards/Requirements Identification Document (S/RID), Volume 4

    SciTech Connect

    Not Available

    1994-04-01

    The High-Level Waste Storage Tank Farms/242-A Evaporator Standards/Requirements Identification Document (S/RID) is contained in multiple volumes. This document (Volume 4) presents the standards and requirements for the following sections: Radiation Protection and Operations.

  5. High-level waste storage tank farms/242-A evaporator standards/requirements identification document (S/RID), Vol. 4

    SciTech Connect

    Not Available

    1994-04-01

    Radiation protection of personnel and the public is accomplished by establishing a well defined Radiation Protection Organization to ensure that appropriate controls on radioactive materials and radiation sources are implemented and documented. This Requirements Identification Document (RID) applies to the activities, personnel, structures, systems, components, and programs involved in executing the mission of the Tank Farms. The physical boundaries within which the requirements of this RID apply are the Single Shell Tank Farms, Double Shell Tank Farms, 242-A Evaporator-Crystallizer, 242-S, T Evaporators, Liquid Effluent Retention Facility (LERF), Purgewater Storage Facility (PWSF), and all interconnecting piping, valves, instrumentation, and controls. Also included is all piping, valves, instrumentation, and controls up to and including the most remote valve under Tank Farms control at any other Hanford Facility having an interconnection with Tank Farms. The boundary of the structures, systems, components, and programs to which this RID applies, is defined by those that are dedicated to and/or under the control of the Tank Farms Operations Department and are specifically implemented at the Tank Farms.

  6. High-level waste storage tank farms/242-A evaporator Standards/Requirements Identification Document (S/RID), Volume 7. Revision 1

    SciTech Connect

    Burt, D.L.

    1994-04-01

    The High-Level Waste Storage Tank Farms/242-A Evaporator Standards/Requirements Identification Document (S/RID) is contained in multiple volumes. This document (Volume 7) presents the standards and requirements for the following sections: Occupational Safety and Health, and Environmental Protection.

  7. Configuration management plan for waste tank farms and the 242-A evaporator of tank waste remediation system

    SciTech Connect

    Laney, T.

    1994-08-30

    The configuration management architecture presented in this Configuration Management Plan is based on the functional model established by DOE-STD-1073-93, ``Guide for Operational Configuration Management Program.`` The DOE Standard defines the configuration management program by the five basic program elements of ``program management,`` ``design requirements,`` ``document control,`` ``change control,`` and ``assessments,`` and the two adjunct recovery programs of ``design reconstitution,`` and ``material condition and aging management.`` The CM model of five elements and two adjunct programs strengthen the necessary technical and administrative control to establish and maintain a consistent technical relationship among the requirements, physical configuration, and documentation. Although the DOE Standard was originally developed for the operational phase of nuclear facilities, this plan has the flexibility to be adapted and applied to all life-cycle phases of both nuclear and non-nuclear facilities. The configuration management criteria presented in this plan endorses the DOE Standard and has been tailored specifically to address the technical relationship of requirements, physical configuration, and documentation during the full life cycle of the Waste Tank Farms and 242-A Evaporator of Tank Waste Remediation System.

  8. High-level waste storage tank farms/242-A evaporator standards/requirements identification document (S/RID), Vol. 1

    SciTech Connect

    Not Available

    1994-04-01

    The purpose of this Requirements Identification Document (RID) section is to identify, in one location, all of the facility specific requirements and good industry practices which are necessary or important to establish an effective Issues Management Program for the Tank Farm Facility. The Management Systems Functional Area includes the site management commitment to environmental safety and health (ES&H) policies and controls, to compliance management, to development and management of policy and procedures, to occurrence reporting and corrective actions, resource and issue management, and to the self-assessment process.

  9. Sequence and batch language programs and alarm related C Programs for the 242-A MCS

    SciTech Connect

    Berger, J.F.

    1996-04-15

    A Distributive Process Control system was purchased by Project B-534, 242-A Evaporator/Crystallizer Upgrades. This control system, called the Monitor and Control system (MCS), was installed in the 242-A evaporator located in the 200 East Area. The purpose of the MCS is to monitor and control the Evaporator and monitor a number of alarms and other signals from various Tank Farm facilities. Applications software for the MCS was developed by the Waste Treatment Systems Engineering (WTSE) group of Westinghouse. The standard displays and alarm scheme provide for control and monitoring, but do not directly indicate the signal location or depict the overall process. To do this, WTSE developed a second alarm scheme.

  10. Final characterization and safety screen report of double shell tank 241-AP-104 for 242-A evaporator, campaign 96-1

    SciTech Connect

    Miller, G.L.

    1996-04-19

    This data package satisfies the requirement for a format IV, final report. It is a follow-up to the 45-day safety screen report for tank AP-104. Evaporator candidate feed from tank 241-AP-104 (hereafter referred to as AP-104) was characterized for physical, inorganic, organic and radiochemical parameters by the Westinghouse Hanford Company, 222-S Laboratory, and by the Battelle Pacific Northwest National Laboratory (PNNL), Analytical Chemistry Laboratory (ACL) as directed by the Tank Sample and Analysis Plan (TSAP), References 1 through 4. Preliminary data in the form of summary analytical tables were provided to the project in advance of this final report to enable early estimation of evaporator operational parameters, using the Predict modeling program. Laboratory analyses at ACL Laboratory was performed according to the TSAP. Analyses were performed at the 222-S Laboratory as defined and specified in the TSAP and the Laboratory`s Quality Assurance Plan, References 5 and 6. Any deviations from the instructions documented in the TSAP are discussed in this narrative and are supported with additional documentation. SAMPLING The TSAP, section 2, provided sampling information for waste samples collected from tank AP-104. The bottle-on-a-string method was used to collect liquid grab samples from the tank. Each glass sample bottle was amber, precleaned, and contained approximately 100 milliliters. Each bottle was closed with a teflon seal cap (or teflon septum for volatile organic analysis samples). Field blank samples were prepared by placing deionized water into sampling bottles, lowering the unclosed bottles into the riser for a period of time, retrieving them from the riser, and then closing the bottles with the same types of caps used for the tank samples. None of the samples were preserved by acidification. Upon receipt, the sample bottles destined for organic analyses were placed in a refrigerator. No attempt was made during sampling to assure the complete

  11. 242-A Campaign 99-1 process control plan

    SciTech Connect

    LE, E.Q.

    1999-08-25

    242-A Evaporator 99-1 will process approximately one million gallons of waste from tank 102-AW in June 1999. The process control Plan provides a general description of activities, which will occur during 242-A Evaporator Campaign 99-1 and to document analyses conducted to demonstrate that 102-AW waste is acceptable for processing. Predict is a registered trademark of Risk Decisions England Corporation, United Kingdom.

  12. 32 CFR 242a.3 - Open meetings.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 2 2011-07-01 2011-07-01 false Open meetings. 242a.3 Section 242a.3 National Defense Department of Defense (Continued) OFFICE OF THE SECRETARY OF DEFENSE (CONTINUED) MISCELLANEOUS PUBLIC MEETING PROCEDURES OF THE BOARD OF REGENTS, UNIFORMED SERVICES UNIVERSITY OF THE HEALTH SCIENCES § 242a.3 Open meetings. (a) Members shall...

  13. 32 CFR 242a.3 - Open meetings.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 2 2010-07-01 2010-07-01 false Open meetings. 242a.3 Section 242a.3 National Defense Department of Defense (Continued) OFFICE OF THE SECRETARY OF DEFENSE (CONTINUED) MISCELLANEOUS PUBLIC MEETING PROCEDURES OF THE BOARD OF REGENTS, UNIFORMED SERVICES UNIVERSITY OF THE HEALTH SCIENCES § 242a.3 Open meetings. (a) Members shall...

  14. 32 CFR 242a.8 - Effective date.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 2 2010-07-01 2010-07-01 false Effective date. 242a.8 Section 242a.8 National Defense Department of Defense (Continued) OFFICE OF THE SECRETARY OF DEFENSE (CONTINUED) MISCELLANEOUS PUBLIC MEETING PROCEDURES OF THE BOARD OF REGENTS, UNIFORMED SERVICES UNIVERSITY OF THE HEALTH SCIENCES § 242a.8 Effective date. This part...

  15. 32 CFR 242a.1 - Applicability.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 2 2010-07-01 2010-07-01 false Applicability. 242a.1 Section 242a.1 National Defense Department of Defense (Continued) OFFICE OF THE SECRETARY OF DEFENSE (CONTINUED) MISCELLANEOUS PUBLIC MEETING PROCEDURES OF THE BOARD OF REGENTS, UNIFORMED SERVICES UNIVERSITY OF THE HEALTH SCIENCES § 242a.1 Applicability. These...

  16. A preliminary study on the application of remotely sensed SST in locating evaporation duct height

    NASA Astrophysics Data System (ADS)

    Baig, Muhammad Hasan Ali; Wang, Zhenhui; Zhang, Lifu; Yang, Lu

    2012-10-01

    Refractivity happens due to stratification in the lower boundary layer over oceans due to variability of moisture, temperature, wind and sea surface temperature which collectively may lead to generate evaporation duct. The evaporation duct has a significant impact on the spread of electromagnetic waves in the atmosphere over oceans both from the meteorological and military point of view. This ducting sometimes supports normal propagation of radar signals and sometimes may cause distortion and attenuation of signals depending on the height of evaporation duct. This leads to over-estimation and under-estimation of rainfall by weather radar meteorologically and for other targets militarily. The aim of this study was not only to locate evaporation duct height but also to check the efficiency of Weather Research and Forecasting Model (WRF) and Babin's model so that results may be used in applying correction measures for precise identification of targets by radar. In this study by utilizing the high vertical resolution of WRF for the simulation of different meteorological parameters, the Babin's method was used for calculating the evaporation duct height over South China Sea for the two months, April and July. Very clear duct heights were calculated at different areas over sea in different time domains. Study reveals that maximum height existed in the month of April although July was rich with different EDHs in different regions in contrast to April. It was found that in most of the cases EDH was higher or maximum when relative humidity was comparatively lower and air temperature and wind speed were comparatively higher. This study paves a way for futuristic study of evaporation duct monitoring and forecasting by assimilation of remote sensing data especially through that of Geostationary satellites by incorporating verification measures from radar.

  17. Sequence and batch language programs and alarm-related ``C`` programs for the 242-A MCS. Revision 2

    SciTech Connect

    Berger, J.F.

    1995-03-01

    A Distributive Process Control system was purchased by Project B-534, ``242-A Evaporator/Crystallizer Upgrades``. This control system, called the Monitor and Control System (MCS), was installed in the 242-A Evaporator located in the 200 East Area. The purpose of the MCS is to monitor and control the Evaporator and monitor a number of alarms and other signals from various Tank Farm facilities. Applications software for the MCS was developed by the Waste Treatment Systems Engineering (WTSE) group of Westinghouse. The standard displays and alarm scheme provide for control and monitoring, but do not directly indicate the signal location or depict the overall process. To do this, WTSE developed a second alarm scheme which uses special programs, annunciator keys, and process graphics. The special programs are written in two languages; Sequence and Batch Language (SABL), and ``C`` language. The WTSE-developed alarm scheme works as described below: SABL relates signals and alarms to the annunciator keys, called SKID keys. When an alarm occurs, a SABL program causes a SKID key to flash, and if the alarm is of yellow or white priority then a ``C`` program turns on an audible horn (the D/3 system uses a different audible horn for the red priority alarms). The horn and flashing key draws the attention of the operator.

  18. Facility effluent monitoring plan for 242-A evaporator facility

    SciTech Connect

    Crummel, G.M.; Gustavson, R.D.

    1995-02-01

    A facility effluent monitoring plan is required by the U.S. Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could affect employee or public safety or the environment. A facility effluent monitoring plan determination was performed during Calendar Year 1991 and the evaluation showed the need for a facility effluent monitoring plan. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438-1. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan shall ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated, as a minimum, every three years.

  19. 242A Distributed Control System Year 2000 Acceptance Test Report

    SciTech Connect

    TEATS, M.C.

    1999-08-31

    This report documents acceptance test results for the 242-A Evaporator distributive control system upgrade to D/3 version 9.0-2 for year 2000 compliance. This report documents the test results obtained by acceptance testing as directed by procedure HNF-2695. This verification procedure will document the initial testing and evaluation of the potential 242-A Distributed Control System (DCS) operating difficulties across the year 2000 boundary and the calendar adjustments needed for the leap year. Baseline system performance data will be recorded using current, as-is operating system software. Data will also be collected for operating system software that has been modified to correct year 2000 problems. This verification procedure is intended to be generic such that it may be performed on any D/3{trademark} (GSE Process Solutions, Inc.) distributed control system that runs with the VMSTM (Digital Equipment Corporation) operating system. This test may be run on simulation or production systems depending upon facility status. On production systems, DCS outages will occur nine times throughout performance of the test. These outages are expected to last about 10 minutes each.

  20. 32 CFR 242a.5 - Procedure for announcing meetings.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 2 2010-07-01 2010-07-01 false Procedure for announcing meetings. 242a.5 Section 242a.5 National Defense Department of Defense (Continued) OFFICE OF THE SECRETARY OF DEFENSE (CONTINUED) MISCELLANEOUS PUBLIC MEETING PROCEDURES OF THE BOARD OF REGENTS, UNIFORMED SERVICES UNIVERSITY OF THE HEALTH SCIENCES § 242a.5 Procedure...

  1. 242-A Campaign 94-1 post run document

    SciTech Connect

    Guthrie, M.D.

    1994-09-30

    The purpose of this post-run document is to summarize the results of 242-A Evaporator Campaign 94-1 as required. Campaign 94-1 represents the first Evaporator operation since 1989, following completion of the B-534 upgrades and Liquid Effluent Retention Facility (LERF) construction. The purpose of Campaign 94-1 was to concentrate dilute waste from TK-102-AW, TK-106-AW, and TK-103-AP. From an available 2.87 million gallon feedstock of dilute waste contained in 102-AW, 106-AW and 103-AP, an overall Waste Volume Reduction (WVR) of 2.39 million gallons (83% WVRF) was achieved. At the completion of the campaign, approximately 477,000 gallons of dilute double-shell slurry feed (DDSSF) was produced with a SpG. of 1.25--1.30. Total process condensate discharged to LERF was 3.09 million gallons, achieving a condensate/WVR ratio of 1.29. Throughput for Campaign 94-1 was 5.27 million gallons. Total steam condensate and cooling water discharge to B-pond was 4.7 and 216 million gallons respectively. The evaporator operated approximately 43 days of the 60 day campaign for a total operating efficiency of 73%. Campaign 94-1 was completed without any discharge limit, Operating Specification Document, or Operational Safety Requirement violations. Major problems encountered during the run included the following: (1) high CA1 deentrainment pad dP`s caused by foaming, (2) condensate pump P-C100 failure, and (3) ion exchange column dP`s and efficiency.

  2. 32 CFR 242a.6 - Procedure for closing meetings.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 2 2010-07-01 2010-07-01 false Procedure for closing meetings. 242a.6 Section... SCIENCES § 242a.6 Procedure for closing meetings. (a) Action to close a meeting or portion thereof... each Board or committee meeting a portion or portions of which are proposed to be closed to the...

  3. 32 CFR 242a.6 - Procedure for closing meetings.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 2 2011-07-01 2011-07-01 false Procedure for closing meetings. 242a.6 Section... SCIENCES § 242a.6 Procedure for closing meetings. (a) Action to close a meeting or portion thereof... each Board or committee meeting a portion or portions of which are proposed to be closed to the...

  4. 32 CFR 242a.6 - Procedure for closing meetings.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 2 2013-07-01 2013-07-01 false Procedure for closing meetings. 242a.6 Section... SCIENCES § 242a.6 Procedure for closing meetings. (a) Action to close a meeting or portion thereof... each Board or committee meeting a portion or portions of which are proposed to be closed to the...

  5. Evaporation Rate and Development of Wetted Area of Water Droplets with and without Surfactant at Different Locations on Waxy Leaf Surfaces

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The evaporation and formation of deposit patterns from single droplets deposited at various locations on waxy leaves were investigated under controlled conditions. Leaf locations included the interveinal area, midrib and secondary vein on both adaxial and abaxial surfaces. Tests were conducted with ...

  6. Hanford high-level waste evaporator/crystallizer corrosion evaluation

    SciTech Connect

    Ohl, P.C.; Carlos, W.C.

    1993-10-01

    The US Department of Energy, Hanford Site nuclear reservation, located in Southeastern Washington State, is currently home to 61 Mgal of radioactive waste stored in 177 large underground storage tanks. As an intermediate waste volume reduction, the 242-A Evaporator/Crystallizer processes waste solutions from most of the operating laboratories and plants on the Hanford Site. The waste solutions are concentrated in the Evaporator/Crystallizer to a slurry of liquid and crystallized salts. This concentrated slurry is returned to Hanford Site waste tanks at a significantly reduced volume. The Washington State Department of Ecology Dangerous Waste Regulations, WAC 173-393 require that a tank system integrity assessment be completed and maintained on file at the facility for all dangerous waste tank systems. This corrosion evaluation was performed in support of the 242-A Evaporator/Crystallizer Tank System Integrity Assessment Report. This corrosion evaluation provided a comprehensive compatibility study of the component materials and corrosive environments. Materials used for the Evaporator components and piping include austenitic stainless steels (SS) (primarily ASTM A240, Type 304L) and low alloy carbon steels (CS) (primarily ASTM A53 and A106) with polymeric or asbestos gaskets at flanged connections. Building structure and secondary containment is made from ACI 301-72 Structural Concrete for Buildings and coated with a chemically resistant acrylic coating system.

  7. High level waste storage tanks 242-A evaporator standards/requirement identification document

    SciTech Connect

    Biebesheimer, E.

    1996-01-01

    This document, the Standards/Requirements Identification Document (S/RIDS) for the subject facility, represents the necessary and sufficient requirements to provide an adequate level of protection of the worker, public health and safety, and the environment. It lists those source documents from which requirements were extracted, and those requirements documents considered, but from which no requirements where taken. Documents considered as source documents included State and Federal Regulations, DOE Orders, and DOE Standards

  8. High level waste storage tanks 242-A evaporator S/RID phase II assessment report

    SciTech Connect

    Biebesheimer, E.

    1996-09-27

    This document, the Standards/Requirements Identification Document (S/RID) Phase 2 Assessment Report for the subject facility, represents the results of a Performance Assessment to determine whether procedures containing S/RID requirements are fully implemented by field personnel in the field. It contains a summary report and three attachments; an assessment schedule, performance objectives, and assessments for selected functional areas.

  9. Soil Evaporation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil evaporation can significantly influence energy flux partitioning of partially vegetated surfaces, ultimately affecting plant transpiration. While important, quantification of soil evaporation, separately from canopy transpiration, is challenging. Techniques for measuring soil evaporation exis...

  10. APPLICATION OF A THIN FILM EVAPORATOR SYSTEM FOR MANAGEMENT OF LIQUID HIGH-LEVEL WASTES AT HANFORD

    SciTech Connect

    TEDESCHI AR; WILSON RA

    2010-01-14

    A modular, transportable evaporator system, using thin film evaporative technology, is planned for deployment at the Hanford radioactive waste storage tank complex. This technology, herein referred to as a wiped film evaporator (WFE), will be located at grade level above an underground storage tank to receive pumped liquids, concentrate the liquid stream from 1.1 specific gravity to approximately 1.4 and then return the concentrated solution back into the tank. Water is removed by evaporation at an internal heated drum surface exposed to high vacuum. The condensed water stream will be shipped to the site effluent treatment facility for final disposal. This operation provides significant risk mitigation to failure of the aging 242-A Evaporator facility; the only operating evaporative system at Hanford maximizing waste storage. This technology is being implemented through a development and deployment project by the tank farm operating contractor, Washington River Protection Solutions (WRPS), for the Office of River Protection/Department of Energy (ORP/DOE), through Columbia Energy & Environmental Services, Inc. (Columbia Energy). The project will finalize technology maturity and install a system at one of the double-shell tank farms. This paper discusses results of pre-project pilot-scale testing by Columbia Energy and ongoing technology maturation development scope through fiscal year 2012, including planned additional pilot-scale and full-scale simulant testing and operation with actual radioactive tank waste.

  11. 32 CFR 242a.7 - Transcripts, recordings, and minutes of closed meetings.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... SERVICES UNIVERSITY OF THE HEALTH SCIENCES § 242a.7 Transcripts, recordings, and minutes of closed meetings... be available at the actual cost of duplication or transcription. (3) The determination of...

  12. 95-1 Campaign evaporator boildown results

    SciTech Connect

    Miller, G.L.

    1994-10-10

    The Process Chemistry Laboratories were requested to support the 242-A Evaporator restart as part of the overall 222-S laboratory effort. The net purpose of these studies is to determine the characteristics of double-shell tank materials as they are processed in the evaporator. The results for the boildown study (which includes pressure and temperature versus % waste volume reduction and density of final boildown residue) supporting the 242-A Evaporator restart are reported below. The boildown was performed in a vacuum distillation apparatus with an adjustable vacuum limiting manometer and an isolatable collection graduated cylinder. The boildown was conducted over a seven hour period. The evaporation was done at 60 torr (to avoid excessive foaming and bumping of solution) for approximately half of the boildown, the pressure then being reduced to 40 torr when the reduction in solution volume allowed this to be done. Percent waste volume reduction was measured by observing the amount of condensate collected in a graduated cylinder. As the graduated cylinder became full, it was isolated from the rest of the system and the condensate removed. Pressure was set using an electronic manometer with a low pressure limiter set at the desired level. Temperature was measured using a J-type thermocouple. The apparatus was calibrated by observing the pressure versus temperature response of pure water, and comparing the values thus obtained to published values.

  13. PILOT-SCALE TEST RESULTS OF A THIN FILM EVAPORATOR SYSTEM FOR MANAGEMENT OF LIQUID HIGH-LEVEL WASTES AT THE HANFORD SITE WASHINGTON USA -11364

    SciTech Connect

    CORBETT JE; TEDESCH AR; WILSON RA; BECK TH; LARKIN J

    2011-02-14

    A modular, transportable evaporator system, using thin film evaporative technology, is planned for deployment at the Hanford radioactive waste storage tank complex. This technology, herein referred to as a wiped film evaporator (WFE), will be located at grade level above an underground storage tank to receive pumped liquids, concentrate the liquid stream from 1.1 specific gravity to approximately 1.4 and then return the concentrated solution back into the tank. Water is removed by evaporation at an internal heated drum surface exposed to high vacuum. The condensed water stream will be shipped to the site effluent treatment facility for final disposal. This operation provides significant risk mitigation to failure of the aging 242-A Evaporator facility; the only operating evaporative system at Hanford maximizing waste storage. This technology is being implemented through a development and deployment project by the tank farm operating contractor, Washington River Protection Solutions (WRPS), for the Office of River Protection/Department of Energy (ORPIDOE), through Columbia Energy and Environmental Services, Inc. (Columbia Energy). The project will finalize technology maturity and install a system at one of the double-shell tank farms. This paper summarizes results of a pilot-scale test program conducted during calendar year 2010 as part of the ongoing technology maturation development scope for the WFE.

  14. Location, Location, Location!

    ERIC Educational Resources Information Center

    Ramsdell, Kristin

    2004-01-01

    Of prime importance in real estate, location is also a key element in the appeal of romances. Popular geographic settings and historical periods sell, unpopular ones do not--not always with a logical explanation, as the author discovered when she conducted a survey on this topic last year. (Why, for example, are the French Revolution and the…

  15. 242-A Evaporator/plutonium uranium extraction (PUREX) effluent treatment facility (ETF) nonradioactive air emission test report

    SciTech Connect

    Hill, J.S., Westinghouse Hanford

    1996-05-10

    This report shows the methods used to test the stack gas outlet concentration and emission rate of Volatile Organic Compounds as Total Non-Methane Hydrocarbons in parts per million by volume,grams per dry standard cubic meter, and grams per minute from the PUREX ETF stream number G6 on the Hanford Site. Test results are shown in Appendix B.1.

  16. High-level waste storage tank farms/242-A evaporator standards/requirements identification document (S/RID), Vol. 7

    SciTech Connect

    Not Available

    1994-04-01

    This Requirements Identification Document (RID) describes an Occupational Health and Safety Program as defined through the Relevant DOE Orders, regulations, industry codes/standards, industry guidance documents and, as appropriate, good industry practice. The definition of an Occupational Health and Safety Program as specified by this document is intended to address Defense Nuclear Facilities Safety Board Recommendations 90-2 and 91-1, which call for the strengthening of DOE complex activities through the identification and application of relevant standards which supplement or exceed requirements mandated by DOE Orders. This RID applies to the activities, personnel, structures, systems, components, and programs involved in maintaining the facility and executing the mission of the High-Level Waste Storage Tank Farms.

  17. High-level waste storage tank farms/242-A evaporator standards/requirements identification document (S/RID), Vol. 6

    SciTech Connect

    Not Available

    1994-04-01

    The scope of the Environmental Restoration and Waste Management (EM) Functional Area includes the programmatic controls associated with the management and operation of the Hanford Tank Farm Facility. The driving management organization implementing the programmatic controls is the Tank Farms Waste Management (WM)organization whose responsibilities are to ensure that performance objectives are established; and that measurable criteria for attaining objectives are defined and reflected in programs, policies and procedures. Objectives for the WM Program include waste minimization, establishment of effective waste segregation methods, waste treatment technology development, radioactive (low-level, high-level) hazardous and mixed waste transfer, treatment, and storage, applicability of a corrective action program, and management and applicability of a decontamination and decommissioning (D&D) program in future years.

  18. High-level waste storage tank farms/242-A evaporator standards/requirements identification document (S/RID), Vol. 3

    SciTech Connect

    Not Available

    1994-04-01

    The Safeguards and Security (S&S) Functional Area address the programmatic and technical requirements, controls, and standards which assure compliance with applicable S&S laws and regulations. Numerous S&S responsibilities are performed on behalf of the Tank Farm Facility by site level organizations. Certain other responsibilities are shared, and the remainder are the sole responsibility of the Tank Farm Facility. This Requirements Identification Document describes a complete functional Safeguards and Security Program that is presumed to be the responsibility of the Tank Farm Facility. The following list identifies the programmatic elements in the S&S Functional Area: Program Management, Protection Program Scope and Evaluation, Personnel Security, Physical Security Systems, Protection Program Operations, Material Control and Accountability, Information Security, and Key Program Interfaces.

  19. High-level waste storage tank farms/242-A evaporator standards/requirements identification document (S/RID), Vol. 2

    SciTech Connect

    Not Available

    1994-04-01

    The Quality Assurance Functional Area Requirements Identification Document (RID), addresses the programmatic requirements that ensure risks and environmental impacts are minimized, ensure safety, reliability, and performance are maximized through the application of effective management systems commensurate with the risks posed by the Tank Farm Facility and its operation. This RID incorporates guidance intended to provide Tank Farms management with the necessary requirements information to develop, upgrade, or assess the effectiveness of a Quality Assurance Program in the performance of organizational and functional activities. Quality Assurance is defined as all those planned and systematic actions necessary to provide adequate confidence that a facility, structure, system, or component will perform satisfactorily and safely in service. This document will provide the specific requirements to meet DNFSB recommendations and the guidance provided in DOE Order 5700.6C, utilizing industry codes, standards, regulatory guidelines, and industry good practices that have proven to be essential elements for an effective and efficient Quality Assurance Program as the nuclear industry has matured over the last thirty years.

  20. High level waste storage tank farms/242-A evaporator standards/requirements identification document phase 1 assessment report

    SciTech Connect

    Biebesheimer, E., Westinghouse Hanford Co.

    1996-09-30

    This document, the Standards/Requirements Identification Document (S/RID) Phase I Assessment Report for the subject facility, represents the results of an Administrative Assessment to determine whether S/RID requirements are fully addressed by existing policies, plans or procedures. It contains; compliance status, remedial actions, and an implementing manuals report linking S/RID elements to requirement source to implementing manual and section.

  1. High-level waste storage tank farms/242-A evaporator standards/requirements identification document (S/RID), Vol. 5

    SciTech Connect

    Not Available

    1994-04-01

    The Fire Protection functional area for the Hanford Site Tank Farm facilities and support structures is based on the application of relevant DOE orders, regulations, and industry codes and standards. The fire protection program defined in this document may be divided into three areas: (1) organizational, (2) administrative programmatic features, and (3) technical features. The information presented in each section is in the form of program elements and orders, regulations, industry codes, and standards that serve as the attributes of a fire protection program for the Tank Farm facilities. Upon completion this document will be utilized as the basis to evaluate compliance of the fire protection program being implemented for the Tank Farm facilities with the requirements of DOE orders and industry codes and standards.

  2. Evaporating firewalls

    NASA Astrophysics Data System (ADS)

    Van Raamsdonk, Mark

    2014-11-01

    In this note, we begin by presenting an argument suggesting that large AdS black holes dual to typical high-energy pure states of a single holographic CFT must have some structure at the horizon, i.e. a fuzzball/firewall, unless the procedure to probe physics behind the horizon is state-dependent. By weakly coupling the CFT to an auxiliary system, such a black hole can be made to evaporate. In a case where the auxiliary system is a second identical CFT, it is possible (for specific initial states) that the system evolves to precisely the thermofield double state as the original black hole evaporates. In this case, the dual geometry should include the "late-time" part of the eternal AdS black hole spacetime which includes smooth spacetime behind the horizon of the original black hole. Thus, if a firewall is present initially, it evaporates. This provides a specific realization of the recent ideas of Maldacena and Susskind that the existence of smooth spacetime behind the horizon of an evaporating black hole can be enabled by maximal entanglement with a Hawking radiation system (in our case the second CFT) rather than prevented by it. For initial states which are not finely-tuned to produce the thermofield double state, the question of whether a late-time infalling observer experiences a firewall translates to a question about the gravity dual of a typical high-energy state of a two-CFT system.

  3. 32 CFR 242a.4 - Grounds on which meetings may be closed, or information may be withheld.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 2 2011-07-01 2011-07-01 false Grounds on which meetings may be closed, or information may be withheld. 242a.4 Section 242a.4 National Defense Department of Defense (Continued) OFFICE OF THE SECRETARY OF DEFENSE (CONTINUED) MISCELLANEOUS PUBLIC MEETING PROCEDURES OF THE BOARD OF REGENTS, UNIFORMED SERVICES UNIVERSITY OF...

  4. 32 CFR 242a.4 - Grounds on which meetings may be closed, or information may be withheld.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 2 2010-07-01 2010-07-01 false Grounds on which meetings may be closed, or information may be withheld. 242a.4 Section 242a.4 National Defense Department of Defense (Continued) OFFICE OF THE SECRETARY OF DEFENSE (CONTINUED) MISCELLANEOUS PUBLIC MEETING PROCEDURES OF THE BOARD OF REGENTS, UNIFORMED SERVICES UNIVERSITY OF...

  5. Streamer Evaporation

    NASA Technical Reports Server (NTRS)

    Suess, S. T.; Wang, A.-H.; Wu, S. T.; Nerney, S. F.

    1998-01-01

    Evaporation is the consequence of heating near the top of streamers in ideal Magnetohydrodynamics (MHD) models, where the plasma is weakly contained by the magnetic field. Heating causes slow opening of field lines and release of new solar wind. It was discovered in simulations and, due to the absence of loss mechanisms, the ultimate end point is the complete evaporation of the streamer. Of course streamers do not behave in this way because there are losses by thermal conduction and radiation. Physically, heating is also expected to depend on ambient conditions. We use our global MHD model with thermal conduction to examine the effect of changing the heating scale height. We also apply and extend an analytic model of streamers developed by Pneuman (1968) to show that steady streamers are unable to contain plasma for temperatures near the cusp greater than approximately 2 x 10(exp 6) K.

  6. Group evaporation

    NASA Technical Reports Server (NTRS)

    Shen, Hayley H.

    1991-01-01

    Liquid fuel combustion process is greatly affected by the rate of droplet evaporation. The heat and mass exchanges between gas and liquid couple the dynamics of both phases in all aspects: mass, momentum, and energy. Correct prediction of the evaporation rate is therefore a key issue in engineering design of liquid combustion devices. Current analytical tools for characterizing the behavior of these devices are based on results from a single isolated droplet. Numerous experimental studies have challenged the applicability of these results in a dense spray. To account for the droplets' interaction in a dense spray, a number of theories have been developed in the past decade. Herein, two tasks are examined. One was to study how to implement the existing theoretical results, and the other was to explore the possibility of experimental verifications. The current theoretical results of group evaporation are given for a monodispersed cluster subject to adiabatic conditions. The time evolution of the fluid mechanic and thermodynamic behavior in this cluster is derived. The results given are not in the form of a subscale model for CFD codes.

  7. Vertical counterflow evaporative cooler

    DOEpatents

    Bourne, Richard C.; Lee, Brian Eric; Callaway, Duncan

    2005-01-25

    An evaporative heat exchanger having parallel plates that define alternating dry and wet passages. A water reservoir is located below the plates and is connected to a water distribution system. Water from the water distribution system flows through the wet passages and wets the surfaces of the plates that form the wet passages. Air flows through the dry passages, mixes with air below the plates, and flows into the wet passages before exiting through the top of the wet passages.

  8. Streamer Evaporation

    NASA Technical Reports Server (NTRS)

    Suess, Steven T.; Wang, A. H.; Wu, Shi T.; Nerney, S.

    1998-01-01

    Evaporation is the consequence of slow plasma heating near the tops of streamers where the plasma is only weakly contained by the magnetic field. The form it takes is the slow opening of field lines at the top of the streamer and transient formation of new solar wind. It was discovered in polytropic model calculations, where due to the absence of other energy loss mechanisms in magnetostatic streamers, its ultimate endpoint is the complete evaporation of the streamer. This takes, for plausible heating rates, weeks to months in these models. Of course streamers do not behave this way, for more than one reason. One is that there are losses due to thermal conduction to the base of the streamer and radiation from the transition region. Another is that streamer heating must have a characteristic time constant and depend on the ambient physical conditions. We use our global Magnetohydrodynamics (MHD) model with thermal conduction to examine a few examples of the effect of changing the heating scale height and of making ad hoc choices for how the heating depends on ambient conditions. At the same time, we apply and extend the analytic model of streamers, which showed that streamers will be unable to contain plasma for temperatures near the cusp greater than about 2xl0(exp 6) K. Slow solar wind is observed to come from streamers through transient releases. A scenario for this that is consistent with the above physical process is that heating increases the near-cusp temperature until field lines there are forced open. The subsequent evacuation of the flux tubes by the newly forming slow wind decreases the temperature and heating until the flux tubes are able to reclose. Then, over a longer time scale, heating begins to again refill the flux tubes with plasma and increase the temperature until the cycle repeats itself. The calculations we report here are first steps towards quantitative evaluation of this scenario.

  9. Sampling and Analysis for Tank 241-AW-104 Waste in Support of Evaporator Campaign 2001-1

    SciTech Connect

    MCKINNEY, S.G.

    2000-05-23

    This Tank Sampling and Analysis Plan (TSAP) identifies sample collection, laboratory analysis, quality assurance/quality control (QA/QC), and reporting objectives for the characterization of tank 241-AW-104 waste. Technical bases for these objectives are specified in the 242-A Evaporator Data Quality Objectives (Bowman 2000a and Von Bargen 1998), 242-A Evaporator Quality Assurance Project Plan (Bowman 1998 and Bowman 2000b), Tank 241-AW-104 Sampling Requirements in Support of Evaporator Campaign 2000-1 (Le 2000). Characterization results will be used to support the evaporator campaign currently planned for early fiscal year 2001. No other needs (or issues) requiring data for this tank waste apply to this sampling event.

  10. Evaporative cooling: effective latent heat of evaporation in relation to evaporation distance from the skin.

    PubMed

    Havenith, George; Bröde, Peter; den Hartog, Emiel; Kuklane, Kalev; Holmer, Ingvar; Rossi, Rene M; Richards, Mark; Farnworth, Brian; Wang, Xiaoxin

    2013-03-15

    Calculation of evaporative heat loss is essential to heat balance calculations. Despite recognition that the value for latent heat of evaporation, used in these calculations, may not always reflect the real cooling benefit to the body, only limited quantitative data on this is available, which has found little use in recent literature. In this experiment a thermal manikin, (MTNW, Seattle, WA) was used to determine the effective cooling power of moisture evaporation. The manikin measures both heat loss and mass loss independently, allowing a direct calculation of an effective latent heat of evaporation (λeff). The location of the evaporation was varied: from the skin or from the underwear or from the outerwear. Outerwear of different permeabilities was used, and different numbers of layers were used. Tests took place in 20°C, 0.5 m/s at different humidities and were performed both dry and with a wet layer, allowing the breakdown of heat loss in dry and evaporative components. For evaporation from the skin, λeff is close to the theoretical value (2,430 J/g) but starts to drop when more clothing is worn, e.g., by 11% for underwear and permeable coverall. When evaporation is from the underwear, λeff reduction is 28% wearing a permeable outer. When evaporation is from the outermost layer only, the reduction exceeds 62% (no base layer), increasing toward 80% with more layers between skin and wet outerwear. In semi- and impermeable outerwear, the added effect of condensation in the clothing opposes this effect. A general formula for the calculation of λeff was developed. PMID:23329814

  11. Evaporator Cleaning Studies

    SciTech Connect

    Wilmarth, W.R.

    1999-04-15

    Operation of the 242-16H High Level Waste Evaporator proves crucial to liquid waste management in the H-Area Tank Farm. Recent operational history of the Evaporator showed significant solid formation in secondary lines and in the evaporator pot. Additional samples remain necessary to ensure material identity in the evaporator pot. Analysis of these future samples will provide actinide partitioning information and dissolution characteristics of the solid material from the pot to ensure safe chemical cleaning.

  12. Evaporation in space manufacturing

    NASA Technical Reports Server (NTRS)

    Li, C. H.

    1974-01-01

    'Normal evaporation' equations for predicting the compositional changes with time and temperature have been developed and correlated with actual experimental data. An evaporative congruent temperature is defined and used to explain, predict, or plan space experiments on anomalous constitutional melting (on cooling) or solidification (on heating). Uneven evaporation causes reactive jetting forces capable of initiating new convection currents, nongravitational accelerations, surface vibrations, or other disturbances. Applications of evaporation to space manufacturing are described concerning evaporative purification, surface cooling, specimen selection, particles splitting, freezing data interpretation, material loss and dimensional control, and surface contamination or compositional changes.

  13. Further Evaluation of an Emperical Equation for Annual Total Evaporation

    NASA Technical Reports Server (NTRS)

    Choudhury, Bhaskar J.

    1999-01-01

    An empirical equation for annual total evaporation based on annual precipitation and net radiation was found to provide evaporation within 10% of the observed values at seven locations within temperate and tropical regions, but it overestimated evaporation by 90% at one location within the tundra region. A synthesis of observations at two other locations within the tundra region gives overestimates of about 65%. A general analysis of observed precipitation, net radiation, and runoff within the tundra region shows that the empirical equation is generally biased to overestimate annual evaporation within the tundra region. A theoretical analysis is being done to understand the reason behind this bias.

  14. Laboratory prototype flash evaporator

    NASA Technical Reports Server (NTRS)

    Gaddis, J. L.

    1972-01-01

    A laboratory prototype flash evaporator that is being developed as a candidate for the space shuttle environmental control system expendable heat sink is described. The single evaporator configuration uses water as an evaporant to accommodate reentry and on-orbit peak heat loads, and Freon 22 for terrestrial flight phases below 120,000 feet altitude. The design features, fabrication techniques used for the prototype unit, redundancy considerations, and the fluid temperature control arrangement are reported in detail. The results of an extensive test program to determine the evaporator operational characteristics under a wide variety of conditions are presented.

  15. Measure Guideline: Evaporative Condensers

    SciTech Connect

    German, A; Dakin, B.; Hoeschele, M.

    2012-03-01

    This measure guideline on evaporative condensers provides information on properly designing, installing, and maintaining evaporative condenser systems as well as understanding the benefits, costs, and tradeoffs. This is a prescriptive approach that outlines selection criteria, design and installation procedures, and operation and maintenance best practices.

  16. Evaporation, Boiling and Bubbles

    ERIC Educational Resources Information Center

    Goodwin, Alan

    2012-01-01

    Evaporation and boiling are both terms applied to the change of a liquid to the vapour/gaseous state. This article argues that it is the formation of bubbles of vapour within the liquid that most clearly differentiates boiling from evaporation although only a minority of chemistry textbooks seems to mention bubble formation in this context. The…

  17. High level waste storage tank farms/242-A evaporator standards/requirements identification document phase 1 assessment corrective actions/compliance schedule approval report

    SciTech Connect

    Biebesheimer, E.

    1996-09-30

    This document, the Standards/Requirements Identification Document (S/RID) Phase I Assessment Corrective Actions/Compliance Schedule Approval Report for the subject facility, contains the corrective actions required to bring the facility into compliance as a result of an Administrative Assessment to determine whether S/RID requirements are fully addressed by existing policies, plans or procedures. These actions are delineated in the Compliance Schedule Approvals which also contain; noncompliances, risks, compensatory measures, schedules for corrective actions, justifications for approval, and resource impacts.

  18. Evaporative Cooling Membrane Device

    NASA Technical Reports Server (NTRS)

    Lomax, Curtis (Inventor); Moskito, John (Inventor)

    1999-01-01

    An evaporative cooling membrane device is disclosed having a flat or pleated plate housing with an enclosed bottom and an exposed top that is covered with at least one sheet of hydrophobic porous material having a thin thickness so as to serve as a membrane. The hydrophobic porous material has pores with predetermined dimensions so as to resist any fluid in its liquid state from passing therethrough but to allow passage of the fluid in its vapor state, thereby, causing the evaporation of the fluid and the cooling of the remaining fluid. The fluid has a predetermined flow rate. The evaporative cooling membrane device has a channel which is sized in cooperation with the predetermined flow rate of the fluid so as to produce laminar flow therein. The evaporative cooling membrane device provides for the convenient control of the evaporation rates of the circulating fluid by adjusting the flow rates of the laminar flowing fluid.

  19. Tank 26 Evaporator Feed Pump Transfer Analysis

    SciTech Connect

    Tamburello, David; Dimenna, Richard; Lee, Si

    2009-02-11

    The transfer of liquid salt solution from Tank 26 to an evaporator is to be accomplished by activating the evaporator feed pump, located approximately 72 inches above the sludge layer, while simultaneously turning on the downcomer. Previously, activation of the evaporator feed pump was an isolated event without any other components running at the same time. An analysis of the dissolved solution transfer has been performed using computational fluid dynamics methods to determine the amount of entrained sludge solids pumped out of the tank to the evaporator with the downcomer turned on. The analysis results showed that, for the maximum and minimum supernate levels in Tank 26 (252.5 and 72 inches above the sludge layer, respectively), the evaporator feed pump will entrain between 0.03 and 0.1 wt% sludge undissolved solids weight fraction into the eductor, respectively, and therefore are an order of magnitude less than the 1.0 wt% undissolved solids loading criteria to feed the evaporator. Lower tank liquid levels, with respect to the sludge layer, result in higher amounts of sludge entrainment due to the increased velocity of the plunging jets from the downcomer and evaporator feed pump bypass as well as decreased dissipation depth. Revision 1 clarifies the analysis presented in Revision 0 and corrects a mathematical error in the calculations for Table 4.1 in Revision 0. However, the conclusions and recommendations of the analysis do not change for Revision 1.

  20. Isotopic Compositions of Evaporative Fluxes

    NASA Astrophysics Data System (ADS)

    Feng, X.; Lauder, A. M.; Kopec, B. G.; Dade, W. B.; Virginia, R. A.; Posmentier, E. S.

    2013-12-01

    model to 2-D and incorporated horizontal advection. The effect of advection was tested and modeled with data collected at several lakes located near Kangerlussuaq, Greenland. As predicted by the model, we observed both vertical as well as horizontal gradients as relatively dry and isotopically depleted air advects over a lake surface. Compared to the standard 1-D model, the 2-D model produced more realistic but significantly depleted isotopic fluxes of evaporation within 500 meters from the upwind shore. This is because of the time and/or distance needed for the dry air to equilibrate with vapor evaporated from the lake. The results suggest that the 1-D model is not adequate for simulating evaporation when the fetch over the water surface is small. This result is important for lake hydrological studies and for understanding and modeling isotopic fluxes of evaporation from sea ice leads that are of limited fetch.

  1. Flash evaporator systems test

    NASA Technical Reports Server (NTRS)

    Dietz, J. B.

    1976-01-01

    A flash evaporator heat rejection system representative of that proposed for the space shuttle orbiter underwent extensive system testing at the NASA Johnson Space Center (JSC) to determine its operational suitability and to establish system performance/operational characteristics for use in the shuttle system. During the tests the evaporator system demonstrated its suitability to meet the shuttle requirements by: (1) efficient operation with 90 to 95% water evaporation efficiency, (2) control of outlet temperature to 40 + or - 2 F for partial heat load operation, (3) stability of control system for rapid changes in Freon inlet temperature, and (4) repeated dormant-to-active device operation without any startup procedures.

  2. CAPSULE REPORT: EVAPORATION PROCESS

    EPA Science Inventory

    Evaporation has been an established technology in the metal finishing industry for many years. In this process, wastewaters containing reusable materials, such as copper, nickel, or chromium compounds are heated, producing a water vapor that is continuously removed and condensed....

  3. Measure Guideline: Evaporative Condensers

    SciTech Connect

    German, A.; Dakin, B.; Hoeschele, M.

    2012-03-01

    The purpose of this measure guideline on evaporative condensers is to provide information on a cost-effective solution for energy and demand savings in homes with cooling loads. This is a prescriptive approach that outlines selection criteria, design and installation procedures, and operation and maintenance best practices. This document has been prepared to provide a process for properly designing, installing, and maintaining evaporative condenser systems as well as understanding the benefits, costs, and tradeoffs.

  4. Mixed feed evaporator

    DOEpatents

    Vakil, Himanshu B.; Kosky, Philip G.

    1982-01-01

    In the preparation of the gaseous reactant feed to undergo a chemical reaction requiring the presence of steam, the efficiency of overall power utilization is improved by premixing the gaseous reactant feed with water and then heating to evaporate the water in the presence of the gaseous reactant feed, the heating fluid utilized being at a temperature below the boiling point of water at the pressure in the volume where the evaporation occurs.

  5. Saline Evaporation from Porous Media: Characteristics of Salt Precipitation and Its Effect on Evaporation

    NASA Astrophysics Data System (ADS)

    Nachshon, U.; Weisbrod, N.; Dragila, M. I.; Grader, A. S.

    2010-12-01

    Salt precipitation as subflorescence or efflorescence crust occurs during saline solutions evaporation from porous media. Non-linear synergy between evaporation and salt precipitation processes results in a complex mechanism that has yet to be quantitatively understood. Presented here is a series of experiments and a mathematical model that shed light on these processes. Experiments include: (1) long-term column evaporation experiments to quantify changes in evaporation rates due to salt precipitation; (2) long-term Hele-Shaw evaporation experiments to visualize salt precipitation at the macro scale; and (3) CT scans of evaporated porous media pre-saturated with NaI solutions to observe salt precipitation at the pore scale. Experiments were conducted for homogeneous and heterogeneous media using a number of saline solutions (NaCl, CaSO4, KCl, CuSO4 and NaI). A mathematical model was developed to explore quantitatively the physical and chemical mechanisms involved in the evaporation-salt precipitation process. The model simulated salt precipitation and it affect on evaporation. Three new stages of evaporation are introduced and defined for saline solutions: SS1, SS2 and SS3. SS1 exhibits a low and gradual decrease in evaporation rate caused by a changing osmotic potential. During SS2, evaporation rate falls precipitously a salt precipitates. SS3 is characterized by a constant, low evaporation rate. The phenomenological similarity to the classical evaporation stages of pure water, S1, S2 and S3, are only coincidental, the three saline stages correspond to entirely different mechanisms. The mathematical model was used to also quantify the diffusion coefficient through a salt crust. Heterogeneity during saline evaporation was found to strongly control the location of salt precipitation: salt precipitation occurred mainly within the fine-pore regions which act as a wick transporting water from the coarser media. Heterogeneity also permits greater saline evaporation by

  6. Sampling and Analysis Plan for Tank 241-AP-108 Waste in Support of Evaporator Campaign 2000-1

    SciTech Connect

    RASMUSSEN, J.H.

    2000-02-28

    This Tank Sampling and Analysis Plan (TSAP) identifies sample collection, laboratory analysis, quality assurance/quality control (QA/QC), and reporting objectives for the characterization of tank 241-AP-108 waste. Technical bases for these objectives are specified in the 242-A Evaporator Data Quality Objectives (Bowman 2000 and Von Bargen 1998) and 108-AP Tank Sampling Requirements in Support of Evaporator Campaign 2000-1 (Le 2000). Evaporator campaign 2000-1 will process waste from tank 241-AP-108 in addition to that from tank 241-AP-107. Characterization results will be used to support the evaporator campaign currently planned for early fiscal year 2000. No other needs (or issues) requiring data for this tank waste apply to this sampling event.

  7. TANK 26 EVAPORATOR FEED PUMP TRANSFER ANALYSIS

    SciTech Connect

    Tamburello, D; Si Lee, S; Richard Dimenna, R

    2008-09-30

    The transfer of liquid salt solution from Tank 26 to an evaporator is to be accomplished by activating the evaporator feed pump, located approximately 72 inches above the sludge layer, while simultaneously turning on the downcomer. Previously, activation of the evaporator feed pump was an isolated event without any other components running at the same time. An analysis of the dissolved solution transfer has been performed using computational fluid dynamics methods to determine the amount of entrained sludge solids pumped out of the tank to the evaporator with the downcomer turned on. The analysis results showed that, for the maximum and minimum supernate levels in Tank 26 (252.5 and 72 inches above the sludge layer, respectively), the evaporator feed pump will entrain between 0.05 and 0.1 wt% sludge solids weight fraction into the eductor, respectively. Lower tank liquid levels, with respect to the sludge layer, result in higher amounts of sludge entrainment due to the increased velocity of the plunging jets from the downcomer and evaporator feed pump bypass as well as decreased dissipation depth.

  8. Coating a Sphere With Evaporated Metal

    NASA Technical Reports Server (NTRS)

    Strayer, D. M.; Jackson, H. W.; Gatewood, J. R.

    1986-01-01

    In vacuum coating apparatus, metal evaporated onto sphere from small source located some distance away. Sphere held in path of metal vapor while rotated about axis that rocks back and forth. One tilting motion particularly easy to produce is sinusoidal rocking with frequency much lower than rotational frequency. Apparatus developed for coating single-crystal sapphire spheres with niobium.

  9. Hot air drum evaporator

    DOEpatents

    Black, Roger L.

    1981-01-01

    An evaporation system for aqueous radioactive waste uses standard 30 and 55 gallon drums. Waste solutions form cascading water sprays as they pass over a number of trays arranged in a vertical stack within a drum. Hot dry air is circulated radially of the drum through the water sprays thereby removing water vapor. The system is encased in concrete to prevent exposure to radioactivity. The use of standard 30 and 55 gallon drums permits an inexpensive compact modular design that is readily disposable, thus eliminating maintenance and radiation build-up problems encountered with conventional evaporation systems.

  10. Optimization of evaporative cooling

    NASA Astrophysics Data System (ADS)

    Sackett, C. A.; Bradley, C. C.; Hulet, R. G.

    1997-05-01

    Recent experiments have used forced evaporative cooling to produce Bose-Einstein condensation in dilute gases. The evaporative cooling process can be optimized to provide the maximum phase-space density with a specified number of atoms remaining. We show that this global optimization is approximately achieved by locally optimizing the cooling efficiency at each instant. We discuss how this method can be implemented, and present the results for our 7Li trap. The predicted behavior of the gas is found to agree well with experiment.

  11. Direct Evaporative Precooling Model and Analysis

    SciTech Connect

    Shen, Bo; Ally, Moonis Raza; Rice, C Keith; Craddick, William G

    2011-01-01

    Evaporative condenser pre-cooling expands the availability of energy saving, cost-effective technology options (market engagement) and serves to expedite the range of options in upcoming codes and equipment standards (impacting regulation). Commercially available evaporative pre-coolers provide a low cost retrofit for existing packaged rooftop units, commercial unitary split systems, and air cooled chillers. We map the impact of energy savings and peak energy reduction in the 3 building types (medium office, secondary school, and supermarket) in 16 locations for three building types with four pad effectivenesses and show the effect for HVAC systems using either refrigerants R22 or R410A

  12. Determining the Inception and Magnitude of Subsurface Evaporation

    NASA Astrophysics Data System (ADS)

    Deol, P. K.; Heitman, J.; Amoozegar, A.; Clayton Field Study Team

    2011-12-01

    Evaporation from an initially wet soil occurs at the soil surface but further drying of surface soil with time results in the formation of a dry surface layer. At this stage, the evaporation front moves from the surface to the subsurface. This phenomenon occurs in a highly dynamic near-surface zone making it very challenging to know the location/depth of the evaporation front and to quantify the subsurface evaporation rate. Recent studies show that subsurface evaporation can be measured using a sensible heat balance approach by accounting for the latent heat flux originating below soil surface which is not taken into account in the traditional surface energy balance equation. The soil sensible energy balance approach has been successfully tested against mass balance for estimating evaporation under steady-state controlled lab conditions, as well as to a limited extent in the field. Limitations of the approach for field conditions include inability of instrumentation to quantify evaporation during the initial shift between surface and subsurface evaporation (i.e. when evaporation occurs at depths shallower than approximately 3 mm). The objectives of this study are to 1) find indicators of the change in the location of the evaporation front from surface to subsurface, and 2) test the sensible heat balance approach for quantifying evaporation from the inception of the subsurface evaporation zone. Recently introduced multi-needle heat pulse probes were used to make continuous soil temperature and thermal property measurements in the near-surface zone at the mm scale in a bare surface soil. Preliminary results from this investigation will be presented.

  13. Convective Evaporation Of Sprayed Liquid

    NASA Technical Reports Server (NTRS)

    Bellan, Josette; Harstad, Kenneth G.

    1987-01-01

    Theoretical model developed to analyze behavior of both dense and dilute clusters of evaporating liquid drops in gas flows. Particularly useful in search for methods of controlling evaporation, ignition, and combustion of fuel sprays.

  14. MOVES2014: Evaporative Emissions Report

    EPA Science Inventory

    Vehicle evaporative emissions are now modeled in EPA’s MOVES according to physical processes, permeation, tank vapor venting, liquid leaks, and refueling emissions. With this update, the following improvements are being incorporated into MOVES evaporative emissions methodology, a...

  15. Evaporated VOx Thin Films

    NASA Astrophysics Data System (ADS)

    Stapinski, Tomasz; Leja, E.

    1989-03-01

    VOx thin films on glass were obtained by thermal evaporation of V205, powder. The structural investigations were carried out with the use of X-ray diffractometer. The electrical properties of the film were examined by means of temperature measurements of resistivity for the samples heat-treated in various conditions. Optical transmission and reflection spectra of VOX films of various composition showed the influence of the heat treatment.

  16. Falling film evaporator

    DOEpatents

    Bruns, Lester E.

    1976-01-01

    A falling film evaporator including a vertically oriented pipe heated exteriorly by a steam jacket and interiorly by a finned steam tube, all heating surfaces of the pipe and steam tube being formed of a material wet by water such as stainless steel, and packing within the pipe consisting of Raschig rings formed of a material that is not wet by water such as polyvinylidene fluoride.

  17. Water Membrane Evaporator

    NASA Technical Reports Server (NTRS)

    Ungar, Eugene K.; Almlie, Jay C.

    2010-01-01

    A water membrane evaporator (WME) has been conceived and tested as an alternative to the contamination-sensitive and corrosion-prone evaporators currently used for dissipating heat from space vehicles. The WME consists mainly of the following components: An outer stainless-steel screen that provides structural support for the components mentioned next; Inside and in contact with the stainless-steel screen, a hydrophobic membrane that is permeable to water vapor; Inside and in contact with the hydrophobic membrane, a hydrophilic membrane that transports the liquid feedwater to the inner surface of the hydrophobic membrane; Inside and in contact with the hydrophilic membrane, an annular array of tubes through which flows the spacecraft coolant carrying the heat to be dissipated; and An inner exclusion tube that limits the volume of feedwater in the WME. In operation, a pressurized feedwater reservoir is connected to the volume between the exclusion tube and the coolant tubes. Feedwater fills the volume, saturates the hydrophilic membrane, and is retained by the hydrophobic membrane. The outside of the WME is exposed to space vacuum. Heat from the spacecraft coolant is conducted through the tube walls and the water-saturated hydrophilic membrane to the liquid/vapor interface at the hydrophobic membrane, causing water to evaporate to space. Makeup water flows into the hydrophilic membrane through gaps between the coolant tubes.

