Science.gov

Sample records for 242-a evaporator sar

  1. 242-A evaporator safety analysis report

    SciTech Connect

    CAMPBELL, T.A.

    1999-05-17

    This report provides a revised safety analysis for the upgraded 242-A Evaporator (the Evaporator). This safety analysis report (SAR) supports the operation of the Evaporator following life extension upgrades and other facility and operations upgrades (e.g., Project B-534) that were undertaken to enhance the capabilities of the Evaporator. The Evaporator has been classified as a moderate-hazard facility (Johnson 1990). The information contained in this SAR is based on information provided by 242-A Evaporator Operations, Westinghouse Hanford Company, site maintenance and operations contractor from June 1987 to October 1996, and the existing operating contractor, Waste Management Hanford (WMH) policies. Where appropriate, a discussion address the US Department of Energy (DOE) Orders applicable to a topic is provided. Operation of the facility will be compared to the operating contractor procedures using appropriate audits and appraisals. The following subsections provide introductory and background information, including a general description of the Evaporator facility and process, a description of the scope of this SAR revision,a nd a description of the basic changes made to the original SAR.

  2. 242-A evaporator vacuum condenser system

    SciTech Connect

    Smith, V.A.

    1994-09-28

    This document is written for the 242-A evaporator vacuum condenser system (VCS), describing its purpose and operation within the evaporator. The document establishes the operating parameters specifying pressure, temperature, flow rates, interlock safety features and interfacing sub-systems to support its operation.

  3. Technical support for authorization of 242-A evaporator campaign 97-2, Hanford Site, Richland, Washington

    SciTech Connect

    Daling, P.M.; Lavender, J.C.

    1997-07-01

    An analysis was performed to determine the acceptability of processing 242-A Evaporator/Crystallizer Campaign 97-2 feed. Inhalation unit liter doses (ULDs) were calculated using the methods and data described in the Tank Waste Remediation System Basis for Interim Operation (TWRS BIO) and 242-A Evaporator/Crystallizer Safety Analysis Report. The ULD calculated for the Campaign 97-2 slurry was found to be less than the TWRS BIO evaporator slurry ULD and so would be within the analyzed safety envelope defined in the TWRS BIO. The Evaporator slurry ULD established in the TWRS BIO and supporting documents was calculated using the bounding source strength defined in the 242-A Evaporator SAR. Consequently, the risks and consequences associated with the Campaign 97-2 slurry would be lower than those already accepted by DOE and documented in the TWRS BIO and 242-A Evaporator SAR. The direct radiation exposures from formation of a liquid pool of Campaign 97-2 slurry were demonstrated to be less than the exposures from a pool formed by bounding source strength evaporator slurry as defined in the 242-A Evaporator SAR. This was demonstrated via a comparison of the Campaign 97-2 slurry composition and the 242-A Evaporator SAR bounding source strength. It was concluded that the direct radiation exposures from Campaign 97-2 slurry would be within the analyzed safety envelope in the 242-A Evaporator SAR.

  4. Atmospheric dispersion of ammonia accidentally released from the 242-A Evaporator, Hanford Site, Richland, Washington

    SciTech Connect

    Daling, P.M.; Lavender, J.C.

    1997-11-01

    Two errors have been identified in the authorization basis for the 242-A Evaporator at the Hanford Site. These errors, which appear in the 242-A Evaporator/Crystallizer Final Safety Analysis Report analysis of ammonia gas concentrations accidentally released from the 242-A Evaporator, are: (1) the vessel ventilation system flow rate used in the previous calculations is a factor of ten higher than the actual flow rate, and (2) the previous calculations did not account for the ammonia source term reduction that would occur via condensation of ammonia vapors, which will remove a large fraction of the ammonia from the exhaust gas stream. The purpose of this document is to correct these errors and recalculate the maximum ground-level concentrations of ammonia released to the environment as a result of potential errors in blending Evaporator feed. The errors offset each other somewhat, so it is unlikely that the 242-A Evaporator has operated outside its current authorization basis. However, the errors must be corrected and the results incorporated into a revision of the 242-A Evaporator/Crystallizer Safety Analysis Report, WHC-SD-WM-SAR-023. An EPA-approved atmospheric dispersion model, SCREEN3, was used to recalculate the maximum ground-level concentrations of ammonia that would be released from the 242-A Evaporator as a result of a feed-blending error. The results of the re-analysis of the 242-A Evaporator`s ammonia release scenario are as follows. The onsite receptor 100 m away from the release point (242-A vessel vent stack) is projected to be exposed to a maximum ground-level concentration of ammonia of 8.3 ppm. The maximally-exposed offsite receptor, located at the nearest Hanford Site boundary 16 km away from the 242-A vessel vent stack, will be exposed to a maximum ground-level concentration of 0.11 ppm ammonia.

  5. 242-A Evaporator quality assurance plan. Revision 2

    SciTech Connect

    Basra, T.S.

    1995-05-04

    The purpose of this quality assurance project plan (Plan) is to provide requirements for activities pertaining to sampling, shipping, and analyses associated with candidate feed tank samples for the 242-A Evaporator project. The purpose of the 242-A Evaporator project is to reduce the volume of aqueous waste in the Double Shell Tank (DST) System and will result in considerable savings to the disposal of mixed waste. The 242-A Evaporator feed stream originates from DSTs identified as candidate feed tanks. The 242-A Evaporator reduces the volume of aqueous waste contained in DSTs by boiling off water and sending the condensate (called process condensate) to the Liquid Effluent Retention Facility (LEPF) storage basin where it is stored prior to treatment in the Effluent Treatment Facility (ETF). The objective of this quality assurance project plan is to provide the planning, implementation, and assessment of sample collection and analysis, data issuance, and validation activities for the candidate feed tanks.

  6. 1998 242-A interim evaporator tank system integrity assessment plan

    SciTech Connect

    Jensen, C.E.

    1998-03-31

    Portions of the 242-A Evaporator on the Hanford Site must be assessed to meet the requirements of the Washington State Department of Ecology`s Dangerous Waste Regulation, Washington Administrative Code (WAC) 173-303. The assessment is limited to the provisions of Section 173-303-640. This Integrity Assessment Plan (IAP) identifies tasks which will be performed during the assessment phase and describes the intended assessment techniques. The 242-A Evaporator facility processes waste solutions from most of the operating laboratories and plants of the Hanford Site. The waste solutions are concentrated in the evaporator to a slurry of liquid and crystallized salts. This concentrated slurry is returned to the Tank Farms at a significantly reduce volume. The water vapor from the evaporation process is condensed, filtered, and can be pumped through an ion exchange bed before transfer to a retention basin. The non-condensable portion of the vapor is filtered and continuously monitored before venting to the atmosphere. The 242-A Evaporator will be assessed as seven subsystems. Four of the subsystems store, transport or treat Washington State Dangerous wastes, the other three subsystems are integral parts of the process, however, they do not directly store, transfer, or treat listed dangerous wastes. The facility will be inspected, tested, and analyzed through this assessment. The seven subsystems, defined in detail in Appendix B, are: Evaporator Process and Slurry Subsystem; Vapor Condenser Subsystem; Vessel Vent Subsystem; Process Condensate Subsystem; Steam Condensate Subsystem; Raw Water Disposal Subsystem; and Building and Secondary Containment Subsystem.

  7. 242-A evaporator quality assurance project plan: Revision 1

    SciTech Connect

    Tucker, B.J.

    1994-11-04

    The scope of this quality assurance project plan (Plan) is sampling and analytical services including, but not limited to, sample receipt, handling and storage, analytical measurements, submittal of data deliverables, archiving selected portions of samples, returning unneeded sample material to Westinghouse Hanford Company (WHC), and/or sample disposal associated with candidate feed samples and process condensate compliance samples. Sampling and shipping activities are also included within the scope. The purpose of this project is to provide planning, implementation, and assessment guidance for achieving established data quality objectives measurement parameters. This Plan requires onsite and offsite laboratories to conform to that guidance. Laboratory conformance will help ensure that quality data are being generated and therefore, that the 242-A evaporator is operating in a safe and compliant manner. The 242-A evaporator feed stream originates from double-shell tanks (DSTs) identified as candidate feed tanks. The 242-A evaporator reduces the volume of aqueous waste contained in DSTs by boiling off water and sending it to the Liquid Effluent Retention Facility (LERF) storage basin before further treatment. The slurry product is returned to DSTs. Evaporation results in considerable savings by reducing the volume of mixed waste for disposal.

  8. 1998 interim 242-A Evaporator tank system integrity assessment report

    SciTech Connect

    Jensen, C.E.

    1998-07-02

    This Integrity Assessment Report (IAR) is prepared by Fluor Daniel Northwest (FDNW) under contract to Lockheed-Martin Hanford Company (LMHC) for Waste Management Hanford (WMH), the 242-A Evaporator (facility) operations contractor for Fluor Daniel Hanford, and the US Department of Energy, the system owner. The contract specifies that FDNW perform an interim (5 year) integrity assessment of the facility and prepare a written IAR in accordance with Washington Administrative Code (WAC) 173-303-640. The WAC 173-303 defines a treatment, storage, or disposal (TSD) facility tank system as the ``dangerous waste storage or treatment tank and its ancillary equipment and containment.`` This integrity assessment evaluates the two tank systems at the facility: the evaporator vessel, C-A-1 (also called the vapor-liquid separator), and the condensate collection tank, TK-C-100. This IAR evaluates the 242-A facility tank systems up to, but not including, the last valve or flanged connection inside the facility perimeter. The initial integrity assessment performed on the facility evaluated certain subsystems not directly in contact with dangerous waste, such as the steam condensate and used raw water subsystems, to provide technical information. These subsystems were not evaluated in this IAR. The last major upgrade to the facility was project B-534. The facility modifications, as a result of project B-534, were evaluated in the 1993 facility interim integrity assessment. Since that time, the following upgrades have occurred in the facility: installation of a process condensate recycle system, and installation of a package steam boiler to provide steam for the facility. The package boiler is not within the scope of the facility TSD.

  9. Waste volume reduction factors for potential 242-A evaporator feed

    SciTech Connect

    Sederburg, J.P.

    1995-05-04

    Double-shell tank (DST) storage space requirements have been shown to be highly dependent on the end point of 242-A operations. Consequences to the DST of various waste volumes, and concentrations, are evaluated. Only waste streams that are currently planned to be stored in the DST system before the year 2004 are discussed. As of January 1, 1995, approximately 27-million L (7.2-million gal) of dilute wastes are stored in the DSTs available for evaporator processing. Waste streams planned to be transferred to the DSTs before December 31, 2004, are identified. The DST volume for storing slurry from these wastes is presented in this document. At a final slurry specific gravity of -1.35, 22.5-million L (5.93-million gal) of DST space would be needed on December 31, 2004, to store the product from evaporator processing of these feedstocks. The expected volume needed if the resultant slurry were concentrated to the traditional double-shell slurry feed (DSSF) phase boundary (a specific gravity of {approximately}1.5) would be 17.7-million L (4.67-million gal). An additional 4.8-million L (1.26-million gal) is therefore needed if these wastes are concentrated to a specific gravity of 1.35 instead of the DSSF limit.

  10. Organic emission calculations for the 242-A evaporator vessel vent system

    SciTech Connect

    Bowman, M.R.

    1996-06-20

    This document contains historical calculations originally published in the 242-A Evaporator Dangerous Waste Permit Application, DOE/RL-90-42, Rev 0. They are being released as a supporting document, along with brief explanatory information, to be used as a reference in Rev 1 of the permit application and in other supporting documents, such as the 242-A Evaporator Data Quality Objectives.

  11. THE FLAMMABILITY ANALYSIS AND TIME TO REACH LOWER FLAMMABILITY LIMIT CALCULATIONS ON THE WASTE EVAPORATION AT 242-A EVAPORATOR

    SciTech Connect

    HU TA

    2007-10-31

    This document describes the analysis of the waste evaporation process on the flammability behavior. The evaluation calculates the gas generation rate, time to reach 25% and 100% of the lower flammability limit (LFL), and minimum ventilation rates for the 242-A Evaporator facility during the normal evaporation process and when vacuum is lost. This analysis performs flammability calculations on the waste currently within all 28 double-shell tanks (DST) under various evaporation process conditions to provide a wide spectrum of possible flammable gas behavior. The results of this analysis are used to support flammable gas control decisions and support and upgrade to Documented Safety Analysis for the 242-A Evaporator.

  12. Process control plan for 242-A Evaporator Campaign 94-2

    SciTech Connect

    Le, E.Q.

    1994-09-01

    242-A Evaporator Campaign 94-2 will process approximately 3.42 million gallons of dilute waste from tanks 101-AP, 107-AP, 108AP, 102-AW, and 106-AW. The process control plant describes activities which will occur during Campaign 94-2. This document also addresses compliance with the tank farm waste compatibility program, the 242-A radiological source term, the criticality prevention specifications, and effluent discharge limits.

  13. 242-A Evaporator Condensate Tank (TK-C-100) tie down evaluation

    SciTech Connect

    Hundal, T.S.

    1995-01-23

    The existing Condensate Tank (TK-C-100) in the 242-A Evaporator building is not anchored to the floor slab. This tank is a Safety Class 3 sitting in a Safety Class 2 building. The tank needed to be evaluated to withstand the seismic loads. Anchor bolts have been designed to hold the tank during the seismic event.

  14. Process control plan for 242-A Evaporator Campaign 95-1

    SciTech Connect

    Le, E.Q.; Guthrie, M.D.

    1995-05-18

    The wastes from tanks 106-AP, 107-AP, and 106-AW have been selected to be candidate feed wastes for Evaporator Campaign 95-1. The wastes in tank 106-AP and 107-AP are primarily from B-Plant strontium processing and PUREX neutralized cladding removal, respectively. The waste in tank 106-AW originated primarily from the partially concentrated product from 242-A Evaporator Campaign 94-2. Approximately 8.67 million liters of waste from these tanks will be transferred to tank 102-AW during the campaign. Tank 102-AW is the dedicated waste feed tank for the evaporator and currently contains 647,000 liters of processable waste. The purpose of the 242-A Evaporator Campaign 95-1 Process Control Plan (hereafter referred to as PCP) is to certify that the wastes in tanks 106-AP, 107-AP, 102-AW, and 106-AW are acceptable for processing through evaporator and provide a general description of process strategies and activities which will take place during Campaign 95-1. The PCP also summarizes and presents a comprehensive characterization of the wastes in these tanks.

  15. Project C-018H, 242-A Evaporator/PUREX Plant Process Condensate Treatment Facility, functional design criteria. Revision 3

    SciTech Connect

    Sullivan, N.

    1995-05-02

    This document provides the Functional Design Criteria (FDC) for Project C-018H, the 242-A Evaporator and Plutonium-Uranium Extraction (PUREX) Plant Condensate Treatment Facility (Also referred to as the 200 Area Effluent Treatment Facility [ETF]). The project will provide the facilities to treat and dispose of the 242-A Evaporator process condensate (PC), the Plutonium-Uranium Extraction (PUREX) Plant process condensate (PDD), and the PUREX Plant ammonia scrubber distillate (ASD).

  16. Functional design criteria for the 242-A evaporator and PUREX (Plutonium-Uranium Extraction) Plant condensate interim retention basin

    SciTech Connect

    Cejka, C.C.

    1990-01-01

    This document contains the functional design criteria for a 26- million-gallon retention basin and 10 million gallons of temporary storage tanks. The basin and tanks will be used to store 242-A Evaporator process condensate, the Plutonium-Uranium Extraction (PUREX) Plant process distillate discharge stream, and the PUREX Plant ammonia scrubber distillate stream. Completion of the project will allow both the 242-A Evaporator and the PUREX Plant to restart. 4 refs.

  17. 242-A Evaporator/Liquid Effluent Retention Facility data quality objectives

    SciTech Connect

    Von Bargen, B.H.

    1994-09-29

    The purpose of data quality objectives (DQO) is to determine the most cost effective methods of gathering the essential data necessary to make decisions to support successful operation of the facility. The essential data is defined by such information as sample amount, sample location, required analyses, and how sampling and analyses are performed. Successful operation is defined as meeting the campaign objectives while operating within established requirements. This DQO document addresses that portion of the system from 242-A Evaporator candidate feed tanks through discharge of process condensate to the Liquid Effluent Retention of Facility (LERF). Later revisions will incorporate and integrate the entire system, including the Effluent Treatment Facility (ETF).

  18. High-level waste storage tank farms/242-A evaporator Standards/Requirements Identification Document (S/RID)

    SciTech Connect

    Not Available

    1994-04-01

    The High-Level Waste Storage Tank Farms/242-A Evaporator Standards/Requirements Identification Document (S/RID) is contained in multiple volumes. This document (Volume 3) presents the standards and requirements for the following sections: Safeguards and Security, Engineering Design, and Maintenance.

  19. High-level waste storage tank farms/242-A evaporator Standards/Requirements Identification Document (S/RID), Volume 2

    SciTech Connect

    Not Available

    1994-04-01

    The High-Level Waste Storage Tank Farms/242-A Evaporator Standards/Requirements Document (S/RID) is contained in multiple volumes. This document (Volume 2) presents the standards and requirements for the following sections: Quality Assurance, Training and Qualification, Emergency Planning and Preparedness, and Construction.

  20. High-level waste storage tank farms/242-A evaporator Standards/Requirements Identification Document (S/RID), Volume 5

    SciTech Connect

    Not Available

    1994-04-01

    The High-Level Waste Storage Tank Farms/242-A Evaporator Standards/Requirements Identification Document (S/RID) is contained in multiple volumes. This document (Volume 5) outlines the standards and requirements for the Fire Protection and Packaging and Transportation sections.

  1. High-level waste storage tank farms/242-A evaporator Standards/Requirements Identification Document (S/RID), Volume 4

    SciTech Connect

    Not Available

    1994-04-01

    The High-Level Waste Storage Tank Farms/242-A Evaporator Standards/Requirements Identification Document (S/RID) is contained in multiple volumes. This document (Volume 4) presents the standards and requirements for the following sections: Radiation Protection and Operations.

  2. High level waste storage tank farms/242-A evaporator Standards/Requirements Identification Document (S/RID), Volume 6

    SciTech Connect

    Not Available

    1994-04-01

    The High-Level Waste Storage Tank Farms/242-A Evaporator Standards/Requirements Identification Document (S/RID) is contained in multiple volumes. This document (Volume 6) outlines the standards and requirements for the sections on: Environmental Restoration and Waste Management, Research and Development and Experimental Activities, and Nuclear Safety.

  3. High-level waste storage tank farms/242-A evaporator standards/requirements identification document (S/RID), Vol. 4

    SciTech Connect

    Not Available

    1994-04-01

    Radiation protection of personnel and the public is accomplished by establishing a well defined Radiation Protection Organization to ensure that appropriate controls on radioactive materials and radiation sources are implemented and documented. This Requirements Identification Document (RID) applies to the activities, personnel, structures, systems, components, and programs involved in executing the mission of the Tank Farms. The physical boundaries within which the requirements of this RID apply are the Single Shell Tank Farms, Double Shell Tank Farms, 242-A Evaporator-Crystallizer, 242-S, T Evaporators, Liquid Effluent Retention Facility (LERF), Purgewater Storage Facility (PWSF), and all interconnecting piping, valves, instrumentation, and controls. Also included is all piping, valves, instrumentation, and controls up to and including the most remote valve under Tank Farms control at any other Hanford Facility having an interconnection with Tank Farms. The boundary of the structures, systems, components, and programs to which this RID applies, is defined by those that are dedicated to and/or under the control of the Tank Farms Operations Department and are specifically implemented at the Tank Farms.

  4. High-level waste storage tank farms/242-A evaporator Standards/Requirements Identification Document (S/RID), Volume 7. Revision 1

    SciTech Connect

    Burt, D.L.

    1994-04-01

    The High-Level Waste Storage Tank Farms/242-A Evaporator Standards/Requirements Identification Document (S/RID) is contained in multiple volumes. This document (Volume 7) presents the standards and requirements for the following sections: Occupational Safety and Health, and Environmental Protection.

  5. Estimation of bare soil evaporation using multifrequency airborne SAR

    NASA Technical Reports Server (NTRS)

    Soares, Joao V.; Shi, Jiancheng; Van Zyl, Jakob; Engman, E. T.

    1992-01-01

    It is shown that for homogeneous areas soil moisture can be derived from synthetic aperture radar (SAR) measurements, so that the use of microwave remote sensing can given realistic estimates of energy fluxes if coupled to a simple two-layer model repesenting the soil. The model simulates volumetric water content (Wg) using classical meterological data, provided that some of the soil thermal and hydraulic properties are known. Only four parameters are necessary: mean water content, thermal conductivity and diffusitivity, and soil resistance to evaporation. They may be derived if a minimal number of measured values of Wg and surface layer temperature (Tg) are available together with independent measurements of energy flux to compare with the estimated values. The estimated evaporation is shown to be realistic and in good agreement with drying stage theory in which the transfer of water in the soil is in vapor form.

  6. Final characterization and safety screen report of double shell tank 241-AP-104 for 242-A evaporator, campaign 96-1

    SciTech Connect

    Miller, G.L.

    1996-04-19

    This data package satisfies the requirement for a format IV, final report. It is a follow-up to the 45-day safety screen report for tank AP-104. Evaporator candidate feed from tank 241-AP-104 (hereafter referred to as AP-104) was characterized for physical, inorganic, organic and radiochemical parameters by the Westinghouse Hanford Company, 222-S Laboratory, and by the Battelle Pacific Northwest National Laboratory (PNNL), Analytical Chemistry Laboratory (ACL) as directed by the Tank Sample and Analysis Plan (TSAP), References 1 through 4. Preliminary data in the form of summary analytical tables were provided to the project in advance of this final report to enable early estimation of evaporator operational parameters, using the Predict modeling program. Laboratory analyses at ACL Laboratory was performed according to the TSAP. Analyses were performed at the 222-S Laboratory as defined and specified in the TSAP and the Laboratory`s Quality Assurance Plan, References 5 and 6. Any deviations from the instructions documented in the TSAP are discussed in this narrative and are supported with additional documentation. SAMPLING The TSAP, section 2, provided sampling information for waste samples collected from tank AP-104. The bottle-on-a-string method was used to collect liquid grab samples from the tank. Each glass sample bottle was amber, precleaned, and contained approximately 100 milliliters. Each bottle was closed with a teflon seal cap (or teflon septum for volatile organic analysis samples). Field blank samples were prepared by placing deionized water into sampling bottles, lowering the unclosed bottles into the riser for a period of time, retrieving them from the riser, and then closing the bottles with the same types of caps used for the tank samples. None of the samples were preserved by acidification. Upon receipt, the sample bottles destined for organic analyses were placed in a refrigerator. No attempt was made during sampling to assure the complete

  7. 242-A Campaign 99-1 process control plan

    SciTech Connect

    LE, E.Q.

    1999-08-25

    242-A Evaporator 99-1 will process approximately one million gallons of waste from tank 102-AW in June 1999. The process control Plan provides a general description of activities, which will occur during 242-A Evaporator Campaign 99-1 and to document analyses conducted to demonstrate that 102-AW waste is acceptable for processing. Predict is a registered trademark of Risk Decisions England Corporation, United Kingdom.

  8. Major water balance variables Estimation, soil moisture and evaporation time series, using X-band SAR moisture products

    NASA Astrophysics Data System (ADS)

    Gorrab, Azza; Simonneaux, Vincent; Zribi, Mehrez; Saadi, Sameh; Lili-Chabaane, Zohra

    2016-04-01

    During the last decades, the rain scarcity in front of long periods of drought especially in semi-arid regions, have a negative impact on the available water resources. In addition, a major part of the intercepted water is lost either by evaporation from the soil back to the atmosphere or by drainage, deep percolation and subsurface runoff. Therefore, knowledge and calculating the water fluxes within the soil-atmosphere system is a major issue for the improvement of water use efficiency. Many studies have been carried out to quantify these fluxes by developing various tools which estimate the soil water regime and may consequently the sustainable management of natural resources (Simmoneaux et al., 2008; Zhang et al., 2010; Sutanto et al., 2012 and Saadi et al., 2015). The amount of water stored in the soil is a crucial parameter that can be used as inputs to simulate surface evaporation fluxes and vertical water circulation as surface water capillarity movements and underground percolation. Great progress has been made in the recent decades aiming at developing soil moisture (SM) retrieval techniques by using Imaging Synthetic Aperture Radar (SAR) sensors. Several algorithms have been developed to retrieve SM from radar data (Zribi et al., 2011 Baghdadi et al., 2008 and Gorrab et al., 2015). The assimilation of SM SAR products into hydrological balance models is one exciting aspect that offers an opportunity to improve hydrologic model forecasts. In this context, the present study highlighted the capability of the high resolution TerraSAR-X SM products in reproducing real conditions of SM variations. We developed a soil hydrological model MHYSAN (Modelisation de Bilan HYdrique des Sols Agricoles Nus) over agricultural bare soil in Central Tunisia (North Africa). The MHYSAN tool computes surface evaporation and SM time series to simulate water balance in Central Tunisia. The accuracy of the MHYSAN tool was assessed at both regional scale (calibration based on ground

  9. 32 CFR 242a.3 - Open meetings.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 2 2010-07-01 2010-07-01 false Open meetings. 242a.3 Section 242a.3 National... § 242a.3 Open meetings. (a) Members shall not jointly conduct or dispose of business of the Board of... Regents or any committee of the Board shall be open to public observation subject to the...

  10. 32 CFR 242a.3 - Open meetings.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 2 2011-07-01 2011-07-01 false Open meetings. 242a.3 Section 242a.3 National Defense Department of Defense (Continued) OFFICE OF THE SECRETARY OF DEFENSE (CONTINUED) MISCELLANEOUS PUBLIC MEETING PROCEDURES OF THE BOARD OF REGENTS, UNIFORMED SERVICES UNIVERSITY OF THE HEALTH SCIENCES § 242a.3 Open meetings. (a) Members shall...

  11. 32 CFR 242a.2 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 2 2011-07-01 2011-07-01 false Definitions. 242a.2 Section 242a.2 National Defense Department of Defense (Continued) OFFICE OF THE SECRETARY OF DEFENSE (CONTINUED) MISCELLANEOUS PUBLIC MEETING PROCEDURES OF THE BOARD OF REGENTS, UNIFORMED SERVICES UNIVERSITY OF THE HEALTH SCIENCES § 242a.2 Definitions. (a) Board or Board...

  12. 32 CFR 242a.3 - Open meetings.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 2 2013-07-01 2013-07-01 false Open meetings. 242a.3 Section 242a.3 National Defense Department of Defense (Continued) OFFICE OF THE SECRETARY OF DEFENSE (CONTINUED) MISCELLANEOUS PUBLIC MEETING PROCEDURES OF THE BOARD OF REGENTS, UNIFORMED SERVICES UNIVERSITY OF THE HEALTH SCIENCES § 242a.3 Open meetings. (a) Members shall...

  13. 32 CFR 242a.3 - Open meetings.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 2 2012-07-01 2012-07-01 false Open meetings. 242a.3 Section 242a.3 National Defense Department of Defense (Continued) OFFICE OF THE SECRETARY OF DEFENSE (CONTINUED) MISCELLANEOUS PUBLIC MEETING PROCEDURES OF THE BOARD OF REGENTS, UNIFORMED SERVICES UNIVERSITY OF THE HEALTH SCIENCES § 242a.3 Open meetings. (a) Members shall...

  14. 32 CFR 242a.2 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 2 2012-07-01 2012-07-01 false Definitions. 242a.2 Section 242a.2 National Defense Department of Defense (Continued) OFFICE OF THE SECRETARY OF DEFENSE (CONTINUED) MISCELLANEOUS PUBLIC MEETING PROCEDURES OF THE BOARD OF REGENTS, UNIFORMED SERVICES UNIVERSITY OF THE HEALTH SCIENCES § 242a.2 Definitions. (a) Board or Board...

  15. 32 CFR 242a.3 - Open meetings.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 2 2014-07-01 2014-07-01 false Open meetings. 242a.3 Section 242a.3 National Defense Department of Defense (Continued) OFFICE OF THE SECRETARY OF DEFENSE (CONTINUED) MISCELLANEOUS PUBLIC MEETING PROCEDURES OF THE BOARD OF REGENTS, UNIFORMED SERVICES UNIVERSITY OF THE HEALTH SCIENCES § 242a.3 Open meetings. (a) Members shall...

  16. 32 CFR 242a.2 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 2 2013-07-01 2013-07-01 false Definitions. 242a.2 Section 242a.2 National Defense Department of Defense (Continued) OFFICE OF THE SECRETARY OF DEFENSE (CONTINUED) MISCELLANEOUS PUBLIC MEETING PROCEDURES OF THE BOARD OF REGENTS, UNIFORMED SERVICES UNIVERSITY OF THE HEALTH SCIENCES § 242a.2 Definitions. (a) Board or Board...

  17. 242-A Control System device logic software documentation. Revision 2

    SciTech Connect

    Berger, J.F.

    1995-05-19

    A Distributive Process Control system was purchased by Project B-534. This computer-based control system, called the Monitor and Control System (MCS), was installed in the 242-A Evaporator located in the 200 East Area. The purpose of the MCS is to monitor and control the Evaporator and Monitor a number of alarms and other signals from various Tank Farm facilities. Applications software for the MCS was developed by the Waste Treatment System Engineering Group of Westinghouse. This document describes the Device Logic for this system.

  18. 32 CFR 242a.8 - Effective date.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 2 2010-07-01 2010-07-01 false Effective date. 242a.8 Section 242a.8 National Defense Department of Defense (Continued) OFFICE OF THE SECRETARY OF DEFENSE (CONTINUED) MISCELLANEOUS PUBLIC MEETING PROCEDURES OF THE BOARD OF REGENTS, UNIFORMED SERVICES UNIVERSITY OF THE HEALTH...

  19. Facility effluent monitoring plan for 242-A evaporator facility

    SciTech Connect

    Crummel, G.M.; Gustavson, R.D.

    1995-02-01

    A facility effluent monitoring plan is required by the U.S. Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could affect employee or public safety or the environment. A facility effluent monitoring plan determination was performed during Calendar Year 1991 and the evaluation showed the need for a facility effluent monitoring plan. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438-1. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan shall ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated, as a minimum, every three years.

  20. 242-A campaign 95-1 post run document

    SciTech Connect

    Guthrie, M.D.

    1996-02-12

    The 242-A Evaporator Campaign 95-1 was started on June 6, 1995 and finished July 27, 1995. An overall Waste Volume Reduction (WVR) of 8.18 million liters (2.16 mGAL OR 87.6% WVRF) was achieved from 9.35 million liters (2.47 Mgal) of processable waste contained in 108-AP, 107-AP, 106-AW and 102-AW. Slurry generated from Campaign 95-1 consisted of 1.05 million liters (278,000 gal) of dilute double-shell slurry feed (DDSSF) with a SpG of approximately 1.34. Total process condensate discharged to LERF was 10.3 million liters (2.72 Mgal), achieving a condensate/WVR efficiency ratio of 1.26. Total throughout for Campaign 95-1 was 18.1 million liters (4.79 Mgal). B Pond discharges from steam condensate and cooling water were 15.8 and 583 million liters (4.17 and 154 Mgal) respectively. Based on 145 hours of unplanned downtime, the 242-A Evaporator maintained an operating efficiency of 86% during the 49 day campaign.

  1. 242A Distributed Control System Year 2000 Acceptance Test Report

    SciTech Connect

    TEATS, M.C.

    1999-08-31

    This report documents acceptance test results for the 242-A Evaporator distributive control system upgrade to D/3 version 9.0-2 for year 2000 compliance. This report documents the test results obtained by acceptance testing as directed by procedure HNF-2695. This verification procedure will document the initial testing and evaluation of the potential 242-A Distributed Control System (DCS) operating difficulties across the year 2000 boundary and the calendar adjustments needed for the leap year. Baseline system performance data will be recorded using current, as-is operating system software. Data will also be collected for operating system software that has been modified to correct year 2000 problems. This verification procedure is intended to be generic such that it may be performed on any D/3{trademark} (GSE Process Solutions, Inc.) distributed control system that runs with the VMSTM (Digital Equipment Corporation) operating system. This test may be run on simulation or production systems depending upon facility status. On production systems, DCS outages will occur nine times throughout performance of the test. These outages are expected to last about 10 minutes each.

  2. Sequence and batch language programs and alarm related C Programs for the 242-A MCS

    SciTech Connect

    Berger, J.F.

    1996-04-15

    A Distributive Process Control system was purchased by Project B-534, 242-A Evaporator/Crystallizer Upgrades. This control system, called the Monitor and Control system (MCS), was installed in the 242-A evaporator located in the 200 East Area. The purpose of the MCS is to monitor and control the Evaporator and monitor a number of alarms and other signals from various Tank Farm facilities. Applications software for the MCS was developed by the Waste Treatment Systems Engineering (WTSE) group of Westinghouse. The standard displays and alarm scheme provide for control and monitoring, but do not directly indicate the signal location or depict the overall process. To do this, WTSE developed a second alarm scheme.

  3. 32 CFR 242a.5 - Procedure for announcing meetings.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 2 2011-07-01 2011-07-01 false Procedure for announcing meetings. 242a.5 Section 242a.5 National Defense Department of Defense (Continued) OFFICE OF THE SECRETARY OF DEFENSE (CONTINUED) MISCELLANEOUS PUBLIC MEETING PROCEDURES OF THE BOARD OF REGENTS, UNIFORMED SERVICES UNIVERSITY OF THE HEALTH SCIENCES § 242a.5 Procedure...

  4. 32 CFR 242a.5 - Procedure for announcing meetings.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 2 2013-07-01 2013-07-01 false Procedure for announcing meetings. 242a.5 Section 242a.5 National Defense Department of Defense (Continued) OFFICE OF THE SECRETARY OF DEFENSE (CONTINUED) MISCELLANEOUS PUBLIC MEETING PROCEDURES OF THE BOARD OF REGENTS, UNIFORMED SERVICES UNIVERSITY OF THE HEALTH SCIENCES § 242a.5 Procedure...

  5. 32 CFR 242a.5 - Procedure for announcing meetings.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 2 2012-07-01 2012-07-01 false Procedure for announcing meetings. 242a.5 Section 242a.5 National Defense Department of Defense (Continued) OFFICE OF THE SECRETARY OF DEFENSE (CONTINUED) MISCELLANEOUS PUBLIC MEETING PROCEDURES OF THE BOARD OF REGENTS, UNIFORMED SERVICES UNIVERSITY OF THE HEALTH SCIENCES § 242a.5 Procedure...

  6. 32 CFR 242a.5 - Procedure for announcing meetings.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 2 2014-07-01 2014-07-01 false Procedure for announcing meetings. 242a.5 Section 242a.5 National Defense Department of Defense (Continued) OFFICE OF THE SECRETARY OF DEFENSE (CONTINUED) MISCELLANEOUS PUBLIC MEETING PROCEDURES OF THE BOARD OF REGENTS, UNIFORMED SERVICES UNIVERSITY OF THE HEALTH SCIENCES § 242a.5 Procedure...

  7. 32 CFR 242a.6 - Procedure for closing meetings.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 2 2011-07-01 2011-07-01 false Procedure for closing meetings. 242a.6 Section 242a.6 National Defense Department of Defense (Continued) OFFICE OF THE SECRETARY OF DEFENSE (CONTINUED) MISCELLANEOUS PUBLIC MEETING PROCEDURES OF THE BOARD OF REGENTS, UNIFORMED SERVICES UNIVERSITY OF THE HEALTH SCIENCES § 242a.6 Procedure...

  8. 242-A Campaign 94-1 post run document

    SciTech Connect

    Guthrie, M.D.

    1994-09-30

    The purpose of this post-run document is to summarize the results of 242-A Evaporator Campaign 94-1 as required. Campaign 94-1 represents the first Evaporator operation since 1989, following completion of the B-534 upgrades and Liquid Effluent Retention Facility (LERF) construction. The purpose of Campaign 94-1 was to concentrate dilute waste from TK-102-AW, TK-106-AW, and TK-103-AP. From an available 2.87 million gallon feedstock of dilute waste contained in 102-AW, 106-AW and 103-AP, an overall Waste Volume Reduction (WVR) of 2.39 million gallons (83% WVRF) was achieved. At the completion of the campaign, approximately 477,000 gallons of dilute double-shell slurry feed (DDSSF) was produced with a SpG. of 1.25--1.30. Total process condensate discharged to LERF was 3.09 million gallons, achieving a condensate/WVR ratio of 1.29. Throughput for Campaign 94-1 was 5.27 million gallons. Total steam condensate and cooling water discharge to B-pond was 4.7 and 216 million gallons respectively. The evaporator operated approximately 43 days of the 60 day campaign for a total operating efficiency of 73%. Campaign 94-1 was completed without any discharge limit, Operating Specification Document, or Operational Safety Requirement violations. Major problems encountered during the run included the following: (1) high CA1 deentrainment pad dP`s caused by foaming, (2) condensate pump P-C100 failure, and (3) ion exchange column dP`s and efficiency.

  9. 32 CFR 242a.6 - Procedure for closing meetings.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 2 2013-07-01 2013-07-01 false Procedure for closing meetings. 242a.6 Section... SCIENCES § 242a.6 Procedure for closing meetings. (a) Action to close a meeting or portion thereof... each Board or committee meeting a portion or portions of which are proposed to be closed to the...

  10. 32 CFR 242a.6 - Procedure for closing meetings.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... SCIENCES § 242a.6 Procedure for closing meetings. (a) Action to close a meeting or portion thereof... section, the Board or committee shall make publicly available a written copy of such vote reflecting the... this section, make publicly available a full written explanation of its action closing the...

  11. Sequence and batch language programs and alarm-related ``C`` programs for the 242-A MCS. Revision 2

    SciTech Connect

    Berger, J.F.

    1995-03-01

    A Distributive Process Control system was purchased by Project B-534, ``242-A Evaporator/Crystallizer Upgrades``. This control system, called the Monitor and Control System (MCS), was installed in the 242-A Evaporator located in the 200 East Area. The purpose of the MCS is to monitor and control the Evaporator and monitor a number of alarms and other signals from various Tank Farm facilities. Applications software for the MCS was developed by the Waste Treatment Systems Engineering (WTSE) group of Westinghouse. The standard displays and alarm scheme provide for control and monitoring, but do not directly indicate the signal location or depict the overall process. To do this, WTSE developed a second alarm scheme which uses special programs, annunciator keys, and process graphics. The special programs are written in two languages; Sequence and Batch Language (SABL), and ``C`` language. The WTSE-developed alarm scheme works as described below: SABL relates signals and alarms to the annunciator keys, called SKID keys. When an alarm occurs, a SABL program causes a SKID key to flash, and if the alarm is of yellow or white priority then a ``C`` program turns on an audible horn (the D/3 system uses a different audible horn for the red priority alarms). The horn and flashing key draws the attention of the operator.

  12. High level waste storage tanks 242-A evaporator standards/requirement identification document

    SciTech Connect

    Biebesheimer, E.

    1996-01-01

    This document, the Standards/Requirements Identification Document (S/RIDS) for the subject facility, represents the necessary and sufficient requirements to provide an adequate level of protection of the worker, public health and safety, and the environment. It lists those source documents from which requirements were extracted, and those requirements documents considered, but from which no requirements where taken. Documents considered as source documents included State and Federal Regulations, DOE Orders, and DOE Standards

  13. High level waste storage tanks 242-A evaporator S/RID phase II assessment report

    SciTech Connect

    Biebesheimer, E.

    1996-09-27

    This document, the Standards/Requirements Identification Document (S/RID) Phase 2 Assessment Report for the subject facility, represents the results of a Performance Assessment to determine whether procedures containing S/RID requirements are fully implemented by field personnel in the field. It contains a summary report and three attachments; an assessment schedule, performance objectives, and assessments for selected functional areas.

  14. SARS Basics

    MedlinePlus

    ... waiting room or office. Top of Page CDC’s response to SARS during the 2003 outbreak CDC worked ... Center to provide round-the-clock coordination and response. Committed more than 800 medical experts and support ...

  15. 32 CFR 242a.7 - Transcripts, recordings, and minutes of closed meetings.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... SERVICES UNIVERSITY OF THE HEALTH SCIENCES § 242a.7 Transcripts, recordings, and minutes of closed meetings... written request for review (excluding Saturdays, Sundays, and legal public holidays). (4) A...

  16. 32 CFR 242a.7 - Transcripts, recordings, and minutes of closed meetings.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... SERVICES UNIVERSITY OF THE HEALTH SCIENCES § 242a.7 Transcripts, recordings, and minutes of closed meetings... of the Board of Regents, USUHS, Bethesda, Maryland, the transcript, electronic recording, or...

  17. 32 CFR 242a.7 - Transcripts, recordings, and minutes of closed meetings.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... SERVICES UNIVERSITY OF THE HEALTH SCIENCES § 242a.7 Transcripts, recordings, and minutes of closed meetings... of the Board of Regents, USUHS, Bethesda, Maryland, the transcript, electronic recording, or...

  18. 32 CFR 242a.7 - Transcripts, recordings, and minutes of closed meetings.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... SERVICES UNIVERSITY OF THE HEALTH SCIENCES § 242a.7 Transcripts, recordings, and minutes of closed meetings... of the Board of Regents, USUHS, Bethesda, Maryland, the transcript, electronic recording, or...

  19. 32 CFR 242a.7 - Transcripts, recordings, and minutes of closed meetings.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... SERVICES UNIVERSITY OF THE HEALTH SCIENCES § 242a.7 Transcripts, recordings, and minutes of closed meetings... of the Board of Regents, USUHS, Bethesda, Maryland, the transcript, electronic recording, or...

  20. 95-1 Campaign evaporator boildown results

    SciTech Connect

    Miller, G.L.

    1994-10-10

    The Process Chemistry Laboratories were requested to support the 242-A Evaporator restart as part of the overall 222-S laboratory effort. The net purpose of these studies is to determine the characteristics of double-shell tank materials as they are processed in the evaporator. The results for the boildown study (which includes pressure and temperature versus % waste volume reduction and density of final boildown residue) supporting the 242-A Evaporator restart are reported below. The boildown was performed in a vacuum distillation apparatus with an adjustable vacuum limiting manometer and an isolatable collection graduated cylinder. The boildown was conducted over a seven hour period. The evaporation was done at 60 torr (to avoid excessive foaming and bumping of solution) for approximately half of the boildown, the pressure then being reduced to 40 torr when the reduction in solution volume allowed this to be done. Percent waste volume reduction was measured by observing the amount of condensate collected in a graduated cylinder. As the graduated cylinder became full, it was isolated from the rest of the system and the condensate removed. Pressure was set using an electronic manometer with a low pressure limiter set at the desired level. Temperature was measured using a J-type thermocouple. The apparatus was calibrated by observing the pressure versus temperature response of pure water, and comparing the values thus obtained to published values.

  1. High-level waste storage tank farms/242-A evaporator standards/requirements identification document (S/RID), Vol. 3

    SciTech Connect

    Not Available

    1994-04-01

    The Safeguards and Security (S&S) Functional Area address the programmatic and technical requirements, controls, and standards which assure compliance with applicable S&S laws and regulations. Numerous S&S responsibilities are performed on behalf of the Tank Farm Facility by site level organizations. Certain other responsibilities are shared, and the remainder are the sole responsibility of the Tank Farm Facility. This Requirements Identification Document describes a complete functional Safeguards and Security Program that is presumed to be the responsibility of the Tank Farm Facility. The following list identifies the programmatic elements in the S&S Functional Area: Program Management, Protection Program Scope and Evaluation, Personnel Security, Physical Security Systems, Protection Program Operations, Material Control and Accountability, Information Security, and Key Program Interfaces.

  2. High level waste storage tank farms/242-A evaporator standards/requirements identification document phase 1 assessment report

    SciTech Connect

    Biebesheimer, E., Westinghouse Hanford Co.

    1996-09-30

    This document, the Standards/Requirements Identification Document (S/RID) Phase I Assessment Report for the subject facility, represents the results of an Administrative Assessment to determine whether S/RID requirements are fully addressed by existing policies, plans or procedures. It contains; compliance status, remedial actions, and an implementing manuals report linking S/RID elements to requirement source to implementing manual and section.

  3. High-level waste storage tank farms/242-A evaporator standards/requirements identification document (S/RID), Vol. 2

    SciTech Connect

    Not Available

    1994-04-01

    The Quality Assurance Functional Area Requirements Identification Document (RID), addresses the programmatic requirements that ensure risks and environmental impacts are minimized, ensure safety, reliability, and performance are maximized through the application of effective management systems commensurate with the risks posed by the Tank Farm Facility and its operation. This RID incorporates guidance intended to provide Tank Farms management with the necessary requirements information to develop, upgrade, or assess the effectiveness of a Quality Assurance Program in the performance of organizational and functional activities. Quality Assurance is defined as all those planned and systematic actions necessary to provide adequate confidence that a facility, structure, system, or component will perform satisfactorily and safely in service. This document will provide the specific requirements to meet DNFSB recommendations and the guidance provided in DOE Order 5700.6C, utilizing industry codes, standards, regulatory guidelines, and industry good practices that have proven to be essential elements for an effective and efficient Quality Assurance Program as the nuclear industry has matured over the last thirty years.

  4. High-level waste storage tank farms/242-A evaporator standards/requirements identification document (S/RID), Vol. 1

    SciTech Connect

    Not Available

    1994-04-01

    The purpose of this Requirements Identification Document (RID) section is to identify, in one location, all of the facility specific requirements and good industry practices which are necessary or important to establish an effective Issues Management Program for the Tank Farm Facility. The Management Systems Functional Area includes the site management commitment to environmental safety and health (ES&H) policies and controls, to compliance management, to development and management of policy and procedures, to occurrence reporting and corrective actions, resource and issue management, and to the self-assessment process.

  5. High-level waste storage tank farms/242-A evaporator standards/requirements identification document (S/RID), Vol. 7

    SciTech Connect

    Not Available

    1994-04-01

    This Requirements Identification Document (RID) describes an Occupational Health and Safety Program as defined through the Relevant DOE Orders, regulations, industry codes/standards, industry guidance documents and, as appropriate, good industry practice. The definition of an Occupational Health and Safety Program as specified by this document is intended to address Defense Nuclear Facilities Safety Board Recommendations 90-2 and 91-1, which call for the strengthening of DOE complex activities through the identification and application of relevant standards which supplement or exceed requirements mandated by DOE Orders. This RID applies to the activities, personnel, structures, systems, components, and programs involved in maintaining the facility and executing the mission of the High-Level Waste Storage Tank Farms.

  6. High-level waste storage tank farms/242-A evaporator standards/requirements identification document (S/RID), Vol. 5

    SciTech Connect

    Not Available

    1994-04-01

    The Fire Protection functional area for the Hanford Site Tank Farm facilities and support structures is based on the application of relevant DOE orders, regulations, and industry codes and standards. The fire protection program defined in this document may be divided into three areas: (1) organizational, (2) administrative programmatic features, and (3) technical features. The information presented in each section is in the form of program elements and orders, regulations, industry codes, and standards that serve as the attributes of a fire protection program for the Tank Farm facilities. Upon completion this document will be utilized as the basis to evaluate compliance of the fire protection program being implemented for the Tank Farm facilities with the requirements of DOE orders and industry codes and standards.

  7. High-level waste storage tank farms/242-A evaporator standards/requirements identification document (S/RID), Vol. 6

    SciTech Connect

    Not Available

    1994-04-01

    The scope of the Environmental Restoration and Waste Management (EM) Functional Area includes the programmatic controls associated with the management and operation of the Hanford Tank Farm Facility. The driving management organization implementing the programmatic controls is the Tank Farms Waste Management (WM)organization whose responsibilities are to ensure that performance objectives are established; and that measurable criteria for attaining objectives are defined and reflected in programs, policies and procedures. Objectives for the WM Program include waste minimization, establishment of effective waste segregation methods, waste treatment technology development, radioactive (low-level, high-level) hazardous and mixed waste transfer, treatment, and storage, applicability of a corrective action program, and management and applicability of a decontamination and decommissioning (D&D) program in future years.

  8. Evaporating firewalls

    NASA Astrophysics Data System (ADS)

    Van Raamsdonk, Mark

    2014-11-01

    In this note, we begin by presenting an argument suggesting that large AdS black holes dual to typical high-energy pure states of a single holographic CFT must have some structure at the horizon, i.e. a fuzzball/firewall, unless the procedure to probe physics behind the horizon is state-dependent. By weakly coupling the CFT to an auxiliary system, such a black hole can be made to evaporate. In a case where the auxiliary system is a second identical CFT, it is possible (for specific initial states) that the system evolves to precisely the thermofield double state as the original black hole evaporates. In this case, the dual geometry should include the "late-time" part of the eternal AdS black hole spacetime which includes smooth spacetime behind the horizon of the original black hole. Thus, if a firewall is present initially, it evaporates. This provides a specific realization of the recent ideas of Maldacena and Susskind that the existence of smooth spacetime behind the horizon of an evaporating black hole can be enabled by maximal entanglement with a Hawking radiation system (in our case the second CFT) rather than prevented by it. For initial states which are not finely-tuned to produce the thermofield double state, the question of whether a late-time infalling observer experiences a firewall translates to a question about the gravity dual of a typical high-energy state of a two-CFT system.

  9. Streamer Evaporation

    NASA Technical Reports Server (NTRS)

    Suess, S. T.; Wang, A.-H.; Wu, S. T.; Nerney, S. F.

    1998-01-01

    Evaporation is the consequence of heating near the top of streamers in ideal Magnetohydrodynamics (MHD) models, where the plasma is weakly contained by the magnetic field. Heating causes slow opening of field lines and release of new solar wind. It was discovered in simulations and, due to the absence of loss mechanisms, the ultimate end point is the complete evaporation of the streamer. Of course streamers do not behave in this way because there are losses by thermal conduction and radiation. Physically, heating is also expected to depend on ambient conditions. We use our global MHD model with thermal conduction to examine the effect of changing the heating scale height. We also apply and extend an analytic model of streamers developed by Pneuman (1968) to show that steady streamers are unable to contain plasma for temperatures near the cusp greater than approximately 2 x 10(exp 6) K.

  10. Group evaporation

    NASA Technical Reports Server (NTRS)

    Shen, Hayley H.

    1991-01-01

    Liquid fuel combustion process is greatly affected by the rate of droplet evaporation. The heat and mass exchanges between gas and liquid couple the dynamics of both phases in all aspects: mass, momentum, and energy. Correct prediction of the evaporation rate is therefore a key issue in engineering design of liquid combustion devices. Current analytical tools for characterizing the behavior of these devices are based on results from a single isolated droplet. Numerous experimental studies have challenged the applicability of these results in a dense spray. To account for the droplets' interaction in a dense spray, a number of theories have been developed in the past decade. Herein, two tasks are examined. One was to study how to implement the existing theoretical results, and the other was to explore the possibility of experimental verifications. The current theoretical results of group evaporation are given for a monodispersed cluster subject to adiabatic conditions. The time evolution of the fluid mechanic and thermodynamic behavior in this cluster is derived. The results given are not in the form of a subscale model for CFD codes.

  11. SAR Product Control Software

    NASA Astrophysics Data System (ADS)

    Meadows, P. J.; Hounam, D.; Rye, A. J.; Rosich, B.; Börner, T.; Closa, J.; Schättler, B.; Smith, P. J.; Zink, M.

    2003-03-01

    As SAR instruments and their operating modes become more complex, as new applications place more and more demands on image quality and as our understanding of their imperfections becomes more sophisticated, there is increasing recognition that SAR data quality has to be controlled more completely to keep pace. The SAR product CONtrol software (SARCON) is a comprehensive SAR product control software suite tailored to the latest generation of SAR sensors. SARCON profits from the most up-to-date thinking on SAR image performance derived from other spaceborne and airborne SAR projects and is based on the newest applications. This paper gives an overview of the structure and the features of this new software tool, which is a product of a co-operation between teams at BAE SYSTEMS Advanced Technology Centre and DLR under contract to ESA (ESRIN). Work on SARCON began in 1999 and is continuing.

  12. SAR change detection MTI

    NASA Astrophysics Data System (ADS)

    Scarborough, Steven; Lemanski, Christopher; Nichols, Howard; Owirka, Gregory; Minardi, Michael; Hale, Todd

    2006-05-01

    This paper examines the theory, application, and results of using single-channel synthetic aperture radar (SAR) data with Moving Reference Processing (MRP) to focus and geolocate moving targets. Moving targets within a standard SAR imaging scene are defocused, displaced, or completely missing in the final image. Building on previous research at AFRL, the SAR-MRP method focuses and geolocates moving targets by reprocessing the SAR data to focus the movers rather than the stationary clutter. SAR change detection is used so that target detection and focusing is performed more robustly. In the cases where moving target returns possess the same range versus slow-time histories, a geolocation ambiguity results. This ambiguity can be resolved in a number of ways. This paper concludes by applying the SAR-MRP method to high-frequency radar measurements from persistent continuous-dwell SAR observations of a moving target.

  13. Streamer Evaporation

    NASA Technical Reports Server (NTRS)

    Suess, Steven T.; Wang, A. H.; Wu, Shi T.; Nerney, S.

    1998-01-01

    Evaporation is the consequence of slow plasma heating near the tops of streamers where the plasma is only weakly contained by the magnetic field. The form it takes is the slow opening of field lines at the top of the streamer and transient formation of new solar wind. It was discovered in polytropic model calculations, where due to the absence of other energy loss mechanisms in magnetostatic streamers, its ultimate endpoint is the complete evaporation of the streamer. This takes, for plausible heating rates, weeks to months in these models. Of course streamers do not behave this way, for more than one reason. One is that there are losses due to thermal conduction to the base of the streamer and radiation from the transition region. Another is that streamer heating must have a characteristic time constant and depend on the ambient physical conditions. We use our global Magnetohydrodynamics (MHD) model with thermal conduction to examine a few examples of the effect of changing the heating scale height and of making ad hoc choices for how the heating depends on ambient conditions. At the same time, we apply and extend the analytic model of streamers, which showed that streamers will be unable to contain plasma for temperatures near the cusp greater than about 2xl0(exp 6) K. Slow solar wind is observed to come from streamers through transient releases. A scenario for this that is consistent with the above physical process is that heating increases the near-cusp temperature until field lines there are forced open. The subsequent evacuation of the flux tubes by the newly forming slow wind decreases the temperature and heating until the flux tubes are able to reclose. Then, over a longer time scale, heating begins to again refill the flux tubes with plasma and increase the temperature until the cycle repeats itself. The calculations we report here are first steps towards quantitative evaluation of this scenario.

  14. 32 CFR 242a.4 - Grounds on which meetings may be closed, or information may be withheld.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... REGENTS, UNIFORMED SERVICES UNIVERSITY OF THE HEALTH SCIENCES § 242a.4 Grounds on which meetings may be...) Disclose investigatory records compiled for law enforcement purposes, or information which if written...

  15. 32 CFR 242a.4 - Grounds on which meetings may be closed, or information may be withheld.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... REGENTS, UNIFORMED SERVICES UNIVERSITY OF THE HEALTH SCIENCES § 242a.4 Grounds on which meetings may be... information would: (1) Interfere with enforcement proceedings; (2) Deprive a person of a right to a fair...

  16. 32 CFR 242a.4 - Grounds on which meetings may be closed, or information may be withheld.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... REGENTS, UNIFORMED SERVICES UNIVERSITY OF THE HEALTH SCIENCES § 242a.4 Grounds on which meetings may be... information would: (1) Interfere with enforcement proceedings; (2) Deprive a person of a right to a fair...

  17. 32 CFR 242a.4 - Grounds on which meetings may be closed, or information may be withheld.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... REGENTS, UNIFORMED SERVICES UNIVERSITY OF THE HEALTH SCIENCES § 242a.4 Grounds on which meetings may be... information would: (1) Interfere with enforcement proceedings; (2) Deprive a person of a right to a fair...

  18. 32 CFR 242a.4 - Grounds on which meetings may be closed, or information may be withheld.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... REGENTS, UNIFORMED SERVICES UNIVERSITY OF THE HEALTH SCIENCES § 242a.4 Grounds on which meetings may be... information would: (1) Interfere with enforcement proceedings; (2) Deprive a person of a right to a fair...

  19. Hanford high-level waste evaporator/crystallizer corrosion evaluation

    SciTech Connect

    Ohl, P.C.; Carlos, W.C.

    1993-10-01

    The US Department of Energy, Hanford Site nuclear reservation, located in Southeastern Washington State, is currently home to 61 Mgal of radioactive waste stored in 177 large underground storage tanks. As an intermediate waste volume reduction, the 242-A Evaporator/Crystallizer processes waste solutions from most of the operating laboratories and plants on the Hanford Site. The waste solutions are concentrated in the Evaporator/Crystallizer to a slurry of liquid and crystallized salts. This concentrated slurry is returned to Hanford Site waste tanks at a significantly reduced volume. The Washington State Department of Ecology Dangerous Waste Regulations, WAC 173-393 require that a tank system integrity assessment be completed and maintained on file at the facility for all dangerous waste tank systems. This corrosion evaluation was performed in support of the 242-A Evaporator/Crystallizer Tank System Integrity Assessment Report. This corrosion evaluation provided a comprehensive compatibility study of the component materials and corrosive environments. Materials used for the Evaporator components and piping include austenitic stainless steels (SS) (primarily ASTM A240, Type 304L) and low alloy carbon steels (CS) (primarily ASTM A53 and A106) with polymeric or asbestos gaskets at flanged connections. Building structure and secondary containment is made from ACI 301-72 Structural Concrete for Buildings and coated with a chemically resistant acrylic coating system.

  20. Real time SAR processing

    NASA Technical Reports Server (NTRS)

    Premkumar, A. B.; Purviance, J. E.

    1990-01-01

    A simplified model for the SAR imaging problem is presented. The model is based on the geometry of the SAR system. Using this model an expression for the entire phase history of the received SAR signal is formulated. From the phase history, it is shown that the range and the azimuth coordinates for a point target image can be obtained by processing the phase information during the intrapulse and interpulse periods respectively. An architecture for a VLSI implementation for the SAR signal processor is presented which generates images in real time. The architecture uses a small number of chips, a new correlation processor, and an efficient azimuth correlation process.

  1. In vitro evaluation of the antimicrobial activity of HM-242, a novel antiseptic compound.

    PubMed

    Okunishi, Junji; Nishihara, Yutaka; Maeda, Shirou; Ikeda, Masahiro

    2009-09-01

    The antimicrobial activities of N(4)-octyl-6,6-dimethyl-N(2)-(4-methylbenzyl)-1,6-dihydro-1,3,5-triazine-2,4-diamine (HM-242), a novel synthetic compound, were compared with those of chlorhexidine gluconate (CHG). HM-242 was a more potent microbicide than CHG in vitro; however, its minimal inhibitory concentrations were similar. In particular, HM-242 killed various Gram-positive bacteria, including methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus faecalis, both efficiently and rapidly. HM-242 also showed potent virucidal activity against enveloped viruses such as influenza virus and herpes simplex virus. These characteristics suggest that HM-242 may well be useful as an antiseptic.

  2. SAR calibration technology review

    NASA Technical Reports Server (NTRS)

    Walker, J. L.; Larson, R. W.

    1981-01-01

    Synthetic Aperture Radar (SAR) calibration technology including a general description of the primary calibration techniques and some of the factors which affect the performance of calibrated SAR systems are reviewed. The use of reference reflectors for measurement of the total system transfer function along with an on-board calibration signal generator for monitoring the temporal variations of the receiver to processor output is a practical approach for SAR calibration. However, preliminary error analysis and previous experimental measurements indicate that reflectivity measurement accuracies of better than 3 dB will be difficult to achieve. This is not adequate for many applications and, therefore, improved end-to-end SAR calibration techniques are required.

  3. Evaporator Cleaning Studies

    SciTech Connect

    Wilmarth, W.R.

