Science.gov

Sample records for 248-nm krf laser

  1. Micromachining of polyurethane (PU) polymer using a KrF excimer laser (248 nm)

    NASA Astrophysics Data System (ADS)

    Singh, Sarabpreet; Sharma, Sunil

    2014-12-01

    Polyurethane (PU) polymer, due to its biocompatibility, weather resistance, and favorable physical properties, finds a number of applications in medical implants, protective coatings, and as a prototype material for structural components in MEMS devices. An excimer laser (wavelength = 248 nm, FWHM = 25 ns) is employed for micromachining of polyurethane (PU) polymer. For air environment, the ablation rate is 0.18 μm/pulse and for underwater environment, the ablation rate is 0.07 μm/pulse (with underwater ablation threshold as 0.10 J/cm2), which concluded low taper angles (∼32°) for in air as compared to high taper angles (∼65°) with underwater micromachining. The experimental results for air and under water micromachining demonstrate ablation process as a combination of photo-thermal and photo-chemical mechanism.

  2. High average power, narrow band 248 nm alexandrite laser system

    SciTech Connect

    Kuper, J.W.; Chin, T.C.; Papanestor, P.A.

    1994-12-31

    A compact line-narrowed 248 nm solid state laser source operating at 15 mJ {at} 100 Hz PRF was demonstrated. Constraints due to thermal loading of components were addressed. Tradeoffs between pulse energy and repetition rate were investigated. A method for overcoming thermal dephasing in the THG material was achieved by scanning a slab shaped crystal.

  3. Laser sputtering of highly oriented pyrolytic graphite at 248 nm

    NASA Astrophysics Data System (ADS)

    Krajnovich, Douglas J.

    1995-01-01

    The interaction of excimer laser pulses with a highly oriented pyrolytic graphite (HOPG) target has been studied. HOPG, a close approximation to single crystal graphite, was irradiated along a freshly cleaved basal plane in vacuum by pulses from a KrF excimer laser. The energy fluence was varied between 300-700 mJ/cm2, resulting in material removal rates of <0.01 Å/pulse to ˜100 Å/pulse. In this near-threshold regime, neutral carbon atoms, dimers, and trimers account for nearly all of the sputtered flux and collisional and plasma effects are minimized. Time-of-flight distributions of the neutral carbon atoms and small carbon clusters were measured and inverted to obtain translational energy flux distributions and relative sputtering yields as a function of fluence. The translational energy distributions are remarkably close to Maxwell-Boltzmann distributions over most of the fluence range studied. However, the mean translational energies are far too high to reconcile with a simple thermal vaporization model. For example, the mean translational energy of C3, the most abundant species, increases from 1.1 eV at 305 mJ/cm2 to 31.7 eV at 715 mJ/cm2. Explanations are considered for this curious mix of thermal and non-thermal behavior. At the high end of our fluence range, the mean translational energies of C1, C2, C3 converge to a 1:2:3 ratio, indicating that the velocity distributions are almost identical. This particular result can be interpreted as a gas dynamic effect. Prolonged sputtering of the same target spot results in a falloff in the sputtering yield and the mean translational energies, but little change in the cluster size distribution. These effects are related to impurity induced topography formation on the target surface.

  4. Improvement of electrical performance of InGaZnO/HfSiO TFTs with 248-nm excimer laser annealing

    NASA Astrophysics Data System (ADS)

    Huang, Hau-Yuan; Wang, Shui-Jinn; Wu, Chien-Hung; Lu, Chien-Yuan

    2014-09-01

    The influence of 248-nm KrF excimer laser annealing (ELA) with energy density between 0 and 400 mJ/cm2 on the electrical behavior of indium gallium zinc oxide (InGaZnO) thin-film transistors (TFTs) is investigated. The experimental results show that the saturation mobility and subthreshold swing are improved from 12.4 cm2/Vs and 100 mV/dec without ELA to 17.8 cm2/Vs and 75 mV/dec, respectively, by applying a 300 mJ/cm2 laser pulse after the source/drain deposition, while maintaining an almost unchanged turn-off voltage. Such improvements are attributed to the increase in the oxygen vacancies and reduction in the bulk traps in the InGaZnO channel.

  5. Laser-damage processes in cleaved and polished CaF{sub 2} at 248nm

    SciTech Connect

    Reichling, M.; Gogoll, S.; Stenzel, S.

    1996-12-31

    Single-shot irradiation of single crystal CaF{sub 2} with 248nm/14ns laser light results in various degrees of degradation and damage depending on the applied laser fluence. Phenomena range from subtle, non-topographic surface modification only detectable by secondary electrons of scanning electron microscopy (SE-SEM) over cracking along crystallographic directions to the ablation of crystalline material. Significant differences are found for cleaved and polished surfaces. Findings from SEM investigations, in-situ photoacoustic mirage measurements and visual inspection of irradiated samples form a comprehensive picture of the stages of laser-induced damage.

  6. Negative tone imaging (NTI) with KrF: extension of 248nm IIP lithography to under sub-20nm logic device

    NASA Astrophysics Data System (ADS)

    Oh, Tae-Hwan; Kim, Tae-Sun; Kim, Yura; Kim, Jahee; Heo, Sujeong; Youn, Bumjoon; Seo, Jaekyung; Yoon, Kwang-Sub; Choi, Byoung-il

    2013-03-01

    One of the most prospective alternative lithography ways prior to EUV implementation is the reverse imaging by means of a negative tone development (NTD) process with solvent-based developer. Contact and trench patterns can be printed in CAR (Chemically amplified resist) using a bright field mask through NTD development, and can give much better image contrast (NILS) than PTD process. Not only for contact or trench masks, but also pattering of IIP (Ion Implantation) layers whose mask opening ratio is less than 20% may get the benefit of NTD process, not only in the point of aerial imaging, but also in achievement of vertical resist profile, especially for post gate layers which have complex sub_topologies and nitride substrate. In this paper, we present applications for the NTD technique to IIP (Ion Implantation) layer lithography patterning, via KrF exposure, comparing the performance to that of the PTD process. Especially, to extend 248nm IIP litho to sub-20nm logic device, optimization of negative tone imaging (NTI) with KrF exposure is the main focus in this paper. With the special resin system designed for KrF NTD process, even sub 100nm half-pitch trench pattern can be defined with enough process margin and vertical resist profiles can be also obtained on the nitride substrate with KrF exposure.

  7. 248nm silicon photoablation: Microstructuring basics

    SciTech Connect

    Poopalan, P.; Najamudin, S. H.; Wahab, Y.; Mazalan, M.

    2015-05-15

    248nm pulses from a KrF excimer laser was used to ablate a Si wafer in order to ascertain the laser pulse and energy effects for use as a microstructuring tool for MEMS fabrication. The laser pulses were varied between two different energy levels of 8mJ and 4mJ while the number of pulses for ablation was varied. The corresponding ablated depths were found to range between 11 µm and 49 µm, depending on the demagnified beam fluence.

  8. Target physics results at 248 nm wavelength from the Aurora laser system high-intensity campaign

    SciTech Connect

    Watt, R.G.; Cobble, J.; Gomez, C.; Kephart, J.; Kristal, R.; Turner, T.P.; Oertel, J.; Thomas, S.; Netz, D.; Jones, J.

    1990-10-01

    Au and Si targets have been irradiated using the Aurora KrF laser system, and diagnosed with x-ray and optical diagnostics. The x-ray diagnostics were sensitive to the 0.1--10 keV range. Initial, manually aligned results indicate significant plasma heating and intense x-ray production, with incident peak intensities on target of 1 {minus} 2 {times} 10{sup 14} W/cm{sup 2} in a focal spot of order 500 {mu}m diameter. Total energy delivered to the target in 36 of the available 48 target beams was approximately 1200 J in pulses with FWHM in the 3--5 ns range. M-band radiation was observed from Au foil targets. Initial bandwidth measurements on the laser indicate {approx}20 cm{sup {minus}1} without bandwidth enhancement efforts.

  9. L-shell emission from high-Z solid targets by intense (10{sup 19}W/cm{sup 2}) irradiation with a 248nm laser

    SciTech Connect

    Nelson, T. R.; Borisov, A. B.; Boyer, K.; Schroeder, W. A.; Santoro, J.; Van Tassle, A. J.; Rhodes, C. K.; Luk, T. S.; Cameron, S.; Longworth, J. W.; McPherson, A.

    1999-11-22

    Efficient (1.2% yield) multikilovolt x-ray emission from Ba(L) (2.4--2.8{angstrom}) and Gd(L) (1.7--2.1{angstrom}) is produced by ultraviolet (248nm) laser-excited BaF{sub 2} and Gd solids. The high efficiency is attributed to an inner shell-selective collisional electron ejection.

  10. Laser-induced fluorescence of ketones at elevated temperatures for pressures up to 20 bars by using a 248 nm excitation laser wavelength: experiments and model improvements.

    PubMed

    Braeuer, Andreas; Beyrau, Frank; Leipertz, Alfred

    2006-07-10

    Laser-induced fluorescence of acetone and 3-pentanone for a 248 nm excitation wavelength was investigated for conditions relevant for internal combustion engines regarding temperature, pressure, and gas composition. An optically accessible calibration chamber with continuous gas flow was operated by using CO2 and air as a bath gas. According to the varying pressure and temperature conditions during the compression stroke of a spark ignition engine, fluorescence experiments were performed under isothermal pressure variations from 1 to 20 bars for different temperatures between 293 and 700 K. The ketone fluorescence behavior predictions, based on a model previously developed by Thurber et al. [Appl. Opt. 37, 4963 (1998)], were found to overestimate the pressure-related fluorescence increase for high temperature and small wavelength excitation at 248 nm. The parameters influencing the model only in the large vibrational energy regime were newly adjusted, which resulted in an improved model with a better agreement with the experiment. The model's validity for excitation at larger wavelengths was not influenced. For the air bath gas an additional collision and vibrational energy sensitive quenching rate was implemented in the model for both tracers, acetone and 3-pentanone. PMID:16807609

  11. Laser-induced fluorescence of ketones at elevated temperatures for pressures up to 20 bars by using a 248 nm excitation laser wavelength: experiments and model improvements.

    PubMed

    Braeuer, Andreas; Beyrau, Frank; Leipertz, Alfred

    2006-07-10

    Laser-induced fluorescence of acetone and 3-pentanone for a 248 nm excitation wavelength was investigated for conditions relevant for internal combustion engines regarding temperature, pressure, and gas composition. An optically accessible calibration chamber with continuous gas flow was operated by using CO2 and air as a bath gas. According to the varying pressure and temperature conditions during the compression stroke of a spark ignition engine, fluorescence experiments were performed under isothermal pressure variations from 1 to 20 bars for different temperatures between 293 and 700 K. The ketone fluorescence behavior predictions, based on a model previously developed by Thurber et al. [Appl. Opt. 37, 4963 (1998)], were found to overestimate the pressure-related fluorescence increase for high temperature and small wavelength excitation at 248 nm. The parameters influencing the model only in the large vibrational energy regime were newly adjusted, which resulted in an improved model with a better agreement with the experiment. The model's validity for excitation at larger wavelengths was not influenced. For the air bath gas an additional collision and vibrational energy sensitive quenching rate was implemented in the model for both tracers, acetone and 3-pentanone.

  12. L-shell emission from high-Z solid targets by intense 10{sup 19}W/cm{sup 2} irradiation with a 248nm laser

    SciTech Connect

    Nelson, T.R.; Borisov, A.B.; Boyer, K.

    2000-01-05

    Efficient (1.2% yield) multikilovolt x-ray emission from Ba(L) (2.4--2.8{angstrom}) and Gd(L) (1.7--2.1{angstrom}) is produced by ultraviolet (248nm) laser-excited BaF{sub 2} and Gd solids. The high efficiency is attributed to an inner shell-selective collisional electron ejection. Much effort has been expended recently in attempts to develop an efficient coherent x-ray source suitable for high-resolution biological imaging. To this end, many experiments have been performed studying the x-ray emissions from high-Z materials under intense (>10{sup 18}W/cm{sup 2}) irradiation, with the most promising results coming from the irradiation of Xe clusters with a UV (248nm) laser at intensities of 10{sup 18}--10{sup 19}W/cm{sup 2}. In this paper the authors report the production of prompt x-rays with energies in excess of 5keV with efficiencies on the order of 1% as a result of intense irradiation of BaF{sub 2} and Gd targets with a terawatt 248nm laser. The efficiency is attributed to an inner shell-selective collisional electron ejection mechanism in which the previously photoionized electrons are ponderomotively driven into an ion while retaining a portion of their atomic phase and symmetry. This partial coherence of the laser-driven electrons has a pronounced effect on the collisional cross-section for the electron ion interaction.

  13. Activities of developing high-power KrF lasers and studying laser plasmas interaction physics at CIAE

    NASA Astrophysics Data System (ADS)

    Wang, Naiyan; Shan, Yusheng; Ma, Weiyi; Yang, Dawei; Kun, Gong; Wang, Xiaojun; Tang, Xiuzhang; Tao, Yezheng; Ma, Jinglong; Jiang, Xingdong

    2002-01-01

    This report reviews the scientific activities on high power laser and laser plasma physics at CIAE. A 6-beam KrF excimer laser system (100 J/23 ns/248 nm/1013 W/cm2, 15 min/shot) has been built, the Raman technologies used to upgrade it to 1014 W/cm2 has been studied. A UV femtosecond Ti:sapphire/KrF hybrid laser (50 mJ/220 fs/248 nm/1017 W/cm2) has been developed also, hot electron generation research has been carried out in the fs laser. In the near future, the fs laser will be amplified in six-beam laser system to produce ultra-high intensity to do fundamental researches on Fast Ignition of ICF.

  14. High-reflectivity Bragg gratings fabricated by 248-nm excimer laser holographic ablation in thin Ta2O5 films overlaid on glass waveguides

    NASA Astrophysics Data System (ADS)

    Pissadakis, S.; Zervas, M. N.; Reekie, L.; Wilkinson, J. S.

    We demonstrate strong Bragg grating reflection in Ta2O5 (tantalum pentoxide) thin films overlaid on potassium ion-exchanged channel waveguides in BK-7 glass, inscribed using 248-nm excimer laser holographic ablation. The experimental data presented are divided into two sections: the first section refers to the study of the grating ablation process of thin Ta2O5 films with respect to the exposure conditions, while the second focuses on the implementation of these relief gratings in functional waveguide devices. Firstly, experimental data on grating morphology versus exposure conditions, accomplished with scanning electron microscopy microscans, are presented. In the second section diffraction spectra for waveguide gratings are presented and analysed. Spectral notches in transmission of depth -18 dB for the TM polarisation were obtained from 16-mm-long gratings patterned in waveguides overlaid with a 105-nm-thick Ta2O5 film, using 50 pulses of 60-mJ/cm2 energy density.

  15. Damage thresholds of thin film materials and high reflectors at 248 nm

    SciTech Connect

    Rainer, F.; Lowdermilk, W.H.; Milam, D.; Carniglia, C.K.; Hart, T.T.; Lichtenstein, T.L.

    1982-01-01

    Twenty-ns, 248-nm KrF laser pulses were used to measure laser damage thresholds for halfwave-thick layers of 15 oxide and fluoride coating materials, and for high reflectance coatings made with 13 combinations of these materials. The damage thresholds of the reflectors and single-layer films were compared to measurements of several properties of the halfwave-thick films to determine whether measurements of these properties of single-layer films to determine whether measurements of these properties of single-layer films were useful for identifying materials for fabrication of damage resistant coatings.

  16. Measurement of the absolute cross section for multiphoton ionization of atomic hydrogen at 248 nm

    SciTech Connect

    Kyrala, G.A.; Nichols, T.D.

    1990-01-01

    We present measurements of the absolute rates for multiphoton ionization of the ground state from atomic hydrogen by a linearly polarized, subpicosecond KrF laser pulse at a wavelength of 248 nm. A laser crossed atomic beam technique is used. The irradiance was varied from 3{times}10{sup 12} w/cm{sup 2} to 2{times}10{sup 14} w/cm{sup 2} and three above threshold ionization peaks were observed. The measured rate for total electron production is less than predicted by the numerical and perturbation calculations, but significantly higher than calculated by the Reiss and Keldysh methods. 21 refs., 7 figs.

  17. Use of the selected overlap LIDAR experiment (SOLEX) system with the 248 nm krypton fluoride and the 355 nm neodymium:yttrium aluminum garnet lasers for the calibration of LIDAR systems for water vapor determination

    NASA Astrophysics Data System (ADS)

    Mensah, Francis Emmanuel Tofodji

    Water vapor is one of the most important atmospheric variables that play a key role in air quality, global warming, climate change and hurricane formation. In this dissertation, use was made of two laser systems, the 248-nm KrF laser and the 355 nm Nd-YAG laser, with the use of Raman scattering to measure water vapor in the atmosphere. These two systems have been calibrated more accurately, using the LIDAR approach named SOLEX (Selected Overlap LIDAR Experiment). All the experiments were carried out at the Howard University Beltsville campus located on a 107 acre research site, at Beltsville, MD, 15 miles from downtown Washington DC, near the National Agricultural Research Center (NARC), and the NASA Goddard Space Flight Center (GSFC). The geographical coordinates are: 39°04.01'N latitude, and 76°52.31'W longitude. The receiver system used during these experiments is a 30" (76.2 cm), f/ 9 Cassegranian telescope, while the detector system uses a prism spectrometer (Beckman), with a 2-meter, double-fold optical path and a variable slit width is placed at the image plane of the telescope. With the use of the SOLEX system, this dissertation provides an accurate calibration of the two LIDAR Systems for water vapor measurement in the troposphere at the following ranges: 83.7 ft, 600 ft, 800 ft, 1000 ft and 1080 ft. Data analysis shows a pretty high sensitivity of the LIDAR system for water vapor measurement and the efficiency of the SOLEX method.

  18. Mercury: The Los Alamos ICF KrF laser system

    SciTech Connect

    Czuchlewski, S.J.; York, G.W.; Bigio, I.J.; Brucker, J.; Hanson, D.; Honig, E.M.; Kurnit, N.; Leland, W.; McCown, A.W.; McLeod, J.; Rose, E.; Thomas, S.; Thompson, D.

    1993-01-19

    The Mercury KrF laser facility at Los Alamos is being built with the benefit of lessons learned from the Aurora system. An increased understanding of KrF laser engineering, and the designed implementation of system flexibility, will permit Mercury to serve as a tested for a variety of advanced KrF technology concepts.

  19. KrF lasers for inertial confinement fusion

    SciTech Connect

    Harris, D.B.; Cartwright, D.C.; Figueira, J.F.; McDonald, T.E.; Sorem, M.E.

    1989-01-01

    The KrF laser has been proposed for inertial confinement fusion (ICF) since its discovery in 1975. Since that time, the laser has seen significant development and has been increased in energy many orders of magnitude to the several kilojoule energy level. The suitability of the KrF laser as a driver for ICF energy applications has been continually reviewed. The latest assessments indicate that the KrF laser still appears to be the leading laser candidate. A worldwide effort exists to advance the KrF laser for ICF applications. 21 refs., 1 fig.

  20. PMMA microstructure as KrF excimer-laser LIGA material

    NASA Astrophysics Data System (ADS)

    Yang, Chii-Rong; Chou, Bruce C. S.; Chou, Hsiao-Yu; Lin, Frank H. S.; Kuo, Wen-Kai; Luo, Roger G. S.; Chang, Jer-Wei; Wei, Z. J.

    1998-08-01

    PMMA (polymethyl methacrylate) has been widely used as x-ray LIGA material for its good features of electrical acid plating of all common metals to industrial applications. Unlike the tough characteristics of polyimide in almost all alkaline and acid solutions, PMMA is easily removed in chemical etchants after electroplating process. For this reason, ablation- etching characteristics of PMMA material for 3D microstructures fabrication using a 248 nm KrF excimer laser were investigated. Moreover, the uses of the laminated dry film were also studied in this work. Experimental results show that PMMA microstructures can produce the near-vertical side- wall profile as the laser fluence up to 2.5 J/cm2. PMMA templates with high aspect ratio of around 25 were demonstrated, and the sequential electroplating processes have realized the metallic microstructures. Moreover, the microstructures fabricated in dry film show the perfect side- wall quality, and no residues of debris were found.

  1. Electra: Repetitively Pulsed Angularly Multiplexed KrF Laser System Performance

    NASA Astrophysics Data System (ADS)

    Wolford, Matthew; Myers, Matthew; Giuliani, John; Sethian, John; Burns, Patrick; Hegeler, Frank; Jaynes, Reginald

    2008-11-01

    As in a full size fusion power plant beam line, Electra is a multistage laser amplifier system. The multistage amplifier system consists of a commercial discharge laser and two doubled sided electron beam pumped amplifiers. Angular multiplexing is used in the optical layout to provide pulse length control and to maximize laser extraction from the amplifiers. Two angularly multiplexed beams have extracted 30 J of KrF laser light with an aperture 8 x 10 cm^2, which is sufficient to extract over 500 J from the main amplifier and models agree. The main amplifier of Electra in oscillator mode has demonstrated single shot and rep-rate laser energies exceeding 700 J with 100 ns pulsewidth at 248 nm with an aperture 29 x 29 cm^2. Continuous operation of the KrF electron beam pumped oscillator has lasted for more than 2.5 hours without failure at 1 Hz and 2.5 Hz. The measured intensity and pulse energy for durations greater than thousand shots are consistent at measurable rep-rates of 1 Hz, 2.5 Hz and 5 Hz.

  2. Observation of parametric instabilities in the quarter critical density region driven by the Nike KrF laser

    SciTech Connect

    Weaver, J. L.; Kehne, D.; Brown, C. M.; Obenschain, S. P.; Serlin, V.; Schmitt, A. J.; Oh, J.; Lehmberg, R. H.; Mclean, E.; Manka, C.; Phillips, L.; Afeyan, B.; Seely, J.; Feldman, U.

    2013-02-15

    The krypton-fluoride (KrF) laser is an attractive choice for inertial confinement fusion due to its combination of short wavelength ({lambda}=248 nm), large bandwidth (up to 3 THz), and superior beam smoothing by induced spatial incoherence. These qualities improve the overall hydrodynamics of directly driven pellet implosions and should allow use of increased laser intensity due to higher thresholds for laser plasma instabilities when compared to frequency tripled Nd:glass lasers ({lambda}=351 nm). Here, we report the first observations of the two-plasmon decay instability using a KrF laser. The experiments utilized the Nike laser facility to irradiate solid plastic planar targets over a range of pulse lengths (0.35 ns{<=}{tau}{<=}1.25 ns) and intensities (up to 2 Multiplication-Sign 10{sup 15} W/cm{sup 2}). Variation of the laser pulse created different combinations of electron temperature and electron density scale length. The observed onset of instability growth was consistent with the expected scaling that KrF lasers have a higher intensity threshold for instabilities in the quarter critical density region.

  3. Mercury: A second-generation KrF laser for inertial fusion research

    SciTech Connect

    Bigio, I.J.; York, G.; McLeod, J.; Czuchlewski, J.; Rose, E.; Hanson, D.E.; Kurnit, N.A.; McCown, A.

    1992-10-01

    The ``Mercury`` KrF laser facility at Los Alamos is being built with the benefit of lessons learned from the Aurora KrF laser. An increased understanding of KrF laser engineering, and the designed implementation of system flexibility, will permit Mercury to serve as a testbed for a variety of advanced KrF technology concepts.

  4. Mercury: A second-generation KrF laser for inertial fusion research

    SciTech Connect

    Bigio, I.J.; York, G.; McLeod, J.; Czuchlewski, J.; Rose, E.; Hanson, D.E.; Kurnit, N.A.; McCown, A.

    1992-01-01

    The Mercury'' KrF laser facility at Los Alamos is being built with the benefit of lessons learned from the Aurora KrF laser. An increased understanding of KrF laser engineering, and the designed implementation of system flexibility, will permit Mercury to serve as a testbed for a variety of advanced KrF technology concepts.

  5. Interaction of wide band gap single crystals with 248 nm excimer laser radiation. XII. The emission of negative atomic ions from alkali halides

    SciTech Connect

    Kimura, Kenichi; Langford, S. C.; Dickinson, J. T.

    2007-12-01

    Many wide band gap materials yield charged and neutral emissions when exposed to sub-band-gap laser radiation at power densities below the threshold for optical breakdown and plume formation. In this work, we report the observation of negative alkali ions from several alkali halides under comparable conditions. We observe no evidence for negative halogen ions, in spite of the high electron affinities of the halogens. Significantly, the positive and negative alkali ions show a high degree of spatial and temporal overlap. A detailed study of all the relevant particle emissions from potassium chloride (KCl) suggests that K{sup -} is formed by the sequential attachment of two electrons to K{sup +}.

  6. Pulse shaping and energy storage capabilities of angularly multiplexed KrF laser fusion drivers

    NASA Astrophysics Data System (ADS)

    Lehmberg, R. H.; Giuliani, J. L.; Schmitt, A. J.

    2009-07-01

    This paper describes a rep-rated multibeam KrF laser driver design for the 500kJ Inertial Fusion test Facility (FTF) recently proposed by NRL, then models its optical pulse shaping capabilities using the ORESTES laser kinetics code. It describes a stable and reliable iteration technique for calculating the required precompensated input pulse shape that will achieve the desired output shape, even when the amplifiers are heavily saturated. It also describes how this precompensation technique could be experimentally implemented in real time on a reprated laser system. The simulations show that this multibeam system can achieve a high fidelity pulse shaping capability, even for a high gain shock ignition pulse whose final spike requires output intensities much higher than the ˜4MW/cm2 saturation levels associated with quasi-cw operation; i.e., they show that KrF can act as a storage medium even for pulsewidths of ˜1ns. For the chosen pulse, which gives a predicted fusion energy gain of ˜120, the simulations predict the FTF can deliver a total on-target energy of 428kJ, a peak spike power of 385TW, and amplified spontaneous emission prepulse contrast ratios IASE/I<3×10-7 in intensity and FASE/F<1.5×10-5 in fluence. Finally, the paper proposes a front-end pulse shaping technique that combines an optical Kerr gate with cw 248nm light and a 1μm control beam shaped by advanced fiber optic technology, such as the one used in the National Ignition Facility (NIF) laser.

  7. Pulse shaping and energy storage capabilities of angularly multiplexed KrF laser fusion drivers

    SciTech Connect

    Lehmberg, R. H.; Giuliani, J. L.; Schmitt, A. J.

    2009-07-15

    This paper describes a rep-rated multibeam KrF laser driver design for the 500 kJ Inertial Fusion test Facility (FTF) recently proposed by NRL, then models its optical pulse shaping capabilities using the ORESTES laser kinetics code. It describes a stable and reliable iteration technique for calculating the required precompensated input pulse shape that will achieve the desired output shape, even when the amplifiers are heavily saturated. It also describes how this precompensation technique could be experimentally implemented in real time on a reprated laser system. The simulations show that this multibeam system can achieve a high fidelity pulse shaping capability, even for a high gain shock ignition pulse whose final spike requires output intensities much higher than the approx4 MW/cm{sup 2} saturation levels associated with quasi-cw operation; i.e., they show that KrF can act as a storage medium even for pulsewidths of approx1 ns. For the chosen pulse, which gives a predicted fusion energy gain of approx120, the simulations predict the FTF can deliver a total on-target energy of 428 kJ, a peak spike power of 385 TW, and amplified spontaneous emission prepulse contrast ratios I{sub ASE}/I<3x10{sup -7} in intensity and F{sub ASE}/F<1.5x10{sup -5} in fluence. Finally, the paper proposes a front-end pulse shaping technique that combines an optical Kerr gate with cw 248 nm light and a 1 mum control beam shaped by advanced fiber optic technology, such as the one used in the National Ignition Facility (NIF) laser.

  8. X-Ray Radiation Measurements With Photodiodes In Plasmas Generated By 1017 W/Cm2 Intensity Krf Excimer Laser Pulses

    NASA Astrophysics Data System (ADS)

    Rácz, E.; Földes, I. B.; Ryć, L.

    2006-01-01

    Experiments were carried out using a prepulse-free hybrid KrF excimer-dye laser system (700fs pulse duration, 248nm wavelength, 15mJ pulse energy). The intensity of the p-polarized, focused laser beam was 1.5ṡ1017 W/cm2. Vacuum ultraviolet (VUV) and x-rays from solid state laser plasmas were generated in the laser-plasma interaction of subpicosecond laser pulses of nonrelativistic laser intensities. An x-ray sensitive FLM photodiode (ITE, Warsaw) was used to detect x-rays between 1-19 keV in front of the targets. The diode was filtered by a 4μm Al foil. The dependence of the x-ray flux on laser intensity and the angular distribution of x-rays for aluminum and copper targets in the half space of the front side of the targets were investigated.

  9. Plasma mirrors for short pulse KrF lasers.

    PubMed

    Gilicze, Barnabás; Barna, Angéla; Kovács, Zsolt; Szatmári, Sándor; Földes, István B

    2016-08-01

    It is demonstrated for the first time that plasma mirrors can be successfully applied for KrF laser systems. High reflectivity up to 70% is achieved by optimization of the beam quality on the plasma mirror. The modest spectral shift and the good reflected beam quality allow its applicability for high power laser systems for which a new arrangement is suggested. PMID:27587094

  10. Plasma mirrors for short pulse KrF lasers.

    PubMed

    Gilicze, Barnabás; Barna, Angéla; Kovács, Zsolt; Szatmári, Sándor; Földes, István B

    2016-08-01

    It is demonstrated for the first time that plasma mirrors can be successfully applied for KrF laser systems. High reflectivity up to 70% is achieved by optimization of the beam quality on the plasma mirror. The modest spectral shift and the good reflected beam quality allow its applicability for high power laser systems for which a new arrangement is suggested.

  11. Plasma mirrors for short pulse KrF lasers

    NASA Astrophysics Data System (ADS)

    Gilicze, Barnabás; Barna, Angéla; Kovács, Zsolt; Szatmári, Sándor; Földes, István B.

    2016-08-01

    It is demonstrated for the first time that plasma mirrors can be successfully applied for KrF laser systems. High reflectivity up to 70% is achieved by optimization of the beam quality on the plasma mirror. The modest spectral shift and the good reflected beam quality allow its applicability for high power laser systems for which a new arrangement is suggested.

  12. Biocompatible layers fabricated using KrF laser

    NASA Astrophysics Data System (ADS)

    Jelínek, Miroslav; Kocourek, Tomás; Vrbová, Miroslava; Konarík, David; Remsa, Jan

    2008-11-01

    Thin films of hydroxyapatite, hydroxyapatite doped with silver and thin diamond like carbon layers were prepared using KrF excimer laser deposition. Tooth prostheses, textile blood vessels and artificial heart valves were covered and tested. Examples of physical tests, and in vitro and in vivo analysis using minipigs and sheep are presented.

  13. Direct growth of patterned graphene on SiC(0001) surfaces by KrF excimer-laser irradiation

    NASA Astrophysics Data System (ADS)

    Hattori, Masakazu; Furukawa, Kazuaki; Takamura, Makoto; Hibino, Hiroki; Ikenoue, Hiroshi

    2015-03-01

    A novel method of direct growth of patterned graphene on SiC(0001) surfaces using KrF excimer-laser irradiation is proposed. It relies on the local sublimation of Si atoms within the irradiated area to induce graphene growth through a rearrangement of surplus carbon. A laser with a wavelength of 248 nm was pulsed with a duration of 55 ns and a repetition rate of 100 Hz that was used to graphene forming. Following laser irradiation of 1.2 J/cm2 (5000 shots) under an Ar atmosphere (500 Pa), characteristic graphene peaks were observed in the Raman spectra of the irradiated area, thereby confirming the formation of graphene. The ratio between the graphene bands in the Raman spectra was used to estimate the grain size at 61.3 nm. Through high-resolution transmission electron microscopy, it was confirmed that two layers of graphene were indeed formed in the laser irradiated region. Using this knowledge, we also demonstrate that line-and-space (LandS) graphene patterns with a pitch of 8 μm can be directly formed using our method.

  14. Surface studies on benzophenone doped PDMS microstructures fabricated using KrF excimer laser direct write lithography

    NASA Astrophysics Data System (ADS)

    Kant, Madhushree Bute; Shinde, Shashikant D.; Bodas, Dhananjay; Patil, K. R.; Sathe, V. G.; Adhi, K. P.; Gosavi, S. W.

    2014-09-01

    This paper discusses microfabrication process for benzophenone doped polydimethylsiloxane (PDMS) using laser lithography. KrF excimer laser of 248 nm with 20 ns pulse width at repetition rate of 1 Hz was used for microfabrication of undoped and benzophenone doped PDMS. The doped-PDMS shows sensitivity below 365 nm, permitting processing under ambient light. The analysis of etch depth revealed that doped PDMS shows self developable sensitivity at lower fluence of ∼250 mJ/cm2. The unexposed and exposed surface was studied using Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy and Scanning electron microscopy (SEM). Spectrocopic analysis indicated increase in Csbnd O, Cdbnd O, Sisbnd O3 and Sisbnd O4 bonding at the expense of Sisbnd C and Sisbnd O2 bonds of PDMS. In case of laser exposed doped-PDMS, removal of benzophenone from probe depth of spectroscopy was observed. Whereas the surface morphology of exposed and unexposed doped-PDMS was observed to be same, indicating clean development of PDMS micropatterns. The present study indicates that addition of 3.0 wt.% benzophenone in PDMS enhance self development sensitivity of PDMS. The self developable results on doped-PDMS are quite encouraging for its potential use in point of care Lab-On-Chip applications, for fabricating micropatterns using direct write laser lithography technology.

  15. Amplified spontaneous emission in high power KrF lasers

    NASA Astrophysics Data System (ADS)

    Sasaki, Akira; Kasuya, Koichi; Ueda, Ken-Ichi; Takuma, Hiroshi

    1989-01-01

    This paper describes a three-dimensional simulation code for amplified spontaneous emission (ASE) for a high-power KrF laser amplifier. The results of parametric calculation show that the maximum transverse gain-length product of the amplifier without efficiency depletion is three, and the longitudinal gain-length product should be limited to ten. From a device of 10 m in length and 3 m in diameter, operated with 1-percent/cm small signal gain and 1-microsec duration, the corresponding maximum output will be 500 kJ.

  16. Quantum yield for carbon monoxide production in the 248 nm photodissociation of carbonyl sulfide (OCS)

    NASA Technical Reports Server (NTRS)

    Zhao, Z.; Stickel, R. E.; Wine, P. H.

    1995-01-01

    Tunable diode laser absorption spectroscopy has been coupled with excimer laser flash photolysis to measure the quantum yield for CO production from 248 nm photodissociation of carbonyl sulfide (OCS) relative to the well-known quantum yield for CO production from 248 nm photolysis of phosgene (Cl2CO2). The temporal resolution of the experiments was sufficient to distinguish CO formed directly by photodissociation from that formed by subsequent S((sup 3)P(sub J)) reaction with OCS. Under the experimental conditions employed, CO formation via the fast S((sup 1)D(sub 2)) + OCS reaction was minimal. Measurements at 297K and total pressures from 4 to 100 Torr N2 + N2O show the CO yield to be greater than 0.95 and most likely unity. This result suggests that the contribution of OCS as a precursor to the lower stratospheric sulfate aerosol layer is somewhat larger than previously thought.

  17. High Current Cathodes Fabricated by KrF Laser Ablation

    SciTech Connect

    Gilgenbach, Ronald M.; Lau, Y. Y.; Jones, M. C.; Johnston, M. D.; Jordan, N. M.; Hoff, B. W.

    2010-10-08

    In this paper we review several high power laser ablation techniques that have been utilized to fabricate high current (1-80 kA) electron beam cathodes for accelerators and microwave sources: 1) Projection Ablation Lithography (PAL) cathodes, 2) Ablation Line Focus (ALF) cathodes, and 3) Metal-Oxide-Junction (MOJ) cathodes. Laser-ablative micromachining techniques (PAL and ALF) have been utilized to generate micron-scale features on metal substrates that provide electric field (beta) enhancement for Fowler-Nordheim emission and plasma cathodes. Since these laser-ablated patterns are directly, laser-written on the substrate metal they exhibit much higher thermal conductivity for higher current capability and increased damage thresholds. Metal-Oxide-Junction (MOJ) cathodes exploit the triple-point electron emission that occurs at the interface between metal, insulator and vacuum.The ablation laser is a KrF excimer laser with a pulse energy of 600 mJ and pulselength of 20 ns. Cathode experiments were performed on the MELBA-C accelerator: V = -300 kV, pulselength = 0.5 microsecond. Data will be presented for PAL, ALF and MOJ cathodes.

  18. SPRITE: a high power E-beam pumped KrF laser

    SciTech Connect

    Edwards, C.B.; O'Neill, F.; Shaw, M.J.; Baker, D.; Craddock, D.

    1983-01-01

    A high power KrF laser pumped by multiple electron beams is described. Laser triggered switching was used to synchronize the beams to a few ns. Up to 10 kJ in a 60 ns pulse is switched out from four pulse forming lines using less than 20 mJ of KrF radiation. An unstable resonator was used with a four pass injection scheme which results in > 200 J output at 249 nm in a low divergence beam.

  19. Progress of light source technologies from KrF laser to F2 laser

    NASA Astrophysics Data System (ADS)

    Mizoguchi, Hakaru

    2001-04-01

    More than 1,000 units of KrF excimer laser steppers were already installed in semiconductor mass-production lines which require design rule of less than 0.15 micrometers . Higher NA lens compatibility, productivity and CoO become critical issues of KrF excimer laser stepper. Advanced 2kHz KrF excimer laser G20K/G21K offers the solutions for these three issues. Next generation excimer laser ArF has already finished the stage of principle demonstration and has moved to next level of practical inspection, such as stability, productivity, and economic efficiency. Gigaphoton 4kHz ArF, G40A, solved all of these issues. Furthermore sub-0.10 micrometers design rule region F2 laser has been examined at several organizations. In March, 2000, Komatsu successfully developed 2kHz F2 laser for catadioptric projection optics by the fund of NEDO. Gigaphoton is ready to fabricate G20F, 2kHz F2 laser based upon the result of NEDO research. ASET started new F2 laser lithography development program at Hiratsuka Research Center with collaboration of Nikon, Canon, Gigaphoton, Komatsu, and Ushio from April 2000, ending March 2002.

  20. Observation of atmospheric ozone by dial with Raman lasers pumped by a KrF laser

    NASA Technical Reports Server (NTRS)

    Maeda, M.; Shibata, T.

    1986-01-01

    Since the XeCl excimer laser (308 nm) was first used in Differential Absorption Lidar (DIAL) for stratospheric ozone detection, the XeCl ozone lidar became a useful tool for the monitoring of the stratospheric ozone concentration. Shorter wavelength lasers are needed for the observation of ozone in the troposphere where the ozone concentration is about one order of magnitude smaller than in the stratosphere. In 1983, tropospheric ozone was observed with the combination of the second Stokes line (290.4 nm) of stimulated Raman scattering from methane pumped by a KrF laser and the XeCl laser line. The measurement of the ozone distribution from ground to 30 km was reported, using three Stokes lines of Raman lasers pumped by a KrF laser. At wavelengths shorter than 295 nm, the background solar radiation is effectively suppressed by atmospheric ozone. Such a solar-blind effect can be expected when two wavelengths 277 and 290.4 nm are used for DIAL ozone detection. A preliminary measurement of the day time ozone distribution in the troposphere is presented using these wavelengths generated by a KrF laser with a Raman shifter. Analysis using the lidar equation predicts the maximum detectable range is 7 km.

  1. Physical and technological issues of KrF laser drivers for inertial fusion energy

    NASA Astrophysics Data System (ADS)

    Zvorykin, V. D.; Arlantsev, S. V.; Bakaev, V. G.; Gaynutdinov, R. V.; Levchenko, A. O.; Molchanov, A. G.; Sagitov, S. I.; Sergeev, A. P.; Sergeev, P. B.; Stavrovskii, D. B.; Ustinovskii, N. N.; Zayarnyi, D. A.

    2006-06-01

    Physics and technology of Krypton Fluoride (KrF) laser have been studied experimentally and theoretically to improve its efficiency and to increase a lifetime, and thus to verify the challenge of KrF laser for Inertial Fusion Energy (IFE). Experiments were performed with e-beam-pumped multistage 100-J output energy GARPUN KrF laser facility and 200-A/cm2 current density EL-1 electron gun, both operating at P.N. Lebedev Physical Institute. They formed the database for verification of numerical codes capable to predict IFE-scale KrF drivers. Monte Carlo code was developed to calculate e-beam energy deposition inside GARPUN laser chamber while a quasistationary numerical KrF laser code based on generalized “forward back” multi-direction approximation for radiation transfer equation was used to describe amplification of nanosecond pulses and amplified spontaneous emission (ASE). Long-lived absorption in UV optical materials induced by fast electrons and bremsstrahlung X-ray radiation was measured at EL-1 electron gun with total fluence of ionizing radiation up to 20.6 kJ/cm2. Using these data together with measurements and scaling of bremsstrahlung X-ray yield, we can predict that the most stable windows of IFE-scale KrF laser driver would be able to withstand no less than 2× 106 shots. Fluorine-resistant coatings onto fused silica windows of KrF laser were developed and demonstrated damage thresholds as high as 29 J/cm2 in test experiments with large 13× 13-mm uniformly irradiated spot.

  2. KrF laser-induced ablation and patterning of Y--Ba--Cu--O films

    SciTech Connect

    Heitz, J.; Wang, X.Z.; Schwab, P.; Baeuerle, D. ); Schultz, L. )

    1990-09-01

    The ablation and patterning of Y--Ba--Cu--O films on (100) SrTiO{sub 3} and (100) MgO substrates by KrF excimer-laser light projection was investigated. Three different regimes of laser-material interactions were observed. Transition temperatures and critical current densities in laser-fabricated strip lines were investigated.

  3. Kinetics modelling of a self-sustained discharge KrF laser

    NASA Astrophysics Data System (ADS)

    Ong, D. S.; Tou, T. Y.; Low, K. S.

    1996-10-01

    A kinetics model was improved to describe the operation of a self-sustained discharge KrF laser in a Kr - 0022-3727/29/10/010/img1 - He gas mixture. The improvements include considerations of the effects of the discharge excited-state manifolds of Kr atoms and 0022-3727/29/10/010/img1 molecules on the electron energy distribution function, the KrF excimer formation and electron-impact ionization of the doubly excited 0022-3727/29/10/010/img3 species, and a two-state model for the upper laser level. The model predictions were compared to the experimental results from a UV-pre-ionized, transversely excited KrF laser, and reasonably good agreements were obtained between the predicted and experimental laser output energy and temporal pulse characteristics.

  4. Measurement of intensity-dependent rates of above-threshold ionization (ATI) of atomic hydrogen at 248 nm

    SciTech Connect

    Nichols, T.D.

    1991-04-01

    Measured rates of multiphoton ionization (MPI) from the ground state of atomic hydrogen by a linearly polarized, subpicosecond KrF laser pulse at 248 nm wavelength are compared to predictions of lowest-order perturbation theory, Floquet theory, and Keldysh-Faisal-Reiss (KFR) theory with and without Coulomb correction for peak irradiance of 3 {times} 10{sup 12}W/cm{sup 2} to 2 {times} 10{sup 14}W/cm{sup 2}. The Coulomb-corrected Keldysh model falls closest to the measured rates, the others being much higher or much lower. At 5 {times} 10{sup 13}W/cm{sup 2}, the number of ATI electrons decreased by a factor of approximately 40 with each additional photon absorbed. ATI of the molecular hydrogen background and of atoms from photodissociation of the molecules were also observed. The experiment employed a crossed-beam technique at ultrahigh vacuum with an rf-discharge atomic hydrogen source and a magnetic-bottle type electron time-of-flight spectrometer to count the electrons in the different ATI channels separately. The apparatus was calibrated to allow comparison of absolute as well as relative ionization rates to the theoretical predictions. This calibration involved measuring the distribution of irradiance in a focal volume that moved randomly and changed its size from time to time. A data collection system under computer control divided the time-of-flight spectra into bins according to the energy of each laser pulse. This is the first measurement of absolute rates of ATI in atomic hydrogen, and the first measurement of absolute test of MPI in atomic hydrogen without a large factor to account for multiple modes in the laser field. As such, the results of this work are important to the development of ATI theories, which presently differ by orders of magnitude in their prediction of the ionization rates. They are also important to recent calculations of temperatures in laser-heated plasmas, many of which incorporate KFR theory.

  5. Plasma Profile Measurements for Laser Fusion Research with the Nike KrF Laser

    NASA Astrophysics Data System (ADS)

    Oh, Jaechul; Weaver, J. L.; Serlin, V.; Obenschain, S. P.

    2015-11-01

    The grid image refractometer of the Nike laser facility (Nike-GIR) has demonstrated the capability of simultaneously measuring electron density (ne) and temperature (Te) profiles of coronal plasma. For laser plasma instability (LPI) research, the first Nike-GIR experiment successfully measured the plasma profiles in density regions up to ne ~ 4 ×1021 cm-3 (22% of the critical density for 248 nm light of Nike) using an ultraviolet probe laser (λp = 263 nm). The probe laser has been recently replaced with a shorter wavelength laser (λp = 213 nm, a 5th harmonic of the Nd:YAG laser) to diagnose a higher density region. The Nike-GIR system is being further extended to measure plasma profiles in the on-going experiment using 135°-separated Nike beam arrays for the cross-beam energy transfer (CBET) studies. We present an overview of the extended Nike-GIR arrangements and a new numerical algorithm to extract self-consistant plasma profiles with the measured quantities. Work supported by DoE/NNSA.

  6. Multiphoton dynamics of H2 with 248 nm picosecond and femtosecond pulses

    NASA Astrophysics Data System (ADS)

    Bakker, Bernard L. G.; Parker, David H.; Samartzis, Peter C.; Kitsopoulos, Theofanis N.

    2000-11-01

    Nonresonant excitation of H2 at 248 nm using 5 ps and 0.5 ps laser pulses with intensities 5×1011 and 5×1012W/cm2, respectively, is studied by measurement of the angle-speed distributions of the H+ photofragment using velocity map imaging. Three main H+ production channels are observed: (a) three-photon dissociation to H(n=1)+H(n=2) followed by photoionization of H(n=2); (b) dissociative (auto)ionization following four-photon absorption to form H(n=1)+H++e-; and (c) autoionization from a doubly excited state producing a H2+ vibrational distribution peaking at (v+=2,7,13) and subsequent photodissociation of these vibrationally excited ions. In the neighborhood of the energy sum of three 248 nm photons lie transitions to the B' 1Σu+(3pσ) vibrational continuum and the two bound states B″ 1Σu+(4pσ)(v=2) and D 1Πu+(3pπ)(v=4). These states are believed to play an important role in three-photon absorption and at the subsequent fourth photon level. Their effect on the observed kinetic energy and angular distributions is discussed.

  7. Near-field nonuniformities in angularly multiplexed KrF fusion lasers with induced spatial incoherence

    NASA Astrophysics Data System (ADS)

    Lehmberg, Robert H.; Chan, Yung

    2005-05-01

    Induced spatial incoherence (ISI) has been proposed for KrF laser drivers to achieve the high degree of spatial beam uniformity required for direct-drive inertial confinement fusion. Although ISI provides ultrasmooth illumination at the far field of the laser, where the target is located, it can still allow the beams in the quasi-near field to develop a time-averaged spatial structure. This speckle, which arises primarily from random-phase aberration, builds up as the laser beams propagate away from the pupil plane located at the final amplifier stage; it is distinct from any structure imposed by gain nonuniformities in the amplifiers. Because of the spatial incoherence, the speckle is significantly smaller than that experienced by coherent beams. Nevertheless, it remains a damage issue, especially for the long beam delay paths required in angularly multiplexed KrF lasers. We develop a novel algorithm for calculating the time-integrated intensities; compare simulations and measurements of the near-field speckle in the Nike KrF laser; and explore options, such as aberration reduction and optical relaying, for controlling the problem in future angularly multiplexed KrF drivers. © Optical Society of America

  8. KrF laser amplifier with phase-conjugate Brillouin retroreflectors.

    PubMed

    Gower, M C

    1982-09-01

    We have demonstrated the use of phase-conjugate stimulated Brillouin scattering mirrors to produce high-quality, short-pulse KrF laser beams from angular multiplexed and regenerative amplifiers. The mirror was also shown to isolate systems optically from amplifier spontaneous emission. Automatic alignment of targets using this mirror as a retroreflector was also demonstrated.

  9. KrF laser amplifier with phase-conjugate Brillouin retroreflectors.

    PubMed

    Gower, M C

    1982-09-01

    We have demonstrated the use of phase-conjugate stimulated Brillouin scattering mirrors to produce high-quality, short-pulse KrF laser beams from angular multiplexed and regenerative amplifiers. The mirror was also shown to isolate systems optically from amplifier spontaneous emission. Automatic alignment of targets using this mirror as a retroreflector was also demonstrated. PMID:19714043

  10. KrF excimer laser precision machining of hard and brittle ceramic biomaterials.

    PubMed

    Huang, Yao-Xiong; Lu, Jian-Yi; Huang, Jin-Xia

    2014-06-01

    KrF excimer laser precision machining of porous hard-brittle ceramic biomaterials was studied to find a suitable way of machining the materials into various desired shapes and sizes without distorting their intrinsic structure and porosity. Calcium phosphate glass ceramics (CPGs) and hydroxyapatite (HA) were chosen for the study. It was found that KrF excimer laser can cut both CPGs and HA with high efficiency and precision. The ablation rates of CPGs and HA are respectively 0.081 µm/(pulse J cm(-2)) and 0.048 µm/(pulse  J cm(-2)), while their threshold fluences are individually 0.72 and 1.5 J cm(-2). The cutting quality (smoothness of the cut surface) is a function of laser repetition rate and cutting speed. The higher the repetition rate and lower the cutting speed, the better the cutting quality. A comparison between the cross sections of CPGs and HA cut using the excimer laser and using a conventional diamond cutting blade indicates that those cut by the excimer laser could retain their intrinsic porosity and geometry without distortion. In contrast, those cut by conventional machining had distorted geometry and most of their surface porosities were lost. Therefore, when cutting hard-brittle ceramic biomaterials to prepare scaffold and implant or when sectioning them for porosity evaluation, it is better to choose KrF excimer laser machining.

  11. KrF excimer laser precision machining of hard and brittle ceramic biomaterials.

    PubMed

    Huang, Yao-Xiong; Lu, Jian-Yi; Huang, Jin-Xia

    2014-06-01

    KrF excimer laser precision machining of porous hard-brittle ceramic biomaterials was studied to find a suitable way of machining the materials into various desired shapes and sizes without distorting their intrinsic structure and porosity. Calcium phosphate glass ceramics (CPGs) and hydroxyapatite (HA) were chosen for the study. It was found that KrF excimer laser can cut both CPGs and HA with high efficiency and precision. The ablation rates of CPGs and HA are respectively 0.081 µm/(pulse J cm(-2)) and 0.048 µm/(pulse  J cm(-2)), while their threshold fluences are individually 0.72 and 1.5 J cm(-2). The cutting quality (smoothness of the cut surface) is a function of laser repetition rate and cutting speed. The higher the repetition rate and lower the cutting speed, the better the cutting quality. A comparison between the cross sections of CPGs and HA cut using the excimer laser and using a conventional diamond cutting blade indicates that those cut by the excimer laser could retain their intrinsic porosity and geometry without distortion. In contrast, those cut by conventional machining had distorted geometry and most of their surface porosities were lost. Therefore, when cutting hard-brittle ceramic biomaterials to prepare scaffold and implant or when sectioning them for porosity evaluation, it is better to choose KrF excimer laser machining. PMID:24784833

  12. Spectrally narrowed lasing of a self-injection KrF excimer laser

    NASA Astrophysics Data System (ADS)

    Shimada, Yasuhiro; Wani, Koichi; Miki, Tadaaki; Kawahara, Hidehito; Mimasu, Mutsumi; Ogata, Yoshiro

    1990-08-01

    Spectrally nantwed lasing of a KrF excimer laser has teen ahieved by a self-injection technique using abeam splitter for power extraction aixi intravity etalons for spectral-narrowing. The laser cavity is divithi into an amplifying branch aix! a spectralnarrowing branch. The spectral bandwidth was narrowed to <3pm FWHM with air-sed etalons placed in the spectral-narrowing branch. A laser propagation model was intrOdUced for describing the laser intensity traveling in the laser cavity. The calculated intensityincident onthe intracavityetalons wassmaller thanthat in theconventional Fabry-Perotcavity withplane-parallel mirrors.

  13. KrF laser cost/performance model for ICF commercial applications

    SciTech Connect

    Harris, D.B.; Pendergrass, J.H.

    1985-01-01

    Simple expressions suitable for use in commercial-applications plant parameter studies for the direct capital cost plus indirect field costs and for the efficiency as a function of repetition rate were developed for pure-optical-compression KrF laser fusion drivers. These simple expressions summarize estimates obtained from detailed cost-performance studies incorporating recent results of ongoing physics, design, and cost studies. Contributions of KrF laser capital charges and D and M costs to total levelized constant-dollar (1984) unit ICF power generation cost are estimated as a function of plant size and driver pulse energy using a published gain for short-wavelength lasers and representative values of plant parameters.

  14. Calibration Of A KrF Laser-Plasma Source For X-Ray Microscopy Applications

    NASA Astrophysics Data System (ADS)

    Turcu, I. C. E.; O'Neill, F.; Zammit, U.; Al-Hadithi, Y.; Eason, R. W.; Rogayski, A. M.; Hills, C. P. B.; Michette, A. G.

    1988-02-01

    Plasma X-ray sources for biological microscopy in the water-window have been produced by focusing tige 200 3, 50 ns Sprit q KrF laser onto carbon targets at irradiance between 2.2 x 10" W/cm4 and 3.7 x 10i3W/cm. Absolute measurements of X-ray production have been made using a calibrated, vacuum X-ray diode detector. A peak conversion efficiency . 10% is measured from KrF laseri)Tight tcto wate-window X-rays at 280 eV < hv < 530 eV for a target irradiance . 1 x x 10 W/cm'. Some measurements with gold and tungsten targets give conversion efficiencies 2$25% at a similar laser irradiance.

  15. Implementation of focal zooming on the Nike KrF laser.

    PubMed

    Kehne, D M; Karasik, M; Aglitsky, Y; Smyth, Z; Terrell, S; Weaver, J L; Chan, Y; Lehmberg, R H; Obenschain, S P

    2013-01-01

    In direct drive inertial confinement laser fusion, a pellet containing D-T fuel is imploded by ablation arising from absorption of laser energy at its outer surface. For optimal coupling, the focal spot of the laser would continuously decrease to match the reduction in the pellet's diameter, thereby minimizing wasted energy. A krypton-fluoride laser (λ = 248 nm) that incorporates beam smoothing by induced spatial incoherence has the ability to produce a high quality focal profile whose diameter varies with time, a property known as focal zooming. A two-stage focal zoom has been demonstrated on the Nike laser at the Naval Research Laboratory. In the experiment, a 4.4 ns laser pulse was created in which the on-target focal spot diameter was 1.3 mm (full width at half maximum) for the first 2.4 ns and 0.28 mm for the final 2 ns. These two diameters appear in time-integrated focal plane equivalent images taken at several locations in the amplification chain. Eight of the zoomed output beams were overlapped on a 60 μm thick planar polystyrene target. Time resolved images of self-emission from the rear of the target show the separate shocks launched by the two corresponding laser focal diameters. PMID:23387652

  16. Implementation of focal zooming on the Nike KrF laser

    SciTech Connect

    Kehne, D. M.; Karasik, M.; Weaver, J. L.; Chan, Y.; Obenschain, S. P.; Aglitsky, Y.; Smyth, Z.; Lehmberg, R. H.; Terrell, S.

    2013-01-15

    In direct drive inertial confinement laser fusion, a pellet containing D-T fuel is imploded by ablation arising from absorption of laser energy at its outer surface. For optimal coupling, the focal spot of the laser would continuously decrease to match the reduction in the pellet's diameter, thereby minimizing wasted energy. A krypton-fluoride laser ({lambda}= 248 nm) that incorporates beam smoothing by induced spatial incoherence has the ability to produce a high quality focal profile whose diameter varies with time, a property known as focal zooming. A two-stage focal zoom has been demonstrated on the Nike laser at the Naval Research Laboratory. In the experiment, a 4.4 ns laser pulse was created in which the on-target focal spot diameter was 1.3 mm (full width at half maximum) for the first 2.4 ns and 0.28 mm for the final 2 ns. These two diameters appear in time-integrated focal plane equivalent images taken at several locations in the amplification chain. Eight of the zoomed output beams were overlapped on a 60 {mu}m thick planar polystyrene target. Time resolved images of self-emission from the rear of the target show the separate shocks launched by the two corresponding laser focal diameters.

  17. Measurements of low-level prepulse on Nike KrF laser

    NASA Astrophysics Data System (ADS)

    Karasik, Max; Mostovych, A. N.; Lehmberg, R. H.; Chan, Y.; Weaver, J. L.; Obenschain, S. P.

    2005-09-01

    The krypton fluoride (KrF) laser is a leading candidate driver for inertial fusion energy. Some of the current fusion target designs call for targets with thin metallic coatings. These targets could be particularly susceptible to preheat by a low-level laser prepulse. Knowledge of the prepulse can be important in understanding and modeling the behavior of such targets. This paper presents measurements of low-level prepulse on target with the Nike KrF laser. Sources of prepulse are discussed and measurements are performed under several specific laser conditions in order to evaluate the relative contribution of these sources to the overall prepulse. Prepulse is found to be ˜2×10-7 from peak intensity for approximately 120ns prior to the main laser pulse. Prepulse energy density on target is ˜2J/cm2. The first laser amplifier in the time- and angle-multiplexed section of the laser is found to be the dominant source of prepulse.

  18. Quantification of the 248 nm photolysis products of HCNO (fulminic acid).

    PubMed

    Feng, Wenhui; Hershberger, John F

    2014-02-01

    IR diode laser spectroscopy was used to detect the products of HCNO (fulminic acid) photolysis at 248 nm. Five product channels are energetically possible at this photolysis wavelength: O + HCN, H + (NCO), CN + OH, CO + NH, and HNCO. In some experiments, isotopically labeled (18)O2, (15)N(18)O and C2D6 reagents were included into the photolysis mixture in order to suppress and/or isotopically label possible secondary reactions. HCN, OC(18)O, C(18)O, NCO, DCN, and NH molecules were detected upon laser photolysis of HCNO/reagents/buffer gas mixtures. Analysis of the yields of product molecules leads to the following photolysis quantum yields: ϕ1a (O + HCN) = 0.39 ± 0.07, ϕ1b (H + (NCO)) = 0.21 ± 0.04, ϕ1c (CN + OH) = 0.16 ± 0.04, ϕ1d (CN + NH(a(1)Δ)) = 0.19 ± 0.03, and ϕ1e (HNCO) = 0.05 ± 0.02, respectively. The uncertainties include both random errors (1σ) and consideration of major sources of systematic error. In conjunction with the photolysis experiment, the H + HCNO reaction was investigated. Experimental data demonstrate that this reaction is very slow and does not contribute significantly to the secondary chemistry. PMID:24456406

  19. Raman shifting of KrF laser radiation for tropospheric ozone measurements

    NASA Technical Reports Server (NTRS)

    Grant, William B.; Browell, Edward V.; Higdon, Noah S.; Ismail, Syed

    1991-01-01

    The differential absorption lidar (DIAL) measurement of tropospheric ozone requires use of high average power UV lasers operating at two appropriate DIAL wavelengths. Laboratory experiments have demonstrated that a KrF excimer laser can be used to generate several wavelengths with good energy conversion efficiencies by stimulated Raman shifting using hydrogen (H2) and deuterium (D2). Computer simulations for an airborne lidar have shown that these laser emissions can be used for the less than 5 percent random error, high resolution measuremment of ozone across the troposphere using the DIAL technique. In the region of strong ozone absorption, laser wavelengths of 277.0 and 291.7 nm were generated using H2 and D2, respectively. In addition, a laser wavelength at 302.0 nm was generated using two cells in series, with the first containing D2 and the second containing H2. The energy conversion efficiency for each wavelength was between 14 and 27 percent.

  20. Sub-500-nm patterning of glass by nanosecond KrF excimer laser ablation

    NASA Astrophysics Data System (ADS)

    Bekesi, J.; Meinertz, J.; Simon, P.; Ihlemann, J.

    2013-01-01

    The surface of flint glass of type F2 is patterned by nanosecond KrF excimer laser ablation. Strong UV absorption provides a comparatively low ablation threshold and precise ablation contours. By using a two-grating interferometer, periodic surface patterns with 330 nm period and 100 nm modulation depth are obtained. This method enables the fabrication of 7 mm×13 mm wide grating areas with perfectly aligned grooves without the need of high-precision sample positioning. By double exposure, crossed gratings with adjustable depths in the two orthogonal directions can be generated.

  1. Surface modification of dental tissues by KrF excimer laser radiation

    NASA Astrophysics Data System (ADS)

    Sivakumar, M.; Oliveira, V.; Vilar, R.

    2007-02-01

    Laser treatment is a promising technique for dental applications such as caries removal, dental hypersensitivity reduction and improvement of the bond strength between dentin and restoration materials. In this study the topographic and morphological changes induced in enamel and dentin surfaces by treating with KrF excimer laser radiation were studied as a function of the number of laser pulses and radiation fluence by scanning electron microscopy and optical profilometry. For enamel, independently of the fluence used, material removal occurs preferentially at the prisms sheaths, leading to the formation of surface pits of a few micrometers. For dentin, a cone-like topography develops when the tubules are approximately parallel to the laser beam direction and the radiation fluence is within the range 0.5 to 1.5 J/cm2. For higher fluences, the treated surfaces are flat and covered with a layer of re-solidified materials.

  2. Electra: durable repetitively pulsed angularly multiplexed KrF laser system

    NASA Astrophysics Data System (ADS)

    Wolford, Matthew F.; Myers, Matthew C.; Giuliani, John L.; Sethian, John D.; Burns, Patrick M.; Hegeler, Frank; Jaynes, Reginald

    2008-02-01

    Electra is a repetitively pulsed, electron beam pumped Krypton Fluoride (KrF) laser at the Naval Research Laboratory that is developing the technologies that can meet the Inertial Fusion Energy (IFE) requirements for durability, efficiency, and cost. The technologies developed on Electra should be directly scalable to a full size fusion power plant beam line. As in a full size fusion power plant beam line, Electra is a multistage laser amplifier system which, consists of a commercial discharge laser (LPX 305i, Lambda Physik), 175 keV electron beam pumped (40 ns flat-top) preamplifier, and 530 keV (100 ns flat-top) main amplifier. Angular multiplexing is used in the optical layout to provide pulse length control and to maximize laser extraction from the amplifiers. Single shot yield of 452 J has been extracted from the initial shots of the Electra laser system using a relatively low energy preamplifier laser beam. In rep-rate burst of 5 Hz for durations of one second a total energy of 1.585 kJ (average 317 J/pulse) has been attained. Total energy of 2.5 kJ has been attained over a two second period. For comparison, the main amplifier of Electra in oscillator mode has demonstrated at 2.5 Hz rep-rate average laser yield of 270 J over a 2 hour period.

  3. The Development of a Hibachi Window for Electron Beam Transmission in a KrF Laser

    SciTech Connect

    C.A. Gentile; R. Parsells; J.E. Butler; J.D. Sethian; L. Ciebiera; F. Hegeler; C. Jun; S. Langish; M. Myers

    2003-11-07

    In support of Inertial Fusion Energy (IFE), a 150 {micro}m thick silicon (Si) wafer coated on one side with a 1.2 {micro}m nanocrystalline diamond foil is being fabricated as an electron beam transmission (hibachi) window for use in KrF lasers. The hibachi window separates the lasing medium from the electron beam source while allowing the electron beam to pass through. The hibachi window must be capable of withstanding the challenging environment presented in the lasing chamber, which include: fluorine gas, delta pressure >2 atm at 5 Hz, and a high heat flux due to the transmission of electrons passing through the foil. Tests at NRL/Electra and at PPPL have shown that a device employing these novel components in the stated configuration provide for a robust hibachi window with structural integrity.

  4. Resonant third harmonic generation of KrF laser in Ar gas

    SciTech Connect

    Rakowski, R.; Barna, A.; Suta, T.; Földes, I. B.; Bohus, J.; Szatmári, S.; Mikołajczyk, J.; Bartnik, A.; Fiedorowicz, H.; Verona, C.; Verona Rinati, G.; Margarone, D.; Nowak, T.; and others

    2014-12-15

    Investigations of emission of harmonics from argon gas jet irradiated by 700 fs, 5 mJ pulses from a KrF laser are presented. Harmonics conversion was optimized by varying the experimental geometry and the nozzle size. For the collection of the harmonic radiation silicon and solar-blind diamond semiconductor detectors equipped with charge preamplifiers were applied. The possibility of using a single-crystal CVD diamond detector for separate measurement of the 3rd harmonic in the presence of a strong pumping radiation was explored. Our experiments show that the earlier suggested 0.7% conversion efficiency can really be obtained, but only in the case when phase matching is optimized with an elongated gas target length corresponding to the length of coherence.

  5. Laser diagnostic experiments on KrF laser ablation plasma-plume dynamics relevant to manufacturing applications*

    NASA Astrophysics Data System (ADS)

    Gilgenbach, R. M.; Ching, C. H.; Lash, J. S.; Lindley, R. A.

    1994-05-01

    A brief review is given of the potential applications of laser ablation in the automotive and electronics manufacturing industries. Experiments are presented on KrF laser ablation of three materials relevant to manufacturing applications: aluminum metal vs aluminum-nitride (AlN) and alumina (Al2O3) ceramics. Plasma and neutral-atom diagnostic data are presented from resonant-holographic-interferometry, dye-laser-resonance-absorption photography, and HeNe laser deflection. Data show that plasma electron densities in excess of 1018 cm-3 exist in the ablation of AlN, with lower densities in Al and Al2O3. Aluminum neutral and ion expansion velocities are in the range of cm/μs. Ambipolar electric fields are estimated to be 5-50 V/cm.

  6. Studies of target heating in the early stages of a Nike KrF laser pulse.

    NASA Astrophysics Data System (ADS)

    Karasik, Max; McLean, E. A.; Stamper, J. A.

    2000-10-01

    A new set of front-surface diagnostics has been fielded on Nike KrF Laser target chamber. Its purpose is to measure the low levels of target preheat prior to the main laser pulse. Possible sources of preheat are Amplified Spontaneous Emission (ASE) from the laser amplifiers and beam-to-beam scattering that would result in some energy reaching the target ahead of the main pulse. The diagnostic setup consists of a fast high-detectivity thermoelectrically cooled HgCdZnTe infrared detector with a spectral bandwidth of 2-4 μm and a 10 nsec rise time as well as a near-infrared photomultiplier (PMT) with 10% quantum efficiency at 750 nm and a 2 nsec rise time. The HgCdZnTe detector and the PMT are imaging the target through a specially constructed large-aperture Cassegrain telescope and a commercial Questar telescope, respectively. Calibration is performed using a tungsten filament lamp. The noise floor of the detector corresponds to a black body at approximately 400 C. Measurements for various types of targets, including those with thin ( ~200 Ågold layers, as well as for different laser configurations will be presented.

  7. Extending the performance of KrF laser for microlithography by using novel F2 control technology

    NASA Astrophysics Data System (ADS)

    Zambon, Paolo; Gong, Mengxiong; Carlesi, Jason; Padmabandu, Gunasiri G.; Binder, Mike; Swanson, Ken; Das, Palash P.

    2000-07-01

    Exposure tools for 248nm lithography have reached a level of maturity comparable to those based on i-line. With this increase in maturity, there is a concomitant requirement for greater flexibility from the laser by the process engineers. Usually, these requirements pertain to energy, spectral width and repetition rate. By utilizing a combination of laser parameters, the process engineers are often able to optimize throughput, reduce cost-of-operation or achieve greater process margin. Hitherto, such flexibility of laser operation was possible only via significant changes to various laser modules. During our investigation, we found that the key measure of the laser that impacts the aforementioned parameters is its F2 concentration. By monitoring and controlling its slope efficiency, the laser's F2 concentration may be precisely controlled. Thus a laser may tune to operate under specifications as diverse as 7mJ, (Delta) (lambda) FWHM < 0.3 pm and 10mJ, (Delta) (lambda) FWHM < 0.6pm and still meet the host of requirements necessary for lithography. We discus this new F2 control technique and highlight some laser performance parameters.

  8. Decomposition of peroxy radicals in SiO2 glass with X-rays or KrF laser light

    NASA Astrophysics Data System (ADS)

    Kajihara, Koichi; Skuja, Linards; Hirano, Masahiro; Hosono, Hideo

    2005-01-01

    Decomposition of the peroxy radical (POR) was examined for wet SiO2 glasses exposed to X-rays from a Rh-target tube or KrF laser light. The exposure to KrF laser light destroys POR resulting in the selective formation of the oxygen dangling bond (termed non-bridging oxygen hole center, NBOHC). In contrast, the exposure to X-rays creates both the silicon dangling bond (E center) and NBOHC on bleaching of POR. Clear mutual correlation is found between the formation kinetics of the interstitial oxygen molecule (O2) and of the Si-Si bond but not between those of O2 and the E center. These observations indicate that O2 is created mainly from the radiolysis of the Si-O-Si bond by the Frenkel mechanism rather than by the dissociation of the Si-O bond in POR. It is concluded that both of KrF laser light and X-rays primarily dissociate the O-O bond in POR.

  9. Layered target burnthrough experiments using 50 nsec KrF laser pulses

    SciTech Connect

    Kephart, J.F.; Dingus, R.S.; Gitomer, S.J.; Kopp, R.A.; Shaw, M.J.