  18. Normal evaporation of binary alloys

    NASA Technical Reports Server (NTRS)

    Li, C. H.

    1972-01-01

    In the study of normal evaporation, it is assumed that the evaporating alloy is homogeneous, that the vapor is instantly removed, and that the alloy follows Raoult's law. The differential equation of normal evaporation relating the evaporating time to the final solute concentration is given and solved for several important special cases. Uses of the derived equations are exemplified with a Ni-Al alloy and some binary iron alloys. The accuracy of the predicted results are checked by analyses of actual experimental data on Fe-Ni and Ni-Cr alloys evaporated at 1600 C, and also on the vacuum purification of beryllium. These analyses suggest that the normal evaporation equations presented here give satisfactory results that are accurate to within an order of magnitude of the correct values, even for some highly concentrated solutions. Limited diffusion and the resultant surface solute depletion or enrichment appear important in the extension of this normal evaporation approach.

  19. Method of evaporation

    NASA Technical Reports Server (NTRS)

    Dufresne, Eugene R.

    1987-01-01

    Liquids, such as juices, milk, molten metal and the like are concentrated by forming uniformly-sized, small droplets in a precision droplet forming assembly and deploying the droplets in free fall downwardly as a central column within an evacuated column with cool walls. A portion of the solvent evaporates. The vapor flows to the wall, condenses, and usually flows down the wall as a film to condensate collector and drain. The vertical column of freely falling droplets enters the splash guard. The condensate can be collected, sent to other towers or recycled.

  20. Reservoir evaporation in Texas, USA

    NASA Astrophysics Data System (ADS)

    Wurbs, Ralph A.; Ayala, Rolando A.

    2014-03-01

    The role of reservoir surface evaporation in river/reservoir water budgets and water management is explored using a modeling system that combines historical natural hydrology with current conditions of water resources development and management. The long-term mean evaporation from the 3415 reservoirs in the Texas water rights permit system is estimated to be 7.53 billion m3/year, which is equivalent to 61% of total agricultural or 126% of total municipal water use in the state during the year 2010. Evaporation varies with the hydrologic conditions governing reservoir surface areas and evaporation rates. Annual statewide total evaporation volumes associated with exceedance probabilities of 75%, 50%, and 25% are 7.07, 7.47, and 7.95 billion m3/year, respectively. Impacts of evaporation are greatest during extended severe droughts that govern water supply capabilities.

  1. Combined Evaporation and Salt Precipitation in Porous Media

    NASA Astrophysics Data System (ADS)

    Weisbrod, N.; Dragila, M. I.; Nachshon, U.; Or, D.; Shaharani, E.; Grader, A.

    2012-12-01

    The vadose zone pore water contains dissolved salts and minerals; therefore, evaporation results in high rates of salt accumulation that may change the physical and chemical properties of the porous media. Here, a series of experiments, together with a mathematical model, are presented to shed new light on these processes. Experiments included: (1) long-term column evaporation experiments to quantify changes in evaporation rates due to salt precipitation; (2) CT scans of evaporated porous media samples saturated with salt solutions, to observe salt precipitation from micro to macro scales; and (3) Infrared thermography analysis to quantify evaporation rates from porous media surfaces for homogeneous and heterogeneous conditions and constant water table, in the presence of salt precipitation. As expected, the majority of salt crystallization occurs in the upper parts of the matrix, near the evaporation front. For heterogeneous porous matrices, salt precipitation will occur mainly in the fine pore regions as preferential evaporation takes place in these locations. In addition, it was found that the precipitated NaCl salt crust diffusion coefficient for water vapor is one to two orders of magnitude lower than the vapor diffusion coefficient in free air, depending on environmental conditions and salt crystallization rates. Three new stages of evaporation were defined for saline solutions: SS1, SS2 and SS3. SS1 exhibits a low and gradual decrease in the evaporation rate due to osmotic pressure. During SS2, the evaporation rate falls progressively due to salt precipitation; SS3 is characterized by a constant low evaporation rate and determined by the diffusion rate of water vapor through the precipitated salt layer. Even though phenomenologically similar to the classical evaporation stages of pure water, these stages correspond to different mechanisms and the transition between stages can occur regardless the hydraulic conditions. As well, it was shown that matrix

  2. Does the creation of a boreal hydroelectric reservoir result in a net change in evaporation?

    NASA Astrophysics Data System (ADS)

    Strachan, Ian B.; Tremblay, Alain; Pelletier, Luc; Tardif, Simon; Turpin, Christian; Nugent, Kelly A.

    2016-09-01

    Estimates of water consumption from hydroelectricity production are hampered by a lack of common methodological approaches. Studies typically use gross evaporation estimates which do not take into account the evaporative water loss from the pre-flooded ecosystems that would occur without the presence of a reservoir. We evaluate the net change in evaporation following the creation of a hydroelectric reservoir located in the Canadian boreal region. We use a direct measurement technique (eddy covariance) over four different ecosystems to evaluate the pre- and post-flood landscape water flux over a five-year period. The net effect of reservoir creation was to increase evaporation over that of the pre-flooded ecosystem. This change was dependent both on management and differences in the timing of the evaporation with nighttime and autumn contributing strongly to the reservoir evaporation. Managed reduction of water level, and thus the evaporating area, reduced the evaporation.

  3. Representative shuttle evaporative heat sink

    NASA Technical Reports Server (NTRS)

    Hixon, C. W.

    1978-01-01

    The design, fabrication, and testing of a representative shuttle evaporative heat sink (RSEHS) system which vaporizes an expendable fluid to provide cooling for the shuttle heat transport fluid loop is reported. The optimized RSEHS minimum weight design meets or exceeds the shuttle flash evaporator system requirements. A cold trap which cryo-pumps flash evaporator exhaust water from the CSD vacuum chamber test facility to prevent water contamination of the chamber pumping equipment is also described.

  4. Evaporative precooling unit

    SciTech Connect

    Rogers, A.R.

    1988-03-15

    In combination with a refrigeration unit, an evaporative heat exchange unit for precooling an air stream traveling toward and over the condensing coil of the refrigeration unit is described. The heat exchange unit includes: (a) a frame, (b) a porous heat transfer pad mounted in the frame; (c) nozzle means carried on the frame for directing a spray mist forwardly of the heat transfer pad, the spray mist emitted from the nozzle means initially traveling in a direction of travel such that the mist will not contact the porous heat transfer pad; (d) means mounted on the frame for causing the turbulent intermixing of the air stream with the spray mist prior to the air stream passing through the porous heat transfer pad; and (e) means for controlling the quantity of water emitted by the nozzle means such that substantially all of the spray mist is intermixed with the air stream prior to the air stream passing through the heat transfer pad.

  5. Turkish Undergraduates' Misconceptions of Evaporation, Evaporation Rate, and Vapour Pressure

    ERIC Educational Resources Information Center

    Canpolat, Nurtac

    2006-01-01

    This study focused on students' misconceptions related to evaporation, evaporation rate, and vapour pressure. Open-ended diagnostic questions were used with 107 undergraduates in the Primary Science Teacher Training Department in a state university in Turkey. In addition, 14 students from that sample were interviewed to clarify their written…

  6. Development of Intent Information Changes to Revised Minimum Aviation System Performance Standards for Automatic Dependent Surveillance Broadcast (RTCA/DO-242A)

    NASA Technical Reports Server (NTRS)

    Barhydt, Richard; Warren, Anthony W.

    2002-01-01

    RTCA Special Committee 186 has recently adopted a series of changes to the original Minimum Aviation System Performance Standards (MASPS) for Automatic Dependent Surveillance Broadcast (ADS-B). The new document will be published as DO-242A. Major changes to the MASPS include a significant restructuring and expansion of the intent parameters for future ADS-B systems. ADS-B provides a means for aircraft to exchange information about their intended trajectories with each other and with ground systems. NASA and Boeing have played significant roles in recommending these changes and providing supporting analysis. The intent changes are anticipated to provide substantial benefits to several programs and operational concepts under development by the two organizations. Major changes include the addition of Target State reports and the replacement of Trajectory Change Point reports with Trajectory Change reports. These changes have been designed to better reflect the capabilities of existing and future aircraft avionics, while providing benefits to current and proposed applications. DO-242A implements intent information elements that can be supported by current avionics systems and data buses. Provisions are made for future incorporation of other intent elements, as needed to meet operational requirements. This document summarizes the reasons for the DO-242A intent changes and provides a detailed overview of current and future intended ADS-B MASPS changes related to aircraft intent.

  7. Vacuum flash evaporated polymer composites

    DOEpatents

    Affinito, John D.; Gross, Mark E.

    1997-01-01

    A method for fabrication of polymer composite layers in a vacuum is disclosed. More specifically, the method of dissolving salts in a monomer solution, vacuum flash evaporating the solution, condensing the flash evaporated solution as a liquid film, and forming the condensed liquid film into a polymer composite layer on a substrate is disclosed.

  8. Vacuum flash evaporated polymer composites

    DOEpatents

    Affinito, J.D.; Gross, M.E.

    1997-10-28

    A method for fabrication of polymer composite layers in a vacuum is disclosed. More specifically, the method of dissolving salts in a monomer solution, vacuum flash evaporating the solution, condensing the flash evaporated solution as a liquid film, and forming the condensed liquid film into a polymer composite layer on a substrate is disclosed.

  9. Experimental Investigation of Microstructured Evaporators

    NASA Astrophysics Data System (ADS)

    Wibel, W.; Westermann, S.; Maikowske, S.; Brandner, J. J.

    2012-11-01

    Microfluidic devices have become more and more popular over the last decades [1]. Cooling is a topic where microstructures offer significant advantages compared to conventional techniques due the much higher possible surface to volume ratios and short heat transfer lengths. By evaporating of a fluid in microchannels, compact, fast and powerful cooling devices become possible [2]. Experimental results for different designs of microstructured evaporators are presented here. They have been obtained either using water as evaporating coolant or the refrigerant R134a (Tetrafluoroethane). A new microstructured evaporator design consisting of bended microchannels instead of straight channels for a better performance is shown and compared to previous results [2] for the evaporation of R134a in straight microchannels.

  10. Molecular Mechanism of Water Evaporation

    NASA Astrophysics Data System (ADS)

    Nagata, Yuki; Usui, Kota; Bonn, Mischa

    2015-12-01

    Evaporation is the process by which water changes from a liquid to a gas or vapor, and is a key step in Earth's water cycle. At the molecular level, evaporation requires breaking at least one very strong intermolecular bond between two water molecules at the interface. Despite the importance of this process the molecular mechanism by which an evaporating water molecule gains sufficient energy to escape from the surface has remained elusive. Here, we show, using molecular dynamics simulations at the water-air interface with polarizable classical force field models, that the high kinetic energy of the evaporated water molecule is enabled by a well-timed making and breaking of hydrogen bonds involving at least three water molecules at the interface, the recoil of which allows one of the molecules to escape. The evaporation of water is thus enabled by concerted, ultrafast hydrogen-bond dynamics of interfacial water, and follows one specific molecular pathway.

  11. Rapid Evaporation of microbubbles

    NASA Astrophysics Data System (ADS)

    Gautam, Jitendra; Esmaeeli, Asghar

    2008-11-01

    When a liquid is heated to a temperature far above its boiling point, it evaporates abruptly. Boiling of liquid at high temperatures can be explosive and destructive, and poses a potential hazard for a host of industrial processes. Explosive boiling may occur if a cold and volatile liquid is brought into contact with a hot and non-volatile liquid, or if a liquid is superheated or depressurized rapidly. Such possibilities are realized, for example, in the depressurization of low boiling point liquefied natural gas (LNG) in the pipelines or storage tanks as a result of a leak. While boiling of highly heated liquids can be destructive at macroscale, the (nearly) instantaneous pace of the process and the release of large amount of kinetic energy make the phenomena extremely attractive at microscale where it is possible to utilize the released energy to derive micromechanical systems. For instance, there is currently a growing interest in micro-explosion of liquid for generation of micro bubbles for actuation purposes. The aim of the current study is to gain a fundamental understanding of the subject using direct numerical simulations. In particular, we seek to investigate the boundary between stable and unstable nucleus growth in terms of the degree of liquid superheat and to compare the dynamics of unstable and stable growth.

  12. Evaporative cooling of flare plasma

    NASA Technical Reports Server (NTRS)

    Antiochos, S. K.; Sturrock, P. A.

    1976-01-01

    A one-dimensional loop model for the evaporative cooling of the coronal flare plasma was investigated. Conductive losses dominated radiative cooling, and the evaporative velocities were small compared to the sound speed. The profile and evolution of the temperature were calculated. The model was in agreement with soft X-ray observations on the evolution of flare temperatures and emission measures. The effect of evaporation was to greatly reduce the conductive heat flux into the chromosphere and to enhance the EUV emission from the coronal flare plasma.

  13. Evaporative cooling of flare plasma

    NASA Technical Reports Server (NTRS)

    Antiochos, S. K.; Sturrock, P. A.

    1978-01-01

    We investigate a one-dimensional loop model for the evaporative cooling of the coronal flare plasma. The important assumptions are that conductive losses dominate radiative cooling and that the evaporative velocities are small compared with the sound speed. We calculate the profile and evolution of the temperature and verify the accuracy of our assumptions for plasma parameters typical of flare regions. The model is in agreement with soft X-ray observations on the evolution of flare temperatures and emission measures. The effect of evaporation is to greatly reduce the conductive heat flux into the chromosphere and to enhance the EUV emission from the coronal flare plasma.

  14. Sensitivity of Spacebased Microwave Radiometer Observations to Ocean Surface Evaporation

    NASA Technical Reports Server (NTRS)

    Liu, Timothy W.; Li, Li

    2000-01-01

    evaporation over various seasons and geographic locations are examined. The microwave frequencies with radiance that are significant correlated with evaporation are identify and capability of estimating evaporation directly from TMI will be discussed.

  15. Evaporation effects in elastocapillary aggregation

    NASA Astrophysics Data System (ADS)

    Vella, Dominic; Hadjittofis, Andreas; Singh, Kiran; Lister, John

    2015-11-01

    We consider the effect of evaporation on the aggregation of a number of elastic objects due to a liquid's surface tension. In particular, we consider an array of spring-block elements in which the gaps between blocks are filled by thin liquid films that evaporate during the course of an experiment. Using lubrication theory to account for the fluid flow within the gaps, we study the dynamics of aggregation. We find that a non-zero evaporation rate causes the elements to aggregate more quickly and, indeed, to contact within finite time. However, we also show that the number of elements within each cluster decreases as the evaporation rate increases. We explain these results quantitatively by comparison with the corresponding two-body problem and discuss their relevance for controlling pattern formation in carbon nanotube forests.

  16. Explosive evaporation in solar flares

    NASA Technical Reports Server (NTRS)

    Fisher, George H.

    1987-01-01

    This paper develops a simple analytical model for the phenomenon of 'explosive evaporation' driven by nonthermal electron heating in solar flares. The model relates the electron energy flux and spectrum, plus details of the preflare atmosphere, to the time scale for explosive evaporation to occur, the maximum pressure and temperature to be reached, rough estimates for the UV pulse emission flux and duration, and the evolution of the blueshifted component of the soft X-ray lines. An expression is given for the time scale for buildup to maximum pressures and the onset of rapid motion of the explosively evaporating plasma. This evaporation can excite a rapid response of UV line and continuum emission. The emission lines formed in the plasma approach a given emissivity-weighted blueshift speed.

  17. Dual manifold heat pipe evaporator

    DOEpatents

    Adkins, Douglas R.; Rawlinson, K. Scott

    1994-01-01

    An improved evaporator section for a dual manifold heat pipe. Both the upper and lower manifolds can have surfaces exposed to the heat source which evaporate the working fluid. The tubes in the tube bank between the manifolds have openings in their lower extensions into the lower manifold to provide for the transport of evaporated working fluid from the lower manifold into the tubes and from there on into the upper manifold and on to the condenser portion of the heat pipe. A wick structure lining the inner walls of the evaporator tubes extends into both the upper and lower manifolds. At least some of the tubes also have overflow tubes contained within them to carry condensed working fluid from the upper manifold to pass to the lower without spilling down the inside walls of the tubes.

  18. Dual manifold heat pipe evaporator

    DOEpatents

    Adkins, D.R.; Rawlinson, K.S.

    1994-01-04

    An improved evaporator section is described for a dual manifold heat pipe. Both the upper and lower manifolds can have surfaces exposed to the heat source which evaporate the working fluid. The tubes in the tube bank between the manifolds have openings in their lower extensions into the lower manifold to provide for the transport of evaporated working fluid from the lower manifold into the tubes and from there on into the upper manifold and on to the condenser portion of the heat pipe. A wick structure lining the inner walls of the evaporator tubes extends into both the upper and lower manifolds. At least some of the tubes also have overflow tubes contained within them to carry condensed working fluid from the upper manifold to pass to the lower without spilling down the inside walls of the tubes. 1 figure.

  19. Horst Meyer and Quantum Evaporation

    NASA Astrophysics Data System (ADS)

    Balibar, S.

    2016-06-01

    With their 1963 article in Cryogenics Horst Meyer and his collaborators triggered intense research activity on the evaporation of superfluid helium. Discussing this subject with him in 1975 was enlightening. Fifty years later, the analogy between the photoelectric effect and the evaporation of superfluid helium in the low temperature limit is not yet clear, although remarkable progress has been made in its observation and its understanding. This special issue of the Journal of Low Temperature Physics is an opportunity to recall the history of quantum evaporation, and to express my gratitude to Horst Meyer. It describes quickly most of the experimental and theoretical works which have been published on quantum evaporation during the last 50 years, but it is not a comprehensive review of this fascinating subject.

  20. Evaporation Tower With Prill Nozzles

    NASA Technical Reports Server (NTRS)

    Du Fresne, E. R.

    1984-01-01

    Tower more efficient than conventional evaporation equipment. Liquids such as milk and fruit juice concentrated by passing them through tiny nozzle to form droplets, then allowing droplets to fall through evacuated tower with cooled walls.

  1. Inundation and groundwater dynamics for quantification of evaporative water loss in tropical wetlands

    NASA Astrophysics Data System (ADS)

    Schwerdtfeger, J.; Johnson, M. S.; Couto, E. G.; Amorim, R. S. S.; Sanches, L.; Campelo, J. H., Jr.; Weiler, M.

    2014-11-01

    Characterizing hydrological processes within tropical wetlands is challenging due to their remoteness, complexity and heterogeneity. In particular, estimates of evaporative water loss are inherently uncertain. In view of the large influence on the local and regional climate, the quantification of evaporation is essential for the determination of the water balance of permanent and intermittent water bodies. Data for tropical wetlands are scarce where their remoteness impedes direct evaporation measurements. Seasonal inundation dynamics affect evaporation processes in tropical wetlands, which can be analysed in two stages: the first stage during the wet season and the second stage during the dry season. As yet no adequate method exists for determining second-stage evaporation in a data-scarce environment that additionally allows for a transfer of simulated actual evaporation (AET) to other locations. Our study aimed at developing a process-based model to simulate first- and second-stage evaporation in tropical wetlands. We selected a set of empirical potential evaporation (PET) models of varying complexity, each based on different assumptions and available data sets, and evaluated the models with pan evaporation observations in the Pantanal of South America, one of the largest tropical wetlands in the world. We used high-resolution measurements of surface and groundwater levels at different locations to determine the water available for evaporation. AET was derived by constraining simulated PET based on available water. The model of best fit was applied to different types of water bodies with varying hydroperiods to capture first- and second-stage evaporation across a range of wetland types. With our new model we could quantify evaporative water loss in the dry and the wet season for different locations in the Pantanal. This new spatially explicit approach represents an improvement in our understanding of the role of evaporation in the water balance of the Pantanal

  2. A shortcut for designing evaporators

    SciTech Connect

    Durand, M.I.A.A.

    1996-01-01

    Multiple-effect evaporation is commonly used in chemical process plants to minimize energy consumption and cooling water. In this system, several evaporators are connected by piping so that vapor passes from one effect to the next in series. Thus, the heat supplied to the first evaporator is used to vaporize water in the first effect; this vapor, in turn, passes to the next effect, until, finally, the heat in the vapor supplied to the last effect passes on to the condenser. The net result of this arrangement is the multiple reuse of heat, and a marked increase in the economic of the evaporation system. In addition to savings in steam use, there is also a saving in condenser cooling water as the number of effects increases. On the other hand, an increase in the number of effects represents an increase in capital costs since more heat transfer area is required in the evaporator system. Thus, the choice of the proper--that is, optimum--number of effects is dictated by an economic balance between the savings in steam and cooling water versus that of the additional investment costs. The paper describes the basic equations and an economic analysis of evaporator systems, and illustrates the method with an example.

  3. DWPF Recycle Evaporator Simulant Tests

    SciTech Connect

    Stone, M

    2005-04-05

    Testing was performed to determine the feasibility and processing characteristics of an evaporation process to reduce the volume of the recycle stream from the Defense Waste Processing Facility (DWPF). The concentrated recycle would be returned to DWPF while the overhead condensate would be transferred to the Effluent Treatment Plant. Various blends of evaporator feed were tested using simulants developed from characterization of actual recycle streams from DWPF and input from DWPF-Engineering. The simulated feed was evaporated in laboratory scale apparatus to target a 30X volume reduction. Condensate and concentrate samples from each run were analyzed and the process characteristics (foaming, scaling, etc) were visually monitored during each run. The following conclusions were made from the testing: Concentration of the ''typical'' recycle stream in DWPF by 30X was feasible. The addition of DWTT recycle streams to the typical recycle stream raises the solids content of the evaporator feed considerably and lowers the amount of concentration that can be achieved. Foaming was noted during all evaporation tests and must be addressed prior to operation of the full-scale evaporator. Tests were conducted that identified Dow Corning 2210 as an antifoam candidate that warrants further evaluation. The condensate has the potential to exceed the ETP WAC for mercury, silicon, and TOC. Controlling the amount of equipment decontamination recycle in the evaporator blend would help meet the TOC limits. The evaporator condensate will be saturated with mercury and elemental mercury will collect in the evaporator condensate collection vessel. No scaling on heating surfaces was noted during the tests, but splatter onto the walls of the evaporation vessels led to a buildup of solids. These solids were difficult to remove with 2M nitric acid. Precipitation of solids was not noted during the testing. Some of the aluminum present in the recycle streams was converted from gibbsite to

  4. Eldercare Locator

    MedlinePlus

    ... page content Skip Navigation Department of Health and Human Services Your Browser ... Welcome to the Eldercare Locator, a public service of the U.S. Administration on Aging connecting you to services for older ...

  5. Trends and Patterns of Change in Temperature and Evaporation

    NASA Astrophysics Data System (ADS)

    Ragno, E.; AghaKouchak, A.

    2014-12-01

    Global mean monthly temperature has increased substantially in the past decades. On the other hand, there are contradictory reports on the response of the potential evaporation to a warming climate. In this study, ground based observations of temperature, and direct measurements of pan potential evaporation are evaluated across the United States. Furthermore, empirical simulations of the potential evaporation have been evaluated against observations. The results show that empirical (e.g., Thornthwaite method) estimates of the potential evapotranspiration show trends inconsistent with the ground-based observations. In fact, while temperature data show a significant upward trend across most of the United States, ground-based evaporation data in most locations do not exhibit a statistically significant trend. Empirical methods of potential evaporation estimation, including the Thornthwaite method, show trends similar to temperature. The primary reason is that many of the empirical approaches are dominated by temperature. Currently, empirical estimates of potential evaporation are widely used for numerous applications including water stress analysis. This indicates that using empirical estimates of potential estimation for irrigation water demand estimation and also drought assessment could lead to unrealistic results.

  6. Dispersion and evaporation of droplets amended with adjuvants on soybeans

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increased use of adjuvants to improve pesticide spray application efficiency is hindered by a lack of knowledge to enhance droplet adhesion. Dispersion and evaporation of single 300 µm droplets amended with four different spray adjuvants deposited at four different soybean plant locations were inves...

  7. Surfactant Droplet Evaporation and Deposition Patterns on Waxy Leaf Surface

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Leaf surfaces are often altered when attacked by various insects and diseases. To evaluate the effect of droplet deposition on pesticide application efficiency, evaporation and deposit pattern formation of single droplets deposited at various locations on waxy leaves were investigated under controll...

  8. Upward-facing Lithium Flash Evaporator for NSTX-U

    SciTech Connect

    Roquemore, A. L.

    2013-07-09

    NSTX plasma performance has been significantly enhanced by lithium conditioning [1]. To date, the lower divertor and passive plates have been conditioned by downward facing lithium evaporators (LITER) as appropriate for lower null plasmas. The higher power operation expected from NSTX-U requires double null plasma operation in order to distribute the heat flux between the upper and lower divertors making it desirable to coat the upper divertor region with Li as well. An upward aiming LITER (U-LITER) is presently under development and will be inserted into NSTX-U using a horizontal probe drive located in a 6" upper midplane port. In the retracted position the evaporator will be loaded with up to 300 mg of Li granules utilizing one of the calibrated NSTX Li powder droppers[2]. The evaporator will then be inserted into the vessel in a location within the shadow of the RF limiters and will remain in the vessel during the discharge. About 10 seconds before a discharge, it will be rapidly heated and the lithium completely evaporated onto the upper divertor, thus avoiding the complication of a shutter that prevents evaporation during the shot when the diagnostic shutters are open. The minimal time interval between the evaporation and the start of the discharge will avoid the passivation of the lithium by residual gases and enable the study of the conditioning effects of un-passivated Li surfaces [3]. Two methods are being investigated to accomplish the rapid (few second) heating of the lithium. A resistive method relies on passing a large current through a Li filled crucible. A second method requires using a 3 kW e-beam gun to heat the Li. In this paper the evaporator systems will be described and the pros and cons of each heating method will be discussed.

  9. Inundation and groundwater dynamics for quantification of evaporative water loss in tropical wetlands

    NASA Astrophysics Data System (ADS)

    Schwerdtfeger, J.; Johnson, M. S.; Couto, E. G.; Amorim, R. S. S.; Sanches, L.; Campelo Júnior, J. H.; Weiler, M.

    2014-04-01

    The remoteness, complexity and heterogeneity of tropical wetlands make the characterisation of their hydrological processes challenging. In particular estimates of evaporative water loss are inherently uncertain. In view of the large influence on the local and regional climate, the quantification of evaporation is essential for the determination of the water balance of permanent and intermittent water bodies. Data for tropical wetlands are scarce where their remoteness impedes direct evaporation measurements. Seasonal inundation dynamics affect evaporation processes in tropical wetlands, which can be analysed in two stages: the first stage during the wet season and the second stage during the dry season. As yet no adequate method exists for determining second stage evaporation without soil moisture data, which are usually unavailable for the remote tropical wetlands. Our study aimed at developing a process-based model to simulate first and second stage evaporation in tropical wetlands. We selected a set of empirical potential evaporation (PET) models of varying complexity, each based on different assumptions and available datasets, and evaluated the models with pan evaporation observations in the Pantanal of South America, one of the largest tropical wetlands in the world. We used high-resolution measurements of surface and groundwater levels at different locations to determine the water available for evaporation. Actual evaporation (AET) was derived by constraining simulated PET based on available water. The model of best fit was applied to different types of water bodies with varying inundation durations and captured first and second stage evaporation. With our new model we could quantify evaporative water loss in the dry and the wet season for different locations in the Pantanal. This new spatially-explicit approach represents an improvement in our understanding of the role of evaporation in the water balance of the Pantanal. We recommend the application of this

  10. Salt stains from evaporating droplets.

    PubMed

    Shahidzadeh, Noushine; Schut, Marthe F L; Desarnaud, Julie; Prat, Marc; Bonn, Daniel

    2015-01-01

    The study of the behavior of sessile droplets on solid substrates is not only associated with common everyday phenomena, such as the coffee stain effect, limescale deposits on our bathroom walls , but also very important in many applications such as purification of pharmaceuticals, de-icing of airplanes, inkjet printing and coating applications. In many of these processes, a phase change happens within the drop because of solvent evaporation, temperature changes or chemical reactions, which consequently lead to liquid to solid transitions in the droplets. Here we show that crystallization patterns of evaporating of water drops containing dissolved salts are different from the stains reported for evaporating colloidal suspensions. This happens because during the solvent evaporation, the salts crystallize and grow during the drying. Our results show that the patterns of the resulting salt crystal stains are mainly governed by wetting properties of the emerging crystal as well as the pathway of nucleation and growth, and are independent of the evaporation rate and thermal conductivity of the substrates. PMID:26012481

  11. Reservoir evaporation in central Colorado

    USGS Publications Warehouse

    Spahr, N.E.; Ruddy, B.C.

    1983-01-01

    Evaporation losses from seven reservoirs operated by the Denver Water Department in central Colorado were determined during various periods from 1974 to 1980. The reservoirs studies were Ralston, Cheesman, Antero, Williams Fork, Elevenmile Canyon, Dillon, and Gross. Energy-budget and mass-transfer methods were used to determine evaporation. Class-A pan data also were collected at each reservoir. The energy-budget method was the most accurate of the methods used to determine evaporation. At Ralston, Cheesman, Antero, and Williams Fork Reservoirs the energy-budget method was used to calibrate the mass-transfer coefficients. Calibrated coefficients already were available for Elevenmile Canyon, Dillon, and Gross Reservoirs. Using the calibrated coefficients, long-term mass-transfer evaporation rates were determined. Annual evaporation values were not determined because the instrumentation was not operated for the entire open-water season. Class-A pan data were used to determine pan coefficients for each season at each reservoir. The coefficients varied from season to season and between reservoirs, and the seasonal values ranged from 0.29 to 1.05. (USGS)

  12. Salt stains from evaporating droplets

    PubMed Central

    Shahidzadeh, Noushine; Schut, Marthe F. L.; Desarnaud, Julie; Prat, Marc; Bonn, Daniel

    2015-01-01

    The study of the behavior of sessile droplets on solid substrates is not only associated with common everyday phenomena, such as the coffee stain effect, limescale deposits on our bathroom walls , but also very important in many applications such as purification of pharmaceuticals, de-icing of airplanes, inkjet printing and coating applications. In many of these processes, a phase change happens within the drop because of solvent evaporation, temperature changes or chemical reactions, which consequently lead to liquid to solid transitions in the droplets. Here we show that crystallization patterns of evaporating of water drops containing dissolved salts are different from the stains reported for evaporating colloidal suspensions. This happens because during the solvent evaporation, the salts crystallize and grow during the drying. Our results show that the patterns of the resulting salt crystal stains are mainly governed by wetting properties of the emerging crystal as well as the pathway of nucleation and growth, and are independent of the evaporation rate and thermal conductivity of the substrates. PMID:26012481

  13. Tubular sublimatory evaporator heat sink

    NASA Technical Reports Server (NTRS)

    Webbon, B. W. (Inventor)

    1977-01-01

    An evaporative refrigerator or cooler comprising a bundle of spaced, porous walled tubes closed at one of their ends and vented to a vacuum at the other end is disclosed. The tube bundle is surrounded by a water jacket having a hot water inlet distribution manifold and a cooled water outlet through a plenum chamber. Hot water is pumped into the jacket to circulate around the tubes, and when this water meets the vacuum existing inside the tubes, it evaporates thereby cooling the water in the jacket. If cooling proceeds to the point where water penetrating or surrounding all or part of the tubes freezes, operation continues with local sublimation of the ice on the tubes while the circulating water attempts to melt the ice. Both sublimation and evaporation may take place simultaneously in different regions of the device.

  14. Evaporation duct communication: Test Plan

    NASA Astrophysics Data System (ADS)

    Anderson, K. D.

    1991-02-01

    The Evaporation Duct Communication (EDCOM) project is an effort to provide an alternative ship-to-ship communications channel using the natural environment. A microwave communication link can be used on an over-the-water, over-the-horizon path through the evaporation duct. This report shows how a microwave communication link, operating at a range separation of more than twice the line-of-sight range, can be constructed. This link can achieve about 80-percent availability at a transmission frequency of 14.5 GHz and can be constructed using off-the-shelf RF equipment. Operation of this link will provide the first set of measurements of channel capacity that can be critically dependent on the existence of an oceanic evaporation duct. Construction of this link presents a unique opportunity to study and evaluate an alternative communications channel that can be used to alleviate naval battlegroup communications load.

  15. Evaporation of primordial black holes

    NASA Astrophysics Data System (ADS)

    Hawking, S. W.

    The usual explanation of the isotropy of the universe is that inflation would have smoothed out any inhomogeneities. However, if the universe was initially fractal or in a foam like state, an overall inflation would have left it in the same state. I suggest that the universe did indeed begin with a tangled web of wormholes connecting pairs of black holes but that the inflationary expansion was unstable: wormholes that are slightly smaller correspond to black holes that are hotter than the cosmological background and evaporate away. This picture is supported by calculations with Raphael Bousso of the evaporation of primordial black holes in the s-wave and large N approximations.

  16. Evaporation from seven reservoirs in the Denver water-supply system, central Colorado

    USGS Publications Warehouse

    Ficke, John F.; Adams, D. Briane; Danielson, T.W.

    1977-01-01

    Seven reservoirs in central Colorado, operated by the Denver Board of Water Commissioners, were studied during 1967-73 to determine evaporation losses. These reservoirs, Elevenmile Canyon, Dillon, Gross, Antero, Cheesman, Williams Fork, and Ralston, are located on both sides of the Continental Divide. Methods for computing evaporation include energy-budget, mass-transfer, and pan relationships. Three reservoirs, Elevenmile Canyon, Dillon, and Gross, had mass-transfer coefficients calibrated by energy-budget studies. At the remaining reservoirs, an empirical technique was used to estimate the mass-transfer coefficient. The enery-budget-calibrated methods give the most accurate evaporation values; the empirical coefficients give only a best estimate of evaporation. All reservoirs should be calibrated by energy-budget studies. The pan method of computing evaporation is the least reliable method because of problems of advected energy through the sides of the pan, representative pan exposure , and the irregularity of ratios of reservoir to pan evaporation. (Woodard-USGS)

  17. Estimating daily pan evaporation using adaptive neural-based fuzzy inference system

    NASA Astrophysics Data System (ADS)

    Keskin, M. Erol; Terzi, Özlem; Taylan, Dilek

    2009-09-01

    Estimation of evaporation is important for water planning, management, and hydrological practices. There are many available methods to estimate evaporation from a water surface, comprising both direct and indirect methods. All the evaporation models are based on crisp conceptions with no uncertainty element coupled into the model structure although in daily evaporation variations there are uncontrollable effects to a certain extent. The probabilistic, statistical, and stochastic approaches require large amounts of data for the modeling purposes and therefore are not practical in local evaporation studies. It is therefore necessary to adopt a better approach for evaporation modeling, which is the fuzzy sets and adaptive neural-based fuzzy inference system (ANFIS) as used in this paper. ANFIS and fuzzy sets have been evaluated for its applicability to estimate evaporation from meteorological data which is including air and water temperatures, solar radiation, and air pressure obtained from Automated GroWheather meteorological station located near Lake Eğirdir and daily pan evaporation values measured by XVIII. District Directorate of State Hydraulic Works. Results of ANFIS and fuzzy logic approaches were analyzed and compared with measured daily pan evaporation values. ANFIS approach could be employed more successfully in modeling the evaporation process than fuzzy sets.

  18. Forced-Flow Evaporative Cooler

    NASA Technical Reports Server (NTRS)

    Ellis, Wilbert E.; Niggemann, Richard E.

    1987-01-01

    Evaporative cooler absorbs heat efficiently under unusual gravitational conditions by using centrifugal force and vapor vortexes to maintain good thermal contact between heat-transfer surface and vaporizable coolant. System useful for cooling electronic or other equipment under low gravity encountered in spacecraft or under multiple-gravity conditions frequently experienced in high-performance airplanes.

  19. Simulation of a refrigerant evaporator

    NASA Astrophysics Data System (ADS)

    Vandermeer, Jakob Stefanus

    A computer model for the design and optimization of the compressor refrigeration cycle especially with respect to dynamic behavior was developed. A steady state version was also developed. The model describing the refrigerant is divided into the evaporation and superheating regions. A mechanism based on empirics corrects the model for the influence of transportation times in the evaporation region. The mass balance of the refrigerant in the superheat region is regarded as quasi-static, because of the small mass of the vapor. The energy balance accounts for a distributed model and is represented by the steady state solution of the partial differential equation which describes this area for the steady conditions. A correction for the dynamical effects was added to this solution, for all influencing parameters, according to the analytical dynamic solution for the case of the evaporation temperature as input parameter. The expansion device model was worked out for the usual type of device in combination with a dry evaporator, the thermostatic expansion valve. Validation tests are described.

  20. Micromachined evaporators for AMTEC cells

    SciTech Connect

    Izenson, M.G.; Crowley, C.J.

    1996-12-31

    To achieve high cell efficiency and reliability, the capillary pumping system for Alkali Metal Thermal to Electric Conversion (AMTEC) must have three key characteristics: (1) very small pores to achieve a high capillary pumping head, (2) high permeability for the flow of liquid sodium to minimize internal losses, and (3) be made from a material that is exceptionally stable at high temperatures in a sodium environment. The authors have developed micromachining techniques to manufacture high performance evaporators for AMTEC cells. The evaporators have been fabricated from stainless steel, molybdenum, and a niobium alloy (Nb-1Zr). The regular, micromachined structure leads to very high capillary pumping head with high permeability for liquid flow. Data from tests performed with common fluids at room temperature characterize the capillary pumping head and permeability of these structures. Three micromachined evaporators have been built into AMTEC cells and operated at temperatures up to 1,100 K. Results from these tests confirm the excellent pumping capabilities of the micromachined evaporators.

  1. Rate of runaway evaporative cooling

    SciTech Connect

    Groep, J. van de; Straten, P. van der; Vogels, J. M.

    2011-09-15

    Evaporative cooling is a process that is essential in creating Bose-Einstein condensates in dilute atomic gasses. This process has often been simulated based on a model using a truncated Boltzmann distribution. This model assumes that the energy distribution up to the threshold energy can still be described by a Boltzmann distribution: it assumes detailed balance up to the threshold energy. However, the evolution of the distribution function in time is not taken into account. Here we solve the kinetic Boltzmann equation for a gas undergoing evaporative cooling in a harmonic and linear trap in order to determine the evolution of the energy distribution. The magnitude of the discrepancy with the truncated Boltzmannmodel is calculated by including a polynomial expansion of the distribution function. We find that up to 35% fewer particles are found in the high-energy tail of the distribution with respect to the truncated Boltzmann distribution and up to 15% more collisions are needed to reach quantum degeneracy. Supported by a detailed investigation of the particle loss rate at different energies, we conclude that the limited occupation of high-energy states during the evaporation process causes the lowering of the evaporation speed and efficiency.

  2. Membrane evaporator/sublimator investigation

    NASA Technical Reports Server (NTRS)

    Elam, J.; Ruder, J.; Strumpf, H.

    1974-01-01

    Data are presented on a new evaporator/sublimator concept using a hollow fiber membrane unit with a high permeability to liquid water. The aim of the program was to obtain a more reliable, lightweight and simpler Extra Vehicular Life Support System (EVLSS) cooling concept than is currently being used.

  3. Evaporation dynamics of femtoliter water capillary bridges

    NASA Astrophysics Data System (ADS)

    Cho, Kun; Hwang, In Gyu; Kim, Yeseul; Lim, Su Jin; Lim, Jun; Kim, Joon Heon; Gim, Bopil; Kim, Jung Gu; Weon, Byung Mook

    2015-11-01

    Capillary bridges are usually formed by a small liquid volume in confined space between two solid surfaces and particularly they have lower internal pressure than 1 atm at femtoliter scales. Femtoliter capillary bridges exhibit rapid evaporation rates. To quantify detailed evaporation kinetics of femtoliter bridges, we present a feasible protocol to directly visualize femtoliter water bridges that evaporate in still air between a microsphere and a flat substrate by utilizing transmission X-ray microscopy. Precise measurements of evaporation kinetics for water bridges indicate that lower water pressure than 1 atm can significantly decelerate evaporation by suppression of vapor diffusion. This finding would provide a consensus to understand evaporation of ultrasmall capillary bridges.

  4. A Comparison of Measured Evaporation at Wet and Mesic Sites to Modeled Evaporation Using BIOME BGC in the Arctic Coastal Plain

    NASA Astrophysics Data System (ADS)

    Engstrom, R. N.; Hope, A. S.; Harazano, Y.; Kwon, H.; Mano, M.

    2004-05-01

    The growing season evaporation process in Arctic ecosystems is affected by the unique characteristics of the region, including non-vascular vegetation, a substantial ground heat sink, low energy inputs, and other factors. These characteristics may be a source of uncertainty in evaporation estimates using models developed for mid-latitude ecosystems. By incorporating these characteristics into evaporation models, the accuracy of model predictions should improve. In this study the ecophysiological model BIOME BGC was adapted to Arctic environments by including a non-vascular vegetation evaporation routine, adding ground heat flux as an input, accounting for ground shading by dead vegetation, developing a new parameter set for tundra vegetation, and by accounting for ponded water evaporation. The purpose of this study was to test the ability of this modified version of BIOME BGC to simulate measured evaporation fluxes at two eddy flux tower locations with contrasting wetness conditions in Arctic coastal plain ecosystems. Model simulations were compared to measured evaporation at two eddy flux towers located within 1 km of each other in Barrow, Alaska with substantially different moisture regimes for the 1999, 2000, and 2001 summer seasons. One tower was located in a marsh area that has standing water while the other tower is located in a drier, mesic tundra location. Results indicated that the model performed well at the wet site however, it tended to over predict evaporation at the drier site. This over prediction is most likely due to the affects of lateral redistribution of water from the drier site not being accounted for in model simulations. Additional results indicated that the modified BIOME BGC model was able to simulate measured leaf area index and inter-annual variations in snowmelt date well.

  5. Evaporation from Lake Mead, Arizona and Nevada, 1997-99

    USGS Publications Warehouse

    Westenburg, Craig L.; DeMeo, Guy A.; Tanko, Daron J.

    2006-01-01

    Lake Mead is one of a series of large Colorado River reservoirs operated and maintained by the Bureau of Reclamation. The Colorado River system of reservoirs and diversions is an important source of water for millions of people in seven Western States and Mexico. The U.S. Geological Survey, in cooperation with the Bureau of Reclamation, conducted a study from 1997 to 1999 to estimate evaporation from Lake Mead. For this study, micrometeorological and hydrologic data were collected continually from instrumented platforms deployed at four locations on the lake, open-water areas of Boulder Basin, Virgin Basin, and Overton Arm and a protected cove in Boulder Basin. Data collected at the platforms were used to estimate Lake Mead evaporation by solving an energy-budget equation. The average annual evaporation rate at open-water stations from January 1998 to December 1999 was 7.5 feet. Because the spatial variation of monthly and annual evaporation rates was minimal for the open-water stations, a single open-water station in Boulder Basin would provide data that are adequate to estimate evaporation from Lake Mead.

  6. Tube-side fouling in water chiller-flooded evaporators

    SciTech Connect

    Haider, S.I.; Webb, R.L. . Dept. of Mechanical Engineering); Meitz, A.K. )

    1993-10-01

    This article reports on a two-part research project which analyzed chiller water samples and measured the fouling thermal resistance of evaporator tubes. In ASHRAE Research project RP-560, the objective was to determine the seasonal fouling resistances using actual field quality water under conditions typical of those experienced in field-instilled, water chiller-flooded evaporators. The research was divided into two parts. In the first part, water samples were taken from 71 chillers located in 31 cities across the US. A questionnaire was also filled out for each sampling site. These provided information on the chiller installation, chilled water system, operating profile and maintenance practices. In the second part of the research project, an experimental study was conducted to measure the fouling thermal resistance in the tubes of a water chiller-flooded evaporator operating at approximately 45 F (7 C). The fouling resistance measurements were made in a specially designed 12.6 ft (3.8 m) long test evaporator containing 16 tubes that was connected in parallel with an existing 250 ton (880 kW) R-11 chiller evaporator.

  7. Evaporation Rates of Brine on Mars

    NASA Technical Reports Server (NTRS)

    Sears, D. W. G.; Chittenden, J.; Moore, S. R.; Meier, A.; Kareev, M.; Farmer, C. B.

    2004-01-01

    While Mars is now largely a dry and barren place, recent data have indicated that water has flowed at specific locations within the last approx. 10(exp 6) y. This had led to a resurgence of interest in theoretical and experimental work aimed at understanding the behavior of water on Mars. There are several means whereby the stability of liquid water on Mars could be increased, one being the presence solutes that would depress the freezing point. Salt water on Earth is about 0.5M NaCl, but laboratory experiments suggest that martian salt water is quite different. We recently began a program of laboratory measurements of the stability of liquid water, ice and ice-dust mixtures under martian conditions and here report measurements of the evaporation rate of 0.25M brine.

  8. Evaporative cooling of speleothem drip water.

    PubMed

    Cuthbert, M O; Rau, G C; Andersen, M S; Roshan, H; Rutlidge, H; Marjo, C E; Markowska, M; Jex, C N; Graham, P W; Mariethoz, G; Acworth, R I; Baker, A

    2014-01-01

    This study describes the first use of concurrent high-precision temperature and drip rate monitoring to explore what controls the temperature of speleothem forming drip water. Two contrasting sites, one with fast transient and one with slow constant dripping, in a temperate semi-arid location (Wellington, NSW, Australia), exhibit drip water temperatures which deviate significantly from the cave air temperature. We confirm the hypothesis that evaporative cooling is the dominant, but so far unattributed, control causing significant disequilibrium between drip water and host rock/air temperatures. The amount of cooling is dependent on the drip rate, relative humidity and ventilation. Our results have implications for the interpretation of temperature-sensitive, speleothem climate proxies such as δ(18)O, cave microecology and the use of heat as a tracer in karst. Understanding the processes controlling the temperature of speleothem-forming cave drip waters is vital for assessing the reliability of such deposits as archives of climate change. PMID:24895139

  9. Evaporative cooling of speleothem drip water

    PubMed Central

    Cuthbert, M. O.; Rau, G. C.; Andersen, M. S.; Roshan, H.; Rutlidge, H.; Marjo, C. E.; Markowska, M.; Jex, C. N.; Graham, P. W.; Mariethoz, G.; Acworth, R. I.; Baker, A.

    2014-01-01

    This study describes the first use of concurrent high-precision temperature and drip rate monitoring to explore what controls the temperature of speleothem forming drip water. Two contrasting sites, one with fast transient and one with slow constant dripping, in a temperate semi-arid location (Wellington, NSW, Australia), exhibit drip water temperatures which deviate significantly from the cave air temperature. We confirm the hypothesis that evaporative cooling is the dominant, but so far unattributed, control causing significant disequilibrium between drip water and host rock/air temperatures. The amount of cooling is dependent on the drip rate, relative humidity and ventilation. Our results have implications for the interpretation of temperature-sensitive, speleothem climate proxies such as δ18O, cave microecology and the use of heat as a tracer in karst. Understanding the processes controlling the temperature of speleothem-forming cave drip waters is vital for assessing the reliability of such deposits as archives of climate change. PMID:24895139

  10. Quantifying Evaporation in a Permeable Pavement System

    EPA Science Inventory

    Studies quantifying evaporation from permeable pavement systems are limited to a few laboratory studies and one field application. This research quantifies evaporation for a larger-scale field application by measuring the water balance from lined permeable pavement sections. Th...

  11. Analysis of energy use in tomato evaporation

    SciTech Connect

    Rumsey, T.; Conant, T.

    1980-01-01

    Field performance data for four tomato product evaporators are presented and analyzed. Steam and feed flow rates along with steam economies were measured and are compared to steady state theoretical evaporator models.

  12. Accurate analysis of multicomponent fuel spray evaporation in turbulent flow

    NASA Astrophysics Data System (ADS)

    Rauch, Bastian; Calabria, Raffaela; Chiariello, Fabio; Le Clercq, Patrick; Massoli, Patrizio; Rachner, Michael

    2012-04-01

    The aim of this paper is to perform an accurate analysis of the evaporation of single component and binary mixture fuels sprays in a hot weakly turbulent pipe flow by means of experimental measurement and numerical simulation. This gives a deeper insight into the relationship between fuel composition and spray evaporation. The turbulence intensity in the test section is equal to 10%, and the integral length scale is three orders of magnitude larger than the droplet size while the turbulence microscale (Kolmogorov scales) is of same order as the droplet diameter. The spray produced by means of a calibrated droplet generator was injected in a gas flow electrically preheated. N-nonane, isopropanol, and their mixtures were used in the tests. The generalized scattering imaging technique was applied to simultaneously determine size, velocity, and spatial location of the droplets carried by the turbulent flow in the quartz tube. The spray evaporation was computed using a Lagrangian particle solver coupled to a gas-phase solver. Computations of spray mean diameter and droplet size distributions at different locations along the pipe compare very favorably with the measurement results. This combined research tool enabled further investigation concerning the influencing parameters upon the evaporation process such as the turbulence, droplet internal mixing, and liquid-phase thermophysical properties.

  13. Evaporative cooling in microfluidic channels

    NASA Astrophysics Data System (ADS)

    Maltezos, George; Rajagopal, Aditya; Scherer, Axel

    2006-08-01

    Evaporative cooling is an effective and energy efficient way to rapidly remove heat from a system. Specifically, evaporative cooling in microfluidic channels can provide a cost-effective solution for the cooling of electronic devices and chemical reactors. Here we present microfluidic devices fabricated by using soft-lithography techniques to form simple fluidic junctions between channels carrying refrigerant and channels carrying N2 gas. The effects of channel geometry and delivery pressure on the performance of refrigeration through vaporization of acetone, isopropyl alcohol, and ethyl ether were characterized. By varying gas inlet pressures, refrigerants, and angles of the microfluidic junctions, optimal cooling conditions were found. Refrigeration rates in excess of 40°C/s were measured, and long lasting subzero cooling in the junction could be observed.

  14. 21 CFR 131.130 - Evaporated milk.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Evaporated milk. 131.130 Section 131.130 Food and... CONSUMPTION MILK AND CREAM Requirements for Specific Standardized Milk and Cream § 131.130 Evaporated milk. (a) Description. Evaporated milk is the liquid food obtained by partial removal of water only from milk....

  15. Iodine retention during evaporative volume reduction

    DOEpatents

    Godbee, H.W.; Cathers, G.I.; Blanco, R.E.

    1975-11-18

    An improved method for retaining radioactive iodine in aqueous waste solutions during volume reduction is disclosed. The method applies to evaporative volume reduction processes whereby the decontaminated (evaporated) water can be returned safely to the environment. The method generally comprises isotopically diluting the waste solution with a nonradioactive iodide and maintaining the solution at a high pH during evaporation.

  16. SEWAGE DISPOSAL BY EVAPORATION-TRANSPIRATION

    EPA Science Inventory

    One of the methods for on-site disposal of wastewater from individual homes is by evaporation. Two types of evaporative disposal systems have been investigated in this study; evapo-transpiration (ET) beds and mechanical evaporation units. Twenty nine test lysimeters of 0.22 cubic...

  17. Does groundwater enhance evaporative cooling?

    NASA Astrophysics Data System (ADS)

    Rouholahnejad, E.

    2015-12-01

    Evaporation is a key process in land-climate interactions, not only because it directly regulates the hydrological cycle, but also because it contributes to the Earth's energy balance. Due to its feedbacks on large-scale water processes and its impact on the dynamics of the atmosphere, it has been considered as a driver of droughts and heatwaves1-3. While evaporation from ocean surfaces is likely to increase with rising temperatures, it is unclear whether evapotranspiration from land surfaces could similarly increase, due to possible limitations imposed by soil moisture and vegetation physiology4. Observations suggest that groundwater (hereafter GW) has an important role in hydrological budgets and soil moisture variability in many regions, supplying moisture for evapotranspiration during dry seasons5, 6. Although modeling studies suggest that GW is often close enough to the surface to interact with the atmosphere7, 8, the soil water storage is often underestimated by land surface models. This is most likely due to neglecting the lateral movement of water from topographically higher altitudes to valley bottoms and its convergence close to the land surface, as well as the upward movement of water in the capillary fringe.The focus of this study is to understand where and when GW may significantly enhance the availability of soil water for evapotranspiration. We also quantified the potential contribution of GW to evapotranspiration in the areas where GW is a major supply. We used the global network of eddy covariance observations9 (FLUXNET) along with global modeled GW depth10 and GLEAM ET model estimates11 to address the current gap in modelling ET due to neglecting GW supply. Having identified areas where GW is tightly coupled with the atmosphere through evaporation processes, the study provides the basis to examine the "air conditioning effect" of GW and test the idea if GW enhances evaporation to the extent that leads to a cooler temperatures and wetter climates.

  18. Evaporation by mechanical vapor recompression

    NASA Astrophysics Data System (ADS)

    Iverson, C. H.; Coury, G. E.

    1980-04-01

    Progress in the development of a study of the application of the technologies of mechanical vapor recompression and falling film evaporation as applied to the beet sugar industry is reported. Progress is reported in the following areas: technical literature search; report on visit to European factories using these technologies; energy balance studies of factories offered by the industry as candidates for the demonstration plants; and report on energy balance studies and the recommendations as to the site for the demonstration plant.

  19. Differences in evaporation between a floating pan and class a pan on land

    USGS Publications Warehouse

    Masoner, J.R.; Stannard, D.I.; Christenson, S.C.

    2008-01-01

    Research was conducted to develop a method for obtaining floating pan evaporation rates in a small (less than 10,000 m2) wetland, lagoon, or pond. Floating pan and land pan evaporation data were collected from March 1 to August 31, 2005, at a small natural wetland located in the alluvium of the Canadian River near Norman, Oklahoma, at the U.S. Geological Survey Norman Landfill Toxic Substances Hydrology Research Site. Floating pan evaporation rates were compared with evaporation rates from a nearby standard Class A evaporation pan on land. Floating pan evaporation rates were significantly less than land pan evaporation rates for the entire period and on a monthly basis. Results indicated that the use of a floating evaporation pan in a small free-water surface better simulates actual physical conditions on the water surface that control evaporation. Floating pan to land pan ratios were 0.82 for March, 0.87 for April, 0.85 for May, 0.85 for June, 0.79 for July, and 0.69 for August. ?? 2008 American Water Resources Association.

  20. Real evaporative cooling efficiency of one-layer tight-fitting sportswear in a hot environment.

    PubMed

    Wang, F; Annaheim, S; Morrissey, M; Rossi, R M

    2014-06-01

    Real evaporative cooling efficiency, the ratio of real evaporative heat loss to evaporative cooling potential, is an important parameter to characterize the real cooling benefit for the human body. Previous studies on protective clothing showed that the cooling efficiency decreases with increasing distance between the evaporation locations and the human skin. However, it is still unclear how evaporative cooling efficiency decreases as the moisture is transported from the skin to the clothing layer. In this study, we performed experiments with a sweating torso manikin to mimic three different phases of moisture absorption in one-layer tight-fitting sportswear. Clothing materials Coolmax(®) (CM; INVISTA, Wichita, Kansas, USA; 100%, profiled cross-section polyester fiber), merino wool (MW; 100%), sports wool (SW; 50% wool, 50% polyester), and cotton (CO; 100%) were selected for the study. The results demonstrated that, for the sportswear materials tested, the real evaporative cooling efficiency linearly decreases with the increasing ratio of moisture being transported away from skin surface to clothing layer (adjusted R(2) >0.97). In addition, clothing fabric thickness has a negative effect on the real evaporative cooling efficiency. Clothing CM and SW showed a good ability in maintaining evaporative cooling efficiency. In contrast, clothing MW made from thicker fabric had the worst performance in maintaining evaporative cooling efficiency. It is thus suggested that thin fabric materials such as CM and SW should be used to manufacture one-layer tight-fitting sportswear. PMID:24033668

  1. Dynamics of evaporative colloidal patterning

    NASA Astrophysics Data System (ADS)

    Kaplan, C. Nadir; Wu, Ning; Mandre, Shreyas; Aizenberg, Joanna; Mahadevan, L.