    1999-04-15

    Operation of the 242-16H High Level Waste Evaporator proves crucial to liquid waste management in the H-Area Tank Farm. Recent operational history of the Evaporator showed significant solid formation in secondary lines and in the evaporator pot. Additional samples remain necessary to ensure material identity in the evaporator pot. Analysis of these future samples will provide actinide partitioning information and dissolution characteristics of the solid material from the pot to ensure safe chemical cleaning.

  4. PHARUS airborne SAR concept

    NASA Astrophysics Data System (ADS)

    Snoeij, Paul; Pouwels, Henk; Koomen, Peter J.; Hoogeboom, Peter

    1995-11-01

    PHARUS (phased array universal SAR) is an airborne SAR concept which is being developed in the Netherlands. The PHARUS system differs from other airborne SARs by the use of a phased array antenna, which provides both for the flexibility in the design as well as for a compact, light-weight instrument that can be carried on small aircraft. The concept allows for the construction of airborne SAR systems on a common generic basis but tailored to specific user needs and can be seen as a preparation for future spaceborne SAR systems using solid state transmitters with electronically steerable phased array antenna. The whole approach is aimed at providing an economic and yet technically sophisticated solution to remote sensing or surveying needs of a specific user. The solid state phased array antenna consists of a collection of radiating patches; the design flexibility for a large part resides in the freedom to choose the number of patches, and thereby the essential radar performance parameters such as resolution and swath width. Another consequence of the use of the phased array antenna is the system's compactness and the possibility to rigidly mount it on a small aircraft. The use of small aircraft of course considerably improves the cost/benefit ratio of the use of airborne SAR. Flight altitude of the system is flexible between about 7,000 and 40,000 feet, giving much operational freedom within the meteo and airspace control limits. In the PHARUS concept the airborne segment is complemented by a ground segment, which consists of a SAR processor, possibly extended by a matching image processing package. (A quick look image is available in real-time on board the aircraft.) The SAR processor is UNIX based and runs on easily available hardware (SUN station). Although the additional image processing software is available, the SAR processing software is nevertheless designed to be able to interface with commercially available image processing software, as well as being able

  5. Hybrid polarity SAR architecture

    NASA Astrophysics Data System (ADS)

    Raney, R. Keith

    2009-05-01

    A space-based synthetic aperture radar (SAR) designed to provide quantitative information on a global scale implies severe requirements to maximize coverage and to sustain reliable operational calibration. These requirements are best served by the hybrid-polarity architecture, in which the radar transmits in circular polarization, and receives on two orthogonal linear polarizations, coherently, retaining their relative phase. This paper summarizes key attributes of hybrid-polarity dual- and quadrature-polarized SARs, reviews the associated advantages, formalizes conditions under which the signal-to-noise ratio is conserved, and describes the evolution of this architecture from first principles.

  6. Polarization effects and multipolarization SAR

    NASA Technical Reports Server (NTRS)

    Freeman, Anthony

    1992-01-01

    Imaging radar polarimeters are usually implemented using a Synthetic Aperture Radar (SAR) approach to give a high resolution image in two dimensions: range and azimuth. For each pixel in the image a polarimetric SAR gives sufficient information to characterize the polarimetric scattering properties of the imaged area (or target) as seen by the radar. Using a polarimetric SAR system as opposed to a single-polarization SAR system provides significantly more information about the target scattering mechanisms and allows better discrimination between different types of surfaces. In these notes a brief overview of SAR polarimetry is offered. The notes are intended as a text to accompany a lecture on SAR polarimetry as part of an AGARD-NATO course. Covered in the notes are the following: the polarization properties of electromagnetic waves; the concepts of radar scattering and measuring radar backscatter with a SAR; polarization synthesis; scattering matrix, Stokes matrix, and covariance matrix representations of polarimetric SAR data; polarization signature plots; design and calibration of polarimetric SAR systems; polarization filtering for target detection; fitting a simple model to polarimetric SAR measurements of naturally occurring features; and supervised classification of polarimetric SAR data.

  7. Bistatic SAR: Proof of Concept.

    SciTech Connect

    Yocky, David A.; Doren, Neall E.; Bacon, Terry A.; Wahl, Daniel E.; Eichel, Paul H.; Jakowatz, Charles V,; Delaplain, Gilbert G.; Dubbert, Dale F.; Tise, Bertice L.; White, Kyle R.

    2014-10-01

    Typical synthetic aperture RADAR (SAR) imaging employs a co-located RADAR transmitter and receiver. Bistatic SAR imaging separates the transmitter and receiver locations. A bistatic SAR configuration allows for the transmitter and receiver(s) to be in a variety of geometric alignments. Sandia National Laboratories (SNL) / New Mexico proposed the deployment of a ground-based RADAR receiver. This RADAR receiver was coupled with the capability of digitizing and recording the signal collected. SNL proposed the possibility of creating an image of targets the illuminating SAR observes. This document describes the developed hardware, software, bistatic SAR configuration, and its deployment to test the concept of a ground-based bistatic SAR. In the proof-of-concept experiments herein, the RADAR transmitter will be a commercial SAR satellite and the RADAR receiver will be deployed at ground level, observing and capturing RADAR ground/targets illuminated by the satellite system.

  8. Measure Guideline: Evaporative Condensers

    SciTech Connect

    German, A; Dakin, B.; Hoeschele, M.

    2012-03-01

    This measure guideline on evaporative condensers provides information on properly designing, installing, and maintaining evaporative condenser systems as well as understanding the benefits, costs, and tradeoffs. This is a prescriptive approach that outlines selection criteria, design and installation procedures, and operation and maintenance best practices.

  9. Evaporation, Boiling and Bubbles

    ERIC Educational Resources Information Center

    Goodwin, Alan

    2012-01-01

    Evaporation and boiling are both terms applied to the change of a liquid to the vapour/gaseous state. This article argues that it is the formation of bubbles of vapour within the liquid that most clearly differentiates boiling from evaporation although only a minority of chemistry textbooks seems to mention bubble formation in this context. The…

  10. High level waste storage tank farms/242-A evaporator standards/requirements identification document phase 1 assessment corrective actions/compliance schedule approval report

    SciTech Connect

    Biebesheimer, E.

    1996-09-30

    This document, the Standards/Requirements Identification Document (S/RID) Phase I Assessment Corrective Actions/Compliance Schedule Approval Report for the subject facility, contains the corrective actions required to bring the facility into compliance as a result of an Administrative Assessment to determine whether S/RID requirements are fully addressed by existing policies, plans or procedures. These actions are delineated in the Compliance Schedule Approvals which also contain; noncompliances, risks, compensatory measures, schedules for corrective actions, justifications for approval, and resource impacts.

  11. Evaporative Cooling Membrane Device

    NASA Technical Reports Server (NTRS)

    Lomax, Curtis (Inventor); Moskito, John (Inventor)

    1999-01-01

    An evaporative cooling membrane device is disclosed having a flat or pleated plate housing with an enclosed bottom and an exposed top that is covered with at least one sheet of hydrophobic porous material having a thin thickness so as to serve as a membrane. The hydrophobic porous material has pores with predetermined dimensions so as to resist any fluid in its liquid state from passing therethrough but to allow passage of the fluid in its vapor state, thereby, causing the evaporation of the fluid and the cooling of the remaining fluid. The fluid has a predetermined flow rate. The evaporative cooling membrane device has a channel which is sized in cooperation with the predetermined flow rate of the fluid so as to produce laminar flow therein. The evaporative cooling membrane device provides for the convenient control of the evaporation rates of the circulating fluid by adjusting the flow rates of the laminar flowing fluid.

  12. 3D SAR approach to IF SAR processing

    NASA Astrophysics Data System (ADS)

    Doerry, Armin W.; Bickel, Doug

    2000-08-01

    Interferometric SAR (IFSAR) can be shown to be a special case of 3-D SAR image formation. In fact, traditional IFSAR processing results in the equivalent of merely a super- resolved, under-sampled, 3-D SAR image. However, when approached as a 3-D SAR problem, a number of IFSAR properties and anomalies are easily explained. For example, IFSAR decorrelation with height is merely ordinary migration in 3-D SAR. Consequently, treating IFSAR as a 3-D SAR problem allows insight and development of proper motion compensation techniques and image formation operations to facilitate optimal height estimation. Furthermore, multiple antenna phase centers and baselines are easily incorporated into this formulation, providing essentially a sparse array in the elevation dimension. This paper shows the Polar Format image formation algorithm extended to 3 dimensions, and then proceeds to apply it to the IFSAR collection geometry. This suggests a more optimal reordering of the traditional IFSAR processing steps.

  13. Hospital Preparedness and SARS

    PubMed Central

    Wallington, Tamara; Rutledge, Tim; Mederski, Barbara; Rose, Keith; Kwolek, Sue; McRitchie, Donna; Ali, Azra; Wolff, Bryan; White, Diane; Glassman, Edward; Ofner, Marianna; Low, Don E.; Berger, Lisa; McGeer, Allison; Wong, Tom; Baron, David; Berall, Glenn

    2004-01-01

    On May 23, 2003, Toronto experienced the second phase of a severe acute respiratory syndrome (SARS) outbreak. Ninety cases were confirmed, and >620 potential cases were managed. More than 9,000 persons had contact with confirmed or potential case-patients; many required quarantine. The main hospital involved during the second outbreak was North York General Hospital. We review this hospital’s response to, and management of, this outbreak, including such factors as building preparation and engineering, personnel, departmental workload, policies and documentation, infection control, personal protective equipment, training and education, public health, management and administration, follow-up of SARS patients, and psychological and psychosocial management and research. We also make recommendations for other institutions to prepare for future outbreaks, regardless of their origin. PMID:15200807

  14. SAR peculiarities, ambiguities and constraints

    NASA Astrophysics Data System (ADS)

    Keydel, Wolfgang

    1992-08-01

    A synthetic aperture radar (SAR) is basically a coherent scatterometer that employs a coherent real aperture radar with highly sophisticated data evaluation and image processing capabilities. Therefore, the coherence of the system is very important; furthermore, the keypoints for SAR are data storage, evaluation, and processing. These facts entail peculiarities of SAR and special ambiguities which are different from those arising with real aperture radar (RAR). The objective of this paper is to point out the special peculiarities and ambiguities of SAR in comparison to the corresponding properties of RAR. Main topics in this connection are as follows: basic peculiarities like range dependency of signal to noise ratio; azimuth resolution; influence of platform velocity; range and azimuth ambiguities; pulse repetition frequency limitations; velocity effects; and phase error influence, on SAR-image, that can cause motion compensation problems. All these effects will be explained together with different contrast-equations between the target and clutter signals of SAR and RAR.

  15. Flash evaporator systems test

    NASA Technical Reports Server (NTRS)

    Dietz, J. B.

    1976-01-01

    A flash evaporator heat rejection system representative of that proposed for the space shuttle orbiter underwent extensive system testing at the NASA Johnson Space Center (JSC) to determine its operational suitability and to establish system performance/operational characteristics for use in the shuttle system. During the tests the evaporator system demonstrated its suitability to meet the shuttle requirements by: (1) efficient operation with 90 to 95% water evaporation efficiency, (2) control of outlet temperature to 40 + or - 2 F for partial heat load operation, (3) stability of control system for rapid changes in Freon inlet temperature, and (4) repeated dormant-to-active device operation without any startup procedures.

  16. Circular SAR GMTI

    NASA Astrophysics Data System (ADS)

    Page, Douglas; Owirka, Gregory; Nichols, Howard; Scarborough, Steven

    2014-06-01

    We describe techniques for improving ground moving target indication (GMTI) performance in multi-channel synthetic aperture radar (SAR) systems. Our approach employs a combination of moving reference processing (MRP) to compensate for defocus of moving target SAR responses and space-time adaptive processing (STAP) to mitigate the effects of strong clutter interference. Using simulated moving target and clutter returns, we demonstrate focusing of the target return using MRP, and discuss the effect of MRP on the clutter response. We also describe formation of adaptive degrees of freedom (DOFs) for STAP filtering of MRP processed data. For the simulated moving target in clutter example, we demonstrate improvement in the signal to interference plus noise (SINR) loss compared to more standard algorithm configurations. In addition to MRP and STAP, the use of tracker feedback, false alarm mitigation, and parameter estimation techniques are also described. A change detection approach for reducing false alarms from clutter discretes is outlined, and processing of a measured data coherent processing interval (CPI) from a continuously orbiting platform is described. The results demonstrate detection and geolocation of a high-value target under track. The endoclutter target is not clearly visible in single-channel SAR chips centered on the GMTI track prediction. Detections are compared to truth data before and after geolocation using measured angle of arrival (AOA).

  17. Wetland InSAR

    NASA Astrophysics Data System (ADS)

    Wdowinski, S.; Kim, S.; Amelung, F.; Dixon, T.

    2006-12-01

    Wetlands are transition zones where the flow of water, the nutrient cycling, and the sun energy meet to produce a unique and very productive ecosystem. They provide critical habitat for a wide variety of plant and animal species, including the larval stages of many ocean fish. Wetlands also have a valuable economical importance, as they filter nutrients and pollutants from fresh water used by human and provide aquatic habitats for outdoor recreation, tourism, and fishing. Globally, many such regions are under severe environmental stress, mainly from urban development, pollution, and rising sea level. However, there is increasing recognition of the importance of these habitats, and mitigation and restoration activities have begun in a few regions. A key element in wetlands conservation, management, and restoration involves monitoring its hydrologic system, as the entire ecosystem depends on its water supply. Heretofore, hydrologic monitoring of wetlands are conducted by stage (water level) stations, which provide good temporal resolution, but suffer from poor spatial resolution, as stage station are typically distributed several, or even tens of kilometers, from one another. Wetland application of InSAR provides the needed high spatial resolution hydrological observations, complementing the high temporal resolution terrestrial observations. Although conventional wisdom suggests that interferometry does not work in vegetated areas, several studies have shown that both L- and C-band interferograms with short acquisition intervals (1-105 days) can maintain excellent coherence over wetlands. In this study we explore the usage of InSAR for detecting water level changes in various wetland environments around the world, including the Everglades (south Florida), Louisiana Coast (southern US), Chesapeake Bay (eastern US), Pantanal (Brazil), Okavango Delta (Botswana), and Lena Delta (Siberia). Our main study area is the Everglades wetland (south Florida), which is covered by

  18. CAPSULE REPORT: EVAPORATION PROCESS

    EPA Science Inventory

    Evaporation has been an established technology in the metal finishing industry for many years. In this process, wastewaters containing reusable materials, such as copper, nickel, or chromium compounds are heated, producing a water vapor that is continuously removed and condensed....

  19. Measure Guideline: Evaporative Condensers

    SciTech Connect

    German, A.; Dakin, B.; Hoeschele, M.

    2012-03-01

    The purpose of this measure guideline on evaporative condensers is to provide information on a cost-effective solution for energy and demand savings in homes with cooling loads. This is a prescriptive approach that outlines selection criteria, design and installation procedures, and operation and maintenance best practices. This document has been prepared to provide a process for properly designing, installing, and maintaining evaporative condenser systems as well as understanding the benefits, costs, and tradeoffs.

  20. Mixed feed evaporator

    DOEpatents

    Vakil, Himanshu B.; Kosky, Philip G.

    1982-01-01

    In the preparation of the gaseous reactant feed to undergo a chemical reaction requiring the presence of steam, the efficiency of overall power utilization is improved by premixing the gaseous reactant feed with water and then heating to evaporate the water in the presence of the gaseous reactant feed, the heating fluid utilized being at a temperature below the boiling point of water at the pressure in the volume where the evaporation occurs.

  1. Recovering Seasat SAR Data

    NASA Astrophysics Data System (ADS)

    Logan, T. A.; Arko, S. A.; Rosen, P. A.

    2013-12-01

    To demonstrate the feasibility of orbital remote sensing for global ocean observations, NASA launched Seasat on June 27th, 1978. Being the first space borne SAR mission, Seasat produced the most detailed SAR images of Earth from space ever seen to that point in time. While much of the data collected in the USA was processed optically, a mere 150 scenes had been digitally processed by March 1980. In fact, only an estimated 3% of Seasat data was ever digitally processed. Thus, for over three decades, the majority of the SAR data from this historic mission has been dormant, virtually unavailable to scientists in the 21st century. Over the last year, researchers at the Alaska Satellite Facility (ASF) Distributed Active Archive Center (DAAC) have processed the Seasat SAR archives into imagery products. A telemetry decoding system was created and the data were filtered into readily processable signal files. Due to nearly 35 years of bit rot, the bit error rate (BER) for the ASF DAAC Seasat archives was on the order of 1 out of 100 to 1 out of 100,000. This extremely high BER initially seemed to make much of the data undecodable - because the minor frame numbers are just 7 bits and no range line numbers exist in the telemetry even the 'simple' tasks of tracking the minor frame number or locating the start of each range line proved difficult. Eventually, using 5 frame numbers in sequence and a handful of heuristics, the data were successfully decoded into full range lines. Concurrently, all metadata were stored into external files. Recovery of this metadata was also problematic, the BER making the information highly suspect and, initially at least, unusable in any sort of automated fashion. Because of the BER, all of the single bit metadata fields proved unreliable. Even fields that should be constant for a data take (e.g. receiving station, day of the year) showed high variability, each requiring a median filter to be usable. The most challenging, however, were the

  2. Analytical SAR-GMTI principles

    NASA Astrophysics Data System (ADS)

    Soumekh, Mehrdad; Majumder, Uttam K.; Barnes, Christopher; Sobota, David; Minardi, Michael

    2016-05-01

    This paper provides analytical principles to relate the signature of a moving target to parameters in a SAR system. Our objective is to establish analytical tools that could predict the shift and smearing of a moving target in a subaperture SAR image. Hence, a user could identify the system parameters such as the coherent processing interval for a subaperture that is suitable to localize the signature of a moving target for detection, tracking and geolocating the moving target. The paper begins by outlining two well-known SAR data collection methods to detect moving targets. One uses a scanning beam in the azimuth domain with a relatively high PRF to separate the moving targets and the stationary background (clutter); this is also known as Doppler Beam Sharpening. The other scheme uses two receivers along the track to null the clutter and, thus, provide GMTI. We also present results on implementing our SAR-GMTI analytical principles for the anticipated shift and smearing of a moving target in a simulated code. The code would provide a tool for the user to change the SAR system and moving target parameters, and predict the properties of a moving target signature in a subaperture SAR image for a scene that is composed of both stationary and moving targets. Hence, the SAR simulation and imaging code could be used to demonstrate the validity and accuracy of the above analytical principles to predict the properties of a moving target signature in a subaperture SAR image.

  3. Atypical SARS in Geriatric Patient

    PubMed Central

    Oh, Helen M.L.; Hui, K.P.; Lien, Christopher T.C.; Narendran, K.; Heng, B.H.; Ling, A.E.

    2004-01-01

    We describe an atypical presentation of severe acute respiratory syndrome (SARS) in a geriatric patient with multiple coexisting conditions. Interpretation of radiographic changes was confounded by cardiac failure, with resolution of fever causing delayed diagnosis and a cluster of cases. SARS should be considered even if a contact history is unavailable, during an ongoing outbreak. PMID:15030694

  4. Review of bats and SARS.

    PubMed

    Wang, Lin-Fa; Shi, Zhengli; Zhang, Shuyi; Field, Hume; Daszak, Peter; Eaton, Bryan T

    2006-12-01

    Bats have been identified as a natural reservoir for an increasing number of emerging zoonotic viruses, including henipaviruses and variants of rabies viruses. Recently, we and another group independently identified several horseshoe bat species (genus Rhinolophus) as the reservoir host for a large number of viruses that have a close genetic relationship with the coronavirus associated with severe acute respiratory syndrome (SARS). Our current research focused on the identification of the reservoir species for the progenitor virus of the SARS coronaviruses responsible for outbreaks during 2002-2003 and 2003-2004. In addition to SARS-like coronaviruses, many other novel bat coronaviruses, which belong to groups 1 and 2 of the 3 existing coronavirus groups, have been detected by PCR. The discovery of bat SARS-like coronaviruses and the great genetic diversity of coronaviruses in bats have shed new light on the origin and transmission of SARS coronaviruses.

  5. Review of Bats and SARS

    PubMed Central

    Shi, Zhengli; Zhang, Shuyi; Field, Hume; Daszak, Peter; Eaton, Bryan T.

    2006-01-01

    Bats have been identified as a natural reservoir for an increasing number of emerging zoonotic viruses, including henipaviruses and variants of rabies viruses. Recently, we and another group independently identified several horseshoe bat species (genus Rhinolophus) as the reservoir host for a large number of viruses that have a close genetic relationship with the coronavirus associated with severe acute respiratory syndrome (SARS). Our current research focused on the identification of the reservoir species for the progenitor virus of the SARS coronaviruses responsible for outbreaks during 2002–2003 and 2003–2004. In addition to SARS-like coronaviruses, many other novel bat coronaviruses, which belong to groups 1 and 2 of the 3 existing coronavirus groups, have been detected by PCR. The discovery of bat SARS-like coronaviruses and the great genetic diversity of coronaviruses in bats have shed new light on the origin and transmission of SARS coronaviruses. PMID:17326933

  6. Bistatic SAR: Imagery & Image Products.

    SciTech Connect

    Yocky, David A.; Wahl, Daniel E.; Jakowatz, Charles V,

    2014-10-01

    While typical SAR imaging employs a co-located (monostatic) RADAR transmitter and receiver, bistatic SAR imaging separates the transmitter and receiver locations. The transmitter and receiver geometry determines if the scattered signal is back scatter, forward scatter, or side scatter. The monostatic SAR image is backscatter. Therefore, depending on the transmitter/receiver collection geometry, the captured imagery may be quite different that that sensed at the monostatic SAR. This document presents imagery and image products formed from captured signals during the validation stage of the bistatic SAR research. Image quality and image characteristics are discussed first. Then image products such as two-color multi-view (2CMV) and coherent change detection (CCD) are presented.

  7. How do drops evaporate?

    NASA Astrophysics Data System (ADS)

    Murisic, Nebojsa; Kondic, Lou

    2007-11-01

    The problem of evaporating drops with non-pinned contact line, although seemingly trivial, so far lacks satisfactory theoretical description. In particular, there has been much discussion regarding appropriate evaporative mass flux model. We make an attempt to resolve this issue by comparing our experimental data with the results of several mathematical models for evaporating drops. After describing experimental procedure, we propose several models for mass flux and develop a governing equation for evolution of drop's thickness. Two-dimensional numerical results are then compared to the experimental results, and the most appropriate mass flux model is identified. Finally, we propose the governing equation for the full 3D system and present some new numerical results related to curious phenomena, where so-called ``octopus-shaped'' instabilities appear ahead of the contact line of volatile dropsootnotetextY. Gotkis, I. Ivanov, N. Murisic, L. Kondic, Phys. Rev. Lett. 97, 186101 (2006)..

  8. Anatomy of a SAR impulse response.

    SciTech Connect

    Doerry, Armin Walter

    2007-08-01

    A principal measure of Synthetic Aperture Radar (SAR) image quality is the manifestation in the SAR image of a spatial impulse, that is, the SAR's Impulse Response (IPR). IPR requirements direct certain design decisions in a SAR. Anomalies in the IPR can point to specific anomalous behavior in the radar's hardware and/or software.

  9. Hot air drum evaporator

    DOEpatents

    Black, Roger L.

    1981-01-01

    An evaporation system for aqueous radioactive waste uses standard 30 and 55 gallon drums. Waste solutions form cascading water sprays as they pass over a number of trays arranged in a vertical stack within a drum. Hot dry air is circulated radially of the drum through the water sprays thereby removing water vapor. The system is encased in concrete to prevent exposure to radioactivity. The use of standard 30 and 55 gallon drums permits an inexpensive compact modular design that is readily disposable, thus eliminating maintenance and radiation build-up problems encountered with conventional evaporation systems.

  10. Studies of ice sheet hydrology using SAR

    NASA Technical Reports Server (NTRS)

    Bindschadler, R. A.; Vornberger, P. L.

    1989-01-01

    Analysis of SAR data of the Greenland ice sheet in summer and winter suggest the use of SAR to monitor the temporal hydrology of ice sheets. Comparisons of each SAR data set with summer Landsat TM imagery show an areal-positive correlation with summer SAR data and a negative correlation with winter SAR data. It is proposed that the summer SAR data are most sensitive to the variable concentrations of free water in the surface snow and that the winter SAR data indicate variations in snow grain size.

  11. ERS-1 SAR data processing

    NASA Technical Reports Server (NTRS)

    Leung, K.; Bicknell, T.; Vines, K.

    1986-01-01

    To take full advantage of the synthetic aperature radar (SAR) to be flown on board the European Space Agency's Remote Sensing Satellite (ERS-1) (1989) and the Canadian Radarsat (1990), the implementation of a receiving station in Alaska is being studied to gather and process SAR data pertaining in particular to regions within the station's range of reception. The current SAR data processing requirement is estimated to be on the order of 5 minutes per day. The Interim Digital Sar Processor (IDP) which was under continual development through Seasat (1978) and SIR-B (1984) can process slightly more than 2 minutes of ERS-1 data per day. On the other hand, the Advanced Digital SAR Processore (ADSP), currently under development for the Shuttle Imaging Radar C (SIR-C, 1988) and the Venus Radar Mapper, (VMR, 1988), is capable of processing ERS-1 SAR data at a real time rate. To better suit the anticipated ERS-1 SAR data processing requirement, both a modified IDP and an ADSP derivative are being examined. For the modified IDP, a pipelined architecture is proposed for the mini-computer plus array processor arrangement to improve throughout. For the ADSP derivative, a simplified version is proposed to enhance ease of implementation and maintainability while maintaing real time throughput rates. These processing systems are discussed and evaluated.

  12. Synthetic Aperture Radar (SAR) data processing

    NASA Technical Reports Server (NTRS)

    Beckner, F. L.; Ahr, H. A.; Ausherman, D. A.; Cutrona, L. J.; Francisco, S.; Harrison, R. E.; Heuser, J. S.; Jordan, R. L.; Justus, J.; Manning, B.

    1978-01-01

    The available and optimal methods for generating SAR imagery for NASA applications were identified. The SAR image quality and data processing requirements associated with these applications were studied. Mathematical operations and algorithms required to process sensor data into SAR imagery were defined. The architecture of SAR image formation processors was discussed, and technology necessary to implement the SAR data processors used in both general purpose and dedicated imaging systems was addressed.

  13. Evaporation from the ocular surface.

    PubMed

    Mathers, William

    2004-03-01

    Evaporation from the ocular surface is dramatically reduced by the lipid layer which covers it. With this layer intact, evaporation represents a small loss of water for which the lacrimal gland easily compensates. When tear production is compromised evaporation becomes important, especially since evaporation in almost all ocular surface disease states and any surface perturbation, including contact lens wear, increases evaporation significantly. How the barrier function of the lipid layer accomplishes this reduction in evaporation is not understood and is probably quite complex as is the structure of the lipid layer. Improving this barrier function remains an important and elusive goal.

  14. Earth observing SAR data processing systems at the Jet Propulsion Laboratory - Seasat to EOS SAR

    NASA Technical Reports Server (NTRS)

    Nichols, David A.; Curlander, John C.

    1991-01-01

    The evolution of SAR digital data processing and management ground systems developed at the JPL for earth science missions is discussed. Attention is given to the SAR ground data system requirements, the early data processing systems, the Seasat SAR system, and the SIR-B data processing system. Special consideration is given to two currently operational SAR data systems: the JPL aircraft SAR processing system that flies on the NASA DC-8 and the Alaska SAR Facility at Fairbanks.

  15. TerraSAR-X mission

    NASA Astrophysics Data System (ADS)

    Werninghaus, Rolf

    2004-01-01

    The TerraSAR-X is a German national SAR- satellite system for scientific and commercial applications. It is the continuation of the scientifically and technologically successful radar missions X-SAR (1994) and SRTM (2000) and will bring the national technology developments DESA and TOPAS into operational use. The space segment of TerraSAR-X is an advanced high-resolution X-Band radar satellite. The system design is based on a sound market analysis performed by Infoterra. The TerraSAR-X features an advanced high-resolution X-Band Synthetic Aperture Radar based on the active phased array technology which allows the operation in Spotlight-, Stripmap- and ScanSAR Mode with various polarizations. It combines the ability to acquire high resolution images for detailed analysis as well as wide swath images for overview applications. In addition, experimental modes like the Dual Receive Antenna Mode allow for full-polarimetric imaging as well as along track interferometry, i.e. moving target identification. The Ground Segment is optimized for flexible response to (scientific and commercial) User requests and fast image product turn-around times. The TerraSAR-X mission will serve two main goals. The first goal is to provide the strongly supportive scientific community with multi-mode X-Band SAR data. The broad spectrum of scientific application areas include Hydrology, Geology, Climatology, Oceanography, Environmental Monitoring and Disaster Monitoring as well as Cartography (DEM Generation) and Interferometry. The second goal is the establishment of a commercial EO-market in Europe which is driven by Infoterra. The commercial goal is the development of a sustainable EO-business so that the e.g. follow-on systems can be completely financed by industry from the profit. Due to its commercial potential, the TerraSAR-X project will be implemented based on a public-private partnership with the Astrium GmbH. This paper will describe first the mission objectives as well as the

  16. MOVES2014: Evaporative Emissions Report

    EPA Science Inventory

    Vehicle evaporative emissions are now modeled in EPA’s MOVES according to physical processes, permeation, tank vapor venting, liquid leaks, and refueling emissions. With this update, the following improvements are being incorporated into MOVES evaporative emissions methodology, a...

  17. Crystal structure of the SarS protein from Staphylococcus aureus.

    PubMed

    Li, Ronggui; Manna, Adhar C; Dai, Shaodong; Cheung, Ambrose L; Zhang, Gongyi

    2003-07-01

    The expression of virulence determinants in Staphylococcus aureus is controlled by global regulatory loci (e.g., sarA and agr). One of these determinants, protein A (spa), is activated by sarS, which encodes a 250-residue DNA-binding protein. Genetic analysis indicated that the agr locus likely mediates spa repression by suppressing the transcription of sarS. Contrary to SarA and SarR, which require homodimer formation for proper function, SarS is unusual within the SarA protein family in that it contains two homologous halves, with each half sharing sequence similarity to SarA and SarR. Here we report the 2.2 A resolution X-ray crystal structure of the SarS protein. SarS has folds similar to those of SarR and, quite plausibly, the native SarA structure. Two typical winged-helix DNA-binding domains are connected by a well-ordered loop. The interactions between the two domains are extensive and conserved. The putative DNA-binding surface is highly positively charged. In contrast, negatively charged patches are located opposite to the DNA-binding surface. Furthermore, sequence alignment and structural comparison revealed that MarR has folds similar to those of SarR and SarS. Members of the MarR protein family have previously been implicated in the negative regulation of an efflux pump involved in multiple antibiotic resistance in many gram-negative species. We propose that MarR also belongs to the winged-helix protein family and has a similar mode of DNA binding as SarR and SarS and possibly the entire SarA protein family member. Based on the structural differences of SarR, SarS, and MarR, we further classified these winged-helix proteins to three subfamilies, SarA, SarS, and MarR. Finally, a possible transcription regulation mechanism is proposed.

  18. Water Membrane Evaporator

    NASA Technical Reports Server (NTRS)

    Ungar, Eugene K.; Almlie, Jay C.

    2010-01-01

    A water membrane evaporator (WME) has been conceived and tested as an alternative to the contamination-sensitive and corrosion-prone evaporators currently used for dissipating heat from space vehicles. The WME consists mainly of the following components: An outer stainless-steel screen that provides structural support for the components mentioned next; Inside and in contact with the stainless-steel screen, a hydrophobic membrane that is permeable to water vapor; Inside and in contact with the hydrophobic membrane, a hydrophilic membrane that transports the liquid feedwater to the inner surface of the hydrophobic membrane; Inside and in contact with the hydrophilic membrane, an annular array of tubes through which flows the spacecraft coolant carrying the heat to be dissipated; and An inner exclusion tube that limits the volume of feedwater in the WME. In operation, a pressurized feedwater reservoir is connected to the volume between the exclusion tube and the coolant tubes. Feedwater fills the volume, saturates the hydrophilic membrane, and is retained by the hydrophobic membrane. The outside of the WME is exposed to space vacuum. Heat from the spacecraft coolant is conducted through the tube walls and the water-saturated hydrophilic membrane to the liquid/vapor interface at the hydrophobic membrane, causing water to evaporate to space. Makeup water flows into the hydrophilic membrane through gaps between the coolant tubes.

  19. Interferometric SAR to EO image registration problem

    NASA Astrophysics Data System (ADS)

    Rogers, George W.; Mansfield, Arthur W.; Rais, Houra

    2000-08-01

    Historically, SAR to EO registration accuracy has been at the multiple pixel level compared to sub-pixel EO to EO registration accuracies. This is due to a variety of factors including the different scattering characteristics of the ground for EO and SAR, SAR speckle, and terrain induced geometric distortion. One approach to improving the SAR to EO registration accuracy is to utilize the full information from multiple SAR surveys using interferometric techniques. In this paper we will examine this problem in detail with an example using ERS SAR imagery. Estimates of the resulting accuracy based on ERS are included.

  20. A TACSAT SAR concept

    NASA Astrophysics Data System (ADS)

    Hall, C. D.; Baker, C. J.; Keyte, G. E.; Murphy, L. M.

    1993-02-01

    The payload concept covered is that of a low cost, high performance radar sensor capable of detecting and recognizing static objects within an imaged scene of the Earth's surface using the Synthetic Aperture Radar (SAR) technique. The overall system is integrated with a TACSAT platform in Low Earth Orbit (LEO) and, although only passing reference is made to this feature, the radar could also have a capability for the detection of Ground Moving Targets (GMTI). A parametric review of such a sensor in the light of the target and background features to be observed is provided. A design concept is included showing the possible hardware realization of a candidate system, as well as budgets for the mass, size, power, and pointing requirements of the instrument. Additional design features considered are the influence that short duration missions may have on hardware redundancy and the effect of short, low duty-cycle observation periods on solar array and battery sizing. The way towards a low cost R and D demonstrator system allowing a practical investigation of the key techniques and technologies is addressed.

  1. SARS Patients and Their Close Contacts

    MedlinePlus

    ... Fact Sheet for SARS Patients and Their Close Contacts Format: Select one PDF [256 KB] Recommend on ... that are not now known. What does "close contact" mean? In the context of SARS, close contact ...

  2. Method of evaporation

    NASA Technical Reports Server (NTRS)

    Dufresne, Eugene R.

    1987-01-01

    Liquids, such as juices, milk, molten metal and the like are concentrated by forming uniformly-sized, small droplets in a precision droplet forming assembly and deploying the droplets in free fall downwardly as a central column within an evacuated column with cool walls. A portion of the solvent evaporates. The vapor flows to the wall, condenses, and usually flows down the wall as a film to condensate collector and drain. The vertical column of freely falling droplets enters the splash guard. The condensate can be collected, sent to other towers or recycled.

  3. Miniature electron bombardment evaporation source: evaporation rate measurement

    NASA Astrophysics Data System (ADS)

    Nehasil, V.; Mašek, K.; Moreau, O.; Matolín, V.

    1997-03-01

    Miniature electron beam evaporation sources which operate on the principle of vaporization of source material, in the form of a tip, by electron bombardment are produced by several companies specialised in UHV equipment. These sources are used primarily for materials that are normally difficult to deposit due to their high evaporation temperature. They are appropriate for special applications, like heteroepitaxial thin films growth that require very low and well controlled deposition rate. We propose a simple and easily applicable method of evaporation rate control. The method is based on the measurement of ion current produced by electron bombardment of evaporated atoms. In order to be able to determine the ion current - evaporation flux calibration curves we measured the absolute values of evaporation flux by means of Bayard-Alpert ion gauge.

  4. P-3 SAR motion compensation techniques

    NASA Astrophysics Data System (ADS)

    Schwartz, Debra S.; Mansfield, Arthur W.; Roth, Duane; Rais, Houra

    2000-08-01

    The potential of airborne SAR to support the search and rescue mission needs to be investigated. Interferometric SAR (IFSAR) is to process P-3 airborne SAR data to evaluate products such as Coherent Change Detection (CCD) and Digital Elevation Models (DEM). The most crucial step in this process is the precise registration of the two SAR images obtained from separate passes. This paper presents a new technique for this registration step.

  5. Method for removing RFI from SAR images

    DOEpatents

    Doerry, Armin W.

    2003-08-19

    A method of removing RFI from a SAR by comparing two SAR images on a pixel by pixel basis and selecting the pixel with the lower magnitude to form a composite image. One SAR image is the conventional image produced by the SAR. The other image is created from phase-history data which has been filtered to have the frequency bands containing the RFI removed.

  6. Kronecker STAP and SAR GMTI

    NASA Astrophysics Data System (ADS)

    Greenewald, Kristjan H.; Zelnio, Edmund G.; Hero, Alfred O.

    2016-05-01

    As a high resolution radar imaging modality, SAR detects and localizes non-moving targets accurately, giving it an advantage over lower resolution GMTI radars. Moving target detection is more challenging due to target smearing and masking by clutter. Space-time adaptive processing (STAP) is often used on multiantenna SAR to remove the stationary clutter and enhance the moving targets. In (Greenewald et al., 2016),1 it was shown that the performance of STAP can be improved by modeling the clutter covariance as a space vs. time Kronecker product with low rank factors, providing robustness and reducing the number of training samples required. In this work, we present a massively parallel algorithm for implementing Kronecker product STAP, enabling application to very large SAR datasets (such as the 2006 Gotcha data collection) using GPUs. Finally, we develop an extension of Kronecker STAP that uses information from multiple passes to improve moving target detection.

  7. Monsoon '90 - Preliminary SAR results

    NASA Technical Reports Server (NTRS)

    Dubois, Pascale C.; Van Zyl, Jakob J.; Guerra, Abel G.

    1992-01-01

    Multifrequency polarimetric synthetic aperture radar (SAR) images of the Walnut Gulch watershed near Tombstone, Arizona were acquired on 28 Mar. 1990 and on 1 Aug. 1990. Trihedral corner reflectors were deployed prior to both overflights to allow calibration of the two SAR data sets. During both overflights, gravimetric soil moisture and dielectric constant measurements were made. Detailed vegetation height, density, and water content measurements were made as part of the Monsoon 1990 Experiment. Preliminary results based on analysis of the multitemporal polarimetric SAR data are presented. Only the C-band data (5.7-cm wavelength) radar images show significant difference between Mar. and Aug., with the strongest difference observed in the HV images. Based on the radar data analysis and the in situ measurements, we conclude that these differences are mainly due to changes in the vegetation and not due to the soil moisture changes.

  8. Monsoon 1990: Preliminary SAR results

    NASA Technical Reports Server (NTRS)

    Vanzyl, Jakob J.; Dubois, Pascale; Guerra, Abel

    1991-01-01

    Multifrequency polarimetric synthetic aperture radar (SAR) images of the Walnut Gulch watershed near Tombstone, Arizona were acquired on 28 Mar. 1990 and on 1 Aug. 1990. Trihedral corner reflectors were deployed prior to both overflights to allow calibration of the two SAR data sets. During both overflights, gravimetric soil moisture and dielectric constant measurements were made. Detailed vegetation height, density, and water content measurements were made as part of the Monsoon 1990 Experiment. Preliminary results based on analysis of the multitemporal polarimetric SAR data are presented. Only the C-band data (5.7-cm wavelength) radar images show significant difference between Mar. and Aug., with the strongest difference observed in the HV images. Based on the radar data analysis and the in situ measurements, we conclude that these differences are mainly due to changes in the vegetation and not due to the soil moisture changes.

  9. Registration of interferometric SAR images

    NASA Technical Reports Server (NTRS)

    Lin, Qian; Vesecky, John F.; Zebker, Howard A.

    1992-01-01

    Interferometric synthetic aperture radar (INSAR) is a new way of performing topography mapping. Among the factors critical to mapping accuracy is the registration of the complex SAR images from repeated orbits. A new algorithm for registering interferometric SAR images is presented. A new figure of merit, the average fluctuation function of the phase difference image, is proposed to evaluate the fringe pattern quality. The process of adjusting the registration parameters according to the fringe pattern quality is optimized through a downhill simplex minimization algorithm. The results of applying the proposed algorithm to register two pairs of Seasat SAR images with a short baseline (75 m) and a long baseline (500 m) are shown. It is found that the average fluctuation function is a very stable measure of fringe pattern quality allowing very accurate registration.

  10. SARS: hospital infection control and admission strategies.

    PubMed

    Ho, Pak-Leung; Tang, Xiao-Ping; Seto, Wing-Hong

    2003-11-01

    Nosocomial clustering with transmission to health care workers, patients and visitors is a prominent feature of severe acute respiratory syndrome (SARS). Hospital outbreaks of SARS typically occurred within the first week after admission of the very first SARS cases when the disease was not recognized and before isolation measures were implemented. In the majority of nosocomial infections, there was a history of close contact with a SARS patient, and transmission occurred via large droplets, direct contact with infectious material or by contact with fomites contaminated by infectious material. In a few instances, potential airborne transmission was reported in association with endotracheal intubation, nebulised medications and non-invasive positive pressure ventilation of SARS patients. In all SARS-affected countries, nosocomial transmission of the disease was effectively halted by enforcement of routine standard, contact and droplet precautions in all clinical areas and additional airborne precautions in the high-risk areas. In Hong Kong, where there are few private rooms for patient isolation, some hospitals have obtained good outcome by having designated SARS teams and separate wards for patient triage, confirmed SARS cases and step-down of patients in whom SARS had been ruled out. In conclusion, SARS represents one of the new challenges for those who are involved in hospital infection control. As SARS might re-emerge, all hospitals should take advantage of the current SARS-free interval to review their infection control programmes, alert mechanisms, response capability and to repair any identified inadequacies.

  11. Hybrid-Polarity SAR Architecture

    NASA Astrophysics Data System (ADS)

    Raney, R. K.; Freeman, A.

    2009-04-01

    A space-based synthetic aperture radar (SAR) designed to provide quantitative information on a global scale implies severe requirements to maximize coverage and to sustain reliable operational calibration. These requirements are best served by the hybrid-polarity architecture, in which the radar transmits in circular polarization, and receives on two orthogonal linear polarizations, coherently, retaining their relative phase. This paper reviews those advantages,summarizes key attributes of hybrid-polarity dual- and quadrature-polarized SARs including conditions under which the signal-to-noise ratio is conserved, and describes the evolution of this architecture from first principles.

  12. Foliage problem in interferometric SAR

    NASA Astrophysics Data System (ADS)

    Rogers, George W.; Mansfield, Arthur W.; Roth, Duane; Poehler, Paul L.; Rais, Houra

    1999-08-01

    Interferometric SAR exploits the coherent nature of multiple synthetic aperture radar images to recover phase (range difference) information and thence terrain evaluation data as well as other phase derivative products such as Coherent Change Detection (CCD). Of the numerous factors that can degrade the coherency of multiple SAR collections, foliage constitutes one of the most challenging. The foliage problem in IFSAR is discussed and an airborne multiple pass collection is used to illustrate some facets of the problem. Resolution as a variable in the tradeoff between the bias and variance of the interferogram is discussed in the context of the example.

  13. sarU, a sarA homolog, is repressed by SarT and regulates virulence genes in Staphylococcus aureus.

    PubMed

    Manna, Adhar C; Cheung, Ambrose L

    2003-01-01

    In searching the Staphylococcus aureus genome, we previously identified sarT, a homolog of sarA, which encodes a repressor for alpha-hemolysin synthesis. Adjacent but transcribed divergently to sarT is sarU, which encodes a 247-residue polypeptide, almost twice the length of SarA. Sequence alignment disclosed that SarU, like SarS, which is another SarA homolog, could be envisioned as a molecule with two halves, with each half being homologous to SarA. SarU, as a member of the SarA family proteins, disclosed conservation of basic residues within the helix-turn-helix motif and within the beta hairpin loop, two putative DNA binding domains within this protein family. The transcription of sarU is increased in a sarT mutant. Gel shift and transcriptional fusion studies revealed that SarT can bind to the sarU promoter region, probably acting as a repressor for sarU transcription. The expression of RNAII and RNAIII of agr is decreased in a sarU mutant. As RNAIII expression is up-regulated in a sarT mutant, we hypothesize that sarT may down regulate agr RNAIII expression by repressing sarU, a positive activator of agr expression. We propose that, in addition to the quorum sensing effect of the autoinducing peptide of agr, the sarT-sarU pathway may represent a secondary amplification loop whereby the expression of agr (e.g., those found in vivo) might repress sarT, leading to increased expression of sarU. Elevated sarU expression would result in additional amplification of the original agr signal.

  14. Installing and maintaining evaporative coolers

    SciTech Connect

    Otterbein, R.

    1996-05-01

    In the spring, many people in the western United States will be starting up or replacing evaporative coolers, or buying them for the first time. Proper installation and maintenance of these systems is very important, and recent improvements in the technology change how to best handle these tasks. Topics covered in this article include the following: evaporative cooler types; cooler maintenance; sizing evaporative coolers; A/C Add-on; Blower Orientation and cooler location; increasing air flow. 5 figs.

  15. Representative shuttle evaporative heat sink

    NASA Technical Reports Server (NTRS)

    Hixon, C. W.

    1978-01-01

    The design, fabrication, and testing of a representative shuttle evaporative heat sink (RSEHS) system which vaporizes an expendable fluid to provide cooling for the shuttle heat transport fluid loop is reported. The optimized RSEHS minimum weight design meets or exceeds the shuttle flash evaporator system requirements. A cold trap which cryo-pumps flash evaporator exhaust water from the CSD vacuum chamber test facility to prevent water contamination of the chamber pumping equipment is also described.

  16. Turkish Undergraduates' Misconceptions of Evaporation, Evaporation Rate, and Vapour Pressure

    ERIC Educational Resources Information Center

    Canpolat, Nurtac

    2006-01-01

    This study focused on students' misconceptions related to evaporation, evaporation rate, and vapour pressure. Open-ended diagnostic questions were used with 107 undergraduates in the Primary Science Teacher Training Department in a state university in Turkey. In addition, 14 students from that sample were interviewed to clarify their written…

  17. APPLICATION OF A THIN FILM EVAPORATOR SYSTEM FOR MANAGEMENT OF LIQUID HIGH-LEVEL WASTES AT HANFORD

    SciTech Connect

    TEDESCHI AR; WILSON RA

    2010-01-14

    A modular, transportable evaporator system, using thin film evaporative technology, is planned for deployment at the Hanford radioactive waste storage tank complex. This technology, herein referred to as a wiped film evaporator (WFE), will be located at grade level above an underground storage tank to receive pumped liquids, concentrate the liquid stream from 1.1 specific gravity to approximately 1.4 and then return the concentrated solution back into the tank. Water is removed by evaporation at an internal heated drum surface exposed to high vacuum. The condensed water stream will be shipped to the site effluent treatment facility for final disposal. This operation provides significant risk mitigation to failure of the aging 242-A Evaporator facility; the only operating evaporative system at Hanford maximizing waste storage. This technology is being implemented through a development and deployment project by the tank farm operating contractor, Washington River Protection Solutions (WRPS), for the Office of River Protection/Department of Energy (ORP/DOE), through Columbia Energy & Environmental Services, Inc. (Columbia Energy). The project will finalize technology maturity and install a system at one of the double-shell tank farms. This paper discusses results of pre-project pilot-scale testing by Columbia Energy and ongoing technology maturation development scope through fiscal year 2012, including planned additional pilot-scale and full-scale simulant testing and operation with actual radioactive tank waste.

  18. SARS: a health system's perspective.

    PubMed

    Beard, Leslie; Clark, Caroline

    2003-01-01

    Effective communications with different stakeholders was critical for health systems everywhere during the worldwide SARS outbreak earlier this year. For Capital Health in Edmonton, Alberta, the health system was able to build on its past experiences in dealing with meningococcal outbreaks and its planning for a pandemic flu. PMID:14628532

  19. Further SEASAT SAR coastal ocean wave analysis

    NASA Technical Reports Server (NTRS)

    Kasischke, E. S.; Shuchman, R. A.; Meadows, G. A.; Jackson, P. L.; Tseng, Y.

    1981-01-01

    Analysis techniques used to exploit SEASAT synthetic aperture radar (SAR) data of gravity waves are discussed and the SEASAT SAR's ability to monitor large scale variations in gravity wave fields in both deep and shallow water is evaluated. The SAR analysis techniques investigated included motion compensation adjustments and the semicausal model for spectral analysis of SAR wave data. It was determined that spectra generated from fast Fourier transform analysis (FFT) of SAR wave data were not significantly altered when either range telerotation adjustments or azimuth focus shifts were used during processing of the SAR signal histories, indicating that SEASAT imagery of gravity waves is not significantly improved or degraded by motion compensation adjustments. Evaluation of the semicausal (SC) model using SEASAT SAR data from Rev. 974 indicates that the SC spectral estimates were not significantly better than the FFT results.

  20. Determination of the radionuclide release factor for an evaporator process using nondestructive assay

    SciTech Connect

    Johnson, R.E.

    1998-07-06

    The 242-A Evaporator is the primary waste evaporator for the Hanford Site radioactive liquid waste stored in underground double-shell tanks. Low pressure evaporation is used to remove water from the waste, thus reducing the amount of tank space required for storage. The process produces a concentrated slurry, a process condensate, and an offgas. The offgas exhausts through two stages of high-efficiency particulate air (HEPA) filters before being discharged to the atmosphere 40 CFR 61 Subpart H requires assessment of the unfiltered exhaust to determine if continuous compliant sampling is required. Because potential (unfiltered) emissions are not measured, methods have been developed to estimate these emissions. One of the methods accepted by the Environmental Protection Agency is the measurement of the accumulation of radionuclides on the HEPA filters. Nondestructive assay (NDA) was selected for determining the accumulation on the HEPA filters. NDA was performed on the HEPA filters before and after a campaign in 1997. NDA results indicate that 2.1 E+4 becquerels of cesium-137 were accumulated on the primary HEPA 1700 filter during the campaign. The feed material processed in the campaign contained a total of 1.4 E+l6 Bq of cesium-137. The release factor for the evaporator process is 1.5 E-12. Based on this release factor, continuous compliant sampling is not required.

  1. Development of Intent Information Changes to Revised Minimum Aviation System Performance Standards for Automatic Dependent Surveillance Broadcast (RTCA/DO-242A)

    NASA Technical Reports Server (NTRS)

    Barhydt, Richard; Warren, Anthony W.

    2002-01-01

    RTCA Special Committee 186 has recently adopted a series of changes to the original Minimum Aviation System Performance Standards (MASPS) for Automatic Dependent Surveillance Broadcast (ADS-B). The new document will be published as DO-242A. Major changes to the MASPS include a significant restructuring and expansion of the intent parameters for future ADS-B systems. ADS-B provides a means for aircraft to exchange information about their intended trajectories with each other and with ground systems. NASA and Boeing have played significant roles in recommending these changes and providing supporting analysis. The intent changes are anticipated to provide substantial benefits to several programs and operational concepts under development by the two organizations. Major changes include the addition of Target State reports and the replacement of Trajectory Change Point reports with Trajectory Change reports. These changes have been designed to better reflect the capabilities of existing and future aircraft avionics, while providing benefits to current and proposed applications. DO-242A implements intent information elements that can be supported by current avionics systems and data buses. Provisions are made for future incorporation of other intent elements, as needed to meet operational requirements. This document summarizes the reasons for the DO-242A intent changes and provides a detailed overview of current and future intended ADS-B MASPS changes related to aircraft intent.

  2. EVAPORATION OF FRUITS AND VEGETABLES

    PubMed Central

    Cruess, W. V.

    1921-01-01

    More and more the world is utilizing dried fruits and vegetables, the war having given impetus to the preparation of the latter. Here are plain statements of processes and values deduced from scientific institution investigations. Evaporation is in its infancy while sun drying is very ancient. Evaporated products are better looking but more costly. ImagesFigure 1Figure 2Figure 3 PMID:18010426

  3. Vacuum flash evaporated polymer composites

    DOEpatents

    Affinito, John D.; Gross, Mark E.

    1997-01-01

    A method for fabrication of polymer composite layers in a vacuum is disclosed. More specifically, the method of dissolving salts in a monomer solution, vacuum flash evaporating the solution, condensing the flash evaporated solution as a liquid film, and forming the condensed liquid film into a polymer composite layer on a substrate is disclosed.

  4. Vacuum flash evaporated polymer composites

    DOEpatents

    Affinito, J.D.; Gross, M.E.

    1997-10-28

    A method for fabrication of polymer composite layers in a vacuum is disclosed. More specifically, the method of dissolving salts in a monomer solution, vacuum flash evaporating the solution, condensing the flash evaporated solution as a liquid film, and forming the condensed liquid film into a polymer composite layer on a substrate is disclosed.

  5. Modeling Treated LAW Feed Evaporation

    SciTech Connect

    DANIEL, WE

    2004-07-08

    This task examines the potential of the treated waste feed blends to form sodium-aluminum silicate precipitates when evaporated using the zeolite database. To investigate the behavior of the blended pretreated waste feed, an OLI Environmental Simulation Package Software (OLI ESP) model of the treated low activity waste (LAW) evaporator was built. A range of waste feed compositions representative of Envelope A, B, and C were then fed into the OLI model to predict various physical and chemical properties of the evaporator concentrates. Additional runs with treated LAW evaporator were performed to compare chemical and physical property model predictions and experimental results for small-scale radioactive tests of the treated feed evaporation process.

  6. Evaporation from heterogeneous soil surfaces

    NASA Astrophysics Data System (ADS)

    Lehmann, P.; Or, D.

    2009-04-01

    Evaporation rate is a key process of water exchange between soil surfaces and atmosphere and is controlled by both atmospheric demand and soil hydraulic properties. Initially high evaporation rates are sustained by capillary-induced water flow from receding drying front to evaporating surface. In heterogeneous soils air invades preferentially coarse-textured regions whereas fine textured surface regions remain water saturated. We investigated experimentally and numerically effects of hydraulic coupling on drying rate of heterogeneous porous media. Laboratory experiments with vertical contrasts between fine (0.1-0.5 mm) and coarse sand (0.3-0.9 mm) showed that the period of high drying rate was extended compared to evaporation from homogeneous materials. Water flow from coarse material to supply water evaporated from fine textured surface was monitored by neutron radiography imaging. Due to the high hydraulic conductivity of the coarse material the viscous head loss could be neglected for flow distances analyzed in the experiments (< 600 mm). We proposed a model to explore effects of hydraulic coupling on evaporation for a wide range of soil textural classes at plot scale. When the drying front in the coarse reaches a certain characteristic depth (defined by the pore size distribution) no water evaporates from the coarse surface, yet, subsurface flow from coarse to the fine textured inclusion persists and feeds enhanced evaporation rate. Assuming energy input was not limiting, evaporation from the fine textured inclusion may increase to compensate reduction of evaporating surface. For loam or silt as inclusion in sandy material, water was extracted from regions with more than 10 m in distance before flow was limited by viscous effects. In case of clay inclusions the radius of water extraction was smaller due to enhanced viscous resistance. The findings of the numerical study can be applied as well to assess the effect of shrubs or compacted trafficked zones on the

  7. Controlling Data Collection to Support SAR Image Rotation

    DOEpatents

    Doerry, Armin W.; Cordaro, J. Thomas; Burns, Bryan L.

    2008-10-14

    A desired rotation of a synthetic aperture radar (SAR) image can be facilitated by adjusting a SAR data collection operation based on the desired rotation. The SAR data collected by the adjusted SAR data collection operation can be efficiently exploited to form therefrom a SAR image having the desired rotational orientation.

  8. Rapid Evaporation of microbubbles

    NASA Astrophysics Data System (ADS)

    Gautam, Jitendra; Esmaeeli, Asghar

    2008-11-01

    When a liquid is heated to a temperature far above its boiling point, it evaporates abruptly. Boiling of liquid at high temperatures can be explosive and destructive, and poses a potential hazard for a host of industrial processes. Explosive boiling may occur if a cold and volatile liquid is brought into contact with a hot and non-volatile liquid, or if a liquid is superheated or depressurized rapidly. Such possibilities are realized, for example, in the depressurization of low boiling point liquefied natural gas (LNG) in the pipelines or storage tanks as a result of a leak. While boiling of highly heated liquids can be destructive at macroscale, the (nearly) instantaneous pace of the process and the release of large amount of kinetic energy make the phenomena extremely attractive at microscale where it is possible to utilize the released energy to derive micromechanical systems. For instance, there is currently a growing interest in micro-explosion of liquid for generation of micro bubbles for actuation purposes. The aim of the current study is to gain a fundamental understanding of the subject using direct numerical simulations. In particular, we seek to investigate the boundary between stable and unstable nucleus growth in terms of the degree of liquid superheat and to compare the dynamics of unstable and stable growth.

  9. Applying PolSAR and PolInSAR to Forest Structure Information Extraction

    NASA Astrophysics Data System (ADS)

    Chen, E.; Li, Z.; Li, W.; Feng, Q.; Zhou, W.; Pottier, E.; Hong, W.

    2013-01-01

    The key research activities and achievements in the field of applying PolSAR and PolInSAR to forest structure information extraction in DRAGON 2 are summarized in this paper. The limitation of the ALOS PolInSAR dataset acquired in the Culai test site for forest height extraction because of its long temporal baseline (46 days), and how the PolInSAR coherence optimization methods can help improve the topography inversion accuracy under forest canopy were presented. We have analyzed and evaluated the capability of multiple polarization parameters extracted from different frequency PolSAR data for forest scar mapping in the Shibazhan test site, and developed the land cover classification method based on SVM (Support Vector Machine) using PolSAR data. With the L-band E-SAR PolInSAR data acquired in the test site in Germany, we developed forest above ground biomass (AGB) estimation approach based on polarization coherence tomography (PCT).

  10. 5. SWITCH TOWER AND JUNCTION OF S.A.R. #1 & S.A.R. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. SWITCH TOWER AND JUNCTION OF S.A.R. #1 & S.A.R. #2 TRANSMISSION LINES, MARCH 7, 1916. SCE drawing no. 4932. - Santa Ana River Hydroelectric System, Transmission Lines, Redlands, San Bernardino County, CA

  11. Advanced digital SAR processing study

    NASA Technical Reports Server (NTRS)

    Martinson, L. W.; Gaffney, B. P.; Liu, B.; Perry, R. P.; Ruvin, A.

    1982-01-01

    A highly programmable, land based, real time synthetic aperture radar (SAR) processor requiring a processed pixel rate of 2.75 MHz or more in a four look system was designed. Variations in range and azimuth compression, number of looks, range swath, range migration and SR mode were specified. Alternative range and azimuth processing algorithms were examined in conjunction with projected integrated circuit, digital architecture, and software technologies. The advaced digital SAR processor (ADSP) employs an FFT convolver algorithm for both range and azimuth processing in a parallel architecture configuration. Algorithm performace comparisons, design system design, implementation tradeoffs and the results of a supporting survey of integrated circuit and digital architecture technologies are reported. Cost tradeoffs and projections with alternate implementation plans are presented.

  12. Parallel strategies for SAR processing

    NASA Astrophysics Data System (ADS)

    Segoviano, Jesus A.

    2004-12-01

    This article proposes a series of strategies for improving the computer process of the Synthetic Aperture Radar (SAR) signal treatment, following the three usual lines of action to speed up the execution of any computer program. On the one hand, it is studied the optimization of both, the data structures and the application architecture used on it. On the other hand it is considered a hardware improvement. For the former, they are studied both, the usually employed SAR process data structures, proposing the use of parallel ones and the way the parallelization of the algorithms employed on the process is implemented. Besides, the parallel application architecture classifies processes between fine/coarse grain. These are assigned to individual processors or separated in a division among processors, all of them in their corresponding architectures. For the latter, it is studied the hardware employed on the computer parallel process used in the SAR handling. The improvement here refers to several kinds of platforms in which the SAR process is implemented, shared memory multicomputers, and distributed memory multiprocessors. A comparison between them gives us some guidelines to follow in order to get a maximum throughput with a minimum latency and a maximum effectiveness with a minimum cost, all together with a limited complexness. It is concluded and described, that the approach consisting of the processing of the algorithms in a GNU/Linux environment, together with a Beowulf cluster platform offers, under certain conditions, the best compromise between performance and cost, and promises the major development in the future for the Synthetic Aperture Radar computer power thirsty applications in the next years.