    1986-01-01

    Experiments have been performed on two types of planar layered targets using the Sprite KrF laser. The targets lused were: (1) 0.25 to 3.0 microns of Al deposited on an SiO/sub 2/ substrate and (2) 0.25 to 3.0 microns of CH (parylene-N) deposited on 0.20 microns of Al on an SiO/sub 2/ substrate. The laser was characterized by a pulse length of 50 nsec FWHM, an intensity of 2 x 10/sup 10/ watts/cm/sup 2/ and a wavelength of 248.5 nm. A filtered photoiodide and a streak camera, each operating in the visible, viewed the rear of the target. We measured the time from the beginning of the laser pulse to the onset of the visible light signal as seen by the photoiodide at the rear of the initially opaque target. This time is referred to as the burnthrough time. We obtain an estimate of the mass ablation by plotting the mass ablation depth (mass density times target thickness in ..mu..gm/cm/sup 2/) versus the burnthrough time. These results are consistent with earlier mass loss measurements and with analytic and hydro-code calculations (LASNEX). The streak camera data shows emission at target positions larger than the laser focal spot, and thus are consistent with 1-D and 2-D calculations which show target surface ablation to be primarily driven by reradiated photons from the hot laser produced plasma.

  10. Sizing of Mo nanoparticles synthesised by Kr-F laser pulse photo-dissociation of Mo(CO)6

    NASA Astrophysics Data System (ADS)

    Eremin, A. V.; Gurentsov, E. V.

    2015-05-01

    In this work, the laser-based synthesis and characterization of Mo nanoparticles formed using Kr-F laser pulse photolysis of the vapor of Mo(CO)6 diluted by argon at room temperature were carried out. The time-resolved laser-induced incandescence (Ti-Re LII) technique was applied for the sizing of aerosolized particle inside of the quartz reactor. The samples of synthesized Mo nanoparticles were analyzed by transmission electron microscopy (TEM). The particle sizes measured by Ti-Re LII were found to be in a range of 3-13 nm in dependence on excimer Kr-F laser pulse energy and number of pulses. The temperature time behavior of laser-heated nanoparticles was observed by two-color pyrometry at the wavelengths 400 and 610 nm. The maximum particle temperature attained at high laser fluences was attributed to evaporation temperature and was found to be around 3,900 K unlike the boiling temperature of bulk Mo (4,800 K). The probable influence of nanoparticle properties on the results of Ti-Re LII sizing and nanoparticle oxidation in air on the results of TEM measurements is discussed.

  11. Photodissociation of pernitric acid (HO2NO2) at 248 nm

    NASA Technical Reports Server (NTRS)

    Macleod, Helene; Smith, Gregory P.; Golden, David M.

    1989-01-01

    The photodissociation of pernitric acid (PNA) was studied at 248 nm. The quantum yield for production of OH radicals is 34 + or - 16 percent. The yield of OH from PNA was measured relative to that of H2O2. The translational and rotational energy content of the OH photofragment from PNA was characterized. A fluorescent emission was also observed and characterized. It is attributed to electronically excited NO2 produced in the PNA photodissociation. A maximum yield of 30 percent for NO2 production was determined. The intensity of this emission, and a mass spectrometric peak at m/e = 33, were found to be useful means of characterizing the purity of the PNA sample.

  12. The research progress of metrological 248nm deep ultraviolent microscope inspection device

    NASA Astrophysics Data System (ADS)

    Wang, Zhi-xin; Li, Qi; Gao, Si-tian; Shi, Yu-shu; Li, Wei; Li, Shi

    2016-01-01

    In lithography process, the precision of wafer pattern to a large extent depends on the geometric dimensioning and tolerance of photomasks when accuracy of lithography aligner is certain. Since the minimum linewidth (Critical Dimension) of the aligner exposing shrinks to a few tens of nanometers in size, one-tenth of tolerance errors in fabrication may lead to microchip function failure, so it is very important to calibrate these errors of photomasks. Among different error measurement instruments, deep ultraviolent (DUV) microscope because of its high resolution, as well as its advantages compared to scanning probe microscope restrained by measuring range and scanning electron microscope restrained by vacuum environment, makes itself the most suitable apparatus. But currently there is very few DUV microscope adopting 248nm optical system, means it can attain 80nm resolution; furthermore, there is almost no DUV microscope possessing traceable calibration capability. For these reason, the National Institute of Metrology, China is developing a metrological 248nm DUV microscope mainly consists of DUV microscopic components, PZT and air supporting stages as well as interferometer calibration framework. In DUV microscopic component, the Köhler high aperture transmit condenser, DUV splitting optical elements and PMT pinhole scanning elements are built. In PZT and air supporting stages, a novel PZT actuating flexural hinge stage nested separate X, Y direction kinematics and a friction wheel driving long range air supporting stage are researched. In interferometer framework, a heterodyne multi-pass interferometer measures XY axis translation and Z axis rotation through Zerodur mirror mounted on stage. It is expected the apparatus has the capability to calibrate one dimensional linewidths and two dimensional pitches ranging from 200nm to 50μm with expanded uncertainty below 20nm.

  13. Direct synthesis of graphene on any nonmetallic substrate based on KrF laser ablation of ordered pyrolytic graphite

    NASA Astrophysics Data System (ADS)

    Xu, S. C.; Man, B. Y.; Jiang, S. Z.; Liu, A. H.; Hu, G. D.; Chen, C. S.; Liu, M.; Yang, C.; Feng, D. J.; Zhang, C.

    2014-09-01

    We present a method for few-layer graphene growth on nonmetallic substrates using excimer KrF laser ablation of ordered pyrolytic graphite. The graphene is scalable and its thickness is controllable. It can be deposited on virtually any nonmetallic substrates at a relative low temperature of 750 °C. This laser-based method is highly efficient and the whole growing process takes less than 100 s. Raman spectroscopy confirms the formation of sp2-bonded carbon with a grain size of about 40 nm. The optical transmittance and conductivity of the graphene films are comparable with exfoliated or metal-catalyzed graphene. This work demonstrates a promising laser-based, transfer-free technique for synthesis of graphene.

  14. Negative resist profiles in 248 nm photolithography: experiment, modelling and simulation

    NASA Astrophysics Data System (ADS)

    Karafyllidis, I.; Hagouel, P. I.; Neureuther, A. R.

    1998-06-01

    We consider the effects both of exposure energy dose and of developer temperature on the developed negative resist profiles. The spin-formatted resist film tends to have macromolecules oriented parallel to the substrate surface. The orientation of the resist macromolecules introduces an anisotropic component to the etch rate: higher in the direction parallel to the substrate surface and lower in the perpendicular one. We performed a series of experiments for 400 nm pitch periodic and isolated lines on Shipley SNR-248 negative resist coated Si wafers using a stepper and a deep UV source at 248 nm. We obtained scanning electron micrographs for various developer temperatures and exposure doses. The variation of the lateral etch rate manifested itself in sidewall profile slopes. We used Dill's ABC parameter model to model and quantify the exposure, and cellular automata to model the resist cross-linking during post-exposure bake and the resist etching. Simulation using an algorithm based on this model validated the experimental results.

  15. Photodissociation of the Propargyl (C3D3) Radicals at 248 nm and 193 nm

    SciTech Connect

    Neumark., D.M.; Crider, P.E.; Castiglioni, L.; Kautzman, K.K.

    2009-01-21

    The photodissociation of perdeuterated propargyl (D{sub 2}CCCD) and propynyl (D{sub 3}CCC) radicals was investigated using fast beam photofragment translational spectroscopy. Radicals were produced from their respective anions by photodetachment at 540 nm and 450 nm (below and above the electron affinity of propynyl). The radicals were then photodissociated by 248 nm or 193 nm light. The recoiling photofragments were detected in coincidence with a time- and position-sensitive detector. Three channels were observed: D{sub 2} loss, CD + C{sub 2}D{sub 2}, and CD{sub 3} + C{sub 2}. Obervation of the D loss channel was incompatible with this experiment and was not attempted. Our translational energy distributions for D{sub 2} loss peaked at nonzero translational energy, consistent with ground state dissociation over small (< 1 eV) exit barriers with respect to separated products. Translational energy distributions for the two heavy channels peaked near zero kinetic energy, indicating dissociation on the ground state in the absence of exit barriers.

  16. Ion Imaging Studies of CH_2I_2 Photodissociation at 248 NM

    NASA Astrophysics Data System (ADS)

    Lehman, Julia H.; Li, Hongwei; Lester, Marsha I.

    2013-06-01

    CH_2I_2 plays an important role in atmospheric chemistry as a significant natural source of organohalide compounds. The photodissociation dynamics of CH_2I_2 in the ultraviolet range of 277-305 nm via the two lowest B_1 excited states has been well studied using one-color velocity map ion imaging (VMI) and photofragment translational spectroscopy. In this two-color experimental study, CH_2I_2 is photodissociated by 248 nm via the B_2 or A_1 excited states to give rise to CH_2I and I (^2P_3_/_2) or I^* (^2P_1_/_2). The iodine atoms are then state selectively ionized using a (2+1) resonance-enhanced multiphoton ionization process near 310 nm and detected by VMI. Preliminary results show about 85% of the available energy is being funneled into the internal energy of the CH_2I fragment, consistent with prior infrared emission results of Baughcum and Leone. The anisotropy parameter derived from the image indicates this is a fast dissociation process and reflects the character of the electronic transition. The internal energy distribution of the CH_2I fragment is of particular interest because of its subsequent reaction with O_2 in a near thermo-neutral reaction to produce the smallest Criegee intermediate, CH_2OO. We anticipate that the internal energy contained in CH_2I will likely be carried into CH_2OO. S. L. Baughcum and S. R. Leone, J. Chem. Phys. 72, 6531 (1980).

  17. Subpicosecond high-brightness uv laser system

    SciTech Connect

    Gibson, R.B.

    1986-01-01

    A laser system that produces intense subpicosecond pulses of 248 nm light is under development. Ultrashort pulses are generated in the visible in a synchronously-pumped mode-locked dye oscillator, heterodyned into the uv by two KDP crystals, and amplified in a chain of KrF* amplifiers. Front end output of 5 ..mu..J is amplified to 20 mJ and focused to peak intensities of order 10/sup 17/ W cm/sup -2/. Additional amplification is expected to permit experiments at intensities >10/sup 20/ W cm/sup -2/.

  18. Nanobump arrays fabricated by laser irradiation of polystyrene particle layers on silicon

    SciTech Connect

    Huang, S.M.; Sun, Z.; Luk'yanchuk, B.S.; Hong, M.H.; Shi, L.P.

    2005-04-18

    Two-dimensional (2D) nanobump arrays were fabricated by laser irradiation of a regular lattice of absorptive polystyrene (PS) microspheres on an undoped (100) Si wafer. The experiments were performed with single-pulse 248 nm KrF laser radiation. The structure of the arrays fabricated by this method was characterized by field emission scanning electron microscope and atomic force microscope. The near-field effects under the absorptive particle are studied. The ablation and thermal processes induced by the optical near-field around the particles are investigated. The formation mechanism of nanobumps is discussed.

  19. Micro-nano scale ripples on metallic glass induced by laser pulse

    NASA Astrophysics Data System (ADS)

    Liu, W. D.; Ye, L. M.; Liu, K. X.

    2011-02-01

    A Zr47.7Cu31Ni9Al12.3 bulk metallic glass was irradiated directly by KrF excimer laser pulses with wavelength 248 nm and duration 10 ns. Scanning electronic microscope photographs indicated that many ripples in micro-nano scale would be generated on the edge of the irradiated area under the action of the higher intensity laser pulse. Detailed observation demonstrated that the ripples exhibited fluidity and became closer and closer out from interior. Theoretical analysis revealed the formation mechanism of the ripples, including melting, subsequent propagation of capillary waves and final solidification.

  20. Micro-nano scale ripples on metallic glass induced by laser pulse

    SciTech Connect

    Liu, W. D.; Ye, L. M.; Liu, K. X.

    2011-02-15

    A Zr{sub 47.7}Cu{sub 31}Ni{sub 9}Al{sub 12.3} bulk metallic glass was irradiated directly by KrF excimer laser pulses with wavelength 248 nm and duration 10 ns. Scanning electronic microscope photographs indicated that many ripples in micro-nano scale would be generated on the edge of the irradiated area under the action of the higher intensity laser pulse. Detailed observation demonstrated that the ripples exhibited fluidity and became closer and closer out from interior. Theoretical analysis revealed the formation mechanism of the ripples, including melting, subsequent propagation of capillary waves and final solidification.

  1. Pulsed Laser Processing of Functionalized Polysaccharides for Controlled Release Drug Delivery Systems

    NASA Astrophysics Data System (ADS)

    Cristescu, R.; Popescu, C.; Popescu, A. C.; Socol, G.; Mihailescu, I.; Caraene, G.; Albulescu, R.; Buruiana, T.; Chrisey, D.

    We report on the deposition of triacetate-pullulan polysaccharide thin films on drug pellets (diclofenac sodium) by matrix assisted pulsed laser evaporation method. The radiation generated by a pulsed excimer KrF* laser source (λ = 248 nm, τ = 20 ns) operated at 2 Hz repetition rate was used for ice targets evaporation. The timed - controlled drug delivery was proved by spectroscopic in vitro studies and in vivo anti-inflammatory investigations on rabbits. We showed that the coating of drug pellets with triacetate-pullulan thin films resulted in the delayed delivery of the drug for up to 30 min.

  2. KrF- and ArF-excimer-laser-induced absorption in silica glasses produced by melting synthetic silica powder

    SciTech Connect

    Kuzuu, Nobu; Sasaki, Toshiya; Kojima, Tatsuya; Tanaka, Jun-ichiro; Nakamura, Takayuki; Horikoshi, Hideharu

    2013-07-07

    KrF- and ArF-excimer-laser-induced absorption of silica glasses produced by electric melting and flame fusion of synthetic silica powder were investigated. The growth of KrF-laser-induced absorption was more gradual than that of ArF-laser-induced absorption. Induced absorption spectra exhibited a peak at about 5.8 eV, of which the position and width differed slightly among samples and laser species. Widths of ArF-laser-induced absorption spectra were wider than those of KrF-laser-induced spectra. KrF-laser-induced absorption is reproducible by two Gaussian absorption bands peaking at 5.80 eV with full width at half maximum (FWHM) of 0.62 eV and at 6.50 eV with FWHM of 0.74 eV. For reproduction of ArF-laser-induced absorption, Gaussian bands at 5.41 eV with FWHM of 0.62 eV was necessary in addition to components used for reproducing KrF-laser-induced absorption. Based on the discussion of the change of defect structures evaluated from change of absorption components, we proposed that the precursor of the 5.8-eV band ascribed to E Prime center ({identical_to}Si{center_dot}) is {identical_to}Si-H HO-Si{identical_to} structures formed by the reaction between strained Si-O-Si bonds and interstitial H{sub 2} molecules during the irradiation.

  3. Osseointegration of KrF laser hydroxylapatite films on Ti6A14V alloy by mini-pigs: loaded osseointegration of dental implants

    NASA Astrophysics Data System (ADS)

    Dostalova, Tatjana; Jelinek, Miroslav; Himmlova, Lucia; Grivas, Christos

    1999-05-01

    Aim of study was to evaluate osseointegration of the KrF laser hydroxyapatite coated titanium alloy Ti6Al4V dental implants. For deposition KrF excimer laser in stainless- steel deposition chamber was used. Thickness of HA films were round 1 μm . Mini-pigs were used in this investigation. Implants were placed vertically into the lower jaw. After 14 weeks unloaded osseointegration the metal ceramic crowns were inserted. the experimental animals were sacrificed (1 year post insertion). The vertical position of implants was controlled with a radiograph. Microscopical sections were cut and ground. Sections were viewed using microscope with CCD camera. 1 year osseointegration in lower jaw confirmed by all implants presence of newly formed bone around the all implants. Laser-deposited coating the layer of fibrous connective tissue was seen only seldom. In the control group (titamium implant without cover) the fibrous connective tissue was seen between implant and newly formed bone.

  4. Negative pressure model for surface foaming of collagen and other biopolymer films by KrF laser ablation

    NASA Astrophysics Data System (ADS)

    Lazare, S.; Tokarev, V. N.; Sionkowska, A.; Wisniewski, M.

    2007-04-01

    A single KrF laser pulse of energy larger than 0.5 J/cm2 is enough to create a microfoam layer on the surface of a collagen film and other related biopolymers. This is a new result that can be of interest for many new applications. The target material is excited in the radiation absorption depth of ~17 µm and expands into a foam layer whose new surface is ~5 µm above the original one. The estimated surface transient temperature of ~83°C at threshold fluence does not account satisfactorily for this fast foaming process but consideration of the bipolar pressure variation ~±200 bar, i.e. laser induced acoustic wave suggests that a cold homogeneous boiling is induced by the tensile part of the pressure wave in the laser excited volume. The classical nucleation theory predicts a spontaneous dense and homogeneous bubble formation when the pressure is negative in the inviscid liquid. These results constitute new examples of laser induced fast expulsion of liquid due to the hydrodynamic pressure wave which can also be considered as resulting from the surface acceleration/deceleration sequence.

  5. On the photochemistry of IONO2: absorption cross section (240-370 nm) and photolysis product yields at 248 nm.

    PubMed

    Joseph, D M; Ashworth, S H; Plane, J M C

    2007-11-01

    The absolute absorption cross section of IONO(2) was measured by the pulsed photolysis at 193 nm of a NO(2)/CF(3)I mixture, followed by time-resolved Fourier transform spectroscopy in the near-UV. The resulting cross section at a temperature of 296 K over the wavelength range from 240 to 370 nm is given by log(10)(sigma(IONO(2))/cm(2) molecule(-1)) = 170.4 - 3.773 lambda + 2.965 x 10(-2)lambda(2)- 1.139 x 10(-4)lambda(3) + 2.144 x 10(-7)lambda(4)- 1.587 x 10(-10)lambda(5), where lambda is in nm; the cross section, with 2sigma uncertainty, ranges from (6.5 +/- 1.9) x 10(-18) cm(2) at 240 nm to (5 +/- 3) x 10(-19) cm(2) at 350 nm, and is significantly lower than a previous measurement [J. C. Mössinger, D. M. Rowley and R. A. Cox, Atmos. Chem. Phys., 2002, 2, 227]. The photolysis quantum yields for IO and NO(3) production at 248 nm were measured using laser induced fluorescence of IO at 445 nm, and cavity ring-down spectroscopy of NO(3) at 662 nm, yielding phi(IO)

  6. Effect of KrF Pulsed Excimer Laser Treatment on Surface Microstructure of Al-Si Alloy

    NASA Astrophysics Data System (ADS)

    Mahanty, S.; Gouthama

    2016-09-01

    In the present research, the Al-Si alloy surface is treated by KrF excimer pulse laser for different number of laser pulses in ambient condition at energy 4.75 J/cm2. The surface microstructural characterization was done by the optical microscope, in situ video recording during laser pulsing, SEM and TEM. The fretting wear test was undertaken to assess the tribological behavior. In situ video recording showed changes in the surface reflectivity with the number of pulses which is related to progressive changes in the surface compositional homogeneity. After ten pulses, signs of rippled structure were observed. The 15 pulse samples showed star-like morphological feature at the central region. The TEM observations showed high density of stacking faults/twins in Si after first pulse treatment. After 15 pulses, nano-crystalline Si precipitates in the size range <5 nm are seen to be homogeneously distributed. A cellular structure with the cell size <100 nm formed in the matrix. These cell boundaries were decorated with the Si nanocrystals. A positive effect in wear resistance property is observed after the 15 pulses treatment.

  7. Raman-shifted KrF laser radiation with low amplified spontaneous emission for a rotational Raman daytime-temperature lidar

    SciTech Connect

    Luckow, F.; Voss, E.; Zeyn, J.; Lahmann, W.; Weitkamp, C.; Michaelis, W. )

    1994-07-15

    Various configurations of a tunable two-stage KrF laser have been investigated for providing powerful laser pulses with very low amplified spontaneous emission (ASE). The lowest fraction (0.00017%) of ASE was attained with a single-pass amplifier and a phase-conjugate Brillouin mirror. The most suitable application envisaged for the laser source, i.e., remote daytime-temperature measurement by means of rotational Raman scattering, is a dedicated oscillator--amplifier configuration with an ASE of 0.005% at an output of 300 mJ. The very low values of ASE were measured with the aid of a thallium atomic-vapor filter.

  8. High-resolution x-ray imaging of planar foils irradiated by the Nike KrF laser

    SciTech Connect

    Brown, C.; Seely, J.; Feldman, U.; Obenschain, S.; Bodner, S.; Pawley, C.; Gerber, K.; Sethian, J.; Mostovych, A.; Aglitskiy, Y.; Lehecka, T.; Holland, G.

    1997-05-01

    Thin plastic (CH) foils were irradiated by the Naval Research Laboratory Nike [Obenschain {ital et al.}, Phys. Plasmas {bold 3}, 2098 (1996)] KrF laser and were imaged in the x-ray and extreme ultraviolet regions with two-dimensional spatial resolution in the 3{endash}10 {mu}m range. The CH foils were backlit by a silicon plasma. A spherically curved quartz crystal produced monochromatic images of the Si{sup +12} resonance line radiation with energy 1865 eV that was transmitted by the CH foils. Instabilities that were seeded by linear ripple patterns on the irradiated sides of CH foils were observed. The ripple patterns had periods in the 31{endash}125 {mu}m range and amplitudes in the 0.25{endash}5.0 {mu}m range. The silicon backlighter emission was recorded by an x-ray spectrometer, and the 1865 eV resonance line emission was recorded by a fast x-ray diode. The multilayer mirror telescope recorded images of the C{sup +3} 1550 {Angstrom} emission (energy 8.0 eV) from the backside of the CH foils. {copyright} {ital 1997 American Institute of Physics.}

  9. Femtosecond and ultraviolet laser irradiation of graphitelike hexagonal boron nitride

    NASA Astrophysics Data System (ADS)

    Kanaev, Andrei V.; Petitet, Jean-Pierre; Museur, Luc; Marine, Vladimir; Solozhenko, Vladimir L.; Zafiropulos, Vassilis

    2004-10-01

    The effect of the femtosecond and nanosecond UV laser irradiation (below the ablation threshold) on graphitelike hexagonal boron nitride (hBN) has been studied. Experiments were carried out with the compacted powder under high vacuum at room temperature using the excimer KrF laser (248nm). In the nanosecond operation mode, the laser-induced fluorescence spectra are found strongly modified depending on the integrated doze, which is attributed to a progressive enrichment of the surface layer by an elemental boron. A slow sample recovery after the laser irradiation has been observed. On the other hand, in the femtosecond mode, the fluorescence spectra depend on the laser fluence, and the changes are reversible: low-energy fluorescence spectra are restored immediately when the laser energy decreases. This effect can be explained by a material bleaching, which favors a bulk centers emission. The ablation threshold has been determined as 78mJ/cm2 in the femtosecond laser operational mode.

  10. Numerical simulation of the dynamics of phase transitions in CdTe induced by irradiation with nanosecond pulses of an excimer laser

    SciTech Connect

    Zhvavyi, S. P. Zykov, G. L.

    2006-06-15

    Simulation of the effect of KrF nanosecond pulse excimer laser radiation ({lambda} = 248 nm, {tau} = 20 ns) on phase transitions in cadmium telluride was performed taking into account the diffusion of the melt components and their evaporation from the surface. It is shown that the surface region of the melt is enriched with tellurium due to the evaporation and diffusion of the cadmium telluride components. The obtained value 0.05 J/cm{sup 2} of the threshold energy density for melting is in reasonable agreement with the experimental data.

  11. Development of a Silicon Based Electron Beam Transmission Window for Use in a KrF Excimer Laser System

    SciTech Connect

    C.A. Gentile; H.M. Fan; J.W. Hartfield; R.J. Hawryluk; F. Hegeler; P.J. Heitzenroeder; C.H. Jun; L.P. Ku; P.H. LaMarche; M.C. Myers; J.J. Parker; R.F. Parsells; M. Payen; S. Raftopoulos; J.D. Sethian

    2002-11-21

    The Princeton Plasma Physics Laboratory (PPPL), in collaboration with the Naval Research Laboratory (NRL), is currently investigating various novel materials (single crystal silicon, <100>, <110> and <111>) for use as electron-beam transmission windows in a KrF excimer laser system. The primary function of the window is to isolate the active medium (excimer gas) from the excitation mechanism (field-emission diodes). Chosen window geometry must accommodate electron energy transfer greater than 80% (750 keV), while maintaining structural integrity during mechanical load (1.3 to 2.0 atm base pressure differential, approximate 0.5 atm cyclic pressure amplitude, 5 Hz repetition rate) and thermal load across the entire hibachi area (approximate 0.9 W {center_dot} cm superscript ''-2''). In addition, the window must be chemically resistant to attack by fluorine free-radicals (hydrofluoric acid, secondary). In accordance with these structural, functional, and operational parameters, a 22.4 mm square silicon prototype window, coated with 500 nm thin-film silicon nitride (Si{sub 3}N{sub 4}), has been fabricated. The window consists of 81 square panes with a thickness of 0.019 mm {+-} 0.001 mm. Stiffened (orthogonal) sections are 0.065 mm in width and 0.500 mm thick (approximate). Appended drawing (Figure 1) depicts the window configuration. Assessment of silicon (and silicon nitride) material properties and CAD modeling and analysis of the window design suggest that silicon may be a viable solution to inherent parameters and constraints.

  12. Laser Machining For Fabrication Of Hohlraums And Capsules

    SciTech Connect

    Shirk, M D; Kelly, B T; Haynes, S M; Stuart, B C; Sanchez, J J; Moody, J D; Cook, R C

    2005-06-24

    Laser machining technology has been used to demonstrate the ability to rapidly perform jobs on all aspects of ICF targets. Lasers are able to rapidly perform modifications and repairs to the gold metal parts on hohlraums, make cuts in the delicate polymer parts of the hohlraum, and drill holes in the capsules to enable them to be filled with fuel. Lasers investigated in this work include 193 nm ArF and 248 nm KrF excimers and 810 nm chirped-pulse amplification Ti:Sapphire lasers. The excimer lasers showed a definite advantage in drilling and machining of polymeric materials and the ultrashort infrared pulses of the Ti:Sapphire laser were far better for the gold structures.

  13. Laser buffing of nickel-phosphorous surface after mechanical texturing

    NASA Astrophysics Data System (ADS)

    Liu, Daming; Lu, Yongfeng; Neo, Y. Y.; Wang, Weijie; Low, Tohsiew

    1998-08-01

    Laser buffing of nickel-phosphorous (NiP) surface after mechanic texturing has been investigated. A KrF excimer laser ((lambda) equals 248 nm, (tau) equals 23 ns) was employed in the experiment as an irradiation source. The sample is a mechanic- textured hard disk. Atomic force microscope (AFM) was used to analyze the surface morphologies before and after laser irradiation. The results show that the surface was buffed in micro-scale after laser irradiation. The surface root mean square roughness and average roughness decreased. One- dimensional thermal conduction model was used to simulate the temperature distribution in the irradiated region. The mechanisms of laser buffing are proposed based on the investigation. It is more likely due to selectively localized melting during laser irradiation.

  14. Osseointegration of loaded dental implant with KrF laser hydroxylapatite films on Ti6Al4V alloy by minipigs

    NASA Astrophysics Data System (ADS)

    Dostalova, Tatjana; Himmlova, Lucia; Jelinek, Miroslav; Grivas, Christos

    2001-04-01

    This study was performed with the objective of evaluating osseointegration of titanium alloy Ti6Al4V dental implants coated with hydroxylapatite (HA) deposited by a KrF laser. For this a KrF excimer laser and stainless-steel deposition chamber were used. The thickness of the HA films was approximately 1 micrometers . IN this investigation experimental animals minipigs were used; the implants were placed vertically into the lower jaw. After 14 weeks of unloaded osseointegration, metal-ceramic crowns were inserted and, at the same time, fluorescent solution was injected into the experimental animals. Six months after insertion of crowns the animals were sacrificed. The vertical position of the implants was checked by a radiograph. Microscopic sections were cut and ground, and the sections were examined under polarized and fluorescent light using a microscope with a charge coupled device camera. The six month long osseointegration in the lower jaw has confirmed the presence of newly formed bone around all the implants. In the experimental group, which had a laser-deposited coating, the layer of fibrous connective tissue was seen only randomly. In the control group (titanium implant without a cover) the fibrous connective tissue between the implant and the newly formed bone was observed more frequently, but this difference was not significant.

  15. Conceptual design of a 1. 5-MJ, 2-Hz KrF fusion laser system

    SciTech Connect

    Caird, J.; Allen, W.O.; Hipkin, H.G.

    1980-12-01

    The report consists of two major elements: Section II presents an overview of the design study and discusses the major results and conclusions derived from this study; and Section III provides details of the technical analyses and results and presents technical summaries that discuss e-beam pulsed-power conditioning, optical-system design, mechanical-systems design, facilities, overall laser-system efficiency, and capital costs.

  16. Acceleration to high velocities and heating by impact using Nike KrF laser

    SciTech Connect

    Karasik, Max; Weaver, J. L.; Velikovich, A. L.; Zalesak, S. T.; Bates, J. W.; Obenschain, S. P.; Schmitt, A. J.; Aglitskiy, Y.; Watari, T.; Arikawa, Y.; Sakaiya, T.; Murakami, M.; Azechi, H.; Oh, J.

    2010-05-15

    The Nike krypton fluoride laser [S. P. Obenschain, S. E. Bodner, D. Colombant, et al., Phys. Plasmas 3, 2098 (1996)] is used to accelerate planar plastic foils to velocities that for the first time reach 1000 km/s. Collision of the highly accelerated deuterated polystyrene foil with a stationary target produces approxGbar shock pressures and results in heating of the foil to thermonuclear temperatures. The impact conditions are diagnosed using DD fusion neutron yield, with approx10{sup 6} neutrons produced during the collision. Time-of-flight neutron detectors are used to measure the ion temperature upon impact, which reaches 2-3 keV.

  17. Cost reduction study for the LANL KrF laser-driven LMF design

    SciTech Connect

    Not Available

    1989-10-27

    This report is in fulfillment of the deliverable requirements for the optical components portions of the LANL-KrF Laser-Driven LMF Design Cost Reduction Study. This report examines the future cost reductions that may accrue through the use of mass production, innovative manufacturing techniques, and new materials. Results are based on data collection and survey of optical component manufacturers, BDM experience, and existing cost models. These data provide a good representation of current methods and technologies from which future estimates can be made. From these data, a series of scaling relationships were developed to project future costs for a selected set of technologies. The scaling relationships are sensitive to cost driving parameters such as size and surface figure requirements as well as quantity requirements, production rate, materials, and manufacturing processes. In addition to the scaling relationships, descriptions of the selected processes were developed along with graphical representations of the processes. This report provides a useful tool in projecting the costs of advanced laser concepts at the component level of detail. A mix of the most diverse yet comparable technologies was chosen for this study. This yielded a useful, yet manageable number of variables to examine. The study has resulted in a first-order cost model which predicts the relative cost behavior of optical components within different variable constraints.

  18. Effects of Laser Wavelength and Fluence in Pulsed Laser Deposition of Ge Films

    SciTech Connect

    Yap, Seong Shan; Reenaas, Turid Worren; Siew, Wee Ong; Tou, Teck Yong; Ladam, Cecile

    2011-03-30

    Nanosecond lasers with ultra-violet, visible and infrared wavelengths: KrF (248 nm, 25 ns) and Nd:YAG (1064 nm, 532 nm, 355 nm, 5 ns) were used to ablate polycrystalline Ge target and deposit Ge films in vacuum (<10-6 Torr). Time-integrated optical emission spectra were obtained for laser fluence from 0.5-10 J/cm{sup 2}. Neutrals and ionized Ge species in the plasma plume were detected by optical emission spectroscopy. Ge neutrals dominated the plasma plume at low laser fluence while Ge{sup +} ions above some threshold fluence. The deposited amorphous thin-film samples consisted of particulates of size from nano to micron. The relation of the film properties and plume species at different laser fluence and wavelengths were discussed.

  19. Time-resolved study of absorbing film assisted laser induced forward transfer of Trichoderma longibrachiatum conidia

    NASA Astrophysics Data System (ADS)

    Hopp, B.; Smausz, T.; Barna, N.; Vass, Cs; Antal, Zs; Kredics, L.; Chrisey, D.

    2005-03-01

    We have characterized the absorbing film assisted transfer of Trichoderma longibrachiatum conidia using a synchronized laser for illumination. The transfer laser used was a KrF excimer laser (λ = 248 nm, FWHM = 30 ns) and the ejected material was illuminated parallel to the quartz plate by a nitrogen laser pumped Coumarine 153 dye laser beam (λ = 453 nm, FWHM = 1 ns) electronically delayed relative to the transfer UV pulse. Our time-resolved investigations determined that the ejection velocity front of the conidia plume from the donor surface during the transfer procedure was 1150 m s-1 at 355 mJ cm-2 applied laser fluence. On the basis of the measured data, the acceleration of the emitted conidia at the plume front was approximately 109 × g. The conidia survived the absorbing film assisted forward transfer and associated mechanical shear without significant damages suggesting that the technique might be applicable to other more fragile types of biological objects and applications.

  20. Br{sub 2} elimination in 248-nm photolysis of CF{sub 2}Br{sub 2} probed by using cavity ring-down absorption spectroscopy

    SciTech Connect

    Hsu, C.-Y.; Huang, H.-Y.; Lin, K.-C.

    2005-10-01

    By using cavity ring-down absorption spectroscopy technique, we have observed the channel of Br{sub 2} molecular elimination following photodissociation of CF{sub 2}Br{sub 2} at 248 nm. A tunable laser beam, which is crossed perpendicular to the photolyzing laser beam in a ring-down cell, is used to probe the Br{sub 2} fragment in the B {sup 3}{pi}{sub ou}{sup +}-X {sup 1}{sigma}{sub g}{sup +} transition. The vibrational population is obtained in a nascent state, despite ring-down time as long as 500-1000 ns. The population ratio of Br{sub 2}(v=1)/Br{sub 2}(v=0) is determined to be 0.4{+-}0.2, slightly larger than the value of 0.22 evaluated by Boltzmann distribution at room temperature. The quantum yield of the Br{sub 2} elimination reaction is also measured to be 0.04{+-}0.01. This work provides direct evidence to support molecular elimination occurring in the CF{sub 2}Br{sub 2} photodissociation and proposes a plausible pathway with the aid of ab initio potential-energy calculations. CF{sub 2}Br{sub 2} is excited probably to the {sup 1}B{sub 1} and {sup 3}B{sub 2} states at 248 nm. As the C-Br bond is elongated upon excitation, the coupling of the {sup 1}A{sup '}({sup 1}B{sub 1}) state to the high vibrational levels of the ground state X-tilde {sup 1}A{sup '}({sup 1}A{sub 1}) may be enhanced to facilitate the process of internal conversion. After transition, the highly vibrationally excited CF{sub 2}Br{sub 2} feasibly surpasses a transition barrier prior to decomposition. According to the ab initio calculations, the transition state structure tends to correlate with the intermediate state CF{sub 2}Br+Br(CF{sub 2}Br{center_dot}{center_dot}{center_dot}Br) and the products CF{sub 2}+Br{sub 2}. A sequential photodissociation pathway is thus favored. That is, a single C-Br bond breaks, and then the free-Br atom moves to form a Br-Br bond, followed by the Br{sub 2} elimination. The formed Br-Br bond distance in the transition state tends to approach equilibrium such

  1. Rare gas halide lasers

    SciTech Connect

    O'Neill, F.

    1985-01-01

    Contents include: Basic principles of operation of E-beam-pumped KrF lasers--(Spectroscopy, Kinetic processes in E-beam-pumped KrF lasers, Absorbers in the KrF gain medium, Sprite - A 200J, 5ns KrF laser); Current topics in KrF laser research--(Target experiments with the Sprite KrF laser, Pulse compression and power multiplication of KrF lasers, Improved efficiency of E-beam-pumped KrF lasers).

  2. Formation of Si nanocrystals in SiOx, SiOx:C:H films and Si/SiO2 multilayer nano-heterostructures by pulse laser treatments

    NASA Astrophysics Data System (ADS)

    Neizvestniy, I. G.; Volodin, V. A.; Gismatulin, A. A.; Kamaev, G. N.; Antonenko, A. H.; Cherkov, A. G.; Litovchenko, V. G.; Lisovsky, I. P.; Maidanchuk, I. Yu.

    2014-12-01

    Furnace annealing and pulse laser treatments, including nanosecond laser treatments (KrF laser 248 nm wavelength, 20 ns pulse duration and XeCl laser 308 nm wavelength, 10 ns pulse duration) and femtosecond laser treatments (Tisapphire laser, 800 nm wavelength, <30 fs pulse duration) were applied for crystallization of amorphous hydrogenated silicon films, SiOx films and multilayer nanostructures. The as-deposited and annealed structures were studied using optical methods and electron microscopy techniques. The influence of impurities on crystallization and formation of Si nanoclusters was studied. Regimes for pulse laser crystallization of amorphous Si nanoclusters and nanolayers were found. The developed approach can be used for the creation of dielectric films with semiconductor nanoclusters on nonrefractory substrates.

  3. High-resolution imaging spectrometer for recording absolutely calibrated far ultraviolet spectra from laser-produced plasmas

    SciTech Connect

    Brown, Charles M.; Seely, John F.; Feldman, Uri; Holland, Glenn E.; Weaver, James L.; Obenschain, Steven P.; Kjornrattanawanich, Benjawan; Fielding, Drew

    2008-10-15

    An imaging spectrometer was designed and fabricated for recording far ultraviolet spectra from laser-produced plasmas with wavelengths as short as 155 nm. The spectrometer implements a Cassegrain telescope and two gratings in a tandem Wadsworth optical configuration that provides diffraction limited resolution. Spectral images were recorded from plasmas produced by the irradiation of various target materials by intense KrF laser radiation with 248 nm wavelength. Two pairs of high-resolution gratings can be selected for the coverage of two wavebands, one grating pair with 1800 grooves/mm and covering approximately 155-175 nm and another grating pair with 1200 grooves/mm covering 230-260 nm. The latter waveband includes the 248 nm KrF laser wavelength, and the former waveband includes the wavelength of the two-plasmon decay instability at (2/3) the KrF laser wavelength (165 nm). The detection media consist of a complementary metal oxide semiconductor imager, photostimulable phosphor image plates, and a linear array of 1 mm{sup 2} square silicon photodiodes with 0.4 ns rise time. The telescope mirrors, spectrometer gratings, and 1 mm{sup 2} photodiode were calibrated using synchrotron radiation, and this enables the measurement of the absolute emission from the laser-produced plasmas with temporal, spatial, and spectral resolutions. The spectrometer is capable of measuring absolute spectral emissions at 165 nm wavelength as small as 5x10{sup -7} J/nm from a plasma source area of 0.37 mm{sup 2} and with 0.4 ns time resolution.

  4. High-resolution imaging spectrometer for recording absolutely calibrated far ultraviolet spectra from laser-produced plasmas.

    PubMed

    Brown, Charles M; Seely, John F; Feldman, Uri; Holland, Glenn E; Weaver, James L; Obenschain, Steven P; Kjornrattanawanich, Benjawan; Fielding, Drew

    2008-10-01

    An imaging spectrometer was designed and fabricated for recording far ultraviolet spectra from laser-produced plasmas with wavelengths as short as 155 nm. The spectrometer implements a Cassegrain telescope and two gratings in a tandem Wadsworth optical configuration that provides diffraction limited resolution. Spectral images were recorded from plasmas produced by the irradiation of various target materials by intense KrF laser radiation with 248 nm wavelength. Two pairs of high-resolution gratings can be selected for the coverage of two wavebands, one grating pair with 1800 grooves/mm and covering approximately 155-175 nm and another grating pair with 1200 grooves/mm covering 230-260 nm. The latter waveband includes the 248 nm KrF laser wavelength, and the former waveband includes the wavelength of the two-plasmon decay instability at 23 the KrF laser wavelength (165 nm). The detection media consist of a complementary metal oxide semiconductor imager, photostimulable phosphor image plates, and a linear array of 1 mm(2) square silicon photodiodes with 0.4 ns rise time. The telescope mirrors, spectrometer gratings, and 1 mm(2) photodiode were calibrated using synchrotron radiation, and this enables the measurement of the absolute emission from the laser-produced plasmas with temporal, spatial, and spectral resolutions. The spectrometer is capable of measuring absolute spectral emissions at 165 nm wavelength as small as 5x10(-7) J/nm from a plasma source area of 0.37 mm(2) and with 0.4 ns time resolution.

  5. The effect of prepulse on x-ray laser development using a powerful subpicosecond KrF* laser

    SciTech Connect

    Nam, C.H.; Tighe, W.; Valeo, E.; Suckewer, S.

    1990-03-01

    A high power uv laser has been developed as a pump source for short wavelength (down to 1 nm) x-ray lasers. Various schemes are considered and theoretical analysis is discussed. Spectroscopic studies of laser-target interaction have been performed and, in particular, the effect of a prepulse on plasma generation has been investigated. Analysis of the observed spectra indicates that reduction of the prepulse energy results in a higher temperature plasma. Investigation of the interaction using thin layered targets is also presented. These data provide evidence for initially hot plasma conditions generated from target layers {le}150 {angstrom}. Discussions of proposed laser schemes at 1-5 nm are presented. 45 refs., 8 figs., 1 tab.

  6. Ignition by excimer laser photolysis of ozone

    SciTech Connect

    Lucas, D.; Dunn-Rankin, D.; Hom, K.; Brown, N.J.

    1987-08-01

    The authors have ignited mixtures of hydrogen, oxygen, and ozone in closed cells with 248 nm radiation from a KrF excimer laser. Ozone, the only significant absorber in this system, absorbs a single photon and produces oxygen atoms which initiate combustion. A discretized, time-dependent Beer's law model is used to demonstrate that the radical concentration immediately after photolysis is a function of laser power, ozone concentration, focal length, and separation between the lens and reactions cell. Spark schlieren photographs are used to visualize the ignition events and identify the ignition sites. The effects of equivalence ratio, pressure, and the initial gas temperature on the minimum ozone concentration needed to produce ignition are presented, and only the initial temperature has a significant effect.

  7. Creatinine biomaterial thin films grown by laser techniques.

    PubMed

    György, E; Axente, E; Mihailescu, I N; Predoi, D; Ciuca, S; Neamtu, J

    2008-03-01

    Creatinine thin films were synthesised by matrix assisted pulsed laser deposition (PLD) techniques for enzyme-based biosensor applications. An UV KrF* (lambda=248 nm, tau approximately 10 ns) excimer laser source was used for the irradiation of the targets at incident fluence values in the 0.3-0.5 J/cm2 range. For the matrix assisted PLD the targets consisted on a frozen composite obtained by dissolving the biomaterials in distilled water. The surface morphology, chemical composition and structure of the obtained biomaterial thin films were investigated by scanning electron microscopy, Fourier transform infrared spectroscopy, and electron dispersive X-ray spectroscopy as a function of the target preparation procedure and incident laser fluence.

  8. Assessing the Two-Plasmon Decay Threat Through Simulations and Experiments on the NIKE Laser System

    NASA Astrophysics Data System (ADS)

    Phillips, Lee; Weaver, J. L.; Oh, J.; Schmitt, A. J.; Obenschain, S.

    2010-11-01

    NIKE is a Krf laser system at the Naval Research Laboratory used to explore hydrodynamic stability, equation of state, and other physics problems arising in IFE research. The comparatively short KrF wavelength is expected to raise the threshold of most parametric instabilities. We report on simulations performed using the FAST3d radiation hydrocode to design TPD experiments that have have allowed us to explore the validity of simple threshold formulas and help establish the accuracy of our simulations. We have also studied proposed high-gain shock ignition designs and devised experiments that can approach the relevant scalelength-temperature regime, allowing us a potential experimental method to study the LPI threat to these designs by direct observation. Through FAST3d studies of shock-ignited and conventional direct-drive designs with KrF (248 nm) and 3rd harmonic (351nm) drivers, we examine the benefits of the shorter wavelength KrF light in reducing the LPI threat.

  9. Deposition of biopolymer thin films by matrix assisted pulsed laser evaporation

    NASA Astrophysics Data System (ADS)

    Cristescu, R.; Mihaiescu, D.; Socol, G.; Stamatin, I.; Mihailescu, I. N.; Chrisey, D. B.

    We report on the successful deposition of high quality type I fibrilar collagen thin films by Matrix assisted pulsed laser evaporation (MAPLE). Thin films deposition was performed in a N2 ambient (20 Pa) using a KrF* laser source (λ=248 nm,τ>=20 ns) operated at a repetition rate of 3 Hz, the incident laser energy at a value within the range (20-35)mJ , and the laser spot area was (3.5-18.5)+/-0.1 mm2. The collagen films were deposited on double face polished <100> single crystalline Si wafers and characterized by Fourier transform infrared spectroscopy, atomic force microscopy and high-resolution transmission electron microscopy. We demonstrate that our thin films are composed of collagen, with no impurities and the roughness can be controlled by the deposition conditions.

  10. Superhydrophobicity of polytetrafluoroethylene thin film fabricated by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Kwong, H. Y.; Wong, M. H.; Wong, Y. W.; Wong, K. H.

    2007-09-01

    Superhydrophobic polytetrafluoroethylene (PTFE) thin films were obtained by pulsed laser deposition (PLD) technique carried out with KrF excimer laser ( λ = 248 nm) of about 1 J/cm 2 at a pressure of 1.33 Pa. The samples exhibit high water contact angle of about 170° and the sliding angle smaller than 2°. From studying the surface morphology of the prepared films, it is believed that the nano-scale surface roughness has enhanced the hydrophobic property of the PTFE. The increase of trapping air and reducing liquid-solid contact area due to the rough surface, as suggested by the Cassie-Baxter's model, should be responsible for superhydrophobicity of the PLD prepared films. This study thus provides a convenient one-step method without using wet-process to produce a superhydrophobic surface with good self-cleaning properties.

  11. Qualification of diode foil materials for excimer lasers

    NASA Astrophysics Data System (ADS)

    Anderson, R. G.; Shurter, R. P.; Rose, E. A.

    The Aurora facility at Los Alamos National Laboratory uses KrF excimer lasers to produce 248 nm light for inertial confinement fusion applications. Diodes in each amplifier produce relativistic electron beams to pump a Kr-F-Ar gas mixture. A foil is necessary to separate the vacuum diode from the laser gas. High tensile strength, high electron transmission, low ultraviolet reflectivity, and chemical compatibility with fluorine have been identified as requisite foil properties. Several different materials were acquired and tested for use as diode foils. Transmission and fluorine compatibility tests were performed using the Electron Gun Test Facility (EGTF) at Los Alamos. Off-line tests of tensile strength and reflectivity were performed. Titanium foil, which is commonly used as a diode foil, was found to generate solid and gaseous fluoride compounds, some of which are highly reactive in contact with water vapor.

  12. Pulsed laser annealing of Be-implanted GaN

    SciTech Connect

    Wang, H.T.; Tan, L.S.; Chor, E.F.

    2005-11-01

    Postimplantation thermal processing of Be in molecular-beam-epitaxy-grown GaN by rapid thermal annealing (RTA) and pulsed laser annealing (PLA) was investigated. It has been found that the activation of Be dopants and the repair of implantation-induced defects in GaN films cannot be achieved efficiently by conventional RTA alone. On the other hand, good dopant activation and surface morphology and quality were obtained when the Be-implanted GaN film was annealed by PLA with a 248 nm KrF excimer laser. However, observations of off-resonant micro-Raman and high-resolution x-ray-diffraction spectra indicated that crystal defects and strain resulting from Be implantation were still existent after PLA, which probably degraded the carrier mobility and limited the activation efficiency to some extent. This can be attributed to the shallow penetration depth of the 248 nm laser in GaN, which only repaired the crystal defects in a thin near-surface layer, while the deeper defects were not annealed out well. This situation was significantly improved when the Be-implanted GaN was subjected to a combined process of PLA followed by RTA, which produced good activation of the dopants, good surface morphology, and repaired bulk and surface defects well.

  13. Crystallization of amorphous titanium oxide thin films by pulsed UV-laser irradiation

    SciTech Connect

    Ichikawa, Yo; Adachi, Hideaki; Setsune, Kentaro; Kawashima, Syunichiro; Kugimiya, Koichi

    1996-12-31

    Oxide ceramic materials are applied to many electric devices using dielectric, ferroelectric, piezoelectric and elastic properties. Effects of ultraviolet (UV) laser irradiation on the local crystal structure have been investigated for amorphous Ti-O thin films sputtered on ST-cut quartz substrates. The irradiation was conducted with a pulsed KrF excimer laser of 248 nm in wavelength. There were few changes in the optical transmission spectra of the films before and after the irradiation. The crystal structure of the films was characterized by electron diffraction, XPS and EXAFS analyses. The results obtained from these analyses suggest the films gradually crystallize to a TiO{sub 2} crystal with the rutile type structure by the increasing of the laser pulses.

  14. Schlieren measurements of the hydrodynamics of excimer laser ablation of polymers in atmospheric pressure gas

    NASA Astrophysics Data System (ADS)

    Ventzek, Peter L. G.; Gilgenbach, Ronald M.; Sell, Jeffrey A.; Heffelfinger, David M.

    1990-08-01

    Pulsed schlieren photography and fast helium-neon laser deflection are used to study the hydrodynamics of laser ablation of polyethyleneterephthalate and polymethylmethacrylate by pulsed KrF (248 nm) radiation in atmospheric air, Ar and N2. Schlieren measurements show the evolution of shock waves, sound waves, and reduced-density, hot gas plumes. A transition from sound to shock at the ablation threshold for both polymers is observed. The shock velocity of PET tends to approach agreement with blast wave theory at fluences higher than 1 J/cm2. Plumes in air are consistently larger than those produced in Ar and N2 (at fluences below 5 J/cm2) suggesting that combustion may occur. Laser deflection measurements for PET at 150 mJ/cm2 indicate a plume density of 0.6 kg/m3 (50% atmospheric density).

  15. Luminescence from pigments and resins for oil paintings induced by laser excitation

    NASA Astrophysics Data System (ADS)

    Borgia, Ilaria; Fantoni, Roberta; Flamini, Chiara; Di Palma, Tonia M.; Giardini Guidoni, Anna; Mele, Aldo

    1998-05-01

    The present work reports results of an extensive study of laser induced luminescence by tripled Nd:YAG laser ( λ=355 nm) of a few most common painting materials, namely, natural and synthetic pigments and resins. The luminescence spectra have been analyzed by an Optical Multichannel Analyzer (OMA III). Luminescence time decay has been measured by a Streak camera or by the OMA III. Pigments and resins show characteristic emission spectra with bands peaking in the visible. The decay ranges from less than 1 ns up to 700 μs for pigments and for resins. The mechanism of excitation and relaxation leading to luminescence is discussed for the various materials. Oil colour specimens have been irradiated by a UV KrF laser ( λ=248 nm). Luminescence photographs have been detected by an intensified charge coupled device (ICCD) camera at different time delays.

  16. Removal of Simulated Dust from Water-Based Acrylic Emulsion Paints by Laser Irradiation at IR, VIS and UV Wavelengths

    NASA Astrophysics Data System (ADS)

    Westergaard, M.; Pouli, P.; Theodorakopoulos, C.; Zafiropulos, Vassilis; Bredal-Jørgensen, Jørn; Dinesen, U. Staal

    This study aims to investigate whether laser cleaning may be a valuable method for the removal of soiling from water-based acrylic emulsion paints in comparison to traditional cleaning methods. Acrylic-grounded canvas was painted with three different paints (yellow ochre, titanium white and red alizarin) in a polybutyl- acrylate and methyl methacrylate binder. An acrylic binder was used as a reference. The samples were covered with carbon, SiO2 and soot. Cleaning process ablation rate studies were carried out with a Q-switched Nd:YAG laser at 1,064, 532 and 355nm and a KrF Excimer laser at 248 nm. The energy densities varied from 0.03 to 0.69 J cm?2. The irradiated tests at 248nm were monitored by LIBS analysis. On the samples irradiated at 1,064 nm, various analytical methods were carried out. A determined alteration of the titanium white paint resulted in a marked decrease in the glass transition temperature (Tg). Furthermore, discoloration (yellowing) occurred on the binder and the titanium white paint. The ochre darkened slightly but the alizarin was unchanged. When compared with the samples cleaned with water-based solvents, the samples cleaned with laser appeared cleaner. However, SEM/EDX and ATR showed that SiO2 was still present on the surface after laser cleaning at the tested conditions.

  17. Photolysis of CH₃CHO at 248 nm: evidence of triple fragmentation from primary quantum yield of CH₃ and HCO radicals and H atoms.

    PubMed

    Morajkar, Pranay; Bossolasco, Adriana; Schoemaecker, Coralie; Fittschen, Christa

    2014-06-01

    Radical quantum yields have been measured following the 248 nm photolysis of acetaldehyde, CH3CHO. HCO radical and H atom yields have been quantified by time resolved continuous wave Cavity Ring Down Spectroscopy in the near infrared following their conversion to HO2 radicals by reaction with O2. The CH3 radical yield has been determined using the same technique following their conversion into CH3O2. Absolute yields have been deduced for HCO radicals and H atoms through fitting of time resolved HO2 profiles, obtained under various O2 concentrations, to a complex model, while the CH3 yield has been determined relative to the CH3 yield from 248 nm photolysis of CH3I. Time resolved HO2 profiles under very low O2 concentrations suggest that another unknown HO2 forming reaction path exists in this reaction system besides the conversion of HCO radicals and H atoms by reaction with O2. HO2 profiles can be well reproduced under a large range of experimental conditions with the following quantum yields: CH3CHO + hν(248nm) → CH3CHO*, CH3CHO* → CH3 + HCO ϕ(1a) = 0.125 ± 0.03, CH3CHO* → CH3 + H + CO ϕ(1e) = 0.205 ± 0.04, CH3CHO*[Formula: see text]CH3CO + HO2 ϕ(1f) = 0.07 ± 0.01. The CH3O2 quantum yield has been determined in separate experiments as ϕ(CH₃) = 0.33 ± 0.03 and is in excellent agreement with the CH3 yields derived from the HO2 measurements considering that the triple fragmentation (R1e) is an important reaction path in the 248 nm photolysis of CH3CHO. From arithmetic considerations taking into account the HO2 and CH3 measurements we deduce a remaining quantum yield for the molecular pathway: CH3CHO* → CH4 + CO ϕ(1b) = 0.6. All experiments can be consistently explained with absence of the formerly considered pathway: CH3CHO* → CH3CO + H ϕ(1c) = 0. PMID:24908009

  18. Raman spectroscopic studies on bismuth nanoparticles prepared by laser ablation technique

    NASA Astrophysics Data System (ADS)

    Onari, Seinosuke; Miura, Masaaki; Matsuishi, Kiyoto

    2002-09-01

    Bi nanoparticles are prepared by means of laser ablation in Ar atmosphere (0.2-10 Torr) with KrF (248 nm) excimer laser of the power 200 mJ. The size of the Bi particles estimated by TEM measurements is in the range 3-10 nm. Raman active E g mode shifts to a higher frequency and becomes broader for a sample prepared in a lower pressure of Ar atmosphere. However, the peak frequency and the bandwidth of A 1g mode show almost no change with the change of the particle size. These experimental results can be well explained by a phonon confinement model of Campbell and Fauchet by taking the phonon dispersion properties that the E g mode of the crystal has a large dependence on the wave numbers near the Γ point, but the A 1g mode is rather independent of the phonon wave numbers.

  19. Photo-fragmentation of selenium powder by Excimer laser ablation in liquids

    NASA Astrophysics Data System (ADS)

    Van Overschelde, O.; Guisbiers, G.

    2015-10-01

    Laser ablation in liquids is especially adapted to produce nanoparticles free of any contamination as suited for biological and medical applications. A KrF Excimer laser delivering an UV light at 248 nm and operating at low fluence (F~0.5 J/cm2) was used to irradiate a micro-sized powder of selenium dispersed into a de-ionized water solution. To avoid any agglomeration of the selenium nanoparticles during the irradiation, surfactants (SDS and CTAB) were added to the solution and their efficiency was compared. The concentration of surfactants had to be chosen around the critical micellar concentration to produce small selenium nanoparticles (<60 nm). Moreover, SDS shows better mono-disperse size distribution compared to CTAB. Finally, photo-fragmentation is found to be more efficient than bulk thermal ablation to produce very small selenium nanoparticles (less than 10 nm).

  20. From small aromatic molecules to functional nanostructured carbon by pulsed laser-induced photochemical stitching

    NASA Astrophysics Data System (ADS)

    Gokhale, R. R.; Thakare, V. P.; Warule, S.; Lefez, B.; Hannoyer, B.; Jog, J. P.; Ogale, S. B.

    2012-06-01

    A novel route employing UV laser pulses (KrF Excimer, 248 nm) to cleave small aromatic molecules and stitch the generated free radicals into functional nanostructured forms of carbon is introduced. The process differs distinctly from any strategies wherein the aromatic rings are broken in the primary process. It is demonstrated that this pulsed laser-induced photochemical stitching (PLPS) process when applied to routine laboratory solvents (or toxic chemical wastes when discarded) Chlorobenzene and o-Dichlorobenzene yields Carbon Nanospheres (CNSs) comprising of graphene-like sheets assembled in onion-like configurations. This room temperature process implemented under normal laboratory conditions is versatile and clearly applicable to the whole family of haloaromatic compounds without and with additions of precursors or other nanomaterials. We further bring out its applicability for synthesis of metal-oxide based carbon nanocomposites.

  1. Space - time evolution of low-pressure H2 plasma induced by runaway photoelectrons produced by KrF laser pulse

    NASA Astrophysics Data System (ADS)

    Zotovich, Alexey; Volynets, Andrey; Lopaev, Dmitry; Zyryanov, Sergey; Astakhov, Dmitry; Krivtsun, Vladimir; Koshelev, Konstantin

    2014-10-01

    Extreme Ultraviolet Lithography (EUVL) at 13.5 nm is expected to provide the next generation of ULSI. One of hot EUVL problems is contamination of EUV multilayer optics that compels to search methods of in-situ cleaning. The most promising method is to apply H2 plasma generated over the mirror surface by EUV radiation itself. Therefore investigations of EUV-induced plasma are of great interest for such cleaning technology developing. To model evolution of EUV-induced plasma, the study of H2 plasma induced by photoelectrons extracted from a surface by KrF laser pulse has been done. The experiment was carried out by the space-time resolved probe technique while the analysis was made with using plasma model based on 2D PIC MC code for both electrons and ions. Comparison of experimental and calculated evolution of probe characteristics provides correct applicability of the probe theory and allows one to reveal key mechanisms and parameters which control the evolution of photoelectrons-induced plasma.

  2. Aminodisilanes as silylating agents for dry-developed positive-tone resists for deep-ultraviolet (248-nm) and extreme ultraviolet (13.5-nm) microlithography

    NASA Astrophysics Data System (ADS)

    Wheeler, David R.; Hutton, Richard S.; Boyce, Craig H.; Stein, Susan M.; Cirelli, Raymond A.; Taylor, Gary N.

    1995-06-01

    Disilanes are used as silylating reagents for near-surface imaging with deep-UV (248 nm) and EUV (13.5 nm) lithography. A relatively thin imaging layer of a photo-cross-linking resist is spun over a thicker layer of hard-baked resist that functions as a planarizing layer and antireflective coating. Photoinduced acid generation and subsequent heating crosslinks render exposed areas impermeable to an aminodisilane that reacts with the unexposed regions. Subsequent silylation and reactive ion etching affords a positive-tone image. The use of disilanes introduces a higher concentration of silicon into the polymer than is possible with silicon reagents that incorporate only one silicon atom per reactive site. The higher silicon content in the silylated polymer increases etching selectivity between exposed and unexposed regions and thereby increases the contrast. The synthesis and reactivity of `smaller' disilanes, N,N-dimethylamino-1,2-dimethyldisilane, (DMADMDS), and N,N-diethylamino-1,2- dimethyldisilane also are described. Additional silylation improvements that minimize flow during silylation also are discussed including the addition of bifunctional disilanes to the monofunctional DMAPMDS. This causes the crosslinking to occur during silylation which minimizes flow. We have resolved high aspect ratio, very high quality 0.20 micrometers line and space patterns at 248 nm with a stepper having a numerical aperture (NA) equals 0.53 and have resolved

  3. Br{sub 2} molecular elimination in 248 nm photolysis of CHBr{sub 2}Cl by using cavity ring-down absorption spectroscopy

    SciTech Connect

    Wei Peiying; Chang Yuanping; Lee Yushan; Lee Weibin; Lin Kingchuen; Chen, K. T.; Chang, A. H. H.

    2007-01-21

    Elimination of molecular bromine is probed in the B {sup 3}{pi}{sub ou}{sup +}<-X {sup 1}{sigma}{sub g}{sup +} transition following photodissociation of CHBr{sub 2}Cl at 248 nm by using cavity ring-down absorption spectroscopy. The quantum yield for the Br{sub 2} elimination reaction is determined to be 0.05{+-}0.03. The nascent vibrational population ratio of Br{sub 2}(v=1)/Br{sub 2}(v=0) is obtained to be 0.5{+-}0.2. A supersonic beam of CHBr{sub 2}Cl is similarly photofragmented and the resulting Br atoms are monitored with a velocity map ion-imaging detection, yielding spatial anisotropy parameters of 1.5 and 1.1 with photolyzing wavelengths of 234 and 267 nm, respectively. The results justify that the excited state promoted by 248 nm should have an A{sup ''} symmetry. Nevertheless, when CHBr{sub 2}Cl is prepared in a supersonic molecular beam under a cold temperature, photofragmentation gives no Br{sub 2} detectable in a time-of-flight mass spectrometer. A plausible pathway via internal conversion is proposed with the aid of ab initio potential energy calculations. Temperature dependence measurements lend support to the proposed pathway. The production rates of Br{sub 2} between CHBr{sub 2}Cl and CH{sub 2}Br{sub 2} are also compared to examine the chlorine-substituted effect.

  4. High silicon content silylating reagents for dry-developed positive-tone resists for extreme ultraviolet (13.5 nm) and deep ultraviolet (248 nm) microlithography

    SciTech Connect

    Wheeler, D.; Scharrer, E.; Kubiak, G.

    1994-12-31

    Recent results in the use of disilanes as silylating reagents for near-surface imaging with deep-UV (248 nm) and EUV (13.5 nm) lithography are reported. A relatively thin imaging layer of a photo-cross-linking resist is spun over a thicker layer of hard-baked resist that functions as a planarizing layer and antireflective coating. Photoinduced acid generation and subsequent heating crosslinks and renders exposed areas impermeable to an aminodisilane that reacts with the unexposed regions. Subsequent silylation and reactive ion etching afford a positive-tone image. The use of disilanes introduces a higher concentration of silicon into the polymer than is possible with silicon reagents that incorporate only one silicon atom per reactive site. The higher silicon content in the silylated polymer increases etching selectivity between exposed and unexposed regions and thereby increases the contrast. Additional improvements that help to minimize flow during silylation are also discussed, including the addition of bifunctional disilanes. We have resolved high aspect ratio, very high quality 0.20 {mu}m line and space patterns at 248 nm with a stepper having a numerical aperture (NA)= 0.53, and have resolved {<=} 0.15 {mu}m line and spaces at 13.5 nm.

  5. Laser ablation of dyes

    NASA Astrophysics Data System (ADS)

    Späth, M.; Stuke, M.

    1992-01-01

    High density 50 μs pulses of the UV dyes PPF, POPOP and BBO and of two dyes in the visible region, Xanthen N92 and Fluorol 7GA were generated by laser ablation. Dye powders were pressed with 7800 kp/cm 2 in round pellets which were ablated by exposure to KrF excimer laser radiation (248 nm) at a fluence of 100 mJ/cm 2. The ablation cloud was optically activated with a XeCl excimer laser. Its fluorescence spectrum was measured and was identified as a dye vapour fluorescence spectrum by comparison to conventional dye solution and dye vapour spectra. The dye cloud is not deflected in an electric field (10 6 V/m). By changing the delay time between the ablation laser and the focused activation laser, the velocity distribution of the ablated dye was measured. Its maximum is at 600 m/s for PPF. Knowing the thickness of the ablated dye layer per shot (300 Å) and the size of the ablation cloud (pictures of a video camera), one can estimate the maximum density of the dye in the gas pulse to be 10 -5 mol/ l in the range of concentration of lasing dyes. However, no lasing was observed up to now.

  6. KrF pulsed laser ablation of thin films made from fluorinated heterocyclic poly(naphthyl-imide)s.

    PubMed

    Damaceanu, Mariana-Dana; Rusu, Radu-Dan; Olaru, Mihaela Adriana; Timpu, Daniel; Bruma, Maria

    2012-06-01

    Among the many aspects of laser ablation, development of conical structures induced by excimer laser radiation on polyimide surfaces has been thoroughly investigated. Because the mechanisms that produce these surface textures are not fully understood, two theories, photochemical bond breaking and thermal reaction, have been introduced. Here we present the first study of ultraviolet laser ablation behavior of thin films made from fluorinated poly(naphthyl-imide)s containing oxadiazole rings and the investigation of the mechanism of cone-like structure formation at two laser fluences, 57 and 240 mJ/cm(2). The morphology of thin films before and after laser ablation was studied by using various spectroscopy techniques such as Fourier transform infrared spectroscopy, time-resolved emission and X-ray photoelectron spectroscopy, atomic force microscopy, and contact angle measurements. All of the data suggest impurities shielded at low fluence radiation (57 mJ/cm(2)) and a radiation hardening process at high value fluence (240 mJ/cm(2)), which are proposed as the main mechanisms for laser ablation of our polyimide films, and we bring evidence to support them.

  7. Influence of a TiN interlayer on the microstructure and mechanical properties of hydroxyapatite films grown by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Nelea, Valentin D.; Ristoscu, Carmen; Colis, Silviu; Arens, Simona; Pelletier, Herve; Mihailescu, Ion N.; Mille, Pierre

    2001-04-01

    Crystalline hydroxyapatite (HA) thin films grown on metallic substrates is the best choice for bone restoration. This is due to the good biological compatibility of the hydroxyapatite material combined with the good mechanical characteristics of the substrates. We deposit HA thin films by Pulsed Laser Deposition (PLD) in vacuum at room temperature using a KrF* excimer laser ((lambda) equals 248 nm, (tau) FWHM >= 20 ns). The depositions were performed directly on Ti-5Al-2.5Fe or on substrates previously coated with a TiN buffer layer. The HA deposited structures were characterized by complementary techniques: GIXRD, SEM, TEM, SAED, EDS and nanoindentation. Properties of the HA films grown with and without the TiN buffer were discussed in term of microstructure and mechanical behavior. The films with interlayer preserve the stoichiometry, are completely recrystallized and present better mechanical characteristics as compared with those without buffer.

  8. Preparation of periodic surface structures on doped poly(methyl metacrylate) films by irradiation with KrF excimer laser

    PubMed Central

    2014-01-01

    In this work, we describe laser modification of poly(methyl methacrylate) films doped with Fast Red ITR, followed by dopant exclusion from the bulk polymer. By this procedure, the polymer can be modified under extremely mild conditions. Creation of surface ordered structure was observed already after application of 15 pulses and 12 mJ cm−2 fluence. Formation of grating begins in the hottest places and tends to form concentric semi-circles around them. The mechanism of surface ordered structure formation is attributed to polymer ablation, which is more pronounced in the place of higher light intensity. The smoothness of the underlying substrate plays a key role in the quality of surface ordered structure. Most regular grating structures were obtained on polymer films deposited on atomically ‘flat’ Si substrates. After laser patterning, the dopant was removed from the polymer by soaking the film in methanol. PMID:25386106

  9. Photoablation characteristics of novel polyimides synthesized for high-aspect-ratio excimer laser LIGA process

    NASA Astrophysics Data System (ADS)

    Yang, Chii-Rong; Hsieh, Yu-Sheng; Hwang, Guang-Yeu; Lee, Yu-Der

    2004-04-01

    The photoablation properties of two soluble polyimides DMDB/6FDA and OT/6FDA with thicknesses of over 300 µm, synthesized by the polycondensation of a hexafluoropropyl group contained in a dianhydride with two kinds of diamines, are investigated using a 248 nm krypton fluoride (KrF) laser. The incorporation of the hexafluoropropyl group into the chemical structure gives these two polyimides higher etching rates than Kapton (a commercial polyimide film which is difficult to dissolve). The etching rates of synthesized polyimides are about 0.1-0.5 µm/pulse over a fluence range of 0.25-2.25 J cm-2. The photothermal mechanism for DMDB/6FDA contributes about 19% of etching depth at a laser fluence of 0.82 J cm-2. Moreover, the number of laser pulses seriously affects the taper angle of microstructures, especially at low fluence. Near-vertical side-wall structures can be built at high fluence (~2 J cm-2). Fresnel patterns with a thickness of 300 µm and a linewidth of 10 µm were fabricated, with an attainable aspect ratio of around 30. After photoablation, the complementary metallic microstructures were also fabricated by a sequential electroplating procedure. Then, those two new polyimides could be dissolved easily in most common solvents (such as THF, DMSO, NMP and DMF). These results indicate that these two soluble polyimides are highly suitable for use in the KrF laser LIGA process.

  10. Nanobumps on silicon created with polystyrene spheres and 248 or 308 nm laser pulses

    SciTech Connect

    Piparia, Reema; Rothe, Erhard W.; Baird, R. J.

    2006-11-27

    Huang et al. [Appl. Phys. Lett. 86, 161911 (2005)] formed arrays of nanobumps on a silicon substrate. They applied a 248 nm laser pulse to a surface monolayer of 1-{mu}m-diameter polystyrene spheres. The authors first replicated their experiment with 248 nm light. But when 308 nm pulses were applied instead, the nanobumps had a different shape and composition. At 248 nm, much of the laser light is absorbed in the polystyrene, which serves to quickly distort, melt, and ablate the sphere. At 308 nm, very little light is absorbed. The nanobumps from 248 nm radiation are organic polymers, while those formed with 308 nm pulses are silicon based.

  11. High Resolution Monochromatic X-Ray Imaging of Targets Irradiated by the Nike KrF Laser

    NASA Astrophysics Data System (ADS)

    Aglitskiy, Y.; Lehecka, T.; Brown, C.; Seely, J.; Feldman, U.; Obenschain, S.; Bodner, S.; Pawley, C.; Gerber, K.; Sethian, J.; Holland, G.