    2015-09-01

    Drying suspensions often leave behind complex patterns of particulates, as might be seen in the coffee stains on a table. Here, we consider the dynamics of periodic band or uniform solid film formation on a vertical plate suspended partially in a drying colloidal solution. Direct observations allow us to visualize the dynamics of band and film deposition, where both are made of multiple layers of close packed particles. We further see that there is a transition between banding and filming when the colloidal concentration is varied. A minimal theory of the liquid meniscus motion along the plate reveals the dynamics of the banding and its transition to the filming as a function of the ratio of deposition and evaporation rates. We also provide a complementary multiphase model of colloids dissolved in the liquid, which couples the inhomogeneous evaporation at the evolving meniscus to the fluid and particulate flows and the transition from a dilute suspension to a porous plug. This allows us to determine the concentration dependence of the bandwidth and the deposition rate. Together, our findings allow for the control of drying-induced patterning as a function of the colloidal concentration and evaporation rate.

  2. Nonmagnetic impellers improve evaporative cooling

    SciTech Connect

    Hausman, T. )

    1993-03-01

    This article describes how nonmagnetic impeller flow sensors help improve efficiency of open evaporative cooling water systems. Open evaporative cooling water systems provide economical heat sinks with efficient reuse of water. However, their water loss through evaporation, though minimal, results in an increased concentration of dissolved and suspended impurities in the remaining water. To deconcentrate the water and minimize impurities, the system water is bled off and replaced with fresh makeup water. Bleedoff helps, but to maintain efficient operation and protect the system from water-related catastrophes, various chemical treatments are required for the control of corrosion, deposition, and biological growth. Efficient addition of makeup water and chemical additives can be achieved by a system design employing multiple data points, using flow sensors having high reproducibility for good trend data. In such a system, nonmagnetic flow sensors provide 1% accuracy and excellent reproducibility. In addition, their low initial cost and long service life mean that they can be used cost effectively at multiple data collection points to eliminate approximations.

  3. Flash evaporation from turbulent water jets

    NASA Astrophysics Data System (ADS)

    Bharathan, D.; Penney, T.

    1983-02-01

    Results of an experimental investigation of flash evaporation from turbulent planar and axisymmetric water jets are reported. In the range of jet thicknesses tested, for planar jets, due to shattering, evaporation is found to be nearly independent of the jet thickness. Evaporation from the planar jets was found to be dependent on the initial level of turbulence in the water supply manifold. An approximate analysis to model the evaporation process based on the physical phenomena and experimental observations is outlined. Comparisons between the experimental data and analytical predictions of the liquid temperature variation along the jet are included. Use of screens in the water jet are shown to be effective for enhancing evaporation.

  4. Evaporator Development for an Evaporative Heat Pipe System

    NASA Technical Reports Server (NTRS)

    Peters, Leigh C.

    2004-01-01

    As fossil fuel resources continue to deplete, research for alternate power sources continues to develop. One of these alternate technologies is fuel cells. They are a practical fuel source able to provide significant amounts of power for applications from laptops to automobiles and their only byproduct is water. However, although this technology is over a century old and NASA has been working with it since the early 1960 s there is still room for improvement. The research I am involved in at NASA's Glenn Research Center is focusing on what is called a regenerative fuel cell system. The unique characteristic of this type of system is that it used an outside power source to create electrolysis of the water it produces and it then reuses the hydrogen and oxygen to continue producing power. The advantage of this type of system is that, for example, on space missions it can use solar power to recharge its gas supplies between periods when the object being orbited blocks out the sun. This particular system however is far from completion. This is because of the many components that are required to make up a fuel cell that need to be tested individually. The specific part of the system that is being worked on this summer of 2004 is the cooling system. The fuel cell stack, that is the part that actually creates the power, also produces a lot of heat. When not properly cooled, it has been known to cause fires which, needless to say are not conducive to the type of power that is trying to be created. In order to cool the fuel cell stack in this system we are developing a heat pipe cooling system. One of the main components of a heat pipe cooling system is what is known as the evaporator, and that is what happens to be the part of the system we are developing this summer. In most heat pipe systems the evaporator is a tube in which the working fluid is cooled and then re-circulated through the system to absorb more heat energy from the fuel cell stack. For this system, instead

  5. Lidar description of the evaporative duct in ocean environments

    NASA Astrophysics Data System (ADS)

    Willitsford, Adam; Philbrick, C. R.

    2005-08-01

    The description of radar propagation in the presence of the evaporation duct has proven to be a difficult problem in both littoral and open ocean environments. To properly characterize the propagation of a radar beam at low elevation angles, the evaporation duct must be located and scattering properties quantified. The two key elements defining an evaporation duct are the gradients in density and specific humidity. The gradients of the neutral density are determined from the rotational Raman temperature profile. The profile of water vapor is measured directly from the vibrational Raman scattered returns. High spatial resolution and high temporal resolution measurements of water vapor and temperature are required to accurately describe the evaporation duct. Raman lidar techniques can provide these measurements continuously with high accuracy and high resolution so the development of the evaporation duct can be studied. A detailed simulation of a Raman lidar has been developed and applied to a near horizontal path, to examine the expected accuracy for high vertical resolution profiles. The simulation also allows various atmospheric scenarios to be investigated and analyzed. The evaporation duct is an atmospheric phenomenon that causes radar propagation to remain trapped in the surface layer. The duct can be thought of as a waveguide that bends and reflects the radar beam along a path effectively trapping it and guiding it over long distances. This is a major problem for radar propagation paths in both littoral and open ocean environments. Moreover, ducting skews details of radar returns such that radar objects are hidden, or are detected at unexpected distances, or may appear with apparent cross-sections and speeds much different than their actual values.

  6. Effect of soil type patterns on the variability of bare soil evaporation within a field: comparison of eddy covariance measurements with potential and actual evaporation calculations

    NASA Astrophysics Data System (ADS)

    Vanderborght, J.; Graf, A.; Steenpass, C.; Scharnagl, B.; Prolingheuer, N.; Herbst, M.; Vereecken, H.

    2009-12-01

    Bare soil evaporation was measured with the eddy-covariance method at the Selhausen field site. The site has a distinct gradient in soil texture with a considerably higher stone content at the upper part of the field. Because of this gradient, a spatial variation in evaporation fluxes in the field is expected. Because of the higher stone content at the upper part of the field, it is expected that the water that is stored in the soil surface layer and can be evaporated at a maximal evaporation rate, which is determined by the energy that is available for evaporation, is considerable smaller in the upper than in the lower part of the field. We investigated whether this hypothesis is supported by eddy covariance (EC) measurements of the evaporation fluxes at the field site. The EC measurements were combined with a footprint model that predicts the location of the soil surface that contributes to the measured evaporation flux. In this way, evaporation measurements of the two parts of the field site could be distinguished. However, since only one EC station was available, simultaneous evaporation measurements for the two field parts were not available. As a consequence, the datasets of measurements had to be interpreted and put into context of the meteorological and soil hydrological conditions. The potential evapotranspiration was calculated using the FAO method (Allen et al., 1998) to represent the meteorological conditions whereas a simple soil evaporation model (Boesten and Stroosnijder, 1986) was used to represent the influence of the precipitation and soil hydrological conditions on the actual evaporation rate. Since different soil parameters were required to describe the evaporation measurements for the upper and lower part of the plot, our starting hypothesis that more water is evaporated in the lower part of the field could be confirmed. Allen, R. G., L. S. Pereira, D. Raes, and M. Smith (1998), Crop evapotranspiration: Guidelines for computing crop water

  7. Kinetics of evaporation and gel formation in thin films of ceramic precursors.

    PubMed

    Gu, Yu; Chen, Zhaoxi; Borodinov, Nikolay; Luzinov, Igor; Peng, Fei; Kornev, Konstantin G

    2014-12-01

    Precursors derived from the hydrolysis of organic or inorganic salts have been widely used to produce ceramic coatings for a broad variety of applications. When applying the liquid precursors to the substrates, it is extremely challenging to control the film uniformity and homogeneity. The rate of solvent evaporation at different locations is different, causing the viscosity variation and flows in the film. There is very limited knowledge about the viscosity change in evaporating ceramic precursors. Therefore, it is crucial to understand the effect of evaporation on viscosity variation in thin films and droplets. We use magnetic rotational spectroscopy to study the time dependence of viscosity in mullite precursors. A correlation between the viscosity change and evaporation kinetics is revealed. This correlation was used to relate the change of viscosity to the concentration of mullite. A master curve relating viscosity to the mullite concentration was constructed and used to propose a possible scenario of the viscosity increase during solvent evaporation. PMID:25397585

  8. How Natural Evaporation Temporally Self-Tunes an Oscillating Sessile Droplet To Resonate at Different Modes.

    PubMed

    Sanyal, Apratim; Basu, Saptarshi

    2016-05-17

    We report the dynamics and underlying physics of evaporation driven transitions and autotuning of oscillation modes in sessile droplets subject to substrate perturbations. We have shown that evaporation controls temporal transition of the oscillation mode with a spatially downward shift of nodes (surface locations with zero displacement) toward the three-phase contact line. We have explained the physical mechanism using two parameters: the first quantifies evaporation driven tuning for resonance detection, and the second parameter characterizes mode lifetime which is found to be governed by evaporation dynamics. It is desirable to achieve autotuning of the oscillation modes in sessile droplets that essentially self-evolves in a spatiotemporal manner with continued evaporation. The insights suggest control of mode resonances is possible, which in turn will allow precision manipulations at droplet scale crucial for many applications such as surface patterning and others. PMID:27120412

  9. Putting the "vap" into evaporation

    NASA Astrophysics Data System (ADS)

    Shuttleworth, W. J.

    2007-01-01

    In the spirit of the Special Issue of HESS to which it contributes, this paper documents the origin and development of the science of natural evaporation from land surfaces over the last 30-35 years, since the symposium A View from the Watershed was held to commemorate the opening of the new Institute of Hydrology (IH) building in 1973. Important subsequent technical progress includes the ability to measure routinely the diurnal cycle of near-surface meteorological variables using automatic weather stations, and of surface energy and momentum exchanges using automated implementations of the Bowen Ratio/Energy Budget technique and the Eddy Correlation technique, along with the capability to estimate the "fetch" for which these measurements apply. These improvements have been complemented by new methods to measure the separate components of evaporation, including: the interception process using randomly relocated below-canopy gauges, transpiration fluxes from individual leaves/shoots using porometers and from plants/plant components using stem-flow gauges and soil evaporation using micro-lysimeters and soil moisture depletion methods. In recent years progress has been made in making theory-based area-average estimates of evaporation using scintillometers, and model-based area-average estimates by assembling many streams of relevant data into Land Data Assimilation Systems. Theoretical progress has been made in extending near-surface turbulence theory to accommodate the effect of the "excess" boundary layer resistance to leaf-to-air transfer of energy and mass fluxes relative to that for momentum, and to allow for observed shortcoming in stability factors in the transition layer immediately above vegetation. Controversy regarding the relative merits of multi-layer model and "big leaf" representations of whole-canopy exchanges has been resolved in favour of the latter approach. Important gaps in the theory of canopy-atmosphere interactions have been filled, including

  10. Mobile evaporator corrosion test results

    SciTech Connect

    Rozeveld, A.; Chamberlain, D.B.

    1997-05-01

    Laboratory corrosion tests were conducted on eight candidates to select a durable and cost-effective alloy for use in mobile evaporators to process radioactive waste solutions. Based on an extensive literature survey of corrosion data, three stainless steel alloys (304L, 316L, AL-6XN), four nickel-based alloys (825, 625, 690, G-30), and titanium were selected for testing. The corrosion tests included vapor phase, liquid junction (interface), liquid immersion, and crevice corrosion tests on plain and welded samples of candidate materials. Tests were conducted at 80{degrees}C for 45 days in two different test solutions: a nitric acid solution. to simulate evaporator conditions during the processing of the cesium ion-exchange eluant and a highly alkaline sodium hydroxide solution to simulate the composition of Tank 241-AW-101 during evaporation. All of the alloys exhibited excellent corrosion resistance in the alkaline test solution. Corrosion rates were very low and localized corrosion was not observed. Results from the nitric acid tests showed that only 316L stainless steel did not meet our performance criteria. The 316L welded interface and crevice specimens had rates of 22.2 mpy and 21.8 mpy, respectively, which exceeds the maximum corrosion rate of 20 mpy. The other welded samples had about the same corrosion resistance as the plain samples. None of the welded samples showed preferential weld or heat-affected zone (HAZ) attack. Vapor corrosion was negligible for all alloys. All of the alloys except 316L exhibited either {open_quotes}satisfactory{close_quotes} (2-20 mpy) or {open_quotes}excellent{close_quotes} (<2 mpy) corrosion resistance as defined by National Association of Corrosion Engineers. However, many of the alloys experienced intergranular corrosion in the nitric acid test solution, which could indicate a susceptibility to stress corrosion cracking (SCC) in this environment.

  11. Evaporative oxidation treatability test report

    SciTech Connect

    1995-04-01

    In 1992, Congress passed the Federal Facilities Compliance Act that requires the U.S. Department of Energy (DOE) to treat and dispose of its mixed waste in accordance with the Resource Conservation and Recovery Act (RCRA) land disposal restrictions (LDRs). In response to the need for mixed-waste treatment capacity where available off-site commercial treatment facilities do not exist or cannot be used, the DOE Albuquerque Operations Office (DOE-AL) organized a Treatment Selection Team to match mixed wastes with treatment options and develop a strategy for treatment of its mixed wastes. DOE-AL manages operations at nine sites with mixed-waste inventories. The Treatment Selection Team determined a need to develop mobile treatment capacity to treat wastes at the sites where the wastes are generated. Treatment processes used for mixed waste not only must address the hazardous component (i.e., meet LDRs) but also must contain the radioactive component in a form that allows final disposal while protecting workers, the public, and the environment. On the basis of recommendations of the Treatment Selection Team, DOE-AL assigned projects to the sites to bring mixed-waste treatment capacity on-line. The three technologies assigned to the DOE Grand Junction Projects Office (GJPO) are evaporative oxidation, thermal desorption, and treated wastewater evaporation. Rust Geotech, the DOE-GJPO prime contractor, was assigned to design and fabricate mobile treatment units (MTUs) for these three technologies and to deliver the MTUs to selected DOE-AL sites. To conduct treatability tests at the GJPO, Rust leased a pilot-scale evaporative oxidation unit from the Clemson Technical Center (CTC), Anderson, South Carolina. The purpose of this report is to document the findings and results of tests performed using this equipment.

  12. Organic Evaporator steam valve failure

    SciTech Connect

    Jacobs, R. A.

    1992-09-29

    DWPF Technical has requested an analysis of the capacity of the organic Evaporator (OE) condenser (OEC) be performed to determine its capability in the case where the OE steam flow control valve fails open. Calculations of the OE boilup and the OEC heat transfer coefficient indicate the OEC will have more than enough capacity to remove the heat at maximum OE boilup. In fact, the Salt Cell Vent Condenser (SCVC) should also have sufficient capacity to handle the maximum OE boilup. Therefore it would require simultaneous loss of OEC and/or SCVC condensing capacity for the steam valve failure to cause high benzene in the Process Vessel Vent System (PVVS).

  13. Combination of imipenem and TAK-242, a Toll-like receptor 4 signal transduction inhibitor, improves survival in a murine model of polymicrobial sepsis.

    PubMed

    Sha, Takuryu; Iizawa, Yuji; Ii, Masayuki

    2011-02-01

    Sepsis is characterized by an excessive host response to infection. Toll-like receptors (TLRs) are essential for triggering this type of host immune response. Toll-like receptor 4 mediates recognition of LPS from gram-negative bacteria and is an important initiator of sepsis. In the present study, we evaluated the efficacy of TAK-242, a novel TLR4 signal transduction inhibitor, in a murine cecal ligation and puncture (CLP) model. Treatment with TAK-242 (10 mg/kg i.v.) in combination with imipenem (1 mg/kg s.c.) 1 h after CLP significantly increased the survival rates of mice from 17% to 50% (P ≤ 0.01) and suppressed CLP-induced increases in serum levels of IL-1[beta], IL-6, IL-10, and macrophage inflammatory protein 2 by 64%, 73%, 79%, and 81%, respectively (P ≤ 0.025). Additionally, coadministration of TAK-242 with imipenem after CLP significantly inhibited CLP-induced decreases in blood platelet counts by 37% (P ≤ 0.025) and increases in serum levels of alanine aminotransferase by 32% (P ≤ 0.025) and blood urea nitrogen by 43% (P ≤ 0.025). TAK-242 at a dose of 10 mg/kg had no effect on bacterial counts in blood, suggesting that it does not affect blood bacteria spread. These results indicate that TAK-242 shows therapeutic effects in murine polymicrobial sepsis, and it may be a potential therapeutic agent for the treatment of sepsis. PMID:20720515

  14. AZ 242, a novel PPARalpha/gamma agonist with beneficial effects on insulin resistance and carbohydrate and lipid metabolism in ob/ob mice and obese Zucker rats.

    PubMed

    Ljung, Bengt; Bamberg, Krister; Dahllöf, Björn; Kjellstedt, Ann; Oakes, Nicholas D; Ostling, Jörgen; Svensson, Lennart; Camejo, Germán

    2002-11-01

    Abnormalities in fatty acid (FA) metabolism underlie the development of insulin resistance and alterations in glucose metabolism, features characteristic of the metabolic syndrome and type 2 diabetes that can result in an increased risk of cardiovascular disease. We present pharmacodynamic effects of AZ 242, a novel peroxisome proliferator activated receptor (PPAR)alpha/gamma agonist. AZ 242 dose-dependently reduced the hypertriglyceridemia, hyperinsulinemia, and hyperglycemia of ob/ob diabetic mice. Euglycemic hyperinsulinemic clamp studies showed that treatment with AZ 242 (1 micromol/kg/d) restored insulin sensitivity of obese Zucker rats and decreased insulin secretion. In vitro, in reporter gene assays, AZ 242 activated human PPARalpha and PPARgamma with EC(50) in the micro molar range. It also induced differentiation in 3T3-L1 cells, an established PPARgamma effect, and caused up-regulation of liver fatty acid binding protein in HepG-2 cells, a PPARalpha-mediated effect. PPARalpha-mediated effects of AZ 242 in vivo were documented by induction of hepatic cytochrome P 450-4A in mice. The results indicate that the dual PPARalpha/gamma agonism of AZ 242 reduces insulin resistance and has beneficial effects on FA and glucose metabolism. This effect profile could provide a suitable therapeutic approach to the treatment of type 2 diabetes, metabolic syndrome, and associated vascular risk factors. PMID:12401884

  15. Laboratory Evaporation Testing Of Hanford Waste Treatment Plant Low Activity Waste Off-Gas Condensate Simulant

    SciTech Connect

    Adamson, Duane J.; Nash, Charles A.; McCabe, Daniel J.; Crawford, Charles L.; Wilmarth, William R.

    2014-01-27

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream, LAW Off-Gas Condensate, from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable de-coupled operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also decrease the LAW vitrification mission duration and quantity of canistered glass waste forms. This LAW Off-Gas Condensate stream contains components that are volatile at melter temperatures and are problematic for the glass waste form. Because this stream recycles within WTP, these components accumulate in the Condensate stream, exacerbating their impact on the number of LAW glass containers that must be produced. Approximately 32% of the sodium in Supplemental LAW comes from glass formers used to make the extra glass to dilute the halides to be within acceptable concentration ranges in the LAW glass. Diverting the stream reduces the halides in the recycled Condensate and is a key outcome of this work. Additionally, under possible scenarios where the LAW vitrification facility commences operation prior to the WTP Pretreatment facility, identifying a disposition path becomes vitally important. This task examines the impact of potential future disposition of this stream in the Hanford tank farms, and investigates auxiliary evaporation to enable another disposition path. Unless an auxiliary evaporator is used, returning the stream to the tank farms would require evaporation in the 242-A evaporator. This stream is expected to be unusual because it will be very high in corrosive species that are volatile in the melter

  16. Hydrodynamic Instabilities Produced by Evaporation

    NASA Astrophysics Data System (ADS)

    Romo-Cruz, Julio Cesar Ruben; Hernandez-Zapata, Sergio; Ruiz-Chavarria, Gerardo

    2012-11-01

    When a liquid layer (alcohol in the present work) is in an environment where its relative humidity is less than 100 percent evaporation appears. When RH is above a certain threshold the liquid is at rest. If RH decreases below this threshold the flow becomes unstable, and hydrodynamic cells develop. The aim of this work is to understand the formation of those cells and its main features. Firstly, we investigate how the cell size depends on the layer width. We also study how temperature depends on the vertical coordinate when the cells are present. An inverse temperature gradient is found, that is, the bottom of liquid layer is colder than the free surface. This shows that the intuitive idea that the cells are due to a direct temperature gradient, following a Marangoni-like process, does not work. We propose the hypothesis that the evaporation produce a pressure gradient that is responsible of the cell development. On the other hand, using a Schlieren technique we study the topography of the free surface when cells are present. Finally the alcohol vapor layer adjacent to the liquid surface is explored using scattering experiments, giving some insight on the plausibility of the hypothesis described previously. Authors acknowledge support by DGAPA-UNAM under project IN116312 ``Vorticidad y ondas no lineales en fluidos.''

  17. Dynamics of Soil Water Evaporation during Soil Drying: Laboratory Experiment and Numerical Analysis

    PubMed Central

    Han, Jiangbo; Zhou, Zhifang

    2013-01-01

    Laboratory and numerical experiments were conducted to investigate the evolution of soil water evaporation during a continuous drying event. Simulated soil water contents and temperatures by the calibrated model well reproduced measured values at different depths. Results show that the evaporative drying process could be divided into three stages, beginning with a relatively high evaporation rate during stage 1, followed by a lower rate during transient stage and stage 2, and finally maintaining a very low and constant rate during stage 3. The condensation zone was located immediately below the evaporation zone in the profile. Both peaks of evaporation and condensation rate increased rapidly during stage 1 and transition stage, decreased during stage 2, and maintained constant during stage 3. The width of evaporation zone kept a continuous increase during stages 1 and 2 and maintained a nearly constant value of 0.68 cm during stage 3. When the evaporation zone totally moved into the subsurface, a dry surface layer (DSL) formed above the evaporation zone at the end of stage 2. The width of DSL also presented a continuous increase during stage 2 and kept a constant value of 0.71 cm during stage 3. PMID:24489492

  18. Sensible heat measurements indicating depth and magnitude of subsurface soil water evaporation

    NASA Astrophysics Data System (ADS)

    Heitman, J. L.; Xiao, X.; Horton, R.; Sauer, T. J.

    2008-04-01

    Most measurement approaches for determining evaporation assume that the latent heat flux originates from the soil surface. Here, a new method is described for determining in situ soil water evaporation dynamics from fine-scale measurements of soil temperature and thermal properties with heat pulse sensors. A sensible heat balance is computed using soil heat flux density at two depths and change in sensible heat storage in between; the sensible heat balance residual is attributed to latent heat from evaporation of soil water. Comparisons between near-surface soil heat flux density and Bowen ratio energy balance measurements suggest that evaporation originates below the soil surface several days after rainfall. The sensible heat balance accounts for this evaporation dynamic in millimeter-scale depth increments within the soil. Comparisons of sensible heat balance daily evaporation estimates to Bowen ratio and mass balance estimates indicate strong agreement (r2 = 0.96, root-mean-square error = 0.20 mm). Potential applications of this technique include location of the depth and magnitude of subsurface evaporation fluxes and estimation of stage 2-3 daily evaporation without requirements for large fetch. These applications represent new contributions to vadose zone hydrology.

  19. Anomalous trend in soil evaporation in a semi-arid, snow-dominated watershed

    NASA Astrophysics Data System (ADS)

    Wang, Rui; Kumar, Mukesh; Marks, Danny

    2013-07-01

    Soil evaporation in arid and semi-arid regions is generally moisture-limited. Evaporation in these regions is expected to increase monotonically with increase in precipitation. In contrast, model simulations in a snow-dominated, semi-arid Reynolds Mountain East (RME) watershed point to the existence of an anomalous trend in soil evaporation. Results indicate that soil evaporation in snow-dominated watersheds first increases and then subsequently decreases with increasing precipitation. The anomalous variation is because of two competing evaporation controls: (a) higher soil moisture in wetter years which leads to larger evaporation, and (b) prolonged snow cover period in wetter years which shields the soil from the atmosphere, thus reducing soil evaporation. To further evaluate how the competition is mediated by meteorological and hydrogeological characteristics of the watershed, changes in the trend due to different watershed hydraulic conductivity, vegetation cover, and snowfall area fraction are systematically studied. Results show considerable persistence in the anomalous trend over a wide range of controls. The controlling factors, however, have significant influence both on the magnitude of the WY evaporation and the location of the inflection point in the trend curve.

  20. Anomalous trend in soil evaporation in semi-arid, snow-dominated watersheds

    NASA Astrophysics Data System (ADS)

    Wang, R.; Kumar, M.

    2012-12-01

    Soil evaporation in arid and semi-arid regions is generally "moisture-limited". Evaporation in such regions shows an increasing trend with increase in magnitude of annual precipitation. This paper explores the trend in soil evaporation in a snow-dominated, semi-arid Reynolds Mountain East (RME) watershed by using a series of scenario experiments based on a linked snow melt and accumulation model with an integrated hydrology model. The results suggest that for the same hydrogeologic properties and meteorological conditions in the watershed, while the trend of annual soil evaporation with increasing annual rain shows an expected monotonic increase, the annual soil evaporation initially increases and then subsequently decreases with increasing annual precipitation for snow-dominated regimes. To further evaluate the controls on the existence of anomalous trends of evaporation, changes in the trend due to watershed characteristics such as watershed hydraulic conductivity, vegetation cover, and snowfall area fraction is systematically studied. The results show that the anomalous trend persists in a wide range of conditions, although the considered factors have significant influence both on the magnitude of the annual evaporation and the location of the inflection point in the trend curve. If validated, the results highlight the crucial role that snow accumulation and melt play on annual evaporation and water budget.

  1. Dynamics of soil water evaporation during soil drying: laboratory experiment and numerical analysis.

    PubMed

    Han, Jiangbo; Zhou, Zhifang

    2013-01-01

    Laboratory and numerical experiments were conducted to investigate the evolution of soil water evaporation during a continuous drying event. Simulated soil water contents and temperatures by the calibrated model well reproduced measured values at different depths. Results show that the evaporative drying process could be divided into three stages, beginning with a relatively high evaporation rate during stage 1, followed by a lower rate during transient stage and stage 2, and finally maintaining a very low and constant rate during stage 3. The condensation zone was located immediately below the evaporation zone in the profile. Both peaks of evaporation and condensation rate increased rapidly during stage 1 and transition stage, decreased during stage 2, and maintained constant during stage 3. The width of evaporation zone kept a continuous increase during stages 1 and 2 and maintained a nearly constant value of 0.68 cm during stage 3. When the evaporation zone totally moved into the subsurface, a dry surface layer (DSL) formed above the evaporation zone at the end of stage 2. The width of DSL also presented a continuous increase during stage 2 and kept a constant value of 0.71 cm during stage 3. PMID:24489492

  2. E-beam-based Lithium Flash Evaporator for NSTX_U

    NASA Astrophysics Data System (ADS)

    Roquemore, A. L.; Skinner, C. W.; Andruczyk, D.; Mansfield, D.; Majeski, R.

    2013-10-01

    A commercial e-beam evaporator is being utilized as the main component of a lithium (Li) flash evaporator that will coat the upper divertor of NSTX-U. The evaporator system (U-Liter) will be mounted on a horizontal probe drive and will be inserted into NSTX-U in an upper port of one of the midplane port covers. In the retracted position the evaporator will be loaded with ~ 300 mg of Li granules utilizing one of the well-calibrated NSTX Li granular droppers. The evaporator will then be inserted into the vessel and parked in a location well within the shadow of the RF limiters where it can remain in the vessel during the discharge. Resident Helmholtz coils will position the beam into a tungsten crucible, where the total Li inventory will be rapidly heated and completely evaporated in a matter of seconds shortly before a discharge. The need for shutters to prevent Li vapor from coating diagnostic windows is eliminated with this approach. The minimal time between the evaporation and the start of the discharge will avoid the passivation of the lithium by residual gases. The evaporator can easily be withdrawn, reloaded with Li granules, and reinserted during the inter-shot interval. On long term collaboration with U. Illinois.

  3. Observations on an evaporative, elbow thermosyphon

    SciTech Connect

    Lock, G.S.H.; Fu, J. )

    1993-05-01

    The performance of the evaporative elbow system was found to be superior to that of the nonevaporative system, but comparable to the performance of the linear system. The parametric role of the evaporator wall temperature, the condenser wall temperature, and the vapor saturation temperature was demonstrated, each revealing a similar monotonic effect. With the evaporator upright, the data were found to be similar to, but displaced from, the upright condenser data. The upright evaporator gave the better performance, but not overwhelmingly so. The limit of performance with the condenser upright was found to be dictated by evaporator dryout. In the upright evaporator configuration, the limit may be attributed to flooding in the poorly draining condenser; this limit was indistinguishable from geyser behavior at low vapor pressures. 16 refs., 3 figs.

  4. Apparatus and method for evaporator defrosting

    DOEpatents

    Mei, Viung C.; Chen, Fang C.; Domitrovic, Ronald E.

    2001-01-01

    An apparatus and method for warm-liquid defrosting of the evaporator of a refrigeration system. The apparatus includes a first refrigerant expansion device that selectively expands refrigerant for cooling the evaporator, a second refrigerant expansion device that selectively expands the refrigerant after the refrigerant has passed through the evaporator, and a defrosting control for the first refrigerant expansion device and second refrigerant expansion device to selectively defrost the evaporator by causing warm refrigerant to flow through the evaporator. The apparatus is alternately embodied with a first refrigerant bypass and/or a second refrigerant bypass for selectively directing refrigerant to respectively bypass the first refrigerant expansion device and the second refrigerant expansion device, and with the defrosting control connected to the first refrigerant bypass and/or the second refrigerant bypass to selectively activate and deactivate the bypasses depending upon the current cycle of the refrigeration system. The apparatus alternately includes an accumulator for accumulating liquid and/or gaseous refrigerant that is then pumped either to a refrigerant receiver or the first refrigerant expansion device for enhanced evaporator defrosting capability. The inventive method of defrosting an evaporator in a refrigeration system includes the steps of compressing refrigerant in a compressor and cooling the refrigerant in the condenser such that the refrigerant is substantially in liquid form, passing the refrigerant substantially in liquid form through the evaporator, and expanding the refrigerant with a refrigerant expansion device after the refrigerant substantially passes through the evaporator.

  5. Portable brine evaporator unit, process, and system

    DOEpatents

    Hart, Paul John; Miller, Bruce G.; Wincek, Ronald T.; Decker, Glenn E.; Johnson, David K.

    2009-04-07

    The present invention discloses a comprehensive, efficient, and cost effective portable evaporator unit, method, and system for the treatment of brine. The evaporator unit, method, and system require a pretreatment process that removes heavy metals, crude oil, and other contaminates in preparation for the evaporator unit. The pretreatment and the evaporator unit, method, and system process metals and brine at the site where they are generated (the well site). Thus, saving significant money to producers who can avoid present and future increases in transportation costs.

  6. Environmental Projects. Volume 8: Modifications of wastewater evaporation ponds

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The Goldstone Deep Space Communications Complex (GDSCC), located in the Mojave Desert about 45 miles north of Barstow, California, and about 160 miles northeast of Pasadena, is part of NASA's Deep Space Network, one of the world's largest and most sensitive scientific telecommunications and radio navigation networks. The Goldstone Complex is managed, technically directed, and operated for NASA by the Jet Propulsion Laboratory (JPL) of the California Institute of Technology in Pasadena, California. Activities at the GDSCC are carried out in support of seven parabolic dish antennas. These activities may give rise to environmental hazards: use of hazardous chemicals, asbestos, and underground storage tanks as well as the generation of hazardous wastes and the disposal of wastewater. Federal, state, and local laws governing the management of hazardous substances, asbestos, underground storage tanks and wastewater disposal have become so complex there is a need to devise specific programs to comply with the many regulations that implement these laws. In support of the national goal of the preservation of the environment and the protection of human health and safety, NASA, JPL, and the GDSCC have adopted a position that their operating installations shall maintain a high level of compliance with these laws. One of the environmental problems at the GDSCC involved four active, operational, wastewater evaporation ponds designed to receive and evaporate sewage effluent from upstream septic tank systems. One pair of active wastewater evaporation ponds is located at Echo Site, while another operational pair is at Mars Site.

  7. Water sources, mixing and evaporation in the Akyatan lagoon, Turkey

    NASA Astrophysics Data System (ADS)

    Lécuyer, C.; Bodergat, A.-M.; Martineau, F.; Fourel, F.; Gürbüz, K.; Nazik, A.

    2012-12-01

    Akyatan lagoon, located southeast of Turkey along the Mediterranean coast, is a choked and hypersaline lagoon, and hosts a large and specific biodiversity including endangered sea turtles and migrating birds. Physicochemical properties of this lagoon were investigated by measuring temperature, salinity, and hydrogen and oxygen isotope ratios of its waters at a seasonal scale during years 2006 and 2007. Winter and spring seasons were dominated by mixing processes between freshwaters and Mediterranean seawater. The majority of spring season waters are formed by evapoconcentration of brackish water at moderate temperatures of 22 ± 2 °C. During summer, hypersaline waters result from evaporation of seawater and brackish waters formed during spring. Evaporation over the Akyatan lagoon reaches up to 76 wt% based on salinity measurements and operated with a dry (relative humidity of 0.15-0.20) and hot (44 ± 6 °C) air. These residual waters were characterized by the maximal seasonal isotopic enrichment in both deuterium and 18O relative to VSMOW. During autumn, most lagoonal waters became hypersaline and were formed by evaporation of waters that had isotopic compositions and salinities close to that of seawater. These autumnal hypersaline waters result from an air humidity close to 0.45 and an atmospheric temperature of evaporation of 35 ± 5 °C, which are responsible for up to 71 wt% of evaporation, with restricted isotopic enrichments relative to VSMOW. During the warm seasons, the combination of air humidity, wind velocity and temperature were responsible for a large kinetic component in the total isotopic fractionation between water liquid and water vapour.

  8. Evaporative cooling of potassium atoms

    NASA Astrophysics Data System (ADS)

    Inouye, Shin; Kishimoto, Tetsuo; Kobayashi, Jun; Aikawa, Kiyotaka; Noda, Kai; Arae, Takuto; Ueda, Masahito

    2007-06-01

    Recent advances in manipulating interactions between ultracold atoms opened up various new possibilities. One of the major goal of the field is to produce ultracold polar molecules. By utilizing a magnetic field induced Feshbach resonance, it is possible to produce heteronuclear molecules from a degenerate gas mixture. We are setting up an experiment to produce a degenerate gas mixture of fermionic alkali atoms, lithium-6 and potassium-40. Fermionic atoms are good candidate for minimizing the expected inelastic loss at the Feshbach resonance. For keeping the system as simple as possible, we decided to use bosonic potassium (potassium-41) as a coolant, and sympathetically cool the fermionic species. We will present our experimental setup and initial results for evaporatively cooling bosonic potassium atoms.

  9. Nanofluid Drop Evaporation: Experiment, Theory, and Modeling

    NASA Astrophysics Data System (ADS)

    Gerken, William James

    Nanofluids, stable colloidal suspensions of nanoparticles in a base fluid, have potential applications in the heat transfer, combustion and propulsion, manufacturing, and medical fields. Experiments were conducted to determine the evaporation rate of room temperature, millimeter-sized pendant drops of ethanol laden with varying amounts (0-3% by weight) of 40-60 nm aluminum nanoparticles (nAl). Time-resolved high-resolution drop images were collected for the determination of early-time evaporation rate (D2/D 02 > 0.75), shown to exhibit D-square law behavior, and surface tension. Results show an asymptotic decrease in pendant drop evaporation rate with increasing nAl loading. The evaporation rate decreases by approximately 15% at around 1% to 3% nAl loading relative to the evaporation rate of pure ethanol. Surface tension was observed to be unaffected by nAl loading up to 3% by weight. A model was developed to describe the evaporation of the nanofluid pendant drops based on D-square law analysis for the gas domain and a description of the reduction in liquid fraction available for evaporation due to nanoparticle agglomerate packing near the evaporating drop surface. Model predictions are in relatively good agreement with experiment, within a few percent of measured nanofluid pendant drop evaporation rate. The evaporation of pinned nanofluid sessile drops was also considered via modeling. It was found that the same mechanism for nanofluid evaporation rate reduction used to explain pendant drops could be used for sessile drops. That mechanism is a reduction in evaporation rate due to a reduction in available ethanol for evaporation at the drop surface caused by the packing of nanoparticle agglomerates near the drop surface. Comparisons of the present modeling predictions with sessile drop evaporation rate measurements reported for nAl/ethanol nanofluids by Sefiane and Bennacer [11] are in fairly good agreement. Portions of this abstract previously appeared as: W. J

  10. Therapeutic effects of TAK-242, a novel selective Toll-like receptor 4 signal transduction inhibitor, in mouse endotoxin shock model.

    PubMed

    Sha, Takukyu; Sunamoto, Mie; Kitazaki, Tomoyuki; Sato, Jun; Ii, Masayuki; Iizawa, Yuji

    2007-10-01

    Ethyl (6R)-6-[N-(2-chloro-4-fluorophenyl)sulfamoyl]cyclohex-1-ene-1-carboxylate (TAK-242), a novel small molecule that selectively inhibits Toll-like receptor 4-mediated signaling, inhibits various kinds of inflammatory mediators such as nitric oxide (NO), tumor necrosis factor (TNF)-alpha, interleukin (IL)-1, IL-6, IL-10, macrophage inhibitory protein (MIP)-2 and prostaglandin E2 from lipopolysaccharide (LPS)-stimulated macrophages. The effects of TAK-242 were evaluated in a mouse model of endotoxin shock. Intravenous administration of TAK-242 to mice 1 h before LPS challenge dose-dependently inhibited LPS-induced increases in serum levels of TNF-alpha, IL-1beta, IL-6, IL-10, MIP-2, and NO metabolites. TAK-242 protected mice from LPS-induced lethality in a similar dose-dependent manner, and rescued 100% of mice at a dose of 1 mg/kg. Interestingly, TAK-242 worked quickly, and showed beneficial effects even when administered after LPS challenge. Even though increases in serum levels of IL-6 and hypothermia were already evident 2 h after LPS challenge, TAK-242 administration inhibited further increase in IL-6 levels and decrease in body temperature. LPS-induced increases in serum levels of organ dysfunction markers, such as alanine aminotransferase, total bilirubin, and blood urea nitrogen, were also significantly suppressed by post-treatment as well as pre-treatment. Furthermore, administration of 3 mg/kg TAK-242 significantly increased survival of mice, even when given 4 h after LPS challenge. These results suggest that TAK-242 protects mice against LPS-induced lethality by inhibiting production of multiple cytokines and NO. TAK-242 has a quick onset of action and provides significant benefits by post-treatment, suggesting that it may be a promising drug candidate for the treatment of sepsis. PMID:17632100

  11. Evaporation from Near-Drift Fractured Rock Surfaces

    NASA Astrophysics Data System (ADS)

    Manepally, C.; Fedors, R. W.; Or, D.; Das, K.

    2007-12-01

    The amount of water entering emplacement drifts from a fractured unsaturated rock is an important variable for performance evaluation of a potential high-level radioactive waste repository at Yucca Mountain, Nevada. Water entering the drifts as liquid or gas may enhance waste package corrosion rates and transport released radionuclides. Liquid water in form of droplets may emerge from fractures, or flow along the drift wall and potentially evaporate and condense at other locations. Driven by pressure and temperature gradients, vapor may be transported along fractures, or liquid water may evaporate directly from the matrix. Within the drift, heat-driven convection may redistribute the moisture leading to condensation at other locations. The geometry of the evaporation front around the drift is not fully understood and this, in turn, influences processes related to reflux, rewetting as the thermal pulse dissipates. Existing models focus on processes in the porous media (e.g., two-phase dual-permeability models for matrix and fractures), or on processes in the drift (e.g., gas-phase computational fluid dynamics models). This study focuses on the boundary between these two domains, and the corresponding models, where evaporation at the solid rock/drift air interface appears to play an important role. Studies have shown that evaporation from porous media is a complex process sensitive to factors such as (i) hydrological properties of the porous media, (ii) pressure gradients in the porous media, (iii) texture of the interface or boundary, (iv) local vapor and temperature gradients, and (v) convective flow rate and boundary layer transfer. Experimental observations based on passive monitoring at Yucca Mountain have shown that the formation surrounding the drift is able to provide and transport large amounts of water vapor over a relatively short period. This study will examine the basic processes that govern evaporation in the unsaturated rock surrounding drifts for

  12. Evaporation mitigation using floating modular devices

    NASA Astrophysics Data System (ADS)

    Hassan, M. Mahmudul; Peirson, William Leslie; Neyland, Bryce M.; Fiddis, Nicholas McQuistan

    2015-11-01

    Reducing evaporation losses from open water storages is of paramount importance in the improvement of water security in arid countries, including Australia. Widespread adoption of evaporation mitigation techniques has been prevented by their high capital and maintenance or operating costs. The use of clean, floating recycled materials to mitigate evaporation technique has been investigated systematically at sites within both the coastal and semi-arid zones of Australia. Evaporation reduction systematically increases with the proportion of covered surface. Evaporation is reduced by 43% at coastal site and 37% at arid zone site at the maximum packing densities achievable for a single layer of floating devices. The study highlights the importance of both long-term investigations and the climatic influences in the robust quantification of evaporation mitigation. The effects of solar radiation, temperature, wind speed and relative humidity on the evaporation rate at both study sites have been determined in terms of both the classical Penman model and FAO Penman Monteith model with corresponding pan coefficients quantified. FAO Penman Monteith model better estimates evaporation from the open reference tank.

  13. Representational Issues in Students Learning about Evaporation

    ERIC Educational Resources Information Center

    Tytler, Russell; Prain, Vaughan; Peterson, Suzanne

    2007-01-01

    This study draws on recent research on the central role of representation in learning. While there has been considerable research on students' understanding of evaporation, the representational issues entailed in this understanding have not been investigated in depth. The study explored students' engagement with evaporation phenomena through…

  14. Advanced evaporator technology progress report FY 1992

    SciTech Connect

    Chamberlain, D.; Hutter, J.C.; Leonard, R.A.

    1995-01-01

    This report summarizes the work that was completed in FY 1992 on the program {open_quotes}Technology Development for Concentrating Process Streams.{close_quotes} The purpose of this program is to evaluate and develop evaporator technology for concentrating radioactive waste and product streams such as those generated by the TRUEX process. Concentrating these streams and minimizing the volume of waste generated can significantly reduce disposal costs; however, equipment to concentrate the streams and recycle the decontaminated condensates must be installed. LICON, Inc., is developing an evaporator that shows a great deal of potential for this application. In this report, concepts that need to be incorporated into the design of an evaporator operated in a radioactive environment are discussed. These concepts include criticality safety, remote operation and maintenance, and materials of construction. Both solubility and vapor-liquid equilibrium data are needed to design an effective process for concentrating process streams. Therefore, literature surveys were completed and are summarized in this report. A model that is being developed to predict vapor phase compositions is described. A laboratory-scale evaporator was purchased and installed to study the evaporation process and to collect additional data. This unit is described in detail. Two new LICON evaporators are being designed for installation at Argonne-East in FY 1993 to process low-level radioactive waste generated throughout the laboratory. They will also provide operating data from a full-sized evaporator processing radioactive solutions. Details on these evaporators are included in this report.

  15. Evaporative winds in X-ray binaries

    NASA Technical Reports Server (NTRS)

    Basko, M. M.; Suniaev, R. A.; Hatchett, S.; Mccray, R.

    1977-01-01

    Evaporation of gas from the surface of HZ Her by Her X-1 and its implications regarding the mass transfer process are examined further. The powerful soft X-ray flux results in an evaporation rate greater than previous estimates. The evaporative flow is shown to be subsonic at first, with the result that the capture of evaporated gas by Her X-1 may be efficient, and the self-excited wind mechanism is possible. A criterion for stabilization of mass transfer by stellar wind mass loss is derived. Possible mechanisms for the long-period variability of HZ Her are discussed. Evaporative winds are also estimated for Sco X-1 and Cyg X-2 spectra.

  16. Drop evaporation and triple line dynamics

    NASA Astrophysics Data System (ADS)

    Sobac, Benjamin; Brutin, David; Gavillet, Jerome; Université de Provence Team; Cea Liten Team

    2011-03-01

    Sessile drop evaporation is a phenomenon commonly came across in nature or in industry with cooling, paintings or DNA mapping. However, the evaporation of a drop deposited on a substrate is not completely understood due to the complexity of the problem. Here we investigate, with several nano-coating of the substrate (PTFE, SiOx, SiOc and CF), the influence of the dynamic of the triple line on the evaporation process. The experiment consists in analyzing simultaneously the motion of the triple line, the kinetics of evaporation, the internal thermal motion and the heat and mass transfer. Measurements of temperature, heat-flux and visualizations with visible and infrared cameras are performed. The dynamics of the evaporative heat flux appears clearly different depending of the motion of the triple line

  17. Molecular Dynamics Simulations of Water Evaporation

    NASA Astrophysics Data System (ADS)

    Wen, Chengyuan; Grest, Gary; Cheng, Shengfeng

    2015-03-01

    The evaporation of water from the liquid/vapor interface is studied via large-scale molecular dynamics simulations for systems of more than a million atoms at 550K and 600K. The TIP4P-2005 water model whose liquid/vapor surface tension is in excellent agreement with experiments is used. Evaporative cooling at the interface is observed from temperature profiles determined from both translational and rotational kinetic energy. During evaporation, the density of water is slightly enhanced near the liquid-vapor interface. The velocity distribution of water molecules in the vapor phase during evaporation at various distances relative to the interface fit a Maxwell-Boltzmann distribution. While our results indicate an imbalance between evaporating and condensing water molecules, local thermal equilibrium is found to hold in addition to mechanical equilibrium. Department of Physics, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA.

  18. Quantifying nonisothermal subsurface soil water evaporation

    NASA Astrophysics Data System (ADS)

    Deol, Pukhraj; Heitman, Josh; Amoozegar, Aziz; Ren, Tusheng; Horton, Robert

    2012-11-01

    Accurate quantification of energy and mass transfer during soil water evaporation is critical for improving understanding of the hydrologic cycle and for many environmental, agricultural, and engineering applications. Drying of soil under radiation boundary conditions results in formation of a dry surface layer (DSL), which is accompanied by a shift in the position of the latent heat sink from the surface to the subsurface. Detailed investigation of evaporative dynamics within this active near-surface zone has mostly been limited to modeling, with few measurements available to test models. Soil column studies were conducted to quantify nonisothermal subsurface evaporation profiles using a sensible heat balance (SHB) approach. Eleven-needle heat pulse probes were used to measure soil temperature and thermal property distributions at the millimeter scale in the near-surface soil. Depth-integrated SHB evaporation rates were compared with mass balance evaporation estimates under controlled laboratory conditions. The results show that the SHB method effectively measured total subsurface evaporation rates with only 0.01-0.03 mm h-1difference from mass balance estimates. The SHB approach also quantified millimeter-scale nonisothermal subsurface evaporation profiles over a drying event, which has not been previously possible. Thickness of the DSL was also examined using measured soil thermal conductivity distributions near the drying surface. Estimates of the DSL thickness were consistent with observed evaporation profile distributions from SHB. Estimated thickness of the DSL was further used to compute diffusive vapor flux. The diffusive vapor flux also closely matched both mass balance evaporation rates and subsurface evaporation rates estimated from SHB.

  19. Effects of sea spray evaporation and dissipative heating on intensity and structure of tropical cyclone

    NASA Astrophysics Data System (ADS)

    Cheng, Xiaoping; Fei, Jianfang; Huang, Xiaogang; Zheng, Jing

    2012-07-01

    To examine effects of sea spray evaporation and dissipative heating on structure and intensity of a real tropical cyclone, the sea spray flux parameterization scheme was incorporated into the fifth-generation Pennsylvania State University-National Center for Atmospheric Research Mesoscale Model (MM5). Sensitivity tests were performed with varying the spray source function intensities and with and without dissipation heating. The numerical results indicate that sea spray evaporation increases the interfacial sensible heat flux, which is increased by 16% for the moderate spray and 47% for the heavy spray, but has little effect on the interfacial latent heat flux. The net effect of sea spray evaporation is to decrease the total sensible heat flux and to increase the total latent heat flux. The total enthalpy flux is increased by 1% and 12% with moderate and strong spray amounts, respectively. Consistent with these results, the intensity of the tropical cyclone is increased by 5% and 16% in maximum 10-m wind speed, respectively, due to sea spray evaporation. Sea spray evaporation and dissipative heating modify the tropical cyclone structure in important but complex ways. The effect of sea spray on the near-surface temperature and moisture depends on the spray amounts and its location within the tropical cyclone. Within the high-wind region of a tropical cyclone, the lower atmosphere becomes cooler and moister due to the evaporation of sea spray. However, the dissipative heating offsets the cooling due to sea spray evaporation, which makes the lower atmosphere warmer.

  20. Mergers, cooling flows, and evaporation

    NASA Technical Reports Server (NTRS)

    Sparks, W. B.

    1993-01-01

    Mergers (the capture of cold gas, especially) can have a profound influence on the hot coronal gas of early-type galaxies and clusters, potentially inducing symptoms hitherto attributed to a cooling flow, if thermal conduction is operative in the coronal plasma. Heat can be conducted from the hot phase into the cold phase, simultaneously ionizing the cold gas to make optical filaments, while locally cooling the coronal gas to mimic a cooling-flow. If there is heat conduction, though, there is no standard cooling-flow since radiative losses are balanced by conduction and not mass deposition. Amongst the strongest observational support for the existence of cooling-flows is the presence of intermediate temperature gas with x-ray emission-line strengths in agreement with cooling-flow models. Here, x-ray line strengths are calculated for this alternative model, in which mergers are responsible for the observed optical and x-ray properties. Since gas around 10(exp 4) K is thermally stable, the cold cloud need not necessarily evaporate and hydrostatic solutions exist. Good agreement with the x-ray data is obtained. The relative strengths of intermediate temperature x-ray emission lines are in significantly better agreement with a simple conduction model than with published cooling-flow models. The good agreement of the conduction model with optical, infrared and x-ray data indicates that significantly more theoretical effort into this type of solution would be profitable.

  1. Secondary wick operation principle and performance mapping in LHP and FLHP evaporators

    NASA Astrophysics Data System (ADS)

    van Oost, Stephane; Mullender, Bernard; Bekaert, Guy; Legros, Jean Claude

    2002-01-01

    High performance Loop Heat Pipe (LHP) technology has advanced to the point that they are the baseline for thermal management for a lot of spacecraft applications. Temperature control and heat dissipation are performed in an efficient, and reliable way thanks to the LHP capillary pumping system. This article summarizes the objectives and performances of a secondary wick incorporated between evaporator and loop reservoir to get the optimum performances. Evaporator co-located with a reservoir is the baseline of LHP concept. This presentation will detail the reason why the thermal disconnection between the reservoir and the evaporator and their hydraulic coupling via a secondary wick is until today the best way to reach the optimum performances of LHP. Sometimes the secondary wick is combined with a bayonet. The article will compare the design without and with this bayonet in terms of impacts on secondary wick operation and performance limitations. The physical laws driving the secondary wick design are summarized. Their performance mapping and their impacts on the evaporator operation are shown. Finally the FLHP (Free LHP) concept is explained. This concept is intended to satisfy the needs of a freely located multi-evaporators loop. The article explains how secondary wicks are used when using evaporators not capillary linked to loop reservoir. .

  2. Search for ultrashort gamma-ray bursts from evaporating primordial black holes

    NASA Astrophysics Data System (ADS)

    Vereshkov, G. M.; Petkov, V. B.

    2015-02-01

    Cosmic gamma-ray bursts from evaporating primordial black holes for the evaporation model with relativistic phase transitions have been sought in the data from the Andyrchy extensive air shower (EAS) array. This model predicts ultrashort (≃10-13 s) gamma-ray bursts with the spectrum with the maximum intensities simultaneously at the photon energies of 100 MeV and 100 GeV. Such ultrashort gamma-ray bursts can be detected by EAS arrays located on mountains as EASs with a uniform lateral distribution. A limit on the concentration of evaporating primordial black holes in a local region of the Galaxy for this evaporation model has been obtained from information accumulated during a live time of 4.23 yr.

  3. Evaporative modeling for idealized lithographic pores

    NASA Astrophysics Data System (ADS)

    Oinuma, Ryoji; Best, Frederick

    2002-01-01

    As a demand for the high performance and small size electronics devices increased, the heat removal from those electronic devices for space use is getting critical factor more than devices on the earth due to the limitation of the size. The purpose of this paper is to show a study of optimized size of coherent pores or slits in the evaporative wick of a heat pipe to cool down the high heat flux density heat source. Our system considered in this paper consists of a plate heat source, the evaporative wick with coherent pores and conducting walls connecting between the heat source and the evaporator. The evaporation rate of working fluid along the meniscus interface in a micro-order pore or slit was calculated based on the kinetic theory and the statistical rate theory to find a proper diameter of pores to cool down the heat source effectively. The results show the smaller diameter of pores is preferred to achieve the smallest total size of the evaporator although it will involve the cost issue. As a demand for the high performance and small size electronics devices increased, the heat removal from those electronic devices for space use is getting critical factor more than devices on the earth due to the limitation of the size. The purpose of this paper is to show a study of optimized size of coherent pores or slits in the evaporative wick of a heat pipe to cool down the high heat flux density heat source. Our system considered in this paper consists of a plate heat source, the evaporative wick with coherent pores and conducting walls connecting between the heat source and the evaporator. The evaporation rate of working fluid along the meniscus interface in a micro-order pore or slit was calculated based on the kinetic theory and the statistical rate theory to find a proper diameter of pores to cool down the heat source effectively. The results show that the smaller diameter of pores uses the pore for evaporation effectively and is preferred to achieve the smallest

  4. Potentiating action of MKC-242, a selective 5-HT1A receptor agonist, on the photic entrainment of the circadian activity rhythm in hamsters

    PubMed Central

    Moriya, T; Yoshinobu, Y; Ikeda, M; Yokota, S; Akiyama, M; Shibata, S

    1998-01-01

    Serotonergic projections from the midbrain raphe nuclei to the suprachiasmatic nuclei (SCN) are known to regulate the photic entrainment of circadian clocks. However, it is not known which 5-hydroxytryptamine (5-HT) receptor subtypes are involved in the circadian regulation. In order to verify the role of 5-HT1A receptors, we examined the effects of 5-{3-[((2S)-1,4-benzodioxan-2-ylmethyl)amino]propoxy}-1,3-benzodioxole HCl (MKC-242), a selective 5-HT1A receptor agonist, on photic entrainment of wheel-running circadian rhythms of hamsters.MKC-242 (3 mg kg−1, i.p.) significantly accelerated the re-entrainment of wheel-running rhythms to a new 8 h delayed or advanced light-dark cycle.MKC-242 (3 mg kg−1, i.p.) also potentiated the phase advance of the wheel-running rhythm produced by low (5 lux) or high (60 lux) intensity light pulses. In contrast, 8-hydroxy-dipropylaminotetralin (8-OH-DPAT)(5 mg kg−1, i.p.), a well known 5-HT1A/5-HT7 receptor agonist, only suppressed low intensity (5 lux) light-induced phase advances.The potentiating actions of MKC-242 on light pulse-induced phase advances were observed even when injected 20 or 60 min after the light exposure.The potentiating action of MKC-242 was antagonized by WAY100635, a selective 5-HT1A receptor blocker, but not by ritanserin, a 5-HT2/5-HT7 receptor blocker, indicating that MKC-242 is activating 5-HT1A receptors.Light pulse-induced c-fos expression in the SCN and the intergeniculate leaflet (IGL) were unaffected by MKC-242 (3 mg kg−1, i.p.).HPLC analysis demonstrated that MKC-242 (3 mg kg−1, i.p.) decreased the 5-HIAA content in the SCN.The present results suggest that presynaptic 5-HT1A receptor activation may be involved in the potentiation of photic entrainment by MKC-242 in hamsters. PMID:9863658

  5. Potentiating action of MKC-242, a selective 5-HT1A receptor agonist, on the photic entrainment of the circadian activity rhythm in hamsters.