  13. Reflectors for SAR performance testing.

    SciTech Connect

    Doerry, Armin Walter

    2008-01-01

    Synthetic Aperture Radar (SAR) performance testing and estimation is facilitated by observing the system response to known target scene elements. Trihedral corner reflectors and other canonical targets play an important role because their Radar Cross Section (RCS) can be calculated analytically. However, reflector orientation and the proximity of the ground and mounting structures can significantly impact the accuracy and precision with which measurements can be made. These issues are examined in this report.

  14. Representing SAR complex image pixels

    NASA Astrophysics Data System (ADS)

    Doerry, A. W.

    2016-05-01

    Synthetic Aperture Radar (SAR) images are often complex-valued to facilitate specific exploitation modes. Furthermore, these pixel values are typically represented with either real/imaginary (also known as I/Q) values, or as Magnitude/Phase values, with constituent components comprised of integers with limited number of bits. For clutter energy well below full-scale, Magnitude/Phase offers lower quantization noise than I/Q representation. Further improvement can be had with companding of the Magnitude value.

  15. SAR Image Complex Pixel Representations

    SciTech Connect

    Doerry, Armin W.

    2015-03-01

    Complex pixel values for Synthetic Aperture Radar (SAR) images of uniform distributed clutter can be represented as either real/imaginary (also known as I/Q) values, or as Magnitude/Phase values. Generally, these component values are integers with limited number of bits. For clutter energy well below full-scale, Magnitude/Phase offers lower quantization noise than I/Q representation. Further improvement can be had with companding of the Magnitude value.

  16. Bats, civets and the emergence of SARS.

    PubMed

    Wang, L F; Eaton, B T

    2007-01-01

    Severe acute respiratory syndrome (SARS) was the first pandemic transmissible disease of previously unknown aetiology in the twenty-first century. Early epidemiologic investigations suggested an animal origin for SARS-CoV. Virological and serological studies indicated that masked palm civets ( Paguma larvata), together with two other wildlife animals, sampled from a live animal market were infected with SARS-CoV or a closely related virus. Recently, horseshoe bats in the genus Rhinolophus have been identified as natural reservoir of SARS-like coronaviruses. Here, we review studies by different groups demonstrating that SARS-CoV succeeded in spillover from a wildlife reservoir (probably bats) to human population via an intermediate host(s) and that rapid virus evolution played a key role in the adaptation of SARS-CoVs in at least two nonreservoir species within a short period.

  17. Spaceborne SAR Imaging Algorithm for Coherence Optimized.

    PubMed

    Qiu, Zhiwei; Yue, Jianping; Wang, Xueqin; Yue, Shun

    2016-01-01

    This paper proposes SAR imaging algorithm with largest coherence based on the existing SAR imaging algorithm. The basic idea of SAR imaging algorithm in imaging processing is that output signal can have maximum signal-to-noise ratio (SNR) by using the optimal imaging parameters. Traditional imaging algorithm can acquire the best focusing effect, but would bring the decoherence phenomenon in subsequent interference process. Algorithm proposed in this paper is that SAR echo adopts consistent imaging parameters in focusing processing. Although the SNR of the output signal is reduced slightly, their coherence is ensured greatly, and finally the interferogram with high quality is obtained. In this paper, two scenes of Envisat ASAR data in Zhangbei are employed to conduct experiment for this algorithm. Compared with the interferogram from the traditional algorithm, the results show that this algorithm is more suitable for SAR interferometry (InSAR) research and application. PMID:26871446

  18. Spaceborne SAR Imaging Algorithm for Coherence Optimized.

    PubMed

    Qiu, Zhiwei; Yue, Jianping; Wang, Xueqin; Yue, Shun

    2016-01-01

    This paper proposes SAR imaging algorithm with largest coherence based on the existing SAR imaging algorithm. The basic idea of SAR imaging algorithm in imaging processing is that output signal can have maximum signal-to-noise ratio (SNR) by using the optimal imaging parameters. Traditional imaging algorithm can acquire the best focusing effect, but would bring the decoherence phenomenon in subsequent interference process. Algorithm proposed in this paper is that SAR echo adopts consistent imaging parameters in focusing processing. Although the SNR of the output signal is reduced slightly, their coherence is ensured greatly, and finally the interferogram with high quality is obtained. In this paper, two scenes of Envisat ASAR data in Zhangbei are employed to conduct experiment for this algorithm. Compared with the interferogram from the traditional algorithm, the results show that this algorithm is more suitable for SAR interferometry (InSAR) research and application.

  19. Spaceborne SAR Imaging Algorithm for Coherence Optimized

    PubMed Central

    Qiu, Zhiwei; Yue, Jianping; Wang, Xueqin; Yue, Shun

    2016-01-01

    This paper proposes SAR imaging algorithm with largest coherence based on the existing SAR imaging algorithm. The basic idea of SAR imaging algorithm in imaging processing is that output signal can have maximum signal-to-noise ratio (SNR) by using the optimal imaging parameters. Traditional imaging algorithm can acquire the best focusing effect, but would bring the decoherence phenomenon in subsequent interference process. Algorithm proposed in this paper is that SAR echo adopts consistent imaging parameters in focusing processing. Although the SNR of the output signal is reduced slightly, their coherence is ensured greatly, and finally the interferogram with high quality is obtained. In this paper, two scenes of Envisat ASAR data in Zhangbei are employed to conduct experiment for this algorithm. Compared with the interferogram from the traditional algorithm, the results show that this algorithm is more suitable for SAR interferometry (InSAR) research and application. PMID:26871446

  20. InSAR Forensics: Tracing InSAR Scatterers in High Resolution Optical Image

    NASA Astrophysics Data System (ADS)

    Wang, Yuanyuan; Zhu, XiaoXiang

    2015-05-01

    This paper presents a step towards a better interpretation of the scattering mechanism of different objects and their deformation histories in SAR interferometry (InSAR). The proposed technique traces individual SAR scatterer in high resolution optical images where their geometries, materials, and other properties can be better analyzed and classified. And hence scatterers of a same object can be analyzed in group, which brings us to a new level of InSAR deformation monitoring.

  1. Microstrip antennas for SAR applications

    NASA Technical Reports Server (NTRS)

    Haddad, H. A.

    1983-01-01

    Current and future microstrip antenna technology development for Spaceborne Synthetic Aperture Radars (SAR) are summarized. Some of the electrical and mechanical characteristics of previously and presently developed microstrip SAR antennas are shown. The SEASAT, the SIR-A and presently the SIR-B antennas are all designed for operation at L-band with approximately 22 MHz of bandwidth. The antennas have linear polarization with minimum of 20 dB of polarization purity. Both the SEASAT and SIR-A antennas were designed for a fixed pointing angle of 20.5 deg and 47 deg, respectively. However, the SIR-B has the added feature of mechanical beam steering in elevation (range). With the exception of different mechanical characteristics, it is concluded that present spaceborne SAR antennas have only single frequency and single polarization performance. The lack of large spaceborne antennas operating at the higher degree of fabrication tolerance required for a given performance; and larger feed and radiating element losses.

  2. Building detection in SAR imagery

    SciTech Connect

    Steinbach, Ryan Matthew

    2015-04-01

    Current techniques for building detection in Synthetic Aperture Radar (SAR) imagery can be computationally expensive and/or enforce stringent requirements for data acquisition. I present two techniques that are effective and efficient at determining an approximate building location. This approximate location can be used to extract a portion of the SAR image to then perform a more robust detection. The proposed techniques assume that for the desired image, bright lines and shadows, SAR artifact effects, are approximately labeled. These labels are enhanced and utilized to locate buildings, only if the related bright lines and shadows can be grouped. In order to find which of the bright lines and shadows are related, all of the bright lines are connected to all of the shadows. This allows the problem to be solved from a connected graph viewpoint, where the nodes are the bright lines and shadows and the arcs are the connections between bright lines and shadows. For the first technique, constraints based on angle of depression and the relationship between connected bright lines and shadows are applied to remove unrelated arcs. The second technique calculates weights for the connections and then performs a series of increasingly relaxed hard and soft thresholds. This results in groups of various levels on their validity. Once the related bright lines and shadows are grouped, their locations are combined to provide an approximate building location. Experimental results demonstrate the outcome of the two techniques. The two techniques are compared and discussed.

  3. Chirp Scaling Algorithms for SAR Processing

    NASA Technical Reports Server (NTRS)

    Jin, M.; Cheng, T.; Chen, M.

    1993-01-01

    The chirp scaling SAR processing algorithm is both accurate and efficient. Successful implementation requires proper selection of the interval of output samples, which is a function of the chirp interval, signal sampling rate, and signal bandwidth. Analysis indicates that for both airborne and spaceborne SAR applications in the slant range domain a linear chirp scaling is sufficient. To perform nonlinear interpolation process such as to output ground range SAR images, one can use a nonlinear chirp scaling interpolator presented in this paper.

  4. A Modular and Configurable Instrument Electronics Architecture for "MiniSAR"- An Advanced Smallsat SAR Instrument

    NASA Astrophysics Data System (ADS)

    Gomez, Jaime; Pastena, Max; Bierens, Laurens

    2013-08-01

    MiniSAR is a Dutch program focused on the development of a commercial smallsat featuring a SAR instrument, led by SSBV as prime contractor. In this paper an Instrument Electronics (IEL) system concept to meet the MiniSAR demands is presented. This system has several specificities wrt similar initiatives in the European space industry, driven by our main requirement: keep it small.

  5. Multibaseline POLInSAR Module for SAR Data Processing and Analysis in RAT (Radar Tools)

    NASA Astrophysics Data System (ADS)

    Neumann, M.; Reiber, A.; Jäger, M.; Guillaso, S.; Hellwich, O.

    2007-03-01

    The combination of SAR Polarimetry (POL- SAR) and SAR Interferometry (InSAR) into Polarimetric SAR Interferometry (POLInSAR) has shown great potential for information extraction from SAR data. Applications have been developed and validated theoretically for POLInSAR data. But due to different reasons these methods are difficult to apply on real data. The SAR observables have to be increased, and the utilization of multiple baselines (MB) is one of the possibilities. There will be a need for data processing and analysis methods and tools to work effectively with multibaseline datasets. In this paper we present the newly developed module for the software package RAT (Radar Tools), which provides these abilities for multibaseline polarimetric interferometric SAR data. It is the first available package of tools for working with MBSAR data. RAT (RAdar Tools [1], [2]) is a collection of tools for advanced image processing of SAR remote sensing data, originally started as a student's project and currently under further development at the Department of Computer Vision and Remote Sensing of the Technical University of Berlin. It is programmed in IDL (Interactive Data Language) and uses IDL widgets as graphical user interface. The purpose of this paper is also to give an overview of the current development status of RAT through addressing the newest structural improvements in RAT as well as recently implemented methods for SAR polarimetry and interferometry.

  6. Evaporative cooling: effective latent heat of evaporation in relation to evaporation distance from the skin.

    PubMed

    Havenith, George; Bröde, Peter; den Hartog, Emiel; Kuklane, Kalev; Holmer, Ingvar; Rossi, Rene M; Richards, Mark; Farnworth, Brian; Wang, Xiaoxin

    2013-03-15

    Calculation of evaporative heat loss is essential to heat balance calculations. Despite recognition that the value for latent heat of evaporation, used in these calculations, may not always reflect the real cooling benefit to the body, only limited quantitative data on this is available, which has found little use in recent literature. In this experiment a thermal manikin, (MTNW, Seattle, WA) was used to determine the effective cooling power of moisture evaporation. The manikin measures both heat loss and mass loss independently, allowing a direct calculation of an effective latent heat of evaporation (λeff). The location of the evaporation was varied: from the skin or from the underwear or from the outerwear. Outerwear of different permeabilities was used, and different numbers of layers were used. Tests took place in 20°C, 0.5 m/s at different humidities and were performed both dry and with a wet layer, allowing the breakdown of heat loss in dry and evaporative components. For evaporation from the skin, λeff is close to the theoretical value (2,430 J/g) but starts to drop when more clothing is worn, e.g., by 11% for underwear and permeable coverall. When evaporation is from the underwear, λeff reduction is 28% wearing a permeable outer. When evaporation is from the outermost layer only, the reduction exceeds 62% (no base layer), increasing toward 80% with more layers between skin and wet outerwear. In semi- and impermeable outerwear, the added effect of condensation in the clothing opposes this effect. A general formula for the calculation of λeff was developed.

  7. High resolution SAR applications and instrument design

    NASA Technical Reports Server (NTRS)

    Dionisio, C.; Torre, A.

    1993-01-01

    The Synthetic Aperture Radar (SAR) has viewed, in the last two years, a huge increment of interest from many preset and potential users. The good spatial resolution associated to the all weather capability lead to considering SAR not only a scientific instrument but a tool for verifying and controlling the daily human relationships with the Earth Environment. New missions were identified for SAR as spatial resolution became lower than three meters: disasters, pollution, ships traffic, volcanic eruptions, earthquake effect are only a few of the possible objects which can be effectively detected, controlled and monitored by SAR mounted on satellites. High resolution radar design constraints and dimensioning are discussed.

  8. Bistatic SAR: Signal Processing and Image Formation.

    SciTech Connect

    Wahl, Daniel E.; Yocky, David A.

    2014-10-01

    This report describes the significant processing steps that were used to take the raw recorded digitized signals from the bistatic synthetic aperture RADAR (SAR) hardware built for the NCNS Bistatic SAR project to a final bistatic SAR image. In general, the process steps herein are applicable to bistatic SAR signals that include the direct-path signal and the reflected signal. The steps include preprocessing steps, data extraction to for a phase history, and finally, image format. Various plots and values will be shown at most steps to illustrate the processing for a bistatic COSMO SkyMed collection gathered on June 10, 2013 on Kirtland Air Force Base, New Mexico.

  9. [SARS-CoV infection and pregnancy].

    PubMed

    Ksiezakowska, Kinga; Laszczyk, Magdalena; Wilczyński, Jan; Nowakowska, Dorota

    2008-01-01

    SARS is a highly contagious infection, caused by new coronavirus SARS-CoV. Immunopathological mechanisms responsible for the reaction to SARS-CoV infection have not yet been fully elucidated. Cytokine profile of SARS patients showed marked elevation of Th1 cytokine, interferon gamma, inflammatory cytokines for at least 2 weeks after the onset of the disease. The clinical manifestation of SARS in patients has been of varied nature. Fever of more then 38 degrees C, lasting more then 24 hours, is the most frequently encountered symptom. Other symptoms are non specific and they may include: sore throat, myalgia and nausea. The results of the radiological investigation may appear normal. Infants born to pregnant women with SARS did not appear to have acquired the infection through vertical transmission. However, direct contact with the maternal body fluid which contained SARS-CoV, has put the infants in great danger of perinatal infection. Ribavirin and corticosteroids are usually suggested for the treatment of SARS. However, the ribavirin therapy increases the risk of teratogenic effects in newborns of pregnant women with SARS. Therefore, the usage of this drug is not recommended during pregnancy and lactation. PMID:18510050

  10. Explosive evaporation in solar flares

    NASA Technical Reports Server (NTRS)

    Fisher, George H.

    1987-01-01

    This paper develops a simple analytical model for the phenomenon of 'explosive evaporation' driven by nonthermal electron heating in solar flares. The model relates the electron energy flux and spectrum, plus details of the preflare atmosphere, to the time scale for explosive evaporation to occur, the maximum pressure and temperature to be reached, rough estimates for the UV pulse emission flux and duration, and the evolution of the blueshifted component of the soft X-ray lines. An expression is given for the time scale for buildup to maximum pressures and the onset of rapid motion of the explosively evaporating plasma. This evaporation can excite a rapid response of UV line and continuum emission. The emission lines formed in the plasma approach a given emissivity-weighted blueshift speed.

  11. Dual manifold heat pipe evaporator

    DOEpatents

    Adkins, D.R.; Rawlinson, K.S.

    1994-01-04

    An improved evaporator section is described for a dual manifold heat pipe. Both the upper and lower manifolds can have surfaces exposed to the heat source which evaporate the working fluid. The tubes in the tube bank between the manifolds have openings in their lower extensions into the lower manifold to provide for the transport of evaporated working fluid from the lower manifold into the tubes and from there on into the upper manifold and on to the condenser portion of the heat pipe. A wick structure lining the inner walls of the evaporator tubes extends into both the upper and lower manifolds. At least some of the tubes also have overflow tubes contained within them to carry condensed working fluid from the upper manifold to pass to the lower without spilling down the inside walls of the tubes. 1 figure.

  12. Dual manifold heat pipe evaporator

    DOEpatents

    Adkins, Douglas R.; Rawlinson, K. Scott

    1994-01-01

    An improved evaporator section for a dual manifold heat pipe. Both the upper and lower manifolds can have surfaces exposed to the heat source which evaporate the working fluid. The tubes in the tube bank between the manifolds have openings in their lower extensions into the lower manifold to provide for the transport of evaporated working fluid from the lower manifold into the tubes and from there on into the upper manifold and on to the condenser portion of the heat pipe. A wick structure lining the inner walls of the evaporator tubes extends into both the upper and lower manifolds. At least some of the tubes also have overflow tubes contained within them to carry condensed working fluid from the upper manifold to pass to the lower without spilling down the inside walls of the tubes.

  13. Horst Meyer and Quantum Evaporation

    NASA Astrophysics Data System (ADS)

    Balibar, S.

    2016-11-01

    With their 1963 article in Cryogenics Horst Meyer and his collaborators triggered intense research activity on the evaporation of superfluid helium. Discussing this subject with him in 1975 was enlightening. Fifty years later, the analogy between the photoelectric effect and the evaporation of superfluid helium in the low temperature limit is not yet clear, although remarkable progress has been made in its observation and its understanding. This special issue of the Journal of Low Temperature Physics is an opportunity to recall the history of quantum evaporation, and to express my gratitude to Horst Meyer. It describes quickly most of the experimental and theoretical works which have been published on quantum evaporation during the last 50 years, but it is not a comprehensive review of this fascinating subject.

  14. Evaporation from open microchannel grooves.

    PubMed

    Kachel, Sibylle; Zhou, Ying; Scharfer, Philip; Vrančić, Christian; Petrich, Wolfgang; Schabel, Wilhelm

    2014-02-21

    The evaporation of water from open u-shaped microchannel grooves was investigated with particular emphasis on the roles of channel width and air flow conditions. Given the small dimensions of the microchannels, all measurements were conducted in a range where convection and diffusion are of equal importance and known correlations for the calculation of mass transfer coefficients cannot be applied. The evaporation rates were measured using a new optical method and a gravimetric method. Both measurement methods yielded mass transfer coefficients that are in agreement with each other. The observed relation between mass transfer coefficient, air velocity and channel width vastly differs from the predictions obtained from macroscopic structures. With respect to diagnostic devices we conclude that analyte concentration in an open microchannel groove strongly increases even within short times due to the evaporation process and we show that wider channels are more favourable in terms of minimizing the relative evaporation rate.

  15. Horst Meyer and Quantum Evaporation

    NASA Astrophysics Data System (ADS)

    Balibar, S.

    2016-06-01

    With their 1963 article in Cryogenics Horst Meyer and his collaborators triggered intense research activity on the evaporation of superfluid helium. Discussing this subject with him in 1975 was enlightening. Fifty years later, the analogy between the photoelectric effect and the evaporation of superfluid helium in the low temperature limit is not yet clear, although remarkable progress has been made in its observation and its understanding. This special issue of the Journal of Low Temperature Physics is an opportunity to recall the history of quantum evaporation, and to express my gratitude to Horst Meyer. It describes quickly most of the experimental and theoretical works which have been published on quantum evaporation during the last 50 years, but it is not a comprehensive review of this fascinating subject.

  16. Evaporation Tower With Prill Nozzles

    NASA Technical Reports Server (NTRS)

    Du Fresne, E. R.

    1984-01-01

    Tower more efficient than conventional evaporation equipment. Liquids such as milk and fruit juice concentrated by passing them through tiny nozzle to form droplets, then allowing droplets to fall through evacuated tower with cooled walls.

  17. Evaporation waves in superheated dodecane

    NASA Astrophysics Data System (ADS)

    Simões-Moreira, J. R.; Shepherd, J. E.

    1999-03-01

    We have observed propagating adiabatic evaporation waves in superheated liquid dodecane, C12H26. Experiments were performed with a rapid decompression apparatus at initial temperatures of 180 300°C. Saturated dodecane in a tube was suddenly depressurized by rupturing a diaphragm. Motion pictures and still photographic images, and pressure and temperature data were obtained during the evaporation event that followed depressurization. Usually, a front or wave of evaporation started at the liquid free surface and propagated into the undisturbed regions of the metastable liquid. The evaporation wave front moved with a steady mean velocity but the front itself was unstable and fluctuating in character. At low superheats, no waves were observed until a threshold superheat was exceeded. At moderate superheats, subsonic downstream states were observed. At higher superheats, the downstream flow was choked, corresponding to a Chapman Jouguet condition. At the most extreme superheat tested, a vapour content of over 90% was estimated from the measured data, indicating a nearly complete evaporation wave. Our results are interpreted by modelling the evaporation wave as a discontinuity, or jump, between a superheated liquid state and a two-phase liquid vapour downstream state. Reasonable agreement is found between the model and observations; however, there is a fundamental indeterminacy that prevents the prediction of the observed wave speeds.

  18. DWPF Recycle Evaporator Simulant Tests

    SciTech Connect

    Stone, M

    2005-04-05

    Testing was performed to determine the feasibility and processing characteristics of an evaporation process to reduce the volume of the recycle stream from the Defense Waste Processing Facility (DWPF). The concentrated recycle would be returned to DWPF while the overhead condensate would be transferred to the Effluent Treatment Plant. Various blends of evaporator feed were tested using simulants developed from characterization of actual recycle streams from DWPF and input from DWPF-Engineering. The simulated feed was evaporated in laboratory scale apparatus to target a 30X volume reduction. Condensate and concentrate samples from each run were analyzed and the process characteristics (foaming, scaling, etc) were visually monitored during each run. The following conclusions were made from the testing: Concentration of the ''typical'' recycle stream in DWPF by 30X was feasible. The addition of DWTT recycle streams to the typical recycle stream raises the solids content of the evaporator feed considerably and lowers the amount of concentration that can be achieved. Foaming was noted during all evaporation tests and must be addressed prior to operation of the full-scale evaporator. Tests were conducted that identified Dow Corning 2210 as an antifoam candidate that warrants further evaluation. The condensate has the potential to exceed the ETP WAC for mercury, silicon, and TOC. Controlling the amount of equipment decontamination recycle in the evaporator blend would help meet the TOC limits. The evaporator condensate will be saturated with mercury and elemental mercury will collect in the evaporator condensate collection vessel. No scaling on heating surfaces was noted during the tests, but splatter onto the walls of the evaporation vessels led to a buildup of solids. These solids were difficult to remove with 2M nitric acid. Precipitation of solids was not noted during the testing. Some of the aluminum present in the recycle streams was converted from gibbsite to

  19. InfoTerra/TerraSAR initiative

    NASA Astrophysics Data System (ADS)

    Wahl, Manfred W.

    2004-01-01

    The overarching goal of the InfoTerra/TerraSAR Initiative is to establish a self-sustaining operational/commercial business built on Europe"s know-how and experience in space-borne Synthetic Aperture Radar (SAR) technology, in SAR data processing as well as in SAR applications. InfoTerra stands for a new business concept based on supplying innovative geo-information products and services. TerraSAR is a space and ground system conceived to consist of an initial deployment and operation of 2 Radar satellites (one in X- and one in L-band) flying in a tandem configuration in the same orbit. The design of TerraSAR is driven by the market and is user-oriented. TerraSAR is key to capturing a significant proportion of the existing market and to opening new market opportunities, when it becomes operational. The InfoTerra/TerraSAR Initiative has evolved gradually. It started in 1997 as a joint venture between German (DSS) and British (MMS-UK) space industry, strongly supported by both space agencies, DLR and BNSC. In early 2001, DLR and BNSC submitted to ESA the Formal Programme Proposal for InfoTerra/TerraSAR to become an essential element of ESA"s Earth Watch Programme. In summer 2001, when it became evident that there was not yet sufficient support from the ESA Member States to allow immediate start entering into TerraSAR Phase C/D, it has been decided to implement first a TerraSAR consolidation phase. In early 2002, in order to avoid further delays, a contract was signed between DLR and Astrium GmbH on the development of one component of TerraSAR, the TerraSAR-X, in the frame of a national programme, governed by a Public Private Partnership Agreement. Even if now the different launch dates for TerraSAR-X and TerraSAR-L are narrowing down the window of common data acquisition, it is a reasonable starting point, but it should always be kept in mind that the utmost goal for the longterm is to achieve self sustainability by supplying geo-information products and services

  20. Sentinel-3 SAR Altimetry Toolbox

    NASA Astrophysics Data System (ADS)

    Benveniste, Jerome; Lucas, Bruno; DInardo, Salvatore

    2015-04-01

    The prime objective of the SEOM (Scientific Exploitation of Operational Missions) element is to federate, support and expand the large international research community that the ERS, ENVISAT and the Envelope programmes have build up over the last 20 years for the future European operational Earth Observation missions, the Sentinels. Sentinel-3 builds directly on a proven heritage of ERS-2 and Envisat, and CryoSat-2, with a dual-frequency (Ku and C band) advanced Synthetic Aperture Radar Altimeter (SRAL) that provides measurements at a resolution of ~300m in SAR mode along track. Sentinel-3 will provide exact measurements of sea-surface height along with accurate topography measurements over sea ice, ice sheets, rivers and lakes. The first of the two Sentinels is expected to be launched in early 2015. The current universal altimetry toolbox is BRAT (Basic Radar Altimetry Toolbox) which can read all previous and current altimetry mission's data, but it does not have the capabilities to read the upcoming Sentinel-3 L1 and L2 products. ESA will endeavour to develop and supply this capability to support the users of the future Sentinel-3 SAR Altimetry Mission. BRAT is a collection of tools and tutorial documents designed to facilitate the processing of radar altimetry data. This project started in 2005 from the joint efforts of ESA (European Space Agency) and CNES (Centre National d'Etudes Spatiales), and it is freely available at http://earth.esa.int/brat. The tools enable users to interact with the most common altimetry data formats, the BratGUI is the front-end for the powerful command line tools that are part of the BRAT suite. BRAT can also be used in conjunction with Matlab/IDL (via reading routines) or in C/C++/Fortran via a programming API, allowing the user to obtain desired data, bypassing the data-formatting hassle. BRAT can be used simply to visualise data quickly, or to translate the data into other formats such as netCDF, ASCII text files, KML (Google Earth

  1. Cross-calibration between airborne SAR sensors

    NASA Technical Reports Server (NTRS)

    Zink, Manfred; Olivier, Philippe; Freeman, Anthony

    1993-01-01

    As Synthetic Aperture Radar (SAR) system performance and experience in SAR signature evaluation increase, quantitative analysis becomes more and more important. Such analyses require an absolute radiometric calibration of the complete SAR system. To keep the expenditure on calibration of future multichannel and multisensor remote sensing systems (e.g., X-SAR/SIR-C) within a tolerable level, data from different tracks and different sensors (channels) must be cross calibrated. The 1989 joint E-SAR/DC-8 SAR calibration campaign gave a first opportunity for such an experiment, including cross sensor and cross track calibration. A basic requirement for successful cross calibration is the stability of the SAR systems. The calibration parameters derived from different tracks and the polarimetric properties of the uncalibrated data are used to describe this stability. Quality criteria for a successful cross calibration are the agreement of alpha degree values and the consistency of radar cross sections of equally sized corner reflectors. Channel imbalance and cross talk provide additional quality in case of the polarimetric DC-8 SAR.

  2. SAR Speckle Noise Reduction Using Wiener Filter

    NASA Technical Reports Server (NTRS)

    Joo, T. H.; Held, D. N.

    1983-01-01

    Synthetic aperture radar (SAR) images are degraded by speckle. A multiplicative speckle noise model for SAR images is presented. Using this model, a Wiener filter is derived by minimizing the mean-squared error using the known speckle statistics. Implementation of the Wiener filter is discussed and experimental results are presented. Finally, possible improvements to this method are explored.

  3. Coordinated Response to SARS, Vancouver, Canada

    PubMed Central

    Petric, Martin; Daly, Patricia; Parker, Robert A.; Bryce, Elizabeth; Doyle, Patrick W.; Noble, Michael A.; Roscoe, Diane L.; Tomblin, Joan; Yang, Tung C.; Krajden, Mel; Patrick, David M.; Pourbohloul, Babak; Goh, Swee Han; Bowie, William R.; Booth, Tim F.; Tweed, S. Aleina; Perry, Thomas L.; McGeer, Allison; Brunham, Robert C.

    2006-01-01

    Two Canadian urban areas received travelers with severe acute respiratory syndrome (SARS) before the World Health Organization issued its alert. By July 2003, Vancouver had identified 5 cases (4 imported); Toronto reported 247 cases (3 imported) and 43 deaths. Baseline preparedness for pandemic threats may account for the absence of sustained transmission and fewer cases of SARS in Vancouver. PMID:16494736

  4. Regularization Analysis of SAR Superresolution

    SciTech Connect

    DELAURENTIS,JOHN M.; DICKEY,FRED M.

    2002-04-01

    Superresolution concepts offer the potential of resolution beyond the classical limit. This great promise has not generally been realized. In this study we investigate the potential application of superresolution concepts to synthetic aperture radar. The analytical basis for superresolution theory is discussed. In a previous report the application of the concept to synthetic aperture radar was investigated as an operator inversion problem. Generally, the operator inversion problem is ill posed. This work treats the problem from the standpoint of regularization. Both the operator inversion approach and the regularization approach show that the ability to superresolve SAR imagery is severely limited by system noise.

  5. Advanced antennas for SAR spacecraft

    NASA Technical Reports Server (NTRS)

    Gail, William B.

    1993-01-01

    Single and multi-frequency antenna concepts were developed to evaluate the feasibility of building large aperture polarimetric synthetic aperture radar (SAR) systems to be launched in low cost vehicles such as the Delta 2. The antennas are 18.9 m long by 2.6 m wide (L-band) and achieve single polarization imaging to an incidence angle of 55 degrees and dual/quad imaging to 42 degrees. When combined with strawman spacecraft designs, both concepts meet the mass and volume constraints imposed by a Delta 2 launch.

  6. Salt stains from evaporating droplets.

    PubMed

    Shahidzadeh, Noushine; Schut, Marthe F L; Desarnaud, Julie; Prat, Marc; Bonn, Daniel

    2015-01-01

    The study of the behavior of sessile droplets on solid substrates is not only associated with common everyday phenomena, such as the coffee stain effect, limescale deposits on our bathroom walls , but also very important in many applications such as purification of pharmaceuticals, de-icing of airplanes, inkjet printing and coating applications. In many of these processes, a phase change happens within the drop because of solvent evaporation, temperature changes or chemical reactions, which consequently lead to liquid to solid transitions in the droplets. Here we show that crystallization patterns of evaporating of water drops containing dissolved salts are different from the stains reported for evaporating colloidal suspensions. This happens because during the solvent evaporation, the salts crystallize and grow during the drying. Our results show that the patterns of the resulting salt crystal stains are mainly governed by wetting properties of the emerging crystal as well as the pathway of nucleation and growth, and are independent of the evaporation rate and thermal conductivity of the substrates. PMID:26012481

  7. Salt stains from evaporating droplets

    PubMed Central

    Shahidzadeh, Noushine; Schut, Marthe F. L.; Desarnaud, Julie; Prat, Marc; Bonn, Daniel

    2015-01-01

    The study of the behavior of sessile droplets on solid substrates is not only associated with common everyday phenomena, such as the coffee stain effect, limescale deposits on our bathroom walls , but also very important in many applications such as purification of pharmaceuticals, de-icing of airplanes, inkjet printing and coating applications. In many of these processes, a phase change happens within the drop because of solvent evaporation, temperature changes or chemical reactions, which consequently lead to liquid to solid transitions in the droplets. Here we show that crystallization patterns of evaporating of water drops containing dissolved salts are different from the stains reported for evaporating colloidal suspensions. This happens because during the solvent evaporation, the salts crystallize and grow during the drying. Our results show that the patterns of the resulting salt crystal stains are mainly governed by wetting properties of the emerging crystal as well as the pathway of nucleation and growth, and are independent of the evaporation rate and thermal conductivity of the substrates. PMID:26012481

  8. Affordable miniaturized SAR for tactical UAV applications

    NASA Astrophysics Data System (ADS)

    Sloan, George R.; Dubbert, Dale F.

    2004-08-01

    Sandia"s fielded and experimental SAR systems are well known for their real time, high resolution imagery. Previous designs, such as the Lynx radar, have been successfully demonstrated on medium-payload UAVs, including Predator and Fire Scout. However, fielding a high performance SAR sensor on even smaller (sub-50 pound payload) UAVs will require at least a 5x reduction in size, weight, and cost. This paper gives an overview of Sandia"s system concept and roadmap for near-term SAR miniaturization. Specifically, the "miniSAR" program, which plans to demonstrate a 25 pound system with 4 inch resolution in early 2005, is detailed. Accordingly, the conceptual approach, current status, design tradeoffs, and key facilitating technologies are reviewed. Lastly, future enhancements and directions are described, such as the follow-on demonstration of a sub-20 pound version with multi-mode (SAR/GMTI) capability.

  9. Tubular sublimatory evaporator heat sink

    NASA Technical Reports Server (NTRS)

    Webbon, B. W. (Inventor)

    1977-01-01

    An evaporative refrigerator or cooler comprising a bundle of spaced, porous walled tubes closed at one of their ends and vented to a vacuum at the other end is disclosed. The tube bundle is surrounded by a water jacket having a hot water inlet distribution manifold and a cooled water outlet through a plenum chamber. Hot water is pumped into the jacket to circulate around the tubes, and when this water meets the vacuum existing inside the tubes, it evaporates thereby cooling the water in the jacket. If cooling proceeds to the point where water penetrating or surrounding all or part of the tubes freezes, operation continues with local sublimation of the ice on the tubes while the circulating water attempts to melt the ice. Both sublimation and evaporation may take place simultaneously in different regions of the device.

  10. SARS and population health technology.

    PubMed

    Eysenbach, Gunther

    2003-01-01

    The recent global outbreak of SARS (severe acute respiratory syndrome) provides an opportunity to study the use and impact of public health informatics and population health technology to detect and fight a global epidemic. Population health technology is the umbrella term for technology applications that have a population focus and the potential to improve public health. This includes the Internet, but also other technologies such as wireless devices, mobile phones, smart appliances, or smart homes. In the context of an outbreak or bioterrorism attack, such technologies may help to gather intelligence and detect diseases early, and communicate and exchange information electronically worldwide. Some of the technologies brought forward during the SARS epidemic may have been primarily motivated by marketing efforts, or were more directed towards reassuring people that "something is being done," ie, fighting an "epidemic of fear." To understand "fear epidemiology" is important because early warning systems monitoring data from a large number of people may not be able to discriminate between a biological epidemic and an epidemic of fear. The need for critical evaluation of all of these technologies is stressed. PMID:12857670

  11. Improving evaporators for crystallizing solutions

    SciTech Connect

    Korbanov, V.N.; Gaidash, N.I.; Kibitkin, V.N.; Mitkevich, E.M.; Nikolenko, V.N.

    1985-07-01

    The authors describe and evaluate the new evaporators with forced circulation and a heat exchange surface of 630 m that have recently been introduced for the production of calcium chloride from still wastes in soda plants. A diagram illustrates the construction of the new apparatus and charts present data on the dependence of heat transfer on the thickness of the walls of the heating pipes, the dependence of the entrainment of calcium chloride by secondary steam on the level of the solution in the vacuum aparatus, and on the performance of the evaporator over time.

  12. Evaporation of primordial black holes

    NASA Astrophysics Data System (ADS)

    Hawking, S. W.

    The usual explanation of the isotropy of the universe is that inflation would have smoothed out any inhomogeneities. However, if the universe was initially fractal or in a foam like state, an overall inflation would have left it in the same state. I suggest that the universe did indeed begin with a tangled web of wormholes connecting pairs of black holes but that the inflationary expansion was unstable: wormholes that are slightly smaller correspond to black holes that are hotter than the cosmological background and evaporate away. This picture is supported by calculations with Raphael Bousso of the evaporation of primordial black holes in the s-wave and large N approximations.

  13. PILOT-SCALE TEST RESULTS OF A THIN FILM EVAPORATOR SYSTEM FOR MANAGEMENT OF LIQUID HIGH-LEVEL WASTES AT THE HANFORD SITE WASHINGTON USA -11364

    SciTech Connect

    CORBETT JE; TEDESCH AR; WILSON RA; BECK TH; LARKIN J

    2011-02-14

    A modular, transportable evaporator system, using thin film evaporative technology, is planned for deployment at the Hanford radioactive waste storage tank complex. This technology, herein referred to as a wiped film evaporator (WFE), will be located at grade level above an underground storage tank to receive pumped liquids, concentrate the liquid stream from 1.1 specific gravity to approximately 1.4 and then return the concentrated solution back into the tank. Water is removed by evaporation at an internal heated drum surface exposed to high vacuum. The condensed water stream will be shipped to the site effluent treatment facility for final disposal. This operation provides significant risk mitigation to failure of the aging 242-A Evaporator facility; the only operating evaporative system at Hanford maximizing waste storage. This technology is being implemented through a development and deployment project by the tank farm operating contractor, Washington River Protection Solutions (WRPS), for the Office of River Protection/Department of Energy (ORPIDOE), through Columbia Energy and Environmental Services, Inc. (Columbia Energy). The project will finalize technology maturity and install a system at one of the double-shell tank farms. This paper summarizes results of a pilot-scale test program conducted during calendar year 2010 as part of the ongoing technology maturation development scope for the WFE.

  14. History of SAR at Lockheed Martin (previously Goodyear Aerospace)

    NASA Astrophysics Data System (ADS)

    Lasswell, Stephen W.

    2005-05-01

    Synthetic Aperture Radar (SAR) was invented by Carl Wiley at Goodyear Aircraft Company in Goodyear, Arizona, in 1951. From that time forward, as the company became Goodyear Aerospace Corporation, Loral Corporation, and finally Lockheed Martin Corporation, the Arizona employees past and present played a long and storied role in numerous SAR firsts. These include the original SAR patent (known as Simultaneous Doppler Buildup), the first demonstration SAR and flight test, the first operational SAR system, the first operational SAR data link, the first 5-foot resolution operational SAR system, the first 1-foot resolution SAR system, and the first large scale SAR digital processor. The company has installed and flown over five hundred SAR systems on more than thirty different types of aircraft for numerous countries throughout the world. The company designed and produced all of the evolving high performance SAR systems for the U. S. Air Force SR-71 "Blackbird" spy plane throughout its entire operational history, spanning some twenty-nine years. Recent SAR accomplishments include long-range standoff high performance SAR systems, smaller high resolution podded SAR systems for fighter aircraft, and foliage penetration (FOPEN) SAR. The company is currently developing the high performance SAR/MTI (Moving Target Indication) radar for the Army Aerial Common Sensor (ACS) system.

  15. Next generation SAR demonstration on space station

    SciTech Connect

    Edelstein, Wendy; Kim, Yunjin; Freeman, Anthony; Jordan, Rolando

    1999-01-22

    This paper describes the next generation synthetic aperture radar (SAR) that enables future low cost space-borne radar missions. In order to realize these missions, we propose to use an inflatable, membrane, microstrip antenna that is particularly suitable for low frequency science radar missions. In order to mitigate risks associated with this revolutionary technology, the space station demonstration will be very useful to test the long-term survivability of the proposed antenna. This experiment will demonstrate several critical technology challenges associated with space-inflatable technologies. Among these include space-rigidization of inflatable structures, controlled inflation deployment, flatness and uniform separation of thin-film membranes and RF performance of membrane microstrip antennas. This mission will also verify the in-space performance of lightweight, high performance advanced SAR electronics. Characteristics of this SAR instrument include a capability for high resolution polarimetric imaging. The mission will acquire high quality scientific data using this advanced SAR to demonstrate the utility of these advanced technologies. We will present an inflatable L-band SAR concept for commercial and science applications and a P-band design concept to validate the Biomass SAR mission concept. The ionospheric effects on P-band SAR images will also be examined using the acquired data.

  16. SAR image formation toolbox for MATLAB

    NASA Astrophysics Data System (ADS)

    Gorham, LeRoy A.; Moore, Linda J.

    2010-04-01

    While many synthetic aperture radar (SAR) image formation techniques exist, two of the most intuitive methods for implementation by SAR novices are the matched filter and backprojection algorithms. The matched filter and (non-optimized) backprojection algorithms are undeniably computationally complex. However, the backprojection algorithm may be successfully employed for many SAR research endeavors not involving considerably large data sets and not requiring time-critical image formation. Execution of both image reconstruction algorithms in MATLAB is explicitly addressed. In particular, a manipulation of the backprojection imaging equations is supplied to show how common MATLAB functions, ifft and interp1, may be used for straight-forward SAR image formation. In addition, limits for scene size and pixel spacing are derived to aid in the selection of an appropriate imaging grid to avoid aliasing. Example SAR images generated though use of the backprojection algorithm are provided given four publicly available SAR datasets. Finally, MATLAB code for SAR image reconstruction using the matched filter and backprojection algorithms is provided.

  17. Forced-Flow Evaporative Cooler

    NASA Technical Reports Server (NTRS)

    Ellis, Wilbert E.; Niggemann, Richard E.

    1987-01-01

    Evaporative cooler absorbs heat efficiently under unusual gravitational conditions by using centrifugal force and vapor vortexes to maintain good thermal contact between heat-transfer surface and vaporizable coolant. System useful for cooling electronic or other equipment under low gravity encountered in spacecraft or under multiple-gravity conditions frequently experienced in high-performance airplanes.

  18. Membrane evaporator/sublimator investigation

    NASA Technical Reports Server (NTRS)

    Elam, J.; Ruder, J.; Strumpf, H.

    1974-01-01

    Data are presented on a new evaporator/sublimator concept using a hollow fiber membrane unit with a high permeability to liquid water. The aim of the program was to obtain a more reliable, lightweight and simpler Extra Vehicular Life Support System (EVLSS) cooling concept than is currently being used.

  19. First Results from an Airborne Ka-band SAR Using SweepSAR and Digital Beamforming

    NASA Technical Reports Server (NTRS)

    Sadowy, Gregory; Ghaemi, Hirad; Hensley, Scott

    2012-01-01

    NASA/JPL has developed SweepSAR technique that breaks typical Synthetic Aperture Radar (SAR) trade space using time-dependent multi-beam DBF on receive. Developing SweepSAR implementation using array-fed reflector for proposed DESDynI Earth Radar Mission concept. Performed first-of-a-kind airborne demonstration of the SweepSAR concept at Ka-band (35.6 GHz). Validated calibration and antenna pattern data sufficient for beam forming in elevation. (1) Provides validation evidence that the proposed Deformation Ecosystem Structure Dynamics of Ice (DESDynI) SAR architecture is sound. (2) Functions well even with large variations in receiver gain / phase. Future plans include using prototype DESDynI SAR digital flight hardware to do the beam forming in real-time onboard the aircraft.

  20. NASA/JPL Aircraft SAR Workshop Proceedings

    NASA Technical Reports Server (NTRS)

    Donovan, N. (Editor); Evans, D. L. (Editor); Held, D. N. (Editor)

    1985-01-01

    Speaker-supplied summaries of the talks given at the NASA/JPL Aircraft SAR Workshop on February 4 and 5, 1985, are provided. These talks dealt mostly with composite quadpolarization imagery from a geologic or ecologic prespective. An overview and summary of the system characteristics of the L-band synthetic aperture radar (SAR) flown on the NASA CV-990 aircraft are included as supplementary information. Other topics ranging from phase imagery and interferometric techniques classifications of specific areas, and the potentials and limitations of SAR imagery in various applications are discussed.

  1. Primary studies of Chinese spaceborne SAR

    NASA Technical Reports Server (NTRS)

    Wang, Zhen-Song; Wu, Guo-Xiang; Guo, Hua-Dong; Wei, Zhong-Quan; Zhu, Min-Hui

    1993-01-01

    The primary studies on spaceborne synthetic aperture radar (SAR) in China are discussed. The SAR will be launched aboard a Chinese satellite and operated at L-band with HH polarization. The purpose of the mission in consideration is dedicated to resources and environment uses, especially to natural disaster monitoring. The ground resolution is designed as 25 m x 25 m for detailed mode and 100 m x 100 m for wide scan-SAR mode. The off-nadir angle can be varied from 20 to 40 deg. The key system concepts are introduced.

  2. SAR observations of coastal zone conditions

    NASA Technical Reports Server (NTRS)

    Meadows, G. A.; Kasischke, E. S.; Shuchman, R. A.

    1980-01-01

    Applications of Synthetic Aperture Radar (SAR) technology to the observation of coastal zones phenomena are detailed. The conditions observed include gravity wave detection, surf zone location, surface currents, and long-period 'surf beats'. Algorithms have been developed and successfully tested that determine significant wave and current parameters from the sea surface backscatter of microwave energy. Doppler information from the SAR optical correlator allows a rough estimation of near shore surface flow velocities that has been found in agreement with both theory and in situ observations as well. Seasat SAR data of the Scotland and North Carolina coasts are considered, as well as the results of bathymetric updating of coastal area charts.

  3. Similarity measures of full polarimetric SAR images fusion for improved SAR image matching

    NASA Astrophysics Data System (ADS)

    Ding, H.

    2015-06-01

    China's first airborne SAR mapping system (CASMSAR) developed by Chinese Academy of Surveying and Mapping can acquire high-resolution and full polarimetric (HH, HV, VH and VV) Synthetic aperture radar (SAR) data. It has the ability to acquire X-band full polarimetric SAR data at a resolution of 0.5m. However, the existence of speckles which is inherent in SAR imagery affects visual interpretation and image processing badly, and challenges the assumption that conjugate points appear similar to each other in matching processing. In addition, researches show that speckles are multiplicative speckles, and most similarity measures of SAR image matching are sensitive to them. Thus, matching outcomes of SAR images acquired by most similarity measures are not reliable and with bad accuracy. Meanwhile, every polarimetric SAR image has different backscattering information of objects from each other and four polarimetric SAR data contain most basic and a large amount of redundancy information to improve matching. Therefore, we introduced logarithmically transformation and a stereo matching similarity measure into airborne full polarimetric SAR imagery. Firstly, in order to transform the multiplicative speckles into additivity ones and weaken speckles' influence on similarity measure, logarithmically transformation have to be taken to all images. Secondly, to prevent performance degradation of similarity measure caused by speckles, measure must be free or insensitive of additivity speckles. Thus, we introduced a stereo matching similarity measure, called Normalized Cross-Correlation (NCC), into full polarimetric SAR image matching. Thirdly, to take advantage of multi-polarimetric data and preserve the best similarity measure value, four measure values calculated between left and right single polarimetric SAR images are fused as final measure value for matching. The method was tested for matching under CASMSAR data. The results showed that the method delivered an effective

  4. Atmosphere Observations by Geosynchronous SARs

    NASA Astrophysics Data System (ADS)

    Monti guarnieri, Andrea; Rocca, Fabio; Wadge, Geoff; Schulz, Detlef

    2014-05-01

    We analyze different geosynchronous Synthetic Aperture RADAR concepts aimed to get both tropospheric and ionospheric delay maps with a revisit time of minutes and sub-continental coverage. Such products could be used either to compensate the delay in LEO-SAR missions and GNSS, or to generate integrated water-vapor maps to be used for Numerical Weather Forecast. The system exploits the principle of RADAR location, by transmitting a pulse with a suitable bandwidth, and the residual non-zero eccentricity of COMmunication SATellites. Different concepts are proposed as payload in COMSAT, or constellations of small satellites, that is monostatic or bistatic/multistatic RADARS. The selection of the best frequency, from L to Ku, and the analysis of performances is presented.

  5. SEASAT SAR performance evaluation study

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The performance of the SEASAT synthetic aperture radar (SAR) sensor was evaluated using data processed by the MDA digital processor. Two particular aspects are considered the location accuracy of image data, and the calibration of the measured backscatter amplitude of a set of corner reflectors. The image location accuracy was assessed by selecting identifiable targets in several scenes, converting their image location to UTM coordinates, and comparing the results to map sheets. The error standard deviation is measured to be approximately 30 meters. The amplitude was calibrated by measuring the responses of the Goldstone corner reflector array and comparing the results to theoretical values. A linear regression of the measured against theoretical values results in a slope of 0.954 with a correlation coefficient of 0.970.

  6. Formation Flying for Distributed InSAR

    NASA Technical Reports Server (NTRS)

    Scharf, Daniel P.; Murray, Emmanuell A.; Ploen, Scott R.; Gromov, Konstantin G.; Chen, Curtis W.

    2006-01-01

    We consider two spacecraft flying in formation to create interferometric synthetic aperture radar (InSAR). Several candidate orbits for such in InSar formation have been previously determined based on radar performance and Keplerian orbital dynamics. However, with out active control, disturbance-induced drift can degrade radar performance and (in the worst case) cause a collision. This study evaluates the feasibility of operating the InSAR spacecraft as a formation, that is, with inner-spacecraft sensing and control. We describe the candidate InSAR orbits, design formation guidance and control architectures and algorithms, and report the (Delta)(nu) and control acceleration requirements for the candidate orbits for several tracking performance levels. As part of determining formation requirements, a formation guidance algorithm called Command Virtual Structure is introduced that can reduce the (Delta)(nu) requirements compared to standard Leader/Follower formation approaches.

  7. SAR/LANDSAT image registration study

    NASA Technical Reports Server (NTRS)

    Murphrey, S. W. (Principal Investigator)

    1978-01-01

    The author has identified the following significant results. Temporal registration of synthetic aperture radar data with LANDSAT-MSS data is both feasible (from a technical standpoint) and useful (from an information-content viewpoint). The greatest difficulty in registering aircraft SAR data to corrected LANDSAT-MSS data is control-point location. The differences in SAR and MSS data impact the selection of features that will serve as a good control points. The SAR and MSS data are unsuitable for automatic computer correlation of digital control-point data. The gray-level data can not be compared by the computer because of the different response characteristics of the MSS and SAR images.

  8. An algorithm for segmenting polarimetric SAR imagery

    NASA Astrophysics Data System (ADS)

    Geaga, Jorge V.

    2015-05-01

    We have developed an algorithm for segmenting fully polarimetric single look TerraSAR-X, multilook SIR-C and 7 band Landsat 5 imagery using neural nets. The algorithm uses a feedforward neural net with one hidden layer to segment different surface classes. The weights are refined through an iterative filtering process characteristic of a relaxation process. Features selected from studies of fully polarimetric complex single look TerraSAR-X data and multilook SIR-C data are used as input to the net. The seven bands from Landsat 5 data are used as input for the Landsat neural net. The Cloude-Pottier incoherent decomposition is used to investigate the physical basis of the polarimetric SAR data segmentation. The segmentation of a SIR-C ocean surface scene into four classes is presented. This segmentation algorithm could be a very useful tool for investigating complex polarimetric SAR phenomena.

  9. Polarimetric SAR Interferometry Evaluation in Mangroves

    NASA Technical Reports Server (NTRS)

    Lee, Seung-Kuk; Fatoyinbo,Temilola; Osmanoglu, Batuhan; Sun, Guoqing

    2014-01-01

    TanDEM-X (TDX) enables to generate an interferometric coherence without temporal decorrelation effect that is the most critical factor for a successful Pol-InSAR inversion, as have recently been used for forest parameter retrieval. This paper presents mangrove forest height estimation only using single-pass/single-baseline/dual-polarization TDX data by means of new dual-Pol-InSAR inversion technique. To overcome a lack of one polarization in a conventional Pol- InSAR inversion (i.e. an underdetermined problem), the ground phase in the Pol-InSAR model is directly estimated from TDX interferograms assuming flat underlying topography in mangrove forest. The inversion result is validated against lidar measurement data (NASA's G-LiHT data).

  10. Analysis of energy use in tomato evaporation

    SciTech Connect

    Rumsey, T.; Conant, T.

    1980-01-01

    Field performance data for four tomato product evaporators are presented and analyzed. Steam and feed flow rates along with steam economies were measured and are compared to steady state theoretical evaporator models.

  11. Quantifying Evaporation in a Permeable Pavement System

    EPA Science Inventory

    Studies quantifying evaporation from permeable pavement systems are limited to a few laboratory studies and one field application. This research quantifies evaporation for a larger-scale field application by measuring the water balance from lined permeable pavement sections. Th...

  12. Isotopic Compositions of Evaporative Fluxes

    NASA Astrophysics Data System (ADS)

    Feng, X.; Lauder, A. M.; Kopec, B. G.; Dade, W. B.; Virginia, R. A.; Posmentier, E. S.

    2013-12-01

    The isotopic fluxes of evaporation from a water surface are typically computed using a one-dimensional model, originally conceptualized by Craig and Gordon (1965) and further developed and adapted to different natural settings (such as transpiration, open surface evaporation, etc.) by various investigators. These models have two distinguishing characteristics. First, there exists a laminar layer where molecular diffusion away from the water-air interface causes kinetic isotopic fractionation. The magnitude of this fractionation is controlled by the diffusion/transport coefficient of each vapor isotopologue in air and their concentration gradients, the latter being controlled by relative humidity, isotopic ratios of ambient air, and turbulent conditions (such as wind and surface roughness). Second, the horizontal variations are ignored. In particular, the effect of horizontal advection on isotopic variations in the ambient air is not considered. The research reported here addresses the effects of relinquishing the simplifying assumptions in both of these areas. We developed a model, in which the simplification of a purely laminar layer is dropped. Instead, we express the vertical transport coefficient as the sum of the molecular diffusivity, that differs for each water isotopologue, and the turbulent diffusivity that increases linearly with height but does not vary among water isotopologues. With this model, the kinetic isotopic effect reduces with height in the vicinity of the water surface, and the net isotopic fractionation through the boundary layer can be integrated. The advantage of this conceptualization is that the magnitude of kinetic isotopic fractionation can be assessed directly with changing environmental conditions, such as humidity and wind speed, rather than approximated by discontinuous empirical functions of the environmental conditions, as in the conventional models mentioned above. To address the effect of lateral heterogeneity, we expanded the

  13. SAR Polarimetry for Oil at Sea Observation

    NASA Astrophysics Data System (ADS)

    Migliaccio, M.; Nunziata, F.

    2013-03-01

    Synthetic aperture radar (SAR) oil slick observation is a topic of great applicative relevance which has been physically recast by a set of new polarimetric approaches that, exploiting the departure from Bragg scattering, allow observing oil at sea in a very robust and effective way. In this study, these polarimetric approaches are reviewed and their performances are discussed with respect to some thought experiments undertaken on quad-pol full-resolution L- and C-band SAR data.

  14. RADARSAT high throughput SAR processor development

    NASA Technical Reports Server (NTRS)

    George, P.

    1986-01-01

    MacDonald Dettwiler & Associates has been involved with the Canadian Radarsat (RSAT) project for a number of years. This included Phase A definition studies and for the past two years, Phase B ground station design and processor prototyping efforts. The current baseline design for the SAR processing facility (SARDPF) is described along with its requirements and functional decomposition. This forms the context for then discussing the prototype SAR processor and extensions necessary to meet current ground station processing requirements.

  15. Dynamics of complete wetting liquid under evaporation

    NASA Astrophysics Data System (ADS)

    Pham, Chi-Tuong; Berteloot, Guillaume; Lequeux, FranC.{C.}Ois; Limat, Laurent

    2009-11-01

    We study the dynamics of a contact line under evaporation and complete wetting conditions taking into account the divergent nature of evaporation near the border of the liquid, as evidenced by Deegan et al. [Nature 389, 827]. The model we propose shows the existence of a precursor film at the edge of the liquid. The length of the precursor film is controlled by Hamacker constant and evaporative flux. Past the precursor film, Tanner's law is generalized accounting for evaporative effects.

  16. Ionospheric Specifications for SAR Interferometry (ISSI)

    NASA Technical Reports Server (NTRS)

    Pi, Xiaoqing; Chapman, Bruce D; Freeman, Anthony; Szeliga, Walter; Buckley, Sean M.; Rosen, Paul A.; Lavalle, Marco

    2013-01-01

    The ISSI software package is designed to image the ionosphere from space by calibrating and processing polarimetric synthetic aperture radar (PolSAR) data collected from low Earth orbit satellites. Signals transmitted and received by a PolSAR are subject to the Faraday rotation effect as they traverse the magnetized ionosphere. The ISSI algorithms combine the horizontally and vertically polarized (with respect to the radar system) SAR signals to estimate Faraday rotation and ionospheric total electron content (TEC) with spatial resolutions of sub-kilometers to kilometers, and to derive radar system calibration parameters. The ISSI software package has been designed and developed to integrate the algorithms, process PolSAR data, and image as well as visualize the ionospheric measurements. A number of tests have been conducted using ISSI with PolSAR data collected from various latitude regions using the phase array-type L-band synthetic aperture radar (PALSAR) onboard Japan Aerospace Exploration Agency's Advanced Land Observing Satellite mission, and also with Global Positioning System data. These tests have demonstrated and validated SAR-derived ionospheric images and data correction algorithms.

  17. SARS: Key factors in crisis management.

    PubMed

    Tseng, Hsin-Chao; Chen, Thai-Form; Chou, Shieu-Ming

    2005-03-01

    This study was conducted at a single hospital selected in Taipei during the SARS (Severe Acute Respiratory Syndrome) outbreak from March to July, 2003 in Taiwan. During this period of time, 104 SARS patients were admitted to the hospital. There were no negative reports related to the selected hospital despite its being located right in the center of an area struck by the epidemic. The purpose of this study was to identify the key factors enabling the hospital to survive SARS unscathed. Data were collected from in-depth interviews with the nursing directors and nursing managers of the SARS units, along with a review of relevant hospital documents. The five key elements identified as survival factors during this SARS crisis are as follows: 1. good control of timing for crisis management, 2. careful decision-making, 3. thorough implementation, 4. effective communication, and 5. trust between management and employees. The results of this study reconfirmed the selected hospital as a model for good crisis management during the SARS epidemic.

  18. 21 CFR 131.130 - Evaporated milk.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 2 2013-04-01 2013-04-01 false Evaporated milk. 131.130 Section 131.130 Food and... CONSUMPTION MILK AND CREAM Requirements for Specific Standardized Milk and Cream § 131.130 Evaporated milk. (a) Description. Evaporated milk is the liquid food obtained by partial removal of water only from milk....

  19. 21 CFR 131.130 - Evaporated milk.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 2 2012-04-01 2012-04-01 false Evaporated milk. 131.130 Section 131.130 Food and... CONSUMPTION MILK AND CREAM Requirements for Specific Standardized Milk and Cream § 131.130 Evaporated milk. (a) Description. Evaporated milk is the liquid food obtained by partial removal of water only from milk....

  20. 21 CFR 131.130 - Evaporated milk.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Evaporated milk. 131.130 Section 131.130 Food and... CONSUMPTION MILK AND CREAM Requirements for Specific Standardized Milk and Cream § 131.130 Evaporated milk. (a) Description. Evaporated milk is the liquid food obtained by partial removal of water only from milk....

  1. 21 CFR 131.130 - Evaporated milk.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Evaporated milk. 131.130 Section 131.130 Food and... CONSUMPTION MILK AND CREAM Requirements for Specific Standardized Milk and Cream § 131.130 Evaporated milk. (a) Description. Evaporated milk is the liquid food obtained by partial removal of water only from milk....