    1996-11-01

    Planar CH foils were accelerated by the main Nike laser driving beams and were backlit by Si plasmas. A spherically-bent quartz crystal (R=25cm, 2d=6.68703 Åimaged the radiation of He-like Si resonance line that was transmitted through the target foil. The intensity of the backlighted image (6 beams, 250 J) was 160 times greater than the self emission from a driven CH foil. The magnified (X9.6) images on DEF film had the resolution about 5 μ m (3 μ m with R=10cm). The resulting 10 μ m spatial resolution in the gated images was determined by 100 μ m resolution of the framing camera. Images of CH targets were recorded 2 nsec after the peak of the laser pulse and revealed the growth of Rayleigh-Taylor instabilities that were seeded by patterns with amplitude as small as 0.25 μ m. The image of driven smooth CH target was quite smooth compared to those of the patterned CH foil. A future imaging instrument will have multiple backlighter plasmas and better quality bent crystals that can be bent into a toroidal shape. Up to four images with higher magnification and spatial resolution of 5 μ m may be recorded on the framing camera. This work supported by the US Department of Energy

  12. Laser-LIGA for Ni microcantilevers

    NASA Astrophysics Data System (ADS)

    Jin, Hengyi; Harvey, Erol C.; Hayes, Jason P.; Ghantasala, Muralidhar K.; Fu, Yao; Jolic, Karlo; Solomon, Matthew; Graves, Kynan

    2002-11-01

    This paper presents our design and experimental results of nickel microcantilevers, which were fabricated using a laser-LIGA process, based on KrF (248 nm) excimer laser micromachining. A chrome-on-quartz mask, containing the desired mask patterns was prepared for this work. The substrate of copper (30 μm thick) clad printed circuit board (PCB) was laminated with Laminar 5038 photopolymer to be laser patterned. Following laser patterning and laser cleaning, all the samples were electroformed with nickel on top of the copper layer. To release the Ni microcantilevers, the excimer laser was employed again to remove the polymer in the localised area to facilitate Cu selective etching. Here, copper acted as the sacrificial layer as well. The Cu selective etching was carried out with ~ 20 % (wt) aqueous solution of ammonium persulfate. Because the Cu selective etching is isotropic, some undercuts happened next to the anchor area. The samples were characterised using optical microscope, confocal laser scanning microscope and SEM, and some of Ni cantilevers were tested electro-thermally. Their performance was analyzed with respect to the simulation results.

  13. Substrate effect on excimer laser assisted crystal growth in phosphor Ca 0.997Pr 0.002TiO 3 polycrystalline thin films

    NASA Astrophysics Data System (ADS)

    Nakajima, Tomohiko; Tsuchiya, Tetsuo; Kumagai, Toshiya

    2007-12-01

    Ca 0.997Pr 0.002TiO 3 thin films that show strong red luminescence were successfully prepared by means of an excimer laser assisted metal organic deposition process with a KrF laser at a fluence of 100 mJ/cm 2 at 100 °C. The CPTO films grew on the silica, borosilicate, and indium-tin-oxide coated glasses. The crystallinity of the Ca 0.997Pr 0.002TiO 3 films depended on the substrates; the borosilicate and indium-tin-oxide coated glasses with a large optical absorption of a KrF laser ( λ = 248 nm) were effective for the crystallization for the Ca 0.997Pr 0.002TiO 3. In addition, a high thermal conductivity of the indium-tin-oxide coated glass substrate could also improve the crystallinity due to an enhancement of thermal propagation to the film. Oxygen annealing at 500 °C for 6 h successfully eliminated the oxygen vacancy produced by the laser irradiation, and also remarkably improved the PL emission intensity. Thus, we have shown that substrate properties such as an optical absorbance and a thermal conductivity were quite important factors for the crystal growth and the PL emission for the Ca 0.997Pr 0.002TiO 3 in the excimer laser assisted metal organic deposition process.

  14. Novel spin-coating technology for 248-nm/193-nm DUV lithography and low-k spin on dielectrics of 200-mm/300-mm wafers

    NASA Astrophysics Data System (ADS)

    Gurer, Emir; Zhong, Tom X.; Lewellen, John W.; Lee, Ed C.

    2000-06-01

    An alternative coating technology was developed for 248 nm/193 nm DUV lithography and low-k spin on dielectric (SOD) materials used in the interconnect area. This is a 300 mm enabling technology which overcomes turbulent flow limitations above 2000 rpm and it prevents 40 - 60% reduction on the process latitudes of evaporation-related variables, common to 300 mm conventional coaters. Our new coating technology is fully enclosed and it is capable of controlling the solvent concentration above the resist film dynamically in the gas phase. This feature allows a direct control of the evaporation mass transfer which determines the quality of the final resist profiles. Following process advantages are reported in this paper: (1) Demonstrated that final resist film thickness can be routinely varied by 4000 angstrom at a fixed drying spin speed, thus minimizing the impact of turbulence wall for 300 mm wafers. (2) Evaporation control allows wider range of useful thickness from a fixed viscosity material. (3) Latitudes of evaporation-related process variables is about 40% larger than that of a conventional coater. (4) Highly uniform films of 0.05% were obtained for 8800 angstrom target thickness with tighter wafer-wafer profile control because of the enclosed nature of the technology. (5) Dynamic evaporation control facilitates resist consumption minimization. Preliminary results indicate feasibility of a 0.4 cc process of record (POR) for a 200 mm substrate. (6) Lower COO due to demonstrated relative insensitivity to environmental variables, robust resist consumption minimization and superior process capabilities. (7) Improved planarization and gap fill properties for the new generation photoresist/low-k SOD materials deposited using this enclosed coating technology.

  15. Photodissociation of gaseous CH{sub 3}COSH at 248 nm by time-resolved Fourier-transform infrared emission spectroscopy: Observation of three dissociation channels

    SciTech Connect

    Hu, En-Lan; Tsai, Po-Yu; Fan, He; Lin, King-Chuen

    2013-01-07

    Upon one-photon excitation at 248 nm, gaseous CH{sub 3}C(O)SH is dissociated following three pathways with the products of (1) OCS + CH{sub 4}, (2) CH{sub 3}SH + CO, and (3) CH{sub 2}CO + H{sub 2}S that are detected using time-resolved Fourier-transform infrared emission spectroscopy. The excited state {sup 1}(n{sub O}, {pi}{sup *}{sub CO}) has a radiative lifetime of 249 {+-} 11 ns long enough to allow for Ar collisions that induce internal conversion and enhance the fragment yields. The rate constant of collision-induced internal conversion is estimated to be 1.1 Multiplication-Sign 10{sup -10} cm{sup 3} molecule{sup -1} s{sup -1}. Among the primary dissociation products, a fraction of the CH{sub 2}CO moiety may undergo further decomposition to CH{sub 2}+ CO, of which CH{sub 2} is confirmed by reaction with O{sub 2} producing CO{sub 2}, CO, OH, and H{sub 2}CO. Such a secondary decomposition was not observed previously in the Ar matrix-isolated experiments. The high-resolution spectra of CO are analyzed to determine the ro-vibrational energy deposition of 8.7 {+-} 0.7 kcal/mol, while the remaining primary products with smaller rotational constants are recognized but cannot be spectrally resolved. The CO fragment detected is mainly ascribed to the primary production. A prior distribution method is applied to predict the vibrational distribution of CO that is consistent with the experimental findings.

  16. Laser-based techniques for living cell pattern formation

    NASA Astrophysics Data System (ADS)

    Hopp, Béla; Smausz, Tomi; Papdi, Bence; Bor, Zsolt; Szabó, András; Kolozsvári, Lajos; Fotakis, Costas; Nógrádi, Antal

    2008-10-01

    In the production of biosensors or artificial tissues a basic step is the immobilization of living cells along the required pattern. In this paper the ability of some promising laser-based methods to influence the interaction between cells and various surfaces is presented. In the first set of experiments laser-induced patterned photochemical modification of polymer foils was used to achieve guided adherence and growth of cells to the modified areas: (a) Polytetrafluoroethylene was irradiated with ArF excimer laser ( λ=193 nm, FWHM=20 ns, F=9 mJ/cm2) in presence of triethylene tetramine liquid photoreagent; (b) a thin carbon layer was produced by KrF excimer laser ( λ=248 nm, FWHM=30 ns, F=35 mJ/cm2) irradiation on polyimide surface to influence the cell adherence. It was found that the incorporation of amine groups in the PTFE polymer chain instead of the fluorine atoms can both promote and prevent the adherence of living cells (depending on the applied cell types) on the treated surfaces, while the laser generated carbon layer on polyimide surface did not effectively improve adherence. Our attempts to influence the cell adherence by morphological modifications created by ArF laser irradiation onto polyethylene terephtalate surface showed a surface roughness dependence. This method was effective only when the Ra roughness parameter of the developed structure did not exceed the 0.1 micrometer value. Pulsed laser deposition with femtosecond KrF excimer lasers ( F=2.2 J/cm2) was effectively used to deposit structured thin films from biomaterials (endothelial cell growth supplement and collagen embedded in starch matrix) to promote the adherence and growth of cells. These results present evidence that some surface can be successfully altered to induce guided cell growth.

  17. Frequency doubling of copper lasers using temperature-tuned ADP

    SciTech Connect

    Molander, W.A.

    1994-03-01

    The ability to generate high average power uv at 255 nm by frequency doubling the green line (510.6 nm) of copper lasers would greatly extend the utility of copper lasers. Material processing and microlithography are two areas of interest. The frequency-doubled copper laser could replace the KrF excimer laser, which has a similar wavelength (248 nm), in some applications. The frequency-doubled copper laser has a narrow linewidth and excellent beam quality at a competitive cost. Other attractive features are high reliability, low operating costs, and the absence of toxic gases. This paper will report recent progress in high-efficiency, high-average-power harmonic generation of the copper laser green line using noncritical phase matching in ADP. Frequency doubling of the yellow line (578.2 nm) and sum-frequency mixing of the two lines are also of interest. These processes, however, cannot be phase-matched in ADP and, therefore, will not be discussed here. The results reported and the issues identified here would be important in these other processes and also in many other frequency conversion schemes in the uv such as 4{omega} conversion of Nd{sup 3+}:YAG lasers.

  18. Progress in LPI Experiments at the NikeLaser

    NASA Astrophysics Data System (ADS)

    Weaver, J.; Kehne, D.; Obenschain, S.; Schmitt, A.; Serlin, V.; Oh, J.; Lehmberg, R.; Tsung, F.; McKenty, P.; Seely, J.

    2014-10-01

    The experimental program at the Nike laser facility at NRL is studying laser plasma instabilities (LPI) in the quarter critical region and cross-beam energy transport (CBET). The Nike krypton-fluorine (KrF) laser has unique characteristics that allow parametric studies of LPI. These features include short wavelength (248 nm), large bandwidth (~2-3 THz), beam smoothing by induced spatial incoherence (ISI), and full aperture focal spot zooming during the laser pulse. Nike also has a unique beam geometry that combines two widely separated beam arrays (145° in azimuth) with close beam-beam spacing (as low as 3.5°) within the main drive array. Particularly relevant for the CBET studies, recent campaigns have demonstrated the capability to alter the laser bandwidth by a factor of ~10 as well as shifts in the peak laser wavelength. An extensive LPI diagnostic suite is available for observation of stimulated Raman scattering, two-plasmon decay, stimulated Brillouin scattering, the parametric decay instability, and hard x-ray emission due to hot electrons. An overview of the observations of scattered laser light made during the previous studies of instabilities in the quarter critical region will be presented. Ongoing analysis of observed LPI emission from rotated targets will also be included. Plans for upcoming experiments related to quarter critical instabilities and CBET will be discussed. Work supported by DoE/NNSA.

  19. The thermodynamic response of soft biological tissues to pulsed ultraviolet laser irradiation.

    PubMed Central

    Venugopalan, V; Nishioka, N S; Mikić, B B

    1995-01-01

    The physical mechanisms that enable short pulses of high-intensity ultraviolet laser radiation to remove tissue, in a process known as laser ablation, remain obscure. The thermodynamic response of biological tissue to pulsed laser irradiation was investigated by measuring and subsequently analyzing the stress transients generated by pulsed argon fluorine (ArF, lambda = 193 nm) and krypton fluorine (KrF, lambda = 248 nm) excimer laser irradiation of porcine dermis using thin-film piezoelectric transducers. For radiant exposures that do not cause material removal, the stress transients are consistent with rapid thermal expansion of the tissue. At the threshold radiant exposure for ablation, the peak stress amplitude generated by 248 nm irradiation is more than an order of magnitude larger than that produced by 193 nm irradiation. For radiant exposures where material removal is achieved, the temporal structure of the stress transient indicates that the onset of material removal occurs during irradiation. In this regime, the variation of the peak compressive stress with radiant exposure is consistent with laser-induced rapid surface vaporization. For 193 nm irradiation, ionization of the ablated material occurs at even greater radiant exposures and is accompanied by a change in the variation of peak stress with radiant exposure consistent with a plasma-mediated ablation process. These results suggest that absorption of ultraviolet laser radiation by the extracellular matrix of tissue leads to decomposition of tissue on the time scale of the laser pulse. The difference in volumetric energy density at ablation threshold between the two wavelengths indicates that the larger stresses generated by 248 nm irradiation may facilitate the onset of material removal. However, once material removal is achieved, the stress measurements demonstrate that energy not directly responsible for target decomposition contributes to increasing the specific energy of the plume (and plasma

  20. 100 nm half-pitch double exposure KrF lithography using binary masks

    NASA Astrophysics Data System (ADS)

    Geisler, S.; Bauer, J.; Haak, U.; Stolarek, D.; Schulz, K.; Wolf, H.; Meier, W.; Trojahn, M.; Matthus, E.

    2008-03-01

    In this paper we investigate the process margin for the 100nm half - pitch double exposure KrF lithography using binary masks for different illumination settings. The application of Double Exposure Lithography (DEL) would enlarge the capability of 248 nm exposure technique to smaller pitch e.g. for the integration of dedicated layers into 0.13 μm BiCMOS with critical dimension (CD) requirements exceeding the standard 248 nm lithography specification. The DEL was carried out with a KrF Scanner (Nikon S207D, NA Lens = 0.82) for a critical dimension (CD) of 100nm half pitch. The chemical amplified positive resists SL4800 or UV2000 (Rohm & Haas) with a thickness of 325nm were coated on a 70 nm AR10L (Rohm & Haas) bottom anti-reflective coating (BARC). With a single exposure and using binary masks it is not possible to resolve 100nm lines with a pitch of 200 nm, due to the refraction and the resolution limit. First we investigated the effect of focus variation. It is shown that the focus difference of 1st and 2nd exposure is one critical parameter of the DEL. This requires a good focus repeatability of the scanner. The depth of focus (DOF) of 360 nm with the coherence parameter σ = 0.4 was achieved for DEL with SL4800 resist. The influence of the better resist resolution of UV2000 on the process window will be shown (DOF = 460 nm). If we change the focus of one of the exposures the CD and DOF performance of spaces is reduced with simultaneous line position changing. Second we investigated the effect of different illumination shapes and settings. The results for conventional illumination with different values for σ and annular illumination with σ inner = 0.57 and σ outer = 0.85 will be shown. In summary, the results show that DEL has the potential to be a practical lithography enhancement method for device fabrication using high NA KrF tool generation.

  1. Bright Photoelectron Beams Emitted From Excimer-Laser Illuminated LaB6

    NASA Astrophysics Data System (ADS)

    Oettinger, Peter E.

    1988-12-01

    Lanthanum hexaboride has traditionally been used as a high-temperature thermionic emitter of electrons. This material, whose work function for a sintered multicrystalline composition is nominally 2.6 eV, appears to be a reasonably good photoemitter when irradiated by UV light. A quantum efficiency of 10-3 was recorded for photoemission at a 193 nm (ArF) incident wavelength. At least 20 A/cm2 were observed at 193 nm, 248 nm (KrF) and 308 (XeC1). Beam brightness appears to be a minimum of 4 x 105 A/cm2-rad2 at 248 nm.

  2. Double exposure technology for KrF lithography

    NASA Astrophysics Data System (ADS)

    Geisler, S.; Bauer, J.; Haak, U.; Stolarek, D.; Schulz, K.; Wolf, H.; Meier, W.; Trojahn, M.; Matthus, E.; Beyer, H.; Old, G.; Marschmeyer, St.; Kuck, B.

    2008-04-01

    The application of Double Exposure Lithography (DEL) would enlarge the capability of 248 nm exposure technique to smaller pitch. We will use the DEL for the integration of critical layers for dedicated applications requiring resolution enhancement into 0.13 μm BiCMOS technology. In this paper we present the overlay precision and the focus difference of 1st and 2nd exposure as critical parameters of the DEL for k I <= 0.3 lithography (100 nm half pitch) with binary masks (BIM). The realization of excellent overlay (OVL) accuracy is a main key of double exposure and double patterning techniques. We show the DEL requires primarily a good mask registration, when the wafer stays in the scanner for both exposures without alignment between 1st and 2nd exposure. The exposure tool overlay error is more a practical limit for double patterning lithography (DPL). Hence we prefer the DEL for the resolution enhancement, especially if we use the KrF high NA lithography tool for 130 nm generation. Experimental and simulated results show that the critical dimension uniformity (CDU) depends strongly on the overlay precision. The DEL results show CDU is not only affected by the OVL but also by an optical proximity effect of 1st and 2nd exposure and the mask registration. The CD uniformity of DEL demands a low focus difference between 1st and 2nd exposure and therefore requires a good focus repeatability of the exposure tool. The Depth of Focus (DOF) of 490 nm at stable CD of lines was achieved for DEL. If we change the focus of one of the exposures the CD-focus performance of spaces was reduced with simultaneous line position changing. CDU vs. focus difference between 1st and 2nd exposure demands a focus repeatability <100 nm for the exposure tool. Summary, the results show DEL has the potential to be a practical lithography enhancement method for device fabrication using high NA KrF tool generation.

  3. Ferromagnetism in SrTiO3 Single Crystals Induced by Laser irradiation

    NASA Astrophysics Data System (ADS)

    Singamaneni, Srinivasa Rao; Lee, Y. F.; Prater, J. T.; Smirnov, A. I.; Narayan, J.

    2015-03-01

    SrTiO3 (STO) is diamagnetic in pristine state, important in emerging field of complex oxide electronics. No attention has been paid to explore the magnetic properties of STO crystal upon laser irradiation/annealing. In this presentation, we demonstrate that STO single crystals show ferromagnetic order up to 400 K upon KrF (248 nm) laser irradiation. The high resolution x-ray photo emission spectroscopy (XPS) measurements reveal a strong shift of Sr-, Ti- and O-related peaks. X-ray diffraction (XRD) of laser annealed STO does not reveal a signature of either secondary magnetic or amorphous phases. 300 K X-band (~ 9.543 GHz) angle-dependent electron paramagnetic resonance (EPR) measurements showed no evidence of additional magnetic peaks up on laser irradiation. XPS and EPR data did not provide a strong evidence of Ti3+ formation upon laser annealing. No differences in the visible 300 K Raman spectra of pristine and laser annealed STO are noticed. Interestingly, the magnetic moment is decreased by almost 10-fold upon oxygen annealing of laser annealed STO, inferring that oxygen vacancies play an important role in establishing the observed ferromagnetism.

  4. Measurements of electron density and temperature profiles in plasma produced by Nike KrF laser for laser plasma instability research.

    PubMed

    Oh, Jaechul; Weaver, J L; Karasik, M; Chan, L Y

    2015-08-01

    A grid image refractometer (GIR) has been implemented at the Nike krypton fluoride laser facility of the Naval Research Laboratory. This instrument simultaneously measures propagation angles and transmissions of UV probe rays (λ = 263 nm, Δt = 10 ps) refracted through plasma. We report results of the first Nike-GIR measurement on a CH plasma produced by the Nike laser pulse (∼1 ns FWHM) with the intensity of 1.1 × 10(15) W/cm(2). The measured angles and transmissions were processed to construct spatial profiles of electron density (ne) and temperature (Te) in the underdense coronal region of the plasma. Using an inversion algorithm developed for the strongly refracted rays, the deployed GIR system probed electron densities up to 4 × 10(21) cm(-3) with the density scale length of 120 μm along the plasma symmetry axis. The resulting n(e) and T(e) profiles are verified to be self-consistent with the measured quantities of the refracted probe light. PMID:26329186

  5. Absorbing film assisted laser induced forward transfer of fungi (Trichoderma conidia)

    NASA Astrophysics Data System (ADS)

    Hopp, B.; Smausz, T.; Antal, Zs.; Kresz, N.; Bor, Zs.; Chrisey, D.

    2004-09-01

    We present an investigation on absorbing film assisted laser induced forward transfer (AFA-LIFT) of fungus (Trichoderma) conidia. A KrF excimer laser beam [λ =248nm,FWHM=30ns (FWHM, full width at half maximum)] was directed through a quartz plate and focused onto its silver coated surface where conidia of the Trichoderma strain were uniformly spread. The laser fluence was varied in the range of 0-2600mJ/cm2 and each laser pulse transferred a pixel of target material. The average irradiated area was 8×10-2mm2. After the transfer procedure, the yeast extract medium covered glass slide and the transferred conidia patterns were incubated for 20 h and then observed using an optical microscope. The transferred conidia pixels were germinated and the areas of the culture medium surfaces covered by the pixels were evaluated as a function of laser fluence. As the laser fluence was increased from 0 to 355mJ/cm2 the transferred and germinated pixel area increased from 0 to 0.25mm2. Further increase in fluence resulted in a drastic decrease down to an approximately constant value of 0.06mm2. The yield of successful transfer by AFA-LIFT and germination was as much as 75% at 355mJ/cm2. The results prove that AFA-LIFT can successfully be applied for the controlled transfer of biological objects.

  6. Laser annealing induced ferromagnetism in SrTiO3 single crystal

    NASA Astrophysics Data System (ADS)

    Rao, S. S.; Lee, Y. F.; Prater, J. T.; Smirnov, A. I.; Narayan, J.

    2014-07-01

    The appearance of ferromagnetic order up to 400 K upon KrF (248 nm) laser irradiation is reported in un-doped SrTiO3 (STO) single crystal. The high resolution x-ray photo emission spectroscopy (XPS) measurements reveal a strong shift of Sr-, Ti-, and O-related peaks. X-ray diffraction of laser annealed STO does not reveal a signature of either secondary magnetic or amorphous phases. 300 K X-band (˜9.543 GHz) angle-dependent electron paramagnetic resonance (EPR) measurements showed no evidence of additional magnetic peaks upon laser irradiation. XPS and EPR data did not provide a strong evidence of Ti3+ formation upon laser annealing. No differences in the visible 300 K Raman spectra of pristine and laser annealed STO are noticed. Interestingly, the magnetic moment is decreased by almost 10-fold upon oxygen annealing of laser annealed STO, inferring that oxygen vacancies play an important role in establishing the observed ferromagnetism.

  7. Study of titania nanorod films deposited by matrix-assisted pulsed laser evaporation as a function of laser fluence

    NASA Astrophysics Data System (ADS)

    Caricato, A. P.; Belviso, M. R.; Catalano, M.; Cesaria, M.; Cozzoli, P. D.; Luches, A.; Manera, M. G.; Martino, M.; Rella, R.; Taurino, A.

    2011-11-01

    Chemically synthesized brookite titanium dioxide (TiO2) nanorods with average diameter and length dimensions of 3-4 nm and 35-50 nm, respectively, were deposited by the matrix-assisted pulsed laser evaporation technique. A toluene nanorod solution was frozen at the liquid-nitrogen temperature and irradiated with a KrF excimer laser ( λ=248 nm, τ=20 ns) at the repetition rate of 10 Hz, at different fluences (25 to 350 mJ/cm2). The deposited films were structurally characterized by high-resolution scanning and transmission electron microscopy. <100> single-crystal Si wafers and carbon-coated Cu grids were used as substrates. Structural analyses evidenced the occurrence of brookite-phase crystalline nanospheres coexisting with individually distinguishable TiO2 nanorods in the films deposited at fluences varying from 50 to 350 mJ/cm2. Nanostructured TiO2 films comprising only nanorods were deposited by lowering the laser fluence to 25 mJ/cm2. The observed shape and phase transitions of the nanorods are discussed taking into account the laser-induced heating effects, reduced melting temperature and size-dependent thermodynamic stability of nanoscale TiO2.

  8. Effect of the excimer laser irradiation on sol-gel derived tungsten-titanium dioxide thin films

    NASA Astrophysics Data System (ADS)

    Joya, Yasir F.; Liu, Zhu

    2011-01-01

    A novel technique based on the excimer laser induced crystallization and modification of TiO2 thin films is being reported. W+6 ions loaded TiO2 (WTO) precursor films were prepared by a modified sol-gel method and spin-coated onto microscopic glass slides. Pulsed KrF (248 nm, 13 ns) excimer laser was used to irradiate the WTO amorphous films at various laser parameters. Mesoporous and nanostructured films consisting of anatase and rutile were obtained after laser irradiation at room temperature. The effect of varying W+6 ions concentrations on structural and optical properties the WTO films was analyzed by X-ray diffraction, field-emission scanning electron microscope, UV-Vis spectrophotometer and transmission electron microscope before and after laser treatment. Films irradiated for 10 pulses at 65-75 mJ/cm2 laser fluence, exhibited anatase whereas higher parameters promoted the formation of rutile. XPS results revealed WO3 along with minor proportion of WO2 compounds after laser irradiation. Photo-absorbance of the WTO films was increased with increase in W+6 ions concentration in the film. TEM results exhibited a crystallite size of 15 nm which was confirmed from SEM results as well.

  9. Ignition by excimer laser photolysis of ozone

    SciTech Connect

    Lucas, D.; Dunn-Rankin, D.; Hom, K.; Brown, N.J.

    1986-10-01

    We have ignited mixtures of hydrogen, oxygen, and ozone in closed cells with 248 nm radiation from a KrF excimer laser. Ozone, the only significant absorber in this system, absorbs a single photon and produces oxygen atoms which initiate combustion. A discretized, time-dependent Beer's law model is used to demonstrate that the radical concentration immediately after photolysis is a function of laser power, ozone concentration, focal length, and separation between the lens and reaction cell. Spark schileren photographs are used to visualize the ignition events and identify the ignition sites. The effects of equivalence ratio, pressure, and the initial gas temperature on the minimum ozone concentration needed to produce ignition are presented, and only the initial temperature has a significant effect. Modelling studies of the ignition process aid in the interpretation of the experimental results, and show that the ignition we observe is not due solely to thermal effects, but is strongly dependent on the number and type of radicals present initially after photolysis. Ignition using other hydocarbons as fuels was also demonstrated. 30 refs., 9 figs. 2 tabs.

  10. Ignition by excimer laser photolysis of ozone

    SciTech Connect

    Lucas, D.; Dunn-Rankin, D.; Hom, K.; Brown, N.J.

    1986-01-01

    The authors have ignited mixtures of hydrogen, oxygen, and ozone in closed cells with 248 nm radiation from a KrF excimer laser. Ozone, the only significant absorber in this system, absorbs a single photon and produces oxygen atoms which initiate combustion. A discretized, time-dependent Beer's law model is used to demonstrate that the radical concentration immediately after photolysis is a function of laser power, ozone concentration, focal length, and separation between the lens and reaction cell. Spark schlieren photographs are used to visualize the ignition events and identify the ignition sites. The effects of equivalence ratio, pressure, and the initial gas temperature on the minimum ozone concentration needed to produce ignition are presented, and only the initial temperature has a significant effect. Modelling studies of the igniton process aid in the interpretation of the experimental results, and show that the ignition is not due solely to thermal effects, but is strongly dependent on the number and type of radicals present initially after photolysis. Ignition using other hydrocarbons as fuels was also demonstrated.

  11. Excimer laser modification of thin AlN films

    NASA Astrophysics Data System (ADS)

    Georgiev, D. G.; Rosenberger, L. W.; Danylyuk, Y. V.; Baird, R. J.; Newaz, G.; Shreve, G.; Auner, G.

    2005-08-01

    The potential of excimer laser micro-processing for surface modification of aluminum nitride (AlN) thin films was studied. Thin films of AlN were deposited by plasma-source molecular beam epitaxy (PSMBE) on silicon and sapphire substrates. These films were then exposed to different fluence levels of KrF ( λ = 248 nm) excimer laser radiation in an ambient air environment, and the changes in the film surface were studied by X-ray photoelectron spectroscopy, atomic force microscopy and optical spectrophotometry. The results show that there is a narrow range of laser fluences, just above 1.0 J/cm 2, within which mostly photochemical transformations of the film surface take place. These transformations consist of both oxidation and decomposition to metallic Al of the original film within a very thin sub-surface layer with thickness of several tens of nanometers. No changes were observed at fluences below 1.0 J/cm 2. Above a fluence of 1.0 J/cm 2, severe photomechanical damage consisting of film cracking and detachment was found to accompany the photochemical and photothermal changes in the film.

  12. KrF amplifier design issues and application to ICF system design

    SciTech Connect

    Sullivan, J.A.; Allen, G.R.; Berggren, R.R.; Czuchlewski, S.J.; Harris, D.B.; Jones, M.E.; Krohn, B.J.; Kurnit, N.A.; Leland, W.T.; Mansfield, C.; McLeod, J.; McCown, A.W.; McLeod, J.; Pendergrass, J.H.; Rose, E.A.; Rosocha, L.A.; Thomas, V.A.

    1991-01-01

    Los Alamos National Laboratory has assembled an array of experimental and theoretical tools to optimize amplifier design for future KrF lasers. The next opportunity to exercise these tools is with the design of the second generation NIKE system under construction at the Naval Research Laboratory with the collaboration of Los Alamos National Laboratory. Major issues include laser physics (energy extraction in large modules with amplified spontaneous emission) and diode performance and efficiency. High efficiency and low cost are increasingly important for larger future KrF amplifiers. In this paper we present our approach to amplifier scaling and discuss the more important design considerations for large KrF amplifiers. We point out where improvements in the fundamental data base for KrF amplifiers could lead to increased confidence in performance predictions for large amplifiers, and we address the currently unresolved issues of anomalous absorption near line center and the possibility of diode instabilities for low impedance designs. Los Alamos has designed a 100-kJ KrF laser-fusion system for both direct- and indirect-drive target physics experiments using 60-kJ amplifier modules. The design of this system will be reviewed. 38 refs., 110 figs., 3 tabs.

  13. Initial development of efficient, low-debris laser targets for the Sandia soft x-ray projection lithography effort

    SciTech Connect

    Rockett, P.D.; Hunter, J.A.; Kubiak, G.D.

    1997-03-01

    During the fiscal years 92-94 a joint group from Sandia/New Mexico and Sandia/California studied the development of new laser-plasma targets for projection x-ray or EUV (extreme ultraviolet) lithography. Our experimental and theoretical analyses incorporated target design as an integral part of the lithographic optical system. Targets studied included thick solid targets, thin-foil metal-coated targets, and cryogenic targets. Our complete measurement suite consisted of x-ray conversion efficiency measurements, source size imaging, source x-ray angular distribution measurements, debris collection, and source EUV spectrum. Target evaluation also included the variation of laser characteristics, such as, laser intensity, spot size, wavelength, pulselength, and pulseshape. Over the course of these experiments we examined targets using KrF (248nm), XeCl (308nm), and CO{sub 2} (10.6 {mu}m) lasers. While debris issues now dominate research in this area, final details were concluded on our understanding of material spectra and radiation transport of 13 run light in laser-plasmas. Additionally, conclusive results were obtained with 308 rim light, showing the pulselength threshold below which plumes no longer limited the transmission of (and thus the conversion efficiency to) 13 nm radiation.

  14. Excimer laser activation of ultra-shallow junctions in doped Si: Modeling, experiments and real time process monitoring

    NASA Astrophysics Data System (ADS)

    Semmar, Nadjib; Darif, Mohamed; Millon, Eric; Petit, Agnès; Etienne, Hasnaa; Delaporte, Philippe

    2012-07-01

    This work concerns the ALDIP (Laser Activation of Doping agents Implanted by Plasma immersion) project that was a successful collaboration with Ion Beam Services (IBS) corporation, the "Lasers, Plasmas and Photonic Processes" (LP3) laboratory and the GREMI laboratory. The aim of this work is to control the melted thickness (i.e. junction thickness in the range 10-100 nm) by the Real Time Reflectivity (TRR) monitoring during the Laser Thermal Processing (LTP). The LTP is achieved by using a KrF laser beam (248 nm, 27 ns) with a homogeneous 'Top-Hat' space distribution to induce a selective melting and the resolidification of the doped Si:B samples on few nanometers. This recrystallization is conducted here after the pre-amorphisation process resulting from the ionic implantation of Si (PIII IBS implanter). Thus, all the studied samples are partially amorphized and boron doped. TRR method allows the accurate evaluation of the melting threshold, the duration of the melting phase, and the maximum melted thickness. Obtained results versus laser fluence are shown in the new case of under vacuum treatment. In order to calibrate the TRR method (to determine the intensity and the profile of the TRR signal versus the melting depth), we have used the secondary ion mass spectrometry (TOF-SIMS) analysis. This technique gives the doping agents profile versus the depth before and after LTP and confirms also the melting kinetics from TRR results.

  15. A laser dry etch process for smooth continuous relief structures in InP

    NASA Astrophysics Data System (ADS)

    Weber, H.; Matz, R.; Weimann, G.

    1996-11-01

    A laser induced etch process is described which uses a pulsed 248 nm KrF excimer laser and Cl2 atmosphere for the fabrication of monolithic continuously curved reliefs in InP substrate. In a bakeable processing chamber with low base pressure a wide range of laser fluences is available for damage-free etching. Especially, by photothermal heating far above the melting point, mirrorlike smooth surfaces are obtained. The etch rate characteristics are correlated to the maximum surface temperature reached during the laser pulse. The etch rate is independent of pressure and gas flux in the ranges 0.1 10 mbar and 20 300 sccm, respectively. It increases, however, with the background substrate temperature. Etch rates of up to 3.6 nm/pulse or 4.3 lm/min are possible at 20 Hz pulse repetition rate without visible surface damage. The process exhibits a smooth increase of the etch rate from 1 to 3 nm/pulse between 200 and 300 mJ/cm2, which could be used for making curved reliefs by optical transmission variations on the projection mask.

  16. Laser ablation of micro-photonic structures for efficient light collection and distribution

    NASA Astrophysics Data System (ADS)

    Shang, Xiaobing; Desmet, Andres; De Smet, Jelle; Joshi, Pankaj; Cuypers, Dieter; Van Put, Steven; Van Steenberge, Geert; Vervaeke, Michael; Thienpont, Hugo; De Smet, Herbert

    2015-06-01

    In this work we report the fabrication of polymer micro-photonic gratings for use in liquid-crystal based actively tunable electro-optic components. The gratings are produced by moving the sample surface sideways across a perpendicularly impinging KrF excimer laser beam (λ  =  248 nm), which is shaped by specially designed triangular and trapezoidal masks. To obtain correctly dimensioned and smooth grating surfaces, different materials (SU-8, polycarbonate, Epoclad and Epocore) are subjected to the laser ablation with optimized laser processing parameters. The resulting grating structures on Epocore exhibit the best surface roughness and dimensional fidelity. Optionally, spacers for maintaining the cell gap of the superimposed liquid crystal layer can also be fabricated in the same process. Two different methods were demonstrated: overlapping ablation and double mask ablation. Micro-grating structures were produced that deflect a monochromatic (543 nm) laser beam to the theoretically predicted 11th order with an angle of 7°.

  17. Gas Effect On Plasma Dynamics Of Laser Ablation Zinc Oxide

    SciTech Connect

    Abdelli-Messaci, S.; Kerdja, T.; Lafane, S.; Malek, S.

    2008-09-23

    In order to synthesis zinc oxide thin films and nanostructures, laser ablation of ZnO target into both vacuum and oxygen atmosphere was performed. The gas effect on the plume dynamics was studied for O{sub 2} pressures varied between 10{sup -2} to 70 mbar. Plasma plume evolution was investigated by ICCD camera fast imaging. The plasma was created by a KrF excimer laser ({lambda} = 248 nm, {tau} = 25 ns) at a fluence of 2 J/cm{sup 2}. The light emitted by the plume was observed along the perpendicular to the ejection direction through a fast intensified charge-coupled device (ICCD). We have found that the plasma dynamics is very affected by the gas pressures. The photographs reveal the stratification of plasma into slow and fast components for 0.5 mbar O{sub 2} pressures and beyond. The photographs also show the apparition of hydrodynamic instabilities which are related to chemical reactions between the plasma and the surrounding gas for a certain range of pressures.

  18. Design of a new bottom antireflective coating composition for KrF resist

    NASA Astrophysics Data System (ADS)

    Mizutani, Kazuyoshi; Momota, Makoto; Aoai, Toshiaki; Yagihara, Morio

    1999-06-01

    A study for a new organic bottom antireflective coating (BARC) composition is described. A structural design of a light-absorbing dye was most important because dye structure not only plays a role in eliminating reflection from a substrate but also shows influence on dry etch rate of BARC material to a considerable extent. For example, an anthracene moiety with large absorption at 248 nm had undesirable dry etch resistance. 3-Hydroxy-2-naphthoic acid moiety was found to be one of suitable dyes for KrF BARC compositions, and the polymer bearing the dye showed enough absorbance and good erodability in dry etch. The BARC polymer was eroded as one and a half times faster than a novolak resin, and a little faster than an anthracene incorporated polymer. The result was discussed from the concepts of Ohnishi parameter and the ring parameter for dry etch durability of resist materials. BARC polymer should be thermoset by hard bake to eliminate intermixing with resist compositions. The BARC polymer bearing hydroxy group which is useful for a crosslinking reaction was thermoset in the presence of melamine-formaldehyde crosslinker and an acid catalyst after baking over 200 degrees C.

  19. Improvement of multi jet low pressure impactor for high collection efficiency of UF5 in the molecular laser isotope separation of uranium

    NASA Astrophysics Data System (ADS)

    Kuga, Yoshikazu; Jurcik, Benjamin; Satooka, Sakae; Takeuchi, Kazuo

    1995-07-01

    A numerical and experimental study for the collection of photo-produced UF 5 particles was performed for the low pressure impactors which have different design factors at typical flow conditions (upstream pressure of the impactor = 10-15 Torr, pressure ratio of downstream to upstream of the impactor, {P down}/{P up} = 0.2-0.5 ) in the molecular laser isotope separation of uranium at RIKEN (RIMLIS). Smaller {H}/{W} ratios (the distance between the impactor orifice exit and the impaction plate, H, divided by the orifice diameter of the impactor, W) and the smaller {P down}/{P up} were found to be preferable to obtain a higher collection efficiency from both numerical and experimental investigations. In addition it was experimentally demonstrated that the use of a 16 μm laser system for the selective reaction of 235UF 6 to form 235UF 5 was not relevant for the study of the collection of UF 5 particles. So, we used an ultraviolet laser system (fourth harmonic YAG laser (266 nm) and an excimer laser (KrF, 248 nm)) which was more convenient to cope with various operating conditions. The collection efficiency was found to increase with the initial concentration of UF 5 molecules produced. Applying the improved impactor stage, we obtained a collection efficiency which was approximately 10 times higher than that of our previous work. Higher collection efficiencies of photo-produced UF 5 particles enriched in 235U reduce the enrichment cost.

  20. The Role of Crystalline Water in the Interaction of Excimer Laser Light with Brushite

    NASA Astrophysics Data System (ADS)

    Dawes, M. L.; Langford, S. C.; Dickinson, J. T.

    1998-03-01

    A number of minerals of environmental interest contain waters of hydration, sometimes called crystalline water. Hydrated crystals often show dramatic changes in optical properties as well as mechanical properties, both influencing the response of the material to radiation. From an analytic point of view, very little is known about the influence of hydration regarding laser desorption and ablation phenomena. We explore the interaction of excimer laser light (KrF 248 nm) with single crystal brushite (CaHPO_4.2H_2O), a model biomineral phosphate containing H_2O. We first show that defects dominate the interactions as revealed by high sensitivity detection of Ca^+ at low fluences and that this ion emission predicts ablation thresholds. The most probable ion energy, which occurs at 11 eV, is much higher than the incident photon energy of 5 eV. The ion intensities also display a highly nonlinear fluence dependence, typically 6-8th order, entirely consistent with ion emission models we have recently presented. We show that laser coupling can be enhanced several orders of magnitude by generation of defects, i.e., by mechanical treatment, heating, or exposure to electron beams and that the consequences of crystalline H_2O and HPO_4^2- decomposition play major and related roles in this defect production.

  1. Pulsed laser ablation of borax target in vacuum and hydrogen DC glow discharges

    NASA Astrophysics Data System (ADS)

    Kale, A. N.; Miotello, A.; Mosaner, P.

    2006-09-01

    The aim of our experiment was to produce a material with B sbnd H bonds for applications in hydrogen storage and generation. By using KrF excimer laser ( λ = 248 nm) ablation of borax (Na 2B 4O 7) target, thin films were deposited on KBr and silicon substrates. Ablation was performed both in vacuum and in hydrogen atmosphere. DC glow discharge technique was utilized to enhance hydrogen gas ionization. Experiments were performed using laser fluence from 5 to 20 J/cm 2. Films were deposited under gas pressure of 1 × 10 -5 to 5 × 10 -2 mbar and substrate temperatures of 130-450 °C. Scanning electron microscopy analysis of films showed presence of circular particulates. Film thickness, roughness and particulates number increased with increase in laser fluence. Energy dispersive X-ray spectroscopy analysis shows that sodium content in the particulates is higher than in the target. This effect is discussed in terms of atomic arrangements (both at surface and bulk) in systems where ionic and covalent bonds are present and by looking at the increased surface/bulk ratio of the particulates with respect to the deposited films. The Fourier transform infrared spectroscopy measurements showed presence of B sbnd O stretching and B sbnd O sbnd B bending bonds. Possible reasons for absence of B sbnd H bonds are attributed to binding enthalpy of the competing molecules.

  2. Photolysis of CH{sub 3}CHO at 248 nm: Evidence of triple fragmentation from primary quantum yield of CH{sub 3} and HCO radicals and H atoms

    SciTech Connect

    Morajkar, Pranay; Schoemaecker, Coralie; Fittschen, Christa; Bossolasco, Adriana

    2014-06-07

    Radical quantum yields have been measured following the 248 nm photolysis of acetaldehyde, CH{sub 3}CHO. HCO radical and H atom yields have been quantified by time resolved continuous wave Cavity Ring Down Spectroscopy in the near infrared following their conversion to HO{sub 2} radicals by reaction with O{sub 2}. The CH{sub 3} radical yield has been determined using the same technique following their conversion into CH{sub 3}O{sub 2}. Absolute yields have been deduced for HCO radicals and H atoms through fitting of time resolved HO{sub 2} profiles, obtained under various O{sub 2} concentrations, to a complex model, while the CH{sub 3} yield has been determined relative to the CH{sub 3} yield from 248 nm photolysis of CH{sub 3}I. Time resolved HO{sub 2} profiles under very low O{sub 2} concentrations suggest that another unknown HO{sub 2} forming reaction path exists in this reaction system besides the conversion of HCO radicals and H atoms by reaction with O{sub 2}. HO{sub 2} profiles can be well reproduced under a large range of experimental conditions with the following quantum yields: CH{sub 3}CHO + hν{sub 248nm} → CH{sub 3}CHO{sup *}, CH{sub 3}CHO{sup *} → CH{sub 3} + HCO ϕ{sub 1a} = 0.125 ± 0.03, CH{sub 3}CHO{sup *} → CH{sub 3} + H + CO ϕ{sub 1e} = 0.205 ± 0.04, CH{sub 3}CHO{sup *}→{sup o{sub 2}}CH{sub 3}CO + HO{sub 2} ϕ{sub 1f} = 0.07 ± 0.01. The CH{sub 3}O{sub 2} quantum yield has been determined in separate experiments as ϕ{sub CH{sub 3}} = 0.33 ± 0.03 and is in excellent agreement with the CH{sub 3} yields derived from the HO{sub 2} measurements considering that the triple fragmentation (R1e) is an important reaction path in the 248 nm photolysis of CH{sub 3}CHO. From arithmetic considerations taking into account the HO{sub 2} and CH{sub 3} measurements we deduce a remaining quantum yield for the molecular pathway: CH{sub 3}CHO{sup *} → CH{sub 4} + CO ϕ{sub 1b} = 0.6. All experiments can be

  3. Time-resolved spatial distribution of plasma in the ablation of a Ba₀.₆Sr₀.₄TiO₃ target by 25 ns KrF ultraviolet laser

    SciTech Connect

    Lagrange, J. F.; Wolfman, J.; Motret, O.; Hermann, J.

    2014-10-07

    We performed radially and longitudinally time-resolved plasma analysis during pulsed laser deposition of Ba₀.₆Sr₀.₄TiO₃ thin films. The plasma is shown to be optically thick and strongly non-uniform during the early expansion phase and the resonance line Ba II (455.4 nm) is strongly self-reversed during this time. Plasma temperature and electron density were obtained by comparing experimental emission spectra with the spectral radiance computed for a non-uniform plasma in local thermal equilibrium.

  4. Bioactive glass and hydroxyapatite thin films obtained by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Gyorgy, E.; Grigorescu, S.; Socol, G.; Mihailescu, I. N.; Janackovic, D.; Dindune, A.; Kanepe, Z.; Palcevskis, E.; Zdrentu, E. L.; Petrescu, S. M.

    2007-07-01

    Bioactive glass (BG), calcium hydroxyapatite (HA), and ZrO 2 doped HA thin films were grown by pulsed laser deposition on Ti substrates. An UV KrF * ( λ = 248 nm, τ ≥ 7 ns) excimer laser was used for the multi-pulse irradiation of the targets. The substrates were kept at room temperature or heated during the film deposition at values within the (400-550 °C) range. The depositions were performed in oxygen and water vapor atmospheres, at pressure values in the range (5-40 Pa). The HA coatings were heat post-treated for 6 h in a flux of hot water vapors at the same temperature as applied during deposition. The surface morphology, chemical composition, and crystalline quality of the obtained thin films were studied by scanning electron microscopy, atomic force microscopy, and X-ray diffractometry. The films were seeded for in vitro tests with Hek293 (human embryonic kidney) cells that revealed a good adherence on the deposited layers. Biocompatibility tests showed that cell growth was better on HA than on BG thin films.

  5. The Effect of Excimer Laser Treatment on the Surface Roughness and Fracture Strength of Alumina Substrates

    SciTech Connect

    Smoot, J.E.

    1998-05-13

    The microelectronics industry requires alumina substrates with exceptionally smooth surfaces and few surface defects to allow successful deposition of metallic films for reliable electronic performance. Irradiation by a 248-nm wavelength excimer laser beam (KrF) at a fluence of 125 mJ/mm{sup 2} and at various angles of incidence is shown to significantly reduce the surface roughness of alumina substrates. However, irradiation also creates a fine particulate deposit of alumina that only partially adheres to the substrate and impedes deposition of metal films. Annealing in air between 1350 C and 1450 C was found to remove the particles by sintering. As-received material showed surface roughness average (R{sub a}) mean values of 457 nm, which was reduced to 60 nm (mean) following irradiation and 71 nm (mean) following irradiation and annealing at 1350 C. Irradiation also produced a decrease in the number and severity of surface defects. The flexural strength and Weibull modulus were both increased by laser irradiation and thermal treatment. Flexural strength went from an as-received value of 450 MPa to 560 MPa following irradiation/sintering, measured at 10% probability of failure. The Weibull modulus was increased from the as-received value of about 9, to about 13 following irradiation/sintering. It was concluded that irradiation at an angle of incidence of 60{degree} from perpendicular was most effective in producing a low surface roughness.

  6. Production of extended plasma channels in atmospheric air by amplitude-modulated UV radiation of GARPUN-MTW Ti : sapphire—KrF laser. Part 1. Regenerative amplification of subpicosecond pulses in a wide-aperture electron beam pumped KrF amplifier

    NASA Astrophysics Data System (ADS)

    Zvorykin, V. D.; Ionin, Andrei A.; Levchenko, A. O.; Mesyats, Gennadii A.; Seleznev, L. V.; Sinitsyn, D. V.; Smetanin, Igor V.; Sunchugasheva, E. S.; Ustinovskii, N. N.; Shutov, A. V.

    2013-04-01

    Regenerative amplification of single and multiple ultrashort subpicosecond UV pulses in a wide-aperture KrF amplifier with an unstable confocal resonator was investigated on the GARPUN-MTW hybrid laser system. Amplitude-modulated 100-ns long UV radiation pulses with an energy of several tens of joules were obtained at the output of the system. The pulses were a combination of a quasi-stationary oscillation pulse and a train of amplified ultrashort pulses (USPs) with a peak power of 0.2-0.3 TW, which exceeded the power of free-running lasing pulse by three orders of magnitude. The population inversion recovery time in the active KrF laser medium was estimated: τc <= 2.0 ns. Trains of USPs spaced at an interval Δt ≈ τc were shown to exhibit the highest amplification efficiency. The production of amplitude-modulated UV pulses opens up the way to the production and maintenance of extended plasma channels in atmospheric air.

  7. Production of extended plasma channels in atmospheric air by amplitude-modulated UV radiation of GARPUN-MTW Ti : sapphire-KrF laser. Part 1. Regenerative amplification of subpicosecond pulses in a wide-aperture electron beam pumped KrF amplifier

    SciTech Connect

    Zvorykin, V D; Ionin, Andrei A; Levchenko, A O; Mesyats, Gennadii A; Seleznev, L V; Sinitsyn, D V; Smetanin, Igor V; Sunchugasheva, E S; Ustinovskii, N N; Shutov, A V

    2013-04-30

    Regenerative amplification of single and multiple ultrashort subpicosecond UV pulses in a wide-aperture KrF amplifier with an unstable confocal resonator was investigated on the GARPUN-MTW hybrid laser system. Amplitude-modulated 100-ns long UV radiation pulses with an energy of several tens of joules were obtained at the output of the system. The pulses were a combination of a quasi-stationary oscillation pulse and a train of amplified ultrashort pulses (USPs) with a peak power of 0.2-0.3 TW, which exceeded the power of free-running lasing pulse by three orders of magnitude. The population inversion recovery time in the active KrF laser medium was estimated: {tau}{sub c} {<=} 2.0 ns. Trains of USPs spaced at an interval {Delta}t Almost-Equal-To {tau}{sub c} were shown to exhibit the highest amplification efficiency. The production of amplitude-modulated UV pulses opens up the way to the production and maintenance of extended plasma channels in atmospheric air. (extreme light fields and their applications)

  8. Wear resistance of ZrC/TiN and ZrC/ZrN thin multilayers grown by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Craciun, D.; Socol, G.; Dorcioman, G.; Niculaie, S.; Bourne, G.; Zhang, J.; Lambers, E.; Siebein, K.; Craciun, V.

    2013-03-01

    ZrC/TiN and ZrC/ZrN multilayers thinner than 350 nm were grown on (100) Si substrates at a temperature of 300 °C by the pulsed laser deposition (PLD) technique using a KrF excimer laser ( λ=248 nm, pulse duration τ=25 ns, 8.0 J/cm2 fluence and 40 Hz repetition rate). Cross-sectional transmission electron microscopy, Auger electron spectroscopy depth profiling and simulations of X-ray reflectivity curves indicated that there was intermixing between the deposited layers at the interfaces as well as between the first layer and the substrate. Nanoindentation investigations found hardness values between 35 and 38 GPa for the deposited multilayers. Linear unidirectional sliding wear tests were conducted using a ball-on-plate tribometer under 1 N normal force. Wear tracks were produced in a Hysitron nanoindenter with 1 μm radius diamond tip under a 500 μN load. High-resolution cross-sectional transmission electron microscopy studies of the wear tracks showed that the multilayers withstood these tests without significant damage. The results could be explained by the use of a high laser fluence during deposition that resulted in very dense and strongly adherent nanocrystalline layers.

  9. Characteristics of a laser triggered spark gap using air, Ar, CH4, H2, He, N2, SF6, and Xe

    NASA Astrophysics Data System (ADS)

    Kimura, W. D.; Kushner, M. J.; Seamans, J. F.

    1988-03-01

    A KrF discharge laser (248 nm) has been used to laser trigger, by volume preionization, a spark gap switch (38-65 kV, >10 kA, 100 ns pulse duration) filled with 20 different gas mixtures using various combinations of air, Ar, CH4, H2, He, N2 SF6, and Xe. A pulsed laser interferometer is used to probe the spark column. Characteristics studied include the internal structure of the column, the arc expansion rate, and evidence of any photoionization precursor effect. Our results show that the rate of arc expansion varies depending on the average molecular weight of the mixtures. In this experiment, pure H2 has the highest rate (≊9.5×105 cm/s) and air has one of the lowest (≊7×105 cm/s) for the same hold-off voltage. A computer model of the spark column formation is able to predict most of the structure observed in the arcs, including the effect of mixing gases with widely different molecular weights. The work suggests that, under proper circumstances, the spark gap switch performance may be improved by using gases lighter than conventional switch gases such as SF6.

  10. Antiresorption implant coatings based on calcium alendronate and octacalcium phosphate deposited by matrix assisted pulsed laser evaporation.

    PubMed

    Boanini, Elisa; Torricelli, Paola; Forte, Lucia; Pagani, Stefania; Mihailescu, Natalia; Ristoscu, Carmen; Mihailescu, Ion N; Bigi, Adriana

    2015-12-01

    The integration of an implant material with bone tissue depends on the chemistry and physics of the implant surface. In this study we applied matrix assisted pulsed laser evaporation (MAPLE) in order to synthesize calcium alendronate monohydrate (a bisphosphonate obtained by calcium sequestration from octacalcium phosphate by alendronate) and calcium alendronate monohydrate/octacalcium phosphate composite thin films on titanium substrates. Octacalcium phosphate coatings were prepared as reference material. The powders, which were synthesized in aqueous medium, were suspended in deionised water, frozen at liquid nitrogen temperature and used as targets for MAPLE experiments. The transfer was conducted with a KrF* excimer laser source (λ = 248 nm, τFWHM ≤ 25 ns) in mild conditions of temperature and pressure. XRD, FTIR and SEM analyses confirmed that the coatings contain the same crystalline phases as the as-prepared powder samples. Osteoblast derived from stem cells and osteoclast derived from monocytes of osteoporotic subjects were co-cultured on the coatings up to 14 days. Osteoclast displayed significantly reduced proliferation and differentiation in the presence of calcium alendronate monohydrate, pointing to a clear role of the coatings containing this bisphosphonate on inhibiting excessive bone resorption. At variance, osteoblast production of alkaline phosphatase and type I pro-collagen were promoted by the presence of bisphosphonate, which also decreased the production of interleukin 6. The positive influence towards osteoblast differentiation was even more enhanced in the composite coatings, thanks to the presence of octacalcium phosphate. PMID:26445021

  11. Effect of phase transformation on optical and dielectric properties of pulsed laser deposited ZnTiO3 thin films

    NASA Astrophysics Data System (ADS)

    Jain, Praveen K.; Salim, Mohammad; Kaur, Davinder

    2016-04-01

    Zinc titanate (ZnTiO3) ceramics were prepared by conventional solid state reaction method using ZnO and TiO2 in a molar ratio of 1:1 with optimized parameters. It was found that the sample sintered at 800 °C for 12 h exhibit single hexagonal phase of ZnTiO3. ZnTiO3 thin film have been deposited on ITO coated glass substrate using pulsed laser deposition (PLD) technique employing a KrF laser source (λ = 248 nm). In present work, the effect of substrate temperature, which leads to transformation of hexagonal phase to cubic phase, has been studied. The XRD pattern revealed that pure hexagonal phase of ZnTiO3 appear upto 400 °C and more increment in substrate temperature leads to transformation of hexagonal phase to cubic phase. We have observed the blue shift in absorption edge at lower temperature. When the substrate temperature increases from 300 to 400 °C the band gap decreases due to strong hexagonal phase, but more increment in substrate temperature increases the band gap causes by change of phase from hexagonal to cubic. The dielectric constant of ZnTiO3 thin film increases as the substrate temperature increases due to the enhancement in crystallinity and improved morphology.

  12. Antiresorption implant coatings based on calcium alendronate and octacalcium phosphate deposited by matrix assisted pulsed laser evaporation.

    PubMed

    Boanini, Elisa; Torricelli, Paola; Forte, Lucia; Pagani, Stefania; Mihailescu, Natalia; Ristoscu, Carmen; Mihailescu, Ion N; Bigi, Adriana

    2015-12-01

    The integration of an implant material with bone tissue depends on the chemistry and physics of the implant surface. In this study we applied matrix assisted pulsed laser evaporation (MAPLE) in order to synthesize calcium alendronate monohydrate (a bisphosphonate obtained by calcium sequestration from octacalcium phosphate by alendronate) and calcium alendronate monohydrate/octacalcium phosphate composite thin films on titanium substrates. Octacalcium phosphate coatings were prepared as reference material. The powders, which were synthesized in aqueous medium, were suspended in deionised water, frozen at liquid nitrogen temperature and used as targets for MAPLE experiments. The transfer was conducted with a KrF* excimer laser source (λ = 248 nm, τFWHM ≤ 25 ns) in mild conditions of temperature and pressure. XRD, FTIR and SEM analyses confirmed that the coatings contain the same crystalline phases as the as-prepared powder samples. Osteoblast derived from stem cells and osteoclast derived from monocytes of osteoporotic subjects were co-cultured on the coatings up to 14 days. Osteoclast displayed significantly reduced proliferation and differentiation in the presence of calcium alendronate monohydrate, pointing to a clear role of the coatings containing this bisphosphonate on inhibiting excessive bone resorption. At variance, osteoblast production of alkaline phosphatase and type I pro-collagen were promoted by the presence of bisphosphonate, which also decreased the production of interleukin 6. The positive influence towards osteoblast differentiation was even more enhanced in the composite coatings, thanks to the presence of octacalcium phosphate.

  13. Cost-effective SU-8 micro-structures by DUV excimer laser lithography for label-free biosensing

    NASA Astrophysics Data System (ADS)

    Sanza, F. J.; Laguna, M. F.; Casquel, R.; Holgado, M.; Barrios, C. A.; Ortega, F. J.; López-Romero, D.; García-Ballesteros, J. J.; Bañuls, M. J.; Maquieira, A.; Puchades, R.

    2011-04-01

    Cost-effective SU-8 micro-structures on a silicon substrate were developed using 248 nm excimer laser KrF projection, studying the influence of the different variables on the final pattern geometry, finding out that the most critical are exposure dose and post-bake condition. Also a novel and cost effective type of photomask based on commercial polyimide Kapton produced by 355 nm DPSS laser microprocessing was developed, studying the influence of the cutting conditions on the photomask. Finally, as a likely application the biosensing capability with a standard BSA/antiBSA immunoassay over a 10 × 10 micro-plates square lattice of around 10 μm in diameter, 15 μm of spacing and 400 nm in height was demonstrated, finding a limit of detection (LOD) of 33.4 ng/ml which is in the order of magnitude of bioapplications such as detection of cortisol hormone or insulin-like growth factor. Low cost fabrication and vertical interrogation characterization techniques lead to a promising future in the biosensing technology field.

  14. Mechanical properties improvement of pulsed laser-deposited hydroxyapatite thin films by high energy ion-beam implantation

    NASA Astrophysics Data System (ADS)

    Nelea, V.; Pelletier, H.; Müller, D.; Broll, N.; Mille, P.; Ristoscu, C.; Mihailescu, I. N.

    2002-01-01

    Major problems in the hydroxyapatite (HA), Ca 5(PO 4) 3OH, thin films processing still keep the poor mechanical properties and the lack in density. We present a study on the feasibility of high energy ion-beam implantation technique to densify HA bioceramic films. Crystalline HA films were grown by pulsed laser deposition (PLD) method using an excimer KrFlaser ( λ=248 nm, τ FWHM≥20 ns). The films were deposited on Ti-5Al-2.5Fe alloys substrates previously coated with a ceramic TiN buffer layer. After deposition the films were implanted with Ar + ions at high energy. Optical microscopy (OM), white light confocal microscopy (WLCM), grazing incidence X-ray diffraction (GIXRD) and Berkovich nanoindentation in normal and scratch options have been applied for the characterization of the obtained structures. We put into evidence an enhancement of the mechanical characteristics after implantation, while GIXRD measurements confirm that the crystalline structure of HA phase is preserved. The improvement in mechanical properties is an effect of a densification after ion treatment as a result of pores elimination and grains regrowth.

  15. Early Stages of Pulsed-Laser Growth of Silicon Microcolumns and Microcones in Air and SF6

    SciTech Connect

    Lowndes, Douglas H.; Fowlkes, Jason D.; Pedraza, Antonio J.

    1999-07-29

    Dense arrays of high-aspect-ratio silicon microcolumns and microcones are formed by cumulative nanosecond pulsed excimer laser irradiation of single-crystal silicon in oxidizing atmospheres such as air and SF6. Growth of such surface microstructures requires a redeposition model and also involves elements of self-organization. The shape of the microstructures, i.e. straight columns vs steeply sloping cones and connecting walls, is governed by the type and concentration of the oxidizing species, e.g. oxygen vs fluorine. Growth is believed to occur by a "catalyst-free" VLS (vapor-liquid-solid) mechanism that involves repetitive melting of the tips of the columns/cones and deposition there of the ablated flux of Si-containing vapor. Results are presented of a new investigation of how such different final microstructures as microcolumns or microcones joined by walls nucleate and develop. The changes in silicon surface morphology were systematically determined and compared as the number of pulsed KrF (248 nm) laser shots was increased from 25 to several thousand in both air and SF6. The experiments in air and SF6 reveal significant differences in initial surface cracking and pattern formation. Consequently, local protrusions are first produced and column or cone/wall growth is initiated by different processes and at different rates. Differences in the spatial organization of column or cone/wall growth also are apparent.

  16. Average sequential water molecule binding enthalpies of M(H2O)(19-124)2+ (M = Co, Fe, Mn, and Cu) measured with ultraviolet photodissociation at 193 and 248 nm.

    PubMed

    Donald, William A; Leib, Ryan D; Demireva, Maria; Negru, Bogdan; Neumark, Daniel M; Williams, Evan R

    2011-01-13

    The average sequential water molecule binding enthalpies to large water clusters (between 19 and 124 water molecules) containing divalent ions were obtained by measuring the average number of water molecules lost upon absorption of an UV photon (193 or 248 nm) and using a statistical model to account for the energy released into translations, rotations, and vibrations of the products. These values agree well with the trend established by more conventional methods for obtaining sequential binding enthalpies to much smaller hydrated divalent ions. The average binding enthalpies decrease to a value of ~10.4 kcal/mol for n > ~40 and are insensitive to the ion identity at large cluster size. This value is close to that of the bulk heat of vaporization of water (10.6 kcal/mol) and indicates that the structure of water in these clusters may more closely resemble that of bulk liquid water than ice, owing either to a freezing point depression or rapid evaporative cooling and kinetic trapping of the initial liquid droplet. A discrete implementation of the Thomson equation using parameters for liquid water at 0 °C generally fits the trend in these data but provides values that are ~0.5 kcal/mol too low. PMID:21142113

  17. Raman spectroscopy of organic dyes adsorbed on pulsed laser deposited silver thin films

    NASA Astrophysics Data System (ADS)

    Fazio, E.; Neri, F.; Valenti, A.; Ossi, P. M.; Trusso, S.; Ponterio, R. C.

    2013-08-01

    The results of a surface-enhanced Raman scattering (SERS) study performed on representative organic and inorganic dyes adsorbed on silver nanostructured thin films are presented and discussed. Silver thin films were deposited on glass slides by focusing the beam from a KrF excimer laser (wavelength 248 nm, pulse duration 25 ns) on a silver target and performing the deposition in a controlled Ar atmosphere. Clear Raman spectra were acquired for dyes such as carmine lake, garanza lake and brazilwood overcoming their fluorescence and weak Raman scattering drawbacks. UV-visible absorption spectroscopy measurements were not able to discriminate among the different chromophores usually referred as carmine lake (carminic, kermesic and laccaic acid), as brazilwood (brazilin and brazilein) and as garanza lake (alizarin and purpurin). SERS measurements showed that the analyzed samples are composed of a mixture of different chromophores: brazilin and brazilein in brazilwood, kermesic and carminic acid in carmine lake, alizarin and purpurin in garanza lake. Detection at concentration level as low as 10-7 M in aqueous solutions was achieved. Higher Raman intensities were observed using the excitation line of 632.8 nm wavelength with respect to the 785 nm, probably due to a pre-resonant effect with the molecular electronic transitions of the dyes.

  18. Research of the quenched dye lasers pumped by excimer lasers

    SciTech Connect

    Xue Shaolin; Lou Qihong

    1996-12-31

    In this paper, the quenched dye lasers pumped by XeCl and KrF excimer lasers were investigated theoretically and experimentally. Dye laser pulses with duration of 0.8 ns for XeCl laser pumping and 2 ns for KrF laser pumping were obtained. The dye Rhodamine 6G dissolved in methyl was used as the active medium in the quenched dye laser. When the pump laser was KrF and the active medium was Coumarin 498 the quenched dye laser emitted pulse with duration of about 2 ns. The characteristics of the quenched dye laser was also investigated in detail.

  19. Molecular elimination of Br{sub 2} in photodissociation of CH{sub 2}BrC(O)Br at 248 nm using cavity ring-down absorption spectroscopy

    SciTech Connect

    Fan He; Tsai, Po-Yu; Lin, King-Chuen; Lin, Cheng-Wei; Yan, Chi-Yu; Yang, Shu-Wei; Chang, A. H. H.

    2012-12-07

    The primary elimination channel of bromine molecule in one-photon dissociation of CH{sub 2}BrC(O)Br at 248 nm is investigated using cavity ring-down absorption spectroscopy. By means of spectral simulation, the ratio of nascent vibrational population in v = 0, 1, and 2 levels is evaluated to be 1:(0.5 {+-} 0.1):(0.2 {+-} 0.1), corresponding to a Boltzmann vibrational temperature of 581 {+-} 45 K. The quantum yield of the ground state Br{sub 2} elimination reaction is determined to be 0.24 {+-} 0.08. With the aid of ab initio potential energy calculations, the obtained Br{sub 2} fragments are anticipated to dissociate on the electronic ground state, yielding vibrationally hot Br{sub 2} products. The temperature-dependence measurements support the proposed pathway via internal conversion. For comparison, the Br{sub 2} yields are obtained analogously from CH{sub 3}CHBrC(O)Br and (CH{sub 3}){sub 2}CBrC(O)Br to be 0.03 and 0.06, respectively. The trend of Br{sub 2} yields among the three compounds is consistent with the branching ratio evaluation by Rice-Ramsperger-Kassel-Marcus method. However, the latter result for each molecule is smaller by an order of magnitude than the yield findings. A non-statistical pathway so-called roaming process might be an alternative to the Br{sub 2} production, and its contribution might account for the underestimate of the branching ratio calculations.

  20. Inorganic-organic thin implant coatings deposited by lasers.

    PubMed

    Sima, Felix; Davidson, Patricia M; Dentzer, Joseph; Gadiou, Roger; Pauthe, Emmanuel; Gallet, Olivier; Mihailescu, Ion N; Anselme, Karine

    2015-01-14

    The lifetime of bone implants inside the human body is directly related to their osseointegration. Ideally, future materials should be inspired by human tissues and provide the material structure-function relationship from which synthetic advanced biomimetic materials capable of replacing, repairing, or regenerating human tissues can be produced. This work describes the development of biomimetic thin coatings on titanium implants to improve implant osseointegration. The assembly of an inorganic-organic biomimetic structure by UV laser pulses is reported. The structure consists of a hydroxyapatite (HA) film grown onto a titanium substrate by pulsed-laser deposition (PLD) and activated by a top fibronectin (FN) coating deposited by matrix-assisted pulsed laser evaporation (MAPLE). A pulsed KrF* laser source (λ = 248 nm, τ = 25 ns) was employed at fluences of 7 and 0.7J/cm(2) for HA and FN transfer, respectively. Films approximately 1500 and 450 nm thick were obtained for HA and FN, respectively. A new cryogenic temperature-programmed desorption mass spectrometry analysis method was employed to accurately measure the quantity of immobilized protein. We determined that less than 7 μg FN per cm(2) HA surface is adequate to improve adhesion, spreading, and differentiation of osteoprogenitor cells. We believe that the proposed fabrication method opens the door to combining and immobilizing two or more inorganic and organic materials on a solid substrate in a well-defined manner. The flexibility of this method enables the synthesis of new hybrid materials by simply tailoring the irradiation conditions according to the thermo-physical properties of the starting materials.

  1. Inorganic-organic thin implant coatings deposited by lasers.

    PubMed

    Sima, Felix; Davidson, Patricia M; Dentzer, Joseph; Gadiou, Roger; Pauthe, Emmanuel; Gallet, Olivier; Mihailescu, Ion N; Anselme, Karine

    2015-01-14

    The lifetime of bone implants inside the human body is directly related to their osseointegration. Ideally, future materials should be inspired by human tissues and provide the material structure-function relationship from which synthetic advanced biomimetic materials capable of replacing, repairing, or regenerating human tissues can be produced. This work describes the development of biomimetic thin coatings on titanium implants to improve implant osseointegration. The assembly of an inorganic-organic biomimetic structure by UV laser pulses is reported. The structure consists of a hydroxyapatite (HA) film grown onto a titanium substrate by pulsed-laser deposition (PLD) and activated by a top fibronectin (FN) coating deposited by matrix-assisted pulsed laser evaporation (MAPLE). A pulsed KrF* laser source (λ = 248 nm, τ = 25 ns) was employed at fluences of 7 and 0.7J/cm(2) for HA and FN transfer, respectively. Films approximately 1500 and 450 nm thick were obtained for HA and FN, respectively. A new cryogenic temperature-programmed desorption mass spectrometry analysis method was employed to accurately measure the quantity of immobilized protein. We determined that less than 7 μg FN per cm(2) HA surface is adequate to improve adhesion, spreading, and differentiation of osteoprogenitor cells. We believe that the proposed fabrication method opens the door to combining and immobilizing two or more inorganic and organic materials on a solid substrate in a well-defined manner. The flexibility of this method enables the synthesis of new hybrid materials by simply tailoring the irradiation conditions according to the thermo-physical properties of the starting materials. PMID:25485841

  2. Hydroxyapatite thin films growth by pulsed laser deposition: effects of the Ti alloys substrate passivation on the film properties by the insertion of a TiN buffer layer

    NASA Astrophysics Data System (ADS)

    Nelea, Valentin D.; Ristoscu, Carmen; Ghica, Cornel; Pelletier, Herve; Mihailescu, Ion N.; Mille, Pierre

    2001-06-01

    Hydroxyapatite (HA), Ca5(PO4)3OH, is now widely used in stomatology and orthopedic surgery. Due to a good biocompatibility combined favorable bioactivity make as HA to be considered as a challenge to successful bone repair. We grow HA thin films on Ti-5Al-2.5Fe alloy substrate by pulsed laser deposition (PLD) technique. The films were deposited in vacuum at room temperature using a KrF excimer laser ((lambda) equals 248 nm, (tau) FWHM >= 20 ns). After deposition the HA films were annealed at 550 degree(s)C in ambient air. The insertion of a bioinert TiN buffer layer at the HA film-metallic substrate interface was studied in terms of HA film microstructure and mechanical properties. SEM, TEM and SAED analysis structurally characterized films. The mechanical properties were evaluated by nanoindentation tests in static and scratch modes. Films with TiN interlayer contain uniquely crystalline HA phase and present better mechanical characteristics as compared with those deposited directly on Ti-alloy substrate.

