Science.gov

Sample records for 248cm22ne xn270-xsg reaction

  1. Drug Reactions

    MedlinePlus

    ... or diabetes. But medicines can also cause unwanted reactions. One problem is interactions, which may occur between ... more serious. Drug allergies are another type of reaction. They can be mild or life-threatening. Skin ...

  2. Catalysis of Photochemical Reactions.

    ERIC Educational Resources Information Center

    Albini, A.

    1986-01-01

    Offers a classification system of catalytic effects in photochemical reactions, contrasting characteristic properties of photochemical and thermal reactions. Discusses catalysis and sensitization, examples of catalyzed reactions of excepted states, complexing ground state substrates, and catalysis of primary photoproducts. (JM)

  3. Clinical Pearls: Leprosy Reactions.

    PubMed

    Wu, Jane; Boggild, Andrea K

    2016-09-01

    Leprosy reactions are acute inflammatory episodes that occur in the setting of Mycobacterium leprae infection. Precipitants of reactions can be pharmacologic and nonpharmacologic. Both type 1 and type 2 reactions typically occur before and during leprosy treatment but may also occur after treatment has been completed. Reactions cause morbidity due to nerve damage, and prompt corticosteroid therapy is warranted to minimize nerve damage due to reactions.

  4. Multicomponent reactions of cyclobutanones.

    PubMed

    Pirrung, Michael C; Wang, Jianmei

    2009-04-17

    Cyclobutanones are essentially unknown as reactants in isonitrile-based multicomponent reactions. Ugi reactions of cyclobutanone and Passerini reactions of tetramethylcyclobutane-1,3-dione have been performed in this work. These reactions are significantly enhanced by being conducted in water, a subject of recent interest whose basis is still in question but whose effects are beyond doubt. The Ugi reaction of cyclobutanone has been used in a brief synthesis of an aspartame analogue.

  5. Microscale Thermite Reactions.

    ERIC Educational Resources Information Center

    Arnaiz, Francisco J.; Aguado, Rafael; Arnaiz, Susana

    1998-01-01

    Describes the adaptation of thermite (aluminum with metal oxides) reactions from whole-class demonstrations to student-run micro-reactions. Lists detailed directions and possible variations of the experiment. (WRM)

  6. Allergic reactions (image)

    MedlinePlus

    Allergic reaction can be provoked by skin contact with poison plants, chemicals and animal scratches, as well as by ... dust, nuts and shellfish, may also cause allergic reaction. Medications such as penicillin and other antibiotics are ...

  7. Allergic reactions (image)

    MedlinePlus

    Allergic reaction is a sensitivity to a specific substance, called an allergen, that is contacted through the skin, inhaled into the lungs, swallowed or injected. The body's reaction to an allergen can be mild, such as ...

  8. Microfluidic chemical reaction circuits

    DOEpatents

    Lee, Chung-cheng; Sui, Guodong; Elizarov, Arkadij; Kolb, Hartmuth C.; Huang, Jiang; Heath, James R.; Phelps, Michael E.; Quake, Stephen R.; Tseng, Hsian-rong; Wyatt, Paul; Daridon, Antoine

    2012-06-26

    New microfluidic devices, useful for carrying out chemical reactions, are provided. The devices are adapted for on-chip solvent exchange, chemical processes requiring multiple chemical reactions, and rapid concentration of reagents.

  9. Continuous detonation reaction engine

    NASA Technical Reports Server (NTRS)

    Lange, O. H.; Stein, R. J.; Tubbs, H. E.

    1968-01-01

    Reaction engine operates on the principles of a controlled condensed detonation rather than on the principles of gas expansion. The detonation results in reaction products that are expelled at a much higher velocity.

  10. Catalytic diastereoselective petasis reactions.

    PubMed

    Muncipinto, Giovanni; Moquist, Philip N; Schreiber, Stuart L; Schaus, Scott E

    2011-08-22

    Multicomponent Petasis reactions: the first diastereoselective Petasis reaction catalyzed by chiral biphenols that enables the synthesis of syn and anti β-amino alcohols in pure form has been developed. The reaction exploits a multicomponent approach that involves boronates, α-hydroxy aldehydes, and amines. PMID:21751322

  11. Noncanonical reactions of flavoenzymes.

    PubMed

    Sobrado, Pablo

    2012-01-01

    Enzymes containing flavin cofactors are predominantly involved in redox reactions in numerous cellular processes where the protein environment modulates the chemical reactivity of the flavin to either transfer one or two electrons. Some flavoenzymes catalyze reactions with no net redox change. In these reactions, the protein environment modulates the reactivity of the flavin to perform novel chemistries. Recent mechanistic and structural data supporting novel flavin functionalities in reactions catalyzed by chorismate synthase, type II isopentenyl diphosphate isomerase, UDP-galactopyranose mutase, and alkyl-dihydroxyacetonephosphate synthase are presented in this review. In these enzymes, the flavin plays either a direct role in acid/base reactions or as a nucleophile or electrophile. In addition, the flavin cofactor is proposed to function as a "molecular scaffold" in the formation of UDP-galactofuranose and alkyl-dihydroxyacetonephosphate by forming a covalent adduct with reaction intermediates.

  12. Anaphylactic reactions to cinoxacin.

    PubMed Central

    Stricker, B. H.; Slagboom, G.; Demaeseneer, R.; Slootmaekers, V.; Thijs, I.; Olsson, S.

    1988-01-01

    During 1981 to mid-1988 three cases of anaphylactic shock after treatment with the quinolone derivative cinoxacin were reviewed by the Netherlands Centre for Monitoring of Adverse Reactions to Drugs and 17 cases of an anaphylactic type of reaction notified to the World Health Organisation Collaborating Centre for International Drug Monitoring. In five out of six patients for whom data were available the reaction began shortly after taking a single capsule of a second or next course of treatment. Cinoxacin is related to nalidixic acid, and one patient previously treated with that agent subsequently had an anaphylactoid reaction to cinoxacin and later developed a skin reaction to nalidixic acid. There were no deaths, and patients treated as an emergency with plasma expanders or with adrenaline and corticosteroids generally recovered promptly and uneventfully. In view of the potentially fatal consequences of anaphylactic reactions to cinoxacin and other quinolones doctors should take care when prescribing these drugs. PMID:3147004

  13. Reaction spreading on graphs

    NASA Astrophysics Data System (ADS)

    Burioni, Raffaella; Chibbaro, Sergio; Vergni, Davide; Vulpiani, Angelo

    2012-11-01

    We study reaction-diffusion processes on graphs through an extension of the standard reaction-diffusion equation starting from first principles. We focus on reaction spreading, i.e., on the time evolution of the reaction product M(t). At variance with pure diffusive processes, characterized by the spectral dimension ds, the important quantity for reaction spreading is found to be the connectivity dimension dl. Numerical data, in agreement with analytical estimates based on the features of n independent random walkers on the graph, show that M(t)˜tdl. In the case of Erdös-Renyi random graphs, the reaction product is characterized by an exponential growth M(t)˜eαt with α proportional to ln, where is the average degree of the graph.

  14. Nuclear reaction studies

    SciTech Connect

    Alexander, J.M.; Lacey, R.A.

    1994-11-01

    Research focused on the statistical and dynamical properties of ``hot`` nuclei formed in symmetric heavy-ion reactions. Theses included ``flow`` measurements and the mechanism for multifragment disassembly. Model calculations are being performed for the reactions C+C, Ne+Al, Ar+Sc, Kr+Nb, and Xe+La. It is planned to study {sup 40}Ar reactions from 27 to 115 MeV/nucleon. 2 figs., 41 refs.

  15. Immune reaction to propanidid.

    PubMed

    Christmas, D

    1984-05-01

    An adverse reaction to the intravenous anaesthetic agent propanidid is described in which the main features were hypotension, facial erythema, and abdominal pain. Changes in serum complement levels and differential white cell counts indicate that this was an immune reaction mediated by the classical complement pathway. The immune reaction apparently involved antibodies other than those of the IgE (reagin) class, and circumstantial evidence suggests that it was specific to propanidid rather than to the entire formulation or to Cremophor EL.

  16. Sleeve reaction chamber system

    DOEpatents

    Northrup, M. Allen; Beeman, Barton V.; Benett, William J.; Hadley, Dean R.; Landre, Phoebe; Lehew, Stacy L.; Krulevitch, Peter A.

    2009-08-25

    A chemical reaction chamber system that combines devices such as doped polysilicon for heating, bulk silicon for convective cooling, and thermoelectric (TE) coolers to augment the heating and cooling rates of the reaction chamber or chambers. In addition the system includes non-silicon-based reaction chambers such as any high thermal conductivity material used in combination with a thermoelectric cooling mechanism (i.e., Peltier device). The heat contained in the thermally conductive part of the system can be used/reused to heat the device, thereby conserving energy and expediting the heating/cooling rates. The system combines a micromachined silicon reaction chamber, for example, with an additional module/device for augmented heating/cooling using the Peltier effect. This additional module is particularly useful in extreme environments (very hot or extremely cold) where augmented heating/cooling would be useful to speed up the thermal cycling rates. The chemical reaction chamber system has various applications for synthesis or processing of organic, inorganic, or biochemical reactions, including the polymerase chain reaction (PCR) and/or other DNA reactions, such as the ligase chain reaction.

  17. Applications of Reaction Rate

    ERIC Educational Resources Information Center

    Cunningham, Kevin

    2007-01-01

    This article presents an assignment in which students are to research and report on a chemical reaction whose increased or decreased rate is of practical importance. Specifically, students are asked to represent the reaction they have chosen with an acceptable chemical equation, identify a factor that influences its rate and explain how and why it…

  18. Chemical Reaction Problem Solving.

    ERIC Educational Resources Information Center

    Veal, William

    1999-01-01

    Discusses the role of chemical-equation problem solving in helping students predict reaction products. Methods for helping students learn this process must be taught to students and future teachers by using pedagogical skills within the content of chemistry. Emphasizes that solving chemical reactions should involve creative cognition where…

  19. Oscillating Chemical Reactions

    ERIC Educational Resources Information Center

    Hawkins, M. D.; And Others

    1975-01-01

    Describes several oscillating chemical reactions which can be used in undergraduate chemistry laboratories. In one such reaction, ferroin oscillates from red (reducing solution) to blue (oxidizing solution) for about an hour at a frequency which can readily be shown to depend on such factors as the temperature, type of solvent, and concentration…

  20. REUSABLE REACTION VESSEL

    DOEpatents

    Soine, T.S.

    1963-02-26

    This patent shows a reusable reaction vessel for such high temperature reactions as the reduction of actinide metal chlorides by calcium metal. The vessel consists of an outer metal shell, an inner container of refractory material such as sintered magnesia, and between these, a bed of loose refractory material impregnated with thermally conductive inorganic salts. (AEC)

  1. Hydrogen evolution reaction catalyst

    DOEpatents

    Subbaraman, Ram; Stamenkovic, Vojislav; Markovic, Nenad; Tripkovic, Dusan

    2016-02-09

    Systems and methods for a hydrogen evolution reaction catalyst are provided. Electrode material includes a plurality of clusters. The electrode exhibits bifunctionality with respect to the hydrogen evolution reaction. The electrode with clusters exhibits improved performance with respect to the intrinsic material of the electrode absent the clusters.

  2. Clock Reaction: Outreach Attraction

    ERIC Educational Resources Information Center

    Carpenter, Yuen-ying; Phillips, Heather A.; Jakubinek, Michael B.

    2010-01-01

    Chemistry students are often introduced to the concept of reaction rates through demonstrations or laboratory activities involving the well-known iodine clock reaction. For example, a laboratory experiment involving thiosulfate as an iodine scavenger is part of the first-year general chemistry laboratory curriculum at Dalhousie University. With…

  3. Oscillating Reactions: Two Analogies

    ERIC Educational Resources Information Center

    Petruševski, Vladimir M.; Stojanovska, Marina I.; Šoptrajanov, Bojan T.

    2007-01-01

    Oscillating chemical reactions are truly spectacular phenomena, and demonstrations are always appreciated by the class. However, explaining such reactions to high school or first-year university students is problematic, because it may seem that no acceptable explanation is possible unless the students have profound knowledge of both physical…

  4. Nuclear Reaction Data Centers

    SciTech Connect

    McLane, V.; Nordborg, C.; Lemmel, H.D.; Manokhin, V.N.

    1988-01-01

    The cooperating Nuclear Reaction Data Centers are involved in the compilation and exchange of nuclear reaction data for incident neutrons, charged particles and photons. Individual centers may also have services in other areas, e.g., evaluated data, nuclear structure and decay data, reactor physics, nuclear safety; some of this information may also be exchanged between interested centers. 20 refs., 1 tab.

  5. Fractal reaction kinetics.

    PubMed

    Kopelman, R

    1988-09-23

    Classical reaction kinetics has been found to be unsatisfactory when the reactants are spatially constrained on the microscopic level by either walls, phase boundaries, or force fields. Recently discovered theories of heterogeneous reaction kinetics have dramatic consequences, such as fractal orders for elementary reactions, self-ordering and self-unmixing of reactants, and rate coefficients with temporal "memories." The new theories were needed to explain the results of experiments and supercomputer simulations of reactions that were confined to low dimensions or fractal dimensions or both. Among the practical examples of "fractal-like kinetics" are chemical reactions in pores of membranes, excitation trapping in molecular aggregates, exciton fusion in composite materials, and charge recombination in colloids and clouds.

  6. Biochemical reaction engineering for redox reactions.

    PubMed

    Wandrey, Christian

    2004-01-01

    Redox reactions are still a challenge for biochemical engineers. A personal view for the development of this field is given. Cofactor regeneration was an obstacle for quite some time. The first technical breakthrough was achieved with the system formate/formate dehydrogenase for the regeneration of NADH2. In cases where the same enzyme could be used for chiral reduction as well as for cofactor regeneration, isopropanol as a hydrogen source proved to be beneficial. The coproduct (acetone) can be removed by pervaporation. Whole-cell reductions (often yeast reductions) can also be used. By proper biochemical reaction engineering, it is possible to apply these systems in a continuous way. By cloning a formate dehydrogenase and an oxidoreductase "designer bug" can be obtained where formate is used instead of glucose as the hydrogen source. Complex sequences of redox reactions can be established by pathway engineering with a focus on gene overexpression or with a focus on establishing non-natural pathways. The success of pathway engineering can be controlled by measuring cytosolic metabolite concentrations. The optimal exploitation of such systems calls for the integrated cooperation of classical and molecular biochemical engineering.

  7. Enhancing chemical reactions

    DOEpatents

    Morrey, John R.

    1978-01-01

    Methods of enhancing selected chemical reactions. The population of a selected high vibrational energy state of a reactant molecule is increased substantially above its population at thermal equilibrium by directing onto the molecule a beam of radiant energy from a laser having a combination of frequency and intensity selected to pump the selected energy state, and the reaction is carried out with the temperature, pressure, and concentrations of reactants maintained at a combination of values selected to optimize the reaction in preference to thermal degradation by transforming the absorbed energy into translational motion. The reaction temperature is selected to optimize the reaction. Typically a laser and a frequency doubler emit radiant energy at frequencies of .nu. and 2.nu. into an optical dye within an optical cavity capable of being tuned to a wanted frequency .delta. or a parametric oscillator comprising a non-centrosymmetric crystal having two indices of refraction, to emit radiant energy at the frequencies of .nu., 2.nu., and .delta. (and, with a parametric oscillator, also at 2.nu.-.delta.). Each unwanted frequency is filtered out, and each desired frequency is focused to the desired radiation flux within a reaction chamber and is reflected repeatedly through the chamber while reactants are fed into the chamber and reaction products are removed therefrom.

  8. NEUTRONIC REACTION SYSTEM

    DOEpatents

    Wigner, E.P.

    1963-09-01

    A nuclear reactor system is described for breeding fissionable material, including a heat-exchange tank, a high- and a low-pressure chamber therein, heat- exchange tubes connecting these chambers, a solution of U/sup 233/ in heavy water in a reaction container within the tank, a slurry of thorium dioxide in heavy water in a second container surrounding the first container, an inlet conduit including a pump connecting the low pressure chamber to the reaction container, an outlet conduit connecting the high pressure chamber to the reaction container, and means of removing gaseous fission products released in both chambers. (AEC)

  9. Reactor for exothermic reactions

    DOEpatents

    Smith, L.A. Jr.; Hearn, D.; Jones, E.M. Jr.

    1993-03-02

    A liquid phase process is described for oligomerization of C[sub 4] and C[sub 5] isoolefins or the etherification thereof with C[sub 1] to C[sub 6] alcohols wherein the reactants are contacted in a reactor with a fixed bed acid cation exchange resin catalyst at an LHSV of 5 to 20, pressure of 0 to 400 psig and temperature of 120 to 300 F. Wherein the improvement is the operation of the reactor at a pressure to maintain the reaction mixture at its boiling point whereby at least a portion but less than all of the reaction mixture is vaporized. By operating at the boiling point and allowing a portion of the reaction mixture to vaporize, the exothermic heat of reaction is dissipated by the formation of more boil up and the temperature in the reactor is controlled.

  10. Autocatalysis in reaction networks.

    PubMed

    Deshpande, Abhishek; Gopalkrishnan, Manoj

    2014-10-01

    The persistence conjecture is a long-standing open problem in chemical reaction network theory. It concerns the behavior of solutions to coupled ODE systems that arise from applying mass-action kinetics to a network of chemical reactions. The idea is that if all reactions are reversible in a weak sense, then no species can go extinct. A notion that has been found useful in thinking about persistence is that of "critical siphon." We explore the combinatorics of critical siphons, with a view toward the persistence conjecture. We introduce the notions of "drainable" and "self-replicable" (or autocatalytic) siphons. We show that: Every minimal critical siphon is either drainable or self-replicable; reaction networks without drainable siphons are persistent; and nonautocatalytic weakly reversible networks are persistent. Our results clarify that the difficulties in proving the persistence conjecture are essentially due to competition between drainable and self-replicable siphons. PMID:25245394

  11. Contact reactions to food.

    PubMed

    Killig, Claudia; Werfel, Thomas

    2008-05-01

    Cutaneous adverse reactions to foods, spices, and food additives can occur both in occupational and nonoccupational settings in those who grow, handle, prepare, or cook food. Because spices are also utilized in cosmetics and perfumes, other exposures are encountered that can result in adverse cutaneous reactions. This article describes the reaction patterns that can occur upon contact with foods, including irritant contact dermatitis and allergic contact dermatitis. The ingestion of culprit foods by sensitized individuals can provoke a generalized eczematous rash, referred to as systemic contact dermatitis. Other contact reactions to food include contact urticaria and protein contact dermatitis provoked by high-molecular-weight food proteins often encountered in patients with atopic dermatitis. Phototoxic and photoallergic contact dermatitis are also considered.

  12. Reactor for exothermic reactions

    DOEpatents

    Smith, Jr., Lawrence A.; Hearn, Dennis; Jones, Jr., Edward M.

    1993-01-01

    A liquid phase process for oligomerization of C.sub.4 and C.sub.5 isoolefins or the etherification thereof with C.sub.1 to C.sub.6 alcohols wherein the reactants are contacted in a reactor with a fixed bed acid cation exchange resin catalyst at an LHSV of 5 to 20, pressure of 0 to 400 psig and temperature of 120.degree. to 300.degree. F. Wherein the improvement is the operation of the reactor at a pressure to maintain the reaction mixture at its boiling point whereby at least a portion but less than all of the reaction mixture is vaporized. By operating at the boiling point and allowing a portion of the reaction mixture to vaporize, the exothermic heat of reaction is dissipated by the formation of more boil up and the temperature in the reactor is controlled.

  13. Autocatalysis in reaction networks.

    PubMed

    Deshpande, Abhishek; Gopalkrishnan, Manoj

    2014-10-01

    The persistence conjecture is a long-standing open problem in chemical reaction network theory. It concerns the behavior of solutions to coupled ODE systems that arise from applying mass-action kinetics to a network of chemical reactions. The idea is that if all reactions are reversible in a weak sense, then no species can go extinct. A notion that has been found useful in thinking about persistence is that of "critical siphon." We explore the combinatorics of critical siphons, with a view toward the persistence conjecture. We introduce the notions of "drainable" and "self-replicable" (or autocatalytic) siphons. We show that: Every minimal critical siphon is either drainable or self-replicable; reaction networks without drainable siphons are persistent; and nonautocatalytic weakly reversible networks are persistent. Our results clarify that the difficulties in proving the persistence conjecture are essentially due to competition between drainable and self-replicable siphons.

  14. An Illuminating Reaction.

    ERIC Educational Resources Information Center

    Matthews, Catherine E.

    1996-01-01

    Describes the use of carbide lights as an excellent mechanism for introducing or reviewing many basic chemistry concepts including elements and compounds, endothermic and exothermic reactions, physical and chemical changes, and balancing chemical equations. (JRH)

  15. Iodine Clock Reaction.

    ERIC Educational Resources Information Center

    Mitchell, Richard S.

    1996-01-01

    Describes a combination of solutions that can be used in the study of kinetics using the iodine clock reaction. The combination slows down degradation of the prepared solutions and can be used successfully for several weeks. (JRH)

  16. Response reactions: equilibrium coupling.

    PubMed

    Hoffmann, Eufrozina A; Nagypal, Istvan

    2006-06-01

    It is pointed out and illustrated in the present paper that if a homogeneous multiple equilibrium system containing k components and q species is composed of the reactants actually taken and their reactions contain only k + 1 species, then we have a unique representation with (q - k) stoichiometrically independent reactions (SIRs). We define these as coupling reactions. All the other possible combinations with k + 1 species are the coupled reactions that are in equilibrium when the (q - k) SIRs are in equilibrium. The response of the equilibrium state for perturbation is determined by the coupling and coupled equilibria. Depending on the circumstances and the actual thermodynamic data, the effect of coupled equilibria may overtake the effect of the coupling ones, leading to phenomena that are in apparent contradiction with Le Chatelier's principle. PMID:16722770

  17. Translated chemical reaction networks.

    PubMed

    Johnston, Matthew D

    2014-05-01

    Many biochemical and industrial applications involve complicated networks of simultaneously occurring chemical reactions. Under the assumption of mass action kinetics, the dynamics of these chemical reaction networks are governed by systems of polynomial ordinary differential equations. The steady states of these mass action systems have been analyzed via a variety of techniques, including stoichiometric network analysis, deficiency theory, and algebraic techniques (e.g., Gröbner bases). In this paper, we present a novel method for characterizing the steady states of mass action systems. Our method explicitly links a network's capacity to permit a particular class of steady states, called toric steady states, to topological properties of a generalized network called a translated chemical reaction network. These networks share their reaction vectors with their source network but are permitted to have different complex stoichiometries and different network topologies. We apply the results to examples drawn from the biochemical literature.

  18. Untoward penicillin reactions

    PubMed Central

    Guthe, T.; Idsöe, O.; Willcox, R. R.

    1958-01-01

    The literature on untoward reactions following the administration of penicillin is reviewed. These reactions, including a certain number of deaths which have been reported, are of particular interest to health administrations and to WHO in view of the large-scale programmes for controlling the treponematoses which are now under way—programmes affecting millions of people in many parts of the world. The most serious problems are anaphylactic sensitivity phenomena and superinfection or cross-infection with penicillin-resistant organisms, and the reactions involved range in intensity from the mildest to the fatal; the incidence of the latter is estimated at 0.1-0.3 per million injections. The authors point out that with increasing use of penicillin, more persons are likely to become sensitized and the number of reactions can therefore be expected to rise. The best prevention against such an increase is the restriction of the unnecessary use of penicillin. PMID:13596877

  19. Chemisorption And Precipitation Reactions

    EPA Science Inventory

    The transport and bioavailability of chemical components within soils is, in part, controlled by partitioning between solids and solution. General terms used to describe these partitioning reactions include chemisorption and precipitation. Chemisorption is inclusive of the suit...

  20. Oxygen evolution reaction catalysis

    DOEpatents

    Haber, Joel A.; Jin, Jian; Xiang, Chengxiang; Gregoire, John M.; Jones, Ryan J.; Guevarra, Dan W.; Shinde, Aniketa A.

    2016-09-06

    An Oxygen Evolution Reaction (OER) catalyst includes a metal oxide that includes oxygen, cerium, and one or more second metals. In some instances, the cerium is 10 to 80 molar % of the metals in the metal oxide and/or the catalyst includes two or more second metals. The OER catalyst can be included in or on an electrode. The electrode can be arranged in an oxygen evolution system such that the Oxygen Evolution Reaction occurs at the electrode.

  1. Cosmetic tattoo pigment reaction.

    PubMed

    Greywal, Tanya; Cohen, Philip R

    2016-01-01

    BackgroundCutaneous reactions to tattoos are most commonly granulomatous or lichenoid.PurposeWe describe a woman who developed a lymphocytic reaction following a cosmetic tattoo procedure with black dye. The reaction occurred not only at the site of the tattoos (eyebrows and eyelash lines), but also in non-tattooed skin (bilateral malar cheeks).Methods and MaterialsWe reviewed PubMed for the following terms: cosmetic, dye, granuloma, granulomatous, lichenoid, lymphocytic, perivascular, pigment, pseudolymphoma, reaction, and tattoo. We also reviewed papers containing these terms and their references.ResultsHistopathologic examination of the left eyebrow and left cheek punch biopsies showed predominantly a perivascular lymphocytic reaction secondary to exogenous tattoo pigment.ConclusionsPerivascular lymphocytic reaction is an uncommonly described complication of tattooing. Our patient had an atypical presentation since she had no prior tattoos, became symptomatic only a few days after the procedure, reacted to black dye, and involved skin both within and outside the confines of the tattoos. Her symptoms and lesions resolved after treatment with systemic and topical corticosteroids and oral antihistamines. PMID:27617722

  2. Immediate reaction to clarithromycin.

    PubMed

    Gangemi, S; Ricciardi, L; Fedele, R; Isola, S; Purello-D'Ambrosio, F

    2001-01-01

    We present the case of bronchospastic reaction to clarithromycin had during a drug challenge test. Personal allergic history was negative for respiratory allergies and positive for adverse drug reactions to general and regional anesthesia and to ceftriaxone. After the administration of 1/4 of therapeutic dose of clarithromycin the patient showed dyspnea, cough and bronchospasm in all the lung fields. The positivity of the test was confirmed by the negativity to the administration of placebo. The quickness and the clinical characteristic of the adverse reaction suggest a pathogenic mechanism of immediate-type hypersensitivity. On reviewing the literature we have found no reports of bronchospastic reaction to clarithromycin. Macrolides are a class of antibiotics mainly used in the last years in place of beta-lactams because of a broad spectrum of action and a low allergic power. In fact, there are few reports on allergic reactions to these molecules. Clarithromycin is one of the latest macrolides, characterised by the presence of a 14-carbon-atom lactone ring as erythromycin, active on a wide spectrum of pathogens.

  3. Adverse reactions to cosmetics.

    PubMed

    Dogra, A; Minocha, Y C; Kaur, S

    2003-01-01

    Adverse reaction to cosmetics constitute a small but significant number of cases of contact dermatitis with varied appearances. These can present as contact allergic dermatitis, photodermatitis, contact irritant dermatitis, contact urticaria, hypopigmentation, hyperpigmentation or depigmentation, hair and nail breakage. Fifty patients were included for the study to assess the role of commonly used cosmetics in causing adverse reactions. It was found that hair dyes, lipsticks and surprisingly shaving creams caused more reaction as compared to other cosmetics. Overall incidence of contact allergic dermatitis seen was 3.3% with patients own cosmetics. Patch testing was also done with the basic ingredients and showed positive results in few cases where casual link could be established. It is recommended that labeling of the cosmetics should be done to help the dermatologists and the patients to identify the causative allergen in cosmetic preparation.

  4. Nanoparticle Reactions on Chip

    NASA Astrophysics Data System (ADS)

    Köhler, J. M.; Kirner, Th.; Wagner, J.; Csáki, A.; Möller, R.; Fritzsche, W.

    The handling of heterogenous systems in micro reactors is difficult due to their adhesion and transport behaviour. Therefore, the formation of precipitates and gas bubbles has to be avoided in micro reaction technology, in most cases. But, micro channels and other micro reactors offer interesting possibilities for the control of reaction conditions and transport by diffusion and convection due to the laminar flow caused by small Reynolds numbers. This can be used for the preparation and modification of objects, which are much smaller than the cross section of microchannels. The formation of colloidal solutions and the change of surface states of nano particles are two important tasks for the application of chip reactors in nanoparticle technology. Some concepts for the preparation and reaction of nanoparticles in modular chip reactor arrangements will be discussed.

  5. Delayed drug hypersensitivity reactions.

    PubMed

    Pichler, Werner J

    2003-10-21

    Immune reactions to small molecular compounds, such as drugs, can cause a variety of diseases involving the skin, liver, kidney, and lungs. In many drug hypersensitivity reactions, drug-specific CD4+ and CD8+ T cells recognize drugs through their alphabeta T-cell receptors in an MHC-dependent way. Drugs stimulate T cells if they act as haptens and bind covalently to peptides or if they have structural features that allow them to interact with certain T-cell receptors directly. Immunohistochemical and functional studies of drug-reactive T cells in patients with distinct forms of exanthema reveal that distinct T-cell functions lead to different clinical phenotypes. In maculopapular exanthema, perforin-positive and granzyme B-positive CD4+ T cells kill activated keratinocytes, while a large number of cytotoxic CD8+ T cells in the epidermis is associated with formation of vesicles and bullae. Drug-specific T cells also orchestrate inflammatory skin reactions through the release of various cytokines (for example, interleukin-5, interferon) and chemokines (such as interleukin-8). Activation of T cells with a particular function seems to lead to a specific clinical picture (for example, bullous or pustular exanthema). Taken together, these data allow delayed hypersensitivity reactions (type IV) to be further subclassified into T-cell reactions, which through the release of certain cytokines and chemokines preferentially activate and recruit monocytes (type IVa), eosinophils (type IVb), or neutrophils (type IVd). Moreover, cytotoxic functions by either CD4+ or CD8+ T cells (type IVc) seem to participate in all type IV reactions.