  2. 21 CFR 131.130 - Evaporated milk.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 2 2014-04-01 2014-04-01 false Evaporated milk. 131.130 Section 131.130 Food and... CONSUMPTION MILK AND CREAM Requirements for Specific Standardized Milk and Cream § 131.130 Evaporated milk. (a) Description. Evaporated milk is the liquid food obtained by partial removal of water only from milk....

  3. Iodine retention during evaporative volume reduction

    DOEpatents

    Godbee, H.W.; Cathers, G.I.; Blanco, R.E.

    1975-11-18

    An improved method for retaining radioactive iodine in aqueous waste solutions during volume reduction is disclosed. The method applies to evaporative volume reduction processes whereby the decontaminated (evaporated) water can be returned safely to the environment. The method generally comprises isotopically diluting the waste solution with a nonradioactive iodide and maintaining the solution at a high pH during evaporation.

  4. Evaporation by mechanical vapor recompression

    NASA Astrophysics Data System (ADS)

    Iverson, C. H.; Coury, G. E.

    1980-04-01

    Progress in the development of a study of the application of the technologies of mechanical vapor recompression and falling film evaporation as applied to the beet sugar industry is reported. Progress is reported in the following areas: technical literature search; report on visit to European factories using these technologies; energy balance studies of factories offered by the industry as candidates for the demonstration plants; and report on energy balance studies and the recommendations as to the site for the demonstration plant.

  5. Does groundwater enhance evaporative cooling?

    NASA Astrophysics Data System (ADS)

    Rouholahnejad, E.

    2015-12-01

    Evaporation is a key process in land-climate interactions, not only because it directly regulates the hydrological cycle, but also because it contributes to the Earth's energy balance. Due to its feedbacks on large-scale water processes and its impact on the dynamics of the atmosphere, it has been considered as a driver of droughts and heatwaves1-3. While evaporation from ocean surfaces is likely to increase with rising temperatures, it is unclear whether evapotranspiration from land surfaces could similarly increase, due to possible limitations imposed by soil moisture and vegetation physiology4. Observations suggest that groundwater (hereafter GW) has an important role in hydrological budgets and soil moisture variability in many regions, supplying moisture for evapotranspiration during dry seasons5, 6. Although modeling studies suggest that GW is often close enough to the surface to interact with the atmosphere7, 8, the soil water storage is often underestimated by land surface models. This is most likely due to neglecting the lateral movement of water from topographically higher altitudes to valley bottoms and its convergence close to the land surface, as well as the upward movement of water in the capillary fringe.The focus of this study is to understand where and when GW may significantly enhance the availability of soil water for evapotranspiration. We also quantified the potential contribution of GW to evapotranspiration in the areas where GW is a major supply. We used the global network of eddy covariance observations9 (FLUXNET) along with global modeled GW depth10 and GLEAM ET model estimates11 to address the current gap in modelling ET due to neglecting GW supply. Having identified areas where GW is tightly coupled with the atmosphere through evaporation processes, the study provides the basis to examine the "air conditioning effect" of GW and test the idea if GW enhances evaporation to the extent that leads to a cooler temperatures and wetter climates.

  6. Investigating Land Movements of Saline Soils by SAR Based Methodologies

    NASA Astrophysics Data System (ADS)

    Magagnini, L.; Teatini, P.; Strozzi, T.; Ulazzi, E.; Simeoni, U.

    2011-12-01

    Solonchaks, more commonly known as saline soils, are a soil variety confined to the arid and semi-arid climatic zones. Theseflat areas are characterized by a shallow water table and an evapotranspiration considerably greater than precipitation. Salts dissolved in the soil moisture remain behind after evaporation/transpiration of the water and accumulate at the soil surface. Detecting ground displacement by SAR-based methodologies is challenging in these regions. On one hand, solonchaks have a stable soil structure becausea salt crust is well developed and are usually uncultivated. On the other hand, earth depressions are usually waterlogged due to groundwater capillary rise and hygroscopic water absorbed bysaltparticles. Moreover, sparse vegetation is present even if limited to halophytic shrubs. Although poorly developed, the assessment of land subsidence can be of interest when, as in the northern coast of the Caspian Sea, Kazakhstan, large exploitation of subsurface natural resources are planned. Due to the lack of traditional monitoring surveys,SAR-based interferometry represents the unique methodology that can be used to investigate the recent/present ground displacements of this large region. With a temperature ranging from-25 to +42°C and a precipitation less than 200 mm/yr, large depressions with solonchak in them characterize the whole area. The presence of salt-affected soils is in close relation to the oscillations of the sea level and the massive presence of salt domes. Due to the extreme flatness of the coastland, on the order of 0.001%, even a small land sinking produces a significant inland encroachment of the sea. Small BAseline Subset (SBAS) and Interferometric Point Target Analysis (IPTA) have been applied to understand the capability SAR-based techniques of monitoring land displacements in these environments. The SBAS approach is developed to maximize the spatial and temporal coherence through the construction of small baseline interferograms

  7. Dynamics of evaporative colloidal patterning

    NASA Astrophysics Data System (ADS)

    Kaplan, C. Nadir; Wu, Ning; Mandre, Shreyas; Aizenberg, Joanna; Mahadevan, L.

    2015-09-01

    Drying suspensions often leave behind complex patterns of particulates, as might be seen in the coffee stains on a table. Here, we consider the dynamics of periodic band or uniform solid film formation on a vertical plate suspended partially in a drying colloidal solution. Direct observations allow us to visualize the dynamics of band and film deposition, where both are made of multiple layers of close packed particles. We further see that there is a transition between banding and filming when the colloidal concentration is varied. A minimal theory of the liquid meniscus motion along the plate reveals the dynamics of the banding and its transition to the filming as a function of the ratio of deposition and evaporation rates. We also provide a complementary multiphase model of colloids dissolved in the liquid, which couples the inhomogeneous evaporation at the evolving meniscus to the fluid and particulate flows and the transition from a dilute suspension to a porous plug. This allows us to determine the concentration dependence of the bandwidth and the deposition rate. Together, our findings allow for the control of drying-induced patterning as a function of the colloidal concentration and evaporation rate.

  8. UAVSAR: InSAR and PolSAR Test Bed for the Proposed NI-SAR Mission

    NASA Astrophysics Data System (ADS)

    Jones, C. E.; Hensley, S.; Lou, Y.

    2014-12-01

    UAVSAR, which first became operational in 2009, has served as an operational testbed for the NI-SAR L-band radar concept and a unique instrument in its own right. UAVSAR supports a broad array of basic and applied geoscience, covering on smaller scale all the disciplines NI-SAR would be able to address on a global scale. Although designed specifically to provide high accuracy repeated flight tracks and precise imaging geometry for InSAR-based solid earth studies, its fully polarimetric operation, low noise, and consistent calibration accuracy has made it a premier instrument for PolSAR-based studies also. Since 2009 it has successfully imaged more than 16 million km2 and >4300 quad-polarimetric data products are now publicly available online. Upgrades made in the last year to automate the repeat track processing serve as a model for generating large volumes of InSAR products: Since January 2014 more than 700 interferometric products have been released, exceeding the output of all previous years combined. Standardly available products now include browse images of all InSAR acquisitions and coregistered single-look complex image stacks suitable for standard time series analysis. Here we present an overview of the wide range of studies utilizing UAVSAR data including those based on polarimetry and pair-wise and times series interferometry, highlighting both the unique capabilities of UAVSAR and the ways in which NI-SAR would be able to dramatically extend the capabilities. This research was conducted at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.

  9. Online Health Education on SARS to University Students during the SARS Outbreak

    ERIC Educational Resources Information Center

    Wong, Mee Lian; Koh, David; Iyer, Prasad; Seow, Adeline; Goh, Lee Gan; Chia, Sin Eng; Lim, Meng Kin; Ng, Daniel; Ong, Choon Nam; Phua, Kai Hong; Tambyah, Paul; Chow, Vincent T K; Chew, Suok Kai; Chandran, Ravi; Lee, Hin Peng

    2005-01-01

    Little is known about how online learning may be used to disseminate health information rapidly and widely to large university populations if there is an infectious disease outbreak. During the SARS outbreak in Singapore in 2003, a six-lesson elearning module on SARS was developed for a large university population of 32,000 students. The module…

  10. 20. OVERVIEW OF SAR3 COMPLEX, SHOWING FORMER RESIDENTIAL AREA, SAR3 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. OVERVIEW OF SAR-3 COMPLEX, SHOWING FORMER RESIDENTIAL AREA, SAR-3 SWITCH RACK, MAINTENANCE YARD, AND GREENSPOT BRIDGE. NOTE ALSO LARGE PIPE CONDUCTING TAILRACE WATER INTO IRRIGATION SYSTEM. VIEW TO SOUTHWEST. - Santa Ana River Hydroelectric System, Redlands, San Bernardino County, CA

  11. Landslide Monitoring in Three Gorges Area Using D-InSAR and PS-InSAR

    NASA Astrophysics Data System (ADS)

    Tantianuparp, Peraya; Shi, Xuguo; Liao, Mingsheng; Zhang, Lu; Balz, Timo

    2013-01-01

    Landslides are a major hazard in steep mountainous area, like the Three Gorges area. The Three Gorges dam was built on a geologically unstable zone. The geological pressures from the rising water level caused by the dam and the deforestation have further increased the possibility for landslides in the area. Many landslide monitoring techniques are applied to analysis, forecast, and control landslides in this area. D-InSAR and PS-InSAR, the time series InSAR analysis, are used for terrain motion detection and to estimate displacement trends. In this paper, SAR data from systems with different wavelengths, like the C-band ASAR, the L-band PALSAR, and the high-resolution TerraSAR-X X-band data, are used.

  12. Landslide Monitoring in Three Gorges Area Using D-InSAR and PS-InSAR

    NASA Astrophysics Data System (ADS)

    Tantianuparp, Peraya; Shi, Xuguo; Liao, Mingsheng; Zhang, Lu; Balz, Timo

    2013-01-01

    Landslides are a major hazard in steep mountainous area. The Three Gorges dam was built on a geologically unstable zone. The geological pressures from the rising water level caused by the dam and the deforestation have increased the possibility for landslides in the area. Many landslide monitoring techniques are applied to analysis, forecast, and control land-slides in this area. D-InSAR and PS-InSAR, the time series InSAR analysis, are used for terrain motion detection and to estimate displacement trends. In this paper, SAR data from systems with different wavelengths, like the C-band ASAR, the L-band ALOS, and the high-resolution TerraSAR-X X-band data, are used.

  13. Investigation of ionospheric effects on SAR Interferometry (InSAR): A case study of Hong Kong

    NASA Astrophysics Data System (ADS)

    Zhu, Wu; Ding, Xiao-Li; Jung, Hyung-Sup; Zhang, Qin; Zhang, Bo-Chen; Qu, Wei

    2016-08-01

    Synthetic Aperture Radar Interferometry (InSAR) has demonstrated its potential for high-density spatial mapping of ground displacement associated with earthquakes, volcanoes, and other geologic processes. However, this technique may be affected by the ionosphere, which can result in the distortions of Synthetic Aperture Radar (SAR) images, phases, and polarization. Moreover, ionospheric effect has become and is becoming further significant with the increasing interest in low-frequency SAR systems, limiting the further development of InSAR technique. Although some research has been carried out, thorough analysis of ionospheric influence on true SAR imagery is still limited. Based on this background, this study performs a thorough investigation of ionospheric effect on InSAR through processing L-band ALOS-1/PALSAR-1 images and dual-frequency Global Positioning System (GPS) data over Hong Kong, where the phenomenon of ionospheric irregularities often occurs. The result shows that the small-scale ionospheric irregularities can cause the azimuth pixel shifts and phase advance errors on interferograms. Meanwhile, it is found that these two effects result in the stripe-shaped features in InSAR images. The direction of the stripe-shaped effects keep approximately constant in space for our InSAR dataset. Moreover, the GPS-derived rate of total electron content change index (ROTI), an index to reflect the level of ionospheric disturbances, may be a useful indicator for predicting the ionospheric effect for SAR images. This finding can help us evaluate the quality of SAR images when considering the ionospheric effect.

  14. Performance evaluation of SAR/GMTI algorithms

    NASA Astrophysics Data System (ADS)

    Garber, Wendy; Pierson, William; Mcginnis, Ryan; Majumder, Uttam; Minardi, Michael; Sobota, David

    2016-05-01

    There is a history and understanding of exploiting moving targets within ground moving target indicator (GMTI) data, including methods for modeling performance. However, many assumptions valid for GMTI processing are invalid for synthetic aperture radar (SAR) data. For example, traditional GMTI processing assumes targets are exo-clutter and a system that uses a GMTI waveform, i.e. low bandwidth (BW) and low pulse repetition frequency (PRF). Conversely, SAR imagery is typically formed to focus data at zero Doppler and requires high BW and high PRF. Therefore, many of the techniques used in performance estimation of GMTI systems are not valid for SAR data. However, as demonstrated by papers in the recent literature,1-11 there is interest in exploiting moving targets within SAR data. The techniques employed vary widely, including filter banks to form images at multiple Dopplers, performing smear detection, and attempting to address the issue through waveform design. The above work validates the need for moving target exploitation in SAR data, but it does not represent a theory allowing for the prediction or bounding of performance. This work develops an approach to estimate and/or bound performance for moving target exploitation specific to SAR data. Synthetic SAR data is generated across a range of sensor, environment, and target parameters to test the exploitation algorithms under specific conditions. This provides a design tool allowing radar systems to be tuned for specific moving target exploitation applications. In summary, we derive a set of rules that bound the performance of specific moving target exploitation algorithms under variable operating conditions.

  15. Multiresolution analysis of SAR data

    NASA Astrophysics Data System (ADS)

    Hummel, Robert

    1993-01-01

    The 'Multiresolution Analysis of SAR Data' program supported research work in five areas. Geometric hashing theory can now be viewed as a Bayesian approach to object recognition. False alarm rates can be greatly reduced by using certain enhancements and modifications developed under this project. Geometric hashing algorithms now exist for the Connection Machine. Recognition of synthetically-produced dot arrays was demonstrated using a model base of 1024 objects. The work represents a substantial advance over existing model-based vision capabilities. Algorithms were developed for determining the translation and rotation of a sensor given only the image flow field data. These are new algorithms, and are much more stable than existing computer vision algorithms for this task. The algorithms might provide independent verification of gyroscopic data, or might be used to compute relative motion with respect to a moving scene object, or may be useful for motion-based segmentation. Our theories explaining the Dempster/Shafer calculus and developing new uncertainty reasoning calculi were extended, and presented at a conference and were incorporated into the Bayesian interpretation of geometric hashing. 'Wavelet Slice Theorem' was developed in several different versions, any of which yields an alternate approach to image formation. The result may well provide a more stable approach to image formation than the standard Fourier-based projection slide theorem, since interpolation of unknown spectra values is better-founded.

  16. Putting the "vap" into evaporation

    NASA Astrophysics Data System (ADS)

    Shuttleworth, W. J.

    2007-01-01

    In the spirit of the Special Issue of HESS to which it contributes, this paper documents the origin and development of the science of natural evaporation from land surfaces over the last 30-35 years, since the symposium A View from the Watershed was held to commemorate the opening of the new Institute of Hydrology (IH) building in 1973. Important subsequent technical progress includes the ability to measure routinely the diurnal cycle of near-surface meteorological variables using automatic weather stations, and of surface energy and momentum exchanges using automated implementations of the Bowen Ratio/Energy Budget technique and the Eddy Correlation technique, along with the capability to estimate the "fetch" for which these measurements apply. These improvements have been complemented by new methods to measure the separate components of evaporation, including: the interception process using randomly relocated below-canopy gauges, transpiration fluxes from individual leaves/shoots using porometers and from plants/plant components using stem-flow gauges and soil evaporation using micro-lysimeters and soil moisture depletion methods. In recent years progress has been made in making theory-based area-average estimates of evaporation using scintillometers, and model-based area-average estimates by assembling many streams of relevant data into Land Data Assimilation Systems. Theoretical progress has been made in extending near-surface turbulence theory to accommodate the effect of the "excess" boundary layer resistance to leaf-to-air transfer of energy and mass fluxes relative to that for momentum, and to allow for observed shortcoming in stability factors in the transition layer immediately above vegetation. Controversy regarding the relative merits of multi-layer model and "big leaf" representations of whole-canopy exchanges has been resolved in favour of the latter approach. Important gaps in the theory of canopy-atmosphere interactions have been filled, including

  17. Evaporative oxidation treatability test report

    SciTech Connect

    1995-04-01

    In 1992, Congress passed the Federal Facilities Compliance Act that requires the U.S. Department of Energy (DOE) to treat and dispose of its mixed waste in accordance with the Resource Conservation and Recovery Act (RCRA) land disposal restrictions (LDRs). In response to the need for mixed-waste treatment capacity where available off-site commercial treatment facilities do not exist or cannot be used, the DOE Albuquerque Operations Office (DOE-AL) organized a Treatment Selection Team to match mixed wastes with treatment options and develop a strategy for treatment of its mixed wastes. DOE-AL manages operations at nine sites with mixed-waste inventories. The Treatment Selection Team determined a need to develop mobile treatment capacity to treat wastes at the sites where the wastes are generated. Treatment processes used for mixed waste not only must address the hazardous component (i.e., meet LDRs) but also must contain the radioactive component in a form that allows final disposal while protecting workers, the public, and the environment. On the basis of recommendations of the Treatment Selection Team, DOE-AL assigned projects to the sites to bring mixed-waste treatment capacity on-line. The three technologies assigned to the DOE Grand Junction Projects Office (GJPO) are evaporative oxidation, thermal desorption, and treated wastewater evaporation. Rust Geotech, the DOE-GJPO prime contractor, was assigned to design and fabricate mobile treatment units (MTUs) for these three technologies and to deliver the MTUs to selected DOE-AL sites. To conduct treatability tests at the GJPO, Rust leased a pilot-scale evaporative oxidation unit from the Clemson Technical Center (CTC), Anderson, South Carolina. The purpose of this report is to document the findings and results of tests performed using this equipment.

  18. Mobile evaporator corrosion test results

    SciTech Connect

    Rozeveld, A.; Chamberlain, D.B.

    1997-05-01

    Laboratory corrosion tests were conducted on eight candidates to select a durable and cost-effective alloy for use in mobile evaporators to process radioactive waste solutions. Based on an extensive literature survey of corrosion data, three stainless steel alloys (304L, 316L, AL-6XN), four nickel-based alloys (825, 625, 690, G-30), and titanium were selected for testing. The corrosion tests included vapor phase, liquid junction (interface), liquid immersion, and crevice corrosion tests on plain and welded samples of candidate materials. Tests were conducted at 80{degrees}C for 45 days in two different test solutions: a nitric acid solution. to simulate evaporator conditions during the processing of the cesium ion-exchange eluant and a highly alkaline sodium hydroxide solution to simulate the composition of Tank 241-AW-101 during evaporation. All of the alloys exhibited excellent corrosion resistance in the alkaline test solution. Corrosion rates were very low and localized corrosion was not observed. Results from the nitric acid tests showed that only 316L stainless steel did not meet our performance criteria. The 316L welded interface and crevice specimens had rates of 22.2 mpy and 21.8 mpy, respectively, which exceeds the maximum corrosion rate of 20 mpy. The other welded samples had about the same corrosion resistance as the plain samples. None of the welded samples showed preferential weld or heat-affected zone (HAZ) attack. Vapor corrosion was negligible for all alloys. All of the alloys except 316L exhibited either {open_quotes}satisfactory{close_quotes} (2-20 mpy) or {open_quotes}excellent{close_quotes} (<2 mpy) corrosion resistance as defined by National Association of Corrosion Engineers. However, many of the alloys experienced intergranular corrosion in the nitric acid test solution, which could indicate a susceptibility to stress corrosion cracking (SCC) in this environment.

  19. Evaporation and combustion of sprays

    NASA Technical Reports Server (NTRS)

    Faeth, G. M.

    1983-01-01

    A description is provided of recent spray evaporation and combustion models, taking into account turbulent two- and three-dimensional spray processes found in furnaces, gas turbine combustors, and internal combustion engines. Within the class of spray models of interest, two major categories are distinguished, including locally homogeneous flow (LHF) models and separated flow (SF) models. SF models are of the greatest practical importance, but LHF models have distinct advantages in some cases. Attention is also given to recent progress on modeling interactions between drops and the flow in both dilute and dense sprays, involving sprays having low and high liquid volume fractions, respectively.

  20. Organic Evaporator steam valve failure

    SciTech Connect

    Jacobs, R. A.

    1992-09-29

    DWPF Technical has requested an analysis of the capacity of the organic Evaporator (OE) condenser (OEC) be performed to determine its capability in the case where the OE steam flow control valve fails open. Calculations of the OE boilup and the OEC heat transfer coefficient indicate the OEC will have more than enough capacity to remove the heat at maximum OE boilup. In fact, the Salt Cell Vent Condenser (SCVC) should also have sufficient capacity to handle the maximum OE boilup. Therefore it would require simultaneous loss of OEC and/or SCVC condensing capacity for the steam valve failure to cause high benzene in the Process Vessel Vent System (PVVS).

  1. Automated rectification and geocoding of SAR imagery

    NASA Technical Reports Server (NTRS)

    Kwok, R.; Curlander, J. C.

    1987-01-01

    An automated post-processing system has been developed for rectification and geocoding of SAR (Synthetic Aperture Radar) imagery. The system uses as input a raw uncorrected image from the operational SAR correlator, and produces as a standard output a rectified and geocoded product. The accurate geolocation of SAR image pixels is provided by a spatial transformation model which maps the slant range-azimuth SAR image pixels into their location on a prespecified map grid. This model predicts the geodetic location of each pixel by utilizing: the sensor platform position; a geoid model; the parameters of the data collection system and the processing parameters used in the SAR correlator. Based on their geodetic locations, the pixels are mapped by using the desired cartographic projection equations. This rectification and geocoding technique has been tested with Seasat and SIR-B images. The test results demonstrate absolute location uncertainty of less than 50 m and relative distortion (scale factor and skew) of less than 0.1 percent relative to local variations from the assumed geoid.

  2. ICAO's anti-SARS airport activities.

    PubMed

    Finkelstein, Silvio; Curdt-Christiansen, Claus M

    2003-11-01

    To prevent SARS from spreading through air travel and in order to rebuild the confidence of the traveling public in the safety of air travel, ICAO has set up an "Anti-SARS Airport Evaluation Project." The first phase of this project was to develop a set of protective measures for international airports in affected areas to adopt and implement and then to send out, on the request of Contracting States, a team of inspectors to evaluate and assess airports and issue a "statement of evaluation" that the airport inspected complies with the ICAO anti-SARS protective measures. In cooperation with the World Health Organization (WHO), the first part of phase 1 was completed in early June this year, and the second part of phase 1 followed soon after. By mid-July, five international airports in Southeast Asia had been inspected and found to be in full compliance with the ICAO anti-SARS protective measures. The success of this ICAO project is believed to have contributed significantly to the recovery of international air travel and related industries now taking place. Phase 2 of the project is now being developed. It is aimed at preventing a resurgence of SARS, but it also contains elements to make the methodology developed applicable to future outbreaks of any other communicable disease in which the mode of transmission could involve aviation and/or the need to prevent the spread of the disease by air travel.

  3. A comparative evaluation of SAR and SLAR

    SciTech Connect

    Mastin, G.A.; Manson, J.J.; Bradley, J.D.; Axline, R.M.; Hover, G.L.

    1993-11-01

    Synthetic aperture radar (SAR) was evaluated as a potential technological improvement over the Coast Guard`s existing side-looking airborne radar (SLAR) for oil-spill surveillance applications. The US Coast Guard Research and Development Center (R&D Center), Environmental Branch, sponsored a joint experiment including the US Coast Guard, Sandia National Laboratories, and the Naval Oceanographic and Atmospheric Administration (NOAA), Hazardous Materials Division. Radar imaging missions were flown on six days over the coastal waters off Santa Barbara, CA, where there are constant natural seeps of oil. Both the Coast Guard SLAR and the Sandia National Laboratories SAR were employed to acquire simultaneous images of oil slicks and other natural sea surface features that impact oil-spill interpretation. Surface truth and other environmental data were also recorded during the experiment. The experiment data were processed at Sandia National Laboratories and delivered to the R&D Center on a computer workstation for analysis by experiment participants. Issues such as optimal spatial resolution, single-look vs. multi-look SAR imaging, and the utility of SAR for oil-spill analysis were addressed. Finally, conceptual design requirements for a possible future Coast Guard SAR were outlined and evaluated.

  4. SARS revisited: managing "outbreaks" with "communications".

    PubMed

    Menon, K U

    2006-05-01

    "Risk communications" has acquired some importance in the wake of our experience of SARS. Handled well, it helps to build mutual respect between a government or an organisation and the target groups with which it is communicating. It helps nurture public trust and confidence in getting over the crisis. The World Health Organization (WHO) has also come to recognise its importance after SARS and organised the first Expert Consultation on Outbreak Communications conference in Singapore in September 2004. This article assesses the context and the key features which worked to Singapore's advantage. Looking at the data now widely available on the Internet of the experience of SARS-infected countries like China, Taiwan, Canada, the article identifies the key areas of strategic communications in which Singapore fared particularly well. Another issue discussed is whether Singapore's experience has universal applicability or whether it is limited because of Singapore's unique cultural, historical and geographical circumstances. Finally, the article also looks at some of the post-SARS enhancements that have been put in place following the lessons learnt from SARS and the need to confront new infectious outbreaks like avian flu. PMID:16830005

  5. An improved MIMO-SAR simulator strategy with ray tracing

    NASA Astrophysics Data System (ADS)

    Xiang, Xingyu; Mo, Zijian; Wang, Zhonghai; Chen, Genshe; Pham, Khanh; Blasch, Erik

    2016-05-01

    High resolution and wide-swath imaging can be obtained by Multiple-Input Multiple-Output (MIMO) synthetic aperture radar (SAR) with the state of the art technologies. The time division multiple access (TDMA) MIMO SAR mimics the motion of the antenna of SAR systems by switching the array channels to transmit the radar signals at different time slots. In this paper, we develop a simulation tool with ray tracing techniques to retrieve high resolution and accurate SAR images for development of MIMO SAR imaging methods. Without loss of generality, in the proposed simulator, we apply a TDMA MIMO SAR system with 13 transmitting antennas and 8 receiving antennas, where all transmitting antennas share a single transmitter and the receiving antennas share a single receiver. By comparing with the normal simulation MIMO SAR strategies, the simulation image using ray tracing results validate that the proposed method provides more accurate and higher resolution SAR images.

  6. Statistical Approach To Determination Of Texture In SAR

    NASA Technical Reports Server (NTRS)

    Rignot, Eric J.; Kwok, Ronald

    1993-01-01

    Paper presents statistical approach to analysis of texture in synthetic-aperture-radar (SAR) images. Objective: to extract intrinsic spatial variability of distributed target from overall spatial variability of SAR image.

  7. Project W-320 SAR and process control thermal analyses

    SciTech Connect

    Sathyanarayana, K.

    1997-06-19

    This report summarizes the results of thermal hydraulic computer modeling supporting Project W-320 for process control and SAR documentation. Parametric analyses were performed for the maximum steady state waste temperature. The parameters included heat load distribution, tank heat load, fluffing factor and thermal conductivity. Uncertainties in the fluffing factor and heat load distribution had the largest effect on maximum waste temperature. Safety analyses were performed for off normal events including loss of ventilation, loss of evaporation and loss of secondary chiller. The loss of both the primary and secondary ventilation was found to be the most limiting event with saturation temperature in the bottom waste reaching in just over 30 days. An evaluation was performed for the potential lowering of the supernatant level in tank 241-AY-102. The evaluation included a loss of ventilation and steam bump analysis. The reduced supernatant level decreased the time to reach saturation temperature in the waste for the loss of ventilation by about one week. However, the consequence of a steam bump were dramatically reduced.

  8. Characterizing hydrologic changes of Great Dismal Swamp using SAR/InSAR technology

    NASA Astrophysics Data System (ADS)

    Kim, J. W.; Lu, Z.; Zhu, Z.

    2015-12-01

    Great Dismal Swamp is one of the largest, northernmost peatlands on the Atlantic Coastal Plain, and the swamp is underlain by a thick water-logged organic soil layer (peat) made up of dead and decaying plant material. The peatlands play a role as the sink of large amount of soil organic carbon and methane. However, the disturbance of the peatland negatively impacted the ecosystem and contributed to the climate change caused by the released greenhouse gas. Our SAR/InSAR methods observed the hydrologic changes in the peatlands, which is a key factor to conserve the wetland, through several methods. First, we compared averaged SAR intensity from C- and L-band SAR sensors with groundwater level changes, and deduced a linear relationship between the SAR backscattering intensity and the groundwater level change. Second, we extracted the inundated area during wet season from InSAR coherence. Third, we measured the relative water level changes in the inundated area using the interferometric phases. Finally, we estimated the groundwater level changes corresponding to the soil moisture changes from time-series InSAR method. Our results can provide the unique opportunity to understand the occurring hydrologic and vegetation changes in the Great Dismal Swamp.

  9. Completing the gaps in Kilauea's Father's Day InSAR displacement signature with ScanSAR

    NASA Astrophysics Data System (ADS)

    Bertran Ortiz, A.; Pepe, A.; Lanari, R.; Lundgren, P.; Rosen, P. A.

    2009-12-01

    Currently there are gaps in the known displacement signature obtained with InSAR at Kilauea between 2002 and 2009. InSAR data can be richer than GPS because of denser spatial cover. However, to better model rapidly varying and non-steady geophysical events InSAR is limited because of its less dense time observations of the area under study. The ScanSAR mode currently available in several satellites mitigates this effect because the satellite may illuminate a given area more than once within an orbit cycle. The Kilauea displacement graph below from Instituto per Il Rilevamento Electromagnetico dell'Ambiente (IREA) is a cut in space of the displacement signature obtained from a time series of several stripmap-to-stripmap interferograms. It shows that critical information is missing, especially between 2006 and 2007. The displacement is expected to be non-linear judging from the 2007-2008 displacement signature, thus simple interpolation would not suffice. The gap can be filled by incorporating Envisat stripmap-to-ScanSAR interferograms available during that time period. We propose leveraging JPL's new ROI-PAC ScanSAR module to create stripmap-to-ScanSAR interferograms. The new interferograms will be added to the stripmap ones in order to extend the existing stripmap time series generated by using the Small BAseline Subset (SBAS) technique. At AGU we will present denser graphs that better capture Kilauea's displacement between 2003 and 2009.

  10. Hydrodynamic Instabilities Produced by Evaporation

    NASA Astrophysics Data System (ADS)

    Romo-Cruz, Julio Cesar Ruben; Hernandez-Zapata, Sergio; Ruiz-Chavarria, Gerardo

    2012-11-01

    When a liquid layer (alcohol in the present work) is in an environment where its relative humidity is less than 100 percent evaporation appears. When RH is above a certain threshold the liquid is at rest. If RH decreases below this threshold the flow becomes unstable, and hydrodynamic cells develop. The aim of this work is to understand the formation of those cells and its main features. Firstly, we investigate how the cell size depends on the layer width. We also study how temperature depends on the vertical coordinate when the cells are present. An inverse temperature gradient is found, that is, the bottom of liquid layer is colder than the free surface. This shows that the intuitive idea that the cells are due to a direct temperature gradient, following a Marangoni-like process, does not work. We propose the hypothesis that the evaporation produce a pressure gradient that is responsible of the cell development. On the other hand, using a Schlieren technique we study the topography of the free surface when cells are present. Finally the alcohol vapor layer adjacent to the liquid surface is explored using scattering experiments, giving some insight on the plausibility of the hypothesis described previously. Authors acknowledge support by DGAPA-UNAM under project IN116312 ``Vorticidad y ondas no lineales en fluidos.''

  11. Combination of imipenem and TAK-242, a Toll-like receptor 4 signal transduction inhibitor, improves survival in a murine model of polymicrobial sepsis.

    PubMed

    Sha, Takuryu; Iizawa, Yuji; Ii, Masayuki

    2011-02-01

    Sepsis is characterized by an excessive host response to infection. Toll-like receptors (TLRs) are essential for triggering this type of host immune response. Toll-like receptor 4 mediates recognition of LPS from gram-negative bacteria and is an important initiator of sepsis. In the present study, we evaluated the efficacy of TAK-242, a novel TLR4 signal transduction inhibitor, in a murine cecal ligation and puncture (CLP) model. Treatment with TAK-242 (10 mg/kg i.v.) in combination with imipenem (1 mg/kg s.c.) 1 h after CLP significantly increased the survival rates of mice from 17% to 50% (P ≤ 0.01) and suppressed CLP-induced increases in serum levels of IL-1[beta], IL-6, IL-10, and macrophage inflammatory protein 2 by 64%, 73%, 79%, and 81%, respectively (P ≤ 0.025). Additionally, coadministration of TAK-242 with imipenem after CLP significantly inhibited CLP-induced decreases in blood platelet counts by 37% (P ≤ 0.025) and increases in serum levels of alanine aminotransferase by 32% (P ≤ 0.025) and blood urea nitrogen by 43% (P ≤ 0.025). TAK-242 at a dose of 10 mg/kg had no effect on bacterial counts in blood, suggesting that it does not affect blood bacteria spread. These results indicate that TAK-242 shows therapeutic effects in murine polymicrobial sepsis, and it may be a potential therapeutic agent for the treatment of sepsis. PMID:20720515

  12. AZ 242, a novel PPARalpha/gamma agonist with beneficial effects on insulin resistance and carbohydrate and lipid metabolism in ob/ob mice and obese Zucker rats.

    PubMed

    Ljung, Bengt; Bamberg, Krister; Dahllöf, Björn; Kjellstedt, Ann; Oakes, Nicholas D; Ostling, Jörgen; Svensson, Lennart; Camejo, Germán

    2002-11-01

    Abnormalities in fatty acid (FA) metabolism underlie the development of insulin resistance and alterations in glucose metabolism, features characteristic of the metabolic syndrome and type 2 diabetes that can result in an increased risk of cardiovascular disease. We present pharmacodynamic effects of AZ 242, a novel peroxisome proliferator activated receptor (PPAR)alpha/gamma agonist. AZ 242 dose-dependently reduced the hypertriglyceridemia, hyperinsulinemia, and hyperglycemia of ob/ob diabetic mice. Euglycemic hyperinsulinemic clamp studies showed that treatment with AZ 242 (1 micromol/kg/d) restored insulin sensitivity of obese Zucker rats and decreased insulin secretion. In vitro, in reporter gene assays, AZ 242 activated human PPARalpha and PPARgamma with EC(50) in the micro molar range. It also induced differentiation in 3T3-L1 cells, an established PPARgamma effect, and caused up-regulation of liver fatty acid binding protein in HepG-2 cells, a PPARalpha-mediated effect. PPARalpha-mediated effects of AZ 242 in vivo were documented by induction of hepatic cytochrome P 450-4A in mice. The results indicate that the dual PPARalpha/gamma agonism of AZ 242 reduces insulin resistance and has beneficial effects on FA and glucose metabolism. This effect profile could provide a suitable therapeutic approach to the treatment of type 2 diabetes, metabolic syndrome, and associated vascular risk factors. PMID:12401884

  13. Absolute radiometric calibration of the CCRS SAR

    NASA Astrophysics Data System (ADS)

    Ulander, Lars M. H.; Hawkins, Robert K.; Livingstone, Charles E.; Lukowski, Tom I.

    1991-11-01

    Determining the radar scattering coefficients from SAR (synthetic aperture radar) image data requires absolute radiometric calibration of the SAR system. The authors describe an internal calibration methodology for the airborne Canada Centre for Remote Sensing (CCRS) SAR system, based on radar theory, a detailed model of the radar system, and measurements of system parameters. The methodology is verified by analyzing external calibration data acquired over a 6-month period in 1988 by the C-band radar using HH polarization. The results indicate that the overall error is +/- 0.8 dB (1-sigma) for incidence angles +/- 20 deg from antenna boresight. The dominant error contributions are due to the antenna radome and uncertainties in the elevation angle relative to the antenna boresight.

  14. Calibration of a polarimetric imaging SAR

    NASA Technical Reports Server (NTRS)

    Sarabandi, K.; Pierce, L. E.; Ulaby, F. T.

    1991-01-01

    Calibration of polarimetric imaging Synthetic Aperture Radars (SAR's) using point calibration targets is discussed. The four-port network calibration technique is used to describe the radar error model. The polarimetric ambiguity function of the SAR is then found using a single point target, namely a trihedral corner reflector. Based on this, an estimate for the backscattering coefficient of the terrain is found by a deconvolution process. A radar image taken by the JPL Airborne SAR (AIRSAR) is used for verification of the deconvolution calibration method. The calibrated responses of point targets in the image are compared both with theory and the POLCAL technique. Also, response of a distributed target are compared using the deconvolution and POLCAL techniques.

  15. Block adaptive quantization of Magellan SAR data

    NASA Technical Reports Server (NTRS)

    Kwok, Ronald; Johnson, William T. K.

    1989-01-01

    A report is presented on a data compression scheme that will be used to reduce the SAR data rate on the NASA Magellan mission to Venus. The spacecraft has only one scientific instrument, a radar system for imaging the surface, for altimetric profiling of the planet topography, and for measuring radiation from the planet surface. A straightforward implementation of the scientific requirements of the mission results in a data rate higher than can be accommodated by the available system bandwidth. A data-rate-reduction scheme which includes operation of the radar in burst mode and block-adaptive quantization of the SAR data is selected to satisfy the scientific requirements. Descriptions of the quantization scheme and its hardware implementation are given. Burst-mode SAR operation is also briefly discussed.

  16. The Radarsat SAR multi-beam antenna

    NASA Astrophysics Data System (ADS)

    Martins-Camelo, L.; Cooper, R. T.; Zimcik, D. G.

    1984-10-01

    Radarsat, the Canadian radar imaging satellite, will have a Synthetic Aperture Radar (SAR) antenna as one of its sensors. The requirements on the performance of the SAR antenna are such as to make it a complex system. Radarsat is required to have some unique characteristics which present some new challenges to the antenna designers. The requirements for switchability among 4 shaped beams and high power of transmit operation are major design constraints which strongly impact on the antenna complexity, weight, and cost. A trade-off study was carried out to select the preferred antenna type for the Radarsat SAR function. The antenna types analyzed were planar-array and array-fed reflector. A set of comparison criteria was developed. The antenna concepts studied were then compared against these criteria, and a final decision was reached.

  17. New approaches in interferometric SAR data processing

    NASA Technical Reports Server (NTRS)

    Lin, Qian; Vesecky, John F.; Zebker, Howard A.

    1992-01-01

    It is well established that interferometric synthetic aperture radar (SAR) images can be inverted to perform surface elevation mapping. Among the factors critical to the mapping accuracy are registration of the interfering SAR images and phase unwrapping. A novel registration algorithm is presented that determines the registration parameters through optimization. A new figure of merit is proposed that evaluates the registration result during the optimization. The phase unwrapping problem is approached through a new method involving fringe line detection. The algorithms are tested with two SEASAT SAR images of terrain near Yellowstone National Park. These images were collected on Seasat orbits 1334 and 1420, which were very close together in space, i.e., less than 100 m. The resultant elevation map is compared with the USGS digital terrain elevation model.

  18. Linear Approximation SAR Azimuth Processing Study

    NASA Technical Reports Server (NTRS)

    Lindquist, R. B.; Masnaghetti, R. K.; Belland, E.; Hance, H. V.; Weis, W. G.

    1979-01-01

    A segmented linear approximation of the quadratic phase function that is used to focus the synthetic antenna of a SAR was studied. Ideal focusing, using a quadratic varying phase focusing function during the time radar target histories are gathered, requires a large number of complex multiplications. These can be largely eliminated by using linear approximation techniques. The result is a reduced processor size and chip count relative to ideally focussed processing and a correspondingly increased feasibility for spaceworthy implementation. A preliminary design and sizing for a spaceworthy linear approximation SAR azimuth processor meeting requirements similar to those of the SEASAT-A SAR was developed. The study resulted in a design with approximately 1500 IC's, 1.2 cubic feet of volume, and 350 watts of power for a single look, 4000 range cell azimuth processor with 25 meters resolution.

  19. Stop outbreak of SARS with infrared cameras

    NASA Astrophysics Data System (ADS)

    Wu, Yigang M.

    2004-04-01

    SARS (Severe Acute Respiratory Syndrome, commonly known as Atypical Pneumonia in mainland China) caused 8422 people affected and resulting in 918 deaths worldwide in half year. This disease can be transmitted by respiratory droplets or by contact with a patient's respiratory secretions. This means it can be spread out very rapidly through the public transportations by the travelers with the syndrome. The challenge was to stop the SARS carriers traveling around by trains, airplanes, coaches and etc. It is impractical with traditional oral thermometers or spot infrared thermometers to screen the tens of travelers with elevated body temperature from thousands of normal travelers in hours. The thermal imager with temperature measurement function is a logical choice for this special application although there are some limitations and drawbacks. This paper discusses the real SARS applications of industrial infrared cameras in China from April to July 2003.

  20. Laboratory Evaporation Testing Of Hanford Waste Treatment Plant Low Activity Waste Off-Gas Condensate Simulant

    SciTech Connect

    Adamson, Duane J.; Nash, Charles A.; McCabe, Daniel J.; Crawford, Charles L.; Wilmarth, William R.

    2014-01-27

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream, LAW Off-Gas Condensate, from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable de-coupled operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also decrease the LAW vitrification mission duration and quantity of canistered glass waste forms. This LAW Off-Gas Condensate stream contains components that are volatile at melter temperatures and are problematic for the glass waste form. Because this stream recycles within WTP, these components accumulate in the Condensate stream, exacerbating their impact on the number of LAW glass containers that must be produced. Approximately 32% of the sodium in Supplemental LAW comes from glass formers used to make the extra glass to dilute the halides to be within acceptable concentration ranges in the LAW glass. Diverting the stream reduces the halides in the recycled Condensate and is a key outcome of this work. Additionally, under possible scenarios where the LAW vitrification facility commences operation prior to the WTP Pretreatment facility, identifying a disposition path becomes vitally important. This task examines the impact of potential future disposition of this stream in the Hanford tank farms, and investigates auxiliary evaporation to enable another disposition path. Unless an auxiliary evaporator is used, returning the stream to the tank farms would require evaporation in the 242-A evaporator. This stream is expected to be unusual because it will be very high in corrosive species that are volatile in the melter

  1. SAR imagery using chaotic carrier frequency agility pulses

    NASA Astrophysics Data System (ADS)

    Xu, Xiaojian; Feng, Xiangzhi

    2011-06-01

    Synthetic aperture radar (SAR) systems are getting more and more applications in both civilian and military remote sensing missions. With the increasing deployment of electronic countermeasures (ECM) on modern battlefields, SAR encounters more and more interference jamming signals. The ECM jamming signals cause the SAR system to receive and process erroneous information which results in severe degradations in the output SAR images and/or formation of phony images of nonexistent targets. As a consequence, development of the electronic counter-countermeasures (ECCM) capability becomes one of the key problems in SAR system design. This paper develops radar signaling strategies and algorithms that enhance the ability of synthetic aperture radar to image targets under conditions of electronic jamming. The concept of SAR using chaotic carrier frequency agility pulses (CCFAP-SAR) is first proposed. Then the imaging procedure for CCFAP-SAR is discussed in detail. The ECCM performance of CCFAP-SAR for both depressive noise jamming and deceptive repeat jamming is analyzed. The impact of the carrier frequency agility range on the image quality of CCFAP-SAR is also studied. Simulation results demonstrate that, with adequate agility range of the carrier frequency, the proposed CCFAP-SAR performs as well as conventional radar with linear frequency modulation (LFM) waveform in image quality and slightly better in anti-noise depressive jamming; while performs very well in anti-deception jamming which cannot be rejected by LFM-SAR.

  2. Severe Acute Respiratory Syndrome (SARS) Prevention in Taiwan

    ERIC Educational Resources Information Center

    Liu, Hsueh-Erh

    2004-01-01

    Severe Acute Respiratory Syndrome (SARS) is a newly identified respiratory disease that threatened Taiwan between April 14 and July 5, 2003. Chang Gung University experienced various SARS-related episodes, such as the postponement of classes for 7 days, the reporting of probable SARS cases, and the isolation of students under Level A and B…

  3. Progress Toward Demonstrating SAR Monitoring of Chinese Seas

    NASA Astrophysics Data System (ADS)

    Huang, Weigen; Johannessen, Johnny; Alpers, Werner; Yang, Jingsong

    2010-12-01

    "Demonstrating SAR monitoring of Chinese seas" is a project of the ESA-MOST Dragon 2 program. This paper presents the progress of the project. Retrieval algorithms for SAR monitoring of sea surface currents, oceanic internal waves, sea surface winds, oil spills and ships have been advanced. SAR monitoring of Chinese seas in near-real-time is now in demonstration phase.

  4. First Results from an Airborne Ka-Band SAR Using SweepSAR and Digital Beamforming

    NASA Technical Reports Server (NTRS)

    Sadowy, Gregory A.; Ghaemi, Hirad; Hensley, Scott C.

    2012-01-01

    SweepSAR is a wide-swath synthetic aperture radar technique that is being studied for application on the future Earth science radar missions. This paper describes the design of an airborne radar demonstration that simulates an 11-m L-band (1.2-1.3 GHz) reflector geometry at Ka-band (35.6 GHz) using a 40-cm reflector. The Ka-band SweepSAR Demonstration system was flown on the NASA DC-8 airborne laboratory and used to study engineering performance trades and array calibration for SweepSAR configurations. We present an instrument and experiment overview, instrument calibration and first results.

  5. Efficacy of various disinfectants against SARS coronavirus.

    PubMed

    Rabenau, H F; Kampf, G; Cinatl, J; Doerr, H W

    2005-10-01

    The recent severe acute respiratory syndrome (SARS) epidemic in Asia and Northern America led to broad use of various types of disinfectant in order to control the public spread of the highly contagious virus. However, only limited data were available to demonstrate their efficacy against SARS coronavirus (SARS-CoV). We therefore investigated eight disinfectants for their activity against SARS-CoV according to prEN 14476. Four hand rubs were tested at 30s (Sterillium, based on 45% iso-propanol, 30% n-propanol and 0.2% mecetronium etilsulphate; Sterillium Rub, based on 80% ethanol; Sterillium Gel, based on 85% ethanol; Sterillium Virugard, based on 95% ethanol). Three surface disinfectants were investigated at 0.5% for 30 min and 60 min (Mikrobac forte, based on benzalkonium chloride and laurylamine; Kohrsolin FF, based on benzalkonium chloride, glutaraldehyde and didecyldimonium chloride; Dismozon pur, based on magnesium monoperphthalate), and one instrument disinfectant was investigated at 4% for 15 min, 3% for 30 min and 2% for 60 min [Korsolex basic, based on glutaraldehyde and (ethylenedioxy)dimethanol]. Three types of organic load were used: 0.3% albumin, 10% fetal calf serum, and 0.3% albumin with 0.3% sheep erythrocytes. Virus titres were determined by a quantitative test (endpoint titration) in 96-well microtitre plates. With all tested preparations, SARS-CoV was inactivated to below the limit of detection (reduction factor mostly > or =4), regardless of the type of organic load. In summary, SARS-CoV can be inactivated quite easily with many commonly used disinfectants.

  6. SAR measurement in MRI: an improved method

    NASA Astrophysics Data System (ADS)

    Romano, Rocco; Acernese, Fausto; Indovina, Pietro Luigi; Barone, Fabrizio

    2009-03-01

    During an MR procedure, the patient absorbs a portion of the transmitted RF energy, which may result in tissue heating and other adverse effects, such as alterations in visual, auditory and neural functions. The Specific Absorption Rate (SAR), in W/kg, is the RF power absorbed per unit mass of tissue and is one of the most important parameters related with thermal effects and acts as a guideline for MRI safety. Strict limits to the SAR levels are imposed by patient safety international regulations (CEI - EN 60601 - 2 - 33) and SAR measurements are required in order to verify its respect. The recommended methods for mean SAR measurement are quite problematic and often require a maintenance man intervention and long stop machine. For example, in the CEI recommended pulse energy method, the presence of a maintenance man is required in order to correctly connect the required instrumentation; furthermore, the procedure is complex and requires remarkable processing and calculus. Simpler are the calorimetric methods, also if in this case long acquisition times are required in order to have significant temperature variations and accurate heat capacity knowledge (CEI - EN 60601 - 2- 33). The phase transition method is a new method to measure SAR in MRI which has the advantages to be very simple and to overcome all the typical calorimetric method problems. It does not require in gantry temperature measurements, any specific heat or heat capacity knowledge, but only mass and time measurement. Furthermore, in this method, it is possible to show that all deposited SAR power can be considered acquired and measured.

  7. Observations on an evaporative, elbow thermosyphon

    SciTech Connect

    Lock, G.S.H.; Fu, J. )

    1993-05-01

    The performance of the evaporative elbow system was found to be superior to that of the nonevaporative system, but comparable to the performance of the linear system. The parametric role of the evaporator wall temperature, the condenser wall temperature, and the vapor saturation temperature was demonstrated, each revealing a similar monotonic effect. With the evaporator upright, the data were found to be similar to, but displaced from, the upright condenser data. The upright evaporator gave the better performance, but not overwhelmingly so. The limit of performance with the condenser upright was found to be dictated by evaporator dryout. In the upright evaporator configuration, the limit may be attributed to flooding in the poorly draining condenser; this limit was indistinguishable from geyser behavior at low vapor pressures. 16 refs., 3 figs.

  8. CCD architecture for spacecraft SAR image processing

    NASA Technical Reports Server (NTRS)

    Arens, W. E.

    1977-01-01

    A real-time synthetic aperture radar (SAR) image processing architecture amenable to future on-board spacecraft applications is currently under development. Using state-of-the-art charge-coupled device (CCD) technology, low cost and power are inherent features. Other characteristics include the ability to reprogram correlation reference functions, correct for range migration, and compensate for antenna beam pointing errors on the spacecraft in real time. The first spaceborne demonstration is scheduled to be flown as an experiment on a 1982 Shuttle imaging radar mission (SIR-B). This paper describes the architecture and implementation characteristics of this initial spaceborne CCD SAR image processor.

  9. Estimating IMU heading error from SAR images.

    SciTech Connect

    Doerry, Armin Walter

    2009-03-01

    Angular orientation errors of the real antenna for Synthetic Aperture Radar (SAR) will manifest as undesired illumination gradients in SAR images. These gradients can be measured, and the pointing error can be calculated. This can be done for single images, but done more robustly using multi-image methods. Several methods are provided in this report. The pointing error can then be fed back to the navigation Kalman filter to correct for problematic heading (yaw) error drift. This can mitigate the need for uncomfortable and undesired IMU alignment maneuvers such as S-turns.

  10. Unsupervised Segmentation Of Polarimetric SAR Data

    NASA Technical Reports Server (NTRS)

    Rignot, Eric J.; Dubois, Pascale; Van Zyl, Jakob; Kwok, Ronald; Chellappa, Rama

    1994-01-01

    Method of unsupervised segmentation of polarimetric synthetic-aperture-radar (SAR) image data into classes involves selection of classes on basis of multidimensional fuzzy clustering of logarithms of parameters of polarimetric covariance matrix. Data in each class represent parts of image wherein polarimetric SAR backscattering characteristics of terrain regarded as homogeneous. Desirable to have each class represent type of terrain, sea ice, or ocean surface distinguishable from other types via backscattering characteristics. Unsupervised classification does not require training areas, is nearly automated computerized process, and provides nonsubjective selection of image classes naturally well separated by radar.

  11. Apparatus and method for evaporator defrosting

    DOEpatents

    Mei, Viung C.; Chen, Fang C.; Domitrovic, Ronald E.

    2001-01-01

    An apparatus and method for warm-liquid defrosting of the evaporator of a refrigeration system. The apparatus includes a first refrigerant expansion device that selectively expands refrigerant for cooling the evaporator, a second refrigerant expansion device that selectively expands the refrigerant after the refrigerant has passed through the evaporator, and a defrosting control for the first refrigerant expansion device and second refrigerant expansion device to selectively defrost the evaporator by causing warm refrigerant to flow through the evaporator. The apparatus is alternately embodied with a first refrigerant bypass and/or a second refrigerant bypass for selectively directing refrigerant to respectively bypass the first refrigerant expansion device and the second refrigerant expansion device, and with the defrosting control connected to the first refrigerant bypass and/or the second refrigerant bypass to selectively activate and deactivate the bypasses depending upon the current cycle of the refrigeration system. The apparatus alternately includes an accumulator for accumulating liquid and/or gaseous refrigerant that is then pumped either to a refrigerant receiver or the first refrigerant expansion device for enhanced evaporator defrosting capability. The inventive method of defrosting an evaporator in a refrigeration system includes the steps of compressing refrigerant in a compressor and cooling the refrigerant in the condenser such that the refrigerant is substantially in liquid form, passing the refrigerant substantially in liquid form through the evaporator, and expanding the refrigerant with a refrigerant expansion device after the refrigerant substantially passes through the evaporator.

  12. Dynamics of complete wetting liquid under evaporation

    NASA Astrophysics Data System (ADS)

    Pham, Chi-Tuong; Berteloot, Guillaume; Lequeux, François; Limat, Laurent

    2008-11-01

    The dynamics of a contact line under evaporation and total wetting conditions is studied taking into account the divergent nature of evaporation near the border of the liquid, as evidenced by Deegan et al. [Nature 389, 827 (1997)]. Complete wetting is assumed to be due to Van der Waals interactions. The existence of a precursor film at the edge of the liquid is shown analytically and numerically. The length of the precursor film is controlled by Hamacker constant and evaporative flux. Past the precursor film, Tanner's law is generalized accounting for evaporative effects.

  13. Portable brine evaporator unit, process, and system

    DOEpatents

    Hart, Paul John; Miller, Bruce G.; Wincek, Ronald T.; Decker, Glenn E.; Johnson, David K.

    2009-04-07

    The present invention discloses a comprehensive, efficient, and cost effective portable evaporator unit, method, and system for the treatment of brine. The evaporator unit, method, and system require a pretreatment process that removes heavy metals, crude oil, and other contaminates in preparation for the evaporator unit. The pretreatment and the evaporator unit, method, and system process metals and brine at the site where they are generated (the well site). Thus, saving significant money to producers who can avoid present and future increases in transportation costs.

  14. Pattern formation in evaporating drops

    NASA Astrophysics Data System (ADS)

    Li, Fang-I.

    The redistribution of organic solutes during drop evaporation is a nanoscale self assembly process with relevance to technologies ranging from inkjet printing of organic displays to synthesis of bio-smart interfaces for sensing and screening. Atomic force microscopy studies comparing the behavior of different generation dendrimers with different surface chemistry in two solvent alcohols on mica substrates confirm that the detailed morphologies of condensed dendrimer ring structures resulting from micro-droplet evaporation sensitively depend on the surface chemistry, the solute evaporation rate and the dendrimer generation. For the dilute concentration studied here the presence of periodically 'scalloped' molecular rings is ubiquitous. The instability wavelength of the scalloped rings is found to be proportional to the width of the ring, similar to observations of the rim instability in dewetting holes. The effect of the surface chemistry of the dendrimer molecules is obvious in the detailed structure of the self assembled rings. Varying the chain length of solvent alcohol leads to modification of ring patterns. The influence of dendrimer generation on ring structure primarily reflects the increase in dendrimer density with generation number. The evolution of G2-50%C12 -pentanol rings as a function of dendrimer concentration is also described. High surface mobility and phase transformation phenomena in condensed, micro-scale dendrimer structures are documented, again using atomic force microscopy. Stratified dendrimer rings undergo dramatic temperature, time and dendrimer generation dependent morphological changes associated with large-scale molecular rearrangements and partial melting. These transformations produce ring structures consisting of a highly stable first monolayer of the scalloped structure in equilibrium with spherical cap shaped dendrimer islands that form at the center of each pre-existing scallop (creating a 'pearl necklace' structure). Analysis of

  15. Evaporating Global Charges in Braneworld

    NASA Astrophysics Data System (ADS)

    Dvali, Gia; Gabadadze, Gregory

    2002-09-01

    In braneworld models the global charges, such as baryon or lepton number, are not conserved. The global-charge non-conservation is a rather model-independent feature which arises due to quantum fluctuations of the brane worldvolume. These fluctuations create ``baby branes'' that can capture some global charges and carry them away into the bulk of higher-dimensional space. Such processes are exponentially suppressed at low-energies, but can be significant at high enough temperatures or energies. These effects can lead to a new, intrinsically high-dimensional mechanism of baryogenesis. Baryon asymmetry might be produced due either to evaporation into the baby branes, or creation of the baryon number excess in collisions of two Brane Universes.

  16. Catastrophic evaporation of rocky planets

    NASA Astrophysics Data System (ADS)

    Perez-Becker, Daniel; Chiang, Eugene

    2013-08-01

    Short-period exoplanets can have dayside surface temperatures surpassing 2000 K, hot enough to vaporize rock and drive a thermal wind. Small enough planets evaporate completely. We construct a radiative hydrodynamic model of atmospheric escape from strongly irradiated, low-mass rocky planets, accounting for dust-gas energy exchange in the wind. Rocky planets with masses ≲ 0.1 M⊕ (less than twice the mass of Mercury) and surface temperatures ≳2000 K are found to disintegrate entirely in ≲10 Gyr. When our model is applied to Kepler planet candidate KIC 12557548b - which is believed to be a rocky body evaporating at a rate of dot{M} gtrsim 0.1 M_{{{oplus }}} Gyr-1 - our model yields a present-day planet mass of ≲ 0.02 M⊕ or less than about twice the mass of the Moon. Mass-loss rates depend so strongly on planet mass that bodies can reside on close-in orbits for Gyr with initial masses comparable to or less than that of Mercury, before entering a final short-lived phase of catastrophic mass-loss (which KIC 12557548b has entered). Because this catastrophic stage lasts only up to a few per cent of the planet's life, we estimate that for every object like KIC 12557548b, there should be 10-100 close-in quiescent progenitors with sub-day periods whose hard-surface transits may be detectable by Kepler - if the progenitors are as large as their maximal, Mercury-like sizes (alternatively, the progenitors could be smaller and more numerous). According to our calculations, KIC 12557548b may have lost ˜70 per cent of its formation mass; today we may be observing its naked iron core.

  17. The "Myth" of the Minimum SAR Antenna Area Constraint

    NASA Technical Reports Server (NTRS)

    Freeman, A.; Johnson, W. T. K.; Huneycutt, B.; Jordan, R.; Hensley, S.; Siqueira, P.; Curlander, J.

    1998-01-01

    A design constraint traceable ot the early days of spaceborne Synthetic Aperture Radar (SAR) is known as the minimum antenna area constraint for SAR. In this paper, it is confirmed that this constraint strictly applies only to the case where both the best possible resolution and the widest possible swath are the design goals. SAR antennas with area smaller than the constraint allows are shown to be possible, have been used on spaceborne SAR missions in the past, and should permit further, lower-cost SAR mission in the future.

  18. A New Design of Metamaterials for SAR Reduction

    NASA Astrophysics Data System (ADS)

    Faruque, M. R. I.; Islam, M. T.; Ali, M. A. M.

    2013-04-01

    The purpose of this paper is to calculate the reduction of specific absorption rate (SAR) with a new design of square metamaterials (SMMs). The finite-difference time-domain (FDTD) method with lossy-Drude model is adopted in this analysis. The method of SAR reduction is discussed and the effects of location, distance, and size of metamaterials are analyzed. SMMs have achieved a 53.06% reduction of the initial SAR value for the case of 10 gm SAR. These results put forward a guideline to select various types of metamaterials with the maximum SAR reducing effect for a cellular phone.