  3. Femtosecond pulsed laser deposition of amorphous, ultrahard boride thin films

    NASA Astrophysics Data System (ADS)

    Stock, Michael; Molian, Pal

    2004-05-01

    Amorphous thin films (300-500 nm) of ultrahard AlMgB10 with oxygen and carbon impurities were grown on Si (100) substrates at 300 K using a solid target of AlMgB14 containing a spinel phase (MgAl2O4) and using a 120 fs pulsed, 800 nm wavelength Ti:sapphire laser. The films were subsequently annealed in argon gas up to 1373 K for 2 h. Scanning electron microscopy (SEM) was used to examine the particulate formation, atomic force microscopy was employed to characterize the film surface topography, x-ray diffraction and transmission electron microscopy were used to determine the microstructure, x-ray photoelectron spectroscopy was performed to examine the film composition, and nanoindentation was employed to study the hardness of thin films. The as-deposited and postannealed films (up to 1273 K) had a stochiometry of AlMgB10 with a significant amount of oxygen and carbon impurities and exhibited amorphous structures for a maximum hardness of 40+/-3 GPa. However, postannealing at higher temperatures led to crystallization and transformation of the film to SiB6 with a substantial loss in hardness. Results are also compared with our previous study on 23 ns, 248 nm wavelength (KrF excimer) pulsed laser deposition of AlMgB14 reported in this journal [Y. Tian, A. Constant, C. C. H. Lo, J. W. Anderegg, A. M. Russell, J. E. Snyder, and P. A. Molian, J. Vac. Sci. Technol. A 21, 1055 (2003)]. .

  4. Characterization of sputtered iridium oxide thin films on planar and laser micro-structured platinum thin film surfaces for neural stimulation applications

    NASA Astrophysics Data System (ADS)

    Thanawala, Sachin

    Electrical stimulation of neurons provides promising results for treatment of a number of diseases and for restoration of lost function. Clinical examples include retinal stimulation for treatment of blindness and cochlear implants for deafness and deep brain stimulation for treatment of Parkinsons disease. A wide variety of materials have been tested for fabrication of electrodes for neural stimulation applications, some of which are platinum and its alloys, titanium nitride, and iridium oxide. In this study iridium oxide thin films were sputtered onto laser micro-structured platinum thin films by pulsed-DC reactive sputtering of iridium metal in oxygen-containing atmosphere, to obtain high charge capacity coatings for neural stimulation applications. The micro-structuring of platinum films was achieved by a pulsed-laser-based technique (KrF excimer laser emitting at lambda=248nm). The surface morphology of the micro-structured films was studied using different surface characterization techniques. In-vitro biocompatibility of these laser micro-structured films coated with iridium oxide thin films was evaluated using cortical neurons isolated from rat embryo brain. Characterization of these laser micro-structured films coated with iridium oxide, by cyclic voltammetry and impedance spectroscopy has revealed a considerable decrease in impedance and increase in charge capacity. A comparison between amorphous and crystalline iridium oxide thin films as electrode materials indicated that amorphous iridium oxide has significantly higher charge capacity and lower impedance making it preferable material for neural stimulation application. Our biocompatibility studies show that neural cells can grow and differentiate successfully on our laser micro-structured films coated with iridium oxide. This indicates that reactively sputtered iridium oxide (SIROF) is biocompatible.

  5. Linkage of oxygen deficiency defects and rare earth concentrations in silica glass optical fiber probed by ultraviolet absorption and laser excitation spectroscopy.

    PubMed

    Liu, Y-S; Galvin, T C; Hawkins, T; Ballato, J; Dong, L; Foy, P R; Dragic, P D; Eden, J G

    2012-06-18

    Ultraviolet absorption measurements and laser excitation spectroscopy in the vicinity of 248 nm provide compelling evidence for linkages between the oxygen deficiency center (ODC) and rare earth concentrations in Yb and Er-doped glass optical fibers. Investigations of YAG-derived and solution-doped glass fibers are described. For both Yb and Er-doped fibers, the dependence of Type II ODC absorption on the rare earth number density is approximately linear, but the magnitude of the effect is greater for Yb-doped fibers. Furthermore, laser excitation spectra demonstrate unambiguously the existence of an energy transfer mechanism coupling an ODC with Yb(3+). Photopumping glass fibers with a Ti:sapphire laser/optical parametric amplifier system, tunable over the 225-265 nm region, or with a KrF laser at 248.4 nm show: 1) emission features in the 200-1100 nm interval attributable only to the ODC (Type II) defect or Yb(3+), and 2) the excitation spectra for ODC (II) emission at ~280 nm and Yb(3+) fluorescence (λ ~1.03 μm) to be, within experimental uncertainty, identical. The latter demonstrates that, when irradiating Yb-doped silica fibers between ~240 and 255 nm, the ODC (II) defect is at least the primary precursor to Yb(3+) emission. Consistent with previous reports in the literature, the data show the ODC (II) absorption spectrum to have a peak wavelength and breadth of ~246 nm and ~19 nm (FWHM). Experiments also reveal that, in the absence of Yb, incorporating either Al(2)O(3) or Y(2)O(3) into glass fibers has a negligible impact on the ODC concentration. Not only do the data reported here demonstrate the relationship between the ODC (II) number density and the Yb doping concentration, but they also suggest that the appearance of ODC defects in the fiber is associated with the introduction of Yb and the process by which the fiber is formed.

  6. Excimer laser produced plasmas in copper wire targets and water droplets

    NASA Technical Reports Server (NTRS)

    Song, Kyo-Dong; Alexander, D. R.

    1994-01-01

    Elastically scattered incident radiation (ESIR) from a copper wire target illuminated by a KrF laser pulse at lambda = 248 nm shows a dinstinct two-peak structure which is dependent on the incident energy. The time required to reach the critical electron density (n(sub c) approximately = 1.8 x 10(exp 22) electrons/cu cm) is estimated at 11 ns based on experimental results. Detailed ESIR characteristics for water have been reported previously by the authors. Initiation of the broadband emission for copper plasma begins at 6.5 +/- 1.45 ns after the arrival of the laser pulse. However, the broadband emission occurs at 11 +/- 0.36 ns for water. For a diatomic substance such as water, the electron energy rapidly dissipates due to dissociation of water molecules, which is absent in a monatomic species such as copper. When the energy falls below the excitation energy of the lowest electron state for water, it becomes a subexcitation electron. Lifetimes of the subexcited electrons to the vibrational states are estimated to be of the order of 10(exp -9) s. In addition, the ionization potential of copper (440-530 nm) is approximately 6 eV, which is about two times smaller than the 13 eV ionization potential reported for water. The higher ionization potential contributes to the longer observed delay time for plasma formation in water. After initiation, a longer time is required for copper plasma to reach its peak value. This time delay in reaching the maximum intensity is attributed to the energy loss during the interband transition in copper.

  7. FBG inscription in non-hydrogenated SMF28 fiber with a ns Q-switched Nd:VO4 laser at 213 nm

    NASA Astrophysics Data System (ADS)

    Berrang, Bianca; Polz, Leonhard; Kuttler, Rolf; Bartschke, Jürgen; Roths, Johannes

    2013-05-01

    Fiber Bragg grating (FBG) inscription efficiencies with a nanosecond (ns) KrF-Excimer laser source at 248 nm and with a ns Q-switched, 5th-harmonic Nd:VO4 laser source at 213 nm were compared. With both laser sources the phase mask method was used for FBG inscription. The growth process of the refractive index change during UV-exposure is presented as a function of cumulated fluence for inscription in standard non-hydrogenated SMF28 fibers. The inscription efficiency was found to be significantly higher for the 213 nm than for the 248 nm radiation, indicating a higher photosensitivity at 213 nm compared to 248 nm in low Ge-doped fibers.

  8. UV laser ablation of parylene films from gold substrates

    SciTech Connect

    O. R. Musaev, P. Scott, J. M. Wrobel, and M. B. Kruger

    2009-11-19

    Parylene films, coating gold substrates, were removed by laser ablation using 248 nm light from an excimer laser. Each sample was processed by a different number of pulses in one of three different environments: air at atmospheric pressure, nitrogen at atmospheric pressure, and vacuum. The laser-induced craters were analyzed by optical microscopy and x-ray photoelectron spectroscopy. Multi-pulse ablation thresholds of gold and parylene were estimated.

  9. Surface and morphological features of laser-irradiated silicon under vacuum, nitrogen and ethanol

    NASA Astrophysics Data System (ADS)

    Hayat, Asma; Bashir, Shazia; Akram, Mahreen; Mahmood, Khaliq; Iqbal, Muhammad Hassan

    2015-12-01

    Laser-induced surface and structural modification of silicon (Si) has been investigated under three different environments of vacuum, nitrogen (100 Torr) and ethanol. The interaction of 1000 pulses of KrF (λ ≈ 248 nm, τ ≈ 18 ns, repetition rate ≈ 30 Hz) Excimer laser at two different fluences of 2.8 J/cm2 and 4 J/cm2 resulted in formation of various kinds of features such as laser induced periodic surface structures (LIPSS), spikes, columns, cones and cracks. Surface morphology has been observed by Scanning Electron Microscope (SEM). Whereas, structural modification of irradiated targets is explored by Raman spectroscopy. SEM analysis exhibits a non-uniform distribution of micro-scale pillars and spikes at the central ablated regime of silicon irradiated at low laser fluence of 2.8 J/cm2 under vacuum. Whereas cones, pits, cavities and ripples like features are seen at the boundaries. At higher fluence of 4 J/cm2, laser induced periodic structures as well as micro-columns are observed. In the case of ablation in nitrogen environment, melting, splashing, self-organized granular structures and cracks along with redeposition are observed at lower fluence. Such types of small scaled structures in nitrogen are attributed to confinement and shielding effects of nitrogen plasma. Whereas, a crater with multiple ablative layers is formed in the case of ablation at higher fluence. Significantly different surface morphology of Si is observed in the case of ablation in ethanol. It reveals the formation of cavities along with small scale pores and less redeposition. These results reveal that the growth of surface and morphological features of irradiated Si are strongly dependent upon the laser fluence as well as environmental conditions. The difference in surface morphology is attributable to cooling, confinement and shielding effects as well as difference in plasma temperature, density and pressure of environmental media that corresponds to different energy deposition

  10. Conceptual design of a KrF scaling module. Final report

    SciTech Connect

    1980-10-01

    A conceptual design of an angular multiplexed 50 kJ KrF laser module for Inertial Confinement Fusion is presented. Optical designs for encoding, beam packing and beam transfer between amplifier stages are developed; emphasis is placed on reducing prepulse problems and achieving acceptable optical quality. An axisymmetric optical design is identified as optimum in terms of simplicity, optical quality, cost and alignment. A kinetic code model was developed for the KrF amplifier and was used to derive scaling maps for the 50 kJ module. Attention was given to reducing parasitics, achieving acceptable extraction efficiency and accounting for amplified spontaneous emission effects. The size of the module is constrained by parasitic suppression and damage thresholds; the power gain is constrained by demanding 40% extraction efficiency in a double pass extraction geometry; and, the run time is constrained by the pulsed power technology (PFN or PFL) and acceptable values of g/sub 0/L. The bounds imposed on the design by the pulsed power technology were examined. Both PFLs and PFNs were considered along with their associated diode, hibachi and guide field requirements. A base line design for a 50 kJ module including amplifier staging, layout and overall size is discussed. Cost analysis and scaling for optical components, pulsed power technology and the guide field are also presented.

  11. Identification and imaging of OH (nu'' = O) and O(2) (nu'' = 6 or 7) in an automobile spark-ignition engine using a tunable KrF excimer laser.

    PubMed

    Andresen, P; Schlüter, H; Wolff, D; Voges, H; Koch, A; Hentschel, W; Oppermann, W; Rothe, E

    1992-12-20

    Planar laser-induced predissociative fluorescence is applied to image state-specific densities of OH and hot O(2) inside an internal-combustion car engine. Improved instrumentation is described. It includes better imaging optics and a spectrometer that permits desired molecular quantum states to be selected and identified in real time. The OH (nu'' = 0) images are cleanly separated from the isooctane fuel and they display a thin superequilibrium region at the flame front. In contrast, vibrationally excited O(2) (nu'' = 6 or nu'' = 7) is uniformly distributed behind the front. Uneven and broken flame fronts are commonly observed.

  12. In situ analysis of Titan's tholins by Laser 2 steps Desorption Ionisation

    NASA Astrophysics Data System (ADS)

    Benilan, Y.; Carrasco, N.; Cernogora, G.; Gazeau, M.; Mahjoub, A.; Szopa, C.; Schwell, M.

    2013-12-01

    The main objective of the whole project developed in collaboration (LISA/LATMOS) is to provide a better understanding of the chemical composition of Titan aerosols laboratory analogs, called tholins, and thereby of their formation pathways. The tholins are produced in the PAMPRE reactor (French acronyme for Aerosols Microgravity Production by Reactives Plasmas) developed at LATMOS. These tholins are generated in levitation (wall effects are thus limited) in a low pressure radiofrequency plasma. Up to now, the determination of the physical and chemical properties of these tholins was achieved after their collection and ex-situ analysis by several methods. Their bulk composition was then determined but their insoluble part is still unknown. Other studies were performed after the transfer of the soluble part of the aerosols to different analytical instruments. Therefore, possible artifacts could have influenced the results. We present the SMARD (a French acronym for Mass Spectrometry of Aerosols by InfraRed Laser Desorption) program. A challenging issue of our work is to perform the soluble and unsoluble parts of PAMPRE tholins' analysis in real time and in situ. The coupling of the PAMPRE reactor to a unique instrument (Single Particle Laser Ablation Mass Spectrometry) developed at LISA should allow determining in real time and in situ the characteristics (chemical composition together with granulometry) of the nanometric aerosols. The later are introduced in the analytical instrument using an aerodynamic lens device. Their detection and aerodynamic diameter are determined using two continuous diode lasers operating at λ = 403 nm. Then, the L2DI (Laser 2 steps Desorption Ionisation) technique is used in order to access to the chemical composition of individual particles: they are vaporized using a 10 μm CO2 pulsed laser and the gas produced is then ionized by a 248 nm KrF Excimer laser. Finally, the molecular ions are analyzed by a 1 m linear time-of-flight mass

  13. High-energy krypton fluoride lasers for inertial fusion.

    PubMed

    Obenschain, Stephen; Lehmberg, Robert; Kehne, David; Hegeler, Frank; Wolford, Matthew; Sethian, John; Weaver, James; Karasik, Max

    2015-11-01

    Laser fusion researchers have realized since the 1970s that the deep UV light from excimer lasers would be an advantage as a driver for robust high-performance capsule implosions for inertial confinement fusion (ICF). Most of this research has centered on the krypton-fluoride (KrF) laser. In this article we review the advantages of the KrF laser for direct-drive ICF, the history of high-energy KrF laser development, and the present state of the art and describe a development path to the performance needed for laser fusion and its energy application. We include descriptions of the architecture and performance of the multi-kilojoule Nike KrF laser-target facility and the 700 J Electra high-repetition-rate KrF laser that were developed at the U.S. Naval Research Laboratory. Nike and Electra are the most advanced KrF lasers for inertial fusion research and energy applications.

  14. High-energy krypton fluoride lasers for inertial fusion.

    PubMed

    Obenschain, Stephen; Lehmberg, Robert; Kehne, David; Hegeler, Frank; Wolford, Matthew; Sethian, John; Weaver, James; Karasik, Max

    2015-11-01

    Laser fusion researchers have realized since the 1970s that the deep UV light from excimer lasers would be an advantage as a driver for robust high-performance capsule implosions for inertial confinement fusion (ICF). Most of this research has centered on the krypton-fluoride (KrF) laser. In this article we review the advantages of the KrF laser for direct-drive ICF, the history of high-energy KrF laser development, and the present state of the art and describe a development path to the performance needed for laser fusion and its energy application. We include descriptions of the architecture and performance of the multi-kilojoule Nike KrF laser-target facility and the 700 J Electra high-repetition-rate KrF laser that were developed at the U.S. Naval Research Laboratory. Nike and Electra are the most advanced KrF lasers for inertial fusion research and energy applications. PMID:26560597

  15. Growth of centimeter-scale atomically thin MoS{sub 2} films by pulsed laser deposition

    SciTech Connect

    Siegel, Gene; Venkata Subbaiah, Y. P.; Prestgard, Megan C.; Tiwari, Ashutosh

    2015-05-01

    We are reporting the growth of single layer and few-layer MoS{sub 2} films on single crystal sapphire substrates using a pulsed-laser deposition technique. A pulsed KrF excimer laser (wavelength: 248 nm; pulse width: 25 ns) was used to ablate a polycrystalline MoS{sub 2} target. The material thus ablated was deposited on a single crystal sapphire (0001) substrate kept at 700 °C in an ambient vacuum of 10{sup −6} Torr. Detailed characterization of the films was performed using atomic force microscopy (AFM), Raman spectroscopy, UV-Vis spectroscopy, and photoluminescence (PL) measurements. The ablation of the MoS{sub 2} target by 50 laser pulses (energy density: 1.5 J/cm{sup 2}) was found to result in the formation of a monolayer of MoS{sub 2} as shown by AFM results. In the Raman spectrum, A{sub 1g} and E{sup 1}{sub 2g} peaks were observed at 404.6 cm{sup −1} and 384.5 cm{sup −1} with a spacing of 20.1 cm{sup −1}, confirming the monolayer thickness of the film. The UV-Vis absorption spectrum exhibited two exciton absorption bands at 672 nm (1.85 eV) and 615 nm (2.02 eV), with an energy split of 0.17 eV, which is in excellent agreement with the theoretically predicted value of 0.15 eV. The monolayer MoS{sub 2} exhibited a PL peak at 1.85 eV confirming the direct nature of the band-gap. By varying the number of laser pulses, bi-layer, tri-layer, and few-layer MoS{sub 2} films were prepared. It was found that as the number of monolayers (n) in the MoS{sub 2} films increases, the spacing between the A{sub 1g} and E{sup 1}{sub 2g} Raman peaks (Δf) increases following an empirical relation, Δf=26.45−(15.42)/(1+1.44 n{sup 0.9}) cm{sup −1}.

  16. UV laser micromachining of silicon, indium phosphide and lithium niobate for telecommunications applications

    NASA Astrophysics Data System (ADS)

    Greuters, Jako; Rizvi, Nadeem H.

    2003-03-01

    The laser micromachining characteristics of indium phosphide, lithium niobate and silicon have been characterised using a 355nm neodymium vanadate laser and 193nm and 248nm excimer lasers. Etch rates for these materials are presented at the different laser wavelengths. High quality cutting of the three materials is demonstrated with the 355nm laser and an excimer laser mask projection method is subsequently used to micromachine precision V-grooves as fibre placement structures. Silicon microbenches, used for the integration of multiple-function devices, are also produced using the 355nm laser.

  17. Pulsed laser deposition of Tl-Ca-Ba-Cu-O films

    NASA Technical Reports Server (NTRS)

    Ianno, N. J.; Liou, S. H.; Woollam, John A.; Thompson, D.; Johs, B.

    1990-01-01

    Pulsed laser deposition is a technique commonly used to deposit high quality thin films of high temperature superconductors. This paper discusses the results obtained when this technique is applied to the deposition of Tl-Ca-Ba-Cu-O thin films using a frequency doubled Nd:YAG laser operating at 532 nm and an excimer laser operating at 248 nm. Films with onset temperatures of 125 K and zero resistance temperatures of 110 K deposited on (100) oriented MgO from a composite Tl2Ca2Ba2Cu3Ox target were obtained at both wavelengths upon appropriate post deposition annealing. Films deposited at 532 nm exhibit a rough surface, while those deposited at 248 nm are smooth and homogeneous. Upon annealing, films deposited at both wavelengths are single phase Tl2Ca2Ba2Cu3Ox.

  18. Characterization of polymers after a surface treatment at low excimer laser fluences

    NASA Astrophysics Data System (ADS)

    Laurens, Patricia; Ould Bouali, M.; Petit, S.; Sadras, Benedicte

    2000-02-01

    The modifications induced by an excimer laser irradiation at 193 nm or 248 nm on organic surfaces, below their ablation threshold, were investigated for different kinds of polymers such as: PEEK (Polyether Etherketone), PC (Polycarbonate), PET (Polyethylene terephtalate). Treatments were carried under argon or air at different laser fluences. Treated surfaces were characterized by XPS (X-rays Photoelectron Spectroscopy) and surface wettability measurements. For, all the studied polymers, the results shows that the surface modifications first depended on the laser wavelength. Surface oxidation occurred at 193 nm, leading to the formation of polar groups (carbonyls, carboxyls, hydroxyls) and inducing an increase of the surface energy. Treatments at 248 nm never induced any oxygen enrichment of the surface. This is due to the loss of oxygen by CO or CO2 desorption at this wavelength.

  19. Improved model for the angular dependence of excimer laser ablation rates in polymer materials

    SciTech Connect

    Pedder, J. E. A.; Holmes, A. S.; Dyer, P. E.

    2009-10-26

    Measurements of the angle-dependent ablation rates of polymers that have applications in microdevice fabrication are reported. A simple model based on Beer's law, including plume absorption, is shown to give good agreement with the experimental findings for polycarbonate and SU8, ablated using the 193 and 248 nm excimer lasers, respectively. The modeling forms a useful tool for designing masks needed to fabricate complex surface relief by ablation.

  20. Surface 3D Micro Free Forms: Multifunctional Microstructured Mesoporous α-Alumina by in Situ Slip Casting Using Excimer Laser Ablated Polycarbonate Molds.

    PubMed

    Rowthu, Sriharitha; Böhlen, Karl; Bowen, Paul; Hoffmann, Patrik

    2015-11-11

    Ceramic surface microstructuring is a rapidly growing field with a variety of applications in tribology, wetting, biology, and so on. However, there are limitations to large-area microstructuring and fabrication of three-dimensional (3D) micro free forms. Here, we present a route to obtain intricate surface structures through in situ slip casting using polydimethylsiloxane (PDMS) negative molds which are replicated from excimer laser ablated polycarbonate (PC) master molds. PC sheets are ablated with a nanosecond KrF (λ = 248 nm) excimer laser mask projection system to obtain micron-scale 3D surface features over a large area of up to 3 m(2). Complex surface structures that include 3D free forms such as 3D topography of Switzerland, shallow structures such as diffractive optical elements (60 nm step) and conical micropillars have been obtained. The samples are defect-free produced with thicknesses of up to 10 mm and 120 mm diameter. The drying process of the slip cast alumina slurry takes place as a one-dimensional process, through surface evaporation and water permeation through the PDMS membrane. This allows homogeneous one-dimensional shrinkage during the drying process, independent of the sample's lateral dimensions. A linear mass diffusion model has been proposed to predict and explain the drying process of these ceramic colloidal suspensions. The calculated drying time is linearly proportional to the height of the slurry and the thickness of the negatively structured PDMS and is validated by the experimental results. An experimentally observed optimum Sylgard PDMS thickness range of ∼400 μm to 1 mm has achieved the best quality microstructured green compacts. Further, the model predicts that the drying time is independent of the microstructured areas and was validated using experimental observations carried out with microstructured areas of 300 mm(2), 1200 mm(2), and 120 cm(2). Therefore, in principle, the structures can be further replicated in areas up

  1. DNA damage and altered gene expression in cultured human skin fibroblasts exposed to 193-nm excimer laser radiation

    NASA Astrophysics Data System (ADS)

    Samid, Dvorit; Flessate, Denise M.; Miller, Alexandra C.; Rimoldi, Donata

    1990-06-01

    Tissue ablation using 193nm excimer lasers is being considered for a variety of surgical procedures, yet little is known regarding the potential mutagenic risk to human cells. The effects of sublethal doses of radiation on cellular DNA and gene expression have been examined in cultured human skin fibroblasts. Northern blot analysis of mRNA revealed an increase in the levels of the c-f. proto-oncogene, interstitial collagenase, and metallothionein transcripts after laser radiation at either 193nm or 248nm. Similar changes in gene expression have been previously observed in cells treated with different carcinogens, including classical UV light (254nm) and phorbol esters. In contrast to the conventional UV light or laser radiation at 248nm, the 193nm radiation did not cause significant pyrimidine dimer formation, as determined by measurements of unscheduled DNA synthesis. However, both 193nm and 248nm radiation induced micronuclei formation, indicative of chromosome breakage. These data indicate that exposure of actively replicating human skin cells to sublethal doses of 193nm laser radiation may result in molecular changes associated with carcinogenesis.

  2. Rare gas halide lasers for fusion. Final technical report, 1 March 1979-29 February 1980

    SciTech Connect

    Duzy, C; Hsia, J; Hyman, H; Jacob, J; Klimek, D; Parks, J; Trainor, D

    1980-04-01

    In an effort to reliably extend the understanding of KrF* lasers, we collected specific, detailed experimental data and carried out theoretical calculations to explore and document those issues we identified as likely to be important in the short pulse operating regime. These included the effects of: (1) fuel burnup, (2) electron quenching, (3) gain/absorption at high current densities, (4) photoionization, (5) accessibility of the lying levels of KrF by laser flux, (6) temperature on fluorescence efficiency.

  3. Evaluation Of An Organosilicon Photoresist For Excimer Laser Lithography

    NASA Astrophysics Data System (ADS)

    McFarland, Janet C.; Orvek, Kevin J.; Ditmer, Gary A.

    1988-01-01

    An organosilicon resist was investigated for use in deep UV laser lithography. The resist was based on 0-trimethylsilyl poly(vinylphenol) resin. It was found to exhibit transparency at 248nm comparable to the transparency of g-line light in conventional novolak resists, making single-layer resist processing possible. The results of single-layer and bi-layer patterning on an excimer laser contact printer are presented. The bi-layer processing uses oxygen reactive ion etching (RIE) for transfer of a top layer pattern into a thick underlying novolak layer.

  4. A comparative study of corneal incisions induced by diamond and steel knives and two ultraviolet radiations from an excimer laser.

    PubMed Central

    Marshall, J; Trokel, S; Rothery, S; Krueger, R R

    1986-01-01

    This paper reviews the potential role of excimer lasers in corneal surgery. The morphology of incisions induced by two wavelengths of excimer laser radiation, 193 nm and 248 nm, are compared with the morphology of incisions produced by diamond and steel knives. Analysis suggests that ablation induced by excimer laser results from highly localised photochemical reactions and that 193 nm is the optimal wavelength for surgery. The only significant complication of laser surgery is loss of endothelial cells when incisions are within 40 micron of Descemet's membrane. Images PMID:3013283

  5. Low cost, patterning of human hNT brain cells on parylene-C with UV & IR laser machining.

    PubMed

    Raos, Brad J; Unsworth, C P; Costa, J L; Rohde, C A; Doyle, C S; Delivopoulos, E; Murray, A F; Dickinson, M E; Simpson, M C; Graham, E S; Bunting, A S

    2013-01-01

    This paper describes the use of 800nm femtosecond infrared (IR) and 248nm nanosecond ultraviolet (UV) laser radiation in performing ablative micromachining of parylene-C on SiO2 substrates for the patterning of human hNT astrocytes. Results are presented that support the validity of using IR laser ablative micromachining for patterning human hNT astrocytes cells while UV laser radiation produces photo-oxidation of the parylene-C and destroys cell patterning. The findings demonstrate how IR laser ablative micromachining of parylene-C on SiO2 substrates can offer a low cost, accessible alternative for rapid prototyping, high yield cell patterning.

  6. Nanosecond laser photolysis studies of vitamin K 3 in aqueous solution

    NASA Astrophysics Data System (ADS)

    Chen, J. F.; Ge, X. W.; Chu, G. S.; Zhang, Z. C.; Zhang, M. W.; Yao, S. D.; Lin, N. Y.

    1999-06-01

    Vitamin K 3 in aqueous solution was investigated by 248 nm laser flash photolysis. Laser-induced transient species were characterized according to kinetic analysis and quenching experiments by Mn 2+ and O 2. In neutral solutions, the intermediates recorded were assigned to excited triplet states and dehydrogenated radicals of vitamin K 3. In comparison with the results of pulse radiolytical experiment, vitamin K 3 not only has strong electron affinity but could also could be photoionized by UV laser light. All this shows that vitamin K 3 acts as an effective electron carrier and electron transfer agent.

  7. Submicron surface patterning by laser ablation with short UV pulses using a proximity phase mask setup

    SciTech Connect

    Borchers, B.; Bekesi, J.; Simon, P.; Ihlemann, J.

    2010-03-15

    A new approach for the generation of large-area periodic surface structures on different materials, like polymers and semiconductors, by direct laser ablation is presented. The surfaces were illuminated with the interference pattern emerging in close proximity behind a laser irradiated phase mask. In the experiments, nanosecond and picosecond laser pulses at 248 nm were applied. To prevent contamination or damage of the phase mask caused by the ablated material, the mask is protected by a thin water film or a thin quartz plate. In addition we present a technique to eliminate a lateral variation of the generated structures due to insufficient alignment precision of the workpiece.

  8. Progress of excimer laser technologies

    NASA Astrophysics Data System (ADS)

    Mizoguchi, Hakaru

    2000-10-01

    More than 1,000 units of KrF excimer laser steppers were already installed in semiconductor mass-production lines which require design rule of less than 0.15 m. Higher NA lens compatibility, productivity and CoO become critical issues of KrF excimer laser stepper. Advanced 2kHz KrF excimer laser G20K/G21K offers the solutions for these three issues. Next generation excimer laser ArF has already finished the stage of principle demonstration and has moved to a next level of practical demonstration and has moved to next level of practical inspection, such as stability, productivity, and economic efficiency. Gigaphoton 4kHz ArF, G40A, solved all of these issues. Furthermore sub 0.10m design rule region F2 laser has been examined at several organizations. In March, 2000, Komatsu successfully developed 2kHzF2 laser for catadioptric projection optics by the fund of NEDO. Gigaphoton is ready to fabricate G20F, 2kHz F2 laser, based upon the result of NEDO research. ASET started new F2 laser lithography development program at Hiratsuka Research Center with collaboration of Nikon, Canon, Gigaphoton, Komatsu, and Ushio from April 2000, ending March 2002.

  9. Gas breakdown limits for inverse Cherenkov laser accelerators

    SciTech Connect

    Liu, Y.; Pogorelsky, I.V.

    1995-07-01

    The probability of avalanche, tunneling and multiphoton ionization induced by a CO{sub 2} laser in H{sub 2} gas has been calculated. Laser light screening by a self-induced plasma density gradient is considered as the limiting factor for upscaling a CO{sub 2} laser-driven Inverse Cherenkov Laser Accelerator beyond 650 MeV/m. However, in near-resonance inverse Cherenkov acceleration where a shorter wavelength laser is used at a wavelength near the resonance of the gas (e.g. 248nm in H{sub 2}), the formation of a plasma is not a problem because the plasma density is below the critical density. In that case, the laser beam propagates unaffected through the plasma and the acceleration gradient is not limited by gas breakdown. Gradients > 1 GeV/m are possible.

  10. Development of KrF hybrid resist for a dual-isolation application

    NASA Astrophysics Data System (ADS)

    Liu, Sen; Holmes, Steven; Chen, Kuang Jung; Huang, Wu-song; Kwong, Ranee; Breyta, Greg; Doris, Bruce; Cheng, Kangguo; Luning, Scott; Vinet, Maud; Grenouillet, Laurent; Liu, Qing; Colburn, Matt; Wu, Chung-Hsi

    2013-03-01

    As an option to traditional positive or negative photoresist, hybrid resist has been developed to provide an alternative way to create small trench features, at the range of 20-60 nm, by generating with a single expose, with both positive and negative responses to TMAH developer in one resist layer. [1] Here we report the design and development of a series of frequency-doubling KrF hybrid resists for an Extremely Thin Silicon on Insulator (ETSOI) dual-isolation application for 20 nm node and beyond. The resist formulations were optimized in terms of photo-acid generators (PAGs), PAG loading level and polymers. The resulting KrF hybrid resists are compatible with conventional KrF lithography processes, including conventional illumination, binary masks and 0.26 N TMAH developer, to afford a spacewidth of 20-60 nm. The space CD can be controlled by means of formulation and process options, but is insensitive to expose dose and mask CD. On integrated wafers, the hybrid resists have demonstrated good lithography performance, including through-pitch CD uniformity, focus/expose process window, profile, LER and RIE behavior. This hybrid resist process has been used to fabricate initial development structures for high performance dual-isolation ETSOI devices.

  11. Plasma channel produced by femtosecond laser pulses as a medium for amplifying electromagnetic radiation of the subterahertz frequency range

    SciTech Connect

    Bogatskaya, A V; Volkova, E A; Popov, A M

    2013-12-31

    The electron energy distribution function in the plasma channel produced by a femtosecond laser pulse with a wavelength of 248 nm in atmospheric-pressure gases was considered. Conditions were determined whereby this channel may be employed for amplifying electromagnetic waves up to the terahertz frequency range over the energy spectrum relaxation time ∼10{sup -7} s. Gains were calculated as functions of time and radiation frequency. The effect of electron – electron collisions on the rate of relaxation processes in the plasma and on its ability to amplify the electromagnetic radiation was investigated. (interaction of laser radiation with matter)

  12. Applications of the 308-nm excimer laser in dermatology

    NASA Astrophysics Data System (ADS)

    Farkas, A.; Kemeny, L.

    2006-05-01

    Excimer lasers contain a mixture of a noble inert gas and a halogen, which form excited dimers only in the activated state. High-energy current is used to produce these dimers, which have a very short lifetime, and after their fast dissociation they release the excitation energy through ultraviolet photons. The application of these lasers proved to be successful in medicine, including the field of ophthalmology, cardiology, angiology, dentistry, orthopaedics, and, in recent years, dermatology. For medical purposes, the 193-nm argon fluoride, the 248-nm krypton fluoride, the 351-nm xenon fluoride, and the 308-nm xenon chloride lasers are used. Recently, the 308-nm xenon chloride laser has gained much attention as a very effective treatment modality in dermatological disorders. It was successfully utilized in psoriasis; later, it proved to be useful in handling other lightsensitive skin disorders and even in the treatment of allergic rhinitis. This review summarizes the possible applications of this promising tool in dermatology.

  13. Functionalized polyvinyl alcohol derivatives thin films for controlled drug release and targeting systems: MAPLE deposition and morphological, chemical and in vitro characterization

    NASA Astrophysics Data System (ADS)

    Cristescu, R.; Popescu, C.; Popescu, A. C.; Grigorescu, S.; Duta, L.; Mihailescu, I. N.; Caraene, G.; Albulescu, R.; Albulescu, L.; Andronie, A.; Stamatin, I.; Ionescu, A.; Mihaiescu, D.; Buruiana, T.; Chrisey, D. B.

    2009-03-01

    We report thin film deposition of polyvinyl alcohol functionalized with carboxylic groups bound to aromatic nucleus (PVACOOH) by matrix-assisted pulsed laser evaporation (MAPLE). We used a KrF* excimer laser source ( λ = 248 nm, τ = 25 ns, ν= 5 Hz ). The obtained thin films have been investigated by FTIR, AFM, and in vitro tests. We identified the best compromise between the parameters of laser processing and characteristics of nanostructured thin films of PVACOOH in terms of porosity and similar composition with those of starting material.

  14. Patterning of nanostructured thin films by structured light illumination

    SciTech Connect

    Haro-Poniatowski, E.; Fort, E.; Lacharme, J.P.; Ricolleau, C.

    2005-10-03

    Light-induced reshaping of silver nanostructured films near the percolation threshold are investigated using a KrF excimer laser emitting at 248 nm. Depending on the laser intensity and the number of pulses, striking effects are observed for which the irregular particles melt and transform into spherical shaped particles. We show that the laser-induced modifications can be spatially designed by irradiating through masks and gratings taking advantage of their respective diffractive properties. This permits an easy and well controlled way to produce a variety of submicron patterning. The induced patterns accurately coincide with the intensity variations of the illumination field.

  15. Excimer lasers in cardiovascular surgery: Ablation products and photoacoustic spectrum of the arterial wall

    NASA Astrophysics Data System (ADS)

    Singleton, D. L.; Paraskevopoulos, G.; Jolly, G. S.; Irwin, R. S.; McKenney, D. J.; Nip, W. S.; Farrell, E. M.; Higginson, L. A. J.

    1986-03-01

    Photoacoustic spectra of normal artery wall and of atherosclerotic plaque are reported. Threshold fluences for ablative formation of gaseous products for each excimer laser line were calculated from the photoacoustic spectrum and the measured threshold for the KrF laser.

  16. Lasers.

    ERIC Educational Resources Information Center

    Schewe, Phillip F.

    1981-01-01

    Examines the nature of laser light. Topics include: (1) production and characteristics of laser light; (2) nine types of lasers; (3) five laser techniques including holography; (4) laser spectroscopy; and (5) laser fusion and other applications. (SK)

  17. Comparison study for sub-0.13-μm lithography between ArF and KrF lithography

    NASA Astrophysics Data System (ADS)

    Kim, Seok-Kyun; Kim, YoungSik; Kim, Jin-Soo; Bok, Cheol-Kyu; Ham, Young-Mog; Baik, Ki-Ho

    2000-07-01

    In this paper we investigated the feasibility of printing sub-0.13 micrometers device patterns with ArF and KrF lithography by using experiment and simulation. To do this we evaluated various cell structures with different sizes from 0.26 micrometers to 0.20 micrometers pitch. In experiment 0.60NA ArF and 0.70NA KrF exposure tools, commercial and in house resists and bottom anti-reflective coating (BARC) materials are used. To predict and compare with experimental data we also used our developed simulation tool HOST base don diffused aerial iamge model. We found that ArF lithography performance is a little bit better than KrF and therefore 0.70NA KrF lithography can be used up to 0.12 micrometers design rule device and 0.60NA ArF lithography can be used up to 0.11 micrometers . But to get more than 10 percent expose latitude, 0.13 micrometers with KrF and 0.12 micrometers with ArF are the minimum design rule size. However to obtain process margin we had to use extreme off-axis illumination (OAI) which results in large isolated- dense bias and poor linearity including isolated pattern. Using higher NA can reduce ID bias and mask error factor. For contact hole it is more effective to use KrF lithography because resist thermal flow process can be used to shrink C/H size. Our developed ArF resist and BARC shows good performance and we can reduce k1 value up to 0.34. Through this study we verified again that ArF lithography can be applied for sub-0.13 micrometers device through sub-0.10 micrometers with high contrast resist and 0.75NA exposure tool.

  18. Plume dynamics of cross-beam pulsed-laser ablation of graphite

    SciTech Connect

    Sanchez Ake, C.; Sangines de Castro, R.; Sobral, H.; Villagran-Muniz, M.

    2006-09-01

    The dynamics of the interaction between two plasmas induced by cross-beam pulsed-laser ablation was analyzed by time resolved optical emission spectroscopy and fast photography. The plasmas were created in vacuum by irradiating two perpendicular graphite targets with an excimer (248 nm) and a Nd:yttrium-aluminum-garnet (1064 nm) laser. In this configuration, a laser is focused onto a target generating a highly directed plume; subsequently, an additional laser produces a second plasma from the perpendicular target which expands through the first plume. Collisional processes cause a reduction of the kinetic energy of the second plume species as compared to the single pulse experiment. For a fixed delay between lasers of 2 {mu}s, the second plume was divided in two perpendicular directions. The dynamics of this plasma has been compared with laser-induced plume propagation through a background gas in terms of the drag model.

  19. Laser-induced fluorescence detection strategies for sodium atoms and compounds in high-pressure combustors

    NASA Technical Reports Server (NTRS)

    Weiland, Karen J. R.; Wise, Michael L.; Smith, Gregory P.

    1993-01-01

    A variety of laser-induced fluorescence schemes were examined experimentally in atmospheric pressure flames to determine their use for sodium atom and salt detection in high-pressure, optically thick environments. Collisional energy transfer plays a large role in fluorescence detection. Optimum sensitivity, at the parts in 10 exp 9 level for a single laser pulse, was obtained with the excitation of the 4p-3s transition at 330 nm and the detection of the 3d-3p fluorescence at 818 nm. Fluorescence loss processes, such as ionization and amplified spontaneous emission, were examined. A new laser-induced atomization/laser-induced fluorescence detection technique was demonstrated for NaOH and NaCl. A 248-nm excimer laser photodissociates the salt molecules present in the seeded flames prior to atom detection by laser-induced fluorescence.

  20. Experimental simulation of radioactive decontamination with Excimer laser

    NASA Astrophysics Data System (ADS)

    Gao, Zhixing; Tang, Xiuzhang; Ma, Meihua; Zhang, Zhentao

    2013-07-01

    Laser ablation is a powerful tool to clean the radioactively contaminated surface in nuclear industry. A prototype was set up to test the decontamination of the radioactively contaminated surface using simulated sample. A laser induced breakdown spectroscopy was used to monitor the progress of the contaminated surface layer removal. More than 80% of the contamination was removed after 100 shots KrF laser irradiation with the intensity of 1J/cm2.

  1. EFFECTS OF LASER RADIATION ON MATTER. LASER PLASMA: Selective metallisation of diamonds with the aid of laser radiation

    NASA Astrophysics Data System (ADS)

    Shafeev, Georgii A.; Pimenov, S. M.; Lubnin, Evgenii N.; Smolin, A. A.; Konov, Vitalii I.; Laptev, V. A.

    1995-02-01

    An experimental investigation was made of laser activation of diamond surfaces (single crystals and polycrystalline diamond films) prior to electroless before catalytic deposition of metals from solutions. The activation was carried out by a copper vapour laser or a KrF excimer laser in two ways: decomposition of a thin film of palladium acetylacetonate and local laser stimulated modification of the diamond surface by laser evaporation. An ohmic contact (Cu or Ni) with an adhesive strength of 3 N mm-2 was formed and the spatial resolution achieved was 10 μm.

  2. UV-laser investigation of dielectric thin films

    SciTech Connect

    Ettrich, K.; Blaschke, H.; Welsch, E.

    1996-12-31

    Utilizing thermal Mirage technique, UV laser damage resistivity studies on LaF{sub 3}/MgF{sub 2}, Al{sub 2}O{sub 3}/SiO{sub 2}, and HfO{sub 2}/SiO{sub 2} multilayer stacks have been performed at {lambda} = 248nm, {tau} = 20ns. Investigating these stacks by changing the number of (HL) pairs and the substrate material, optical and thermal coating properties were shown to be responsible for UV single-shot laser damage. Similarly, the damage threshold of selected samples is to be influenced by the deposition technique. Furthermore, multishot damage measurements on LaF{sub 3}/MgF{sub 2} high-reflecting multilayer coatings reveal the accumulation of laser energy in the predamage range.

  3. Biomolecular papain thin films grown by matrix assisted and conventional pulsed laser deposition: A comparative study

    NASA Astrophysics Data System (ADS)

    György, E.; Pérez del Pino, A.; Sauthier, G.; Figueras, A.

    2009-12-01

    Biomolecular papain thin films were grown both by matrix assisted pulsed laser evaporation (MAPLE) and conventional pulsed laser deposition (PLD) techniques with the aid of an UV KrF∗ (λ =248 nm, τFWHM≅20 ns) excimer laser source. For the MAPLE experiments the targets submitted to laser radiation consisted on frozen composites obtained by dissolving the biomaterial powder in distilled water at 10 wt % concentration. Conventional pressed biomaterial powder targets were used in the PLD experiments. The surface morphology of the obtained thin films was studied by atomic force microscopy and their structure and composition were investigated by Fourier transform infrared spectroscopy. The possible physical mechanisms implied in the ablation processes of the two techniques, under comparable experimental conditions were identified. The results showed that the growth mode, surface morphology as well as structure of the deposited biomaterial thin films are determined both by the incident laser fluence value as well as target preparation procedure.

  4. RuMBa: a rule-model OPC for low MEEF 130-nm KrF lithography

    NASA Astrophysics Data System (ADS)

    Hsu, Stephen; Shi, Xuelong; Hsu, Chungwei Michael; Corcoran, Noel P.; Chen, J. Fung; Desai, Sunil; Sherrill, Micheal J.; Tseng, Y. C.; Chang, H. A.; Kao, J. F.; Tseng, Alex; Liu, WeiJyh; Chen, Anseime; Lin, Arthur; Kujten, Jan P.; Jacobs, Eric; Verhappen, Arjan

    2001-09-01

    For cost effective 130nm node manufacturing, it is prefer to use KrF binary chrome mask. To realize a production worth process for making random logic device, we need to effectively control mask error enhancement factor (MEEF) through pitch. In low k1 lithography, process parameters such as focus, lens aberration, linewidth, and line pitch, style of proximity correction (OPC), and resist process conditions, etc., all impact MEEF. We show a powerful RuMBa OPC method that can reduce MEEF to an acceptable level (close to 1(using KrF resist process. We believe that RuMBa OPC method can be further extended for sub 100nm ArF process. In wafer printing experiment, we have designed a new style of LineSweeper reticles for our lithography process optimization. Both simulated and printed wafer CD data were used to calculate the overlapped process window along with respective MEEF. These are the metric we used to assess the 130nm process performance. Using RuMBa OPC, we are able to achieve overlapped process window that is sufficient for 130nm gate mask process. The CD through pitch calibration is critical for an accurate model-based correct at location where OPC rule cannot cover. A high accuracy CD through pitch calibration methodology is developed for model calibration. In this paper, we have compared the 130nm performance using KrF binary mask, KrF 6% attenuated PSM, and ArF binary mask.

  5. Laser micromachining of chemically altered polymers

    SciTech Connect

    Lippert, T.

    1998-08-01

    During the last decade laser processing of polymers has become an important field of applied and fundamental research. One of the most promising proposals, to use laser ablation as dry etching technique in photolithography, has not yet become an industrial application. Many disadvantages of laser ablation, compared to conventional photolithography, are the result of the use of standard polymers. These polymers are designed for totally different applications, but are compared to the highly specialized photoresist. A new approach to laser polymer ablation will be described; the development of polymers, specially designed for high resolution laser ablation. These polymers have photolabile groups in the polymer backbone, which decompose upon laser irradiation or standard polymers are modified for ablation at a specific irradiation wavelength. The absorption maximum can be tailored for specific laser emissino lines, e.g. 351, 308 and 248 nm lines of excimer lasers. The authors show that with this approach many problems associated with the application of laser ablation for photolithography can be solved. The mechanism of ablation for these photopolymers is photochemical, whereas for most of the standard polymers this mechanism is photothermal. The photochemical decomposition mechanism results in high resolution ablation with no thermal damage at the edges of the etched structures. In addition there are no redeposited ablation products or surface modifications of the polymer after ablation.

  6. Laser micromachining of chemically altered polymers

    NASA Astrophysics Data System (ADS)

    Lippert, Thomas K.

    1998-06-01

    During the last decade laser processing of polymers has become an important field of applied and fundamental research. One of the most promising proposal, to use laser ablation as dry etching technique in photolithography, has not yet become an industrial application. Many disadvantages of laser ablation, compared to conventional photolithography, are the result of the use of standard polymers. These polymers are designed for totally different applications, but are compared to the highly specialized photoresist. A new approach to laser polymer ablation will be described; the development of polymers, specially designed for high resolution laser ablation. These polymers have photolabile groups in the polymer backbone, which decompose upon laser irradiation or standard polymers are modified for ablation at a specific irradiation wavelength. The absorption maximum can be tailored for specific laser emission lines, e.g. 351, 308 and 248 nm lines of excimer lasers. We will show that with this approach many problems associated with the application of laser ablation for photolithography can be solved. The mechanism of ablation for these photopolymers is photochemical, whereas for most of the standard polymers this mechanism is photothermal. The photochemical decomposition mechanism results in high resolution ablation with no thermal damage at the edges of the etched structures. In addition there are not redeposited ablation products or surface modifications of the polymer after ablation.

  7. Measuring the thickness of protective coatings on historic metal objects using nanosecond and femtosecond laser induced breakdown spectroscopy depth profiling

    NASA Astrophysics Data System (ADS)

    Pouli, P.; Melessanaki, K.; Giakoumaki, A.; Argyropoulos, V.; Anglos, D.

    2005-08-01

    Depth profile analysis by means of laser induced breakdown spectroscopy (LIBS) was investigated with respect to its potential to measure the thickness of different types of thin organic films used as protective coatings on historical and archaeological metal objects. For the materials examined, acrylic varnish and microcrystalline wax, the output from a nanosecond ArF excimer laser at 193 nm was found appropriate for performing a reliable profiling of the coating films leading to accurate determination of the coating thickness on the basis of the number of laser pulses required to penetrate the coating and on the ablation etch rate of the corresponding coating material under the same irradiation conditions. Nanosecond pulses at 248 nm proved inadequate to profile the coatings because of their weak absorption at the laser wavelength. In contrast, femtosecond irradiation at 248 nm yielded well-resolved profiles as a result of efficient ablation achieved through the increased non-linear absorption induced by the high power density of the ultrashort pulses.

  8. Soot particle disintegration and detection using two laserELFFS

    SciTech Connect

    Stipe, Christopher B.; Lucas, Donald; Koshland, Catherine P.; Sawyer, Robert F.

    2004-11-17

    A two laser technique is used to study laser-particle interactions and the disintegration of soot by high power UV light. Two separate 20 ns laser pulses irradiate combustion generated soot nanoparticles with 193 nm photons. The first laser pulse, from 0 to 14.7 J/cm{sup 2}, photofragments the soot particles and electronically excites the liberated carbon atoms. The second laser pulse, held constant at 13 J/cm{sup 2}, irradiates the remaining particle fragments and other products of the first laser pulse. The atomic carbon fluorescence at 248 nm produced by the first laser pulse increases linearly with laser fluence from 1 to 6 J/cm{sup 2}. At higher fluences, the signal from atomic carbon signal saturates. The carbon fluorescence from the second laser pulse decreases as the fluence from the first laser increases, ultimately approaching zero as first laser fluence approaches 10 J/cm{sup 2}, suggesting that the particles fully disintegrate at high laser fluences. We use an energy balance parameter, called the photon-atom ratio (PAR), to aid in understanding laser-particle interactions. These results help define the regimes where photofragmentation fluorescence methods quantitatively measure total soot concentrations.

  9. Synthesis of materials with infrared and ultraviolet lasers

    SciTech Connect

    Lyman, J.L.

    1988-01-01

    This paper discusses three divergent examples of synthesis of materials with lasers. The three techniques are: (1) infrared (CO/sub 2/) laser synthesis of silane (SiH/sub 4/) from disilane (Si/sub 2/H/sub 6/); (2) excimer (ArF) laser production of fine silicon powders from methyl- and chloro-substituted silanes; and, (3) excimer (KrF) laser production of fine metallic powders by laser ablation. The mechanism for each process is discussed along with some conclusions about the features of the laser radiation that enable each application. 19 refs., 12 figs., 2 tabs.

  10. Femtosecond ultraviolet laser ablation of silver and comparison with nanosecond ablation

    SciTech Connect

    Toftmann, B.; Schou, J.; Doggett, B.; Budtz-Jorgensen, C.; Lunney, J. G.

    2013-02-28

    The ablation plume dynamics arising from ablation of silver with a 500 fs, 248 nm laser at {approx}2 J cm{sup -2} has been studied using angle-resolved Langmuir ion probe and thin film deposition techniques. For the same laser fluence, the time-of-flight ion signals from femtosecond and nanosecond laser ablation are similar; both show a singly peaked time-of-flight distribution. The angular distribution of ion emission and the deposition are well described by the adiabatic and isentropic model of plume expansion, though distributions for femtosecond ablation are significantly narrower. In this laser fluence regime, the energy efficiency of mass ablation is higher for femtosecond pulses than for nanosecond pulses, but the ion production efficiency is lower.

  11. A rare example of a krypton difluoride coordination compound: [BrOF2][AsF6] x 2 KrF2.

    PubMed

    Brock, David S; de Pury, Jonathan J Casalis; Mercier, Hélène P A; Schrobilgen, Gary J; Silvi, Bernard

    2010-03-17

    The synthesis of [BrOF(2)][AsF(6)] x 2 KrF(2), its structural characterization, and bonding are described in this study. Although several KrF(2) adducts with transition metal centers have been previously reported, none have been crystallographically characterized. The solid-state Raman spectrum of [BrOF(2)][AsF(6)] x 2 KrF(2) has been assigned with the aid of quantum-chemical calculations. The low-temperature (-173 degrees C) X-ray crystal structure of [BrOF(2)][AsF(6)] x 2 KrF(2) consists of isolated molecular units and represents an example of KrF(2) coordinated to a main-group atom. The coordination geometry around the BrOF(2)(+) cation renders the free valence electron lone pair more compact than in free BrOF(2)(+). The KrF(2) ligands are coordinated trans to the fluorine atoms of BrOF(2)(+) with the AsF(6)(-) anion coordinated trans to oxygen. The quantum theory of atoms in molecules (QTAIM) and electron localization function (ELF) analyses have been carried out in order to define the nature of the bonding in the complex. A significant amount of charge (0.25 e) is transferred to BrOF(2)(+) from the two KrF(2) ligands (0.10 e each) and from the AsF(6)(-) anion (0.05 e). Significant polarization also occurs within the KrF(2) ligands, which enhances the anionic characters of the fluorine bridges. The interaction energy is mostly governed by the electrostatic interaction of the positively charged bromine atom with the surrounding fluorine atoms. PMID:20170204

  12. Particle Generation by Pulsed Excimer Laser Ablation in Liquid: Hollow Structures and Laser-Induced Reactions

    NASA Astrophysics Data System (ADS)

    Yan, Zijie

    2011-12-01

    Pulsed laser ablation of solid targets in liquid media is a powerful method to fabricate micro-/nanoparticles, which has attracted much interest in the past decade. It represents a combinatorial library of constituents and interactions, and one can explore disparate regions of parameter space with outcomes that are impossible to envision a priori. In this work, a pulsed excimer laser (wavelength 248 nm, pulse width 30 ns) has been used to ablate targets in liquid media with varying laser fluences, frequencies, ablation times and surfactants. It is observed that hollow particles could be fabricated by excimer laser ablation of Al, Pt, Zn, Mg, Ag, Si, TiO2, and Nb2O5 in water or aqueous solutions. The hollow particles, with sizes from tens of nanometers to micrometers, may have smooth and continuous shells or have morphologies demonstrating that they were assembled from nanoparticles. A new mechanism has been proposed to explain the formation of these novel particle geometries. They were formed on laser-produced bubbles through bubble interface pinning by laser-produced solid species. Considering the bubble dynamics, thermodynamic and kinetic requirements have been discussed in the mechanism that can explain some phenomena associated with the formation of hollow particles, especially (1) larger particles are more likely to be hollow particles; (2) Mg and Al targets have stronger tendency to generate hollow particles; and (3) the 248 nm excimer laser is more beneficial to fabricate hollow particles in water than other lasers with longer wavelengths. The work has also demonstrated the possiblities to fabricate novel nanostructures through laser-induced reactions. Zn(OH)2/dodecyl sulfate flower-like nanostructures, AgCl cubes, and Ag2O cubes, pyramids, triangular plates, pentagonal rods and bars have been obtained via reactions between laser-produced species with water, electrolyes, or surfactant molecules. The underlying mechanisms of forming these structures have been

  13. Fluid mechanics of fusion lasers. Final report, September 11, 1978-June 5, 1980

    SciTech Connect

    Shwartz, J; Kulkarny, V A; Ausherman, D A; Legner, H H; Sturtevant, B

    1980-01-01

    Flow loop components required to operate continuous-flow, repetitively-pulsed CO/sub 2/ and KrF laser drivers for ICF were identified and their performance requirements were specified. It was found that the laser flow loops can have a major effect on the laser beam quality and overall efficiency. The pressure wave suppressor was identified as the most critical flow loop component. The performance of vented side-wall suppressors was evaluated both analytically and experimentally and found capable of meeting the performance requirements of the CO/sub 2/ and KrF fusion lasers. All other laser flow loop components are essentially similar to those used in conventional, low speed wind tunnels and are therefore well characterized and can be readily incorporated into fusion laser flow systems designs.

  14. Laser-nanostructured Ag films as substrates for surface-enhanced Raman spectroscopy

    SciTech Connect

    Henley, S.J.; Carey, J.D.; Silva, S.R.P.

    2006-02-20

    Pulsed-laser (248 nm) irradiation of Ag thin films was employed to produce nanostructured Ag/SiO{sub 2} substrates. By tailoring the laser fluence, it was possible to controllably adjust the mean diameter of the resultant near-spherical Ag droplets. Thin films of tetrahedral amorphous carbon (ta-C) were subsequently deposited onto the nanostructured substrates. Visible Raman measurements were performed on the ta-C films, where it was observed that the intensity of the Raman signal was increased by nearly two orders of magnitude, when compared with ta-C films grown on nonstructured substrates. The use of laser annealing as a method of preparing substrates, at low macroscopic temperatures, for surface-enhanced Raman spectroscopy on subnanometer-thick films is discussed.

  15. Observation of two distinct components during pulsed laser deposition of high T(c) superconducting films

    NASA Astrophysics Data System (ADS)

    Venkatesan, T.; Wu, X. D.; Inam, A.; Wachtman, J. B.

    1988-04-01

    Using Rutherford backscattering technique, the angular distribution of the composition and thickness of the Y-Ba-Cu oxide film deposited by firing excimer laser (30 ns, 248 nm) pulses at a stoichiometric YBa2Cu3O(7-x) pellet was measured. The angular distribution consisted of two distinct components: one a cos theta component, a result of evaporation, and the other a highly forward directed component, a result of a secondary ejection process. The evaporated component is nonstoichiometric, as one would expect, whereas the forward-directed component has a composition close to that of the pellet. Further, the forward-directed stoichiometric component increases with the laser energy density in comparison with the evaporated component. These observations are discussed in the context of current models of laser-induced material ejection at surfaces.

  16. GaN/AlN Multilayer Superlattices Synthesized by Pulsed Laser Molecular Beam Epitaxy

    NASA Astrophysics Data System (ADS)

    Rohatgi, Nishith; Sharma, Ajay K.; Kvit, Alex; Narayan, J.; Muth, J. F.; Kolbas, R. M.

    2000-03-01

    We have synthesized GaN/AlN multilayer superlattices on sapphire where GaN is a quantum well and AlN acts as a barrier for the carriers. The well thickness has been varied in several samples while keeping the barrier thickness constant. We have grown 15 such alternate layers in each sample. Pulsed laser-MBE has been used in this work wherein stoichiometric GaN and AlN targets were ablated by UV laser (λ=248 nm) in background vacuum 5X10-10 Torr. The layer-by-layer growth of the heterostructures in laser-MBE makes it ideal for fabricating ultra thin layers such as quantum wells. The evidence of quantum wells was shown by X-ray diffraction (XRD) and high resolution transmission electron microscopy (HRTEM). The microstructure, interfaces, well thickness and defects have been characterized by these techniques. The optical properties such as transmission, absorbance and photoluminescence have been studied.

  17. Effects of excitation laser wavelength on Ly-{alpha} and He-{alpha} line emission from nitrogen plasmas

    SciTech Connect

    Harilal, S. S.; Miloshevsky, G. V.; Sizyuk, T.; Hassanein, A.

    2013-01-15

    Laser-produced nitrogen plasmas emitting radiation at 2.48 nm (Ly-{alpha}) and 2.88 nm (He-{alpha}) are considered potential efficient sources for water-window (WW) microscopy. The atomic and optical properties of nitrogen plasma and influence of the laser wavelength on the line emission in the WW range are investigated. It is found that the optimal temperatures for maximum emission from Ly-{alpha} and He-{alpha} spectral lines are 40-60 eV and 80-100 eV, respectively. The WW line emission and the conversion efficiency (CE) are estimated for three distinct Nd:YAG laser wavelengths (1064 nm, 532 nm, and 266 nm). The calculated CEs are compared with experimentally observed CE values. It is found that 1064 nm wavelength provides the highest CE from laser to Ly-{alpha} and He-{alpha} radiation.

  18. Chromosome mutations and tissue regeneration in the cornea after the UV laser irradiation

    NASA Astrophysics Data System (ADS)

    Razhev, Alexander M.; Bagayev, Sergei N.; Lebedeva, Lidya I.; Akhmametyeva, Elena M.; Zhupikov, Andrey A.

    2003-06-01

    In present paper the findings on chromosome mutations, the nature of damage and the repair of the cornea tissue after UV irradiation by excimer lasers at 193, 223 and 248 nm were made. Structural mutations induced by short-pulses UV irradiation were shown to be similar to spontaneous ones by the type, time of formation in the mitotic cycle and location of acentrics. Ten hours after irradiation of the cornea with doses of 0,09 to 1,5 J/cm2 the incidence of cells with chromosome aberrations increased linearly with dose and amounted to 11,7% at 248 nm, 5,5% at 223 nm and 2,6% at 193 nm per 1 J/cm2. No induced chromosome aberrations occurred 72 hour following irradiation. Within the dose range from 3,0 to 18 J/cm2 the cytogenesis effect of radiation was less manifest than that with the doses mentioned above, the frequency of chromosome aberrations being independent of either radiation wavelength or radiation dose and amounted of 2,5 to 3,0%. Thus, large doses of powerful short-pulse UV radiation are safe according to the structural mutation criterion.

  19. Spectroscopic ellipsometric and Raman spectroscopic investigations of pulsed laser treated glassy carbon surfaces

    NASA Astrophysics Data System (ADS)

    Csontos, J.; Pápa, Z.; Gárdián, A.; Füle, M.; Budai, J.; Toth, Z.

    2015-05-01

    In this study spectroscopic ellipsometry (SE) and Raman spectroscopy are applied to study structural modification of glassy carbon, due to high intensity laser ablation. Two KrF lasers with different pulse durations (480 fs and 18 ns), an ArF (20 ns), and a frequency doubled Nd:YAG laser (8 ns) were applied to irradiate the surface of glassy carbon targets. The main characteristics of the different laser treatments are compared by introducing the volumetric fluence which takes into account the different absorption values at different wavelengths. SE showed the appearance of a modified layer on the ablated surfaces. In the case of the ns lasers the thickness of this layer was in the range of 10-60 nm, while in the case of fs laser it was less than 20 nm. In all cases the average refractive index (n) of the modified layers slightly decreased compared to the refractive index of glassy carbon. Increase in extinction coefficient (k) was observed in the cases of ArF and fs KrF laser treatment, while the k values decreased significantly in the cases of nanosecond pulse duration KrF and Nd:YAG laser treatments. In the Raman spectra of the ablated areas the characteristic D and G peaks were widened due to appearance of an amorphous phase. Both Raman spectroscopy and SE indicate that the irradiated areas show carbon nanoparticle formation in all cases.

  20. Laser direct writing of GaN-based light-emitting diodes—The suitable laser source for mesa definition

    NASA Astrophysics Data System (ADS)

    Moser, Rüdiger; Goßler, Christian; Kunzer, Michael; Köhler, Klaus; Pletschen, Wilfried; Brunne, Jens; Schwarz, Ulrich T.; Wagner, Joachim

    2013-03-01

    The development of a process chain allowing for rapid prototyping of GaN-based light-emitting diodes (LEDs) is presented, which does not rely on photolithography. Structuring of the epitaxial layers is realized by direct-writing laser ablation, allowing a flexible chip layout that can be changed rapidly and at low cost. Besides contact metallization and trench formation, mesa definition is the most critical processing step. For mesa formation and to expose the n-GaN contact layer, the epitaxial grown p-GaN layer together with the active region has to be removed completely without forming cracks or crystal defects in the n-GaN layer or the mesa sidewalls, which would cause sidewall leakage currents. In developing an appropriate laser ablation process that meets these requirements, three different laser systems have been employed in a comparative study. These are a frequency-tripled picosecond (ps) Nd:YVO4 laser emitting at a wavelength of 355 nm and a pulse length of 10 ps and two 20 nanosecond (ns) pulse length laser systems, operating at a wavelength of 248 nm (Excimer laser) and 355 nm (frequency-tripled Nd:YVO4 laser), respectively. First, the laser sources are compared regarding the morphological properties of the resulting laser trenches. Due to band filling effects resulting in optical bleaching of the GaN material when irradiating with ps-laser pulses at 355 nm, the resulting ablation process suffers from cracking. Laser ablation using ns-pulses at both 355 nm and 248 nm leads to crack-free material removal up to a well-defined depth. To keep reverse-bias leakage currents at a level comparable to that of conventional dry-etched mesa-LEDs, subsequent wet etching is essential to remove residues in the mesa-trenches irrespective of the laser source used. Besides wet etching, an additional annealing step has to be applied to mesa-trenches fabricated using ns- and ps-laser pulses at a wavelength of 355 nm. Due to the larger penetration depth at 355 nm, defects

  1. Nanosecond laser-induced phase transitions in pulsed laser deposition-deposited GeTe films

    SciTech Connect

    Sun, Xinxing Thelander, Erik; Lorenz, Pierre; Gerlach, Jürgen W.; Decker, Ulrich; Rauschenbach, Bernd

    2014-10-07

    Phase transformations between amorphous and crystalline states induced by irradiation of pulsed laser deposition grown GeTe thin films with nanosecond laser pulses at 248 nm and pulse duration of 20 ns are studied. Structural and optical properties of the Ge-Te phase-change films were studied by X-ray diffraction and optical reflectivity measurements as a function of the number of laser pulses between 0 and 30 pulses and of the laser fluence up to 195 mJ/cm². A reversible phase transition by using pulse numbers ≥ 5 at a fluence above the threshold fluence between 11 and 14 mJ/cm² for crystallization and single pulses at a fluence between 162 and 182 mJ/cm² for amorphization could be proved. For laser fluences from 36 up to 130 mJ/cm², a high optical contrast of 14.7% between the amorphous and crystalline state is measured. A simple model is used that allows the discussion on the distribution of temperature in dependency on the laser fluence.

  2. Infrared diode laser kinetic spectroscopy of the CCO radical in the X-tilde 3Sigma - state generated by the excimer laser photolysis of carbon suboxide

    NASA Astrophysics Data System (ADS)

    Yamada, Chikashi; Kanamori, Hideto; Horiguchi, Hiroyuki; Tsuchiya, Soji; Hirota, Eizi

    1986-03-01

    The ν1 band of the CCO radical in the X˜ 3Σ- ground electronic state has been observed in the gas phase by diode laser kinetic spectroscopy. The CCO radical was generated by the 193 or 248 nm excimer laser photolysis of carbon suboxide. By fixing ground state parameters to the microwave values, the band origin and the vibrational changes of the rotational (αB=B0-B1) and spin-spin interaction (αλ=λ1-λ0) constants have been determined to be 1970.864 34(95), 0.003 075 4(85), and 0.008 3(12) in cm-1 with 2.5 standard errors in parentheses.

  3. Photodeposition of Nitride Insulators on 3-5 Substrates

    NASA Technical Reports Server (NTRS)

    Collins, G. J.

    1984-01-01

    Laser assisted chemical vapor deposition (LCVD) of nitride insulators, using an excimer laser operating on either KrF or ArF transitions (248 nm or 193 nm respectively) was explored. The properties of silicon nitride films Deposited with 193 nm photons on quartz and silicon substrates in a SiH4, NH3, N2 and He mixture are discussed. Aluminum films were deposited at substrate temperatures from room temperature to 200 C using 248 nm or 193 nm photons to dissociate trimethylaluminum (TMA). Deposition of Al films were investigated to isolate problems associated with TMA such as C and O contamination during AlN depositions. The Al film properties were evaluated on SiO2 and Si substrates. Preliminary results were obtained for aluminum nitride films using TMA and NH3 as the gas phase Al and N donors. The properties of Cr films deposited over areas 5 square cm using 193 nm or 248 nm photons to dissociate Cr(CO) were investigated.

  4. High power, short pulses ultraviolet laser for the development of a new x-ray laser

    SciTech Connect

    Meixler, L.; Nam, C.H.; Robinson, J.; Tighe, W.; Krushelnick, K.; Suckewer, S.; Goldhar, J.; Seely, J.; Feldman, U.

    1989-04-01

    A high power, short pulse ultraviolet laser system (Powerful Picosecond-Laser) has been developed at the Princeton Plasma Physics Laboratory (PPPL) as part of experiments designed to generate shorter wavelength x-ray lasers. With the addition of pulse compression and a final KrF amplifier the laser output is expected to have reached 1/3-1/2 TW (10/sup 12/ watts) levels. The laser system, particularly the final amplifier, is described along with some initial soft x-ray spectra from laser-target experiments. The front end of the PP-Laser provides an output of 20--30 GW (10/sup 9/ watts) and can be focussed to intensities of /approximately/10/sup 16/ W/cm/sup 2/. Experiments using this output to examine the effects of a prepulse on laser-target interaction are described. 19 refs., 14 figs.

  5. Review of structural influences on the laser damage thresholds of oxide coatings

    SciTech Connect

    Hacker, E.; Lauth, H.; Weibbrodt, P.

    1996-12-31

    The laser damage thresholds (LDT) of optical coatings lie, as a rule, markedly below those of the respective bulk materials. This is due to diverse specific real structure properties with regard to composition, crystallography, microstructure and the physico-chemical structure of the interfaces. These properties depend in a highly complex and sensitive way on the substrate treatment, coating techniques and deposition conditions. With evaporated and sputtered oxide coatings as example, some correlations between structural thin film properties (e.g. crystallography, microstructure, anisotropy, chemical composition, defects) and the ultraviolet (248 nm) or near infrared (1064 nm) laser damage thresholds are discussed with concern to a further increase of the damage resistance. It is evident from data that an approach to the problem requires complex investigations of the technology-structure-properties relationships.

  6. Measurements of barium photocathode quantum yields at four excimer laser wavelengths

    SciTech Connect

    Van Loy, M.D.; Young, A.T.; Leung, K.N.