  6. Velocity pump reaction turbine

    DOEpatents

    House, P.A.

    An expanding hydraulic/two-phase velocity pump reaction turbine including a dual concentric rotor configuration with an inter-rotor annular flow channel in which the inner rotor is mechanically driven by the outer rotor. In another embodiment, the inner rotor is immobilized and provided with gas recovery ports on its outer surface by means of which gas in solution may be recovered. This velocity pump reaction turbine configuration is capable of potential energy conversion efficiencies of up to 70%, and is particularly suited for geothermal applications.

  7. Velocity pump reaction turbine

    DOEpatents

    House, Palmer A.

    1984-01-01

    An expanding hydraulic/two-phase velocity pump reaction turbine including a dual concentric rotor configuration with an inter-rotor annular flow channel in which the inner rotor is mechanically driven by the outer rotor. In another embodiment, the inner rotor is immobilized and provided with gas recovery ports on its outer surface by means of which gas in solution may be recovered. This velocity pump reaction turbine configuration is capable of potential energy conversion efficiencies of up to 70%, and is particularly suited for geothermal applications.

  8. Velocity pump reaction turbine

    DOEpatents

    House, Palmer A.

    1982-01-01

    An expanding hydraulic/two-phase velocity pump reaction turbine including a dual concentric rotor configuration with an inter-rotor annular flow channel in which the inner rotor is mechanically driven by the outer rotor. In another embodiment, the inner rotor is immobilized and provided with gas recovery ports on its outer surface by means of which gas in solution may be recovered. This velocity pump reaction turbine configuration is capable of potential energy conversion efficiencies of up to 70%, and is particularly suited for geothermal applications.

  9. Chain Reaction Polymerization.

    ERIC Educational Resources Information Center

    McGrath, James E.

    1981-01-01

    The salient features and importance of chain-reaction polymerization are discussed, including such topics as the thermodynamics of polymerization, free-radical polymerization kinetics, radical polymerization processes, copolymers, and free-radical chain, anionic, cationic, coordination, and ring-opening polymerizations. (JN)

  10. Quinoprotein-catalysed reactions.

    PubMed Central

    Anthony, C

    1996-01-01

    This review is concerned with the structure and function of the quinoprotein enzymes, sometimes called quinoenzymes. These have prosthetic groups containing quinones, the name thus being analogous to the flavoproteins containing flavin prosthetic groups. Pyrrolo-quinoline quinone (PQQ) is non-covalently attached, whereas tryptophan tryptophylquinone (TTQ), topaquinone (TPQ) and lysine tyrosylquinone (LTQ) are derived from amino acid residues in the backbone of the enzymes. The mechanisms of the quinoproteins are reviewed and related to their recently determined three-dimensional structures. As expected, the quinone structures in the prosthetic groups play important roles in the mechanisms. A second common feature is the presence of a catalytic base (aspartate) at the active site which initiates the reactions by abstracting a proton from the substrate, and it is likely to be involved in multiple reactions in the mechanism. A third common feature of these enzymes is that the first part of the reaction produces a reduced prosthetic group; this part of the mechanism is fairly well understood. This is followed by an oxidative phase involving electron transfer reactions which remain poorly understood. In both types of dehydrogenase (containing PQQ and TTQ), electrons must pass from the reduced prosthetic group to redox centres in a second recipient protein (or protein domain), whereas in amine oxidases (containing TPQ or LTQ), electrons must be transferred to molecular oxygen by way of a redox-active copper ion in the protein. PMID:9003352

  11. Reaction product imaging

    SciTech Connect

    Chandler, D.W.

    1993-12-01

    Over the past few years the author has investigated the photochemistry of small molecules using the photofragment imaging technique. Bond energies, spectroscopy of radicals, dissociation dynamics and branching ratios are examples of information obtained by this technique. Along with extending the technique to the study of bimolecular reactions, efforts to make the technique as quantitative as possible have been the focus of the research effort. To this end, the author has measured the bond energy of the C-H bond in acetylene, branching ratios in the dissociation of HI, the energetics of CH{sub 3}Br, CD{sub 3}Br, C{sub 2}H{sub 5}Br and C{sub 2}H{sub 5}OBr dissociation, and the alignment of the CD{sub 3} fragment from CD{sub 3}I photolysis. In an effort to extend the technique to bimolecular reactions the author has studied the reaction of H with HI and the isotopic exchange reaction between H and D{sub 2}.

  12. Chemical Reactions at Surfaces

    SciTech Connect

    Michael Henderson and Nancy Ryan Gray

    2010-04-14

    Chemical reactions at surfaces underlie some of the most important processes of today, including catalysis, energy conversion, microelectronics, human health and the environment. Understanding surface chemical reactions at a fundamental level is at the core of the field of surface science. The Gordon Research Conference on Chemical Reactions at Surfaces is one of the premiere meetings in the field. The program this year will cover a broad range of topics, including heterogeneous catalysis and surface chemistry, surfaces in environmental chemistry and energy conversion, reactions at the liquid-solid and liquid-gas interface, electronic materials growth and surface modification, biological interfaces, and electrons and photons at surfaces. An exciting program is planned, with contributions from outstanding speakers and discussion leaders from the international scientific community. The conference provides a dynamic environment with ample time for discussion and interaction. Attendees are encouraged to present posters; the poster sessions are historically well attended and stimulate additional discussions. The conference provides an excellent opportunity for junior researchers (e.g. graduate students or postdocs) to present their work and interact with established leaders in the field.

  13. Adverse reactions to cosmetics.

    PubMed

    Gendler, E

    1987-06-01

    Adverse reactions to cosmetics can be irritant or allergic and are most often caused by fragrances or preservatives. Preservatives include formaldehyde, formaldehyde releasers, and parabens. Other agents that cause allergy are paraphenylenediamine in hair dyes and toluene sulfonamide formaldehyde resin in nail polishes.

  14. A Principal's Reaction

    ERIC Educational Resources Information Center

    Zaretsky, Lindy

    2004-01-01

    This article presents a principal's reaction to Catherine Marshall and Michael Ward's article on research on social justice and training for leadership. The author applauds Marshall and Ward's efforts to address what is undoubtedly among the most fundamentally important issues facing principals today. Marshall and Ward illuminate the importance of…

  15. Family reaction to homicide.

    PubMed

    Burgess, A N

    1975-04-01

    This pilot study identifies a two-phased syndrome experienced by families of homicide victims. The crisis phase consists of an acute grief process, including immediate reactions to the homicide, the funeral details, and police investigations. The long-term reorganization phase includes the psychological issues of bereavement and the socio-legal issues of the criminal justice process. PMID:1146971

  16. Reactions to Others' Intimacy.

    ERIC Educational Resources Information Center

    Neufeldt, David E.; Olinger, Evanelle J.

    Research using behavioral measures has indicated that men react less positively to the touch of a same sex individual than women, that both men and women react more positively to the touch of an opposite sex individual than to the touch of a same sex individual, and that men and women do not differ in their reactions to opposite sex touch. This…

  17. Introducing the Wittig Reaction.

    ERIC Educational Resources Information Center

    Armstead, D. E. F.

    1979-01-01

    An experiment is described which provides a simple example of the application of the Wittig reaction to the synthesis of unsaturated compounds. The experiment was designed with British HNC chemistry students in mind, but it is also suitable as a project-type exercise for final year GCE A-level students. (Author/BB)

  18. Polymerase chain reaction system

    DOEpatents

    Benett, William J.; Richards, James B.; Stratton, Paul L.; Hadley, Dean R.; Milanovich, Fred P.; Belgrader, Phil; Meyer, Peter L.

    2004-03-02

    A portable polymerase chain reaction DNA amplification and detection system includes one or more chamber modules. Each module supports a duplex assay of a biological sample. Each module has two parallel interrogation ports with a linear optical system. The system is capable of being handheld.

  19. Exocharmic Reactions up Close

    ERIC Educational Resources Information Center

    Ramette, R. W.

    2007-01-01

    The exocharmic reactions that can be observed microscopically are discussed. The students can discover the optimal concentration of an acidic lead nitrate solution, so that a crystal of potassium iodide, nudged to the edge of a drop, results in glinting golden hexagons of lead iodide.

  20. Reaction and Response.

    ERIC Educational Resources Information Center

    Armento, Beverly J.; And Others

    1993-01-01

    Provides a reaction by three economic educators to an article by Raymond C. Miller calling for the elimination of economics. Contends that traditional economics does not necessarily lead to the degradation of the environment. Argues that economics should not promote any set of social values. (CFR)

  1. Reaction Formulation: A Bibliography.

    ERIC Educational Resources Information Center

    Pedrini, D. T.; Pedrini, Bonnie C.

    Reaction formation was studied by Sigmund Freud. This defense mechanism may be related to repression, substitution, reversal, and compensation (or over-compensation). Alfred Adler considered compensation a basic process in his individual psychology. Anna Freud discussed some defense mechanisms, and Bibring, Dwyer, Huntington, and Valenstein…

  2. The aromatic ene reaction

    PubMed Central

    Niu, Dawen; Hoye, Thomas R.

    2014-01-01

    The ene reaction is a pericyclic process in which an alkene having an allylic hydrogen atom (the ene donor) reacts with a second unsaturated species (the enophile) to form a new product with a transposed π-bond. The aromatic ene reaction, in which the alkene component is embedded in an aromatic ring, has only been reported in a few (four) instances and has proceeded in low yield (≤6%). Here we show efficient aromatic ene reactions in which a thermally generated aryne engages a pendant m-alkylarene substituent to produce a dearomatized isotoluene, itself another versatile but rare reactive intermediate. Our experiments were guided by computational studies that revealed structural features conducive to the aromatic ene process. We proceeded to identify a cascade comprising three reactions: (i) hexadehydro-Diels-Alder (for aryne generation), (ii) intramolecular aromatic ene, and (iii) bimolecular Alder ene. The power of this cascade is evident from the structural complexity of the final products, the considerable scope, and the overall efficiency of these multi-stage, reagent- and byproduct-free, single-pot transformations. PMID:24345944

  3. Enantioselective Vinylogous Organocascade Reactions.

    PubMed

    Hepburn, Hamish B; Dell'Amico, Luca; Melchiorre, Paolo

    2016-08-01

    Cascade reactions are powerful tools for rapidly assembling complex molecular architectures from readily available starting materials in a single synthetic operation. Their marriage with asymmetric organocatalysis has led to the development of novel techniques, which are now recognized as reliable strategies for the one-pot enantioselective synthesis of stereochemically dense molecules. In recent years, even more complex synthetic challenges have been addressed by applying the principle of vinylogy to the realm of organocascade catalysis. The key to the success of vinylogous organocascade reactions is the unique ability of the chiral organocatalyst to transfer reactivity to a distal position without losing control on the stereo-determining events. This approach has greatly expanded the synthetic horizons of the field by providing the possibility of forging multiple stereocenters in remote positions from the catalyst's point of action with high selectivity, while simultaneously constructing multiple new bonds. This article critically describes the developments achieved in the field of enantioselective vinylogous organocascade reactions, charting the ideas, the conceptual advances, and the milestone reactions that have been essential for reaching highly practical levels of synthetic efficiency. PMID:27256039

  4. [Ligase chain reaction (LCR)].

    PubMed

    Yamanishi, K; Yasuno, H

    1993-06-01

    Ligase chain reaction (LCR) is a ligation-mediated amplification technique of a target DNA sequence using oligonucleotides and thermostable ligase. LCR is useful for the detection of known DNA sequences and point mutations in a limited amount of DNA. We introduce the principle, development, and protocol of this simple and convenient technique for DNA analysis.

  5. Photoneutron reactions in astrophysics

    SciTech Connect

    Varlamov, V. V. Ishkhanov, B. S.; Orlin, V. N.; Peskov, N. N.; Stopani, K. A.

    2014-12-15

    Among key problems in nuclear astrophysics, that of obtaining deeper insight into the mechanism of synthesis of chemical elements is of paramount importance. The majority of heavy elements existing in nature are produced in stars via radiative neutron capture in so-called s- and r processes, which are, respectively, slow and fast, in relation to competing β{sup −}-decay processes. At the same time, we know 35 neutron-deficient so-called bypassed p-nuclei that lie between {sup 74}Se and {sup 196}Hg and which cannot originate from the aforementioned s- and r-processes. Their production is possible in (γ, n), (γ, p), or (γ, α) photonuclear reactions. In view of this, data on photoneutron reactions play an important role in predicting and describing processes leading to the production of p-nuclei. Interest in determining cross sections for photoneutron reactions in the threshold energy region, which is of particular importance for astrophysics, has grown substantially in recent years. The use of modern sources of quasimonoenergetic photons obtained in processes of inverse Compton laser-radiation scattering on relativistic electronsmakes it possible to reveal rather interesting special features of respective cross sections, manifestations of pygmy E1 and M1 resonances, or the production of nuclei in isomeric states, on one hand, and to revisit the problem of systematic discrepancies between data on reaction cross sections from experiments of different types, on the other hand. Data obtained on the basis of our new experimental-theoretical approach to evaluating cross sections for partial photoneutron reactions are invoked in considering these problems.

  6. Water-gas shift reaction

    SciTech Connect

    Newsome, D.S.

    1980-01-01

    A review covers the industrial applications of the water-gas shift reaction in hydrogen manufacturing, removing CO from ammonia synthesis feeds, and detoxifying town gas; and the catalyst characteristics, reaction kinetics, and reaction mechanisms of the water-gas shift reactions catalyzed by iron-based, copper-based, or sulfided cobalt-molybdenum catalysts.

  7. What Is a Reaction Rate?

    ERIC Educational Resources Information Center

    Schmitz, Guy

    2005-01-01

    The definition of reaction rate is derived and demonstrations are made for the care to be taken while using the term. Reaction rate can be in terms of a reaction property, the extent of reaction and thus it is possible to give a definition applicable in open and closed systems.

  8. Inorganic Reaction Mechanisms. Part I

    ERIC Educational Resources Information Center

    Cooke, D. O.

    1976-01-01

    Provides a collection of data on the mechanistic aspects of inorganic chemical reactions. Wherever possible includes procedures for classroom demonstration or student project work. The material covered includes gas phase reactions, reactions in solution, mechanisms of electron transfer, the reaction between iron III and iodine, and hydrolysis. (GS)

  9. Reactions to dietary tartrazine.

    PubMed

    David, T J

    1987-02-01

    Double blind challenges with tartrazine and benzoic acid were performed in hospital in 24 children whose parents gave a definite history of a purely behavioural immediate adverse reaction to one of these substances. The patients, whose ages ranged from 1.6 to 12.4 years, were on a diet that avoided these items, and in all there was a clear history that any lapse of the diet caused an obvious adverse behavioural reaction within two hours. In no patient was any change in behaviour noted either by the parents or the nursing staff after the administration of placebo or active substances. Twenty two patients returned to a normal diet without problems, but the parents of two children insisted on continuing the diet. While popular belief has it that additives may have harmful behavioural effects, objective verification is required to prevent overdiagnosis. PMID:3548601

  10. Dearomatization through Halofunctionalization Reactions.

    PubMed

    Liang, Xiao-Wei; Zheng, Chao; You, Shu-Li

    2016-08-16

    Recent advances in dearomatization through halofunctionalization reactions are summarized in this Minireview. Two general categories of strategies are currently employed in this field. On one hand, the reaction can be initiated with electrophilic halogenation at an alkyne or alkene moiety. The resulting halonium ion intermediate is then captured by a pendant aromatic ring at the ipso position, affording the dearomatization product. On the other hand, electrophilic halogenation can directly take place at a substituted arene, and the final dearomatization product is furnished by deprotonation or intramolecular nucleophilic trap. Highly enantioselective variants have been realized in the latter case by organocatalysis or transition metal catalysis. By applying these methods, various valuable halogenated polycyclic molecular architectures have been obtained from readily available starting materials. PMID:27377184

  11. Concordant Chemical Reaction Networks

    PubMed Central

    Shinar, Guy; Feinberg, Martin

    2015-01-01

    We describe a large class of chemical reaction networks, those endowed with a subtle structural property called concordance. We show that the class of concordant networks coincides precisely with the class of networks which, when taken with any weakly monotonic kinetics, invariably give rise to kinetic systems that are injective — a quality that, among other things, precludes the possibility of switch-like transitions between distinct positive steady states. We also provide persistence characteristics of concordant networks, instability implications of discordance, and consequences of stronger variants of concordance. Some of our results are in the spirit of recent ones by Banaji and Craciun, but here we do not require that every species suffer a degradation reaction. This is especially important in studying biochemical networks, for which it is rare to have all species degrade. PMID:22659063

  12. Cascade reactions in nanoreactors.

    PubMed

    van Oers, M C M; Rutjes, F P J T; van Hest, J C M

    2014-08-01

    In an attempt to mimic the biosynthetic efficiencies of nature and in a search for greener, more sustainable alternatives to nowadays ways of producing chemicals, one-pot cascade reactions have attracted a lot of attention in the past decade. Since most catalysts are not compatible with each other, compartmentalization techniques have often been applied to prevent catalyst inactivation. A various array of nanoreactors have been developed to meet the demand of having a site-isolated catalyst system, while maintaining the catalyst activity. Both multienzyme nanoreactors as well as enzyme/metal catalyst or organocatalyst systems have shown great potential in one-pot cascade reactions and hold promise for future developments in this field.

  13. Photochemical reaction dynamics

    SciTech Connect

    Moore, B.C.

    1993-12-01

    The purpose of the program is to develop a fundamental understanding of unimolecular and bimolecular reaction dynamics with application in combustion and energy systems. The energy dependence in ketene isomerization, ketene dissociation dynamics, and carbonyl substitution on organometallic rhodium complexes in liquid xenon have been studied. Future studies concerning unimolecular processes in ketene as well as energy transfer and kinetic studies of methylene radicals are discussed.

  14. Chemical Reactions in DSMC

    SciTech Connect

    Bird, G. A.

    2011-05-20

    DSMC simulations of chemically reacting gas flows have generally employed procedures that convert the macroscopic chemical rate equations to reaction cross-sections at the microscopic level. They therefore depend on the availability of experimental data that has been fitted to equations of the Arrhenius form. This paper presents a physical model for dissociation and recombination reactions and a phenomenological model for exchange and chain reactions. These are based on the vibrational states of the colliding molecules and do not require any experimentally-based data. The simplicity of the models allows the corresponding rate equations to be written down and, while these are not required for the implementation of the models, they facilitate their validation. The model is applied to a typical hypersonic atmospheric entry problem and the results are compared with the corresponding results from the traditional method. It is also used to investigate both spontaneous and forced ignition as well as the structure of a deflagration wave in an oxygen-hydrogen mixture.

  15. Reaction Extrema: Extent of Reaction in General Chemistry

    ERIC Educational Resources Information Center

    Vandezande, Jonathon E.; Vander Griend, Douglas A.; DeKock, Roger L.

    2013-01-01

    Nearly 100 years ago de Donder introduced the term "extent of reaction", ?. We build on that work by defining the concept of reagent extrema for an arbitrary chemical reaction, aA + bB [reversible reaction] yY + zZ. The central equation is ?^[subscript i] = -n[subscript i,0]/?[subscript i]. The symbol ?^[subscript i] represents the…

  16. Procedures for Decomposing a Redox Reaction into Half-Reaction

    ERIC Educational Resources Information Center

    Fishtik, Ilie; Berka, Ladislav H.

    2005-01-01

    A simple algorithm for a complete enumeration of the possible ways a redox reaction (RR) might be uniquely decomposed into half-reactions (HRs) using the response reactions (RERs) formalism is presented. A complete enumeration of the possible ways a RR may be decomposed into HRs is equivalent to a complete enumeration of stoichiometrically…

  17. Insect bite reactions.

    PubMed

    Singh, Sanjay; Mann, Baldeep Kaur

    2013-01-01

    Insects are a class of living creatures within the arthropods. Insect bite reactions are commonly seen in clinical practice. The present review touches upon the medically important insects and their places in the classification, the sparse literature on the epidemiology of insect bites in India, and different variables influencing the susceptibility of an individual to insect bites. Clinical features of mosquito bites, hypersensitivity to mosquito bites Epstein-Barr virus NK (HMB-EBV-NK) disease, eruptive pseudoangiomatosis, Skeeter syndrome, papular pruritic eruption of HIV/AIDS, and clinical features produced by bed bugs, Mexican chicken bugs, assassin bugs, kissing bugs, fleas, black flies, Blandford flies, louse flies, tsetse flies, midges, and thrips are discussed. Brief account is presented of the immunogenic components of mosquito and bed bug saliva. Papular urticaria is discussed including its epidemiology, the 5 stages of skin reaction, the SCRATCH principle as an aid in diagnosis, and the recent evidence supporting participation of types I, III, and IV hypersensitivity reactions in its causation is summarized. Recent developments in the treatment of pediculosis capitis including spinosad 0.9% suspension, benzyl alcohol 5% lotion, dimethicone 4% lotion, isopropyl myristate 50% rinse, and other suffocants are discussed within the context of evidence derived from randomized controlled trials and key findings of a recent systematic review. We also touch upon a non-chemical treatment of head lice and the ineffectiveness of egg-loosening products. Knockdown resistance (kdr) as the genetic mechanism making the lice nerves insensitive to permethrin is discussed along with the surprising contrary clinical evidence from Europe about efficacy of permethrin in children with head lice carrying kdr-like gene. The review also presents a brief account of insects as vectors of diseases and ends with discussion of prevention of insect bites and some serious adverse effects

  18. Reactions among indoor pollutants.

    PubMed

    Weschler, C J

    2001-09-13

    This paper reviews recent studies in the field of "indoor chemistry"--reactions among indoor pollutants. Advances have occurred in a number of areas. A mouse bioassay procedure has shown that ozone/terpene reactions produce products that are more irritating than their precursors, although the agents responsible for the deleterious effects remain to be determined. Indoor ozone/terpene reactions have been demonstrated to produce hydroxyl radicals, hydrogen peroxide, sub-micron particles, and ultrafine particles. New analytical techniques such as LC/MS and thermal desorption mass spectrometry have greatly improved our knowledge of the condensed-phase species associated with such particles. Indeed, the latter approach has identified a number of short-lived or thermally labile species, including organic hydroperoxides, peroxy-hemiacetals, and secondary ozonides, which would be missed by more conventional techniques. Investigators are making inroads into the poorly understood area of indoor heterogeneous chemistry. Systems studied include ozone/HVAC components, ozone/paint, and ozone/carpets. Another heterogeneous process that has been further examined is the indoor formation of nitrous acid through NO2/surface chemistry. Emissions from indoor sources that contribute to, or are altered by, indoor chemistry have also received attention. Researchers have expanded our awareness of reactive chemicals that can emanate from wood coatings and other products commonly used indoors. In a related vein, a number of recent investigations have shown that emissions from materials can be significantly altered by indoor chemistry. On the theoretical side, an outdoor atmospheric chemistry model has been modified for use as an indoor air model, the effects of ventilation rates on indoor chemistry have been simulated, and initial steps have been taken in applying computational fluid dynamics (CFD) methods to indoor chemistry.

  19. Insect bite reactions.

    PubMed

    Singh, Sanjay; Mann, Baldeep Kaur

    2013-01-01

    Insects are a class of living creatures within the arthropods. Insect bite reactions are commonly seen in clinical practice. The present review touches upon the medically important insects and their places in the classification, the sparse literature on the epidemiology of insect bites in India, and different variables influencing the susceptibility of an individual to insect bites. Clinical features of mosquito bites, hypersensitivity to mosquito bites Epstein-Barr virus NK (HMB-EBV-NK) disease, eruptive pseudoangiomatosis, Skeeter syndrome, papular pruritic eruption of HIV/AIDS, and clinical features produced by bed bugs, Mexican chicken bugs, assassin bugs, kissing bugs, fleas, black flies, Blandford flies, louse flies, tsetse flies, midges, and thrips are discussed. Brief account is presented of the immunogenic components of mosquito and bed bug saliva. Papular urticaria is discussed including its epidemiology, the 5 stages of skin reaction, the SCRATCH principle as an aid in diagnosis, and the recent evidence supporting participation of types I, III, and IV hypersensitivity reactions in its causation is summarized. Recent developments in the treatment of pediculosis capitis including spinosad 0.9% suspension, benzyl alcohol 5% lotion, dimethicone 4% lotion, isopropyl myristate 50% rinse, and other suffocants are discussed within the context of evidence derived from randomized controlled trials and key findings of a recent systematic review. We also touch upon a non-chemical treatment of head lice and the ineffectiveness of egg-loosening products. Knockdown resistance (kdr) as the genetic mechanism making the lice nerves insensitive to permethrin is discussed along with the surprising contrary clinical evidence from Europe about efficacy of permethrin in children with head lice carrying kdr-like gene. The review also presents a brief account of insects as vectors of diseases and ends with discussion of prevention of insect bites and some serious adverse effects

  20. Copper mediated carbometalation reactions.

    PubMed

    Müller, D S; Marek, I

    2016-08-01

    Since the first discovery of carbocupration of alkynes in the 1970s a tremendous amount of research has been carried out in this field. The exceptionally high selectivities obtained attribute to the great synthetic value of carbocupration reactions. This tutorial review will present the most important features of carbocupration of alkynes and highlight the most relevant reviews. Then a comprehensive review of copper mediated carbometalation of cyclopropenes will follow. The latter method has received much attention over the last decade as it allows the highly selective construction of poly-substituted cyclopropanes which can be transformed into acyclic derivatives bearing one or multiple tertiary or quaternary carbon stereocenters. PMID:26808300

  1. Electronegativity and redox reactions.

    PubMed

    Miranda-Quintana, Ramón Alain; Martínez González, Marco; Ayers, Paul W

    2016-08-10

    Using the maximum hardness principle, we show that the oxidation potential of a molecule increases as its electronegativity increases and also increases as its electronegativity in its oxidized state increases. This insight can be used to construct a linear free energy relation for the oxidation potential, which we train on a set of 31 organic redox couples and test on a set of 10 different redox reactions. Better results are obtained when the electronegativity of the oxidized/reduced reagents are adjusted to account for the reagents' interaction with their chemical environment.

  2. Copper mediated carbometalation reactions.

    PubMed

    Müller, D S; Marek, I

    2016-08-01

    Since the first discovery of carbocupration of alkynes in the 1970s a tremendous amount of research has been carried out in this field. The exceptionally high selectivities obtained attribute to the great synthetic value of carbocupration reactions. This tutorial review will present the most important features of carbocupration of alkynes and highlight the most relevant reviews. Then a comprehensive review of copper mediated carbometalation of cyclopropenes will follow. The latter method has received much attention over the last decade as it allows the highly selective construction of poly-substituted cyclopropanes which can be transformed into acyclic derivatives bearing one or multiple tertiary or quaternary carbon stereocenters.

  3. Hydrazine decomposition and other reactions

    NASA Technical Reports Server (NTRS)

    Armstrong, Warren E. (Inventor); La France, Donald S. (Inventor); Voge, Hervey H. (Inventor)

    1978-01-01

    This invention relates to the catalytic decomposition of hydrazine, catalysts useful for this decomposition and other reactions, and to reactions in hydrogen atmospheres generally using carbon-containing catalysts.

  4. Positive reaction to allergen (image)

    MedlinePlus

    Allergic reaction is a sensitivity to a specific substance, called an allergen, that is contacted through the skin, inhaled into the lungs, swallowed or injected. The body's reaction to an allergen can be mild, such as ...

  5. Demonstration of the Fenton Reaction

    ERIC Educational Resources Information Center

    Luehrs, Dean C.; Roher, Alex E.

    2007-01-01

    The study demonstrates the Fenton reaction, which is carried out using the Fenton reagent that is used for groundwater and soil remediation. The Fenton reaction can be implicated in DNA damage, Alzheimer's disease, cardiovascular disease and ageing in general.

  6. Organic chemistry: Reactions triggered electrically

    NASA Astrophysics Data System (ADS)

    Xiang, Limin; Tao, N. J.

    2016-03-01

    Single-molecule experiments have revealed that chemical reactions can be controlled using electric fields -- and that the reaction rate is sensitive to both the direction and the strength of the applied field. See Letter p.88

  7. Reactions of intermetallic clusters

    NASA Astrophysics Data System (ADS)

    Farley, R. W.; Castleman, A. W., Jr.