  19. Nanofluid Drop Evaporation: Experiment, Theory, and Modeling

    NASA Astrophysics Data System (ADS)

    Gerken, William James

    Nanofluids, stable colloidal suspensions of nanoparticles in a base fluid, have potential applications in the heat transfer, combustion and propulsion, manufacturing, and medical fields. Experiments were conducted to determine the evaporation rate of room temperature, millimeter-sized pendant drops of ethanol laden with varying amounts (0-3% by weight) of 40-60 nm aluminum nanoparticles (nAl). Time-resolved high-resolution drop images were collected for the determination of early-time evaporation rate (D2/D 02 > 0.75), shown to exhibit D-square law behavior, and surface tension. Results show an asymptotic decrease in pendant drop evaporation rate with increasing nAl loading. The evaporation rate decreases by approximately 15% at around 1% to 3% nAl loading relative to the evaporation rate of pure ethanol. Surface tension was observed to be unaffected by nAl loading up to 3% by weight. A model was developed to describe the evaporation of the nanofluid pendant drops based on D-square law analysis for the gas domain and a description of the reduction in liquid fraction available for evaporation due to nanoparticle agglomerate packing near the evaporating drop surface. Model predictions are in relatively good agreement with experiment, within a few percent of measured nanofluid pendant drop evaporation rate. The evaporation of pinned nanofluid sessile drops was also considered via modeling. It was found that the same mechanism for nanofluid evaporation rate reduction used to explain pendant drops could be used for sessile drops. That mechanism is a reduction in evaporation rate due to a reduction in available ethanol for evaporation at the drop surface caused by the packing of nanoparticle agglomerates near the drop surface. Comparisons of the present modeling predictions with sessile drop evaporation rate measurements reported for nAl/ethanol nanofluids by Sefiane and Bennacer [11] are in fairly good agreement. Portions of this abstract previously appeared as: W. J

  20. Ambiguity noise analysis of a SAR system

    NASA Astrophysics Data System (ADS)

    Tian, Haishan; Chang, Wenge; Li, Xiangyang

    2015-12-01

    The presence of range and azimuth (or Doppler) ambiguities in synthetic aperture radars (SARs) is well known. The ambiguity noise is related to the antenna pattern and the value of pulse repetition frequency (PRF). Because a new frequency modulated continuous wave (FMCW) SAR has the characters of low cost and small size, and the capacity of real-time signal processing, the antenna will likely vibrate or deform due to a lack of the stabilized platform. And the value of PRF cannot be much high because of the high computation burden for the real-time processing. The aim of this study is to access and improve the performance of a new FMCW SAR system based on the ambiguity noise. First, the quantitative analysis of the system's ambiguity noise level is performed; an antenna with low sidelobes is designed. The conclusion is that the range ambiguity noise is small; the azimuth ambiguity noise is somewhat increased, however, it is sufficiently small to have marginal influence on the image quality. Finally, the ambiguity noise level is measured using the imaging data from a Ku-band FMCW SAR. The results of this study show that the measured noise level coincides with the theoretical noise level.

  1. Epidemic Models for SARS and Measles

    ERIC Educational Resources Information Center

    Rozema, Edward

    2007-01-01

    Recent events have led to an increased interest in emerging infectious diseases. This article applies various deterministic models to the SARS epidemic of 2003 and a measles outbreak in the Netherlands in 1999-2000. We take a historical approach beginning with the well-known logistic curve and a lesser-known extension popularized by Pearl and Reed…

  2. Acousto-Optical/Electronic Processor For SAR

    NASA Technical Reports Server (NTRS)

    Bicknell, T. J.; Farr, W. H.

    1992-01-01

    Lightweight, compact, low-power apparatus processes synthetic-aperture-radar (SAR) returns in real time, providing imagery aboard moving aircraft or spacecraft platform. Processor includes optical and electronic subsystems that, together, resolve range and azimuth coordinates of radar targets by combination of spatial and temporal integrations.

  3. SAR Image Despeckling Via Structural Sparse Representation

    NASA Astrophysics Data System (ADS)

    Lu, Ting; Li, Shutao; Fang, Leyuan; Benediktsson, Jón Atli

    2016-12-01

    A novel synthetic aperture radar (SAR) image despeckling method based on structural sparse representation is introduced. The proposed method utilizes the fact that different regions in SAR images correspond to varying terrain reflectivity. Therefore, SAR images can be split into a heterogeneous class (with a varied terrain reflectivity) and a homogeneous class (with a constant terrain reflectivity). In the proposed method, different sparse representation based despeckling schemes are designed by combining the different region characteristics in SAR images. For heterogeneous regions with rich structure and texture information, structural dictionaries are learned to appropriately represent varied structural characteristics. Specifically, each patch in these regions is sparsely coded with the best fitted structural dictionary, thus good structure preservation can be obtained. For homogenous regions without rich structure and texture information, the highly redundant photometric self-similarity is exploited to suppress speckle noise without introducing artifacts. That is achieved by firstly learning the sub-dictionary, then simultaneously sparsely coding for each group of photometrically similar image patches. Visual and objective experimental results demonstrate the superiority of the proposed method over the-state-of-the-art methods.

  4. The Seamless SAR Archive (SSARA) Project and Other SAR Activities at UNAVCO

    NASA Astrophysics Data System (ADS)

    Baker, S.; Crosby, C. J.; Meertens, C. M.; Fielding, E. J.; Bryson, G.; Buechler, B.; Nicoll, J.; Baru, C.

    2014-12-01

    The seamless synthetic aperture radar archive (SSARA) implements a seamless distributed access system for SAR data and derived data products (i.e. interferograms). SSARA provides a unified application programming interface (API) for SAR data search and results at the Alaska Satellite Facility and UNAVCO (WInSAR and EarthScope data archives) through the use of simple web services. A federated query service was developed using the unified APIs, providing users a single search interface for both archives. Interest from the international community has prompted an effort to incorporate ESA's Virtual Archive 4 Geohazard Supersites and Natural Laboratories (GSNL) collections and other archives into the federated query service. SSARA also provides Digital Elevation Model access for topographic correction via a simple web service through OpenTopography and tropospheric correction products through JPL's OSCAR service. Additionally, UNAVCO provides data storage capabilities for WInSAR PIs with approved TerraSAR-X and ALOS-2 proposals which allows easier distribution to US collaborators on associated proposals and facilitates data access through the SSARA web services. Further work is underway to incorporate federated data discovery for GSNL across SAR, GPS, and seismic datasets provided by web services from SSARA, GSAC, and COOPEUS.

  5. Modeling and a correlation algorithm for spaceborne SAR signals

    NASA Technical Reports Server (NTRS)

    Wu, C.; Liu, K. Y.; Jin, M.

    1982-01-01

    A mathematical model of a spaceborne synthetic aperture radar (SAR) response is presented. Thhe associated SAR system performance, in terms of the resolution capability, is also discussed. The analysis of spaceborne SAR target response indicates that the SAR correlation problem is a two-dimensional one with a linear shift-variant response function. A new digital processing algorithm is proposed here in order to realize an economical digital SAR correlation system. The proposed algorithm treats the two-dimensional correlation by a combination of frequency domain fast correlation in the azimuth dimension and a time-domain convolver type of operation in the range dimension. Finally, digitally correlated SEASAT satellite SAR imagery is used in an exemplary sense to validate the SAR response model and the new digital processing technique developed.

  6. Therapeutic effects of TAK-242, a novel selective Toll-like receptor 4 signal transduction inhibitor, in mouse endotoxin shock model.

    PubMed

    Sha, Takukyu; Sunamoto, Mie; Kitazaki, Tomoyuki; Sato, Jun; Ii, Masayuki; Iizawa, Yuji

    2007-10-01

    Ethyl (6R)-6-[N-(2-chloro-4-fluorophenyl)sulfamoyl]cyclohex-1-ene-1-carboxylate (TAK-242), a novel small molecule that selectively inhibits Toll-like receptor 4-mediated signaling, inhibits various kinds of inflammatory mediators such as nitric oxide (NO), tumor necrosis factor (TNF)-alpha, interleukin (IL)-1, IL-6, IL-10, macrophage inhibitory protein (MIP)-2 and prostaglandin E2 from lipopolysaccharide (LPS)-stimulated macrophages. The effects of TAK-242 were evaluated in a mouse model of endotoxin shock. Intravenous administration of TAK-242 to mice 1 h before LPS challenge dose-dependently inhibited LPS-induced increases in serum levels of TNF-alpha, IL-1beta, IL-6, IL-10, MIP-2, and NO metabolites. TAK-242 protected mice from LPS-induced lethality in a similar dose-dependent manner, and rescued 100% of mice at a dose of 1 mg/kg. Interestingly, TAK-242 worked quickly, and showed beneficial effects even when administered after LPS challenge. Even though increases in serum levels of IL-6 and hypothermia were already evident 2 h after LPS challenge, TAK-242 administration inhibited further increase in IL-6 levels and decrease in body temperature. LPS-induced increases in serum levels of organ dysfunction markers, such as alanine aminotransferase, total bilirubin, and blood urea nitrogen, were also significantly suppressed by post-treatment as well as pre-treatment. Furthermore, administration of 3 mg/kg TAK-242 significantly increased survival of mice, even when given 4 h after LPS challenge. These results suggest that TAK-242 protects mice against LPS-induced lethality by inhibiting production of multiple cytokines and NO. TAK-242 has a quick onset of action and provides significant benefits by post-treatment, suggesting that it may be a promising drug candidate for the treatment of sepsis. PMID:17632100

  7. Evaporation mitigation using floating modular devices

    NASA Astrophysics Data System (ADS)

    Hassan, M. Mahmudul; Peirson, William Leslie; Neyland, Bryce M.; Fiddis, Nicholas McQuistan

    2015-11-01

    Reducing evaporation losses from open water storages is of paramount importance in the improvement of water security in arid countries, including Australia. Widespread adoption of evaporation mitigation techniques has been prevented by their high capital and maintenance or operating costs. The use of clean, floating recycled materials to mitigate evaporation technique has been investigated systematically at sites within both the coastal and semi-arid zones of Australia. Evaporation reduction systematically increases with the proportion of covered surface. Evaporation is reduced by 43% at coastal site and 37% at arid zone site at the maximum packing densities achievable for a single layer of floating devices. The study highlights the importance of both long-term investigations and the climatic influences in the robust quantification of evaporation mitigation. The effects of solar radiation, temperature, wind speed and relative humidity on the evaporation rate at both study sites have been determined in terms of both the classical Penman model and FAO Penman Monteith model with corresponding pan coefficients quantified. FAO Penman Monteith model better estimates evaporation from the open reference tank.

  8. Advanced evaporator technology progress report FY 1992

    SciTech Connect

    Chamberlain, D.; Hutter, J.C.; Leonard, R.A.

    1995-01-01

    This report summarizes the work that was completed in FY 1992 on the program {open_quotes}Technology Development for Concentrating Process Streams.{close_quotes} The purpose of this program is to evaluate and develop evaporator technology for concentrating radioactive waste and product streams such as those generated by the TRUEX process. Concentrating these streams and minimizing the volume of waste generated can significantly reduce disposal costs; however, equipment to concentrate the streams and recycle the decontaminated condensates must be installed. LICON, Inc., is developing an evaporator that shows a great deal of potential for this application. In this report, concepts that need to be incorporated into the design of an evaporator operated in a radioactive environment are discussed. These concepts include criticality safety, remote operation and maintenance, and materials of construction. Both solubility and vapor-liquid equilibrium data are needed to design an effective process for concentrating process streams. Therefore, literature surveys were completed and are summarized in this report. A model that is being developed to predict vapor phase compositions is described. A laboratory-scale evaporator was purchased and installed to study the evaporation process and to collect additional data. This unit is described in detail. Two new LICON evaporators are being designed for installation at Argonne-East in FY 1993 to process low-level radioactive waste generated throughout the laboratory. They will also provide operating data from a full-sized evaporator processing radioactive solutions. Details on these evaporators are included in this report.

  9. Ultrasonic spray evaporative air coolers. Final report

    SciTech Connect

    Not Available

    1982-04-01

    Theoretical and experimental studies on the development of an energy-efficient evaporative air cooling device employing ultrasonic spray nozzles is discussed. The following works were performed during the project period: (1) Feasibility study of a breadboard model of the evaporative cooler, (2) design of a prototype cooling unit for laboratory and field studies, and (3) preliminary survey of potential applications.

  10. Representational Issues in Students Learning about Evaporation

    ERIC Educational Resources Information Center

    Tytler, Russell; Prain, Vaughan; Peterson, Suzanne

    2007-01-01

    This study draws on recent research on the central role of representation in learning. While there has been considerable research on students' understanding of evaporation, the representational issues entailed in this understanding have not been investigated in depth. The study explored students' engagement with evaporation phenomena through…

  11. Cassini RADAR's first SAR observations of Enceladus

    NASA Astrophysics Data System (ADS)

    Mitchell, K. L.; West, R. D.; Anderson, Y.; Team, T.

    2011-12-01

    On November 6th, 2011, Cassini RADAR will have its first opportunity to image a non-Titan icy world at close-range, including a 240 m resolution, 16 km wide Synthetic Aperture RADAR (SAR) swath of southern latitudes down to ~66° S. In addition, the spacecraft will obtain moderate resolution (~1-2 km) HiSAR and scatterometric scans for 2 northern hemisphere regions, and low resolution HiSAR & scatterometric scans (>2 km) of both inbound and outbound hemispheres in their entirety. Passive radiometry will also be obtained, co-spatial to the SAR swath at ~12 km resolution, as well as distant full disk observations. The fly-by in its entirely will provide near-global multi-layered products, massively enriching our remotely-sensed dataset for Enceladus. The goals are to: (1) Enrich our remotely-sensed coverage of Enceladus, providing a complementary imaging dataset that's sensitive to ~2.2-cm texture and dielectric properties, revealing previously undiscovered trends and anomalies; (2) Look for textural and compositional trends radial to the south polar sulci indicative of eruption processes; (3) Give moderate resolution radiometry at a wavelength complementary to CIRS to better characterize the thermal environment; (4) Provide a basis for comparison (limited "ground truth") with Titan imagery in an area covered by high resolution optical and thermal imagery; (5) Show how geology differs between Titan and Enceladus, giving insight into how Titan's geological and environmental peculiarities modulate surface landforms; and (6) Reveal surfaces with unusually high RADAR backscatter at similar resolutions to Titan SAR, to inform models of anomalously high backscatter surfaces on Titan (esp. Xanadu). We will present these observations and preliminary interpretations at the meeting, and discuss how they compare and contrast with previous optical and thermal data.

  12. BioSAR Airborne Biomass Sensing System

    SciTech Connect

    Graham, R.L.; Johnson, P.

    2007-05-24

    This CRADA was developed to enable ORNL to assist American Electronics, Inc. test a new technology--BioSAR. BioSAR is a an airborne, low frequency (80-120 MHz {approx} FM radio frequencies) synthetic aperture radar (SAR) technology which was designed and built for NASA by ZAI-Amelex under Patrick Johnson's direction. At these frequencies, leaves and small branches are nearly transparent and the majority of the energy reflected from the forest and returned to the radar is from the tree trunks. By measuring the magnitude of the back scatter, the volume of the tree trunk and therefore the biomass of the trunks can be inferred. The instrument was successfully tested on tropical rain forests in Panama. Patrick Johnson, with American Electronics, Inc received a Phase II SBIR grant from DOE Office of Climate Change to further test and refine the instrument. Mr Johnson sought ORNL expertise in measuring forest biomass in order for him to further validate his instrument. ORNL provided ground truth measurements of forest biomass at three locations--the Oak Ridge Reservation, Weyerhaeuser Co. commercial pine plantations in North Carolina, and American Energy and Power (AEP) Co. hardwood forests in southern Ohio, and facilitated flights over these forests. After Mr. Johnson processed the signal data from BioSAR instrument, the processed data were given to ORNL and we attempted to derive empirical relationships between the radar signals and the ground truth forest biomass measurements using standard statistical techniques. We were unsuccessful in deriving such relationships. Shortly before the CRADA ended, Mr Johnson discovered that FM signal from local radio station broadcasts had interfered with the back scatter measurements such that the bulk of the signal received by the BioSAR instrument was not backscatter from the radar but rather was local radio station signals.

  13. Analysis of Multipath Pixels in SAR Images

    NASA Astrophysics Data System (ADS)

    Zhao, J. W.; Wu, J. C.; Ding, X. L.; Zhang, L.; Hu, F. M.

    2016-06-01

    As the received radar signal is the sum of signal contributions overlaid in one single pixel regardless of the travel path, the multipath effect should be seriously tackled as the multiple bounce returns are added to direct scatter echoes which leads to ghost scatters. Most of the existing solution towards the multipath is to recover the signal propagation path. To facilitate the signal propagation simulation process, plenty of aspects such as sensor parameters, the geometry of the objects (shape, location, orientation, mutual position between adjacent buildings) and the physical parameters of the surface (roughness, correlation length, permittivity)which determine the strength of radar signal backscattered to the SAR sensor should be given in previous. However, it's not practical to obtain the highly detailed object model in unfamiliar area by field survey as it's a laborious work and time-consuming. In this paper, SAR imaging simulation based on RaySAR is conducted at first aiming at basic understanding of multipath effects and for further comparison. Besides of the pre-imaging simulation, the product of the after-imaging, which refers to radar images is also taken into consideration. Both Cosmo-SkyMed ascending and descending SAR images of Lupu Bridge in Shanghai are used for the experiment. As a result, the reflectivity map and signal distribution map of different bounce level are simulated and validated by 3D real model. The statistic indexes such as the phase stability, mean amplitude, amplitude dispersion, coherence and mean-sigma ratio in case of layover are analyzed with combination of the RaySAR output.

  14. Detecting slow moving targets in SAR images

    NASA Astrophysics Data System (ADS)

    Linnehan, Robert; Perlovsky, Leonid; Mutz, Chris W.; Schindler, John

    2004-08-01

    Ground moving target indication (GMTI) radars can detect slow-moving targets if their velocities are high enough to produce distinguishable Doppler frequencies. However, no reliable technique is currently available to detect targets that fall below the minimum detectable velocity (MDV) of GMTI radars. In synthetic aperture radar (SAR) images, detection of moving targets is difficult because of target smear due to motion, which could make low-RCS targets fall below stationary ground clutter. Several techniques for SAR imaging of moving targets have been discussed in the literature. These techniques require sufficient signal-to-clutter ratio (SCR) and adequate MDV for pre-detection. Other techniques require complex changes in hardware. Extracting the maximum information from SAR image data is possible using adaptive, model-based approaches. However, these approaches lead to computational complexity, which exceeds current processing power for more than a single object in an image. This combinatorial complexity is due to the need for having to consider a large number of combinations between multiple target models and the data, while estimating unknown parameters of the target models. We are developing a technique for detecting slow-moving targets in SAR images with low signal-to-clutter ratio, without minimal velocity requirements, and without combinatorial complexity. This paper briefly summarizes the difficulties related to current model-based detection algorithms. A new concept, dynamic logic, is introduced along with an algorithm suitable for the detection of very slow-moving targets in SAR images. This new mathematical technique is inspired by the analysis of biological systems, like the human brain, which combines conceptual understanding with emotional evaluation and overcomes the combinatorial complexity of model-based techniques.

  15. Controlling water evaporation through self-assembly.

    PubMed

    Roger, Kevin; Liebi, Marianne; Heimdal, Jimmy; Pham, Quoc Dat; Sparr, Emma

    2016-09-13

    Water evaporation concerns all land-living organisms, as ambient air is dryer than their corresponding equilibrium humidity. Contrarily to plants, mammals are covered with a skin that not only hinders evaporation but also maintains its rate at a nearly constant value, independently of air humidity. Here, we show that simple amphiphiles/water systems reproduce this behavior, which suggests a common underlying mechanism originating from responding self-assembly structures. The composition and structure gradients arising from the evaporation process were characterized using optical microscopy, infrared microscopy, and small-angle X-ray scattering. We observed a thin and dry outer phase that responds to changes in air humidity by increasing its thickness as the air becomes dryer, which decreases its permeability to water, thus counterbalancing the increase in the evaporation driving force. This thin and dry outer phase therefore shields the systems from humidity variations. Such a feedback loop achieves a homeostatic regulation of water evaporation. PMID:27573848

  16. Water evaporation in silica colloidal deposits.

    PubMed

    Peixinho, Jorge; Lefèvre, Grégory; Coudert, François-Xavier; Hurisse, Olivier

    2013-10-15

    The results of an experimental study on the evaporation and boiling of water confined in the pores of deposits made of mono-dispersed silica colloidal micro-spheres are reported. The deposits are studied using scanning electron microscopy, adsorption of nitrogen, and adsorption of water through attenuated total reflection-infrared spectroscopy. The evaporation is characterized using differential scanning calorimetry and thermal gravimetric analysis. Optical microscopy is used to observe the patterns on the deposits after evaporation. When heating at a constant rate and above boiling temperature, the release of water out of the deposits is a two step process. The first step is due to the evaporation and boiling of the surrounding and bulk water and the second is due to the desorption of water from the pores. Additional experiments on the evaporation of water from membranes having cylindrical pores and of heptane from silica deposits suggest that the second step is due to the morphology of the deposits.

  17. Controlling water evaporation through self-assembly.

    PubMed

    Roger, Kevin; Liebi, Marianne; Heimdal, Jimmy; Pham, Quoc Dat; Sparr, Emma

    2016-09-13

    Water evaporation concerns all land-living organisms, as ambient air is dryer than their corresponding equilibrium humidity. Contrarily to plants, mammals are covered with a skin that not only hinders evaporation but also maintains its rate at a nearly constant value, independently of air humidity. Here, we show that simple amphiphiles/water systems reproduce this behavior, which suggests a common underlying mechanism originating from responding self-assembly structures. The composition and structure gradients arising from the evaporation process were characterized using optical microscopy, infrared microscopy, and small-angle X-ray scattering. We observed a thin and dry outer phase that responds to changes in air humidity by increasing its thickness as the air becomes dryer, which decreases its permeability to water, thus counterbalancing the increase in the evaporation driving force. This thin and dry outer phase therefore shields the systems from humidity variations. Such a feedback loop achieves a homeostatic regulation of water evaporation.

  18. Quantifying nonisothermal subsurface soil water evaporation

    NASA Astrophysics Data System (ADS)

    Deol, Pukhraj; Heitman, Josh; Amoozegar, Aziz; Ren, Tusheng; Horton, Robert

    2012-11-01

    Accurate quantification of energy and mass transfer during soil water evaporation is critical for improving understanding of the hydrologic cycle and for many environmental, agricultural, and engineering applications. Drying of soil under radiation boundary conditions results in formation of a dry surface layer (DSL), which is accompanied by a shift in the position of the latent heat sink from the surface to the subsurface. Detailed investigation of evaporative dynamics within this active near-surface zone has mostly been limited to modeling, with few measurements available to test models. Soil column studies were conducted to quantify nonisothermal subsurface evaporation profiles using a sensible heat balance (SHB) approach. Eleven-needle heat pulse probes were used to measure soil temperature and thermal property distributions at the millimeter scale in the near-surface soil. Depth-integrated SHB evaporation rates were compared with mass balance evaporation estimates under controlled laboratory conditions. The results show that the SHB method effectively measured total subsurface evaporation rates with only 0.01-0.03 mm h-1difference from mass balance estimates. The SHB approach also quantified millimeter-scale nonisothermal subsurface evaporation profiles over a drying event, which has not been previously possible. Thickness of the DSL was also examined using measured soil thermal conductivity distributions near the drying surface. Estimates of the DSL thickness were consistent with observed evaporation profile distributions from SHB. Estimated thickness of the DSL was further used to compute diffusive vapor flux. The diffusive vapor flux also closely matched both mass balance evaporation rates and subsurface evaporation rates estimated from SHB.

  19. Computations of turbulent evaporating sprays

    NASA Technical Reports Server (NTRS)

    Aggarwal, S. K.; Chitre, S.

    1989-01-01

    A computational study of turbulent evaporating sprays is reported. The major focus is to examine the sensitivity of the vaporization behavior of turbulent sprays to the transient liquid-phase processes. Three models considered to represent these processes are the thin skin, infinite diffusion, and diffusion limit models. Favre-averaged equations with k-epsilon-g turbulence model are employed for the gas phase. The Lagrangian approach with a stochastic separated flow method is used for the liquid phase where the effects of gas turbulence on droplet trajectories and interphase transport rates are considered using random-walk computations. Also the variable-property effects are considered in detail. Results indicate that, depending upon the boiling temperature and heat of vaporization of the fuel considered, the vaporization behavior of turbulent sprays may be quite sensitive to the modeling of transient liquid-phase processes. Thus, it is important that for most hydrocarbon fuels these processes be adequately represented in any comprehensive spray computations. The present results also provide further support to the conclusions of earlier studies which have been based on simplified spray configurations.

  20. Characterizing and estimating noise in InSAR and InSAR time series with MODIS

    USGS Publications Warehouse

    Barnhart, William D.; Lohman, Rowena B.

    2013-01-01

    InSAR time series analysis is increasingly used to image subcentimeter displacement rates of the ground surface. The precision of InSAR observations is often affected by several noise sources, including spatially correlated noise from the turbulent atmosphere. Under ideal scenarios, InSAR time series techniques can substantially mitigate these effects; however, in practice the temporal distribution of InSAR acquisitions over much of the world exhibit seasonal biases, long temporal gaps, and insufficient acquisitions to confidently obtain the precisions desired for tectonic research. Here, we introduce a technique for constraining the magnitude of errors expected from atmospheric phase delays on the ground displacement rates inferred from an InSAR time series using independent observations of precipitable water vapor from MODIS. We implement a Monte Carlo error estimation technique based on multiple (100+) MODIS-based time series that sample date ranges close to the acquisitions times of the available SAR imagery. This stochastic approach allows evaluation of the significance of signals present in the final time series product, in particular their correlation with topography and seasonality. We find that topographically correlated noise in individual interferograms is not spatially stationary, even over short-spatial scales (<10 km). Overall, MODIS-inferred displacements and velocities exhibit errors of similar magnitude to the variability within an InSAR time series. We examine the MODIS-based confidence bounds in regions with a range of inferred displacement rates, and find we are capable of resolving velocities as low as 1.5 mm/yr with uncertainties increasing to ∼6 mm/yr in regions with higher topographic relief.

  1. Antiviral drug discovery against SARS-CoV.

    PubMed

    Wu, Yu-Shan; Lin, Wen-Hsing; Hsu, John T-A; Hsieh, Hsing-Pang

    2006-01-01

    Severe Acute Respiratory Syndrome (SARS) is a life-threatening infectious disease caused by SARS-CoV. In the 2003 outbreak, it infected more than 8,000 people worldwide and claimed the lives of more than 900 victims. The high mortality rate resulted, at least in part, from the absence of definitive treatment protocols or therapeutic agents. Although the virus spreading has been contained, due preparedness and planning, including the successful development of antiviral drugs against SARS-CoV, is necessary for possible reappearance of SARS. In this review, we have discussed currently available strategies for antiviral drug discovery and how these technologies have been utilized to identify potential antiviral agents for the inhibition of SARS-CoV replication. Moreover, progress in the drug development based on different molecular targets is also summarized, including 1) Compounds that block the S protein-ACE2-mediated viral entry; 2) Compounds targeting SARS-CoV M(pro); 3) Compounds targeting papain-like protease 2 (PLP2); 4) Compounds targeting SARS-CoV RdRp; 5) Compounds targeting SARS-CoV helicase; 6) Active compounds with unspecified targets; and 7) Research on siRNA. This review aims to provide a comprehensive account of drug discovery on SARS. The experiences with the SARS outbreak and drug discovery would certainly be an important lesson for the drug development for any new viral outbreaks that may emerge in the future.

  2. Synergistic measurements of ocean winds and waves from SAR

    NASA Astrophysics Data System (ADS)

    Zhang, Biao; Li, Xiaofeng; Perrie, William; He, Yijun

    2015-09-01

    In this study we present a synergistic method to retrieve both ocean surface wave and wind fields from spaceborne quad-polarization (QP) synthetic aperture radar (SAR) imaging mode data. This algorithm integrates QP-SAR wind vector retrieval model and the wave retrieval model, with consideration to the nonlinear mapping relationship between ocean wave spectra and SAR image spectra, in order to synergistically retrieve wind fields and wave directional spectra. The method does not require a priori information on the sea state. It combines the observed VV-polarized SAR image spectra with the retrieved wind vectors from the VH-polarized SAR image, to estimate the wind-generated wave directional spectra. The differences between the observed SAR spectra and optimal SAR image spectra associated with the wind waves are interpreted as the contributions from the swell waves. The retrieved ocean wave spectra are used to estimate the integrated spectral wave parameters such as significant wave heights, wavelengths, wave directions and wave periods. The wind and wave parameters retrieved by QP-SAR are validated against those measured by the National Data Buoy Center (NDBC) directional wave buoys under different sea states. The validation results show that the QP-SAR SAR has potential to simultaneously measure the ocean surface waves and wind fields from space.

  3. Federated query services provided by the Seamless SAR Archive project

    NASA Astrophysics Data System (ADS)

    Baker, S.; Bryson, G.; Buechler, B.; Meertens, C. M.; Crosby, C. J.; Fielding, E. J.; Nicoll, J.; Youn, C.; Baru, C.

    2013-12-01

    The NASA Advancing Collaborative Connections for Earth System Science (ACCESS) seamless synthetic aperture radar (SAR) archive (SSARA) project is a 2-year collaboration between UNAVCO, the Alaska Satellite Facility (ASF), the Jet Propulsion Laboratory (JPL), and OpenTopography at the San Diego Supercomputer Center (SDSC) to design and implement a seamless distributed access system for SAR data and derived data products (i.e. interferograms). A major milestone for the first year of the SSARA project was a unified application programming interface (API) for SAR data search and results at ASF and UNAVCO (WInSAR and EarthScope data archives) through the use of simple web services. A federated query service was developed using the unified APIs, providing users a single search interface for both archives (http://www.unavco.org/ws/brokered/ssara/sar/search). A command line client that utilizes this new service is provided as an open source utility for the community on GitHub (https://github.com/bakerunavco/SSARA). Further API development and enhancements added more InSAR specific keywords and quality control parameters (Doppler centroid, faraday rotation, InSAR stack size, and perpendicular baselines). To facilitate InSAR processing, the federated query service incorporated URLs for DEM (from OpenTopography) and tropospheric corrections (from the JPL OSCAR service) in addition to the URLs for SAR data. This federated query service will provide relevant QC metadata for selecting pairs of SAR data for InSAR processing and all the URLs necessary for interferogram generation. Interest from the international community has prompted an effort to incorporate other SAR data archives (the ESA Virtual Archive 4 and the DLR TerraSAR-X_SSC Geohazard Supersites and Natural Laboratories collections) into the federated query service which provide data for researchers outside the US and North America.

  4. Simulation of SAR backscatter for forest vegetation

    NASA Astrophysics Data System (ADS)

    Prajapati, Richa; Kumar, Shashi; Agrawal, Shefali

    2016-05-01

    Synthetic Aperture Radar (SAR) is one of the most recent imaging technology to study the forest parameters. The invincible characteristics of microwave acquisition in cloudy regions and night imaging makes it a powerful tool to study dense forest regions. A coherent combination of radar polarimetry and interferometry (PolInSAR) enhances the accuracy of retrieved biophysical parameters. This paper attempts to address the issue of estimation of forest structural information caused due to instability of radar platforms through simulation of SAR image. The Terai Central Forest region situated at Haldwani area in Uttarakhand state of India was chosen as the study area. The system characteristics of PolInSAR dataset of Radarsat-2 SAR sensor was used for simulation process. Geometric and system specifications like platform altitude, center frequency, mean incidence angle, azimuth and range resolution were taken from metadata. From the field data it was observed that average tree height and forest stand density were 25 m and 300 stems/ha respectively. The obtained simulated results were compared with the sensor acquired master and slave intensity images. It was analyzed that for co-polarized horizontal component (HH), the mean values of simulated and real master image had a difference of 0.3645 with standard deviation of 0.63. Cross-polarized (HV) channel showed better results with mean difference of 0.06 and standard deviation of 0.1 while co-polarized vertical component (VV) did not show similar values. In case of HV polarization, mean variation between simulated and real slave images was found to be the least. Since cross-polarized channel is more sensitive to vegetation feature therefore better simulated results were obtained for this channel. Further the simulated images were processed using PolInSAR inversion modelling approach using three different techniques DEM differencing, Coherence Amplitude Inversion and Random Volume over Ground Inversion. DEM differencing

  5. Tank 26 Evaporator Feed Pump Transfer Analysis

    SciTech Connect

    Tamburello, David; Dimenna, Richard; Lee, Si

    2009-02-11

    The transfer of liquid salt solution from Tank 26 to an evaporator is to be accomplished by activating the evaporator feed pump, located approximately 72 inches above the sludge layer, while simultaneously turning on the downcomer. Previously, activation of the evaporator feed pump was an isolated event without any other components running at the same time. An analysis of the dissolved solution transfer has been performed using computational fluid dynamics methods to determine the amount of entrained sludge solids pumped out of the tank to the evaporator with the downcomer turned on. The analysis results showed that, for the maximum and minimum supernate levels in Tank 26 (252.5 and 72 inches above the sludge layer, respectively), the evaporator feed pump will entrain between 0.03 and 0.1 wt% sludge undissolved solids weight fraction into the eductor, respectively, and therefore are an order of magnitude less than the 1.0 wt% undissolved solids loading criteria to feed the evaporator. Lower tank liquid levels, with respect to the sludge layer, result in higher amounts of sludge entrainment due to the increased velocity of the plunging jets from the downcomer and evaporator feed pump bypass as well as decreased dissipation depth. Revision 1 clarifies the analysis presented in Revision 0 and corrects a mathematical error in the calculations for Table 4.1 in Revision 0. However, the conclusions and recommendations of the analysis do not change for Revision 1.

  6. Water repellency diminishes peatland evaporation after wildfire

    NASA Astrophysics Data System (ADS)

    Kettridge, N.; Lukenbach, M.; Hokanson, K. J.; Devito, K. J.; Petrone, R. M.; Hopkinson, C.; Waddington, J. M.

    2015-12-01

    Peatlands are a critically important global carbon reserve. There is increasing concern that such ecosystems are vulnerable to projected increases in wildfire severity under a changing climate. Severe fires may exceed peatland ecological resilience resulting in the long term degradation of this carbon store. Evaporation provides the primary mechanisms of water loss from such environments and can regulate the ecological stress in the initial years after wildfire. We examine variations in evaporation within burned peatlands after wildfire through small scale chamber and large scale remote sensing measurements. We show that near-surface water repellency limits peatland evaporation in these initial years post fire. Water repellent peat produced by the fire restricts the supply of water to the surface, reducing evaporation and providing a strong negative feedback to disturbance. This previously unidentified feedback operates at the landscape scale. High surface temperatures that result from large reductions in evaporation within water repellent peat are observed across the 60,000 ha burn scar three months after the wildfire. This large scale reduction in evaporation promotes high water table positions at a landscape scale which limits the rate of peat decomposition and supports the post fire ecohydrological recovery of the peatlands. However, severe burns are shown to exceed this negative feedback response. Deep burns at the peatland margins remove the hydrophobic layer, increasing post fire evaporation and leaving the peatland vulnerable to drying and associated ecological shifts.

  7. Vapor compression evaporator concentrates, recovers alcohol

    SciTech Connect

    Miller, M.N.; Robe, K.; Bacchetti, J.A.

    1982-11-01

    This article focuses on presenting a solution to the high energy cost of operating a steam heated, single effect evaporator used by Monsanto Industrial Chemical Company at a plant in Seattle, Wash., to produce vanillin from pulp and paper mill sulfite. Use of the single effect flash evaporator resulted in high energy usage due not only to the ''single effect'' use of steam, but also because energy consumption was reduced only slightly at low operating rates. The solution to this problem was the replacement of the single effect evaporator with a vapor recompression evaporator. Operating for over 1 1/2 years, the vapor recompression evaporator system has had no significant maintenance problems. The system operates with only 1/60th the steam consumption and 15% of the total energy consumption of the previous evaporator and has had no tube fouling. Also, since the distillate is condensed within the evaporator, less cooling water is required, allowing two heat exchangers to be taken out of service. When operating at less than design capacity, the energy consumption drops almost linearly with the feed rate. At low feed rates, a by-pass valve unloads the compressor to reduce energy consumption. Total energy consumption, now 15% of the previous level, results in an estimated pay-back of less than three years.

  8. Potentiating action of MKC-242, a selective 5-HT1A receptor agonist, on the photic entrainment of the circadian activity rhythm in hamsters.

    PubMed

    Moriya, T; Yoshinobu, Y; Ikeda, M; Yokota, S; Akiyama, M; Shibata, S

    1998-11-01

    Serotonergic projections from the midbrain raphe nuclei to the suprachiasmatic nuclei (SCN) are known to regulate the photic entrainment of circadian clocks. However, it is not known which 5-hydroxytryptamine (5-HT) receptor subtypes are involved in the circadian regulation. In order to verify the role of 5-HT1A receptors, we examined the effects of 5-¿3-[((2S)-1,4-benzodioxan-2-ylmethyl)amino]-propoxy¿-1,3-b enzodioxole HCl (MKC-242), a selective 5-HT1A receptor agonist, on photic entrainment of wheel-running circadian rhythms of hamsters. MKC-242 (3 mg kg(-1), i.p.) significantly accelerated the re-entrainment of wheel-running rhythms to a new 8 h delayed or advanced light-dark cycle. MKC-242 (3 mg kg(-1), i.p.) also potentiated the phase advance of the wheel-running rhythm produced by low (5 lux) or high (60 lux) intensity light pulses. In contrast, 8-hydroxydipropylaminotetralin (8-OH-DPAT)(5 mg kg(-1), i.p.), a well known 5-HT1A/5-HT7 receptor agonist, only suppressed low intensity (5 lux) light-induced phase advances. The potentiating actions of MKC-242 on light pulse-induced phase advances were observed even when injected 20 or 60 min after the light exposure. The potentiating action of MKC-242 was antagonized by WAY100635, a selective 5-HT1A receptor blocker, but not by ritanserin, a 5-HT2/5-HT7 receptor blocker, indicating that MKC-242 is activating 5-HT1A receptors. Light pulse-induced c-fos expression in the SCN and the intergeniculate leaflet (IGL) were unaffected by MKC-242 (3 mg kg(-1), i.p.). HPLC analysis demonstrated that MKC-242 (3 mg kg(-1), i.p.) decreased the 5-HIAA content in the SCN. The present results suggest that presynaptic 5-HT1A receptor activation may be involved in the potentiation of photic entrainment by MKC-242 in hamsters. PMID:9863658

  9. Potentiating action of MKC-242, a selective 5-HT1A receptor agonist, on the photic entrainment of the circadian activity rhythm in hamsters

    PubMed Central

    Moriya, T; Yoshinobu, Y; Ikeda, M; Yokota, S; Akiyama, M; Shibata, S

    1998-01-01

    Serotonergic projections from the midbrain raphe nuclei to the suprachiasmatic nuclei (SCN) are known to regulate the photic entrainment of circadian clocks. However, it is not known which 5-hydroxytryptamine (5-HT) receptor subtypes are involved in the circadian regulation. In order to verify the role of 5-HT1A receptors, we examined the effects of 5-{3-[((2S)-1,4-benzodioxan-2-ylmethyl)amino]propoxy}-1,3-benzodioxole HCl (MKC-242), a selective 5-HT1A receptor agonist, on photic entrainment of wheel-running circadian rhythms of hamsters.MKC-242 (3 mg kg−1, i.p.) significantly accelerated the re-entrainment of wheel-running rhythms to a new 8 h delayed or advanced light-dark cycle.MKC-242 (3 mg kg−1, i.p.) also potentiated the phase advance of the wheel-running rhythm produced by low (5 lux) or high (60 lux) intensity light pulses. In contrast, 8-hydroxy-dipropylaminotetralin (8-OH-DPAT)(5 mg kg−1, i.p.), a well known 5-HT1A/5-HT7 receptor agonist, only suppressed low intensity (5 lux) light-induced phase advances.The potentiating actions of MKC-242 on light pulse-induced phase advances were observed even when injected 20 or 60 min after the light exposure.The potentiating action of MKC-242 was antagonized by WAY100635, a selective 5-HT1A receptor blocker, but not by ritanserin, a 5-HT2/5-HT7 receptor blocker, indicating that MKC-242 is activating 5-HT1A receptors.Light pulse-induced c-fos expression in the SCN and the intergeniculate leaflet (IGL) were unaffected by MKC-242 (3 mg kg−1, i.p.).HPLC analysis demonstrated that MKC-242 (3 mg kg−1, i.p.) decreased the 5-HIAA content in the SCN.The present results suggest that presynaptic 5-HT1A receptor activation may be involved in the potentiation of photic entrainment by MKC-242 in hamsters. PMID:9863658

  10. Are hot Neptunes partially evaporated hot Jupiters?

    NASA Astrophysics Data System (ADS)

    Boué, G.; Figueira, P.; Correia, A. C. M.; Santos, N. C.

    2011-10-01

    The detection of short period planets (hot Jupiters and their lower mass counterparts, hot Neptunes and super-Earths) still defies the models of planet formation and evolution. Several possibilities have been proposed to explain the nature and formation process of the lower mass population, including in situ formation, disk migration, planet-planet scattering and kozai evolution, and the evaporation of a higher mass hot Jupiter. Using dynamical models and the best estimates for evaporation velocities, we show that under reasonable (and observed) physical conditions, hot Jupiter evaporation may explain the observed population of hot Neptunes/super-Earths.

  11. Are Hot Neptunes Partialy Evaporated Hot Jupiters?

    NASA Astrophysics Data System (ADS)

    Santos, Nuno; Boue, G.; Figueira, P.; Correia, A.

    2011-09-01

    The detection of short period planets (hot Jupiters and their lower mass counterparts, hot neptunes and super-earths) still defies the models of planet formation and evolution. Several possibilities have been proposed to explain the nature and formation process of the lower mass population, including in situ formation, disk migration, planet-planet scattering and kozai evolution, and the evaporation of a higher mass hot Jupiter. Using dynamical models and the best estimates for evaporation velocities, we show that under reasonable (and observed) physical conditions, hot Jupiter evaporation can explain the observed population of hot Neptunes/super-Earths.

  12. On the evaporation of ammonium sulfate solution

    SciTech Connect

    Drisdell, Walter S.; Saykally, Richard J.; Cohen, Ronald C.

    2009-07-16

    Aqueous evaporation and condensation kinetics are poorly understood, and uncertainties in their rates affect predictions of cloud behavior and therefore climate. We measured the cooling rate of 3 M ammonium sulfate droplets undergoing free evaporation via Raman thermometry. Analysis of the measurements yields a value of 0.58 {+-} 0.05 for the evaporation coefficient, identical to that previously determined for pure water. These results imply that subsaturated aqueous ammonium sulfate, which is the most abundant inorganic component of atmospheric aerosol, does not affect the vapor-liquid exchange mechanism for cloud droplets, despite reducing the saturation vapor pressure of water significantly.

  13. On the evaporation of ammonium sulfate solution.

    PubMed

    Drisdell, Walter S; Saykally, Richard J; Cohen, Ronald C

    2009-11-10

    Aqueous evaporation and condensation kinetics are poorly understood, and uncertainties in their rates affect predictions of cloud behavior and therefore climate. We measured the cooling rate of 3 M ammonium sulfate droplets undergoing free evaporation via Raman thermometry. Analysis of the measurements yields a value of 0.58 +/- 0.05 for the evaporation coefficient, identical to that previously determined for pure water. These results imply that subsaturated aqueous ammonium sulfate, which is the most abundant inorganic component of atmospheric aerosol, does not affect the vapor-liquid exchange mechanism for cloud droplets, despite reducing the saturation vapor pressure of water significantly. PMID:19861551

  14. Combined effects of underlying substrate and evaporative cooling on the evaporation of sessile liquid droplets.

    PubMed

    Wang, Yilin; Ma, Liran; Xu, Xuefeng; Luo, Jianbin

    2015-07-28

    The evaporation of pinned, sessile droplets resting on finite thickness substrates was investigated numerically by extending the combined field approach to include the thermal properties of the substrate. By this approach, the combined effects of the underlying substrate and the evaporative cooling were characterized. The results show that the influence of the substrate on the droplet evaporation depends largely on the strength of the evaporative cooling. When the evaporative cooling is weak, the influence of substrate is also weak. As the strength of evaporative cooling increases, the influence of the substrate becomes more and more pronounced. Further analyses indicated that it is the cooling at the droplet surface and the temperature dependence of the saturation vapor concentration that relate the droplet evaporation to the underlying substrate. This indicates that the evaporative cooling number, Ec, can be used to identify the influence of the substrate on the droplet evaporation. The theoretical predictions by the present model are compared and found to be in good agreement with the experimental measurements. The present work may contribute to the body of knowledge concerning droplet evaporation and may have applications in a wide range of industrial and scientific processes.

  15. Using APES for interferometric SAR imaging.

    PubMed

    Palsetia, M R; Li, J

    1998-01-01

    We present an adaptive finite impulse response (FIR) filtering approach, which is referred to as the Amplitude and Phase EStimation (APES) algorithm, for interferometric synthetic aperture radar (SAR) imaging. We compare the APES algorithm with other FIR filtering approaches including the Capon and fast Fourier transform (FFT) methods. We show via both numerical and experimental examples that the adaptive FIR filtering approaches such as Capon and APES can yield more accurate spectral estimates with much lower sidelobes and narrower spectral peaks than the FFT method. We show that although the APES algorithm yields somewhat wider spectral peaks than the Capon method, the former gives more accurate overall spectral estimates and SAR images than the latter and the FFT method.

  16. Non-parametric partitioning of SAR images

    NASA Astrophysics Data System (ADS)

    Delyon, G.; Galland, F.; Réfrégier, Ph.

    2006-09-01

    We describe and analyse a generalization of a parametric segmentation technique adapted to Gamma distributed SAR images to a simple non parametric noise model. The partition is obtained by minimizing the stochastic complexity of a quantized version on Q levels of the SAR image and lead to a criterion without parameters to be tuned by the user. We analyse the reliability of the proposed approach on synthetic images. The quality of the obtained partition will be studied for different possible strategies. In particular, one will discuss the reliability of the proposed optimization procedure. Finally, we will precisely study the performance of the proposed approach in comparison with the statistical parametric technique adapted to Gamma noise. These studies will be led by analyzing the number of misclassified pixels, the standard Hausdorff distance and the number of estimated regions.

  17. Landslide Mapping Using SqueeSAR Data

    NASA Astrophysics Data System (ADS)

    Ferretti, A.; Bellotti, F.; Alberti, S.; Allievi, J.; Del Conte, S.; Tamburini, A.; Broccolato, M.; Ratto, S.; Alberto, W.

    2011-12-01

    SqueeSAR represents the most recent advancement of PSInSAR algorithm. By exploiting signal radar returns both from Permanent and Distributed Scatterers (PS and DS), it is able to detect millimetre displacements over long periods and large areas and to obtain a significant increase in the spatial density of ground measurement points. SqueeSAR analysis is complementary to conventional geological and geomorphological studies in landslide mapping over wide areas, traditionally based on aerial-photo interpretation and field surveys. However, whenever surface displacement rates are low (mm to cm per year), assessing landslide activity is difficult or even impossible without a long-term monitoring tool, as in the case of Deep-seated Gravitational Slope Deformations (DGSD), typically characterized by large areal extent and subtle surface displacement. The availability of surface displacement time series per each measurement point allows one to have both a synoptic overview, at regional scale, as well as an in depth characterization of the instability phenomena analyzed, a meaningful support to the design of traditional monitoring networks and the efficiency testing of remedial works. When data archives are available, SqueeSAR can also provide valuable information before the installation of any terrestrial measurement system. The Italian authorities increasing interest in the application of SqueeSAR as a standard monitoring tool to help hydrogeological risk assessment, resulted in a national project, Piano Straordinario di Telerilevamento (PST), founded by the Ministry of the Environment. The aim of the project was to create the first interferometric database on a national scale for mapping unstable areas. More than 12,000 ERS and ENVISAT radar scenes acquired over Italy were processed spanning the period 1992-2010, proving that, in less than ten years, radar interferometry has become a standard monitoring tool. Recently, many regional governments in Italy have applied

  18. SAR observations in the Gulf of Mexico

    NASA Technical Reports Server (NTRS)

    Sheres, David

    1992-01-01

    The Gulf of Mexico (GOM) exhibits a wealth of energetic ocean features; they include the Loop Current with velocities of about 2 m/s and strong shear fronts, mesoscale eddies, double vortices, internal waves, and the outflow of the 'Mighty Mississippi' river. These energetic features can have a strong impact on the economies of the states surrounding the Gulf. Large fisheries, oil and gas production as well as pollution transport are relevant issues. These circulation features in the Gulf are invisible to conventional IR and visible satellite imagery during the Summer months due to cloud cover and uniform surface temperatures. Synthetic Aperture Radar (SAR) imagery of the Gulf does penetrate the cloud cover and shows a rich assembly of features there year-round. Below are preliminary results from GOM SAR imagery taken by SEASAT in 1978 and by the AIRSAR program in 1991.

  19. Joint enhancement of multichannel SAR data

    NASA Astrophysics Data System (ADS)

    Ramakrishnan, Naveen; Ertin, Emre; Moses, Randolph L.

    2007-04-01

    In this paper we consider the problem of joint enhancement of multichannel Synthetic Aperture Radar (SAR) data. Previous work by Cetin and Karl introduced nonquadratic regularization methods for image enhancement using sparsity enforcing penalty terms. For multichannel data, independent enhancement of each channel is shown to degrade the relative phase information across channels that is useful for 3D reconstruction. We thus propose a method for joint enhancement of multichannel SAR data with joint sparsity constraints. We develop both a gradient-based and a Lagrange-Newton-based method for solving the joint reconstruction problem, and demonstrate the performance of the proposed methods on IFSAR height extraction problem from multi-elevation data.

  20. SAR impulse response with residual chirps.

    SciTech Connect

    Doerry, Armin Walter

    2009-06-01

    A Linear Frequency-Modulated (LFM) chirp is a function with unit amplitude and quadratic phase characteristic. In a focused Synthetic Aperture Radar (SAR) image, a residual chirp is undesired for targets of interest, as it coarsens the manifested resolution. However, for undesired spurious signals, a residual chirp is often advantageous because it spreads the energy and thereby diminishes its peak value. In either case, a good understanding of the effects of a residual LFM chirp on a SAR Impulse Response (IPR) is required to facilitate system analysis and design. This report presents an analysis of the effects of a residual chirp on the IPR. As reference, there is a rich body of publications on various aspects of LFM chirps. A quick search reveals a plethora of articles, going back to the early 1950s. We mention here purely as trivia one of the earlier analysis papers on this waveform by Klauder, et al.

  1. Utilization of spaceborne SAR data for mapping

    NASA Technical Reports Server (NTRS)

    Curlander, J. C.

    1984-01-01

    Recent developments in automated processing of digital SEASAT SAR imagery have made feasible the generation of large-scale high-resolution maps. Standard preprocessing of raw data into digital images results in geometrically distorted imagery. Computer algorithms have been developed for unsupervised pixel location, geometric rectification, and mosaicking of multiple-image frames without ground control points. These algorithms utilize knowledge of the spacecraft trajectory data, the imaging geometry, and the coherent properties of the sensor to generate the required processing parameters. This paper discusses the advantages as well as the inherent limitations of this technique, analyzes the associated errors, and presents results using SEASAT SAR imagery. Also discussed are the results of the recent shuttle imaging radar (SIR-A) experiment as well as a follow-on experiment (SIR-B) planned for 1984.

  2. Automated preprocessing of spaceborne SAR data

    NASA Technical Reports Server (NTRS)

    Curlander, J. C.; Wu, C.; Pang, A.

    1982-01-01

    An efficient algorithm has been developed for estimation of the echo phase delay in spaceborne synthetic aperture radar (SAR) data. This algorithm utilizes the spacecraft ephemeris data and the radar echo data to produce estimates of two parameters: (1) the centroid of the Doppler frequency spectrum f(d) and (2) the Doppler frequency rate. Results are presented from tests conducted with Seasat SAR data. The test data indicates that estimation accuracies of 3 Hz for f(d) and 0.3 Hz/sec for the Doppler frequency rate are attainable. The clutterlock and autofocus techniques used for estimation of f(d) and the Doppler frequency rate, respectively are discussed and the algorithm developed for optimal implementation of these techniques is presented.

  3. Snow and glacier mapping with polarimetric SAR

    NASA Technical Reports Server (NTRS)

    Shi, Jiancheng; Dozier, Jeff; Rott, Helmut; Davis, Robert E.

    1991-01-01

    The objective of this study was to examine the capability of mapping snow and glaciers in alpine regions using synthetic aperture radar (SAR) imagery when topographic information is not available. The topographic effects on the received power for a resolution cell can be explained by the change in illumination area and incidence angle in a slant-rante representation of SAR imagery. The specific polarization signatures and phase difference between HH and VV components are relatively independent of the illuminated are, and the incidence angle has only a small effect on these parameters. They provide a suitable measurement data set for snow and glacier mapping in a high-relief area. The results show that the C-band images of the enhancement factor, the phase difference between HH and VV scattering components, and the normalized cross product of VV scattering elements provide the capability to discriminate among snow with different wetnesses, glaciers, and rocky regions.

  4. Animal models for SARS and MERS coronaviruses

    PubMed Central

    Gretebeck, Lisa M; Subbarao, Kanta

    2015-01-01

    The emergence of Severe Acute Respiratory Syndrome coronavirus (SARS-CoV) and Middle East Respiratory Syndrome coronavirus (MERS-CoV), two strains of animal coronaviruses that crossed the species barrier to infect and cause severe respiratory infections in humans within the last 12 years, have taught us that coronaviruses represent a global threat that does not recognize international borders. We can expect to see other novel coronaviruses emerge in the future. An ideal animal model should reflect the clinical signs, viral replication and pathology seen in humans. In this review, we present factors to consider in establishing an animal model for the study of novel coronaviruses and compare the different animal models that have been employed to study SARS-CoV and MERS-CoV. PMID:26184451

  5. Interferometric SAR coherence classification utility assessment

    SciTech Connect

    Yocky, D.A.

    1998-03-01

    The classification utility of a dual-antenna interferometric synthetic aperture radar (IFSAR) is explored by comparison of maximum likelihood classification results for synthetic aperture radar (SAR) intensity images and IPSAR intensity and coherence images. The addition of IFSAR coherence improves the overall classification accuracy for classes of trees, water, and fields. A threshold intensity-coherence classifier is also compared to the intensity-only classification results.

  6. Alaska SAR Facility mass storage, current system

    NASA Technical Reports Server (NTRS)

    Cuddy, David; Chu, Eugene; Bicknell, Tom

    1993-01-01

    This paper examines the mass storage systems that are currently in place at the Alaska SAR Facility (SAF). The architecture of the facility will be presented including specifications of the mass storage media that are currently used and the performances that we have realized from the various media. The distribution formats and media are also discussed. Because the facility is expected to service future sensors, the new requirements and possible solutions to these requirements are also discussed.

  7. Processing of polarametric SAR images. Final report

    SciTech Connect

    Warrick, A.L.; Delaney, P.A.

    1995-09-01

    The objective of this work was to develop a systematic method of combining multifrequency polarized SAR images. It is shown that the traditional methods of correlation, hard targets, and template matching fail to produce acceptable results. Hence, a new algorithm was developed and tested. The new approach combines the three traditional methods and an interpolation method. An example is shown that demonstrates the new algorithms performance. The results are summarized suggestions for future research are presented.

  8. A 3-D SAR approach to IFSAR processing

    SciTech Connect

    DOERRY,ARMIN W.; BICKEL,DOUGLAS L.

    2000-03-01

    Interferometric SAR (IFSAR) can be shown to be a special case of 3-D SAR image formation. In fact, traditional IFSAR processing results in the equivalent of merely a super-resolved, under-sampled, 3-D SAR image. However, when approached as a 3-D SAR problem, a number of IFSAR properties and anomalies are easily explained. For example, IFSAR decorrelation with height is merely ordinary migration in 3-D SAR. Consequently, treating IFSAR as a 3-D SAR problem allows insight and development of proper motion compensation techniques and image formation operations to facilitate optimal height estimation. Furthermore, multiple antenna phase centers and baselines are easily incorporated into this formulation, providing essentially a sparse array in the elevation dimension. This paper shows the Polar Format image formation algorithm extended to 3 dimensions, and then proceeds to apply it to the IFSAR collection geometry. This suggests a more optimal reordering of the traditional IFSAR processing steps.

  9. SAR11 bacteria linked to ocean anoxia and nitrogen loss.

    PubMed

    Tsementzi, Despina; Wu, Jieying; Deutsch, Samuel; Nath, Sangeeta; Rodriguez-R, Luis M; Burns, Andrew S; Ranjan, Piyush; Sarode, Neha; Malmstrom, Rex R; Padilla, Cory C; Stone, Benjamin K; Bristow, Laura A; Larsen, Morten; Glass, Jennifer B; Thamdrup, Bo; Woyke, Tanja; Konstantinidis, Konstantinos T; Stewart, Frank J

    2016-08-11

    Bacteria of the SAR11 clade constitute up to one half of all microbial cells in the oxygen-rich surface ocean. SAR11 bacteria are also abundant in oxygen minimum zones (OMZs), where oxygen falls below detection and anaerobic microbes have vital roles in converting bioavailable nitrogen to N2 gas. Anaerobic metabolism has not yet been observed in SAR11, and it remains unknown how these bacteria contribute to OMZ biogeochemical cycling. Here, genomic analysis of single cells from the world's largest OMZ revealed previously uncharacterized SAR11 lineages with adaptations for life without oxygen, including genes for respiratory nitrate reductases (Nar). SAR11 nar genes were experimentally verified to encode proteins catalysing the nitrite-producing first step of denitrification and constituted ~40% of OMZ nar transcripts, with transcription peaking in the anoxic zone of maximum nitrate reduction activity. These results link SAR11 to pathways of ocean nitrogen loss, redefining the ecological niche of Earth's most abundant organismal group.

  10. Formation geometries for multistatic SAR tomography

    NASA Astrophysics Data System (ADS)

    Fasano, Giancarmine; Renga, Alfredo; D'Errico, Marco

    2014-03-01

    This paper analyzes relative orbit design for multi-satellite radar missions aimed at multistatic SAR tomography. To this end, formation requirements and performance parameters are derived by adapting existing models for SAR tomography to single pass techniques. Then, relative trajectory design is carried out on the basis of an analytical relative motion model including secular J2 effects. By properly scaling the differences in orbital parameters, different formation geometries enable uniform sampling of the effective baseline along the whole orbit. The difference among the possible choices lies in latitude coverage, formation stability, and collision avoidance aspects. A numerical example of relative trajectory design is discussed considering L-band as operating frequency. In particular, achievable height resolution and unambiguous height along the orbit are pointed out for a multi-cartwheel, a multi-pendulum, and a multi-helix formation. In view of future implementation of a multi-satellite SAR tomography mission, new concepts aimed at the reduction of required satellites, and long term evolution of designed formations, are also discussed.