    1992-06-01

    The electron quantum yields from barium cathodes excited by excimer laser radiation at 193, 248, 308, and 351 nm have been determined. Experiments with different cathode surface preparation techniques reveal that deposition of barium film a few microns thick on a clean copper surface under moderate vacuum conditions achieves relatively high quantum efficiencies. Quantum yields measured from surfaces prepared in this manner are 2.3 x 10{sup -3} at 193 nm, 7.6 x 10{sup - 4} at 248 nm, 6.1 x 10{sup -4} at 308 nm, and 4.0 x 10{sup -4} at 351 nm. Other preparation techniques, such as laser cleaning of a solid barium surface, produced quantum yields that were at least an order of magnitude lower than these values.

  7. Tuning of cross-linking and mechanical properties of laser-deposited poly (methyl methacrylate) films

    NASA Astrophysics Data System (ADS)

    Süske, Erik; Scharf, Thorsten; Krebs, Hans-Ulrich; Panchenko, Elena; Junkers, Thomas; Egorov, Mark; Buback, Michael; Kijewski, Harald

    2005-03-01

    The chemical composition, amount of cross-linking and its influence on the mechanical properties of poly(methyl methacrylate) (PMMA) thin films produced by pulsed laser deposition (PLD) at a wavelength of 248nm under ultrahigh vacuum were investigated by infrared spectroscopy, scanning electron microscopy, size-exclusion chromatography, thermogravimetric analysis, and nanoindentation experiments. The films consist of two components, one fraction with a molecular weight well below that of the target material and a second fraction, which is cross-linked. Compared to bulk material, the Young's modulus of the film is increased. The amount of cross-linking in the film can be tuned by the applied laser fluence leading to changes of the mechanical properties.

  8. Below band-gap laser ablation of diamond for transmission electron microscopy

    NASA Technical Reports Server (NTRS)

    George, T.; Foote, M. C.; Vasquez, R. P.; Fortier, E. P.; Posthill, J. B.

    1993-01-01

    A 248 nm excimer laser was used to thin naturally occurring type 1a diamond substrates at normal and glancing (22 deg) incidence. Perforation of a 250-micron-thick substrate was achieved in about 15 min at normal incidence. While the substrate thinned at glancing incidence was found to have large electron-transparent areas, that thinned at normal incidence required additional argon-ion milling to achieve electron transparency. X-ray photoelectron spectroscopy of the back surface of the diamond failed to detect any graphite or glassy carbon, confirming that damage due to laser ablation occurs only at the incident surface. Samples prepared using this technique imaged in the transmission electron microscope were observed to have retained the nitrogen platelets characteristic of such type 1a diamonds.

  9. Ultraviolet laser ablation of polyimide films

    NASA Astrophysics Data System (ADS)

    Srinivasan, R.; Braren, B.; Dreyfus, R. W.

    1987-01-01

    Pulsed laser radiation at 193, 248, or 308 nm can etch films of polyimide (DuPont KaptonTM). The mechanism of this process has been examined by the chemical analysis of the condensible products, by laser-induced fluorescence analysis of the diatomic products, and by the measurement of the etch depth per pulse over a range of fluences of the laser pulse. The most important product as well as the only one condensible at room temperature is carbon. Laser-induced fluorescence analysis showed that C2 and CN were present in the ablation plume. At 248 nm, even well below the fluence threshold of 0.08 J/cm2 for significant ablation, these diatomic species are readily detected and are measured to leave the polymer surface with translational energy of ˜5 eV. These results, when combined with the photoacoustic studies of Dyer and Srinivasan [Appl. Phys. Lett. 48, 445 (1986)], show that a simple photochemical mechanism in which one photon or less (on average) is absorbed per monomer is inadequate. The ablation process must involve many photons per monomer unit to account for the production of predominantly small (<4 atoms) products and the ejection of these fragments at supersonic velocities.

  10. Short-pulse laser-produced plasma from C60 molecules

    SciTech Connect

    Wuelker, Cornelius; Theobald, Wolfgang; Ouw, Donald; Schaefer, Fritz P.; Chichkov, Boris N.

    1995-05-01

    The first experimental observations of a plasma produced in a vapor of C60 molecules with a high-intensity subpicosecond KrF laser (6x10{sup 15} W/cm{sup 2}) are reported. It differs from a plasma created in an ordinary carbon preplasma by reaching much higher ionization stages under the same experimental conditions. This remarkable property of C60 molecules (and other clusters) opens new prospects for short-pulse driven X-ray lasers.

  11. Large excimer lasers for fusion

    SciTech Connect

    Jensen, R.J.

    1986-01-01

    Important goals in DOE and DOD programs require multimegajoule laser pulses. For inertial confinement fusion there is also a requirement to deliver the pulse in about 25 nsec with a very particular power vs time profile - all at high overall efficiency and low cost per joule. After exhaustive consideration of various alternatives, our studies have shown that the most cost effective approach to energy scaling is to increase the size of the final amplifiers up to the 200 to 300 kJ level. This conclusion derives largely from the fact that, at a given complexity, costs increase slowly with increasing part size while output energy should increase dramatically. Extrapolations to low cost by drastic cuts in the unit cost of smaller devices through mass production are considered highly risky. At a minimum the requirement to provide, space, optics and mounts for such systems will remain expensive. In recent years there have been dramatic advances in scaling. The Los Alamos LAM has produced over 10 kJ in a single 1/2 nsec pulse. In this paper we explore the issues involved in scaling to higher energy while still maintaining high efficiencies. In the remainder of this paper we will discuss KrF laser scaling for the fusion mission. We will omit most of the discussion of the laser system design, but address only KrF amplifiers.

  12. Overview of recent advances in excimer laser technology at Los Alamos

    SciTech Connect

    Bigio, I.J.; Sze, R.C.; Taylor, A.J.; Gibson, R.B.

    1988-01-01

    From among the areas of excimer laser development at Los Alamos two are selected for further discussion: ultra-high brightness excimer laser systems and discharge-pumped XeF(C..-->..A) lasers operating in the blue-green portion of the spectrum. Two different high brightness systems are described. One is based on small-aperture KrF amplifiers, while the other is based on a large-aperture XeCl amplifier. The XeF(C..-->..A) laser is tunable from 435 to 525 nm, and may one day become a viable alternative to pulsed dye lasers for many applications. 14 refs., 4 figs.

  13. X-ray crystal structures of alpha-KrF(2),[KrF][MF(6)](M=As,Sb,Bi),[Kr(2)F(3)][SbF(6).KrF(2), [Ke(2)F(3)2[SbF(6)]2.KrF(2), and [Kr(2)F(3)][AsF(6)].[KrF][AsF(6)]; synthesis and characterization of [Kr(2)F(3)][PF(6).nKrF(2); and theoretical studies of KrF(2), KrF+, Kr(2)F(3)+, and the [KrF][MF(6)](M=P,As,Sb,Bi) ion pairs.

    PubMed

    Lehmann, J F; Dixon, D A; Schrobilgen, G J

    2001-06-18

    The crystal structures of alpha-KrF(2) and salts containing the KrF(+) and Kr(2)F(3)(+) cations have been investigated for the first time using low-temperature single-crystal X-ray diffraction. The low-temperature alpha-phase of KrF(2) crystallizes in the tetragonal space group I4/mmm with a = 4.1790(6) A, c = 6.489(1) A, Z = 2, V = 113.32(3) A(3), R(1) = 0.0231, and wR(2) = 0.0534 at -125 degrees C. The [KrF][MF(6)] (M = As, Sb, Bi) salts are isomorphous and isostructural and crystallize in the monoclinic space group P2(1)/c with Z = 4. The unit cell parameters are as follows: beta-[KrF][AsF(6)], a = 5.1753(2) A, b = 10.2019(7) A, c = 10.5763(8) A, beta = 95.298(2) degrees, V = 556.02(6) A(3), R(1) = 0.0265, and wR(2) = 0.0652 at -120 degrees C; [KrF][SbF(6)], a = 5.2922(6) A, b = 10.444(1) A, c = 10.796(1) A, beta = 94.693(4) degrees, V = 594.73(1) A(3), R(1) = 0.0266, wR(2) = 0.0526 at -113 degrees C; [KrF][BiF(6)], a = 5.336(1) A, b = 10.513(2) A, c = 11.046(2) A, beta = 94.79(3) degrees, V = 617.6(2) A(3), R(1) = 0.0344, and wR(2) = 0.0912 at -130 degrees C. The Kr(2)F(3)(+) cation was investigated in [Kr(2)F(3)][SbF(6)].KrF(2), [Kr(2)F(3)](2)[SbF(6)](2).KrF(2), and [Kr(2)F(3)][AsF(6)].[KrF][AsF(6)]. [Kr(2)F(3)](2)[SbF(6)](2).KrF(2) crystallizes in the monoclinic P2(1)/c space group with Z = 4 and a = 8.042(2) A, b = 30.815(6) A, c = 8.137(2) A, beta = 111.945(2) degrees, V = 1870.1(7) A(3), R(1) = 0.0376, and wR(2) = 0.0742 at -125 degrees C. [Kr(2)F(3)][SbF(6)].KrF(2) crystallizes in the triclinic P1 space group with Z = 2 and a = 8.032(3) A, b = 8.559(4) A, c = 8.948(4) A, alpha = 69.659(9) degrees, beta = 63.75(1) degrees, gamma = 82.60(1) degrees, V = 517.1(4) A(3), R(1) = 0.0402, and wR(2) = 0.1039 at -113 degrees C. [Kr(2)F(3)][AsF(6)].[KrF][AsF(6)] crystallizes in the monoclinic space group P2(1)/c with Z = 4 and a = 6.247(1) A, b = 24.705(4) A, c = 8.8616(6) A, beta = 90.304(6) degrees, V = 1367.6(3) A(3), R(1) = 0.0471 and wR(2) = 0.0958 at -120

  14. Ultraviolet laser quantum well intermixing based prototyping of bandgap tuned heterostructures for the fabrication of superluminescent diodes

    NASA Astrophysics Data System (ADS)

    Beal, Romain; Moumanis, Khalid; Aimez, Vincent; Dubowski, Jan J.

    2016-04-01

    The ultraviolet laser induced quantum well intermixing process has been investigated for prototyping of multiple bandgap quantum well (QW) wafers designed for the fabrication of superluminescent diodes (SLDs). The process takes advantage of a krypton fluoride excimer laser (λ=248 nm) that by irradiating an InP layer capping GaInAs/GaInAsP QW heterostructure leads to the modification of its surface chemical composition and formation of point defects. A subsequent rapid thermal annealing step results in the selective area intermixing of the investigated heterostructures achieving a high quality bandgap tuned material for the fabrication of broad spectrum SLDs. The devices made from a 3-bandgap material are characterized by ~100 nm wide emission spectra with relatively flat profiles and emission exceeding 1 mW.

  15. Formation of single crystalline tellurium supersaturated silicon pn junctions by ion implantation followed by pulsed laser melting

    NASA Astrophysics Data System (ADS)

    Xiyuan, Wang; Yongguang, Huang; Dewei, Liu; Xiaoning, Zhu; Xiao, Cui; Hongliang, Zhu

    2013-06-01

    Pn junctions based on single crystalline tellurium supersaturated silicon were formed by ion implantation followed by pulsed laser melting (PLM). P type silicon wafers were implanted with 245 keV 126Te+ to a dose of 2 × 1015 ions/cm2, after a PLM process (248 nm, laser fluence of 0.30 and 0.35 J/cm2, 1-5 pulses, duration 30 ns), an n+ type single crystalline tellurium supersaturated silicon layer with high carrier density (highest concentration 4.10 × 1019 cm-3, three orders of magnitude larger than the solid solution limit) was formed, it shows high broadband optical absorption from 400 to 2500 nm. Current—voltage measurements were performed on these diodes under dark and one standard sun (AM 1.5), and good rectification characteristics were observed. For present results, the samples with 4-5 pulses PLM are best.

  16. Time-resolved diagnostics of excimer laser-generated ablation plasmas used for pulsed laser deposition

    SciTech Connect

    Geohegan, D.B.

    1994-09-01

    Characteristics of laser plasmas used for pulsed laser deposition (PLD) of thin films are examined with four in situ diagnostic techniques: Optical emission spectroscopy, optical absorption spectroscopy, ion probe studies, and gated ICCD (intensified charge-coupled-device array) fast photography. These four techniques are complementary and permit simultaneous views of the transport of ions, excited states, ground state neutrals and ions, and hot particulates following KrF laser ablation of YBCO, BN, graphite and Si in vacuum and background gases. The implementation and advantages of the four techniques are first described in order to introduce the key features of laser plasmas for pulsed laser deposition. Aspects of the interaction of the ablation plume with background gases (i.e., thermalization, attenuation, shock formation) and the collision of the plasma plume with the substrate heater are then summarized. The techniques of fast ICCD photography and gated photon counting are then applied to investigate the temperature, velocity, and spatial distribution of hot particles generated during KrF ablation of YBCO, BN, Si and graphite. Finally, key features of fast imaging of the laser ablation of graphite into high pressure rare gases are presented in order to elucidate internal reflected shocks within the plume, redeposition of material on a surface, and formation of hot nanoparticles within the plume.

  17. Low-temperature micro-photoluminescence spectroscopy on laser-doped silicon with different surface conditions

    NASA Astrophysics Data System (ADS)

    Han, Young-Joon; Franklin, Evan; Fell, Andreas; Ernst, Marco; Nguyen, Hieu T.; Macdonald, Daniel

    2016-04-01

    Low-temperature micro-photoluminescence spectroscopy (μ-PLS) is applied to investigate shallow layers of laser-processed silicon for solar cell applications. Micron-scale measurement (with spatial resolution down to 1 μm) enables investigation of the fundamental impact of laser processing on the electronic properties of silicon as a function of position within the laser-processed region, and in particular at specific positions such as at the boundary/edge of processed and unprocessed regions. Low-temperature μ-PLS enables qualitative analysis of laser-processed regions by identifying PLS signals corresponding to both laser-induced doping and laser-induced damage. We show that the position of particular luminescence peaks can be attributed to band-gap narrowing corresponding to different levels of subsurface laser doping, which is achieved via multiple 248 nm nanosecond excimer laser pulses with fluences in the range 1.5-4 J/cm2 and using commercially available boron-rich spin-on-dopant precursor films. We demonstrate that characteristic defect PL spectra can be observed subsequent to laser doping, providing evidence of laser-induced crystal damage. The impact of laser parameters such as fluence and number of repeat pulses on laser-induced damage is also analyzed by observing the relative level of defect PL spectra and absolute luminescence intensity. Luminescence owing to laser-induced damage is observed to be considerably larger at the boundaries of laser-doped regions than at the centers, highlighting the significant role of the edges of laser-doped region on laser doping quality. Furthermore, by comparing the damage signal observed after laser processing of two different substrate surface conditions (chemically-mechanically polished and tetramethylammonium hydroxide etched), we show that wafer preparation can be an important factor impacting the quality of laser-processed silicon and solar cells.

  18. [Lasers].

    PubMed

    Passeron, T

    2012-11-01

    Lasers are a very effective approach for treating many hyperpigmented lesions. They are the gold standard treatment for actinic lentigos and dermal hypermelanocytosis, such as Ota nevus. Becker nevus, hyperpigmented mosaicisms, and lentigines can also be successfully treated with lasers, but they could be less effective and relapses can be observed. However, lasers cannot be proposed for all types of hyperpigmentation. Thus, freckles and café-au-lait macules should not be treated as the relapses are nearly constant. Due to its complex pathophysiology, melasma has a special place in hyperpigmented dermatoses. Q-switched lasers (using standard parameters or low fluency) should not be used because of consistent relapses and the high risk of post-inflammatory hyperpigmentation. Paradoxically, targeting the vascular component of the melasma lesion with lasers could have a beneficial effect. However, these results have yet to be confirmed. In all cases, a precise diagnosis of the type of hyperpigmentation is mandatory before any laser treatment, and the limits and the potential side effects of the treatment must be clearly explained to patients.

  19. Lasers.

    PubMed

    Passeron, T

    2012-12-01

    Lasers are a very effective approach for treating many hyperpigmented lesions. They are the gold standard treatment for actinic lentigos and dermal hypermelanocytosis, such as Ota nevus. Becker nevus, hyperpigmented mosaicisms, and lentigines can also be successfully treated with lasers, but they could be less effective and relapses can be observed. However, lasers cannot be proposed for all types of hyperpigmentation. Thus, freckles and café-au-lait macules should not be treated as the relapses are nearly constant. Due to its complex pathophysiology, melasma has a special place in hyperpigmented dermatoses. Q-switched lasers (using standard parameters or low fluency) should not be used because of consistent relapses and the high risk of post-inflammatory hyperpigmentation. Paradoxically, targeting the vascular component of the melasma lesion with lasers could have a beneficial effect. However, these results have yet to be confirmed. In all cases, a precise diagnosis of the type of hyperpigmentation is mandatory before any laser treatment, and the limits and the potential side effects of the treatment must be clearly explained to patients.

  20. Gratings in indium oxide film overlayers on ion-exchanged waveguides by excimer laser micromachining

    NASA Astrophysics Data System (ADS)

    Pissadakis, S.; Reekie, L.; Zervas, M. N.; Wilkinson, J. S.; Kiriakidis, G.

    2001-02-01

    Relief Bragg gratings were imprinted by 248 nm interferometric excimer laser ablation on potassium ion-exchanged channel waveguides in BK-7 glass overlaid with a thin high-index InOx film. Using five pulses of energy density 60 mJ/cm2, a spectral transmittance notch of depth 66% and ΔλFWHM<0.1 nm was obtained at 1547 nm in the TE polarization for a waveguide having a nominal width of 8 μm and a 135-nm-thick InOx overlayer. In waveguides coated with 100 nm InOx, with widths increasing from 3 to 8 μm, the reflection wavelength shifted by 0.12 nm/μm and the reflectivity increased monotonically.

  1. Simulation of the interaction of single-pulsed optical lasers with targets in a vacuum

    SciTech Connect

    Goldman, S.R.; Canavan, G.H.; Dingus, R.S.; Mahaffy, M.A.

    1984-01-01

    We present computer simulations of the interaction of a perturbed laser beam on an aluminum target at pulse widths from .05 to 2.0 ..mu..sec, and intensities from 5 x 10/sup 7/ to 10/sup 13/ W/cm/sup 2/, at laser wavelengths varying from 0.25 ..mu..m (KrF laser) to 10.6 ..mu..m (CO/sub 2/ laser). We focus on impulse coupling, identify the critical processes for momentum generation, and discuss the uncertainties in modeling.

  2. Arrayed narrow linewidth erbium-doped waveguide-distributed feedback lasers on an ultra-low-loss silicon-nitride platform.

    PubMed

    Belt, Michael; Huffman, Taran; Davenport, Michael L; Li, Wenzao; Barton, Jonathon S; Blumenthal, Daniel J

    2013-11-15

    We demonstrate an array of erbium-doped waveguide-distributed feedback lasers on an ultra-low-loss Si(3)N(4) platform. Sidewall gratings providing the lasing feedback are defined in the silicon-nitride layer using 248 nm stepper lithography, while the gain is provided by a reactive co-sputtered erbium-doped aluminum-oxide layer. We observe lasing output over a 12 nm wavelength range (1531-1543 nm) from the array of five separate lasers. Output powers of 8 μW and lasing linewidths of 501 kHz are obtained. Single-mode operation is confirmed, with side-mode suppression ratios over 35 dB for all designs.

  3. Predictions and Observations of Two-Plasmon Decay on the NIKE Laser System

    NASA Astrophysics Data System (ADS)

    Phillips, Lee; Weaver, James; Oh, J.; Schmitt, A. J.; Obenschain, S.; Velikovich, A.

    2011-10-01

    NIKE is a Krf laser system at the Naval Research Laboratory used to explore hydrodynamic stability, equation of state, and other physics problems arising in IFE research. The short wavelength and large bandwidth of the NIKE laser is predicted to raise the threshold of parametric instabilities such as two-plasmon decay (TPD). We report on simulations performed using the FAST3d radiation hydrocode to design TPD experiments that have allowed us to explore the validity of simple threshold formulas and demonstrate the advantages of the KrF wavelength in suppressing LPI. We consider proposed high-gain shock ignition designs and show, through analytic estimates and simulations, that we can explore the relevant scalelength-temperature regime, providing an experimental method to study the LPI threat to these targets at a small fraction of their designed input energies. This research is funded by the US DOE, NRL, and ONR.

  4. Spatial confinement effects in laser-induced breakdown spectroscopy

    SciTech Connect

    Shen, X. K.; Sun, J.; Ling, H.; Lu, Y. F.

    2007-08-20

    The spatial confinement effects in laser-induced breakdown of aluminum (Al) targets in air have been investigated both by optical emission spectroscopy and fast photography. A KrF excimer laser was used to produce plasmas from Al targets in air. Al atomic emission lines show an obvious enhancement in the emission intensity when a pair of Al-plate walls were placed to spatially confine the plasma plumes. Images of the Al plasma plumes showed that the plasma plumes evolved into a torus shape and were compressed in the Al walls. The mechanism for the confinement effects was discussed using shock wave theory.

  5. Structural and optical properties of phenylalanine and tyrosine thin films prepared by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Hernandez-Perez, M. A.; Garapon, C.; Champeaux, C.; Orlianges, J. C.

    2007-04-01

    Thin films of the amino-acids phenylalanine (Phe) and tyrosine (Tyr) were prepared by PLD with a KrF laser at fluences of some hundreds mJ/cm2. Conservation of the chemical structure and a metastable modification of the molecular interactions are evidenced by IR spectroscopy. The evolution of the refractive indices with fluence was correlated with the structure determined by X ray diffraction. Phe plume expansion imaging was achieved.

  6. Phosphorus doping of 4H SiC by liquid immersion excimer laser irradiation

    SciTech Connect

    Ikeda, Akihiro; Nishi, Koji; Ikenoue, Hiroshi; Asano, Tanemasa

    2013-02-04

    Phosphorus doping of 4H SiC is performed by KrF excimer laser irradiation of 4H SiC immersed in phosphoric acid. Phosphorus is incorporated to a depth of a few tens of nanometers at a concentration of over 10{sup 20}/cm{sup 3} without generating significant crystal defects. Formation of a pn junction diode with an ideality factor of 1.06 is demonstrated.

  7. A comparison of the characteristics of excimer and femtosecond laser ablation of acrylonitrile butadiene styrene (ABS)

    NASA Astrophysics Data System (ADS)

    See, Tian Long; Liu, Zhu; Li, Lin; Zhong, Xiang Li

    2016-02-01

    This paper presents an investigation on the ablation characteristics of excimer laser (λ = 248 nm, τ = 15 ns) and femtosecond laser (λ = 800 nm, τ = 100 fs) on ABS polymer sheets. The laser-material interaction parameters (ablation threshold, optical penetration depth and incubation factor) and the changes in material chemical properties were evaluated and compared between the two lasers. The work shows that the ablation threshold and effective optical penetration depth values are dependent on the wavelength of laser beam (photon energy) and the pulse width. The ablation threshold value is lower for the excimer laser ablation of ABS (Fth = 0.087 J/cm2) than that for the femtosecond laser ablation of ABS (Fth = 1.576 J/cm2), demonstrating a more dominating role of laser wavelength than the pulse width in influencing the ablation threshold. The ablation depth versus the logarithmic scale of laser fluence shows two linear regions for the fs laser ablation, not previously known for polymers. The effective optical penetration depth value is lower for excimer laser ablation (α-1 = 223 nm) than that for femtosecond laser ablation (α-1 = 2917 nm). The ablation threshold decreases with increasing number of pulses (NOP) due to the chain scission process that shortens the polymeric chains, resulting in a weaker polymeric configuration and the dependency is governed by the incubation factor. Excimer laser treatment of ABS eliminates the Cdbnd C bond completely through the chain scission process whereas Cdbnd C bond is partially eliminated through the femtosecond laser treatment due to the difference in photon energy of the two laser beams. A reduction in the Cdbnd C bond through the chain scission process creates free radical carbons which then form crosslinks with each other or react with oxygen, nitrogen and water in air producing oxygen-rich (Csbnd O and Cdbnd O bond) and nitrogen-rich (Csbnd N) functional groups.

  8. Absolute I(asterisk) quantum yields for the ICN A state by diode laser gain-vs-absorption spectroscopy

    NASA Technical Reports Server (NTRS)

    Hess, Wayne P.; Leone, Stephen R.

    1987-01-01

    Absolute I(asterisk) quantum yields have been measured as a function of wavelength for room temperature photodissociation of the ICN A state continuum. The yields are obtained by the technique of time-resolved diode laser gain-vs-absorption spectroscopy. Quantum yields are evaluated at seven wavelengths from 248 to 284 nm. The yield at 266 nm is 66.0 + or - 2 percent and it falls off to 53.4 + or - 2 percent and 44.0 + or - 4 percent at 284 and 248 nm, respectively. The latter values are significantly higher than those obtained by previous workers using infrared fluorescence. Estimates of I(asterisk) quantum yields obtained from analysis of CN photofragment rotational distributions, as discussed by other workers, are in good agreement with the I(asterisk) yields reported here. The results are considered in conjunction with recent theoretical and experimental work on the CN rotational distributions and with previous I(asterisk) quantum yield results.

  9. Generation of strongly coupled plasmas by high power excimer laser

    NASA Astrophysics Data System (ADS)

    Zhu, Yongxiang; Liu, Jingru; Zhang, Yongsheng; Hu, Yun; Zhang, Jiyan; Zheng, Zhijian; Ye, Xisheng

    2013-05-01

    (ultraviolet). To generate strongly coupled plasmas (SCP) by high power excimer laser, an Au-CH-Al-CH target is used to make the Al sample reach the state of SCP, in which the Au layer transforms laser energy to X-ray that heating the sample by volume and the CH layers provides necessary constraints. With aid of the MULTI-1D code, we calculate the state of the Al sample and its relationship with peak intensity, width and wavelength of laser pulses. The calculated results suggest that an excimer laser with peak intensity of the magnitude of 1013W/cm2 and pulse width being 5ns - 10ns is suitable to generate SCP with the temperature being tens of eV and the density of electron being of the order of 1022/cm-3. Lasers with shorter wavelength, such as KrF laser, are preferable.

  10. XeCl Avalanche discharge laser employing Ar as a diluent

    DOEpatents

    Sze, Robert C.

    1981-01-01

    A XeCl avalanche discharge exciplex laser which uses a gaseous lasing starting mixture of: (0.2%-0.4% chlorine donor/2.5%-10% Xe/97.3%-89.6% Ar). The chlorine donor normally comprises HCl but can also comprise CCl.sub.4 BCl.sub.3. Use of Ar as a diluent gas reduces operating pressures over other rare gas halide lasers to near atmospheric pressure, increases output lasing power of the XeCl avalanche discharge laser by 30% to exceed KrF avalanche discharge lasing outputs, and is less expensive to operate.

  11. XeCl avalanche discharge laser employing Ar as a diluent

    DOEpatents

    Sze, R.C.

    1979-10-10

    A XeCl avalanche discharge exciplex laser which uses a gaseous lasing starting mixture of: 0.2 to 0.4% chlorine donor/2.5% to 10% Xe/97.3% to 89.6% Ar) is provided. The chlorine donor normally comprises HCl but can also comprise CCl/sub 4/ BCl/sub 3/. Use of Ar as a diluent gas reduces operating pressures over other rare gas halide lasers to near atmospheric pressure, increases output lasing power of the XeCl avalanche discharge laser by 30% to exceed KrF avalanche discharge lasing outputs, and is less expensive to operate.

  12. Excimer laser deposition of hydroxyapatite thin films.

    PubMed

    Singh, R K; Qian, F; Nagabushnam, V; Damodaran, R; Moudgil, B M

    1994-06-01

    We have demonstrated a new and simple in situ method to fabricate adherent and dense hydroxyapatite (HA) coatings at relatively low deposition temperatures (500-600 degrees C). Under optimum processing conditions, the HA coatings possess a nominal Ca:P ratio of 1.65 and exhibit a fully crystalline single-phase structure. This deposition technique is based on the application of a pulsed excimer laser (wavelength lambda = 248 nm, pulse duration tau = 25 x 10(-9) s) to ablate a dense stoichiometric HA target. The HA target was prepared by standard ceramic coprecipitation techniques followed by cold pressing and further sintering at 1200 degrees C in air. High substrate temperatures (> or = 600 degrees C) during film deposition led to phosphorus deficient coatings because of re-evaporation of phosphorus during the deposition process. The stabilization of various calcium and phosphorus phases in the film was controlled by a number of process parameters such as substrate temperature, chamber pressure and presence of water vapour in the chamber. This is particularly advantageous for production of HA coatings, since it is known that HA decomposes at high temperatures due to the uncertainty in the starting material stoichiometry. Rutherford backscattering spectrometry, energy dispersive X-ray analysis, transmission electron microscopy, scanning electron microscopy and X-ray diffraction techniques were employed to determine the structure-processing relationships. Qualitative scratch measurements were conducted to determine the adhesion strength of the films.

  13. Local growth of aligned carbon nanotubes at surface sites irradiated by pulsed laser

    NASA Astrophysics Data System (ADS)

    Zimmer, K.; Böhme, R.; Rauschenbach, B.

    2008-05-01

    The utilization of the unique properties of nanostructures often requires their arrangement in mesoscopic patterns, e.g., to facilitate the connection to microelectrodes. Such arrangements can be achieved by local growth of nanostructures. The stimulation of the localized growth of carbon nanotubes (CNT) has been achieved by excimer laser irradiation of iron(III)nitride-coated silicon substrates at a wavelength of 248 nm. After the growth using a thermal CVD process, vertical aligned CNT bundles were found within the laser-irradiated areas. Pulsed UV-laser irradiation causes the transformation of the nitride film into nanoparticles at the substrate surface as AFM measurements show. Surface modification by direct writing techniques allows the growth of arbitrary shaped CNT-forest patterns. Despite the optimization of the processing parameters, an unequal growth of CNT has been observed at the regions of pulse overlap at direct writing. The dissimilar particle properties at the overlap regions are the reason for the different CNT heights. These differences in the catalytic particles properties are caused by the lower laser fluence at the mask edges and the interaction of the laser plasma plume with the pristine nitride film.

  14. Quantification of NO A-X (0, 2) laser-induced fluorescence: investigation of calibration and collisional influences in high-pressure flames.

    PubMed

    Schulz, C; Sick, V; Meier, U E; Heinze, J; Stricker, W

    1999-03-20

    Laser-induced-fluorescence techniques have been used successfully for quantitative two-dimensional measurements of nitric oxide. NO A-X(0, 2) excitation at 248 nm recently found applications in internal-combustion engines. We assess the collisional processes that influence quantification of signal intensities in terms of saturation, rotational energy transfer, and line broadening, using laminar high-pressure methane/air and n-heptane/air flames at pressures as high as 80 bars (8 x 10(6) Pa). A calibration method that is applicable in technical combustion systems based on addition of NO to the burning flame is investigated for various air/fuel ratios and pressures and yields information about the influence of NO reburn processes. PMID:18305764

  15. Damage precursor measurements on UV-optical coatings

    SciTech Connect

    Ettrich, K.; Blaschke, H.; Welsch, E.

    1995-12-31

    For application in UV thin film optics the thermal contribution to the laser-induced optical breakdown was investigated utilizing time-resolved photothermal probe beam deflection (MIRAGE) technique. The potentiality of this method for the determination of both the subdamage range and the onset of single-shot-damage of Al{sub 2}O{sub 3}/SiO{sub 2} and LaF{sub 3}/MgF{sub 2} high-reflective coatings by using the thermal branch of the MIRAGE technique could be demonstrated. Examining the dielectric mirrors by 248 nm KrF laser irradiation, distinct damage precursor features were found. Thus, the physical origin of the UV pulsed radiation breakdown in HR coatings can be elucidated.

  16. Characterization of repairs to KrF 300mm wafer printability for 0.13μm design rule with attenuated phase-shifting mask

    NASA Astrophysics Data System (ADS)

    Chou, William; Chen, Tsung; Tseng, Will; Huang, Peter; Tseng, Chin C.; Chung, Mars; Wang, Dick; Huang, Norman

    2002-12-01

    For sub-0.13um lithography, attenuated phase shifting mask (AttPSM) with optical proximity correction (OPC) is reported as one of the potential methods to achieve manufacturable process by using 248nm exposure wavelength. Unfortunately, the low-k1 imaging process in 130nm lithography imposes much more stringent requirements on defect repair, especially on AttPSM reticle. Therefore, the imperfect repairs will have a significant impact on wafer process window due to quartz damage and phase distortion caused by Ga+ ion stain removal and added carbon material, respectively. In this paper, we have prepared AttPSM test masks having programmed defects with various opaque defects. Each defect area was inspected with KLA-Tencor's SLF27 inspection system to acquire defect coordinates and image, simulated with AIMS to assess the intensity and transmission loss induced by repair process. All of masks were made by DuPont Photomasks Taiwan (DPT) by using the Jbx9000MV2 E-beam writer and dry Chrome etch process. All lithographic experiments were performed on 300mm wafer using high NA ASML AT750S scanner and high contrast CAR resist. In this study, we have focused on the impact of quartz damage and phase error on wafer process window by comparing the wafer CD and pattern profile through focus. In order to establish a efficient way to perform effective judgement on repair defect between mask shop and wafer fab, both AIMS and wafer results will be compared and correlated.

  17. Excimer laser ablation for spatially controlled protein patterns

    NASA Astrophysics Data System (ADS)

    Thissen, Helmut; Hayes, Jason P.; Kingshott, Peter; Johnson, Graham; Harvey, Erol C.; Griesser, Hans J.

    2001-11-01

    Two-dimensional control over the location of proteins on surfaces is desired for a number of applications including diagnostic tests and tissue engineered medical devices. Many of these applications require patterns of specific proteins that allow subsequent two-dimensionally controlled cell attachment. The ideal technique would allow the deposition of specific protein patterns in areas where cell attachment is required, with complete prevention of unspecific protein adsorption in areas where cells are not supposed to attach. In our study, collagen I was used as an example for an extracellular matrix protein known to support the attachment of bovine corneal epithelial cells. An allylamine plasma polymer was deposited on a silicon wafer substrate, followed by grafting of poly(ethylene oxide). Two-dimensional control over the surface chemistry was achieved using a 248 nm excimer laser. Results obtained by XPS and AFM show that the combination of extremely low-fouling surfaces with excimer laser ablation can be used effectively for the production of spatially controlled protein patterns with a resolution of less than 1 micrometers . Furthermore, it was shown that bovine corneal epithelial cell attachment followed exactly the created protein patterns. The presented method is an effective tool for a number of in vitro and in vivo applications.

  18. Nanometer thickness laser ablation for spatial control of cell attachment

    NASA Astrophysics Data System (ADS)

    Thissen, H.; Hayes, J. P.; Kingshott, P.; Johnson, G.; Harvey, E. C.; Griesser, H. J.

    2002-10-01

    We demonstrate here a new method to control the location of cells on surfaces in two dimensions, which can be applied to a number of biomedical applications including diagnostic tests and tissue engineered medical devices. Two-dimensional control over cell attachment is achieved by generation of a spatially controlled surface chemistry that allows control over protein adsorption, a process which mediates cell attachment. Here, we describe the deposition of thin allylamine plasma polymer coatings on silicon wafer and perfluorinated poly(ethylene-co-propylene) substrates, followed by grafting of a protein resistant layer of poly(ethylene oxide). Spatially controlled patterning of the surface chemistry was achieved in a fast, one-step procedure by nanometer thickness controlled laser ablation using a 248 nm excimer laser. X-ray photoelectron spectroscopy and atomic force microscopy were used to confirm the production of surface chemistry patterns with a resolution of approximately 1 µm, which is significantly below the dimensions of a single mammalian cell. Subsequent adsorption of the extracellular matrix proteins collagen I and fibronectin followed by cell culture experiments using bovine corneal epithelial cells confirmed that cell attachment is controlled by the surface chemistry pattern. The method is an effective tool for use in a number of in vitro and in vivo applications.

  19. Excimer laser annealing to fabricate low cost solar cells

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The objective is to show whether or not pulsed excimer laser annealing (PELA) of ion-implanted junctions is a cost effective replacement for diffused junctions in fabricating crystalline silicon solar cells. The preliminary economic analysis completed shows that the use of PELA to fabricate both the front junction and back surface field (BSF) would cost approximately 35 cents per peak watt (Wp), compared to a cost of 15 cents/Wp for diffusion, aluminum BSF and an extra cleaning step in the baseline process. The cost advantage of the PELA process depends on improving the average cell efficiency from 14% to 16%, which would lower the overall cost of the module by about 15 cents/Wp. An optimized PELA process compatible with commercial production is to be developed, and increased cell efficiency with sufficient product for adequate statistical analysis demonstrated. An excimer laser annealing station was set-up and made operational. The first experiment used 248 nm radiation to anneal phosphorus implants in polished and texture-etched silicon.

  20. Threshold level laser photoablation of crystalline silver: Ejected ion translational energy distributions

    NASA Astrophysics Data System (ADS)

    Helvajian, H.; Welle, R.

    1989-08-01

    We have conducted an experiment which measures, for a single laser shot, the ejected mass and nascent velocity distributions of ionic species ablated at laser fluences near the threshold for ion production. Our results show that for a crystalline silver target, the laser-ablated ion products are ejected with fixed kinetic energy equal to 9±1 eV (3 eV FWHM). The kinetic energy of the ejecta (Ag+,Ag+2, adsorbed Fe+) do not vary with wavelength (351 and 248 nm), nor with the ion product mass, and within limits are independent of the incident laser intensity. We do see a wavelength dependence in the threshold for ion production and in the dimer/monomer (Ag+/Ag+2) ion ratio. A number of possible mechanisms are presented to explain the data, although none is without some objection. Among these, the process whereby desorption is induced by electronic transitions (DIET processes) has some merit in explaining our data.

  1. Wavelength and pulse duration effects on laser induced changes on raw pigments used in paintings.

    PubMed

    Oujja, M; Sanz, M; Rebollar, E; Marco, J F; Domingo, C; Pouli, P; Kogou, S; Fotakis, C; Castillejo, M

    2013-02-01

    In this study, the reaction of widely used artist's pigments in raw form to pulsed laser radiation of different wavelengths and pulse duration was investigated. Vermilion, lead chromate and malachite (in the form of pellets) were irradiated using laser pulses of 500 fs at 248 nm, and pulses of 150 ps and 15 ns at 1064 and 213 nm. Optical microscopy, colorimetry, spectrofluorimetry, micro-Raman spectroscopy and X-ray photoelectron spectroscopy were employed to characterize the physicochemical changes induced to the pigments. Change of crystalline phase was identified for vermilion while reduction processes take place for lead chromate and malachite. It was found that these effects were minimized by application of ultraviolet ultrashort pulses (of femtosecond and picosecond duration) as compared with changes occurring by pulsed infrared irradiation (of both picosecond and nanosecond duration). The results presented are discussed in relation to previous research on painted mock-ups in order to elucidate the role and significance of the binding media in the laser induced discoloration of painted surfaces and thus to propose optimum laser cleaning practices.

  2. Study of Ti:sapphire laser created by PLD

    SciTech Connect

    Jelinek, M.; Lancok, J.; Jastrabik, L.; Eason, R.W.; Anderson, A.A.; Grivas, C.; Fotakis, C.; Flory, F.

    1996-12-31

    Thin films of Ti:sapphire were fabricated by KrF laser ablation on (0001) and (1102) sapphire, on (001) quartz and on fused silica substrates from crystalline Ti:sapphire targets (0.12 wt% and 0.49 wt%). Substrates were heated during the deposition at low temperatures (500 C--600 C) or at high temperatures (1,000 C--1,390 C). Films luminescence, crystallinity, fluorescence lifetime, dopants content, waveguiding and surface morphology of created Ti:sapphire films were studied. Results are presented and discussed.

  3. Biomolecular papain thin films growth by laser techniques.

    PubMed

    György, Enikö; Santiso, Jose; Figueras, Albert; Socol, Gabriel; Mihailescu, Ion N

    2007-08-01

    Papain thin films were synthesised by matrix assisted and conventional pulsed laser deposition (PLD) techniques. The targets submitted to laser radiation consisted on a frozen composite obtained by dissolving the biomaterials in distilled water. For the deposition of the thin films by conventional PLD pressed biomaterial powder targets were submitted to laser irradiation. An UV KrF* excimer laser source was used in the experiments at 0.5 J/cm(2) incident fluence value, diminished one order of magnitude as compared to irradiation of inorganic materials. The surface morphology of the obtained thin films was studied by atomic force profilometry and atomic force microscopy. The investigations showed that the growth mode and surface quality of the deposited biomaterial thin films is strongly influenced by the target preparation procedure.

  4. Structural characterization and electronic structure of laser treated TiN thin film

    SciTech Connect

    Soni, Sheetal; Nair, K. G. M.; Phase, D. M.; Gupta, Ratnesh

    2012-06-05

    TiN thin films prepared by laser treatment using Kr-F excimer laser in the controlled atmosphere. The depth distribution and composition of nitrogen and contaminated oxygen have been determined by non-Rutherford proton backscattering using 1.7 MeV Tendetron accelerator. The electronic structure of TiN thin film have been characterized by resonant photoelectron spectroscopy using indus-I synchrotron radiation. Specifically, complex resonance profile that shows the enhancement at 45 eV which is consistent with the resonant photoemission of Ti 3d states involved in the Titanium nitride and oxide.

  5. Effect of laser annealing using high repetition rate pulsed laser on optical properties of phosphorus-ion-implanted ZnO nanorods

    NASA Astrophysics Data System (ADS)

    Shimogaki, Tetsuya; Ofuji, Taihei; Tetsuyama, Norihiro; Okazaki, Kota; Higashihata, Mitsuhiro; Nakamura, Daisuke; Ikenoue, Hiroshi; Asano, Tanemasa; Okada, Tatsuo

    2013-03-01

    The effect of high repetition rate pulsed laser annealing with a KrF excimer laser on the optical properties of phosphorus-ion-implanted zinc oxide nanorods has been investigated. The recovery levels of phosphorus-ion-implanted zinc oxide nanorods have been measured by photoluminescence spectra and cathode luminescence images. Cathode luminescence disappeared over 300 nm below the surface due to the damage caused by ion implantation with an acceleration voltage of 25 kV. When the annealing was performed at a low repetition rate of the KrF excimer laser, cathode luminescence was recovered only in a shallow area below the surface. The depth of the annealed area was increased along with the repetition rate of the annealing laser. By optimizing the annealing conditions such as the repetition rate, the irradiation fluence and so on, we have succeeded in annealing the whole damaged area of over 300 nm in depth and in observing cathode luminescence. Thus, the effectiveness of high repetition rate pulsed laser annealing on phosphorus-ion-implanted zinc oxide nanorods was demonstrated.

  6. Effect of laser annealing using high repetition rate pulsed laser on optical properties of phosphorus-ion-implanted ZnO nanorods

    NASA Astrophysics Data System (ADS)

    Shimogaki, Tetsuya; Ofuji, Taihei; Tetsuyama, Norihiro; Okazaki, Kota; Higashihata, Mitsuhiro; Nakamura, Daisuke; Ikenoue, Hiroshi; Asano, Tanemasa; Okada, Tatsuo

    2014-02-01

    The effect of high repetition rate pulsed laser annealing with a KrF excimer laser on the optical properties of phosphorus-ion-implanted zinc oxide nanorods has been investigated. The recovery levels of phosphorus-ion-implanted zinc oxide nanorods have been measured by photoluminescence spectra and cathode luminescence images. Cathode luminescence disappeared over 300 nm below the surface due to the damage caused by ion implantation with an acceleration voltage of 25 kV. When the annealing was performed at a low repetition rate of the KrF excimer laser, cathode luminescence was recovered only in a shallow area below the surface. The depth of the annealed area was increased along with the repetition rate of the annealing laser. By optimizing the annealing conditions such as the repetition rate, the irradiation fluence and so on, we have succeeded in annealing the whole damaged area of over 300 nm in depth and in observing cathode luminescence. Thus, the effectiveness of high repetition rate pulsed laser annealing on phosphorus-ion-implanted zinc oxide nanorods was demonstrated.

  7. Physics of laser fusion. Volume III. High-power pulsed lasers

    SciTech Connect

    Holzrichter, J.F.; Eimerl, D.; George, E.V.; Trenholme, J.B.; Simmons, W.W.; Hunt, J.T.

    1982-09-01

    High-power pulsed lasers can deliver sufficient energy on inertial-confinement fusion (ICF) time scales (0.1 to 10 ns) to heat and compress deuterium-tritium fuel to fusion-reaction conditions. Several laser systems have been examined, including Nd:glass, CO/sub 2/, KrF, and I/sub 2/, for their ICF applicability. A great deal of developmental effort has been applied to the Nd:glass laser and the CO/sub 2/ gas laser systems; these systems now deliver > 10/sup 4/ J and 20 x 10/sup 12/ W to ICF targets. We are constructing the Nova Nd:glass laser at LLNL to provide > 100 kJ and > 100 x 10/sup 12/ W of 1-..mu..m radiation for fusion experimentation in the mid-1980s. For ICF target gain > 100 times the laser input, we expect that the laser driver must deliver approx. 3 to 5 MJ of energy on a time scale of 10 to 20 ns. In this paper we review the technological status of fusion-laser systems and outline approaches to constructing high-power pulsed laser drivers.

  8. Laser Structuring of Thin Layers for Flexible Electronics by a Shock Wave-induced Delamination Process

    NASA Astrophysics Data System (ADS)

    Lorenz, Pierre; Ehrhardt, Martin; Zimmer, Klaus

    The defect-free laser-assisted structuring of thin films on flexible substrates is a challenge for laser methods. However, solving this problem exhibits an outstanding potential for a pioneering development of flexible electronics. Thereby, the laser-assisted delamination method has a great application potential. At the delamination process: the localized removal of the layer is induced by a shock wave which is produced by a laser ablation process on the rear side of the substrate. In this study, the thin-film patterning process is investigated for different polymer substrates dependent on the material and laser parameters using a KrF excimer laser. The resultant structures were studied by optical microscopy and white light interferometry (WLI). The delamination process was tested at different samples (indium tin oxide (ITO) on polyethylene terephthalate (PET), epoxy-based negative photoresist (SU8) on polyimide (PI) and indium tin oxide/copper indium gallium selenide/molybdenum (ITO/CIGS/Mo) on PI.

  9. Two-Plasmon Decay: Simulations and Experiments on the NIKE Laser System

    NASA Astrophysics Data System (ADS)

    Phillips, Lee; Weaver, J. L.; Oh, J.; Schmitt, A. J.; Obenschain, S.; Colombant, D.

    2009-11-01

    NIKE is a Krf laser system at the Naval Research Laboratory used to explore hydrodynamic stability, equation of state, and other issues arising in the research toward inertial fusion energy. The relatively small KrF wavelength, according to widely used theories, raises the threshold of most parametric instabilities. We report on simulations performed using the FAST3d radiation hydrocode to design TPD experiments. By post-processing the results of the simulations we have designed experiments that have explored the use of simple threshold formulas (from developing theories) and help establish the soundness of our simulational approach. Turning to the targets proposed for ICF energy research, we have found that among the designs for the proposed Fusion Test Facility (Obenschain et al., Phys. Plasmas 13 056320 (2006)), are some that are below LPI thresholds. We have also studied high-gain KrF shock ignition designs and found that they are below LPI thresholds for most of the implosion, becoming susceptible to TPD only late in the pulse.

  10. Applications of nanosecond laser annealing to fabricating p-n homo junction on ZnO nanorods

    NASA Astrophysics Data System (ADS)

    Shimogaki, T.; Ofuji, T.; Tetsuyama, N.; Okazaki, K.; Higashihata, M.; Nakamura, D.; Ikenoue, H.; Asano, T.; Okada, T.

    2013-03-01

    Zinc oxide (ZnO) has attracted considerable attension due to its wide applications in particular ultra violet light emitting diode (UV-LED). In addition, the one-dimensional ZnO crystals are quite attractive as building blocks for light emitting devices like laser and LED, because of their high crystallinity and light confinement properties. However, a method for the realization of the stable p-type ZnO has not been well established. In our study, we have investigated the effect of the nanosecond laser irradiation to the ZnO nanorods as an ultrafast melting and recrystallizing process for realization of the p-type ZnO. Fabrication of the p-n homo junction along ZnO nanorods has been demonstrated using phosphorus ion implantation and ns-laser annealing by a KrF excimer laser. Rectifying I-V characteristics attributed to p-n junction were observed from the measurement of electrical properties. In addition, the penetration depth of laser annealed layer was measured by observing cathode luminescence images. Then, it was turned out that high repetition rate laser annealing can anneal ZnO nanorods over the optical-absorption length. In this report, optical, structural, and electrical characteristics of the phosphorus ion-implanted ZnO nanorods annealed by the KrF excimer laser are discussed.

  11. Vibrational relaxation measurements in an expanding flow using spontaneous Raman scattering

    SciTech Connect

    Sharma, S.P.; Ruffin, S.M.; Gillespie, W.D.; Meyer, S.A. )

    1993-10-01

    Vibrational relaxation of nitrogen in a two-dimensional nozzle flow is studied with spontaneous Raman scattering. An electric arc-driven shock tube operating as a reflected shock tunnel produces stagnation conditions of 5600 K and 100 atm. A 248-nm KrF laser pulse is focused into the nozzle to produce spatially resolved spontaneous Raman spectra. Vibrational population distributions are derived from the spectra for the states v = 0 to v = 8. The experimental results are compared with two theoretical models: (1) the Landau-Teller relaxation model and (2) a numerical solution of the master equations using transition rates derived from Schwartz, Slawsky and Herzfeld (SSH) theory. We have measured a value for the Landau-Teller correction factor (phi) to be 1.0-1.5. 13 refs.

  12. Deposition and characterization of strontium hexa ferrite (SrFe12O19) by PLD technique

    NASA Astrophysics Data System (ADS)

    Khaleeq-ur-Rahman, M.; Bhatti, K. A.; Rafique, M. S.; Latif, A.; fou-uz-Zia, Sultana

    2013-04-01

    KrF* excimer laser (248 nm wavelength) is tightly focused on strontium hexa ferrite (SrFe12O19) to deposit its thin films on glass. Thin films were deposited at room temperature (25 °C) and at 350 °C in the absence and presence of the externally applied (0.5 T) magnetic field in transverse direction. The experiments were performed under vacuum ˜10-6 Torr. All deposited films were characterized for crystallographic structure, surface morphology, magnetic properties, and optical properties using X-Ray Diffractometer (XRD), Scanning electron microscopy (SEM), Vibrating sample magnetometer (VSM) and Spectroscopic ellipsometry (SE). The results thus obtained show that magneto-optical properties of deposited thin films have been enhanced in the presence of magnetic field.

  13. Internal photopumping of Nd3+ (2H9/2, 4F5/2) states in yttrium aluminum garnet by excitation transfer from oxygen deficiency centers and Fe3+ continuum emission

    NASA Astrophysics Data System (ADS)

    Hewitt, J. D.; Spinka, T. M.; Senin, A. A.; Eden, J. G.

    2011-07-01

    Photoexcitation of Nd3+ (2H9/2, 4F5/2) states by the broad (˜70 nm FWHM), near-infrared continuum provided by Fe3+ has been observed at 300 K in bulk yttrium aluminum garnet (YAG) crystals doped with trace concentrations (<50 ppm) of Fe, Cr, and Eu. Irradiation of YAG at 248 nm with a KrF laser, which excites the oxygen deficiency center (ODC) in YAG having peak absorption at ˜240 nm, culminates in ODC→Fe3+ excitation transfer and subsequent Fe3+ emission. This internal optical pumping mechanism for rare earth ions is unencumbered by the requirement for donor-acceptor proximity that constrains conventional Förster-Dexter excitation transfer in co-doped crystals.

  14. A new insight into defect-induced laser damage in UV multilayer coatings

    SciTech Connect

    Reichling, M.; Bodemann, A.; Kaiser, N.

    1995-12-31

    High performance Al{sub 2}O{sub 3}SiO{sub 2} mirror coatings for 248 nm have been investigated with respect to their excimer laser damage resistivity. Global damage thresholds (in the range of 10-20 J/cm{sup 2}) averaged over large areas were determined with the pulsed photoacoustic mirage detection method. With a raster scanning technique utilizing the same detection scheme, the local damage behaviour was studied with 100 {mu}m spatial resolution. It was found that the local damage threshold at specific sites was lower than the global damage threshold and it was assumed that this phenomenon was associated with micrometer-scale defects in the multilayer coating. To test this hypothesis photothermal displacement microscopy with {mu}m lateral resolution was performed on the investigated regions prior to excimer laser light irradiation. Photothermal images revealed an extremely small background absorption and a small number of absorbing defect sites. For a number of such sites a clear correlation between the local absorption and the onset of laser damage at that specific location was found. We conclude that the crucial factor determining the damage resistivity of the high quality coating systems are defects and contaminants and that it will be possible to predict their damage thresholds by a complete microscopic photothermal inspection.

  15. LIF-imaging and gas-phase diagnostics of laser desorbed MALDI-matrix plumes

    SciTech Connect

    Puretzky, A.A.; Geohegan, D.B.

    1997-07-01

    The first gated LIF-imaging and absorption spectroscopy has been performed on laser desorbed plumes from organic crystals which are commonly used as MALDI (Matrix Assisted Laser Desorption Ionization) matrices. These plasma diagnostic techniques, including ion probe measurements were employed to investigate the desorbed products, densities, fractional ionization, and velocity distributions of the plume of ejecta which is typically employed as the main desorption product in the mass spectrometry analysis of large biomolecules. Ultraviolet pulsed 193-nm and 248-nm irradiation of 3-hydroxypicolinic acid (3-HPA) crystals were studied to understand the effect of very different gas-phase absorption cross sections measured here for this material. In both cases, LIF imaging revealed two plume components: a fast (maximum {approximately} 0.1 cm/{micro}s) low-intensity component which appear to be 3-HPA fragments, and a slower component of 3-HPA expanding at 0.05 cm/{micro}s. In the case of ArF-laser irradiation, optical absorption spectroscopy indicated a breaking of the intramolecular hydrogen bond in the gas-phase matrix material.

  16. Study of dopant activation in biaxially compressively strained SiGe layers using excimer laser annealing

    NASA Astrophysics Data System (ADS)

    Luong, G. V.; Wirths, S.; Stefanov, S.; Holländer, B.; Schubert, J.; Conde, J. C.; Stoica, T.; Breuer, U.; Chiussi, S.; Goryll, M.; Buca, D.; Mantl, S.

    2013-05-01

    Excimer Laser Annealing (ELA) with a wavelength of 248 nm is used to study doping of biaxialy compressively strained Si1-xGex/Si heterostructures. The challenge is to achieve a high activation of As in SiGe, while conserving the elastic strain and suppressing dopant diffusion. Doping of 20 nm Si0.64Ge0.36 layers by ion implantation of 1 × 1015 As+/cm2 and subsequent laser annealing using single 20 ns pulse with an energy density of 0.6 J/cm2 leads to an As activation of about 20% and a sheet resistance of 650 Ω/sq. At this laser energy density, the entire SiGe layer melts and the subsequent fast recrystallization on a nanosecond time scale allows high As incorporation into the lattice. Moreover, using these annealing parameters, the SiGe layer exhibits epitaxial regrowth with negligible strain relaxation. ELA at energy densities greater than 0.6 J/cm2 resembles Pulsed Lased Induced Epitaxy, leading to an intermixing of the SiGe layer with the Si substrate, thus to thicker single-crystalline strained SiGe layers with sheet resistance down to 62 Ω/sq. Effects of energy densities on composition, crystal quality, activation of As and co-doping with B are discussed and related to the spatial and temporal evolution of the temperature in the irradiated zone, as simulated by Finite Element Methods.

  17. On the gas dynamics of laser-pulse sputtering of polymethylmethacrylate

    NASA Astrophysics Data System (ADS)

    Braren, Bodil; Casey, Kelly G.; Kelly, Roger

    1991-06-01

    The laser-pulse sputtering of polymers should have two limiting cases. In the one there is ongoing release of particles from the target surface, the particles then form a Knudsen layer (KL), and there is finally an unsteady adiabatic expansion (UAE) ('effusion' model). In the other limit, bond-breakage occurs rapidly over a characteristic depth and the resulting gaslike particles then flow out directly in a UAE without a formal KL ('outflow' model). To test these idealized gas-dynamic descriptions, we discuss experiments in which ˜ 20 ns excimer laser pulses are incident on polymethylmethacrylate in air at 193 or 248 nm and the release process is photographed with a ˜ 1 ns probe pulse. The results not only give explicit support to the gas-dynamic description of the problem, but also indicate that the KL-UAE model is more appropriate. For example, only this model accommodates the observation that the release process continues for ˜ 6 μs, which is ˜ 500 times the laser pulse length.

  18. Biocompatible nanocrystalline octacalcium phosphate thin films obtained by pulsed laser deposition.

    PubMed

    Socol, G; Torricelli, P; Bracci, B; Iliescu, M; Miroiu, F; Bigi, A; Werckmann, J; Mihailescu, I N

    2004-06-01

    We extended for the first time pulsed laser ablation to the deposition of octacalcium phosphate Ca8H2(PO4)6.5H2O (OCP) thin films. The depositions were performed with a pulsed UV laser source (lambda=248 nm, tau> or =20 ns) in a flux of hot water vapors. The targets were sintered from crystalline OCP powder and the laser ablation fluence was set at values of 1.5-2 J/cm2. During depositions the collectors, Si or Ti substrates, were maintained at a constant temperature within the range 20-200 degrees C. The resulting structures were submitted to heat treatment in hot water vapors for up to 6 h. The best results were obtained at a substrate temperature of 150 degrees C during both deposition and post-deposition treatment. High-resolution electron microscopy and XRD at grazing incidence indicated that the coatings obtained were made of nanocrystalline OCP. Cross-section TEM investigations showed that the coatings contained droplets stacked on Ti substrates as well as distributed across the entire thickness of the arborescence-like structure layers. The results of WST-1 assay, cell adherence, DNA replication, and caspase-1 activity confirmed the good biocompatibility of the coatings.

  19. Numerical simulation of microwave amplification in a plasma channel produced in a gas via multiphoton ionisation by a femtosecond laser pulse

    SciTech Connect

    Bogatskaya, A V; Popov, A M; Volkova, E A

    2014-12-31

    This paper examines the evolution of a nonequilibrium plasma channel produced in xenon by a femtosecond KrF laser pulse. We demonstrate that such a channel can be used to amplify microwave pulses over times of the order of the relaxation time of the photoelectron energy spectrum in xenon. Using the slowly varying amplitude approximation, we analyse the propagation and amplification of an rf pulse in a plasma channel, in particular when the rf field influences the electron energy distribution function in the plasma. (interaction of laser radiation with matter. laser plasma)

  20. Survey of Laser Markets Relevant to Inertial Fusion Energy Drivers, information for National Research Council

    SciTech Connect

    Bayramian, A J; Deri, R J; Erlandson, A C

    2011-02-24

    Development of a new technology for commercial application can be significantly accelerated by leveraging related technologies used in other markets. Synergies across multiple application domains attract research and development (R and D) talent - widening the innovation pipeline - and increases the market demand in common components and subsystems to provide performance improvements and cost reductions. For these reasons, driver development plans for inertial fusion energy (IFE) should consider the non-fusion technology base that can be lveraged for application to IFE. At this time, two laser driver technologies are being proposed for IFE: solid-state lasers (SSLs) and KrF gas (excimer) lasers. This document provides a brief survey of organizations actively engaged in these technologies. This is intended to facilitate comparison of the opportunities for leveraging the larger technical community for IFE laser driver development. They have included tables that summarize the commercial organizations selling solid-state and KrF lasers, and a brief summary of organizations actively engaged in R and D on these technologies.

  1. Efficient removal of foxing from a medieval Ptolemaic map using a molecular fluorine laser at 157 nm

    NASA Astrophysics Data System (ADS)

    Cefalas, A. C.; Sarantopoulou, E.; Kollia, Z.

    In this communication, we have used a molecular fluorine laser at 157 nm to remove foxing marks, for the first time, from a medieval Ptolemaic map published in 1580 AD. By applying laser-ablation experimental techniques, the absorption coefficient and the threshold-energy fluence of the paper manuscript were determined . The absorption coefficient at 157 nm was found to be one order of magnitude higher than at 248 nm. There was no evidence of oxidising of the paper substrate following laser treatment of foxing areas at 157 nm (yellowish colour). In order to investigate the basic photo-chemical mechanism of the photo-dissociation dynamics of the paper's cellulose fibres under vacuum ultraviolet irradiation, we applied mass-spectroscopic techniques. Mass spectroscopy reveals that there is breaking of the molecular bonds of the cellulose, even at low laser energy at 157 nm. The cellulose monomer is disintegrated into small photo-fragments, which fly apart with supersonic speed. There were no photo-fragments observed for m/e higher than 32 amu (atomic mass units of m/e). Fragments with two carbon atoms have a relatively higher probability to be dissociated from the parent cellulose molecule than heavier ones. These experimental findings suggest that the bound potential excited electronic states of the parent molecule correlate with dissociative excited electronic states of the molecular photo-fragments at 7.8 eV (λ=157 nm), in agreement with previous results for various organic polymers of similar chemical structure.

  2. Surface morphology and subsurface damaged layer of various glasses machined by 193-nm ArF excimer laser

    NASA Astrophysics Data System (ADS)

    Liao, Yunn-shiuan; Chen, Ying-Tung; Chao, Choung-Lii; Liu, Yih-Ming

    2005-01-01

    Owing to the high bonding energy, most of the glasses are removed by photo-thermal rather than photo-chemical effect when they are ablated by the 193 or 248nm excimer lasers. Typically, the machined surface is covered by re-deposited debris and the sub-surface, sometimes surface as well, is scattered with micro-cracks introduced by thermal stress generated during the process. This study aimed to investigate the nature and extent of the surface morphology and sub-surface damaged (SSD) layer induced by the laser ablation. The effects of laser parameters such as fluence, shot number and repetition rate on the morphology and SSD were discussed. An ArF excimer laser (193 nm) was used in the present study to machine glasses such as soda-lime, Zerodur and BK-7. It is found that the melt ejection and debris deposition tend to pile up higher and become denser in structure under a higher energy density, repetition rate and shot number. There are thermal stress induced lateral cracks when the debris covered top layer is etched away. Higher fluence and repetition rate tend to generate more lateral and median cracks which propagate into the substrate. The changes of mechanical properties of the SSD layer were also investigated.

  3. Selective Area Modification of Silicon Surface Wettability by Pulsed UV Laser Irradiation in Liquid Environment.

    PubMed

    Liu, Neng; Moumanis, Khalid; Dubowski, Jan J

    2015-11-09

    The wettability of silicon (Si) is one of the important parameters in the technology of surface functionalization of this material and fabrication of biosensing devices. We report on a protocol of using KrF and ArF lasers irradiating Si (001) samples immersed in a liquid environment with low number of pulses and operating at moderately low pulse fluences to induce Si wettability modification. Wafers immersed for up to 4 hr in a 0.01% H2O2/H2O solution did not show measurable change in their initial contact angle (CA) ~75°. However, the 500-pulse KrF and ArF lasers irradiation of such wafers in a microchamber filled with 0.01% H2O2/H2O solution at 250 and 65 mJ/cm(2), respectively, has decreased the CA to near 15°, indicating the formation of a superhydrophilic surface. The formation of OH-terminated Si (001), with no measurable change of the wafer's surface morphology, has been confirmed by X-ray photoelectron spectroscopy and atomic force microscopy measurements. The selective area irradiated samples were then immersed in a biotin-conjugated fluorescein-stained nanospheres solution for 2 hr, resulting in a successful immobilization of the nanospheres in the non-irradiated area. This illustrates the potential of the method for selective area biofunctionalization and fabrication of advanced Si-based biosensing architectures. We also describe a similar protocol of irradiation of wafers immersed in methanol (CH3OH) using ArF laser operating at pulse fluence of 65 mJ/cm(2) and in situ formation of a strongly hydrophobic surface of Si (001) with the CA of 103°. The XPS results indicate ArF laser induced formation of Si-(OCH3)x compounds responsible for the observed hydrophobicity. However, no such compounds were found by XPS on the Si surface irradiated by KrF laser in methanol, demonstrating the inability of the KrF laser to photodissociate methanol and create -OCH3 radicals.

  4. Selective Area Modification of Silicon Surface Wettability by Pulsed UV Laser Irradiation in Liquid Environment.

    PubMed

    Liu, Neng; Moumanis, Khalid; Dubowski, Jan J

    2015-01-01

    The wettability of silicon (Si) is one of the important parameters in the technology of surface functionalization of this material and fabrication of biosensing devices. We report on a protocol of using KrF and ArF lasers irradiating Si (001) samples immersed in a liquid environment with low number of pulses and operating at moderately low pulse fluences to induce Si wettability modification. Wafers immersed for up to 4 hr in a 0.01% H2O2/H2O solution did not show measurable change in their initial contact angle (CA) ~75°. However, the 500-pulse KrF and ArF lasers irradiation of such wafers in a microchamber filled with 0.01% H2O2/H2O solution at 250 and 65 mJ/cm(2), respectively, has decreased the CA to near 15°, indicating the formation of a superhydrophilic surface. The formation of OH-terminated Si (001), with no measurable change of the wafer's surface morphology, has been confirmed by X-ray photoelectron spectroscopy and atomic force microscopy measurements. The selective area irradiated samples were then immersed in a biotin-conjugated fluorescein-stained nanospheres solution for 2 hr, resulting in a successful immobilization of the nanospheres in the non-irradiated area. This illustrates the potential of the method for selective area biofunctionalization and fabrication of advanced Si-based biosensing architectures. We also describe a similar protocol of irradiation of wafers immersed in methanol (CH3OH) using ArF laser operating at pulse fluence of 65 mJ/cm(2) and in situ formation of a strongly hydrophobic surface of Si (001) with the CA of 103°. The XPS results indicate ArF laser induced formation of Si-(OCH3)x compounds responsible for the observed hydrophobicity. However, no such compounds were found by XPS on the Si surface irradiated by KrF laser in methanol, demonstrating the inability of the KrF laser to photodissociate methanol and create -OCH3 radicals. PMID:26575362

  5. Ti:sapphire/KrF hybrid laser system generating trains of subterawatt subpicosecond UV pulses

    SciTech Connect

    Zvorykin, V D; Ionin, A A; Levchenko, A O; Mesyats, G A; Seleznev, L V; Sinitsyn, D V; Ustinovskii, N N; Shutov, A V

    2014-05-30

    The GARPUN-MTW Ti:sapphire/KrF hybrid laser system is used to investigate different multipass schemes for amplifying trains of ultrashort pulses (USPs) of subpicosecond duration. It is shown that, for an USP repetition period of 3 – 5 ns, which exceeds the gain-medium recovery time (∼2 ns), trains are amplified in the same way as single USPs. Due to this, a train can efficiently extract pump energy from the amplifier and sum energies of individual USPs. The energy of a four-USP train, extracted during four passes through the preamplifier and two passes through the final KrF amplifier (4 + 2 scheme), is saturated at a level of 1.6 J and corresponds to maximum USP peak powers of about 0.6 TW. The energy of amplified spontaneous emission (ASE), on the contrary, rapidly increases at a large total gain length L{sub eff} ≈ 6 m and is approximately equal to the USP energy. In the (4 + 1) and (2 + 2) schemes the USP energy decreases only slightly, to E{sub out} = 1.3 and 1.2 J, and the ASE fraction is reduced to about 10% and 3%, respectively. USP self-focusing leads to multiple laser beam filamentation and a 200-fold local increase in the radiation intensity in filaments, to ∼2 × 10{sup 11} W cm{sup -2}, a level at which the nonlinear loss in the output CaF{sub 2} windows of the KrF amplifier, caused by three-photon absorption, nonlinear scattering, and broadening of the radiation spectrum to a value exceeding the gain band of the KrF laser transition, becomes the main factor determining the saturation of the USP output energy. (lasers)

  6. A survey of advanced excimer optical imaging and lithography

    NASA Astrophysics Data System (ADS)

    Matsumoto, Koichi; Suwa, Kyoichi

    1998-11-01

    The first item discussed in this paper is to estimate the future trend regarding minimum geometry and the optical parameters, such as NA and wavelength. Simulations based on aerial images are performed for the estimation. The resolution limit is defined as a minimum feature size which retains practical depth of focus (DOF). Pattern geometry is classified into two categories, which are dense lines and isolated lines. Available wavelengths are assumed to be KrF excimer laser (λ=248 nm), ArF excimer laser (λ=193 nm) and F2 excimer laser (λ=157 nm). Based upon the simulation results, the resolution limit is estimated for each geometry and each wavelength. The second item is to survey ArF optics. At present, the ArF excimer laser is regarded as one of the most promising candidates as a next-generation light source. Discussions are ranging over some critical issues. The lifetime of ArF optics supposedly limited by the radiation compaction of silica glass is estimated in comparison with KrF optics. Availability of calcium fluoride (CaF2) is also discussed. As a designing issue, a comparative study is made about the optical configuration, dioptric or catadioptric. In the end, our resist-based performance is shown.

  7. Lithography optics: its present and future

    NASA Astrophysics Data System (ADS)

    Matsumoto, Koichi; Mori, Takashi

    1998-09-01

    Firstly, various technical aspects of ArF optics are surveyed. At present, the ArF excimer laser is regarded as one of the most promising candidates as a next-generation light source for optical lithography. Discussions are ranging over some critical issues of ArF optics. The lifetime of ArF optics supposedly limited by the radiation compaction of silica glass is estimated in comparison with KrF optics. Availability of calcium fluoride (CaF2) is also discussed. As a designing issue, a comparative study is made about the optical configuration, dioptric or catadioptric. In the end, our resist-based performance is shown. Secondly, estimated are the future trend regarding minimum geometry and the optical parameters, such as numerical aperture and wavelength. For the estimation, simulations based on aerial images are performed, where in the resolution limit is defined as a minimum feature size which retains practical depth of focus. Pattern geometry is classified into two categories, which are dense lines and isolated lines. Available wavelengths are assumed to be KrF excimer laser ((λ =248 nm), ArF excimer laser (λ =193 nm) and F2 excimer laser (λ =157 nm). Based upon the simulation results, the resolution limit is estimated for each geometry and each wavelength.