    1990-02-01

    Reaction of bismuth-alkali clusters with closed-shell HX acids provides insight into the structures, formation, and stabilities of these intermetallic species. HC1 and HI are observed to quantitatively strip BixNay and BixKy, respectively, of their alkali component, leaving bare bismuth clusters as the only bismuth-containing species detected. Product bismuth clusters exhibit the same distribution observed when pure bismuth is evaporated in the source. Though evaporated simultaneously from the same crucible, this suggests alkali atoms condense onto existing bismuth clusters and have negligible effect on their formation and consequent distribution. The indistinguishibility of reacted and pure bismuth cluster distributions further argues against the simple replacement of alkali atoms with hydrogen in these reactions. This is considered further evidence that the alkali atoms are external to the stable bismuth Zintl anionic structures. Reactivities of BixNay clusters with HC1 are estimated to lie between 3×10-13 for Bi4Na, to greater than 4×10-11 for clusters possessing large numbers of alkali atoms. Bare bismuth clusters are observed in separate experiments to react significantly more slowly with rates of 1-9×10-14 and exhibit little variation of reactivity with size. The bismuth clusters may thus be considered a relatively inert substrate upon which the alkali overlayer reacts.

  8. The Vitamin C Clock Reaction

    NASA Astrophysics Data System (ADS)

    Wright, Stephen W.

    2002-01-01

    An iodine clock reaction that gives a colorless to black result similar to that of the familiar Landolt iodate-bisulfite clock reaction is described. The vitamin C clock reaction uses chemicals that are readily available on the retail market: vitamin C, tincture of iodine, 3% hydrogen peroxide, and laundry starch. Orange juice may be used as the vitamin C source to give an orange to black reaction.

  9. Mass Transfer with Chemical Reaction.

    ERIC Educational Resources Information Center

    DeCoursey, W. J.

    1987-01-01

    Describes the organization of a graduate course dealing with mass transfer, particularly as it relates to chemical reactions. Discusses the course outline, including mathematics models of mass transfer, enhancement of mass transfer rates by homogeneous chemical reaction, and gas-liquid systems with chemical reaction. (TW)

  10. The Vitamin C Clock Reaction.

    ERIC Educational Resources Information Center

    Wright, Stephen W.

    2002-01-01

    Describes an iodine clock reaction that produces an effect similar to the Landolt clock reaction. This reaction uses supermarket chemicals and avoids iodate, bisulfite, and mercury compounds. Ascorbic acid and tincture of iodine are the main reactants with alternate procedures provided for vitamin C tablets and orange juice. (DDR)

  11. More on Chemical Reaction Balancing.

    ERIC Educational Resources Information Center

    Swinehart, D. F.

    1985-01-01

    A previous article stated that only the matrix method was powerful enough to balance a particular chemical equation. Shows how this equation can be balanced without using the matrix method. The approach taken involves writing partial mathematical reactions and redox half-reactions, and combining them to yield the final balanced reaction. (JN)

  12. Development of detonation reaction engine

    NASA Technical Reports Server (NTRS)

    Lange, O. H.; Stein, R. J.; Tubbs, H. E.

    1968-01-01

    Reaction engine operates on the principle of a controlled condensed detonation. In this engine the gas products that are expelled from the engine to produce thrust are generated by the condensed detonation reaction. The engine is constructed of two basic sections consisting of a detonation wave generator section and a condensed detonation reaction section.

  13. Polymerase chain reaction

    SciTech Connect

    Arnhelm, N. ); Levenson, C.H. )

    1990-10-01

    This paper discusses the polymerase chain reaction (PCR) an in-vitro method of amplifying DNA sequences. Beginning with DNA of any origin- bacterial, viral, plant, or animal- PCR can increase the amount of a DNA sequence hundreds of millions to billions of times. The procedure can amplify a targeted sequence even when it makes up less than one part in a million of the total initial sample. PCR is an enzymatic process that is carried out in discrete cycles of amplification, each of which can double the amount of target DNA in the sample. Thus, n cycles can produce 2{sup n} times as much target as was present to begin with. This paper discusses how PCR has had an impact on molecular biology, human genetics, infectious and genetic disease diagnosis, forensic science, and evolutionary biology.

  14. ISMP Adverse Drug Reactions

    PubMed Central

    2013-01-01

    The purpose of this feature is to heighten awareness of specific adverse drug reactions (ADRs), discuss methods of prevention, and promote reporting of ADRs to the US Food and Drug Administration’s (FDA’s) MedWatch program (800-FDA-1088). If you have reported an interesting, preventable ADR to MedWatch, please consider sharing the account with our readers. Write to Dr. Mancano at ISMP, 200 Lakeside Drive, Suite 200, Horsham, PA 19044 (phone: 215-707-4936; e-mail: mmancano@temple.edu). Your report will be published anonymously unless otherwise requested. This feature is provided by the Institute for Safe Medication Practices (ISMP) in cooperation with the FDA’s MedWatch program and Temple University School of Pharmacy. ISMP is an FDA MedWatch partner. PMID:24421544

  15. Laser induced nuclear reactions

    SciTech Connect

    Ledingham, Ken; McCanny, Tom; Graham, Paul; Fang Xiao; Singhal, Ravi; Magill, Joe; Creswell, Alan; Sanderson, David; Allott, Ric; Neely, David; Norreys, Peter; Santala, Marko; Zepf, Matthew; Watts, Ian; Clark, Eugene; Krushelnick, Karl; Tatarakis, Michael; Dangor, Bucker; Machecek, Antonin; Wark, Justin

    1998-12-16

    Dramatic improvements in laser technology since 1984 have revolutionised high power laser technology. Application of chirped-pulse amplification techniques has resulted in laser intensities in excess of 10{sup 19} W/cm{sup 2}. In the mid to late eighties, C. K. Rhodes and K. Boyer discussed the possibility of shining laser light of this intensity onto solid surfaces and to cause nuclear transitions. In particular, irradiation of a uranium target could induce electro- and photofission in the focal region of the laser. In this paper it is shown that {mu}Ci of {sup 62}Cu can be generated via the ({gamma},n) reaction by a laser with an intensity of about 10{sup 19} Wcm{sup -2}.

  16. Exploring Transition Metal Catalyzed Reactions via AB Initio Reaction Pathways

    NASA Astrophysics Data System (ADS)

    Hratchian, Hrant P.

    2011-06-01

    The study and prediction of chemical reactivity is one of the most influential contributions of quantum chemistry. A central concept in the theoretical treatment of chemical reactions is the reaction pathway, which can be quite difficult to integrate accurately and efficiently. This talk will outline our developments in the integration of these pathways on ab initio potential energy surfaces. We will also describe results from recent studies on the kinetics of transition metal catalyzed reactions, including the importance of vibrational coupling to the reaction coordinate and the role of this coupling in catalytic rate enhancement.

  17. Rapid biocatalytic polytransesterification: Reaction kinetics in an exothermic reaction

    SciTech Connect

    Chaudhary, A.K.; Beckman, E.J.; Russell, A.J.

    1998-08-20

    Biocatalytic polytransesterification at high concentrations of monomers proceeds rapidly and is accompanied by an increase in the temperature of the reaction mixture due to liberation of heat of reaction during the initial phase. The authors have used principles of reaction calorimetry to monitor the kinetics of polymerization during this initial phase, thus relating the temperature to the extent of polymerization. Rate of polymerization increases with the concentration of monomers. This is also reflected by the increase in the temperature of the reaction mixture. Using time-temperature-conversion contours, a differential method of kinetic analysis was used to calculate the energy of activation ({approximately} 15.1 Kcal/mol).

  18. Lithium cell reactions

    NASA Astrophysics Data System (ADS)

    Clark, W.; Dampier, F.; Lombardi, A.; Cole, T.

    1983-12-01

    The objectives of this program were: (1) investigate reactions occurring in the Li/SOCl2 cell for a range of specified test conditions and (2) perform detailed analyses for impurities present in cell components, assess the impact of each impurity on cell performance and safety and recommend concentration limits for detrimental impurities. The products of the reduction of SOCl2 were investigated using linear sweep voltammetry (LSV) and constant current coulometry in dimethylformamide (DMF) supporting electrolyte. Voltammetric analysis after 50 to 100% of the SOCl2 had been reduced on platinum or glassy carbon cathodes showed no signs of significant quantities of unstable intermediates with lifetimes from 0.1 to 48 hours. Quantitative infrared spectroscopy demonstrated that substantial amounts of SO2 are absorbed on Shawinigan carbon from 1.8M LiAlCl4/SOCl2-SO solutions. Chemical analyses of the reagents and cell components used in Li/SOCl2 cell construction were carried out as well as cell discharge tests to determine the impact of key impurities on cell performance.

  19. Two chamber reaction furnace

    DOEpatents

    Blaugher, R.D.

    1998-05-05

    A vertical two chamber reaction furnace is described. The furnace comprises a lower chamber having an independently operable first heating means for heating the lower chamber and a gas inlet means for admitting a gas to create an ambient atmosphere, and an upper chamber disposed above the lower chamber and having an independently operable second heating means for heating the upper chamber. Disposed between the lower chamber and the upper chamber is a vapor permeable diffusion partition. The upper chamber has a conveyor means for conveying a reactant there through. Of particular importance is the thallinating of long-length thallium-barium-calcium-copper oxide (TBCCO) or barium-calcium-copper oxide (BCCO) precursor tapes or wires conveyed through the upper chamber to thereby effectuate the deposition of vaporized thallium (being so vaporized as the first reactant in the lower chamber at a temperature between about 700 C and 800 C) on TBCCO or BCCO tape or wire (the second reactant) at its simultaneous annealing temperature in the upper chamber of about 800 to 950 C to thereby replace thallium oxide lost from TBCCO tape or wire because of the high annealing temperature or to deposit thallium on BCCO tape or wire. Continuously moving the tape or wire provides a single-step process that effectuates production of long-length TBCCO superconducting product. 2 figs.

  20. Two chamber reaction furnace

    DOEpatents

    Blaugher, Richard D.

    1998-05-05

    A vertical two chamber reaction furnace. The furnace comprises a lower chamber having an independently operable first heating means for heating the lower chamber and a gas inlet means for admitting a gas to create an ambient atmosphere, and an upper chamber disposed above the lower chamber and having an independently operable second heating means for heating the upper chamber. Disposed between the lower chamber and the upper chamber is a vapor permeable diffusion partition. The upper chamber has a conveyor means for conveying a reactant there through. Of particular importance is the thallinating of long-length thallium-barium-calcium-copper oxide (TBCCO) or barium-calcium-copper oxide (BCCO) precursor tapes or wires conveyed through the upper chamber to thereby effectuate the deposition of vaporized thallium (being so vaporized as the first reactant in the lower chamber at a temperature between about 700.degree. and 800.degree. C.) on TBCCO or BCCO tape or wire (the second reactant) at its simultaneous annealing temperature in the upper chamber of about 800.degree. to 950.degree. C. to thereby replace thallium oxide lost from TBCCO tape or wire because of the high annealing temperature or to deposit thallium on BCCO tape or wire. Continuously moving the tape or wire provides a single-step process that effectuates production of long-length TBCCO superconducting product.

  1. Charge Transfer Reactions

    NASA Astrophysics Data System (ADS)

    Dennerl, Konrad

    2010-12-01

    Charge transfer, or charge exchange, describes a process in which an ion takes one or more electrons from another atom. Investigations of this fundamental process have accompanied atomic physics from its very beginning, and have been extended to astrophysical scenarios already many decades ago. Yet one important aspect of this process, i.e. its high efficiency in generating X-rays, was only revealed in 1996, when comets were discovered as a new class of X-ray sources. This finding has opened up an entirely new field of X-ray studies, with great impact due to the richness of the underlying atomic physics, as the X-rays are not generated by hot electrons, but by ions picking up electrons from cold gas. While comets still represent the best astrophysical laboratory for investigating the physics of charge transfer, various studies have already spotted a variety of other astrophysical locations, within and beyond our solar system, where X-rays may be generated by this process. They range from planetary atmospheres, the heliosphere, the interstellar medium and stars to galaxies and clusters of galaxies, where charge transfer may even be observationally linked to dark matter. This review attempts to put the various aspects of the study of charge transfer reactions into a broader historical context, with special emphasis on X-ray astrophysics, where the discovery of cometary X-ray emission may have stimulated a novel look at our universe.

  2. Characterising Complex Enzyme Reaction Data

    PubMed Central

    Rahman, Syed Asad; Thornton, Janet M.

    2016-01-01

    The relationship between enzyme-catalysed reactions and the Enzyme Commission (EC) number, the widely accepted classification scheme used to characterise enzyme activity, is complex and with the rapid increase in our knowledge of the reactions catalysed by enzymes needs revisiting. We present a manual and computational analysis to investigate this complexity and found that almost one-third of all known EC numbers are linked to more than one reaction in the secondary reaction databases (e.g., KEGG). Although this complexity is often resolved by defining generic, alternative and partial reactions, we have also found individual EC numbers with more than one reaction catalysing different types of bond changes. This analysis adds a new dimension to our understanding of enzyme function and might be useful for the accurate annotation of the function of enzymes and to study the changes in enzyme function during evolution. PMID:26840640

  3. Immediate hypersensitivity reaction with mango.

    PubMed

    Shah, Ashok; Gera, Kamal

    2014-01-01

    Hypersensitivity to the fruit mango is extremely rare and can exhibit either as immediate or delayed reactions. Since 1939, only 22 patients (10 with immediate type I reactions and 12 with delayed) have been documented with allergy to mango. History of atopy and geographical region may influence the type of reaction. Immediate reactions occurred most often in patients with history of atopy, while delayed reactions developed in non-atopic individuals. Clustering of delayed hypersensitivity reports from Australia and immediate reactions from Europe has been documented. We report a 50-year-old man with immediate type I hypersensitivity to mango, who developed cough, wheezing dyspnoea, generalised itching and abdominal discomfort after ingestion of mango. Life threatening event can also happen making it imperative to diagnose on time, so as to prevent significant morbidity and potential mortality. PMID:25133813

  4. Formaldehyde reactions in dark clouds.

    PubMed

    Sen, A D; Anicich, V G; Federman, S R

    1992-05-20

    The low-pressure reactions of formaldehyde (H2CO) with D+, D2+, D3+, and He+ have been studied by the ion cyclotron resonance technique. These reactions are potential loss processes for formaldehyde in cores of dark interstellar clouds. The deuterated reactants, which are easier to study experimentally, represent direct analogs for protons. Rate coefficients and branching ratios of product channels have been measured. Charge transfer is observed to be the dominant reaction of H2CO with D+, D2+, and He+ ions. Only the D3+ reaction exhibits a proton transfer channel. All reactions proceed at rate coefficients near the collision limit. Proton-deuteron exchange reactions were found to be inefficient processes in the formaldehyde system.

  5. Characterising Complex Enzyme Reaction Data.

    PubMed

    Dönertaş, Handan Melike; Martínez Cuesta, Sergio; Rahman, Syed Asad; Thornton, Janet M

    2016-01-01

    The relationship between enzyme-catalysed reactions and the Enzyme Commission (EC) number, the widely accepted classification scheme used to characterise enzyme activity, is complex and with the rapid increase in our knowledge of the reactions catalysed by enzymes needs revisiting. We present a manual and computational analysis to investigate this complexity and found that almost one-third of all known EC numbers are linked to more than one reaction in the secondary reaction databases (e.g., KEGG). Although this complexity is often resolved by defining generic, alternative and partial reactions, we have also found individual EC numbers with more than one reaction catalysing different types of bond changes. This analysis adds a new dimension to our understanding of enzyme function and might be useful for the accurate annotation of the function of enzymes and to study the changes in enzyme function during evolution.

  6. Electrophilic Substitution Reactions of Indoles

    NASA Astrophysics Data System (ADS)

    Sundberg, Richard J.

    The topic of this chapter is electrophilic substitution of indole and its derivatives. The indole ring is highly reactive at its 3-position toward protonation, halogenation, alkylation and acylation. Electrophilic substitution can be combined with inter- or intramolecular addition at C-2. Intramolecular alkylation by iminium ions (Pictet-Spengler reaction) is particularly useful. Enantioselectivity can be achieved in many conjugate addition reactions. These reactions have been applied to synthesis of both natural products and drugs.

  7. Dynamic Reaction Figures: An Integrative Vehicle for Understanding Chemical Reactions

    ERIC Educational Resources Information Center

    Schultz, Emeric

    2008-01-01

    A highly flexible learning tool, referred to as a dynamic reaction figure, is described. Application of these figures can (i) yield the correct chemical equation by simply following a set of menu driven directions; (ii) present the underlying "mechanism" in chemical reactions; and (iii) help to solve quantitative problems in a number of different…

  8. Pharmacogenomics of adverse drug reactions

    PubMed Central

    2013-01-01

    Considerable progress has been made in identifying genetic risk factors for idiosyncratic adverse drug reactions in the past 30 years. These reactions can affect various tissues and organs, including liver, skin, muscle and heart, in a drug-dependent manner. Using both candidate gene and genome-wide association studies, various genes that make contributions of varying extents to each of these forms of reactions have been identified. Many of the associations identified for reactions affecting the liver and skin involve human leukocyte antigen (HLA) genes and for reactions relating to the drugs abacavir and carbamazepine, HLA genotyping is now in routine use prior to drug prescription. Other HLA associations are not sufficiently specific for translation but are still of interest in relation to underlying mechanisms for the reactions. Progress on non-HLA genes affecting adverse drug reactions has been less, but some important associations, such as those of SLCO1B1 and statin myopathy, KCNE1 and drug-induced QT prolongation and NAT2 and isoniazid-induced liver injury, are considered. Future prospects for identification of additional genetic risk factors for the various adverse drug reactions are discussed. PMID:23360680

  9. Momentum distributions in breakup reactions

    SciTech Connect

    Esbensen, H.

    1996-02-01

    Measurements of the breakup reactions: {sup 11}Be {yields} {sup 10}Be+n and{sup 8} {yields} {sup 7}Be+p are analyzed in a single-particle description. The signature of various structure properties associated with the valence nucleon axe discussed, as well as the significance of the different reaction mechanisms, namely Coulomb dissociation, stripping and nuclear induced diffraction.

  10. Entropy Effects in Chelation Reactions.

    ERIC Educational Resources Information Center

    Chung, Chung-Sun

    1984-01-01

    The entropy change for a reaction in aqueous solution can be evaluated as a combination of entropy factors. Valuable insight or understanding can be obtained from a detailed examination of these factors. Several entropy effects of inorganic chemical reactions are discussed as examples. (Author/JN)

  11. The Variance Reaction Time Model

    ERIC Educational Resources Information Center

    Sikstrom, Sverker

    2004-01-01

    The variance reaction time model (VRTM) is proposed to account for various recognition data on reaction time, the mirror effect, receiver-operating-characteristic (ROC) curves, etc. The model is based on simple and plausible assumptions within a neural network: VRTM is a two layer neural network where one layer represents items and one layer…

  12. Free Radical Reactions in Food.

    ERIC Educational Resources Information Center

    Taub, Irwin A.

    1984-01-01

    Discusses reactions of free radicals that determine the chemistry of many fresh, processed, and stored foods. Focuses on reactions involving ascorbic acid, myoglobin, and palmitate radicals as representative radicals derived from a vitamin, metallo-protein, and saturated lipid. Basic concepts related to free radical structure, formation, and…

  13. Allergic reactions to insect secretions.

    PubMed

    Pecquet, Catherine

    2013-01-01

    Some products derived from insects can induce allergic reactions. The main characteristics of some products from honeybees, cochineal and silkworms are summarised here. We review allergic reactions from honey-derived products (propolis, wax, royal jelly), from cochineal products (shellac and carmine) and from silk : clinical features, allergological investigations and allergens if they are known.

  14. Adverse Reactions to Hallucinogenic Drugs.

    ERIC Educational Resources Information Center

    Meyer, Roger E. , Ed.

    This reports a conference of psychologists, psychiatrists, geneticists and others concerned with the biological and psychological effects of lysergic acid diethylamide and other hallucinogenic drugs. Clinical data are presented on adverse drug reactions. The difficulty of determining the causes of adverse reactions is discussed, as are different…

  15. Chemistry of heavy ion reactions

    SciTech Connect

    Hoffman, D.C.

    1988-10-01

    The use of heavy ions to induce nuclear reactions was reported as early as 1950. Since that time it has been one of the most active areas of nuclear research. Intense beams of ions as heavy as uranium with energies high enough to overcome the Coulomb barriers of even the heaviest elements are available. The wide variety of possible reactions gives rise to a multitude of products which have been studied by many ingenious chemical and physical techniques. Chemical techniques have been of special value for the separation and unequivocal identification of low yield species from the plethora of other nuclides present. Heavy ion reactions have been essential for the production of the trans-Md elements and a host of new isotopes. The systematics of compound nucleus reactions, transfer reactions, and deeply inelastic reactions have been elucidated using chemical techniques. A review of the variety of chemical procedures and techniques which have been developed for the study of heavy ion reactions and their products is given. Determination of the chemical properties of the trans-Md elements, which are very short-lived and can only be produced an ''atom-at-a-time'' via heavy ion reactions, is discussed. 53 refs., 19 figs.

  16. "Greening up" the Suzuki Reaction

    ERIC Educational Resources Information Center

    Aktoudianakis, Evangelos; Chan, Elton; Edward, Amanda R.; Jarosz, Isabel; Lee, Vicki; Mui, Leo; Thatipamala, Sonya S.; Dicks, Andrew P.

    2008-01-01

    This article describes the rapid, green synthesis of a biaryl compound (4-phenylphenol) via a Pd(0)-catalyzed Suzuki cross-coupling reaction in water. Mild reaction conditions and operational simplicity makes this experiment especially amenable to both mid- and upper-level undergraduates. The methodology exposes students to purely aqueous…

  17. Statistical Factors in Complexation Reactions.

    ERIC Educational Resources Information Center

    Chung, Chung-Sun

    1985-01-01

    Four cases which illustrate statistical factors in complexation reactions (where two of the reactants are monodentate ligands) are presented. Included are tables showing statistical factors for the reactions of: (1) square-planar complexes; (2) tetrahedral complexes; and (3) octahedral complexes. (JN)

  18. Fundamental reaction pathways during coprocessing

    SciTech Connect

    Stock, L.M.; Gatsis, J.G.

    1992-12-01

    The objective of this research was to investigate the fundamental reaction pathways in coal petroleum residuum coprocessing. Once the reaction pathways are defined, further efforts can be directed at improving those aspects of the chemistry of coprocessing that are responsible for the desired results such as high oil yields, low dihydrogen consumption, and mild reaction conditions. We decided to carry out this investigation by looking at four basic aspects of coprocessing: (1) the effect of fossil fuel materials on promoting reactions essential to coprocessing such as hydrogen atom transfer, carbon-carbon bond scission, and hydrodemethylation; (2) the effect of varied mild conditions on the coprocessing reactions; (3) determination of dihydrogen uptake and utilization under severe conditions as a function of the coal or petroleum residuum employed; and (4) the effect of varied dihydrogen pressure, temperature, and residence time on the uptake and utilization of dihydrogen and on the distribution of the coprocessed products. Accomplishments are described.

  19. [Anaphylactic reaction following hair bleaching].

    PubMed

    Babilas, P; Landthaler, M; Szeimies, R-M

    2005-12-01

    Ammonium persulphate is a potent bleach and oxidizing agent that is commonly present in hair bleaches. Because bleaching is so commonly performed, hairdressers often develop allergic contact dermatitis to ammonium persulphate. In addition to this delayed reaction, asthma and rhinitis may develop as immediate reactions in those exposed to the fumes. Severe anaphylactic reactions are rare. We report a 24-year-old woman who acquired dermatitis following contact with bleaching substances while working as a hairdresser. After changing her profession, the dermatitis disappeared. Following the private use of a hairdressing bleach containing ammonium persulphate, she suffered a severe anaphylactic reaction with unconsciousness. The patient also developed an anaphylactic reaction three hours following patch testing with the hairdresser battery. The rub test with ammonium persulphate (2.5%) in a 1:100 solution was positive.

  20. [Anaphylactic reaction following hair bleaching].

    PubMed

    Babilas, P; Landthaler, M; Szeimies, R-M

    2005-12-01

    Ammonium persulphate is a potent bleach and oxidizing agent that is commonly present in hair bleaches. Because bleaching is so commonly performed, hairdressers often develop allergic contact dermatitis to ammonium persulphate. In addition to this delayed reaction, asthma and rhinitis may develop as immediate reactions in those exposed to the fumes. Severe anaphylactic reactions are rare. We report a 24-year-old woman who acquired dermatitis following contact with bleaching substances while working as a hairdresser. After changing her profession, the dermatitis disappeared. Following the private use of a hairdressing bleach containing ammonium persulphate, she suffered a severe anaphylactic reaction with unconsciousness. The patient also developed an anaphylactic reaction three hours following patch testing with the hairdresser battery. The rub test with ammonium persulphate (2.5%) in a 1:100 solution was positive. PMID:15688222

  1. Enzymatic reactions in confined environments

    NASA Astrophysics Data System (ADS)

    Küchler, Andreas; Yoshimoto, Makoto; Luginbühl, Sandra; Mavelli, Fabio; Walde, Peter

    2016-05-01

    Within each biological cell, surface- and volume-confined enzymes control a highly complex network of chemical reactions. These reactions are efficient, timely, and spatially defined. Efforts to transfer such appealing features to in vitro systems have led to several successful examples of chemical reactions catalysed by isolated and immobilized enzymes. In most cases, these enzymes are either bound or adsorbed to an insoluble support, physically trapped in a macromolecular network, or encapsulated within compartments. Advanced applications of enzymatic cascade reactions with immobilized enzymes include enzymatic fuel cells and enzymatic nanoreactors, both for in vitro and possible in vivo applications. In this Review, we discuss some of the general principles of enzymatic reactions confined on surfaces, at interfaces, and inside small volumes. We also highlight the similarities and differences between the in vivo and in vitro cases and attempt to critically evaluate some of the necessary future steps to improve our fundamental understanding of these systems.

  2. Effective reaction rates for diffusion-limited reaction cycles.

    PubMed

    Nałęcz-Jawecki, Paweł; Szymańska, Paulina; Kochańczyk, Marek; Miękisz, Jacek; Lipniacki, Tomasz

    2015-12-01

    Biological signals in cells are transmitted with the use of reaction cycles, such as the phosphorylation-dephosphorylation cycle, in which substrate is modified by antagonistic enzymes. An appreciable share of such reactions takes place in crowded environments of two-dimensional structures, such as plasma membrane or intracellular membranes, and is expected to be diffusion-controlled. In this work, starting from the microscopic bimolecular reaction rate constants and using estimates of the mean first-passage time for an enzyme-substrate encounter, we derive diffusion-dependent effective macroscopic reaction rate coefficients (EMRRC) for a generic reaction cycle. Each EMRRC was found to be half of the harmonic average of the microscopic rate constant (phosphorylation c or dephosphorylation d), and the effective (crowding-dependent) motility divided by a slowly decreasing logarithmic function of the sum of the enzyme concentrations. This implies that when c and d differ, the two EMRRCs scale differently with the motility, rendering the steady-state fraction of phosphorylated substrate molecules diffusion-dependent. Analytical predictions are verified using kinetic Monte Carlo simulations on the two-dimensional triangular lattice at the single-molecule resolution. It is demonstrated that the proposed formulas estimate the steady-state concentrations and effective reaction rates for different sets of microscopic reaction rates and concentrations of reactants, including a non-trivial example where with increasing diffusivity the fraction of phosphorylated substrate molecules changes from 10% to 90%.

  3. Effective reaction rates for diffusion-limited reaction cycles

    NASA Astrophysics Data System (ADS)

    Nałecz-Jawecki, Paweł; Szymańska, Paulina; Kochańczyk, Marek; Miekisz, Jacek; Lipniacki, Tomasz

    2015-12-01

    Biological signals in cells are transmitted with the use of reaction cycles, such as the phosphorylation-dephosphorylation cycle, in which substrate is modified by antagonistic enzymes. An appreciable share of such reactions takes place in crowded environments of two-dimensional structures, such as plasma membrane or intracellular membranes, and is expected to be diffusion-controlled. In this work, starting from the microscopic bimolecular reaction rate constants and using estimates of the mean first-passage time for an enzyme-substrate encounter, we derive diffusion-dependent effective macroscopic reaction rate coefficients (EMRRC) for a generic reaction cycle. Each EMRRC was found to be half of the harmonic average of the microscopic rate constant (phosphorylation c or dephosphorylation d), and the effective (crowding-dependent) motility divided by a slowly decreasing logarithmic function of the sum of the enzyme concentrations. This implies that when c and d differ, the two EMRRCs scale differently with the motility, rendering the steady-state fraction of phosphorylated substrate molecules diffusion-dependent. Analytical predictions are verified using kinetic Monte Carlo simulations on the two-dimensional triangular lattice at the single-molecule resolution. It is demonstrated that the proposed formulas estimate the steady-state concentrations and effective reaction rates for different sets of microscopic reaction rates and concentrations of reactants, including a non-trivial example where with increasing diffusivity the fraction of phosphorylated substrate molecules changes from 10% to 90%.

  4. Unraveling reaction pathways and specifying reaction kinetics for complex systems.

    PubMed

    Vinu, R; Broadbelt, Linda J

    2012-01-01

    Many natural and industrial processes involve a complex set of competing reactions that include several different species. Detailed kinetic modeling of such systems can shed light on the important pathways involved in various transformations and therefore can be used to optimize the process conditions for the desired product composition and properties. This review focuses on elucidating the various components involved in modeling the kinetics of pyrolysis and oxidation of polymers. The elementary free radical steps that constitute the chain reaction mechanism of gas-phase/nonpolar liquid-phase processes are outlined. Specification of the rate coefficients of the various reaction families, which is central to the theme of kinetics, is described. Construction of the reaction network on the basis of the types of end groups and reactive moieties in a polymer chain is discussed. Modeling frameworks based on the method of moments and kinetic Monte Carlo are evaluated using illustrations. Finally, the prospects and challenges in modeling biomass conversion are addressed.