  11. The InSAR Scientific Computing Environment

    NASA Technical Reports Server (NTRS)

    Rosen, Paul A.; Gurrola, Eric; Sacco, Gian Franco; Zebker, Howard

    2012-01-01

    We have developed a flexible and extensible Interferometric SAR (InSAR) Scientific Computing Environment (ISCE) for geodetic image processing. ISCE was designed from the ground up as a geophysics community tool for generating stacks of interferograms that lend themselves to various forms of time-series analysis, with attention paid to accuracy, extensibility, and modularity. The framework is python-based, with code elements rigorously componentized by separating input/output operations from the processing engines. This allows greater flexibility and extensibility in the data models, and creates algorithmic code that is less susceptible to unnecessary modification when new data types and sensors are available. In addition, the components support provenance and checkpointing to facilitate reprocessing and algorithm exploration. The algorithms, based on legacy processing codes, have been adapted to assume a common reference track approach for all images acquired from nearby orbits, simplifying and systematizing the geometry for time-series analysis. The framework is designed to easily allow user contributions, and is distributed for free use by researchers. ISCE can process data from the ALOS, ERS, EnviSAT, Cosmo-SkyMed, RadarSAT-1, RadarSAT-2, and TerraSAR-X platforms, starting from Level-0 or Level 1 as provided from the data source, and going as far as Level 3 geocoded deformation products. With its flexible design, it can be extended with raw/meta data parsers to enable it to work with radar data from other platforms

  12. Using APES for interferometric SAR imaging

    NASA Astrophysics Data System (ADS)

    Li, Jian; Palsetia, Marzban

    1996-06-01

    In this paper, we present an adaptive FIR filtering approach, which is referred to as the APES (amplitude and phase estimation of a sinusoid) algorithm, for interferometric SAR imaging. We apply the APES algorithm on the data obtained from two vertically displaced apertures of a SAR system to obtain the complex amplitude and the phase difference estimates, which are proportional to the radar cross section and the height of the scatterer, respectively, at the frequencies of interest. We also demonstrate how the APES algorithm can be applied to data matrices with large dimensions without incurring high computational overheads. We compare the APES algorithm with other FIR filtering approaches including the Capon and FFT methods. We show via both numerical and experimental examples that the adaptive FIR filtering approaches such as Capon and APES can yield more accurate spectral estimates with much lower sidelobes and narrower spectral peaks than the FFT method. We show that although the APES algorithm yields somewhat wider spectral peaks than the Capon method, the former gives more accurate overall spectral estimates and SAR images than the latter and the FFT method.

  13. Forming rotated SAR images by real-time motion compensation.

    SciTech Connect

    Doerry, Armin Walter

    2012-12-01

    Proper waveform parameter selection allows collecting Synthetic Aperture Radar (SAR) phase history data on a rotated grid in the Fourier Space of the scene being imaged. Subsequent image formation preserves the rotated geometry to allow SAR images to be formed at arbitrary rotation angles without the use of computationally expensive interpolation or resampling operations. This should be useful where control of image orientation is desired such as generating squinted stripmaps and VideoSAR applications, among others.

  14. Control Measures for Severe Acute Respiratory Syndrome (SARS) in Taiwan

    PubMed Central

    Twu, Shiing-Jer; Chen, Tzay-Jinn; Chen, Chien-Jen; Olsen, Sonja J.; Lee, Long-Teng; Fisk, Tamara; Hsu, Kwo-Hsiung; Chang, Shan-Chwen; Chen, Kow-Tong; Chiang, I-Hsin; Wu, Yi-Chun; Wu, Jiunn-Shyan

    2003-01-01

    As of April 14, 2003, Taiwan had had 23 probable cases of severe acute respiratory syndrome (SARS), all imported. Taiwan isolated these first 23 patients with probable SARS in negative-pressure rooms; extensive personal protective equipment was used for healthcare workers and visitors. For the first 6 weeks of the SARS outbreak, recognized spread was limited to one healthcare worker and three household contacts. PMID:12781013

  15. Evaporation analysis for Tank SX-104

    SciTech Connect

    Barrington, C.A.

    1994-10-01

    Decreases in historical interstitial liquid level measurements in tank SX-104 were compared to predictions of a numerical model based upon diffusion of water through a porous crust. The analysis showed that observed level decreases could be explained by evaporation.

  16. Lattice-Boltzmann simulations of droplet evaporation.

    PubMed

    Ledesma-Aguilar, Rodrigo; Vella, Dominic; Yeomans, Julia M

    2014-11-01

    We study the utility and validity of lattice-Boltzmann (LB) simulations to explore droplet evaporation driven by a concentration gradient. Using a binary-fluid lattice-Boltzmann algorithm based on Cahn-Hilliard dynamics, we study the evaporation of planar films and 3D sessile droplets from smooth solid surfaces. Our results show that LB simulations accurately reproduce the classical regime of quasi-static dynamics. Beyond this limit, we show that the algorithm can be used to explore regimes where the evaporative and diffusive timescales are not widely separated, and to include the effect of boundaries of prescribed driving concentration. We illustrate the method by considering the evaporation of a droplet from a solid surface that is chemically patterned with hydrophilic and hydrophobic stripes. PMID:25186667

  17. Potential Evaporation in North America Through 2100

    NASA Video Gallery

    This animation shows the projected increase in potential evaporation through the year 2100, relative to 1980, based on the combined results of multiple climate models. The maximum increase across N...

  18. Effects of nanoparticles on nanofluid droplet evaporation

    SciTech Connect

    Chen, Ruey-Hung; Phuoc, Tran X.; Martello, Donald

    2010-09-01

    Laponite, Fe2O3 and Ag nanoparticles were added to deionized water to study their effect of evaporation rates. The results show that these nanofluid droplets evaporate at different rates (as indicated by the evaporation rate constant K in the well known D2-law) from the base fluid. Different particles lead to different values of K. As the particle concentration increases due to evaporation. K values of various Ag and Fe2O3 nanofluids go through a transition from one value to another, further demonstrating the effect of increasing nanoparticle concentration. The implication for the heat of vaporization (hfg) is discussed.

  19. New Directions for Evaporative Cooling Systems.

    ERIC Educational Resources Information Center

    Robison, Rita

    1981-01-01

    New energy saving technology can be applied to older cooling towers; in addition, evaporative chilling, a process that links a cooling tower to the chilling equipment, can reduce energy use by 80 percent. (Author/MLF)

  20. High-Capacity Heat-Pipe Evaporator

    NASA Technical Reports Server (NTRS)

    Oren, J. A.; Duschatko, R. J.; Voss, F. E.; Sauer, L. W.

    1989-01-01

    Heat pipe with cylindrical heat-input surface has higher contact thermal conductance than one with usual flat surface. Cylindrical heat absorber promotes nearly uniform flow of heat into pipe at all places around periphery of pipe, helps eliminate hotspots on heat source. Lugs in aluminum pipe carry heat from outer surface to liquid oozing from capillaries of wick. Liquid absorbs heat, evaporates, and passes out of evaporator through interlug passages.

  1. IMPACT OF EVAPORATION ON AQUEOUS TEAR LOSS

    PubMed Central

    McCulley, James P.; Uchiyama, Eduardo; Aronowicz, Joel D.; Butovich, Igor A.

    2006-01-01

    Purpose To determine the impact of evaporation on preocular aqueous tear (AT) loss in normal subjects (controls) and patients with keratoconjunctivitis sicca (KCS). Methods Eighteen patients (32 eyes) with KCS with or without associated meibomian gland dysfunction (MGD) and 11 sex-matched controls had AT evaporation determined between relative humidity (RH) of 20% and 45% using an evaporometer. AT volume, flow, and turnover were determined with a fluorophotometer. Results Evaporative rates increased significantly when the RH was changed from 40%–45% to 20%–25% (P < .001). This change was similar in all groups and on average accounted for a 99.43% increase. There were no statistically significant differences in evaporative rate between controls, the KCS alone group, and the KCS/MGD group. Dry eye patients exhibited a decreased tear turnover when compared to controls. Evaporative contribution to tear loss at 40%–45% RH was 23.47% for controls, 30.99% for “classic” KCS patients, and 25.44% for KCS/MGD patients. At 20%–25% RH, the evaporative contribution was 41.66% for controls, 57.67% for classic KCS patients, and 50.28% for KCS/MGD patients. Conclusions RH significantly impacts evaporation regardless of the presence of dry eye disease and probably accounts for the increased dry eye symptoms in people (controls and dry eye patients) in conditions of low RH (eg, deserts, airplane cabins, cold dry seasons). Contribution of evaporation to tear loss tends to be higher than previously described. The percent contribution is dependent on environmental conditions such as RH. There was a trend toward increased contribution to AT loss in dry eye patients vs controls, but statistical significance was not reached. PMID:17471332

  2. Waste Feed Evaporation Physical Properties Modeling

    SciTech Connect

    Daniel, W.E.

    2003-08-25

    This document describes the waste feed evaporator modeling work done in the Waste Feed Evaporation and Physical Properties Modeling test specification and in support of the Hanford River Protection Project (RPP) Waste Treatment Plant (WTP) project. A private database (ZEOLITE) was developed and used in this work in order to include the behavior of aluminosilicates such a NAS-gel in the OLI/ESP simulations, in addition to the development of the mathematical models. Mathematical models were developed that describe certain physical properties in the Hanford RPP-WTP waste feed evaporator process (FEP). In particular, models were developed for the feed stream to the first ultra-filtration step characterizing its heat capacity, thermal conductivity, and viscosity, as well as the density of the evaporator contents. The scope of the task was expanded to include the volume reduction factor across the waste feed evaporator (total evaporator feed volume/evaporator bottoms volume). All the physical properties were modeled as functions of the waste feed composition, temperature, and the high level waste recycle volumetric flow rate relative to that of the waste feed. The goal for the mathematical models was to predict the physical property to predicted simulation value. The simulation model approximating the FEP process used to develop the correlations was relatively complex, and not possible to duplicate within the scope of the bench scale evaporation experiments. Therefore, simulants were made of 13 design points (a subset of the points used in the model fits) using the compositions of the ultra-filtration feed streams as predicted by the simulation model. The chemistry and physical properties of the supernate (the modeled stream) as predicted by the simulation were compared with the analytical results of experimental simulant work as a method of validating the simulation software.

  3. Modeling Evaporation of Drops of Different Kerosenes

    NASA Technical Reports Server (NTRS)

    Bellan, Josette; Harstad, Kenneth

    2007-01-01

    A mathematical model describes the evaporation of drops of a hydrocarbon liquid composed of as many as hundreds of chemical species. The model is intended especially for application to any of several types of kerosenes commonly used as fuels. The concept of continuous thermodynamics, according to which the chemical composition of the evaporating multicomponent liquid is described by use of a probability distribution function (PDF). However, the present model is more generally applicable than is its immediate predecessor.

  4. Geometric registration and rectification of spaceborne SAR imagery

    NASA Technical Reports Server (NTRS)

    Curlander, J. C.; Pang, S. N.

    1982-01-01

    This paper describes the development of automated location and geometric rectification techniques for digitally processed synthetic aperture radar (SAR) imagery. A software package has been developed that is capable of determining the absolute location of an image pixel to within 60 m using only the spacecraft ephemeris data and the characteristics of the SAR data collection and processing system. Based on this location capability algorithms have been developed that geometrically rectify the imagery, register it to a common coordinate system and mosaic multiple frames to form extended digital SAR maps. These algorithms have been optimized using parallel processing techniques to minimize the operating time. Test results are given using Seasat SAR data.

  5. Applications of SAR Interferometry in Earth and Environmental Science Research.

    PubMed

    Zhou, Xiaobing; Chang, Ni-Bin; Li, Shusun

    2009-01-01

    This paper provides a review of the progress in regard to the InSAR remote sensing technique and its applications in earth and environmental sciences, especially in the past decade. Basic principles, factors, limits, InSAR sensors, available software packages for the generation of InSAR interferograms were summarized to support future applications. Emphasis was placed on the applications of InSAR in seismology, volcanology, land subsidence/uplift, landslide, glaciology, hydrology, and forestry sciences. It ends with a discussion of future research directions. PMID:22573992

  6. Applications of SAR Interferometry in Earth and Environmental Science Research.

    PubMed

    Zhou, Xiaobing; Chang, Ni-Bin; Li, Shusun

    2009-01-01

    This paper provides a review of the progress in regard to the InSAR remote sensing technique and its applications in earth and environmental sciences, especially in the past decade. Basic principles, factors, limits, InSAR sensors, available software packages for the generation of InSAR interferograms were summarized to support future applications. Emphasis was placed on the applications of InSAR in seismology, volcanology, land subsidence/uplift, landslide, glaciology, hydrology, and forestry sciences. It ends with a discussion of future research directions.

  7. Crop identification of SAR data using digital textural analysis

    NASA Technical Reports Server (NTRS)

    Nuesch, D. R.

    1983-01-01

    After preprocessing SEASAT SAR data which included slant to ground range transformation, registration to LANDSAT MSS data and appropriate filtering of the raw SAR data to minimize coherent speckle, textural features were developed based upon the spatial gray level dependence method (SGLDM) to compute entropy and inertia as textural measures. It is indicated that the consideration of texture features are very important in SAR data analysis. The SEASAT SAR data are useful for the improvement of field boundary definitions and for an earlier season estimate of corn and soybean area location than is supported by LANDSAT alone.

  8. Epipolar geometry comparison of SAR and optical camera

    NASA Astrophysics Data System (ADS)

    Li, Dong; Zhang, Yunhua

    2016-03-01

    In computer vision, optical camera is often used as the eyes of computer. If we replace camera with synthetic aperture radar (SAR), we will then enter a microwave vision of the world. This paper gives a comparison of SAR imaging and camera imaging from the viewpoint of epipolar geometry. The imaging model and epipolar geometry of the two sensors are analyzed in detail. Their difference is illustrated, and their unification is particularly demonstrated. We hope these may benefit researchers in field of computer vision or SAR image processing to construct a computer SAR vision, which is dedicated to compensate and improve human vision by electromagnetically perceiving and understanding the images.

  9. Applications of SAR Interferometry in Earth and Environmental Science Research

    PubMed Central

    Zhou, Xiaobing; Chang, Ni-Bin; Li, Shusun

    2009-01-01

    This paper provides a review of the progress in regard to the InSAR remote sensing technique and its applications in earth and environmental sciences, especially in the past decade. Basic principles, factors, limits, InSAR sensors, available software packages for the generation of InSAR interferograms were summarized to support future applications. Emphasis was placed on the applications of InSAR in seismology, volcanology, land subsidence/uplift, landslide, glaciology, hydrology, and forestry sciences. It ends with a discussion of future research directions. PMID:22573992

  10. Relationships between autofocus methods for SAR and self-survey techniques for SONAR. [Synthetic Aperture Radar (SAR)

    SciTech Connect

    Wahl, D.E.; Jakowatz, C.V. Jr.; Ghiglia, D.C.; Eichel, P.H.

    1991-01-01

    Autofocus methods in SAR and self-survey techniques in SONAR have a common mathematical basis in that they both involve estimation and correction of phase errors introduced by sensor position uncertainties. Time delay estimation and correlation methods have been shown to be effective in solving the self-survey problem for towed SONAR arrays. Since it can be shown that platform motion errors introduce similar time-delay estimation problems in SAR imaging, the question arises as to whether such techniques could be effectively employed for autofocus of SAR imagery. With a simple mathematical model for motion errors in SAR, we will show why such correlation/time-delay techniques are not nearly as effective as established SAR autofocus algorithms such as phase gradient autofocus or sub-aperture based methods. This analysis forms an important bridge between signal processing methodologies for SAR and SONAR. 5 refs., 4 figs.

  11. Sheet Membrane Spacesuit Water Membrane Evaporator

    NASA Technical Reports Server (NTRS)

    Bue, Grant; Trevino, Luis; Zapata, Felipe; Dillion, Paul; Castillo, Juan; Vonau, Walter; Wilkes, Robert; Vogel, Matthew; Frodge, Curtis

    2013-01-01

    A document describes a sheet membrane spacesuit water membrane evaporator (SWME), which allows for the use of one common water tank that can supply cooling water to the astronaut and to the evaporator. Test data showed that heat rejection performance dropped only 6 percent after being subjected to highly contaminated water. It also exhibited robustness with respect to freezing and Martian atmospheric simulation testing. Water was allowed to freeze in the water channels during testing that simulated a water loop failure and vapor backpressure valve failure. Upon closing the backpressure valve and energizing the pump, the ice eventually thawed and water began to flow with no apparent damage to the sheet membrane. The membrane evaporator also serves to de-gas the water loop from entrained gases, thereby eliminating the need for special degassing equipment such as is needed by the current spacesuit system. As water flows through the three annular water channels, water evaporates with the vapor flowing across the hydrophobic, porous sheet membrane to the vacuum side of the membrane. The rate at which water evaporates, and therefore, the rate at which the flowing water is cooled, is a function of the difference between the water saturation pressure on the water side of the membrane, and the pressure on the vacuum side of the membrane. The primary theory is that the hydrophobic sheet membrane retains water, but permits vapor pass-through when the vapor side pressure is less than the water saturation pressure. This results in evaporative cooling of the remaining water.

  12. Droplet evaporation on a soluble substrate

    NASA Astrophysics Data System (ADS)

    Mailleur, Alexandra; Pirat, Christophe; Colombani, Jean; CNES Collaboration

    2015-11-01

    Stains left by evaporated droplets are ubiquitous in everyday life as well as in industrial processes. Whatever the composition of the evaporating liquid (colloidal suspensions, biological fluids...), the stains are mostly constituted by a deposit at the periphery of the dried drop, similar to a coffee stain (Deegan, 1997). All these studies have been carried with non-reacting solids. In this presentation, we focus on the behavior of a pure-water droplet evaporating on a soluble substrate which is more complex, since three phenomena are strongly interacting: the dissolution of the substrate, the diffusion/convection of the dissolved species into the drop and the evaporation of the liquid. NaCl and KCl single crystals have been chosen for this experimental study as they are fast-dissolving solids. We have observed that the dissolution induces a pinning of the triple line from the beginning of the evaporation, leading to a decrease of the contact angle in time. At the end of the evaporation, a peripheral deposit is always formed, proof of an outward flow inside the drop (coffee-ring effect). The authors would like to thank the CNES for the financial support.

  13. Evaporation-induced cavitation in nanofluidic channels

    PubMed Central

    Duan, Chuanhua; Karnik, Rohit; Lu, Ming-Chang; Majumdar, Arun

    2012-01-01

    Cavitation, known as the formation of vapor bubbles when liquids are under tension, is of great interest both in condensed matter science as well as in diverse applications such as botany, hydraulic engineering, and medicine. Although widely studied in bulk and microscale-confined liquids, cavitation in the nanoscale is generally believed to be energetically unfavorable and has never been experimentally demonstrated. Here we report evaporation-induced cavitation in water-filled hydrophilic nanochannels under enormous negative pressures up to -7 MPa. As opposed to receding menisci observed in microchannel evaporation, the menisci in nanochannels are pinned at the entrance while vapor bubbles form and expand inside. Evaporation in the channels is found to be aided by advective liquid transport, which leads to an evaporation rate that is an order of magnitude higher than that governed by Fickian vapor diffusion in macro- and microscale evaporation. The vapor bubbles also exhibit unusual motion as well as translational stability and symmetry, which occur because of a balance between two competing mass fluxes driven by thermocapillarity and evaporation. Our studies expand our understanding of cavitation and provide new insights for phase-change phenomena at the nanoscale. PMID:22343530

  14. TANK 26 EVAPORATOR FEED PUMP TRANSFER ANALYSIS

    SciTech Connect

    Tamburello, D; Si Lee, S; Richard Dimenna, R

    2008-09-30

    The transfer of liquid salt solution from Tank 26 to an evaporator is to be accomplished by activating the evaporator feed pump, located approximately 72 inches above the sludge layer, while simultaneously turning on the downcomer. Previously, activation of the evaporator feed pump was an isolated event without any other components running at the same time. An analysis of the dissolved solution transfer has been performed using computational fluid dynamics methods to determine the amount of entrained sludge solids pumped out of the tank to the evaporator with the downcomer turned on. The analysis results showed that, for the maximum and minimum supernate levels in Tank 26 (252.5 and 72 inches above the sludge layer, respectively), the evaporator feed pump will entrain between 0.05 and 0.1 wt% sludge solids weight fraction into the eductor, respectively. Lower tank liquid levels, with respect to the sludge layer, result in higher amounts of sludge entrainment due to the increased velocity of the plunging jets from the downcomer and evaporator feed pump bypass as well as decreased dissipation depth.

  15. TANK 32 EVAPORATOR FEED PUMP TRANSFER ANALYSIS

    SciTech Connect

    Tamburello, D; Richard Dimenna, R; Si Lee, S

    2009-01-27

    The transfer of liquid salt solution from Tank 32 to an evaporator is to be accomplished by activating the evaporator feed pump, with the supernate surface at a minimum height of approximately 74.4 inches above the sludge layer, while simultaneously turning on the downcomer with a flow rate of 110 gpm. Previously, activation of the evaporator feed pump was an isolated event without any other components running at the same time. An analysis of the dissolved solution transfer has been performed using computational fluid dynamics (CFD) methods to determine the amount of entrained sludge solids pumped out of the tank toward the evaporator with the downcomer turned on. The analysis results shows that, for the minimum tank liquid level of 105 inches above the tank bottom (which corresponds to a liquid depth of 74.4 inches above the sludge layer), the evaporator feed pump will contain less than 0.1 wt% sludge solids in the discharge stream, which is an order of magnitude less than the 1.0 wt% undissolved solids (UDS) loading criteria to feed the evaporator. Lower liquid levels with respect to the sludge layer will result in higher amounts of sludge entrainment due to the increased plunging jet velocity from the downcomer disturbing the sludge layer.

  16. Acoustic Signature of Evaporation from Porous Media

    NASA Astrophysics Data System (ADS)

    Grapsas, N. K.; Shokri, N.

    2012-12-01

    During evaporation from saturated porous media, rapid interfacial jumps at the pore scale, known as Haines jumps, occur as air invades the pore network and displaces the evaporating fluid. This process produces crackling noises that can be detected using an acoustic emission (AE) machine. In this study, we investigated the acoustic signature of evaporation from porous media using Hele-Shaw cells packed with seven types of sand and glass beads differing in particle size distribution and surface roughness. Each sample was saturated with dyed water, left to evaporate under constant atmospheric conditions on a digital balance in an environmental chamber, and digitally imaged every 20 minutes to quantify phase distribution. An AE sensor was fixed to each column to record the features of observed AE events (hits) such as amplitude, absolute energy, and duration. Results indicate that the cumulative number of hits is strongly related to evaporative mass loss through time in all configurations. Additionally, the cumulative number of hits shares an inverse relationship with particle size and roughness. Finally, image analysis of the liquid phase distribution during evaporation reveals a strong correlation between the area invaded by air and the cumulative AE hits detected in each column. This confirms that AEs are generated by receding liquid menisci and the propagation of drying fronts in porous media. These results suggest that AE techniques may potentially be used to non-invasively analyze the drying of porous media.

  17. Estimating soil water evaporation using radar measurements

    NASA Technical Reports Server (NTRS)

    Sadeghi, Ali M.; Scott, H. D.; Waite, W. P.; Asrar, G.

    1988-01-01

    Field studies were conducted to evaluate the application of radar reflectivity as compared with the shortwave reflectivity (albedo) used in the Idso-Jackson equation for the estimation of daily evaporation under overcast sky and subhumid climatic conditions. Soil water content, water potential, shortwave and radar reflectivity, and soil and air temperatures were monitored during three soil drying cycles. The data from each cycle were used to calculate daily evaporation from the Idso-Jackson equation and from two other standard methods, the modified Penman and plane of zero-flux. All three methods resulted in similar estimates of evaporation under clear sky conditions; however, under overcast sky conditions, evaporation fluxes computed from the Idso-Jackson equation were consistently lower than the other two methods. The shortwave albedo values in the Idso-Jackson equation were then replaced with radar reflectivities and a new set of total daily evaporation fluxes were calculated. This resulted in a significant improvement in computed soil evaporation fluxes from the Idso-Jackson equation, and a better agreement between the three methods under overcast sky conditions.

  18. Water repellency diminishes peatland evaporation after wildfire

    NASA Astrophysics Data System (ADS)

    Kettridge, Nick; Lukenbach, Max; Hokanson, Kelly; Devito, Kevin; Hopkinson, Chris; Petrone, Rich; Mendoza, Carl; Waddington, Mike

    2016-04-01

    Peatlands are a critically important global carbon reserve. There is increasing concern that such ecosystems are vulnerable to projected increases in wildfire severity under a changing climate. Severe fires may exceed peatland ecological resilience resulting in the long term degradation of this carbon store. Evaporation provides the primary mechanisms of water loss from such environments and can regulate the ecological stress in the initial years after wildfire. We examine variations in evaporation within burned peatlands after wildfire through small scale chamber and large scale remote sensing measurements. We show that near-surface water repellency limits peatland evaporation in these initial years post fire. Water repellent peat produced by the fire restricts the supply of water to the surface, reducing evaporation and providing a strong negative feedback to disturbance. This previously unidentified feedback operates at the landscape scale. High surface temperatures that result from large reductions in evaporation within water repellent peat are observed across the 60,000 ha burn scar three months after the wildfire. This promotes high water table positions at a landscape scale which limit the rate of peat decomposition and supports the post fire ecohydrological recovery of the peatlands. However, severe burns are shown to exceed this negative feedback response. Deep burns at the peatland margins remove the hydrophobic layer, increasing post fire evaporation and leaving the peatland vulnerable to drying and associated ecological shifts.

  19. Evaporation mitigation by floating modular devices

    NASA Astrophysics Data System (ADS)

    Hassan, M. M.; Peirson, W. L.

    2016-05-01

    Prolonged periods of drought and consequent evaporation from open water bodies in arid parts of Australia continue to be a threat to water availability for agricultural production. Over many parts of Australia, the annual average evaporation exceeds the annual precipitation by more than 5 times. Given its significance, it is surprising that no evaporation mitigation technique has gained widespread adoption to date. High capital and maintenance costs of manufactured products are a significant barrier to implementation. The use of directly recycled clean plastic containers as floating modular devices to mitigate evaporation has been investigated for the first time. A six-month trial at an arid zone site in Australia of this potential cost effective solution has been undertaken. The experiment was performed using clean conventional drinking water bottles as floating modules on the open water surface of 240-L tanks with three varying degrees of covering (nil, 34% and 68%). A systematic reduction in evaporation is demonstrated during the whole study period that is approximately linearly proportional to the covered surface. These results provide a potential foundation for robust evaporation mitigation with the prospect of implementing a cost-optimal design.

  20. InSAR Scientific Computing Environment

    NASA Astrophysics Data System (ADS)

    Gurrola, E. M.; Rosen, P. A.; Sacco, G.; Zebker, H. A.; Simons, M.; Sandwell, D. T.

    2010-12-01

    The InSAR Scientific Computing Environment (ISCE) is a software development effort in its second year within the NASA Advanced Information Systems and Technology program. The ISCE will provide a new computing environment for geodetic image processing for InSAR sensors that will enable scientists to reduce measurements directly from radar satellites and aircraft to new geophysical products without first requiring them to develop detailed expertise in radar processing methods. The environment can serve as the core of a centralized processing center to bring Level-0 raw radar data up to Level-3 data products, but is adaptable to alternative processing approaches for science users interested in new and different ways to exploit mission data. The NRC Decadal Survey-recommended DESDynI mission will deliver data of unprecedented quantity and quality, making possible global-scale studies in climate research, natural hazards, and Earth's ecosystem. The InSAR Scientific Computing Environment is planned to become a key element in processing DESDynI data into higher level data products and it is expected to enable a new class of analyses that take greater advantage of the long time and large spatial scales of these new data, than current approaches. At the core of ISCE is both legacy processing software from the JPL/Caltech ROI_PAC repeat-pass interferometry package as well as a new InSAR processing package containing more efficient and more accurate processing algorithms being developed at Stanford for this project that is based on experience gained in developing processors for missions such as SRTM and UAVSAR. Around the core InSAR processing programs we are building object-oriented wrappers to enable their incorporation into a more modern, flexible, extensible software package that is informed by modern programming methods, including rigorous componentization of processing codes, abstraction and generalization of data models, and a robust, intuitive user interface with

  1. Polymorphism of SARS-CoV genomes.

    PubMed

    Shang, Lei; Qi, Yan; Bao, Qi-Yu; Tian, Wei; Xu, Jian-Cheng; Feng, Ming-Guang; Yang, Huan-Ming

    2006-04-01

    In this work, severe acute respiratory syndrome associated coronavirus (SARS-CoV) genome BJ202 (AY864806) was completely sequenced. The genome was directly accessed from the stool sample of a patient in Beijing. Comparative genomics methods were used to analyze the sequence variations of 116 SARS-CoV genomes (including BJ202) available in the NCBI GenBank. With the genome sequence of GZ02 as the reference, there were 41 polymorphic sites identified in BJ202 and a total of 278 polymorphic sites present in at least two of the 116 genomes. The distribution of the polymorphic sites was biased over the whole genome. Nearly half of the variations (50.4%, 140/278) clustered in the one third of the whole genome at the 3' end (19.0 kb-29.7 kb). Regions encoding Orf10-11, Orf3/4, E, M and S protein had the highest mutation rates. A total of 15 PCR products (about 6.0 kb of the genome) including 11 fragments containing 12 known polymorphic sites and 4 fragments without identified polymorphic sites were cloned and sequenced. Results showed that 3 unique polymorphic sites of BJ202 (positions 13 804, 15 031 and 20 792) along with 3 other polymorphic sites (26 428, 26 477 and 27 243) all contained 2 kinds of nucleotides. It is interesting to find that position 18379 which has not been identified to be polymorphic in any of the other 115 published SARS-CoV genomes is actually a polymorphic site. The nucleotide composition of this site is A (8) to G (6). Among 116 SARS-CoV genomes, 18 types of deletions and 2 insertions were identified. Most of them were related to a 300 bp region (27,700-28,000) which encodes parts of the putative ORF9 and ORF10-11. A phylogenetic tree illustrating the divergence of whole BJ202 genome from 115 other completely sequenced SARS-CoVs was also constructed. BJ202 was phylogeneticly closer to BJ01 and LLJ-2004. PMID:16625834

  2. Evaporation Heat Transfer of Ammonia and Pressure Drop of Warm Water for Plate Type Evaporator

    NASA Astrophysics Data System (ADS)

    Kushibe, Mitsuteru; Lkegami, Yasuyuki; Monde, Masanori; Uehara, Haruo

    The performance test of three types of plate type evaporators for spring thermal energy conversion and ocean thermal energy conversion carried out. Ammonia is utilized as working fluid and warm water is utilized as heat source. An empirical correlation is proposed in order to predict the mean evaporation heat transfer coefficient of ammonia and heat transfer coefficient of warm water for plate type evaporators. The mean heat transfer coefficient and friction factor of warm water were compared with other researches.

  3. Effects of the local structure dependence of evaporation fields on field evaporation behavior

    SciTech Connect

    Yao, Lan; Marquis, Emmanuelle A.; Withrow, Travis; Restrepo, Oscar D.; Windl, Wolfgang

    2015-12-14

    Accurate three dimensional reconstructions of atomic positions and full quantification of the information contained in atom probe microscopy data rely on understanding the physical processes taking place during field evaporation of atoms from needle-shaped specimens. However, the modeling framework for atom probe microscopy has only limited quantitative justification. Building on the continuum field models previously developed, we introduce a more physical approach with the selection of evaporation events based on density functional theory calculations. This model reproduces key features observed experimentally in terms of sequence of evaporation, evaporation maps, and depth resolution, and provides insights into the physical limit for spatial resolution.

  4. Evaporation over fresh and saline water surfaces

    NASA Astrophysics Data System (ADS)

    Abdelrady, Ahmed; Timmermans, Joris; Vekerdy, Zoltan

    2013-04-01

    Evaporation over large water bodies has a crucial role in the global hydrological cycle. Evaporation occurs whenever there is a vapor pressure deficit between a water surface and the atmosphere, and the available energy is sufficient. Salinity affects the density and latent heat of vaporization of the water body, which reflects on the evaporation rate. Different models have been developed to estimate the evaporation process over water surfaces using earth observation data. Most of these models are concerned with the atmospheric parameters. However these models do not take into account the influence of salinity on the evaporation rate; they do not consider the difference in the energy needed for vaporization. For this purpose an energy balance model is required. Several energy balance models that calculate daily evapotranspiration exist, such as the surface energy balance system (SEBS). They estimate the heat fluxes by integration of satellite data and hydro-meteorological field data. SEBS has the advantage that it can be applied over a large scale because it incorporates the physical state of the surface and the aerodynamic resistances in the daily evapotranspiration estimation. Nevertheless this model has not used over water surfaces. The goal of this research is to adapt SEBS to estimate the daily evaporation over fresh and saline water bodies. In particular, 1) water heat flux and roughness of momentum and heat transfer estimation need to be updated, 2) upscaling to daily evaporation needs to be investigated and finally 3) integration of the salinity factor to estimate the evaporation over saline water needs to be performed. Eddy covariance measurements over the Ijsselmeer Lake (The Netherlands) were used to estimate the roughness of momentum and heat transfer at respectively 0.0002 and 0.0001 m. Application of these values over Tana Lake (freshwater), in Ethiopia showed latent heat to be in a good agreement with the measurements, with RMSE of 35.5 Wm-2and r

  5. Simultaneous spreading and evaporation: recent developments.

    PubMed

    Semenov, Sergey; Trybala, Anna; Rubio, Ramon G; Kovalchuk, Nina; Starov, Victor; Velarde, Manuel G

    2014-04-01

    The recent progress in theoretical and experimental studies of simultaneous spreading and evaporation of liquid droplets on solid substrates is discussed for pure liquids including nanodroplets, nanosuspensions of inorganic particles (nanofluids) and surfactant solutions. Evaporation of both complete wetting and partial wetting liquids into a nonsaturated vapour atmosphere are considered. However, the main attention is paid to the case of partial wetting when the hysteresis of static contact angle takes place. In the case of complete wetting the spreading/evaporation process proceeds in two stages. A theory was suggested for this case and a good agreement with available experimental data was achieved. In the case of partial wetting the spreading/evaporation of a sessile droplet of pure liquid goes through four subsequent stages: (i) the initial stage, spreading, is relatively short (1-2 min) and therefore evaporation can be neglected during this stage; during the initial stage the contact angle reaches the value of advancing contact angle and the radius of the droplet base reaches its maximum value, (ii) the first stage of evaporation is characterised by the constant value of the radius of the droplet base; the value of the contact angle during the first stage decreases from static advancing to static receding contact angle; (iii) during the second stage of evaporation the contact angle remains constant and equal to its receding value, while the radius of the droplet base decreases; and (iv) at the third stage of evaporation both the contact angle and the radius of the droplet base decrease until the drop completely disappears. It has been shown theoretically and confirmed experimentally that during the first and second stages of evaporation the volume of droplet to power 2/3 decreases linearly with time. The universal dependence of the contact angle during the first stage and of the radius of the droplet base during the second stage on the reduced time has been

  6. Multi-Temporal SAR Interferometry for Landslide Monitoring

    NASA Astrophysics Data System (ADS)

    Dwivedi, R.; Narayan, A. B.; Tiwari, A.; Dikshit, O.; Singh, A. K.

    2016-06-01

    In the past few years, SAR Interferometry specially InSAR and D-InSAR were extensively used for deformation monitoring related applications. Due to temporal and spatial decorrelation in dense vegetated areas, effectiveness of InSAR and D-InSAR observations were always under scrutiny. Multi-temporal InSAR methods are developed in recent times to retrieve the deformation signal from pixels with different scattering characteristics. Presently, two classes of multi-temporal InSAR algorithms are available- Persistent Scatterer (PS) and Small Baseline (SB) methods. This paper discusses the Stanford Method for Persistent Scatterer (StaMPS) based PS-InSAR and the Small Baselines Subset (SBAS) techniques to estimate the surface deformation in Tehri dam reservoir region in Uttarkhand, India. Both PS-InSAR and SBAS approaches used sixteen ENVISAT ASAR C-Band images for generating single master and multiple master interferograms stack respectively and their StaMPS processing resulted in time series 1D-Line of Sight (LOS) mean velocity maps which are indicative of deformation in terms of movement towards and away from the satellites. From 1D LOS velocity maps, localization of landslide is evident along the reservoir rim area which was also investigated in the previous studies. Both PS-InSAR and SBAS effectively extract measurement pixels in the study region, and the general results provided by both approaches show a similar deformation pattern along the Tehri reservoir region. Further, we conclude that StaMPS based PS-InSAR method performs better in terms of extracting more number of measurement pixels and in the estimation of mean Line of Sight (LOS) velocity as compared to SBAS method. It is also proposed to take up a few major landslides area in Uttarakhand for slope stability assessment.

  7. Saline Evaporation from Porous Media: Characteristics of Salt Precipitation and Its Effect on Evaporation

    NASA Astrophysics Data System (ADS)

    Nachshon, U.; Weisbrod, N.; Dragila, M. I.; Grader, A. S.

    2010-12-01

    Salt precipitation as subflorescence or efflorescence crust occurs during saline solutions evaporation from porous media. Non-linear synergy between evaporation and salt precipitation processes results in a complex mechanism that has yet to be quantitatively understood. Presented here is a series of experiments and a mathematical model that shed light on these processes. Experiments include: (1) long-term column evaporation experiments to quantify changes in evaporation rates due to salt precipitation; (2) long-term Hele-Shaw evaporation experiments to visualize salt precipitation at the macro scale; and (3) CT scans of evaporated porous media pre-saturated with NaI solutions to observe salt precipitation at the pore scale. Experiments were conducted for homogeneous and heterogeneous media using a number of saline solutions (NaCl, CaSO4, KCl, CuSO4 and NaI). A mathematical model was developed to explore quantitatively the physical and chemical mechanisms involved in the evaporation-salt precipitation process. The model simulated salt precipitation and it affect on evaporation. Three new stages of evaporation are introduced and defined for saline solutions: SS1, SS2 and SS3. SS1 exhibits a low and gradual decrease in evaporation rate caused by a changing osmotic potential. During SS2, evaporation rate falls precipitously a salt precipitates. SS3 is characterized by a constant, low evaporation rate. The phenomenological similarity to the classical evaporation stages of pure water, S1, S2 and S3, are only coincidental, the three saline stages correspond to entirely different mechanisms. The mathematical model was used to also quantify the diffusion coefficient through a salt crust. Heterogeneity during saline evaporation was found to strongly control the location of salt precipitation: salt precipitation occurred mainly within the fine-pore regions which act as a wick transporting water from the coarser media. Heterogeneity also permits greater saline evaporation by

  8. Impact of the Regulators SigB, Rot, SarA and sarS on the Toxic Shock Tst Promoter and TSST-1 Expression in Staphylococcus aureus.

    PubMed

    Andrey, Diego O; Jousselin, Ambre; Villanueva, Maite; Renzoni, Adriana; Monod, Antoinette; Barras, Christine; Rodriguez, Natalia; Kelley, William L

    2015-01-01

    Staphylococcus aureus is an important pathogen manifesting virulence through diverse disease forms, ranging from acute skin infections to life-threatening bacteremia or systemic toxic shock syndromes. In the latter case, the prototypical superantigen is TSST-1 (Toxic Shock Syndrome Toxin 1), encoded by tst(H), and carried on a mobile genetic element that is not present in all S. aureus strains. Transcriptional regulation of tst is only partially understood. In this study, we dissected the role of sarA, sarS (sarH1), RNAIII, rot, and the alternative stress sigma factor sigB (σB). By examining tst promoter regulation predominantly in the context of its native sequence within the SaPI1 pathogenicity island of strain RN4282, we discovered that σB emerged as a particularly important tst regulator. We did not detect a consensus σB site within the tst promoter, and thus the effect of σB is likely indirect. We found that σB strongly repressed the expression of the toxin via at least two distinct regulatory pathways dependent upon sarA and agr. Furthermore rot, a member of SarA family, was shown to repress tst expression when overexpressed, although its deletion had no consistent measurable effect. We could not find any detectable effect of sarS, either by deletion or overexpression, suggesting that this regulator plays a minimal role in TSST-1 expression except when combined with disruption of sarA. Collectively, our results extend our understanding of complex multifactorial regulation of tst, revealing several layers of negative regulation. In addition to environmental stimuli thought to impact TSST-1 production, these findings support a model whereby sporadic mutation in a few key negative regulators can profoundly affect and enhance TSST-1 expression. PMID:26275216

  9. Impact of the Regulators SigB, Rot, SarA and sarS on the Toxic Shock Tst Promoter and TSST-1 Expression in Staphylococcus aureus.

    PubMed

    Andrey, Diego O; Jousselin, Ambre; Villanueva, Maite; Renzoni, Adriana; Monod, Antoinette; Barras, Christine; Rodriguez, Natalia; Kelley, William L

    2015-01-01

    Staphylococcus aureus is an important pathogen manifesting virulence through diverse disease forms, ranging from acute skin infections to life-threatening bacteremia or systemic toxic shock syndromes. In the latter case, the prototypical superantigen is TSST-1 (Toxic Shock Syndrome Toxin 1), encoded by tst(H), and carried on a mobile genetic element that is not present in all S. aureus strains. Transcriptional regulation of tst is only partially understood. In this study, we dissected the role of sarA, sarS (sarH1), RNAIII, rot, and the alternative stress sigma factor sigB (σB). By examining tst promoter regulation predominantly in the context of its native sequence within the SaPI1 pathogenicity island of strain RN4282, we discovered that σB emerged as a particularly important tst regulator. We did not detect a consensus σB site within the tst promoter, and thus the effect of σB is likely indirect. We found that σB strongly repressed the expression of the toxin via at least two distinct regulatory pathways dependent upon sarA and agr. Furthermore rot, a member of SarA family, was shown to repress tst expression when overexpressed, although its deletion had no consistent measurable effect. We could not find any detectable effect of sarS, either by deletion or overexpression, suggesting that this regulator plays a minimal role in TSST-1 expression except when combined with disruption of sarA. Collectively, our results extend our understanding of complex multifactorial regulation of tst, revealing several layers of negative regulation. In addition to environmental stimuli thought to impact TSST-1 production, these findings support a model whereby sporadic mutation in a few key negative regulators can profoundly affect and enhance TSST-1 expression.

  10. Impact of the Regulators SigB, Rot, SarA and sarS on the Toxic Shock Tst Promoter and TSST-1 Expression in Staphylococcus aureus

    PubMed Central

    Villanueva, Maite; Renzoni, Adriana; Monod, Antoinette; Barras, Christine; Rodriguez, Natalia; Kelley, William L.

    2015-01-01

    Staphylococcus aureus is an important pathogen manifesting virulence through diverse disease forms, ranging from acute skin infections to life-threatening bacteremia or systemic toxic shock syndromes. In the latter case, the prototypical superantigen is TSST-1 (Toxic Shock Syndrome Toxin 1), encoded by tst(H), and carried on a mobile genetic element that is not present in all S. aureus strains. Transcriptional regulation of tst is only partially understood. In this study, we dissected the role of sarA, sarS (sarH1), RNAIII, rot, and the alternative stress sigma factor sigB (σB). By examining tst promoter regulation predominantly in the context of its native sequence within the SaPI1 pathogenicity island of strain RN4282, we discovered that σB emerged as a particularly important tst regulator. We did not detect a consensus σB site within the tst promoter, and thus the effect of σB is likely indirect. We found that σB strongly repressed the expression of the toxin via at least two distinct regulatory pathways dependent upon sarA and agr. Furthermore rot, a member of SarA family, was shown to repress tst expression when overexpressed, although its deletion had no consistent measurable effect. We could not find any detectable effect of sarS, either by deletion or overexpression, suggesting that this regulator plays a minimal role in TSST-1 expression except when combined with disruption of sarA. Collectively, our results extend our understanding of complex multifactorial regulation of tst, revealing several layers of negative regulation. In addition to environmental stimuli thought to impact TSST-1 production, these findings support a model whereby sporadic mutation in a few key negative regulators can profoundly affect and enhance TSST-1 expression. PMID:26275216

  11. DWPF Recycle Evaporator Shielded Cells Testing

    SciTech Connect

    Fellinger, T. L.; Herman, D. T.; Stone, M.E

    2005-07-01

    Testing was performed to determine the feasibility and processing characteristics of evaporation of actual Defense Waste Processing Facility (DWPF) recycle material. Samples of the Off Gas Condensate Tank (OGCT) and Slurry Mix Evaporator Condensate Tank (SMECT) were transferred from DWPF to the Savannah River National Lab (SRNL) Shielded Cells and blended with De-Ionized (DI) water and a small amount of Slurry Mix Evaporator (SME) product. A total of 3000 mL of this feed was concentrated to approximately 90 mL during a semi-batch evaporation test of approximately 17 hours. One interruption occurred during the run when the feed tube developed a split and was replaced. Samples of the resulting condensate and concentrate were collected and analyzed. The resulting analysis of the condensate was compared to the Waste Acceptance Criteria (WAC) limits for the F/H Effluent Treatment Plant (ETP). Results from the test were compared to previous testing using simulants and OLI modeling. Conclusions from this work included the following: (1) The evaporation of DWPF recycle to achieve a 30X concentration factor was successfully demonstrated. The feed blend of OGCT and SMECT material was concentrated from 3000 mL to approximately 90 mL during testing, a concentration of approximately 33X. (2) Foaming was observed during the run. Dow Corning 2210 antifoam was added seven times throughout the run at 100 parts per million (ppm) per addition. The addition of this antifoam was very effective in reducing the foam level, but the impact diminished over time and additional antifoam was required every 2 to 3 hours during the run. (3) No scale or solids formed on the evaporator vessel, but splatter was observed in the headspace of the evaporator vessel. No scaling formed on the stainless steel thermocouple. (4) The majority of the analytes met the F/H ETP WAC. However, the detection limits for selected species (Sr-90, Pu-238, Pu-240, Am-243, and Cm-244) exceeded the ETP WAC limits. (5) I

  12. Lysozyme pattern formation in evaporating droplets

    NASA Astrophysics Data System (ADS)

    Gorr, Heather Meloy

    Liquid droplets containing suspended particles deposited on a solid, flat surface generally form ring-like structures due to the redistribution of solute during evaporation (the "coffee ring effect"). The forms of the deposited patterns depend on complex interactions between solute(s), solvent, and substrate in a rapidly changing, far from equilibrium system. Solute self-organization during evaporation of colloidal sessile droplets has attracted the attention of researchers over the past few decades due to a variety of technological applications. Recently, pattern formation during evaporation of various biofluids has been studied due to potential applications in medical screening and diagnosis. Due to the complexity of 'real' biological fluids and other multicomponent systems, a comprehensive understanding of pattern formation during droplet evaporation of these fluids is lacking. In this PhD dissertation, the morphology of the patterns remaining after evaporation of droplets of a simplified model biological fluid (aqueous lysozyme solutions + NaCl) are examined by atomic force microscopy (AFM) and optical microscopy. Lysozyme is a globular protein found in high concentration, for example, in human tears and saliva. The drop diameters, D, studied range from the micro- to the macro- scale (1 microm -- 2 mm). In this work, the effect of evaporation conditions, solution chemistry, and heat transfer within the droplet on pattern formation is examined. In micro-scale deposits of aqueous lysozyme solutions (1 microm < D < 50 microm), the protein motion and the resulting dried residue morphology are highly influenced by the decreased evaporation time of the drop. The effect of electrolytes on pattern formation is also investigated by adding varying concentrations NaCl to the lysozyme solutions. Finally, a novel pattern recognition program is described and implemented which classifies deposit images by their solution chemistries. The results presented in this Ph

  13. KEPLER PLANETS: A TALE OF EVAPORATION

    SciTech Connect

    Owen, James E.; Wu, Yanqin E-mail: wu@astro.utoronto.ca

    2013-10-01

    Inspired by the Kepler mission's planet discoveries, we consider the thermal contraction of planets close to their parent star, under the influence of evaporation. The mass-loss rates are based on hydrodynamic models of evaporation that include both X-ray and EUV irradiation. We find that only low mass planets with hydrogen envelopes are significantly affected by evaporation, with evaporation being able to remove massive hydrogen envelopes inward of ∼0.1 AU for Neptune-mass objects, while evaporation is negligible for Jupiter-mass objects. Moreover, most of the evaporation occurs in the first 100 Myr of stars' lives when they are more chromospherically active. We construct a theoretical population of planets with varying core masses, envelope masses, orbital separations, and stellar spectral types, and compare this population with the sizes and densities measured for low-mass planets, both in the Kepler mission and from radial velocity surveys. This exercise leads us to conclude that evaporation is the driving force of evolution for close-in Kepler planets. In fact, some 50% of the Kepler planet candidates may have been significantly eroded. Evaporation explains two striking correlations observed in these objects: a lack of large radius/low density planets close to the stars and a possible bimodal distribution in planet sizes with a deficit of planets around 2 R{sub ⊕}. Planets that have experienced high X-ray exposures are generally smaller than this size, and those with lower X-ray exposures are typically larger. A bimodal planet size distribution is naturally predicted by the evaporation model, where, depending on their X-ray exposure, close-in planets can either hold on to hydrogen envelopes ∼0.5%-1% in mass or be stripped entirely. To quantitatively reproduce the observed features, we argue that not only do low-mass Kepler planets need to be made of rocky cores surrounded with hydrogen envelopes, but few of them should have initial masses above 20 M

  14. PROCESS WATER BUILDING, TRA605. FLASH EVAPORATOR, CONDENSER (PROJECT FROM EVAPORATOR), ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PROCESS WATER BUILDING, TRA-605. FLASH EVAPORATOR, CONDENSER (PROJECT FROM EVAPORATOR), AND STEAM EJECTOR (ALONG REAR WALL). INL NEGATIVE NO. 4377. M.H. Bartz, Photographer, 3/5/1952 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  15. Freezing of Water Droplet due to Evaporation

    NASA Astrophysics Data System (ADS)

    Satoh, Isao; Fushinobu, Kazuyoshi; Hashimoto, Yu

    In this study, the feasibility of cooling/freezing of phase change.. materials(PCMs) due to evaporation for cold storage systems was experimentally examined. A pure water was used as the test PCM, since the latent heat due to evaporation of water is about 7 times larger than that due to freezing. A water droplet, the diameter of which was 1-4 mm, was suspended in a test cell by a fine metal wire (O. D.= 100μm),and the cell was suddenly evacuated up to the pressure lower than the triple-point pressure of water, so as to enhance the evaporation from the water surface. Temperature of the droplet was measured by a thermocouple, and the cooling/freezing behavior and the temperature profile of the droplet surface were captured by using a video camera and an IR thermo-camera, respectively. The obtained results showed that the water droplet in the evacuated cell is effectively cooled by the evaporation of water itself, and is frozen within a few seconds through remarkable supercooling state. When the initial temperature of the droplet is slightly higher than the room temperature, boiling phenomena occur in the droplet simultaneously with the freezing due to evaporation. Under such conditions, it was shown that the degree of supercooling of the droplet is reduced by the bubbles generated in the droplet.

  16. Gravity Effects in Condensing and Evaporating Films

    NASA Technical Reports Server (NTRS)

    Hermanson, J. C.; Som, S. M.; Allen, J. S.; Pedersen, P. C.

    2004-01-01

    A general overview of gravity effects in condensing and evaporating films is presented. The topics include: 1) Research Overview; 2) NASA Recognizes Critical Need for Condensation & Evaporation Research to Enable Human Exploration of Space; 3) Condensation and Evaporation Research in Reduced Gravity is Enabling for AHST Technology Needs; 4) Differing Role of Surface Tension on Condensing/Evaporating Film Stability; 5) Fluid Mechanisms in Condensing and Evaporating Films in Reduced Gravity; 6) Research Plan; 7) Experimental Configurations for Condensing Films; 8) Laboratory Condensation Test Cell; 9) Aircraft Experiment; 10) Condensation Study Current Test Conditions; 11) Diagnostics; 12) Shadowgraph Images of Condensing n- pentane Film in Unstable (-1g) Configuration; 13) Condensing n-Pentane Film in Normal Gravity (-1g) at Constant Pressure; 14) Condensing n-Pentane Film in Normal Gravity (-1g) with Cyclic Pressure; 15) Non-condensing Pumped Film in Normal Gravity (-1g); 16) Heat Transfer Coefficient in Developing, Unstable Condensing Film in Normal Gravity; 17) Heat Transfer for Unsteady Condensing Film (-1g); 18) Ultrasound Measurement of Film Thickness N-pentane Film, Stable (+1g) Configuration; and 19) Ultrasound Measurement of Film Thickness N-pentane Film, Unstable (-1g) Configuration.

  17. Spacesuit Evaporator-Absorber-Radiator (SEAR)

    NASA Technical Reports Server (NTRS)

    Bue, Grant C.; Hodgson, Ed; Izenso, Mike; Chan, Weibo; Cupples, Scott

    2011-01-01

    For decades advanced spacesuit developers have pursued a regenerable, robust non-venting system for heat rejection. Toward this end, this paper investigates linking together two previously developed technologies, namely NASA's Spacesuit Water Membrane Evaporator (SWME), and Creare's lithium chloride Heat Pump Radiator (HPR). Heat from a liquid cooled garment is transported to SWME that provides cooling through evaporation. The SEAR is evacuated at the onset of operations and thereafter, the water vapor absorption rate of the HPR maintains a low pressure environment for the SWME to evaporate effectively. This water vapor captured by solid LiCl in the HPR with a high enthalpy of absorption, results in sufficient temperature lift to reject most of the heat to space by radiation. After the sortie, the HPR would be heated up in a regenerator to drive off and recover the absorbed evaporant. A one-fourth scale prototype was built and tested in vacuum conditions at a sink temperature of 250 K. The HPR was able to stably reject 60 W over a 7-hour period. A conceptual design of a full-scale radiator is proposed. Excess heat rejection above 240 W would be accomplished through venting of the evaporant. Loop closure rates were predicted for various exploration environment scenarios.

  18. Surface tension of evaporating nanofluid droplets

    SciTech Connect

    Chen, Ruey-Hung; Phuoc, Tran X.; Martello, Donald

    2011-05-01

    Measurements of nanofluid surface tension were made using the pendant droplet method. Three different types of nanoparticles were used - laponite, silver and Fe2O3 - with de-ionized water (DW) as the base fluid. The reported results focus on the following categories; (1) because some nanoparticles require surfactants to form stable colloids, the individual effects of the surfactant and the particles were investigated; (2) due to evaporation of the pendant droplet, the particle concentration increases, affecting the apparent surface tension; (3) because of the evaporation process, a hysteresis was found where the evaporating droplet can only achieve lower values of surface tension than that of nanofluids at the same prepared concentrations: and (4) the Stefan equation relating the apparent surface tension and heat of evaporation was found to be inapplicable for nanofluids investigated. Comparisons with findings for sessile droplets are also discussed, pointing to additional effects of nanoparticles other than the non-equilibrium evaporation process.

  19. The Yellowstone Fires as Observed by SIR-C SAR

    NASA Technical Reports Server (NTRS)

    Rignot, Eric; Despain, Don; Holecz, Francesco

    1996-01-01

    Covers SIR-C (Spaceborne Imaging Radar C) SAR (Synthetic Aperture Radar) imaging of the 1988 Yellowstone National Forest fires. Discusses some of the images and data collected, and some conclusions drawn from them about both the fires, and SIR-C SAR imaging capabilities.

  20. (Q)SAR: A Tool for the Toxicologist.

    PubMed

    Steinbach, Thomas; Gad-McDonald, Samantha; Kruhlak, Naomi; Powley, Mark; Greene, Nigel

    2015-01-01

    A continuing education (CE) course at the 2014 American College of Toxicology annual meeting covered the topic of (Quantitative) Structure-Activity Relationships [(Q)SAR]. The (Q)SAR methodologies use predictive computer modeling based on predefined rules to describe the relationship between chemical structure and a chemical's associated biological activity or statistical tools to find correlations between biologic activity and the molecular structure or properties of a compound. The (Q)SAR has applications in risk assessment, drug discovery, and regulatory decision making. Pressure within industry to reduce the cost of drug development and societal pressure for government regulatory agencies to produce more accurate and timely risk assessment of drugs and chemicals have necessitated the use of (Q)SAR. Producing a high-quality (Q)SAR model depends on many factors including the choice of statistical methods and descriptors, but first and foremost the quality of the data input into the model. Understanding how a (Q)SAR model is developed and applied is critical to the successful use of such a tool. The CE session covered the basic principles of (Q)SAR, practical applications of these computational models in toxicology, how regulatory agencies use and interpret (Q)SAR models, and potential pitfalls of using them.

  1. An Adaptive Ship Detection Scheme for Spaceborne SAR Imagery.

    PubMed

    Leng, Xiangguang; Ji, Kefeng; Zhou, Shilin; Xing, Xiangwei; Zou, Huanxin

    2016-01-01

    With the rapid development of spaceborne synthetic aperture radar (SAR) and the increasing need of ship detection, research on adaptive ship detection in spaceborne SAR imagery is of great importance. Focusing on practical problems of ship detection, this paper presents a highly adaptive ship detection scheme for spaceborne SAR imagery. It is able to process a wide range of sensors, imaging modes and resolutions. Two main stages are identified in this paper, namely: ship candidate detection and ship discrimination. Firstly, this paper proposes an adaptive land masking method using ship size and pixel size. Secondly, taking into account the imaging mode, incidence angle, and polarization channel of SAR imagery, it implements adaptive ship candidate detection in spaceborne SAR imagery by applying different strategies to different resolution SAR images. Finally, aiming at different types of typical false alarms, this paper proposes a comprehensive ship discrimination method in spaceborne SAR imagery based on confidence level and complexity analysis. Experimental results based on RADARSAT-1, RADARSAT-2, TerraSAR-X, RS-1, and RS-3 images demonstrate that the adaptive scheme proposed in this paper is able to detect ship targets in a fast, efficient and robust way. PMID:27563902

  2. Web-GIS-based SARS epidemic situation visualization

    NASA Astrophysics Data System (ADS)

    Lu, Xiaolin

    2004-03-01

    In order to research, perform statistical analysis and broadcast the information of SARS epidemic situation according to the relevant spatial position, this paper proposed a unified global visualization information platform for SARS epidemic situation based on Web-GIS and scientific virtualization technology. To setup the unified global visual information platform, the architecture of Web-GIS based interoperable information system is adopted to enable public report SARS virus information to health cure center visually by using the web visualization technology. A GIS java applet is used to visualize the relationship between spatial graphical data and virus distribution, and other web based graphics figures such as curves, bars, maps and multi-dimensional figures are used to visualize the relationship between SARS virus tendency with time, patient number or locations. The platform is designed to display the SARS information in real time, simulate visually for real epidemic situation and offer an analyzing tools for health department and the policy-making government department to support the decision-making for preventing against the SARS epidemic virus. It could be used to analyze the virus condition through visualized graphics interface, isolate the areas of virus source, and control the virus condition within shortest time. It could be applied to the visualization field of SARS preventing systems for SARS information broadcasting, data management, statistical analysis, and decision supporting.

  3. Wave retrieval from SAR imagery in the East China Sea

    NASA Astrophysics Data System (ADS)

    Lou, Xiulin; Chang, Junfang; Liu, Xiaoyan

    2015-12-01

    Synthetic aperture radar (SAR) plays an important role in measuring directional ocean wave spectra with continuous and global coverage. In this article, satellite SAR images were used to estimate the wave parameters in the East China Sea. The Max-Planck Institut (MPI) method was applied to retrieve directional wave spectra from the SAR imagers with the Simulating WAves Nearshore (SWAN) model data as the first guess wave spectra. In order to validate the SAR retrieved wave spectra, a set of buoy measurements during the SAR imaging times was collected and used. The SAR retrieved significant wave heights (SWHs) were analyzed against the buoy measurements to assess the wave retrieval of this study. The root-mean-square error between the SAR SWHs and the buoy measurements is 0.25 m, which corresponds to a relative error of 12%. The case study here shows that the SWAN model data is a potential first guess wave spectra source to the MPI method to retrieve ocean wave spectra from SAR imagery.