  8. Deposition of tantalum carbide coatings on graphite by laser interactions

    NASA Technical Reports Server (NTRS)

    Veligdan, James; Branch, D.; Vanier, P. E.; Barietta, R. E.

    1994-01-01

    Graphite surfaces can be hardened and protected from erosion by hydrogen at high temperatures by refractory metal carbide coatings, which are usually prepared by chemical vapor deposition (CVD) or chemical vapor reaction (CVR) methods. These techniques rely on heating the substrate to a temperature where a volatile metal halide decomposes and reacts with either a hydrocarbon gas or with carbon from the substrate. For CVR techniques, deposition temperatures must be in excess of 2000 C in order to achieve favorable deposition kinetics. In an effort to lower the bulk substrate deposition temperature, the use of laser interactions with both the substrate and the metal halide deposition gas has been employed. Initial testing involved the use of a CO2 laser to heat the surface of a graphite substrate and a KrF excimer laser to accomplish a photodecomposition of TaCl5 gas near the substrate. The results of preliminary experiments using these techniques are described.

  9. Polysiloxanes with a Phenol Moiety for Bilayer Photoresist Applications

    NASA Astrophysics Data System (ADS)

    Onishi, Yasunobu; Ushirogouchi, Touru; Horiguchi, Rumiko; Hayase, Shuzi

    1989-08-01

    Novel Polysiloxanes with a phenol pendant group were synthesized and applied to bilayer photoresists for g-line and deep-UV (248 nm) lithography. These polymers had adequate aqueous-base solubility and oxygen-RIE resistance to serve as the base resin component for top imaging resists in bilayer resist systems. One of these polysiloxanes was synthesized from chlorodiethoxyphenylsilane and m-trimethylsiloxychlobenzene. Others were synthesized from dichlorophenylsilane and phenol and phenols with a double bond moiety (eugenol, isoeugenol and m-isopropenylphenol). These polysiloxanes had from 9.8 wt.% to 13.1 wt.X Si content and displayed an oxygen-RIE resistance 10 times greater than novolak resin. The m.p. values for these polymers ranged from 30°C to 90°C. The UV transmittance value (at 248 nm, 1 micron thickness) were from 7 % to 76 X. Resists were prepared from these polysiloxanes and sensitizers. In g-line lithography, the sensitizer was naphthoquinonediazide. In deep-UV (248 nm) lithography, the sensitizer was selected from naphtoquinonediazide, diazide and diazo compounds. 0.5 micron line and space patterns were obtained, when the resist was exposed using a g-line stepper, and using a tetramethylammonium hydroxide solution (ca. 1.3 %). 0.4 micron line and space patterns were resolved, when the resist was exposed using a KrF excimer laser stepper, and developed using the same solution. The top layer pattern could be transferred to the bottom layer (hard baked positive resist OFPR-5000) using oxygen-RIE. The etching rate for the silicon containing resist was 35 nm/min, while that for OFPR-5000 was 555 nm/min. These polysiloxanes make it possible to obtain the fine pattern resolution required in VLSI processing.

  10. On the role of multiphoton light absorption in pulsed laser nanoablation of diamond

    NASA Astrophysics Data System (ADS)

    Komlenok, M. S.; Kononenko, V. V.; Gololobov, V. M.; Konov, V. I.

    2016-02-01

    The rates of multipulse nanoablation of the diamond surface in air by pico- and nanosecond laser pulses that cause singlephoton, two-photon, three-photon and four-photon absorption in diamond are measured. In the experiments the radiation of ArF, KrF and Ti : Al2O3 lasers and the second harmonic of the Yb : YAG laser was used. The power dependence of the material etching rate on the fluence of laser pulses was found. The power exponent of this dependence appeared to be twice lower than that found earlier for femtosecond pulses. We discuss the causes of the difference in the nanoablation regularities for 'short' and 'long' laser pulses.

  11. Crystallization to polycrystalline silicon thin film and simultaneous inactivation of electrical defects by underwater laser annealing

    NASA Astrophysics Data System (ADS)

    Machida, Emi; Horita, Masahiro; Ishikawa, Yasuaki; Uraoka, Yukiharu; Ikenoue, Hiroshi

    2012-12-01

    We propose a low-temperature laser annealing method of a underwater laser annealing (WLA) for polycrystalline silicon (poly-Si) films. We performed crystallization to poly-Si films by laser irradiation in flowing deionized-water where KrF excimer laser was used for annealing. We demonstrated that the maximum value of maximum grain size of WLA samples was 1.5 μm, and that of the average grain size was 2.8 times larger than that of conventional laser annealing in air (LA) samples. Moreover, WLA forms poly-Si films which show lower conductivity and larger carrier life time attributed to fewer electrical defects as compared to LA poly-Si films.

  12. Crystallization to polycrystalline silicon thin film and simultaneous inactivation of electrical defects by underwater laser annealing

    SciTech Connect

    Machida, Emi; Horita, Masahiro; Ishikawa, Yasuaki; Uraoka, Yukiharu; Ikenoue, Hiroshi

    2012-12-17

    We propose a low-temperature laser annealing method of a underwater laser annealing (WLA) for polycrystalline silicon (poly-Si) films. We performed crystallization to poly-Si films by laser irradiation in flowing deionized-water where KrF excimer laser was used for annealing. We demonstrated that the maximum value of maximum grain size of WLA samples was 1.5 {mu}m, and that of the average grain size was 2.8 times larger than that of conventional laser annealing in air (LA) samples. Moreover, WLA forms poly-Si films which show lower conductivity and larger carrier life time attributed to fewer electrical defects as compared to LA poly-Si films.

  13. KrF resists for implant layers patterning extreme high-aspect ratio structures with a double focal plane exposure technique

    NASA Astrophysics Data System (ADS)

    Rafaelli, Giorgio; Ferri, Fabio; Volpi, Stefano; Hong, Chisun

    2012-03-01

    The design rules for advanced image sensor applications are requiring continuous CD shrinkage, and increasing aspect ratios which resulting in major challenges associated with using KrF technology. For the implant photo layers in particular, the need to block high-energy boron implants (well above 2 MeV) with extremely localized implant profiles requires an aspect ratio of deep well structures greater than 10:1. Other desirable attributes of a good photoresist for such demanding applications are high transparency, a steep wall profile consistent throughout the entire film, good adhesion with no structure collapse, and a wide process window. In this paper, we will discuss the role of a chemically amplified, ESCAP-type of resist in meeting these design criteria using a double focal plane exposure technique.

  14. Simulation-based formulation of a nonchemically amplified resist for 257-nm laser mask fabrication

    NASA Astrophysics Data System (ADS)

    Rathsack, Benjamen M.; Tabery, Cyrus E.; Stachowiak, Timothy B.; Albelo, Jeff A.; Willson, C. Grant

    2000-06-01

    The demand for smaller and more uniform features on photomasks has inspired consideration of a DUV (257 nm) resist process for optical pattern generation. Chemically amplified resists require storage and exposure in carbon filtered environments, and they require post-exposure bakes. Few mask facilities are set up to handle chemically amplified resists commonly used in deep UV wafer fabrication process. Hence, it is appropriate to explore the lithographic performance of non-chemically amplified resist materials for 257 nm laser photomask lithography. Resist characterization and lithography simulation were used to formulate a 257 nm resist from DNQ/novolak materials provided by a commercial resist supplier. Diazonaphthoquinone (DNQ)/novolak resists have not been used for DUV Integrated Circuit (IC) applications mainly due to the low sensitivity and the strong absorbance of the DNQ photoactive compound (PAC) at 248 nm. However, a 2,1,4 DNQ based resist has been characterized that bleaches at 257 nm and inhibits novolak. The photoproduct of the 2,1,4 DNQ PAC is much more transparent at 257 nm than 248 nm. Novolak resin also has an absorbance minimum in the DUV at 257 nm that provides transparency similar to poly (hydroxystyrene). Traditional photoresist formulation requires tedious, iterative, and expensive manufacturing trials. Resist characterization and lithography simulation can be used to relate lithographic performance (resolution, sidewall and process latitude) to resist formulation parameters (PAC concentration, developer concentration, etc.), thereby supporting the formulation optimization. An exposure system using a 257 nm frequency doubled argon laser system has been constructed to study the resist photokinetics. Dill exposure parameters (A, B and C) have been extracted for a 2,1,4 DNQ/novolak based resist. Dissolution rate measurements have been made with a development rate monitor developed at the University of Texas at Austin. Simulation using the

  15. Tunable stoichiometry of SiOx-BaTiOy-BOz fabricated by multitarget pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Jones, John G.; Goldstein, Jonathan T.; Smith, Steven R.; Landis, Gerald R.; Grazulis, Lawrence; Sun, Lirong; Murphy, Neil R.; Kozlowski, Gregory; Jakubiak, Rachel; Stutz, Charles E.

    2015-01-01

    Oxide materials of desired stoichiometry are challenging to make in small quantities. Nanostructured thin films of multiple oxide materials were obtained by using pulsed laser deposition and multiple independent targets consisting of Si, BaTiO3, and B. Programmable stoichiometry of nanostructured thin films was achieved by synchronizing a 248-nm krypton fluoride excimer laser at an energy of 300 mJ/pulse, a galvanometer mirror system, and the three independent target materials with a background pressure of oxygen. Island growth occurred on a per pulse basis; some 500 pulses are required to deposit 1 nm of material. The number of pulses on each target was programmed with a high degree of precision. Trends in material properties were systematically identified by varying the stoichiometry of multiple nanostructured thin films and comparing the resulting properties measured using in situ spectroscopic ellipsometry, capacitance measurements including relative permittivity and loss, and energy dispersive spectroscopy (EDS). Films were deposited ˜150 to 907 nm thickness, and in situ ellipsometry data were modeled to calculate thickness n and k. A representative atomic force microscopy measurement was also collected. EDS, ellipsometry, and capacitance measurements were all performed on each of the samples, with one sample having a calculated permittivity greater than 20,000 at 1 kHz.

  16. Rigid biodegradable photopolymer structures of high resolution using deep-UV laser photocuring

    NASA Astrophysics Data System (ADS)

    Brandi, F.; Anjum, F.; Ceseracciu, L.; Barone, A. C.; Athanassiou, A.

    2011-05-01

    Recently there has been increasing effort in using microstereolithography to produce scaffolds of crosslinkable and biodegradable polymers, with desired configurations of high spatial resolution, able to regulate the growth and distribution of cells and consequently the tissue development and engineering on them. The use of deep-UV radiation allows high resolution both in the transversal plane (optical resolution) and in the vertical direction (curing depth) due to the intrinsic large absorption of polymers in this region of the electromagnetic spectrum. Herein we present high-resolution photocrosslinking of the biodegradable poly(propylene fumarate) (PPF) and diethyl fumarate (DEF), using pulsed laser light at 248 nm. The curing depth can be modulated between a few hundreds of nanometers (nm) and a few micrometers (µm) by adjusting the energy dose, the number of incident pulses and the weight ratios of PPF, DEF and photoinitiator in the photocrosslinkable mixtures. The lateral resolution is evaluated by projecting a pattern of a grid with a specified line width and line spacing, and is found to be a few µm. Young's modulus of the cured parts is measured and found to be several GPa, high enough to support bone formation. The results presented here demonstrate that the proposed technique is suitable for the fabrication of stiff and biocompatible structures with defined patterns of micrometer resolution in all three spatial dimensions, setting the first step toward deep-UV laser microstereolithography.

  17. Optimization of substrate-target distance for pulsed laser deposition of tungsten oxide thin films using Langmuir probe

    NASA Astrophysics Data System (ADS)

    Panda, A. Kumar; Singh, A.; Thirumurugesan, R.; Kuppusami, P.; Mohandas, E.

    2015-09-01

    The paper investigates the spatial and temporal variation of laser produced plasma of tungsten oxide using a Langmuir probe. The plasma was produced by laser ablation of tungsten oxide target using an Excimer laser of wavelength 248 nm. Our experimental studies confirmed that oxygen partial pressure (P) of 2× 10-2 mbar is sufficient enough to get stoichiometric tungsten oxide thin films and the plume dynamics was diagnosed for their spatial and temporal behaviour at the above optimised oxygen pressure. Spatial distribution was recorded with the target to substrate distance (D) ranging from the target position to a distance of 75 mm away from the target, whereas the temporal variation was taken in the range of 0-50 μ S with an interval of 0.5 μ S. The average electron densities were found to be maximum at 30 mm from the target position. However, ion density was constant beyond the probe distance of 45 mm from the target. The plasma current was found to be maximum at 28 μ S. The target to substrate distance was optimized for homogenous adherent good quality thin films using plasma parameters such as ion density and average electron density obtained at different oxygen pressure. The target distance and background gas pressure were correlated as PD scaling law and fitted as PD3 in the model.

  18. Rapid fabrication of rigid biodegradable scaffolds by excimer laser mask projection technique: a comparison between 248 and 308 nm

    NASA Astrophysics Data System (ADS)

    Beke, S.; Anjum, F.; Ceseracciu, L.; Romano, I.; Athanassiou, A.; Diaspro, A.; Brandi, F.

    2013-03-01

    High-resolution photocrosslinking of the biodegradable poly(propylene fumarate) (PPF) and diethyl fumarate (DEF), using pulsed laser light at 248 and 308 nm is presented. The curing depth can be modulated between a few hundreds of nm and a few μm when using 248 nm and ten to a hundred μm when using 308 nm. By adjusting the total fluence (pulse numbers×laser fluence) dose and the weight ratios of PPF, DEF, and the photoinitiator in the photocrosslinkable mixtures, the height of polymerized structures can be precisely tuned. The lateral resolution is evaluated by projecting a pattern of a grid with a specified line width and line spacing. Young’s modulus of the cured parts is measured and found to be several GPa for both wavelengths, high enough to support bone formation. Several 2D and 2.5D microstructures, as well as porous 3D scaffolds fabricated by a layer-by-layer method, are presented. The results demonstrate that excimer laser-based photocuring is suitable for the fabrication of stiff and biocompatible structures with defined patterns of micrometer resolution in all three spatial dimensions.

  19. Modifications in surface, structural and mechanical properties of brass using laser induced Ni plasma as an ion source

    NASA Astrophysics Data System (ADS)

    Ahmad, Shahbaz; Bashir, Shazia; Rafique, M. Shahid; Yousaf, Daniel

    2016-03-01

    Laser induced Ni plasma has been employed as source of ion implantation for surface, structural and mechanical properties of brass. Excimer laser (248 nm, 20 ns, 120mJ and 30 Hz) was used for the generation of Ni plasma. Thomson parabola technique was employed to estimate the energy of generated ions using CR39 as a detector. In response to stepwise increase in number of laser pulses from 3000 to 12000, the ion dose varies from 60 × 1013 to 84 × 1016 ions/cm2 with constant energy of 138 KeV. SEM analysis reveals the growth of nano/micro sized cavities, pores, pits, voids and cracks for the ion dose ranging from 60 × 1013 to 70 × 1015 ions/cm2. However, at maximum ion dose of 84 × 1016 ions/cm2 the granular morphology is observed. XRD analysis reveals that new phase of CuZnNi (200) is formed in the brass substrate after ion implantation. However, an anomalous trend in peak intensity, crystallite size, dislocation line density and induced stresses is observed in response to the implantation with various doses. The increase in ion dose causes to decrease the Yield Stress (YS), Ultimate Tensile Strength (UTS) and hardness. However, for the maximum ion dose the highest values of these mechanical properties are achieved. The variations in the mechanical properties are correlated with surface and crystallographical changes of ion implanted brass.

  20. Ti:sapphire/KrF hybrid laser system generating trains of subterawatt subpicosecond UV pulses

    NASA Astrophysics Data System (ADS)

    Zvorykin, V. D.; Ionin, A. A.; Levchenko, A. O.; Mesyats, G. A.; Seleznev, L. V.; Sinitsyn, D. V.; Ustinovskii, N. N.; Shutov, A. V.

    2014-05-01

    The GARPUN-MTW Ti:sapphire/KrF hybrid laser system is used to investigate different multipass schemes for amplifying trains of ultrashort pulses (USPs) of subpicosecond duration. It is shown that, for an USP repetition period of 3 - 5 ns, which exceeds the gain-medium recovery time (~2 ns), trains are amplified in the same way as single USPs. Due to this, a train can efficiently extract pump energy from the amplifier and sum energies of individual USPs. The energy of a four-USP train, extracted during four passes through the preamplifier and two passes through the final KrF amplifier (4 + 2 scheme), is saturated at a level of 1.6 J and corresponds to maximum USP peak powers of about 0.6 TW. The energy of amplified spontaneous emission (ASE), on the contrary, rapidly increases at a large total gain length Leff ≈ 6 m and is approximately equal to the USP energy. In the (4 + 1) and (2 + 2) schemes the USP energy decreases only slightly, to Eout = 1.3 and 1.2 J, and the ASE fraction is reduced to about 10% and 3%, respectively. USP self-focusing leads to multiple laser beam filamentation and a 200-fold local increase in the radiation intensity in filaments, to ~2 × 1011 W cm-2, a level at which the nonlinear loss in the output CaF2 windows of the KrF amplifier, caused by three-photon absorption, nonlinear scattering, and broadening of the radiation spectrum to a value exceeding the gain band of the KrF laser transition, becomes the main factor determining the saturation of the USP output energy.

  1. Laser-fusion rocket for interplanetary propulsion

    SciTech Connect

    Hyde, R.A.

    1983-09-27

    A rocket powered by fusion microexplosions is well suited for quick interplanetary travel. Fusion pellets are sequentially injected into a magnetic thrust chamber. There, focused energy from a fusion Driver is used to implode and ignite them. Upon exploding, the plasma debris expands into the surrounding magnetic field and is redirected by it, producing thrust. This paper discusses the desired features and operation of the fusion pellet, its Driver, and magnetic thrust chamber. A rocket design is presented which uses slightly tritium-enriched deuterium as the fusion fuel, a high temperature KrF laser as the Driver, and a thrust chamber consisting of a single superconducting current loop protected from the pellet by a radiation shield. This rocket can be operated with a power-to-mass ratio of 110 W gm/sup -1/, which permits missions ranging from occasional 9 day VIP service to Mars, to routine 1 year, 1500 ton, Plutonian cargo runs.

  2. The formation of the two-way shape memory effect in rapidly quenched TiNiCu alloy under laser radiation

    NASA Astrophysics Data System (ADS)

    Shelyakov, A. V.; Sitnikov, N. N.; Sheyfer, D. V.; Borodako, K. A.; Menushenkov, A. P.; Fominski, V. Yu

    2015-11-01

    The effect of pulsed laser radiation (λ = 248 nm, τ = 20 ns) on structural properties and shape memory behavior of the rapidly quenched Ti50Ni25Cu25 alloy ribbon was studied. The radiation energy density was varied from 2 to 20 mJ mm-2. The samples were characterized by means of scanning electron microscopy, x-ray diffraction, microhardness measurements and shape memory bending tests. It was ascertained that the action of the laser radiation leads to the formation of a structural composite material due to amorphization or martensite modification in the surface layer of the ribbon. Two methods are proposed which allow one to generate the pronounced two-way shape memory effect (TWSME) in a local area of the ribbon by using only a single pulse of the laser radiation. With increasing energy density of laser treatment, the magnitude of the reversible angular displacement with realization of the TWSME increases. The developed techniques can be used for the creation of various micromechanical devices.

  3. Kinetic modelling of krypton fluoride laser systems

    SciTech Connect

    Jancaitis, K.S.

    1983-11-01

    A kinetic model has been developed for the KrF* rare gas halide laser system, specifically for electron-beam pumped mixtures of krypton, fluorine, and either helium or argon. The excitation produced in the laser gas by the e-beam was calculated numerically using an algorithm checked by comparing the predicted ionization yields in the pure rare gases with their experimental values. The excitation of the laser media by multi-kilovolt x-rays was also modeled and shown to be similar to that produced by high energy electrons. A system of equations describing the transfer of the initial gas excitation into the laser upper level was assembled using reaction rate constants from both experiment and theory. A one-dimensional treatment of the interaction of the laser radiation with the gas was formulated which considered spontaneous and stimulated emission and absorption. The predictions of this model were in good agreement with the fluorescence signals and gain and absorption measured experimentally.

  4. Control of optical and electrical properties of ZnO nanocrystals by nanosecond-laser annealing

    NASA Astrophysics Data System (ADS)

    Shimogaki, T.; Ofuji, T.; Tetsuyama, N.; Kawahara, H.; Higashihata, M.; Ikenoue, H.; Nakamura, D.; Okada, T.

    2014-03-01

    Effects of laser annealing on electrical and optical properties of Zinc oxide (ZnO) nanocrystals, which are expected as building blocks for optoelectronic devices, have been investigated in this study. In the case of fabricating p-n junction in single one-dimensional ZnO nanocrystal, phosphorus-ions implanted p-type ZnO nanocrystals were recrystallized and recovered in the optical properties by nanosecond-laser annealing using a KrF excimer laser. Antimony-doped p-type ZnO nanocrystals were synthesized by irradiating laminated structure which antimony thin film were deposited on ZnO nanocrystals with the laser beam. Additionally, it is possible to control the growth rate of ZnO nanowires by using laser annealing. Irradiating with pulsed laser a part of ZnO buffer layer deposited on the a-cut sapphire substrate, then ZnO nanowires were grown on the ZnO buffer layer by the nanoparticle assisted pulsed laser deposition method. As a result, the clear boundary of the laser annealed and non-laser annealed area was appeared. It was observed that ZnO nanowires were grown densely at non-laser annealed area, on the other hand, sparse ones were grown at the laser-annealed region. In this report, the possibility of laser annealing techniques to establish the stable and reliable fabrication process of ZnO nanowires-based LD and LED are discussed on the basis of experimental results.

  5. Theoretical modeling of laser ablation of quaternary bronze alloys: case studies comparing femtosecond and nanosecond LIBS experimental data.

    PubMed

    Fornarini, Lucilla; Fantoni, Roberta; Colao, Francesco; Santagata, Antonio; Teghil, Roberto; Elhassan, Asmaa; Harith, Mohamed A

    2009-12-31

    A model, formerly proposed and utilized to understand the formation of laser induced breakdown spectroscopy (LIBS) plasma upon irradiation with nanosecond laser pulses at different fluences and wavelengths, has been extended to the irradiation with femtosecond laser pulses in order to control the fractionation mechanisms which heavily affect the application of laser-ablation-based microanalytical techniques. The model takes into account the different chemico-physical processes occurring during the interaction of an ultrashort laser pulse with a metallic surface. In particular, a two-temperature description, relevant to the electrons and lattice of the substrate, respectively, has been introduced and applied to different ternary and quaternary copper-based alloys subjected to fs and ns ablation both in the visible (527 nm) and in the UV (248 nm). The model has been found able to reproduce the shorter plasma duration experimentally found upon fs laser ablation. Kinetic decay times of several copper (major element) emission lines have been examined together with those relevant to the main plasma parameters. The plasma experimental temperature, derived assuming a Boltzmann distribution, and the electron density following the Saha equation have been compared with the corresponding theoretical data. A satisfactory description of plasma parameters and main matrix constituent composition has been obtained in the time window where local thermal equilibrium was assumed for LIBS data analysis. Improved analytical capabilities are predicted upon delayed detection of plasma emission in femtosecond LIBS, in relation to the better LOD achieved and to the improved data reproducibility expected. Results support the utilization of ultrafast laser sources for trace detection, despite the residual fractionation occurring in the examined range of fluences which affects the linearity of experimental calibration curves built for tin and lead after internal standardization on copper. The

  6. Extended plasma channels created by UV laser in air and their application to control electric discharges

    NASA Astrophysics Data System (ADS)

    Zvorykin, V. D.; Ionin, A. A.; Levchenko, A. O.; Seleznev, L. V.; Sinitsyn, D. V.; Smetanin, I. V.; Ustinovskii, N. N.; Shutov, A. V.

    2015-02-01

    Results are presented from a series of experimental and theoretical studies on creating weakly ionized extended plasma channels in atmospheric air by 248-nm UV laser radiation and their application to control long high-voltage discharges. The main mechanisms of air ionization by UV laser pulses with durations from 100 fs to 25 ns and intensities in the ranges of 3×1011-1.5×1013 and 3×106-3×1011 W/cm2, respectively, which are below the threshold for optical gas breakdown, as well as the main relaxation processes in plasma with a density of 109-1017 cm-3, are considered. It is shown that plasma channels in air can be efficiently created by amplitude-modulated UV pulses consisting of a train of subpicosecond pulses producing primary photoelectrons and a long UV pulse suppressing electron attachment and sustaining the density of free electrons in plasma. Different modes of the generation and amplification of trains of subterawatt subpicosecond pulses and amplitude-modulated UV pulses with an energy of several tens of joules were implemented on the GARPUN-MTW hybrid Ti:sapphire-KrF laser facility. The filamentation of such UV laser beams during their propagation in air over distances of up to 100 m and the parameters of the corresponding plasma channels were studied experimentally and theoretically. Laser initiation of high-voltage electric discharges and control of their trajectories by means of amplitude-modulated UV pulses, as well as the spatiotemporal structure of breakdowns in air gaps with length of up to 80 cm, were studied.

  7. Extended plasma channels created by UV laser in air and their application to control electric discharges

    SciTech Connect

    Zvorykin, V. D. Ionin, A. A.; Levchenko, A. O.; Seleznev, L. V.; Sinitsyn, D. V.; Smetanin, I. V.; Ustinovskii, N. N.; Shutov, A. V.

    2015-02-15

    Results are presented from a series of experimental and theoretical studies on creating weakly ionized extended plasma channels in atmospheric air by 248-nm UV laser radiation and their application to control long high-voltage discharges. The main mechanisms of air ionization by UV laser pulses with durations from 100 fs to 25 ns and intensities in the ranges of 3×10{sup 11}–1.5×10{sup 13} and 3×10{sup 6}–3×10{sup 11} W/cm{sup 2}, respectively, which are below the threshold for optical gas breakdown, as well as the main relaxation processes in plasma with a density of 10{sup 9}–10{sup 17} cm{sup −3}, are considered. It is shown that plasma channels in air can be efficiently created by amplitude-modulated UV pulses consisting of a train of subpicosecond pulses producing primary photoelectrons and a long UV pulse suppressing electron attachment and sustaining the density of free electrons in plasma. Different modes of the generation and amplification of trains of subterawatt subpicosecond pulses and amplitude-modulated UV pulses with an energy of several tens of joules were implemented on the GARPUN-MTW hybrid Ti:sapphire-KrF laser facility. The filamentation of such UV laser beams during their propagation in air over distances of up to 100 m and the parameters of the corresponding plasma channels were studied experimentally and theoretically. Laser initiation of high-voltage electric discharges and control of their trajectories by means of amplitude-modulated UV pulses, as well as the spatiotemporal structure of breakdowns in air gaps with length of up to 80 cm, were studied.

  8. KrF-excimer laser pretreatment and metallization of polymers

    NASA Astrophysics Data System (ADS)

    Weichenhain, R.; Wesner, D. A.; Pfleging, W.; Horn, H.; Kreutz, E. W.

    1997-02-01

    Metal film adhesion to polymers can be improved by pretreatment with UV-laser radiation before metal deposition. Chemical changes associated with irradiation are investigated for polyimide (PI) and polybutylene terephthalate (PBT) surfaces. Irradiated surfaces are coated with aluminum films ≤10 nm in thickness, enabling the effects of irradiation on the metal/polymer interface to be studied. Irradiation is done in air with KrF-excimer laser radiation (λ=248 nm) at fluences per pulse ≤600 mJ/cm2. The threshold fluence εt for material removal is determined by profilometry measurements of etched features, and the chemical properties of the polymer and the metal/polymer interface are studied with X-ray photoelectron spectroscopy (XPS). Aluminum films are thermally evaporated in situ in the XPS spectrometer. Irradiation of PI at fluences near εt (41 mJ/cm2) results in loss of oxygen and opening of the imide ring, resulting in doubly bonded nitrogen species. After evaporation of aluminum the carbonyl (CO) C1s XPS signal is reduced in intensity, and both Al0 and Al3+ are found, the latter being located at the interface. In comparison to unirradiated areas, irradiated areas have more aluminum in total and a higher proportion of interfacial Al3+ species, indicating an increase in the concentration of metal binding sites. Although for PBT the O to C ratio also decreases with irradiation at fluences near εt (38 mJ/cm2), changes in the amounts of Al0 or Al3+ for irradiated areas in comparison to unirradiated areas are much smaller than for PI and consist mainly of a slight enhancement of Al0 for films deposited on irradiated surfaces.

  9. Enhanced electrical and optical properties of room temperature deposited Aluminium doped Zinc Oxide (AZO) thin films by excimer laser annealing

    NASA Astrophysics Data System (ADS)

    El hamali, S. O.; Cranton, W. M.; Kalfagiannis, N.; Hou, X.; Ranson, R.; Koutsogeorgis, D. C.

    2016-05-01

    High quality transparent conductive oxides (TCOs) often require a high thermal budget fabrication process. In this study, Excimer Laser Annealing (ELA) at a wavelength of 248 nm has been explored as a processing mechanism to facilitate low thermal budget fabrication of high quality aluminium doped zinc oxide (AZO) thin films. 180 nm thick AZO films were prepared by radio frequency magnetron sputtering at room temperature on fused silica substrates. The effects of the applied RF power and the sputtering pressure on the outcome of ELA at different laser energy densities and number of pulses have been investigated. AZO films deposited with no intentional heating at 180 W, and at 2 mTorr of 0.2% oxygen in argon were selected as the optimum as-deposited films in this work, with a resistivity of 1×10-3 Ω.cm, and an average visible transmission of 85%. ELA was found to result in noticeably reduced resistivity of 5×10-4 Ω.cm, and enhancing the average visible transmission to 90% when AZO is processed with 5 pulses at 125 mJ/cm2. Therefore, the combination of RF magnetron sputtering and ELA, both low thermal budget and scalable techniques, can provide a viable fabrication route of high quality AZO films for use as transparent electrodes.

  10. Excimer laser annealing to fabricate low cost solar cells. Quarterly technical report No. 1, 26 March-30 June 1984

    SciTech Connect

    Not Available

    1984-07-01

    The objective of this research is to show whether or not pulsed excimer laser annealing (PELA) of ion-implanted junctions is a cost effective replacement for diffused junctions in fabricating crystalline silicon solar cells. The preliminary economic analysis completed during the first quarter of this program shows that the use of PELA to fabricate both the front junction and back surface field (BSF) would cost approximately 35 cents per peak watt (Wp), compared to a cost of 15 cents/Wp for diffusion, aluminum BSF and an extra cleaning step in the baseline process described by JPL. The cost advantage of the PELA process depends on improving the average cell efficiency from 14% to 16%, which would lower the overall cost of the module by about 15 cents/Wp. The technical goal of this research is to develop an optimized PELA process compatible with commercial production, and to demonstrate increased cell efficiency with sufficient product for adequate statistical analysis. During the first quarter of this program an excimer laser annealing station was set-up and made operational. The first experiment used 248 nm radiation to anneal phosphorus implants in polished and texture-etched silicon. Preliminary results showed that the PELA processed cells had overall efficiencies comparable to furnace annealed ion implanted controls, and that texture-etched material requires lower fluence for annealing than polished silicon. Process optimization will be carried out in the second quarter.

  11. Summary of the laser working group

    SciTech Connect

    Bigio, I.J.; Kurnit, N.A. ); Donaldson, W.R. . Lab. for Laser Energetics); Geissler, K. ); Srinivasan-Rao, T. )

    1988-10-01

    The laser working group considered several options to deliver synchronized laser pulses of the required energy to the photocathode and laser triggered switches. These requirements actually decreased during the course of the workshop, and the values finally settled upon (<10 {mu}J in 100 fs at {approximately}250 nm for the photocathode and {approximately}20 mJ in 2 ps near either 250 nm or 1 {mu}m for the switches) were considered to be well within the state of the art. Some development work may be required, however, to provide a system that has the desirable characteristics of stability, ease of use and low maintenance. The baseline concept, which is similar to a number of existing systems, utilizes doubled Nd:YAG-pumped dye oscillator/amplifiers to produce an upconverted picosecond pulse that can be amplified to tens of mJ in a KrF excimer laser. A fraction of the dye oscillator output is also compressed by means of a fiber-grating compressor and further amplified in a dye amplifier before being upconverted to produce the synchronized pulse for the photocathode. 9 refs., 1 fig.

  12. Thermoelectric conversion via laser-induced voltage in highly textured polycrystalline Na{sub x}CoO{sub 2} ceramic

    SciTech Connect

    Yan, G. W.; Wang, Y.; Zhang, H.; Yu, L.; Zhang, P. X.; Habermeier, H.-U.

    2011-11-15

    We have studied and analyzed the laser-induced voltage effect in highly c-axis-oriented polycrystalline Na{sub x}CoO{sub 2}. The textured and layered stacking Na{sub x}CoO{sub 2} (x {approx} 0.7) bulks were prepared by a solid-state reaction process. Under the irradiation on Na{sub 0.67}CoO{sub 2} bulk surface with pulsed laser ({lambda} = 248 nm), the induced voltage signals were observed on the inclined surface with rise time 30 ns-43 ns and peak voltage 200 mV-500 mV; the voltage peak values show a linear dependence of laser energy densities. The crystal grains orientation plays a critical role in voltage peak value whether in film or texture bulk. The transverse voltage signal brings the information of thermoelectric anisotropy. In Na{sub x}CoO{sub 2} band structure, the Fermi surface is different in the ab plane and along the c axis, leading to anisotropy of Seebeck coefficient. Additionally, the artificial structure of the inclined surface for highly textured bulk enables us to obtain a transverse voltage on inclined surface. These results demonstrated the layered textured bulk has potential applications in waste-heat conversion via transverse thermoelectric effect.

  13. Two-meter laser material response impulse measurements

    NASA Astrophysics Data System (ADS)

    Robertson, Karin; Cates, Michael C.

    1988-02-01

    Impulse generated by Excimer Laser Target interactions has been extensively studied at Maxwell Labs. Inc. Results are presented of impulse measurements on aluminum targets using the SDIO/MLI Two Meter Laser operating with KrF as the lasing media. The results of previous MLI impulse measurements using XeF laser media are summarized. The work presented was motivated by earlier impulse measurements also taken on the Two Meter Laser. The data showed much higher impulse to energy ratios than predicted. Additionally, work done elsewhere gave lower I/E values than those found at MLI. The initial MLI impulse studies used a Fotonic gauge as a velocity sensor. As a check on its accuracy, impulse was measured using a simple pendulum; the results agreed with the Fotonic gauge data. A careful investigation of the pendulum experimental technique followed; no problem were found. The S-Cubed ZOOS code was also examined. It is a 1 and 1/2-D code, and only accounts for impulse delivered under the Laser footprint. Additional momentum, however, is provided outside the laser spot via the plasma cloud that results from the laser target interaction.

  14. Transformation of medical grade silicone rubber under Nd:YAG and excimer laser irradiation: First step towards a new miniaturized nerve electrode fabrication process

    NASA Astrophysics Data System (ADS)

    Dupas-Bruzek, C.; Robbe, O.; Addad, A.; Turrell, S.; Derozier, D.

    2009-08-01

    Medical grade silicone rubber, poly-dimethylsiloxane (PDMS) is a widely used biomaterial. Like for many polymers, its surface can be modified in order to change one or several of its properties which further allow this surface to be functionalized. Laser-induced surface modification of PDMS under ambient conditions is an easy and powerful method for the surface modification of PDMS without altering its bulk properties. In particular, we profit from both UV laser inducing surface modification and of UV laser micromachining to develop a first part of a new process aiming at increasing the number of contacts and tracks within the same electrode surface to improve the nerve selectivity of implantable self sizing spiral cuff electrodes. The second and last part of the process is to further immerse the engraved electrode in an autocatalytic Pt bath leading in a selective Pt metallization of the laser irradiated tracks and contacts and thus to a functionalized PDMS surface. In the present work, we describe the different physical and chemical transformations of a medical grade PDMS as a function of the UV laser and of the irradiation conditions used. We show that the ablation depths, chemical composition, structure and morphology vary with (i) the laser wavelength (using an excimer laser at 248 nm and a frequency-quadrupled Nd:YAG laser at 266 nm), (ii) the conditions of irradiation and (iii) the pulse duration. These different modified properties are expected to have a strong influence on the nucleation and growth rates of platinum which govern the adhesion and the thickness of the Pt layer on the electrodes and thus the DC resistance of tracks.

  15. Thin film passivation of laser generated 3D micro patterns in lithium manganese oxide cathodes

    NASA Astrophysics Data System (ADS)

    Pröll, J.; Kohler, R.; Bruns, M.; Oberst, V.; Weidler, P. G.; Heißler, S.; Kübel, C.; Scherer, T.; Prang, R.; Seifert, H. J.; Pfleging, W.

    2013-03-01

    The increasing need for long-life lithium-ion batteries requires the further development of electrode materials. Especially on the cathode side new materials or material composites are needed to increase the cycle lifetime. On the one hand, spinel-type lithium manganese oxide is a promising candidate to be used as cathode material due to its non-toxicity, low cost and good thermal stability. On the other hand, the spinel structure suffers from change in the oxidation state of manganese during cycling which is also accompanied by loss of active material into the liquid electrolyte. The general trend is to enhance the active surface area of the cathode in order to increase lithium-ion mobility through the electrode/electrolyte interface, while an enhanced surface area will also promote chemical degradation. In this work, laser microstructuring of lithium manganese oxide thin films was applied in a first step to increase the active surface area. This was done by using 248 nm excimer laser radiation and chromium/quartz mask imaging techniques. In a second step, high power diode laser-annealing operating at a wavelength of 940 nm was used for forming a cubic spinel-like battery phase. This was verified by means of Raman spectroscopy and cyclic voltammetric measurements. In a last step, the laser patterned thin films were coated with indium tin oxide (ITO) layers with a thickness of 10 nm to 50 nm. The influence of the 3D surface topography as well as the ITO thickness on the electrochemical performance was studied by cyclic voltammetry. Post-mortem studies were carried out by using scanning electron microscopy and focused ion beam analysis.

  16. Atmospheric-pressure laser ionization: a novel ionization method for liquid chromatography/mass spectrometry.

    PubMed

    Constapel, M; Schellenträger, M; Schmitz, O J; Gäb, S; Brockmann, K J; Giese, R; Benter, Th

    2005-01-01

    We report on the development of a new laser-ionization (LI) source operating at atmospheric pressure (AP) for liquid chromatography/mass spectrometry (LC/MS) applications. APLI is introduced as a powerful addition to existing AP ionization techniques, in particular atmospheric-pressure chemical ionization (APCI), electrospray ionization (ESI), and atmospheric pressure photoionization (APPI). Replacing the one-step VUV approach in APPI with step-wise two-photon ionization strongly enhances the selectivity of the ionization process. Furthermore, the photon flux during an ionization event is drastically increased over that of APPI, leading to very low detection limits. In addition, the APLI mechanism generally operates primarily directly on the analyte. This allows for very efficient ionization even of non-polar compounds such as polycyclic aromatic hydrocarbons (PAHs). The APLI source was characterized with a MicroMass Q-Tof Ultima II analyzer. Both the effluent of an HPLC column containing a number of PAHs (benzo[a]pyrene, fluoranthene, anthracene, fluorene) and samples from direct syringe injection were analyzed with respect to selectivity and sensitivity of the overall system. The liquid phase was vaporized by a conventional APCI inlet (AP probe) with the corona needle removed. Ionization was performed through selective resonance-enhanced multi-photon ionization schemes using a high-repetition-rate fixed-frequency excimer laser operating at 248 nm. Detection limits well within the low-fmol regime are readily obtained for various aromatic hydrocarbons that exhibit long-lived electronic states at the energy level of the first photon. Only molecular ions are generated at the low laser fluxes employed ( approximately 1 MW/cm(2)). The design and performance of the laser-ionization source are presented along with results of the analysis of aromatic hydrocarbons.

  17. Mechanism of laser drilling superhigh-aspect-ratio holes in polymers

    SciTech Connect

    Tokarev, V N

    2006-07-31

    A brief review of recent theoretical and experimental studies of multipulse laser drilling keyholes in polymers is presented. The stationary keyhole profile is obtained after irradiation by a quite great number of laser pulses due to self-organisation processes and is a new more stable state of the surface irradiated by intense light. This concept together with ample experimental data obtained for various polymers form the basis of the analytical model of multipulse drilling holes with a superhigh depth - diameter ratio (300-600) (the so-called aspect ratio) by using UV excimer KrF laser radiation. The model reveals the main factors controlling the parameters of drilling holes by nanosecond UV pulses and, in particular, determines the conditions for drilling holes with virtually parallel side walls and very high aspect ratios. (special issue devoted to the 90th anniversary of a.m. prokhorov)

  18. Finite elements analysis of heteroepitaxial SiGe layers grown by excimer laser

    NASA Astrophysics Data System (ADS)

    Conde, J. C.; González, P.; Lusquiños, F.; Chiussi, S.; Serra, J.; León, B.

    2005-07-01

    In this work, the finite elements analysis using ANSYS ® (8.0) of the heteroepitaxial SiGe alloy formation induced by excimer lasers is presented. The numerical simulation of the temperature distribution induced by KrF excimer laser (energy densities 0.50 < Φ< 0.55 J/cm 2) on thin amorphous Ge films (10 nm thick) deposited on Si<1 0 0> substrates is obtained. An acceptable agreement between the numerical simulations and the experimental results is found. The melting depth is also evaluated and the laser energy density threshold for the partial melting of the Si substrate is estimated. It allows us to determine the optimum conditions to achieve high quality epitaxy. For both the cases, the temperature profile versus time on the top of the Ge film and at the Ge/Si interface are obtained.

  19. Deposition and modification of tantalum carbide coatings on graphite by laser interactions

    SciTech Connect

    Veligdan, J.; Branch, D.; Vanier, P.E.; Barletta, R.E.

    1992-12-31

    Graphite surfaces can be hardened and protected from erosion by hydrogen at high temperatures by refractory metal carbide coatings, which are usually prepared by chemical vapor deposition (CVD) or chemical vapor reaction (CVR) methods. These techniques rely on heating the substrate to a temperature where a volatile metal halide decomposes and reacts with either a hydrocarbon gas or with carbon from the substrate. For CVR techniques, deposition temperatures must be in excess of 2000{degrees}C in order to achieve favorable deposition kinetics. In an effort to lower the bulk substrate deposition temperature, the use of laser interactions with both the substrate and the metal halide deposition gas has been employed. Initial testing, involved the use of a CO{sub 2} laser to heat the surface of a graphite substrate and a KrF excimer laser to accomplish a photodecomposition of TaCl{sub 5} gas near the substrate. Results of preliminary experiments using these techniques are described.

  20. Deposition and modification of tantalum carbide coatings on graphite by laser interactions

    SciTech Connect

    Veligdan, J.; Branch, D.; Vanier, P.E.; Barletta, R.E.

    1992-01-01

    Graphite surfaces can be hardened and protected from erosion by hydrogen at high temperatures by refractory metal carbide coatings, which are usually prepared by chemical vapor deposition (CVD) or chemical vapor reaction (CVR) methods. These techniques rely on heating the substrate to a temperature where a volatile metal halide decomposes and reacts with either a hydrocarbon gas or with carbon from the substrate. For CVR techniques, deposition temperatures must be in excess of 2000[degrees]C in order to achieve favorable deposition kinetics. In an effort to lower the bulk substrate deposition temperature, the use of laser interactions with both the substrate and the metal halide deposition gas has been employed. Initial testing, involved the use of a CO[sub 2] laser to heat the surface of a graphite substrate and a KrF excimer laser to accomplish a photodecomposition of TaCl[sub 5] gas near the substrate. Results of preliminary experiments using these techniques are described.

  1. Active protein and calcium hydroxyapatite bilayers grown by laser techniques for therapeutic applications.

    PubMed

    Motoc, M M; Axente, E; Popescu, C; Sima, L E; Petrescu, S M; Mihailescu, I N; Gyorgy, E

    2013-09-01

    Active protein and bioceramic calcium hydroxyapatite (HA) bilayers were grown by combining conventional pulsed laser deposition (PLD) and matrix-assisted pulsed laser evaporation (MAPLE) techniques. A pulsed UV KrF* excimer laser was used for the irradiations. The HA layers were grown by PLD. Proteins with antimicrobial action were attached to the bioceramic layers using MAPLE. The composite MAPLE targets were obtained by dissolving the proteins powder in distilled water. The crystalline status and chemical composition of the obtained structures were studied by X-ray diffractometry and Fourier transform infrared spectroscopy. The layers were grown for the design of advanced future metal implants coatings, ensuring both enhanced bone formation and localized antimicrobial therapy. Our results demonstrated that protein coatings improve bone cell proliferation in vitro. Immunofluorescence experiments show that actin filaments stretch throughout bone cells and sustain their optimal spreading.

  2. Excimer laser patterning of PEDOT:PSS thin-films on flexible barrier foils: A surface analysis study

    NASA Astrophysics Data System (ADS)

    Naithani, Sanjeev; Schaubroeck, David; Vercammen, Yannick; Mandamparambil, Rajesh; Yakimets, Iryna; Van Vaeck, Luc; Van Steenberge, Geert

    2013-09-01

    Selective laser patterning of thin organic films is an important aspect in the roll-to-roll production of organic electronic devices such as organic light emitting diodes (OLEDs). An excimer laser is well suited for the patterning and structuring of polymer thin films as their UV absorption is significant. Selective removal of a transparent conducting polymer PEDOT:PSS (poly(3,4-ethylene dioxythiophene):polystyrene sulfonate) on a multilayered (inorganic-organic-inorganic) barrier and a flexible PEN (polyethylene napthalate) substrate has been studied using a KrF excimer laser. The ablation craters were characterized with electron microscopy and profilometry. For the first time, chemical surface analysis of the patterned area was performed with Time-Of-Flight Static Secondary Ion Mass Spectrometry (TOF-S-SIMS), providing a detailed insight of the surface composition after laser ablation and plasma post-treatments.

  3. Nanosecond laser-induced ablation and laser-induced shockwave structuring of polymer foils down to sub-μm patterns

    NASA Astrophysics Data System (ADS)

    Lorenz, P.; Bayer, L.; Ehrhardt, M.; Zimmer, K.; Engisch, L.

    2015-03-01

    Micro- and nanostructures exhibit a growing commercial interest where a fast, cost-effective, and large-area production is attainable. Laser methods have a great potential for the easy fabrication of surface structures into flexible polymer foils like polyimide (PI). In this study two different concepts for the structuring of polymer foils using a KrF excimer laser were tested and compared: the laser-induced ablation and the laser-induced shock wave structuring. The direct front side laser irradiation of these polymers allows the fabrication of different surface structures. For example: The low laser fluence treatment of PI results in nano-sized cone structures where the cone density can be controlled by the laser parameters. This allows inter alia the laser fabrication of microscopic QR code and high-resolution grey-tone images. Furthermore, the laser treatment of the front side of the polymer foil allows the rear side structuring due to a laserinduced shock wave. The resultant surface structures were analysed by optical and scanning electron microscopy (SEM) as well as white light interferometry (WLI).

  4. Laser profiling of 3D microturbine blades

    NASA Astrophysics Data System (ADS)

    Holmes, Andrew S.; Heaton, Mark E.; Hong, Guodong; Pullen, Keith R.; Rumsby, Phil T.

    2003-11-01

    We have used KrF excimer laser ablation in the fabrication of a novel MEMS power conversion device based on an axial-flow turbine with an integral axial-flux electromagnetic generator. The device has a sandwich structure, comprising a pair of silicon stators either side of an SU8 polymer rotor. The curved turbine rotor blades were fabricated by projection ablation of SU8 parts performed by conventional UV lithography. A variable aperture mask, implemented by stepping a moving aperture in front of a fixed one, was used to achieve the desired spatial variation in the ablated depth. An automatic process was set up on a commercial laser workstation, with the laser firing and mask motion being controlled by computer. High quality SU8 rotor parts with diameters of 13 mm and depths of 1 mm were produced at a fluence of 0.7 J/cm2, corresponding to a material removal rate of approximately 0.3 μm per pulse. A similar approach was used to form SU8 guide vane inserts for the stators.

  5. One-shot deep-UV pulsed-laser-induced photomodification of hollow metal nanoparticles for high-density data storage on flexible substrates.

    PubMed

    Wan, Dehui; Chen, Hsuen-Li; Tseng, Shao-Chin; Wang, Lon A; Chen, Yung-Pin

    2010-01-26

    In this paper, we report a new optical data storage method: photomodification of hollow gold nanoparticle (HGN) monolayers induced by one-shot deep-ultraviolet (DUV) KrF laser recording. As far as we are aware, this study is the first to apply HGNs in optical data storage and also the first to use a recording light source for the metal nanoparticles (NPs) that is not a surface plasmon resonance (SPR) wavelength. The short wavelength of the recording DUV laser improved the optical resolution dramatically. We prepared HGNs exhibiting two absorbance regions: an SPR peak in the near-infrared (NIR) region and an intrinsic material extinction in the DUV region. A single pulse from a KrF laser heated the HGNs and transformed them from hollow structures to smaller solid spheres. This change in morphology for the HGNs was accompanied by a significant blue shift of the SPR peak. Employing this approach, we demonstrated its patterning ability with a resolving power of a half-micrometer (using a phase mask) and developed a readout method (using a blue-ray laser microscope). Moreover, we prepared large-area, uniform patterns of monolayer HGNs on various substrates (glass slides, silicon wafers, flexible plates). If this spectral recording technique could be applied onto thin flexible tapes, the recorded data density would increase significantly relative to that of current rigid discs (e.g., compact discs).

  6. Electron stimulated desorption of the metallic substrate at monolayer coverage: Sensitive detection via 193 nm laser photoionization of neutral aluminum desorbed from CH3O/Al(111)

    NASA Astrophysics Data System (ADS)

    Young, C. E.; Whitten, J. E.; Pellin, M. J.; Gruen, D. M.; Jones, P. L.

    A fortuitous overlap between the gain profile of the 193 nm ArF excimer laser and the Al autoionizing transition (sup 2)S(sub 1/2) (512753/cm) yields to the left (sup 2)P(sup 0)J has been exploited in the direct observation of substrate metal atoms in an electron simulated desorption (ESD) process from the monolayer adsorbate system CH3O/Al(111). The identity of the mass 27 photoion was established as Al(+) by (1) isotopic substitution of C-13 in the methanol employed for methoxy formation, and (2) tunable laser scans utilizing the DJ-2 (J = 3/2, 5/2) intermediate levels at approximately 32436/cm and a 248 nm ionization step. An ESD yield of approximately x 10(exp -6) Al atoms/(electron at 1 keV) was established by comparison with a sputtering experiment in the same apparatus. Velocity distributions measured for the desorbed Al species showed some differences in comparison with methoxy velocity data: a slightly lower peak velocity and a significantly less prominent high-velocity component.

  7. Ionic alkali halide XUV laser feasibility study

    SciTech Connect

    Yang, T.T.; Gylys, V.T.; Bower, R.D.; Harris, D.G.; Blauer, J.A.; Turner, C.E.; Hindy, R.N.

    1989-11-10

    The objective of this work is to assess the feasibility of a select set of ionic alkali halide XUV laser concepts by obtaining the relevant kinetic and spectroscopic parameters required for a proof-of-principle and conceptual design. The proposed lasers operate in the 80--200 nm spectral region and do not require input from outside radiation sources for their operation. Frequency up-conversion and frequency mixing techniques and therefore not considered in the work to be described. An experimental and theoretical study of a new type of laser operating in the extreme ultraviolet wavelength region has been conducted. The lasing species are singly ionized alkali halide molecules such as Rb{sup 2+}F{sub {minus}}, Rb{sup 2+}Br{sup {minus}} and Cs{sup 2+}F{sup {minus}}. These species are similar in electronic structure to the rare gas halide excimers, such as XeF and Krf, except that the ionic molecules emit at wavelengths of 80--200 nm, much shorter than the conventional rare-gas halide excimer laser. The radiative lifetime of these molecules are typically near 1 ns, which is about an order of magnitude shorter than that for rare-gas halide systems. The values of the cross section for stimulated emission are on the order of 1 {times} 10{sup {minus}16}cm{sup 2}. Because of the fundamental similarity to existing UV lasers, these systems show promise as a high power, efficient XUV lasers. 55 refs., 50 figs., 5 tabs.

  8. Surface micro-structuring of intercalation cathode materials for lithium-ion batteries: a study of laser-assisted cone formation

    NASA Astrophysics Data System (ADS)

    Pfleging, W.; Smyrek, P.; Hund, J.; Bergfeldt, T.; Pröll, J.

    2015-03-01

    Strong efforts are currently undertaken in order to further improve the electrochemical performance of high energy lithium-ion batteries containing thick composite electrode materials. The properties of these electrode materials such as active surface area, film thickness, and film porosity strongly impact the cell life-time and cycling stability. A rather new approach is to generate hierarchical architectures into cathode materials by laser direct ablation as well as by laserassisted formation of self-organized structures. It could be shown that appropriate surface structures can lead to a significant improvement of lithium-ion diffusion kinetics leading to higher specific capacities at high charging and discharging currents. In this paper, the formation of self-organized conical structures in intercalation materials such as LiCoO2 and LiNi1/3Mn1/3Co1/3O2 is investigated in detail. For this purpose, the cathode materials are exposed to excimer laser radiation with wavelengths of 248 nm and 193 nm leading to cone structures with outer dimensions in the micrometer range. The process of cone formation is investigated using laser ablation inductively coupled plasma mass spectrometry and laser-induced breakdown spectroscopy (LIBS). Cone formation can be initiated for laser fluences up to 3 J/cm2 while selective removal of lithium was observed to be one of the key issues for starting the cone formation process. It could be shown that material re-deposition supports the cone-growth process leading to a low loss of active material. Besides the cone formation process, laser-induced chemical surface modification will be analysed by LIBS.

  9. Propagation and amplification of microwave radiation in a plasma channel created in gas by a high-power femtosecond UV laser pulse

    NASA Astrophysics Data System (ADS)

    Bogatskaya, A. V.; Volkova, E. A.; Popov, A. M.; Smetanin, I. V.

    2016-02-01

    The time evolution of a nonequilibrium plasma channel created in a noble gas by a high-power femtosecond KrF laser pulse is investigated. It is shown that such a channel possesses specific electrodynamic properties and can be used as a waveguide for efficient transportation and amplification of microwave pulses. The propagation of microwave radiation in a plasma waveguide is analyzed by self-consistently solving (i) the Boltzmann kinetic equation for the electron energy distribution function at different spatial points and (ii) the wave equation in the parabolic approximation for a microwave pulse transported along the plasma channel.

  10. Calcium phosphate thin film processing by pulsed laser deposition and in situ assisted ultraviolet pulsed laser deposition.

    PubMed

    Nelea, V; Pelletier, H; Iliescu, M; Werckmann, J; Craciun, V; Mihailescu, I N; Ristoscu, C; Ghica, C

    2002-12-01

    Calcium orthophosphates (CaP) and hydroxyapatite (HA) were intensively studied in order to design and develop a new generation of bioactive and osteoconductive bone prostheses. The main drawback now in the CaP and HA thin films processing persists in their poor mechanical characteristics, namely hardness, tensile and cohesive strength, and adherence to the metallic substrate. We report here a critical comparison between the microstructure and mechanical properties of HA and CaP thin films grown by two methods. The films were grown by KrF* pulsed laser deposition (PLD) or KrF* pulsed laser deposition assisted by in situ ultraviolet radiation emitted by a low pressure Hg lamp (UV-assisted PLD). The PLD films were deposited at room temperature, in vacuum on Ti-5Al-2.5Fe alloy substrate previously coated with a TiN buffer layer. After deposition the films were annealed in ambient air at 500-600 degrees C. The UV-assisted PLD films were grown in (10(-2)-10(-1) Pa) oxygen directly on Ti-5Al-2.5Fe substrates heated at 500-600 degrees C. The films grown by classical PLD are crystalline and stoichiometric. The films grown by UV-assisted PLD were crystalline and exhibit the best mechanical characteristics with values of hardness and Young modulus of 6-7 and 150-170 GPa, respectively, which are unusually high for the calcium phosphate ceramics. To the difference of PLD films, in the case of UV-assisted PLD, the GIXRD spectra show the decomposition of HA in Ca(2)P(2)O(7), Ca(2)P(2)O(9) and CaO. The UV lamp radiation enhanced the gas reactivity and atoms mobility during processing, increasing the tensile strength of the film, while the HA structure was destroyed.

  11. Ar ions irradiation effects in ZrN thin films grown by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Craciun, D.; Socol, G.; Dorcioman, G.; Simeone, D.; Gosset, D.; Behdad, S.; Boesl, B.; Craciun, V.

    2015-05-01

    Thin ZrN films (<500 nm) were grown on (1 0 0)Si substrates at a substrate temperature of 500 °C by the pulsed laser deposition (PLD) technique using a KrF excimer laser under CH4 or N2 atmosphere. Glancing incidence X-ray diffraction showed that films were nanocrystalline, while X-ray reflectivity studies indicated that the films were very dense and with a smooth surface. The films were used to study the effect of 800 keV Ar ion irradiation on their structure and properties. After irradiation with a dose of 1014 at/cm2 the lattice parameter and crystallites size did marginally change. However, after irradiation with a 1015 at/cm2 dose, a clear increase in the lattice parameter accompanied by a significant decrease in nanohardness and Young modulus were observed.

  12. Emittance dependence on anode morphology of an ion beam provided by laser ablation

    NASA Astrophysics Data System (ADS)

    Velardi, L.; Delle Side, D.; Nassisi, V.

    2014-07-01

    In this work, we studied the characteristics of ion beams generated by Platone accelerator in different anode configurations. The accelerator is a laser ion source with two gaps which accelerate the ions in cascade. The laser is a ns pulsed KrF able to apply irradiances of 109-1010 W/cm2. The target ablated was pure disk of Cu. The accelerating voltage applied in this work was 60 kV. The emittance evaluation was performed by the pepper pot method utilizing radio-chromic films, EBT Gafchromic, as sensible targets. The study was performed by varying the geometric configuration of the anode (the extracting electrode), modifying the hole morphology, e.g. a plane and curved grid were mounted in order to change the extraction configuration. The results were compared with the ones obtained with the extraction hole without any grid. For the normalized emittance the lowest value was 0.20π mm mrad.

  13. On the Emittance dependence on anode morphology of laser induced ion beams

    NASA Astrophysics Data System (ADS)

    Velardi, L.; Delle Side, D.; Nassisi, V.

    2014-04-01

    In this work, we studied the characteristics of ion beams generated by PLATONE accelerator in different anode configurations. The accelerator is a laser ion source with two gaps which accelerate the ions in cascade. The laser is an excimer KrF able to work at irradiances of 108-1010 W/cm2. The target ablated was disk of Cu. The accelerating voltage applied in this work was 60 kV. The emittance evaluation was performed by the pepper pot method utilising radio-chromic films, EBT Gafchromic, as sensible targets. The study was performed by varying the geometric configuration of the anode (the extracting electrode), modifying the hole morphology. A plane and curved grids were mounted in order to change the extraction configuration. The results were compared with the ones obtained with the extraction hole without any grid. For the normalized emittance the lowest value found was 0.20 π mm mrad.

  14. Pulsed laser deposition of chromium-doped zinc selenide thin films for mid-infrared applications

    NASA Astrophysics Data System (ADS)

    Williams, J. E.; Camata, R. P.; Fedorov, V. V.; Mirov, S. B.

    2008-05-01

    We have grown Cr doped ZnSe thin films by pulsed laser deposition on GaAs, sapphire and Si substrates through KrF excimer laser ablation of hot-pressed targets containing appropriate stoichiometric mixtures of Zn, Se, and Cr species and hot-pressed ceramic targets made of ZnSe and CrSe powders in vacuum and in an He background environment (10-4 Torr). Deposited films were analyzed using X-ray diffraction to determine crystallinity and energy dispersive X-ray fluorescence to confirm Cr incorporation into the films. Photoluminescence measurements on the films show intracenter Cr2+ emission in the technologically important 2 2.6 μm spectral range.

  15. Optical and mechanical properties of nanocrystalline ZrC thin films grown by pulsed laser deposition.

    DOE PAGES

    Craciun, D.; Socol, G.; Lambers, E.; McCumiskey, E. J.; Taylor, C. R.; Martin, C.; Argibay, Nicolas; Craciun, V.; Tanner, D. B.

    2015-01-17

    Thin ZrC films (<500 nm) were grown on (100) Si substrates at a substrate temperature of 500 °C by the pulsed laser deposition (PLD) technique using a KrF excimer laser under different CH4 pressures. Glancing incidence X-ray diffraction showed that films were nanocrystalline, while X-ray reflectivity studies found out films were very dense and exhibited a smooth surface morphology. Optical spectroscopy data shows that the films have high reflectivity (>90%) in the infrared region, characteristic of metallic behavior. Nanoindentation results indicated that films deposited under lower CH4 pressures exhibited slightly higher nanohardness and Young modulus values than films deposited undermore » higher pressures. As a result, tribological characterization revealed that these films exhibited relatively high wear resistance and steady-state friction coefficients on the order of μ = 0.4.« less

  16. Optical and mechanical properties of nanocrystalline ZrC thin films grown by pulsed laser deposition.

    SciTech Connect

    Craciun, D.; Socol, G.; Lambers, E.; McCumiskey, E. J.; Taylor, C. R.; Martin, C.; Argibay, Nicolas; Craciun, V.; Tanner, D. B.

    2015-01-17

    Thin ZrC films (<500 nm) were grown on (100) Si substrates at a substrate temperature of 500 °C by the pulsed laser deposition (PLD) technique using a KrF excimer laser under different CH4 pressures. Glancing incidence X-ray diffraction showed that films were nanocrystalline, while X-ray reflectivity studies found out films were very dense and exhibited a smooth surface morphology. Optical spectroscopy data shows that the films have high reflectivity (>90%) in the infrared region, characteristic of metallic behavior. Nanoindentation results indicated that films deposited under lower CH4 pressures exhibited slightly higher nanohardness and Young modulus values than films deposited under higher pressures. As a result, tribological characterization revealed that these films exhibited relatively high wear resistance and steady-state friction coefficients on the order of μ = 0.4.

  17. Selective production of atomic oxygen by laser photolysis as a tool for studying the effect of atomic oxygen in plasma medicine

    NASA Astrophysics Data System (ADS)

    Ono, Ryo; Tokumitsu, Yusuke

    2015-06-01

    We propose a method for selectively producing O atoms by the laser photolysis of O3 as a tool for studying the therapeutic effect of O atoms in plasma medicine. A KrF excimer laser (248 nm) irradiates an O3 /He mixture flowing in a quartz tube to photodissociate O3 , which leads to the production of O atoms. The effluent from the quartz tube nozzle can be applied to a target (cells, bacteria, or an affected part). Simulations show that 500 ppm O atoms can be continuously supplied to a target surface at a distance of 3 mm from the quartz tube nozzle if an O3 (2000 ppm)/He mixture is used. The effluent contains only O, O3 , and O_2({{a}1}{Δg}) , and does not contain other types of reactive species in contrast to a plasma. Therefore, it can be used to examine the therapeutic effects of O atoms in isolation. Part of the simulation results are experimentally verified by irradiating an O3 /He mixture with a KrF excimer laser.

  18. Submicro foaming in biopolymers by UV pulsed laser irradiation

    NASA Astrophysics Data System (ADS)

    Oujja, Mohamed; Rebollar, Esther; Gaspard, Solenne; Abrusci, Concepción; Catalina, Fernando; Lazare, Sylvain; Castillejo, Marta

    2006-05-01

    Microstructuring of polymers and biopolymers is of application in medical technology and biotechnology. Using different fabrication techniques three-dimensionally shaped and micro structured constructs can be developed for drug release and tissue engineering. As an alternative method, laser microstructuring offers a series of advantages including high resolution capability, low heat deposition in the substrate and high level of flexibility. In this work we present evidence of laser microfoam formation in collagen and gelatine by nanosecond pulsed laser irradiation in the UV at 248 and 266 nm. Irradiation at 355 nm produces melting followed by resolidification of the substrate, whereas irradiation at 532 and 1064 nm induces the formation of craters of irregular contours. Single pulse irradiation of a collagen film with an homogenized KrF microbeam yields a 20 μm thick expanded layer, which displays the interesting features of a nanofibrous 3-dimensional network with open cells. In gelatine, irradiation at 248 and 266 nm produces similar morphological modifications. The effect of the structural properties of the substrate on the laser induced microfoam is studied by comparing gelatines differing in gel strength (Bloom values 225 and 75) and in crosslinking degree. While results are discussed on the basis of thermal and photomechanical mechanisms and of the role played by the water content of the substrates, it is thought that such structures could have a biomimic function in future 3D cell culture devices for research.

  19. [Influence of C-Fe Lines Interference Correction on Laser-Induced Breakdown Spectroscopy Measurement of Unburned Carbon in Fly Ash].

    PubMed

    Yao, Shun-chun; Chen, Jian-chao; Lu, Ji-dong; Shen, Yue-liang; Pan, Gang

    2015-06-01

    In coal-fired plants, Unburned carbon (UC) in fly ash is the major determinant of combustion efficiency in coal-fired boiler. The balance between unburned carbon and NO(x) emissions stresses the need for rapid and accurate methods for the measurement of unburned carbon. Laser-induced breakdown spectroscopy (LIBS) is employed to measure the unburned carbon content in fly ash. In this case, it is found that the C line interference with Fe line at about 248 nm. The interference leads to C could not be quantified independently from Fe. A correction approach for extracting C integrated intensity from the overlapping peak is proposed. The Fe 248.33 nm, Fe 254.60 nm and Fe 272.36 nm lines are used to correct the Fe 247.98 nm line which interference with C 247.86 nm, respectively. Then, the corrected C integrated intensity is compared with the uncorrected C integrated intensity for constructing calibration curves of unburned carbon, and also for the precision and accuracy of repeat measurements. The analysis results show that the regression coefficients of the calibration curves and the precision and accuracy of repeat measurements are improved by correcting C-Fe interference, especially for the fly ash samples with low level unburned carbon content. However, the choice of the Fe line need to avoid a over-correction for C line. Obviously, Fe 254.60 nm is the best PMID:26601397

  20. Combinatorial MAPLE deposition of antimicrobial orthopedic maps fabricated from chitosan and biomimetic apatite powders.

    PubMed

    Visan, A; Stan, G E; Ristoscu, C; Popescu-Pelin, G; Sopronyi, M; Besleaga, C; Luculescu, C; Chifiriuc, M C; Hussien, M D; Marsan, O; Kergourlay, E; Grossin, D; Brouillet, F; Mihailescu, I N

    2016-09-10

    Chitosan/biomimetic apatite thin films were grown in mild conditions of temperature and pressure by Combinatorial Matrix-Assisted Pulsed Laser Evaporation on Ti, Si or glass substrates. Compositional gradients were obtained by simultaneous laser vaporization of the two distinct material targets. A KrF* excimer (λ=248nm, τFWHM=25ns) laser source was used in all experiments. The nature and surface composition of deposited materials and the spatial distribution of constituents were studied by SEM, EDS, AFM, GIXRD, FTIR, micro-Raman, and XPS. The antimicrobial efficiency of the chitosan/biomimetic apatite layers against Staphylococcus aureus and Escherichia coli strains was interrogated by viable cell count assay. The obtained thin films were XRD amorphous and exhibited a morphology characteristic to the laser deposited structures composed of nanometric round shaped grains. The surface roughness has progressively increased with chitosan concentration. FTIR, EDS and XPS analyses indicated that the composition of the BmAp-CHT C-MAPLE composite films gradually modified from pure apatite to chitosan. The bioevaluation tests indicated that S. aureus biofilm is more susceptible to the action of chitosan-rich areas of the films, whilst the E. coli biofilm proved more sensible to areas containing less chitosan. The best compromise should therefore go, in our opinion, to zones with intermediate-to-high chitosan concentration which can assure a large spectrum of antimicrobial protection concomitantly with a significant enhancement of osseointegration, favored by the presence of biomimetic hydroxyapatite.

  1. Combinatorial MAPLE deposition of antimicrobial orthopedic maps fabricated from chitosan and biomimetic apatite powders.

    PubMed

    Visan, A; Stan, G E; Ristoscu, C; Popescu-Pelin, G; Sopronyi, M; Besleaga, C; Luculescu, C; Chifiriuc, M C; Hussien, M D; Marsan, O; Kergourlay, E; Grossin, D; Brouillet, F; Mihailescu, I N

    2016-09-10

    Chitosan/biomimetic apatite thin films were grown in mild conditions of temperature and pressure by Combinatorial Matrix-Assisted Pulsed Laser Evaporation on Ti, Si or glass substrates. Compositional gradients were obtained by simultaneous laser vaporization of the two distinct material targets. A KrF* excimer (λ=248nm, τFWHM=25ns) laser source was used in all experiments. The nature and surface composition of deposited materials and the spatial distribution of constituents were studied by SEM, EDS, AFM, GIXRD, FTIR, micro-Raman, and XPS. The antimicrobial efficiency of the chitosan/biomimetic apatite layers against Staphylococcus aureus and Escherichia coli strains was interrogated by viable cell count assay. The obtained thin films were XRD amorphous and exhibited a morphology characteristic to the laser deposited structures composed of nanometric round shaped grains. The surface roughness has progressively increased with chitosan concentration. FTIR, EDS and XPS analyses indicated that the composition of the BmAp-CHT C-MAPLE composite films gradually modified from pure apatite to chitosan. The bioevaluation tests indicated that S. aureus biofilm is more susceptible to the action of chitosan-rich areas of the films, whilst the E. coli biofilm proved more sensible to areas containing less chitosan. The best compromise should therefore go, in our opinion, to zones with intermediate-to-high chitosan concentration which can assure a large spectrum of antimicrobial protection concomitantly with a significant enhancement of osseointegration, favored by the presence of biomimetic hydroxyapatite. PMID:27418570

  2. Unseeded Scalar Velocity Measurements for Propulsion Flows

    NASA Technical Reports Server (NTRS)

    Pitz, Robert W.; Wehrmeyer, Joseph A.; Seasholtz, Richard G. (Technical Monitor)

    2000-01-01

    Unseeded molecular tagging methods based on single-photon processes that produce long tag lines (>50 mm) have been recently developed and demonstrated by the Combustion Laser Diagnostics Group (Mechanical Engineering Department) at Vanderbilt University [1,2]. In Ozone Tagging Velocimetry (OTV) a line of ozone (O3) is produced by a single photon from a pulsed narrowband argon fluoride (ArF) excimer laser operating at - 193 nm. After a known time delay, t, the position of the displaced (convected in the flow field) O3 tag line is revealed by photodissociation of O3 and subsequent fluorescence of O2, caused by a pulsed laser sheet from a krypton fluoride (KrF) excimer laser operating at - 248 nm. Intensified CCD camera images of the fluorescence are taken from the initial and final tag line locations thus providing unobtrusive means of establishing a velocity profile in the interrogated flow field. The O3 lines are "written" and subsequently "read" by the following reactions:

  3. Radical modification of the wetting behavior of textiles coated with ZnO thin films and nanoparticles when changing the ambient pressure in the pulsed laser deposition process

    NASA Astrophysics Data System (ADS)

    Popescu, A. C.; Duta, L.; Dorcioman, G.; Mihailescu, I. N.; Stan, G. E.; Pasuk, I.; Zgura, I.; Beica, T.; Enculescu, I.; Ianculescu, A.; Dumitrescu, I.