  5. Thermally multiplexed polymerase chain reaction.

    PubMed

    Phaneuf, Christopher R; Pak, Nikita; Saunders, D Curtis; Holst, Gregory L; Birjiniuk, Joav; Nagpal, Nikita; Culpepper, Stephen; Popler, Emily; Shane, Andi L; Jerris, Robert; Forest, Craig R

    2015-07-01

    Amplification of multiple unique genetic targets using the polymerase chain reaction (PCR) is commonly required in molecular biology laboratories. Such reactions are typically performed either serially or by multiplex PCR. Serial reactions are time consuming, and multiplex PCR, while powerful and widely used, can be prone to amplification bias, PCR drift, and primer-primer interactions. We present a new thermocycling method, termed thermal multiplexing, in which a single heat source is uniformly distributed and selectively modulated for independent temperature control of an array of PCR reactions. Thermal multiplexing allows amplification of multiple targets simultaneously-each reaction segregated and performed at optimal conditions. We demonstrate the method using a microfluidic system consisting of an infrared laser thermocycler, a polymer microchip featuring 1 μl, oil-encapsulated reactions, and closed-loop pulse-width modulation control. Heat transfer modeling is used to characterize thermal performance limitations of the system. We validate the model and perform two reactions simultaneously with widely varying annealing temperatures (48 °C and 68 °C), demonstrating excellent amplification. In addition, to demonstrate microfluidic infrared PCR using clinical specimens, we successfully amplified and detected both influenza A and B from human nasopharyngeal swabs. Thermal multiplexing is scalable and applicable to challenges such as pathogen detection where patients presenting non-specific symptoms need to be efficiently screened across a viral or bacterial panel. PMID:26339317

  6. Thermally multiplexed polymerase chain reaction

    PubMed Central

    Phaneuf, Christopher R.; Pak, Nikita; Saunders, D. Curtis; Holst, Gregory L.; Birjiniuk, Joav; Nagpal, Nikita; Culpepper, Stephen; Popler, Emily; Shane, Andi L.; Jerris, Robert; Forest, Craig R.

    2015-01-01

    Amplification of multiple unique genetic targets using the polymerase chain reaction (PCR) is commonly required in molecular biology laboratories. Such reactions are typically performed either serially or by multiplex PCR. Serial reactions are time consuming, and multiplex PCR, while powerful and widely used, can be prone to amplification bias, PCR drift, and primer-primer interactions. We present a new thermocycling method, termed thermal multiplexing, in which a single heat source is uniformly distributed and selectively modulated for independent temperature control of an array of PCR reactions. Thermal multiplexing allows amplification of multiple targets simultaneously—each reaction segregated and performed at optimal conditions. We demonstrate the method using a microfluidic system consisting of an infrared laser thermocycler, a polymer microchip featuring 1 μl, oil-encapsulated reactions, and closed-loop pulse-width modulation control. Heat transfer modeling is used to characterize thermal performance limitations of the system. We validate the model and perform two reactions simultaneously with widely varying annealing temperatures (48 °C and 68 °C), demonstrating excellent amplification. In addition, to demonstrate microfluidic infrared PCR using clinical specimens, we successfully amplified and detected both influenza A and B from human nasopharyngeal swabs. Thermal multiplexing is scalable and applicable to challenges such as pathogen detection where patients presenting non-specific symptoms need to be efficiently screened across a viral or bacterial panel. PMID:26339317

  7. Drug hypersensitivity reactions involving skin.

    PubMed

    Hausmann, Oliver; Schnyder, Benno; Pichler, Werner J

    2010-01-01

    Immune reactions to drugs can cause a variety of diseases involving the skin, liver, kidney, lungs, and other organs. Beside immediate, IgE-mediated reactions of varying degrees (urticaria to anaphylactic shock), many drug hypersensitivity reactions appear delayed, namely hours to days after starting drug treatment, showing a variety of clinical manifestations from solely skin involvement to fulminant systemic diseases which may be fatal. Immunohistochemical and functional studies of drug-specific T cells in patients with delayed reactions confirmed a predominant role for T cells in the onset and maintenance of immune-mediated delayed drug hypersensitivity reactions (type IV reactions). In these reactions, drug-specific CD4+ and CD8+ T cells are stimulated by drugs through their T cell receptors (TCR). Drugs can stimulate T cells in two ways: they can act as haptens and bind covalently to larger protein structures (hapten-carrier model), inducing a specific immune response. In addition, they may accidentally bind in a labile, noncovalent way to a particular TCR of the whole TCR repertoire and possibly also major histocompatibility complex (MHC)-molecules - similar to their pharmacologic action. This seems to be sufficient to reactivate certain, probably in vivo preactivated T cells, if an additional interaction of the drug-stimulated TCR with MHC molecules occurs. The mechanism was named pharmacological interaction of a drug with (immune) receptor and thus termed the p-i concept. This new concept may explain the frequent skin symptoms in drug hypersensitivity to oral or parenteral drugs. Furthermore, the various clinical manifestations of T cell-mediated drug hypersensitivity may be explained by distinct T cell functions leading to different clinical phenotypes. These data allowed a subclassification of the delayed hypersensitivity reactions (type IV) into T cell reactions which, by releasing certain cytokines and chemokines, preferentially activate and recruit

  8. [Food hypersensibility: inhalation reactions are different from ingestion reactions].

    PubMed

    Baranes, T; Bidat, E

    2008-06-01

    Eight children, aged from 3 to 9 years, presented to inhaled peanut an immediate allergic reaction. All were sensitized to peanut but none had already ingested it overtly. A strict avoidance diet was prescribed concerning this food allergen. An oral provocation challenge was realized to determine the eliciting dose (ED) to ingestion. The ED was high enough to allow all the children a less restrictive diet. Inhaled allergic reaction to peanut does not always justify a strict avoidance diet.

  9. [Food hypersensibility: inhalation reactions are different from ingestion reactions].

    PubMed

    Baranes, T; Bidat, E

    2008-06-01

    Eight children, aged from 3 to 9 years, presented to inhaled peanut an immediate allergic reaction. All were sensitized to peanut but none had already ingested it overtly. A strict avoidance diet was prescribed concerning this food allergen. An oral provocation challenge was realized to determine the eliciting dose (ED) to ingestion. The ED was high enough to allow all the children a less restrictive diet. Inhaled allergic reaction to peanut does not always justify a strict avoidance diet. PMID:18456474

  10. Nuclear Structure and Reaction Mechanism Studies with Multinucleon Reactions

    SciTech Connect

    Regan, P. H.; Jones, G. A.; Podolyak, Zs.; Abdullah, M.; Gelletly, W.; Langdown, S. D.; Wollel, G.; De Angelis, G.; Gadea, A.; Kroell, Th.; Marginean, N.; Martinez, T.; Napoli, D. R.; Rusu, C.; Tonev, D.; Zhang, Y. H.; Ur, C. A.; Axiotis, M.; Bazzacco, D.; Farnea, E.

    2006-08-14

    This contribution reports on the results of an experiment to study the near-yrast states in selenium- and osmium-like nuclei, following their population in thick-target, multinucleon transfer reactions between an 82Se beam and a 192Os target. The experimental results for the level scheme for 84Se are presented together with investigations into the use of multi-dimensional gamma-ray energy gating to investigate angular momentum population in such heavy-ion binary reactions.

  11. Secondary decomposition reactions in nitramines

    NASA Astrophysics Data System (ADS)

    Schweigert, Igor

    Thermal decomposition of nitramines is known to proceed via multiple, competing reaction branches, some of which are triggered by secondary reactions between initial decomposition products and unreacted nitramine molecules. Better mechanistic understanding of these secondary reactions is needed to enable extrapolations of measured rates to higher temperatures and pressures relevant to shock ignition. I will present density functional theory (DFT) based simulations of nitramines that aim to re-evaluate known elementary mechanisms and seek alternative pathways in the gas and condensed phases. This work was supported by the Office of Naval Research, both directly and through the Naval Research Laboratory.

  12. Hypersensitivity reactions to biologic agents.

    PubMed

    Vultaggio, Alessandra; Castells, Mariana C

    2014-08-01

    Biologic agents (BAs) are important therapeutic tools; their use has rapidly expanded and they are used in oncology, immunology, and inflammatory diseases. Their use may be limited, however, by adverse drug reactions. This article reviews the current literature on clinical presentation and pathogenic mechanisms of both acute and delayed reactions. In addition, procedures for management of BA-induced reactions, including preventive and diagnostic work-up, are provided. Lastly, this article summarizes the current knowledge of desensitization to several widely used monoclonal antibodies.

  13. Catalytic Organometallic Reactions of Ammonia

    PubMed Central

    Klinkenberg, Jessica L.

    2012-01-01

    Until recently, ammonia had rarely succumbed to catalytic transformations with homogeneous catalysts, and the development of such reactions that are selective for the formation of single products under mild conditions has encountered numerous challenges. However, recently developed catalysts have allowed several classes of reactions to create products with nitrogen-containing functional groups from ammonia. These reactions include hydroaminomethylation, reductive amination, alkylation, allylic substitution, hydroamination, and cross-coupling. This Minireview describes examples of these processes and the factors that control catalyst activity and selectivity. PMID:20857466

  14. Sympathetic reaction tests and analyses

    NASA Technical Reports Server (NTRS)

    Ricardson, D. E.; Bowman, A. L.

    1980-01-01

    The critical separation distances for explosive reactions of a solid rocket propellant were measured. Explosive reactions included low order explosion, low order detonation, and high order detonation. The effects of sample size, shape, damage and temperature on sympathetic reaction were determined experimentally. The sympathetic detonation of small cubes of solid rocket propellant was modelled numerically, using the Eulerian reactive hydrodynamic code 2DE with Forest Fire burn rates. The model was applied to cubes of 2.54 - 7.62 cm (1 - 3 in.), with agreement between calculated and experimental results.

  15. Nuclear reactions at intermediate energies

    NASA Astrophysics Data System (ADS)

    Shyam, Radhey

    2016-05-01

    In the domain of Nuclear reactions at intermediate energies, the QCD coupling constant αs is large enough (~ 0.3 - 0.5) to render the perturbative calculational techniques inapplicable. In this regime the quarks are confined into colorless hadrons and it is expected that effective field theories of hadron interactions via exchange of hadrons, provide useful tools to describe such reactions. In this contribution we discuss the application of one such theory, the effective Lagrangian model, in describing the hadronic reactions at intermediate energies whose measurements are the focus of a vast international experimental program.

  16. Magnetically suspended reaction wheel assembly

    NASA Technical Reports Server (NTRS)

    Stocking, G.

    1984-01-01

    The magnetically suspended reaction wheel assembly (MSRWA) is the product of a development effort funded by the Air Force Materials Laboratory (AFML) at Wright Patterson AFB. The specific objective of the project was to establish the manufacturing processes for samarium cobalt magnets and demonstrate their use in a space application. The development was successful on both counts. The application portion of the program, which involves the magnetically suspended reaction wheel assembly, is emphasized. The requirements for the reaction wheel were based on the bias wheel requirements of the DSP satellite. The tasks included the design, fabrication, and test of the unit to the DSP program qualification requirements.

  17. Grignard Reactions in "Wet" Ether

    NASA Astrophysics Data System (ADS)

    Smith, David H.

    1999-10-01

    A small laboratory ultrasonic bath can be used to initiate the Grignard reaction of alkyl or aryl bromides in regular laboratory-quality, undried, diethyl ether and in simple undried test tubes. The reaction typically starts within 30 to 45 seconds and is self-sustaining. Yields and products are the same as obtained with carefully dried ether and equipment. We normally run this reaction at the 1.5-gram scale, but the procedure can be scaled up to at least 10 g of the bromide.

  18. Coarctate cyclization reactions: a primer.

    PubMed

    Young, Brian S; Herges, Rainer; Haley, Michael M

    2012-10-01

    The cleavage of five-membered heterocycles possessing an exocyclic carbene or nitrene to form conjugated ene-ene-yne systems has been documented for over 40 years; however, the reverse reaction, using a conjugated "ene-ene-yne" precursor to form a heterocycle is a relatively new approach. Over the past decade, the Haley and Herges groups have studied computationally and experimentally the cyclization of the "hetero-ene-ene-yne" motif via an unusual class of concerted reactions known as coarctate reactions. This feature article details our synthetic and mechanistic work involving triazene-arene-alkynes and structurally-related systems to generate heterocycles using coarctate chemistry.

  19. Chemical potential and reaction electronic flux in symmetry controlled reactions.

    PubMed

    Vogt-Geisse, Stefan; Toro-Labbé, Alejandro

    2016-07-15

    In symmetry controlled reactions, orbital degeneracies among orbitals of different symmetries can occur along a reaction coordinate. In such case Koopmans' theorem and the finite difference approximation provide a chemical potential profile with nondifferentiable points. This results in an ill-defined reaction electronic flux (REF) profile, since it is defined as the derivative of the chemical potential with respect to the reaction coordinate. To overcome this deficiency, we propose a new way for the calculation of the chemical potential based on a many orbital approach, suitable for reactions in which symmetry is preserved. This new approach gives rise to a new descriptor: symmetry adapted chemical potential (SA-CP), which is the chemical potential corresponding to a given irreducible representation of a symmetry group. A corresponding symmetry adapted reaction electronic flux (SA-REF) is also obtained. Using this approach smooth chemical potential profiles and well defined REFs are achieved. An application of SA-CP and SA-REF is presented by studying the Cs enol-keto tautomerization of thioformic acid. Two SA-REFs are obtained, JA'(ξ) and JA'' (ξ). It is found that the tautomerization proceeds via an in-plane delocalized 3-center 4-electron O-H-S hypervalent bond which is predicted to exist only in the transition state (TS) region. © 2016 Wiley Periodicals, Inc.

  20. Color Changes Mark Polymer Reactions.

    ERIC Educational Resources Information Center

    Krieger, James H.

    1980-01-01

    Describes how polydiacetylenes can be used as educational aids. These polymers have conjugated backbones, which cause changes in color when the polydiacetylenes undergo various chemical and physical processes. Diagrams summarize all chemical reactions and their associated color changes. (CS)

  1. Method for conducting exothermic reactions

    DOEpatents

    Smith, L. Jr.; Hearn, D.; Jones, E.M. Jr.

    1993-01-05

    A liquid phase process for oligomerization of C[sub 4] and C[sub 5] isoolefins or the etherification thereof with C[sub 1] to C[sub 6] alcohols wherein the reactants are contacted in a reactor with a fixed bed acid cation exchange resin catalyst at an LHSV of 5 to 20, pressure of 0 to 400 psig and temperature of 120 to 300 F. wherein the improvement is the operation of the reactor at a pressure to maintain the reaction mixture at its boiling point whereby at least a portion but less than all of the reaction mixture is vaporized. By operating at the boiling point and allowing a portion of the reaction mixture to vaporize, the exothermic heat of reaction is dissipated by the formation of more boil up and the temperature in the reactor is controlled.

  2. Method for conducting exothermic reactions

    DOEpatents

    Smith, Jr., Lawrence; Hearn, Dennis; Jones, Jr., Edward M.

    1993-01-01

    A liquid phase process for oligomerization of C.sub.4 and C.sub.5 isoolefins or the etherification thereof with C.sub.1 to C.sub.6 alcohols wherein the reactants are contacted in a reactor with a fixed bed acid cation exchange resin catalyst at an LHSV of 5 to 20, pressure of 0 to 400 psig and temperature of 120.degree. to 300.degree. F. wherein the improvement is the operation of the reactor at a pressure to maintain the reaction mixture at its boiling point whereby at least a portion but less than all of the reaction mixture is vaporized. By operating at the boiling point and allowing a portion of the reaction mixture to vaporize, the exothermic heat of reaction is dissipated by the formation of more boil up and the temperature in the reactor is controlled.

  3. Severe hypersensitivity reaction to minocycline.

    PubMed

    de Paz, S; Pérez, A; Gómez, M; Trampal, A; Domínguez Lázaro, A

    1999-01-01

    Minocycline is a tetracycline derivative mainly used in the treatment of acne vulgaris in young persons. Adverse events have been reported with minocycline, although it can be considered a safe drug. We report a case of severe hypersensitivity reaction to minocycline in a young patient. Laboratory examinations, chest X-ray, skin test and skin biopsy were performed. Oral challenge test with minocycline was not carried out as it can be hazardous. A case of severe reaction to minocycline is described in this article. The clinical and laboratory findings may be helpful in diagnosing similar reactions for which the immunological mechanisms are unknown. Moreover, this type of reaction must be recognized early due to the potential fatal outcome.

  4. Reaction to Global Change Budget

    NASA Astrophysics Data System (ADS)

    Jones, R.

    A recent hearing of the Subcommittee on Veterans Administration/Department of Housing and Urban Development and Independent Agencies of the Senate Committee on Appropriations provided an early glimpse of congressional reaction to the administration's global change research budget.

  5. Solar-thermal reaction processing

    DOEpatents

    Weimer, Alan W; Dahl, Jaimee K; Lewandowski, Allan A; Bingham, Carl; Raska Buechler, Karen J; Grothe, Willy

    2014-03-18

    In an embodiment, a method of conducting a high temperature chemical reaction that produces hydrogen or synthesis gas is described. The high temperature chemical reaction is conducted in a reactor having at least two reactor shells, including an inner shell and an outer shell. Heat absorbing particles are included in a gas stream flowing in the inner shell. The reactor is heated at least in part by a source of concentrated sunlight. The inner shell is heated by the concentrated sunlight. The inner shell re-radiates from the inner wall and heats the heat absorbing particles in the gas stream flowing through the inner shell, and heat transfers from the heat absorbing particles to the first gas stream, thereby heating the reactants in the gas stream to a sufficiently high temperature so that the first gas stream undergoes the desired reaction(s), thereby producing hydrogen or synthesis gas in the gas stream.

  6. Experimental Study of Serpentinization Reactions

    NASA Technical Reports Server (NTRS)

    Cohen, B. A.; Brearley, A. J.; Ganguly, J.; Liermann, H.-P.; Keil, K.

    2004-01-01

    Current carbonaceous chondrite parent-body thermal models [1-3] produce scenarios that are inconsistent with constraints on aqueous alteration conditions based on meteorite mineralogical evidence, such as phase stability relationships within the meteorite matrix minerals [4] and isotope equilibration arguments [5, 6]. This discrepancy arises principally because of the thermal runaway effect produced by silicate hydration reactions (here loosely called serpentinization, as the principal products are serpentine minerals), which are so exothermic as to produce more than enough heat to melt more ice and provide a self-sustaining chain reaction. One possible way to dissipate the heat of reaction is to use a very small parent body [e.g., 2] or possibly a rubble pile model. Another possibility is to release this heat more slowly, which depends on the alteration reaction path and kinetics.

  7. Transfer reactions in nuclear astrophysics

    NASA Astrophysics Data System (ADS)

    Bardayan, D. W.

    2016-08-01

    To a high degree many aspects of the large-scale behavior of objects in the Universe are governed by the underlying nuclear physics. In fact the shell structure of nuclear physics is directly imprinted into the chemical abundances of the elements. The tranquility of the night sky is a direct result of the relatively slow rate of nuclear reactions that control and determines a star’s fate. Understanding the nuclear structure and reaction rates between nuclei is vital to understanding our Universe. Nuclear-transfer reactions make accessible a wealth of knowledge from which we can extract much of the required nuclear physics information. A review of transfer reactions for nuclear astrophysics is presented with an emphasis on the experimental challenges and opportunities for future development.

  8. Medications and Drug Allergic Reactions

    MedlinePlus

    ... Drug Guide Conditions Dictionary Just for Kids Library School Tools Videos Virtual Allergist Education & Training Careers in ... reaction to a medication. These include: genetics, body chemistry, frequent drug exposure or the presence of an ...

  9. Radiative capture reactions in astrophysics

    SciTech Connect

    Brune, Carl R.; Davids, Barry

    2015-08-07

    Here, the radiative capture reactions of greatest importance in nuclear astrophysics are identified and placed in their stellar contexts. Recent experimental efforts to estimate their thermally averaged rates are surveyed.

  10. [Belated recurrence of anaphylactic reaction].

    PubMed

    Schelske, Christa

    2012-01-30

    Anaphylaxis is a serious allergic reaction, and the incidence is increasing. A biphasic anaphylactic reaction with recurrent symptoms after a long period without any symptoms is described. Guidelines recommend adrenalin as first line treatment, but some patients are only treated with glucocorticoids and antihistamines. The importance of correct treatment with adrenalin, instructions in correct self administration with adrenalin after admission, and examination for allergies is underlined.

  11. Thermodynamics of random reaction networks.

    PubMed

    Fischer, Jakob; Kleidon, Axel; Dittrich, Peter

    2015-01-01

    Reaction networks are useful for analyzing reaction systems occurring in chemistry, systems biology, or Earth system science. Despite the importance of thermodynamic disequilibrium for many of those systems, the general thermodynamic properties of reaction networks are poorly understood. To circumvent the problem of sparse thermodynamic data, we generate artificial reaction networks and investigate their non-equilibrium steady state for various boundary fluxes. We generate linear and nonlinear networks using four different complex network models (Erdős-Rényi, Barabási-Albert, Watts-Strogatz, Pan-Sinha) and compare their topological properties with real reaction networks. For similar boundary conditions the steady state flow through the linear networks is about one order of magnitude higher than the flow through comparable nonlinear networks. In all networks, the flow decreases with the distance between the inflow and outflow boundary species, with Watts-Strogatz networks showing a significantly smaller slope compared to the three other network types. The distribution of entropy production of the individual reactions inside the network follows a power law in the intermediate region with an exponent of circa -1.5 for linear and -1.66 for nonlinear networks. An elevated entropy production rate is found in reactions associated with weakly connected species. This effect is stronger in nonlinear networks than in the linear ones. Increasing the flow through the nonlinear networks also increases the number of cycles and leads to a narrower distribution of chemical potentials. We conclude that the relation between distribution of dissipation, network topology and strength of disequilibrium is nontrivial and can be studied systematically by artificial reaction networks.

  12. Vibrational excitation induces double reaction.

    PubMed

    Huang, Kai; Leung, Lydie; Lim, Tingbin; Ning, Zhanyu; Polanyi, John C

    2014-12-23

    Electron-induced reaction at metal surfaces is currently the subject of extensive study. Here, we broaden the range of experimentation to a comparison of vibrational excitation with electronic excitation, for reaction of the same molecule at the same clean metal surface. In a previous study of electron-induced reaction by scanning tunneling microscopy (STM), we examined the dynamics of the concurrent breaking of the two C-I bonds of ortho-diiodobenzene physisorbed on Cu(110). The energy of the incident electron was near the electronic excitation threshold of E0=1.0 eV required to induce this single-electron process. STM has been employed in the present work to study the reaction dynamics at the substantially lower incident electron energies of 0.3 eV, well below the electronic excitation threshold. The observed increase in reaction rate with current was found to be fourth-order, indicative of multistep reagent vibrational excitation, in contrast to the first-order rate dependence found earlier for electronic excitation. The change in mode of excitation was accompanied by altered reaction dynamics, evidenced by a different pattern of binding of the chemisorbed products to the copper surface. We have modeled these altered reaction dynamics by exciting normal modes of vibration that distort the C-I bonds of the physisorbed reagent. Using the same ab initio ground potential-energy surface as in the prior work on electronic excitation, but with only vibrational excitation of the physisorbed reagent in the asymmetric stretch mode of C-I bonds, we obtained the observed alteration in reaction dynamics.

  13. Adverse reactions to food additives.

    PubMed

    Simon, R A

    1986-01-01

    There are thousands of agents that are intentionally added to the food that we consume. These include preservatives, stabilizers, conditioners, thickeners, colorings, flavorings, sweeteners, antioxidants, etc. etc. Yet only a surprisingly small number have been associated with hypersensitivity reactions. Amongst all the additives, FD&C dyes have been most frequently associated with adverse reactions. Tartrazine is the most notorious of them all; however, critical review of the medical literature and current Scripps Clinic studies would indicate that tartrazine has been confirmed to be at best only occasionally associated with flares of urticaria or asthma. There is no convincing evidence in the literature of reactivity to the other azo or nonazo dyes. This can also be said of BHA/BHT, nitrites/nitrates and sorbates. Parabens have been shown to elicit IgE mediated hypersensitivity reactions when used as pharmaceutical preservatives; however, as with the other additives noted above, ingested parabens have only occasionally been associated with adverse reactions. MSG, the cause of the 'Chinese restaurant syndrome' has only been linked to asthma in one report. Sulfiting agents used primarily as food fresheners and to control microbial growth in fermented beverages have been established as the cause of any where from mild to severe and even fatal reactions in at least 5% of the asthmatic population. Other reactions reported to follow sulfite ingestion include anaphylaxis, gastro intestinal complaints and dermatological eruptions. The prevalence of these non asthmatic reactions is unknown. The mechanism of sulfite sensitive asthma is also unknown but most likely involves hyperreactivity to inhale SO2 in the great majority of cases; however, there are reports of IgE mediated reactions and other sulfite sensitive asthmatics have been found with low levels of sulfite oxidase; necessary to oxidize endogenous sulfite to sulfate.

  14. Thermodynamics of random reaction networks.

    PubMed

    Fischer, Jakob; Kleidon, Axel; Dittrich, Peter

    2015-01-01

    Reaction networks are useful for analyzing reaction systems occurring in chemistry, systems biology, or Earth system science. Despite the importance of thermodynamic disequilibrium for many of those systems, the general thermodynamic properties of reaction networks are poorly understood. To circumvent the problem of sparse thermodynamic data, we generate artificial reaction networks and investigate their non-equilibrium steady state for various boundary fluxes. We generate linear and nonlinear networks using four different complex network models (Erdős-Rényi, Barabási-Albert, Watts-Strogatz, Pan-Sinha) and compare their topological properties with real reaction networks. For similar boundary conditions the steady state flow through the linear networks is about one order of magnitude higher than the flow through comparable nonlinear networks. In all networks, the flow decreases with the distance between the inflow and outflow boundary species, with Watts-Strogatz networks showing a significantly smaller slope compared to the three other network types. The distribution of entropy production of the individual reactions inside the network follows a power law in the intermediate region with an exponent of circa -1.5 for linear and -1.66 for nonlinear networks. An elevated entropy production rate is found in reactions associated with weakly connected species. This effect is stronger in nonlinear networks than in the linear ones. Increasing the flow through the nonlinear networks also increases the number of cycles and leads to a narrower distribution of chemical potentials. We conclude that the relation between distribution of dissipation, network topology and strength of disequilibrium is nontrivial and can be studied systematically by artificial reaction networks. PMID:25723751

  15. Fluid-bed reaction process

    SciTech Connect

    Harandi, M.N.; Owen, H.

    1990-05-29

    This patent describes a process for the conversion of hydrocarbons. It comprises: fluidizing a finely divided dehydrogenation catalyst in a dehydrogenation reaction zone; withdrawing spent dehydrogenation catalyst from the dehydrogenation reaction zone; contacting an aliphatic feedstream with the spent dehydrogenation catalyst in a preheat zone to preheat the aliphatic feedstream and to convert at least a portion of the coke precursors in the aliphatic feedstream to coke; and depositing the coke on the spent dehydrogenation catalyst in the preheat zone.