    PubMed

    Moriya, T; Yoshinobu, Y; Ikeda, M; Yokota, S; Akiyama, M; Shibata, S

    1998-11-01

    Serotonergic projections from the midbrain raphe nuclei to the suprachiasmatic nuclei (SCN) are known to regulate the photic entrainment of circadian clocks. However, it is not known which 5-hydroxytryptamine (5-HT) receptor subtypes are involved in the circadian regulation. In order to verify the role of 5-HT1A receptors, we examined the effects of 5-¿3-[((2S)-1,4-benzodioxan-2-ylmethyl)amino]-propoxy¿-1,3-b enzodioxole HCl (MKC-242), a selective 5-HT1A receptor agonist, on photic entrainment of wheel-running circadian rhythms of hamsters. MKC-242 (3 mg kg(-1), i.p.) significantly accelerated the re-entrainment of wheel-running rhythms to a new 8 h delayed or advanced light-dark cycle. MKC-242 (3 mg kg(-1), i.p.) also potentiated the phase advance of the wheel-running rhythm produced by low (5 lux) or high (60 lux) intensity light pulses. In contrast, 8-hydroxydipropylaminotetralin (8-OH-DPAT)(5 mg kg(-1), i.p.), a well known 5-HT1A/5-HT7 receptor agonist, only suppressed low intensity (5 lux) light-induced phase advances. The potentiating actions of MKC-242 on light pulse-induced phase advances were observed even when injected 20 or 60 min after the light exposure. The potentiating action of MKC-242 was antagonized by WAY100635, a selective 5-HT1A receptor blocker, but not by ritanserin, a 5-HT2/5-HT7 receptor blocker, indicating that MKC-242 is activating 5-HT1A receptors. Light pulse-induced c-fos expression in the SCN and the intergeniculate leaflet (IGL) were unaffected by MKC-242 (3 mg kg(-1), i.p.). HPLC analysis demonstrated that MKC-242 (3 mg kg(-1), i.p.) decreased the 5-HIAA content in the SCN. The present results suggest that presynaptic 5-HT1A receptor activation may be involved in the potentiation of photic entrainment by MKC-242 in hamsters. PMID:9863658

  6. Water repellency diminishes peatland evaporation after wildfire

    NASA Astrophysics Data System (ADS)

    Kettridge, N.; Lukenbach, M.; Hokanson, K. J.; Devito, K. J.; Petrone, R. M.; Hopkinson, C.; Waddington, J. M.

    2015-12-01

    Peatlands are a critically important global carbon reserve. There is increasing concern that such ecosystems are vulnerable to projected increases in wildfire severity under a changing climate. Severe fires may exceed peatland ecological resilience resulting in the long term degradation of this carbon store. Evaporation provides the primary mechanisms of water loss from such environments and can regulate the ecological stress in the initial years after wildfire. We examine variations in evaporation within burned peatlands after wildfire through small scale chamber and large scale remote sensing measurements. We show that near-surface water repellency limits peatland evaporation in these initial years post fire. Water repellent peat produced by the fire restricts the supply of water to the surface, reducing evaporation and providing a strong negative feedback to disturbance. This previously unidentified feedback operates at the landscape scale. High surface temperatures that result from large reductions in evaporation within water repellent peat are observed across the 60,000 ha burn scar three months after the wildfire. This large scale reduction in evaporation promotes high water table positions at a landscape scale which limits the rate of peat decomposition and supports the post fire ecohydrological recovery of the peatlands. However, severe burns are shown to exceed this negative feedback response. Deep burns at the peatland margins remove the hydrophobic layer, increasing post fire evaporation and leaving the peatland vulnerable to drying and associated ecological shifts.

  7. Vapor compression evaporator concentrates, recovers alcohol

    SciTech Connect

    Miller, M.N.; Robe, K.; Bacchetti, J.A.

    1982-11-01

    This article focuses on presenting a solution to the high energy cost of operating a steam heated, single effect evaporator used by Monsanto Industrial Chemical Company at a plant in Seattle, Wash., to produce vanillin from pulp and paper mill sulfite. Use of the single effect flash evaporator resulted in high energy usage due not only to the ''single effect'' use of steam, but also because energy consumption was reduced only slightly at low operating rates. The solution to this problem was the replacement of the single effect evaporator with a vapor recompression evaporator. Operating for over 1 1/2 years, the vapor recompression evaporator system has had no significant maintenance problems. The system operates with only 1/60th the steam consumption and 15% of the total energy consumption of the previous evaporator and has had no tube fouling. Also, since the distillate is condensed within the evaporator, less cooling water is required, allowing two heat exchangers to be taken out of service. When operating at less than design capacity, the energy consumption drops almost linearly with the feed rate. At low feed rates, a by-pass valve unloads the compressor to reduce energy consumption. Total energy consumption, now 15% of the previous level, results in an estimated pay-back of less than three years.

  8. Estimating actual, potential, reference crop and pan evaporation using standard meteorological data: a pragmatic synthesis

    NASA Astrophysics Data System (ADS)

    McMahon, T. A.; Peel, M. C.; Lowe, L.; Srikanthan, R.; McVicar, T. R.

    2013-04-01

    estimates. This paper is supported by a Supplement that includes 21 sections enhancing the material in the text, worked examples of many procedures discussed in the paper, a program listing (Fortran 90) of Morton's WREVAP evaporation models along with tables of monthly Class-A pan coefficients for 68 locations across Australia and other information.

  9. Field Investigations of Evaporation from a Bare Soil

    NASA Astrophysics Data System (ADS)

    Evett, Steven Roy

    Selected components of the water and energy balances at the surface of a bare clay loam were measured at 57 locations in a 1 ha field. Spatial and temporal variability of these components were also studied. Components included evaporation, irrigation, moisture storage, sensible heat flux and long wave radiation. Sub-studies were conducted on irrigation uniformity under low pressure sprinklers; and, on steel versus plastic microlysimeters (ML) of various lengths. An energy balance model of evaporation, requiring minimal inputs, was developed and validated giving an r ^2 value of 0.78. Model improvements included an easy method of accurately estimating soil surface temperature at many points in a field, and an empirically fitted transfer coefficient function for the sensible heat flux from the reference dry soil. The omission of soil heat flux and reflected shortwave radiation terms was shown to reduce model accuracy. Steel ML underestimated cumulative evaporation compared to plastic ML at 20 and 30 cm lengths. Cumulative evaporation increased with ML length. The 10 and 20 cm ML were too short for use over multiple days but 30 cm ML may not be long enough for extended periods. Daily net soil heat flux for steel ML averaged 44% higher than that for both plastic ML and undisturbed field soil. Christiansen's uniformity coefficient (UCC) was close to 0.83 for each of 3 irrigations when measured by both catch cans and by profile water contents. But UCC for the change in storage due to irrigation averaged only 0.43 indicating than the high uniformity of profile water contents was more due to surface and subsurface redistribution than to the uniformity of application. Profile water contents and catch can depths were time invariant across at least 3 irrigations. Midday soil surface temperatures and daily evaporation were somewhat less time invariant. Variogram plots for evaporation and surface temperature showed mostly random behavior. Relative variograms represented well

  10. On the evaporation of ammonium sulfate solution

    PubMed Central

    Drisdell, Walter S.; Saykally, Richard J.; Cohen, Ronald C.

    2009-01-01

    Aqueous evaporation and condensation kinetics are poorly understood, and uncertainties in their rates affect predictions of cloud behavior and therefore climate. We measured the cooling rate of 3 M ammonium sulfate droplets undergoing free evaporation via Raman thermometry. Analysis of the measurements yields a value of 0.58 ± 0.05 for the evaporation coefficient, identical to that previously determined for pure water. These results imply that subsaturated aqueous ammonium sulfate, which is the most abundant inorganic component of atmospheric aerosol, does not affect the vapor–liquid exchange mechanism for cloud droplets, despite reducing the saturation vapor pressure of water significantly. PMID:19861551

  11. Thermocapillary flow about an evaporating meniscus

    NASA Technical Reports Server (NTRS)

    Schmidt, G. R.; Chung, T. J.

    1992-01-01

    The steady motion and thermal behavior of an evaporating superheated liquid in a small cavity bounded by isothermal sidewalls is examined. Scaling analyses and a two-dimensional finite element model are used to investigate the influence of thermocapillarity, buoyancy, and temperature-dependent mass flux on flowfield, interfacial heat transfer, and meniscus morphology. Numerical investigations indicate the existence of two counter-rotating cells symmetric about the cavity center. Results also show that evaporation tends to counteract this circulation by directing flow toward the hotter sidewalls. Although thermocapillarity and evaporation yield different flowfield distributions, both effects tend to increase interfacial temperature and heat transfer.

  12. On the evaporation of ammonium sulfate solution

    SciTech Connect

    Drisdell, Walter S.; Saykally, Richard J.; Cohen, Ronald C.

    2009-07-16

    Aqueous evaporation and condensation kinetics are poorly understood, and uncertainties in their rates affect predictions of cloud behavior and therefore climate. We measured the cooling rate of 3 M ammonium sulfate droplets undergoing free evaporation via Raman thermometry. Analysis of the measurements yields a value of 0.58 {+-} 0.05 for the evaporation coefficient, identical to that previously determined for pure water. These results imply that subsaturated aqueous ammonium sulfate, which is the most abundant inorganic component of atmospheric aerosol, does not affect the vapor-liquid exchange mechanism for cloud droplets, despite reducing the saturation vapor pressure of water significantly.

  13. Combined effects of underlying substrate and evaporative cooling on the evaporation of sessile liquid droplets.

    PubMed

    Wang, Yilin; Ma, Liran; Xu, Xuefeng; Luo, Jianbin

    2015-07-28

    The evaporation of pinned, sessile droplets resting on finite thickness substrates was investigated numerically by extending the combined field approach to include the thermal properties of the substrate. By this approach, the combined effects of the underlying substrate and the evaporative cooling were characterized. The results show that the influence of the substrate on the droplet evaporation depends largely on the strength of the evaporative cooling. When the evaporative cooling is weak, the influence of substrate is also weak. As the strength of evaporative cooling increases, the influence of the substrate becomes more and more pronounced. Further analyses indicated that it is the cooling at the droplet surface and the temperature dependence of the saturation vapor concentration that relate the droplet evaporation to the underlying substrate. This indicates that the evaporative cooling number, Ec, can be used to identify the influence of the substrate on the droplet evaporation. The theoretical predictions by the present model are compared and found to be in good agreement with the experimental measurements. The present work may contribute to the body of knowledge concerning droplet evaporation and may have applications in a wide range of industrial and scientific processes. PMID:26059590

  14. Groundwater changes in evaporating basins using gypsum crystals' isotopic compositions

    NASA Astrophysics Data System (ADS)

    Gatti, E.; Bustos, D.; Allwood, A.; Coleman, M. L.

    2014-12-01

    While the dynamics of groundwater evaporation are well known, it is still challenging to reconstruct the water patterns in areas where water is not available anymore. We selected a specific location in White Sands National Monument (WSNM), New Mexico, to validate a method to extract information from hydrated minerals regarding past groundwater evaporation patterns in evaporitic basins. WSNM has gypsum (CaSO4.2H2O) dunes and crystals precipitated from the evaporation of an ancient lake. Our approach aims to extract the water of crystallization of gypsum and measure its oxygen and hydrogen isotopic compositions, in order to reconstruct the groundwater history of the area. The idea is that as the mother brine evaporates its isotopic composition changes continuously, recorded as water of crystallization in successive growth zones of gypsum. To check if the isotopic composition of the salt could effectively differentiate between distinctive humidity conditions, the methodology was tested first on synthetic gypsum grown under controlled humidity and temperature conditions. T and RH% were maintained constant in a glove box and precipitated gypsum was harvested every 24 hours. d2H and d18O of water of crystallization from the synthetic gypsum was extracted using a specially developed technique on a TC/EA. The brine was measured using a Gas Bench II for d18O and an H-Device for d2H on a Thermo Finnigan MAT 253 mass spectrometer. With the method tested, we measured natural gypsum. In order to identify the growth zones we mapped the surface of the crystals using an experimental space flight XRF instrument. Crystals were then sampled for isotopic analyses. Preliminary results suggest that site-specific groundwater changes can be described by the isotopic variations. We will show that the methodology is a reliable and fast method to quantify hydrological changes in a targeted environment. The study is currently ongoing but the full dataset will be presented at the conference.

  15. Evaporation analysis for Tank SX-104

    SciTech Connect

    Barrington, C.A.

    1994-10-01

    Decreases in historical interstitial liquid level measurements in tank SX-104 were compared to predictions of a numerical model based upon diffusion of water through a porous crust. The analysis showed that observed level decreases could be explained by evaporation.

  16. Potential Evaporation in North America Through 2100

    NASA Video Gallery

    This animation shows the projected increase in potential evaporation through the year 2100, relative to 1980, based on the combined results of multiple climate models. The maximum increase across N...

  17. New Directions for Evaporative Cooling Systems.

    ERIC Educational Resources Information Center

    Robison, Rita

    1981-01-01

    New energy saving technology can be applied to older cooling towers; in addition, evaporative chilling, a process that links a cooling tower to the chilling equipment, can reduce energy use by 80 percent. (Author/MLF)

  18. Evaporation drift of pesticides active ingredients.

    PubMed

    De Schampheleire, M; Nuyttens, D; De Keyser, D; Spanoghe, P

    2008-01-01

    Losses of pesticide active ingredients (a.i.) into the atmosphere can occur through several pathways. A main pathway is evaporation drift. The evaporation process of pesticide a.i., after application, is affected by three main factors: Physicochemical properties of the pesticide a.i., weather conditions and crop structure. The main physicochemical parameters are the Henry coefficient, which is a measure for the volatilization tendency of the pesticide a.i. from a dilute aqueous solution, and the vapour pressure, which is a measure for the volatilization tendency of the pesticide a.i. from the solid phase. Five pesticide a.i., with various Henry coefficients and various vapour pressures, were selected to conduct laboratory experiments: metalaxyl-m, dichlorovos, diazinon, Lindane and trifluralin. Evaporation experiments were conducted in a volatilization chamber. It was found that the evaporation tendencies significantly differed according to the physicochemical properties of the a.i. PMID:19226822

  19. Effects of nanoparticles on nanofluid droplet evaporation

    SciTech Connect

    Chen, Ruey-Hung; Phuoc, Tran X.; Martello, Donald

    2010-09-01

    Laponite, Fe2O3 and Ag nanoparticles were added to deionized water to study their effect of evaporation rates. The results show that these nanofluid droplets evaporate at different rates (as indicated by the evaporation rate constant K in the well known D2-law) from the base fluid. Different particles lead to different values of K. As the particle concentration increases due to evaporation. K values of various Ag and Fe2O3 nanofluids go through a transition from one value to another, further demonstrating the effect of increasing nanoparticle concentration. The implication for the heat of vaporization (hfg) is discussed.

  20. Evaporation study at Warm Springs Reservoir, Oregon

    USGS Publications Warehouse

    Harris, D.D.

    1968-01-01

    The mass transfer-water budget method of computing reservoir evaporation was tested on Warm Springs Reservoir, whose contents and surface area change greatly from early spring to late summer. The mass-transfer coefficient computed for the reservoir is two to three times greater than expected and results in a computed evaporation much greater than that from a land pan. Because of the remoteness of the area, the recommended study technique was modified, which could have reduced the accuracy of the results.

  1. Diffusion Of Mass In Evaporating Multicomponent Drops

    NASA Technical Reports Server (NTRS)

    Bellan, Josette; Harstad, Kenneth G.

    1992-01-01

    Report summarizes study of diffusion of mass and related phenomena occurring in evaporation of dense and dilute clusters of drops of multicomponent liquids intended to represent fuels as oil, kerosene, and gasoline. Cluster represented by simplified mathematical model, including global conservation equations for entire cluster and conditions on boundary between cluster and ambient gas. Differential equations of model integrated numerically. One of series of reports by same authors discussing evaporation and combustion of sprayed liquid fuels.

  2. High-Capacity Heat-Pipe Evaporator

    NASA Technical Reports Server (NTRS)

    Oren, J. A.; Duschatko, R. J.; Voss, F. E.; Sauer, L. W.

    1989-01-01

    Heat pipe with cylindrical heat-input surface has higher contact thermal conductance than one with usual flat surface. Cylindrical heat absorber promotes nearly uniform flow of heat into pipe at all places around periphery of pipe, helps eliminate hotspots on heat source. Lugs in aluminum pipe carry heat from outer surface to liquid oozing from capillaries of wick. Liquid absorbs heat, evaporates, and passes out of evaporator through interlug passages.

  3. Modeling Evaporation of Drops of Different Kerosenes

    NASA Technical Reports Server (NTRS)

    Bellan, Josette; Harstad, Kenneth

    2007-01-01

    A mathematical model describes the evaporation of drops of a hydrocarbon liquid composed of as many as hundreds of chemical species. The model is intended especially for application to any of several types of kerosenes commonly used as fuels. The concept of continuous thermodynamics, according to which the chemical composition of the evaporating multicomponent liquid is described by use of a probability distribution function (PDF). However, the present model is more generally applicable than is its immediate predecessor.

  4. Waste Feed Evaporation Physical Properties Modeling

    SciTech Connect

    Daniel, W.E.

    2003-08-25

    This document describes the waste feed evaporator modeling work done in the Waste Feed Evaporation and Physical Properties Modeling test specification and in support of the Hanford River Protection Project (RPP) Waste Treatment Plant (WTP) project. A private database (ZEOLITE) was developed and used in this work in order to include the behavior of aluminosilicates such a NAS-gel in the OLI/ESP simulations, in addition to the development of the mathematical models. Mathematical models were developed that describe certain physical properties in the Hanford RPP-WTP waste feed evaporator process (FEP). In particular, models were developed for the feed stream to the first ultra-filtration step characterizing its heat capacity, thermal conductivity, and viscosity, as well as the density of the evaporator contents. The scope of the task was expanded to include the volume reduction factor across the waste feed evaporator (total evaporator feed volume/evaporator bottoms volume). All the physical properties were modeled as functions of the waste feed composition, temperature, and the high level waste recycle volumetric flow rate relative to that of the waste feed. The goal for the mathematical models was to predict the physical property to predicted simulation value. The simulation model approximating the FEP process used to develop the correlations was relatively complex, and not possible to duplicate within the scope of the bench scale evaporation experiments. Therefore, simulants were made of 13 design points (a subset of the points used in the model fits) using the compositions of the ultra-filtration feed streams as predicted by the simulation model. The chemistry and physical properties of the supernate (the modeled stream) as predicted by the simulation were compared with the analytical results of experimental simulant work as a method of validating the simulation software.

  5. Evaporation duct communication: Test plan, part 2

    NASA Astrophysics Data System (ADS)

    Anderson, K. D.; Rogers, L. T.

    1991-11-01

    This document is a continuation and expansion of an earlier study that examines the feasibility of using the evaporation duct to support an alternative high-speed communication system for Navy applications. This Evaporation Duct Communication (EDCOM) experiment is a unique opportunity to evaluate another communication channel that can alleviate Navy ship-to-ship communication problems. Therefore, it is strongly recommended to proceed with this measurement program.

  6. Trends in Pan Evaporation and Application of the Complimentary Relationship of Evaporation in the Great Basin, USA

    NASA Astrophysics Data System (ADS)

    Huntington, J. L.; Caldwell, T.; Naranjo, R.; Burak, S.; Tyler, S.

    2007-12-01

    Evaluating available water resources in the Great Basin is an increasing topic of discussion by several local, State, and Federal government agencies due to proposals for water importation into areas of rapid population growth. In estimating a water budget for a particular flow system in the Great Basin, groundwater evapotranspiration (ET) from phreatophyte vegetation is often the most important as it is the only water budget component that can be estimated with some certainty, opposed to mountain block recharge and interbasin subsurface flow. Bouchet's complimentary relationship of evaporation has drawn noteworthy attention in recent years, not only because of its use in explaining observed changes in the hydrologic cycle, but also for its use in predicting ET using readily available meteorological data. The objective of this presentation is twofold: 1) to discuss pan evaporation trends in the Great Basin, and 2) discuss results from the application of the complimentary relationship for predicting evapotranspiration from phreatophyte shrubs when compared to measured ET at several U.S. Geological Survey eddy correlation and Bowen ratio sites. Initial findings indicate a decrease of pan evaporation in Death Valley, CA, the lowest, hottest, and driest location in North America, an opposite trend from analysis of several other sites in the Great Basin that indicate an increase of pan evaporation. It is believed that these opposing trends are likely the result of local water availability surrounding the pan, and or data quality. The application of a symmetric complimentary relationship indicate satisfactory results when compared to measured evapotranspiration, however, during the hottest months of the year the predicted ET over estimates the measured. Further investigation of micrometeorological data suggests that an asymmetric complimentary relationship between potential and actual ET exists, and when taken into account, improves the predictions markedly.

  7. Sheet Membrane Spacesuit Water Membrane Evaporator

    NASA Technical Reports Server (NTRS)

    Bue, Grant; Trevino, Luis; Zapata, Felipe; Dillion, Paul; Castillo, Juan; Vonau, Walter; Wilkes, Robert; Vogel, Matthew; Frodge, Curtis

    2013-01-01

    A document describes a sheet membrane spacesuit water membrane evaporator (SWME), which allows for the use of one common water tank that can supply cooling water to the astronaut and to the evaporator. Test data showed that heat rejection performance dropped only 6 percent after being subjected to highly contaminated water. It also exhibited robustness with respect to freezing and Martian atmospheric simulation testing. Water was allowed to freeze in the water channels during testing that simulated a water loop failure and vapor backpressure valve failure. Upon closing the backpressure valve and energizing the pump, the ice eventually thawed and water began to flow with no apparent damage to the sheet membrane. The membrane evaporator also serves to de-gas the water loop from entrained gases, thereby eliminating the need for special degassing equipment such as is needed by the current spacesuit system. As water flows through the three annular water channels, water evaporates with the vapor flowing across the hydrophobic, porous sheet membrane to the vacuum side of the membrane. The rate at which water evaporates, and therefore, the rate at which the flowing water is cooled, is a function of the difference between the water saturation pressure on the water side of the membrane, and the pressure on the vacuum side of the membrane. The primary theory is that the hydrophobic sheet membrane retains water, but permits vapor pass-through when the vapor side pressure is less than the water saturation pressure. This results in evaporative cooling of the remaining water.

  8. Evaporation of petroleum products from contaminated soils

    SciTech Connect

    Kang, S.H.; Oulman, C.S.

    1996-05-01

    Bioremediation can remove petroleum products from soil that has been contaminated by leaking underground storage tanks, but abiotic processes such as evaporation can contribute significantly to the overall removal process. The mathematical model described in this paper was developed to predict the evaporation rate of volatile liquids from petroleum-contaminated sand. The model is based on simple concepts relating to molecular diffusion embodied in the theory underlying the estimation of binary diffusivities using measurements made with an Arnold diffusion cell. The model in its simplified form indicates that the rate of evaporation for a particular volatile liquid is proportional to the square root of the product of diffusivity and partial pressure divided by the molecular weight of the liquid. This in part explains why evaporative losses from sand are so much higher for gasoline than for diesel fuel. The model also shows that the time for evaporation is directly proportional to the square of the depth dried out and inversely proportional to the vapor pressure of the volatile liquid. The model was tested using gravimetric measurements of the evaporation of n-heptane, unleaded gasoline, and diesel fuel from sand under laboratory conditions.

  9. Droplet evaporation on a soluble substrate

    NASA Astrophysics Data System (ADS)

    Mailleur, Alexandra; Pirat, Christophe; Colombani, Jean; CNES Collaboration

    2015-11-01

    Stains left by evaporated droplets are ubiquitous in everyday life as well as in industrial processes. Whatever the composition of the evaporating liquid (colloidal suspensions, biological fluids...), the stains are mostly constituted by a deposit at the periphery of the dried drop, similar to a coffee stain (Deegan, 1997). All these studies have been carried with non-reacting solids. In this presentation, we focus on the behavior of a pure-water droplet evaporating on a soluble substrate which is more complex, since three phenomena are strongly interacting: the dissolution of the substrate, the diffusion/convection of the dissolved species into the drop and the evaporation of the liquid. NaCl and KCl single crystals have been chosen for this experimental study as they are fast-dissolving solids. We have observed that the dissolution induces a pinning of the triple line from the beginning of the evaporation, leading to a decrease of the contact angle in time. At the end of the evaporation, a peripheral deposit is always formed, proof of an outward flow inside the drop (coffee-ring effect). The authors would like to thank the CNES for the financial support.

  10. Evaporation mitigation by floating modular devices

    NASA Astrophysics Data System (ADS)

    Hassan, M. M.; Peirson, W. L.

    2016-05-01

    Prolonged periods of drought and consequent evaporation from open water bodies in arid parts of Australia continue to be a threat to water availability for agricultural production. Over many parts of Australia, the annual average evaporation exceeds the annual precipitation by more than 5 times. Given its significance, it is surprising that no evaporation mitigation technique has gained widespread adoption to date. High capital and maintenance costs of manufactured products are a significant barrier to implementation. The use of directly recycled clean plastic containers as floating modular devices to mitigate evaporation has been investigated for the first time. A six-month trial at an arid zone site in Australia of this potential cost effective solution has been undertaken. The experiment was performed using clean conventional drinking water bottles as floating modules on the open water surface of 240-L tanks with three varying degrees of covering (nil, 34% and 68%). A systematic reduction in evaporation is demonstrated during the whole study period that is approximately linearly proportional to the covered surface. These results provide a potential foundation for robust evaporation mitigation with the prospect of implementing a cost-optimal design.

  11. Water repellency diminishes peatland evaporation after wildfire

    NASA Astrophysics Data System (ADS)

    Kettridge, Nick; Lukenbach, Max; Hokanson, Kelly; Devito, Kevin; Hopkinson, Chris; Petrone, Rich; Mendoza, Carl; Waddington, Mike

    2016-04-01

    Peatlands are a critically important global carbon reserve. There is increasing concern that such ecosystems are vulnerable to projected increases in wildfire severity under a changing climate. Severe fires may exceed peatland ecological resilience resulting in the long term degradation of this carbon store. Evaporation provides the primary mechanisms of water loss from such environments and can regulate the ecological stress in the initial years after wildfire. We examine variations in evaporation within burned peatlands after wildfire through small scale chamber and large scale remote sensing measurements. We show that near-surface water repellency limits peatland evaporation in these initial years post fire. Water repellent peat produced by the fire restricts the supply of water to the surface, reducing evaporation and providing a strong negative feedback to disturbance. This previously unidentified feedback operates at the landscape scale. High surface temperatures that result from large reductions in evaporation within water repellent peat are observed across the 60,000 ha burn scar three months after the wildfire. This promotes high water table positions at a landscape scale which limit the rate of peat decomposition and supports the post fire ecohydrological recovery of the peatlands. However, severe burns are shown to exceed this negative feedback response. Deep burns at the peatland margins remove the hydrophobic layer, increasing post fire evaporation and leaving the peatland vulnerable to drying and associated ecological shifts.

  12. Evaporation-induced cavitation in nanofluidic channels

    PubMed Central

    Duan, Chuanhua; Karnik, Rohit; Lu, Ming-Chang; Majumdar, Arun

    2012-01-01

    Cavitation, known as the formation of vapor bubbles when liquids are under tension, is of great interest both in condensed matter science as well as in diverse applications such as botany, hydraulic engineering, and medicine. Although widely studied in bulk and microscale-confined liquids, cavitation in the nanoscale is generally believed to be energetically unfavorable and has never been experimentally demonstrated. Here we report evaporation-induced cavitation in water-filled hydrophilic nanochannels under enormous negative pressures up to -7 MPa. As opposed to receding menisci observed in microchannel evaporation, the menisci in nanochannels are pinned at the entrance while vapor bubbles form and expand inside. Evaporation in the channels is found to be aided by advective liquid transport, which leads to an evaporation rate that is an order of magnitude higher than that governed by Fickian vapor diffusion in macro- and microscale evaporation. The vapor bubbles also exhibit unusual motion as well as translational stability and symmetry, which occur because of a balance between two competing mass fluxes driven by thermocapillarity and evaporation. Our studies expand our understanding of cavitation and provide new insights for phase-change phenomena at the nanoscale. PMID:22343530

  13. TANK 32 EVAPORATOR FEED PUMP TRANSFER ANALYSIS

    SciTech Connect

    Tamburello, D; Richard Dimenna, R; Si Lee, S

    2009-01-27

    The transfer of liquid salt solution from Tank 32 to an evaporator is to be accomplished by activating the evaporator feed pump, with the supernate surface at a minimum height of approximately 74.4 inches above the sludge layer, while simultaneously turning on the downcomer with a flow rate of 110 gpm. Previously, activation of the evaporator feed pump was an isolated event without any other components running at the same time. An analysis of the dissolved solution transfer has been performed using computational fluid dynamics (CFD) methods to determine the amount of entrained sludge solids pumped out of the tank toward the evaporator with the downcomer turned on. The analysis results shows that, for the minimum tank liquid level of 105 inches above the tank bottom (which corresponds to a liquid depth of 74.4 inches above the sludge layer), the evaporator feed pump will contain less than 0.1 wt% sludge solids in the discharge stream, which is an order of magnitude less than the 1.0 wt% undissolved solids (UDS) loading criteria to feed the evaporator. Lower liquid levels with respect to the sludge layer will result in higher amounts of sludge entrainment due to the increased plunging jet velocity from the downcomer disturbing the sludge layer.

  14. Effects of the local structure dependence of evaporation fields on field evaporation behavior

    SciTech Connect

    Yao, Lan; Marquis, Emmanuelle A.; Withrow, Travis; Restrepo, Oscar D.; Windl, Wolfgang

    2015-12-14

    Accurate three dimensional reconstructions of atomic positions and full quantification of the information contained in atom probe microscopy data rely on understanding the physical processes taking place during field evaporation of atoms from needle-shaped specimens. However, the modeling framework for atom probe microscopy has only limited quantitative justification. Building on the continuum field models previously developed, we introduce a more physical approach with the selection of evaporation events based on density functional theory calculations. This model reproduces key features observed experimentally in terms of sequence of evaporation, evaporation maps, and depth resolution, and provides insights into the physical limit for spatial resolution.

  15. Heat Load Sharing in a Capillary Pumped Loop with Multiple Evaporators and Multiple Condensers

    NASA Technical Reports Server (NTRS)

    Ku, Jentung

    2005-01-01

    This paper describes the heat load sharing function among multiple parallel evaporators in a capillary pumped loop (CPL). In the normal mode of operation, the evaporators cool the instruments by absorbing the waste heat. When an instruments is turned off, the attached evaporator can keep it warm by receiving heat from other evaporators serving the operating instruments. This is referred to as heat load sharing. A theoretical basis of heat load sharing is given first. The fact that the wicks in the powered evaporators will develop capillary pressure to force the generated vapor to flow to cold locations where the pressure is lower leads to the conclusion that heat load sharing is an inherent function of a CPL with multiple evaporators. Heat load sharing has been verified with many CPLs in ground tests. Experimental results of the Capillary Pumped Loop 3 (CAPL 3) Flight Experiment are presented in this paper. Factors that affect the amount of heat being shared are discussed. Some constraints of heat load sharing are also addressed.

  16. Steady flow and evaporation of a volatile liquid in a wedge

    NASA Astrophysics Data System (ADS)

    Markos, Mulugeta; Ajaev, Vladimir S.; Homsy, G. M.

    2006-09-01

    We develop a lubrication-type model of a liquid flow in a wedge in the limit of small capillary numbers and negligible gravity. Liquid flows under the action of capillary pressure gradients and thermocapillary stresses, and evaporates due to heating from the solid walls on which a constant axial temperature gradient is imposed. Steady vapor-liquid interface shapes are found for different wedge angles and material properties of the liquid. In the limit of weak evaporation (e.g., in the adiabatic region of a heat pipe) and negligible Marangoni number, the flow rate is the same in all cross sections and can be controlled by changing the wedge angle. We find the wedge angle that results in the maximum value of the flow rate for a given contact angle. For finite evaporation rates, both the flow rate and the amount of liquid in each cross section along the wedge decrease until the point of dry-out is reached. The location of the dry-out point is studied as a function of evaporation conditions. Somewhat counterintuitively, we find that the dry-out point shifts toward the region of higher temperature as evaporation intensity is increased. The effect of thermocapillary stresses on the vapor-liquid interface shape is also investigated in the limit of negligible evaporation. Since thermocapillarity generally opposes the capillary flow, it leads to shorter wetted lengths. The implications of the results for design and optimization of micro heat pipes are discussed.

  17. Design and development of a split-evaporator heat-pump system

    SciTech Connect

    Somerville, M.H.; Penoncello, S.G.

    1981-12-01

    The designs and experimental results of three types of multiple source heat pumps are presented. The three designs are the parallel evaporator, the series evaporator, and the parallel evaporator with active subcooling, with the parallel evaporator with the active subcooling showing the most promise for solving the problem of defrosting of air evaporators. Three design procedures for multiple source heat pumps were developed. One of these is a hand calculational procedure, the others are computer based. The models are based upon the refrigerant flow rate, rather than the refrigeration effect of the evaporator. The technical results of a detailed analytical and experimental model of the heat transfer rates on a flat plate ice maker are presented. It is shown, both analytically and experimentally, that the temperature of the air surrounding the flat plate ice maker can play a dominant role in the rate of ice formation. A detailed weather analysis for forty cities located throughout the nation was completed. These data were processed to allow easy computation of thermal storage requirements for full, partial, or minimum ACES systems, or upon other design requirements, such as off-peak air conditioning. The results of an innovative ice storage system that is thermally coupled to the earth are described. This system has the potential for meeting both the off-peak air conditioning needs and the thermal storage requirements for the heating cycle. An economic and energy comparison of multiple source heat pumps with ACES, and air-to-air heat pump systems is presented.

  18. Oxide-assisted growth of silicon nanowires by carbothermal evaporation

    NASA Astrophysics Data System (ADS)

    Hutagalung, Sabar D.; Yaacob, Khatijah A.; Aziz, Azma F. Abdul

    2007-11-01

    Silicon nanowires (SiNWs) have successfully been synthesized by carbothermal evaporation method. By ramping-up the furnace system at 20 °C min -1 to 1100 °C for 6 h, the vertically aligned coexist with crooked SiNWs were achieved on the silicon substrate located at 12 cm from source material. The processing parameters such as temperature, heating rate, duration, substrate position and location are very important to produce SiNWs. Morphology and chemical composition of deposited products were investigated by field-emission scanning electron microscopy (FESEM) equipped with energy dispersive X-ray analysis (EDX). The existence of small sphere silicon oxide capped nanowires suggested that the formation of SiNWs was governed by oxide-assisted growth (OAG) mechanism.

  19. A new method dealing with hawking effects of evaporating black holes

    SciTech Connect

    Zhao, Z.; Dai, X. )

    1992-06-28

    This paper reports that, both the location and the temperature of event horizons of evaporating black holes can be easily given if one proposes the Klein-Gordon equation approaches the standard form of wave equation near event horizons by using tortoise-type coordinates.

  20. Soil Moisture Dynamics and Evaporation in Arid Intermountain Environments

    NASA Astrophysics Data System (ADS)

    Hang, C.; Pardyjak, E.; Nadeau, D. F.; Jensen, D. D.; Hoch, S.

    2014-12-01

    Mountain flows have been studied for several decades now and it is safe to say that their main features are well understood under steady conditions and over idealized terrain. The Mountain Terrain Atmospheric Modeling and Observations (MATERHORN) program was designed to better understand atmospheric fluid dynamics across all scales over realistic mountainous terrain as well as under transient and steady conditions. As part of MATERHORN, a large field campaign was conducted in May 2013. The main study area, a playa site, covers an area of several hundred square kilometers. It is mostly devoid of vegetation, characterized by a flat surface, shallow water table and a heterogeneous soil moisture spatial distribution even in dry conditions. Recent studies have shown that soil moisture plays a critical role in the dynamics of mountain flows, but a detailed understanding of these has not been sufficiently quantified. The objectives of this study are thus: 1) to quantify the spatial heterogeneity of soil moisture on the playa site; 2) to describe how soil moisture affects the surface energy balance; 3) to identify the key controlling mechanisms on evaporation after a rain event in an arid area; 4) to explore the existence of nocturnal evaporation and investigate its main driving factors. To do this, we applied the gravimetric method to measure volumetric water content in the surface soil layer (0 - 2 cm and 4 - 6 cm) twice per 24-h intensive observation period at 17 sites evenly distributed on a 180 x 240 m grid. Near-surface atmospheric variables as well as ground heat-flux were also measured by a flux tower located close to the soil sampling sites. Preliminary data analysis reveals that the highest spatial variability in surface soil moisture is found under dry conditions. Our results also show that decreasing surface albedo with increasing soil moisture sustained a powerful positive feedback loop promoting large evaporation rates. Finally, it was found that while

  1. DWPF Recycle Evaporator Shielded Cells Testing

    SciTech Connect

    Fellinger, T. L.; Herman, D. T.; Stone, M.E

    2005-07-01

    Testing was performed to determine the feasibility and processing characteristics of evaporation of actual Defense Waste Processing Facility (DWPF) recycle material. Samples of the Off Gas Condensate Tank (OGCT) and Slurry Mix Evaporator Condensate Tank (SMECT) were transferred from DWPF to the Savannah River National Lab (SRNL) Shielded Cells and blended with De-Ionized (DI) water and a small amount of Slurry Mix Evaporator (SME) product. A total of 3000 mL of this feed was concentrated to approximately 90 mL during a semi-batch evaporation test of approximately 17 hours. One interruption occurred during the run when the feed tube developed a split and was replaced. Samples of the resulting condensate and concentrate were collected and analyzed. The resulting analysis of the condensate was compared to the Waste Acceptance Criteria (WAC) limits for the F/H Effluent Treatment Plant (ETP). Results from the test were compared to previous testing using simulants and OLI modeling. Conclusions from this work included the following: (1) The evaporation of DWPF recycle to achieve a 30X concentration factor was successfully demonstrated. The feed blend of OGCT and SMECT material was concentrated from 3000 mL to approximately 90 mL during testing, a concentration of approximately 33X. (2) Foaming was observed during the run. Dow Corning 2210 antifoam was added seven times throughout the run at 100 parts per million (ppm) per addition. The addition of this antifoam was very effective in reducing the foam level, but the impact diminished over time and additional antifoam was required every 2 to 3 hours during the run. (3) No scale or solids formed on the evaporator vessel, but splatter was observed in the headspace of the evaporator vessel. No scaling formed on the stainless steel thermocouple. (4) The majority of the analytes met the F/H ETP WAC. However, the detection limits for selected species (Sr-90, Pu-238, Pu-240, Am-243, and Cm-244) exceeded the ETP WAC limits. (5) I

  2. Kepler Planets: A Tale of Evaporation

    NASA Astrophysics Data System (ADS)

    Owen, James E.; Wu, Yanqin

    2013-10-01

    Inspired by the Kepler mission's planet discoveries, we consider the thermal contraction of planets close to their parent star, under the influence of evaporation. The mass-loss rates are based on hydrodynamic models of evaporation that include both X-ray and EUV irradiation. We find that only low mass planets with hydrogen envelopes are significantly affected by evaporation, with evaporation being able to remove massive hydrogen envelopes inward of ~0.1 AU for Neptune-mass objects, while evaporation is negligible for Jupiter-mass objects. Moreover, most of the evaporation occurs in the first 100 Myr of stars' lives when they are more chromospherically active. We construct a theoretical population of planets with varying core masses, envelope masses, orbital separations, and stellar spectral types, and compare this population with the sizes and densities measured for low-mass planets, both in the Kepler mission and from radial velocity surveys. This exercise leads us to conclude that evaporation is the driving force of evolution for close-in Kepler planets. In fact, some 50% of the Kepler planet candidates may have been significantly eroded. Evaporation explains two striking correlations observed in these objects: a lack of large radius/low density planets close to the stars and a possible bimodal distribution in planet sizes with a deficit of planets around 2 R ⊕. Planets that have experienced high X-ray exposures are generally smaller than this size, and those with lower X-ray exposures are typically larger. A bimodal planet size distribution is naturally predicted by the evaporation model, where, depending on their X-ray exposure, close-in planets can either hold on to hydrogen envelopes ~0.5%-1% in mass or be stripped entirely. To quantitatively reproduce the observed features, we argue that not only do low-mass Kepler planets need to be made of rocky cores surrounded with hydrogen envelopes, but few of them should have initial masses above 20 M ⊕ and the

  3. KEPLER PLANETS: A TALE OF EVAPORATION

    SciTech Connect

    Owen, James E.; Wu, Yanqin E-mail: wu@astro.utoronto.ca

    2013-10-01

    Inspired by the Kepler mission's planet discoveries, we consider the thermal contraction of planets close to their parent star, under the influence of evaporation. The mass-loss rates are based on hydrodynamic models of evaporation that include both X-ray and EUV irradiation. We find that only low mass planets with hydrogen envelopes are significantly affected by evaporation, with evaporation being able to remove massive hydrogen envelopes inward of ∼0.1 AU for Neptune-mass objects, while evaporation is negligible for Jupiter-mass objects. Moreover, most of the evaporation occurs in the first 100 Myr of stars' lives when they are more chromospherically active. We construct a theoretical population of planets with varying core masses, envelope masses, orbital separations, and stellar spectral types, and compare this population with the sizes and densities measured for low-mass planets, both in the Kepler mission and from radial velocity surveys. This exercise leads us to conclude that evaporation is the driving force of evolution for close-in Kepler planets. In fact, some 50% of the Kepler planet candidates may have been significantly eroded. Evaporation explains two striking correlations observed in these objects: a lack of large radius/low density planets close to the stars and a possible bimodal distribution in planet sizes with a deficit of planets around 2 R{sub ⊕}. Planets that have experienced high X-ray exposures are generally smaller than this size, and those with lower X-ray exposures are typically larger. A bimodal planet size distribution is naturally predicted by the evaporation model, where, depending on their X-ray exposure, close-in planets can either hold on to hydrogen envelopes ∼0.5%-1% in mass or be stripped entirely. To quantitatively reproduce the observed features, we argue that not only do low-mass Kepler planets need to be made of rocky cores surrounded with hydrogen envelopes, but few of them should have initial masses above 20 M

  4. Evaporation and reference evapotranspiration trends in Spain

    NASA Astrophysics Data System (ADS)

    Sanchez-Lorenzo, Arturo; Vicente-Serrano, Sergio M.; Wild, Martin; Azorin-Molina, Cesar; Calbó, Josep; Revuelto, Jesús; López-Moreno, Juan I.; Moran-Tejeda, Enrique; Martín-Hernández, Natalia; Peñuelas, Josep

    2015-04-01

    Interest is growing in the trends of atmospheric evaporation demand, increasing the need for long-term time series. In this study, we first describe the development of a dataset on evaporation in Spain based on long-term series of Piché and pan measurement records. Piché measurements have been reported for >50 stations since the 1960s. Measurements of pan evaporation, which is a much more widely studied variable in the literature, are also available, but only since 1984 for 21 stations. Particular emphasis was placed on the homogenization of this dataset (for more details, we refer to Sanchez-Lorenzo et al., 2014, Clim Res, 61: 269-280). Both the mean annual Piché and pan series over Spain showed evaporative increases during the common study period (1985-2011). Furthermore, using the annual Piché records since the 1960s, an evaporation decline was detected from the 1960s to the mid-1980s, which resulted in a non-significant trend over the entire 1961-2011 period. Our results indicate agreement between the decadal variability of reference evapotranspiration (Vicente-Serrano et al., 2014, Glob Planet Chang, 121: 26-40) and surface solar radiation (Sanchez-Lorenzo et al., 2013, Glob Planet Chang, 100: 343-352) and the evaporation from Piché and pan measurements since the mid-1980s, especially during summer. Nevertheless, this agreement needs attention, as Piché evaporimeters are inside meteorological screens and not directly exposed to radiation. Thus, as Piché readings are mainly affected by the aerodynamic term in Penman's evaporation equation and pan records are affected by both the heat balance and aerodynamic terms, the results suggest that both terms must be highly and positively correlated in Spain. In order to check this hypothesis, the radiative and aerodynamic components were estimated using the Penman's equation. The results show that the relationship with the radiative components is weaker than that with the aerodynamic component for both pan and

  5. PROCESS WATER BUILDING, TRA605. FLASH EVAPORATOR, CONDENSER (PROJECT FROM EVAPORATOR), ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PROCESS WATER BUILDING, TRA-605. FLASH EVAPORATOR, CONDENSER (PROJECT FROM EVAPORATOR), AND STEAM EJECTOR (ALONG REAR WALL). INL NEGATIVE NO. 4377. M.H. Bartz, Photographer, 3/5/1952 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  6. Atom probe tomography evaporation behavior of C-axis GaN nanowires: Crystallographic, stoichiometric, and detection efficiency aspects

    SciTech Connect

    Diercks, David R. Gorman, Brian P.; Kirchhofer, Rita; Sanford, Norman; Bertness, Kris; Brubaker, Matt

    2013-11-14

    The field evaporation behavior of c-axis GaN nanowires was explored in two different laser-pulsed atom probe tomography (APT) instruments. Transmission electron microscopy imaging before and after atom probe tomography analysis was used to assist in reconstructing the data and assess the observed evaporation behavior. It was found that the ionic species exhibited preferential locations for evaporation related to the underlying crystal structure of the GaN and that the species which evaporated from these locations was dependent on the pulsed laser energy. Additionally, the overall stoichiometry measured by APT was significantly correlated with the energy of the laser pulses. At the lowest laser energies, the apparent composition was nitrogen-rich, while higher laser energies resulted in measurements of predominantly gallium compositions. The percent of ions detected (detection efficiency) for these specimens was found to be considerably below that shown for other materials, even for laser energies which produced the expected Ga:N ratio. The apparent stoichiometry variation and low detection efficiency appear to be a result of evaporation of Ga ions between laser pulses at the lowest laser energies and evaporation of neutral N{sub 2} species at higher laser energies. All of these behaviors are tied to the formation of nitrogen-nitrogen bonds on the tip surface, which occurred under all analysis conditions. Similar field evaporation behaviors are therefore expected for other materials where the anionic species readily form a strong diatomic bond.

  7. Spacesuit Evaporator-Absorber-Radiator (SEAR)

    NASA Technical Reports Server (NTRS)

    Bue, Grant C.; Hodgson, Ed; Izenso, Mike; Chan, Weibo; Cupples, Scott

    2011-01-01

    For decades advanced spacesuit developers have pursued a regenerable, robust non-venting system for heat rejection. Toward this end, this paper investigates linking together two previously developed technologies, namely NASA's Spacesuit Water Membrane Evaporator (SWME), and Creare's lithium chloride Heat Pump Radiator (HPR). Heat from a liquid cooled garment is transported to SWME that provides cooling through evaporation. The SEAR is evacuated at the onset of operations and thereafter, the water vapor absorption rate of the HPR maintains a low pressure environment for the SWME to evaporate effectively. This water vapor captured by solid LiCl in the HPR with a high enthalpy of absorption, results in sufficient temperature lift to reject most of the heat to space by radiation. After the sortie, the HPR would be heated up in a regenerator to drive off and recover the absorbed evaporant. A one-fourth scale prototype was built and tested in vacuum conditions at a sink temperature of 250 K. The HPR was able to stably reject 60 W over a 7-hour period. A conceptual design of a full-scale radiator is proposed. Excess heat rejection above 240 W would be accomplished through venting of the evaporant. Loop closure rates were predicted for various exploration environment scenarios.

  8. Gravity Effects in Condensing and Evaporating Films

    NASA Technical Reports Server (NTRS)

    Hermanson, J. C.; Som, S. M.; Allen, J. S.; Pedersen, P. C.

    2004-01-01

    A general overview of gravity effects in condensing and evaporating films is presented. The topics include: 1) Research Overview; 2) NASA Recognizes Critical Need for Condensation & Evaporation Research to Enable Human Exploration of Space; 3) Condensation and Evaporation Research in Reduced Gravity is Enabling for AHST Technology Needs; 4) Differing Role of Surface Tension on Condensing/Evaporating Film Stability; 5) Fluid Mechanisms in Condensing and Evaporating Films in Reduced Gravity; 6) Research Plan; 7) Experimental Configurations for Condensing Films; 8) Laboratory Condensation Test Cell; 9) Aircraft Experiment; 10) Condensation Study Current Test Conditions; 11) Diagnostics; 12) Shadowgraph Images of Condensing n- pentane Film in Unstable (-1g) Configuration; 13) Condensing n-Pentane Film in Normal Gravity (-1g) at Constant Pressure; 14) Condensing n-Pentane Film in Normal Gravity (-1g) with Cyclic Pressure; 15) Non-condensing Pumped Film in Normal Gravity (-1g); 16) Heat Transfer Coefficient in Developing, Unstable Condensing Film in Normal Gravity; 17) Heat Transfer for Unsteady Condensing Film (-1g); 18) Ultrasound Measurement of Film Thickness N-pentane Film, Stable (+1g) Configuration; and 19) Ultrasound Measurement of Film Thickness N-pentane Film, Unstable (-1g) Configuration.

  9. Surface tension of evaporating nanofluid droplets

    SciTech Connect

    Chen, Ruey-Hung; Phuoc, Tran X.; Martello, Donald

    2011-05-01

    Measurements of nanofluid surface tension were made using the pendant droplet method. Three different types of nanoparticles were used - laponite, silver and Fe2O3 - with de-ionized water (DW) as the base fluid. The reported results focus on the following categories; (1) because some nanoparticles require surfactants to form stable colloids, the individual effects of the surfactant and the particles were investigated; (2) due to evaporation of the pendant droplet, the particle concentration increases, affecting the apparent surface tension; (3) because of the evaporation process, a hysteresis was found where the evaporating droplet can only achieve lower values of surface tension than that of nanofluids at the same prepared concentrations: and (4) the Stefan equation relating the apparent surface tension and heat of evaporation was found to be inapplicable for nanofluids investigated. Comparisons with findings for sessile droplets are also discussed, pointing to additional effects of nanoparticles other than the non-equilibrium evaporation process.

  10. Marangoni Convection and Deviations from Maxwells' Evaporation Model

    NASA Technical Reports Server (NTRS)

    Segre, P. N.; Snell, E. H.; Adamek, D. H.

    2003-01-01

    We investigate the convective dynamics of evaporating pools of volatile liquids using an ultra-sensitive thermal imaging camera. During evaporation, there are significant convective flows inside the liquid due to Marangoni forces. We find that Marangoni convection during evaporation can dramatically affect the evaporation rates of volatile liquids. A simple heat balance model connects the convective velocities and temperature gradients to the evaporation rates.

  11. Visualization of an evaporating thin layer during the evaporation of a nanofluid droplet.

    PubMed

    Shin, Dong Hwan; Allen, Jeffrey S; Choi, Chang Kyoung; Lee, Seong Hyuk

    2015-02-01

    During the evaporation of a droplet, there exists an evaporating thin layer that is difficult to visualize because of optical restrictions. The present study visualized this thin layer by using a reflective-mode, confocal microscope that can provide improved signal-to-noise focal plane imaging over traditional optical microscopy while simultaneously serving as an interferometer when imaging thin liquid films. The spatial distribution of the evaporating thin layer thickness was determined from interferometric fringe analysis. Three distinct fringe patterns, or regions, were observed depending on the nanoparticle concentration. These regions are referred to as uniform, slow extension, and rapid extension. The formation of the three regions is closely associated with the variation of the evaporating thin layer thickness of a nanofluid droplet. The nanoparticle bank formed near the contact line region substantially affects the rate of change in the evaporating thin layer thickness that increases with the nanoparticle concentration. PMID:25586137

  12. An evaporation based digital microflow meter

    NASA Astrophysics Data System (ADS)

    Nie, C.; Frijns, A. J. H.; Mandamparambil, R.; Zevenbergen, M. A. G.; den Toonder, J. M. J.

    2015-11-01

    In this work, we present a digital microflow meter operating in the range 30-250 nl min-1 for water. The principle is based on determining the evaporation rate of the liquid via reading the number of wetted pore array structures in a microfluidic system, through which continuous evaporation takes place. A proof-of-principle device of the digital flow meter was designed, fabricated, and tested. The device was built on foil-based technology. In the proof-of-principle experiments, good agreement was found between set flow rates and the evaporation rates estimated from reading the number of wetted pore structures. The measurement range of the digital flow meter can be tuned and extended in a straightforward manner by changing the pore structure of the device.

  13. Structuring of polymer solutions upon solvent evaporation

    NASA Astrophysics Data System (ADS)

    Schaefer, C.; van der Schoot, P.; Michels, J. J.

    2015-02-01

    The morphology of solution-cast, phase-separated polymers becomes finer with increasing solvent evaporation rate. We address this observation theoretically for a model polymer where demixing is induced by steady solvent evaporation. In contrast to what is the case for a classical, thermal quench involving immiscible blends, the spinodal instability initially develops slowly and the associated length scale is not time invariant but decreases with time as t-1 /2. After a time lag, phase separation accelerates. Time lag and characteristic length exhibit power-law behavior as a function of the evaporation rate with exponents of -2 /3 and -1 /6 . Interestingly, at later stages the spinodal structure disappears completely while a second length scale develops. The associated structure coarsens but does not follow the usual Lifshitz-Slyozov-Wagner kinetics.

  14. Ball feeder for replenishing evaporator feed

    DOEpatents

    Felde, D.K.; McKoon, R.H.

    1993-03-23

    Vapor source material such as uranium, which is to be dropped into a melt in an evaporator, is made into many balls of identical diameters and placed inside a container. An elongated sloping pipe is connected to the container and leads to the evaporator such that these balls can travel sequentially therealong by gravity. A metering valve in this pipe for passing these balls one at a time is opened in response to a signal when it is ascertained by a detector that there is a ball ready to be passed. A gate in the pipe near the evaporator momentarily stops the motion of the traveling ball and is then opened to allow the ball drop into the melt at a reduced speed.

  15. [Evaporating Droplet and Imaging Slip Flows

    NASA Technical Reports Server (NTRS)

    Larson, R. G.

    2002-01-01

    In this report, we summarize work on Evaporating Droplet and Imaging Slip Flows. The work was primarily performed by post-doc Hue Hu, and partially by grad students Lei Li and Danish Chopra. The work includes studies on droplet evaporation and its effects on temperature and velocity fields in an evaporating droplet, new 3-D microscopic particle image velocimetry and direct visualization on wall slip in a surfactant solution. With the exception of the slip measurements, these projects were those proposed in the grant application. Instead of slip flow, the original grant proposed imaging electro-osmotic flows. However, shortly after the grant was issued, the PI became aware of work on electro-osmotic flows by the group of Saville in Princeton that was similar to that proposed, and we therefore elected to carry out work on imaging slip flows rather than electro-osmotic flows.

  16. DWPF RECYCLE EVAPORATOR FLOWSHEET EVALUATION (U)

    SciTech Connect

    Stone, M

    2005-04-30

    The Defense Waste Processing Facility (DWPF) converts the high level waste slurries stored at the Savannah River Site into borosilicate glass for long-term storage. The vitrification process results in the generation of approximately five gallons of dilute recycle streams for each gallon of waste slurry vitrified. This dilute recycle stream is currently transferred to the H-area Tank Farm and amounts to approximately 1,400,000 gallons of effluent per year. Process changes to incorporate salt waste could increase the amount of effluent to approximately 2,900,000 gallons per year. The recycle consists of two major streams and four smaller streams. The first major recycle stream is condensate from the Chemical Process Cell (CPC), and is collected in the Slurry Mix Evaporator Condensate Tank (SMECT). The second major recycle stream is the melter offgas which is collected in the Off Gas Condensate Tank (OGCT). The four smaller streams are the sample flushes, sump flushes, decon solution, and High Efficiency Mist Eliminator (HEME) dissolution solution. These streams are collected in the Decontamination Waste Treatment Tank (DWTT) or the Recycle Collection Tank (RCT). All recycle streams are currently combined in the RCT and treated with sodium nitrite and sodium hydroxide prior to transfer to the tank farm. Tank Farm space limitations and previous outages in the 2H Evaporator system due to deposition of sodium alumino-silicates have led to evaluation of alternative methods of dealing with the DWPF recycle. One option identified for processing the recycle was a dedicated evaporator to concentrate the recycle stream to allow the solids to be recycled to the DWPF Sludge Receipt and Adjustment Tank (SRAT) and the condensate from this evaporation process to be sent and treated in the Effluent Treatment Plant (ETP). In order to meet process objectives, the recycle stream must be concentrated to 1/30th of the feed volume during the evaporation process. The concentrated stream

  17. Potential flow inside an evaporating cylindrical line.

    PubMed

    Petsi, A J; Burganos, V N

    2005-10-01

    An analytical solution to the problem of potential flow inside an evaporating line is obtained. The line is shaped as a half-cylinder lying on a substrate, and evaporates with either pinned or depinned contact lines. The solution is provided through the technique of separation of variables in the velocity potential and stream function formulations. Based on the flow field calculations, it is estimated that the coffee-stain phenomenon should be expected even for uniform evaporation flux throughout the cylindrical surface, provided that the contact lines remain anchored. A simple expression for the velocity potential is also suggested, which reproduces the local velocity vector with excellent accuracy. The vertically averaged velocity is calculated also for other contact line values, revealing for any value an outward liquid flow for pinned lines as opposed to inward flow for depinned lines. PMID:16383581

  18. Infrared thermography of dropwise evaporative cooling

    NASA Astrophysics Data System (ADS)

    Klassen, Michael; di Marzo, Marino; Sirkis, James

    1992-01-01

    An infrared thermographic technique is developed to obtain the transient solid surface temperature distribution in the neighborhood of an evaporating droplet. This technique is nonintrusive and is not affected by the time response of the measuring device (i.e., thermocouple). The entire surface is monitored at any instant of time, and information on the area influenced by the evaporative cooling process is easily derived. A detailed description of the image processing based data reduction is provided. A water droplet in the range of 10-50 microliter is deposited on an opaque glasslike material that has an initial surface temperature between 100 and 165 deg C. The evaporative cooling process is fully documented, and these new findings are contrasted with the published literature to gain a better understanding of the phenomena involved.