  4. Fully polarimetric data from the ARL RailSAR

    NASA Astrophysics Data System (ADS)

    Ranney, Kenneth; Kirose, Getachew; Phelan, Brian; Sherbondy, Kelly

    2016-05-01

    The U.S. Army Research Laboratory (ARL) has recently upgraded the indoor, rail-mounted synthetic aperture radar (SAR) system, RailSAR, to enable collection of large amounts of low-frequency, ultrawideband (UWB) data. Our intent is to provide a research tool that is capable of emulating airborne SAR configuration and associated data collection geometries against surrogate explosive hazard threat deployments. By having such a capability, ARL's facility will afford a more rapid response to the ever changing improvised characteristics associated with explosive hazards today and in the future. Therefore, upgrades to this RailSAR tool to improve functionality and performance are needed to meet the potential rapid response assessments to be carried out. The new, lighter RailSAR cart puts less strain on the radar positioning hardware and allows the system to move smoothly along a specified portion of the rail. In previous papers, we have presented co-polarized SAR data collected using the ARL RailSAR. Recently, however, researchers at ARL have leveraged this asset to collect polarimetric data against multiple targets. This paper presents the SAR imagery resulting from these experiments and documents characteristics of certain target signatures that should be of interest to developers of automatic target detection (ATD) algorithms.

  5. An Adaptive Ship Detection Scheme for Spaceborne SAR Imagery

    PubMed Central

    Leng, Xiangguang; Ji, Kefeng; Zhou, Shilin; Xing, Xiangwei; Zou, Huanxin

    2016-01-01

    With the rapid development of spaceborne synthetic aperture radar (SAR) and the increasing need of ship detection, research on adaptive ship detection in spaceborne SAR imagery is of great importance. Focusing on practical problems of ship detection, this paper presents a highly adaptive ship detection scheme for spaceborne SAR imagery. It is able to process a wide range of sensors, imaging modes and resolutions. Two main stages are identified in this paper, namely: ship candidate detection and ship discrimination. Firstly, this paper proposes an adaptive land masking method using ship size and pixel size. Secondly, taking into account the imaging mode, incidence angle, and polarization channel of SAR imagery, it implements adaptive ship candidate detection in spaceborne SAR imagery by applying different strategies to different resolution SAR images. Finally, aiming at different types of typical false alarms, this paper proposes a comprehensive ship discrimination method in spaceborne SAR imagery based on confidence level and complexity analysis. Experimental results based on RADARSAT-1, RADARSAT-2, TerraSAR-X, RS-1, and RS-3 images demonstrate that the adaptive scheme proposed in this paper is able to detect ship targets in a fast, efficient and robust way. PMID:27563902

  6. A short note on calculating the adjusted SAR index

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A simple algebraic technique is presented for computing the adjusted SAR Index proposed by Suarez (1981). The statistical formula presented in this note facilitates the computation of the adjusted SAR without the use of either a look-up table, custom computer software or the need to compute exact a...

  7. Agricultural Performance Monitoring with Polarimetric SAR and Optical Imagery

    NASA Astrophysics Data System (ADS)

    Dhar, T.; Gray, D.; Menges, C.

    2009-04-01

    This paper presents the results from an experiment measuring yield using TerraSAR-X dual-polarimetric mode and precision agriculture machinery which records harvested amounts every few meters. The experimental field setup and data collection using TerraSAR-X are discussed and some preliminary results are shown.

  8. Synthetic aperture design for increased SAR image rate

    DOEpatents

    Bielek, Timothy P.; Thompson, Douglas G.; Walker, Bruce C.

    2009-03-03

    High resolution SAR images of a target scene at near video rates can be produced by using overlapped, but nevertheless, full-size synthetic apertures. The SAR images, which respectively correspond to the apertures, can be analyzed in sequence to permit detection of movement in the target scene.

  9. An Adaptive Ship Detection Scheme for Spaceborne SAR Imagery.

    PubMed

    Leng, Xiangguang; Ji, Kefeng; Zhou, Shilin; Xing, Xiangwei; Zou, Huanxin

    2016-08-23

    With the rapid development of spaceborne synthetic aperture radar (SAR) and the increasing need of ship detection, research on adaptive ship detection in spaceborne SAR imagery is of great importance. Focusing on practical problems of ship detection, this paper presents a highly adaptive ship detection scheme for spaceborne SAR imagery. It is able to process a wide range of sensors, imaging modes and resolutions. Two main stages are identified in this paper, namely: ship candidate detection and ship discrimination. Firstly, this paper proposes an adaptive land masking method using ship size and pixel size. Secondly, taking into account the imaging mode, incidence angle, and polarization channel of SAR imagery, it implements adaptive ship candidate detection in spaceborne SAR imagery by applying different strategies to different resolution SAR images. Finally, aiming at different types of typical false alarms, this paper proposes a comprehensive ship discrimination method in spaceborne SAR imagery based on confidence level and complexity analysis. Experimental results based on RADARSAT-1, RADARSAT-2, TerraSAR-X, RS-1, and RS-3 images demonstrate that the adaptive scheme proposed in this paper is able to detect ship targets in a fast, efficient and robust way.

  10. InSAR Scientific Computing Environment (Invited)

    NASA Astrophysics Data System (ADS)

    Rosen, P. A.; Gurrola, E. M.; Sacco, G.; Zebker, H. A.; Simons, M.; Sandwell, D. T.

    2009-12-01

    The InSAR Scientific Computing Environment (ISCE) is a new development effort within the NASA Advanced Information Systems and Technology program, with the intent of recasting the JPL/Caltech ROI_PAC repeat-pass interferometry package into a modern, reconfigurable, open-source computing environment. The new capability initiates the next generation of geodetic imaging processing technology for InSAR sensors, providing flexibility and extensibility in reducing measurements from radar satellites and aircraft to new geophysical products. The NRC Decadal Survey recommended DESDynI mission will deliver to the science community data of unprecedented quantity and quality, making possible global-scale studies in climate research, natural hazards, and Earth’s ecosystem. DESDynI will provide time series and multi-image measurements that permit four-dimensional models of Earth surface processes so that, for example, climate-induced changes over time become apparent and quantifiable. In this paper, we describe the Environment, and illustrate how it can facility space-based geodesy from InSAR. The ISCE invokes object oriented scripts to control legacy and new codes, and abstracts and generalizes the data model for efficient manipulation of objects among modules. The module interfaces are suitable for command-line execution or GUI-programming. It exposes users gradually to its levels of capability, allowing novices to apply it readily for simple tasks and for experienced users to mine the data with great facility. The intent of the effort is to encourage user contributions to the code, creating an open source community that will extend its life and utility.

  11. Evaluation of DEM-assisted SAR coregistration

    NASA Astrophysics Data System (ADS)

    Nitti, D. O.; Hanssen, R. F.; Refice, A.; Bovenga, F.; Milillo, G.; Nutricato, R.

    2008-10-01

    Image alignment is without doubt the most crucial step in SAR Interferometry. Interferogram formation requires images to be coregistered with an accuracy of better than 1/8 pixel to avoid significant loss of phase coherence. Conventional interferometric precise coregistration methods for full-resolution SAR data (Single-Look Complex imagery, or SLC) are based on the cross-correlation of the SLC data, either in the original complex form or as squared amplitudes. Offset vectors in slant range and azimuth directions are computed on a large number of windows, according to the estimated correlation peaks. Then, a two-dimensional polynomial of a certain degree is usually chosen as warp function and the polynomial parameters are estimated through LMS fit from the shifts measured on the image windows. In case of rough topography and long baselines, the polynomial approximation for the warp function becomes inaccurate, leading to local misregistrations. Moreover, these effects increase with the spatial resolution and then with the sampling frequency of the sensor, as first results on TerraSAR-X interferometry confirm. An improved, DEM-assisted image coregistration procedure can be adopted for providing higher-order prediction of the offset vectors. Instead of estimating the shifts on a limited number of patches and using a polynomial approximation for the transformation, this approach computes pixel by pixel the correspondence between master and slave by using the orbital data and a reference DEM. This study assesses the performance of this approach with respect to the standard procedure. In particular, both analytical relationships and simulations will evaluate the impact of the finite vertical accuracy of the DEM on the final coregistration precision for different radar postings and relative positions of satellites. The two approaches are compared by processing real data at different carrier frequencies and using the interferometric coherence as quality figure.

  12. SAR digital spotlight implementation in MATLAB

    NASA Astrophysics Data System (ADS)

    Dungan, Kerry E.; Gorham, LeRoy A.; Moore, Linda J.

    2013-05-01

    Legacy synthetic aperture radar (SAR) exploitation algorithms were image-based algorithms, designed to exploit complex and/or detected SAR imagery. In order to improve the efficiency of the algorithms, image chips, or region of interest (ROI) chips, containing candidate targets were extracted. These image chips were then used directly by exploitation algorithms for the purposes of target discrimination or identification. Recent exploitation research has suggested that performance can be improved by processing the underlying phase history data instead of standard SAR imagery. Digital Spotlighting takes the phase history data of a large image and extracts the phase history data corresponding to a smaller spatial subset of the image. In a typical scenario, this spotlighted phase history data will contain much fewer samples than the original data but will still result in an alias-free image of the ROI. The Digital Spotlight algorithm can be considered the first stage in a "two-stage backprojection" image formation process. As the first stage in two-stage backprojection, Digital Spotlighting filters the original phase history data into a number of "pseudo"-phase histories that segment the scene into patches, each of which contain a reduced number of samples compared to the original data. The second stage of the imaging process consists of standard backprojection. The data rate reduction offered by Digital Spotlighting improves the computational efficiency of the overall imaging process by significantly reducing the total number of backprojection operations. This paper describes the Digital Spotlight algorithm in detail and provides an implementation in MATLAB.

  13. Marangoni Convection and Deviations from Maxwells' Evaporation Model

    NASA Technical Reports Server (NTRS)

    Segre, P. N.; Snell, E. H.; Adamek, D. H.

    2003-01-01

    We investigate the convective dynamics of evaporating pools of volatile liquids using an ultra-sensitive thermal imaging camera. During evaporation, there are significant convective flows inside the liquid due to Marangoni forces. We find that Marangoni convection during evaporation can dramatically affect the evaporation rates of volatile liquids. A simple heat balance model connects the convective velocities and temperature gradients to the evaporation rates.

  14. Salt Kinematics and InSAR

    NASA Technical Reports Server (NTRS)

    Aftabi, Pedarm; Talbot, hristopher; Fielding, Eric

    2005-01-01

    As part of a long-term attempt to learn how the climatic and tectonic signal interact to shape a steady state mountain monitored displacement of a markers in SE termination and also near the summit of a small viscous salt fountain extruding onto the Central plateau of Iran. The marker displacements relate to the first InSAR interferograms of salt extrusion (980913 to 990620) calculated Earth tides, winds, air pressures and temperatures. In the first documented staking exercise, hammered wooden stakes vertically through the surgical marl (c. 1 Ocm deep) onto the top of crystalline salt. These stakes installed in an irregular array elongate E-W along the c.50 m high cliff marking the effective SE terminus of the glacier at Qum Kuh(Centra1 Iran) ,just to the E of a NE trending river cliff about 40 m high. We merely measured the distances between pairs of stakes with known azimuth about 2 m apart to calculate sub horizontal strain in a small part of Qum Kuh. Stakes moved and micro strains for up to 46 pairs of stakes (p strain= ((lengthl-length2)/1engthl) x 10-1) was calculated for each seven stake epochs and plotted against their azimuth on simplified array maps. The data fit well the sine curves cxpected of the maximum and minimum strain ellipses. The first documented stakes located on the SE where the InSAR image show -1 1 to 0 mm pink to purple, 0 to lOmm purple to blue, and show high activity of salt in low activity area of the InSAR image (980913 to 990620).Short term micro strains of stake tie lines record anisotropic expansions due to heating and contraction due to cooling. All epochs changed between 7 to 1 17 days (990928 to000 1 16), showed 200 to 400 micro strain lengthening and shortening. The contraction and extension existed in each epoch, but the final strain was extension in E-W in Epoch land 6, contraction in E-W direction during epochs 2-3-4-5 and 7. The second pair of stakes hammered about 20 cm deep into the deep soils(more than 1 m) , near summit

  15. Detection of land degradation with polarimetric SAR

    NASA Technical Reports Server (NTRS)

    Ray, Terrill W.; Farr, Tom G.; Van Zyl, Jakob J.

    1992-01-01

    Multispectral radar polarimeter data were collected over the Manix Basin Area of the Mojave desert using an airborne SAR. An analysis of the data reveals unusual polarization responses which are attributed to the formation of wind ripples on the surfaces of fields that have been abandoned for more than 5 years. This hypothesis has been confirmed through field observations, and a second-order perturbation model is shown to effectively model the polarization responses. The results demonstrate the usefulness of remote sensing techniques for the study of land degradation at synoptic scales.

  16. Software For Calibration Of Polarimetric SAR Data

    NASA Technical Reports Server (NTRS)

    Van Zyl, Jakob; Zebker, Howard; Freeman, Anthony; Holt, John; Dubois, Pascale; Chapman, Bruce

    1994-01-01

    POLCAL (Polarimetric Radar Calibration) software tool intended to assist in calibration of synthetic-aperture radar (SAR) systems. In particular, calibrates Stokes-matrix-format data produced as standard product by NASA/Jet Propulsion Laboratory (JPL) airborne imaging synthetic aperture radar (AIRSAR). Version 4.0 of POLCAL is upgrade of version 2.0. New options include automatic absolute calibration of 89/90 data, distributed-target analysis, calibration of nearby scenes with corner reflectors, altitude or roll-angle corrections, and calibration of errors introduced by known topography. Reduces crosstalk and corrects phase calibration without use of ground calibration equipment. Written in FORTRAN 77.

  17. Visualization of an evaporating thin layer during the evaporation of a nanofluid droplet.

    PubMed

    Shin, Dong Hwan; Allen, Jeffrey S; Choi, Chang Kyoung; Lee, Seong Hyuk

    2015-02-01

    During the evaporation of a droplet, there exists an evaporating thin layer that is difficult to visualize because of optical restrictions. The present study visualized this thin layer by using a reflective-mode, confocal microscope that can provide improved signal-to-noise focal plane imaging over traditional optical microscopy while simultaneously serving as an interferometer when imaging thin liquid films. The spatial distribution of the evaporating thin layer thickness was determined from interferometric fringe analysis. Three distinct fringe patterns, or regions, were observed depending on the nanoparticle concentration. These regions are referred to as uniform, slow extension, and rapid extension. The formation of the three regions is closely associated with the variation of the evaporating thin layer thickness of a nanofluid droplet. The nanoparticle bank formed near the contact line region substantially affects the rate of change in the evaporating thin layer thickness that increases with the nanoparticle concentration. PMID:25586137

  18. The Accuratre Signal Model and Imaging Processing in Geosynchronous SAR

    NASA Astrophysics Data System (ADS)

    Hu, Cheng

    With the development of synthetic aperture radar (SAR) application, the disadvantage of low earth orbit (LEO) SAR becomes more and more apparent. The increase of orbit altitude can shorten the revisit time and enlarge the coverage area in single look, and then satisfy the application requirement. The concept of geosynchronous earth orbit (GEO) SAR system is firstly presented and deeply discussed by K.Tomiyasi and other researchers. A GEO SAR, with its fine temporal resolution, would overcome the limitations of current imaging systems, allowing dense interpretation of transient phenomena as GPS time-series analysis with a spatial density several orders of magnitude finer. Until now, the related literatures about GEO SAR are mainly focused in the system parameter design and application requirement. As for the signal characteristic, resolution calculation and imaging algorithms, it is nearly blank in the related literatures of GEO SAR. In the LEO SAR, the signal model analysis adopts the `Stop-and-Go' assumption in general, and this assumption can satisfy the imaging requirement in present advanced SAR system, such as TerraSAR, Radarsat2 and so on. However because of long propagation distance and non-negligible earth rotation, the `Stop-and-Go' assumption does not exist and will cause large propagation distance error, and then affect the image formation. Furthermore the long propagation distance will result in the long synthetic aperture time such as hundreds of seconds, therefore the linear trajectory model in LEO SAR imaging will fail in GEO imaging, and the new imaging model needs to be proposed for the GEO SAR imaging processing. In this paper, considering the relative motion between satellite and earth during signal propagation time, the accurate analysis method for propagation slant range is firstly presented. Furthermore, the difference between accurate analysis method and `Stop-and-Go' assumption is analytically obtained. Meanwhile based on the derived

  19. Single Baseline Tomography SAR for Forest Above Ground Biomass Estimation

    NASA Astrophysics Data System (ADS)

    Li, Wenmei; Chen, Erxue; Li, Zengyuan; Wang, Xinshuang; Feng, Qi

    2013-01-01

    Single baseline tomography SAR is used for forest height estimation as its little restriction on the number of baselines and configurations of tracks in recent years. There existed two kinds of single baseline tomography SAR techniques, the polarimetric coherence tomography (PCT) and the sum of Kronecker product (SKP), algebraic synthesis (AS) and Capon spectral estimator approach (SKP-AS-Capon). Few researches on forest above ground biomass (AGB) estimation are there using single baseline tomography SAR. In this paper, PCT and SKP-AS-Capon approaches are proposed for forest AGB estimation. L-band data set acquired by E-SAR airborne system in 2003 for the forest test site in Traunstein, is used for this experiment. The result shows that single baseline polarimetric tomography SAR can obtain forest AGB in forest stand scale, and SKP-AS-Capon method has better detailed vertical structure information, while the Freeman 3-component combined PCT approach gets a homogenous vertical structure in forest stand.

  20. Ball feeder for replenishing evaporator feed

    DOEpatents

    Felde, David K.; McKoon, Robert H.

    1993-01-01

    Vapor source material such as uranium, which is to be dropped into a melt in an evaporator, is made into many balls of identical diameters and placed inside a container. An elongated sloping pipe is connected to the container and leads to the evaporator such that these balls can travel sequentially therealong by gravity. A metering valve in this pipe for passing these balls one at a time is opened in response to a signal when it is ascertained by a detector that there is a ball ready to be passed. A gate in the pipe near the evaporator momentarily stops the motion of the traveling ball and is then opened to allow the ball drop into the melt at a reduced speed.

  1. Structuring of polymer solutions upon solvent evaporation

    NASA Astrophysics Data System (ADS)

    Schaefer, C.; van der Schoot, P.; Michels, J. J.

    2015-02-01

    The morphology of solution-cast, phase-separated polymers becomes finer with increasing solvent evaporation rate. We address this observation theoretically for a model polymer where demixing is induced by steady solvent evaporation. In contrast to what is the case for a classical, thermal quench involving immiscible blends, the spinodal instability initially develops slowly and the associated length scale is not time invariant but decreases with time as t-1 /2. After a time lag, phase separation accelerates. Time lag and characteristic length exhibit power-law behavior as a function of the evaporation rate with exponents of -2 /3 and -1 /6 . Interestingly, at later stages the spinodal structure disappears completely while a second length scale develops. The associated structure coarsens but does not follow the usual Lifshitz-Slyozov-Wagner kinetics.

  2. [Evaporating Droplet and Imaging Slip Flows

    NASA Technical Reports Server (NTRS)

    Larson, R. G.

    2002-01-01

    In this report, we summarize work on Evaporating Droplet and Imaging Slip Flows. The work was primarily performed by post-doc Hue Hu, and partially by grad students Lei Li and Danish Chopra. The work includes studies on droplet evaporation and its effects on temperature and velocity fields in an evaporating droplet, new 3-D microscopic particle image velocimetry and direct visualization on wall slip in a surfactant solution. With the exception of the slip measurements, these projects were those proposed in the grant application. Instead of slip flow, the original grant proposed imaging electro-osmotic flows. However, shortly after the grant was issued, the PI became aware of work on electro-osmotic flows by the group of Saville in Princeton that was similar to that proposed, and we therefore elected to carry out work on imaging slip flows rather than electro-osmotic flows.

  3. Ball feeder for replenishing evaporator feed

    DOEpatents

    Felde, D.K.; McKoon, R.H.

    1993-03-23

    Vapor source material such as uranium, which is to be dropped into a melt in an evaporator, is made into many balls of identical diameters and placed inside a container. An elongated sloping pipe is connected to the container and leads to the evaporator such that these balls can travel sequentially therealong by gravity. A metering valve in this pipe for passing these balls one at a time is opened in response to a signal when it is ascertained by a detector that there is a ball ready to be passed. A gate in the pipe near the evaporator momentarily stops the motion of the traveling ball and is then opened to allow the ball drop into the melt at a reduced speed.

  4. DWPF RECYCLE EVAPORATOR FLOWSHEET EVALUATION (U)

    SciTech Connect

    Stone, M

    2005-04-30

    The Defense Waste Processing Facility (DWPF) converts the high level waste slurries stored at the Savannah River Site into borosilicate glass for long-term storage. The vitrification process results in the generation of approximately five gallons of dilute recycle streams for each gallon of waste slurry vitrified. This dilute recycle stream is currently transferred to the H-area Tank Farm and amounts to approximately 1,400,000 gallons of effluent per year. Process changes to incorporate salt waste could increase the amount of effluent to approximately 2,900,000 gallons per year. The recycle consists of two major streams and four smaller streams. The first major recycle stream is condensate from the Chemical Process Cell (CPC), and is collected in the Slurry Mix Evaporator Condensate Tank (SMECT). The second major recycle stream is the melter offgas which is collected in the Off Gas Condensate Tank (OGCT). The four smaller streams are the sample flushes, sump flushes, decon solution, and High Efficiency Mist Eliminator (HEME) dissolution solution. These streams are collected in the Decontamination Waste Treatment Tank (DWTT) or the Recycle Collection Tank (RCT). All recycle streams are currently combined in the RCT and treated with sodium nitrite and sodium hydroxide prior to transfer to the tank farm. Tank Farm space limitations and previous outages in the 2H Evaporator system due to deposition of sodium alumino-silicates have led to evaluation of alternative methods of dealing with the DWPF recycle. One option identified for processing the recycle was a dedicated evaporator to concentrate the recycle stream to allow the solids to be recycled to the DWPF Sludge Receipt and Adjustment Tank (SRAT) and the condensate from this evaporation process to be sent and treated in the Effluent Treatment Plant (ETP). In order to meet process objectives, the recycle stream must be concentrated to 1/30th of the feed volume during the evaporation process. The concentrated stream

  5. Comparison and Analysis of Geometric Correction Models of Spaceborne SAR.

    PubMed

    Jiang, Weihao; Yu, Anxi; Dong, Zhen; Wang, Qingsong

    2016-01-01

    Following the development of synthetic aperture radar (SAR), SAR images have become increasingly common. Many researchers have conducted large studies on geolocation models, but little work has been conducted on the available models for the geometric correction of SAR images of different terrain. To address the terrain issue, four different models were compared and are described in this paper: a rigorous range-doppler (RD) model, a rational polynomial coefficients (RPC) model, a revised polynomial (PM) model and an elevation derivation (EDM) model. The results of comparisons of the geolocation capabilities of the models show that a proper model for a SAR image of a specific terrain can be determined. A solution table was obtained to recommend a suitable model for users. Three TerraSAR-X images, two ALOS-PALSAR images and one Envisat-ASAR image were used for the experiment, including flat terrain and mountain terrain SAR images as well as two large area images. Geolocation accuracies of the models for different terrain SAR images were computed and analyzed. The comparisons of the models show that the RD model was accurate but was the least efficient; therefore, it is not the ideal model for real-time implementations. The RPC model is sufficiently accurate and efficient for the geometric correction of SAR images of flat terrain, whose precision is below 0.001 pixels. The EDM model is suitable for the geolocation of SAR images of mountainous terrain, and its precision can reach 0.007 pixels. Although the PM model does not produce results as precise as the other models, its efficiency is excellent and its potential should not be underestimated. With respect to the geometric correction of SAR images over large areas, the EDM model has higher accuracy under one pixel, whereas the RPC model consumes one third of the time of the EDM model. PMID:27347973

  6. Comparison and Analysis of Geometric Correction Models of Spaceborne SAR

    PubMed Central

    Jiang, Weihao; Yu, Anxi; Dong, Zhen; Wang, Qingsong

    2016-01-01

    Following the development of synthetic aperture radar (SAR), SAR images have become increasingly common. Many researchers have conducted large studies on geolocation models, but little work has been conducted on the available models for the geometric correction of SAR images of different terrain. To address the terrain issue, four different models were compared and are described in this paper: a rigorous range-doppler (RD) model, a rational polynomial coefficients (RPC) model, a revised polynomial (PM) model and an elevation derivation (EDM) model. The results of comparisons of the geolocation capabilities of the models show that a proper model for a SAR image of a specific terrain can be determined. A solution table was obtained to recommend a suitable model for users. Three TerraSAR-X images, two ALOS-PALSAR images and one Envisat-ASAR image were used for the experiment, including flat terrain and mountain terrain SAR images as well as two large area images. Geolocation accuracies of the models for different terrain SAR images were computed and analyzed. The comparisons of the models show that the RD model was accurate but was the least efficient; therefore, it is not the ideal model for real-time implementations. The RPC model is sufficiently accurate and efficient for the geometric correction of SAR images of flat terrain, whose precision is below 0.001 pixels. The EDM model is suitable for the geolocation of SAR images of mountainous terrain, and its precision can reach 0.007 pixels. Although the PM model does not produce results as precise as the other models, its efficiency is excellent and its potential should not be underestimated. With respect to the geometric correction of SAR images over large areas, the EDM model has higher accuracy under one pixel, whereas the RPC model consumes one third of the time of the EDM model. PMID:27347973

  7. Comparison and Analysis of Geometric Correction Models of Spaceborne SAR.

    PubMed

    Jiang, Weihao; Yu, Anxi; Dong, Zhen; Wang, Qingsong

    2016-06-25

    Following the development of synthetic aperture radar (SAR), SAR images have become increasingly common. Many researchers have conducted large studies on geolocation models, but little work has been conducted on the available models for the geometric correction of SAR images of different terrain. To address the terrain issue, four different models were compared and are described in this paper: a rigorous range-doppler (RD) model, a rational polynomial coefficients (RPC) model, a revised polynomial (PM) model and an elevation derivation (EDM) model. The results of comparisons of the geolocation capabilities of the models show that a proper model for a SAR image of a specific terrain can be determined. A solution table was obtained to recommend a suitable model for users. Three TerraSAR-X images, two ALOS-PALSAR images and one Envisat-ASAR image were used for the experiment, including flat terrain and mountain terrain SAR images as well as two large area images. Geolocation accuracies of the models for different terrain SAR images were computed and analyzed. The comparisons of the models show that the RD model was accurate but was the least efficient; therefore, it is not the ideal model for real-time implementations. The RPC model is sufficiently accurate and efficient for the geometric correction of SAR images of flat terrain, whose precision is below 0.001 pixels. The EDM model is suitable for the geolocation of SAR images of mountainous terrain, and its precision can reach 0.007 pixels. Although the PM model does not produce results as precise as the other models, its efficiency is excellent and its potential should not be underestimated. With respect to the geometric correction of SAR images over large areas, the EDM model has higher accuracy under one pixel, whereas the RPC model consumes one third of the time of the EDM model.

  8. Internal wave parameters retrieval from space-borne SAR image

    NASA Astrophysics Data System (ADS)

    Fan, Kaiguo; Fu, Bin; Gu, Yanzhen; Yu, Xingxiu; Liu, Tingting; Shi, Aiqin; Xu, Ke; Gan, Xilin

    2015-12-01

    Based on oceanic internal wave SAR imaging mechanism and the microwave scattering imaging model for oceanic surface features, we developed a new method to extract internal wave parameters from SAR imagery. Firstly, the initial wind fields are derived from NCEP reanalysis data, the sea water density and oceanic internal wave pycnocline depth are estimated from the Levites data, the surface currents induced by the internal wave are calculated according to the KDV equation. The NRCS profile is then simulated by solving the action balance equation and using the sea surface radar backscatter model. Both the winds and internal wave pycnocline depth are adjusted by using the dichotomy method step by step to make the simulated data approach the SAR image. Then, the wind speed, pycnocline depth, the phase speed, the group velocity and the amplitude of internal wave can be retrieved from SAR imagery when a best fit between simulated signals and the SAR image appears. The method is tested on one scene SAR image near Dongsha Island, in the South China Sea, results show that the simulated oceanic internal wave NRCS profile is in good agreement with that on the SAR image with the correlation coefficient as high as 90%, and the amplitude of oceanic internal wave retrieved from the SAR imagery is comparable with the SODA data. Besides, the phase speeds retrieved from other 16 scene SAR images in the South China Sea are in good agreement with the empirical formula which describes the relations between internal wave phase speed and water depths, both the root mean square and relative error are less than 0.11 m•s-1 and 7%, respectively, indicating that SAR images are useful for internal wave parameters retrieval and the method developed in this paper is convergent and applicable.

  9. An introduction to the interim digital SAR processor and the characteristics of the associated Seasat SAR imagery

    NASA Technical Reports Server (NTRS)

    Wu, C.; Barkan, B.; Huneycutt, B.; Leang, C.; Pang, S.

    1981-01-01

    Basic engineering data regarding the Interim Digital SAR Processor (IDP) and the digitally correlated Seasat synthetic aperature radar (SAR) imagery are presented. The correlation function and IDP hardware/software configuration are described, and a preliminary performance assessment presented. The geometric and radiometric characteristics, with special emphasis on those peculiar to the IDP produced imagery, are described.

  10. Relations of SARS-Related Stressors and Coping to Chinese College Students' Psychological Adjustment during the 2003 Beijing SARS Epidemic

    ERIC Educational Resources Information Center

    Main, Alexandra; Zhou, Qing; Ma, Yue; Luecken, Linda J.; Liu, Xin

    2011-01-01

    This study examined the main and interactive relations of stressors and coping related to severe acute respiratory syndrome (SARS) with Chinese college students' psychological adjustment (psychological symptoms, perceived general health, and life satisfaction) during the 2003 Beijing SARS epidemic. All the constructs were assessed by self-report…

  11. Evaporation control research, 1955-58

    USGS Publications Warehouse

    Cruse, Robert R.; Harbeck, Guy Earl

    1960-01-01

    One hundred fifty-two compounds and compositions of matter were screened as potential evaporation retardants. The homologous straight-chain fatty alkanols are considered the best materials for retardants. Several methods of application of the alkanols to the reservoir surface were investigated. Although wick-type drippers for the application of liquids and cage rafts for the application of solids appear to be the most promising methods from an economic standpoint, both methods have serious disadvantages. Considerable study was given to reducing biochemical oxidation of the evaporation retardants. Copper in several forms was found adequate as a bacteriostatic agent but posed a potential hazard because of its toxicity. Many other bactericides that were tested were also toxic. Two sets of large-scale field tests have been completed and several others are still in progress. On the larger reservoirs, the reduction of evaporation was not more than 20 percent under the prevailing conditions and the application procedure used. Three major practical problems remain; namely, the effects and action of wind on the monofilm, the effects of biochemical oxidation, and the most effective method of application. Fundamental problems remaining include the effects of various impurities, and the composition of the best evaporation retardant; the long-range effects of monofilms on the limnology of a reservoir, including the transfer of oxygen and carbon dioxide; toxicological aspects of all components of any evaporation-retardant composition, plus toxicology of any composition chosen for large-scale use; and further studies of the calorimetry and thermodynamics involved in the mechanism of evaporation and its reduction by a monofilm.

  12. Simulations of Evaporating Multicomponent Fuel Drops

    NASA Technical Reports Server (NTRS)

    Bellan, Josette; Le Clercq, Patrick

    2005-01-01

    A paper presents additional information on the subject matter of Model of Mixing Layer With Multicomponent Evaporating Drops (NPO-30505), NASA Tech Briefs, Vol. 28, No. 3 (March 2004), page 55. To recapitulate: A mathematical model of a three-dimensional mixing layer laden with evaporating fuel drops composed of many chemical species has been derived. The model is used to perform direct numerical simulations in continuing studies directed toward understanding the behaviors of sprays of liquid petroleum fuels in furnaces, industrial combustors, and engines. The model includes governing equations formulated in an Eulerian and a Lagrangian reference frame for the gas and drops, respectively, and incorporates a concept of continuous thermodynamics, according to which the chemical composition of a fuel is described by use of a distribution function. In this investigation, the distribution function depends solely on the species molar weight. The present paper reiterates the description of the model and discusses further in-depth analysis of the previous results as well as results of additional numerical simulations assessing the effect of the mass loading. The paper reiterates the conclusions reported in the cited previous article, and states some new conclusions. Some new conclusions are: 1. The slower evaporation and the evaporation/ condensation process for multicomponent-fuel drops resulted in a reduced drop-size polydispersity compared to their single-component counterpart. 2. The inhomogeneity in the spatial distribution of the species in the layer increases with the initial mass loading. 3. As evaporation becomes faster, the assumed invariant form of the molecular- weight distribution during evaporation becomes inaccurate.

  13. Breakthrough Video: Desiccant Enhanced Evaporative Air Conditioning

    SciTech Connect

    2012-01-01

    Researchers at the National Renewable Energy Laboratory (NREL) invented a breakthrough technology that improves air conditioning in a novel way—with heat. NREL combined desiccant materials, which remove moisture from the air using heat, and advanced evaporative technologies to develop a cooling unit that uses 90% less electricity and up to 80% less total energy than traditional air conditioning (AC). This solution, called the desiccant enhanced evaporative air conditioner (DEVAP), also controls humidity more effectively to improve the comfort of people in buildings.

  14. Hot air drum evaporator. [Patent application

    DOEpatents

    Black, R.L.

    1980-11-12

    An evaporation system for aqueous radioactive waste uses standard 30 and 55 gallon drums. Waste solutions form cascading water sprays as they pass over a number of trays arranged in a vertical stack within a drum. Hot dry air is circulated radially of the drum through the water sprays thereby removing water vapor. The system is encased in concrete to prevent exposure to radioactivity. The use of standard 30 and 55 gallon drums permits an inexpensive compact modular design that is readily disposable, thus eliminating maintenance and radiation build-up problems encountered with conventional evaporation systems.

  15. Evaporative cooling of antiprotons to cryogenic temperatures.

    PubMed

    Andresen, G B; Ashkezari, M D; Baquero-Ruiz, M; Bertsche, W; Bowe, P D; Butler, E; Cesar, C L; Chapman, S; Charlton, M; Fajans, J; Friesen, T; Fujiwara, M C; Gill, D R; Hangst, J S; Hardy, W N; Hayano, R S; Hayden, M E; Humphries, A; Hydomako, R; Jonsell, S; Kurchaninov, L; Lambo, R; Madsen, N; Menary, S; Nolan, P; Olchanski, K; Olin, A; Povilus, A; Pusa, P; Robicheaux, F; Sarid, E; Silveira, D M; So, C; Storey, J W; Thompson, R I; van der Werf, D P; Wilding, D; Wurtele, J S; Yamazaki, Y

    2010-07-01

    We report the application of evaporative cooling to clouds of trapped antiprotons, resulting in plasmas with measured temperature as low as 9 K. We have modeled the evaporation process for charged particles using appropriate rate equations. Good agreement between experiment and theory is observed, permitting prediction of cooling efficiency in future experiments. The technique opens up new possibilities for cooling of trapped ions and is of particular interest in antiproton physics, where a precise CPT test on trapped antihydrogen is a long-standing goal.

  16. Evaporative Cooling of Antiprotons to Cryogenic Temperatures

    SciTech Connect

    Andresen, G. B.; Bowe, P. D.; Hangst, J. S.; Ashkezari, M. D.; Hayden, M. E.; Baquero-Ruiz, M.; Chapman, S.; Fajans, J.; Povilus, A.; So, C.; Wurtele, J. S.; Bertsche, W.; Butler, E.; Charlton, M.; Humphries, A.; Madsen, N.; Werf, D. P. van der; Wilding, D.; Cesar, C. L.; Lambo, R.

    2010-07-02

    We report the application of evaporative cooling to clouds of trapped antiprotons, resulting in plasmas with measured temperature as low as 9 K. We have modeled the evaporation process for charged particles using appropriate rate equations. Good agreement between experiment and theory is observed, permitting prediction of cooling efficiency in future experiments. The technique opens up new possibilities for cooling of trapped ions and is of particular interest in antiproton physics, where a precise CPT test on trapped antihydrogen is a long-standing goal.

  17. Evaporation-induced assembly of biomimetic polypeptides

    SciTech Connect

    Keyes, Joseph; Junkin, Michael; Cappello, Joseph; Wu Xiaoyi; Wong, Pak Kin

    2008-07-14

    We report an evaporation assisted plasma lithography (EAPL) process for guided self-assembly of a biomimetic silk-elastinlike protein (SELP). We demonstrate the formation of SELP structures from millimeter to submicrometer range on plasma-treatment surface templates during an evaporation-induced self-assembly process. The self-assembly processes at different humidities and droplet volumes were investigated. The process occurs efficiently in a window of optimized operating conditions found to be at 70% relative humidity and 8 {mu}l volume of SELP solution. The EAPL approach provides a useful technique for the realization of functional devices and systems using these biomimetic materials.

  18. Direct Evaporative Precooling Model and Analysis

    SciTech Connect

    Shen, Bo; Ally, Moonis Raza; Rice, C Keith; Craddick, William G

    2011-01-01

    Evaporative condenser pre-cooling expands the availability of energy saving, cost-effective technology options (market engagement) and serves to expedite the range of options in upcoming codes and equipment standards (impacting regulation). Commercially available evaporative pre-coolers provide a low cost retrofit for existing packaged rooftop units, commercial unitary split systems, and air cooled chillers. We map the impact of energy savings and peak energy reduction in the 3 building types (medium office, secondary school, and supermarket) in 16 locations for three building types with four pad effectivenesses and show the effect for HVAC systems using either refrigerants R22 or R410A

  19. Evaporative cooling enhanced cold storage system

    DOEpatents

    Carr, Peter

    1991-01-01

    The invention provides an evaporatively enhanced cold storage system wherein a warm air stream is cooled and the cooled air stream is thereafter passed into contact with a cold storage unit. Moisture is added to the cooled air stream prior to or during contact of the cooled air stream with the cold storage unit to effect enhanced cooling of the cold storage unit due to evaporation of all or a portion of the added moisture. Preferably at least a portion of the added moisture comprises water condensed during the cooling of the warm air stream.

  20. Evaporative cooling enhanced cold storage system

    DOEpatents

    Carr, P.

    1991-10-15

    The invention provides an evaporatively enhanced cold storage system wherein a warm air stream is cooled and the cooled air stream is thereafter passed into contact with a cold storage unit. Moisture is added to the cooled air stream prior to or during contact of the cooled air stream with the cold storage unit to effect enhanced cooling of the cold storage unit due to evaporation of all or a portion of the added moisture. Preferably at least a portion of the added moisture comprises water condensed during the cooling of the warm air stream. 3 figures.

  1. A parameterization of the evaporation of rainfall

    NASA Technical Reports Server (NTRS)

    Schlesinger, Michael E.; Oh, Jai-Ho; Rosenfeld, Daniel

    1988-01-01

    A general theoretical expression for the rainfall rate and the total evaporation rate as a function of the distance below cloud base is developed, and is then specialized to the gamma raindrop size distribution. The theoretical framework is used to analyze the data of Rosenfeld and Mintz (1988) on the radar observations of the rainfall rate as a function of the distance below cloud base, for rain falling from continental convective cells in central South Africa, obtaining a parameterization for the evaporation of rainfall.

  2. The Ecosystems SAR (EcoSAR) an Airborne P-band Polarimetric InSAR for the Measurement of Vegetation Structure, Biomass and Permafrost

    NASA Technical Reports Server (NTRS)

    Rincon, Rafael F.; Fatoyinbo, Temilola; Ranson, K. Jon; Osmanoglu, Batuhan; Sun, Guoqing; Deshpande, Manohar D.; Perrine, Martin L.; Du Toit, Cornelis F.; Bonds, Quenton; Beck, Jaclyn; Lu, Daniel

    2014-01-01

    EcoSAR is a new synthetic aperture radar (SAR) instrument being developed at the NASA/ Goddard Space Flight Center (GSFC) for the polarimetric and interferometric measurements of ecosystem structure and biomass. The instrument uses a phased-array beamforming architecture and supports full polarimetric measurements and single pass interferometry. This Instrument development is part of NASA's Earth Science Technology Office Instrument Incubator Program (ESTO IIP).

  3. Rapid inactivation of SARS-like coronaviruses.

    SciTech Connect

    Kapil, Sanjay; Oberst, R. D.; Bieker, Jill Marie; Tucker, Mark David; Souza, Caroline Ann; Williams, Cecelia Victoria

    2004-03-01

    Chemical disinfection and inactivation of viruses is largely understudied, but is very important especially in the case of highly infectious viruses. The purpose of this LDRD was to determine the efficacy of the Sandia National Laboratories developed decontamination formulations against Bovine Coronavirus (BCV) as a surrogate for the coronavirus that causes Severe Acute Respiratory Syndrome (SARS) in humans. The outbreak of SARS in late 2002 resulted from a highly infectious virus that was able to survive and remain infectious for extended periods. For this study, preliminary testing with Escherichia coli MS-2 (MS-2) and Escherichia coli T4 (T4) bacteriophages was conducted to develop virucidal methodology for verifying the inactivation after treatment with the test formulations following AOAC germicidal methodologies. After the determination of various experimental parameters (i.e. exposure, concentration) of the formulations, final testing was conducted on BCV. All experiments were conducted with various organic challenges (horse serum, bovine feces, compost) for results that more accurately represent field use condition. The MS-2 and T4 were slightly more resistant than BCV and required a 2 minute exposure while BCV was completely inactivated after a 1 minute exposure. These results were also consistent for the testing conducted in the presence of the various organic challenges indicating that the test formulations are highly effective for real world application.

  4. Ultrawideband VHF SAR design and measurements

    NASA Astrophysics Data System (ADS)

    Hellsten, Hans; Froelind, Per-Olov; Gustafsson, Anders; Jonsson, T.; Larsson, Bjoern; Stenstroem, Gunnar; Binder, Bradley T.; Mirkin, Mitchell I.; Ayasli, Serpil

    1994-07-01

    CARABAS, an acronym for `coherent all radio band sensing,' is an airborne, horizontal-polarization SAR operating across the frequency band 20 to 90 MHz, conceived, designed and built by FOA in Sweden. The original motivation for designing such a low frequency system was that a large relative or fractional bandwidth could be achieved at low frequencies. For reasons to be explained, a large fractional bandwidth was considered to be of potential benefit for radar detection in severe clutter environments. A feasibility study of a short wave ultra-wideband radar started at FOA in 1985. Actual construction of the CARABAS system commenced 1987, aircraft integration took place during 1991 and the first radar tests were conducted in early 1992. From the fall of 1992 onwards, field campaigns and evaluation studies have been conducted as a joint effort between FOA and MIT Lincoln Laboratory in the US. This article will focus on experiences concerning foliage penetration with the system. First we touch upon the CARABAS system characteristics, outline the arguments behind a large fractional bandwidth VHF-band SAR approach to foliage penetration, and finally present some early experimental results. We refer to other papers for a fuller explanation of the system, for more details of image calibration, and for results concerning underground imaging.

  5. SAR Image despeckling via sparse representation

    NASA Astrophysics Data System (ADS)

    Wang, Zhongmei; Yang, Xiaomei; Zheng, Liang

    2014-11-01

    SAR image despeckling is an active research area in image processing due to its importance in improving the quality of image for object detection and classification.In this paper, a new approach is proposed for multiplicative noise in SAR image removal based on nonlocal sparse representation by dictionary learning and collaborative filtering. First, a image is divided into many patches, and then a cluster is formed by clustering log-similar image patches using Fuzzy C-means (FCM). For each cluster, an over-complete dictionary is computed using the K-SVD method that iteratively updates the dictionary and the sparse coefficients. The patches belonging to the same cluster are then reconstructed by a sparse combination of the corresponding dictionary atoms. The reconstructed patches are finally collaboratively aggregated to build the denoised image. The experimental results show that the proposed method achieves much better results than many state-of-the-art algorithms in terms of both objective evaluation index (PSNR and ENL) and subjective visual perception.

  6. Classification SAR targets with support vector machine

    NASA Astrophysics Data System (ADS)

    Cao, Lanying

    2007-02-01

    With the development of Synthetic Aperture Radar (SAR) technology, automatic target recognition (ATR) is becoming increasingly important. In this paper, we proposed a 3-class target classification system in SAR images. The system is based on invariant wavelet moments and support vector machine (SVM) algorithm. It is a two-stage approach. The first stage is to extract and select a small set of wavelet invariant moment features to indicate target images. The wavelet invariant moments take both advantages of the wavelet inherent property of multi-resolution analysis and moment invariants quality of invariant to translation, scaling changes and rotation. The second stage is classification of targets with SVM algorithm. SVM is based on the principle of structural risk minimization (SRM), which has been shown better than the principle of empirical risk minimization (ERM) which is used by many conventional networks. To test the performance and efficiency of the proposed method, we performed experiments on invariant wavelet moments, different kernel functions, 2-class identification, and 3-class identification. Test results show that wavelet invariant moments indicate the target effectively; linear kernel function achieves better results than other kernel functions, and SVM classification approach performs better than conventional nearest distance approach.

  7. Fundamental SAR ATR performance predictions for design trade-offs: 1D HRR versus 2D SAR versus 3D SAR

    NASA Astrophysics Data System (ADS)

    Horowitz, Larry L.; Brendel, Gary F.

    1999-08-01

    This paper continues the development of a fundamental, algorithm-independent view of the ATR performance that can be achieved using SAR data. Such ATR performance predictions are intended to enable evaluation of performance tradeoffs for SAR designs, including both parameter selections (e.g., bandwidth and transmit power) and added domains of SAR observation, such as 3-D, full polarimetry, aspect diversity, and/or frequency diversity. Using a Bayesian framework, we show target classification performance predictions for two tactical targets (either stationary with radar netting assumed deployed, or moving) using three different domains of observation: 1-D HRR (high-range-resolution radar), 2-D SAR, and 3-D SAR. Comparisons of the three domains are made at 3m, 1m, 0.5m and 0.3m range and cross-range resolutions. The discussion of 3-D SAR includes parameter tradeoffs of various height resolutions at the target, and various numbers of sensors. For each measurement modality, we list some of the unique sensitivities which could cause performance degradations.

  8. State-of-the-art evaporation technology: Topical report

    SciTech Connect

    Hasfurther, V.R.; Haass, M.J.

    1986-09-01

    This report discusses evaporation theory, measurement and estimation as well as the effects of water quality on evaporation. Emissions from waste effluents is also mentioned. The theory and equations to represent evaporation using energy balances, mass transport and the combination of these two methods of analysis are presented in detail. Evaporation meters and other techniques for measuring evaporation are reviewed. A discussion of ways to estimate areal evaporation is presented along with criteria which affects evaporation pond design. The effects of chemical monolayers and salinity on the rate of evaporation is cited and discussed to indicated problems associated with most industrial waste effluents. The problem of monitoring emissions resulting from evaporation ponds associated with industrial waste emissions is also presented.

  9. Evaporation of Topopah Spring tuff pore water

    SciTech Connect

    Dibley, M J; Knauss, K G; Rosenberg, N D

    1999-09-10

    We report on the results to date for experiments on the evaporative chemical evolution of a CaSO, rich water representative of Topopah Spring Tuff porewater from Yucca Mountain. Data include anion and cation analysis and qualitative mineral identification for a series of open system experiments, with and without crushed tuff present, conducted at sub-boiling temperatures.

  10. Evaporation of Liquid Hydrocarbon Mixtures on Titan

    NASA Astrophysics Data System (ADS)

    Luspay-Kuti, Adrienn; Chevrier, V. F.; Rivera-Valentin, E. G.; Singh, S.; Roe, L. A.; Wagner, A.

    2013-10-01

    Besides Earth, Titan is the only other known planetary body with proven stable liquids on its surface. The hydrological cycle of these liquid hydrocarbon mixtures is critical in understanding Titan’s atmosphere and surface features. Evaporation of liquid surface bodies has been indirectly observed as shoreline changes from measurements by Cassini ISS and RADAR (Hayes et al. 2011, Icarus 211, 655-671; Turtle et al. 2011, Science 18, 1414-1417.), but the long seasons of Saturn strongly limit the time span of these observations and their validity over the course of an entire Titan year. Using a novel Titan simulation chamber, the evaporation rate of liquid methane and dissolved nitrogen mixture under Titan surface conditions was derived (Luspay-Kuti et al. 2012, GRL 39, L23203), which is especially applicable to low latitude transient liquids. Polar lakes, though, are expected to be composed of a variety of hydrocarbons, primarily a mixture of ethane and methane (e.g. Cordier et al. 2009, ApJL 707, L128-L131). Here we performed laboratory simulations of ethane-methane mixtures with varying mole fraction under conditions suitable for the polar regions of Titan. We will discuss results specifically addressing the evaporation behavior as the solution becomes increasingly ethane dominated, providing quantitative values for the evaporation rate at every step. These laboratory results are relevant to polar lakes, such as Ontario Lacus, and can shed light on their stability.

  11. Soil water evaporation and crop residues

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crop residues have value when left in the field and also when removed from the field and sold as a commodity. Reducing soil water evaporation (E) is one of the benefits of leaving crop residues in place. E was measured beneath a corn canopy at the soil suface with nearly full coverage by corn stover...

  12. Spacesuit Evaporator-Absorber-Radiator (SEAR)

    NASA Technical Reports Server (NTRS)

    Hodgson, Ed; Izenson, Mike; Chan, Weibo; Bue, Grant C.

    2012-01-01

    For decades advanced spacesuit developers have pursued a regenerable, robust nonventing system for heat rejection. Toward this end, this paper investigates linking together two previously developed technologies, namely NASA s Spacesuit Water Membrane Evaporator (SWME), and Creare s Lithium Chloride Absorber Radiator (LCAR). Heat from a liquid cooled garment is transported to SWME that provides cooling through evaporation. This water vapor is then captured by solid LiCl in the LCAR with a high enthalpy of absorption, resulting in sufficient temperature lift to reject heat to space by radiation. After the sortie, the LCAR would be heated up and dried in a regenerator to drive off and recover the absorbed evaporant. A engineering development prototype was built and tested in vacuum conditions at a sink temperature of 250 K. The LCAR was able to stably reject 75 W over a 7-hour period. A conceptual design of a full-scale radiator is proposed. Excess heat rejection above 240 W would be accomplished through venting of the evaporant. Loop closure rates were predicted for various exploration environment scenarios.

  13. Evaporation from an ionic liquid emulsion.

    PubMed

    Friberg, Stig E

    2007-03-15

    The conditions during evaporation in a liquid crystal-in-ionic liquid microemulsion (LC/microEm) were estimated using the phase diagram of the system. The equations for selected tie lines were established and the coordinates calculated for the sites, at which the evaporation lines crossed the tie lines. These values combined with the coordinates for the phases connecting the tie lines were used to calculate the amounts and the composition of the fractions of the two phases present in the emulsion during the evaporation. One of the emulsion phases was a lamellar liquid crystal and high energy emulsification would lead to the liquid crystal being disrupted to form vesicles. Such a system tenders a unique opportunity to study the interaction between vesicles and normal micelles, which gradually change to inverse micelles over bi-continuous structures. The amount of vesicles in the liquid phase versus the fraction liquid crystal was calculated for two extreme cases of vesicle core size and shell thickness. The limit of evaporation while retaining the vesicle structure was calculated for emulsions of different original compositions assuming the minimum continuous liquid phase to be 50% of the emulsion.

  14. Evaporation And Ignition Of Dense Fuel Sprays

    NASA Technical Reports Server (NTRS)

    Bellan, Josette; Harstad, Kenneth G.

    1988-01-01

    Simple theoretical model makes useful predictions of trends. Pair of reports presents theoretical model of evaporation and ignition of sprayed liquid fuel. Developed as part of research in combustion of oil and liquid fuels derived from coal, tar sand, and shale in furnace. Work eventually contributes to increase efficiency of combustion and decrease pollution generated by burning of such fuels.

  15. On the lifetimes of evaporating droplets

    NASA Astrophysics Data System (ADS)

    Wilson, Stephen; Stauber, Jutta; Duffy, Brian; Sefiane, Khellil

    2013-11-01

    The evaporation of a fluid droplet on a solid substrate is a practically important problem which has been the subject of considerable research in recent years, much of it motivated by a range of technological applications, such as the application of pesticides to plants, DNA microarray analysis, inkjet printing, micro-fabrication, and spray cooling. In particular, the lifetime of a fluid droplet is not only of fundamental scientific interest, but is also important in a number of technological applications, such as inkjet printing and spray cooling applications (in which shorter droplet lifetimes are often needed) and the application of pesticides to plants (in which longer droplet lifetimes are often needed). In this talk we will analyse the lifetimes of fluid droplets evaporating in a variety of modes and, in particular, show that the widely believed folklore that the lifetime of a droplet is always longer than that of an identical droplet evaporating in the constant radius (i.e. pinned contact line) mode and shorter than that of an identical droplet evaporating in the constant angle mode is not, in general, true.

  16. Evaporation from an ionic liquid emulsion.

    PubMed

    Friberg, Stig E

    2007-03-15

    The conditions during evaporation in a liquid crystal-in-ionic liquid microemulsion (LC/microEm) were estimated using the phase diagram of the system. The equations for selected tie lines were established and the coordinates calculated for the sites, at which the evaporation lines crossed the tie lines. These values combined with the coordinates for the phases connecting the tie lines were used to calculate the amounts and the composition of the fractions of the two phases present in the emulsion during the evaporation. One of the emulsion phases was a lamellar liquid crystal and high energy emulsification would lead to the liquid crystal being disrupted to form vesicles. Such a system tenders a unique opportunity to study the interaction between vesicles and normal micelles, which gradually change to inverse micelles over bi-continuous structures. The amount of vesicles in the liquid phase versus the fraction liquid crystal was calculated for two extreme cases of vesicle core size and shell thickness. The limit of evaporation while retaining the vesicle structure was calculated for emulsions of different original compositions assuming the minimum continuous liquid phase to be 50% of the emulsion. PMID:17207810

  17. SAR imaging via modern 2-D spectral estimation methods.

    PubMed

    DeGraaf, S R

    1998-01-01

    This paper discusses the use of modern 2D spectral estimation algorithms for synthetic aperture radar (SAR) imaging. The motivation for applying power spectrum estimation methods to SAR imaging is to improve resolution, remove sidelobe artifacts, and reduce speckle compared to what is possible with conventional Fourier transform SAR imaging techniques. This paper makes two principal contributions to the field of adaptive SAR imaging. First, it is a comprehensive comparison of 2D spectral estimation methods for SAR imaging. It provides a synopsis of the algorithms available, discusses their relative merits for SAR imaging, and illustrates their performance on simulated and collected SAR imagery. Some of the algorithms presented or their derivations are new, as are some of the insights into or analyses of the algorithms. Second, this work develops multichannel variants of four related algorithms, minimum variance method (MVM), reduced-rank MVM (RRMVM), adaptive sidelobe reduction (ASR) and space variant apodization (SVA) to estimate both reflectivity intensity and interferometric height from polarimetric displaced-aperture interferometric data. All of these interferometric variants are new. In the interferometric contest, adaptive spectral estimation can improve the height estimates through a combination of adaptive nulling and averaging. Examples illustrate that MVM, ASR, and SVA offer significant advantages over Fourier methods for estimating both scattering intensity and interferometric height, and allow empirical comparison of the accuracies of Fourier, MVM, ASR, and SVA interferometric height estimates.

  18. Synthetic aperture radar speckle reduction for circle mode SAR images

    NASA Astrophysics Data System (ADS)

    Musgrove, Cameron

    2016-05-01

    Synthetic aperture radar (SAR) images contain a grainy pattern, called speckle, that is a consequence of a coherent imaging system. For fine resolution SAR images speckle can obscure subtle features and reduce visual appeal. Many speckle reduction methods result in a loss of image resolution and reduce visual appeal which can obscure subtle features. Another approach to maintain resolution while reducing speckle is to register and combine multiple images. For persistent surveillance applications it is more efficient for an airborne platform to fly circles around the particular area of interest. In these cases, it would be beneficial to combine multiple circle mode SAR images, however the image registration process is not so straightforward because the layover angle changes in each image. This paper develops a SAR image registration process for combining multiple circle mode SAR images to reduce speckle while preserving resolution. The registration first uses a feature matching algorithm for a coarse rotation and alignment, and then uses a fine registration and warp. Ku band SAR data from a circle mode SAR collection is used to show the effectiveness of the registration and enhanced visual appeal from multi-looking.

  19. SARS Grid--an AG-based disease management and collaborative platform.

    PubMed

    Hung, Shu-Hui; Hung, Tsung-Chieh; Juang, Jer-Nan

    2006-01-01

    This paper describes the development of the NCHC's Severe Acute Respiratory Syndrome (SARS) Grid project-An Access Grid (AG)-based disease management and collaborative platform that allowed for SARS patient's medical data to be dynamically shared and discussed between hospitals and doctors using AG's video teleconferencing (VTC) capabilities. During the height of the SARS epidemic in Asia, SARS Grid and the SARShope website significantly curved the spread of SARS by helping doctors manage the in-hospital and in-home care of quarantined SARS patients through medical data exchange and the monitoring of the patient's symptoms. Now that the SARS epidemic has ended, the primary function of the SARS Grid project is that of a web-based informatics tool to increase pubic awareness of SARS and other epidemic diseases. Additionally, the SARS Grid project can be viewed and further studied as an outstanding model of epidemic disease prevention and/or containment.

  20. Ground Displacement Measurement of the 2013 Balochistan Earthquake with interferometric TerraSAR-X ScanSAR data

    NASA Astrophysics Data System (ADS)

    Yague-Martinez, N.; Fielding, E. J.; Haghshenas-Haghighi, M.; Cong, X.; Motagh, M.

    2014-12-01

    This presentation will address the 24 September 2013 Mw 7.7 Balochistan Earthquake in western Pakistan from the point of view of interferometric processing algorithms of wide-swath TerraSAR-X ScanSAR images. The algorithms are also valid for TOPS acquisition mode, the operational mode of the Sentinel-1A ESA satellite that was successfully launched in April 2014. Spectral properties of burst-mode data and an overview of the interferometric processing steps of burst-mode acquisitions, emphasizing the importance of the co-registration stage, will be provided. A co-registration approach based on incoherent cross-correlation will be presented and applied to seismic scenarios. Moreover geodynamic corrections due to differential atmospheric path delay and differential solid Earth tides are considered to achieve accuracy in the order of several centimeters. We previously derived a 3D displacement map using cross-correlation techniques applied to optical images from Landsat-8 satellite and TerraSAR-X ScanSAR amplitude images. The Landsat-8 cross-correlation measurements cover two horizontal directions, and the TerraSAR-X displacements include both horizontal along-track and slant-range (radar line-of-sight) measurements that are sensitive to vertical and horizontal deformation. It will be justified that the co-seismic displacement map from TerraSAR-X ScanSAR data may be contaminated by postseismic deformation due to the fact that the post-seismic acquisition took place one month after the main shock, confirmed in part by a TerraSAR-X stripmap interferogram (processed with conventional InSAR) covering part of the area starting on 27 September 2013. We have arranged the acquisition of a burst-synchronized stack of TerraSAR-X ScanSAR images over the affected area after the earthquake. It will be possible to apply interferometry to these data to measure the lower magnitude of the expected postseismic displacements. The processing of single interferograms will be discussed. A

  1. Isotope fractionation of water during evaporation without condensation.

    PubMed

    Cappa, Christopher D; Drisdell, Walter S; Smith, Jared D; Saykally, Richard J; Cohen, Ronald C

    2005-12-29

    The microscopic events engendering liquid water evaporation have received much attention over the last century, but remain incompletely understood. We present measurements of isotope fractionation occurring during free molecular evaporation from liquid microjets and show that the isotope ratios of evaporating molecules exhibit dramatic differences from equilibrium vapor values, strong variations with the solution deuterium mole fraction, and a clear temperature dependence. These results indicate the existence of an energetic barrier to evaporation and that the evaporation coefficient of water is less than unity. These new insights into water evaporation promise to advance our understanding of the processes that control the formation and lifetime of clouds in the atmosphere. PMID:16375440

  2. Isotope fractionation of water during evaporation without condensation.

    PubMed

    Cappa, Christopher D; Drisdell, Walter S; Smith, Jared D; Saykally, Richard J; Cohen, Ronald C

    2005-12-29

    The microscopic events engendering liquid water evaporation have received much attention over the last century, but remain incompletely understood. We present measurements of isotope fractionation occurring during free molecular evaporation from liquid microjets and show that the isotope ratios of evaporating molecules exhibit dramatic differences from equilibrium vapor values, strong variations with the solution deuterium mole fraction, and a clear temperature dependence. These results indicate the existence of an energetic barrier to evaporation and that the evaporation coefficient of water is less than unity. These new insights into water evaporation promise to advance our understanding of the processes that control the formation and lifetime of clouds in the atmosphere.