  16. Expert system for predicting reaction conditions: the Michael reaction case.

    PubMed

    Marcou, G; Aires de Sousa, J; Latino, D A R S; de Luca, A; Horvath, D; Rietsch, V; Varnek, A

    2015-02-23

    A generic chemical transformation may often be achieved under various synthetic conditions. However, for any specific reagents, only one or a few among the reported synthetic protocols may be successful. For example, Michael β-addition reactions may proceed under different choices of solvent (e.g., hydrophobic, aprotic polar, protic) and catalyst (e.g., Brønsted acid, Lewis acid, Lewis base, etc.). Chemoinformatics methods could be efficiently used to establish a relationship between the reagent structures and the required reaction conditions, which would allow synthetic chemists to waste less time and resources in trying out various protocols in search for the appropriate one. In order to address this problem, a number of 2-classes classification models have been built on a set of 198 Michael reactions retrieved from literature. Trained models discriminate between processes that are compatible and respectively processes not feasible under a specific reaction condition option (feasible or not with a Lewis acid catalyst, feasible or not in hydrophobic solvent, etc.). Eight distinct models were built to decide the compatibility of a Michael addition process with each considered reaction condition option, while a ninth model was aimed to predict whether the assumed Michael addition is feasible at all. Different machine-learning methods (Support Vector Machine, Naive Bayes, and Random Forest) in combination with different types of descriptors (ISIDA fragments issued from Condensed Graphs of Reactions, MOLMAP, Electronic Effect Descriptors, and Chemistry Development Kit computed descriptors) have been used. Models have good predictive performance in 3-fold cross-validation done three times: balanced accuracy varies from 0.7 to 1. Developed models are available for the users at http://infochim.u-strasbg.fr/webserv/VSEngine.html . Eventually, these were challenged to predict feasibility conditions for ∼50 novel Michael reactions from the eNovalys database (originally

  17. Expert system for predicting reaction conditions: the Michael reaction case.

    PubMed

    Marcou, G; Aires de Sousa, J; Latino, D A R S; de Luca, A; Horvath, D; Rietsch, V; Varnek, A

    2015-02-23

    A generic chemical transformation may often be achieved under various synthetic conditions. However, for any specific reagents, only one or a few among the reported synthetic protocols may be successful. For example, Michael β-addition reactions may proceed under different choices of solvent (e.g., hydrophobic, aprotic polar, protic) and catalyst (e.g., Brønsted acid, Lewis acid, Lewis base, etc.). Chemoinformatics methods could be efficiently used to establish a relationship between the reagent structures and the required reaction conditions, which would allow synthetic chemists to waste less time and resources in trying out various protocols in search for the appropriate one. In order to address this problem, a number of 2-classes classification models have been built on a set of 198 Michael reactions retrieved from literature. Trained models discriminate between processes that are compatible and respectively processes not feasible under a specific reaction condition option (feasible or not with a Lewis acid catalyst, feasible or not in hydrophobic solvent, etc.). Eight distinct models were built to decide the compatibility of a Michael addition process with each considered reaction condition option, while a ninth model was aimed to predict whether the assumed Michael addition is feasible at all. Different machine-learning methods (Support Vector Machine, Naive Bayes, and Random Forest) in combination with different types of descriptors (ISIDA fragments issued from Condensed Graphs of Reactions, MOLMAP, Electronic Effect Descriptors, and Chemistry Development Kit computed descriptors) have been used. Models have good predictive performance in 3-fold cross-validation done three times: balanced accuracy varies from 0.7 to 1. Developed models are available for the users at http://infochim.u-strasbg.fr/webserv/VSEngine.html . Eventually, these were challenged to predict feasibility conditions for ∼50 novel Michael reactions from the eNovalys database (originally

  18. Reciprocity theory of homogeneous reactions

    NASA Astrophysics Data System (ADS)

    Agbormbai, Adolf A.

    1990-03-01

    The reciprocity formalism is applied to the homogeneous gaseous reactions in which the structure of the participating molecules changes upon collision with one another, resulting in a change in the composition of the gas. The approach is applied to various classes of dissociation, recombination, rearrangement, ionizing, and photochemical reactions. It is shown that for the principle of reciprocity to be satisfied it is necessary that all chemical reactions exist in complementary pairs which consist of the forward and backward reactions. The backward reaction may be described by either the reverse or inverse process. The forward and backward processes must satisfy the same reciprocity equation. Because the number of dynamical variables is usually unbalanced on both sides of a chemical equation, it is necessary that this balance be established by including as many of the dynamical variables as needed before the reciprocity equation can be formulated. Statistical transformation models of the reactions are formulated. The models are classified under the titles free exchange, restricted exchange and simplified restricted exchange. The special equations for the forward and backward processes are obtained. The models are consistent with the H theorem and Le Chatelier's principle. The models are also formulated in the context of the direct simulation Monte Carlo method.

  19. Organic synthesis by quench reactions.

    PubMed

    Park, W K; Hochstim, A R

    1975-01-01

    The effects of chemical quench reactions on the formation of organic compounds at a water surface under simulated primordial earth conditions were investigated for the study of chemical evolution. A mixture of gaseous methane and ammonia over a water surface was exposed to an arc discharge between an electrode and the water surface. This discharge served as a source of dissociated, ionized and excited atomic and molecular species. Various organic molecules were formed in the gaseous, aqueous, and solid states by a subsequent quenching of these reactive species on the water surface. The effects of these water-surface quench reactions were assessed by comparing the amounts of synthesized molecules to the amounts which formed during the discharge of an arc above the water level. The results showed that: (1) the water-surface quench reaction permitted faster rates of formation of an insoluble solid and (2) the quench discharge yielded twice as much amino acids and 17 times more insoluble solids by weight than the other discharge. The highest yield of amino acids with the quench reaction was 9 x 10-7 molecules per erg of input energy. These observations indicate that quench reactions on the oceans, rain, and clouds that would have followed excitation by lightning and shock waves may have played an important role in the prebiotic milieu. Furthermore, the possibility exists that quench reactions can be exploited for the synthesis of organic compounds on a larger scale from simple starting materials.

  20. Kinetics of actinide complexation reactions

    SciTech Connect

    Nash, K.L.; Sullivan, J.C.

    1997-09-01

    Though the literature records extensive compilations of the thermodynamics of actinide complexation reactions, the kinetics of complex formation and dissociation reactions of actinide ions in aqueous solutions have not been extensively investigated. In light of the central role played by such reactions in actinide process and environmental chemistry, this situation is somewhat surprising. The authors report herein a summary of what is known about actinide complexation kinetics. The systems include actinide ions in the four principal oxidation states (III, IV, V, and VI) and complex formation and dissociation rates with both simple and complex ligands. Most of the work reported was conducted in acidic media, but a few address reactions in neutral and alkaline solutions. Complex formation reactions tend in general to be rapid, accessible only to rapid-scan and equilibrium perturbation techniques. Complex dissociation reactions exhibit a wider range of rates and are generally more accessible using standard analytical methods. Literature results are described and correlated with the known properties of the individual ions.

  1. Reaction rates for a generalized reaction-diffusion master equation

    PubMed Central

    Hellander, Stefan; Petzold, Linda

    2016-01-01

    It has been established that there is an inherent limit to the accuracy of the reaction-diffusion master equation. Specifically, there exists a fundamental lower bound on the mesh size, below which the accuracy deteriorates as the mesh is refined further. In this paper we extend the standard reaction-diffusion master equation to allow molecules occupying neighboring voxels to react, in contrast to the traditional approach in which molecules react only when occupying the same voxel. We derive reaction rates, in two dimensions as well as three dimensions, to obtain an optimal match to the more fine-grained Smoluchowski model, and show in two numerical examples that the extended algorithm is accurate for a wide range of mesh sizes, allowing us to simulate systems that are intractable with the standard reaction-diffusion master equation. In addition, we show that for mesh sizes above the fundamental lower limit of the standard algorithm, the generalized algorithm reduces to the standard algorithm. We derive a lower limit for the generalized algorithm which, in both two dimensions and three dimensions, is on the order of the reaction radius of a reacting pair of molecules. PMID:26871190

  2. Reaction rates for mesoscopic reaction-diffusion kinetics

    PubMed Central

    Hellander, Stefan; Hellander, Andreas; Petzold, Linda

    2016-01-01

    The mesoscopic reaction-diffusion master equation (RDME) is a popular modeling framework frequently applied to stochastic reaction-diffusion kinetics in systems biology. The RDME is derived from assumptions about the underlying physical properties of the system, and it may produce unphysical results for models where those assumptions fail. In that case, other more comprehensive models are better suited, such as hard-sphere Brownian dynamics (BD). Although the RDME is a model in its own right, and not inferred from any specific microscale model, it proves useful to attempt to approximate a microscale model by a specific choice of mesoscopic reaction rates. In this paper we derive mesoscopic scale-dependent reaction rates by matching certain statistics of the RDME solution to statistics of the solution of a widely used microscopic BD model: the Smoluchowski model with a Robin boundary condition at the reaction radius of two molecules. We also establish fundamental limits on the range of mesh resolutions for which this approach yields accurate results and show both theoretically and in numerical examples that as we approach the lower fundamental limit, the mesoscopic dynamics approach the microscopic dynamics. We show that for mesh sizes below the fundamental lower limit, results are less accurate. Thus, the lower limit determines the mesh size for which we obtain the most accurate results. PMID:25768640

  3. Reaction rates for a generalized reaction-diffusion master equation

    NASA Astrophysics Data System (ADS)

    Hellander, Stefan; Petzold, Linda

    2016-01-01

    It has been established that there is an inherent limit to the accuracy of the reaction-diffusion master equation. Specifically, there exists a fundamental lower bound on the mesh size, below which the accuracy deteriorates as the mesh is refined further. In this paper we extend the standard reaction-diffusion master equation to allow molecules occupying neighboring voxels to react, in contrast to the traditional approach, in which molecules react only when occupying the same voxel. We derive reaction rates, in two dimensions as well as three dimensions, to obtain an optimal match to the more fine-grained Smoluchowski model and show in two numerical examples that the extended algorithm is accurate for a wide range of mesh sizes, allowing us to simulate systems that are intractable with the standard reaction-diffusion master equation. In addition, we show that for mesh sizes above the fundamental lower limit of the standard algorithm, the generalized algorithm reduces to the standard algorithm. We derive a lower limit for the generalized algorithm which, in both two dimensions and three dimensions, is of the order of the reaction radius of a reacting pair of molecules.

  4. Reaction rates for mesoscopic reaction-diffusion kinetics

    NASA Astrophysics Data System (ADS)

    Hellander, Stefan; Hellander, Andreas; Petzold, Linda

    2015-02-01

    The mesoscopic reaction-diffusion master equation (RDME) is a popular modeling framework frequently applied to stochastic reaction-diffusion kinetics in systems biology. The RDME is derived from assumptions about the underlying physical properties of the system, and it may produce unphysical results for models where those assumptions fail. In that case, other more comprehensive models are better suited, such as hard-sphere Brownian dynamics (BD). Although the RDME is a model in its own right, and not inferred from any specific microscale model, it proves useful to attempt to approximate a microscale model by a specific choice of mesoscopic reaction rates. In this paper we derive mesoscopic scale-dependent reaction rates by matching certain statistics of the RDME solution to statistics of the solution of a widely used microscopic BD model: the Smoluchowski model with a Robin boundary condition at the reaction radius of two molecules. We also establish fundamental limits on the range of mesh resolutions for which this approach yields accurate results and show both theoretically and in numerical examples that as we approach the lower fundamental limit, the mesoscopic dynamics approach the microscopic dynamics. We show that for mesh sizes below the fundamental lower limit, results are less accurate. Thus, the lower limit determines the mesh size for which we obtain the most accurate results.

  5. Reaction rates for mesoscopic reaction-diffusion kinetics.

    PubMed

    Hellander, Stefan; Hellander, Andreas; Petzold, Linda

    2015-02-01

    The mesoscopic reaction-diffusion master equation (RDME) is a popular modeling framework frequently applied to stochastic reaction-diffusion kinetics in systems biology. The RDME is derived from assumptions about the underlying physical properties of the system, and it may produce unphysical results for models where those assumptions fail. In that case, other more comprehensive models are better suited, such as hard-sphere Brownian dynamics (BD). Although the RDME is a model in its own right, and not inferred from any specific microscale model, it proves useful to attempt to approximate a microscale model by a specific choice of mesoscopic reaction rates. In this paper we derive mesoscopic scale-dependent reaction rates by matching certain statistics of the RDME solution to statistics of the solution of a widely used microscopic BD model: the Smoluchowski model with a Robin boundary condition at the reaction radius of two molecules. We also establish fundamental limits on the range of mesh resolutions for which this approach yields accurate results and show both theoretically and in numerical examples that as we approach the lower fundamental limit, the mesoscopic dynamics approach the microscopic dynamics. We show that for mesh sizes below the fundamental lower limit, results are less accurate. Thus, the lower limit determines the mesh size for which we obtain the most accurate results.

  6. Concordant chemical reaction networks and the Species-Reaction Graph.

    PubMed

    Shinar, Guy; Feinberg, Martin

    2013-01-01

    In a recent paper it was shown that, for chemical reaction networks possessing a subtle structural property called concordance, dynamical behavior of a very circumscribed (and largely stable) kind is enforced, so long as the kinetics lies within the very broad and natural weakly monotonic class. In particular, multiple equilibria are precluded, as are degenerate positive equilibria. Moreover, under certain circumstances, also related to concordance, all real eigenvalues associated with a positive equilibrium are negative. Although concordance of a reaction network can be decided by readily available computational means, we show here that, when a nondegenerate network's Species-Reaction Graph satisfies certain mild conditions, concordance and its dynamical consequences are ensured. These conditions are weaker than earlier ones invoked to establish kinetic system injectivity, which, in turn, is just one ramification of network concordance. Because the Species-Reaction Graph resembles pathway depictions often drawn by biochemists, results here expand the possibility of inferring significant dynamical information directly from standard biochemical reaction diagrams.

  7. Reaction rates for a generalized reaction-diffusion master equation.

    PubMed

    Hellander, Stefan; Petzold, Linda

    2016-01-01

    It has been established that there is an inherent limit to the accuracy of the reaction-diffusion master equation. Specifically, there exists a fundamental lower bound on the mesh size, below which the accuracy deteriorates as the mesh is refined further. In this paper we extend the standard reaction-diffusion master equation to allow molecules occupying neighboring voxels to react, in contrast to the traditional approach, in which molecules react only when occupying the same voxel. We derive reaction rates, in two dimensions as well as three dimensions, to obtain an optimal match to the more fine-grained Smoluchowski model and show in two numerical examples that the extended algorithm is accurate for a wide range of mesh sizes, allowing us to simulate systems that are intractable with the standard reaction-diffusion master equation. In addition, we show that for mesh sizes above the fundamental lower limit of the standard algorithm, the generalized algorithm reduces to the standard algorithm. We derive a lower limit for the generalized algorithm which, in both two dimensions and three dimensions, is of the order of the reaction radius of a reacting pair of molecules.

  8. Oxidation reaction by xanthine oxidase: theoretical study of reaction mechanism.

    PubMed

    Amano, Tatsuo; Ochi, Noriaki; Sato, Hirofumi; Sakaki, Shigeyoshi

    2007-07-01

    The oxidation process by molybdenum-containing enzyme, xanthine oxidase, is theoretically studied with a model complex representing the reaction center and a typical benchmark substrate, formamide. Comparisons were systematically made among reaction mechanisms proposed previously. In the concerted and stepwise mechanisms that were theoretically discussed previously, the oxidation reaction takes place with a moderate activation barrier. However, the product is less stable than the reactant complex, which indicates that these mechanisms are unlikely. Moreover, the product of the concerted mechanism is not consistent with the isotope experimental result. In addition to those mechanisms, another mechanism initiated by the deprotonation of the active site was newly investigated here. In the transition state of this reaction, the carbon atom of formamide interacts with the oxo ligand of the Mo center and the hydrogen atom is moving from the carbon atom to the thioxo ligand. This reaction takes place with a moderate activation barrier and considerably large exothermicity. Furthermore, the product by this mechanism is consistent with the isotope experimental result. Also, our computations clearly show that the deprotonation of the active site occurs with considerable exothermicity in the presence of glutamic acid and substrate. The intermediate of the stepwise mechanism could not be optimized in the case of the deprotonated active site. From all these results, it should be concluded that the one-step mechanism with the deprotonated active site is the most plausible.

  9. Nuclear Reactions for Astrophysics and Other Applications

    SciTech Connect

    Escher, J E; Burke, J T; Dietrich, F S; Scielzo, N D; Ressler, J J

    2011-03-01

    Cross sections for compound-nuclear reactions are required for many applications. The surrogate nuclear reactions method provides an indirect approach for determining cross sections for reactions on unstable isotopes, which are difficult or impossible to measure otherwise. Current implementations of the method provide useful cross sections for (n,f) reactions, but need to be improved upon for applications to capture reactions.

  10. Study of char gasification reactions

    SciTech Connect

    Ballal, G.D.

    1986-01-01

    A Texas lignite, an anthracite and two bituminous coals, Pittsburgh number8 and Illinois number6, were pyrolyzed in a nitrogen atmosphere to prepare chars. Optical microscopy, mercury porosimetry and gas adsorption techniques using nitrogen, CO/sub 2/ and CO, were employed for pore structure characterization. The lignite char exhibited the fastest rates of gaseous diffusion, followed in order of decreasing diffusivities by the Illinois number6, Pittsburgh number8 and anthracite chars. The changes in reactivities and pore structures of chars were measured experimentally during their reaction with oxygen (400-550C) and CO/sub 2/ (800-1000C). For a particular char-gas system, the normalized rate-conversion pattern was invariant with respect to temperature and gaseous concentration. In the case of lignite and Pittsburgh number8 chars, the rate-conversion pattern was similar during reaction with oxygen and CO/sub 2/. Adsorption experiments on partially reacted chars indicated that the micropores in the lignite char were accessible to both reactants. The micropores in the Illinois number6 char were, however, not accessible during its reaction with oxygen. The evolution of pore structure during reaction was modeled by using a probabilistic approach which accounts for overlapping pores with different shapes and sizes. The kinetics of gasification of the lignite and the Pittsburgh number8 chars was studied using a Langmuir-Hinshelwood type kinetic expression to correlate the experimental data. CO was found to inhibit the reaction substantially. The effect of a potassium carbonate catalyst on the reaction of these two chars was also investigated. Substantial increases in reaction rates were observed, and the enhancement was approximately proportional to the catalyst loading.

  11. Combustion kinetics and reaction pathways

    SciTech Connect

    Klemm, R.B.; Sutherland, J.W.

    1993-12-01

    This project is focused on the fundamental chemistry of combustion. The overall objectives are to determine rate constants for elementary reactions and to elucidate the pathways of multichannel reactions. A multitechnique approach that features three independent experiments provides unique capabilities in performing reliable kinetic measurements over an exceptionally wide range in temperature, 300 to 2500 K. Recent kinetic work has focused on experimental studies and theoretical calculations of the methane dissociation system (CH{sub 4} + Ar {yields} CH{sub 3} + H + Ar and H + CH{sub 4} {yields} CH{sub 3} + H{sub 2}). Additionally, a discharge flow-photoionization mass spectrometer (DF-PIMS) experiment is used to determine branching fractions for multichannel reactions and to measure ionization thresholds of free radicals. Thus, these photoionization experiments generate data that are relevant to both reaction pathways studies (reaction dynamics) and fundamental thermochemical research. Two distinct advantages of performing PIMS with high intensity, tunable vacuum ultraviolet light at the National Synchrotron Light Source are high detection sensitivity and exceptional selectivity in monitoring radical species.

  12. Nonlocality in deuteron stripping reactions.

    PubMed

    Timofeyuk, N K; Johnson, R C

    2013-03-15

    We propose a new method for the analysis of deuteron stripping reactions, A(d,p)B, in which the nonlocality of nucleon-nucleus interactions and three-body degrees of freedom are accounted for in a consistent way. The model deals with equivalent local nucleon potentials taken at an energy shifted by ∼40  MeV from the "E(d)/2" value frequently used in the analysis of experimental data, where E(d) is the incident deuteron energy. The "E(d)/2" rule lies at the heart of all three-body analyses of (d, p) reactions performed so far with the aim of obtaining nuclear structure properties such as spectroscopic factors and asymptotic normalization coefficients that are crucial for our understanding of nuclear shell evolution in neutron- and proton-rich regions of the nuclear periodic table and for predicting the cross sections of stellar reactions. The large predicted shift arises from the large relative kinetic energy of the neutron and proton in the incident deuteron in those components of the n+p+A wave function that dominate the (d, p) reaction amplitude. The large shift reduces the effective d-A potentials and leads to a change in predicted (d, p) cross sections, thus affecting the interpretation of these reactions in terms of nuclear structure. PMID:25166525

  13. A unified diabatic description for electron transfer reactions, isomerization reactions, proton transfer reactions, and aromaticity.

    PubMed

    Reimers, Jeffrey R; McKemmish, Laura K; McKenzie, Ross H; Hush, Noel S

    2015-10-14

    While diabatic approaches are ubiquitous for the understanding of electron-transfer reactions and have been mooted as being of general relevance, alternate applications have not been able to unify the same wide range of observed spectroscopic and kinetic properties. The cause of this is identified as the fundamentally different orbital configurations involved: charge-transfer phenomena involve typically either 1 or 3 electrons in two orbitals whereas most reactions are typically closed shell. As a result, two vibrationally coupled electronic states depict charge-transfer scenarios whereas three coupled states arise for closed-shell reactions of non-degenerate molecules and seven states for the reactions implicated in the aromaticity of benzene. Previous diabatic treatments of closed-shell processes have considered only two arbitrarily chosen states as being critical, mapping these states to those for electron transfer. We show that such effective two-state diabatic models are feasible but involve renormalized electronic coupling and vibrational coupling parameters, with this renormalization being property dependent. With this caveat, diabatic models are shown to provide excellent descriptions of the spectroscopy and kinetics of the ammonia inversion reaction, proton transfer in N2H7(+), and aromaticity in benzene. This allows for the development of a single simple theory that can semi-quantitatively describe all of these chemical phenomena, as well as of course electron-transfer reactions. It forms a basis for understanding many technologically relevant aspects of chemical reactions, condensed-matter physics, chemical quantum entanglement, nanotechnology, and natural or artificial solar energy capture and conversion.

  14. A unified diabatic description for electron transfer reactions, isomerization reactions, proton transfer reactions, and aromaticity.

    PubMed

    Reimers, Jeffrey R; McKemmish, Laura K; McKenzie, Ross H; Hush, Noel S

    2015-10-14

    While diabatic approaches are ubiquitous for the understanding of electron-transfer reactions and have been mooted as being of general relevance, alternate applications have not been able to unify the same wide range of observed spectroscopic and kinetic properties. The cause of this is identified as the fundamentally different orbital configurations involved: charge-transfer phenomena involve typically either 1 or 3 electrons in two orbitals whereas most reactions are typically closed shell. As a result, two vibrationally coupled electronic states depict charge-transfer scenarios whereas three coupled states arise for closed-shell reactions of non-degenerate molecules and seven states for the reactions implicated in the aromaticity of benzene. Previous diabatic treatments of closed-shell processes have considered only two arbitrarily chosen states as being critical, mapping these states to those for electron transfer. We show that such effective two-state diabatic models are feasible but involve renormalized electronic coupling and vibrational coupling parameters, with this renormalization being property dependent. With this caveat, diabatic models are shown to provide excellent descriptions of the spectroscopy and kinetics of the ammonia inversion reaction, proton transfer in N2H7(+), and aromaticity in benzene. This allows for the development of a single simple theory that can semi-quantitatively describe all of these chemical phenomena, as well as of course electron-transfer reactions. It forms a basis for understanding many technologically relevant aspects of chemical reactions, condensed-matter physics, chemical quantum entanglement, nanotechnology, and natural or artificial solar energy capture and conversion. PMID:26193994

  15. Radiation reaction in quantum vacuum

    NASA Astrophysics Data System (ADS)

    Seto, Keita

    2015-02-01

    Since the development of the radiating electron theory by P. A. M. Dirac in 1938 [P. A. M. Dirac, Proc. R. Soc. Lond. A 167, 148 (1938)], many authors have tried to reformulate this model, called the "radiation reaction". Recently, this equation has become important for ultra-intense laser-electron (plasma) interactions. In our recent research, we found a stabilized model of the radiation reaction in quantum vacuum [K. Seto et al., Prog. Theor. Exp. Phys. 2014, 043A01 (2014)]. It led us to an updated Fletcher-Millikan charge-to-mass ratio including radiation. In this paper, I will discuss the generalization of our previous model and the new equation of motion with the radiation reaction in quantum vacuum via photon-photon scatterings and also introduce the new tensor d{E}^{μ ν α β }/dm, as the anisotropy of the charge-to-mass ratio.

  16. Reaction theory for exotic nuclei

    SciTech Connect

    Bonaccorso, Angela

    2014-05-09

    Exotic nuclei are usually defined as those with unusual N/Z ratios. They can be found in the crust of neutron stars enbedded in a sea of electrons or created in laboratory by fragmentation of a primary beam (in-flight method) or of the target (ISOL method). They are extremely important for nuclear astrophysics, see for example Ref.[1]. Furthermore by studying them we can check the limits of validity of nuclear reaction and structure models. This contribution will be devoted to the understanding of how by using reaction theory and comparing to the data we can extract structure information. We shall discuss the differences between the mechanisms of transfer and breakup reactions, an we will try to explain how nowadays it is possible to do accurate spectroscopy in extreme conditions.

  17. [Vital reactions in Pacchioni granulations].

    PubMed

    Földes, V; Mojzes, L; Antal, A

    1987-01-01

    By means of histological methods the authors examined the blood and fluid circulatory disturbances associated with cranial and cerebral injuries. The presence of vital reactions was studied by means of the combined histological study of the dura mater, pacchionian granulations and the central nervous system. Samples for histological study were taken from 115 cadavers who had suffered cranial injuries, from 15 individuals who died from destructive cerebral apoplexy caused by a disease and from 30 individuals who died of natural causes. The authors applied a special fixation and sampling technique and, using various histological reactions, the following vital reactions were observed: the appearance of blood-cell elements in the granulation, a moderate fibrin degradation product and hemoglobin phagocytosis, and occasionally lipid phagocytosis. The authors worked out a method that was shown to be highly effective in the more precise determination of the induction time of cerebral apoplexy caused by a disease and that of traumatic injury of the brain.

  18. Photonuclear reactions on titanium isotopes

    SciTech Connect

    Belyshev, S. S.; Dzhilavyan, L. Z.; Ishkhanov, B. S.; Kapitonov, I. M.; Kuznetsov, A. A. Orlin, V. N.; Stopani, K. A.

    2015-03-15

    The photodisintegration of titanium isotopes in the giant-dipole-resonance energy region is studied by the photon-activation method. Bremsstrahlung photons whose spectrum has the endpoint energy of 55 MeV is used. The yields and integrated cross sections are determined for photoproton reactions on the titanium isotopes {sup 47,48,49,50}Ti. The respective experimental results are compared with their counterparts calculated on the basis of the TALYS code and a combined photonucleon-reaction model. The TALYS code disregards the isospin structure of the giant dipole resonance and is therefore unable to describe the yield of photoproton reactions on the heavy titanium isotopes {sup 49,50}Ti.

  19. Light-induced click reactions.

    PubMed

    Tasdelen, Mehmet Atilla; Yagci, Yusuf

    2013-06-01

    Spatial and temporal control over chemical and biological processes, both in terms of "tuning" products and providing site-specific control, is one of the most exciting and rapidly developing areas of modern science. For synthetic chemists, the challenge is to discover and develop selective and efficient reactions capable of generating useful molecules in a variety of matrices. In recent studies, light has been recognized as a valuable method for determining where, when, and to what extent a process is started or stopped. Accordingly, this Minireview will present the fundamental aspects of light-induced click reactions, highlight the applications of these reactions to diverse fields of study, and discuss the potential for this methodology to be applied to the study of biomolecular systems.

  20. Reaction models in nuclear astrophysics

    NASA Astrophysics Data System (ADS)

    Descouvemont, Pierre

    2016-05-01

    We present different reaction models commonly used in nuclear astrophysics, in particular for the nucleosynthesis of light elements. Pioneering works were performed within the potential model, where the internal structure of the colliding nuclei is completely ignored. Significant advances in microscopic cluster models provided the first microscopic description of the 3He(α,&gamma)7 Be reaction more than thirty years ago. In this approach, the calculations are based on an effective nucleon-nucleon interaction, but the cluster approximation should be made to simplify the calculations. Nowadays, modern microscopic calculations are able to go beyond the cluster approximation, and aim at finding exact solutions of the Schrödinger equation with realistic nucleon-nucleon interactions. We discuss recent examples on the d+d reactions at low energies.

  1. Spatial model of autocatalytic reactions

    NASA Astrophysics Data System (ADS)

    de Anna, Pietro; di Patti, Francesca; Fanelli, Duccio; McKane, Alan J.; Dauxois, Thierry

    2010-05-01

    Biological cells with all of their surface structure and complex interior stripped away are essentially vesicles—membranes composed of lipid bilayers which form closed sacs. Vesicles are thought to be relevant as models of primitive protocells, and they could have provided the ideal environment for prebiotic reactions to occur. In this paper, we investigate the stochastic dynamics of a set of autocatalytic reactions, within a spatially bounded domain, so as to mimic a primordial cell. The discreteness of the constituents of the autocatalytic reactions gives rise to large sustained oscillations even when the number of constituents is quite large. These oscillations are spatiotemporal in nature, unlike those found in previous studies, which consisted only of temporal oscillations. We speculate that these oscillations may have a role in seeding membrane instabilities which lead to vesicle division. In this way synchronization could be achieved between protocell growth and the reproduction rate of the constituents (the protogenetic material) in simple protocells.

  2. Surface reactions of natural glasses

    SciTech Connect

    White, A.F.

    1986-12-31

    Reactions at natural glass surfaces are important in studies involving nuclear waste transport due to chemical control on ground water in host rocks such as basalt and tuff, to potential diffusion into natural hydrated glass surfaces and as natural analogs for waste glass stability. Dissolution kinetics can be described by linear surface reaction coupled with cation interdiffusion with resulting rates similar to those of synthetic silicate glasses. Rates of Cs diffusion into hydrated obsidian surfaces between 25{sup 0} and 75{sup 0}C were determined by XPS depth profiles and loss rates from aqueous solutions. Calculated diffusion coefficients were ten others of magnitude more rapid than predicted from an Arrhenius extrapolation of high temperature tracer diffusion data due to surface hydration reactions.

  3. Light in elementary biological reactions

    NASA Astrophysics Data System (ADS)

    Sundström, Villy

    2000-09-01

    Light plays an important role in biology. In this review we discuss several processes and systems where light triggers a biological response, i.e. photosynthesis, vision, photoreceptors. For these functions Nature has chosen simple elementary chemical reactions, which occur in highly specialized and organized structures. The high efficiency and specificity of these reactions make them interesting for applications in light energy conversion and opto-electronics. In order to emphasize the synergism in studies of natural and synthetic systems we will discuss a few of each kind, with similar functions. In all cases light triggers a rapid sequence of events, which makes ultrafast spectroscopy an ideal tool to disentangle reaction mechanisms and dynamics.