  19. Evaporative Cooling in a Holographic Atom Trap

    NASA Technical Reports Server (NTRS)

    Newell, Raymond

    2003-01-01

    We present progress on evaporative cooling of Rb-87 atoms in our Holographic Atom Trap (HAT). The HAT is formed by the interference of five intersecting YAG laser beams: atoms are loaded from a vapor-cell MOT into the bright fringes of the interference pattern through the dipole force. The interference pattern is composed of Talbot fringes along the direction of propagation of the YAG beams, prior to evaporative cooling each Talbot fringe contains 300,000 atoms at 50 micro-K and peak densities of 2 x 10(exp 14)/cu cm. Evaporative cooling is achieved through adiabatically decreasing the intensity of the YAG laser. We present data and calculations covering a range of HAT geometries and cooling procedures.

  20. Ball feeder for replenishing evaporator feed

    DOEpatents

    Felde, David K.; McKoon, Robert H.

    1993-01-01

    Vapor source material such as uranium, which is to be dropped into a melt in an evaporator, is made into many balls of identical diameters and placed inside a container. An elongated sloping pipe is connected to the container and leads to the evaporator such that these balls can travel sequentially therealong by gravity. A metering valve in this pipe for passing these balls one at a time is opened in response to a signal when it is ascertained by a detector that there is a ball ready to be passed. A gate in the pipe near the evaporator momentarily stops the motion of the traveling ball and is then opened to allow the ball drop into the melt at a reduced speed.

  1. Evaporation control research, 1955-58

    USGS Publications Warehouse

    Cruse, Robert R.; Harbeck, Guy Earl

    1960-01-01

    One hundred fifty-two compounds and compositions of matter were screened as potential evaporation retardants. The homologous straight-chain fatty alkanols are considered the best materials for retardants. Several methods of application of the alkanols to the reservoir surface were investigated. Although wick-type drippers for the application of liquids and cage rafts for the application of solids appear to be the most promising methods from an economic standpoint, both methods have serious disadvantages. Considerable study was given to reducing biochemical oxidation of the evaporation retardants. Copper in several forms was found adequate as a bacteriostatic agent but posed a potential hazard because of its toxicity. Many other bactericides that were tested were also toxic. Two sets of large-scale field tests have been completed and several others are still in progress. On the larger reservoirs, the reduction of evaporation was not more than 20 percent under the prevailing conditions and the application procedure used. Three major practical problems remain; namely, the effects and action of wind on the monofilm, the effects of biochemical oxidation, and the most effective method of application. Fundamental problems remaining include the effects of various impurities, and the composition of the best evaporation retardant; the long-range effects of monofilms on the limnology of a reservoir, including the transfer of oxygen and carbon dioxide; toxicological aspects of all components of any evaporation-retardant composition, plus toxicology of any composition chosen for large-scale use; and further studies of the calorimetry and thermodynamics involved in the mechanism of evaporation and its reduction by a monofilm.

  2. Simulations of Evaporating Multicomponent Fuel Drops

    NASA Technical Reports Server (NTRS)

    Bellan, Josette; Le Clercq, Patrick

    2005-01-01

    A paper presents additional information on the subject matter of Model of Mixing Layer With Multicomponent Evaporating Drops (NPO-30505), NASA Tech Briefs, Vol. 28, No. 3 (March 2004), page 55. To recapitulate: A mathematical model of a three-dimensional mixing layer laden with evaporating fuel drops composed of many chemical species has been derived. The model is used to perform direct numerical simulations in continuing studies directed toward understanding the behaviors of sprays of liquid petroleum fuels in furnaces, industrial combustors, and engines. The model includes governing equations formulated in an Eulerian and a Lagrangian reference frame for the gas and drops, respectively, and incorporates a concept of continuous thermodynamics, according to which the chemical composition of a fuel is described by use of a distribution function. In this investigation, the distribution function depends solely on the species molar weight. The present paper reiterates the description of the model and discusses further in-depth analysis of the previous results as well as results of additional numerical simulations assessing the effect of the mass loading. The paper reiterates the conclusions reported in the cited previous article, and states some new conclusions. Some new conclusions are: 1. The slower evaporation and the evaporation/ condensation process for multicomponent-fuel drops resulted in a reduced drop-size polydispersity compared to their single-component counterpart. 2. The inhomogeneity in the spatial distribution of the species in the layer increases with the initial mass loading. 3. As evaporation becomes faster, the assumed invariant form of the molecular- weight distribution during evaporation becomes inaccurate.

  3. A Rinsing Effluent Evaporator for Dismantling Operations - 13271

    SciTech Connect

    Rives, Rachel

    2013-07-01

    Between 1958 and 1997, the UP1 plant at Marcoule - located in the south of France - reprocessed and recycled nearly 20,000 MT of used fuel from special defense applications reactors, as well as fuel from the first generation of electricity generating reactors in France (natural uranium fuel, CO{sub 2}-cooled, graphite-moderated). Decommissioning and Dismantling of the UP1 plant and its associated units started in 1998. Since 2005, the UP1 facility has been operated by AREVA as the Marcoule Management and Operation contractor for French Atomic Energy Commission (CEA). An important part of this decommissioning program deals with the vitrification facility of Marcoule. This facility includes 20 tanks devoted to interim storage of highly active solutions, prior to vitrification. In 2006, a rinsing program was defined as part of the tank cleanup strategy. The main objective of the rinsing phases was to decrease activity in order to limit the volume of 'long-life active' waste produced during the decommissioning operations, so the tanks can be dismantled without the need of remote operations. To enable this rinsing program, and anticipating large volumes of generated effluent, the construction of an evaporation unit proved to be essential. The main objective of this unit was to concentrate the effluent produced during tank rinsing operations by a factor of approximately 10, prior to it being treated by vitrification. The evaporator design phase was launched in September 2006. The main challenge for the Project team was the installation of this new unit within a nuclear facility still in operation and in existing compartments not initially designed for this purpose. Cold operating tests were completed in 2008, and in May 2009, the final connections to the process were activated to start the hot test phase. During the first hot test operations performed on the first batches of clean-up effluent, the evaporator had a major operating problem. Extremely large quantities of

  4. Location, Location, Location: Development of Spatiotemporal Sequence Learning in Infancy

    ERIC Educational Resources Information Center

    Kirkham, Natasha Z.; Slemmer, Jonathan A.; Richardson, Daniel C.; Johnson, Scott P.

    2007-01-01

    We investigated infants' sensitivity to spatiotemporal structure. In Experiment 1, circles appeared in a statistically defined spatial pattern. At test 11-month-olds, but not 8-month-olds, looked longer at a novel spatial sequence. Experiment 2 presented different color/shape stimuli, but only the location sequence was violated during test;…

  5. Evaporative Cooling of Antiprotons to Cryogenic Temperatures

    SciTech Connect

    Andresen, G. B.; Bowe, P. D.; Hangst, J. S.; Ashkezari, M. D.; Hayden, M. E.; Baquero-Ruiz, M.; Chapman, S.; Fajans, J.; Povilus, A.; So, C.; Wurtele, J. S.; Bertsche, W.; Butler, E.; Charlton, M.; Humphries, A.; Madsen, N.; Werf, D. P. van der; Wilding, D.; Cesar, C. L.; Lambo, R.

    2010-07-02

    We report the application of evaporative cooling to clouds of trapped antiprotons, resulting in plasmas with measured temperature as low as 9 K. We have modeled the evaporation process for charged particles using appropriate rate equations. Good agreement between experiment and theory is observed, permitting prediction of cooling efficiency in future experiments. The technique opens up new possibilities for cooling of trapped ions and is of particular interest in antiproton physics, where a precise CPT test on trapped antihydrogen is a long-standing goal.

  6. Hot air drum evaporator. [Patent application

    DOEpatents

    Black, R.L.

    1980-11-12

    An evaporation system for aqueous radioactive waste uses standard 30 and 55 gallon drums. Waste solutions form cascading water sprays as they pass over a number of trays arranged in a vertical stack within a drum. Hot dry air is circulated radially of the drum through the water sprays thereby removing water vapor. The system is encased in concrete to prevent exposure to radioactivity. The use of standard 30 and 55 gallon drums permits an inexpensive compact modular design that is readily disposable, thus eliminating maintenance and radiation build-up problems encountered with conventional evaporation systems.

  7. Evaporative cooling enhanced cold storage system

    DOEpatents

    Carr, Peter

    1991-01-01

    The invention provides an evaporatively enhanced cold storage system wherein a warm air stream is cooled and the cooled air stream is thereafter passed into contact with a cold storage unit. Moisture is added to the cooled air stream prior to or during contact of the cooled air stream with the cold storage unit to effect enhanced cooling of the cold storage unit due to evaporation of all or a portion of the added moisture. Preferably at least a portion of the added moisture comprises water condensed during the cooling of the warm air stream.

  8. Evaporative cooling enhanced cold storage system

    DOEpatents

    Carr, P.

    1991-10-15

    The invention provides an evaporatively enhanced cold storage system wherein a warm air stream is cooled and the cooled air stream is thereafter passed into contact with a cold storage unit. Moisture is added to the cooled air stream prior to or during contact of the cooled air stream with the cold storage unit to effect enhanced cooling of the cold storage unit due to evaporation of all or a portion of the added moisture. Preferably at least a portion of the added moisture comprises water condensed during the cooling of the warm air stream. 3 figures.

  9. Resonant gas oscillation with evaporation and condensation

    NASA Astrophysics Data System (ADS)

    Inaba, Masashi; Yano, Takeru; Watanabe, Masao; Kobayashi, Kazumichi; Fujikawa, Shigeo

    2012-09-01

    Resonant gas oscillation in a closed tube bounded by an oscillating plate and a vaporliquid interface is theoretically analyzed by applying the asymptotic theory to the ES-BGK Boltzmann equation for the case of M2≃Kn≪1 and a small evaporation coefficient α = O(Kn), where M and Kn are the typical Mach number and the Knudsen number, respectively. As a result, we derive a nonlinear integro-differential equation for determining the wave profile with the evaporation and condensation in the form including α.

  10. Statistical Model of Evaporating Multicomponent Fuel Drops

    NASA Technical Reports Server (NTRS)

    Harstad, Kenneth; LeClercq, Patrick; Bellan, Josette

    2007-01-01

    An improved statistical model has been developed to describe the chemical composition of an evaporating multicomponent- liquid drop and of the mixture of gases surrounding the drop. The model is intended for use in computational simulations of the evaporation and combustion of sprayed liquid fuels, which are typically mixtures of as many as hundreds of different hydrocarbon compounds. The present statistical model is an approximation designed to afford results that are accurate enough to contribute to understanding of the simulated physical and chemical phenomena, without imposing an unduly large computational burden.

  11. Breakthrough Video: Desiccant Enhanced Evaporative Air Conditioning

    SciTech Connect

    2012-01-01

    Researchers at the National Renewable Energy Laboratory (NREL) invented a breakthrough technology that improves air conditioning in a novel way—with heat. NREL combined desiccant materials, which remove moisture from the air using heat, and advanced evaporative technologies to develop a cooling unit that uses 90% less electricity and up to 80% less total energy than traditional air conditioning (AC). This solution, called the desiccant enhanced evaporative air conditioner (DEVAP), also controls humidity more effectively to improve the comfort of people in buildings.

  12. Evaporative cooling of antiprotons to cryogenic temperatures.

    PubMed

    Andresen, G B; Ashkezari, M D; Baquero-Ruiz, M; Bertsche, W; Bowe, P D; Butler, E; Cesar, C L; Chapman, S; Charlton, M; Fajans, J; Friesen, T; Fujiwara, M C; Gill, D R; Hangst, J S; Hardy, W N; Hayano, R S; Hayden, M E; Humphries, A; Hydomako, R; Jonsell, S; Kurchaninov, L; Lambo, R; Madsen, N; Menary, S; Nolan, P; Olchanski, K; Olin, A; Povilus, A; Pusa, P; Robicheaux, F; Sarid, E; Silveira, D M; So, C; Storey, J W; Thompson, R I; van der Werf, D P; Wilding, D; Wurtele, J S; Yamazaki, Y

    2010-07-01

    We report the application of evaporative cooling to clouds of trapped antiprotons, resulting in plasmas with measured temperature as low as 9 K. We have modeled the evaporation process for charged particles using appropriate rate equations. Good agreement between experiment and theory is observed, permitting prediction of cooling efficiency in future experiments. The technique opens up new possibilities for cooling of trapped ions and is of particular interest in antiproton physics, where a precise CPT test on trapped antihydrogen is a long-standing goal. PMID:20867439

  13. The energy saving potential of precooling incoming outdoor air by indirect evaporative cooling

    SciTech Connect

    Chen, P.; Qin, H.; Huang, Y.J.; Wu, H.; Blumstein, C.

    1992-09-01

    This paper investigates the energy saving potentials of using indirect evaporative coolers to precool incoming outdoor air as the first stage of a standard cooling system. For dry and moderately humid locations, either exhaust room air or outdoor air can be used as the secondary air to the indirect evaporative precooler with similar energy savings. Under these conditions, the use of outdoor air is recommended due to the simplicity in installing the duct system. For humid locations, the use of exhaust room air is recommended because the precooling capacity and energy savings will be greatly increased. For locations with short cooling seasons, the use of indirect evaporative coolers for precooling may not be worthwhile. The paper also gives some simplified indices for easily predicting the precooling capacity, energy savings and water consumption of an indirect evaporative precooler. These indices can be used for cooling systems with continuous operation, but further work is needed to determine whether the same indices are also suitable for cooling systems with intermittent operations.

  14. Convective flows in evaporating sessile droplets.

    PubMed

    Barmi, Meysam R; Meinhart, Carl D

    2014-03-01

    The evaporation rate and internal convective flows of a sessile droplet with a pinned contact line were formulated and investigated numerically. We developed and analyzed a unified numerical model that includes the effects of temperature, droplet volume, and contact angle on evaporation rate and internal flows. The temperature gradient on the air/liquid interface causes an internal flow due to Marangoni stress, which provides good convective mixing within the droplet, depending upon Marangoni number. As the droplet volume decreases, the thermal gradient becomes smaller and the Marangoni flow becomes negligible. Simultaneously, as the droplet height decreases, evaporation-induced flow creates a large jet-like flow radially toward the contact line. For a droplet containing suspended particles, this jet-like convective flow carries particles toward the contact line and deposits them on the surface, forming the so-called "coffee ring stain". In addition, we reported a simple polynomial correlation for dimensionless evaporation time as a function of initial contact angle of the pinned sessile droplet which agrees well with the previous experimental and numerical results. PMID:24512008

  15. Evaporation of Liquid Hydrocarbon Mixtures on Titan

    NASA Astrophysics Data System (ADS)

    Luspay-Kuti, Adrienn; Chevrier, V. F.; Rivera-Valentin, E. G.; Singh, S.; Roe, L. A.; Wagner, A.

    2013-10-01

    Besides Earth, Titan is the only other known planetary body with proven stable liquids on its surface. The hydrological cycle of these liquid hydrocarbon mixtures is critical in understanding Titan’s atmosphere and surface features. Evaporation of liquid surface bodies has been indirectly observed as shoreline changes from measurements by Cassini ISS and RADAR (Hayes et al. 2011, Icarus 211, 655-671; Turtle et al. 2011, Science 18, 1414-1417.), but the long seasons of Saturn strongly limit the time span of these observations and their validity over the course of an entire Titan year. Using a novel Titan simulation chamber, the evaporation rate of liquid methane and dissolved nitrogen mixture under Titan surface conditions was derived (Luspay-Kuti et al. 2012, GRL 39, L23203), which is especially applicable to low latitude transient liquids. Polar lakes, though, are expected to be composed of a variety of hydrocarbons, primarily a mixture of ethane and methane (e.g. Cordier et al. 2009, ApJL 707, L128-L131). Here we performed laboratory simulations of ethane-methane mixtures with varying mole fraction under conditions suitable for the polar regions of Titan. We will discuss results specifically addressing the evaporation behavior as the solution becomes increasingly ethane dominated, providing quantitative values for the evaporation rate at every step. These laboratory results are relevant to polar lakes, such as Ontario Lacus, and can shed light on their stability.

  16. Chemical and biological processes of evaporation ponds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural evaporation ponds are designed to impound and dissipate saline agricultural drainage water in areas with no opportunities for offsite disposal in the San Joaquin Valley of California. This paper reviews and summarizes research findings on the pond chemistry. Drainage waters in these pon...

  17. Soil water evaporation and crop residues

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crop residues have value when left in the field and also when removed from the field and sold as a commodity. Reducing soil water evaporation (E) is one of the benefits of leaving crop residues in place. E was measured beneath a corn canopy at the soil suface with nearly full coverage by corn stover...

  18. Evaporative cooling of the dipolar hydroxyl radical.

    PubMed

    Stuhl, Benjamin K; Hummon, Matthew T; Yeo, Mark; Quéméner, Goulven; Bohn, John L; Ye, Jun

    2012-12-20

    Atomic physics was revolutionized by the development of forced evaporative cooling, which led directly to the observation of Bose-Einstein condensation, quantum-degenerate Fermi gases and ultracold optical lattice simulations of condensed-matter phenomena. More recently, substantial progress has been made in the production of cold molecular gases. Their permanent electric dipole moment is expected to generate systems with varied and controllable phases, dynamics and chemistry. However, although advances have been made in both direct cooling and cold-association techniques, evaporative cooling has not been achieved so far. This is due to unfavourable ratios of elastic to inelastic scattering and impractically slow thermalization rates in the available trapped species. Here we report the observation of microwave-forced evaporative cooling of neutral hydroxyl (OH(•)) molecules loaded from a Stark-decelerated beam into an extremely high-gradient magnetic quadrupole trap. We demonstrate cooling by at least one order of magnitude in temperature, and a corresponding increase in phase-space density by three orders of magnitude, limited only by the low-temperature sensitivity of our spectroscopic thermometry technique. With evaporative cooling and a sufficiently large initial population, much colder temperatures are possible; even a quantum-degenerate gas of this dipolar radical (or anything else it can sympathetically cool) may be within reach. PMID:23257881

  19. Spacesuit Evaporator-Absorber-Radiator (SEAR)

    NASA Technical Reports Server (NTRS)

    Hodgson, Ed; Izenson, Mike; Chan, Weibo; Bue, Grant C.

    2012-01-01

    For decades advanced spacesuit developers have pursued a regenerable, robust nonventing system for heat rejection. Toward this end, this paper investigates linking together two previously developed technologies, namely NASA s Spacesuit Water Membrane Evaporator (SWME), and Creare s Lithium Chloride Absorber Radiator (LCAR). Heat from a liquid cooled garment is transported to SWME that provides cooling through evaporation. This water vapor is then captured by solid LiCl in the LCAR with a high enthalpy of absorption, resulting in sufficient temperature lift to reject heat to space by radiation. After the sortie, the LCAR would be heated up and dried in a regenerator to drive off and recover the absorbed evaporant. A engineering development prototype was built and tested in vacuum conditions at a sink temperature of 250 K. The LCAR was able to stably reject 75 W over a 7-hour period. A conceptual design of a full-scale radiator is proposed. Excess heat rejection above 240 W would be accomplished through venting of the evaporant. Loop closure rates were predicted for various exploration environment scenarios.

  20. EVAPORATIVE RECOVERY OF CHROMIUM PLATING RINSE WATERS

    EPA Science Inventory

    This demonstration project documents the practicality of a new evaporative approach for recovering chromic acid from metal finishing rinse waste waters, as well as the economics of the system under actual operating conditions. The six-month study of chrome plating operations was ...

  1. Evaporation and Combustion Characteristics of Multicomponent Fuels

    NASA Astrophysics Data System (ADS)

    Govindaraju, Pavan; Stagni, Alessandro; Ihme, Matthias

    2015-11-01

    Current generation fuels are mixtures of hundreds of complicated organic compounds and accurate modeling of their combustion characteristics provides fundamental physical insights which also help in the design of efficient combustors. This however requires accurate simulation of both evaporation and combustion processes, which, in case of such fuels, demands an approach based on calculating properties using only the information of functional groups present in the mixture. The presentation will elaborate on the assumptions and the framework utilized for evaporation and chemical mechanisms. We also present a comparison between various fuels used in the aviation industry as test cases while highlighting on their pros and cons. The focus of the talk will however be on the physical aspects captured using 1D simulations, i.e., preferential evaporation of each species, ignition parameters and emissions while justifying the numerical calculations with experimental data at each stage. Further work involving the coupling of flow with evaporation and combustion can be performed and we briefly discuss why a DNS is necessary to characterize the various combustion regimes. Federal Aviation Administration.

  2. On the lifetimes of evaporating droplets

    NASA Astrophysics Data System (ADS)

    Wilson, Stephen; Stauber, Jutta; Duffy, Brian; Sefiane, Khellil

    2013-11-01

    The evaporation of a fluid droplet on a solid substrate is a practically important problem which has been the subject of considerable research in recent years, much of it motivated by a range of technological applications, such as the application of pesticides to plants, DNA microarray analysis, inkjet printing, micro-fabrication, and spray cooling. In particular, the lifetime of a fluid droplet is not only of fundamental scientific interest, but is also important in a number of technological applications, such as inkjet printing and spray cooling applications (in which shorter droplet lifetimes are often needed) and the application of pesticides to plants (in which longer droplet lifetimes are often needed). In this talk we will analyse the lifetimes of fluid droplets evaporating in a variety of modes and, in particular, show that the widely believed folklore that the lifetime of a droplet is always longer than that of an identical droplet evaporating in the constant radius (i.e. pinned contact line) mode and shorter than that of an identical droplet evaporating in the constant angle mode is not, in general, true.

  3. Atmospheric impacts of evaporative cooling systems

    SciTech Connect

    Carson, J.E.

    1980-01-01

    The observed atmospheric impacts resulting from the use of evaporative cooling systems are minor and usually environmentally acceptable. Although these impacts are also considerably smaller than those usually predicted a few years ago, regulatory agency requirements are such that these effects must be identified and quantified.

  4. VOLATILE COMPONENT RECOVERY FROM SULFITE EVAPORATOR CONDENSATE

    EPA Science Inventory

    This study is on the operation and modification of a demonstration unit to remove sulfur dioxide, methanol, furfural, and acetic acid from its sulfite evaporator condensate. This unit consisted of a steam stripper, vent tank SO2 recovery, activated carbon adsorption columns, and ...

  5. Evaporation from an ionic liquid emulsion.

    PubMed

    Friberg, Stig E

    2007-03-15

    The conditions during evaporation in a liquid crystal-in-ionic liquid microemulsion (LC/microEm) were estimated using the phase diagram of the system. The equations for selected tie lines were established and the coordinates calculated for the sites, at which the evaporation lines crossed the tie lines. These values combined with the coordinates for the phases connecting the tie lines were used to calculate the amounts and the composition of the fractions of the two phases present in the emulsion during the evaporation. One of the emulsion phases was a lamellar liquid crystal and high energy emulsification would lead to the liquid crystal being disrupted to form vesicles. Such a system tenders a unique opportunity to study the interaction between vesicles and normal micelles, which gradually change to inverse micelles over bi-continuous structures. The amount of vesicles in the liquid phase versus the fraction liquid crystal was calculated for two extreme cases of vesicle core size and shell thickness. The limit of evaporation while retaining the vesicle structure was calculated for emulsions of different original compositions assuming the minimum continuous liquid phase to be 50% of the emulsion. PMID:17207810

  6. Application of Modular Modeling System to Predict Evaporation, Infiltration, Air Temperature, and Soil Moisture

    NASA Technical Reports Server (NTRS)

    Boggs, Johnny; Birgan, Latricia J.; Tsegaye, Teferi; Coleman, Tommy; Soman, Vishwas

    1997-01-01

    Models are used for numerous application including hydrology. The Modular Modeling System (MMS) is one of the few that can simulate a hydrology process. MMS was tested and used to compare infiltration, soil moisture, daily temperature, and potential and actual evaporation for the Elinsboro sandy loam soil and the Mattapex silty loam soil in the Microwave Radiometer Experiment of Soil Moisture Sensing at Beltsville Agriculture Research Test Site in Maryland. An input file for each location was created to nut the model. Graphs were plotted, and it was observed that the model gave a good representation for evaporation for both plots. In comparing the two plots, it was noted that infiltration and soil moisture tend to peak around the same time, temperature peaks in July and August and the peak evaporation was observed on September 15 and July 4 for the Elinsboro Mattapex plot respectively. MMS can be used successfully to predict hydrological processes as long as the proper input parameters are available.

  7. Thermal panting in dogs: the lateral nasal gland, a source of water for evaporative cooling.

    PubMed

    Blatt, C M; Taylor, C R; Habal, M B

    1972-09-01

    Two lateral nasal glands appear to provide a large part of the water for evaporative cooling in the panting dog; their function is analogous to that of sweat glands in man. Each gland drains through a single duct which opens about 2 centimeters inside the opening of the nostril. This location may be essential to avoid desiccation of the nasal mucosa during thermal panting. The rate of secretion from one gland increased from 0 to an average of 9.6 g (gland . hour)(-1) as air temperature was increased from 10 degrees to 50 degrees C. Evaporation of the fluid from the paired glands could account for between 19 and 36 percent of the increase in respiratory evaporation associated with thermal panting. The fluid secreted by the gland was hypoosmotic to plasma. PMID:5052734

  8. Acid evaporation property in chemically amplified resists

    NASA Astrophysics Data System (ADS)

    Hashimoto, Shuichi; Itani, Toshiro; Yoshino, Hiroshi; Yamana, Mitsuharu; Samoto, Norihiko; Kasama, Kunihiko

    1997-07-01

    The lithographic performance of a chemically amplified resist system very much depends on the photo-generated acid structure. In a previous paper, we reported the molecular structure dependence of two typical photo-generated acids (aromatic sulfonic acid and alkyl sulfonic acid) from the viewpoints of lithographic performance and acid characteristics such as acid generation efficiency, acid diffusion behavior and acid evaporation property. In this paper, we evaluate the effect of the remaining solvent in a resist film on the acid evaporation property. Four types of two-component chemically amplified positive KrF resists were prepared consisting of tert-butoxycarbonyl (t-BOC) protected polyhydroxystyrene and sulfonic acid derivative photo-acid generator (PAG). Here, a different combination of two types of PAGs [2,4-dimethylbenzenesulfonic acid (aromatic sulfonic acid) derivative PAG and cyclohexanesulfonic acid (alkyl sulfonic acid) derivative PAG] and two types of solvents (propylene glycol monomethyl ether acetate; PGMEA and ethyl lactate; EL) were evaluated. The aromatic sulfonic acid was able to evaporate easily during post exposure bake (PEB) treatment, but the alkyl sulfonic acid was not. The higher evaporation property of aromatic sulfonic acid might be due to the higher vapor pressure and the longer acid diffusion length. Furthermore, the amount of aromatic sulfonic acid in the PGMEA resist was reduced by more than that in the EL resist. The amount of acid loss also became smaller at a higher prebake temperature. The concentration of the remaining solvent in the resist film decreased with the increasing prebake temperature. We think that the acid evaporation property was affected by the remaining solvent in the resist, film; the large amount of remaining solvent promoted the acid diffusion and eventually accelerated the acid evaporation from the resist film surface in the PGMEA resist. In summary, the acid evaporation property depends on both the acid

  9. Variation of Phreatic Evaporation of Bare Soil and Integration Application in Water Allocation in Shule Basin

    NASA Astrophysics Data System (ADS)

    Wang, Z.; Huang, P.; Gong, G.

    2011-12-01

    Phreatic evaporation is a key element in regional water balance, but it is hardly measured directly. Recently the development of some new technologies brings new dawn to phreatic evaporation measurement, such as eddy covariance, remote sensing ET and so on. But the new technologies have no ability to connect to groundwater yet. Conventional groundwater balance equipment was set up in Shule basin in northwestern China, with located E97°01', N45°13' , altitude 1520m, annual average precipitation 61.8mm and annual evaporation 2600mm (pan 20cm). The experiment field contains 45 lysimeters (65cm diameter). 11 different water table depths are set in the lysimeters, which are 0.5m, 0.75m, 1.0m, 1.25m, 1.5m, 2.0m, 2.5m, 3.0m, 4.0m, 5.0m and 6.0m. The water table in the lysimeter is controlled by Marriott Bottle System. The evaporation and percolation is measured for three different soil types (silt sandy soil, loam soil and clay soil) in the 11 different water table depths. Based on the data from 2006 to 2010, the influences of atmosphere evaporation capacity, phreatic water depth and soil textures are analyzed. Empirical formulae for estimating phreatic evaporation are regressed. The fitting precision of the different formulae are evaluated. The results show that, fitting effect of common empirical formulae is good in Shule river basin. For the different soil types, fitting effect of silt soil is the best, while that of clay soil is relatively low. At last, formulae fitted in other areas and phreatic evaporation tests are summarized. The reasons of difference of fitted coefficients lie in three aspects: the range of depth of groundwater, choice of the value of water evaporation, method to optimize coefficients. Physical meaning of the coefficients in empirical formulae is analyzed. The features, fitting effect and notes in application of formulae are evaluated. The results are applied in water requirement calculation of ecological conservation Dunhuang Xihu Nature

  10. Explosive Chromospheric Evaporation in a Circular-ribbon Flare

    NASA Astrophysics Data System (ADS)

    Zhang, Q. M.; Li, D.; Ning, Z. J.; Su, Y. N.; Ji, H. S.; Guo, Y.

    2016-08-01

    In this paper, we report our multiwavelength observations of the C4.2 circular-ribbon flare in active region (AR) 12434 on 2015 October 16. The short-lived flare was associated with positive magnetic polarities and a negative polarity inside, as revealed by the photospheric line-of-sight magnetograms. Such a magnetic pattern is strongly indicative of a magnetic null point and spine-fan configuration in the corona. The flare was triggered by the eruption of a mini-filament residing in the AR, which produced the inner flare ribbon (IFR) and the southern part of a closed circular flare ribbon (CFR). When the eruptive filament reached the null point, it triggered null point magnetic reconnection with the ambient open field and generated the bright CFR and a blowout jet. Raster observations of the Interface Region Imaging Spectrograph show plasma upflow at speeds of 35–120 km s‑1 in the Fe xxi λ1354.09 line ({log}T≈ 7.05) and downflow at speeds of 10–60 km s‑1 in the Si iv λ1393.77 line ({log}T≈ 4.8) at certain locations of the CFR and IFR during the impulsive phase of the flare, indicating explosive chromospheric evaporation. Coincidence of the single hard X-ray source at 12–25 keV with the IFR and calculation based on the thick-target model suggest that the explosive evaporation was most probably driven by nonthermal electrons.

  11. Control of stain geometry by drop evaporation of surfactant containing dispersions.

    PubMed

    Erbil, H Yildirim

    2015-08-01

    Control of stain geometry by drop evaporation of surfactant containing dispersions is an important topic of interest because it plays a crucial role in many applications such as forming templates on solid surfaces, in ink-jet printing, spraying of pesticides, micro/nano material fabrication, thin film coatings, biochemical assays, deposition of DNA/RNA micro-arrays, and manufacture of novel optical and electronic materials. This paper presents a review of the published articles on the diffusive drop evaporation of pure liquids (water), the surfactant stains obtained from evaporating drops that do not contain dispersed particles and deposits obtained from drops containing polymer colloids and carbon based particles such as carbon nanotubes, graphite and fullerenes. Experimental results of specific systems and modeling attempts are discussed. This review also has some special subtopics such as suppression of coffee-rings by surfactant addition and "stick-slip" behavior of evaporating nanosuspension drops. In general, the drop evaporation process of a surfactant/particle/substrate system is very complex since dissolved surfactants adsorb on both the insoluble organic/inorganic micro/nanoparticles in the drop, on the air/solution interface and on the substrate surface in different extends. Meanwhile, surfactant adsorbed particles interact with the substrate giving a specific contact angle, and free surfactants create a solutal Marangoni flow in the drop which controls the location of the particle deposition together with the rate of evaporation. In some cases, the presence of a surfactant monolayer at the air/solution interface alters the rate of evaporation. At present, the magnitude of each effect cannot be predicted adequately in advance and consequently they should be carefully studied for any system in order to control the shape and size of the final deposit. PMID:25217332

  12. Isotope fractionation of water during evaporation without condensation.

    PubMed

    Cappa, Christopher D; Drisdell, Walter S; Smith, Jared D; Saykally, Richard J; Cohen, Ronald C

    2005-12-29

    The microscopic events engendering liquid water evaporation have received much attention over the last century, but remain incompletely understood. We present measurements of isotope fractionation occurring during free molecular evaporation from liquid microjets and show that the isotope ratios of evaporating molecules exhibit dramatic differences from equilibrium vapor values, strong variations with the solution deuterium mole fraction, and a clear temperature dependence. These results indicate the existence of an energetic barrier to evaporation and that the evaporation coefficient of water is less than unity. These new insights into water evaporation promise to advance our understanding of the processes that control the formation and lifetime of clouds in the atmosphere. PMID:16375440

  13. The evaporative function of cockroach hygroreceptors.

    PubMed

    Tichy, Harald; Kallina, Wolfgang

    2013-01-01

    Insect hygroreceptors associate as antagonistic pairs of a moist cell and a dry cell together with a cold cell in small cuticular sensilla on the antennae. The mechanisms by which the atmospheric humidity stimulates the hygroreceptive cells remain elusive. Three models for humidity transduction have been proposed in which hygroreceptors operate either as mechanical hygrometers, evaporation detectors or psychrometers. Mechanical hygrometers are assumed to respond to the relative humidity, evaporation detectors to the saturation deficit and psychrometers to the temperature depression (the difference between wet-bulb and dry-bulb temperatures). The models refer to different ways of expressing humidity. This also means, however, that at different temperatures these different types of hygroreceptors indicate very different humidity conditions. The present study tested the adequacy of the three models on the cockroach's moist and dry cells by determining whether the specific predictions about the temperature-dependence of the humidity responses are indeed observed. While in previous studies stimulation consisted of rapid step-like humidity changes, here we changed humidity slowly and continuously up and down in a sinusoidal fashion. The low rates of change made it possible to measure instantaneous humidity values based on UV-absorption and to assign these values to the hygroreceptive sensillum. The moist cell fitted neither the mechanical hygrometer nor the evaporation detector model: the temperature dependence of its humidity responses could not be attributed to relative humidity or to saturation deficit, respectively. The psychrometer model, however, was verified by the close relationships of the moist cell's response with the wet-bulb temperature and the dry cell's response with the dry-bulb temperature. Thus, the hygroreceptors respond to evaporation and the resulting cooling due to the wetness or dryness of the air. The drier the ambient air (absolutely) and the

  14. The Evaporative Function of Cockroach Hygroreceptors

    PubMed Central

    Tichy, Harald; Kallina, Wolfgang

    2013-01-01

    Insect hygroreceptors associate as antagonistic pairs of a moist cell and a dry cell together with a cold cell in small cuticular sensilla on the antennae. The mechanisms by which the atmospheric humidity stimulates the hygroreceptive cells remain elusive. Three models for humidity transduction have been proposed in which hygroreceptors operate either as mechanical hygrometers, evaporation detectors or psychrometers. Mechanical hygrometers are assumed to respond to the relative humidity, evaporation detectors to the saturation deficit and psychrometers to the temperature depression (the difference between wet-bulb and dry-bulb temperatures). The models refer to different ways of expressing humidity. This also means, however, that at different temperatures these different types of hygroreceptors indicate very different humidity conditions. The present study tested the adequacy of the three models on the cockroach’s moist and dry cells by determining whether the specific predictions about the temperature-dependence of the humidity responses are indeed observed. While in previous studies stimulation consisted of rapid step-like humidity changes, here we changed humidity slowly and continuously up and down in a sinusoidal fashion. The low rates of change made it possible to measure instantaneous humidity values based on UV-absorption and to assign these values to the hygroreceptive sensillum. The moist cell fitted neither the mechanical hygrometer nor the evaporation detector model: the temperature dependence of its humidity responses could not be attributed to relative humidity or to saturation deficit, respectively. The psychrometer model, however, was verified by the close relationships of the moist cell’s response with the wet-bulb temperature and the dry cell’s response with the dry-bulb temperature. Thus, the hygroreceptors respond to evaporation and the resulting cooling due to the wetness or dryness of the air. The drier the ambient air (absolutely) and

  15. Tank 26F-2F Evaporator Study

    SciTech Connect

    Adu-Wusu, K.

    2012-12-19

    Tank 26F supernate sample was sent by Savannah River Remediation to Savannah River National Laboratory for evaporation test to help understand the underlying cause of the recent gravity drain line (GDL) pluggage during operation of the 2F Evaporator system. The supernate sample was characterized prior to the evaporation test. The evaporation test involved boiling the supernate in an open beaker until the density of the concentrate (evaporation product) was between 1.4 to 1.5 g/mL. It was followed by filtering and washing of the precipitated solids with deionized water. The concentrate supernate (or concentrate filtrate), the damp unwashed precipitated solids, and the wash filtrates were characterized. All the precipitated solids dissolved during water washing. A semi-quantitative X-ray diffraction (XRD) analysis on the unwashed precipitated solids revealed their composition. All the compounds with the exception of silica (silicon oxide) are known to be readily soluble in water. Hence, their dissolution during water washing is not unexpected. Even though silica is a sparingly water-soluble compound, its dissolution is also not surprising. This stems from its small fraction in the solids as a whole and also its relative freshness. Assuming similar supernate characteristics, flushing the GDL with water (preferably warm) should facilitate dissolution and removal of future pluggage events as long as build up/aging of the sparingly soluble constituent (silica) is limited. On the other hand, since the amount of silica formed is relatively small, it is quite possible dissolution of the more soluble larger fraction will cause disintegration or fragmentation of the sparingly soluble smaller fraction (that may be embedded in the larger soluble solid mass) and allow its removal via suspension in the flushing water.

  16. Evaporation and instabilities of microscopic capillary bridges

    PubMed Central

    Maeda, Nobuo; Israelachvili, Jacob N.; Kohonen, Mika M.

    2003-01-01

    The formation and disappearance of liquid bridges between two surfaces can occur either through equilibrium or nonequilibrium processes. In the first instance, the bridge molecules are in thermodynamic equilibrium with the surrounding vapor medium. In the second, chemical potential gradients result in material transfer; mechanical instabilities, because of van der Waals force jumps on approach or a Rayleigh instability on rapid separation, may trigger irreversible film coalescence or bridge snapping. We have studied the growth and disappearance mechanisms of laterally microscopic liquid bridges of three hydrocarbon liquids in slit-like pores. At rapid slit-opening rates, the bridges rupture by means of a mechanical instability described by the Young–Laplace equation. Noncontinuum but apparently reversible behavior is observed when a bridge is held at nanoscopic surface separations H close to the thermodynamic equilibrium Kelvin length, 2rKcosθ, where rK is the Kelvin radius and θ is the contact angle. During the course of slow evaporation (at H > 2rKcosθ) and subsequent regrowth by capillary condensation (at H < 2rKcosθ), the refractive index of the bridge may vary continuously and reversibly between that of the bulk liquid and vapor. The evaporation process becomes irreversible only at the very final stage of evaporation, when the refractive index of the fluid attains virtually that of the vapor. Measured refractive index profiles and the time-dependence of evaporating neck diameters also seem to differ from predictions based on a continuum picture of bridge evaporation far from the critical point. We discuss these findings in terms of the probable density profiles in evolving liquid bridges. PMID:12538868

  17. Adiabatic burst evaporation from bicontinuous nanoporous membranes

    PubMed Central

    Ichilmann, Sachar; Rücker, Kerstin; Haase, Markus; Enke, Dirk

    2015-01-01

    Evaporation of volatile liquids from nanoporous media with bicontinuous morphology and pore diameters of a few 10 nm is an ubiquitous process. For example, such drying processes occur during syntheses of nanoporous materials by sol–gel chemistry or by spinodal decomposition in the presence of solvents as well as during solution impregnation of nanoporous hosts with functional guests. It is commonly assumed that drying is endothermic and driven by non-equilibrium partial pressures of the evaporating species in the gas phase. We show that nearly half of the liquid evaporates in an adiabatic mode involving burst-like liquid-to-gas conversions. During single adiabatic burst evaporation events liquid volumes of up to 107 μm3 are converted to gas. The adiabatic liquid-to-gas conversions occur if air invasion fronts get unstable because of the built-up of high capillary pressures. Adiabatic evaporation bursts propagate avalanche-like through the nanopore systems until the air invasion fronts have reached new stable configurations. Adiabatic cavitation bursts thus compete with Haines jumps involving air invasion front relaxation by local liquid flow without enhanced mass transport out of the nanoporous medium and prevail if the mean pore diameter is in the range of a few 10 nm. The results reported here may help optimize membrane preparation via solvent-based approaches, solution-loading of nanopore systems with guest materials as well as routine use of nanoporous membranes with bicontinuous morphology and may contribute to better understanding of adsorption/desorption processes in nanoporous media. PMID:25926406

  18. Condensation and Evaporation of Solar System Materials

    NASA Astrophysics Data System (ADS)

    Davis, A. M.; Richter, F. M.

    2003-12-01

    condensable matter (see Chapter 1.08; Grossman, 1973; Wänke et al., 1974; Grossman and Ganapathy, 1976; Grossman et al., 1977), where CI chondrites are taken to represent total condensable matter.Elemental abundance patterns ordered by volatility certainly could have been produced by partial condensation, but they could also have been caused by partial evaporation. The relative importance of these opposite processes is still subject to debate and uncertainty. It should be remembered that condensation calculations typically assume chemical equilibrium in a closed system, in which case the system has no memory of the path by which it arrived at a given state, and thus the chemical and isotopic composition of the condensed phase cannot be used to distinguish between partial condensation and partial evaporation. Humayun and Clayton (1995) have taken a somewhat different view by arguing that condensation and evaporation are distinguishable, in that evaporation, but not condensation, will produce isotopically fractionated residues. With this idea in mind, they carefully measured the potassium isotopic compositions of a broad range of solar system materials with different degrees of potassium depletion and found them to be indistinguishable. This they took as evidence that evaporation could not have been a significant process in determining the diverse elemental abundance patterns of the various solar system materials they measured, because had evaporation been important in fractionating potassium it would have also fractionated the potassium isotopes. We will qualify this line of reasoning by arguing that evaporation and condensation can under certain conditions produce isotopically fractionated condensed phases (i.e., that partial evaporation can produce isotopically heavy residues and that partial condensation can produce isotopically light condensates) but that under other conditions both can produce elemental fractionations without significant isotopic fractionation. The

  19. Evaporation and the mass and energy balances of the Dead Sea (Invited)

    NASA Astrophysics Data System (ADS)

    Lensky, N.; Gavrieli, I.; Gertman, I.; Nehorai, R.; Lensky, I. M.; Lyakhovsky, V.; Dvorkin, Y.

    2009-12-01

    The Dead Sea is a hypersaline terminal lake experiencing a water level drop of about 1 m/yr over the last decade. The existing estimations for the water balance of the lake are widely variable, reflecting the unknown subsurface water inflow, the rate of evaporation, and the rate of salt accumulation at the lake bottom. To estimate these we calculate the energy and mass balances for the Dead Sea utilizing measured meteorological and hydrographical data from 1996 to 2009. The data is measured from a buoy located in the Dead Sea 5, km from the nearest shore. The data includes solar radiation (incoming), long wave radiation (downward and upward looking), wind velocity, relative humidity, air temperature, air pressure and water temperature profile. Using energy balance we calculate the evaporation rate, taking into account the impact of lowered surface water activity. From mass balance considerations we calculate the salt precipitation rate, which was about 0.1 m/yr during this period. Using an overall mass balance we get the relation between water inflows, which are the least constrained quantity, and the evaporation rate. The average annual inflow is 265-325 mcm/yr, corresponding to an evaporation rate of 1.1-1.2 m/yr. Higher inflows, suggested in previous studies, call for increased evaporation rate and are therefore not in line with the energy balance. We also take into account the spatial variations and discuss how well the data measured in the buoy represent the Dead Sea surface conditions.

  20. Using stable isotopes to determine sources of evaporated water to the atmosphere in the Amazon basin

    NASA Astrophysics Data System (ADS)

    Martinelli, Luiz Antonio; Victoria, Reynaldo Luiz; Silveira Lobo Sternberg, Leonel; Ribeiro, Aristides; Zacharias Moreira, Marcelo

    1996-09-01

    The return of water in vapor form from the land to the atmosphere, via plant transpiration and evaporation, is fundamental for the maintenance of the regional water cycle in the Amazon basin. Whereas transpiration, the dominant process, has the extensive vegetation cover as a large single source, evaporation can have several sources, and their relative importance and location are poorly known. The isotopic composition (δ 18O and δD) of water from various sources was used to see whether or not specific sources of water vapor to the atmosphere could be determined. It is well established that natural waters fall on a line called the meteoric water line (MWL; the regression of δ 18O × δD), with slope equal to eight and an intercept equal to ten. When a water body loses water via evaporation the slope become smaller than eight, typically 5-6. We estimated the slope of the regression of δ 18O × δD for several potential sources. We analyzed 1273 samples: 500 of rainfall, 409 of river water, 134 of lake water, 164 of soil water, 40 of throughfall and stemflow water, and 26 of shallow ground-water. We found that large rivers and lakes are likely contributors of evaporated water to the atmosphere. However, as they cover only a small area of the basin, other sources are needed. Probably, evaporated water originates from several small sources that were not detected by the isotopic composition of our data.

  1. Preliminary experimental studies with seawater on OTEC spout evaporator thermal effectiveness and phase transition in upcomer

    SciTech Connect

    Sonwalkar, N.; Larsen-Basse, J.

    1987-01-01

    An experimental open-cycle ocean thermal energy conversion (OC-OTEC) test facility has been erected to perform spout evaporator experiments with seawater. The facility, located at Ke-ahole Point, Kona, Hawaii, consists of a spout evaporator, a spray condenser and an on-line deaerator. Warm seawater at 25-27/sup 0/C from 8 m depth and cold deep seawater at 7-10/sup 0/C from 580 m depth is available throughout the year to the facility. The results of thermal effectiveness tests are reported. The error due to instrumental uncertainties in thermal effectiveness measurements has been estimated to be of the order +-5.5 percent. The effect of design parameters; spout height, spout diameter and liquid loading on thermal effectiveness have been observed and compared with the existing theoretical predictions. A modified thermodynamic approach is proposed to evaluate average heat transfer characteristics of spout evaporators using a three component heat transfer coefficient approach. It adequately describes heat transfer characteristics of the spout evaporator under study. Results essentially agree with data obtained by others for fresh water, but clearly indicate the need for improvement of the existing model to take into account a number of identified factors associated with the real life OC-OTEC conditions, such as the transience in evaporator performance associated with the ocean-generated flow and pressure fluctuations and effects of noncondensable gases.

  2. Cable-fault locator

    NASA Technical Reports Server (NTRS)

    Cason, R. L.; Mcstay, J. J.; Heymann, A. P., Sr.

    1979-01-01

    Inexpensive system automatically indicates location of short-circuited section of power cable. Monitor does not require that cable be disconnected from its power source or that test signals be applied. Instead, ground-current sensors are installed in manholes or at other selected locations along cable run. When fault occurs, sensors transmit information about fault location to control center. Repair crew can be sent to location and cable can be returned to service with minimum of downtime.

  3. Location, Location, Location: Where Do Location-Based Services Fit into Your Institution's Social Media Mix?

    ERIC Educational Resources Information Center

    Nekritz, Tim

    2011-01-01

    Foursquare is a location-based social networking service that allows users to share their location with friends. Some college administrators have been thinking about whether and how to take the leap into location-based services, which are also known as geosocial networking services. These platforms, which often incorporate gaming elements like…

  4. Effect of Variable Gravity on Evaporation of Binary Fluids in a Capillary Pore Evaporator

    NASA Technical Reports Server (NTRS)

    Girgis, Morris M.; Matta, Nabil S.; Kolli, Kiran; Brown, Leon; Bain, James, Jr.; McGown, Juantonio

    1996-01-01

    The research project focuses on experimental investigation of the capillary-pumped evaporative heat transfer phenomenon. The objective is to examine whether the heat transfer and stability of a heated meniscus in a capillary pore can be enhanced by adding trace amounts of a non-volatile solute to a solvent and to understand the changes that occur. The experimental setup consists of a single pore evaporator connected to a reservoir which supplies liquid to the evaporator. In addition to the experiments of capillary-pumped evaporation, a parallel experimental study has been conducted to systematically investigate the effects of gravity as well as the effects of bulk composition on the heat transfer characteristics of evaporating binary thin films near the contact line region along an inclined heated surface. To investigate the buoyancy effects on evaporation along an inclined heated surface, the angle of inclination from a horizontal plane was varied fro 15 C to 90 C. An optimum concentration between 0.5% and 1% decane in pentane/decane solutions has been demonstrated at different angles of inclination. Improved heat transfer was found for the geometry with the smallest angle of inclination of 15 degrees. In addition, flow visualization has revealed that at low inclination angles effective heat transfer takes place primarily due to an extension of the thin film near the contact line. At these low inclination angles, the optimum concentration is associated with enhanced wetting characteristics and reduced thermocapillary stresses along the interface.

  5. Evaporation of pure liquids with increased viscosity in a falling film evaporator

    NASA Astrophysics Data System (ADS)

    Weise, Felix; Scholl, Stephan

    2009-05-01

    The present study investigated fluid dynamics and heat transfer of viscous pure liquids in a falling film evaporator. This is of special benefit as it avoids mass transfer effects on the evaporation behaviour. Experiments at a single-tube glass falling film evaporator were conducted. It allowed a full-length optical film observation with a high-speed camera. Additionally the evaporator was equipped with a slotted weir distribution device. Test fluids provided viscosities ranging from μ = 0.3 to 41 mPa s. The Reynolds number was between 0.7 and 1,930. Surface evaporation and the transition to nucleate boiling were studied to gain information about the film stability at maximum wall superheat. A reliable database for laminar and laminar-wavy viscous single component films was created. The experimental results show a significant enhancement in the wave development due to the film distribution. A wavy flow with different wave velocities was superposed to the film in each liquid load configuration without causing a film breakdown or dry spots on the evaporator tube. It was found that nucleate boiling can be allowed without causing film instabilities over a significant range of wall superheat.

  6. An Investigation of Graduate Scientists' Understandings of Evaporation and Boiling.

    ERIC Educational Resources Information Center

    Goodwin, Alan; Orlik, Yuri

    2000-01-01

    Uses a video presentation of six situations relating to the evaporation and boiling of liquids and the escape of dissolved gases from solution and investigates graduate scientists' understanding of the concepts of boiling and evaporation. (Author/YDS)

  7. EVAPORATOR FLOOR, CLARIFIERS TO THE LEFT, SCALES TO THE RIGHT, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    EVAPORATOR FLOOR, CLARIFIERS TO THE LEFT, SCALES TO THE RIGHT, EVAPORATOR CELLS ONE, TWO AND THREE IN THE BACKGROUND. VIEW FROM NORTHWEST FROM LIME VATS - Lihue Plantation Company, Sugar Mill Building, Haleko Road, Lihue, Kauai County, HI

  8. EVALUATION OF HADWACO MVR EVAPORATOR, ETV REPORT& STATEMENT

    EPA Science Inventory

    Hadwaco US, Inc., manufactures a commercial ready mechanical vapor recompression (MVR) evaporator for use in the metal finishing industry. The evaporator utilizes proven MVR and falling film principles, with the key innovation being the construction material of the heat transfer ...

  9. Evaporation rate of emulsion and oil-base emulsion pheromones

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Knowledge of pheromone evaporation rate is critical to distribute pheromone containers effectively in the forest, orchard and field. There are several factors influencing the pheromone evaporation rate that include wind speed, container size and porosity, release area, temperature, humidity, pherom...

  10. Comparing Evaporative Sources of Terrestrial Precipitation and Their Extremes in MERRA Using Relative Entropy

    NASA Technical Reports Server (NTRS)

    Dirmeyer, Paul A.; Wei, Jiangfeng; Bosilovich, Michael G.; Mocko, David M.

    2014-01-01

    A quasi-isentropic back trajectory scheme is applied to output from the Modern Era Retrospective-analysis for Research and Applications and a land-only replay with corrected precipitation to estimate surface evaporative sources of moisture supplying precipitation over every ice-free land location for the period 1979-2005. The evaporative source patterns for any location and time period are effectively two dimensional probability distributions. As such, the evaporative sources for extreme situations like droughts or wet intervals can be compared to the corresponding climatological distributions using the method of relative entropy. Significant differences are found to be common and widespread for droughts, but not wet periods, when monthly data are examined. At pentad temporal resolution, which is more able to isolate floods and situations of atmospheric rivers, values of relative entropy over North America are typically 50-400 larger than at monthly time scales. Significant differences suggest that moisture transport may be the key to precipitation extremes. Where evaporative sources do not change significantly, it implies other local causes may underlie the extreme events.

  11. Thermionic evaporation of films of multicomponent chalcogenide semiconductors

    SciTech Connect

    Serigenko, T.I.; Gritsenko, K.P.; Kryuchin, A.A.; Petrov, V.V.; Yudin, G.Y.

    1985-08-01

    This paper describes a procedure for the preparation of thin films of multicomponent chalcogenide semiconductors of As-Te-Se and As-Te-Ge by thermionic evaporation, using a discrete evaporator. Films of thickness 20-60 nm evaporated onto a glass substrate had an adhesion of 35-40 kg/cm/sup 2/. The films have enhanced homogeneity and time stability as compared to thin films of the same composition prepared by thermal evaporation.

  12. Evaporative cooler including one or more rotating cooler louvers

    DOEpatents

    Gerlach, David W

    2015-02-03

    An evaporative cooler may include an evaporative cooler housing with a duct extending therethrough, a plurality of cooler louvers with respective porous evaporative cooler pads, and a working fluid source conduit. The cooler louvers are arranged within the duct and rotatably connected to the cooler housing along respective louver axes. The source conduit provides an evaporative cooler working fluid to the cooler pads during at least one mode of operation.

  13. Evaporation from the shallow Lake Massaciuccoli (Tuscany, Italy) studied using stable isotopes and evaporation pan data

    NASA Astrophysics Data System (ADS)

    Baneschi, I.; Gonfiantini, R.; Guidi, M.

    2009-04-01

    Oxygen and hydrogen isotope variations monitored in Lake Massaciuccoli (7 km2, 2 m deep, seasonally variable water level) during summer 2008, were compared with those observed in a Class A evaporation pan (diameter 120.6 cm, depth 25.4 cm) placed on the lake eastern shore. Air temperature, pressure, relative humidity, wind speed and direction, solar radiation, water temperature in the lake and the pan were also measured. The pluviometer indicated that no precipitation occurred during the study period. The pan was initially filled with groundwater up to the level of 19.2 cm (219 L), depleted in heavy isotopes with respect to tha lake water. Sodium chloride was added up to the concentration of 1 g×L-1, which is assumed do not affect significantly the evaporation rate till the water volume is reduced to less than 10 %. The Cl- concentration was used to provide an estimation of the evaporated water fraction, in addition to the micrometer measuring the water level variations. The pan water was sampled every 2-3 days and Cl- and stable isotopes determined. The set of stable isotope and evaporation data enabled us to compute the parameters governing the evaporation process and the isotopic exchanges with the atmospheric moisture, according to the procedure proposed by Gonfiantini (1986). The values were applied to test three working hypotheses of water balance of Lake Massaciuccoli: (i) surface inflow and outflow of liquid water are negligible and only evaporation is important; (ii) the inflow is negligible and outflow and evaporation are both significant; (iii) the three terms of balance are all important but the losses by evaporation and outflow exceed inflow (as the lake water level was decreasing). Water exchanges with groundwater are considered negligible. The best agreement between lake and pan data was obtained with the second hypothesis, for which the fraction of water removed by evaporation was estimated to be about 40 % ot he total water losses. This residual

  14. Front instabilities in evaporatively dewetting nanofluids

    NASA Astrophysics Data System (ADS)

    Vancea, I.; Thiele, U.; Pauliac-Vaujour, E.; Stannard, A.; Martin, C. P.; Blunt, M. O.; Moriarty, P. J.