    2011-09-01

    Cotton/polyester woven fabrics were functionalized with ZnO thin films or nanoparticles by pulsed laser deposition, using a KrF* excimer laser source. Depending on the number of applied laser pulses, well-separated nanoparticles (for 10 pulses) or compact thin films (for 100 pulses) were deposited. The synthesized nanostructures were evaluated morphologically by scanning electron microscopy and atomic force microscopy, physico-chemically by x-ray diffraction and functionally by the contact angle method. By modifying the ambient gas nature and pressure in the deposition chamber, hydrophilic or hydrophobic surfaces were obtained. When using an oxygen flux, both the deposited thin films and nanoparticles were hydrophilic. After deposition in vacuum, the nanoparticles were hydrophobic, but the thin films were super-hydrophobic. This radical modification of wetting behavior was assigned to the differences in microstructure features and surface electrical charging in the two cases.

  4. Effects of picosecond terawatt UV laser beam filamentation and a repetitive pulse train on creation of prolonged plasma channels in atmospheric air

    NASA Astrophysics Data System (ADS)

    Zvorykin, V. D.; Ionin, A. A.; Levchenko, A. O.; Seleznev, L. V.; Shutov, A. V.; Sinitsyn, D. V.; Smetanin, I. V.; Ustinovskii, N. N.

    2013-08-01

    Amplitude-modulated UV laser pulse of up to 30 J energy was produced at hybrid Ti:Sapphire/KrF GARPUN-MTW laser facility when a preliminary amplified train of short pulses was injected into unstable resonator cavity of the main e-beam-pumped KrF amplifier. The combined radiation consisted of regeneratively amplified picosecond pulses with subTW peak power overlapped with 100-ns pulse of a free-running lasing. The advantages of combined radiation for production of long-lived prolonged plasma channels in air and HV discharge triggering were demonstrated: photocurrent sustained by modulated pulse is two orders of magnitude higher and HV breakdown distance is twice longer than for a smooth UV pulse. It was found that in contrast to IR radiation multiple filamentation of high-power UV laser beam does not produce extended nonlinear focusing of UV radiation.

  5. SPECIAL ISSUE DEVOTED TO THE 90TH ANNIVERSARY OF A.M. PROKHOROV: Mechanism of laser drilling superhigh-aspect-ratio holes in polymers

    NASA Astrophysics Data System (ADS)

    Tokarev, V. N.

    2006-07-01

    A brief review of recent theoretical and experimental studies of multipulse laser drilling keyholes in polymers is presented. The stationary keyhole profile is obtained after irradiation by a quite great number of laser pulses due to self-organisation processes and is a new more stable state of the surface irradiated by intense light. This concept together with ample experimental data obtained for various polymers form the basis of the analytical model of multipulse drilling holes with a superhigh depth — diameter ratio (300—600) (the so-called aspect ratio) by using UV excimer KrF laser radiation. The model reveals the main factors controlling the parameters of drilling holes by nanosecond UV pulses and, in particular, determines the conditions for drilling holes with virtually parallel side walls and very high aspect ratios.

  6. Selective structuring of multi-layer functional thin films using a laser-induced shockwave delamination process

    NASA Astrophysics Data System (ADS)

    Ehrhardt, M.; Lorenz, P.; Bayer, L.; Molpeceres, C.; Ramirez, C. Antonio Herrera; Zimmer, K.

    2016-03-01

    The laser assisted micro structuring of thin films especially for electronic applications without influence the functionality of the multi-layer system e.g. due to melting products is a challenge for the laser micro machining techniques. The P2 scribing of copper indium gallium selenide (CIGS) solar cells on stainless steel carrier foil was studied using shockwave- induced film delamination (SWIFD) patterning. The delamination process is induced by a shock wave generated by the laser ablation of the rear side of the carrier foil. In the present study UV nanosecond laser pulses provided by a KrF excimer laser were used to induce the SWIFD process. The morphology and size of the achieved thin-film structures were studied in dependence on various laser irradiation parameters by optical and scanning electron microscopy (SEM). Furthermore, the materials composition after the laser patterning was analyzed by energy dispersive X-ray spectroscopy (EDX). The temporal sequences of processes involved in the SWIFD process were analyzed with high speed shadowgraph experiments. The results of the present study shows that in dependence on the laser parameter used a large process window exist in which the CIGS thin film can be removed from the substrate without visible thermal modification of the CIGS thin film.

  7. Laser Technology.

    ERIC Educational Resources Information Center

    Gauger, Robert

    1993-01-01

    Describes lasers and indicates that learning about laser technology and creating laser technology activities are among the teacher enhancement processes needed to strengthen technology education. (JOW)

  8. Determination of the melting threshold of TiO{sub 2} thin films processed by excimer laser irradiation

    SciTech Connect

    Van Overschelde, O.; Delsate, T.; Snyders, R.

    2012-06-15

    Processing surfaces by laser needs an understanding of the mechanisms generated by irradiation. In this work, to gain understanding of the mechanisms occurring during irradiation of TiO{sub 2} thin films by means of KrF excimer laser, we have performed infrared time resolved reflectivity measurements. This experimental investigation revealed modifications of the heating/cooling cycle as a function of the fluence (F). These modifications start appearing for a fluence value of about {approx}0.25 J/cm{sup 2} which is associated with the melting threshold of the film. Additionally, we have solved numerically the heat equation of the system with specific boundary conditions. From these calculations, we have established the thermal history of the film during the 25 ns irradiation pulse. The data reveal that a part of the medium liquefies around a fluence of 0.23 J/cm{sup 2} in good agreement with the experimental data.

  9. Room-temperature laser annealing for solid-phase epitaxial crystallization of β-Ga2O3 thin films

    NASA Astrophysics Data System (ADS)

    Shiojiri, Daishi; Fukuda, Daiji; Yamauchi, Ryosuke; Tsuchimine, Nobuo; Koyama, Koji; Kaneko, Satoru; Matsuda, Akifumi; Yoshimoto, Mamoru

    2016-10-01

    The epitaxial crystallization of β-Ga2O3 thin films on NiO-buffered α-Al2O3(0001) substrates via the solid-phase crystallization of amorphous Ga2O3 thin films by KrF excimer laser annealing at room temperature (RT) was examined. The results of X-ray and reflection high-energy electron diffraction measurements indicated that the epitaxial β-Ga2O3 (\\bar{2}01) thin films were fabricated by RT laser annealing. The optical bandgap of the thin films was estimated to be 4.9 eV from the results of UV/vis transmittance measurements. In the cathodoluminescence spectrum, UV-green luminescence was observed for the thin films. These optical properties are similar to those of bulk β-Ga2O3.

  10. Role of dual-laser ablation in controlling the Pb depletion in epitaxial growth of Pb(Zr0.52Ti0.48)O3 thin films with enhanced surface quality and ferroelectric properties

    NASA Astrophysics Data System (ADS)

    Mukherjee, Devajyoti; Hyde, Robert; Mukherjee, Pritish; Srikanth, Hariharan; Witanachchi, Sarath

    2012-03-01

    Pb depletion in Pb(Zr0.52Ti0.48)O3 (PZT) thin films has remained as a major setback in the growth of defect-free PZT thin films by pulsed laser ablation techniques. At low excimer (KrF) laser fluences, the high volatility of Pb in PZT leads to non-congruent target ablation and, consequently, non-stoichiometric films, whereas, at high laser fluences, the inherent ejection of molten droplets from the target leads to particulate laden films, which is undesirable in heterostructure growth. To overcome these issues, a dual-laser ablation (PLDDL) process that combines an excimer (KrF) laser and CO2 laser pulses was used to grow epitaxial PZT films on SrTiO3 (100) and MgO (100) substrates. Intensified-charge-coupled-detector (ICCD) images and optical emission spectroscopy of the laser-ablated plumes in PLDDL revealed a broader angular expansion and enhanced excitation of the ablated species as compared to those for single-laser ablation (PLDSL). This led to the growth of particulate-free PZT films with higher Pb content, better crystallinity, and lower surface roughness as compared to those deposited using PLDSL. For FE measurements, PZT capacitors were fabricated in situ using the latticed-matched metallic oxide, La0.7Sr0.3MnO3, as the top and bottom electrodes. PZT films deposited using PLDDL exhibited enhanced polarization for all driving voltages as compared to those deposited using PLDSL. A highest remanent polarization (Pr) of ˜91 μC/cm2 and low coercive field of ˜40 kV/cm was recorded at 9 V driving voltage. Fatigue characterization revealed that PZT films deposited using PLDDL showed unchanging polarization, even after 109 switching cycles.

  11. Laser annealing induced ferromagnetism in SrTiO{sub 3} single crystal

    SciTech Connect

    Rao, S. S. Prater, J. T.; Lee, Y. F.; Narayan, J.; Smirnov, A. I.

    2014-07-28

    The appearance of ferromagnetic order up to 400 K upon KrF (248 nm) laser irradiation is reported in un-doped SrTiO{sub 3} (STO) single crystal. The high resolution x-ray photo emission spectroscopy (XPS) measurements reveal a strong shift of Sr-, Ti-, and O-related peaks. X-ray diffraction of laser annealed STO does not reveal a signature of either secondary magnetic or amorphous phases. 300 K X-band (∼9.543 GHz) angle-dependent electron paramagnetic resonance (EPR) measurements showed no evidence of additional magnetic peaks upon laser irradiation. XPS and EPR data did not provide a strong evidence of Ti{sup 3+} formation upon laser annealing. No differences in the visible 300 K Raman spectra of pristine and laser annealed STO are noticed. Interestingly, the magnetic moment is decreased by almost 10-fold upon oxygen annealing of laser annealed STO, inferring that oxygen vacancies play an important role in establishing the observed ferromagnetism.

  12. The Quantum Yield of NO3 from Peroxyacetyl Nitrate Photolysis

    NASA Technical Reports Server (NTRS)

    Mazely, Troy L.; Friedl, Randall R.; Sander, Stanley P.

    1997-01-01

    Peroxyacetyl nitrate (PAN) vapor was photolyzed at 248nm and the NO3 photoproduct was detected by laser induced fluorescence. The excited state flourescence contributions were investigated and a data analysis methodology was established to minimize their effects.

  13. Micromachining of transparent materials by laser ablation of organic solution

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Niino, Hiroyuki; Yabe, Akira

    2000-11-01

    Transparent materials such as fused silica, quartz, calcium fluoride, and fluorocarbon polymer were etched upon irradiation of organic solution containing pyrene with a conventional KrF excimer laser. Threshold fluence for etching was 240 mJ/cm2 for fused silica. Etch rate remarkably depended on a concentration of pyrene: higher etch rate with the increase of pyrene concentration. It means that pyrene molecules play an important role in this process. The etch rate can be easily controlled through changing a laser pulse number, a laser fluence and a concentration of solution. The mechanism for this process is discussed by cyclic multiphotonic absorption of pyrene in the excited states, thermal relaxation, and formation of super-heated solution. As the results, it is suggested that the process is based on the combination of two processes in the interface between the transparent materials and the liquid: one is a heating process by a super-heated liquid and the other is an attacking process by a high temperature and pressure vapor.

  14. Characterization of aromaticity in analogues of titan's atmospheric aerosols with two-step laser desorption ionization mass spectrometry

    NASA Astrophysics Data System (ADS)

    Mahjoub, Ahmed; Schwell, Martin; Carrasco, Nathalie; Benilan, Yves; Cernogora, Guy; Szopa, Cyril; Gazeau, Marie-Claire

    2016-10-01

    The role of polycyclic aromatic hydrocarbons (PAH) and Nitrogen containing PAH (PANH) as intermediates of aerosol production in the atmosphere of Titan has been a subject of controversy for a long time. An analysis of the atmospheric emission band observed by the Visible and Infrared Mapping Spectrometer (VIMS) at 3.28 μm suggests the presence of neutral polycyclic aromatic species in the upper atmosphere of Titan. These molecules are seen as the counter part of negative and positive aromatics ions suspected by the Plasma Spectrometer onboard the Cassini spacecraft, but the low resolution of the instrument hinders any molecular speciation. In this work we investigate the specific aromatic content of Titan's atmospheric aerosols through laboratory simulations. We report here the selective detection of aromatic compounds in tholins, Titan's aerosol analogs, produced with a capacitively coupled plasma in a N2:CH4 95:5 gas mixture. For this purpose, Two-Step Laser Desorption Ionization Time-of-Flight Mass Spectrometry (L2DI-TOF-MS) technique is used to analyze the so produced analogs. This analytical technique is based on the ionization of molecules by Resonance Enhanced Multi-Photon Ionization (REMPI) using a λ=248 nm wavelength laser which is selective for aromatic species. This allows for the selective identification of compounds having at least one aromatic ring. Our experiments show that tholins contain a trace amount of small PAHs with one to three aromatic rings. Nitrogen containing PAHs (PANHs) are also detected as constituents of tholins. Molecules relevant to astrobiology are detected as is the case of the substituted DNA base adenine.

  15. Understanding lasers

    SciTech Connect

    Gibilisco, S.

    1989-01-01

    Covering all different types of laser applications-Gibilisco offers an overview of this fascinating phenomenon of light. Here he describes what lasers are and how they work and examines in detail the different kinds of lasers in use today. Topics of particular interest include: the way lasers work; the different kinds of lasers; infrared, ultraviolet and x-ray lasers; use of lasers in industry and manufacturing; use of lasers for long-distance communications; fiberoptic communications; the way laser shows work; the reality of Star Wars; lasers in surgical and medical applications; and holography and the future of laser technology.

  16. Nonequilibrium laser plasma of noble gases: Prospects for amplification and guiding of the microwave radiation

    NASA Astrophysics Data System (ADS)

    Bogatskaya, A. V.; Bin, Hou; Popov, A. M.; Smetanin, I. V.

    2016-09-01

    We developed the analytical model of relaxation of a low-density plasma channel produced in noble gases (Xe, Ar) by a femtosecond KrF laser pulse and investigated the temporal evolution of its dielectric permittivity. It was demonstrated that the strong nonequilibrium of the photoelectron energy spectrum and the presence of Ramsauer minimum in transport scattering cross section make such a plasma channel an optically denser medium in comparison with non-ionized gas in the microwave frequency band and consequently such a channel appears to be a waveguide. In xenon this nonequilibrium state of a plasma leads to both transportation and amplification of the microwave signal during the relaxation of the photoelectron energy spectrum. It was also shown that a circular metal waveguide partially filled with such a nonequilibrium Xe plasma provides efficient amplification of the sub-THz microwave signal.

  17. Design challenges for matrix assisted pulsed laser evaporation and infrared resonant laser evaporation equipment

    NASA Astrophysics Data System (ADS)

    Greer, James A.

    2011-11-01

    for several reasons. The first reason is that the polymer/solvent mix as well as the sample holder are both exposed to the humidity in the air which will coat the entire surface of the holder and target with water vapor. Some polymer and/or solvent materials may not react well with water vapor. Also, the layer of water vapor absorbed on the target surface may then absorb the incident laser radiation until it is removed from the surface. Thus, it may be unclear when the water vapor is fully removed from the polymer/solvent surface and the MAPLE deposition process actually occurs. This makes deposition of specific polymer thickness difficult to calculate. While it is well known that Quartz crystal microbalances do not work well for PLD of oxide materials it can be used for the deposition of MAPLE materials. However, with rastered laser beams the tooling factor becomes a dynamic number making interpretation of final thickness potentially difficult without careful pre-calibration. Another serious issue with the initial MAPLE process was related to the use of UV lasers such as an excimer operating at 193- or 248-nm or frequency tripled, Nd:YAG lasers at 355 nm. These lasers have high energy per photon (between about 6.4 to 3.5 eV) which can lead to a variety of deleterious photochemical mechanisms that can damage the polymer chains or organic structure. Such mechanisms can be direct photo-decomposition by photochemical bond breaking and photothermal effects. Alternative lasers, such as a Er:YAG laser operating at 2.9 microns produce photons with energy of ˜0.43 eV. Such longer wavelength lasers have been used for the IR-MAPLE process and may be very useful for future MAPLE systems. A third issue with the initial approach to MAPLE was that the process did not lend itself easily to growing multilayer films. Most standard pulsed laser deposition tools have "multi-target" carousels that allow for easy target changes and multilayer film growth. This is true for sputtering, MBE

  18. A 3-level Model for Schumann-Runge O2 Laser-Induced Fluorescence

    NASA Technical Reports Server (NTRS)

    Diskin, Glenn S.; Lempert, Walter R.; Miles, Richard B.

    1996-01-01

    A three level model has been developed for the analysis of Schumann-Runge band (B(sup 3)Sigma(sup -)(sub u ) <- X(sup 3)Sigma(sup -)(sub g)) laser-induced fluorescence of molecular oxygen, O2. Such a model is required due to the severe lower state depletion which can occur when transitions having relatively large absorption cross-sections are excited. Such transitions are often utilized via ArF* or KrF* excimer or dye-laser excitation in high temperature environments. The rapid predissociation of the upper state prevents substantial repopulation of the lower state by collisional processes, and the lower state may be largely depleted, even at laser fluences as low as 10-100 mJ/sq cm. The resulting LIF signal in such cases no longer varies linearly with laser pulse energy, and the extent of the sublinear behavior varies with the particular rovibrational transition of interest. Relating the measured signal to the lower state population, then, necessitates the use of exceedingly low laser fluences. These low fluences in turn lead to the need to compromise spatial resolution in order to generate sufficient signal.

  19. Removal of dust particles from metal-mirror surfaces by excimer-laser radiation

    NASA Astrophysics Data System (ADS)

    Mann, Klaus R.; Wolff-Rottke, B.; Mueller, F.

    1995-07-01

    The effect of particle desorption from Al mirror surfaces by the influence of pulsed UV laser radiation has been studied. The investigations are closely related to the demands of astronomers, who are looking for a more effective way of cleaning the Al coatings of future very large telescope mirrors. A systematic parameter study has been performed in order to determine the irradiation conditions which yield the highest dust removal efficiency (i.e. reflectivity increase) on contaminated samples, taking particularly into account laser-induced damage and degradation effects of coating and substrate. The particle removal rate increases with increasing laser fluence, being limited however by the damage threshold of the coating. Therefore, parameters influencing the damage threshold of metal coatings like wavelength, pulse width, and number of pulses have been studied in detail. Data indicate that on Al coated BK7 and Zerodur samples KrF laser radiation yields the optimum result, with cleaning efficiencies comparable to polymer film stripping. The initial reflectivity of the clean coating can nearly be reinstalled, in particular when an additional solvent film on the sample surface is applied. Hence, laser desorption seems to be a viable method of cleaning large Al mirrors for telescopes.

  20. Photochemical processes in laser ablation of organic solids: Molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Yingling, Yaroslava G.

    In this thesis, a comprehensive study of the effect of the photochemical processes on laser ablation mechanisms has been conducted using molecular dynamics simulations. We developed a new concept for modeling photochemical processes in laser ablation of organic films using a mesoscopic coarse-grain breathing sphere model for molecular dynamics simulations. The main advantage of our model is the ability to study the dynamics of the system at the mesoscopic length scale, a regime that is not accessible either with atomistic or continuum computational methods. The photodecomposition of the excited molecules and the chemical reaction patterns in our simulations are based on the photochemistry of chlorobenzene due to ease of its fragmentation and available experimental data. Interpretation of the experimental data is the main objective of our theoretical efforts. Molecular dynamics simulations are used to investigate the effect of photochemical processes on molecular ejection mechanisms in 248-nm laser irradiation of organic solids. Photochemical reactions are found to release additional energy into the irradiated sample and decrease the average cohesive energy, therefore decreasing the value of the ablation threshold. The yield of emitted fragments becomes significant only above the ablation threshold. Below the ablation threshold, only the most volatile photoproduct, HCl, is ejected in very small amounts, whereas the remainder of photoproducts are trapped inside the sample. The presence of photochemical decomposition processes and subsequent chemical reactions changes the temporal and spatial energy deposition profile from pure photothermal ablation. The chemical reactions create an additional local pressure build up and, as a result, generate a strong and broad acoustic pressure wave propagating toward the bottom of the computational cell. The strong pressure wave in conjunction with the temperature increase in the absorbing region causes the ejection of hot massive

  1. Synthesis, characterization, and pulsed laser ablation of molecular sieves for thin film applications

    NASA Astrophysics Data System (ADS)

    Munoz, Trinidad, Jr.

    1998-12-01

    Molecular sieves are one class of crystalline low density metal oxides which are made up of one-, two-, and three dimensional pores and/or cages. We have investigated the synthesis and characterization of metal substituted aluminophosphates and all silica molecular sieves for thin film applications. A new copper substituted aluminophosphate, CuAPO-5 has been synthesized and characterized using x-ray powder diffraction, FT-IR spectroscopy and scanning electron microscopy. Electron spin resonance and electron spin echo modulation provided supporting evidence of framework incorporation of Cu(II) ions. Thus, an exciting addition has been added to the family of metal substituted aluminophosphates where substitution of the metal has been demonstrated as framework species. Also presented here is the synthesis and characterization of an iron substituted aluminophosphate, FeAPO-5, and an all silica zeolite, UTD-1 for thin film applications. Pulsed laser ablation has been employed as the technique to generate thin films. Here an excimer laser (KrFsp*, 248 nm) was used to deposit the molecular sieves on a variety of substrates including polished silicon, titanium nitride, and porous stainless steel disks. The crystallinity of the deposited films was enhanced by a post hydrothermal treatment. A vapor phase treatment of the laser deposited FeAPO-5 films has been shown to increase the crystallinity of the film without increasing film thickness. Thin films of the FeAPO-5 molecular sieves were subsequently used as the dielectric phase in capacitive type chemical sensors. The capacitance change of the FeAPO-5 devices to the relative moisture makes them potential humidity sensors. The all silica zeolite UTD-1 thin films were deposited on polished silicon and porous supports. A brief post hydrothermal treatment of the laser deposited films deposited on polished silicon and porous metal supports resulted in oriented film growth lending these films to applications in gas separations

  2. Benefits and prospects of aqueous silylation for novel dry developable high-resolution resists

    NASA Astrophysics Data System (ADS)

    Sezi, Recai; Sebald, Michael; Leuschner, Rainer; Ahne, Hellmut; Birkle, Siegfried; Borndoerfer, Horst

    1990-06-01

    The paper presents a novel surface imaging resist, consisting of an anhydride-containing copolymer and a diazoquinone photoactive compound (PAC). As base resin, alternating copolymers of styrene and maleic anhydride were prepared which show benefits such as high glass transition temperature (Tg = 170 °C) or low deep-UV absorbance (0.12/pm at 248 nm), in addition to the simplicity of synthesis with high yields. After imaging exposure, the exposed areas are selectively silylated in a standard puddle development track at room temperature within 90 to 120 s md. rinsing. The silylation is performed with an aqueous solution ofabis-aminosiloxane in water and a dissolution promoter and is accompanied by a film thickness increase, the extent of which depends on several factors such as exposure dose, PAC content in the resist, molecular weight of the base resin, aminosiloxane concentration and silylation time. The resist is developed through reactive ion etching in oxygen plasma, giving negative tone patterns. Lateral structure deformation has not been observed with this system since the resist is silylated far below the Tg of the base resin. The use of suitable 2-diazo-1-naphthalenone-4-sulphonic acid esters as PAC and the absence of crosslinking during deep-UV exposure offer the advantage that the same resist can be applied in the same mode (neg.) for i-line and KrF excimer laser lithography. By this means, lines and spaces down to 0.4 pm and 0.3 pm were achieved in 2 pm thick resist after exposures with an i-line (NA = 0.4) or KrF excimer laser stepper (NA =0.37), respectively.

  3. Microbial colonization of biopolymeric thin films containing natural compounds and antibiotics fabricated by MAPLE

    NASA Astrophysics Data System (ADS)

    Cristescu, R.; Surdu, A. V.; Grumezescu, A. M.; Oprea, A. E.; Trusca, R.; Vasile, O.; Dorcioman, G.; Visan, A.; Socol, G.; Mihailescu, I. N.; Mihaiescu, D.; Enculescu, M.; Chifiriuc, M. C.; Boehm, R. D.; Narayan, R. J.; Chrisey, D. B.

    2015-05-01

    Although a great number of antibiotics are currently available, they are often rendered ineffective by the ability of microbial strains to develop genetic resistance and to grow in biofilms. Since many antimicrobial agents poorly penetrate biofilms, biofilm-associated infections often require high concentrations of antimicrobial agents for effective treatment. Among the various strategies that may be used to inhibit microbial biofilms, one strategy that has generated significant interest involves the use of bioactive surfaces that are resistant to microbial colonization. In this respect, we used matrix assisted pulsed laser evaporation (MAPLE) involving a pulsed KrF* excimer laser source (λ = 248 nm, τ = 25 ns, ν = 10 Hz) to obtain thin composite biopolymeric films containing natural (flavonoid) or synthetic (antibiotic) compounds as bioactive substances. Chemical composition and film structures were investigated by Fourier transform infrared spectroscopy and X-ray diffraction. Films morphology was studied by scanning electron microscopy and transmission electron microscopy. The antimicrobial assay of the microbial biofilms formed on these films was assessed by the viable cell counts method. The flavonoid-containing thin films showed increased resistance to microbial colonization, highlighting their potential to be used for the design of anti-biofilm surfaces.

  4. Laser-induced emission of SO in matrices - The c 1Sigma(-) - a 1Delta and the A prime 3Delta - X 3Sigma(-) transitions

    NASA Astrophysics Data System (ADS)

    Zen, Ching-Chi; Tang, Fa-Tai; Lee, Yuan-Pern

    1992-06-01

    The laser-induced matrix emission technique, using a KrF excimer laser and the experimental setup described by Chiang and Lee (1988), was used to determine accurately the peak positions and isotopic shifts of the two progressions assigned to SO (one in the range 353-601 nm and the other in the range 491-822 nm). The precursors of SO used in this study included Cl2SO, SO2, OCS/NO2, and OCS/N2O. The blue progression is assigned to the A-prime 3Delta - X 3Sigma(-) transition, and the red progression to the c 1Sigma(-) - a 1Delta transition. The energies of the c and the A-prime states are determined.

  5. Pulsed Laser Deposition of High Temperature Protonic Films

    NASA Technical Reports Server (NTRS)

    Dynys, Fred W.; Berger, M. H.; Sayir, Ali

    2006-01-01

    Pulsed laser deposition has been used to fabricate nanostructured BaCe(0.85)Y(0.15)O3- sigma) films. Protonic conduction of fabricated BaCe(0.85)Y(0.15)O(3-sigma) films was compared to sintered BaCe(0.85)Y(0.15)O(3-sigma). Sintered samples and laser targets were prepared by sintering BaCe(0.85)Y(0.15)O(3-sigma) powders derived by solid state synthesis. Films 1 to 8 micron thick were deposited by KrF excimer laser on porous Al2O3 substrates. Thin films were fabricated at deposition temperatures of 700 to 950 C at O2 pressures up to 200 mTorr using laser pulse energies of 0.45 - 0.95 J. Fabricated films were characterized by X-ray diffraction, electron microscopy and electrical impedance spectroscopy. Single phase BaCe(0.85)Y(0.15)O(3-sigma) films with a columnar growth morphology are observed with preferred crystal growth along the [100] or [001] direction. Results indicate [100] growth dependence upon laser pulse energy. Electrical conductivity of bulk samples produced by solid state sintering and thin film samples were measured over a temperature range of 100 C to 900 C. Electrical conduction behavior was dependent upon film deposition temperature. Maximum conductivity occurs at deposition temperature of 900 oC; the electrical conductivity exceeds the sintered specimen. All other deposited films exhibit a lower electrical conductivity than the sintered specimen. Activation energy for electrical conduction showed dependence upon deposition temperature, it varied

  6. High resolution IR diode laser study of collisional energy transfer between highly vibrationally excited monofluorobenzene and CO2: the effect of donor fluorination on strong collision energy transfer.

    PubMed

    Kim, Kilyoung; Johnson, Alan M; Powell, Amber L; Mitchell, Deborah G; Sevy, Eric T

    2014-12-21

    Collisional energy transfer between vibrational ground state CO2 and highly vibrationally excited monofluorobenzene (MFB) was studied using narrow bandwidth (0.0003 cm(-1)) IR diode laser absorption spectroscopy. Highly vibrationally excited MFB with E' = ∼41,000 cm(-1) was prepared by 248 nm UV excitation followed by rapid radiationless internal conversion to the electronic ground state (S1→S0*). The amount of vibrational energy transferred from hot MFB into rotations and translations of CO2 via collisions was measured by probing the scattered CO2 using the IR diode laser. The absolute state specific energy transfer rate constants and scattering probabilities for single collisions between hot MFB and CO2 were measured and used to determine the energy transfer probability distribution function, P(E,E'), in the large ΔE region. P(E,E') was then fit to a bi-exponential function and extrapolated to the low ΔE region. P(E,E') and the biexponential fit data were used to determine the partitioning between weak and strong collisions as well as investigate molecular properties responsible for large collisional energy transfer events. Fermi's Golden rule was used to model the shape of P(E,E') and identify which donor vibrational motions are primarily responsible for energy transfer. In general, the results suggest that low-frequency MFB vibrational modes are primarily responsible for strong collisions, and govern the shape and magnitude of P(E,E'). Where deviations from this general trend occur, vibrational modes with large negative anharmonicity constants are more efficient energy gateways than modes with similar frequency, while vibrational modes with large positive anharmonicity constants are less efficient at energy transfer than modes of similar frequency.

  7. Laser-induced circular nanostructures in fused silica assisted by a self-assembling chromium layer

    NASA Astrophysics Data System (ADS)

    Lorenz, Pierre; Klöppel, Michael; Frost, Frank; Ehrhardt, Martin; Zimmer, Klaus; Li, Pu

    2013-09-01

    Nanostructures have a widespread field of applications and are of growing industrial importance. However, the economic fabrication of nanostructures poses a critical challenge. In this work, a fundamental research of a laser-induced surface nanostructuring of fused silica using the dynamic self-assembling structure formation in metal layers is presented. This method may offer promising opportunities for nanostructuring of dielectrics. This new approach is demonstrated by the formation of randomly distributed concentric nanostructures into fused silica. The irradiation of chromium-covered fused silica samples with a KrF excimer laser results in melting, partial ablation, restructuring, and resolidification of both the metal layer and the dielectric surface. In this way, concentric circular structures into the dielectric were formed with dimensions that can be controlled by the laser fluence Φ and by the pulse number N. The distance of the concentric rings increases with increasing laser fluence. The experimental results were compared with simulated structure dimensions taking into account the heat equation and the Navier-Stokes equation. Despite the currently applied decoupled approach for the simulations, i.e. separating the heat equation and the fluid flow, a good agreement of simulation results with experimental data was achieved.

  8. Excimer laser fragmentation fluorescence spectroscopy for real-time monitoring of combustion generated pollutants

    NASA Astrophysics Data System (ADS)

    Damm, Christopher John

    Toxic pollutant emissions from combustion pose a hazard to public and environmental health. Better diagnostic techniques would benefit emissions monitoring programs and aid research aimed at understanding toxic pollutant formation and behavior. Excimer Laser Fragmentation Fluorescence Spectroscopy (ELFFS) provides sensitive, real-time, in situ measurements of several important combustion related pollutants. This thesis demonstrates the capabilities of ELFFS for detecting amines in combustion exhausts and carbonaceous particulate matter from engines. ELFFS photofragments target species using a 193 nm excimer laser to form fluorescent signature species. The NH (A--X) band at 336 nm is used to monitor ammonia, ammonium nitrate and ammonium sulfate. There are no major interferences in this spectral region. The sensitivity is approximately 100 ppb (1 second measurement) for ammonia in post flame gases and 100 ppb (mole fraction) for ammonium nitrate/sulfate in ambient air. Quenching of NH by the major combustion products does not limit the applicability of the detection method. Fluorescence from excited carbon atoms at 248 nm (1P 0 → 1S0) following photofragmentation measures particulate matter in a two-stroke gasoline engine and a four-stroke diesel engine. Fluorescence from CH (A2Delta → X 2pi, 431 nm) C2 (d3pig → a3piu, 468 nm) fragments is also observed. The atomic carbon fluorescence signal is proportional to the mass concentration of particles in the laser interrogation region. The 100-shot (1 second) detection limit for particles in the two-stroke gasoline engine exhaust is 0.5 ppb (volume fraction). The 100-shot detection limit for four-stroke diesel particulate matter is 0.2 ppb. Interferences from carbon monoxide and carbon dioxide are negligible. The ratios of atomic carbon, C2, and CH peaks provide information on the molecular forms of compounds condensed on or contained within the particles measured. The C/C2 signal ratio can be used to distinguish

  9. The effect of microarc oxidation and excimer laser processing on the microstructure and corrosion resistance of Zr-1Nb alloy

    NASA Astrophysics Data System (ADS)

    Yang, Jiaoxi; Wang, Xin; Wen, Qiang; Wang, Xibing; Wang, Rongshan; Zhang, Yanwei; Xue, Wenbin

    2015-12-01

    The main purpose of this research was to investigate the effect of microarc oxidation (MAO) and excimer laser processing on the corrosion resistance of Zr-1Nb alloy in service environment. The pre-oxide film was fabricated on the surface of Zr-1Nb cladding tubes by MAO processing, and then subjected to KrF excimer laser irradiation. The surface morphology of the pre-oxide film was observed using a scanning electron microscope; phase compositions and quantities were determined using an X-ray diffraction; surface roughness was determined using a profilometer; and thermal expansion coefficient was measured using a dilatometer. Autoclave experiments were conducted for 94 days in an aqueous condition of 360 °C under 18.6 MPa in 0.01 mol/L LiOH solutions. The results showed that MAO + laser treatment resulted in a significant increase in the corrosion resistance of Zr-1Nb cladding tubes at high temperatures, because laser melting and etching could lead to a reduction in surface roughness and an increase in compactness of the pre-oxide film, and laser processing could promote the transformation of m-ZrO2 phase to t-ZrO2 phase. The best corrosion resistance was obtained when the pulse energy was 500 mJ, scanning speed was 0.13 mm/s, and pulse number was 2400.

  10. Laser-induced fluorescence of CF{sub 2} from a CH{sub 4} flame and an H{sub 2} flame with addition of HCFC-22 and HFC-134a

    SciTech Connect

    Su, Y.; Gu, Y.; Reck, G.P.; Rothe, E.W.; Francisco, J.S.

    1998-04-01

    Laser-induced fluorescence (LIF) of CF{sub 2} radicals in atmospheric diffusion flames is reported for the first time. When a CH{sub 4} flame is premixed with HCFC-22 (CCIF{sub 2}H) or HFC-134a (CF{sub 3}CFH{sub 2}), fluorescence spectra between 250 and 314 nm of the {tilde A}{sup 1}B{sub 1}-{tilde X}{sup 1}A{sub 1} transition from CF{sub 2} are observed when the flame is probed by a KrF laser. When these two halocarbons are added to an atmospheric H{sub 2} flame, similar LIF spectra of CF{sub 2} are also observed. Two-dimensional LIF images from the flames show that the CF{sub 2} radicals are localized between the flame center and the flame front.

  11. Wettability and osteoblast cell response modulation through UV laser processing of nylon 6,6

    NASA Astrophysics Data System (ADS)

    Waugh, D. G.; Lawrence, J.

    2011-08-01

    With an ageing population the demand for cheap, efficient implants is ever increasing. Laser surface treatment offers a unique means of varying biomimetic properties to determine generic parameters to predict cell responses. This paper details how a KrF excimer laser can be employed for both laser-induced patterning and whole area irradiative processing to modulate the wettability characteristics and osteoblast cell response following 24 h and 4 day incubation. Through white light interferometry (WLI) it was found that the surface roughness had considerably increased by up to 1.5 μm for the laser-induced patterned samples and remained somewhat constant at around 0.1 μm for the whole area irradiative processed samples. A sessile drop device determined that the wettability characteristics differed between the surface treatments. For the patterned samples the contact angle, θ, increased by up to 25° which can be attributed to a mixed-state wetting regime. For the whole area irradiative processed samples θ decreased owed to an increase in polar component, γP. For all samples θ was a decreasing function of the surface energy. The laser whole area irradiative processed samples gave rise to a distinct correlative trend between the cell response, θ and γP. However, no strong relationship was determined for the laser-induced patterned samples due to the mixed-state wetting regime. As a result, owed to the relationships and evidence of cell differentiation one can deduce that laser whole area irradiative processing is an attractive technology for employment within regenerative medicine to meet the demands of an ageing population.

  12. Design challenges for matrix assisted pulsed laser evaporation and infrared resonant laser evaporation equipment

    NASA Astrophysics Data System (ADS)

    Greer, James A.

    2011-11-01

    for several reasons. The first reason is that the polymer/solvent mix as well as the sample holder are both exposed to the humidity in the air which will coat the entire surface of the holder and target with water vapor. Some polymer and/or solvent materials may not react well with water vapor. Also, the layer of water vapor absorbed on the target surface may then absorb the incident laser radiation until it is removed from the surface. Thus, it may be unclear when the water vapor is fully removed from the polymer/solvent surface and the MAPLE deposition process actually occurs. This makes deposition of specific polymer thickness difficult to calculate. While it is well known that Quartz crystal microbalances do not work well for PLD of oxide materials it can be used for the deposition of MAPLE materials. However, with rastered laser beams the tooling factor becomes a dynamic number making interpretation of final thickness potentially difficult without careful pre-calibration. Another serious issue with the initial MAPLE process was related to the use of UV lasers such as an excimer operating at 193- or 248-nm or frequency tripled, Nd:YAG lasers at 355 nm. These lasers have high energy per photon (between about 6.4 to 3.5 eV) which can lead to a variety of deleterious photochemical mechanisms that can damage the polymer chains or organic structure. Such mechanisms can be direct photo-decomposition by photochemical bond breaking and photothermal effects. Alternative lasers, such as a Er:YAG laser operating at 2.9 microns produce photons with energy of ˜0.43 eV. Such longer wavelength lasers have been used for the IR-MAPLE process and may be very useful for future MAPLE systems. A third issue with the initial approach to MAPLE was that the process did not lend itself easily to growing multilayer films. Most standard pulsed laser deposition tools have "multi-target" carousels that allow for easy target changes and multilayer film growth. This is true for sputtering, MBE

  13. Laser induced densification of cerium gadolinium oxide: Application to single-chamber solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Mariño, Mariana; Rieu, Mathilde; Viricelle, Jean-Paul; Garrelie, Florence

    2016-06-01

    In single-chamber solid oxide fuel cells (SC-SOFC), anode and cathode are placed in a gas chamber where they are exposed to a fuel/air mixture. Similarly to conventional dual-chamber SOFC, the anode and the cathode are separated by an electrolyte. However, as in the SC-SOFC configuration the electrolyte does not play tightness role between compartments, this one can be a porous layer. Nevertheless, it is necessary to have a diffusion barrier to prevent the transportation of hydrogen produced locally at the anode to the cathode that reduces fuel cell performances. This study aims to obtain directly a diffusion barrier through the surface densification of the electrolyte Ce0.9Gd0.1O1.95 (CGO) by a laser treatment. KrF excimer laser and Yb fiber laser irradiations were used at different fluences and number of pulses to modify the density of the electrolyte coating. Microstructural characterizations confirmed the modifications on the surface of the electrolyte for appropriate experimental conditions showing either grain growth or densified but cracked surfaces. Gas permeation and electrical conductivities of the modified electrolyte were evaluated. Finally SC-SOFC performances were improved for the cells presenting grain growth at the electrolyte surface.

  14. Laser Analyzer

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Dopant level analysis is important to the laser system designer because it allows him to model the laser's performance. It also allows the end user to determine what went wrong when a laser fails to perform as expected. Under a Small Business Innovation Research (SBIR) contract, Scientific Materials Corporation has developed a process for producing uniform laser rods in which the amount of water trapped in the crystal during growth is reduced. This research led to the formation of a subsidiary company, Montana Analytical Services, which conducts analysis of laser rods for dopant ion concentrations. This is a significant advance in laser technology.

  15. High resolution IR diode laser study of collisional energy transfer between highly vibrationally excited monofluorobenzene and CO{sub 2}: The effect of donor fluorination on strong collision energy transfer

    SciTech Connect

    Kim, Kilyoung; Johnson, Alan M.; Powell, Amber L.; Mitchell, Deborah G.; Sevy, Eric T.

    2014-12-21

    Collisional energy transfer between vibrational ground state CO{sub 2} and highly vibrationally excited monofluorobenzene (MFB) was studied using narrow bandwidth (0.0003 cm{sup −1}) IR diode laser absorption spectroscopy. Highly vibrationally excited MFB with E′ = ∼41 000 cm{sup −1} was prepared by 248 nm UV excitation followed by rapid radiationless internal conversion to the electronic ground state (S{sub 1}→S{sub 0}*). The amount of vibrational energy transferred from hot MFB into rotations and translations of CO{sub 2} via collisions was measured by probing the scattered CO{sub 2} using the IR diode laser. The absolute state specific energy transfer rate constants and scattering probabilities for single collisions between hot MFB and CO{sub 2} were measured and used to determine the energy transfer probability distribution function, P(E,E′), in the large ΔE region. P(E,E′) was then fit to a bi-exponential function and extrapolated to the low ΔE region. P(E,E′) and the biexponential fit data were used to determine the partitioning between weak and strong collisions as well as investigate molecular properties responsible for large collisional energy transfer events. Fermi's Golden rule was used to model the shape of P(E,E′) and identify which donor vibrational motions are primarily responsible for energy transfer. In general, the results suggest that low-frequency MFB vibrational modes are primarily responsible for strong collisions, and govern the shape and magnitude of P(E,E′). Where deviations from this general trend occur, vibrational modes with large negative anharmonicity constants are more efficient energy gateways than modes with similar frequency, while vibrational modes with large positive anharmonicity constants are less efficient at energy transfer than modes of similar frequency.

  16. Lasers of All Sizes

    NASA Astrophysics Data System (ADS)

    Balcou, Philippe; Forget, Sébastien Robert-Philip, Isabelle

    2015-10-01

    * Introduction * The Laser in All Its Forms * Gas lasers * Dye lasers * Solid-state lasers * Lasers for Every Taste * The rise of lasers * Lasers of all sizes * The colors of the rainbow... and beyond * Shorter and shorter lasers * Increasingly powerful lasers * Lasers: A Universal Tool? * Cutting, welding, and cleaning * Communicating * Treating illnesses * Measuring * Supplying energy? * Entertaining * Understanding * Conclusion

  17. Solar Wind Neon Isotopic Analyses by UV Laser Ablation on the Genesis Concentrator Gold Cross for Calibration of Oxygen Isotope Data

    NASA Astrophysics Data System (ADS)

    Heber, V. S.; Wiens, R. C.; Burnett, D. S.; Baur, H.; Wiechert, U. H.; Wieler, R.

    2005-12-01

    To determine the oxygen isotopic composition of the present day solar wind, a proxy for the solar nebula, is one of the key goals of the Genesis solar wind (SW) collection mission. In order to increase analytical precision on measured O isotopes, ions of incoming SW in the mass range to 28 amu were accelerated and focussed onto the target by an electrostatic mirror. The concentration factor is about 20. However, these processes are expected to fractionate the isotopic composition of SW ions, with fractionation varying as a function of target radius. We will directly measure the instrumental fractionation factors by analysing Ne isotopes with high precision and spatial resolution along the radius on the electroplated Au cross that framed the concentrator targets. Ne isotopes are most suitable to investigate fractionation because of i) it is an abundant element in the Sun, ii) its isotopic composition in SW is well understood, and iii) Ne is hardly influenced by terrestrial contamination. We will analyse Ne isotopes by UV laser ablation (248 nm) of small areas (0.1 x 0.1 mm) using a very sensitive noble gas mass spectrometer equipped with a molecular drag pump conveying the gas almost quantitatively into the ion source. The target precision of O isotopic composition is about 0.1% (2-sigma). Therefore, the most important issue for us is to achieve a similar high precision of the Ne isotope data allowing to determine the trend of instrumental fractionation along the target radius, which is computed to be in total about 2%. Currently, we obtain a reproducibility of <0.2% using standard calibration gas containing similar Ne amounts as expected. Blank analyses of the ultra-clean electroplated Au target result in absolutely negligible amounts of Ne. At the meeting we will present first Ne results of the first arm analysed of the Au cross.

  18. Laser microphone

    DOEpatents

    Veligdan, James T.

    2000-11-14

    A microphone for detecting sound pressure waves includes a laser resonator having a laser gain material aligned coaxially between a pair of first and second mirrors for producing a laser beam. A reference cell is disposed between the laser material and one of the mirrors for transmitting a reference portion of the laser beam between the mirrors. A sensing cell is disposed between the laser material and one of the mirrors, and is laterally displaced from the reference cell for transmitting a signal portion of the laser beam, with the sensing cell being open for receiving the sound waves. A photodetector is disposed in optical communication with the first mirror for receiving the laser beam, and produces an acoustic signal therefrom for the sound waves.

  19. Propagation velocities of laser-produced plasmas from copper wire targets and water droplets

    NASA Technical Reports Server (NTRS)

    Song, Kyo-Dong; Alexander, Dennis R.

    1994-01-01

    Experiments were performed to determine the plasma propagation velocities resulting from KrF laser irradiation of copper wire target (75 microns diameter) and water droplets (75 microns diameter) at irradiance levels ranging from 25 to 150 GW/sq cm. Plasma propagation velocities were measured using a streak camera system oriented orthogonally to the high-energy laser propagation axis. Plasma velocities were studied as a function of position in the focused beam. Results show that both the shape of the plasma formation and material removal from the copper wire are different and depend on whether the targets are focused or slightly defocused (approximately = 0.5 mm movement in the beam axis). Plasma formation and its position relative to the target is an important factor in determining the practical focal point during high-energy laser interaction with materials. At irradiance of 100 GW/sq cm, the air plasma has two weak-velocity components which propagate toward and away from the incident laser while a strong-velocity component propagates away from the laser beam as a detonation wave. Comparison of the measured breakdown velocities (in the range of 2.22-2.27 x 10(exp 5) m/s) for air and the value calculated by the nonlinear breakdown wave theory at irradiance of 100 GW/sq cm showed a quantitative agreement within approximately 50% while the linear theory and Gaussian pulse theory failed. The detonation wave velocities of plasma generated from water droplets and copper wire targets for different focused cases were measured and analyzed theoretically. The propagation velocities of laser-induced plasma liquid droplets obtained by previous research are compared with current work.

  20. Laser ignition

    DOEpatents

    Early, James W.; Lester, Charles S.

    2004-01-13

    Sequenced pulses of light from an excitation laser with at least two resonator cavities with separate output couplers are directed through a light modulator and a first polarzing analyzer. A portion of the light not rejected by the first polarizing analyzer is transported through a first optical fiber into a first ignitor laser rod in an ignitor laser. Another portion of the light is rejected by the first polarizing analyzer and directed through a halfwave plate into a second polarization analyzer. A first portion of the output of the second polarization analyzer passes through the second polarization analyzer to a second, oscillator, laser rod in the ignitor laser. A second portion of the output of the second polarization analyzer is redirected by the second polarization analyzer to a second optical fiber which delays the beam before the beam is combined with output of the first ignitor laser rod. Output of the second laser rod in the ignitor laser is directed into the first ignitor laser rod which was energized by light passing through the first polarizing analyzer. Combined output of the first ignitor laser rod and output of the second optical fiber is focused into a combustible fuel where the first short duration, high peak power pulse from the ignitor laser ignites the fuel and the second long duration, low peak power pulse directly from the excitation laser sustains the combustion.

  1. Simultaneous visualization of water and hydrogen peroxide vapor using two-photon laser-induced fluorescence and photofragmentation laser-induced fluorescence.

    PubMed

    Larsson, Kajsa; Johansson, Olof; Aldén, Marcus; Bood, Joakim

    2014-01-01

    A concept based on a combination of photofragmentation laser-induced fluorescence (PF-LIF) and two-photon laser-induced fluorescence (LIF) is for the first time demonstrated for simultaneous detection of hydrogen peroxide (H2O2) and water (H2O) vapor. Water detection is based on two-photon excitation by an injection-locked krypton fluoride (KrF) excimer laser (248.28 nm), which induces broadband fluorescence (400-500 nm) from water. The same laser simultaneously photodissociates H2O2, whereupon the generated OH fragments are probed by LIF after a time delay of typically 50 ns, by a frequency-doubled dye laser (281.91 nm). Experiments in six different H2O2/H2O mixtures of known compositions show that both signals are linearly dependent on respective species concentration. For the H2O2 detection there is a minor interfering signal contribution from OH fragments created by two-photon photodissociation of H2O. Since the PF-LIF signal yield from H2O2 is found to be at least ∼24,000 times higher than the PF-LIF signal yield from H2O at room temperature, this interference is negligible for most H2O/H2O2 mixtures of practical interest. Simultaneous single-shot imaging of both species was demonstrated in a slightly turbulent flow. For single-shot imaging the minimum detectable H2O2 and H2O concentration is 10 ppm and 0.5%, respectively. The proposed measurement concept could be a valuable asset in several areas, for example, in atmospheric and combustion science and research on vapor-phase H2O2 sterilization in the pharmaceutical and aseptic food-packaging industries. PMID:25358016

  2. CW laser pumped emerald laser

    SciTech Connect

    Shand, M.L.; Lai, S.T.

    1984-02-01

    A CW laser-pumped emerald laser is reported. A 34 percent output power slope efficiency is observed with longitudinal pumping by a krypton laser in a nearly concentric cavity. The laser has been tuned from 728.8 to 809.0 nm. Losses in emerald are larger than those of alexandrite determined in a similar cavity. The present data also indicate that the excited state absorption minimum is shifted from that of alexandrite. 13 references.

  3. Cutaneous lasers.

    PubMed

    Fedok, Fred G; Garritano, Frank; Portela, Antonio

    2013-02-01

    There has been a remarkable development and evolution of laser technology, leading to adaptation of lasers for medical use and the treatment of skin problems and disorders. Many treatments that required incisional surgery and other invasive methods are now preferentially treated with a laser. Although laser advances have resulted in the availability of some amazing tools, they require the clinical skill and judgment of the clinician for their optimal use. This article provides a clinically oriented overview of many of the lasers valuable in facial plastic surgery. Basic science, clinical adaptations, and patient management topics are covered.

  4. Laser device

    DOEpatents

    Scott, Jill R.; Tremblay, Paul L.

    2004-11-23

    A laser device includes a target position, an optical component separated a distance J from the target position, and a laser energy source separated a distance H from the optical component, distance H being greater than distance J. A laser source manipulation mechanism exhibits a mechanical resolution of positioning the laser source. The mechanical resolution is less than a spatial resolution of laser energy at the target position as directed through the optical component. A vertical and a lateral index that intersect at an origin can be defined for the optical component. The manipulation mechanism can auto align laser aim through the origin during laser source motion. The laser source manipulation mechanism can include a mechanical index. The mechanical index can include a pivot point for laser source lateral motion and a reference point for laser source vertical motion. The target position can be located within an adverse environment including at least one of a high magnetic field, a vacuum system, a high pressure system, and a hazardous zone. The laser source and an electro-mechanical part of the manipulation mechanism can be located outside the adverse environment. The manipulation mechanism can include a Peaucellier linkage.

  5. Laser device

    DOEpatents

    Scott, Jill R.; Tremblay, Paul L.

    2007-07-10

    A laser device includes a target position, an optical component separated a distance J from the target position, and a laser energy source separated a distance H from the optical component, distance H being greater than distance J. A laser source manipulation mechanism exhibits a mechanical resolution of positioning the laser source. The mechanical resolution is less than a spatial resolution of laser energy at the target position as directed through the optical component. A vertical and a lateral index that intersect at an origin can be defined for the optical component. The manipulation mechanism can auto align laser aim through the origin during laser source motion. The laser source manipulation mechanism can include a mechanical index. The mechanical index can include a pivot point for laser source lateral motion and a reference point for laser source vertical motion. The target position can be located within an adverse environment including at least one of a high magnetic field, a vacuum system, a high pressure system, and a hazardous zone. The laser source and an electro-mechanical part of the manipulation mechanism can be located outside the adverse environment. The manipulation mechanism can include a Peaucellier linkage.

  6. Laser ignition

    DOEpatents

    Early, James W.; Lester, Charles S.

    2003-01-01

    In the apparatus of the invention, a first excitation laser or other excitation light source is used in tandem with an ignitor laser to provide a compact, durable, engine deployable fuel ignition laser system. Reliable fuel ignition is provided over a wide range of fuel conditions by using a single remote excitation light source for one or more small lasers located proximate to one or more fuel combustion zones. In a third embodiment, alternating short and long pulses of light from the excitation light source are directed into the ignitor laser. Each of the embodiments of the invention can be multiplexed so as to provide laser light energy sequentially to more than one ignitor laser.

  7. Acetone laser-induced fluorescence for temperature and multiparameter imaging in gaseous flows

    NASA Astrophysics Data System (ADS)

    Thurber, Mark Clinton

    1999-10-01

    suitable for a single-wavelength temperature diagnostic (uniform pressure and acetone seeding), while imaging of the fluorescence ratio from the 308/248 nm or 308/266 nm wavelength pair is possible when acetone partial pressure varies across a flowfield. Using an interline transfer CCD camera that can acquire two images within less than a microsecond of each other, simultaneous quantitative imaging of temperature and mole fraction is demonstrated in a heated turbulent jet. demonstrated in a heated turbulent jet.

  8. Laser-induced convection nanostructures on SiON/Si interface

    SciTech Connect

    Maksimovic, A.; Lugomer, S.; Geretovszky, Zs.; Szoerenyi, T.

    2008-12-15

    The homogenized beam of an excimer KrF laser has been used to form rectangular millimeter-scale holes of vertical walls in the {approx}1 {mu}m thick silicon-oxynitride (SiON) thin film deposited on Si <111> wafer. The regular rectangular craters in SiON layer have the flat bottom surface reaching the SiON/Si interface. At the same time horizontal thermal gradient causes the formation of the nanoscale Marangoni convection structures at the SiON/Si interface. The inhomogeneous pattern of the roll structures can be divided into domains of regular, irregular, and chaotic organizations. The roll diameter is about 200 nm while their average wavelength, {lambda}, is, {approx}2 {mu}m, i.e., about ten times larger than the laser wavelength, and decreases with increasing number of pulses. Numerical simulation of the Marangoni domain roll structures based on the simple Swift-Hohenberg equation has reproduced all observed types of the roll organization, including those that show the evolution of dislocations from the Eckhause instability.

  9. Laser Raman diagnostics in subsonic and supersonic turbulent jet diffusion flames

    NASA Technical Reports Server (NTRS)

    Cheng, T. S.; Wehrmeyer, J. A.; Pitz, R. W.

    1991-01-01

    Ultraviolet (UV) spontaneous vibrational Raman scattering combined with laser-induced predissociative fluorescence (LIPF) is developed for temperature and multi-species concentration measurements. Simultaneous measurements of temperature, major species (H2, O2, N2, H2O), and minor species (OH) concentrations are made with a 'single' narrow band KrF excimer laser in subsonic and supersonic lifted turbulent hydrogen-air diffusion flames. The UV Raman system is calibrated with a flat-flame diffusion burner operated at several known equivalence ratios from fuel-lean to fuel-rich. Temperature measurements made by the ratio of Stokes/anti-Stokes signal and by the ideal gas law are compared. The single shot measurement precision for concentration and temperature measurement is 5 to 10 pct. Calibration constants and bandwidth factors are determined from the flat burner measurements and used in a data reduction program to arrive at temperature and species concentration measurements. These simultaneous measurements of temperature and multi-species concentrations allow a better understanding of the complex turbulence-chemistry interactions and provide information for the input and validation of CFD models.

  10. Pulsed laser photolysis study of the reaction between O(3P) and HO2

    NASA Technical Reports Server (NTRS)

    Ravishankara, A. R.; Wine, P. H.; Nicovich, J. M.

    1983-01-01

    It is pointed out that bimolecular reactions involving two free radicals are of great interest because both reactants have unpaired electrons and hence could interact at distances longer than those typical of radical-molecule encounters. A method based on laser photolysis is being developed to produce selectively free radicals in the homogeneous gas phase. This is to be done in such a way as to isolate the reaction of interest and subsequently follow the course of the reaction using spectroscopic techniques. The present investigation is concerned with a study in which the rate coefficient for the reaction of O(3P) with HO2, has been measured at N2 pressures ranging from 10 to 500 torr, taking into account the reaction O(3P)+HO2 yields OH-O2. In the described study, O(3P) and HO2 were produced by cophotolysis of O3 and H2O2 in N2 at 248.5 nm using a KrF excimer laser.

  11. Micromachining of optically transparent materials by laser ablation of a solution containing pyrene

    NASA Astrophysics Data System (ADS)

    Yabe, Akira; Niino, Hiroyuki; Wang, Jun

    2001-01-01

    Optically transparent materials such as fused silica, quartz crystal, calcium fluoride, and fluorocarbon polymer were etched upon irradiation of organic solution containing pyrene with a conventional KrF or XeCl excimer laser. Threshold fluences for etching were 240 mJ/cm2 for fused silica, 330 mJ/cm2 for quartz crystal, 740 mJ/cm2 for calcium fluoride, and 45 mJ/cm2 for fluorocarbon polymer. These threshold values were remarkably low compared with those of direct ablation by using conventional lasers. Their etch rates remarkably depended on a concentration of pyrene: the etch rate became higher as the pyrene concentration increased. It means that pyrene molecules play an important role in this process. The mechanisms for this process is discussed by cyclic multiphotonic absorption of pyrene in the excited states, thermal relaxation, and formation of super-heated solution. As the results suggest, the process is based on the combination of two physical processes in the interface between the transparent materials and the liquid: one is a heating process by a super-heated liquid and the other is an attacking process by a high temperature and pressure vapor. The mechanism is also referred to thermal properties of materials.

  12. Inspection of transparent polymers by photothermal detection of ultraviolet-laser generated thermal waves

    NASA Astrophysics Data System (ADS)

    Eickmeier, Achim; Bahners, Thomas; Schollmeyer, Eckhard

    1991-11-01

    The concept of photothermal wave imaging has been adapted to the nondestructive inspection of transparent polymeric samples by specific generation of thermal waves. Utilization of light sources according to the absorption properties of the material secured pure surface heating which is necessary for sensible measurements. Thickness profiles of thin films made of poly(ethylene terephthalate), which are transparent in the visible spectrum, could be measured using a pulsed KrF laser. Examples for the nondestructive inspection of complex textile samples such as coated fabrics are presented.The photothermal analysis (PTA) of optically generated thermal waves is a powerful tool for nondestructive, contactless inspection and evaluation of intrinsic properties of a sample.1,2 The method has been used for the observation of dynamic processes in adhesives, for the inspection of coatings on metal and of carbon fiber composites. A modulated light source, e.g., a chopped HeNe- or Ar+ laser, is used for local, modulated heating at the sample's surface resulting in a time- and space-dependent temperature modulation which propagates through the material. In the case of a homogeneous layer heated only in a small volume at the surface the solution of the heat diffusion equation gives a heavily damped thermal wave T(x,y,z;t). In a one-dimensional model3 only the direction z perpendicular to the surface is considered and we obtain

  13. Laser Raman diagnostics in subsonic and supersonic turbulent jet diffusion flames. Final Report

    SciTech Connect

    Cheng, T.S.; Wehrmeyer, J.A.; Pitz, R.W.

    1991-01-01

    Ultraviolet (UV) spontaneous vibrational Raman scattering combined with laser-induced predissociative fluorescence (LIPF) is developed for temperature and multi-species concentration measurements. Simultaneous measurements of temperature, major species (H{sub 2}, O{sub 2}, N{sub 2}, H{sub 2}O), and minor species (OH) concentrations are made with a 'single' narrow band KrF excimer laser in subsonic and supersonic lifted turbulent hydrogen-air diffusion flames. The UV Raman system is calibrated with a flat-flame diffusion burner operated at several known equivalence ratios from fuel-lean to fuel-rich. Temperature measurements made by the ratio of Stokes/anti-Stokes signal and by the ideal gas law are compared. Single-shot uncertainties for temperature and concentration measurements are analyzed with photon statistics. Calibration constants and bandwidth factors are used in the data reduction program to arrive at temperature and species concentration measurements. The results of these measurements are presented, and these simultaneous measurements of temperature and multi-species concentrations allow a better understanding of the complex turbulence-chemistry interactions and provide information for the input and validation of CFD models.

  14. Laser Systems

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Tunable diode lasers are employed as radiation sources in high resolution infrared spectroscopy to determine spectral characteristics of gaseous compounds. With other laser systems, they are produced by Spectra-Physics, and used to monitor chemical processes, monitor production of quantity halogen lamps, etc. The Laser Analytics Division of Spectra-Physics credits the system's reliability to a program funded by Langley in the 1970s. Company no longer U.S.-owned. 5/22/97

  15. Planar laser-induced fluorescence imaging of OH in the exhaust of a bi-propellant thruster

    NASA Technical Reports Server (NTRS)

    Paul, Phillip H.; Clemens, N. T.; Makel, D. B.

    1992-01-01

    Planar laser-induced fluorescence imaging of the hydroxyl radical has been performed on the flow produced by the exhaust of a subscale H2/O2 fueled bi-propellant rocket engine. Measurements were made to test the feasibility of OH (0,0) and (3,0) excitation strategies by using injection seeded XeCl and KrF excimer lasers, respectively. The flow is produced with hydrogen and oxygen reacting at a combustor chamber pressure of 5 atm which then exhausts to the ambient. The hydroxyl concentration in the exhaust flow is approximately 8 percent. Fluorescence images obtained by pumping the Q1(3) transition in the (0,0) band exhibited very high signals but also showed the effect of laser beam absorption. To obtain images when pumping the P1(8) transition in the (3,0) band it was necessary to use exceptionally fast imaging optics and unacceptably high intensifier gains. The result was single-shot images which displayed a signal-to-noise ratio of order unity or less when measured on a per pixel basis.

  16. Biocavity Lasers

    SciTech Connect

    Gourley, P.L.; Gourley, M.F.

    2000-10-05

    Laser technology has advanced dramatically and is an integral part of today's healthcare delivery system. Lasers are used in the laboratory analysis of human blood samples and serve as surgical tools that kill, burn or cut tissue. Recent semiconductor microtechnology has reduced the size o f a laser to the size of a biological cell or even a virus particle. By integrating these ultra small lasers with biological systems, it is possible to create micro-electrical mechanical systems that may revolutionize health care delivery.

  17. Laser ignition

    DOEpatents

    Early, James W.; Lester, Charles S.

    2002-01-01

    In the apparatus of the invention, a first excitation laser or other excitation light source capable of producing alternating beams of light having different wavelengths is used in tandem with one or more ignitor lasers to provide a compact, durable, engine deployable fuel ignition laser system. Reliable fuel ignition is provided over a wide range of fuel conditions by using the single remote excitation light source for pumping one or more small lasers located proximate to one or more fuel combustion zones with alternating wavelengths of light.

  18. Laser apparatus

    DOEpatents

    Lewis, Owen; Stogran, Edmund M.

    1980-01-01

    Laser apparatus is described wherein an active laser element, such as the disc of a face-pumped laser, is mounted in a housing such that the weight of the element is supported by glass spheres which fill a chamber defined in the housing between the walls of the housing and the edges of the laser element. The uniform support provided by the spheres enable the chamber and the pump side of the laser element to be sealed without affecting the alignment or other optical properties of the laser element. Cooling fluid may be circulated through the sealed region by way of the interstices between the spheres. The spheres, and if desired also the cooling fluid may contain material which absorbs radiation at the wavelength of parasitic emissions from the laser element. These parasitic emissions enter the spheres through the interface along the edge surface of the laser element and it is desirable that the index of refraction of the spheres and cooling fluid be near the index of refraction of the laser element. Thus support, cooling, and parasitic suppression functions are all accomplished through the use of the arrangement.

  19. Pulsed Laser Deposition of BaCe(sub 0.85)Y(sub 0.15)0(sub 3) FILMS

    NASA Technical Reports Server (NTRS)

    Dynys, F. W.; Sayir, A.

    2006-01-01

    Pulsed laser deposition has been used to grow nanostructured BaCe(sub 0.85)Y(sub 0.15)0(sub 3) films. The objective is to enhance protonic conduction by reduction of membrane thickness. Sintered samples and laser targets were prepared by sintering BaCe(sub 0.85)Y(sub 0.15)O(sub 3) powders derived by solid state synthesis. Films 2 to 6 m thick were deposited by KrF excimer laser on Si and porous Al2O3 substrates. Nanocrystalline films were fabricated at deposition temperatures of 600-800 C deg at O2 pressure of 30 mTorr and laser fluence of 1.2 J/cm square. Films were characterized by x-ray diffraction, scanning electron microscopy and electrical impedance spectroscopy. Dense single phase BaCe(sub 0.85)Y((sub 0.15) 0(sub 3) films with a columnar growth morphology is observed, preferred crystal growth was found to be dependent upon deposition temperature and substrate type. Electrical conductivity of bulk samples produced by solid state sintering and thin film samples were measured over a temperature range of 100 C deg to 900 C deg in moist argon. Electrical conduction of the fabricated films was 1 to 4 orders of magnitude lower than the sintered bulk samples. With respect to the film growth direction, activation energy for electrical conduction is 3 times higher in the perpendicular direction than the parallel direction.

  20. Lasers in Cancer Treatment

    MedlinePlus

    ... Cancer Treatment On This Page What is laser light? What is laser therapy, and how is it ... future hold for laser therapy? What is laser light? The term “ laser ” stands for light amplification by ...

  1. Heterodyne laser spectroscopy system

    DOEpatents

    Wyeth, Richard W.; Paisner, Jeffrey A.; Story, Thomas

    1989-01-01

    A heterodyne laser spectroscopy system utilizes laser heterodyne techniques for purposes of laser isotope separation spectroscopy, vapor diagnostics, processing of precise laser frequency offsets from a reference frequency and the like, and provides spectral analysis of a laser beam.

  2. Heterodyne laser spectroscopy system

    DOEpatents

    Wyeth, Richard W.; Paisner, Jeffrey A.; Story, Thomas

    1990-01-01

    A heterodyne laser spectroscopy system utilizes laser heterodyne techniques for purposes of laser isotope separation spectroscopy, vapor diagnostics, processing of precise laser frequency offsets from a reference frequency, and provides spectral analysis of a laser beam.

  3. Laser Therapy

    MedlinePlus

    ... Non-ablative Laser Rejuvenation Non-invasive Body Contouring Treatments Skin Cancer Skin Cancer Information Free Skin Cancer Screenings Skin ... Non-ablative Laser Rejuvenation Non-invasive Body Contouring Treatments Skin Cancer Skin Cancer Information Free Skin Cancer Screenings Skin ...

  4. Laser Crystal

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Lightning Optical Corporation, under an SBIR (Small Business Innovative Research) agreement with Langley Research Center, manufactures oxide and fluoride laser gain crystals, as well as various nonlinear materials. The ultimate result of this research program is the commercial availability in the marketplace of a reliable source of high-quality, damage resistant laser material, primarily for diode-pumping applications.

  5. Laser device

    DOEpatents

    Scott, Jill R.; Tremblay, Paul L.

    2008-08-19

    A laser device includes a virtual source configured to aim laser energy that originates from a true source. The virtual source has a vertical rotational axis during vertical motion of the virtual source and the vertical axis passes through an exit point from which the laser energy emanates independent of virtual source position. The emanating laser energy is collinear with an orientation line. The laser device includes a virtual source manipulation mechanism that positions the virtual source. The manipulation mechanism has a center of lateral pivot approximately coincident with a lateral index and a center of vertical pivot approximately coincident with a vertical index. The vertical index and lateral index intersect at an index origin. The virtual source and manipulation mechanism auto align the orientation line through the index origin during virtual source motion.

  6. Structural, compositional, mechanical characterization and biological assessment of bovine-derived hydroxyapatite coatings reinforced with MgF2 or MgO for implants functionalization.

    PubMed

    Mihailescu, Natalia; Stan, G E; Duta, L; Chifiriuc, Mariana Carmen; Bleotu, Coralia; Sopronyi, M; Luculescu, C; Oktar, F N; Mihailescu, I N

    2016-02-01

    Hydroxyapatite (HA) is a consecrated biomaterial for bone reconstruction. In the form of thin films deposited by pulsed laser technologies, it can be used to cover metallic implants aiming to increase biocompatibility and osseointegration rate. HA of animal origin (bovine, BHA) reinforced with MgF2 (2wt.%) or MgO (5wt.%) were used for deposition of thin coatings with improved adherence, biocompatibility and antimicrobial activity. For pulsed laser deposition experiments, a KrF* (λ=248nm, τFWHM≤25ns) excimer laser source was used. The deposited structures were characterized from a physical-chemical point of view by X-Ray Diffraction, Fourier Transform Infra-Red Spectroscopy, Scanning Electron Microscopy in top- and cross-view modes, Energy Dispersive X-Ray Spectroscopy and Pull-out adherence tests. The microbiological assay using the HEp-2 cell line revealed that all target materials and deposited thin films are non-cytotoxic. We conducted tests on three strains isolated from patients with dental implants failure, i.e. Microccocus sp., Enterobacter sp. and Candida albicans sp. The most significant anti-biofilm effect against Microcococcus sp. strain, at 72h, was obtained in the presence of BHA:MgO thin films. For Enterobacter sp. strain a superior antimicrobial activity at 72h was noticed, in respect with simple BHA or Ti control. The enhanced antimicrobial performances, correlated with good cytocompatibility and mechanical properties recommend these biomaterials as an alternative to synthetic HA for the fabrication of reliable implant coatings for dentistry and other applications. PMID:26652442

  7. Production of extended plasma channels in atmospheric air by amplitude-modulated UV radiation of GARPUN-MTW Ti : sapphire—KrF laser. Part 2. Accumulation of plasma electrons and electric discharge control

    NASA Astrophysics Data System (ADS)

    Zvorykin, V. D.; Ionin, Andrei A.; Levchenko, A. O.; Mesyats, Gennadii A.; Seleznev, L. V.; Sinitsyn, D. V.; Smetanin, Igor V.; Sunchugasheva, E. S.; Ustinovskii, N. N.; Shutov, A. V.