  4. Local reactions from subcutaneous allergen immunotherapy.

    PubMed

    Coop, Christopher A

    2013-12-01

    Local reactions from subcutaneous allergen immunotherapy are very common during the course of immunotherapy. These local reactions are not bothersome to patients. Local reactions from immunotherapy also do not predict future local or systemic reactions. This review discusses the studies that show that local reactions are not predictive of future reactions and that dose adjustments for local reactions from allergen immunotherapy are unnecessary. The article also focuses on factors that lead to patient noncompliance with immunotherapy and evaluates methods to prevent local reactions from subcutaneous allergen immunotherapy. PMID:24283844

  5. Inorganic Reaction Mechanisms Part II: Homogeneous Catalysis

    ERIC Educational Resources Information Center

    Cooke, D. O.

    1976-01-01

    Suggests several mechanisms for catalysis by metal ion complexes. Discusses the principal factors of importance in these catalysis reactions and suggests reactions suitable for laboratory study. (MLH)

  6. Local reactions from subcutaneous allergen immunotherapy.

    PubMed

    Coop, Christopher A

    2013-12-01

    Local reactions from subcutaneous allergen immunotherapy are very common during the course of immunotherapy. These local reactions are not bothersome to patients. Local reactions from immunotherapy also do not predict future local or systemic reactions. This review discusses the studies that show that local reactions are not predictive of future reactions and that dose adjustments for local reactions from allergen immunotherapy are unnecessary. The article also focuses on factors that lead to patient noncompliance with immunotherapy and evaluates methods to prevent local reactions from subcutaneous allergen immunotherapy.

  7. Coupled Reactions "versus" Connected Reactions: Coupling Concepts with Terms

    ERIC Educational Resources Information Center

    Aledo, Juan Carlos

    2007-01-01

    A hallmark of living matter is its ability to extract and transform energy from the environment. Not surprisingly, biology students are required to take thermodynamics. The necessity of coupling exergonic reactions to endergonic processes is easily grasped by most undergraduate students. However, when addressing the thermodynamic concept of…

  8. Unraveling reaction pathways and specifying reaction kinetics for complex systems.

    PubMed

    Vinu, R; Broadbelt, Linda J

    2012-01-01

    Many natural and industrial processes involve a complex set of competing reactions that include several different species. Detailed kinetic modeling of such systems can shed light on the important pathways involved in various transformations and therefore can be used to optimize the process conditions for the desired product composition and properties. This review focuses on elucidating the various components involved in modeling the kinetics of pyrolysis and oxidation of polymers. The elementary free radical steps that constitute the chain reaction mechanism of gas-phase/nonpolar liquid-phase processes are outlined. Specification of the rate coefficients of the various reaction families, which is central to the theme of kinetics, is described. Construction of the reaction network on the basis of the types of end groups and reactive moieties in a polymer chain is discussed. Modeling frameworks based on the method of moments and kinetic Monte Carlo are evaluated using illustrations. Finally, the prospects and challenges in modeling biomass conversion are addressed. PMID:22468596

  9. Microscopic effective reaction theory for direct nuclear reactions

    NASA Astrophysics Data System (ADS)

    Ogata, Kazuyuki; Minomo, Kosho; Toyokawa, Masakazu; Kohno, Michio; Matsumoto, Takuma; Yahiro, Masanobu; Kikuchi, Yuma; Fukui, Tokuro; Yoshida, Kazuki; Mizuyama, Kazuhito

    2016-06-01

    Some recent activities with the microscopic effective reaction theory (MERT) on elastic, inelastic, breakup, transfer, and knockout processes are reviewed briefly. As a possible alternative to MERT, a description of elastic and inelastic scattering with the continuum particle-vibration coupling (cPVC) method is also discussed.

  10. Guidelines for measuring reaction time.

    PubMed

    Crabtree, D A; Antrim, L R

    1988-04-01

    Although reaction time is one of the most common measures of neurological function, protocols often do not take into consideration many of the extraneous factors that may invalidate such assessments. This paper discusses several issues related to matters of instrumentation, subject control, design of assessment, and interpretation. Twenty recommendations are provided as a guideline for those who assess reaction time of clients or patients. While these suggestions are not proposed as definitive or complete, the points should serve as a guide to young researchers as well as a checklist for more seasoned experimenters.

  11. Vision 2020. Reaction Engineering Roadmap

    SciTech Connect

    Klipstein, David H.; Robinson, Sharon

    2001-01-01

    The Reaction Engineering Roadmap is a part of an industry- wide effort to create a blueprint of the research and technology milestones that are necessary to achieve longterm industry goals. This report documents the results of a workshop focused on the research needs, technology barriers, and priorities of the chemical industry as they relate to reaction engineering viewed first by industrial use (basic chemicals; specialty chemicals; pharmaceuticals; and polymers) and then by technology segment (reactor system selection, design, and scale-up; chemical mechanism development and property estimation; dealing with catalysis; and new, nonstandard reactor types).

  12. A photoinduced, benzyne click reaction.

    PubMed

    Gann, Adam W; Amoroso, Jon W; Einck, Vincent J; Rice, Walter P; Chambers, James J; Schnarr, Nathan A

    2014-04-01

    The [3 + 2] cycloaddition of azides and alkynes has proven invaluable across numerous scientific disciplines for imaging, cross-linking, and site-specific labeling among many other applications. We have developed a photoinitiated, benzyne-based [3 + 2] cycloaddition that is tolerant of a variety of functional groups as well as polar, protic solvents. The reaction is complete on the minute time scale using a single equivalent of partner azide, and the benzyne photoprecursor is stable for months under ambient light at room tempurature. Herein we report the optimization and scope of the photoinitiated reaction as well as characterization of the cycloaddition products.

  13. Reaction theory: Status and perspectives

    NASA Astrophysics Data System (ADS)

    Moro, A. M.; Gómez-Camacho, J.

    2016-05-01

    The current status of the reaction theory of nuclear collisions involving weakly-bound exotic nuclei is presented. The problem is addressed within the Continuum Discretized Coupled Channel (CDCC) framework, recalling its foundations and applications, as well as its connection with the Faddeev formalism. Recent developments and improvements of the method, such as core and target excitations and the extension to three-body projectiles, are presented. The use of the CDCC wave function in the calculation of inclusive breakup reactions is also introduced.

  14. Industry's Reactions to the Indochinese.

    ERIC Educational Resources Information Center

    Latkiewicz, John

    Eighty Utah companies currently hiring Indochinese refugees and 73 identified simply as "general employers" took part in a study of employers' reactions to Indochinese refugees as job applicants and as employees. The study used questionnaires and oral interviews directed at personnel managers and supervisors and some language proficiency tests of…

  15. Polarization in Meson Production Reactions

    SciTech Connect

    Knutson, L.D.

    2000-12-31

    A comprehensive formalism for describing polarization observables in meson production reactions is presented. Particular attention is given to the complications that arise when the final state contains three particles. A general formula for the partial wave expansion of the polarization observables is presented, and a number of applications of the formalism are discussed.

  16. Dehydrogenative Diels-Alder reaction.

    PubMed

    Ozawa, Takuya; Kurahashi, Takuya; Matsubara, Seijiro

    2011-10-01

    The dehydrogenative cycloaddition of dieneynes, which possess a diene in the form of a styrene moiety and a dienophile in the form of an alkyne moiety, produces naphthalene derivatives when heated. It was found that a key requirement of this process is the presence of a silyl group attached to the alkyne moiety, which forces a dehydrogenation reaction to occur. PMID:21905638

  17. Knoevenagel Reaction of Unprotected Sugars

    NASA Astrophysics Data System (ADS)

    Scherrmann, Marie-Christine

    The Knoevenagel reaction of unprotected sugars was investigated in the 1950s using zinc chloride as promoter. The so-called Garcia Gonzalez reaction had been almost forgotten for 50 years, until the emergence of new water tolerant catalysts having Lewis acid behavior. The reaction was thus reinvestigated and optimal conditions have been found to prepare trihydroxylated furan derivatives from pentose or β-tetrahydrofuranylfuran from hexoses with non-cyclic β-keto ester or β-diketones. Other valuable compounds such as β-linked tetrahydrobenzofuranyl glycosides or hydroxyalkyl-3,3,6,6,-tetramethyl-3,4,5,6,7,9-hexahydro-1H-xanthene-1,8(2H)-dione can be obtained using cyclic β-dicarbonylic derivatives. Apart from one report in the 1950s, the Knoevenagel reaction of unprotected carbohydrate in basic condition has been studied only in the mid-1980s to prepare C-glycosyl barbiturates from barbituric acids and, later on, from non-cyclic β-diketones, β-C-glycosidic ketones. The efficient method exploited to prepare such compounds has found an industrial development in cosmetics.

  18. Interfacial Reaction Studies Using ONIOM

    NASA Technical Reports Server (NTRS)

    Cardelino, Beatriz H.

    2003-01-01

    In this report, we focus on the calculations of the energetics and chemical kinetics of heterogeneous reactions for Organometallic vapor phase epitaxy (OMVPE). The work described in this report builds upon our own previous thermochemical and chemical kinetics studies. The first of these articles refers to the prediction of thermochemical properties, and the latter one deals with the prediction of rate constants for gaseous homolytic dissociation reactions. The calculations of this investigation are at the microscopic level. The systems chosen consisted of a gallium nitride (GaN) substrate, and molecular nitrogen (N2) and ammonia (NH3) as adsorbants. The energetics for the adsorption and the adsorbant dissociation processes were estimated, and reaction rate constants for the dissociation reactions of free and adsorbed molecules were predicted. The energetics for substrate decomposition was also computed. The ONIOM method, implemented in the Gaussian98 program, was used to perform the calculations. This approach has been selected since it allows dividing the system into two layers that can be treated at different levels of accuracy. The atoms of the substrate were modeled using molecular mechanics6 with universal force fields, whereas the adsorbed molecules were approximated using quantum mechanics, based on density functional theory methods with B3LYP functionals and 6-311G(d,p) basis sets. Calculations for the substrate were performed in slabs of several unit cells in each direction. The N2 and NH3 adsorbates were attached to a central location at the Ga-lined surface.

  19. Reduction of chemical reaction models

    NASA Technical Reports Server (NTRS)

    Frenklach, Michael

    1991-01-01

    An attempt is made to reconcile the different terminologies pertaining to reduction of chemical reaction models. The approaches considered include global modeling, response modeling, detailed reduction, chemical lumping, and statistical lumping. The advantages and drawbacks of each of these methods are pointed out.

  20. The Pitfalls of Precipitation Reactions.

    ERIC Educational Resources Information Center

    Slade, Peter W.; Rayner-Canham, Geoffrey W.

    1990-01-01

    Described are some of the difficulties presented in these reactions by competing equilibria that are usually ignored. Situations involving acid-base equilibria, solubility product calculations, the use of ammonia as a complexing agent, and semiquantitative comparisons of solubility product values are discussed. (CW)

  1. The Maillard reaction in vivo.

    PubMed

    Dyer, D G; Blackledge, J A; Katz, B M; Hull, C J; Adkisson, H D; Thorpe, S R; Lyons, T J; Baynes, J W

    1991-02-01

    The Maillard or browning reaction between reducing sugars and protein contributes to the chemical deterioration and loss of nutritional value of proteins during food processing and storage. This article presents and discusses evidence that the Maillard reaction is also involved in the chemical aging of long-lived proteins in human tissues. While the concentration of the Amadori adduct of glucose to lens protein and skin collagen is relatively constant with age, products of sequential glycation and oxidation of protein, termed glycoxidation products, accumulate in these long-lived proteins with advancing age and at an accelerated rate in diabetes. Among these products are the chemically modified amino acids, N epsilon-(carboxymethyl)lysine (CML), N epsilon-(carboxymethyl)hydroxylysine (CMhL), and the fluorescent crosslink, pentosidine. While these glycoxidation products are present at only trace levels in tissue proteins, there is strong evidence for the presence of other browning products which remain to be characterized. Mechanisms for detoxifying reactive intermediates in the Maillard reaction and catabolism of extensively browned proteins are also discussed, along with recent approaches for therapeutic modulation of advanced stages of the Maillard reaction. PMID:1858426

  2. Runaway Reaction: Solving for X.

    ERIC Educational Resources Information Center

    Bartz, Solveig A.

    2003-01-01

    This article examines the runaway reaction as it was displayed by Barry, a 14-year-old eighth-grade boy with learning disabilities. It identifies some of the common characteristics of this response and proposes school intervention methods. Functional behavioral assessments and strength-based assessments are encouraged, along with using strategy…

  3. Humanism and science: a reaction.

    PubMed

    Wampold, Bruce E

    2012-12-01

    Authors in this section have noted that humanism is intrinsic to psychotherapy, although disagreements remain. One of the disagreements is about the role of science in humanism. In this reaction, I contend that humanism, as discussed in these articles, is a legitimate theory to be subjected to scientific scrutiny.

  4. Pd-catalyzed steroid reactions.

    PubMed

    Czajkowska-Szczykowska, Dorota; Morzycki, Jacek W; Wojtkielewicz, Agnieszka

    2015-05-01

    We review the most important achievements of the last decade in the field of steroid synthesis in the presence of palladium catalysts. Various palladium-catalyzed cross-coupling reactions, including Heck, Suzuki, Stille, Sonogashira, Negishi and others, are exemplified with steroid transformations.

  5. Ruthenium nanocatalysis on redox reactions.

    PubMed

    Veerakumar, Pitchaimani; Ramdass, Arumugam; Rajagopal, Seenivasan

    2013-07-01

    Nanoparticles have generated intense interest over the past 20 years due to their high potential applications in different areas such as catalysis, sensors, nanoscale electronics, fuel and solar cells and optoelectronics. As the large fractions of metal atoms are exposed to the surface, the use of metal nanoparticles as nanocatalysts allows mild reaction conditions and high catalytic efficiency in a large number of chemical transformations. They have emerged as sustainable heterogeneous catalysts and catalyst supports alternative to conventional materials. This review focuses on the synthesis, characterization and catalytic role of ruthenium nanoparticles (RuNPs) on the redox reactions of heteroatom containing organic compounds with the green reagent H2O2, a field that has attracted immense interest among the chemical, materials and industrial communities. We intend to present a broad overview of Ru nanocatalysts for redox reactions with an emphasis on their performance, stability and reusability. The growth in the chemistry of organic sulfoxides and N-oxides during last decade was due to their importance as synthetic intermediates for the production of a wide range of chemically and biologically active molecules. Thus design of efficient methods for the synthesis of sulfoxides and N-oxides becomes important. This review concentrates on the catalysis of RuNPs on the H2O2 oxidation of organic sulfides to sulfoxides and amines to N-oxides. The deoxygenation reactions of sulfoxides to sulfides and reduction of nitro compounds to amines are fundamental reactions in both chemistry and biology. Here, we also highlight the catalysis of metal nanoparticles on the deoxygenation of sulfoxides and sulfones and reduction of nitro compounds with particular emphasis on the mechanistic aspects.

  6. Reactions of arsine with hemoglobin

    SciTech Connect

    Hatlelid, K.M.; Brailsford, C.; Carter, D.E.

    1996-02-09

    The mechanism of arsine (AsH{sub 3}) induced hemolysis was studied in vitro using isolated red blood cells (RBCs) from the rat or dog. AsH{sub 3}-induced hemolysis of dog red blood cells was completely blocked by carbon monoxide (CO) preincubation and was reduced by pure oxygen (O{sub 2}) compared to incubations in air. Since CO and O{sub 2} bind to heme and also reduced hemolysis, these results suggested a reaction between AsH{sub 3} and hemoglobin in the hemeligand binding pocket or with the heme iron. Further, sodium nitrite induction of methemoglobin (metHb) to 85% and 34% of total Hb in otherwise intact RBCs resulted in 56% and 16% decreases in hemolysis, respectively, after incubation for 4 h. This provided additional evidence for the involvement of hemoglobin in the AsH{sub 3}-induced hemolysis mechanism. Reactions between AsH{sub 3} and hemoglobin were studied in solutions of purified dog hemoglobin. Spectrophotometric studies of the reaction of AsH{sub 3} with various purified hemoglobin species revealed that AsH{sub 3} reacted with HbO{sub 2} to produce metHb and, eventually, degraded Hb characterized by gross precipitation of the protein. AsH{sub 3} did not alter the spectrum of deoxyHb and did not cause degradation of metHb in oxygen, but bound to and reduced metHb in the absence of oxygen. These data indicate that a reaction of AsH{sub 3} with oxygenated hemoglobin, HbO{sub 2}, may lead to hemolysis, but there are reactions between AsH{sub 3} and metHb that may not be directly involved in the hemolytic process. 17 refs., 6 figs.

  7. Experimental Demonstrations in Teaching Chemical Reactions.

    ERIC Educational Resources Information Center

    Hugerat, Muhamad; Basheer, Sobhi

    2001-01-01

    Presents demonstrations of chemical reactions by employing different features of various compounds that can be altered after a chemical change occurs. Experimental activities include para- and dia-magnetism in chemical reactions, aluminum reaction with base, reaction of acid with carbonates, use of electrochemical cells for demonstrating chemical…

  8. Quantum reaction boundary to mediate reactions in laser fields.

    PubMed

    Kawai, Shinnosuke; Komatsuzaki, Tamiki

    2011-01-14

    Dynamics of passage over a saddle is investigated for a quantum system under the effect of time-dependent external field (laser pulse). We utilize the recently developed theories of nonlinear dynamics in the saddle region, and extend them to incorporate both time-dependence of the external field and quantum mechanical effects of the system. Anharmonic couplings and laser fields with any functional form of time dependence are explicitly taken into account. As the theory is based on the Weyl expression of quantum mechanics, interpretation is facilitated by the classical phase space picture, while no "classical approximation" is involved. We introduce a quantum reactivity operator to extract the reactive part of the system. In a model system with an optimally controlled laser field for the reaction, it is found that the boundary of the reaction in the phase space, extracted by the reactivity operator, is modulated with time by the effect of the laser field, to "catch" the system excited in the reactant region, and then to "release" it into the product region. This method provides new insights in understanding the origin of optimal control of chemical reactions by laser fields.

  9. Finding reaction paths using the potential energy as reaction coordinate.

    PubMed

    Aguilar-Mogas, Antoni; Giménez, Xavier; Bofill, Josep Maria

    2008-03-14

    The intrinsic reaction coordinate curve (IRC), normally proposed as a representation of a reaction path, is parametrized as a function of the potential energy rather than the arc-length. This change in the parametrization of the curve implies that the values of the energy of the potential energy surface points, where the IRC curve is located, play the role of reaction coordinate. We use Caratheodory's relation to derive in a rigorous manner the proposed parametrization of the IRC path. Since this Caratheodory's relation is the basis of the theory of calculus of variations, then this fact permits to reformulate the IRC model from this mathematical theory. In this mathematical theory, the character of the variational solution (either maximum or minimum) is given through the Weierstrass E-function. As proposed by Crehuet and Bofill [J. Chem. Phys. 122, 234105 (2005)], we use the minimization of the Weierstrass E-function, as a function of the potential energy, to locate an IRC path between two minima from an arbitrary curve on the potential energy surface, and then join these two minima. We also prove, from the analysis of the Weierstrass E-function, the mathematical bases for the algorithms proposed to locate the IRC path. The proposed algorithm is applied to a set of examples. Finally, the algorithm is used to locate a discontinuous, or broken, IRC path, namely, when the path connects two first order saddle points through a valley-ridged inflection point. PMID:18345872

  10. Finding reaction paths using the potential energy as reaction coordinate

    NASA Astrophysics Data System (ADS)

    Aguilar-Mogas, Antoni; Giménez, Xavier; Bofill, Josep Maria

    2008-03-01

    The intrinsic reaction coordinate curve (IRC), normally proposed as a representation of a reaction path, is parametrized as a function of the potential energy rather than the arc-length. This change in the parametrization of the curve implies that the values of the energy of the potential energy surface points, where the IRC curve is located, play the role of reaction coordinate. We use Carathéodory's relation to derive in a rigorous manner the proposed parametrization of the IRC path. Since this Carathéodory's relation is the basis of the theory of calculus of variations, then this fact permits to reformulate the IRC model from this mathematical theory. In this mathematical theory, the character of the variational solution (either maximum or minimum) is given through the Weierstrass E-function. As proposed by Crehuet and Bofill [J. Chem. Phys. 122, 234105 (2005)], we use the minimization of the Weierstrass E-function, as a function of the potential energy, to locate an IRC path between two minima from an arbitrary curve on the potential energy surface, and then join these two minima. We also prove, from the analysis of the Weierstrass E-function, the mathematical bases for the algorithms proposed to locate the IRC path. The proposed algorithm is applied to a set of examples. Finally, the algorithm is used to locate a discontinuous, or broken, IRC path, namely, when the path connects two first order saddle points through a valley-ridged inflection point.

  11. Thermodynamics of Enzyme-Catalyzed Reactions Database

    National Institute of Standards and Technology Data Gateway

    SRD 74 Thermodynamics of Enzyme-Catalyzed Reactions Database (Web, free access)   The Thermodynamics of Enzyme-Catalyzed Reactions Database contains thermodynamic data on enzyme-catalyzed reactions that have been recently published in the Journal of Physical and Chemical Reference Data (JPCRD). For each reaction the following information is provided: the reference for the data, the reaction studied, the name of the enzyme used and its Enzyme Commission number, the method of measurement, the data and an evaluation thereof.

  12. Peanut-induced anaphylactic reactions.

    PubMed

    Burks, W; Bannon, G A; Sicherer, S; Sampson, H A

    1999-07-01

    Food allergies, particularly to peanuts, are a common cause of anaphylaxis. Approximately 125 people die each year in the USA secondary to food-induced anaphylaxis. Clinical anaphylaxis is a syndrome of diverse etiology and dramatic presentation of symptoms associated with the classic features of type I, IgE-mediated hypersensitivity [1]. Typically the term anaphylaxis connotes an immunologically-mediated event that occurs after exposure to certain foreign substances. This reaction results from the generation and release of a variety of potent biologically active mediators and their concerted effects on various target organs. Anaphylaxis is recognized by cutaneous, respiratory, cardiovascular, and gastrointestinal signs and symptoms occurring singly or in combination. This article focuses on allergic reactions to peanuts that manifest as signs and symptoms involving multiple target organs or the cardiovascular system alone.

  13. Water-gas shift reaction

    SciTech Connect

    Newsome, D.S.

    1980-01-01

    Recent kinetic and mechanistic studies of the water-gas shift reaction, H/sub 2/O(g) + CO(g) reversible CO/sub 2/ + H/sub 2/(g), catalyzed by iron and copper catalysts are reviewed. Composition, structure, active sites, preparation methods, additives, and poisons are discussed relative to each catalyst. New water-gas shift reaction catalyst systems studied are Mo-magnesia, Ni - Mo, Co - Mo, sulfided Co - Mo - Cs, sulfided Co - Mo, sulfided Ni - Mo, Co - Mo - Ni with added alkaki, and Co - Mo with added alkali, Cesium carbonate - cesium acetate - potassium carbonate or potassium acetate - Co - Mo is claimed to be an especially active catalyst. These new catalyst systems are sulfur tolerant and hold promise as catalysts for hydrogenation of high-sulfur coals. (BLM)

  14. Programmability of Chemical Reaction Networks

    NASA Astrophysics Data System (ADS)

    Cook, Matthew; Soloveichik, David; Winfree, Erik; Bruck, Jehoshua

    Motivated by the intriguing complexity of biochemical circuitry within individual cells we study Stochastic Chemical Reaction Networks (SCRNs), a formal model that considers a set of chemical reactions acting on a finite number of molecules in a well-stirred solution according to standard chemical kinetics equations. SCRNs have been widely used for describing naturally occurring (bio)chemical systems, and with the advent of synthetic biology they become a promising language for the design of artificial biochemical circuits. Our interest here is the computational power of SCRNs and how they relate to more conventional models of computation. We survey known connections and give new connections between SCRNs and Boolean Logic Circuits, Vector Addition Systems, Petri nets, Gate Implementability, Primitive Recursive Functions, Register Machines, Fractran, and Turing Machines. A theme to these investigations is the thin line between decidable and undecidable questions about SCRN behavior.

  15. Nova reaction rates and experiments

    NASA Astrophysics Data System (ADS)

    Bishop, S.; Herlitzius, C.; Fiehl, J.

    2011-04-01

    Oxygen-neon novae form a subset of classical novae events known to freshly synthesize nuclei up to mass number A≲40. Because several gamma-ray emitters lie in this mass range, these novae are also interesting candidates for gamma-ray astronomy. The properties of excited states within those nuclei in this mass region play a critical role in determining the resonant (p,γ) reaction rates, themselves, largely unknown for the unstable nuclei. We describe herein a new Doppler shift lifetime facility at the Maier-Leibnitz tandem laboratory, Technische Universität München, with which we will map out important resonant (p,γ) nova reaction rates.

  16. [Reactions to fragrances and textiles].

    PubMed

    Hausen, B M

    1987-12-01

    Allergic reactions to fragrances are caused by perfumes and perfume-containing items of our environment. The most important allergen is cinnamic aldehyde. By means of the mixed perfume test recommended by the International Contact Dermatitis Research Group (ICDRG), however, we are not able to detect more than half of the patients suffering from perfume allergy. Thus we suggest to make use of two new test series comprising most of the relevant fragrance components. Allergic reactions to textiles are mostly due to textile dyes. Special regard must be given to the disperse dyes of the azo group in nylon stockings and tights. The three most important allergens are disperse yellow 3, disperse orange 3, and disperse red 1. According to our experiments, the sensitizing potency of these dyes is comparatively low. In contrast, two recently introduced azo dyes (disperse blue 106 and 124), which are mainly used in blouses and trousers, proved to be strong sensitizers.

  17. Investigating Reaction-Driven Cracking

    NASA Astrophysics Data System (ADS)

    Kelemen, P. B.; Hirth, G.; Savage, H. M.

    2013-12-01

    Many metamorphic reactions lead to large volume changes, and potentially to reaction-driven cracking [1,2]. Large-scale hydration of mantle peridotite to produce serpentine or talc is invoked to explain the rheology of plate boundaries, the nature of earthquakes, and the seismic properties of slow-spread ocean crust and the 'mantle wedge' above subduction zones. Carbonation of peridotite may be an important sink in the global carbon cycle. Zones of 100% magnesite + quartz replacing peridotite, up to 200 m thick, formed where oceanic mantle was thrust over carbonate-bearing metasediments in Oman. Talc + carbonate is an important component of the matrix in subduction mélanges at Santa Catalina Island , California, and the Sanbagawa metamorphic belt, Japan. Engineered systems to emulate natural mineral carbonation could provide relatively inexpensive CO2 capture and storage [3]. More generally, engineered reaction-driven cracking could supplement or replace hydraulic fracture in geothermal systems, solution mining, and extraction of tight oil and gas. The controls on reaction-driven cracking are poorly understood. Hydration and carbonation reactions can be self-limiting, since they potentially reduce permeability and armor reactive surfaces [4]. Also, in some cases, hydration or carbonation may take place at constant volume. Small changes in volume due to precipitation of solid products increases stress, destabilizing solid reactants, until precipitation and dissolution rates become equal at a steady state stress [5]. In a third case, volume change due to precipitation of solid products causes brittle failure. This has been invoked on qualitative grounds to explain, e.g., complete serpentinization of mantle peridotite [6]. Below ~ 300°C, the available potential energy for hydration and carbonation of olivine could produce stresses of 100's of MPa [2], sufficient to fracture rocks to 10 km depth or more, causing brittle failure below the steady state stress required

  18. Propulsive Reaction Control System Model

    NASA Technical Reports Server (NTRS)

    Brugarolas, Paul; Phan, Linh H.; Serricchio, Frederick; San Martin, Alejandro M.

    2011-01-01

    This software models a propulsive reaction control system (RCS) for guidance, navigation, and control simulation purposes. The model includes the drive electronics, the electromechanical valve dynamics, the combustion dynamics, and thrust. This innovation follows the Mars Science Laboratory entry reaction control system design, and has been created to meet the Mars Science Laboratory (MSL) entry, descent, and landing simulation needs. It has been built to be plug-and-play on multiple MSL testbeds [analysis, Monte Carlo, flight software development, hardware-in-the-loop, and ATLO (assembly, test and launch operations) testbeds]. This RCS model is a C language program. It contains two main functions: the RCS electronics model function that models the RCS FPGA (field-programmable-gate-array) processing and commanding of the RCS valve, and the RCS dynamic model function that models the valve and combustion dynamics. In addition, this software provides support functions to initialize the model states, set parameters, access model telemetry, and access calculated thruster forces.

  19. MEANS FOR TERMINATING NUCLEAR REACTIONS

    DOEpatents

    Cooper, C.M.

    1959-02-17

    An apparatus is presented for use in a reactor of the heterogeneous, fluid cooled type for the purpose of quickly terminating the reaction, the coolant being circulated through coolant tubes extending through the reactor core. Several of the tubes in the critical region are connected through valves to a tank containing a poisoning fluid having a high neutron capture crosssection and to a reservoir. When it is desired to quickly terminate the reaction, the valves are operated to permit the flow of the poisoning fluid through these particular tubes and into the reservoir while normal coolant is being circulated through the remaining tubes. The apparatus is designed to prevent contamination of the primary coolant by the poisoning fluid.