    2008-10-01

    Various experimental settings that involve drying solutions or suspensions of nanoparticles—often called nanofluids—have recently been used to produce structured nanoparticle layers. In addition to the formation of polygonal networks and spinodal-like patterns, the occurrence of branched structures has been reported. After reviewing the experimental results we use a modified version of the Monte Carlo model first introduced by Rabani [Nature 426, 271 (2003)] to study structure formation in evaporating films of nanoparticle solutions for the case that all structuring is driven by the interplay of evaporating solvent and diffusing nanoparticles. After introducing the model and its general behavior we focus on receding dewetting fronts which are initially straight but develop a transverse fingering instability. We analyze the dependence of the characteristics of the resulting branching patterns on the driving effective chemical potential, the mobility and concentration of the nanoparticles, and the interaction strength between liquid and nanoparticles. This allows us to understand the underlying instability mechanism.

  15. Thermoelectric Integrated Membrane Evaporation Subsystem operational improvements

    NASA Technical Reports Server (NTRS)

    Dehner, G. F.; Winkler, H. E.; Reysa, R. P.

    1984-01-01

    A three-man preprototype Thermoelectric Integrated Membrane Evaporation Subsystem (TIMES) has been developed to provide high quality water recovery from waste fluids on extended duration space flights. In the most recent effort, a number of improvements have been made to simplify subsystem operation and increase performance. These modifications include changes to the hollow fiber membrane evaporator, the condensing section of the thermoelectric heat pump, and the electronic controller logic and display. This paper describes the results of the test program that was conducted to evaluate the implemented improvements. In addition, an advanced design concept is discussed that will provide lower electrical power consumption, greater water production capacity, lower weight, and a smaller package than the present subsystem configuration.

  16. Production of stable tellurium evaporated targets

    NASA Astrophysics Data System (ADS)

    Greene, John P.; Palumbo, Annalia; Tan, Wanpeng; Görres, Joachim; Wiescher, Michael C.

    2008-06-01

    Due to the low melting point of tellurium metal, self-supporting Te targets degrade quickly when exposed to particle beams. This situation is greatly improved if the tellurium material is evaporated onto C foil backings. Elastic scattering in target and backing layers broadens the Te peak, making measurements difficult, while too little material reduces the reaction rate. Therefore, it is necessary to optimize the target thickness. Evaporated metallic and oxide Te targets were prepared at Argonne National Laboratory by vacuum deposition from a resistively heated source boat. The stability of the targets was then tested by exposing them to a varying intensity alpha beam with an energy range from 17 to 27 MeV using the FN Tandem Van de Graaff accelerator at the University of Notre Dame. Optimal target thicknesses and beam currents were then obtained for p-process experiments. A description of the apparatus and production method will be presented.

  17. Formation and evaporation of nonsingular black holes.

    PubMed

    Hayward, Sean A

    2006-01-27

    Regular (nonsingular) space-times are given that describe the formation of a (locally defined) black hole from an initial vacuum region, its quiescence as a static region, and its subsequent evaporation to a vacuum region. The static region is Bardeen-like, supported by finite density and pressures, vanishing rapidly at large radius and behaving as a cosmological constant at small radius. The dynamic regions are Vaidya-like, with ingoing radiation of positive-energy flux during collapse and negative-energy flux during evaporation, the latter balanced by outgoing radiation of positive-energy flux and a surface pressure at a pair creation surface. The black hole consists of a compact space-time region of trapped surfaces, with inner and outer boundaries that join circularly as a single smooth trapping horizon. PMID:16486679

  18. Anisotropic Neutron Evaporation from Spinning Fission Fragments

    NASA Astrophysics Data System (ADS)

    Stuttgé, L.; Dorvaux, O.; Gönnenwein, F.; Mutterer, M.; Kopatch, Yu.; Chernysheva, E.; Hanappe, F.; Hambsch, F.-J.

    2011-10-01

    Neutron evaporation anisotropy in the centre of mass of the rotating fission fragments in the spontaneous fission of 252Cf has been investigated within the CORA experiments. If it is well accepted that the bulk of emitted neutrons originate from an isotropic evaporation in the centre of mass of the moving fragments, discrepancies in experimental as well as in theoretical energy and angular distributions appear throughout many attempts performed by various authors. Scission neutrons most probably contribute but don't allow to explain totally the observed anisotropy. Due to its weak contribution to the total anisotropy, the centre of mass anisotropy is very difficult to be highlighted. A novel experimental approach has been developed to extract this effect and will be presented as well as some first results.

  19. Evaporation duct assessment from meteorological buoys

    NASA Astrophysics Data System (ADS)

    Hitney, Herbert V.

    2002-07-01

    The evaporation duct over the sea is usually assessed using bulk meteorological measurements. This paper investigates the utility of meteorological buoys as a source for these bulk measurements and compares evaporation duct assessments using two buoys in southern California waters separated by 128 km. A simple radio propagation experiment at 2.4 GHz between one of the buoys and the coast on an 18.2 km path is described. Observed propagation loss from this experiment is compared to modeled loss based on the meteorological measurements at each buoy. The purpose of this paper is to investigate radio propagation effects using established and accepted methods already described in the literature. Accordingly, no discussion of atmospheric surface layer meteorology affecting radio propagation is given.

  20. Thermodynamic Modeling of Savannah River Evaporators

    SciTech Connect

    Weber, C.F.

    2001-08-02

    A thermodynamic model based on the code SOLGASMIX is developed to calculate phase equilibrium in evaporators and related tank wastes at the Savannah River Site (SRS). This model uses the Pitzer method to calculate activity coefficients, and many of the required Pitzer parameters have been determined in the course of this work. Principal chemical species in standard SRS simulant solutions are included, and the temperature range for most parameters has been extended above 100 C. The SOLGASMIX model and calculations using the code Geochemists Workbench are compared to actual solubility data including silicate, aluminate, and aluminosilicate solutions. In addition, SOLGASMIX model calculations are also compared to transient solubility data involving SRS simulant solutions. These comparisons indicate that the SOLGASMIX predictions closely match reliable data over the range of temperature and solution composition expected in the SRS evaporator and related tanks. Predictions using the Geochemists Workbench may be unreliable, due primarily to the use of an inaccurate activity coefficient model.

  1. Reactively evaporated films of copper molybdenum sulfide

    NASA Technical Reports Server (NTRS)

    Chi, K. C.; Dillon, R. O.; Bunshah, R. F.; Alterovitz, S.; Woollam, J. A.

    1978-01-01

    Films of superconducting Chevrel-phase copper molybdenum sulfide CuxMo6S8 were deposited on sapphire substrates by reactive evaporation using H2S as the reacting gas. Two superconducting temperatures (10.0 K and 5.0 K) of the films were found, corresponding to two different phases with different copper concentrations. All films were superconducting above 4.2 K and contained Chevrel-phase compound as well as free molybdenum. The critical current was measured as a function of applied field. One sample was found to deviate from the scaling law found for co-evaporated or sputtered samples, which possibly indicates a different pinning mechanism or inhomogeneity of the sample.

  2. Black hole evaporation rates without spacetime.

    PubMed

    Braunstein, Samuel L; Patra, Manas K

    2011-08-12

    Verlinde recently suggested that gravity, inertia, and even spacetime may be emergent properties of an underlying thermodynamic theory. This vision was motivated in part by Jacobson's 1995 surprise result that the Einstein equations of gravity follow from the thermodynamic properties of event horizons. Taking a first tentative step in such a program, we derive the evaporation rate (or radiation spectrum) from black hole event horizons in a spacetime-free manner. Our result relies on a Hilbert space description of black hole evaporation, symmetries therein which follow from the inherent high dimensionality of black holes, global conservation of the no-hair quantities, and the existence of Penrose processes. Our analysis is not wedded to standard general relativity and so should apply to extended gravity theories where we find that the black hole area must be replaced by some other property in any generalized area theorem. PMID:21902381

  3. Thermoelectric integrated membrane evaporation water recovery technology

    NASA Technical Reports Server (NTRS)

    Roebelen, G. J., Jr.; Winkler, H. E.; Dehner, G. F.

    1982-01-01

    The recently developed Thermoelectric Integrated Membrane Evaporation Subsystem (TIMES) offers a highly competitive approach to water recovery from waste fluids for future on-orbit stations such as the Space Operations Center. Low power, compactness and gravity insensitive operation are featured in this vacuum distillation subsystem that combines a hollow fiber membrane evaporator with a thermoelectric heat pump. The hollow fiber elements provide positive liquid/gas phase control with no moving parts other than pumps and an accumulator, thus solving problems inherent in other reclamation subsystem designs. In an extensive test program, over 850 hours of operation were accumulated during which time high quality product water was recovered from both urine and wash water at an average steady state production rate of 2.2 pounds per hour.

  4. PREDICTING EVAPORATION RATES AND TIMES FOR SPILLS OF CHEMICAL MIXTURES

    EPA Science Inventory


    Spreadsheet and short-cut methods have been developed for predicting evaporation rates and evaporation times for spills (and constrained baths) of chemical mixtures. Steady-state and time-varying predictions of evaporation rates can be made for six-component mixtures, includ...

  5. Evaporation Of Clustered Drops Of Binary-Liquid Fuels

    NASA Technical Reports Server (NTRS)

    Bellan, Josette; Harstad, Kenneth G.

    1993-01-01

    Report repeats and elaborates upon information presented in "Diffusion Of Mass In Evaporating Multicomponent Drops" (NPO-18206). Presents details of mathematical model of evaporation of binary liquid from both dense and dilute clusters of drops. Interactions among evaporation, diffusion in liquids, slip velocity, and other phenomena modeled.

  6. 7 CFR 58.913 - Evaporators and vacuum pans.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Evaporators and vacuum pans. 58.913 Section 58.913....913 Evaporators and vacuum pans. All equipment used in the removal of moisture from milk or milk... Sanitary Standards for Milk and Milk Products Evaporators and Vacuum Pans....

  7. 7 CFR 58.913 - Evaporators and vacuum pans.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Evaporators and vacuum pans. 58.913 Section 58.913....913 Evaporators and vacuum pans. All equipment used in the removal of moisture from milk or milk... Sanitary Standards for Milk and Milk Products Evaporators and Vacuum Pans....

  8. 7 CFR 58.913 - Evaporators and vacuum pans.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Evaporators and vacuum pans. 58.913 Section 58.913....913 Evaporators and vacuum pans. All equipment used in the removal of moisture from milk or milk... Sanitary Standards for Milk and Milk Products Evaporators and Vacuum Pans....

  9. 7 CFR 58.913 - Evaporators and vacuum pans.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Evaporators and vacuum pans. 58.913 Section 58.913....913 Evaporators and vacuum pans. All equipment used in the removal of moisture from milk or milk... Sanitary Standards for Milk and Milk Products Evaporators and Vacuum Pans....

  10. 7 CFR 58.913 - Evaporators and vacuum pans.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Evaporators and vacuum pans. 58.913 Section 58.913....913 Evaporators and vacuum pans. All equipment used in the removal of moisture from milk or milk... Sanitary Standards for Milk and Milk Products Evaporators and Vacuum Pans....

  11. Trends in evaporation of a large subtropical lake

    NASA Astrophysics Data System (ADS)

    Hu, Cheng; Wang, Yongwei; Wang, Wei; Liu, Shoudong; Piao, Meihua; Xiao, Wei; Lee, Xuhui

    2016-03-01

    How rising temperature and changing solar radiation affect evaporation of natural water bodies remains poor understood. In this study, evaporation from Lake Taihu, a large (area 2400 km2) freshwater lake in the Yangtze River Delta, China, was simulated by the CLM4-LISSS offline lake model and estimated with pan evaporation data. Both methods were calibrated against lake evaporation measured directly with eddy covariance in 2012. Results show a significant increasing trend of annual lake evaporation from 1979 to 2013, at a rate of 29.6 mm decade-1 according to the lake model and 25.4 mm decade-1 according to the pan method. The mean annual evaporation during this period shows good agreement between these two methods (977 mm according to the model and 1007 mm according to the pan method). A stepwise linear regression reveals that downward shortwave radiation was the most significant contributor to the modeled evaporation trend, while air temperature was the most significant contributor to the pan evaporation trend. Wind speed had little impact on the modeled lake evaporation but had a negative contribution to the pan evaporation trend offsetting some of the temperature effect. Reference evaporation was not a good proxy for the lake evaporation because it was on average 20.6 % too high and its increasing trend was too large (56.5 mm decade-1).

  12. Chromospheric Evaporation in an X1.0 Flare on 2014 March 29 Observed with IRIS and EIS

    NASA Astrophysics Data System (ADS)

    Li, Y.; Ding, M. D.; Qiu, J.; Cheng, J. X.

    2015-09-01

    Chromospheric evaporation refers to dynamic mass motions in flare loops as a result of rapid energy deposition in the chromosphere. These motions have been observed as blueshifts in X-ray and extreme-ultraviolet (EUV) spectral lines corresponding to upward motions at a few tens to a few hundreds of km s-1. Past spectroscopic observations have also revealed a dominant stationary component, in addition to the blueshifted component, in emission lines formed at high temperatures (˜10 MK). This is contradictory to evaporation models predicting predominant blueshifts in hot lines. The recently launched Interface Region Imaging Spectrograph (IRIS) provides high-resolution imaging and spectroscopic observations that focus on the chromosphere and transition region in the UV passband. Using the new IRIS observations, combined with coordinated observations from the EUV Imaging Spectrometer, we study the chromospheric evaporation process from the upper chromosphere to the corona during an X1.0 flare on 2014 March 29. We find evident evaporation signatures, characterized by Doppler shifts and line broadening, at two flare ribbons that are separating from each other, suggesting that chromospheric evaporation takes place in successively formed flaring loops throughout the flare. More importantly, we detect dominant blueshifts in the high-temperature Fe xxi line (˜10 MK), in agreement with theoretical predictions. We also find that, in this flare, gentle evaporation occurs at some locations in the rise phase of the flare, while explosive evaporation is detected at some other locations near the peak of the flare. There is a conversion from gentle to explosive evaporation as the flare evolves.

  13. Flash evaporation of liquid monomer particle mixture

    DOEpatents

    Affinito, John D.; Darab, John G.; Gross, Mark E.

    1999-01-01

    The present invention is a method of making a first solid composite polymer layer. The method has the steps of (a) mixing a liquid monomer with particles substantially insoluble in the liquid monomer forming a monomer particle mixture; (b) flash evaporating the particle mixture and forming a composite vapor; and (c) continuously cryocondensing said composite vapor on a cool substrate and cross-linking the cryocondensed film thereby forming the polymer layer.

  14. Flash evaporation of liquid monomer particle mixture

    DOEpatents

    Affinito, J.D.; Darab, J.G.; Gross, M.E.

    1999-05-11

    The present invention is a method of making a first solid composite polymer layer. The method has the steps of (a) mixing a liquid monomer with particles substantially insoluble in the liquid monomer forming a monomer particle mixture; (b) flash evaporating the particle mixture and forming a composite vapor; and (c) continuously cryocondensing said composite vapor on a cool substrate and cross-linking the cryocondensed film thereby forming the polymer layer. 3 figs.

  15. Fluid Flow in An Evaporating Droplet

    NASA Technical Reports Server (NTRS)

    Hu, H.; Larson, R.

    1999-01-01

    Droplet evaporation is a common phenomenon in everyday life. For example, when a droplet of coffee or salt solution is dropped onto a surface and the droplet dries out, a ring of coffee or salt particles is left on the surface. This phenomenon exists not only in everyday life, but also in many practical industrial processes and scientific research and could also be used to assist in DNA sequence analysis, if the flow field in the droplet produced by the evaporation could be understood and predicted in detail. In order to measure the fluid flow in a droplet, small particles can be suspended into the fluid as tracers. From the ratio of gravitational force to Brownian force a(exp 4)(delta rho)(g)/k(sub B)T, we find that particle's tendency to settle is proportional to a(exp 4) (a is particle radius). So, to keep the particles from settling, the droplet size should be chosen to be in a range 0.1 -1.0 microns in experiments. For such small particles, the Brownian force will affect the motion of the particle preventing accurate measurement of the flow field. This problem could be overcome by using larger particles as tracers to measure fluid flow under microgravity since the gravitational acceleration g is then very small. For larger particles, Brownian force would hardly affect the motion of the particles. Therefore, accurate flow field could be determined from experiments in microgravity. In this paper, we will investigate the fluid flow in an evaporating droplet under normal gravity, and compare experiments to theories. Then, we will present our ideas about the experimental measurement of fluid flow in an evaporating droplet under microgravity.

  16. Tear evaporation from the ocular surface.

    PubMed

    Tsubota, K; Yamada, M

    1992-09-01

    A simple method was developed to measure tear evaporation. A sensor was inserted into a chamber covering the eye. The humidity inside each chamber then was measured every 10 sec for 2 min with both eyes either closed or open but allowing normal blinking. The difference between these conditions represented evaporation from the ocular surface. Using this method, the tear evaporation rate at 40% ambient humidity (TEROS 40) was calculated. The average TEROS 40 in normal subjects (n = 43) was 15.6 +/- 3.8 x 10(-7) g/sec. It was 9.5 +/- 5.6 x 10(-7) g/sec in patients with dry eye symptoms (n = 72, P less than 0.001). The insertion of lacrimal collagen implants in one group of such patients (n = 10) increased the TEROS 40 from 10.2 +/- 5.5 x 10(-7) g/sec to 18.2 +/- 4.8 x 10(-7) g/sec (P less than 0.01). The instillation of eye drops increased the TEROS 40 significantly in patients with dry eye symptoms for at least 1 min (n = 10, P less than 0.01); a continued effect depended on the type of eye drop. Increased TEROS 40 still was observed 5 min after instillation of viscous eye drops (0.1% and 0.3% sodium hyaluronic acid); the TEROS 40 returned to original levels within 5 min after instillation of artificial tears of normal viscosity with or without 0.05% sodium hyaluronate. In all cases, TEROS 40 returned to original levels within 10 min. This was a quick reliable method for measuring tear evaporation from the ocular surface, and it can be applied to evaluate tear dynamics and subclassifications of dry eyes. PMID:1526744

  17. A physical model of the evaporating meniscus

    SciTech Connect

    Mirzamoghadam, A. ); Catton, I. )

    1988-02-01

    Transport phenomena associated with the heating of a stationary fluid near saturation by an inclined, partially submerged copper plate were studied analytically. Under steady-state evaporation, the meniscus profile was derived using an appropriate liquid film velocity and temperature distribution in an integral approach similar to boundary layer analysis. Derivation of the meniscus profile led to predicting heat transfer and performance as a function of angle of inclination of the plate.

  18. The interaction of evaporative and convective instabilities

    NASA Astrophysics Data System (ADS)

    Ozen, O.

    Evaporative convection arises in a variety of natural and industrial processes, such as drying of lakebeds, heat pipe technology and dry-eye syndrome. The phenomenon of evaporative convection leads to an interfacial instability where an erstwhile flat surface becomes undulated as a control variable, such as temperature drop, exceeds a critical value. This instability has been investigated by others assuming that the vapor phase is infinitely deep and passive, i.e. vapor fluid dynamics has been ignored. However, when we look at some engineering processes, such as distillation columns, heat pipes and drying technologies where phase change takes place we might imagine that the assumption of an infinitely deep vapor layer or at least that of a passive vapor is inappropriate. Previous work on convection in bilayer systems with no phase-change suggests that active vapor layers play a major role in determining the stability of an interface. Hence, for the case of convection with phase-change, we will address this issue and try to answer the question whether the infinitely deep and passive vapor layer is a valid assumption. We have also investigated, theoretically, the gravity and surface tension gradient-driven instabilities occurring during the evaporation of a liquid into its own vapor taking into account the fluid dynamics of both phases and the finiteness of the domains of each phase, i.e. the liquid and its vapor are assumed to be confined between two horizontal plates, and different heating arrangements are applied. The effects of fluid layer depths, the evaporation rate and the temperature gradient applied across the fluids on the stability of the interface are studied. The modes of the flow pattern are determined for each scenario. The physics of the instability are explained and a comparison is made with the results of similar, yet physically different problems.

  19. Intensification of evaporation processes using surfactants

    NASA Astrophysics Data System (ADS)

    Sharifullin, V. N.; Sharifullin, A. V.

    2015-06-01

    The effect of a group of low molecular surfactants on the evaporation rate during nucleate boiling of water is investigated. It is found that the vaporization rate and heat flux from the heater increase by 4-8% in an electric boiler with surfactants. The analysis of the process based on the model of the phase contact surface restoration made it possible to formulate the mechanism of the effect of considered surfactants.

  20. The evaporative demand drought index: Part I 1 – Linking drought evolution to variations in evaporative demand

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many operational drought indices focus primarily on precipitation and temperature when depicting hydroclimatic anomalies, and this perspective can be augmented by analyses and products that reflect the evaporative dynamics of drought. We leverage the linkage between atmospheric evaporative demand (E...

  1. Analysis of the climate variability on Lake Nasser evaporation based on the Bowen ratio energy budget method.

    PubMed

    Elsawwaf, Mohamed; Willems, Patrick

    2012-04-01

    Variations in lake evaporation have a significant impact on the energy and water budgets of lakes. Understanding these variations and the role of climate is important for water resources management as well as predicting future changes in lake hydrology as a result of climate change. This study presents a comprehensive, 10-year analysis of seasonal, intraseasonal, and interannual variations in lake evaporation for Lake Nasser in South Egypt. Meteorological and lake temperature measurements were collected from an instrumented platform (Raft floating weather station) at 2 km upstream ofthe Aswan High Dam. In addition to that, radiation measurements at three locations on the lake: Allaqi, Abusembel and Arqeen (respectively at 75, 280 and 350 km upstream of the Aswan High Dam) are used. The data were analyzed over 14-day periods from 1995 to 2004 to provide bi-weekly energy budget estimates of evaporation rate. The mean evaporation rate for lake Nasser over the study period was 5.88 mm day(-1), with a coefficient of variation of 63%. Considerable variability in evaporation rates was found on a wide range of timescales, with seasonal changes having the highest coefficient of variation (32%), followed by the intraseasonal (28%) and interannual timescales (11.6%; for summer means). Intraseasonal changes in evaporation were primarily associated with synoptic weather variations, with high evaporation events tending to occur during incursions of cold, dry air (due, in part, to the thermal lag between air and lake temperatures). Seasonal variations in evaporation were largely driven by temperature and net energy advection, but are out-of-phase with changes in wind speed. On interannual timescales, changes in summer evaporation rates were strongly associated with changes in net energy advection and showed only moderate connections to variations in temperature or humidity. PMID:23424853

  2. Modeling of Bulk Evaporation and Condensation

    NASA Technical Reports Server (NTRS)

    Anghaie, S.; Ding, Z.

    1996-01-01

    This report describes the modeling and mathematical formulation of the bulk evaporation and condensation involved in liquid-vapor phase change processes. An internal energy formulation, for these phase change processes that occur under the constraint of constant volume, was studied. Compared to the enthalpy formulation, the internal energy formulation has a more concise and compact form. The velocity and time scales of the interface movement were obtained through scaling analysis and verified by performing detailed numerical experiments. The convection effect induced by the density change was analyzed and found to be negligible compared to the conduction effect. Two iterative methods for updating the value of the vapor phase fraction, the energy based (E-based) and temperature based (T-based) methods, were investigated. Numerical experiments revealed that for the evaporation and condensation problems the E-based method is superior to the T-based method in terms of computational efficiency. The internal energy formulation and the E-based method were used to compute the bulk evaporation and condensation processes under different conditions. The evolution of the phase change processes was investigated. This work provided a basis for the modeling of thermal performance of multi-phase nuclear fuel elements under variable gravity conditions, in which the buoyancy convection due to gravity effects and internal heating are involved.

  3. Corrosion study of simulated evaporator components

    SciTech Connect

    Schreiber, S.B.; Dunn, S.L.

    1989-07-01

    At the Los Alamos Plutonium Facility, ion exchange effluents and precipitation filtrates containing discardable levels of transuranic elements are concentrated using a thermosiphon evaporator before cement fixation for waste disposal. Because of changing process feed streams and scrap recovery requirements, trace amounts of free chloride ions (Cl/sup /minus//) are being introduced into the stainless steel (SS) evaporator, potentially increasing corrosion rates and thereby reducing its useful life. This study was performed to determine the effects of Cl/sup /minus// in simulated evaporator feed solutions that contain significant amounts of ferric ions (Fe/sup 3+/) in nitric acid (HNO/sub 3/). A simulated environment was produced by heating 316 SS cans that contained various tests solutions. The surface was monitored for signs of pitting or stress cracking, and vessel weight loss was measured on a daily basis to establish a rough corrosion rate. The final conclusion is that the nitric acid solution provides enough free nitrate ions (NO/sub 3//sup /minus//) to maintain minimal corrosion in a dilute ferric chloride environment. 3 refs., 5 figs., 10 tabs.

  4. Digitally Programmable Micro Evaporation Source for Nanofabrication

    NASA Astrophysics Data System (ADS)

    Han, Han; Imboden, Matthias; Del Corro, Pablo; Stark, Thomas; Lally, Richard; Pardo, Flavio; Bolle, Cris; Bishop, David

    2015-03-01

    There is a significant world-wide effort to develop nano-manufacturing methods that can extend into the deep nanoscale region, below 20 nm. Techniques include photolithography, nano-imprint and direct write methods such as dip-pen lithography and atomic calligraphy. A central component of any fabrication setup is the deposition control of the materials to be used. Here we present a MEMS based, multi-material evaporation source array with each source element consisting of a polysilicon plate suspended by two electrical constriction leads. When resistively heating the plate, the pre-loaded material is thermally evaporated off of the plate. By arranging many of these devices into an array, one has a multi-material, digitally programmable evaporation source. Pulsing the source with precisely controlled peak voltage and timing can emit atom fluxes with an unprecedented level of control in terms of what, when and how many atoms get deposited. By varying their dimensions and arrangement, the source array can provide controllable atom fluxes ranging over ten orders of magnitude. Such a material source can provide precise control and flexibility when conducting nanopatterning and nanolithography.

  5. Dense spray evaporation as a mixing process

    NASA Astrophysics Data System (ADS)

    de Rivas, A.; Villermaux, E.

    2016-05-01

    We explore the processes by which a dense set of small liquid droplets (a spray) evaporates in a dry, stirred gas phase. A dense spray of micron-sized liquid (water or ethanol) droplets is formed in air by a pneumatic atomizer in a closed chamber. The spray is conveyed in ambient air as a plume whose extension depends on the relative humidity of the diluting medium. Standard shear instabilities develop at the plume edge, forming the stretched lamellar structures familiar with passive scalars. Unlike passive scalars however, these lamellae vanish in a finite time, because individual droplets evaporate at their border in contact with the dry environment. Experiments demonstrate that the lifetime of an individual droplet embedded in a lamellae is much larger than expected from the usual d2 law describing the fate of a single drop evaporating in a quiescent environment. By analogy with the way mixing times are understood from the convection-diffusion equation for passive scalars, we show that the lifetime of a spray lamellae stretched at a constant rate γ is tv=1/γ ln(1/+ϕ ϕ ) , where ϕ is a parameter that incorporates the thermodynamic and diffusional properties of the vapor in the diluting phase. The case of time-dependent stretching rates is examined too. A dense spray behaves almost as a (nonconserved) passive scalar.

  6. An evaporation model of colloidal suspension droplets

    NASA Astrophysics Data System (ADS)

    Sartori, Silvana; Li\\ Nán, Amable; Lasheras, Juan C.

    2009-11-01

    Colloidal suspensions of polymers in water or other solvents are widely used in the pharmaceutical industry to coat tablets with different agents. These allow controlling the rate at which the drug is delivered, taste or physical appearance. The coating is performed by simultaneously spraying and drying the tablets with the colloidal suspension at moderately high temperatures. The spreading of the coating on the pills surface depends on the droplet Webber and Reynolds numbers, angle of impact, but more importantly on the rheological properties of the drop. We present a model for the evaporation of a colloidal suspension droplet in a hot air environment with temperatures substantially lower than the boiling temperature of the carrier fluid. As the liquid vaporizes from the surface, a compacting front advances into the droplet faster than the liquid surface regresses, forming a shell of a porous medium where the particles reach their maximum packing density. While the surface regresses, the evaporation rate is determined by both the rate at which heat is transported to the droplet surface and the rate at which liquid vapor is diffused away from it. This regime continues until the compacting front reaches the center of the droplet, at which point the evaporation rate is drastically reduced.

  7. An evaporation model of multicomponent solution drops

    NASA Astrophysics Data System (ADS)

    Sartori, Silvana; Liñán, Amable; Lasheras, Juan C.

    2010-11-01

    Solutions of polymers are widely used in the pharmaceutical industry as tablets coatings. These allow controlling the rate at which the drug is delivered, taste or appearance. The coating is performed by spraying and drying the tablets at moderate temperatures. The wetting of the coating solution on the pill's surface depends on the droplet Webber and Re numbers, angle of impact and on the rheological properties of the droplet. We present a model for the evaporation of multicomponent solutions droplets in a hot air environment with temperatures substantially lower than the boiling temperature of the solvent. As the liquid vaporizes from the surface the fluid in the drop increases in concentration, until reaching its saturation point. After saturation, precipitation occurs uniformly within the drop. As the surface regresses, a compacting front formed by the precipitate at its maximum packing density advances into the drop, while the solute continues precipitating uniformly. This porous shell grows fast due to the double effect of surface regression and precipitation. The evaporation rate is determined by the rates at which heat is transported to the droplet surface and at which liquid vapor diffuses away from it. When the drop is fully compacted, the evaporation is drastically reduced.

  8. Ionization degree for strong evaporation of metals

    SciTech Connect

    Gusarov, Andrey V.; Aoki, Kazuo

    2005-08-15

    Kinetic equations for ions and neutrals are numerically solved in the plasma sheath formed at a condensed phase when strong evaporation is taking place. The Boltzmann distribution is assumed for electrons. A weakly ionized vapor with the Debye length much shorter than the mean free path is considered. This is typical for laser evaporation of metals. Under these conditions, the sheath consists of a Knudsen layer and a thin charge separation layer between the Knudsen layer and the condensed phase. The self-consistent electrostatic field in the Knudsen layer is obtained from the quasineutrality condition. The potential barrier in the charge separation layer is determined by the charge balance. Kinetic boundary conditions for neutrals and charges are estimated by the detailed balance principle from the parameters of the saturated vapor. The transport of charges in the sheath is controlled by ions and depends on ion-neutral collisions and the self-consistent electrostatic field. Ionization degree in the vapor formed by strong evaporation increases with the Mach number and can attain values about 30% higher than the ionization degree in the saturated vapor. Two factors contribute to this increase. The first is the drop of the potential barrier in the charge separation layer and the second is the strengthening of the field in the Knudsen layer. The ionization equilibrium may be disturbed by a considerable excess of charges.

  9. Transient Marangoni convection in hanging evaporating drops

    NASA Astrophysics Data System (ADS)

    Savino, R.; Fico, S.

    2004-10-01

    A combined experimental and numerical analysis has been carried out to study Marangoni effects during the evaporation of droplets. The experiments are performed with pendant drops of silicone oils (with different viscosities) and hydrocarbons. The temperature of the disk sustaining the drop is rapidly increased or decreased in order to study transient heating or cooling processes. The velocity field in the droplet is evaluated monitoring the motion of tracers in the meridian plane, using a laser sheet illumination system and a video camera. Surface temperature distributions of the drops are detected by infrared thermocamera. The numerical model is based on axisymmetric Navier-Stokes equations, taking into account the presence of Marangoni shear stresses and evaporative cooling at the liquid-air interface. Marangoni flows cause a larger, more uniform surface temperature, increasing heat transfer from disk to droplet, as well as evaporation rate. When Marangoni effects are negligible, larger surface temperature differences occur along the drop surface and heat transfer is relatively small. The role of Marangoni and buoyancy flows in silicone oils with different viscosities and hydrocarbons is discussed and correlations are presented between experimental and numerical results.

  10. Evaporation of solids by pulsed laser irradiation

    NASA Astrophysics Data System (ADS)

    Stafast, H.; Von Przychowski, M.

    The focused beam of a KrF laser (248 nm) has been applied to irradiate targets of Al 2O 3, SiC, graphite, Pb, Ni, Cr, quartz, and NaCl at variable laser energy flux is the range 0-13 J/cm 2. The amount of target material ejected into the vacuum (background pressure about 8 × 10 -4 Torr) was determined from the target weight before and after laser irradiation. The average number of particles (formula weight) evaporated per laser pulse and per unit of irradiated target area is non-linearly dependent on the laser energy flux. The evaporation of Al 2O 3, SiC, and graphite is showing a well-defined flux threshold while the vaporization of Pb, Ni and Cr is rising smoothly with increasing flux. With both groups of materials laser evaporation is monotonically increasing with the laser energy flux. NaCl and quartz, on the other hand, are showing an intermediate maximum in the laser vaporization efficiency.

  11. Instability Patterns of Evaporative Dendrimer Deposits

    NASA Astrophysics Data System (ADS)

    Jung, Narina

    The purpose of this project is to understand the instability mechanism behind dendrimer pattern formation in evaporating micro-meter size droplets. Evaporation of droplets of alcohol-dendrimer solution leaves a unique solute pattern on a substrate, where the detailed structure depends on the system variables. We are interested in developing a theory of the morphology of the dendrimer deposits that encompasses evaporation effects, solvent hydrodynamics, and solute particle chemistry. Our approach is to consider a two-dimensional coarse-grained model of dendrimer particle deposition that involves two mechanisms: transfer of solute particles by a convective flow and an inter-particle attraction competing with the convective flow. The configuration of a drying droplet is determined by the distribution of particles on a substrate and the volume fraction of them in a droplet. The Hamiltonian of each configuration is defined to account for both a convective flow and an inter-particle attraction. The evolution of the Hamiltonian is computed by Monte Carlo method to simulate the dendrimer pattern formation and associate patterns with system parameters. We found four basic regimes of morphologies that range from ringlike, wavelike, and fingerlike to islandlike patterns depending on the number of particles and the relative strength of a convective flow and an interaction.

  12. Tubeless evaporation process development: Final report

    SciTech Connect

    Not Available

    1987-12-01

    A tubeless evaporation process which has the potential to combine the advantage of both evaporation and freezing processes, without their disadvantages is being developed. The TEP is capable of concentrating process solutions of such things as sugar, caustic soda, salt, sodium sulfate, black liquor from the pulp and paper industry, cooling tower blowdown, ''spent'' pickling liquor (sulfuric acid) from the steel industry, and nitric acid with potential energy savings of half to three-quarters of the energy required by conventional evaporators, with about half of the capital and maintenance cost. It has similar potential for the production of fresh water from seawater. The process uses working fluids (WF's) at their freezing point to effect direct contact heat exchange. The purpose of this project was to find additional and lower cost WF's in the laboratory, to obtain sizing information for the major equipment for an economic evaluation and a pilot plant design in a bench scale plant, and to perform the economic evaluation, and the pilot plant design and cost estimate. 6 refs., 37 figs., 7 tabs.

  13. Evaporated Lithium Surface Coatings in NSTX

    SciTech Connect

    Kugel, H. W.; Mansfield, D.; Maingi, R.; Bel, M. G.; Bell, R. E.; Allain, J. P.; Gates, D.; Gerhardt, S.; Kaita, R.; Kallman, J.; Kaye, S.; LeBlanc, B.; Majeski, R.; Menard, J.; Mueller, D.; Ono, M.

    2009-04-09

    Two lithium evaporators were used to evaporate more than 100 g of lithium on to the NSTX lower divertor region. Prior to each discharge, the evaporators were withdrawn behind shutters, where they also remained during the subsequent HeGDC applied for periods up to 9.5 min. After the HeGDC, the shutters were opened and the LITERs were reinserted to deposit lithium on the lower divertor target for 10 min, at rates of 10-70 mg/min, prior to the next discharge. The major improvements in plasma performance from these lithium depositions include: 1) plasma density reduction as a result of lithium deposition; 2) suppression of ELMs; 3) improvement of energy confinement in a low-triangularity shape; 4) improvement in plasma performance for standard, high-triangularity discharges; 5) reduction of the required HeGDC time between discharges; 6) increased pedestal electron and ion temperature; 7) reduced SOL plasma density; and 8) reduced edge neutral density.

  14. Evaporation-triggered microdroplet nucleation and the four life phases of an evaporating Ouzo drop.

    PubMed

    Tan, Huanshu; Diddens, Christian; Lv, Pengyu; Kuerten, J G M; Zhang, Xuehua; Lohse, Detlef

    2016-08-01

    Evaporating liquid droplets are omnipresent in nature and technology, such as in inkjet printing, coating, deposition of materials, medical diagnostics, agriculture, the food industry, cosmetics, or spills of liquids. Whereas the evaporation of pure liquids, liquids with dispersed particles, or even liquid mixtures has intensively been studied over the past two decades, the evaporation of ternary mixtures of liquids with different volatilities and mutual solubilities has not yet been explored. Here we show that the evaporation of such ternary mixtures can trigger a phase transition and the nucleation of microdroplets of one of the components of the mixture. As a model system, we pick a sessile Ouzo droplet (as known from daily life-a transparent mixture of water, ethanol, and anise oil) and reveal and theoretically explain its four life phases: In phase I, the spherical cap-shaped droplet remains transparent while the more volatile ethanol is evaporating, preferentially at the rim of the drop because of the singularity there. This leads to a local ethanol concentration reduction and correspondingly to oil droplet nucleation there. This is the beginning of phase II, in which oil microdroplets quickly nucleate in the whole drop, leading to its milky color that typifies the so-called "Ouzo effect." Once all ethanol has evaporated, the drop, which now has a characteristic nonspherical cap shape, has become clear again, with a water drop sitting on an oil ring (phase III), finalizing the phase inversion. Finally, in phase IV, all water has evaporated, leaving behind a tiny spherical cap-shaped oil drop. PMID:27418601

  15. Sarsat location algorithms

    NASA Astrophysics Data System (ADS)

    Nardi, Jerry

    The Satellite Aided Search and Rescue (Sarsat) is designed to detect and locate distress beacons using satellite receivers. Algorithms used for calculating the positions of 406 MHz beacons and 121.5/243 MHz beacons are presented. The techniques for matching, resolving and averaging calculated locations from multiple satellite passes are also described along with results pertaining to single pass and multiple pass location estimate accuracy.

  16. Considering complementary relationship of evaporation in Budyko's hydrological model

    NASA Astrophysics Data System (ADS)

    Han, Songjun; Shao, Weiwei

    2013-04-01

    In Budyko's hydrological model, actual evaporation was partitioned from precipitation as a function of the relative magnitude of precipitation and potential evaporation. In practice, both Penman equation and Priestley-Taylor equation have been used to estimate the potential evaporation with same Budyko curve, and they are not distinguished under Budyko framework. Nevertheless, according to the complementary relationship of evaporation, the definitions of Penman equation and Priestley-Taylor equation are absolutely different. When water availability is not limited, evaporation occurs at Priestley-Taylor's evaporation (Ew, referred to as wet environment evaporation). As the surface dries without changing the available energy, the actual and Penman's potential evaporation (Epen) rates depart from Ew with opposite changes in fluxes. So the question is: what is the difference of the Budyko's hydrological model with potential evaporation estimated by Penman or Priestley-Taylor equation? How to consider the complementary relationship in Budyko framework? In this study, for both long-term (multiyear) and annual values on water balances in the 29 non-humid catchments in the middle Yellow River Basin of China, the performances of Budyko's hydrological model with potential evaporation estimated by Epen and Ew were distinguished and compared. The catchments with larger value of Ep/Ew (ratio of Penman potential evaporation to Priestley-Taylor evaporation) are characterized with smaller evaporation ratios. The value of Ep/Ew can be served as another variable besides dryness index to partition actual evaporation from precipitation. With Priestley-Taylor equation as energy supply, an empirical formula for the parameter of the Budyko in terms of Ep/Ew and curve is proposed. Therefore, the complementary relationship of evaporation should be considered in the Budyko framework.

  17. Reversible micromachining locator

    DOEpatents

    Salzer, Leander J.; Foreman, Larry R.

    1999-01-01

    This invention provides a device which includes a locator, a kinematic mount positioned on a conventional tooling machine, a part carrier disposed on the locator and a retainer ring. The locator has disposed therein a plurality of steel balls, placed in an equidistant position circumferentially around the locator. The kinematic mount includes a plurality of magnets which are in registry with the steel balls on the locator. In operation, a blank part to be machined is placed between a surface of a locator and the retainer ring (fitting within the part carrier). When the locator (with a blank part to be machined) is coupled to the kinematic mount, the part is thus exposed for the desired machining process. Because the locator is removably attachable to the kinematic mount, it can easily be removed from the mount, reversed, and reinserted onto the mount for additional machining. Further, the locator can likewise be removed from the mount and placed onto another tooling machine having a properly aligned kinematic mount. Because of the unique design and use of magnetic forces of the present invention, positioning errors of less than 0.25 micrometer for each machining process can be achieved.

  18. Reversible micromachining locator

    DOEpatents

    Salzer, L.J.; Foreman, L.R.

    1999-08-31

    This invention provides a device which includes a locator, a kinematic mount positioned on a conventional tooling machine, a part carrier disposed on the locator and a retainer ring. The locator has disposed therein a plurality of steel balls, placed in an equidistant position circumferentially around the locator. The kinematic mount includes a plurality of magnets which are in registry with the steel balls on the locator. In operation, a blank part to be machined is placed between a surface of a locator and the retainer ring (fitting within the part carrier). When the locator (with a blank part to be machined) is coupled to the kinematic mount, the part is thus exposed for the desired machining process. Because the locator is removably attachable to the kinematic mount, it can easily be removed from the mount, reversed, and reinserted onto the mount for additional machining. Further, the locator can likewise be removed from the mount and placed onto another tooling machine having a properly aligned kinematic mount. Because of the unique design and use of magnetic forces of the present invention, positioning errors of less than 0.25 micrometer for each machining process can be achieved. 7 figs.

  19. 242-16H 2H EVAPORATOR POT SAMPLING FINAL REPORT

    SciTech Connect

    Krementz, D; William Cheng, W

    2008-06-11

    Due to the materials that are processed through 2H Evaporator, scale is constantly being deposited on the surfaces of the evaporator pot. In order to meet the requirements of the Nuclear Criticality Safety Analysis/Evaluation (NCSA/NCSE) for 2H Evaporator, inspections of the pot are performed to determine the extent of scaling. Once the volume of scale reaches a certain threshold, the pot must be chemically cleaned to remove the scale. Prior to cleaning the pot, samples of the scale are obtained to determine the concentration of uranium and plutonium and also to provide information to assist with pot cleaning. Savannah River National Laboratory (SRNL) was requested by Liquid Waste Organization (LWO) Engineering to obtain these samples from two locations within the evaporator. Past experience has proven the difficulty of successfully obtaining solids samples from the 2H Evaporator pot. To mitigate this risk, a total of four samplers were designed and fabricated to ensure that two samples could be obtained. Samples had previously been obtained from the cone surface directly below the vertical access riser using a custom scraping tool. This tool was fabricated and deployed successfully. A second scraper was designed to obtain sample from the nearby vertical thermowell and a third scraper was designed to obtain sample from the vertical pot wall. The newly developed scrapers both employed a pneumatically actuated elbow. The scrapers were designed to be easily attached/removed from the elbow assembly. These tools were fabricated and deployed successfully. A fourth tool was designed to obtain sample from the opposite side of the pot under the tube bundle. This tool was fabricated and tested, but the additional modifications required to make the tool field-ready could not be complete in time to meet the aggressive deployment schedule. Two samples were obtained near the pot entry location, one from the pot wall and the other from the evaporator feed pipe. Since a third

  20. Evaporation of nebular fines during chondrule formation

    NASA Astrophysics Data System (ADS)

    Wasson, John T.

    2008-06-01

    Studies of matrix in primitive chondrites provide our only detailed information about the fine fraction (diameter <2 μm) of solids in the solar nebula. A minor fraction of the fines, the presolar grains, offers information about the kinds of materials present in the molecular cloud that spawned the Solar System. Although some researchers have argued that chondritic matrix is relatively unaltered presolar matter, meteoritic chondrules bear witness to multiple high-temperature events each of which would have evaporated those fines that were inside the high-temperature fluid. Because heat is mainly transferred into the interior of chondrules by conduction, the surface temperatures of chondrules were probably at or above 2000 K. In contrast, the evaporation of mafic silicates in a canonical solar nebula occurs at around 1300 K and FeO-rich, amorphous, fine matrix evaporates at still lower temperatures, perhaps near 1200 K. Thus, during chondrule formation, the temperature of the placental bath was probably >700 K higher than the evaporation temperatures of nebular fines. The scale of chondrule forming events is not known. The currently popular shock models have typical scales of about 10 km. The scale of nebular lightning is less well defined, but is certainly much smaller, perhaps in the range 1 to 1000 m. In both cases the temperature pulses were long enough to evaporate submicrometer nebular fines. This interpretation disagrees with common views that meteoritic matrix is largely presolar in character and CI-chondrite-like in composition. It is inevitable that presolar grains (both those recognized by their anomalous isotopic compositions and those having solar-like compositions) that were within the hot fluid would also have evaporated. Chondrule formation appears to have continued down to the temperatures at which planetesimals formed, possibly around 250 K. At temperatures >600 K, the main form of C is gaseous CO. Although the conversion of CO to CH 4 at lower

  1. Evaporation of an atomic beam on a material surface

    SciTech Connect

    Reinaudi, G.; Lahaye, T.; Couvert, A.; Wang, Z.; Guery-Odelin, D.

    2006-03-15

    We report on the implementation of evaporative cooling of a magnetically guided beam by adsorption on a ceramic surface. We use a transverse magnetic field to shift locally the beam towards the surface, where atoms are selectively evaporated. With a 5-mm-long ceramic piece, we gain a factor of 1.5{+-}0.2 on the phase-space density. Our results are consistent with a 100% efficiency of this evaporation process. The flexible implementation that we have demonstrated, combined with the very local action of the evaporation zone, makes this method particularly suited for the evaporative cooling of a beam.

  2. The simultaneous mass and energy evaporation (SM2E) model.

    PubMed

    Choudhary, Rehan; Klauda, Jeffery B

    2016-01-01

    In this article, the Simultaneous Mass and Energy Evaporation (SM2E) model is presented. The SM2E model is based on theoretical models for mass and energy transfer. The theoretical models systematically under or over predicted at various flow conditions: laminar, transition, and turbulent. These models were harmonized with experimental measurements to eliminate systematic under or over predictions; a total of 113 measured evaporation rates were used. The SM2E model can be used to estimate evaporation rates for pure liquids as well as liquid mixtures at laminar, transition, and turbulent flow conditions. However, due to limited availability of evaporation data, the model has so far only been tested against data for pure liquids and binary mixtures. The model can take evaporative cooling into account and when the temperature of the evaporating liquid or liquid mixture is known (e.g., isothermal evaporation), the SM2E model reduces to a mass transfer-only model. PMID:26595699

  3. Object locating system

    DOEpatents

    Novak, James L.; Petterson, Ben

    1998-06-09

    A sensing system locates an object by sensing the object's effect on electric fields. The object's effect on the mutual capacitance of electrode pairs varies according to the distance between the object and the electrodes. A single electrode pair can sense the distance from the object to the electrodes. Multiple electrode pairs can more precisely locate the object in one or more dimensions.

  4. Reversible micromachining locator

    SciTech Connect

    Salzer, Leander J.; Foreman, Larry R.

    2002-01-01

    A locator with a part support is used to hold a part onto the kinematic mount of a tooling machine so that the part can be held in or replaced in exactly the same position relative to the cutting tool for machining different surfaces of the part or for performing different machining operations on the same or different surfaces of the part. The locator has disposed therein a plurality of steel balls placed at equidistant positions around the planar surface of the locator and the kinematic mount has a plurality of magnets which alternate with grooves which accommodate the portions of the steel balls projecting from the locator. The part support holds the part to be machined securely in place in the locator. The locator can be easily detached from the kinematic mount, turned over, and replaced onto the same kinematic mount or another kinematic mount on another tooling machine without removing the part to be machined from the locator so that there is no need to touch or reposition the part within the locator, thereby assuring exact replication of the position of the part in relation to the cutting tool on the tooling machine for each machining operation on the part.

  5. Acoustic emission source location

    NASA Astrophysics Data System (ADS)

    Promboon, Yajai

    The objective of the research program was development of reliable source location techniques. The study comprised two phases. First, the research focused on development of source location methods for homogeneous plates. The specimens used in the program were steel railroad tank cars. Source location methods were developed and demonstrated for empty and water filled tanks. The second phase of the research was an exploratory study of source location method for fiber reinforced composites. Theoretical analysis and experimental measurement of wave propagation were carried out. This data provided the basis for development of a method using the intersection of the group velocity curves for the first three wave propagation modes. Simplex optimization was used to calculate the location of the source. Additional source location methods have been investigated and critically examined. Emphasis has been placed on evaluating different methods for determining the time of arrival of a wave. The behavior of wave in a water filled tank was studied and source location methods suitable for use in this situation have been examined through experiment and theory. Particular attention is paid to the problem caused by leaky Lamb waves. A preliminary study into the use of neural networks for source location in fiber reinforced composites was included in the research program. A preliminary neural network model and the results from training and testing data are reported.

  6. Predicting Potential Evaporation in Topographically Complex Terrain

    NASA Astrophysics Data System (ADS)

    Koohafkan, M.; Thompson, S. E.; Hamilton, M. P.

    2012-12-01

    Predicting and understanding the water cycle in topographically complex terrain poses challenges for upscaling point-scale measurements of water and energy balance and for downscaling observations made from remote sensing or predictions made via global circulation models. This study evaluates hydrologic and climate data drawn from a spatially-distributed wireless sensor network at the Blue Oak Ranch Reserve near San Jose, California to investigate the influence of topographic variation, landscape position, and local ecology (vegetation) on one core component of the water balance: potential evaporation. High-resolution observations of solar radiation, ambient temperature, wind speed, and relative humidity are combined with canopy maps generated from LiDAR flyovers to develop spatially-distributed predictions of potential evaporation. These data are compared to estimates of EP based on inverse modeling of surface soil moisture data. Preliminary results suggest that the spatial structure of microclimate at Blue Oak Ranch Reserve is dominated by variations around the elevation gradient, with strong nocturnal inversions hypothesized to reflect the influence of the coastal marine layer. Estimates of EP based on the Penman-Monteith equation suggest that EP could vary by up to a factor of 5 across the site, with differences in vapor pressure deficit and canopy height largely responsible for this variability. The results suggest that a) large differences in the timing and magnitude of water stress could arise in topographically complex terrain due to localized differences in energy balance, and b) both localized and regional effects need to be accounted for when downscaling climate data over topographically complex sites. 2) Color map showing preliminary estimates of annual EP incorporating canopy information (spatially-distributed values of aerodynamic resistance and LAI) drawn from LiDAR imagery. The effect of the resistance on the dynamics is striking in its ability to

  7. Hollow-Fiber Spacesuit Water Membrane Evaporator

    NASA Technical Reports Server (NTRS)

    Bue, Grant; Trevino, Luis; Tsioulos, Gus; Mitchell, Keith; Settles, Joseph

    2013-01-01

    The hollow-fiber spacesuit water membrane evaporator (HoFi SWME) is being developed to perform the thermal control function for advanced spacesuits and spacecraft to take advantage of recent advances in micropore membrane technology in providing a robust, heat-rejection device that is less sensitive to contamination than is the sublimator. After recent contamination tests, a commercial-off-the-shelf (COTS) micro porous hollow-fiber membrane was selected for prototype development as the most suitable candidate among commercial hollow-fiber evaporator alternatives. An innovative design that grouped the fiber layers into stacks, which were separated by small spaces and packaged into a cylindrical shape, was developed into a full-scale prototype for the spacesuit application. Vacuum chamber testing has been performed to characterize heat rejection as a function of inlet water temperature and water vapor back-pressure, and to show contamination resistance to the constituents expected to be found in potable water produced by the wastewater reclamation distillation processes. Other tests showed tolerance to freezing and suitability to reject heat in a Mars pressure environment. In summary, HoFi SWME is a lightweight, compact evaporator for heat rejection in the spacesuit that is robust, contamination- insensitive, freeze-tolerant, and able to reject the required heat of spacewalks in microgravity, lunar, and Martian environments. The HoFi is packaged to reject 810 W of heat through 800 hours of use in a vacuum environment, and 370 W in a Mars environment. The device also eliminates free gas and dissolved gas from the coolant loop.

  8. The evaporative gas turbine (EGT) cycle

    SciTech Connect

    Horlock, J.H.

    1998-04-01

    Humidification of the flow through a gas turbine has been proposed in a variety of forms. The STIG plant involves the generation of steam by the gas turbine exhaust in a heat recovery steam generator (HRSG), and its injection into or downstream of the combustion chamber. This increases the mass flow through the turbine and the power output from the plant, with a small increase in efficiency. In the evaporative gas turbine (or EGT) cycle, water is injected in the compressor discharge in a regenerative gas turbine cycle (a so-called CBTX plant--compressor [C], burner [B], turbine [T], heat exchanger [X]); the air is evaporatively cooled before it enters the heat exchanger. While the addition of water increases the turbine mass flow and power output, there is also apparent benefit in reducing the temperature drop in the exhaust stack. In one variation of the basic EGT cycle, water is also added downstream of the evaporative aftercooler, even continuously in the heat exchanger. There are several other variations on the basic cycle (e.g., the cascaded humidified advanced turbine [CHAT]). The present paper analyzes the performance of the EGT cycle. The basic thermodynamics are first discussed, and related to the cycle analysis of a dry regenerative gas turbine plant. Subsequently some detailed calculations of EGT cycles are presented. The main purpose of the work is to seek the optimum pressure ratio in the EGT cycle for given constraints (e.g., fixed maximum to minimum temperature). It is argued that this optimum has a relatively low value.

  9. Sensors Locate Radio Interference

    NASA Technical Reports Server (NTRS)

    2009-01-01

    After receiving a NASA Small Business Innovation Research (SBIR) contract from Kennedy Space Center, Soneticom Inc., based in West Melbourne, Florida, created algorithms for time difference of arrival and radio interferometry, which it used in its Lynx Location System (LLS) to locate electromagnetic interference that can disrupt radio communications. Soneticom is collaborating with the Federal Aviation Administration (FAA) to install and test the LLS at its field test center in New Jersey in preparation for deploying the LLS at commercial airports. The software collects data from each sensor in order to compute the location of the interfering emitter.

  10. Evaporative cooling at low trap depth

    SciTech Connect

    Carvalho, Robert de; Doyle, John

    2004-11-01

    A quantitative, analytic model of evaporative cooling covering both the small- (<4) and large- (>4) {eta} regimes is presented. {eta} is the dimensionless parameter defined as the trap depth divided by the temperature of the trapped sample. Although some of the same general properties present at large {eta} are also present at small {eta}, there are significant quantitative differences. These differences must be taken into account in order to accurately extract from the trapping data quantitative measurements of, for example, collisional atomic cross sections.

  11. CHEMISTRY IN EVAPORATING ICES-UNEXPLORED TERRITORY

    SciTech Connect

    Cecchi-Pestellini, Cesare; Rawlings, Jonathan M. C.; Viti, Serena; Williams, David A. E-mail: jcr@star.ucl.ac.u E-mail: daw@star.ucl.ac.u

    2010-12-20

    We suggest that three-body chemistry may occur in warm high-density gas evaporating in transient co-desorption events on interstellar ices. Using a highly idealized computational model we explore the chemical conversion from simple species of the ice to more complex species containing several heavy atoms, as a function of density and of adopted three-body rate coefficients. We predict that there is a wide range of densities and rate coefficients in which a significant chemical conversion may occur. We discuss the implications of this idea for the astrochemistry of hot cores.