  3. A Time Domain Along-Track SAR Interferometry Method

    NASA Astrophysics Data System (ADS)

    Cao, N.; Lee, H.; Jung, H. C.

    2015-12-01

    Differential interferometric synthetic aperture radar (DInSAR) has already been proven to be a useful technique for measuring ground displacement at millimeter level. One major drawback of traditional DInSAR technique is that only 1-D deformation in slant range direction can be detected. In order to obtain along-track displacement using a single InSAR pair, two major attempts have been made. The first one is based on cross-correlation between two SAR amplitude images. The second attempt is based on split-beam processing to generate two SAR images from forward- and backward-looking beams. Comparing with the former method, this multiple-aperture SAR interferometry (MAI) can achieve much better measurement accuracy. The major drawback of the MAI method is degraded signal to noise ratio (SNR) and along-track resolution since total along-track integration time decreases in the split-beam procedure. In order to improve the SNR and along-track resolution as well as to extract the terrain displacement in the along-track direction, a time domain along-track SAR interferometry method is proposed in this study. Using traditional time domain backprojection method, the phase component corresponding to slant range direction offset can be estimated and removed from the range compressed SAR signal. Then a phase estimation procedure is implemented to obtain the phase component in the along-track direction. Using ALOS PALSAR data over Kilauea Volcano area in Hawai'i, our experimental results demonstrate the improved performance of the proposed method in extracting 2-D terrain deformation map from one pair of SAR images.

  4. The experience of SARS-related stigma at Amoy Gardens.

    PubMed

    Lee, Sing; Chan, Lydia Y Y; Chau, Annie M Y; Kwok, Kathleen P S; Kleinman, Arthur

    2005-11-01

    Severe Acute Respiratory Syndrome (SARS) possesses characteristics that render it particularly prone to stigmatization. SARS-related stigma, despite its salience for public health and stigma research, has had little examination. This study combines survey and case study methods to examine subjective stigma among residents of Amoy Gardens (AG), the first officially recognized site of community outbreak of SARS in Hong Kong. A total of 903 residents of AG completed a self-report questionnaire derived from two focus groups conducted toward the end of the 3-month outbreak. Case studies of two residents who lived in Block E, the heart of the SARS epidemic at AG, complement the survey data. Findings show that stigma affected most residents and took various forms of being shunned, insulted, marginalized, and rejected in the domains of work, interpersonal relationships, use of services and schooling. Stigma was also associated with psychosomatic distress. Residents' strategies for diminishing stigma varied with gender, age, education, occupation, and proximity to perceived risk factors for SARS such as residential location, previous SARS infection and the presence of ex-SARS household members. Residents attributed stigma to government mismanagement, contagiousness of the mysterious SARS virus, and alarmist media reporting. Stigma clearly decreased, but never completely disappeared, after the outbreak. The findings confirm and add to existing knowledge on the varied origins, correlates, and impacts of stigma. They also highlight the synergistic roles of inconsistent health policy responses and risk miscommunication by the media in rapidly amplifying stigma toward an unfamiliar illness. While recognizing the intrinsically stigmatizing nature of public health measures to control SARS, we recommend that a consistent inter-sectoral approach is needed to minimize stigma and to make an effective health response to future outbreaks.

  5. Tank 26F-2F Evaporator Study

    SciTech Connect

    Adu-Wusu, K.

    2012-12-19

    Tank 26F supernate sample was sent by Savannah River Remediation to Savannah River National Laboratory for evaporation test to help understand the underlying cause of the recent gravity drain line (GDL) pluggage during operation of the 2F Evaporator system. The supernate sample was characterized prior to the evaporation test. The evaporation test involved boiling the supernate in an open beaker until the density of the concentrate (evaporation product) was between 1.4 to 1.5 g/mL. It was followed by filtering and washing of the precipitated solids with deionized water. The concentrate supernate (or concentrate filtrate), the damp unwashed precipitated solids, and the wash filtrates were characterized. All the precipitated solids dissolved during water washing. A semi-quantitative X-ray diffraction (XRD) analysis on the unwashed precipitated solids revealed their composition. All the compounds with the exception of silica (silicon oxide) are known to be readily soluble in water. Hence, their dissolution during water washing is not unexpected. Even though silica is a sparingly water-soluble compound, its dissolution is also not surprising. This stems from its small fraction in the solids as a whole and also its relative freshness. Assuming similar supernate characteristics, flushing the GDL with water (preferably warm) should facilitate dissolution and removal of future pluggage events as long as build up/aging of the sparingly soluble constituent (silica) is limited. On the other hand, since the amount of silica formed is relatively small, it is quite possible dissolution of the more soluble larger fraction will cause disintegration or fragmentation of the sparingly soluble smaller fraction (that may be embedded in the larger soluble solid mass) and allow its removal via suspension in the flushing water.

  6. Adiabatic burst evaporation from bicontinuous nanoporous membranes

    PubMed Central

    Ichilmann, Sachar; Rücker, Kerstin; Haase, Markus; Enke, Dirk

    2015-01-01

    Evaporation of volatile liquids from nanoporous media with bicontinuous morphology and pore diameters of a few 10 nm is an ubiquitous process. For example, such drying processes occur during syntheses of nanoporous materials by sol–gel chemistry or by spinodal decomposition in the presence of solvents as well as during solution impregnation of nanoporous hosts with functional guests. It is commonly assumed that drying is endothermic and driven by non-equilibrium partial pressures of the evaporating species in the gas phase. We show that nearly half of the liquid evaporates in an adiabatic mode involving burst-like liquid-to-gas conversions. During single adiabatic burst evaporation events liquid volumes of up to 107 μm3 are converted to gas. The adiabatic liquid-to-gas conversions occur if air invasion fronts get unstable because of the built-up of high capillary pressures. Adiabatic evaporation bursts propagate avalanche-like through the nanopore systems until the air invasion fronts have reached new stable configurations. Adiabatic cavitation bursts thus compete with Haines jumps involving air invasion front relaxation by local liquid flow without enhanced mass transport out of the nanoporous medium and prevail if the mean pore diameter is in the range of a few 10 nm. The results reported here may help optimize membrane preparation via solvent-based approaches, solution-loading of nanopore systems with guest materials as well as routine use of nanoporous membranes with bicontinuous morphology and may contribute to better understanding of adsorption/desorption processes in nanoporous media. PMID:25926406

  7. The Evaporative Function of Cockroach Hygroreceptors

    PubMed Central

    Tichy, Harald; Kallina, Wolfgang

    2013-01-01

    Insect hygroreceptors associate as antagonistic pairs of a moist cell and a dry cell together with a cold cell in small cuticular sensilla on the antennae. The mechanisms by which the atmospheric humidity stimulates the hygroreceptive cells remain elusive. Three models for humidity transduction have been proposed in which hygroreceptors operate either as mechanical hygrometers, evaporation detectors or psychrometers. Mechanical hygrometers are assumed to respond to the relative humidity, evaporation detectors to the saturation deficit and psychrometers to the temperature depression (the difference between wet-bulb and dry-bulb temperatures). The models refer to different ways of expressing humidity. This also means, however, that at different temperatures these different types of hygroreceptors indicate very different humidity conditions. The present study tested the adequacy of the three models on the cockroach’s moist and dry cells by determining whether the specific predictions about the temperature-dependence of the humidity responses are indeed observed. While in previous studies stimulation consisted of rapid step-like humidity changes, here we changed humidity slowly and continuously up and down in a sinusoidal fashion. The low rates of change made it possible to measure instantaneous humidity values based on UV-absorption and to assign these values to the hygroreceptive sensillum. The moist cell fitted neither the mechanical hygrometer nor the evaporation detector model: the temperature dependence of its humidity responses could not be attributed to relative humidity or to saturation deficit, respectively. The psychrometer model, however, was verified by the close relationships of the moist cell’s response with the wet-bulb temperature and the dry cell’s response with the dry-bulb temperature. Thus, the hygroreceptors respond to evaporation and the resulting cooling due to the wetness or dryness of the air. The drier the ambient air (absolutely) and

  8. The evaporative function of cockroach hygroreceptors.

    PubMed

    Tichy, Harald; Kallina, Wolfgang

    2013-01-01

    Insect hygroreceptors associate as antagonistic pairs of a moist cell and a dry cell together with a cold cell in small cuticular sensilla on the antennae. The mechanisms by which the atmospheric humidity stimulates the hygroreceptive cells remain elusive. Three models for humidity transduction have been proposed in which hygroreceptors operate either as mechanical hygrometers, evaporation detectors or psychrometers. Mechanical hygrometers are assumed to respond to the relative humidity, evaporation detectors to the saturation deficit and psychrometers to the temperature depression (the difference between wet-bulb and dry-bulb temperatures). The models refer to different ways of expressing humidity. This also means, however, that at different temperatures these different types of hygroreceptors indicate very different humidity conditions. The present study tested the adequacy of the three models on the cockroach's moist and dry cells by determining whether the specific predictions about the temperature-dependence of the humidity responses are indeed observed. While in previous studies stimulation consisted of rapid step-like humidity changes, here we changed humidity slowly and continuously up and down in a sinusoidal fashion. The low rates of change made it possible to measure instantaneous humidity values based on UV-absorption and to assign these values to the hygroreceptive sensillum. The moist cell fitted neither the mechanical hygrometer nor the evaporation detector model: the temperature dependence of its humidity responses could not be attributed to relative humidity or to saturation deficit, respectively. The psychrometer model, however, was verified by the close relationships of the moist cell's response with the wet-bulb temperature and the dry cell's response with the dry-bulb temperature. Thus, the hygroreceptors respond to evaporation and the resulting cooling due to the wetness or dryness of the air. The drier the ambient air (absolutely) and the

  9. The evaporative function of cockroach hygroreceptors.

    PubMed

    Tichy, Harald; Kallina, Wolfgang

    2013-01-01

    Insect hygroreceptors associate as antagonistic pairs of a moist cell and a dry cell together with a cold cell in small cuticular sensilla on the antennae. The mechanisms by which the atmospheric humidity stimulates the hygroreceptive cells remain elusive. Three models for humidity transduction have been proposed in which hygroreceptors operate either as mechanical hygrometers, evaporation detectors or psychrometers. Mechanical hygrometers are assumed to respond to the relative humidity, evaporation detectors to the saturation deficit and psychrometers to the temperature depression (the difference between wet-bulb and dry-bulb temperatures). The models refer to different ways of expressing humidity. This also means, however, that at different temperatures these different types of hygroreceptors indicate very different humidity conditions. The present study tested the adequacy of the three models on the cockroach's moist and dry cells by determining whether the specific predictions about the temperature-dependence of the humidity responses are indeed observed. While in previous studies stimulation consisted of rapid step-like humidity changes, here we changed humidity slowly and continuously up and down in a sinusoidal fashion. The low rates of change made it possible to measure instantaneous humidity values based on UV-absorption and to assign these values to the hygroreceptive sensillum. The moist cell fitted neither the mechanical hygrometer nor the evaporation detector model: the temperature dependence of its humidity responses could not be attributed to relative humidity or to saturation deficit, respectively. The psychrometer model, however, was verified by the close relationships of the moist cell's response with the wet-bulb temperature and the dry cell's response with the dry-bulb temperature. Thus, the hygroreceptors respond to evaporation and the resulting cooling due to the wetness or dryness of the air. The drier the ambient air (absolutely) and the

  10. Indoor experimental facility for airborne synthetic aperture radar (SAR) configurations - rail-SAR

    NASA Astrophysics Data System (ADS)

    Kirose, Getachew; Phelan, Brian R.; Sherbondy, Kelly D.; Ranney, Kenneth I.; Koenig, Francois; Narayanan, Ram M.

    2014-05-01

    The Army Research Laboratory (ARL) is developing an indoor experimental facility to evaluate and assess airborne synthetic-aperture-radar-(SAR)-based detection capabilities. The rail-SAR is located in a multi-use facility that also provides a base for research and development in the area of autonomous robotic navigation. Radar explosive hazard detection is one key sensordevelopment area to be investigated at this indoor facility. In particular, the mostly wooden, multi-story building houses a two (2) story housing structure and an open area built over a large sandbox. The housing structure includes reconfigurable indoor walls which enable the realization of multiple See-Through-The-Wall (STTW) scenarios. The open sandbox, on the other hand, allows for surface and buried explosive hazard scenarios. The indoor facility is not rated for true explosive hazard materials so all targets will need to be inert and contain surrogate explosive fills. In this paper we discuss the current system status and describe data collection exercises conducted using canonical targets and frequencies that may be of interest to designers of ultra-wideband (UWB) airborne, ground penetrating SAR systems. A bi-static antenna configuration will be used to investigate the effects of varying airborne SAR parameters such as depression angle, bandwidth, and integration angle, for various target types and deployment scenarios. Canonical targets data were used to evaluate overall facility capabilities and limitations. These data is analyzed and summarized for future evaluations. Finally, processing techniques for dealing with RF multi-path and RFI due to operating inside the indoor facility are described in detail. Discussion of this facility and its capabilities and limitations will provide the explosive hazard community with a great airborne platform asset for sensor to target assessment.

  11. Condensation and Evaporation of Solar System Materials

    NASA Astrophysics Data System (ADS)

    Davis, A. M.; Richter, F. M.

    2003-12-01

    condensable matter (see Chapter 1.08; Grossman, 1973; Wänke et al., 1974; Grossman and Ganapathy, 1976; Grossman et al., 1977), where CI chondrites are taken to represent total condensable matter.Elemental abundance patterns ordered by volatility certainly could have been produced by partial condensation, but they could also have been caused by partial evaporation. The relative importance of these opposite processes is still subject to debate and uncertainty. It should be remembered that condensation calculations typically assume chemical equilibrium in a closed system, in which case the system has no memory of the path by which it arrived at a given state, and thus the chemical and isotopic composition of the condensed phase cannot be used to distinguish between partial condensation and partial evaporation. Humayun and Clayton (1995) have taken a somewhat different view by arguing that condensation and evaporation are distinguishable, in that evaporation, but not condensation, will produce isotopically fractionated residues. With this idea in mind, they carefully measured the potassium isotopic compositions of a broad range of solar system materials with different degrees of potassium depletion and found them to be indistinguishable. This they took as evidence that evaporation could not have been a significant process in determining the diverse elemental abundance patterns of the various solar system materials they measured, because had evaporation been important in fractionating potassium it would have also fractionated the potassium isotopes. We will qualify this line of reasoning by arguing that evaporation and condensation can under certain conditions produce isotopically fractionated condensed phases (i.e., that partial evaporation can produce isotopically heavy residues and that partial condensation can produce isotopically light condensates) but that under other conditions both can produce elemental fractionations without significant isotopic fractionation. The

  12. Program Merges SAR Data on Terrain and Vegetation Heights

    NASA Technical Reports Server (NTRS)

    Siqueira, Paul; Hensley, Scott; Rodriguez, Ernesto; Simard, Marc

    2007-01-01

    X/P Merge is a computer program that estimates ground-surface elevations and vegetation heights from multiple sets of data acquired by the GeoSAR instrument [a terrain-mapping synthetic-aperture radar (SAR) system that operates in the X and bands]. X/P Merge software combines data from X- and P-band digital elevation models, SAR backscatter magnitudes, and interferometric correlation magnitudes into a simplified set of output topographical maps of ground-surface elevation and tree height.

  13. Mapping and monitoring renewable resources with space SAR

    NASA Technical Reports Server (NTRS)

    Ulaby, F. T.; Brisco, B.; Dobson, M. C.; Moezzi, S.

    1983-01-01

    The SEASAT-A SAR and SIR-A imagery was examined to evaluate the quality and type of information that can be extracted and used to monitor renewable resources on Earth. Two tasks were carried out: (1) a land cover classification study which utilized two sets of imagery acquired by the SEASAT-A SAR, one set by SIR-A, and one LANDSAT set (4 bands); and (2) a change detection to examine differences between pairs of SEASAT-A SAR images and relates them to hydrologic and/or agronomic variations in the scene.

  14. Process for combining multiple passes of interferometric SAR data

    DOEpatents

    Bickel, Douglas L.; Yocky, David A.; Hensley, Jr., William H.

    2000-11-21

    Interferometric synthetic aperture radar (IFSAR) is a promising technology for a wide variety of military and civilian elevation modeling requirements. IFSAR extends traditional two dimensional SAR processing to three dimensions by utilizing the phase difference between two SAR images taken from different elevation positions to determine an angle of arrival for each pixel in the scene. This angle, together with the two-dimensional location information in the traditional SAR image, can be transformed into geographic coordinates if the position and motion parameters of the antennas are known accurately.

  15. Use of SAR in Regional Methane Exchange Studies

    NASA Technical Reports Server (NTRS)

    Morrissey, L. A.; Livingston, G. P.; Durden, S. L.

    1994-01-01

    Significant sources of uncertainty in global trace gas budgets are due to lack of knowledge concerning the areal and temporal extent of source and sink areas. Synthetic aperture radar (SAR) is particularly suited to studies of northern ecosystems because of its all-weather operating capability which enables the acquisition of seasonal data. As key controls on methane exchange, the ability to differentiate major vegetation communities, inundation, and leaf area index (LAI) with satellite and airborne SAR data would increase the accuracy and precision of regional and seasonal estimates of methane exchange. The utility of SAR data for monitoring key controls on methane emissions from Arctic and boreal ecosystems is examined.

  16. Tunnel monitoring with an advanced InSAR technique

    NASA Astrophysics Data System (ADS)

    Rabus, Bernhard; Eppler, Jayson; Sharma, Jayanti; Busler, Jennifer

    2012-06-01

    The detection and monitoring of subsurface excavations has a variety of applications in both the civil and defense domains. We have developed a novel InSAR method (Homogenous Distributed Scatterer (HDS)-InSAR) that exploits both persistent point and coherent distributed scatterers by using adaptive multilooking of statistically homogenous pixel neighborhoods. In order to enhance the detection of small scale structures in low SNR environments a matched parametric spatio-temporal model is fit to the deformation signal. We illustrate the performance of our new method for the city of Vancouver over the last nine years using InSAR stacks of RADARSAT-1 and RADARSAT-2 data.

  17. The physics of vibrating scatterers in SAR imagery

    NASA Astrophysics Data System (ADS)

    André, D. B.; Blacknell, D.; Muff, D. G.; Nottingham, M. R.

    2011-06-01

    Measurement times for synthetic aperture radar (SAR) image collection can take from the order of seconds to minutes and consequently the technique is subject to imaging artefacts due to target motion. For example, imaged moving targets can be displaced and unfocussed and similarly for vibrating targets. Current understanding of this phenomenon is somewhat esoteric however this paper puts forward and demonstrates a visual explanation via the physics of modulated scatterer SAR images in the Fourier domain. This novel approach has led to an imagery analyst aid which associates a distinctive signature to modulated scatterer artefacts in SAR imagery and to an associated filter.

  18. Real-time SAR processing for search and rescue

    NASA Astrophysics Data System (ADS)

    Mansfield, Arthur W.; Rogers, George W.; Rais, Houra

    1998-09-01

    The most important parameter in Search and Rescue is the time it takes to locate the downed aircraft and rescue the survivors. The resulting requirement for wide-area coverage, fine resolution, and day-night all-weather operation dictates the use of a SAR sensor. The time urgency dictates a real-time or near real-time SAR processor. This paper presents alternative real-time architectures and gives the results of feasibility studies of the enabling technologies, including new work by the authors in the area of SAR data compression.

  19. Operational Quality Control of SAR Data under the IDEAS Contract

    NASA Astrophysics Data System (ADS)

    Griffiths, Emma; Haria, Kajal; Meadowws, Peter; Miranda, Nuno

    2010-12-01

    Operational Quality Control (QC) of ERS-1/2 Synthetic Aperture Radar (SAR), Envisat's Advanced Synthetic Aperture Radar (ASAR) and the Phased-Array L-band SAR (PALSAR) on board JAXA's Advanced Land Observing Satellite (ALOS) is currently carried out under the Image Data quality Evaluation and Analysis Service (IDEAS). This paper introduces the concept of IDEAS as it applies to SAR QC including the daily and long-term analysis and shows the interaces to related services, including ESA's user-facing Earth Observation (EO) Help Desk

  20. Applications of the EOS SAR to monitoring global change

    NASA Technical Reports Server (NTRS)

    Schier, Marguerite; Way, Jobea; Holt, Benjamin

    1991-01-01

    The SAR employed by NASA's Earth Observing System (EOS) is a multifrequency multipolarization radar which can conduct global monitoring of geophysical and biophysical parameters. The present discussion of the EOS SAR's role in global monitoring emphasizes geophysical product variables applicable to global hydrologic, biogeochemical, and energy cycle models. EOS SAR products encompass biomass, wetland areas, and phenologic and environmental states, in the field of ecosystem dynamics; soil moisture, snow moisture and extent, and glacier and ice sheet extent and velocity, in hydrologic cycle studies; surface-wave fields and sea ice properties, in ocean/atmosphere circulation; and the topography, erosion, and land forms of the solid earth.

  1. SAR Reduction of PIFA with EBG Structures for Mobile Applications

    NASA Astrophysics Data System (ADS)

    Kwak, Sangil; Sim, Dong-Uk; Kwon, Jong Hwa; Yun, Je Hoon

    This paper proposes two types of electromagnetic bandgap (EBG) structures aimed for SAR reduction on a mobile phone antenna. The EBG structures, one which uses vias while the other does not can reduce the surface wave and prevent the undesired radiation from the antenna. Thus, these structures can reduce the electromagnetic fields toward the human head direction and reduction the SAR value. Tests demonstrate the reduction of SAR values and therefore, the human body can be protected from hazard electromagnetic fields by using the proposed EBG structures, regardless of whether vias are used or not.

  2. Geologic process studies using Synthetic Aperture Radar (SAR) data

    NASA Technical Reports Server (NTRS)

    Evans, Diane L.

    1992-01-01

    The use of SAR data to study geologic processes for better understanding of recent tectonic activity and climate change as well as the mitigation of geologic hazards and exploration for nonrenewable resources is discussed. The geologic processes that are particularly amenable to SAR-based data include volcanism; soil erosion, degradation, and redistribution; coastal erosion and inundation; glacier fluctuations; permafrost; and crustal motions. When SAR data are combined with data from other planned spaceborne sensors including ESA ERS, the Japanese Earth Resources Satellite, and the Canadian Radarsat, it will be possible to build a time-series view of temporal changes over many regions of earth.

  3. Alaska Synthetic Aperture Radar (SAR) Facility science data processing architecture

    NASA Technical Reports Server (NTRS)

    Hilland, Jeffrey E.; Bicknell, Thomas; Miller, Carol L.

    1991-01-01

    The paper describes the architecture of the Alaska SAR Facility (ASF) at Fairbanks, being developed to generate science data products for supporting research in sea ice motion, ice classification, sea-ice-ocean interaction, glacier behavior, ocean waves, and hydrological and geological study areas. Special attention is given to the individual substructures of the ASF: the Receiving Ground Station (RGS), the SAR Processor System, and the Interactive Image Analysis System. The SAR data will be linked to the RGS by the ESA ERS-1 and ERS-2, the Japanese ERS-1, and the Canadian Radarsat.

  4. SAR image effects on coherence and coherence estimation.

    SciTech Connect

    Bickel, Douglas Lloyd

    2014-01-01

    Radar coherence is an important concept for imaging radar systems such as synthetic aperture radar (SAR). This document quantifies some of the effects in SAR which modify the coherence. Although these effects can disrupt the coherence within a single SAR image, this report will focus on the coherence between separate images, such as for coherent change detection (CCD) processing. There have been other presentations on aspects of this material in the past. The intent of this report is to bring various issues that affect the coherence together in a single report to support radar engineers in making decisions about these matters.

  5. Evaluation of ERIM optically processed SEASAT SAR data

    NASA Technical Reports Server (NTRS)

    Shuchman, R. A.; Lyzenga, D. R. (Principal Investigator); Klooster, A., Jr.; Marks, J.

    1982-01-01

    The results of three studies on the radiometric and geometric properties of optically processed SEASAT SAR imagery are summarized. The accuracy with which the image scale can be predicted based upon a knowledge of the SAR platform and recording system parameters and the processor characteristics was evaluated. The considerations involved in making radiometric measurements from image films, the use of point targets for calibrating the effects of Doppler spectrum shifts on the radiometric calibration of the SAR image data over extended swath lengths was evaluated

  6. A fundamental model and efficient inference for SAR ocean imagery

    NASA Technical Reports Server (NTRS)

    Harger, R. O.

    1984-01-01

    Employing a synthetic aperture radar (SAR) imaging model based on fundamental models of nonlinear hydrodynamics, electromagnetic scattering from a two-scale surface, and SAR imaging of a time-variant scene, the optimal (minimum mean-square error) estimates of the parameters of a sinusoidal, long gravity wave, and the short gravity wave ensemble are found in an efficient recursive form and their performance evaluated, generally by numerical simulation, in a one-dimensional stationary version. An application is made to Seasat-SAR complex imagery.

  7. FlexSAR, a high quality, flexible, cost effective, prototype SAR system

    NASA Astrophysics Data System (ADS)

    Jensen, Mark; Knight, Chad; Haslem, Brent

    2016-05-01

    The FlexSAR radar system was designed to be a high quality, low-cost, flexible research prototype instrument. Radar researchers and practitioners often desire the ability to prototype new or advanced configurations, yet the ability to enhance or upgrade existing radar systems can be cost prohibitive. FlexSAR answers the need for a flexible radar system that can be extended easily, with minimal cost and time expenditures. The design approach focuses on reducing the resources required for developing and validating new advanced radar modalities. Such an approach fosters innovation and provides risk reduction since actual radar data can be collected in the appropriate mode, processed, and analyzed early in the development process. This allows for an accurate, detailed understanding of the corresponding trade space. This paper is a follow-on to last years paper and discusses the advancements that have been made to the FlexSAR system. The overall system architecture is discussed and presented along with several examples illustrating the system utility.

  8. FlexSAR, a high-quality, flexible, cost-effective, prototype SAR system

    NASA Astrophysics Data System (ADS)

    Jensen, Mark; Knight, Chad; Haslem, Brent

    2015-05-01

    The FlexSAR radar system was designed to be a high quality, low-cost, flexible prototype instrument. Many radar researchers and practitioners desire the ability to efficiently prototype novel configurations. However, the cost and time required to modify existing radar systems is a challenging hurdle that can be prohibitive. The FlexSAR system couples an RF design that leverages connectorized components with digital commercial-off-the-shelf (COTS) cards. This design allows for a scalable system that supports software defined radio (SDR) capabilities. This paper focuses on the RF and digital system design, discussing the advantages and disadvantages. The FlexSAR system design objective was to support diverse configurations with minimal non-recurring engineering (NRE) costs. Multiple diverse applications are examined, demonstrating the flexible system nature. The configurations discussed utilize different system parameters (e.g., number of phase-centers, transmit configurations, etc.). The resultant products are examined, illustrating that high-quality data products are still attained.

  9. What have we learnt from SARS?

    PubMed Central

    Weiss, Robin A; McLean, Angela R

    2004-01-01

    With outbreaks of infectious disease emerging from animal sources, we have learnt to expect the unexpected. We were, and are, expecting a new influenza A pandemic, but no one predicted the emergence of an unknown coronavirus (CoV) as a deadly human pathogen. Thanks to the preparedness of the international network of influenza researchers and laboratories, the cause of severe acute respiratory syndrome (SARS) was rapidly identified, but there is no complacency over the global or local management of the epidemic in terms of public health logistics. The human population was lucky that only a small proportion of infected persons proved to be highly infectious to others, and that they did not become so before they felt ill. These were the features that helped to make the outbreak containable. The next outbreak of another kind of transmissible disease may well be quite different. PMID:15306402

  10. Multiscale MAP filtering of SAR images.

    PubMed

    Foucher, S; Bénié, G B; Boucher, J M

    2001-01-01

    Synthetic aperture radar (SAR) images are disturbed by a multiplicative noise depending on the signal (the ground reflectivity) due to the radar wave coherence. Images have a strong variability from one pixel to another reducing essentially the efficiency of the algorithms of detection and classification. We propose to filter this noise with a multiresolution analysis of the image. The wavelet coefficient of the reflectivity is estimated with a Bayesian model, maximizing the a posteriori probability density function. The different probability density function are modeled with the Pearson system of distributions. The resulting filter combines the classical adaptive approach with wavelet decomposition where the local variance of high-frequency images is used in order to segment and filter wavelet coefficients.

  11. A comparison of interferometric SAR antenna options

    NASA Astrophysics Data System (ADS)

    Doerry, A. W.; Bickel, D. L.

    2013-05-01

    Interferometric Synthetic Aperture Radar (IFSAR or InSAR) uses multiple antenna phase centers to ultimately measure target scene elevation. Its ability to do so depends on the antenna configuration, and how the multiple phase centers are employed. We examine several different dual-phase-center antenna configurations and modalities, including a conventional arrangement where a dedicated antenna is used to transmit and receive with another to receive only, a configuration where transmit and receive operations are ping-ponged between phase centers, a monopulse configuration, and an orthogonal waveform configuration. Our figure of merit is the RMS height noise in the elevation estimation. We show that a monopulse configuration is equivalent to the ping-pong scheme, and both offer an advantage over the conventional arrangement. The orthogonal waveform offers the best potential performance, if sufficient isolation can be achieved.

  12. SAR polar format implementation with MATLAB.

    SciTech Connect

    Martin, Grant D.; Doerry, Armin Walter

    2005-11-01

    Traditional polar format image formation for Synthetic Aperture Radar (SAR) requires a large amount of processing power and memory in order to accomplish in real-time. These requirements can thus eliminate the possible usage of interpreted language environments such as MATLAB. However, with trapezoidal aperture phase history collection and changes to the traditional polar format algorithm, certain optimizations make MATLAB a possible tool for image formation. Thus, this document's purpose is two-fold. The first outlines a change to the existing Polar Format MATLAB implementation utilizing the Chirp Z-Transform that improves performance and memory usage achieving near realtime results for smaller apertures. The second is the addition of two new possible image formation options that perform a more traditional interpolation style image formation. These options allow the continued exploration of possible interpolation methods for image formation and some preliminary results comparing image quality are given.

  13. A snow wetness retrieval algorithm for SAR

    NASA Technical Reports Server (NTRS)

    Shi, Jian-Cheng; Dozier, Jeff

    1992-01-01

    The objectives of this study are: (1) to evaluate the backscattering signals response to snow wetness; and (2) to develop an algorithm for snow wetness measurement using C-band polarimetric synthetic aperture radar (SAR). In hydrological investigations, modeling and forecasting of snowmelt runoff requires information about snowpack properties and their spatial variability. In particular, timely measurement of snow parameters is needed for operational hydrology. The liquid water content of snowpack is one of the important parameters. Active microwave sensors are highly sensitive to liquid water in the snowpack because of the large dielectric contrast between ice and water in the microwave spectrum. They are not affected by weather and have a spatial resolution compatible with the topographic variation in alpine regions. However, a quantitative algorithm for retrieval snow wetness has not yet been developed.

  14. Difference in receptor usage between severe acute respiratory syndrome (SARS) coronavirus and SARS-like coronavirus of bat origin.

    PubMed

    Ren, Wuze; Qu, Xiuxia; Li, Wendong; Han, Zhenggang; Yu, Meng; Zhou, Peng; Zhang, Shu-Yi; Wang, Lin-Fa; Deng, Hongkui; Shi, Zhengli

    2008-02-01

    Severe acute respiratory syndrome (SARS) is caused by the SARS-associated coronavirus (SARS-CoV), which uses angiotensin-converting enzyme 2 (ACE2) as its receptor for cell entry. A group of SARS-like CoVs (SL-CoVs) has been identified in horseshoe bats. SL-CoVs and SARS-CoVs share identical genome organizations and high sequence identities, with the main exception of the N terminus of the spike protein (S), known to be responsible for receptor binding in CoVs. In this study, we investigated the receptor usage of the SL-CoV S by combining a human immunodeficiency virus-based pseudovirus system with cell lines expressing the ACE2 molecules of human, civet, or horseshoe bat. In addition to full-length S of SL-CoV and SARS-CoV, a series of S chimeras was constructed by inserting different sequences of the SARS-CoV S into the SL-CoV S backbone. Several important observations were made from this study. First, the SL-CoV S was unable to use any of the three ACE2 molecules as its receptor. Second, the SARS-CoV S failed to enter cells expressing the bat ACE2. Third, the chimeric S covering the previously defined receptor-binding domain gained its ability to enter cells via human ACE2, albeit with different efficiencies for different constructs. Fourth, a minimal insert region (amino acids 310 to 518) was found to be sufficient to convert the SL-CoV S from non-ACE2 binding to human ACE2 binding, indicating that the SL-CoV S is largely compatible with SARS-CoV S protein both in structure and in function. The significance of these findings in relation to virus origin, virus recombination, and host switching is discussed.

  15. Sea bottom topography imaging with SAR

    NASA Technical Reports Server (NTRS)

    Vanderkooij, M. W. A.; Wensink, G. J.; Vogelzang, J.

    1992-01-01

    It is well known that under favorable meteorological and hydrodynamical conditions the bottom topography of shallow seas can be mapped with airborne or spaceborne imaging radar. This phenomenon was observed for the first time in 1969 by de Loor and co-workers in Q-band Side Looking Airborne Radar (SLAR) imagery of sandwaves in the North Sea. It is now generally accepted that the imaging mechanism consists of three steps: (1) interaction between (tidal) current and bottom topography causes spatial modulations in the surface current velocity; (2) modulations in the surface current velocity give rise to variations in the spectrum of wind-generated waves, as described by the action balance equation; and (3) variations in the wave spectrum show up as intensity modulations in radar imagery. In order to predict radar backscatter modulations caused by sandwaves, an imaging model, covering the three steps, was developed by the Dutch Sea Bottom Topography Group. This model and some model results will be shown. On 16 Aug. 1989 an experiment was performed with the polarimetric P-, L-, and C-band synthetic aperture radar (SAR) of NASA/JPL. One scene was recorded in SAR mode. On 12 Jul. 1991 another three scenes were recorded, of which one was in the ATI-mode (Along-Track Interferometer). These experiments took place in the test area of the Sea Bottom Topography Group, 30 km off the Dutch coast, where the bottom topography is dominated by sand waves. In-situ data were gathered by a ship in the test area and on 'Measuring Platform Noordwijk', 20 km from the center of the test area. The radar images made during the experiment were compared with digitized maps of the bottom. Furthermore, the profiles of radar backscatter modulation were compared with the results of the model. During the workshop some preliminary results of the ATI measurements will be shown.

  16. CARABAS - an airborne VHF SAR system

    SciTech Connect

    Larsson, B.; Frolined, P.O.; Gustavsson, A.

    1996-11-01

    There is an increasing interest in imaging radar systems operating at low frequencies, Examples of civilian and military applications are detection of stealth-designed man-made objects, targets hidden under foliage, biomass estimation, and penetration into glaciers or ground. CARABAS (Coherent All Radio Band Sensing) is a new airborne SAR system developed by FOA. It is designed for operation in the lowest part of the VHF band (20-90 NHz), using horizontal polarisation. This frequency region gives the system a good ability to penetrate vegetation and to some extent ground. CARABAS is the first known SAR sensor with a capability of diffraction limited imaging, i.e. a resolution in magnitude of the adopted wavelengths. A Sabreliner business jet aircraft is used as the airborne platform. Critical parts in the development have been the antenna system, the receiver and the processing algorithms. Based upon the experiences gained with CARABAS I a major system upgrade is now taking place. The new CARABAS II system is scheduled to fly in May 1996. This system is designed to give operational performance while CARABAS I was used to verify the feasibility. The first major field campaigns are planned for the second half of 1996. CARABAS II is jointly developed by FOA and Ericsson Microwave Systems AB in Sweden. This paper will give an overview of the system design and data collected with the current radar system, including some results for forested regions. The achieved system performance will be discussed, with a presentation of the major modifications made in the new CARABAS 11 system. 12 refs., 7 figs., 2 tabs.

  17. Soviet oceanographic synthetic aperture radar (SAR) research

    SciTech Connect

    Held, D.N.; Gasparovic, R.F.; Mansfield, A.W.; Melville, W.K.; Mollo-Christensen, E.L.; Zebker, H.A.

    1991-01-01

    Radar non-acoustic anti-submarine warfare (NAASW) became the subject of considerable scientific investigation and controversy in the West subsequent to the discovery by the Seasat satellite in 1978 that manifestations of underwater topography, thought to be hidden from the radar, were visible in synthetic aperture radar (SAR) images of the ocean. In addition, the Seasat radar produced images of ship wakes where the observed angle between the wake arms was much smaller than expected from classical Kelvin wake theory. These observations cast doubt on the radar oceanography community's ability to adequately explain these phenomena, and by extension on the ability of existing hydrodynamic and radar scattering models to accurately predict the observability of submarine-induced signatures. If one is of the opinion that radar NAASW is indeed a potentially significant tool in detecting submerged operational submarines, then the Soviet capability, as evidenced throughout this report, will be somewhat daunting. It will be shown that the Soviets have extremely fine capabilities in both theoretical and experimental hydrodynamics, that Soviet researchers have been conducting at-sea radar remote sensing experiments on a scale comparable to those of the United States for several years longer than we have, and that they have both an airborne and spaceborne SAR capability. The only discipline that the Soviet Union appears to be lacking is in the area of digital radar signal processing. If one is of the opinion that radar NAASW can have at most a minimal impact on the detection of submerged submarines, then the Soviet effort is of little consequence and poses not threat. 280 refs., 31 figs., 12 tabs.

  18. Bats and emerging zoonoses: henipaviruses and SARS.

    PubMed

    Field, H E

    2009-08-01

    Nearly 75% of all emerging infectious diseases (EIDs) that impact or threaten human health are zoonotic. The majority have spilled from wildlife reservoirs, either directly to humans or via domestic animals. The emergence of many can be attributed to predisposing factors such as global travel, trade, agricultural expansion, deforestation/habitat fragmentation, and urbanization; such factors increase the interface and/or the rate of contact between human, domestic animal, and wildlife populations, thereby creating increased opportunities for spillover events to occur. Infectious disease emergence can be regarded as primarily an ecological process. The epidemiological investigation of EIDs associated with wildlife requires a trans-disciplinary approach that includes an understanding of the ecology of the wildlife species, and an understanding of human behaviours that increase risk of exposure. Investigations of the emergence of Nipah virus in Malaysia in 1999 and severe acute respiratory syndrome (SARS) in China in 2003 provide useful case studies. The emergence of Nipah virus was associated with the increased size and density of commercial pig farms and their encroachment into forested areas. The movement of pigs for sale and slaughter in turn led to the rapid spread of infection to southern peninsular Malaysia, where the high-density, largely urban pig populations facilitated transmission to humans. Identifying the factors associated with the emergence of SARS in southern China requires an understanding of the ecology of infection both in the natural reservoir and in secondary market reservoir species. A necessary extension of understanding the ecology of the reservoir is an understanding of the trade, and of the social and cultural context of wildlife consumption. Emerging infectious diseases originating from wildlife populations will continue to threaten public health. Mitigating and managing the risk requires an appreciation of the connectedness between human

  19. Two microstrip arrays for interferometric SAR applications

    NASA Technical Reports Server (NTRS)

    Huang, J.

    1993-01-01

    Two types of C-band aircraft interferometric Synthetic Aperture Radar (SAR) are being developed at JPL to measure the ocean wave characteristics. Each type requires two identical antennas with each having a long rectangular aperture to radiate fan-shaped beam(s). One type of these radars requires each of its antennas to radiate a broadside beam that will measure the target's cross-track velocity. The other type, having each of its antennas to radiate two off-broadside pointed beams, will allow the measurement of both the cross-track and the along-track velocities of the target. Because flush mounting of the antenna on the aircraft fuselage is desirable, microstrip patch array is selected for these interferometric SAR antennas. To meet the radar system requirement, each array needs a total of 76 microstrip patches which are arranged in a 38 x 2 rectangular aperture with a physical size of 1.6m x 16.5cm. To minimize the insertion loss and physical real estate of this relatively long array, a combined series/parallel feed technique is used. Techniques to suppress cross-pol radiation and to effectively utilize the RF power are also implemented. Cross-pol level of lower than -30 dB from the co-pol peak and low insertion loss of 0.36 dB have been achieved for both types of arrays. For the type of radar that requires two off-braodside pointed beams, a simple phasing technique is used to achieve this dual-beam capability with adequate antenna gain (20 dBi) and sidelobe level (-14 dB). Both radar arrays have been flight tested on aircraft with excellent antenna performance demonstrated.

  20. Effect of Variable Gravity on Evaporation of Binary Fluids in a Capillary Pore Evaporator

    NASA Technical Reports Server (NTRS)

    Girgis, Morris M.; Matta, Nabil S.; Kolli, Kiran; Brown, Leon; Bain, James, Jr.; McGown, Juantonio

    1996-01-01

    The research project focuses on experimental investigation of the capillary-pumped evaporative heat transfer phenomenon. The objective is to examine whether the heat transfer and stability of a heated meniscus in a capillary pore can be enhanced by adding trace amounts of a non-volatile solute to a solvent and to understand the changes that occur. The experimental setup consists of a single pore evaporator connected to a reservoir which supplies liquid to the evaporator. In addition to the experiments of capillary-pumped evaporation, a parallel experimental study has been conducted to systematically investigate the effects of gravity as well as the effects of bulk composition on the heat transfer characteristics of evaporating binary thin films near the contact line region along an inclined heated surface. To investigate the buoyancy effects on evaporation along an inclined heated surface, the angle of inclination from a horizontal plane was varied fro 15 C to 90 C. An optimum concentration between 0.5% and 1% decane in pentane/decane solutions has been demonstrated at different angles of inclination. Improved heat transfer was found for the geometry with the smallest angle of inclination of 15 degrees. In addition, flow visualization has revealed that at low inclination angles effective heat transfer takes place primarily due to an extension of the thin film near the contact line. At these low inclination angles, the optimum concentration is associated with enhanced wetting characteristics and reduced thermocapillary stresses along the interface.

  1. Decreasing range resolution of a SAR image to permit correction of motion measurement errors beyond the SAR range resolution

    DOEpatents

    Doerry, Armin W.; Heard, Freddie E.; Cordaro, J. Thomas

    2010-07-20

    Motion measurement errors that extend beyond the range resolution of a synthetic aperture radar (SAR) can be corrected by effectively decreasing the range resolution of the SAR in order to permit measurement of the error. Range profiles can be compared across the slow-time dimension of the input data in order to estimate the error. Once the error has been determined, appropriate frequency and phase correction can be applied to the uncompressed input data, after which range and azimuth compression can be performed to produce a desired SAR image.

  2. EVALUATION OF HADWACO MVR EVAPORATOR, ETV REPORT& STATEMENT

    EPA Science Inventory

    Hadwaco US, Inc., manufactures a commercial ready mechanical vapor recompression (MVR) evaporator for use in the metal finishing industry. The evaporator utilizes proven MVR and falling film principles, with the key innovation being the construction material of the heat transfer ...

  3. EVAPORATOR FLOOR, CLARIFIERS TO THE LEFT, SCALES TO THE RIGHT, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    EVAPORATOR FLOOR, CLARIFIERS TO THE LEFT, SCALES TO THE RIGHT, EVAPORATOR CELLS ONE, TWO AND THREE IN THE BACKGROUND. VIEW FROM NORTHWEST FROM LIME VATS - Lihue Plantation Company, Sugar Mill Building, Haleko Road, Lihue, Kauai County, HI

  4. An Investigation of Graduate Scientists' Understandings of Evaporation and Boiling.

    ERIC Educational Resources Information Center

    Goodwin, Alan; Orlik, Yuri

    2000-01-01

    Uses a video presentation of six situations relating to the evaporation and boiling of liquids and the escape of dissolved gases from solution and investigates graduate scientists' understanding of the concepts of boiling and evaporation. (Author/YDS)

  5. Crystal structure of the SarR protein from Staphylococcus aureus

    PubMed Central

    Liu, Yingfang; Manna, Adhar; Li, Ronggui; Martin, Wesley E.; Murphy, Robert C.; Cheung, Ambrose L.; Zhang, Gongyi

    2001-01-01

    The expression of virulence determinants in Staphylococcus aureus is controlled by global regulatory loci (e.g., sarA and agr). The sar (Staphylococcus accessory regulator) locus is composed of three overlapping transcripts (sarA P1, P3, and P2, transcripts initiated from the P1, P3, and P2 promoters, respectively), all encoding the 124-aa SarA protein. The level of SarA, the major regulatory protein, is partially controlled by the differential activation of the sarA promoters. We previously partially purified a 13.6-kDa protein, designated SarR, that binds to the sarA promoter region to down-modulate sarA transcription from the P1 promoter and subsequently SarA expression. SarR shares sequence similarity to SarA, and another SarA homolog, SarS. Here we report the 2.3 Å-resolution x-ray crystal structure of the dimeric SarR-MBP (maltose binding protein) fusion protein. The structure reveals that the SarR protein not only has a classic helix–turn–helix module for DNA binding at the major grooves, but also has an additional loop region involved in DNA recognition at the minor grooves. This interaction mode could represent a new functional class of the “winged helix” family. The dimeric SarR structure could accommodate an unusually long stretch of ≈27 nucleotides with two or four bending points along the course, which could lead to the bending of DNA by 90° or more, similar to that seen in the catabolite activator protein (CAP)–DNA complex. The structure also demonstrates the molecular basis for the stable dimerization of the SarR monomers and possible motifs for interaction with other proteins. PMID:11381122

  6. Evaporative cooler including one or more rotating cooler louvers

    DOEpatents

    Gerlach, David W

    2015-02-03

    An evaporative cooler may include an evaporative cooler housing with a duct extending therethrough, a plurality of cooler louvers with respective porous evaporative cooler pads, and a working fluid source conduit. The cooler louvers are arranged within the duct and rotatably connected to the cooler housing along respective louver axes. The source conduit provides an evaporative cooler working fluid to the cooler pads during at least one mode of operation.

  7. Diverse deformation patterns of Aleutian volcanoes from InSAR

    USGS Publications Warehouse

    Lu, Zhiming; Dzurisin, D.; Wicks, C.; Power, J.

    2008-01-01

    Interferometric synthetic aperture radar (InSAR) is capable of measuring ground-surface deformation with centimeter-to-subcentimeter precision at a spatial resolution of tens of meters over an area of hundreds to thousands of square kilometers. With its global coverage and all-weather imaging capability, InSAR has become an increasingly important measurement technique for constraining magma dynamics of volcanoes over remote regions such as the Aleutian Islands. The spatial pattern of surface deformation data derived from InSAR images enables the construction of detailed mechanical models to enhance the study of magmatic processes. This paper summarizes the diverse deformation patterns of the Aleutian volcanoes observed with InSAR and demonstrates that deformation patterns and associated magma supply mechanisms in the Aleutians are diverse and vary between volcanoes. These findings provide a basis for improved models and better understanding of magmatic plumbing systems.

  8. [Simulation of polarization SAR imaging of ocean surface].

    PubMed

    Guo, Ding; Gu, Xing-Fa; Yu, Tao; Fernado, N; Li, Juan; Chen, Xing-Feng

    2011-10-01

    The polarization synthetic aperture radar (SAR) imaging simulation is of great significance to ocean surface scattering. According to the theory of wind-wave spectrum, rough ocean surface was modeled in the present paper using the two-scale-model. This treatment takes both the large scale and small scale surface into account. By using the velocity bunching (VB) theory, Bragg scattering model and the small perturbation model (SPM), the polarization SAR system can simulate the ocean surface with various parameters and ocean states. The effects of the parameters of ocean waves and the parameters of SAR system were analyzed. Finally, some useful conclusions were drawn, which are helpful for extracting the information of ocean surface. The method is an effective way in the ocean SAR design and the ocean surface research.

  9. THE PRACTICE OF STRUCTURE ACTIVITY RELATIONSHIPS (SAR) IN TOXICOLOGY

    EPA Science Inventory

    Both qualitative and quantitative modeling methods relating chemical structure to biological activity, called structure-activity relationship analyses or SAR, are applied to the prediction and characterization of chemical toxicity. This minireview will discuss some generic issue...

  10. Nonuniform FFTs (NUFFT) algorithms applied to SAR imaging

    NASA Astrophysics Data System (ADS)

    Subiza, Begona; Gimeno-Nieves, Encarna; Lopez-Sanchez, Juan M.; Fortuny-Guasch, Joaquim

    2004-01-01

    Some recently developed algorithms known as Non-Uniform FFT's (NUFFT), which enable the computation of efficient FFT's with unequally spaced data in the time or frequency domain, have been applied to SAR imaging in this study. The main objective has been to analyze the potential improvement of the computational efficiency and/or image accuracy of seismic migration SAR processing techniques, like the ω-k algorithm. Our approach consists in substituting both the Stolt interpolation and the final range inverse FFT by a single NUFFT. Numerical simulations illustrate the performance of the new method and the influence of the selection of NUFFT parameters in the precision and computation time of the SAR imaging algorithm. The new method is especially suited for near-field wide-band configurations, such as inverse SAR (ISAR) and ground-based systems, where a very precise imaging algorithm is required.

  11. [Simulation of polarization SAR imaging of ocean surface].

    PubMed

    Guo, Ding; Gu, Xing-Fa; Yu, Tao; Fernado, N; Li, Juan; Chen, Xing-Feng

    2011-10-01

    The polarization synthetic aperture radar (SAR) imaging simulation is of great significance to ocean surface scattering. According to the theory of wind-wave spectrum, rough ocean surface was modeled in the present paper using the two-scale-model. This treatment takes both the large scale and small scale surface into account. By using the velocity bunching (VB) theory, Bragg scattering model and the small perturbation model (SPM), the polarization SAR system can simulate the ocean surface with various parameters and ocean states. The effects of the parameters of ocean waves and the parameters of SAR system were analyzed. Finally, some useful conclusions were drawn, which are helpful for extracting the information of ocean surface. The method is an effective way in the ocean SAR design and the ocean surface research. PMID:22250525

  12. A Study of Linear Approximation Techniques for SAR Azimuth Processing

    NASA Technical Reports Server (NTRS)

    Martinson, L. W.; Perry, R. P.; Liu, B.

    1979-01-01

    The application of the step transform subarray processing techniques to synthetic aperture radar (SAR) was studied. The subarray technique permits the application of efficient digital transform computational techniques such as the fast Fourier transform to be applied while offering an effective tool for range migration compensation. Range migration compensation is applied at the subarray level, and with the subarray size based on worst case range migration conditions, a minimum control system is achieved. A baseline processor was designed for a four-look SAR system covering approximately 4096 by 4096 SAR sample field every 2.5 seconds. Implementation of the baseline system was projected using advanced low power technologies. A 20 swath is implemented with approximately 1000 circuits having a power dissipation of from 70 to 195 watts. The baseline batch step transform processor is compared to a continuous strip processor, and variations of the baseline are developed for a wide range of SAR parameters.

  13. Alaska SAR processor implementation of E-ERS-1

    NASA Technical Reports Server (NTRS)

    Cuddy, David; Chen, Ming-Je; Bicknell, Tom

    1992-01-01

    The synthetic aperture radar (SAR) data processing algorithm used by the Alaska SAR Facility (ASF) for the European Space Agency's first Remote-Sensing Satellite (E-ERS-1) SAR data are examined. Preprocessing highlights two features: signal measurement, which includes signal-to-noise ratio, replica measurement, and noise measurement; and Doppler measurement, which includes clutter lock and autofocus. The custom pipeline architecture performs the main processing with controls at the input interface, range correlator, corner-turn memory, azimuth correlator, and multi-look memory. The control software employs a flexible control scheme. The Committee on Earth Observation Satellites (CEOS) format encapsulates the ASF products. System performance for SAR image processing of E-ERS-1 data is reviewed.

  14. a Rail Central Displacement Method about Gb-Sar

    NASA Astrophysics Data System (ADS)

    Peng, J.; Cai, J.; Yang, H.

    2016-06-01

    This paper presents a new method to correct rail errors of Ground Based Synthetic Aperture Radar (GB-SAR) in the discontinue mode. Generally, "light positioning" is performed to mark the GB-SAR position in the dis-continuous observation mode. Usually we assume there is no difference between the marked position and the real installation position. But in fact, it is hard to keep the GB-SAR positions of two campaigns the same, so repositioning errors can't be neglected. In order to solve this problem, we propose an algorithm to correct the rail error after analyzing the GB-SAR rail error geometry. Results of the simulation experiment and the real experiment of a landslide in Lvliang, Shanxi, China, show the proposed method achieves an mm-level precision, enabling the D-GBSAR mode to be used in engineering projects.

  15. Land-cover classification in SAR images using dictionary learning

    NASA Astrophysics Data System (ADS)

    Aktaş, Gizem; Bak, Çaǧdaş; Nar, Fatih; Şen, Nigar

    2015-10-01

    Land-cover classification in Synthetic Aperture Radar (SAR) images has significance in both civil and military remote sensing applications. Accurate classification is a challenging problem due to variety of natural and man-made objects, seasonal changes at acquisition time, and diversity of image reconstruction algorithms.. In this study, Feature Preserving Despeckling (FPD), which is an edge preserving total variation based speckle reduction method, is applied as a preprocessing step. To handle the mentioned challenges, a novel feature extraction schema combined with a super-pixel segmentation and dictionary learning based classification is proposed. Computational complexity is another issue to handle in processing of high dimensional SAR images. Computational complexity of the proposed method is linearly proportional to the size of the image since it does not require a sliding window that accesses the pixels multiple times. Accuracy of the proposed method is validated on the dataset composed of TerraSAR-X high resolutions spot mode SAR images.

  16. Modeling of SAR signatures of shallow water ocean topography

    NASA Technical Reports Server (NTRS)

    Shuchman, R. A.; Kozma, A.; Kasischke, E. S.; Lyzenga, D. R.

    1984-01-01

    A hydrodynamic/electromagnetic model was developed to explain and quantify the relationship between the SEASAT synthetic aperture radar (SAR) observed signatures and the bottom topography of the ocean in the English Channel region of the North Sea. The model uses environmental data and radar system parameters as inputs and predicts SAR-observed backscatter changes over topographic changes in the ocean floor. The model results compare favorably with the actual SEASAT SAR observed backscatter values. The developed model is valid for only relatively shallow water areas (i.e., less than 50 meters in depth) and suggests that for bottom features to be visible on SAR imagery, a moderate to high velocity current and a moderate wind must be present.

  17. A beamforming algorithm for bistatic SAR image formation.

    SciTech Connect

    Yocky, David Alan; Wahl, Daniel Eugene; Jakowatz, Charles V., Jr.

    2010-03-01

    Beamforming is a methodology for collection-mode-independent SAR image formation. It is essentially equivalent to backprojection. The authors have in previous papers developed this idea and discussed the advantages and disadvantages of the approach to monostatic SAR image formation vis--vis the more standard and time-tested polar formatting algorithm (PFA). In this paper we show that beamforming for bistatic SAR imaging leads again to a very simple image formation algorithm that requires a minimal number of lines of code and that allows the image to be directly formed onto a three-dimensional surface model, thus automatically creating an orthorectified image. The same disadvantage of beamforming applied to monostatic SAR imaging applies to the bistatic case, however, in that the execution time for the beamforming algorithm is quite long compared to that of PFA. Fast versions of beamforming do exist to help alleviate this issue. Results of image reconstructions from phase history data are presented.

  18. 3. DETAIL, LIGHTNING ARRESTER ON SAR TRANSMISSION LINE. EEC print ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. DETAIL, LIGHTNING ARRESTER ON SAR TRANSMISSION LINE. EEC print no. S-C-01-00478, no date. Photographer unknown. - Santa Ana River Hydroelectric System, Transmission Lines, Redlands, San Bernardino County, CA

  19. Evaporation from the shallow Lake Massaciuccoli (Tuscany, Italy) studied using stable isotopes and evaporation pan data

    NASA Astrophysics Data System (ADS)

    Baneschi, I.; Gonfiantini, R.; Guidi, M.

    2009-04-01

    Oxygen and hydrogen isotope variations monitored in Lake Massaciuccoli (7 km2, 2 m deep, seasonally variable water level) during summer 2008, were compared with those observed in a Class A evaporation pan (diameter 120.6 cm, depth 25.4 cm) placed on the lake eastern shore. Air temperature, pressure, relative humidity, wind speed and direction, solar radiation, water temperature in the lake and the pan were also measured. The pluviometer indicated that no precipitation occurred during the study period. The pan was initially filled with groundwater up to the level of 19.2 cm (219 L), depleted in heavy isotopes with respect to tha lake water. Sodium chloride was added up to the concentration of 1 g×L-1, which is assumed do not affect significantly the evaporation rate till the water volume is reduced to less than 10 %. The Cl- concentration was used to provide an estimation of the evaporated water fraction, in addition to the micrometer measuring the water level variations. The pan water was sampled every 2-3 days and Cl- and stable isotopes determined. The set of stable isotope and evaporation data enabled us to compute the parameters governing the evaporation process and the isotopic exchanges with the atmospheric moisture, according to the procedure proposed by Gonfiantini (1986). The values were applied to test three working hypotheses of water balance of Lake Massaciuccoli: (i) surface inflow and outflow of liquid water are negligible and only evaporation is important; (ii) the inflow is negligible and outflow and evaporation are both significant; (iii) the three terms of balance are all important but the losses by evaporation and outflow exceed inflow (as the lake water level was decreasing). Water exchanges with groundwater are considered negligible. The best agreement between lake and pan data was obtained with the second hypothesis, for which the fraction of water removed by evaporation was estimated to be about 40 % ot he total water losses. This residual

  20. SAR terrain classifier and mapper of biophysical attributes

    NASA Technical Reports Server (NTRS)

    Ulaby, Fawwaz T.; Dobson, M. Craig; Pierce, Leland; Sarabandi, Kamal

    1993-01-01

    In preparation for the launch of SIR-C/X-SAR and design studies for future orbital SAR, a program has made considerable progress in the development of an SAR terrain classifier and algorithms for quantification of biophysical attributes. The goal of this program is to produce a generalized software package for terrain classification and estimation of biophysical attributes and to make this package available to the larger scientific community. The basic elements of the SAR (Synthetic Aperture Radar) terrain classifier are outlined. An SAR image is calibrated with respect to known system and processor gains and external targets (if available). A Level 1 classifier operates on the data to differentiate: urban features, surfaces and tall and short vegetation. Level 2 classifiers further subdivide these classes on the basis of structure. Finally, biophysical and geophysical inversions are applied to each class to estimate attributes of interest. The process used to develop the classifiers and inversions is shown. Radar scattering models developed from theory and from empirical data obtained by truck-mounted polarimeters and the JPL AirSAR are validated. The validated models are used in sensitivity studies to understand the roles of various scattering sources (i.e., surface trunk, branches, etc.) in determining net backscatter. Model simulations of sigma (sup o) as functions of the wave parameters (lambda, polarization and angle of incidence) and the geophysical and biophysical attributes are used to develop robust classifiers. The classifiers are validated using available AirSAR data sets. Specific estimators are developed for each class on the basis of the scattering models and empirical data sets. The candidate algorithms are tested with the AirSAR data sets. The attributes of interest include: total above ground biomass, woody biomass, soil moisture and soil roughness.