  20. Prebiotic condensation reactions using cyanamide

    NASA Technical Reports Server (NTRS)

    Sherwood, E.; Nooner, D. W.; Eichberg, J.; Epps, D. E.; Oro, J.

    1978-01-01

    Condensation reactions in cyanamide, 4-amino-5-imidazole-carboxamide and cyanamide, imidazole systems under dehydrating conditions at moderate temperatures (60 to 100 deg C) were investigated. The cyanamide, imidazole system was used for synthesis of palmitoylglycerols from ammonium palmitate and glycerol. With the addition of deoxythymidine to the former system, P1, P2-dideoxythymidine 5 prime-phosphate was obtained; the same cyanamide, 4-amino-5-imidazole-carboxamide system was used to synthesize deoxythymidine oligonucleotides using deoxythymidine 5 prime-phosphate and deoxythymidine 5 prime-triphosphate, and peptides using glycine, phenylalanine or isoleucine with adenosine 5 prime-triphosphate. The pH requirements for these reactions make their prebiotic significance questionable; however, it is conceivable that they could occur in stable pockets of low interlayer acidity in a clay such as montmorillonite.

  1. Modelling reaction kinetics inside cells

    PubMed Central

    Grima, Ramon; Schnell, Santiago

    2009-01-01

    In the past decade, advances in molecular biology such as the development of non-invasive single molecule imaging techniques have given us a window into the intricate biochemical activities that occur inside cells. In this article we review four distinct theoretical and simulation frameworks: (1) non-spatial and deterministic, (2) spatial and deterministic, (3) non-spatial and stochastic and (4) spatial and stochastic. Each framework can be suited to modelling and interpreting intracellular reaction kinetics. By estimating the fundamental length scales, one can roughly determine which models are best suited for the particular reaction pathway under study. We discuss differences in prediction between the four modelling methodologies. In particular we show that taking into account noise and space does not simply add quantitative predictive accuracy but may also lead to qualitatively different physiological predictions, unaccounted for by classical deterministic models. PMID:18793122

  2. Hypersensitivity reactions to vaccine components.

    PubMed

    Heidary, Noushin; Cohen, David E

    2005-09-01

    Vaccines are responsible for the control of many infectious diseases that were once common in the United States, including polio, measles, diphtheria, pertussis (whooping cough), rubella (German measles), mumps, tetanus, and Haemophilus influenzae type b. National efforts to generate collaboration between federal, state, and local governments and public and private health care providers have resulted in record high levels of vaccination coverage in the United States. The high rate of US vaccinations is paralleled by growing concerns about the safety of their delivery. The variety of substances used in vaccines sometimes causes the development of cutaneous reactions in susceptible adults and children. This article will review adverse cutaneous events consistent with hypersensitivity reactions to the following ingredients in vaccines: aluminum, thimerosal, 2-phenoxyethanol, formaldehyde, and neomycin.

  3. Milestoning without a Reaction Coordinate

    PubMed Central

    Májek, Peter; Elber, Ron

    2010-01-01

    Milestoning is a method for calculating kinetics and thermodynamics of long time processes typically not accessible for straightforward Molecular Dynamics (MD) simulation. In the Milestoning approach, the system of interest is partitioned into cells by dividing hypersurfaces (Milestones) and transitions are computed between nearby hypersurfaces. Kinetics and thermodynamics are derived from the statistics of these transitions. The original Milestoning work concentrated on systems in which a one-dimensional reaction coordinate or an order parameter could be identified. In many biomolecular processes the reaction proceeds via multiple channels or following more than a single order parameter. A description based on a one-dimensional reaction coordinate may be insufficient. In the present paper we introduce a variation that overcomes this limitation. Following the ideas of Vanden-Eijnden and Venturoli on Voronoi cells that avoid the use of an order parameter (J. Chem. Phys. 2009, 130, 194101), we describe another way to “Milestone” systems without a reaction coordinate. We examine the assumptions of the Milestoning calculations of mean first passage times (MFPT) and describe strategies to weaken these assumptions. The method described in this paper, Directional Milestoning, arranges hypersurfaces in higher dimensions that “tag” trajectories such that efficient calculations can be done and at the same time the assumptions required for exact calculations of MFPTs are satisfied approximately. In the original Milestoning papers trajectories are initiated from an equilibrium set of conformations. Here a more accurate distribution, that mimics the first hitting point distribution, is used. We demonstrate the usage of Directional Milestoning in conformational transitions of alanine dipeptide (in vacuum and in aqueous solution) and compare the correctness, efficiency, and statistical stability of the method with exact MD and with a related method. PMID:20596240

  4. Modeling the enzyme kinetic reaction.

    PubMed

    Atangana, Abdon

    2015-09-01

    The Enzymatic control reactions model was presented within the scope of fractional calculus. In order to accommodate the usual initial conditions, the fractional derivative used is in Caputo sense. The methodologies of the three analytical methods were used to derive approximate solution of the fractional nonlinear system of differential equations. Two methods use integral operator and the other one uses just an integral. Numerical results obtained exhibit biological behavior of real world problem.

  5. Cascade reactions in multicompartmentalized polymersomes.

    PubMed

    Peters, Ruud J R W; Marguet, Maïté; Marais, Sébastien; Fraaije, Marco W; van Hest, Jan C M; Lecommandoux, Sébastien

    2014-01-01

    Enzyme-filled polystyrene-b-poly(3-(isocyano-L-alanyl-aminoethyl)thiophene) (PS-b-PIAT) nanoreactors are encapsulated together with free enzymes and substrates in a larger polybutadiene-b-poly(ethylene oxide) (PB-b-PEO) polymersome, forming a multicompartmentalized structure, which shows structural resemblance to the cell and its organelles. An original cofactor-dependent three-enzyme cascade reaction is performed, using either compatible or incompatible enzymes, which takes place across multiple compartments. PMID:24254810

  6. Radiation recall reaction causing cardiotoxicity.

    PubMed

    Masri, Sofia Carolina; Misselt, Andrew James; Dudek, Arkadiusz; Konety, Suma H

    2014-01-01

    Radiation recall phenomenon is a tissue reaction that develops within a previously irradiated area, precipitated by the subsequent administration of certain chemotherapeutic agents. It commonly affects the skin, but can also involve internal organs with functional consequences. To our best knowledge, this phenomenon has never been reported as a complication on the heart and should be consider as a potential cause of cardiotoxicity. PMID:24755097

  7. Multicomponent reactions in nucleoside chemistry

    PubMed Central

    Buchowicz, Włodzimierz

    2014-01-01

    Summary This review covers sixty original publications dealing with the application of multicomponent reactions (MCRs) in the synthesis of novel nucleoside analogs. The reported approaches were employed for modifications of the parent nucleoside core or for de novo construction of a nucleoside scaffold from non-nucleoside substrates. The cited references are grouped according to the usually recognized types of the MCRs. Biochemical properties of the novel nucleoside analogs are also presented (if provided by the authors). PMID:25161730

  8. Hydrogen Tunneling in Enzyme Reactions

    NASA Astrophysics Data System (ADS)

    Cha, Yuan; Murray, Christopher J.; Klinman, Judith P.

    1989-03-01

    Primary and secondary protium-to-tritium (H/T) and deuterium-to-tritium (D/T) kinetic isotope effects for the catalytic oxidation of benzyl alcohol to benzaldehyde by yeast alcohol dehydrogenase (YADH) at 25 degrees Celsius have been determined. Previous studies showed that this reaction is nearly or fully rate limited by the hydrogen-transfer step. Semiclassical mass considerations that do not include tunneling effects would predict that kH/kT = (kD/kT)3.26, where kH, kD, and kT are the rate constants for the reaction of protium, deuterium, and tritium derivatives, respectively. Significant deviations from this relation have now been observed for both primary and especially secondary effects, such that experimental H/T ratios are much greater than those calculated from the above expression. These deviations also hold in the temperature range from 0 to 40 degrees Celsius. Such deviations were previously predicted to result from a reaction coordinate containing a significant contribution from hydrogen tunneling.

  9. Hydrogen tunneling in enzyme reactions.

    PubMed

    Cha, Y; Murray, C J; Klinman, J P

    1989-03-10

    Primary and secondary protium-to-tritium (H/T) and deuterium-to-tritium (D/T) kinetic isotope effects for the catalytic oxidation of benzyl alcohol to benzaldehyde by yeast alcohol dehydrogenase (YADH) at 25 degrees Celsius have been determined. Previous studies showed that this reaction is nearly or fully rate limited by the hydrogen-transfer step. Semiclassical mass considerations that do not include tunneling effects would predict that kH/kT = (kD/kT)3.26, where kH, kD, and kT are the rate constants for the reaction of protium, deuterium, and tritium derivatives, respectively. Significant deviations from this relation have now been observed for both primary and especially secondary effects, such that experimental H/T ratios are much greater than those calculated from the above expression. These deviations also hold in the temperature range from 0 to 40 degrees Celsius. Such deviations were previously predicted to result from a reaction coordinate containing a significant contribution from hydrogen tunneling.

  10. Transfer reactions with heavy elements

    SciTech Connect

    Hoffman, D.C.

    1986-04-01

    Transfer reactions for several transuranium elements are studied. (/sup 248/Cm, /sup 249/Bk, /sup 249/CF, /sup 254/Es), /sup 16,18/O, /sup 20,22/Ne, and /sup 40,48/Ca projectiles are used. The production of neutron-rich heavy actinides is enhanced by the use of neutron-rich projectiles /sup 18/O and /sup 22/Ne. The maxima of the isotopic distributions occur at only 2 to 3 mass numbers larger for /sup 48/Ca than for /sup 40/Ca reactions with /sup 248/Cm. The cross sections decrease rapidly with the number of nucleons transferred. The use of neutron-rich targets favors the production of neutron-rich isotopes. ''Cold'' heavy targets are produced. Comparisons with simple calculations of the product excitation energies assuming binary transfers indicate that the maxima of the isotopic distributions occur at the lightest product isotope for which the energy exceeds the reaction barrier. The cross sections for transfer of the same nucleon clusters appear to be comparable for a wide variety of systems. 23 refs., 4 figs., 4 tabs.

  11. Variable expansion ratio reaction engine

    SciTech Connect

    Wagner, W.R.

    1987-11-24

    A variable expansion ratio reaction rocket engine for producing a mainstream of hot combustion gases is described comprising: a reaction chamber including a thrust nozzle portion formed by converging and diverging wall portions in which the diverging portion terminates in a gas discharge and through which the combustion gases pass; a nozzle throat section at the juncture of the convergent-divergent wall portions; rows of circumferentially and axially spaced injection ports formed within the wall portions and communicating therethrough and into the reaction chamber; fluid conduit means in communication with the injection ports; at least one high pressure pump in communication with the fluid conduit means; a fluid containing storage tank including a conduit in communication with the high pressure pump; and means for selectively controlling a flow of fluid out of the tank, through the pump and to the fluid conduit means and the injection ports for controlling a cross-sectional area of the mainstream combustion gases passing through the thrust nozzle.

  12. Reaction Selectivity in Heterogeneous Catalysis

    SciTech Connect

    Somorjai, Gabor A.; Kliewer, Christopher J.

    2009-02-02

    The understanding of selectivity in heterogeneous catalysis is of paramount importance to our society today. In this review we outline the current state of the art in research on selectivity in heterogeneous catalysis. Current in-situ surface science techniques have revealed several important features of catalytic selectivity. Sum frequency generation vibrational spectroscopy has shown us the importance of understanding the reaction intermediates and mechanism of a heterogeneous reaction, and can readily yield information as to the effect of temperature, pressure, catalyst geometry, surface promoters, and catalyst composition on the reaction mechanism. DFT calculations are quickly approaching the ability to assist in the interpretation of observed surface spectra, thereby making surface spectroscopy an even more powerful tool. HP-STM has revealed three vitally important parameters in heterogeneous selectivity: adsorbate mobility, catalyst mobility, and selective site-blocking. The development of size controlled nanoparticles from 0.8 to 10 nm, of controlled shape, and of controlled bimetallic composition has revealed several important variables for catalytic selectivity. Lastly, DFT calculations may be paving the way to guiding the composition choice for multi-metallic heterogeneous catalysis for the intelligent design of catalysts incorporating the many factors of selectivity we have learned.

  13. Photosynthetic reaction centers in bacteria

    SciTech Connect

    Norris, J.R. Univ. of Chicago, IL ); Schiffer, M. )

    1990-07-30

    The photochemistry of photosynthesis begins in complexes called reaction centers. These have become model systems to study the fundamental process by which plants and bacteria convert and store solar energy as chemical free energy. In green plants, photosynthesis occurs in two systems, each of which contains a different reaction center, working in series. In one, known as photosystem 1, oxidized nicotinamide adenine dinucleotide phosphate (NADP[sup +]) is reduced to NADPH for use in a series of dark reactions called the Calvin cycle, named for Nobel Laureate Melvin Calvin, by which carbon dioxide is converted into useful fuels such as carbohydrates and sugars. In the other half of the photosynthetic machinery of green plants, called photosystem 2, water is oxidized to produce molecular oxygen. A different form of photosynthesis occurs in photosynthetic bacteria, which typically live at the bottom of ponds and feed on organic debris. Two main types of photosynthetic bacteria exist: purple and green. Neither type liberates oxygen from water. Instead, the bacteria feed on organic media or inorganic materials, such as sulfides, which are easier to reduce or oxidize than carbon dioxide or water. Perhaps in consequence, their photosynthetic machinery is simpler than that of green, oxygen-evolving plants and their primary photochemistry is better understood.

  14. Microfabricated electrochemiluminescence cell for chemical reaction detection

    DOEpatents

    Northrup, M. Allen; Hsueh, Yun-Tai; Smith, Rosemary L.

    2003-01-01

    A detector cell for a silicon-based or non-silicon-based sleeve type chemical reaction chamber that combines heaters, such as doped polysilicon for heating, and bulk silicon for convection cooling. The detector cell is an electrochemiluminescence cell constructed of layers of silicon with a cover layer of glass, with spaced electrodes located intermediate various layers forming the cell. The cell includes a cavity formed therein and fluid inlets for directing reaction fluid therein. The reaction chamber and detector cell may be utilized in any chemical reaction system for synthesis or processing of organic, inorganic, or biochemical reactions, such as the polymerase chain reaction (PCR) and/or other DNA reactions, such as the ligase chain reaction, which are examples of a synthetic, thermal-cycling-based reaction. The ECL cell may also be used in synthesis instruments, particularly those for DNA amplification and synthesis.

  15. Visualization of chemical reaction dynamics: Toward understanding complex polyatomic reactions

    PubMed Central

    SUZUKI, Toshinori

    2013-01-01

    Polyatomic molecules have several electronic states that have similar energies. Consequently, their chemical dynamics often involve nonadiabatic transitions between multiple potential energy surfaces. Elucidating the complex reactions of polyatomic molecules is one of the most important tasks of theoretical and experimental studies of chemical dynamics. This paper describes our recent experimental studies of the multidimensional multisurface dynamics of polyatomic molecules based on two-dimensional ion/electron imaging. It also discusses ultrafast photoelectron spectroscopy of liquids for elucidating nonadiabatic electronic dynamics in aqueous solutions. PMID:23318678

  16. The molecular dynamics of atmospheric reaction

    NASA Technical Reports Server (NTRS)

    Polanyi, J. C.

    1971-01-01

    Detailed information about the chemistry of the upper atmosphere took the form of quantitative data concerning the rate of reaction into specified states of product vibration, rotation and translation for exothermic reaction, as well as concerning the rate of reaction from specified states of reagent vibration, rotation and translation for endothermic reaction. The techniques used were variants on the infrared chemiluminescence method. Emphasis was placed on reactions that formed, and that removed, vibrationally-excited hydroxyl radicals. Fundamental studies were also performed on exothermic reactions involving hydrogen halides.

  17. [Reactions to insect stings and bites].

    PubMed

    Ljubojević, Suzana; Lipozencić, Jasna

    2011-01-01

    Reaction to insect sting and bite may be local, such as erythema, edema and pruritus, or systemic, such as anaphylactic reaction. Diagnosis can be made by patient history, clinical picture, skin testing, total and specific IgE level, and provocation test. Local reactions are treated with cold compresses, topical corticosteroids and oral antihistamines. Oral and intramuscular antihistamines and corticosteroids are used for the treatment of mild systemic reactions, and in severe reaction epinephrine injections are added. Hyposensitization is indicated in patients with severe systemic reaction, positive skin tests and high level of specific IgE antibodies.

  18. Microfabricated sleeve devices for chemical reactions

    DOEpatents

    Northrup, M. Allen

    2003-01-01

    A silicon-based sleeve type chemical reaction chamber that combines heaters, such as doped polysilicon for heating, and bulk silicon for convection cooling. The reaction chamber combines a critical ratio of silicon and non-silicon based materials to provide the thermal properties desired. For example, the chamber may combine a critical ratio of silicon and silicon nitride to the volume of material to be heated (e.g., a liquid) in order to provide uniform heating, yet low power requirements. The reaction chamber will also allow the introduction of a secondary tube (e.g., plastic) into the reaction sleeve that contains the reaction mixture thereby alleviating any potential materials incompatibility issues. The reaction chamber may be utilized in any chemical reaction system for synthesis or processing of organic, inorganic, or biochemical reactions, such as the polymerase chain reaction (PCR) and/or other DNA reactions, such as the ligase chain reaction, which are examples of a synthetic, thermal-cycling-based reaction. The reaction chamber may also be used in synthesis instruments, particularly those for DNA amplification and synthesis.

  19. Pulp reaction to vital bleaching.

    PubMed

    Fugaro, Jessica O; Nordahl, Inger; Fugaro, Orlando J; Matis, Bruce A; Mjör, Ivar A

    2004-01-01

    This study evaluated the histological changes in dental pulp after nightguard vital bleaching with 10% carbamide peroxide gel. Fifteen patients between 12 and 26 years of age with caries-free first premolars scheduled for orthodontic extraction were treated with 10% Opalescence (Ultradent Products, Inc). Tooth #5 had four days of bleaching, tooth #12 was treated for two weeks, tooth #21 was bleached for two weeks followed by two weeks without treatment and tooth #28, serving as the control, was without treatment. All teeth were extracted at the same time. Immediately after extraction, 4 mm of the most apical portion of the root was sectioned off and each specimen was placed in a vial containing 10% neutral buffered formalin. The samples were prepared for histological evaluation at the Scandinavian Institute of Dental Materials (NIOM) and microscopically examined independently at both NIOM and Indiana University School of Dentistry (IUSD). Pulp reactions were semi-quantitatively graded as none, slight, moderate and severe. Slight pulpal changes were detected in 16 of the 45 bleached teeth. Neither moderate nor severe reactions were observed. The findings indicate that the slight histological changes sometimes observed after bleaching tend to resolve within two weeks post-treatment. Statistical differences existed only between the untreated control and the four-day (p=0.0109) and two-week (p=0.0045) treatment groups. The findings from this study demonstrated that nightguard vital bleaching procedures using 10% carbamide peroxide might cause initial mild, localized pulp reactions. However, the minor histological changes observed did not affect the overall health of the pulp tissue and were reversible within two weeks post-treatment. Therefore, two weeks of treatment with 10% carbamide peroxide used for nightguard vital bleaching is considered safe for dental pulp. PMID:15279473

  20. Control Electronics For Reaction Wheel

    NASA Technical Reports Server (NTRS)

    Chamberlin, Keith

    1995-01-01

    Bidirectional operation achieved with single-polarity main power supply. Control circuitry generates pulse-width-modulated 800-Hz waveforms to drive two-phase ac motor and reaction wheel. Operates partly in response to digital magnitude-and-direction torque command generated by external control subsystem and partly in response to tachometric feedback in form of two once-per-revolution sinusoids with amplitudes proportional to speed. Operation in either of two modes called "normal" and "safehold." In normal mode, drive pulses timed so that, on average over one or few cycles, motor applies commanded torque. In safehold mode, pulses timed to keep motor running at set speed in one direction.

  1. Charge separation in photoredox reactions

    SciTech Connect

    Kevan, L.

    1990-07-31

    The structural aspects controlling charge separation in molecular photoionization reactions in organized molecular assemblies involving micelles and vesicles are being studied by optical and electron magnetic resonance techniques including the time domain technique of electron spin echo modulation (ESEM). ESEM is particularly well adapted to the study of disordered systems as exemplified by micelles and vesicles. In addition to conventional studies by optical absorption and electron spin resonance, ESEM allows detection and analysis of extremely weak electron-nuclear dipolar interaction which gives structural information often not available by other experimental techniques. 32 refs., 2 figs.

  2. Chemical reactions at aqueous interfaces

    NASA Astrophysics Data System (ADS)

    Vecitis, Chad David

    2009-12-01

    Interfaces or phase boundaries are a unique chemical environment relative to individual gas, liquid, or solid phases. Interfacial reaction mechanisms and kinetics are often at variance with homogeneous chemistry due to mass transfer, molecular orientation, and catalytic effects. Aqueous interfaces are a common subject of environmental science and engineering research, and three environmentally relevant aqueous interfaces are investigated in this thesis: 1) fluorochemical sonochemistry (bubble-water), 2) aqueous aerosol ozonation (gas-water droplet), and 3) electrolytic hydrogen production and simultaneous organic oxidation (water-metal/semiconductor). Direct interfacial analysis under environmentally relevant conditions is difficult, since most surface-specific techniques require relatively `extreme' conditions. Thus, the experimental investigations here focus on the development of chemical reactors and analytical techniques for the completion of time/concentration-dependent measurements of reactants and their products. Kinetic modeling, estimations, and/or correlations were used to extract information on interfacially relevant processes. We found that interfacial chemistry was determined to be the rate-limiting step to a subsequent series of relatively fast homogeneous reactions, for example: 1) Pyrolytic cleavage of the ionic headgroup of perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA) adsorbed to cavitating bubble-water interfaces during sonolysis was the rate-determining step in transformation to their inorganic constituents carbon monoxide, carbon dioxide, and fluoride; 2) ozone oxidation of aqueous iodide to hypoiodous acid at the aerosol-gas interface is the rate-determining step in the oxidation of bromide and chloride to dihalogens; 3) Electrolytic oxidation of anodic titanol surface groups is rate-limiting for the overall oxidation of organics by the dichloride radical. We also found chemistry unique to the interface, for example: 1

  3. Forgiveness, retaliation and paranoid reactions.

    PubMed

    Hunter, R C

    1978-04-01

    It has been suggested that clinical states from grudgingness and habitual bitterness through to delusions of persecution are best resolved by forgiving. The process of forgiving requires that previously unacknowledged impulses, particularly aggressive ones, are accepted in oneself and others. If the therapist is aware of this, he can, in the transference, reinforce the patient's good introjects by providing a non-judgemental, acceptant model for the patient and thereby facilitate the adoption of the forgiving attitude. Sometimes habitual forgiving can occur as a reaction formation, and should be dealt with as such.

  4. Competing reaction channels in IR-laser-induced unimolecular reactions

    SciTech Connect

    Berman, M.R.

    1981-01-01

    The competing reaction channels in the unimolecular decomposition of two molecules, formaldehyde and tetralin were studied. A TEA CO/sub 2/ laser was used as the excitation source in all experiments. The dissociation of D/sub 2/CO was studied by infrared multiphoton dissociation (MPD) and the small-molecule nature of formaldehyde with regard to MPD was explored. The effect of collisions in MPD were probed by the pressure dependence of the MPD yield and ir fluorescence from multiphoton excited D/sub 2/CO. MPD yield shows a near cubic dependence in pure D/sub 2/CO which is reduced to a 1.7 power dependence when 15 torr of NO is added. The peak amplitude of 5 ..mu..m ir fluorescence from D/sub 2/CO is proportional to the square of the D/sub 2/CO pressure in pure D/sub 2/CO or in the presence of 50 torr of Ar. Results are explained in terms of bottlenecks to excitation at the v = 1 level which are overcome by a combination of vibrational energy transfer and rotational relaxation. The radical/molecule branching ratio in D/sub 2/CO MPD was 0.10 +- 0.02 at a fluence of 125 J/cm/sup 2/ at 946.0 cm/sup -1/. The barrier height to molecular dissociation was calculated to be 3.6 +- 2.0 kcal/mole below the radical threshold or 85.0 +- 3.0 kcal/mole above the ground state of D/sub 2/CO. In H/sub 2/CO, this corresponds to 2.5 +- 2.0 kcal/mole below the radical threshold or 83.8 +- 3.0 kcal/mole above the ground state. Comparison with uv data indicate that RRKM theory is an acceptable description of formaldehyde dissociation in the 5 to 10 torr pressure range. The unimolecular decomposition of tetralin was studied by MPD and SiF/sub 4/ - sensitized pyrolysis. Both techniques induce decomposition without the interference of catalytic surfaces. Ethylene loss is identified as the lowest energy reaction channel. Dehydrogenation is found to result from step-wise H atom loss. Isomerization via disproportionation is also identified as a primary reaction channel.

  5. Heavy atom isotope effects on enzymatic reactions

    NASA Astrophysics Data System (ADS)

    Paneth, Piotr

    1994-05-01

    The theory of isotope effects, which has proved to be extremely useful in providing geometrical details of transition states in a variety of chemical reactions, has recently found an application in studies of enzyme-catalyzed reactions. These reactions are multistep in nature with few steps being partially rate-limiting, thus interpretation of these isotope effects is more complex. The theoretical framework of heavy-atom isotope effects on enzymatic reactions is critically analyzed on the basis of recent results of: carbon kinetic isotope effects on carbonic anhydrase and catalytic antibodies; multiple carbon, deuterium isotope effects on reactions catalyzed by formate decarboxylase; oxygen isotope effects on binding processes in reactions catalyzed by pyruvate kinase; and equilibrium oxygen isotope effect on binding an inhibitor to lactate dehydrogenase. The advantages and disadvantages of reaction complexity in learning details of formal and molecular mechanisms are discussed in the examples of reactions catalyzed by phosphoenolpyruvate carboxylase, orotidine decarboxylase and glutamine synthetase.

  6. Suppression of reactions to certain cosmetics.

    PubMed

    Fisher, A A

    1977-08-01

    Reactions to hair dyes and bleaches may be "suppressed" with corticosteroids and antihistamines. Reactions to nail polish may be prevented by a "drying" or "polymerizing" technique. Sensitization to certain perfume ingredients may be inhibited by a "quenching" phenomenon.

  7. A Light-Activated Reaction Manifold.

    PubMed

    Hiltebrandt, Kai; Elies, Katharina; D'hooge, Dagmar R; Blinco, James P; Barner-Kowollik, Christopher

    2016-06-01

    We introduce an efficient reaction manifold where the rate of a thermally induced ligation can be controlled by a photonic field via two competing reaction channels. The effectiveness of the reaction manifold is evidenced by following the transformations of macromolecular chain termini via high-resolution mass spectrometry and subsequently by selective block copolymer formation. The light-controlled reaction manifold consists of a so-called o-quinodimethane species, a photocaged diene, that reacts in the presence of light with suitable enes in a Diels-Alder reaction and undergoes a transformation into imines with amines in the absence of light. The chemical selectivity of the manifold is controlled by the amount of ene present in the reaction and can be adjusted from 100% imine formation (0% photo product) to 5% imine formation (95% photo product). The reported light-controlled reaction manifold is highly attractive because a simple external field is used to switch the selectivity of specific reaction channels.

  8. Effective radii of deuteron-induced reactions

    SciTech Connect

    Hashimoto, Shintaro; Chiba, Satoshi; Yahiro, Masanobu; Ogata, Kazuyuki; Minomo, Kosho

    2011-05-15

    The continuum-discretized coupled-channels method (CDCC) for exclusive reactions and the eikonal reaction theory (ERT) as an extension of CDCC to inclusive reactions are applied to deuteron-induced reactions. The CDCC result reproduces experimental data on the reaction cross section for d+{sup 58}Ni scattering at 200 MeV/nucleon, and ERT provides data on the neutron-stripping cross section for inclusive {sup 7}Li(d,n) reaction at 40 MeV. For deuteron-induced reactions at 200 MeV/nucleon, target-dependence of the reaction, elastic-breakup, nucleon-stripping, nucleon-removal, and complete- and incomplete-fusion cross sections is clearly explained by simple formulas. Accuracy of the Glauber model is also investigated.

  9. Radiation Reaction and Thomson Scattering

    SciTech Connect

    Koga, James

    2007-07-11

    In recent years high power high irradiance lasers of peta-watt order have been or are under construction. In addition, in the next 10 years lasers of unprecedented powers, exa-watt, could be built If lasers such as these are focused to very small spot sizes, extremely high laser irradiances will be achieved. When electrons interact with such a laser, they become highly relativistic over very short time and spatial scales. Usually the motion of an electron under the influence of electromagnetic fields is influenced to a small extent by radiation emission from acceleration. However, under such violent acceleration the amount of radiation emitted by electrons can become so large that significant damping of the electron motion by the emission of this radiation can occur. In this lecture note we will study this problem of radiation reaction by first showing how the equations of motion are obtained. Then, we will examine the problems with such equations and what approximations are made. We will specifically examine the effects of radiation reaction on the Thomson scattering of radiation from counter-streaming laser pulses and high energy electrons through the numerical integration of the equations of motion. We will briefly address the fundamental physics, which can be addressed by using such high irradiance lasers interacting with high energy electrons.