  12. Evaporation control research, 1959-60

    USGS Publications Warehouse

    U.S. Geological Survey

    1963-01-01

    Two hundred and forty-five dispersions of long-chain alkanols were formulated by using various emulsifiers and alkanols. The dispensing and spreading ability of each of these formulations was tested. The most promising emulsifier that could be used with any of the alkanols was glyceryl monostearate (self-emulsifying). However, the concentration of the alkanol in the dispersion form varied somewhat: with the length of the carbon chain. A maximum concentration of 16 percent was obtained using the longer chain alkanols in the dispersion form without losing any of the properties of a fluid. Nine field tests were undertaken on small stock tanks. The retardant materials used in these tests were dodecanol, hexadecanol, and octadecanol. These materials were applied in either liquid or dispersion form. Four types of dispensing equipment were tested. The first type used a pressure system which sprayed a liquid onto the surface of the water. An anemometer and wind-controlled vane, operated by an electrical system, determined the length End frequency of application. The second type was similar to the first except that gravity was utilized to force the liquid onto the surface. The third type. used a drip system with rates of about 10 drops per minute. The fourth type used a gravity feed and a wind-controlled valve which allowed the dispersion material to flow onto the surface of the water when the wind was in the proper direction. In the field tests, the best reduction in evaporation was obtained using octadecanol in dispersion form and dispensed with the wind-controlled valve and gravity feed system. The maximum reduction in evaporation for a 2-week period was 27 percent. However, the economics of suppressing evaporation from stock tanks is questionable because of the short travel time across the tank by the film. There are still many problems unsolved. Some of these can be resolved in the laboratory whereas others can be resolved only in the field. Some of the more serious

  13. Two stage indirect evaporative cooling system

    DOEpatents

    Bourne, Richard C.; Lee, Brian E.; Callaway, Duncan

    2005-08-23

    A two stage indirect evaporative cooler that moves air from a blower mounted above the unit, vertically downward into dry air passages in an indirect stage and turns the air flow horizontally before leaving the indirect stage. After leaving the dry passages, a major air portion travels into the direct stage and the remainder of the air is induced by a pressure drop in the direct stage to turn 180.degree. and returns horizontally through wet passages in the indirect stage and out of the unit as exhaust air.

  14. Steady evaporating flow in rectangular microchannels.

    SciTech Connect

    Griffiths, Stewart K.; Martinez, Mario J.; Tchikanda, Serge W.; Nilson, Robert H.

    2005-02-01

    Analytical and numerical solutions are presented for steady evaporating flow in open microchannels having a rectangular cross section and a uniform depth. The flow, driven by the axial gradient of capillary pressure, generally consists of an entry region where the meniscus is attached to the top corners of the channel followed by a jump-like transition to a corner-flow region in which the meniscus progressively recedes into the bottom corners of the channel. Illustrative numerical solutions are used to guide the derivation of an easily applied analytical approximation for the maximum sustainable heat flux or capillary limit.

  15. Evaporative partitioning in a unified land model

    NASA Astrophysics Data System (ADS)

    Livneh, B.; Lettenmaier, D. P.; Restrepo, P. J.

    2009-12-01

    Accurate partitioning of precipitation into evapotranspiration and runoff, and more generally estimation of the surface water balance, is crucial both for hydrologic forecasting and numerical weather and climate prediction. One important aspect of this issue is the partitioning of evapotranspiration into soil evaporation, canopy evaporation, and plant transpiration, which in turn has implications for other terms in the surface water balance. In the first part of the study, we tested several well known land surface models in multi-year simulations over the continental U.S. Among the models, which included the Variable Infiltration Capacity (VIC) model, the Community Land Model (CLM), the Noah Land Surface Model (Noah LSM), and the NASA Catchment model, there were substantial variations in the partitioning. These results motivated a more detailed evaluation, using data for two catchments that were a part of the second phase of the Distributed Model Intercomparison Project (DMIP-2), the East Fork Carson River Basin and the Illinois River Basin. In this portion of the study, we evaluated a unified land model (ULM) which is a merger of the NWS Sacramento Soil Moisture Accounting model (SAC-SMA), which is used operationally for flood and seasonal streamflow prediction, and the Noah LSM, which is the land scheme used in NOAA’s suite of weather and climate prediction models. Our overall objective is to leverage the operational strengths of each model, specifically to improve streamflow prediction and soil moisture states within the Noah LSM framework, and to add a vegetation component to the SAC-SMA model. Partitioning of evapotranspiration into its three components is a key part of the ULM performance, and controls our ability to use calibrated SAC-SMA parameters within the ULM framework. In our evaluations at the DMIP-2 sites, we examined sensitivities of soil moisture and evaporative components in ULM to changes in vegetation cover, root zone depth, canopy

  16. Diffusion and evaporation of a liquid droplet

    NASA Astrophysics Data System (ADS)

    Shukla, K. N.

    1980-06-01

    The process of evaporation and diffusion of a spherical liquid droplet in an atmosphere of noncondensable gas is studied theoretically. An equation for the shrinkage of the radius of the droplet is derived on the basis of continuity and momentum equations. Further, a conjugate problem consisting of the energy and mass balance for the gaseous environment is formulated. An approximation of thin thermal and diffusion boundary-layers is introduced to simplify the analysis. Results are presented for methanol-nitrogen, ammonia-nitrogen, and sodium-argon systems. It has been observed that the droplet of highly viscous fluid exhibits rapid contraction.

  17. Treatment of evaporator condensates by pervaporation

    DOEpatents

    Blume, Ingo; Baker, Richard W.

    1990-01-01

    A pervaporation process for separating organic contaminants from evaporator condensate streams is disclosed. The process employs a permselective membrane that is selectively permeable to an organic component of the condensate. The process involves contacting the feed side of the membrane with a liquid condensate stream, and withdrawing from the permeate side a vapor enriched in the organic component. The driving force for the process is the in vapor pressure across the membrane. This difference may be provided for instance by maintaining a vacuum on the permeate side, or by condensing the permeate. The process offers a simple, economic alternative to other separation techniques.

  18. Recovery of boric acid from evaporator concentrates

    SciTech Connect

    Chrubasik, A.; Hennecke, A.; Chechelnitzky, G.M.; Kremnev, V.A.; Sinjawski, P.N.; Tevestchenko, L.J.

    1995-12-31

    The process is based on such characteristic properties of boric acid and borates as: solubility depending on pH-value; and high ion-exchange resin capacity for borates and its regeneration by means of ammonia solution. On the basis of laboratory investigations a pilot plant BOR 100 was built 1993. The operation of the pilot plant started at the beginning of 1994. After the functional test and start up in the first half year 1994 the treatment of few batches of original evaporator concentrates was performed.

  19. Kinetic Limited Water Evaporation in Hydrophilic Nanofluidic Channels

    NASA Astrophysics Data System (ADS)

    Li, Yinxiao; Alibakhshi, Mohammad Amin; Xie, Quan; Duan, Chuanhua

    2015-11-01

    Capillary evaporation is one of the most efficient approaches for heat and mass transfer, but the interfacial resistance in capillary evaporation governed by the kinetic theory has remained poorly understood. Here we report experimental studies of the kinetic-limited water capillary evaporation in 2-D hydrophilic nanochannels. A novel hybrid nanochannel design is employed to guarantee sufficient water supply to the liquid/vapor evaporation interface and to enable precise evaporation rate measurements. We study the effects of confinement (16 ~ 105nm), temperature (20 ~ 40 °C), and relative humidity (0% ~ 60%) on the evaporation rate and the evaporation coefficient. A maximum evaporation flux of 21287 micron/s is obtained in 16-nm nanochannels at 40°C and RH =0%, which corresponds to a heat flux of 4804 W/cm°. The evaporation coefficient is found to be independent on geometrical confinement, but shows a clear dependence on temperature, decreasing from 0.55 at 20°C to 0.5 at 40 °C. These findings have implications for understanding heat and mass transport in nanofluidic devices and porous media, and shed light on further development of evaporation-based technologies for thermal management, membrane purification and lab-on-a-chip devices. The work is supported by the American Chemical Society Petroleum Research Fund (ACS PRF # 54118-DNI7) and the Faculty Startup Fund (Boston University, USA).

  20. Capillary Limit in a Loop Heat Pipe with Dual Evaporators

    NASA Technical Reports Server (NTRS)

    Ku, Jentung; Birur, Gajanana; Obenschain, Arthur F. (Technical Monitor)

    2002-01-01

    This paper describes a study on the capillary limit of a loop heat pipe (LHP) with two evaporators and two condensers. Both theoretical analysis and experimental investigation are conducted. Tests include heat load to one evaporator only, even heat loads to both evaporators and uneven heat load to both evaporators. Results show that after the capillary limit is exceeded, vapor will penetrate through the wick of the weaker evaporator and the compensation chamber (CC) of that evaporator will control the loop operating temperature regardless of which CC has been in control prior to the event Because the evaporator can tolerate vapor bubbles, the loop may continue to work and reach a new steady state at a higher operating temperature. The loop may even function with a modest increase in the heat load past the capillary limit With a heat load to only one evaporator, the capillary limit can be identified by rapid increases in the operating temperature and in the temperature difference between the evaporator and the CC. However, it is more difficult to tell when the capillary limit is exceeded if heat loads are applied to both evaporators. In all cases, the loop can recover by reducing the heat load to the loop.

  1. The continuous similarity model of bulk soil-water evaporation

    NASA Technical Reports Server (NTRS)

    Clapp, R. B.

    1983-01-01

    The continuous similarity model of evaporation is described. In it, evaporation is conceptualized as a two stage process. For an initially moist soil, evaporation is first climate limited, but later it becomes soil limited. During the latter stage, the evaporation rate is termed evaporability, and mathematically it is inversely proportional to the evaporation deficit. A functional approximation of the moisture distribution within the soil column is also included in the model. The model was tested using data from four experiments conducted near Phoenix, Arizona; and there was excellent agreement between the simulated and observed evaporation. The model also predicted the time of transition to the soil limited stage reasonably well. For one of the experiments, a third stage of evaporation, when vapor diffusion predominates, was observed. The occurrence of this stage was related to the decrease in moisture at the surface of the soil. The continuous similarity model does not account for vapor flow. The results show that climate, through the potential evaporation rate, has a strong influence on the time of transition to the soil limited stage. After this transition, however, bulk evaporation is independent of climate until the effects of vapor flow within the soil predominate.

  2. Lunar Impact Flash Locations

    NASA Technical Reports Server (NTRS)

    Moser, D. E.; Suggs, R. M.; Kupferschmidt, L.; Feldman, J.

    2015-01-01

    A bright impact flash detected by the NASA Lunar Impact Monitoring Program in March 2013 brought into focus the importance of determining the impact flash location. A process for locating the impact flash, and presumably its associated crater, was developed using commercially available software tools. The process was successfully applied to the March 2013 impact flash and put into production on an additional 300 impact flashes. The goal today: provide a description of the geolocation technique developed.

  3. Infrared horizon locator

    NASA Technical Reports Server (NTRS)

    Jalink, A., Jr. (Inventor)

    1973-01-01

    A precise method and apparatus for locating the earth's infrared horizon from space that is independent of season and latitude is described. First and second integrations of the earth's radiance profile are made from space to earth with the second delayed with respect to the first. The second integration is multiplied by a predetermined constant R and then compared with the first integration. When the two are equal the horizon is located.

  4. Object locating system

    DOEpatents

    Novak, J.L.; Petterson, B.

    1998-06-09

    A sensing system locates an object by sensing the object`s effect on electric fields. The object`s effect on the mutual capacitance of electrode pairs varies according to the distance between the object and the electrodes. A single electrode pair can sense the distance from the object to the electrodes. Multiple electrode pairs can more precisely locate the object in one or more dimensions. 12 figs.

  5. Diagnosing Evaporation of Icy Planetesimals in Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Nomura, Hideko; Ishimoto, Daiki; Nagasawa, Makiko; Tanaka, Kyoko K.; Miura, Hitoshi; Nakamoto, Taishi; Tanaka, Hidekazu; Yamamoto, Tetsuo

    2015-08-01

    It is thought that eccentricities of planetesimals are excited due to gravitational interaction with protoplanets in protoplanetary disks. As a result, bow shocks are formed around the icy planetesimals and the ice is evaporated via the shock heating. Evaporation rates and orbital evolution of such planetesimals have been investigated (Tanaka et al. 2013, Nagasawa et al. 2014). In this work, we examine a possibility of diagnosing the shock heating and evaporation of icy planetesimals, using ALMA observations of lines of molecules evaporated from the planetesimals.Evaporation of ice has been studied observationally and theoretically well, for example, at a shock front of outflows associated with young stellar objects. The evaporated molecules will be destroyed via chemical reactions with other species and/or depletion on dust grains. The evaporated molecules can survive in gas-phase for around 104years in the region hotter than their evaporation temperatures, while they freeze out immediately in the cold region. As parent species evaporated from ice, saturated nitrogen- or sulphur-bearing species and organic molecules are often considered.Our calculations show that evaporated H2S is destroyed via gas-phase reactions, and SO and then SO2 are produced via chemicalreactions. The timescale of these reactions is about 104years. Therefore, H2S and SO are good tracers of shock heating and evaporation of icy planetesimals if it occurs in the region hotter than the evaporation temperatures of H2S and SO. The evaporation temperature of SO2 is higher than those of H2S and SO.Molecular lines of H2S, SO, and SO2 have not yet been detected towards protoplanetary disks by the previous radio observations. ALMA observations with high sensitivity and high spatial resolution, however, will make it possible to detect the lines of these molecules. Conditions that molecular lines of H2S and SO becomes strong enough to be detected by ALMA observations will also be discussed.

  6. Evaporation Rates for Liquid Water and Ice Under Current Martian Conditions

    NASA Technical Reports Server (NTRS)

    Sears, D. W. G.; Moore, S. R.; Meier, A.; Chittenden, J.; Kareev, M.; Farmer, C. B.

    2004-01-01

    A number of studies have been concerned with the evaporation rates under martian conditions in order to place limits on the possible survival time of both liquid water and ice exposed on the surface of Mars. Such studies also aid in assessing the efficacy of an overlying layer of dust or loose regolith material in providing a barrier to free evaporation and thus prolong the lifetime of water in locations where its availability to putative living organisms would be significant. A better quantitative understanding of the effects of phase changes of water in the near surface environment would also aid the evaluation of the possible role of water in the formation of currently observed features, such as gullies in cliff walls and relatively short-term changes in the albedo of small surface areas ('dark stains'). Laboratory measurements aimed at refinement of our knowledge of these values are described here. The establishment of accurate values for evaporation rates and their dependence on the physical conditions of temperature, pressure and energy input, is an important benchmark for the further investigation of the efficacy of barriers to free evaporation in providing a prolonged period of survival of the water, particularly as a liquid.

  7. Evaporation dynamics of nanodroplets and their anomalous stability on rough substrates

    NASA Astrophysics Data System (ADS)

    Liu, Yawei; Zhang, Xianren

    2013-07-01

    Nanodroplets sitting on substrates in an open system are usually assumed to be thermodynamically unstable, and will eventually either evaporate or grow. However, as a counterpart of nanodroplets, nanobubbles located at the solid-liquid interface were recently demonstrated by numerous experiments to be unexpectedly stable. The accumulated evidence for the existence of stable nanobubbles poses a question of whether nanodroplets are stable. In this work we revisit the stability of nanodroplets upon smooth and rough substrates, concentrating on their evaporation dynamics. On smooth substrates, the droplets evaporate generally in the constant contact angle (CCA) mode, with a contact angle nonmonotonously depending on the fluid-substrate interaction, while on rough substrates, the droplets evaporate in the constant contact line (CCL) mode or the CCL-CCA mixed mode. Our results indeed predict the existence of stable nanodroplets on rough substrates: In situations where the contact line is pinned and the vapor is supersaturated but at a low level of supersaturation, nanodroplets are found to be anomalously stable. The stability of nanodroplets can be interpreted within the framework of the classical nucleation theory.

  8. Do asteroids evaporate near pulsars? Induction heating by pulsar waves revisited

    NASA Astrophysics Data System (ADS)

    Kotera, Kumiko; Mottez, Fabrice; Voisin, Guillaume; Heyvaerts, Jean

    2016-07-01

    Aims: We investigate the evaporation of close-by pulsar companions, such as planets, asteroids, and white dwarfs, by induction heating. Methods: Assuming that the outflow energy is dominated by a Poynting flux (or pulsar wave) at the location of the companions, we calculate their evaporation timescales, by applying the Mie theory. Results: Depending on the size of the companion compared to the incident electromagnetic wavelength, the heating regime varies and can lead to a total evaporation of the companion. In particular, we find that inductive heating is mostly inefficient for small pulsar companions, although it is generally considered the dominant process. Conclusions: Small objects like asteroids can survive induction heating for 104 yr at distances as small as 1 R⊙ from the neutron star. For degenerate companions, induction heating cannot lead to evaporation and another source of heating (likely by kinetic energy of the pulsar wind) has to be considered. It was recently proposed that bodies orbiting pulsars are the cause of fast radio bursts; the present results explain how those bodies can survive in the pulsar's highly energetic environment.

  9. Numerical modelling of heat transfer and evaporation characteristics of cryogenic liquid propellant

    NASA Astrophysics Data System (ADS)

    Tamilarasan, Arun

    Passive and active technologies have been used to control propellant boil-off, but the current state of understanding of cryogenic evaporation and condensation in microgravity is insufficient for designing large cryogenic depots critical to the long-term space exploration missions. One of the key factors limiting the ability to design such systems is the uncertainty in the accommodation coefficients (evaporation and condensation), which are inputs for kinetic modeling of phase change. A novel, combined experimental and computational approach is being used to determine the accommodation coefficients for liquid hydrogen. The experimental effort utilizes the Neutron Imaging Facility located at the National Institute of Standards and Technology (NIST) in Gaithersburg, Maryland to image evaporation and condensation of propellants inside of metallic containers. CFD tools are utilized to infer the temperature distribution in the system and determine the appropriate thermal boundary conditions for the numerical solution of the evaporating and condensing liquid to be used in a kinetic phase change model. Using all three methods, there is the possibility of extracting the accommodation coefficients from the experimental observations.

  10. Unification of soil feedback patterns under different evaporation conditions to improve soil differentiation over flat area

    NASA Astrophysics Data System (ADS)

    Guo, Shanxin; Zhu, A.-Xing; Meng, Lingkui; Burt, James E.; Du, Fei; Liu, Jing; Zhang, Guiming

    2016-07-01

    Detailed and accurate information on the spatial variation of soil types and soil properties are critical components of environmental research and hydrological modeling. Early studies introduced a soil feedback pattern as a promising environmental covariate to predict spatial variation over low-relief areas. However, in practice, local evaporation can have a significant influence on these patterns, making them incomparable at different locations. This study aims to solve this problem by examining the concept of transforming the dynamic patterns of soil feedback from the original time-related space to a new evaporation-related space. A study area in northeastern Illinois with large low-relief farmland was selected to examine the effectiveness of this idea. Images from MODIS in Terra for every April-May period over 12 years (2000-2011) were used to extract the soil feedback patterns. Compared to the original time-related space, the results indicate that the patterns in the new evaporation-related space tend to be more stable and more easily captured from multiple rain events regardless of local evaporation conditions. Random samples selected for soil subgroups from the SSURGO soil map show that patterns in the new space reveal a difference between different soil types. And these differences in patterns are closely related to the difference in the soil structure of the surface layer.

  11. Evaluation of the energy budget method of determining evaporation at Williams Lake, Minnesota, using alternative instrumentation and study approaches

    USGS Publications Warehouse

    Rosenberry, D.O.; Sturrock, A.M.; Winter, T.C.

    1993-01-01

    Best estimates of evaporation were determined by the energy budget method using optimum sensors and optimum placement of sensors. For most of the data substitutions that affected the Bowen ratio, new values of evaporation differed little from best estimates. The three data substitution methods that caused the largest deviations from the best evaporation estimates were (1) using changes in the daily average surface water temperature as an indicator of the lake heat storage term, (2) using shortwave radiation, air temperature, and atmospheric vapor pressure data from a site 110 km away, and (3) using an analog surface water temperature probe. Recalculations based on these data substitutions resulted in differences from the best estimates as much as 89%, 21% and 10%, respectively. The data substitution method that provided evaporation values that most closely matched the best estimates was measurement of the lake heat storage term at one location in the lake, rather than at 16 locations. Evaporation values resulting from this substitution method usually were within 2% of the best estimates. -from Authors

  12. Partitioning evaporation and transpiration in a maize field with heat-pulse sensors used for evaporation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Evaporation (E) and transpiration (T) occur simultaneously in many systems with varying levels of importance, yet terms are typically lumped as evapotranspiration (ET) due to difficulty with distinguishing component fluxes. Few studies have measured all three terms (ET, E, and T), and in the few cas...

  13. How surfactants influence evaporation-driven flows

    NASA Astrophysics Data System (ADS)

    Liepelt, Robert; Marin, Alvaro; Rossi, Massimiliano; Kähler, Christian J.

    2014-11-01

    Capillary flows appear spontaneously in sessile evaporating drops and give rise to particle accumulation around the contact lines, commonly known as coffee-stain effect (Deegan et al., Nature, 1997). On the other hand, out-of-equilibrium thermal effects may induce Marangoni flows in the droplet's surface that play an important role in the flow patterns and in the deposits left on the substrate. Some authors have argued that contamination or the presence of surfactants might reduce or eventually totally annul the Marangoni flow (Hu & Larson, J. Phys. Chem. B, 2006). On the contrary, others have shown an enhancement of the reverse surface flow (Sempels et al., Nat. Commun., 2012). In this work, we employ Astigmatic Particle Tracking Velocimetry (APTV) to obtain the 3D3C evaporation-driven flow in both bulk and droplet's surface, using surfactants of different ionic characters and solubility. Our conclusions lead to a complex scenario in which different surfactants and concentrations yield very different surface-flow patterns, which eventually might influence the colloidal deposition patterns.

  14. Front instabilities in evaporatively dewetting nanofluids.

    PubMed

    Vancea, I; Thiele, U; Pauliac-Vaujour, E; Stannard, A; Martin, C P; Blunt, M O; Moriarty, P J

    2008-10-01

    Various experimental settings that involve drying solutions or suspensions of nanoparticles-often called nanofluids-have recently been used to produce structured nanoparticle layers. In addition to the formation of polygonal networks and spinodal-like patterns, the occurrence of branched structures has been reported. After reviewing the experimental results we use a modified version of the Monte Carlo model first introduced by Rabani [Nature 426, 271 (2003)] to study structure formation in evaporating films of nanoparticle solutions for the case that all structuring is driven by the interplay of evaporating solvent and diffusing nanoparticles. After introducing the model and its general behavior we focus on receding dewetting fronts which are initially straight but develop a transverse fingering instability. We analyze the dependence of the characteristics of the resulting branching patterns on the driving effective chemical potential, the mobility and concentration of the nanoparticles, and the interaction strength between liquid and nanoparticles. This allows us to understand the underlying instability mechanism. PMID:18999433

  15. A swirl flow evaporative cold plate

    NASA Technical Reports Server (NTRS)

    Niggemann, R. E.; Greenlee, W. J.; Hill, D. G.; Ellis, W.; Marshall, P.

    1985-01-01

    A forced flow evaporative cold plate is under development for future application to the thermal bus concept being pursued by NASA for Space Station Thermal Control. The vaporizer is a swirl-flow device employing a spiral tube coil geometry sandwiched between conductive metal plates upon which electric components could be mounted. This concept is based on the inherent phase separation that occurs in a two phase stream in curvilinear flow. This is a zero 'g' design with one 'g' all-attitude capability and is capable of high heat transfer coefficients, good isothermality, and the ability to function at heat fluxes approaching 5w/sq cm on the cold plates (10w/sq cm on the tube wall) with Freon 114. The advantages of this design over other two phase evaporator approaches are high heat flux capability, simplified control requirements, insensitivity to micro-gravity oscillations, and inexpensive manufacturability. The program included design, fabrication, and test of such a cold plate utilizing an existing test stand developed for two-phase thermal management system (TPTMS) testing. Test results analysis and conclusions are included.

  16. Properties of vacuum-evaporated boron films

    NASA Technical Reports Server (NTRS)

    Feakes, F.

    1973-01-01

    The work on the properties of thin boron films made by vacuum evaporation of elemental boron using an electron beam as the energy source is reported. The program aimed at characterizing the properties of vacuum evaporated films. The work was directed toward those variables considered to be important in affecting the tensile strength of the boron films. In general, the thickness of the films was less than 0.002 in. The temperature of the substrate on which the boron was condensed was found to be most important. Three distinctly different forms of boron deposit were produced. Although the transition temperature was not sharply defined, at substrate temperatures of less than approximately 600 deg C the boron deposits were amorphous to X-ray. If the substrate were highly polished, the deposits were black and mirror-like. For substrates with coefficients of thermal expansion close to that of boron, the deposits were then continuous and uncracked. The studies suggest that the potential continues to exist for film-type composites to have both high strength and high modulus.

  17. Evaporation-Driven Bioassays in Suspended Droplets.

    PubMed

    Hernandez-Perez, Ruth; Fan, Z Hugh; Garcia-Cordero, Jose L

    2016-07-19

    The microtiter plate has been an essential tool for diagnostics, high-throughput screening, and biological assays. We present an alternative platform to perform bioassays in a microplate format that exploits evaporation to drive assay reactions. Our method consists of droplets suspended on plastic pillars; reactions occur in these droplets instead of the wells. The pillars are fabricated by milling, and the rough surface created by this fabrication method pins the droplet to a constant contact line during the assay and also acts as a hydrophobic surface. Upon evaporation, natural convection arising from Marangoni currents mixes solutions in the droplet, which speeds up assay reactions, decreases assay times, and increases limits of detection. As a proof of concept we implemented two colorimetric assays to detect glucose and proteins in only 1.5 μL, without any external devices for mixing and with a digital microscope as a readout mechanism. Our platform is an ideal alternative to the microtiter plate, works with different volumes, is compatible with commercially available reagent dispensers and plate-readers, and could have broad applications in diagnostics and high-throughput screening. PMID:27331825

  18. The lifetime of evaporating dense sprays

    NASA Astrophysics Data System (ADS)

    de Rivas, Alois; Villermaux, Emmanuel

    2015-11-01

    We study the processes by which a set of nearby liquid droplets (a spray) evaporates in a gas phase whose relative humidity (vapor concentration) is controlled at will. A dense spray of micron-sized water droplets is formed in air by a pneumatic atomizer and conveyed through a nozzle in a closed chamber whose vapor concentration has been pre-set to a controlled value. The resulting plume extension depends on the relative humidity of the diluting medium. When the spray plume is straight and laminar, droplets evaporate at its edge where the vapor is saturated, and diffuses through a boundary layer developing around the plume. We quantify the shape and length of the plume as a function of the injecting, vapor diffusion, thermodynamic and environment parameters. For higher injection Reynolds numbers, standard shear instabilities distort the plume into stretched lamellae, thus enhancing the diffusion of vapor from their boundary towards the diluting medium. These lamellae vanish in a finite time depending on the intensity of the stretching, and relative humidity of the environment, with a lifetime diverging close to the equilibrium limit, when the plume develops in an medium saturated in vapor. The dependences are described quantitatively.

  19. Statistical rate theory examination of ethanol evaporation.

    PubMed

    Persad, A H; Ward, C A

    2010-05-13

    A series of low-temperature (246 < T(I)(L) < 267 K) steady-state ethanol evaporation experiments have been conducted to determine the saturation vapor pressure of metastable ethanol. The measured interfacial conditions have been used with statistical rate theory (SRT) to develop an expression for the saturation vapor pressure as a function of temperature, f(srt)(eth). This expression is shown to be thermodynamically consistent because it gives predictions of both the evaporative latent heat and the liquid constant-pressure specific heat that are in agreement with independent measurements of these properties. In each experiment, the interfacial vapor temperature was measured to be greater than the interfacial liquid temperature, [triple bond]DeltaT(I)(LV). When f(srt)(eth) is used in SRT to predict DeltaT(I)(LV), the results are shown to be consistent with the measurements. Other expressions for the saturation vapor pressure that are in the literature are examined and found to be thermodynamically inconsistent and do not lead to valid predictions of DeltaT(I)(LV). PMID:20405870

  20. Evaporation duct effects at millimeter wavelengths

    NASA Astrophysics Data System (ADS)

    Anderson, K. D.

    1992-03-01

    The evaporation duct strongly influences low-altitude over-the-horizon propagation at millimeter wavelengths. Results from more than 2000 hours of propagation and meteorological measurements made at 94 GHz on a 40.6 km over-horizon, over-water path along the southern California coast show that the average received power was 63 dB greater than d for propagation in a nonducting, or standard, atmosphere; 90 percent of the measurements were at least 55 dB greater than diffraction. A numerical model of transmission loss based on the observed surface meteorology is discussed and results are compared to measured transmission loss. On average, modeling results underestimate observations by only 10 dB. In addition, results from modeling based on an independent climatology of evaporation duct heights for the area are shown to be adequate for most propagation assessment purposes. The reliability and reasonable accuracy of the numerical model provides a strong justification for utilizing the technique to assess millimeter wave communication and radar systems operating in many, if not all, ocean regions.

  1. The transient response above an evaporation duct

    NASA Astrophysics Data System (ADS)

    Abo-Seliem, Adel A. S.

    1998-11-01

    The transient electromagnetic field generated by a vertical electric dipole above an evaporation duct is investigated theoretically. The evaporation duct model used is that previously described by Kahan and Eckart. A vertical electric dipole, above the surface layer, is taken as the source of the electromagnetic field. We determine the electrical field strength exactly at some fixed point above the duct layer, having chosen a certain polarization of the primary source whose moment is allowed to vary arbitrarily with time. A series expansion with respect to the images of the primary source permits us to apply the method first reported by Cagniard and later extended by de Hoop and Frankena to the case where the source is positioned in a medium of lesser permittivity. Hence, we can give a physically intuitive description of the polarization dependence of the time history of the electrical field strength. The distinction of different cases where the distances between the receiving and transmitting ends are greater or lesser than the total reflection distance is studied. The electrical field strength is evaluated for different excitation functions at some fixed but arbitrary positions of the point of observation in the half-space.

  2. Evaporation duct effects at millimeter wavelengths

    NASA Astrophysics Data System (ADS)

    Anderson, K. D.

    1990-03-01

    The evaporation duct strongly influences low-altitude over-the horizon propagation at millimeter wavelengths. Results from more than 2000 hours of propagation and meteorological measurements were made at 94 GHz on a 40.6 km over-horizon, over-water path along the southern California coast show that the average received power was 63 dB greater than expected for propagation in a nonconducting, or normal, atmosphere; 90 percent of the measurements were at least 55 dB greater than the normal atmosphere. A numerical model of transmission loss based on observed surface meteorology is discussed and results are compared to measured transmission loss. On average, modeling results underestimate the transmission loss by 10 dB. In addition, results from modeling based on an independent climatology of evaporation duct heights for the area are shown to be adequate for most propagation assessment purposes. The reliability and reasonable accuracy of the model provide a strong justification for utilizing the technique to assess millimeter wave communication and radar systems operating in many, if not all, ocean regions.

  3. Influence of Oil on Refrigerant Evaporator Performance

    NASA Astrophysics Data System (ADS)

    Jong-Soo, Kim; Nagata, Katsuya; Katsuta, Masafumi; Tomosugi, Hiroyuki; Kikuchi, Kouichiro; Horichi, Toshiaki

    To explore the quantitative effect of the lubrication oil on the thermal and hydraulic evaporator performance, the detailed structure of two-phase refrigerant (R11) and lubrication oil (Suniso 5GS) flow has been investigated. Experiment has been performed using a transparent tube 20mm in inner diameter and 2600mm in total length as main test section, which was heated by surrounding hot water bath. This water bath also functioned as the visual observation section of the transition of two-phase flow pattern. Oil mass concentration was controlled initially, and circulated into the system. The void fraction at the main test section was measured by direct volume measurement using so-called "Quick Closing Valve" method. Since the effect of oil on the transition of two-phase flow pattern is emphasized at the low flow rate, operation was made at relatively low mass velocity, 50 and 100 kg/m2·s, five different oil concentrations were taken. Throughout the experiment, the evaporation pressure was kept at 105 kPa. In general, when contamination of the lubrication oil happened, the void fraction was decreasing due to the change of viscosity and surface tension and the occurence of the foaming. To correlate the void fraction as function of quality, Zivi's expression was modified to include the effect of oil concentration. The agreement between the data and this proposed correlation was favorable. Finally, to take into account the effect of lubrication oil, the new flow pattern diagram was proposed.

  4. Apparent contact angle of an evaporating drop

    NASA Astrophysics Data System (ADS)

    Morris, S. J. S.

    2012-11-01

    In experiments by Poulard et al. (2005), a sessile drop of perfectly wetting liquid evaporates from a non-heated substrate into an under-saturated mixture of vapour with an inert gas; evaporation is limited by vapour diffusion. The system exhibits an apparent contact angle θ that is a flow property. Under certain conditions, the apparent contact line was stationary relative to the substrate; we predict θ for this case. Observed values of θ are small, allowing lubrication analysis of the liquid film. The liquid and vapour flows are coupled through conditions holding at the phase interface; in particular, vapour partial pressure there is related to the local value of liquid pressure through the Kelvin condition. Because the droplet is shallow, the interfacial conditions can be transferred to the solid-liquid interface at y = 0 . We show that the dimensionless partial pressure p (x , y) and the film thickness h (x) are determined by solving ∇2 p = 0 for y > 0 subject to a matching condition at infinity, and the conditions - p = L hxx +h-3 and (h3px) x + 3py = 0 at y = 0 . The parameter L controls the ratio of Laplace to disjoining pressure. We analyse this b.v.p. for the experimentally-relevant case L --> 0 .

  5. The evaporative fraction as a measure of surface energy partitioning

    SciTech Connect

    Nichols, W.E. ); Cuenca, R.H. )

    1990-01-01

    The evaporative fraction is a ratio that expresses the proportion of turbulent flux energy over land surfaces devoted to evaporation and transpiration (evapotranspiration). It has been used to characterize the energy partition over land surfaces and has potential for inferring daily energy balance information based on mid-day remote sensing measurements. The HAPEX-MOBILHY program's SAMER system provided surface energy balance data over a range of agricultural crops and soil types. The databases from this large-scale field experiment was analyzed for the purpose of studying the behavior and daylight stability of the evaporative fraction in both ideal and general meteorological conditions. Strong linear relations were found to exist between the mid-day evaporative fraction and the daylight mean evaporative fraction. Statistical tests however rejected the hypothesis that the two quantities were equal. The relations between the evaporative fraction and the surface soil moisture as well as soil moisture in the complete vegetation root zone were also explored.

  6. Evaporation rate and vapor pressure of selected polymeric lubricating oils.

    NASA Technical Reports Server (NTRS)

    Gardos, M. N.

    1973-01-01

    A recently developed ultrahigh-vacuum quartz spring mass sorption microbalance has been utilized to measure the evaporation rates of several low-volatility polymeric lubricating oils at various temperatures. The evaporation rates are used to calculate the vapor pressures by the Langmuir equation. A method is presented to accurately estimate extended temperature range evaporation rate and vapor pressure data for polymeric oils, incorporating appropriate corrections for the increases in molecular weight and the change in volatility of the progressively evaporating polymer fractions. The logarithms of the calculated data appear to follow linear relationships within the test temperature ranges, when plotted versus 1000/T. These functions and the observed effusion characteristics of the fluids on progressive volatilization are useful in estimating evaporation rate and vapor pressure changes on evaporative depletion.

  7. Evaporation of Ethanol-Water Binary Mixture Sessile Liquid Marbles.

    PubMed

    Ooi, Chin Hong; Bormashenko, Edward; Nguyen, Anh V; Evans, Geoffrey M; Dao, Dzung V; Nguyen, Nam-Trung

    2016-06-21

    Liquid marble is a liquid droplet coated with particles. Recently, the evaporation process of a sessile liquid marble using geometric measurements has attracted great attention from the research community. However, the lack of gravimetric measurement limits further insights into the physical changes of a liquid marble during the evaporation process. Moreover, the evaporation process of a marble containing a liquid binary mixture has not been reported before. The present paper investigates the effective density and the effective surface tension of an evaporating liquid marble that contains aqueous ethanol at relatively low concentrations. The effective density of an evaporating liquid marble is determined from the concurrent measurement of instantaneous mass and volume. Density measurements combined with surface profile fitting provide the effective surface tension of the marble. We found that the density and surface tension of an evaporating marble are significantly affected by the particle coating. PMID:27230102

  8. /sup 18/O + /sup 12/C fusion-evaporation reaction

    SciTech Connect

    Heusch, B; Beck, C; Coffin, J P; Freeman, R M; Gallmann, A; Haas, F; Rami, F; Wagner, P; Alburger, D E

    1980-01-01

    A study of the /sup 18/O + /sup 12/C fusion evaporation reaction has been undertaken for 2 reasons: to make a systematic study of the formation cross section for each individual evaporation residue over a broad excitation energy region in the compound nucleus /sup 30/Si:30 to 62 MeV; and to compare all results to fusion-evaporation calculations done in the framework of the Hauser-Feschbach statistical model.

  9. Probing loop quantum gravity with evaporating black holes.

    PubMed

    Barrau, A; Cailleteau, T; Cao, X; Diaz-Polo, J; Grain, J

    2011-12-16

    This Letter aims at showing that the observation of evaporating black holes should allow the usual Hawking behavior to be distinguished from loop quantum gravity (LQG) expectations. We present a full Monte Carlo simulation of the evaporation in LQG and statistical tests that discriminate between competing models. We conclude that contrarily to what was commonly thought, the discreteness of the area in LQG leads to characteristic features that qualify evaporating black holes as objects that could reveal quantum gravity footprints. PMID:22243065

  10. Simple flash evaporator for making thin films of compounds

    SciTech Connect

    Hemanadhan, M.; Bapanayya, Ch.; Agarwal, S. C.

    2010-07-15

    A simple and compact arrangement for flash evaporation is described. It uses a cell phone vibrator for powder dispensing that can be incorporated into a vacuum deposition chamber without any major alterations. The performance of the flash evaporation system is checked by making thin films of the optical memory chalcogenide glass Ge{sub 2}Sb{sub 2}Te{sub 5} (GST). Energy dispersive x-ray analysis shows that the flash evaporation preserves the stoichiometry in thin films.

  11. Marine cable location system

    SciTech Connect

    Zachariadis, R.G.

    1984-05-01

    An acoustic positioning system locates a marine cable at an exploration site, such cable employing a plurality of hydrophones at spaced-apart positions along the cable. A marine vessel measures water depth to the cable as the vessel passes over the cable and interrogates the hydrophones with sonar pulses along a slant range as the vessel travels in a parallel and horizontally offset path to the cable. The location of the hydrophones is determined from the recordings of water depth and slant range.

  12. Cable fault locator research

    NASA Astrophysics Data System (ADS)

    Cole, C. A.; Honey, S. K.; Petro, J. P.; Phillips, A. C.

    1982-07-01

    Cable fault location and the construction of four field test units are discussed. Swept frequency sounding of mine cables with RF signals was the technique most thoroughly investigated. The swept frequency technique is supplemented with a form of moving target indication to provide a method for locating the position of a technician along a cable and relative to a suspected fault. Separate, more limited investigations involved high voltage time domain reflectometry and acoustical probing of mine cables. Particular areas of research included microprocessor-based control of the swept frequency system, a microprocessor based fast Fourier transform for spectral analysis, and RF synthesizers.

  13. RFI emitter location techniques

    NASA Technical Reports Server (NTRS)

    Rao, B. L. J.

    1973-01-01

    The possibility is discussed of using Doppler techniques for determining the location of ground based emitters causing radio frequency interference with low orbiting satellites. An error analysis indicates that it is possible to find the emitter location within an error range of 2 n.mi. The parameters which determine the required satellite receiver characteristic are discussed briefly along with the non-real time signal processing which may by used in obtaining the Doppler curve. Finally, the required characteristics of the satellite antenna are analyzed.

  14. Evaporation of liquid droplets from a surface of anodized aluminum

    NASA Astrophysics Data System (ADS)

    Kuznetsov, G. V.; Feoktistov, D. V.; Orlova, E. G.

    2016-01-01

    The results of study of evaporation of water droplets and NaCl salt solution from a solid substrate made of anodized aluminum are presented in this paper. The experiment provides the parameters describing the droplet profile: contact spot diameter, contact angle, and droplet height. The specific rate of evaporation was calculated from the experimental data. The water droplets or brine droplets with concentration up to 9.1 % demonstrate evaporation with the pinning mode for the contact line. When the salt concentration in the brine is taken up to 16.7 %, the droplet spreading mode was observed. Two stages of droplet evaporation are distinguished as a function of phase transition rate.

  15. Evaporative cooling of antiprotons for the production of trappable antihydrogen

    SciTech Connect

    Silveira, D. M.; Cesar, C. L.; Andresen, G. B.; Bowe, P. D.; Hangst, J. S.; Ashkezari, M. D.; Hayden, M. E.; Baquero-Ruiz, M.; Chapman, S.; Fajans, J.; Povilus, A.; So, C.; Wurtele, J. S.; Bertsche, W.; Butler, E.; Charlton, M.; Madsen, N.; Werf, D. P. van der; Friesen, T.; Hydomako, R.; and others

    2013-03-19

    We describe the implementation of evaporative cooling of charged particles in the ALPHA apparatus. Forced evaporation has been applied to cold samples of antiprotons held in Malmberg-Penning traps. Temperatures on the order of 10 K were obtained, while retaining a significant fraction of the initial number of particles. We have developed a model for the evaporation process based on simple rate equations and applied it succesfully to the experimental data. We have also observed radial re-distribution of the clouds following evaporation, explained by simple conservation laws. We discuss the relevance of this technique for the recent demonstration of magnetic trapping of antihydrogen.

  16. Electron beam assisted field evaporation of insulating nanowires/tubes

    NASA Astrophysics Data System (ADS)

    Blanchard, N. P.; Niguès, A.; Choueib, M.; Perisanu, S.; Ayari, A.; Poncharal, P.; Purcell, S. T.; Siria, A.; Vincent, P.

    2015-05-01

    We demonstrate field evaporation of insulating materials, specifically BN nanotubes and undoped Si nanowires, assisted by a convergent electron beam. Electron irradiation leads to positive charging at the nano-object's apex and to an important increase of the local electric field thus inducing field evaporation. Experiments performed both in a transmission electron microscope and in a scanning electron microscope are presented. This technique permits the selective evaporation of individual nanowires in complex materials. Electron assisted field evaporation could be an interesting alternative or complementary to laser induced field desorption used in atom probe tomography of insulating materials.

  17. Evaporation of Sunscreen Films: How the UV Protection Properties Change.

    PubMed

    Binks, Bernard P; Brown, Jonathan; Fletcher, Paul D I; Johnson, Andrew J; Marinopoulos, Ioannis; Crowther, Jonathan M; Thompson, Michael A

    2016-06-01

    We have investigated the evaporation of thin sunscreen films and how the light absorption and the derived sun protection factor (SPF) change. For films consisting of solutions of common UV filters in propylene glycol (PG) as solvent, we show how evaporation generally causes three effects. First, the film area can decrease by dewetting leading to a transient increase in the average film thickness. Second, the film thins by evaporative loss of the solvent. Third, precipitation of the UV filter occurs when solvent loss causes the solubility limit to be reached. These evaporation-induced changes cause the UV absorbance of the film to decrease with resultant loss of SPF over the time scale of the evaporation. We derive an approximate model which accounts semiquantitatively for the variation of SPF with evaporation. Experimental results for solutions of different UV filters on quartz, different skin mimicking substrates, films with added nanoparticles, films with an added polymer and films with fast-evaporating decane as solvent (instead of slow evaporating PG) are discussed and compared with model calculations. Addition of either nanoparticles or polymer suppress film dewetting. Overall, it is hoped that the understanding gained about the mechanisms whereby film evaporation affects the SPF will provide useful guidance for the formulation of more effective sunscreens. PMID:27167054

  18. Electron beam assisted field evaporation of insulating nanowires/tubes

    SciTech Connect

    Blanchard, N. P. Niguès, A.; Choueib, M.; Perisanu, S.; Ayari, A.; Poncharal, P.; Purcell, S. T.; Siria, A.; Vincent, P.

    2015-05-11

    We demonstrate field evaporation of insulating materials, specifically BN nanotubes and undoped Si nanowires, assisted by a convergent electron beam. Electron irradiation leads to positive charging at the nano-object's apex and to an important increase of the local electric field thus inducing field evaporation. Experiments performed both in a transmission electron microscope and in a scanning electron microscope are presented. This technique permits the selective evaporation of individual nanowires in complex materials. Electron assisted field evaporation could be an interesting alternative or complementary to laser induced field desorption used in atom probe tomography of insulating materials.

  19. Optimized evaporation technique for leachate treatment: Small scale implementation.

    PubMed

    Benyoucef, Fatima; Makan, Abdelhadi; El Ghmari, Abderrahman; Ouatmane, Aziz

    2016-04-01

    This paper introduces an optimized evaporation technique for leachate treatment. For this purpose and in order to study the feasibility and measure the effectiveness of the forced evaporation, three cuboidal steel tubs were designed and implemented. The first control-tub was installed at the ground level to monitor natural evaporation. Similarly, the second and the third tub, models under investigation, were installed respectively at the ground level (equipped-tub 1) and out of the ground level (equipped-tub 2), and provided with special equipment to accelerate the evaporation process. The obtained results showed that the evaporation rate at the equipped-tubs was much accelerated with respect to the control-tub. It was accelerated five times in the winter period, where the evaporation rate was increased from a value of 0.37 mm/day to reach a value of 1.50 mm/day. In the summer period, the evaporation rate was accelerated more than three times and it increased from a value of 3.06 mm/day to reach a value of 10.25 mm/day. Overall, the optimized evaporation technique can be applied effectively either under electric or solar energy supply, and will accelerate the evaporation rate from three to five times whatever the season temperature. PMID:26826455

  20. In situ evaporation of lithium for LEVIS ion source

    SciTech Connect

    Gerber, B.; Lopez, M.; Lamppa, K.; Stearns, W.; Bieg, K.

    1994-05-01

    This report describes the In Situ evaporation of pure lithium on the anode of PBFA II which then can be evaporated and ionized by Laser Evaporation and Ionization Source (LEVIS). Included in this report are the necessary calculations, light laboratory experiments and details of the hardware for PBFA II. This report gives all the details of In Situ evaporation for PBFA II so when a decision is made to provide an active lithium source for PBFA II, it can be fielded in a minimum of time.

  1. The evaporation of silicone oil in electrorheological fluids

    NASA Astrophysics Data System (ADS)

    Wang, D.; Shen, R.; Wei, S. Q.; Lu, K. Q.

    2013-11-01

    A study on the evaporation of electrorheological (ER) fluids consisting of CTO nanoparticles and silicone oil is performed. The serious evaporation observed in giant ER fluids is mainly due to the small size of particles contained. The weight losses of the ER fluids under different experimental conditions were measured and the systematic results on the relationships of type of silicone oil, weight fraction of particles, surface area and depth of samples were obtained. Those evaporating phenomena have been explained mainly based on the Kelvin equation. The understanding on the behaviors of evaporation in ER fluids should be beneficial for applying and storing the ER fluids.

  2. Clustered field evaporation of metallic glasses in atom probe tomography.

    PubMed

    Zemp, J; Gerstl, S S A; Löffler, J F; Schönfeld, B

    2016-03-01

    Field evaporation of metallic glasses is a stochastic process combined with spatially and temporally correlated events, which are referred to as clustered evaporation (CE). This phenomenon is investigated by studying the distance between consecutive detector hits. CE is found to be a strongly localized phenomenon (up to 3nm in range) which also depends on the type of evaporating ions. While a similar effect in crystals is attributed to the evaporation of crystalline layers, CE of metallic glasses presumably has a different - as yet unknown - physical origin. The present work provides new perspectives on quantification methods for atom probe tomography of metallic glasses. PMID:26724469

  3. Analysis of evaporation in nuclear waste boreholes in unsaturated tuff

    SciTech Connect

    Zhou, W.; Chambre, P.L.; Pigford, T.H.; Lee, W.W.L.

    1993-12-31

    We present an analysis of evaporation in a nuclear waste borehole in unsaturated tuff. In unsaturated tuff, water in contact with a waste container will evaporate due to the difference in vapor pressure between water in a flat film and water held in rock pores with curved interfaces. Decay heat will also enhance evaporation. It is important to study evaporation in a potential geologic repository of nuclear waste in unsaturated rock because the corrosion of waste containers is increased with liquid water. For radionuclides other than gaseous ones, their release from waste solids requires liquid water.

  4. Spacesuit Water Membrane Evaporator; An Enhanced Evaporative Cooling Systems for the Advanced Extravehicular Mobility Unit Portable Life Support System

    NASA Technical Reports Server (NTRS)

    Bue, Grant C.; Makinen, Janice V.; Miller, Sean.; Campbell, Colin; Lynch, Bill; Vogel, Matt; Craft, Jesse; Petty, Brian

    2014-01-01

    Spacesuit Water Membrane Evaporator - Baseline heat rejection technology for the Portable Life Support System of the Advanced EMU center dot Replaces sublimator in the current EMU center dot Contamination insensitive center dot Can work with Lithium Chloride Absorber Radiator in Spacesuit Evaporator Absorber Radiator (SEAR) to reject heat and reuse evaporated water The Spacesuit Water Membrane Evaporator (SWME) is being developed to replace the sublimator for future generation spacesuits. Water in LCVG absorbs body heat while circulating center dot Warm water pumped through SWME center dot SWME evaporates water vapor, while maintaining liquid water - Cools water center dot Cooled water is then recirculated through LCVG. center dot LCVG water lost due to evaporation (cooling) is replaced from feedwater The Independent TCV Manifold reduces design complexity and manufacturing difficulty of the SWME End Cap. center dot The offset motor for the new BPV reduces the volume profile of the SWME by laying the motor flat on the End Cap alongside the TCV.

  5. Radar measurements at 16.5 GHz in the oceanic evaporation duct

    NASA Astrophysics Data System (ADS)

    Anderson, Kenneth D.

    1989-01-01

    A series of radar measurements is presented that demonstrates that a 16.5-GHz radar, located at typical shipboard antenna heights, can effectively utilize the existence of the oceanic evaporation duct to achieve surface ship detection ranges of more than twice the standard horizon range. Observations of surface targets of opportunity made at two sites on the US Pacific coast from July 1984 through January 1986 agree with predictions from a simple propagation model. This model combines a single-mode waveguide approximation with a model of the surface target's radar cross-section distribution to determine the maximum radar detection range for various evaporation duct heights. A frequency distribution of predicted detection range is given, based on the evaporation duct climatology for two locations. Although the radar measurements and the predictions are for a specific frequency, it is thought to be highly probable that the model can be extended to predict the performance of surface-search radars operating at other frequencies and in other areas of the ocean.

  6. A new experiment for investigating evaporation and condensation of cryogenic propellants

    NASA Astrophysics Data System (ADS)

    Bellur, K.; Médici, E. F.; Kulshreshtha, M.; Konduru, V.; Tyrewala, D.; Tamilarasan, A.; McQuillen, J.; Leão, J. B.; Hussey, D. S.; Jacobson, D. L.; Scherschligt, J.; Hermanson, J. C.; Choi, C. K.; Allen, J. S.

    2016-03-01

    Passive and active technologies have been used to control propellant boil-off, but the current state of understanding of cryogenic evaporation and condensation in microgravity is insufficient for designing large cryogenic depots critical to the long-term space exploration missions. One of the key factors limiting the ability to design such systems is the uncertainty in the accommodation coefficients (evaporation and condensation), which are inputs for kinetic modeling of phase change. A novel, combined experimental and computational approach is being used to determine the accommodation coefficients for liquid hydrogen and liquid methane. The experimental effort utilizes the Neutron Imaging Facility located at the National Institute of Standards and Technology (NIST) in Gaithersburg, Maryland to image evaporation and condensation of hydrogenated propellants inside of metallic containers. The computational effort includes numerical solution of a model for phase change in the contact line and thin film regions as well as an CFD effort for determining the appropriate thermal boundary conditions for the numerical solution of the evaporating and condensing liquid. Using all three methods, there is the possibility of extracting the accommodation coefficients from the experimental observations. The experiments are the first known observation of a liquid hydrogen menisci condensing and evaporating inside aluminum and stainless steel cylinders. The experimental technique, complimentary computational thermal model and meniscus shape determination are reported. The computational thermal model has been shown to accurately track the transient thermal response of the test cells. The meniscus shape determination suggests the presence of a finite contact angle, albeit very small, between liquid hydrogen and aluminum oxide.

  7. Mechanisms of solvent evaporation encapsulation processes: prediction of solvent evaporation rate.

    PubMed

    Wang, J; Schwendeman, S P

    1999-10-01

    The mechanism of organic solvent evaporation during microencapsulation and its role during microsphere hardening has been investigated. Evaporation and encapsulation studies were carried out in a jacketed beaker, filled with aqueous hardening solution, which was maintained at constant temperature and constant stirring rate in the turbulent regime. Evaporation of dissolved methylene chloride (MC), ethyl acetate (EA), and acetonitrile (ACN) was examined by the decline in organic solvent concentration in the hardening bath, which was monitored by gas chromatography. The evaporation from the bath followed first-order kinetics under dilute conditions (e.g., MC < 3 mg/mL), yielding an overall permeability coefficient, P. The value of P was theoretically related to the Kolmogorov length-scale of turbulence under conditions that favor liquid-side transport control. According to theory, factors that favored liquid-phase control (as opposed to gas-phase control) were those that favored a high Henry's law constant [i.e., elevated temperature near the normal boiling point (bp) of the organic solvent] and properties of the dissolved organic solvent (i.e., low normal bp and low aqueous solubility). These theoretical hypotheses were confirmed by (1) correlating the experimentally determined P with process variables raised to the appropriate power according to theory, r(2) = 0.95 (i.e., P approximately rotational speed, omega(3/4), impeller diameter, d (5/4), volume of hardening bath, V(-1/4), and the product of kinematic viscosity and diffusion coefficient, nu(-5/12)D (2/3)), and (2) illustrating that at constant temperature, the tendency of the evaporation system to obey liquid-side transport control follows the same order of increasing Henry's law constant (i.e., MC > EA > ACN). To establish the relationship of evaporation with microsphere hardening, the decline in MC concentration was determined in both the continuous and dispersed polymer phases during microencapsulation. By

  8. Particle impact location detector

    NASA Technical Reports Server (NTRS)

    Auer, S. O.

    1974-01-01

    Detector includes delay lines connected to each detector surface strip. When several particles strike different strips simultaneously, pulses generated by each strip are time delayed by certain intervals. Delay time for each strip is known. By observing time delay in pulse, it is possible to locate strip that is struck by particle.

  9. LOCATING AREAS OF CONCERN

    EPA Science Inventory

    A simple method to locate changes in vegetation cover, which can be used to identify areas under stress. The method only requires inexpensive NDVI data. The use of remotely sensed data is far more cost-effective than field studies and can be performed more quickly. Local knowledg...

  10. Location of Spirit's Home

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This image shows where Earth would set on the martian horizon from the perspective of the Mars Exploration Rover Spirit if it were facing northwest atop its lander at Gusev Crater. Earth cannot be seen in this image, but engineers have mapped its location. This image mosaic was taken by the hazard-identification camera onboard Spirit.

  11. Evaporation-Cooled Protective Suits for Firefighters

    NASA Technical Reports Server (NTRS)

    Weinstein, Leonard Murray

    2007-01-01

    Suits cooled by evaporation of water have been proposed as improved means of temporary protection against high temperatures near fires. When air temperature exceeds 600 F (316 C) or in the presence of radiative heating from nearby sources at temperatures of 1,200 F (649 C) or more, outer suits now used by firefighters afford protection for only a few seconds. The proposed suits would exploit the high latent heat of vaporization of water to satisfy a need to protect against higher air temperatures and against radiant heating for significantly longer times. These suits would be fabricated and operated in conjunction with breathing and cooling systems like those with which firefighting suits are now equipped

  12. Black hole evaporation with separated fermions.

    PubMed

    Han, Tao; Kribs, Graham D; McElrath, Bob

    2003-01-24

    In models with a low quantum gravity scale, fast proton decay can be avoided by localizing quarks and leptons to separated positions in an extra 1/TeV sized dimension with gauge and Higgs fields living throughout. Black holes with masses of the order of the quantum gravity scale are therefore expected to evaporate nonuniversally, preferentially radiating directly into quarks or leptons but not both. Should black holes be copiously produced at a future hadron collider, we find the ratio of final state jets to charged leptons to photons is 113:8:1, which differs from previous analyses that assumed all standard model fields live at the same point in the extra dimensional space. PMID:12570482

  13. Evaporative microclimate driven hygrometers and hygromotors

    NASA Astrophysics Data System (ADS)

    Chung, Jun Young; King, Hunter; Mahadevan, L.