    2013-04-01

    The problem of the production of extended (~1 m) plasma channels is studied in atmospheric air by amplitude-modulated laser pulses of UV radiation, which are a superposition of a subpicosecond USP train amplified in a regenerative KrF amplifier with an unstable confocal resonator and a quasi-stationary lasing pulse. The USPs possess a high (0.2-0.3 TW) peak power and efficiently ionise oxygen molecules due to multiphoton ionisation, and the quasi-stationary lasing pulse, which has a relatively long duration (~100 ns), maintains the electron density at a level ne = (3-5) × 1014 cm—3 by suppressing electron attachment to oxygen. Experiments in laser triggering of high-voltage electric discharges suggest that the use of combined pulses results in a significant lowering of the breakdown threshold and enables controlling the discharge trajectory with a higher efficiency in comparison with smooth pulses. It was shown that controlled breakdowns may develop with a delay of tens of microseconds relative to the laser pulse, which is many orders of magnitude greater than the lifetime of free electrons in the laser-induced plasma. We propose a mechanism for this breakdown, which involves speeding-up of the avalanche ionisation of the air by negative molecular oxygen ions with a low electron binding energy (~0.5 eV) and a long lifetime (~1 ms), which are produced upon cessation of the laser pulse.

  8. Autokeratomileusis Laser

    NASA Astrophysics Data System (ADS)

    Kern, Seymour P.

    1987-03-01

    Refractive defects such as myopia, hyperopia, and astigmatism may be corrected by laser milling of the cornea. An apparatus combining automatic refraction/keratometry and an excimer type laser for precision reshaping of corneal surfaces has been developed for testing. When electronically linked to a refractometer or keratometer or holographic imaging device, the laser is capable of rapidly milling or ablating corneal surfaces to preselected dioptric power shapes without the surgical errors characteristic of radial keratotomy, cryokeratomileusis or epikeratophakia. The excimer laser simultaneously generates a synthetic Bowman's like layer or corneal condensate which appears to support re-epithelialization of the corneal surface. An electronic feedback arrangement between the measuring instrument and the laser enables real time control of the ablative milling process for precise refractive changes in the low to very high dioptric ranges. One of numerous options is the use of a rotating aperture wheel with reflective portions providing rapid alternate ablation/measurement interfaced to both laser and measurement instrumentation. The need for the eye to be fixated is eliminated or minimized. In addition to reshaping corneal surfaces, the laser milling apparatus may also be used in the process of milling both synthetic and natural corneal inlays for lamellar transplants.

  9. Laser Materials and Laser Spectroscopy - A Satellite Meeting of IQEC '88

    NASA Astrophysics Data System (ADS)

    Wang, Zhijiang; Zhang, Zhiming

    1989-03-01

    Highly Excited Vibrational State * Investigation of the Stark Effect in Xenon Autoionizing Rydberg Series with the Use of Coherent Tunable XUV Radiation * Laser Spectroscopy of Autoionising 5 dnf J = 4.5 Rydberg Series of Ba I * Resonance Photoionization Spectroscopy of Atoms: Autoionization and Highly Excited States of Kr and U * Stark Spectra of Strontium and Calcium Atoms * Observation of Bidirectional Stimulated Radiation at 330 nm, 364 nm and 718 nm with 660 nm Laser Pumping in Sodium Vapour * Study of Molecular Rydberg States and their Discriminations in Na2 * The Measurement of the High Excited Spectra of Samarium by using Stepwise Laser Excitation Method * Product Analysis in the Reaction of the Two-photon Excited Xe(5p56p) States with Freons * Photoionization Spectra of Ca and Sr Atoms above the Classical Field-ionization Threshold * Effect of Medium Background on the Hydrogen Spectrum * Photoemission and Photoelectron Spectra from Autoionizing Atoms in Strong Laser Field * Natural Radiative Lifetime Measurements of High-lying States of Samarium * Two-step Laser Excitation of nf Rydberg States in Neutral Al and Observation of Stark Effect * Measurements of Excited Spectra of the Refractory Metal Elements using Discharge Synchronized with the Laser Pulse * Multiphoton Ionization of Atomic Lead at 1.06μ * Kinetic Processes in the Electron-beam pumped KrF Laser * Laser-induced Fluorescence of Zn2 Excimer * Calculation of Transition Intensity in Heteronuclear Dimer NaK: Comparison with Experiment * Laser-induced Fluorescence of CCl2 Carbene * Study of Multiphoton Ionization Spectrum of Benzene and Two-photon Absorption Cross Section * Dicke Narrowing of N2O Linewidth Perturbed by N2 at 10 μm Band * Polyatomic Molecular Ions Studied by Laser Photodissociation Spectroscopy * Transverse-optically Pumped Ultraviolet S2 Laser * Multiphoton Ionization of Propanal by High Power Laser * UV MPI Mass Spectroscopy and Dynamics of Photodissociation of SO2 * Multiphoton

  10. Laser goniometer

    DOEpatents

    Fairer, George M.; Boernge, James M.; Harris, David W.; Campbell, DeWayne A.; Tuttle, Gene E.; McKeown, Mark H.; Beason, Steven C.

    1993-01-01

    The laser goniometer is an apparatus which permits an operator to sight along a geologic feature and orient a collimated lamer beam to match the attitude of the feature directly. The horizontal orientation (strike) and the angle from horizontal (dip), are detected by rotary incremental encoders attached to the laser goniometer which provide a digital readout of the azimuth and tilt of the collimated laser beam. A microprocessor then translates the square wave signal encoder outputs into an ASCII signal for use by data recording equipment.

  11. Explosive laser

    DOEpatents

    Robinson, C.P.; Jensen, R.J.; Davis, W.C.; Sullivan, J.A.

    1975-09-01

    This patent relates to a laser system wherein reaction products from the detonation of a condensed explosive expand to form a gaseous medium with low translational temperature but high vibration population. Thermal pumping of the upper laser level and de-excitation of the lower laser level occur during the expansion, resulting in a population inversion. The expansion may be free or through a nozzle as in a gas-dynamic configuration. In one preferred embodiment, the explosive is such that its reaction products are CO$sub 2$ and other species that are beneficial or at least benign to CO$sub 2$ lasing. (auth)

  12. Laser barometer

    SciTech Connect

    Abercrombie, K.R.; Shiels, D.; Rash, T.

    1998-04-01

    This paper describes an invention of a pressure measuring instrument which uses laser radiation to sense the pressure in an enclosed environment by means of measuring the change in refractive index of a gas - which is pressure dependent.

  13. Laser fusion

    SciTech Connect

    Smit, W.A.; Boskma, P.

    1980-12-01

    Unrestricted laser fusion offers nations an opportunity to circumvent arms control agreements and develop thermonuclear weapons. Early laser weapons research sought a clean radiation-free bomb to replace the fission bomb, but this was deceptive because a fission bomb was needed to trigger the fusion reaction and additional radioactivity was induced by generating fast neutrons. As laser-implosion experiments focused on weapons physics, simulating weapons effects, and applications for new weapons, the military interest shifted from developing a laser-ignited hydrogen bomb to more sophisticated weapons and civilian applications for power generation. Civilian and military research now overlap, making it possible for several countries to continue weapons activities and permitting proliferation of nuclear weapons. These countries are reluctant to include inertial confinement fusion research in the Non-Proliferation Treaty. 16 references. (DCK)

  14. Laser bronchoscopy.

    PubMed

    Duhamel, D R; Harrell, J H

    2001-11-01

    Because the lung cancer epidemic shows no signs of abating, little doubt exists that the need for interventional bronchoscopists will persist for many years to come. The Nd:YAG laser and the rigid bronchoscope remain crucial weapons in the fight against lung cancer. With more than 4000 published interventions pertaining to it, this combination is ideal for treating central airways obstruction. The safety and efficacy of laser bronchoscopy has been well established, and the reported incidence of complications is impressively low. If complications were to arise, a skilled bronchoscopist can manage them easily by using the beneficial attributes of the rigid bronchoscope. Many complications can be avoided by implementing the established safety procedures and techniques. A solid understanding of laser physics and tissue interactions is a necessity to anyone performing laser surgery. The team approach, relying on communication among the bronchoscopist, anesthesiologist, laser technician, and nurses, leads to a safer and more successful procedure. It is important to remember, however, that this is typically a palliative procedure, and therefore the focus should be on alleviating symptoms and improving quality of life. Unfortunately, because not every patient is a candidate for laser bronchoscopy, there are specific characteristics of endobronchial lesions that make them more or less amenable to resection. Each year a promising new technology is being developed, such as argon plasma coagulation, cryotherapy, and endobronchial electrosurgery. Although it is unclear what role these technologies will have, prospective controlled studies must be done to help clarify this question. The future may lay in combining these various technologies along with Nd:YAG laser bronchoscopy to maximize the therapeutic, palliative, and possibly even curative effect. As the experience of the medical community with Nd:YAG laser bronchoscopy continues to grow and as more health-care professionals

  15. Laser Technology

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Amoco Laser Company, a subsidiary of Amoco Corporation, has developed microlasers for the commercial market based on a JPL concept for optical communications over interplanetary distances. Lasers emit narrow, intense beams of light or other radiation. The beams transmit communication signals, drill, cut or melt materials or remove diseased body tissue. The microlasers cover a broad portion of the spectrum, and performance is improved significantly. Current applications include medical instrumentation, color separation equipment, telecommunications, etc.

  16. Laser optomechanics

    PubMed Central

    Yang, Weijian; Adair Gerke, Stephen; Wei Ng, Kar; Rao, Yi; Chase, Christopher; Chang-Hasnain, Connie J.

    2015-01-01

    Cavity optomechanics explores the interaction between optical field and mechanical motion. So far, this interaction has relied on the detuning between a passive optical resonator and an external pump laser. Here, we report a new scheme with mutual coupling between a mechanical oscillator supporting the mirror of a laser and the optical field generated by the laser itself. The optically active cavity greatly enhances the light-matter energy transfer. In this work, we use an electrically-pumped vertical-cavity surface-emitting laser (VCSEL) with an ultra-light-weight (130 pg) high-contrast-grating (HCG) mirror, whose reflectivity spectrum is designed to facilitate strong optomechanical coupling, to demonstrate optomechanically-induced regenerative oscillation of the laser optomechanical cavity. We observe >550 nm self-oscillation amplitude of the micromechanical oscillator, two to three orders of magnitude larger than typical, and correspondingly a 23 nm laser wavelength sweep. In addition to its immediate applications as a high-speed wavelength-swept source, this scheme also offers a new approach for integrated on-chip sensors. PMID:26333804

  17. Laser Angioplasty

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The principal method of dealing with coronary artery blockage is bypass surgery. A non-surgical alternative available to some patients is balloon angioplasty. For several years, medical researchers have been exploring another alternative that would help a wider circle of patients than the balloon treatment and entail less risk than bypass surgery. A research group is on the verge of an exciting development: laser angioplasty with a 'cool' type of laser, called an excimer laser, that does not damage blood vessel walls and offers non-surgical cleansing of clogged arteries with extraordinary precision. The system is the Dymer 200+ Excimer Laser Angioplasty System, developed by Advanced Intraventional Systems. Used in human clinical tests since 1987, the system is the first fully integrated 'cool' laser capable of generating the requisite laser energy and delivering the energy to target arteries. Thirteen research hospitals in the U.S. have purchased Dymer 200+ systems and used them in clinical trials in 121 peripheral and 555 coronary artery cases. The success rate in opening blocked coronary arteries is 85 percent, with fewer complications than in balloon angioplasty. Food and Drug Administration approval for the system is hoped for in the latter part of 1990. * Advanced Intraventional Systems became Spectranetics in 1994 and discontinued the product.

  18. Laser neutralization

    SciTech Connect

    Peterson, O.G.

    1986-06-17

    Laser photodetachment of the excess electron to neutralize relativistic ions offers many advantages over the more conventional collisional methods using gases or thin foils as the neutralization agents. Probably the two most important advantages of laser photodetachment are the generation of a compact and low divergence beam, and the production of intense neutral beams at very high efficiency (approximately 90%). The high intensities or high current densities of the neutral beam result from the fixed maximum divergence that can be added to the beam by photodetachment of the charge using laser intensity of fixed wavelength and incident angle. The high neutralization efficiency is possible because there is no theoretical maximum to the neutralization efficiency, although higher efficiencies require higher laser powers and, therefore, costs. Additional advantages include focusability of the laser light onto the ion beam to maximize its efficacy. There certainly is no residual gas left in the particle beam path as is typical with gas neutralizers. The photodetachment process leaves the neutral atoms in the ground state so there is no excited state fluorescence to interfere with the subsequent beam sensing. Finally, since the beams to be neutralized are very high powered, for a large range of neutralization efficiencies the neutral beam can be increased more by increasing the power to the laser neutralizer than by adding an equal amount of power to the primary accelerator. 26 figs.

  19. Laser optomechanics

    NASA Astrophysics Data System (ADS)

    Yang, Weijian; Adair Gerke, Stephen; Wei Ng, Kar; Rao, Yi; Chase, Christopher; Chang-Hasnain, Connie J.

    2015-09-01

    Cavity optomechanics explores the interaction between optical field and mechanical motion. So far, this interaction has relied on the detuning between a passive optical resonator and an external pump laser. Here, we report a new scheme with mutual coupling between a mechanical oscillator supporting the mirror of a laser and the optical field generated by the laser itself. The optically active cavity greatly enhances the light-matter energy transfer. In this work, we use an electrically-pumped vertical-cavity surface-emitting laser (VCSEL) with an ultra-light-weight (130 pg) high-contrast-grating (HCG) mirror, whose reflectivity spectrum is designed to facilitate strong optomechanical coupling, to demonstrate optomechanically-induced regenerative oscillation of the laser optomechanical cavity. We observe >550 nm self-oscillation amplitude of the micromechanical oscillator, two to three orders of magnitude larger than typical, and correspondingly a 23 nm laser wavelength sweep. In addition to its immediate applications as a high-speed wavelength-swept source, this scheme also offers a new approach for integrated on-chip sensors.

  20. Laser optomechanics.

    PubMed

    Yang, Weijian; Gerke, Stephen Adair; Ng, Kar Wei; Rao, Yi; Chase, Christopher; Chang-Hasnain, Connie J

    2015-01-01

    Cavity optomechanics explores the interaction between optical field and mechanical motion. So far, this interaction has relied on the detuning between a passive optical resonator and an external pump laser. Here, we report a new scheme with mutual coupling between a mechanical oscillator supporting the mirror of a laser and the optical field generated by the laser itself. The optically active cavity greatly enhances the light-matter energy transfer. In this work, we use an electrically-pumped vertical-cavity surface-emitting laser (VCSEL) with an ultra-light-weight (130 pg) high-contrast-grating (HCG) mirror, whose reflectivity spectrum is designed to facilitate strong optomechanical coupling, to demonstrate optomechanically-induced regenerative oscillation of the laser optomechanical cavity. We observe >550 nm self-oscillation amplitude of the micromechanical oscillator, two to three orders of magnitude larger than typical, and correspondingly a 23 nm laser wavelength sweep. In addition to its immediate applications as a high-speed wavelength-swept source, this scheme also offers a new approach for integrated on-chip sensors.

  1. Coupled photo-thermal and time resolved reflectivity methods to original investigation of laser/material nanosecond interaction

    NASA Astrophysics Data System (ADS)

    Semmar, N.; Martan, J.; Cibulka, O.; Le Menn, E.; Boulmer-Leborgne, C.

    2006-05-01

    A high number of papers were published on the simulation of laser/surface interaction at the level of nanosecond scale. Several assumptions on thermal properties data, laser spot homogeneity, were assumed for describing as well as possible the boundary conditions, the mathematical writing and finally the numerical or the analytical results. A few tentative of surface temperature monitoring during laser processing were proposed for the numerical validation. Also, simulation of the melting kinetics is rarely directly compared to in situ experiments. It is very hard to determine the time duration of a melting pool by in situ experiments. It should be the same for the surface temperature. A new method to plot the thermal history of the surface by using a combination of the Time Resolved Reflectivity (TRR) and the Pulsed Photo-Thermal (PPT) or Infrared Radiometry (IR) methods is proposed in this paper. Surface temperature, melting kinetics, threshold of melting and threshold of plasma formation are determined in the case of KrF laser spot in interaction with several materials. In the first step, the experimental setup including fast detectors (IR, UV, Vis.) and related optical devices is described. In the second step, typical results (TRR and IR spectra) for monocrystaline silicon are presented and discussed. Namely, phase change transitions (melting and resolidification) are detected versus fluence change and number of laser shots change. TRR and IR spectra of metallic surfaces (Cu, Mo, Ni, Stainless steel 15330 and 17246, Sn, Ti), are measured. For each sample the surface temperature during heating, the threshold of melting, melting duration and the threshold of plasma formation are directly deduced.

  2. Characteristics of ZrC/ZrN and ZrC/TiN multilayers grown by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Craciun, D.; Bourne, G.; Socol, G.; Stefan, N.; Dorcioman, G.; Lambers, E.; Craciun, V.

    2011-04-01

    ZrC/ZrN and ZrC/TiN multilayers were grown on (1 0 0) Si substrates at 300 °C by the pulsed laser deposition (PLD) technique using a KrF excimer laser. X-ray diffraction investigations showed that films were crystalline, the strain and grain size depending on the nature and pressure of the gas used during deposition. The elemental composition, analyzed by Auger electron spectroscopy (AES) and X-ray photoelectron spectroscopy (XPS), showed that films contained a low level of oxygen contamination. Simulations of the X-ray reflectivity (XRR) curves acquired from films indicated a smooth surface morphology, with roughness below 1 nm (rms) and densities very close to bulk values. Nanoindentation results showed that the ZrC/ZrN and ZrC/TiN multilayer samples exhibited hardness values between 30 and 33 GPa, slightly higher than the values of 28-30 GPa measured for pure ZrC, TiN and ZrN films.

  3. Surface-enhanced Raman scattering study of organic pigments using silver and gold nanoparticles prepared by pulsed laser ablation

    NASA Astrophysics Data System (ADS)

    Fazio, E.; Trusso, S.; Ponterio, R. C.

    2013-05-01

    The identification of pigments used in ancient times represents an interesting task in order to discriminate a production of a precise geographic area or to trace out the ancient commercial networks. Conventional micro-Raman spectroscopy (MRS), being a non-destructiveness technique, has been largely used for the analysis of dyes. Nevertheless several pigments, especially of organic origin, show weak Raman activity beside a strong a fluorescence that prevents their identification. Surface enhanced Raman scattering (SERS) can address such difficulties. The presence of noble metal nanoparticles induces a giant amplification of the Raman signal beside the fluorescence quenching. In this work we present the use of gold and silver nanoparticles to enhance the Raman signal of some commercial red organic dyes: bazilwood, dragon's blood, carmine and madder lake. The nanoparticles were prepared adopting two approaches: (1) ablating metallic targets in water using a pulsed Nd:YAG laser at 532 nm and (2) depositing the nanoparticles on glass substrates by means of a KrF excimer laser ablation process, performed in a controlled argon atmosphere.

  4. Films of brookite TiO2 nanorods/nanoparticles deposited by matrix-assisted pulsed laser evaporation as NO2 gas-sensing layers

    NASA Astrophysics Data System (ADS)

    Caricato, A. P.; Buonsanti, R.; Catalano, M.; Cesaria, M.; Cozzoli, P. D.; Luches, A.; Manera, M. G.; Martino, M.; Taurino, A.; Rella, R.

    2011-09-01

    Titanium dioxide (TiO2) nanorods in the brookite phase, with average dimensions of 3-4 nm × 20-50 nm, were synthesized by a wet-chemical aminolysis route and used as precursors for thin films that were deposited by the matrix-assisted pulsed laser evaporation (MAPLE) technique. A nanorod solution in toluene (0.016 wt% TiO2) was frozen at the liquid-nitrogen temperature and irradiated with a KrF excimer laser at a fluence of 350 mJ/cm2 and repetition rate of 10 Hz. Single-crystal Si wafers, silica slides, carbon-coated Cu grids and alumina interdigitated slabs were used as substrates to allow performing different characterizations. Films fabricated with 6000 laser pulses had an average thickness of ˜150 nm, and a complete coverage of the selected substrate as achieved. High-resolution scanning and transmission electron microscopy investigations evidenced the formation of quite rough films incorporating individually distinguishable TiO2 nanorods and crystalline spherical nanoparticles with an average diameter of ˜13 nm. Spectrophotometric analysis showed high transparency through the UV-Vis spectral range. Promising resistive sensing responses to 1 ppm of NO2 mixed in dry air were obtained.

  5. Direct detection of pyridine formation by the reaction of CH (CD) with pyrrole: a ring expansion reaction

    SciTech Connect

    Soorkia, Satchin; Taatjes, Craig A.; Osborn, David L.; Selby, Talitha M.; Trevitt, Adam J.; Wilson, Kevin R.; Leone, Stephen R.

    2010-03-16

    The reaction of the ground state methylidyne radical CH (X2Pi) with pyrrole (C4H5N) has been studied in a slow flow tube reactor using Multiplexed Photoionization Mass Spectrometry coupled to quasi-continuous tunable VUV synchrotron radiation at room temperature (295 K) and 90 oC (363 K), at 4 Torr (533 Pa). Laser photolysis of bromoform (CHBr3) at 248 nm (KrF excimer laser) is used to produce CH radicals that are free to react with pyrrole molecules in the gaseous mixture. A signal at m/z = 79 (C5H5N) is identified as the product of the reaction and resolved from 79Br atoms, and the result is consistent with CH addition to pyrrole followed by Helimination. The Photoionization Efficiency curve unambiguously identifies m/z = 79 as pyridine. With deuterated methylidyne radicals (CD), the product mass peak is shifted by +1 mass unit, consistent with the formation of C5H4DN and identified as deuterated pyridine (dpyridine). Within detection limits, there is no evidence that the addition intermediate complex undergoes hydrogen scrambling. The results are consistent with a reaction mechanism that proceeds via the direct CH (CD) cycloaddition or insertion into the five-member pyrrole ring, giving rise to ring expansion, followed by H atom elimination from the nitrogen atom in the intermediate to form the resonance stabilized pyridine (d-pyridine) molecule. Implications to interstellar chemistry and planetary atmospheres, in particular Titan, as well as in gas-phase combustion processes, are discussed.

  6. Functionalized Antimicrobial Composite Thin Films Printing for Stainless Steel Implant Coatings.

    PubMed

    Floroian, Laura; Ristoscu, Carmen; Mihailescu, Natalia; Negut, Irina; Badea, Mihaela; Ursutiu, Doru; Chifiriuc, Mariana Carmen; Urzica, Iuliana; Dyia, Hussien Mohammed; Bleotu, Coralia; Mihailescu, Ion N

    2016-01-01

    In this work we try to address the large interest existing nowadays in the better understanding of the interaction between microbial biofilms and metallic implants. Our aimed was to identify a new preventive strategy to control drug release, biofilm formation and contamination of medical devices with microbes. The transfer and printing of novel bioactive glass-polymer-antibiotic composites by Matrix-Assisted Pulsed Laser Evaporation into uniform thin films onto 316 L stainless steel substrates of the type used in implants are reported. The targets were prepared by freezing in liquid nitrogen mixtures containing polymer and antibiotic reinforced with bioglass powder. The cryogenic targets were submitted to multipulse evaporation by irradiation with an UV KrF* (λ = 248 nm, τFWHM ≤ 25 ns) excimer laser source. The prepared structures were analyzed by infrared spectroscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy and profilometry, before and after immersion in physiological fluids. The bioactivity and the release of the antibiotic have been evaluated. We showed that the incorporated antibiotic underwent a gradually dissolution in physiological fluids thus supporting a high local treatment efficiency. Electrochemical measurements including linear sweep voltammetry and impedance spectroscopy studies were carried out to investigate the corrosion resistance of the coatings in physiological environments. The in vitro biocompatibility assay using the MG63 mammalian cell line revealed that the obtained nanostructured composite films are non-cytotoxic. The antimicrobial effect of the coatings was tested against Staphylococcus aureus and Escherichia coli strains, usually present in implant-associated infections. An anti-biofilm activity was evidenced, stronger against E. coli than the S. aureus strain. The results proved that the applied method allows for the fabrication of implantable biomaterials which shield metal ion release and possess

  7. Bioglass thin films for biomimetic implants

    NASA Astrophysics Data System (ADS)

    Berbecaru, C.; Alexandru, H. V.; Ianculescu, Adelina; Popescu, A.; Socol, G.; Sima, F.; Mihailescu, Ion

    2009-03-01

    Pulsed laser deposition (PLD) method was used to obtain bioglass (BG) thin film coatings on titanium substrates. An UV excimer laser KrF* ( λ = 248 nm, τ = 25 ns) was used for the multi-pulse irradiation of the BG targets with 57 or 61 wt.% SiO 2 content (and Na 2O-K 2O-CaO-MgO-P 2O 5 oxides). The depositions were performed in oxygen atmosphere at 13 Pa and for substrates temperature of 400 °C. The PLD films displayed typical BG of 2-5 μm particulates nucleated on the film surface or embedded in. The PLD films stoichiometry was found to be the same as the targets. XRD spectra have shown, the glass coatings obtained, had an amorphous structure. One set of samples, deposited in the same conditions, were dipped in simulated body fluids (SBFs) and subsequently extracted one by one after several time intervals 1, 3, 7, 14 and 21 days. After washing in deionized water and drying, the surface morphology of the samples and theirs composition were investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD), IR spectroscopy (FTIR) and energy dispersive X-ray analysis (EDX). After 3-7 days the Si content substantially decreases in the coatings and PO 43- maxima start to increase in FTIR spectra. The XRD spectra also confirm this evolution. After 14-21 days the XRD peaks show a crystallized fraction of the carbonated hydroxyapatite (HAP). The SEM micrographs show also significant changes of the films surface morphology. The coalescence of the BG droplets can be seen. The dissolution and growth processes could be assigned to the ionic exchange between BG and SBFs.

  8. Laser beam monitoring system

    DOEpatents

    Weil, Bradley S.; Wetherington, Jr., Grady R.

    1985-01-01

    Laser beam monitoring systems include laser-transparent plates set at an angle to the laser beam passing therethrough and light sensor for detecting light reflected from an object on which the laser beam impinges.

  9. Laser physics and laser-tissue interaction.

    PubMed

    Welch, A J; Torres, J H; Cheong, W F

    1989-01-01

    Within the last few years, lasers have gained increasing use in the management of cardiovascular disease, and laser angioplasty has become a widely performed procedure. For this reason, a basic knowledge of lasers and their applications is essential to vascular surgeons, cardiologists, and interventional radiologists. To elucidate some fundamental concepts regarding laser physics, we describe how laser light is generated and review the properties that make lasers useful in medicine. We also discuss beam profile and spotsize, as well as dosimetric specifications for laser angioplasty. After considering laser-tissue interaction and light propagation in tissue, we explain how the aforementioned concepts apply to direct laser angioplasty and laser-balloon angioplasty. An understanding of these issues should prove useful not only in performing laser angioplasty but in comparing the reported results of various laser applications.

  10. Multilevel diffractive optical element manufacture by excimer laser ablation and halftone masks

    NASA Astrophysics Data System (ADS)

    Quentel, Francois; Fieret, Jim; Holmes, Andrew S.; Paineau, Sylvain

    2001-06-01

    A novel method is presented to manufacture multilevel diffractive optical elements (DOEs) in polymer by single- step KrF excimer laser ablation using a halftone mask. The DOEs have a typical pixel dimension of 5 micrometers and are up to 512 by 512 pixels in size. The DOEs presented are Fresnel lenses and Fourier computer generated holograms, calculated by means of a conventional iterative Fourier transform algorithm. The halftone mask is built up as an array of 5 micrometers -square pixels, each containing a rectangular or L- shaped window on an opaque background. The mask is imaged onto the polymer with a 5x, 0.13 NA reduction lens. The pixels are not resolved by the lens, so they behave simply as attenuators, allowing spatial variation of the ablation rate via the window size. The advantages of halftone mask technology over other methods, such as pixel-by-pixel ablation and multi-mask overlay, are that it is very fast regardless of DOE size, and that no high-precision motion stages and alignment are required. The challenges are that the halftone mask is specific to the etch curve of the polymer used, that precise calibration of each grey-level is required, and that the halftone mask must be calculated specifically for the imaging lens used. This paper describes the design procedures for multilevel DOEs and halftone masks, the calibration of the various levels, and some preliminary DOE test results.

  11. Tunable solid state lasers

    SciTech Connect

    Hammerling, R.; Budgor, A.B.; Pinto, A.

    1985-01-01

    This book presents the papers given at a conference on solid state lasers. Topics considered at the conference included transition-metal-doped lasers, line-narrowed alexandrite lasers, NASA specification, meteorological lidars, laser materials spectroscopy, laser pumped single pass gain, vibronic laser materials growth, crystal growth methods, vibronic laser theory, cross-fertilization through interdisciplinary fields, and laser action of color centers in diamonds.

  12. Header For Laser Diode

    NASA Technical Reports Server (NTRS)

    Rall, Jonathan A. R.; Spadin, Paul L.

    1990-01-01

    Header designed to contain laser diode. Output combined incoherently with outputs of other laser diodes in grating laser-beam combiner in optical communication system. Provides electrical connections to laser diode, cooling to thermally stabilize laser operation, and optomechanical adjustments that steer and focus laser beam. Range of adjustments provides for correction of worst-case decentering and defocusing of laser beam encountered with laser diodes. Mechanical configuration made simple to promote stability and keep cost low.

  13. Laser barometer

    DOEpatents

    Abercrombie, Kevin R.; Shiels, David; Rash, Tim

    2001-02-06

    A pressure measuring instrument that utilizes the change of the refractive index of a gas as a function of pressure and the coherent nature of a laser light to determine the barometric pressure within an environment. As the gas pressure in a closed environment varies, the index of refraction of the gas changes. The amount of change is a function of the gas pressure. By illuminating the gas with a laser light source, causing the wavelength of the light to change, pressure can be quantified by measuring the shift in fringes (alternating light and dark bands produced when coherent light is mixed) in an interferometer.

  14. Excimer lasers

    NASA Technical Reports Server (NTRS)

    Palmer, A. J.; Hess, L. D.; Stephens, R. R.

    1976-01-01

    A theoretical and experimental investigation into the possibility of achieving CW discharge pumped excimer laser oscillation is reported. Detailed theoretical modeling of capillary discharge pumping of the XeF and KXe and K2 excimer systems was carried out which predicted the required discharge parameters for reaching laser threshold on these systems. Capillary discharge pumping of the XeF excimer system was investigated experimentally. The experiments revealed a lower excimer level population density than predicted theoretically by about an order of magnitude. The experiments also revealed a fluorine consumption problem in the discharge in agreement with theory.

  15. Laser Resonator

    NASA Technical Reports Server (NTRS)

    Harper, L. L. (Inventor)

    1983-01-01

    An optical resonator cavity configuration has a unitary mirror with oppositely directed convex and concave reflective surfaces disposed into one fold and concertedly reversing both ends of a beam propagating from a laser rod disposed between two total internal reflection prisms. The optical components are rigidly positioned with perpendicularly crossed virtual rooflines by a compact optical bed. The rooflines of the internal reflection prisms, are arranged perpendicularly to the axis of the laser beam and to the optical axes of the optical resonator components.

  16. Temporal and spectral analysis of laser induced plasma in the ablation process of flexible printed circuit board

    NASA Astrophysics Data System (ADS)

    Ryoo, Hoon C.; Kim, Seok; Hahn, Jae W.

    2008-02-01

    Flexible printed circuit board (FPCB), consisting of copper sheets laminated onto non conductive film substrates with multiple structures, are core elements in electronics with their flexibility and capability of high density 3 dimensional wiring characteristics. In laser applied FPCB processing, a better understanding of the ablation mechanism leads to precision control of the depth processing especially by monitoring of the material transition layer. For this purpose, here we investigate the temporal and spectral behavior of the plasma plum generated on the single sided structure of FPCB using the technique of laser induced breakdown spectroscopy (LIBS). Using KrF excimer laser, the characteristic spectral emission lines of C II swan band at the wavelength of 516.5 nm and neutral copper at the wavelength range from 510 nm to 522 nm are acquired under ambient pressure in the ablation process of polyimide film and copper coated layer respectively. From a time delay from 50 ns to 4.05 μs from the beginning of the laser pulse, the temporal profiles of the spectral intensity are obtained in steps of 200 ns, which have a tendency of exponential decrease on both C II and neutral copper. In particular, we concentrate our attention on the temporal intensity behavior of the Bremsstrahlung continuum emission that decides the proper set of detection time window, by which the monitoring sensitivity of LIBS is determined. Finally, using the information of the temporal analysis for each molecular, atomic, and continuum emission, the transition layer between polyimide and copper film is distinguished by their characteristic peak information.

  17. Laser capture.

    PubMed

    Potter, S Steven; Brunskill, Eric W

    2012-01-01

    This chapter describes detailed methods used for laser capture microdissection (LCM) of discrete subpopulations of cells. Topics covered include preparing tissue blocks, cryostat sectioning, processing slides, performing the LCM, and purification of RNA from LCM samples. Notes describe the fine points of each operation, which can often mean the difference between success and failure. PMID:22639264

  18. Laser Balancing

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Mechanical Technology, Incorporated developed a fully automatic laser machining process that allows more precise balancing removes metal faster, eliminates excess metal removal and other operator induced inaccuracies, and provides significant reduction in balancing time. Manufacturing costs are reduced as a result.

  19. Excimer lasers

    NASA Technical Reports Server (NTRS)

    Palmer, A. J.; Hess, L. D.; Stephens, R. R.; Pepper, D. M.

    1977-01-01

    The results of a two-year investigation into the possibility of developing continuous wave excimer lasers are reported. The program included the evaluation and selection of candidate molecular systems and discharge pumping techniques. The K Ar/K2 excimer dimer molecules and the xenon fluoride excimer molecule were selected for study; each used a transverse and capillary discharges pumping technique. Experimental and theoretical studies of each of the two discharge techniques applied to each of the two molecular systems are reported. Discharge stability and fluorine consumption were found to be the principle impediments to extending the XeF excimer laser into the continuous wave regime. Potassium vapor handling problems were the principal difficulty in achieving laser action on the K Ar/K2 system. Of the four molecular systems and pumping techniques explored, the capillary discharge pumped K Ar/K2 system appears to be the most likely candidate for demonstrating continuous wave excimer laser action primarily because of its predicted lower pumping threshold and a demonstrated discharge stability advantage.

  20. Enhanced photocatalytic efficiency in zirconia buffered n-NiO/p-NiO single crystalline heterostructures by nanosecond laser treatment

    NASA Astrophysics Data System (ADS)

    Molaei, R.; Bayati, M. R.; Alipour, H. M.; Nori, S.; Narayan, J.

    2013-06-01

    We report the formation of NiO based single crystalline p-n junctions with enhanced photocatalytic activity induced by pulsed laser irradiation. The NiO epilayers were grown on Si(001) substrates buffered with cubic yttria-stabilized zirconia (c-YSZ) by using pulsed laser deposition. The NiO/c-YSZ/Si heterostructures were subsequently laser treated by 5 pulses of KrF excimer laser (pulse duration = 25 × 10-9 s) at lower energies. Microstructural studies, conducted by X-ray diffraction (θ-2θ and φ techniques) and high resolution transmission electron microscope, showed a cube-on-cube epitaxial relationship at the c-YSZ/Si interface; the epitaxial relationship across the NiO/c-YSZ interface was established as NiO⟨111 ⟩||c-YSZ⟨001⟩ and in-plane NiO⟨110⟩||c-YSZ⟨100⟩. Electron microscopy studies showed that the interface between the laser annealed and the pristine region as well as the NiO/c-YSZ interface was atomically sharp and crystallographically continuous. The formation of point defects, namely oxygen vacancies and NiO, due to the coupling of the laser photons with the NiO epilayers was confirmed by XPS. The p-type electrical characteristics of the pristine NiO epilayers turned to an n-type behavior and the electrical conductivity was increased by one order of magnitude after laser treatment. Photocatalytic activity of the pristine (p-NiO/c-YSZ/Si) and the laser-annealed (n-NiO/p-NiO/c-YSZ/Si) heterostructures were assessed by measuring the decomposition rate of 4-chlorophenol under UV light. The photocatalytic reaction rate constants were determined to be 0.0059 and 0.0092 min-1 for the as-deposited and the laser-treated samples, respectively. The enhanced photocatalytic efficiency was attributed to the suppressed charge carrier recombination in the NiO based p-n junctions and higher electrical conductivity. Besides, the oxygen vacancies ease the adsorption of 4-chlorophenol, hydroxyl, and water molecules to the surface. Thus, n

  1. Heterodyne laser diagnostic system

    DOEpatents

    Globig, Michael A.; Johnson, Michael A.; Wyeth, Richard W.

    1990-01-01

    The heterodyne laser diagnostic system includes, in one embodiment, an average power pulsed laser optical spectrum analyzer for determining the average power of the pulsed laser. In another embodiment, the system includes a pulsed laser instantaneous optical frequency measurement for determining the instantaneous optical frequency of the pulsed laser.

  2. Making a Laser Level

    ERIC Educational Resources Information Center

    Hawkins, Harry

    2004-01-01

    This article describes how to construct a laser level. This laser level can be made using a typical 4' (or shorter) bubble level and a small laser point. The laser unit is detachable, so the bubble level can also be used in the conventional way. However, the laser level works better than a simple bubble level. Making this inexpensive device is an…

  3. Infrared Lasers in Chemistry.

    ERIC Educational Resources Information Center

    John, Phillip

    1982-01-01

    Selected infrared laser chemistry topics are discussed including carbon dioxide lasers, infrared quanta and molecules, laser-induced chemistry, structural isomerization (laser purification, sensitized reactions, and dielectric breakdown), and fundamental principles of laser isotope separation, focusing on uranium isotope separation. (JN)

  4. Metal-oxide-junction, triple point cathodes in a relativistic magnetron

    SciTech Connect

    Jordan, N. M.; Gilgenbach, R. M.; Hoff, B. W.; Lau, Y. Y.

    2008-06-15

    Triple point, defined as the junction of metal, dielectric, and vacuum, is the location where electron emission is favored in the presence of a sufficiently strong electric field. To exploit triple point emission, metal-oxide-junction (MOJ) cathodes consisting of dielectric ''islands'' over stainless steel substrates have been fabricated. The two dielectrics used are hafnium oxide (HfO{sub x}) for its high dielectric constant and magnesium oxide (MgO) for its high secondary electron emission coefficient. The coatings are deposited by ablation-plasma-ion lithography using a KrF laser (0-600 mJ at 248 nm) and fluence ranging from 3 to 40 J/cm{sup 2}. Composition and morphology of deposited films are analyzed by scanning electron microscopy coupled with x-ray energy dispersive spectroscopy, as well as x-ray diffraction. Cathodes are tested on the Michigan Electron Long-Beam Accelerator with a relativistic magnetron, at parameters V=-300 kV, I=1-15 kA, and pulse lengths of 0.3-0.5 {mu}s. Six variations of the MOJ cathode are tested, and are compared against five baseline cases. It is found that particulate formed during the ablation process improves the electron emission properties of the cathodes by forming additional triple points. Due to extensive electron back bombardment during magnetron operation, secondary electron emission also may play a significant role. Cathodes exhibit increases in current densities of up to 80 A/cm{sup 2}, and up to 15% improvement in current start up time, as compared to polished stainless steel cathodes.

  5. Metal-oxide-junction, triple point cathodes in a relativistic magnetron.

    PubMed

    Jordan, N M; Gilgenbach, R M; Hoff, B W; Lau, Y Y

    2008-06-01

    Triple point, defined as the junction of metal, dielectric, and vacuum, is the location where electron emission is favored in the presence of a sufficiently strong electric field. To exploit triple point emission, metal-oxide-junction (MOJ) cathodes consisting of dielectric "islands" over stainless steel substrates have been fabricated. The two dielectrics used are hafnium oxide (HfO(x)) for its high dielectric constant and magnesium oxide (MgO) for its high secondary electron emission coefficient. The coatings are deposited by ablation-plasma-ion lithography using a KrF laser (0-600 mJ at 248 nm) and fluence ranging from 3 to 40 J/cm(2). Composition and morphology of deposited films are analyzed by scanning electron microscopy coupled with x-ray energy dispersive spectroscopy, as well as x-ray diffraction. Cathodes are tested on the Michigan Electron Long-Beam Accelerator with a relativistic magnetron, at parameters V=-300 kV, I=1-15 kA, and pulse lengths of 0.3-0.5 micros. Six variations of the MOJ cathode are tested, and are compared against five baseline cases. It is found that particulate formed during the ablation process improves the electron emission properties of the cathodes by forming additional triple points. Due to extensive electron back bombardment during magnetron operation, secondary electron emission also may play a significant role. Cathodes exhibit increases in current densities of up to 80 A/cm(2), and up to 15% improvement in current start up time, as compared to polished stainless steel cathodes.

  6. Biomedical properties and preparation of iron oxide-dextran nanostructures by MAPLE technique

    PubMed Central

    2012-01-01

    Background In this work the chemical structure of dextran-iron oxide thin films was reported. The films were obtained by MAPLE technique from composite targets containing 10 wt. % dextran with 1 and 5 wt.% iron oxide nanoparticles (IONPs). The IONPs were synthesized by co-precipitation method. A KrF* excimer laser source (λ = 248 nm, τFWHM≅25 ns, ν = 10 Hz) was used for the growth of the hybrid, iron oxide NPs-dextran thin films. Results Dextran coated iron oxide nanoparticles thin films were indexed into the spinel cubic lattice with a lattice parameter of 8.36 Å. The particle sized calculated was estimated at around 7.7 nm. The XPS shows that the binding energy of the Fe 2p3/2 of two thin films of dextran coated iron oxide is consistent with Fe3+ oxides. The atomic percentage of the C, O and Fe are 66.71, 32.76 and 0.53 for the films deposited from composite targets containing 1 wt.% maghemite and 64.36, 33.92 and 1.72 respectively for the films deposited from composite targets containing 5 wt.% maghemite. In the case of cells cultivated on dextran coated 5% maghemite γ-Fe2O3, the number of cells and the level of F-actin were lower compared to the other two types of thin films and control. Conclusions The dextran-iron oxide continuous thin films obtained by MAPLE technique from composite targets containing 10 wt.% dextran as well as 1 and 5 wt.% iron oxide nanoparticles synthesized by co-precipitation method presented granular surface morphology. Our data proved a good viability of Hep G2 cells grown on dextran coated maghemite thin films. Also, no changes in cells morphology were noticed under phase contrast microscopy. The data strongly suggest the potential use of iron oxide-dextran nanocomposites as a potential marker for biomedical applications. PMID:22410001

  7. Isomers of OCS{sub 2}: IR absorption spectra of OSCS and O(CS{sub 2}) in solid Ar

    SciTech Connect

    Lo, W.-J.; Chen, H.-F.; Chou, P.-H.; Lee, Y.-P.

    2004-12-22

    Irradiation of an Ar matrix sample containing O{sub 3} and CS{sub 2} with a KrF excimer laser at 248 nm yielded new lines at 1402.1 (1404.7), 1056.2 (1052.7), and 622.3 (620.5) cm-1; numbers in parentheses correspond to species in a minor matrix site. Secondary photolysis at 308 nm diminished these lines and produced mainly OCS and SO{sub 2}. Annealing of this matrix to 30 K yielded a second set of new lines at 1824.7 and 617.8 cm-1. The first set of lines are assigned to C=S stretching, O-S stretching, and S-C stretching modes of carbon disulfide S-oxide, OSCS; and the second set of lines are assigned to C=O stretching and OCS bending modes of dithiiranone, O(CS{sub 2}), respectively, based on results of {sup 34}S- and {sup 18}O-isotopic experiments and quantum-chemical calculations. These calculations using density-functional theory (B3LYP/aug-cc-pVTZ) predict four stable isomers of OCS{sub 2}: O(CS{sub 2}), SSCO, OSCS, and SOCS, listed in order of increasing energy. According to calculations, O(CS{sub 2}) has a cyclic CS{sub 2} moiety and is the most stable isomer of OCS{sub 2}. OSCS is planar, with bond angles anguprOSC congruent with 111.9 deg. and anguprSCS congruent with 177.3 deg.; it is less stable than SSCO and O(CS{sub 2}) by {approx}102 and 154 kJ mol-1, respectively, and more stable than SOCS by {approx}26 kJ mol-1. Calculated vibrational wave numbers, IR intensities, {sup 34}S- and {sup 18}O-isotopic shifts for OSCS and O(CS{sub 2}) fit satisfactorily with experimental results.

  8. Ultra-Violet Induced Insulator Flashover

    SciTech Connect

    Javedani, J B; Houck, T L; Kelly, B T; Lahowe, D A; Shirk, M D; Goerz, D A

    2008-05-21

    Insulators are critical components in high-energy, pulsed power systems. It is known that the vacuum surface of the insulator will flashover when illuminated by ultraviolet (UV) radiation depending on the insulator material, insulator cone angle, applied voltage and insulator shot-history. A testbed comprised of an excimer laser (KrF, 248 nm, {approx} 2 MW/cm{sup 2}, 30 ns FWHM,), a vacuum chamber (low 1.0E-6 torr), and dc high voltage power supply (<60 kV) was assembled for insulator testing to measure the UV dose during a flashover event. Five in-house developed and calibrated fast D-Dot probes (>12 GHz, bandwidth) were embedded in the anode electrode underneath the insulator to determine the time of flashover with respect to UV arrival. A commercial energy meter were used to measure the UV fluence for each pulse. Four insulator materials High Density Polyethylene, Rexolite{reg_sign} 1400, Macor{trademark} and Mycalex with side-angles of 0, {+-}30, and {+-}45 degrees, 1.0 cm thick samples, were tested with a maximum UV fluence of 75 mJ/cm{sup 2} and at varying electrode charge (10 kV to 60 kV). This information clarified/corrected earlier published studies. A new phenomenon was observed related to the UV power level on flashover that as the UV pulse intensity was increased, the UV fluence on the insulator prior to flashover was also increased. This effect would bias the data towards higher minimum flashover fluence.

  9. Nanosecond laser switching of surface wettability and epitaxial integration of c-axis ZnO thin films with Si(111) substrates.

    PubMed

    Molaei, R; Bayati, M R; Alipour, H M; Estrich, N A; Narayan, J

    2014-01-01

    We have achieved integration of polar ZnO[0001] epitaxial thin films with Si(111) substrates where cubic yttria-stabilized zirconia (c-YSZ) was used as a template on a Si(111) substrate. Using XRD (θ-2θ and φ scans) and HRTEM techniques, the epitaxial relationship between the ZnO and the c-YSZ layers was shown to be [0001]ZnO || [111]YSZ and [21¯1¯0]ZnO || [1¯01](c-YSZ), where the [21¯1¯0] direction lies in the (0001) plane, and the [1¯01] direction lies in the (111) plane. Similar studies on the c-YSZ/Si interface revealed epitaxy as (111)YSZ || (111)Si and in-plane (110)YSZ || (110)Si. HRTEM micrographs revealed atomically sharp and crystallographically continuous interfaces. The ZnO epilayers were subsequently laser annealed by a single pulse of a nanosecond excimer KrF laser. It was shown that the hydrophobic behavior of the pristine sample became hydrophilic after laser treatment. XPS was employed to study the effect of laser treatment on surface stoichiometry of the ZnO epilayers. The results revealed the formation of oxygen vacancies, which are envisaged to control the observed hydrophilic behavior. Our AFM studies showed surface smoothing due to the coupling of the high energy laser beam with the surface. The importance of integration of c-axis ZnO with Si(111) substrates is emphasized using the paradigm of domain matching epitaxy on the c-YSZ[111] buffer platform along with their out-of-plane orientation, which leads to improvement of the performance of the solid-state devices. The observed ultrafast response and switching in photochemical characteristics provide new opportunities for application of ZnO in smart catalysts, sensors, membranes, DNA self-assembly and multifunctional devices.

  10. Project LASER

    NASA Technical Reports Server (NTRS)

    1990-01-01

    NASA formally launched Project LASER (Learning About Science, Engineering and Research) in March 1990, a program designed to help teachers improve science and mathematics education and to provide 'hands on' experiences. It featured the first LASER Mobile Teacher Resource Center (MTRC), is designed to reach educators all over the nation. NASA hopes to operate several MTRCs with funds provided by private industry. The mobile unit is a 22-ton tractor-trailer stocked with NASA educational publications and outfitted with six work stations. Each work station, which can accommodate two teachers at a time, has a computer providing access to NASA Spacelink. Each also has video recorders and photocopy/photographic equipment for the teacher's use. MTRC is only one of the five major elements within LASER. The others are: a Space Technology Course, to promote integration of space science studies with traditional courses; the Volunteer Databank, in which NASA employees are encouraged to volunteer as tutors, instructors, etc; Mobile Discovery Laboratories that will carry simple laboratory equipment and computers to provide hands-on activities for students and demonstrations of classroom activities for teachers; and the Public Library Science Program which will present library based science and math programs.

  11. Effect of excimer laser annealing on a-InGaZnO thin-film transistors passivated by solution-processed hybrid passivation layers

    NASA Astrophysics Data System (ADS)

    Bermundo, Juan Paolo; Ishikawa, Yasuaki; Fujii, Mami N.; Nonaka, Toshiaki; Ishihara, Ryoichi; Ikenoue, Hiroshi; Uraoka, Yukiharu

    2016-01-01

    We demonstrate the use of excimer laser annealing (ELA) as a low temperature annealing alternative to anneal amorphous InGaZnO (a-IGZO) thin-film transistors (TFTs) passivated by a solution-processed hybrid passivation layer. Usually, a-IGZO is annealed using thermal annealing at high temperatures of up to 400 °C. As an alternative to high temperature thermal annealing, two types of ELA, XeCl (308 nm) and KrF (248 nm) ELA, are introduced. Both ELA types enhanced the electrical characteristics of a-IGZO TFTs leading to a mobility improvement of ~13 cm2 V-1 s-1 and small threshold voltage which varied from ~0-3 V. Furthermore, two-dimensional heat simulation using COMSOL Multiphysics was used to identify possible degradation sites, analyse laser heat localization, and confirm that the substrate temperature is below 50 °C. The two-dimensional heat simulation showed that the substrate temperature remained at very low temperatures, less than 30 °C, during ELA. This implies that any flexible material can be used as the substrate. These results demonstrate the large potential of ELA as a low temperature annealing alternative for already-passivated a-IGZO TFTs.

  12. The effect of deposition atmosphere on the chemical composition of TiN and ZrN thin films grown by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Craciun, D.; Socol, G.; Stefan, N.; Dorcioman, G.; Hanna, M.; Taylor, C. R.; Lambers, E.; Craciun, V.

    2014-05-01

    Very thin TiN and ZrN films (<500 nm) were grown on (1 0 0) Si substrates at temperatures up to 500 °C by the pulsed laser deposition (PLD) technique using a KrF excimer laser under residual vacuum or various mixtures of CH4 or N2. Auger electron spectroscopy investigations found that films contained a relatively low oxygen concentration, usually below 3.0 at%. Films deposited under residual vacuum or very low N2 pressures (<3 × 10-3 Pa) contained 3-6 at% C atoms in the bulk. This fraction grew to 8-10 at% when the deposition was performed under an atmosphere of 2 × 10-3 Pa CH4. To avoid C atoms incorporation into the bulk a deposition pressure of 10 Pa N2 was required. X-ray photoelectron spectroscopy investigations found that oxygen was mostly bonded in an oxynitride type of compound, while carbon was bonded into a metallic carbide. The presence of C atoms in the chemical composition of the TiN or ZrN improved the measured hardness of the films.

  13. Structural and biological evaluation of lignin addition to simple and silver-doped hydroxyapatite thin films synthesized by matrix-assisted pulsed laser evaporation.

    PubMed

    Janković, A; Eraković, S; Ristoscu, C; Mihailescu Serban, N; Duta, L; Visan, A; Stan, G E; Popa, A C; Husanu, M A; Luculescu, C R; Srdić, V V; Janaćković, Dj; Mišković-Stanković, V; Bleotu, C; Chifiriuc, M C; Mihailescu, I N

    2015-01-01

    We report on thin film deposition by matrix-assisted pulsed laser evaporation of simple hydroxyapatite (HA) or silver (Ag) doped HA combined with the natural biopolymer organosolv lignin (Lig) (Ag:HA-Lig). Solid cryogenic target of aqueous dispersions of Ag:HA-Lig composite and its counterpart without silver (HA-Lig) were prepared for evaporation using a KrF* excimer laser source. The expulsed material was assembled onto TiO2/Ti substrata or silicon wafers and subjected to physical-chemical investigations. Smooth, uniform films adherent to substratum were observed. The chemical analyses confirmed the presence of the HA components, but also evidenced traces of Ag and Lig. Deposited HA was Ca deficient, which is indicative of a film with increased solubility. Recorded X-ray Diffraction patterns were characteristic for amorphous films. Lig presence in thin films was undoubtedly proved by both X-ray Photoelectron and Fourier Transform Infra-Red Spectroscopy analyses. The microbiological evaluation showed that the newly assembled surfaces exhibited an inhibitory activity both on the initial steps of biofilm forming, and on mature bacterial and fungal biofilm development. The intensity of the anti-biofilm activity was positively influenced by the presence of the Lig and/or Ag, in the case of Staphylococcus aureus, Pseudomonas aeruginosa and Candida famata biofilms. The obtained surfaces exhibited a low cytotoxicity toward human mesenchymal stem cells, being therefore promising candidates for fabricating implantable biomaterials with increased biocompatibility and resistance to microbial colonization and further biofilm development.

  14. Mechanical properties of pulsed laser-deposited hydroxyapatite thin film implanted at high energy with N + and Ar + ions. Part I: nanoindentation with spherical tipped indenter

    NASA Astrophysics Data System (ADS)

    Pelletier, H.; Nelea, V.; Mille, P.; Muller, D.

    2004-02-01

    We report here a comparison between the effects of ion beam implantation treatment using nitrogen and argon ions, on the mechanical characteristics of HA films grown by pulsed laser deposition, using a KrF ∗ excimer laser. Crystalline and stoichiometric HA films were grown on Ti-5Al-2.5Fe alloy substrate, previously coated with a TiN buffer layer. After deposition, the film were implanted with ions of N + and Ar + of high energy (1-1.5 MeV range) and dose set at 10 16 at cm -2. From the load-displacement curves determined by nanoindentation tests using a spherical tipped nanoindenter ( R=5 μm), we put into evidence an enhancement of the mechanical characteristics (hardness and elastic modulus) of the HA films after implantation, especially for those implanted with N + ions. Moreover, using various applied normal loads (ranging from 1 to 100 mN) in different implanted areas, a good reproducibility of nitrogen implantation effect are observed.

  15. Fast iterative technique for the calculation of frequency dependent gain in excimer laser amplifiers

    SciTech Connect

    Sze, R.C.

    1991-01-01

    The motivation in initiating these calculations is to allow us to observe the frequency evolution of a laser pulse as it propagates through an amplifier and then through a sequence of amplifiers. The question we seek to answer is what pulse shape do we need to produce out of a front-end oscillator so that after it propagates through the whole Aurora KrF fusion amplifier chain will result in high energy, broad-band laser fields of a given bandwidth that can be focussed onto a fusion target. The propagation of a single frequency source through an amplifier with distributed loss was considered by Rigrod and was significantly expanded by Hunter and Hunter. The latter included amplified spontaneous emission (ASE) considerations both in the direction of and transverse to the coherent field. Analytic solutions that include forward and backward prapagating fields and ASE were derived which were transcendental in nature but allowed for fairly easy computer calculations. Transverse ASE were calculated using the unsaturated gain resulting from longitudinal fields and were used to compare this with the longitudinal field equations. Large computer programs are now available at LANL which include the influence of transverse ASE on the longitudinal fields. However, none of these considerations have worried about the changes in the frequency characteristics of the propagating field or of how each of the frequency field components contributes to the saturation of the gain. The inclusion of full frequency characteristics to the analytic solutions of Hunter and Hunter proved impossible at least for this author and a new calculational technique was developed and is the subject of this talk.

  16. Hypersonic gasdynamic laser system

    SciTech Connect

    Foreman, K.M.; Maciulaitis, A.

    1990-05-22

    This patent describes a visible, or near to mid infra-red, hypersonic gas dynamic laser system. It comprises: a hypersonic vehicle for carrying the hypersonic gas dynamic laser system, and also providing high energy ram air for thermodynamic excitation and supply of the laser gas; a laser cavity defined within the hypersonic vehicle and having a laser cavity inlet for the laser cavity formed by an opening in the hypersonic vehicle, such that ram air directed through the laser cavity opening supports gas dynamic lasing operations at wavelengths less than 10.6{mu} meters in the laser cavity; and an optical train for collecting the laser radiation from the laser cavity and directing it as a substantially collimated laser beam to an output aperture defined by an opening in the hypersonic vehicle to allow the laser beam to be directed against a target.

  17. Lasers in Medicine.

    ERIC Educational Resources Information Center

    Hill, P. D.

    1989-01-01

    Described are the characteristics of the laser and its effects on the body. Discussed are examples of laser treatments, including angioplasty, ophthalmology, and dermatology. A discussion of lasers of clinical interest and their applications is presented. (YP)

  18. Laser therapy (image)

    MedlinePlus

    A laser is used for many medical purposes. Because the laser beam is so small and precise, it enables ... without injuring surrounding tissue. Some uses of the laser are retinal surgery, excision of lesions, and cauterization ...

  19. The Laser Marketplace

    NASA Astrophysics Data System (ADS)

    Hitz, C. B.

    1986-11-01

    The total value of all lasers sold during 1986 in the non-Communist world will exceed US $600 million. This paper examines these sales and categorizes them according to application and according to type of laser. The results are presented both in terms of numbers of lasers sold, and in terms of the value of those lasers. The data are based on extensive interviews with laser manufacturers and laser users.

  20. Laser accidents: Being Prepared

    SciTech Connect

    Barat, K

    2003-01-24

    The goal of the Laser Safety Officer and any laser safety program is to prevent a laser accident from occurring, in particular an injury to a person's eyes. Most laser safety courses talk about laser accidents, causes, and types of injury. The purpose of this presentation is to present a plan for safety offices and users to follow in case of accident or injury from laser radiation.

  1. Laser satellite power systems

    SciTech Connect

    Walbridge, E.W.

    1980-01-01

    A laser satellite power system (SPS) converts solar power captured by earth-orbiting satellites into electrical power on the earth's surface, the satellite-to-ground transmission of power being effected by laser beam. The laser SPS may be an alternative to the microwave SPS. Microwaves easily penetrate clouds while laser radiation does not. Although there is this major disadvantage to a laser SPS, that system has four important advantages over the microwave alternative: (1) land requirements are much less, (2) radiation levels are low outside the laser ground stations, (3) laser beam sidelobes are not expected to interfere with electromagnetic systems, and (4) the laser system lends itself to small-scale demonstration. After describing lasers and how they work, the report discusses the five lasers that are candidates for application in a laser SPS: electric discharge lasers, direct and indirect solar pumped lasers, free electron lasers, and closed-cycle chemical lasers. The Lockheed laser SPS is examined in some detail. To determine whether a laser SPS will be worthy of future deployment, its capabilities need to be better understood and its attractiveness relative to other electric power options better assessed. First priority should be given to potential program stoppers, e.g., beam attenuation by clouds. If investigation shows these potential program stoppers to be resolvable, further research should investigate lasers that are particularly promising for SPS application.

  2. New laser protective eyewear

    NASA Astrophysics Data System (ADS)

    McLear, Mark

    1996-04-01

    Laser technology has significantly impacted our everyday life. Lasers are now used to correct your vision, clear your arteries, and are used in the manufacturing of such diverse products as automobiles, cigarettes, and computers. Lasers are no longer a research tool looking for an application. They are now an integral part of manufacturing. In the case of Class IV lasers, this explosion in laser applications has exposed thousands of individuals to potential safety hazards including eye damage. Specific protective eyewear designed to attenuate the energy of the laser beam below the maximum permissible exposure is required for Class 3B and Class IV lasers according to laser safety standards.

  3. [Laser physics].

    PubMed

    Banús Gassol, J M

    2008-11-01

    The commission of this article plunged me into doubt. First I should confess that I don't find excuse to escape this part if somebody wants to minimally deepen in the knowledge of the biological effects of this energy source. Secondly, when we talk about results, we use terms made and defined by Physics. Often we have polemics about results, and what really happens is that we don't reach agreements because we refer to different terms to explain the same observation; in conclusion we cannot understand each other because we do not know the adequate terms; for example, hypoxemia as oxygen deficit, which is true in an anemic patient as well as in a low oxygen saturation rate. In consequence, a good review of these concepts seems necessary to me. The third reason is the confusion that exists in our environment, I think sometimes of interest, about properties and effects of different types of laser. Only a minimal knowledge of physics will help us to state the scientific basis for understanding. The problems, nevertheless, accumulate due to the fact that the universe to which this article is directed is formed by urologists. What Physics education should we suppose they have? Superficial? Medium? Is it a collective with a uniform knowledge, being it whatever it is? The implication is clear. The article depth will depend on the answers to these questions. Nevertheless, the aim of the authors is to give a base enough to know what the laser is and how it acts. For that, the answer I gave to my questions is that the reader should understand the article and have enough base for, at least, reading critically the articles about laser published in urological journals.

  4. Laser biophotonics

    NASA Astrophysics Data System (ADS)

    Bashkatov, A. N.; Genina, E. A.; Priezzhev, A. V.; Tuchin, V. V.

    2016-06-01

    This issue of Quantum Electronics presents the papers that reflect the state-of-the-art of laser technologies used in biomedical studies and medical practice. Among the new technologies, one can note the methods of correlation and Doppler spectroscopy, as well as THz spectroscopy, in which biologically significant molecules are characterised by specific resonances. The latter topic is considered in the paper by Nazarov et al., where the dielectric function of aqueous solutions of glucose and albumin is studied using pulsed THz spectroscopy.

  5. Laser Propulsion - Quo Vadis

    SciTech Connect

    Bohn, Willy L.

    2008-04-28

    First, an introductory overview of the different types of laser propulsion techniques will be given and illustrated by some historical examples. Second, laser devices available for basic experiments will be reviewed ranging from low power lasers sources to inertial confinement laser facilities. Subsequently, a status of work will show the impasse in which the laser propulsion community is currently engaged. Revisiting the basic relations leads to new avenues in ablative and direct laser propulsion for ground based and space based applications. Hereby, special attention will be devoted to the impact of emerging ultra-short pulse lasers on the coupling coefficient and specific impulse. In particular, laser sources and laser propulsion techniques will be tested in microgravity environment. A novel approach to debris removal will be discussed with respect to the Satellite Laser Ranging (SRL) facilities. Finally, some non technical issues will be raised aimed at the future prospects of laser propulsion in the international community.

  6. Studies on lasers and laser devices

    NASA Technical Reports Server (NTRS)

    Harris, S. E.; Siegman, A. E.; Young, J. F.

    1983-01-01

    The goal of this grant was to study lasers, laser devices, and uses of lasers for investigating physical phenomena are studied. The active projects included the development of a tunable, narrowband XUV light source and its application to the spectroscopy of core excited atomic states, and the development of a technique for picosecond time resolution spectroscopy of fast photophysical processes.

  7. The Geoscience Laser Altimeter System Laser Transmitter

    NASA Technical Reports Server (NTRS)

    Afzal, R. S.; Dallas, J. L.; Yu, A. W.; Mamakos, W. A.; Lukemire, A.; Schroeder, B.; Malak, A.

    2000-01-01

    The Geoscience Laser Altimeter System (GLAS), scheduled to launch in 2001, is a laser altimeter and lidar for tile Earth Observing System's (EOS) ICESat mission. The laser transmitter requirements, design and qualification test results for this space- based remote sensing instrument are presented.

  8. Visible wavelength fiber Bragg gratings: thermal and strain sensitivities

    NASA Astrophysics Data System (ADS)

    Loren Inácio, Patrícia; Chiamenti, Ismael; Sualehe, Ivenso d. S. V.; Oliveira, Valmir; Kalinowski, Hypolito J.

    2016-05-01

    The thermal and deformation properties of fiber Bragg gratings (FBG) in the visible range were characterized for the first time in our knowledge. The FBG were written in silica single mode (cutoff in the visible and infrared range) and multimode fibers, using a phase-mask (460 nm period) illuminated by a 248 nm femtosecond laser.

  9. Laser physics and laser spectroscopy

    NASA Astrophysics Data System (ADS)

    Byer, Robert L.

    1990-04-01

    Two essential difficulties must be addressed in any low-power frequency conversion device; boosting the efficiency above that of simple single-pass bulk devices (which are typically less than 1 percent/W) and achieving phase-matching for the desired interaction. Waveguide interactions were used to increase the conversion efficiency, and explored quasi-phase-matching (QPM) as a broadly applicable approach to meeting the phasematching condition. Both oxide forrelectrics like LiNbO3 and quantum-wells in III-V semiconductors have been investigated for these applications. Second harmonic generation (SHG) of near-infrared lasers to produce green and blue radiation, as well as SHG of the 9 to 11 micrometer output of a CO2 laser have been demonstrated in these materials. These media together constitute a significant step towards the goal of generic nonlinear media for the far infrared - ultraviolet, based on readily available materials and fabricated with standard technologies, applicable to essentially any frequency conversion application.

  10. Laser photobiology and photomedicine

    SciTech Connect

    Martellucci, S.; Chester, A.N.

    1985-01-01

    This book presents information on the following topics: the physical and biological basis of photobiology and photomedicine; the biological effects and applications of laser technology; photochemotherapy; photobiology and dermatology; surgical and ophthalmological applications of lasers; laser safety; and diagnostics and technological aspects of recent laser developments.

  11. Longitudinal discharge laser baffles

    DOEpatents

    Warner, B.E.; Ault, E.R.

    1994-06-07

    The IR baffles placed between the window and the electrode of a longitudinal discharge laser improve laser performance by intercepting off-axis IR radiation from the laser and in doing so reduce window heating and subsequent optical distortion of the laser beam. 1 fig.

  12. Reverse laser drilling

    NASA Technical Reports Server (NTRS)

    Anthony, Thomas R. (Inventor)

    1984-01-01

    This invention provides a method for laser drilling small diameter, closely-spaced, and accurately located holes in a body of material which is transparent or substantially transparent to the laser radiation employed whereby the holes are drilled through the thickness of the body from the surface opposite to that on which the laser beam impinges to the surface of laser beam impingement.

  13. Short wavelength laser

    DOEpatents

    Hagelstein, P.L.

    1984-06-25

    A short wavelength laser is provided that is driven by conventional-laser pulses. A multiplicity of panels, mounted on substrates, are supported in two separated and alternately staggered facing and parallel arrays disposed along an approximately linear path. When the panels are illuminated by the conventional-laser pulses, single pass EUV or soft x-ray laser pulses are produced.

  14. Obstacles to Laser Safety

    SciTech Connect

    Barat, K

    2005-04-25

    The growth of laser development & technology has been remarkable. Unfortunately, a number of traps or obstacles to laser safety have also developed with that growth. The goal of this article is to highlight those traps, in the hope that an aware laser user will avoid them. These traps have been the cause or contributing factor of many a preventable laser accident.

  15. Longitudinal discharge laser baffles

    DOEpatents

    Warner, Bruce E.; Ault, Earl R.

    1994-01-01

    The IR baffles placed between the window and the electrode of a longitudinal discharge laser improve laser performance by intercepting off-axis IR radiation from the laser and in doing so reduce window heating and subsequent optical distortion of the laser beam.

  16. Lasers in cosmetic dentistry.

    PubMed

    Pang, Peter

    2008-01-01

    Lasers have become a necessary instrument in the esthetic restorative armamentarium. This article presents smile design guidelines for soft tissue lasers, as well as an overview of hard tissue procedures that may be performed using all-tissue lasers. The goal is to help dentists determine the appropriate laser for a given clinical situations. PMID:19014026

  17. Lasers in cosmetic dentistry.

    PubMed

    Pang, Peter

    2008-01-01

    Lasers have become a necessary instrument in the esthetic restorative armamentarium. This article presents smile design guidelines for soft tissue lasers, as well as an overview of hard tissue procedures that may be performed using all-tissue lasers. The goal is to help dentists determine the appropriate laser for a given clinical situations.

  18. Narrow gap laser welding

    DOEpatents

    Milewski, J.O.; Sklar, E.

    1998-06-02

    A laser welding process including: (a) using optical ray tracing to make a model of a laser beam and the geometry of a joint to be welded; (b) adjusting variables in the model to choose variables for use in making a laser weld; and (c) laser welding the joint to be welded using the chosen variables. 34 figs.

  19. Narrow gap laser welding

    DOEpatents

    Milewski, John O.; Sklar, Edward

    1998-01-01

    A laser welding process including: (a) using optical ray tracing to make a model of a laser beam and the geometry of a joint to be welded; (b) adjusting variables in the model to choose variables for use in making a laser weld; and (c) laser welding the joint to be welded using the chosen variables.

  20. Laser Wire Stripper

    NASA Technical Reports Server (NTRS)

    1983-01-01

    NASA-developed space shuttle technology is used in a laser wire stripper designed by Raytheon Company. Laser beams cut through insulation on a wire without damaging conductive metal, because laser radiation that melts plastic insulation is reflected by the metal. The laser process is fast, clean, precise and repeatable. It eliminates quality control problems and the expense of rejected wiring.