    2014-09-01

    A strip of paper placed on a hand spontaneously curls upwards. This simple observation illustrates the ability of a relatively homogeneous hygroscopic structural material, paper, to sense and respond to the microclimate near a non-equilibrium system, a moist evaporative boundary layer. We quantify this interaction using a simple experiment and show that it can be understood in terms of a minimal model. A small modification of this paper hygrometer that makes one or another surface partly hydrophobic using a crayon or tape allows us to create a hygro-oscillator or a hygromotor that converts transverse moisture gradients into lateral oscillations or directed motion. Our study shows how treating paper as a responsive structural material allows us to extract information and work from a microclimatic boundary layer, transforming a messenger to a machine.

  14. Evaporative cooling and the Mpemba effect

    NASA Astrophysics Data System (ADS)

    Vynnycky, M.; Mitchell, S. L.

    2010-10-01

    The Mpemba effect is popularly summarized by the statement that “hot water can freeze faster than cold”, and has been observed experimentally since the time of Aristotle; however, there exist almost no theoretical models that predict the effect. With a view to initiating rigorous modelling activity on this topic, this paper analyzes in some depth the only available model in literature, which considers the potential role of evaporative cooling and treats the cooling water as a lumped mass. Certain omissions in the original work are highlighted and corrected, and results are obtained for a wide range of operating conditions—in particular, initial liquid temperature and cooling temperature. The implications and importance of the results of the model for experimental design are discussed, as are extensions of the model to handle more realistic 1-, 2- and 3-dimensional configurations.

  15. Octopus-shaped Instabilities of Evaporating Droplets

    NASA Astrophysics Data System (ADS)

    Murisic, Nebojsa; Kondic, Lou; Gotkis, Yehiel; Ivanov, Igor

    2006-11-01

    We report on curious phenomena recorded recently during spreading of evaporating isopropyl alcohol droplets on silicon wafer surfaces. Novel ``octopus''-shaped instabilities were noticed appearing close to the contact line. In addition to our desire to understand the instability, a motivation for this study is the fact that the region close to the contact line carries significant amounts of solid residue which can deteriorate electrical and other properties of the semiconductor devices. After presenting the experimental results, we discuss a lubrication-based mathematical model describing spreading of volatile drops. Through linear stability analysis and numerical simulations, we show that essential factors influencing occurrence of ``octopus''-shaped instabilities include volatility of liquid, and thermal conductivity of both liquid and solid. see http://m.njit.edu/~kondic/thinfilms/octopi.html.

  16. Modelling the evaporation of nonsingular black holes

    NASA Astrophysics Data System (ADS)

    Taves, Tim; Kunstatter, Gabor

    2014-12-01

    We present a model for studying the formation and evaporation of nonsingular (quantum corrected) black holes. The model is based on a generalized form of the dimensionally reduced, spherically symmetric Einstein-Hilbert action and includes a suitably generalized Polyakov action to provide a mechanism for radiation backreaction. The equations of motion describing self-gravitating scalar field collapse are derived in local form both in null co-ordinates and in Painleve-Gullstrand (flat slice) co-ordinates. They provide the starting point for numerical studies of complete spacetimes containing dynamical horizons that bound a compact trapped region. Such spacetimes have been proposed in the past as solutions to the information loss problem because they possess neither an event horizon nor a singularity. Since the equations of motion in our model are derived from a diffeomorphism invariant action they preserve the constraint algebra and the resulting energy momentum tensor is manifestly conserved.

  17. Indirect evaporative coolers with enhanced heat transfer

    SciTech Connect

    Kozubal, Eric; Woods, Jason; Judkoff, Ron

    2015-09-22

    A separator plate assembly for use in an indirect evaporative cooler (IEC) with an air-to-air heat exchanger. The assembly includes a separator plate with a first surface defining a dry channel and a second surface defining a wet channel. The assembly includes heat transfer enhancements provided on the first surface for increasing heat transfer rates. The heat transfer enhancements may include slit fins with bodies extending outward from the first surface of separator plate or may take other forms including vortex generators, offset strip fins, and wavy fins. In slit fin implementations, the separator plate has holes proximate to each of the slit fins, and the separator plate assembly may include a sealing layer applied to the second surface of the separator plate to block air flow through the holes. The sealing layer can be a thickness of adhesive, and a layer of wicking material is applied to the adhesive.

  18. Partitioning of evaporation into transpiration, soil evaporation and interception: a comparison between isotope measurements and a HYDRUS-1D model

    NASA Astrophysics Data System (ADS)

    Sutanto, S. J.; Wenninger, J.; Coenders-Gerrits, A. M. J.; Uhlenbrook, S.

    2012-08-01

    Knowledge of the water fluxes within the soil-vegetation-atmosphere system is crucial to improve water use efficiency in irrigated land. Many studies have tried to quantify these fluxes, but they encountered difficulties in quantifying the relative contribution of evaporation and transpiration. In this study, we compared three different methods to estimate evaporation fluxes during simulated summer conditions in a grass-covered lysimeter in the laboratory. Only two of these methods can be used to partition total evaporation into transpiration, soil evaporation and interception. A water balance calculation (whereby rainfall, soil moisture and percolation were measured) was used for comparison as a benchmark. A HYDRUS-1D model and isotope measurements were used for the partitioning of total evaporation. The isotope mass balance method partitions total evaporation of 3.4 mm d-1 into 0.4 mm d-1 for soil evaporation, 0.3 mm d-1 for interception and 2.6 mm d-1 for transpiration, while the HYDRUS-1D partitions total evaporation of 3.7 mm d-1 into 1 mm d-1 for soil evaporation, 0.3 mm d-1 for interception and 2.3 mm d-1 for transpiration. From the comparison, we concluded that the isotope mass balance is better for low temporal resolution analysis than the HYDRUS-1D. On the other hand, HYDRUS-1D is better for high temporal resolution analysis than the isotope mass balance.

  19. Coupled ground- and satellite-based assessment of regional evaporation and ecosystem vulnerability in tropical wetlands

    NASA Astrophysics Data System (ADS)

    Weiler, M.; Schwerdtfeger, J.; Silveira, S. W. G. D.; Zeilhofer, P.

    2014-12-01

    Satellite information plays a key role in tropical wetland monitoring and management. It is used to shed light on inundation dynamics of floodplains, to improve the understanding about eco-hydrological characteristics of floodplain ecosystems, and to quantify a wetland's water balance. Seasonal wetlands in the tropics are very sensitive to changes in hydrological processes. Upstream land use alterations such as the installation of hydroelectric infrastructure or agricultural water withdrawal directly influence the ecosystem by changing the inundation dynamics. Large uncertainties due to missing in-situ measurements caused by remoteness complicate the quantification of a wetland's water balance, where evaporation is considered to be its major water flux. We developed a spatially explicit approach to quantify daily evaporation considering the impact of inundation dynamics as the dominant controls and assessed the vulnerability of the Brazilian Pantanal wetland against the background of human induced impacts on the inundation process. In a first step a widely used water index (mNDWI) was calculated from MODIS surface reflectance products (MOD09A1) to differentiate between land and water for dry and wet years comparing and validating it with two years of continual in-situ water level measurements at different locations in our study area in the Northern Pantanal. Later on, we used the mNDWI to determine the water available for evaporation based on a recently developed approach (Schwerdtfeger et al., 2014, HESSD) to simulate evaporation fluxes on a large spatial scale. To set our evaporation results in the context of ecosystem vulnerability we defined the range of wet and dry years in the Pantanal for the last twelve years by means of local precipitation data and calculated yearly evaporation with our new approach. Considering now alterations of the inundation extent determined by the mNDWI in our model input parameters, our approach allowed us to make propositions about

  20. Evolution and failure of liquid bridges between grains due to evaporation and due to extension

    NASA Astrophysics Data System (ADS)

    Hueckel, T.; Mielniczuk, B.; Said El Youssoufi, M.

    2012-04-01

    Evolution and rupture of liquid bridges between glass spheres during liquid evaporation and during mechanical extension was examined. The latter type of the tests has been widely studied, while a number of pertinent measurements during transient evaporation have not yet been reported. Also the resultant total capillary forces were measured and geometrical characteristics (curvature radii)were recorded with a photo camera and high-speed camera and subsequently digitalized. The obtained results reveal substantial differences in geometry of liquid bridges during extension and evaporation. On the other hand, evaporation and extension of liquid bridgelead to a similar qualitative response in terms of the pressure within the liquid bridge, starting with a significant suction, which initially somewhat increases during evaporation to reach a maximum, followed by a rapid monotonic decrease until zero, to become a sizable positive pressure prior to rupture. Extension same pattern is followed, except that there is no initial suction increase. Hence, in both cases, rupture consistently occurs at a positive fluid pressure. The pressure evolution is a simple resultant of the evolution of radii of curvature, with the neck radius becoming smaller than meridian radius. In terms of resultant capillary force, as the area of the bridge cross-section decreases with the square of the neck radius, the pressure difference is almost entirely negative, in part also due to surface tension component. Nevertheless, the suction decreases nearly monotonically during both processes. Rupture during evaporation of the bridges occurs most abruptly for larger separations, as early as after 25% volume evaporated. It is seen as a bifurcation of the geometry of equilibrium, as demonstrated on a movie with 27, 000 shots per second. The evolution of a bridge between three spheres exhibits a centrally located thin film instability with a circular hole growing within 1/3000th of a second. All these findings

  1. Substance Abuse Treatment Facility Locator

    MedlinePlus

    ... Health Services Locator Buprenorphine Physician Locator Find a Facility in Your State To locate the drug and ... Service . Privacy Policy . Home | About the Locator | Find Facilities Near You | Find Facilities by City, County, State ...

  2. Comparison of different evaporation estimates over the African continent

    NASA Astrophysics Data System (ADS)

    Trambauer, P.; Dutra, E.; Maskey, S.; Werner, M.; Pappenberger, F.; van Beek, L. P. H.; Uhlenbrook, S.

    2014-01-01

    Evaporation is a key process in the water cycle with implications ranging, inter alia, from water management to weather forecast and climate change assessments. The estimation of continental evaporation fluxes is complex and typically relies on continental-scale hydrological models or land-surface models. However, it appears that most global or continental-scale hydrological models underestimate evaporative fluxes in some regions of Africa, and as a result overestimate stream flow. Other studies suggest that land-surface models may overestimate evaporative fluxes. In this study, we computed actual evaporation for the African continent using a continental version of the global hydrological model PCR-GLOBWB, which is based on a water balance approach. Results are compared with other independently computed evaporation products: the evaporation results from the ECMWF reanalysis ERA-Interim and ERA-Land (both based on the energy balance approach), the MOD16 evaporation product, and the GLEAM product. Three other alternative versions of the PCR-GLOBWB hydrological model were also considered. This resulted in eight products of actual evaporation, which were compared in distinct regions of the African continent spanning different climatic regimes. Annual totals, spatial patterns and seasonality were studied and compared through visual inspection and statistical methods. The comparison shows that the representation of irrigation areas has an insignificant contribution to the actual evaporation at a continental scale with a 0.5° spatial resolution when averaged over the defined regions. The choice of meteorological forcing data has a larger effect on the evaporation results, especially in the case of the precipitation input as different precipitation input resulted in significantly different evaporation in some of the studied regions. ERA-Interim evaporation is generally the highest of the selected products followed by ERA-Land evaporation. In some regions, the satellite

  3. Comparison of different evaporation estimates over the African continent

    NASA Astrophysics Data System (ADS)

    Trambauer, P.; Dutra, E.; Maskey, S.; Werner, M.; Pappenberger, F.; van Beek, L. P. H.; Uhlenbrook, S.

    2013-07-01

    Evaporation is a key process in the water cycle, with implications ranging from water management, to weather forecast and climate change assessments. The estimation of continental evaporation fluxes is complex and typically relies on continental-scale hydrological or land-surface models. However, it appears that most global or continental-scale hydrological models underestimate evaporative fluxes in some regions of Africa, and as a result overestimate stream flow. Other studies suggest that land-surface models may overestimate evaporative fluxes. In this study, we computed actual evaporation for the African continent using a continental version of the global hydrological model PCR-GLOBWB, which is based on a water balance approach. Results are compared with other independently computed evaporation products: the evaporation results from the ECMWF reanalysis ERA-Interim and ERA-Land (both based on the energy balance approach), the MOD16 evaporation product, and the GLEAM product. Three other alternative versions of the PCR-GLOBWB hydrological model were also considered. This resulted in eight products of actual evaporation, which were compared in distinct regions of the African continent spanning different climatic regimes. Annual totals, spatial patterns and seasonality were studied and compared through visual inspection and statistical methods. The comparison shows that the representation of irrigation areas has an insignificant contribution to the actual evaporation at a continental scale with a 0.5° spatial resolution. The choice of meteorological forcing data has a larger effect on the evaporation results, especially in the case of the precipitation input as different precipitation input resulted in significantly different evaporation in some of the studied regions. ERA-Interim evaporation is generally the highest of the selected products followed by ERA-Land evaporation. The satellite based products (GLEAM and MOD16) do not show regular behaviour when compared

  4. Green Data Center Cooling: Achieving 90% Reduction: Airside Economization and Unique Indirect Evaporative Cooling

    SciTech Connect

    Weerts, B. A.; Gallaher, D.; Weaver, R.; Van Geet, O.

    2012-01-01

    The Green Data Center Project was a successful effort to significantly reduce the energy use of the National Snow and Ice Data Center (NSIDC). Through a full retrofit of a traditional air conditioning system, the cooling energy required to meet the data center's constant load has been reduced by over 70% for summer months and over 90% for cooler winter months. This significant change is achievable through the use of airside economization and a new indirect evaporative cooling system. One of the goals of this project was to create awareness of simple and effective energy reduction strategies for data centers. This project's geographic location allowed maximizing the positive effects of airside economization and indirect evaporative cooling, but these strategies may also be relevant for many other sites and data centers in the U.S.

  5. Multispectral observations of chromospheric evaporation in the 1991 November 15 X-class solar flare

    NASA Technical Reports Server (NTRS)

    Wulser, Jean-Pierre; Canfield, Richard C.; Acton, Loren W.; Culhane, J. Leonard; Phillips, Andrew; Fludra, Andrzej; Sakao, Taro; Masuda, Satoshi; Kosugi, Takeo; Tsuneta, Saku

    1994-01-01

    We analyze simultaneous H(alpha) images and spectra (from Mees Solar Observatory), and soft and hard X-ray images and spectra (from YOHKOH) during the early phase of an X1.5/3B flare. We investigate the morphological relationship between chromospheric downflows, coronal upflows, and particle precipitation sites, and the energetic relationship between conductive heating, nonthermal particle heating, and the chromospheric response. We find that the observations consistently fit the chromospheric evaporation model. In particular, we demonstrate that the observed upflowing coronal and downflowing chromospheric plasma components originate in the same locations, and we show that our unique set of optical and X-ray observations can clearly distinguish between conductively driven and electron beam driven evaporation.

  6. Dipole Well Location

    1998-08-03

    The problem here is to model the three-dimensional response of an electromagnetic logging tool to a practical situation which is often encountered in oil and gas exploration. The DWELL code provide the electromagnetic fields on the axis of a borehole due to either an electric or a magnetic dipole located on the same axis. The borehole is cylindrical, and is located within a stratified formation in which the bedding planes are not horizontal. The anglemore » between the normal to the bedding planes and the axis of the borehole may assume any value, or in other words, the borehole axis may be tilted with respect to the bedding planes. Additionally, all of the formation layers may have invasive zones of drilling mud. The operating frequency of the source dipole(s) extends from a few Hertz to hundreds of Megahertz.« less

  7. Electric current locator

    DOEpatents

    King, Paul E.; Woodside, Charles Rigel

    2012-02-07

    The disclosure herein provides an apparatus for location of a quantity of current vectors in an electrical device, where the current vector has a known direction and a known relative magnitude to an input current supplied to the electrical device. Mathematical constants used in Biot-Savart superposition equations are determined for the electrical device, the orientation of the apparatus, and relative magnitude of the current vector and the input current, and the apparatus utilizes magnetic field sensors oriented to a sensing plane to provide current vector location based on the solution of the Biot-Savart superposition equations. Description of required orientations between the apparatus and the electrical device are disclosed and various methods of determining the mathematical constants are presented.

  8. Dipole Well Location

    SciTech Connect

    Newman, Gregory

    1998-08-03

    The problem here is to model the three-dimensional response of an electromagnetic logging tool to a practical situation which is often encountered in oil and gas exploration. The DWELL code provide the electromagnetic fields on the axis of a borehole due to either an electric or a magnetic dipole located on the same axis. The borehole is cylindrical, and is located within a stratified formation in which the bedding planes are not horizontal. The angle between the normal to the bedding planes and the axis of the borehole may assume any value, or in other words, the borehole axis may be tilted with respect to the bedding planes. Additionally, all of the formation layers may have invasive zones of drilling mud. The operating frequency of the source dipole(s) extends from a few Hertz to hundreds of Megahertz.

  9. Underwater hydrophone location survey

    NASA Technical Reports Server (NTRS)

    Cecil, Jack B.

    1993-01-01

    The Atlantic Undersea Test and Evaluation Center (AUTEC) is a U.S. Navy test range located on Andros Island, Bahamas, and a Division of the Naval Undersea Warfare Center (NUWC), Newport, RI. The Headquarters of AUTEC is located at a facility in West Palm Beach, FL. AUTEC's primary mission is to provide the U.S. Navy with a deep-water test and evaluation facility for making underwater acoustic measurements, testing and calibrating sonars, and providing accurate underwater, surface, and in-air tracking data on surface ships, submarines, aircraft, and weapon systems. Many of these programs are in support of Antisubmarine Warfare (ASW), undersea research and development programs, and Fleet assessment and operational readiness trials. Most tests conducted at AUTEC require precise underwater tracking (plus or minus 3 yards) of multiple acoustic signals emitted with the correct waveshape and repetition criteria from either a surface craft or underwater vehicle.

  10. A theoretical and experimental study of turbulent evaporating sprays

    NASA Technical Reports Server (NTRS)

    Solomon, A. S. P.; Shuen, J. S.; Zhang, Q. F.; Faeth, G. M.

    1984-01-01

    Measurements and analysis limited to the dilute portions of turbulent evaporating sprays, injected into a still air environment were completed. Mean and fluctuating velocities and Reynolds stress were measured in the continuous phase. Liquid phase measurements included liquid mass fluxes, drop sizes and drop size and velocity correlation. Initial conditions needed for model evaluation were measured at a location as close to the injector exit as possible. The test sprays showed significant effects of slip and turbulent dispersion of the discrete phase. The measurements were used to evaluate three typical models of these processes: (1) a locally homogeneous flow (LHF) model, where slip between the phases were neglected; (2) a deterministic separated flow (DSF) model, where slip was considered but effects of drop dispersion by turbulence were ignored; and (3) a stochastic separated flow (SSF) model, where effects of interphase slip and turbulent dispersion were considered using random-walk computations for drop motion. For all three models, a k-epsilon model as used to find the properties of the continuous phase. The LHF and DSF models did not provide very satisfactory predictions for the present measurements. In contrast, the SSF model performed reasonably well--with no modifications in the prescription of eddy properties from its original calibration.

  11. Spherical magnetic nanoparticles fabricated by laser target evaporation

    NASA Astrophysics Data System (ADS)

    Safronov, A. P.; Beketov, I. V.; Komogortsev, S. V.; Kurlyandskaya, G. V.; Medvedev, A. I.; Leiman, D. V.; Larrañaga, A.; Bhagat, S. M.

    2013-05-01

    Magnetic nanoparticles of iron oxide (MNPs) were prepared by the laser target evaporation technique (LTE). The main focus was on the fabrication of de-aggregated spherical maghemite MNPs with a narrow size distribution and enhanced effective magnetization. X-ray diffraction, transmission electron microscopy, magnetization and microwave absorption measurements were comparatively analyzed. The shape of the MNPs (mean diameter of 9 nm) was very close to being spherical. The lattice constant of the crystalline phase was substantially smaller than that of stoichiometric magnetite but larger than the lattice constant of maghemite. High value of Ms up to 300 K was established. The 300 K ferromagnetic resonance signal is a single line located at a field expected from spherical magnetic particles with negligible magnetic anisotropy. The maximum obtained concentration of water based ferrofluid was as high as 10g/l of magnetic material. In order to understand the temperature and field dependence of MNPs magnetization, we invoke the core-shell model. The nanoparticles is said to have a ferrimagnetic core (roughly 70 percent of the caliper size) while the shell consists of surface layers in which the spins are frozen having no long range magnetic order. The core-shell interactions were estimated in frame of random anisotropy model. The obtained assembly of de-aggregated nanoparticles is an example of magnetic nanofluid stable under ambient conditions even without an electrostatic stabilizer.

  12. Corrosion of metal particle and metal evaporated tapes

    NASA Technical Reports Server (NTRS)

    Speliotis, Dennis E.

    1991-01-01

    Very high coercivity metal particle (MP) and metal evaporated (ME) tapes are being used in 8mm video and digital audio tape applications, and more recently in digital data recording applications. In view of the inherent susceptibility of such media to environmental corrosion, a number of recent studies have addressed their long term stability and archivability. These studies have used an accelerated corrosion test based either on elevated temperature-humidity or polluting gas atmospheres known as Battelle tests. A comparison of the Battelle test results performed at different laboratories reveals a large variation from one location to another, presumably due to incorrect replication of the Battelle condition. Furthermore, when the Battelle tests are performed on enclosed cartridges, it is quite possible that diffusion limits the penetration of the extremely low concentration polluting gaseous species to the inner layers of the tapes during the short time of the accelerated test, whereas in real life these diffusion limitations may not apply. To avoid this uncertainty, the corrosion behavior of commercial 8mm MP and ME tapes when cassettes without their external plastic cases were exposed to 50 deg C and 80 percent RH for 7.5 weeks is investigated.

  13. Marine cable location system

    SciTech Connect

    Ottsen, H.; Barker, Th.

    1985-04-23

    An acoustic positioning system for locating a marine cable at an exploration site employs a plurality of acoustic transponders, each having a characteristic frequency, at spaced-apart positions along the cable. A marine vessel measures the depth to the transponders as the vessel passes over the cable and measures the slant range from the vessel to each of the acoustic transponders as the vessel travels in a parallel and horizontally offset path to the cable.

  14. Magnetic Location Indicator

    NASA Technical Reports Server (NTRS)

    Stegman, Thomas W.

    1992-01-01

    Ferrofluidic device indicates point of highest magnetic-flux density in workspace. Consists of bubble of ferrofluid in immiscible liquid carrier in clear plastic case. Used in flat block or tube. Axes of centering circle on flat-block version used to mark location of maximum flux density when bubble in circle. Device used to find point on wall corresponding to known point on opposite side of wall.

  15. Ammonia Leak Locator Study

    NASA Technical Reports Server (NTRS)

    Dodge, Franklin T.; Wuest, Martin P.; Deffenbaugh, Danny M.

    1995-01-01

    The thermal control system of International Space Station Alpha will use liquid ammonia as the heat exchange fluid. It is expected that small leaks (of the order perhaps of one pound of ammonia per day) may develop in the lines transporting the ammonia to the various facilities as well as in the heat exchange equipment. Such leaks must be detected and located before the supply of ammonia becomes critically low. For that reason, NASA-JSC has a program underway to evaluate instruments that can detect and locate ultra-small concentrations of ammonia in a high vacuum environment. To be useful, the instrument must be portable and small enough that an astronaut can easily handle it during extravehicular activity. An additional complication in the design of the instrument is that the environment immediately surrounding ISSA will contain small concentrations of many other gases from venting of onboard experiments as well as from other kinds of leaks. These other vapors include water, cabin air, CO2, CO, argon, N2, and ethylene glycol. Altogether, this local environment might have a pressure of the order of 10(exp -7) to 10(exp -6) torr. Southwest Research Institute (SwRI) was contracted by NASA-JSC to provide support to NASA-JSC and its prime contractors in evaluating ammonia-location instruments and to make a preliminary trade study of the advantages and limitations of potential instruments. The present effort builds upon an earlier SwRI study to evaluate ammonia leak detection instruments [Jolly and Deffenbaugh]. The objectives of the present effort include: (1) Estimate the characteristics of representative ammonia leaks; (2) Evaluate the baseline instrument in the light of the estimated ammonia leak characteristics; (3) Propose alternative instrument concepts; and (4) Conduct a trade study of the proposed alternative concepts and recommend promising instruments. The baseline leak-location instrument selected by NASA-JSC was an ion gauge.

  16. The Effect of Sink Temperature on a Capillary Pumped Loop Employing a Flat Evaporator and Shell and Tube Condenser

    SciTech Connect

    M. Cerza; R.C. Herron; J.J. Harper

    2002-06-24

    An experimental facility for conducting research on capillary pumped loop (CPL) systems was developed. In order to simulate shipboard cooling water encountered at various locations of the ocean, the heat sink temperature of the facility could be varied. A flat plate, CPL evaporator was designed and tested under various heat sink temperatures. The sink temperature ranged from 274.3 to 305.2 K and the heat input varied from 250 to 800 W which corresponds to heat fluxes up to 1.8 W/cm{sup 2}. The CPL flat plate evaporator performed very well under this range of heat input and sink temperatures. The main result obtained showed that a large degree of subcooling developed between the evaporator vapor outlet line and liquid return line. This condensate depression increased with increasing heat input.

  17. Evaporation from flowing channels ( mass-transfer formulas).

    USGS Publications Warehouse

    Fulford, J.M.; Sturm, T.W.

    1984-01-01

    Stability-dependent and Dalton-type mass transfer formulas are determined from experimental evaporation data in ambient and heated channels and are shown to have similar performance in prediction of evaporation. The formulas developed are compared with those proposed by other investigators for lakes and flowing channels. -from ASCE Publications Information

  18. Modeling Coupled Evaporation and Seepage in Ventilated Cavities

    SciTech Connect

    T. Ghezzehei; R. Trautz; S. Finsterle; P. Cook; C. Ahlers

    2004-07-01

    Cavities excavated in unsaturated geological formations are important to activities such as nuclear waste disposal and mining. Such cavities provide a unique setting for simultaneous occurrence of seepage and evaporation. Previously, inverse numerical modeling of field liquid-release tests and associated seepage into cavities were used to provide seepage-related large-scale formation properties by ignoring the impact of evaporation. The applicability of such models was limited to the narrow range of ventilation conditions under which the models were calibrated. The objective of this study was to alleviate this limitation by incorporating evaporation into the seepage models. We modeled evaporation as an isothermal vapor diffusion process. The semi-physical model accounts for the relative humidity, temperature, and ventilation conditions of the cavities. The evaporation boundary layer thickness (BLT) over which diffusion occurs was estimated by calibration against free-water evaporation data collected inside the experimental cavities. The estimated values of BLT were 5 to 7 mm for the open underground drifts and 20 mm for niches closed off by bulkheads. Compared to previous models that neglected the effect of evaporation, this new approach showed significant improvement in capturing seepage fluctuations into open cavities of low relative humidity. At high relative-humidity values (greater than 85%), the effect of evaporation on seepage was very small.

  19. 40 CFR 1060.605 - Exemptions from evaporative emission standards.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... exemption in 40 CFR 1068.240 must use fuel-system components that meet the evaporative emission standards.... See 40 CFR 1068.225. (3) Economic hardship. See 40 CFR 1068.245 and 1068.250. (f) Evaporative emission... using an engine that is exempt from exhaust emission standards under the provisions in 40 CFR part...

  20. 40 CFR 1060.605 - Exemptions from evaporative emission standards.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... exemption in 40 CFR 1068.240 must use fuel-system components that meet the evaporative emission standards.... See 40 CFR 1068.225. (3) Economic hardship. See 40 CFR 1068.245 and 1068.250. (f) Evaporative emission... using an engine that is exempt from exhaust emission standards under the provisions in 40 CFR part...

  1. 40 CFR 1060.605 - Exemptions from evaporative emission standards.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... exemption in 40 CFR 1068.240 must use fuel-system components that meet the evaporative emission standards.... See 40 CFR 1068.225. (3) Economic hardship. See 40 CFR 1068.245 and 1068.250. (f) Evaporative emission... using an engine that is exempt from exhaust emission standards under the provisions in 40 CFR part...

  2. 40 CFR 1060.605 - Exemptions from evaporative emission standards.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... exemption in 40 CFR 1068.240 must use fuel-system components that meet the evaporative emission standards.... See 40 CFR 1068.225. (3) Economic hardship. See 40 CFR 1068.245 and 1068.250. (f) Evaporative emission... using an engine that is exempt from exhaust emission standards under the provisions in 40 CFR part...

  3. Droplet evaporation on heated hydrophobic and superhydrophobic surfaces.

    PubMed

    Dash, Susmita; Garimella, Suresh V

    2014-04-01

    The evaporation characteristics of sessile water droplets on smooth hydrophobic and structured superhydrophobic heated surfaces are experimentally investigated. Droplets placed on the hierarchical superhydrophobic surface subtend a very high contact angle (∼160°) and demonstrate low roll-off angle (∼1°), while the hydrophobic substrate supports corresponding values of 120° and ∼10°. The substrates are heated to different constant temperatures in the range of 40-60 °C, which causes the droplet to evaporate much faster than in the case of natural evaporation without heating. The geometric parameters of the droplet, such as contact angle, contact radius, and volume evolution over time, are experimentally tracked. The droplets are observed to evaporate primarily in a constant-contact-angle mode where the contact line slides along the surface. The measurements are compared with predictions from a model based on diffusion of vapor into the ambient that assumes isothermal conditions. This vapor-diffusion-only model captures the qualitative evaporation characteristics on both test substrates, but reasonable quantitative agreement is achieved only for the hydrophobic surface. The superhydrophobic surface demonstrates significant deviation between the measured evaporation rate and that obtained using the vapor-diffusion-only model, with the difference being amplified as the substrate temperature is increased. A simple model considering thermal diffusion through the droplet is used to highlight the important role of evaporative cooling at the droplet interface in determining the droplet evaporation characteristics on superhydrophobic surfaces. PMID:24827255

  4. 7 CFR 58.937 - Physical requirements for evaporated milk.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Physical requirements for evaporated milk. 58.937... requirements for evaporated milk. (a) Flavor. The product shall possess a sweet, pleasing and desirable flavor.... It shall be smooth and free from fat separation, lumps, clots, gel formation, coarse milk...

  5. 7 CFR 58.937 - Physical requirements for evaporated milk.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Physical requirements for evaporated milk. 58.937... requirements for evaporated milk. (a) Flavor. The product shall possess a sweet, pleasing and desirable flavor.... It shall be smooth and free from fat separation, lumps, clots, gel formation, coarse milk...

  6. 7 CFR 58.937 - Physical requirements for evaporated milk.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Physical requirements for evaporated milk. 58.937... requirements for evaporated milk. (a) Flavor. The product shall possess a sweet, pleasing and desirable flavor.... It shall be smooth and free from fat separation, lumps, clots, gel formation, coarse milk...

  7. Evaporation of Pesticide Droplets under Various Relative Humidity Conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Evaporation characteristics of five droplet sizes (246, 343, 575, 762 and 886 µm) under three relative humidity (RH) conditions (30%, 60% and 90%) were studied in a laboratory. Sequential images of evaporating droplets placed inside a small environmental-controlled chamber were obtained using a ster...

  8. Quantification of soil water evaporation using TDR-microlysimetry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil water evaporation is conventionally measured using microlysimeters by evaluating the daily change in mass. Daily removal is laborious and replacement immediately after irrigation events is impractical because of field wetness which leads to delays and an underestimation of evaporation. Irrigati...

  9. Instructions for measuring the rate of evaporation from water surfaces

    USGS Publications Warehouse

    U.S. Geological Survey

    1898-01-01

    The ·rate of evaporation from water surfaces varies with the temperature of the water, the velocity of the wind at the water surface, and the dryness of the air. Consequently, the rate of evaporation from rivers, lakes, canals, or reservoirs varies widely in different localities and for the same locality in different seasons.

  10. Residual Patterns of Alkyl Polyoxyethylene Surfactant Droplets after Water Evaporation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Using a nonionic, alkyl polyoxyethylene surfactant (X-77®) in aqueous solutions, sessile droplet spreading, pinning, evaporation, contraction, and post-evaporation deposits are characterized. X-77® is widely used in the agricultural field as a spreader/adherent, intended to optimize pathenogenic ag...

  11. PRODUCTION ENGINEERING AND MARKETING ANALYSIS OF THE ROTATING DISK EVAPORATOR

    EPA Science Inventory

    Recent EPA-funded research into the onsite, mechanical evaporation of wastewater from single family homes revealed that a rotating disk evaporator (RDE) could function in a nondischarging mode. Such a device has potential use where site limitations preclude conventional methods o...

  12. 40 CFR 1060.605 - Exemptions from evaporative emission standards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Exemptions from evaporative emission standards. 1060.605 Section 1060.605 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EVAPORATIVE EMISSIONS FROM NEW AND IN-USE NONROAD AND STATIONARY EQUIPMENT Special Compliance Provisions...

  13. Evaporant feed device facilitates flash vapor deposition process in vacuum

    NASA Technical Reports Server (NTRS)

    Hermann, W. A.; Stirn, R. J.

    1967-01-01

    Mechanism using a helix sequentially feeds prescribed amounts of metal charges into an evaporation boat used for flash vapor deposition of the evaporants onto a substrate in a vacuum chamber. The helix is advanced by external manual controls extending through sealed feed- through devices into the chamber wall.

  14. A Simpler Way to Tame Multiple-Effect Evaporators.

    ERIC Educational Resources Information Center

    Joye, Donald D.; Koko, F. William Jr.

    1988-01-01

    Presents a new method to teach the subject of evaporators which is both simple enough to use in the classroom and accurate and flexible enough to be used as a design tool in practice. Gives an example using a triple evaporator series. Analyzes the effect of this method. (CW)

  15. Droplet Evaporator For High-Capacity Heat Transfer

    NASA Technical Reports Server (NTRS)

    Valenzuela, Javier A.

    1993-01-01

    Proposed heat-exchange scheme boosts heat transfer per unit area. Key component is generator that fires uniform size droplets of subcooled liquid at hot plate. On impact, droplets spread out and evaporate almost instantly, removing heat from plate. In practice, many generator nozzles arrayed over evaporator plate.

  16. Flow Visualization within the Evaporator of Planar Loop Heat Pipe

    NASA Astrophysics Data System (ADS)

    Suh, Junwoo; Cytrynowicz, Debra; Medis, Praveen; Gerner, Frank M.; Henderson, H. Thurman

    2005-02-01

    A planar micro loop heat pipe (LHP) with coherent porous silicon (CPS) wick in the evaporator is a two-phase heat transfer device that utilizes evaporation and condensation to transfer heat. This CPS wick has thousands of pores, which are 2 micrometer in diameter, contained over an area of one square centimeter. As heat is applied to the evaporator, liquid is vaporized and evaporator chamber's pressure is increased. A meniscus formed at the liquid/vapor interface inside the pore of the CPS wick is supported by capillary forces even though pressure force pushes it down. Vapor flows through the vapor line to the condenser and condenses. Liquid is transported back to the evaporator due to pressure difference. The internal thermodynamics and fluid dynamics are poorly understood due to the difficulty of taking internal measurements and the complexity of two-phase phenomena. To understand this thermal device, the clear evaporator machined from Pyrex glass was utilized to monitor the complex phenomena which occur in the evaporator. These phenomena include vapor formation, nucleate boiling, evaporation, depriming, and pressure oscillation. DI-water was utilized as the working fluid.

  17. Measured performance of falling-jet flash evaporators

    NASA Astrophysics Data System (ADS)

    Green, H. J.; Olson, D. A.; Bharathan, D.; Johnson, D. H.

    1981-06-01

    The rates of heat transfer and approach to thermal equilibrium of flash evaporators operating at pressures of 2 to 4 kPa were investigated. Heat and mass transfer rates from falling jet evaporators operating in the temperature range of 18 to 30 C are measured. The initial experimental results are given and the apparatus is described.

  18. Out-of-tank evaporator demonstration: Tanks focus area

    SciTech Connect

    1998-11-01

    Approximately 100 million gal of liquid waste is stored in underground storage tanks (UST)s at the Hanford Site, Idaho National Engineering and Environmental Laboratory (INEEL), Savannah River Site (SRS), and Oak Ridge Reservation (ORR). This waste is radioactive with a high salt content. The US Department of Energy (DOE) wants to minimize the volume of radioactive liquid waste in USTs by removing the excess water. This procedure conserves tank space; lowers the cost of storage; and reduces the volume of wastes subsequently requiring separation, immobilization, and disposal. The Out-of-Tank Evaporator Demonstration (OTED) was initiated to test a modular, skid-mounted evaporator. A mobile evaporator system manufactured by Delta Thermal Inc. was selected. The evaporator design was routinely used in commercial applications such as concentrating metal-plating wastes for recycle and concentrating ethylene glycol solutions. In FY 1995, the skid-mounted evaporator system was procured and installed in an existing ORNL facility (Building 7877) with temporary shielding and remote controls. The evaporator system was operational in January 1996. The system operated 24 h/day and processed 22,000 gal of Melton Valley Storage Tank (MVST) supernatant. The distillate contained essentially no salts or radionuclides. Upon completion of the demonstration, the evaporator underwent decontamination testing to illustrate the feasibility of hands-on maintenance and potential transport to another DOE facility. This report describes the process and the evaporator, its performance at ORNL, future plans, applications of this technology, cost estimates, regulatory and policy considerations, and lessons learned.

  19. 40 CFR 86.143-96 - Calculations; evaporative emissions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Calculations; evaporative emissions. 86.143-96 Section 86.143-96 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Complete Heavy-Duty Vehicles; Test Procedures § 86.143-96 Calculations; evaporative emissions. (a)...

  20. Impacts of Salinity on Soil Hydraulic Properties and Evaporation Fluxes

    NASA Astrophysics Data System (ADS)

    Fierro, V.; Cristi Matte, F.; Suarez, F. I.; Munoz, J. F.

    2014-12-01

    Saline soils are common in arid zones, where evaporation from shallow groundwater is generally the main component of the water balance. Thus, to correctly manage water resources in these zones, it is important to quantify the evaporation fluxes. Evaporation from saline soils is a complex process that couples the movement of salts, heat, liquid water and water vapor, and strongly depends on the soil water content. Precipitation/dissolution reactions can change the soil structure and alter flow paths, modifying evaporation fluxes. We utilized the HYDRUS-1D model to investigate the effects of salinity on soil hydraulic properties and evaporation fluxes. HYDRUS-1D simulates the transport of liquid water, water vapor, and heat, and can incorporate precipitation/dissolution reactions of the major ions. To run the model, we determined the water retention curve for a soil with different salinities; and we used meteorological forcing from an experimental site from the Atacama Desert. It was found that higher sodium adsorption ratios in the soil increase the soil water retention capacity. Also, it was found that evaporation fluxes increase salts concentration near the soil surface, changing the soil's water retention capacity in that zone. Finally, movement of salts causes differences in evaporation fluxes. It is thus necessary to incorporate salt precipitation/dissolution reactions and its effects on the water retention curve to correctly simulate evaporation in saline soils

  1. Measurement of sub-canopy evaporation in a flooded forest

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Evapotranspiration is the dominant water efflux in many forested wetlands, but few studies have quantified the contribution of subcanopy evaporation. The goal of this study is to investigate the subcanopy energy balance to more fully understand physical controls over evaporation. We used Bowen ratio...

  2. A phylogenetic approach to total evaporative water loss in mammals.

    PubMed

    Van Sant, Matthew J; Oufiero, Christopher E; Muñoz-Garcia, Agustí; Hammond, Kimberly A; Williams, Joseph B

    2012-01-01

    Maintaining appropriate water balance is a constant challenge for terrestrial mammals, and this problem can be exacerbated in desiccating environments. It has been proposed that natural selection has provided desert-dwelling mammals physiological mechanisms to reduce rates of total evaporative water loss. In this study, we evaluated the relationship between total evaporative water loss and body mass in mammals by using a recent phylogenetic hypothesis. We compared total evaporative water loss in 80 species of arid-zone mammals to that in 56 species that inhabit mesic regions, ranging in size from 4 g to 3,500 kg, to test the hypothesis that mammals from arid environments have lower rates of total evaporative water loss than mammals from mesic environments once phylogeny is taken into account. We found that arid species had lower rates of total evaporative water loss than mesic species when using a dichotomous variable to describe habitat (arid or mesic). We also found that total evaporative water loss was negatively correlated with the average maximum and minimum environmental temperature as well as the maximum vapor pressure deficit of the environment. Annual precipitation and the variable Q (a measure of habitat aridity) were positively correlated with total evaporative water loss. These results support the hypothesis that desert-dwelling mammals have lower rates of total evaporative water loss than mesic species after controlling for body mass and evolutionary relatedness regardless of whether categorical or continuous variables are used to describe habitat. PMID:22902381

  3. Sensible heat observations reveal soil-water evaporation dynamics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil water evaporation is important at scales ranging from microbial ecology to large-scale climate. Yet, routine measurments are unable to capture rapidly shifting near-surface soil heat and water processes involved in soil-water evaporation. The objective of this study was to determine the depth a...

  4. Multilayer composite material and method for evaporative cooling

    NASA Technical Reports Server (NTRS)

    Buckley, Theresa M. (Inventor)

    2002-01-01

    A multilayer composite material and method for evaporative cooling of a person employs an evaporative cooling liquid that changes phase from a liquid to a gaseous state to absorb thermal energy. The evaporative cooling liquid is absorbed into a superabsorbent material enclosed within the multilayer composite material. The multilayer composite material has a high percentage of the evaporative cooling liquid in the matrix. The cooling effect can be sustained for an extended period of time because of the high percentage of phase change liquid that can be absorbed into the superabsorbent. Such a composite can be used for cooling febrile patients by evaporative cooling as the evaporative cooling liquid in the matrix changes from a liquid to a gaseous state to absorb thermal energy. The composite can be made with a perforated barrier material around the outside to regulate the evaporation rate of the phase change liquid. Alternatively, the composite can be made with an imperveous barrier material or semipermeable membrane on one side to prevent the liquid from contacting the person's skin. The evaporative cooling liquid in the matrix can be recharged by soaking the material in the liquid. The multilayer composite material can be fashioned into blankets, garments and other articles.

  5. Small Scale Evaporation Kinetics of a Binary Fluid Mixture

    NASA Astrophysics Data System (ADS)

    Basdeo, Carl; Ye, Dezhuang; Kalonia, Devendra; Fan, Tai-Hsi; Mechanical Engineering Team; Pharmaceutical Sciences Collaboration

    2013-03-01

    Evaporation induces a concentrating effect in liquid mixtures. The transient process has significant influence on the dynamic behaviors of a complex fluid. To simultaneously investigate the fluid properties and small-scale evaporation kinetics during the transient process, the quartz crystal microbalance is applied to a binary mixture droplet of light alcohols including both a single volatile component (a fast evaporation followed by a slow evaporation) and a mixture of two volatile components with comparable evaporation rates. The density and viscosity stratification are evaluated by the shear wave, and the evaporation kinetics is measured by the resonant signature of the acoustic p-wave. The evaporation flux can be precisely determined by the resonant frequency spikes and the complex impedance. To predict the concentration field, the moving interface, and the precision evaporation kinetics of the mixture, a multiphase model is developed to interpret the complex impedance signals based on the underlying mass and momentum transport phenomena. The experimental method and theoretical model are developed for better characterizing and understanding of the drying process involving liquid mixtures of protein pharmaceuticals.

  6. 40 CFR 86.1243-96 - Calculations; evaporative emissions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 20 2013-07-01 2013-07-01 false Calculations; evaporative emissions. 86.1243-96 Section 86.1243-96 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) Evaporative Emission Test Procedures for...

  7. 40 CFR 86.1243-96 - Calculations; evaporative emissions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 19 2011-07-01 2011-07-01 false Calculations; evaporative emissions. 86.1243-96 Section 86.1243-96 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) Evaporative Emission Test Procedures for...

  8. 32 CFR 242a.2 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... PUBLIC MEETING PROCEDURES OF THE BOARD OF REGENTS, UNIFORMED SERVICES UNIVERSITY OF THE HEALTH SCIENCES... of the Uniformed Services University of the Health Sciences as specified in Title 10, U.S. Code 2113... officio members; and (4) The Dean (President) of the University, an ex officio non-voting member....

  9. 32 CFR 242a.2 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... PUBLIC MEETING PROCEDURES OF THE BOARD OF REGENTS, UNIFORMED SERVICES UNIVERSITY OF THE HEALTH SCIENCES... officially designated by the Board. (c) Chairman means the presiding officer of the Board, designated by the... Board, meet with members of the public or staff. Conference telephone calls that involve the...

  10. 32 CFR 242a.2 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... PUBLIC MEETING PROCEDURES OF THE BOARD OF REGENTS, UNIFORMED SERVICES UNIVERSITY OF THE HEALTH SCIENCES... officially designated by the Board. (c) Chairman means the presiding officer of the Board, designated by the... Board, meet with members of the public or staff. Conference telephone calls that involve the...

  11. 32 CFR 242a.2 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... PUBLIC MEETING PROCEDURES OF THE BOARD OF REGENTS, UNIFORMED SERVICES UNIVERSITY OF THE HEALTH SCIENCES... officially designated by the Board. (c) Chairman means the presiding officer of the Board, designated by the... Board, meet with members of the public or staff. Conference telephone calls that involve the...

  12. 32 CFR 242a.2 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... PUBLIC MEETING PROCEDURES OF THE BOARD OF REGENTS, UNIFORMED SERVICES UNIVERSITY OF THE HEALTH SCIENCES... officially designated by the Board. (c) Chairman means the presiding officer of the Board, designated by the... Board, meet with members of the public or staff. Conference telephone calls that involve the...

  13. Evaporation Dynamics of Moss and Bare Soil in Boreal Forests

    NASA Astrophysics Data System (ADS)

    Dempster, S.; Young, J. M.; Barron, C. G.; Bolton, W. R.

    2013-12-01

    Evaporation dynamics of mosses is a critical process in boreal and arctic systems and represents a key uncertainty in hydrology and climate models. At this point, moss evaporation is not well quantified at the plot or landscape scale. Relative to bare soil or litter evaporation, moss evaporation can be challenging to predict because the water flux is not isolated to the moss surface. Evaporation can originate from nearly 10 cm below the surface. Some mosses can wick moisture from even deeper than 10 cm, which subsequently evaporates. The goal of this study was to use field measurements to quantify the moss evaporation dynamics in a coniferous forest relative to bare ground or litter evaporation dynamics in a deciduous forest in Interior Alaska. Measurements were made in two ecosystem types within the boreal forest of Interior Alaska: a deciduous forest devoid of moss and a coniferous forest with a thick moss layer. A small clear chamber was attached to a LiCor 840 infrared gas analyzer in a closed loop system with a low flow rate. Water fluxes were measured for ~ 90 seconds on each plot in dry and wet soil and moss conditions. Additional measurements included: soil temperature, soil moisture, air temperature, barometric pressure, dew point, relative humidity, and wind speed. Thermal infrared images were also captured in congruence with water flux measurements to determine skin temperature. We found that the moss evaporation rate was over 100% greater than the soil evaporation rate (0.057 g/min vs. 0.024 g/min), and evaporation rates in both systems were most strongly driven by relative humidity and surface temperature. Surface temperature was lower at the birch site than the black spruce site because trees shade the surface beneath the birch. High fluxes associated with high water content were sustained for a longer period of time over the mosses compared to the bare soil. The thermal IR data showed that skin temperature lagged the evaporation flux, such that the

  14. Evaporation of traffic-generated nanoparticles during advection from source

    NASA Astrophysics Data System (ADS)

    Harrison, Roy M.; Jones, Alan M.; Beddows, David C. S.; Dall'Osto, Manuel; Nikolova, Irina

    2016-01-01

    Earlier work has demonstrated the potential for volatilisation of nanoparticles emitted by road traffic as these are advected downwind from the source of emissions, but there have been few studies and the processes have yet to be elucidated in detail. Using a dataset collected at paired sampling sites located respectively in a street canyon and in a nearby park, an in depth analysis of particle number size distributions has been conducted in order to better understand the size reduction of the semi-volatile nanoparticles. By sorting the size distributions according to wind direction and fitting log normal modes, it can be seen that the mode peaking at around 22 nm at the street canyon site is on average shrinking to 6.2 nm diameter at the park site which indicates a mean shrinkage rate for these particles of 0.13 nm s-1 with temperatures within the range 12-18 °C. The diurnal variation of the shrunken mode in the park reflects the diurnal pattern of particle concentrations at the street canyon site taken as the main source area. An analysis of peak diameter for the smallest mode at the downwind park site shows an inverse relationship to wind speed suggesting that dilution rather than travel time is the main determinant of the particle shrinkage rate. An evaluation of previously collected C10 to C35 n-alkane data from a different urban location shows a good fit to Pankow partitioning theory reflecting the semi-volatility of compounds believed to be representative of the composition of diesel exhaust nanoparticles, hence confirming the feasibility of an evaporative mechanism for particle shrinkage.

  15. Evaporation from Banksia woodland on a groundwater mound

    NASA Astrophysics Data System (ADS)

    Farrington, P.; Greenwood, E. A. N.; Bartle, G. A.; Beresford, J. D.; Watson, G. D.

    1989-01-01

    Annual evaporation from a site within a Banksia woodland on a groundwater mound near Perth, Western Australia, was estimated from measurements of daily evaporation by ventilated chambers on fourteen occasions during a 12-month period. The total evaporation for this period was estimated to be 666 mm (77% of annual rainfall). About two-thirds of the total evaporation came from the ground flora, one-fifth from Banksia trees, and the remainder from the tall shrub Adenanthos cygnorum. Depth to water table, which ranged from 4 to 12 m over the site, had little effect on total evaporation. This work suggests that regular reduction in ground flora foliage, for example, by controlled burning could increase recharge.

  16. Evaporation and skin penetration characteristics of mosquito repellent formulations

    SciTech Connect

    Reifenrath, W.G.; Hawkins, G.S.; Kurtz, M.S.

    1989-03-01

    Formulations of the mosquito repellent N,N-diethyl-3-methylbenzamide (deet) in combination with a variety of additives were developed to control repellent evaporation and percutaneous penetration. Deet was also formulated with the repellent dimethyl phthalate to study the interaction of the two compounds on the skin. The evaporation and penetration processes were evaluated on whole and split-thickness pig skin using radiolabeled repellents with an in vitro apparatus. Under essentially still air and air flow conditions, one of the deet formulations resulted in significantly reduced total evaporation and percutaneous penetration of deet as compared to unformulated repellent. When deet and dimethyl phthalate were combined, neither repellent affected the total amount of evaporation and penetration of the other compound. However, initial percutaneous penetration and evaporation rates were slightly less and decayed less rapidly than when both chemicals were tested separately at the same dose. These results indicated a degree of competition of the two compounds for the same avenues of loss.

  17. Convective rolls and hydrothermal waves in evaporating sessile drops.

    PubMed

    Karapetsas, George; Matar, Omar K; Valluri, Prashant; Sefiane, Khellil

    2012-08-01

    Recent experiments on the evaporation of sessile droplets have revealed the spontaneous formation of various patterns including the presence of hydrothermal waves. These waves had previously been observed, in the absence of evaporation, in thin liquid layers subjected to an imposed, uniform temperature gradient. This is in contrast to the evaporating droplet case wherein these gradients arise naturally due to evaporation and are spatially and temporally varying. In the present paper, we present a theory of evaporating sessile droplets deposited on a heated surface and propose a candidate mechanism for the observed pattern formation using a linear stability analysis in the quasi-steady-state approximation. A qualitative agreement with experimental trends is observed. PMID:22775413

  18. A new evaporation duct climatology over the South China Sea

    NASA Astrophysics Data System (ADS)

    Shi, Yang; Yang, Kunde; Yang, Yixin; Ma, Yuanliang

    2015-10-01

    The climatology of evaporation ducts is important for shipborne electromagnetic system design and application. The evaporation duct climatology that is currently used for such applications was developed in the mid 1980s; this study presents efforts to improve it over the South China Sea (SCS) by using a state-of-the-art evaporation duct model and an improved meteorology dataset. This new climatology provides better evaporation duct height (EDH) data over the SCS, at a higher resolution of 0.312°×0.313°. A comparison between the new climatology and the old one is performed. The monthly average EDH in the new climatology is between 10 and 12 m over the SCS, higher than that in the old climatology. The spatiotemporal characteristics of the evaporation duct over the SCS in different months are analyzed in detail, based on the new climatology.

  19. Evaporation of Particle-Stabilized Emulsion Sunscreen Films.

    PubMed

    Binks, Bernard P; Fletcher, Paul D I; Johnson, Andrew J; Marinopoulos, Ioannis; Crowther, Jonathan M; Thompson, Michael A

    2016-08-24

    We recently showed (Binks et al., ACS Appl. Mater. Interfaces, 2016, DOI: 10.1021/acsami.6b02696) how evaporation of sunscreen films consisting of solutions of molecular UV filters leads to loss of UV light absorption and derived sun protection factor (SPF). In the present work, we investigate evaporation-induced effects for sunscreen films consisting of particle-stabilized emulsions containing a dissolved UV filter. The emulsions contained either droplets of propylene glycol (PG) in squalane (SQ), droplets of SQ in PG or droplets of decane in PG. In these different emulsion types, the SQ is involatile and shows no evaporation, the PG is volatile and evaporates relatively slowly, whereas the decane is relatively very volatile and evaporates quickly. We have measured the film mass and area, optical micrographs of the film structure, and the UV absorbance spectra during evaporation. For emulsion films containing the involatile SQ, evaporation of the PG causes collapse of the emulsion structure with some loss of specular UV absorbance due to light scattering. However, for these emulsions with droplets much larger than the wavelength of light, the light is scattered only at small forward angles so does not contribute to the diffuse absorbance and the film SPF. The UV filter remains soluble throughout the evaporation and thus the UV absorption by the filter and the SPF remain approximately constant. Both PG-in-SQ and SQ-in-PG films behave similarly and do not show area shrinkage by dewetting. In contrast, the decane-in-PG film shows rapid evaporative loss of the decane, followed by slower loss of the PG resulting in precipitation of the UV filter and film area shrinkage by dewetting which cause the UV absorbance and derived SPF to decrease. Measured UV spectra during evaporation are in reasonable agreement with spectra calculated using models discussed here. PMID:27482601

  20. Ensemble Evaporation Predictions from Remote Sensing in the Nile Basin

    NASA Astrophysics Data System (ADS)

    Bastiaanssen, W. G.; Hofste, R.; Senay, G. B.; Anderson, M. C.; van Dijk, A.; Pelgrum, H.; Seid, A. H.; Miralles, D.; Hurk, B. V. D.; Wada, Y.; Rebelo, L. M.; Smakhtin, V.

    2014-12-01

    Water scarcity is increasing globally and is most evident in arid zones. Most rainfall is evaporated and runoff coefficients of 5 to 10% are common in arid zone river basins. Evaporation is the most important hydrological process, not only because of its magnitude, but also because it can be managed and regulated by withdrawals, irrigation equipment, agricultural practices, land use changes and soil treatments. Hence, evaporation can be modified and the looming water crisis prompt us to think more careful on how water is consumed and the services and benefits we render on return in terms of agricultural production, ecosystem services, hydropower, leisure etc. Several lead research groups have developed global evaporation products, at least for the African continent. Most of these products have a pixel size varying between 1 to 3 km, and this is a reasonable tradeoff between what is technically preferred (evaporation by land use class) and what can be operationally inferred from the newest earth observation satellites (100 to 1000 m pixels with revisit time of 1 to 5 days). The evaporation variability from monthly SSEBop, ALEXI, CMRSET, NBI version of MOD16, GLEAM and LandSAF model outputs for the main land use classes of the Nile will be demonstrated for the period 2005 to 2012. For 2007, there is also an evaporation data set from ETLook available. The largest variabilities occur on irrigated land, open water bodies and flood plains. The evaporation predictions are compared against flux tower data, and the water balance of paired catchments in Ethiopia and Southern Sudan. It is proposed to use ensemble averages and spreads of actual evaporation values for applications in water management, rather than using one single value and one single model. Some first thoughts on ensemble averaging will be provided. Ensemble evaporation values will be applied in the Water Accounting Plus (WA+) system, being a new analytical framework for water resources assessment reporting