  10. Nuclear reactions from lattice QCD

    DOE PAGESBeta

    Briceño, Raúl A.; Davoudi, Zohreh; Luu, Thomas C.

    2015-01-13

    In this study, one of the overarching goals of nuclear physics is to rigorously compute properties of hadronic systems directly from the fundamental theory of strong interactions, Quantum Chromodynamics (QCD). In particular, the hope is to perform reliable calculations of nuclear reactions which will impact our understanding of environments that occur during big bang nucleosynthesis, the evolution of stars and supernovae, and within nuclear reactors and high energy/density facilities. Such calculations, being truly ab initio, would include all two-nucleon and three- nucleon (and higher) interactions in a consistent manner. Currently, lattice QCD provides the only reliable option for performing calculationsmore » of some of the low-energy hadronic observables. With the aim of bridging the gap between lattice QCD and nuclear many-body physics, the Institute for Nuclear Theory held a workshop on Nuclear Reactions from Lattice QCD on March 2013. In this review article, we report on the topics discussed in this workshop and the path planned to move forward in the upcoming years.« less

  11. Chemical reactions in perfume ageing.

    PubMed

    Blakeway, J M; Frey, M L; Lacroix, S; Salerno, M S

    1987-10-01

    Summary The interactions between a typical range of perfume materials, alcohol, water, air, elevated temperatures and daylight have been studied. The changes of composition, acidity, peroxide content and the formation of new molecules were followed. The stabilizing effects of UV absorbers, antioxidants and sequestering agents were examined; - the formation of acid reaction products was accelerated by air, temperature, daylight and the presence of natural products; - peroxide formation was accelerated by heat and light and the presence of air; as the acidity increased, the peroxides decomposed; - the acetalization of other aldehydes was accelerated by temperature and daylight and the presence of natural products up to 40% of certain aldehydes may be converted into acetals after 3 months at 37 degrees C; - many stereoisomerizations occur, e.g., transisoeugenol is converted up to 10% into the cis isomer after 3 months at 37 degrees C and 58% in daylight; - evaluation of antioxidants UV absorbers and sequestering agents showed a significant protection against deterioration only by EDTA dipotassium salt; - ethanol was converted into acetaldehyde and its diethylacetal by peroxides present and formed on ageing up to 0.08%. Natural products accelerated this formation; - the reaction between benzoyl peroxide and ethanol was shown to yield up to 63% of acetaldehyde+diethyl acetal whilst di-t-butyl peroxide gave only 23% under the same conditions. These results go some way to explaining odour changes in perfume ageing.

  12. Nuclear reactions from lattice QCD

    SciTech Connect

    Briceño, Raúl A.; Davoudi, Zohreh; Luu, Thomas C.

    2015-01-13

    In this study, one of the overarching goals of nuclear physics is to rigorously compute properties of hadronic systems directly from the fundamental theory of strong interactions, Quantum Chromodynamics (QCD). In particular, the hope is to perform reliable calculations of nuclear reactions which will impact our understanding of environments that occur during big bang nucleosynthesis, the evolution of stars and supernovae, and within nuclear reactors and high energy/density facilities. Such calculations, being truly ab initio, would include all two-nucleon and three- nucleon (and higher) interactions in a consistent manner. Currently, lattice QCD provides the only reliable option for performing calculations of some of the low-energy hadronic observables. With the aim of bridging the gap between lattice QCD and nuclear many-body physics, the Institute for Nuclear Theory held a workshop on Nuclear Reactions from Lattice QCD on March 2013. In this review article, we report on the topics discussed in this workshop and the path planned to move forward in the upcoming years.

  13. Modeling the complex bromate-iodine reaction.

    PubMed

    Machado, Priscilla B; Faria, Roberto B

    2009-05-01

    In this article, it is shown that the FLEK model (ref 5 ) is able to model the experimental results of the bromate-iodine clock reaction. Five different complex chemical systems, the bromate-iodide clock and oscillating reactions, the bromite-iodide clock and oscillating reactions, and now the bromate-iodine clock reaction are adequately accounted for by the FLEK model. PMID:19361181

  14. The chlorate-iodine clock reaction.

    PubMed

    Oliveira, André P; Faria, Roberto B

    2005-12-28

    A clock reaction produced by mixing chlorate and iodine solutions in perchloric acid media is reported. This is the first example of a clock reaction using chlorate as a reagent. Increasing chlorate and acid concentration reduces the induction period. Changing the initial iodine concentration does not affect the length of the induction period. The discovery of this clock reaction opens the possibility that a new family of oscillation reactions can be built using chlorate as reagent. PMID:16366551

  15. Indirect techniques for astrophysical reaction rates determinations

    NASA Astrophysics Data System (ADS)

    Hammache, F.; Oulebsir, N.; Benamara, S.; De Séréville, N.; Coc, A.; Laird, A.; Stefan, I.; Roussel, P.

    2016-05-01

    Direct measurements of nuclear reactions of astrophysical interest can be challenging. Alternative experimental techniques such as transfer reactions and inelastic scattering reactions offer the possibility to study these reactions by using stable beams. In this context, I will present recent results that were obtained in Orsay using indirect techniques. The examples will concern various astrophysical sites, from the Big-Bang nucleo synthesis to the production of radioisotopes in massive stars.

  16. Severe reactions to Cuprophan capillary dialyzers.

    PubMed

    Popli, S; Ing, T S; Daugirdas, J T; Kheirbek, A O; Viol, G W; Vilbar, R M; Gandhi, V C

    1982-08-01

    Five severe reactions occurred in four maintenance hemodialysis patients 1 to 5 minutes after initiating dialysis with Cuprophan capillary dialyzers. All reactions were life-threatening and one resulted in death. Inadequate rinsing of the dialyzers was probably the cause of the reactions. The severe reactions were managed by immediate discontinuation of dialysis and the institution of supportive treatment. Antianaphylactic measures were also attempted, but their therapeutic effectiveness remains to be determined. PMID:7181733

  17. Reactions of butadiyne. 1: The reaction with hydrogen atoms

    NASA Technical Reports Server (NTRS)

    Schwanebeck, W.; Warnatz, J.

    1984-01-01

    The reaction of hydrogen (H) atoms with butadiene (C4H2) was studied at room temperature in a pressure range between w mbar and 10 mbar. The primary step was an addition of H to C4H2 which is in its high pressure range at p 1 mbar. Under these conditions the following addition of a second H atom lies in the transition region between low and high pressure range. Vibrationally excited C4H4 can be deactivated to form buten-(1)-yne-(3)(C4H4) or decomposes into two C2H2 molecules. The rate constant at room temperature for primary step is given. The second order rate constant for the consumption of buten-(1)-yne-(3) is an H atom excess at room temperature is given.

  18. Surface catalyzed mercury transformation reactions

    NASA Astrophysics Data System (ADS)

    Varanasi, Patanjali

    Mercury is a known pollutant that has detrimental effect on human health and environment. The anthropogenic emissions of mercury account for 10 to 30% of worldwide mercury emissions. There is a need to control/reduce anthropogenic mercury emissions. Many mercury control technologies are available but their effectiveness is dependent on the chemical form of mercury, because different chemical forms of mercury have different physical and chemical properties. Mercury leaves the boiler in its elemental form but goes through various transformations in the post-combustion zone. There is a need to understand how fly ash and flue gas composition affect speciation, partitioning, and reactions of mercury under the full range of post-combustion zone conditions. This knowledge can then be used to predict the chemical transformation of mercury (elemental, oxidized or particulate) in the post combustion zone and thus help with the control of mercury emissions from coal-burning power plants. To accomplish this goal present study was conducted using five coal fly ashes. These ashes were characterized and their catalytic activity was compared under selected reaction conditions in a fixed bed reactor. Based on the results from these fly ash experiments, three key components (carbon, iron oxide and calcium oxide) were chosen. These three components were then used to prepare model fly ashes. Silica/alumina was used as a base for these model fly ashes. One, two or three component model fly ashes were then prepared to investigate mercury transformation reactions. The third set of experiments was performed with five different oxidation catalysts to further understand the mercury oxidation process. Based on the results of these three studies the key components were predicted for different fly ash compositions under variety of flue gas conditions. A fixed bed reactor system was used to conduct this study. In all the experiments, the inlet concentration of Hg0(g) was maintained at 35 mug

  19. New reaction tester accurate within 56 microseconds

    NASA Technical Reports Server (NTRS)

    Brown, H.

    1972-01-01

    Testing device measures simple and disjunctive reaction time of human subject to light stimuli. Tester consists of reaction key, logic card, panel mounted neon indicators, and interconnecting wiring. Device is used for determining reaction times of patients undergoing postoperative neurological therapy.

  20. 'GREENER' CHEMICAL SYNTHESES USING ALTERNATE REACTION CONDITIONS

    EPA Science Inventory

    Microwave (MW) irradiation in conjunction with water as reaction media has proven to be a greener chemical approach for expeditious N-alkylation reactions of amines and hydrazines wherein the reactions under mildly basic conditions afford tertiary amines and double N-alkylation t...

  1. Reaction-Map of Organic Chemistry

    ERIC Educational Resources Information Center

    Murov, Steven

    2007-01-01

    The Reaction-Map of Organic Chemistry lists all the most commonly studied reactions in organic chemistry on one page. The discussed Reaction-Map will act as another learning aide for the students, making the study of organic chemistry much easier.

  2. The Rate Laws for Reversible Reactions.

    ERIC Educational Resources Information Center

    King, Edward L.

    1986-01-01

    Provides background information for teachers on the rate laws for reversible reactions. Indicates that although prediction of the form of the rate law for a reverse reaction given the rate law for the forward reaction is not certain, the number of possibilities is limited because of relationships described. (JN)

  3. Modified triglyceride oil through reactions with phenyltriazolinedione

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The synthesis of a modified triglyceride oil was achieved through the reactions with 4-phenyl-1,2-4-triazoline-3,5-dione (PTAD). 1H NMR was used for structure determination and to monitor the reactions. Several reaction products were produced, and their relative yields depended on the stoichiometry ...

  4. An Iodine Fluorescence Quenching Clock Reaction

    ERIC Educational Resources Information Center

    Weinberg, Richard B.; Muyskens, Mark

    2007-01-01

    Clock reactions based upon competing oxidation and reduction reactions of iodine and starch as the most popular type of chemistry example is presented to illustrate the redox phenomena, reaction kinetics, and principles of chemical titration. The examination of the photophysical principles underlying the iodine fluorescence quenching clock…

  5. A Generalized Selection Rule for Pericyclic Reactions.

    ERIC Educational Resources Information Center

    He, Fu-Cheng; Pfeiffer, Gary V.

    1984-01-01

    Describes a convenient procedure, the Odd-Even Rule, for predicting the allowedness of forbiddenness of ground-state, pericyclic reactions. The rule is applied to a number of specific reactions. In contrast to the Woodward-Hoffman approach, the application to each reaction is always the same. (JN)

  6. Emotional and Behavioral Reaction to Intrusive Thoughts

    ERIC Educational Resources Information Center

    Berry, Lisa-Marie; May, Jon; Andrade, Jackie; Kavanagh, David

    2010-01-01

    A self-report measure of the emotional and behavioral reactions to intrusive thoughts was developed. The article presents data that confirm the stability, reliability, and validity of the new seven-item measure. Emotional and behavioral reactions to intrusions emerged as separate factors on the Emotional and Behavioral Reactions to Intrusions…

  7. Parental Reactions to Cleft Palate Children.

    ERIC Educational Resources Information Center

    Vanpoelvoorde, Leah

    This literature review examines parental reactions following the birth of a cleft lip/palate child, focusing primarily on the mother's reactions. The research studies cited have explored such influences on maternal reactions as her feelings of lack of control over external forces and her feelings of guilt that the deformity was her fault. Delays…

  8. Method of controlling fusion reaction rates

    DOEpatents

    Kulsrud, Russell M.; Furth, Harold P.; Valeo, Ernest J.; Goldhaber, Maurice

    1988-01-01

    A method of controlling the reaction rates of the fuel atoms in a fusion reactor comprises the step of polarizing the nuclei of the fuel atoms in a particular direction relative to the plasma confining magnetic field. Fusion reaction rates can be increased or decreased, and the direction of emission of the reaction products can be controlled, depending on the choice of polarization direction.

  9. Method of controlling fusion reaction rates

    DOEpatents

    Kulsrud, Russell M.; Furth, Harold P.; Valeo, Ernest J.; Goldhaber, Maurice

    1988-03-01

    A method of controlling the reaction rates of the fuel atoms in a fusion reactor comprises the step of polarizing the nuclei of the fuel atoms in a particular direction relative to the plasma confining magnetic field. Fusion reaction rates can be increased or decreased, and the direction of emission of the reaction products can be controlled, depending on the choice of polarization direction.

  10. Infant Defensive Reactions to Visual Occlusion.

    ERIC Educational Resources Information Center

    Adamson, Lauren; Tronick, Edward

    This paper describes the initial organization of the infant's reaction to having his vision occluded by an opaque cloth; traces the development of this reaction over the first six months; and probes the role the occlusion of vision plays in provoking the reaction. Fifty videotaped sessions of infants during two conditions - eyes covered with an…

  11. Reaction Order Ambiguity in Integrated Rate Plots

    ERIC Educational Resources Information Center

    Lee, Joe

    2008-01-01

    Integrated rate plots are frequently used in reaction kinetics to determine orders of reactions. It is often emphasised, when using this methodology in practice, that it is necessary to monitor the reaction to a substantial fraction of completion for these plots to yield unambiguous orders. The present article gives a theoretical and statistical…

  12. Reactions to Termination of Individual Treatment.

    ERIC Educational Resources Information Center

    Fortune, Anne E.; And Others

    1992-01-01

    Queried 69 social workers about termination reactions in most recently terminated individual cases. Clients' strongest reactions were positive affect, evaluation of success, evaluation of therapeutic experience, and positive flight. Least strong client reactions were nihilistic flight, regression, denial, recapitulation, and expression of need for…

  13. Indirect Methods for Nuclear Reaction Data

    SciTech Connect

    Escher, J E; Dietrich, F S

    2005-11-18

    Several indirect approaches for obtaining reaction cross sections are briefly reviewed. The Surrogate Nuclear Reactions method, which aims at determining cross sections for compound-nuclear reactions, is discussed in some detail. The validity of the Weisskopf-Ewing approximation in the Surrogate approach is studied for the example of neutron-induced fission of an actinide nucleus.

  14. Reaction dynamics near the barrier

    NASA Astrophysics Data System (ADS)

    Loveland, W.

    2011-10-01

    The availability of modest intensity (103-107 p/s) radioactive nuclear beams has had a significant impact on the study of nuclear reactions near the interaction barrier. The role of isospin in capture reactions is a case in point. Using heavy elements as a laboratory to explore these effects, we note that the cross section for producing an evaporation residue is σEVR(Ec . m .) = ∑ J = 0 JmaxσCN(Ec . m . , J) Wsur(Ec . m . , J) where σCN is the complete fusion cross section and Wsur is the survival probability of the completely fused system. The complete fusion cross section can be written as, σCN(Ec . m .) = ∑ J = 0 Jmaxσcapture(Ec . m .) PCN(Ec . m . , J) where σcapture(Ec.m.,J) is the ``capture'' cross section at center-of mass energy Ec.m. and spin J and PCN is the probability that the projectile-target system will evolve inside the fission saddle point to form a completely fused system rather than re-separating (quasi-fission). The systematics of the isospin dependence of the capture cross sections has been developed and the deduced interaction barriers for all known studies of capture cross sections with radioactive beams are in good agreement with recent predictions of an improved QMD model and semi-empirical models. The deduced barriers for these n-rich systems are lower than one would expect from the Bass or proximity potentials. In addition to the barrier lowering, there is an enhanced sub-barrier cross section in these n-rich systems that is of advantage in the synthesis of new heavy nuclei. Recent studies of the ``inverse fission'' of uranium (124,132Sn + 100Mo) have yielded unexpectedly low upper limits for this process due apparently to low values of the fusion probability, PCN. The fusion of halo nuclei, like 11Li with heavy nuclei, like 208Pb, promises to give new information about these and related nuclei and has led/may lead to unusual reaction mechanisms. This work was sponsored, in part, by the USDOE Office

  15. Kinetic studies of elementary chemical reactions

    SciTech Connect

    Durant, J.L. Jr.

    1993-12-01

    This program concerning kinetic studies of elementary chemical reactions is presently focussed on understanding reactions of NH{sub x} species. To reach this goal, the author is pursuing experimental studies of reaction rate coefficients and product branching fractions as well as using electronic structure calculations to calculate transition state properties and reaction rate calculations to relate these properties to predicted kinetic behavior. The synergy existing between the experimental and theoretical studies allow one to gain a deeper insight into more complex elementary reactions.

  16. Electromagnetic effects on explosive reaction and plasma

    SciTech Connect

    Tasker, Douglas G; Whitley, Von H; Mace, Jonathan L; Pemberton, Steven J; Sandoval, Thomas D; Lee, Richard J

    2010-01-01

    A number of studies have reported that electric fields can have quantifiable effects on the initiation and growth of detonation, yet the mechanisms of these effects are not clear. Candidates include Joule heating of the reaction zone, perturbations to the activation energy for chemical reaction, reduction of the Peierls energy barrier that facilitates dislocation motion, and acceleration of plasma projected from the reaction zone. In this study the possible role of plasma in the initiation and growth of explosive reaction is investigated. The effects of magnetic and electric field effects on reaction growth will be reviewed and recent experiments reported.

  17. Incidents of chemical reactions in cell equipment

    SciTech Connect

    Baldwin, N.M.; Barlow, C.R.

    1991-12-31

    Strongly exothermic reactions can occur between equipment structural components and process gases under certain accident conditions in the diffusion enrichment cascades. This paper describes the conditions required for initiation of these reactions, and describes the range of such reactions experienced over nearly 50 years of equipment operation in the US uranium enrichment program. Factors are cited which can promote or limit the destructive extent of these reactions, and process operations are described which are designed to control the reactions to minimize equipment damage, downtime, and the possibility of material releases.

  18. [Paranoid syndrome, paranoid reaction, paranoia].

    PubMed

    Pavlovský, P

    2006-01-01

    The term paranoid is derived from the Greek word paranoia meaning nadnese. It does not only mean self-reference, but there are various personality features as they are hostility, a tendency towards aggressiveness, irritability, a lack of sense of humour, feelings of overestimation of one-self and a tendency towards accusations. These features may appear also within normal psychology and they becomeclinically important after thein increase of intensity and conspicuousness (los sof hearing, long-term abuse of alcohol and psychostimulants) and organic disorders of the brain may contribute to the development of paranoidity. A mechanism of projection is considered as a decivise factor from the point of view of dynamic psychiatry. Clinically unimportant sign sof paranoidity can be observed due to unusual situations. If a paranoid reaction becomes more serious, formation of a paranoid delusion should be taken to account. In our koncept the term paranoid and paranoidity should be used only as a psychopathological term.

  19. Transport and Reactions of Pollutants

    NASA Astrophysics Data System (ADS)

    Gekas, Vassilis; Paraskaki, Ioanna

    The aim of this chapter is to provide the food scientist and engineer with tools for understanding the principles of transport and reaction of pollutants and their fate after being released or deposited into the environment. Furthermore, on the grounds of this understanding of basic principles, the food scientist and engineer will possess the ability to model these processes. Mathematical modeling nowadays is facilitated through the use of appropriate computer software programs. There are, generally speaking, a large number of programs available for such modeling and especially for the prediction of the fate of pollutants. When working with these programs it is advisable to understand the principles behind the program rather than treating it as a black box

  20. Radiation reaction of multipole moments

    SciTech Connect

    Kazinski, P. O.

    2007-08-15

    A Poincare-invariant description is proposed for the effective dynamics of a localized system of charged particles in classical electrodynamics in terms of the intrinsic multipole moments of the system. A relativistic-invariant definition for the intrinsic multipole moments of a system of charged particles is given. A new generally covariant action functional for a relativistic perfect fluid is proposed. In the case of relativistic charged dust, it is proven that the description of the problem of radiation reaction of multipole moments by the model of particles is equivalent to the description of this problem by a hydrodynamic model. An effective model is obtained for a pointlike neutral system of charged particles that possesses an intrinsic dipole moment, and the free dynamics of this system is described. The bound momentum of a point dipole is found.

  1. Local reaction kinetics by imaging

    NASA Astrophysics Data System (ADS)

    Suchorski, Yuri; Rupprechter, Günther

    2016-01-01

    In the present contribution we present an overview of our recent studies using the "kinetics by imaging" approach for CO oxidation on heterogeneous model systems. The method is based on the correlation of the PEEM image intensity with catalytic activity: scaled down to the μm-sized surface regions, such correlation allows simultaneous local kinetic measurements on differently oriented individual domains of a polycrystalline metal-foil, including the construction of local kinetic phase diagrams. This allows spatially- and component-resolved kinetic studies and, e.g., a direct comparison of inherent catalytic properties of Pt(hkl)- and Pd(hkl)-domains or supported μm-sized Pd-powder agglomerates, studies of the local catalytic ignition and the role of defects and grain boundaries in the local reaction kinetics.

  2. Tracking dissipation in capture reactions

    SciTech Connect

    Materna, T.; Bouchat, V.; Kinnard, V.; Hanappe, F.; Dorvaux, O.; Stuttge, L.; Schmitt, C.; Siwek-Wilczynska, K.; Aritomo, Y.; Bogatchev, A.; Prokhorova, E.; Ohta, M.

    2004-04-12

    Nuclear dissipation in capture reactions is investigated using backtracing. Combining the analysis procedure with dynamical models, the difficult and long-standing problem of competition and mixing of quasi-fission and fusion-fission is solved for the first time. At low excitation energy a new protocol able to handle low statistics data gives access to the precession neutron multiplicity in two different systems 48Ca + 208Pb, Pu. The results are in agreement with a domination of fusion-fission in the case of 256No and an equal mixing of quasi-fission and fusion-fission in the case of Z = 114. The nature of the relevant dissipation is determined as one-body dissipation.

  3. The OH + HBr reaction revisited

    NASA Technical Reports Server (NTRS)

    Ravishankara, A. R.; Wine, P. H.; Wells, J. R.

    1985-01-01

    Variable-temperature measurements of the rate coefficient /k(1)/ for the reaction OH + HBr yield Br + H2O are presented. The measurements are verified by two techniques: one involved a 266-nm pulsed-laser photolysis of O3/H2O/HBr/He mixtures in conjunction with time-resolved resonance fluorescence detection of OH, the second comprised pulsed laser-induced fluorescence detection of OH following 248-nm pulsed-laser photolysis of H2O2/HBr/Ar mixtures. It is reported that k(1) = (11.9 + or -1.4 x 10 to the -12th (cu cm)/(molecule)(s) independent of temperature. The measurements are compared with other available results.

  4. Can Reaction Mechanisms Be Proven?

    NASA Astrophysics Data System (ADS)

    Buskirk, Allen; Baradaran, Hediyeh

    2009-05-01

    "Can Reaction Mechanisms Be Proven?" generated spirited responses from its reviewers. The reviews were approximately evenly divided, and all were of very high quality. The authors agreed with the editor’s proposal that the reviewers convert their reviews into rebuttals or affirmations of the authors’ position for publication along with the article, which has been revised based on the reviews. Most agreed to such a process and their comments appear here. We hope that publication of this paper and well-reasoned rebuttals such as those provided here will initiate a wide-ranging discussion. JCE will provide an online forum for further discussion of the issue. Our hope is that both faculty and students will contribute their opinions and ideas to this discussion. See Reviewer Comments: Brown Lewis Yoon Wade

  5. Cold molecules, collisions and reactions

    NASA Astrophysics Data System (ADS)

    Hecker Denschlag, Johannes

    2016-05-01

    I will report on recent experiments of my group where we have been studying the formation of ultracold diatomic molecules and their subsequent inelastic/reactive collisions. For example, in one of these experiments we investigate collisions of triplet Rb2 molecules in the rovibrational ground state. We observe fast molecular loss and compare the measured loss rates to predictions based on universality. In another set of experiments we investigate the formation of (BaRb)+ molecules after three-body recombination of a single Ba+ ion with two Rb atoms in an ultracold gas of Rb atoms. Our investigations indicate that the formed (BaRb)+ molecules are weakly bound and that several secondary processes take place ranging from photodissociation of the (BaRb)+ molecule to reactive collisions with Rb atoms. I will explain how we can experimentally distinguish these processes and what the typical reaction rates are. Support from the German Research foundation DFG and the European Community is acknowledged.

  6. Allergic reactions to rubber condoms.

    PubMed

    Rademaker, M; Forsyth, A

    1989-06-01

    With the increased use of condoms, contact dermatitis to rubber is being seen more often. To develop a rubber condom suitable for use by rubber sensitive people, a "hypoallergenic" condom, which is washed in ammonia to reduce the residues of rubber accelerators, has been manufactured. Fifty patients allergic to various rubber accelerators were patch tested with an ordinary condom and the new washed condom. Fifty patients undergoing routine patch test investigation who were not allergic to rubber were also tested as controls. Twenty two of the rubber sensitive patients had a positive reaction to the new rubber condom compared with four of the control patients. Washing rubber condoms in ammonia does not appear to reduce the residues of rubber accelerators sufficiently for their use by rubber sensitive people. A non-allergenic condom is required.

  7. Radiation reaction of multipole moments

    NASA Astrophysics Data System (ADS)

    Kazinski, P. O.

    2007-08-01

    A Poincaré-invariant description is proposed for the effective dynamics of a localized system of charged particles in classical electrodynamics in terms of the intrinsic multipole moments of the system. A relativistic-invariant definition for the intrinsic multipole moments of a system of charged particles is given. A new generally covariant action functional for a relativistic perfect fluid is proposed. In the case of relativistic charged dust, it is proven that the description of the problem of radiation reaction of multipole moments by the model of particles is equivalent to the description of this problem by a hydrodynamic model. An effective model is obtained for a pointlike neutral system of charged particles that possesses an intrinsic dipole moment, and the free dynamics of this system is described. The bound momentum of a point dipole is found.

  8. A reversible nanoconfined chemical reaction.

    PubMed

    Nielsen, Thomas K; Bösenberg, Ulrike; Gosalawit, Rapee; Dornheim, Martin; Cerenius, Yngve; Besenbacher, Flemming; Jensen, Torben R

    2010-07-27

    Hydrogen is recognized as a potential, extremely interesting energy carrier system, which can facilitate efficient utilization of unevenly distributed renewable energy. A major challenge in a future "hydrogen economy" is the development of a safe, compact, robust, and efficient means of hydrogen storage, in particular, for mobile applications. Here we report on a new concept for hydrogen storage using nanoconfined reversible chemical reactions. LiBH4 and MgH2 nanoparticles are embedded in a nanoporous carbon aerogel scaffold with pore size Dmax approximately 21 nm and react during release of hydrogen and form MgB2. The hydrogen desorption kinetics is significantly improved compared to bulk conditions, and the nanoconfined system has a high degree of reversibility and stability and possibly also improved thermodynamic properties. This new scheme of nanoconfined chemistry may have a wide range of interesting applications in the future, for example, within the merging area of chemical storage of renewable energy.

  9. The Ozone-Iodine-Chlorate Clock Reaction

    PubMed Central

    Sant'Anna, Rafaela T. P.; Monteiro, Emily V.; Pereira, Juliano R. T.; Faria, Roberto B.

    2013-01-01

    This work presents a new clock reaction based on ozone, iodine, and chlorate that differs from the known chlorate-iodine clock reaction because it does not require UV light. The induction period for this new clock reaction depends inversely on the initial concentrations of ozone, chlorate, and perchloric acid but is independent of the initial iodine concentration. The proposed mechanism considers the reaction of ozone and iodide to form HOI, which is a key species for producing non-linear autocatalytic behavior. The novelty of this system lies in the presence of ozone, whose participation has never been observed in complex systems such as clock or oscillating reactions. Thus, the autocatalysis demonstrated in this new clock reaction should open the possibility for a new family of oscillating reactions. PMID:24386257

  10. The ozone-iodine-chlorate clock reaction.

    PubMed

    Sant'Anna, Rafaela T P; Monteiro, Emily V; Pereira, Juliano R T; Faria, Roberto B

    2013-01-01

    This work presents a new clock reaction based on ozone, iodine, and chlorate that differs from the known chlorate-iodine clock reaction because it does not require UV light. The induction period for this new clock reaction depends inversely on the initial concentrations of ozone, chlorate, and perchloric acid but is independent of the initial iodine concentration. The proposed mechanism considers the reaction of ozone and iodide to form HOI, which is a key species for producing non-linear autocatalytic behavior. The novelty of this system lies in the presence of ozone, whose participation has never been observed in complex systems such as clock or oscillating reactions. Thus, the autocatalysis demonstrated in this new clock reaction should open the possibility for a new family of oscillating reactions. PMID:24386257

  11. A Networks Approach to Modeling Enzymatic Reactions.

    PubMed

    Imhof, P

    2016-01-01

    Modeling enzymatic reactions is a demanding task due to the complexity of the system, the many degrees of freedom involved and the complex, chemical, and conformational transitions associated with the reaction. Consequently, enzymatic reactions are not determined by precisely one reaction pathway. Hence, it is beneficial to obtain a comprehensive picture of possible reaction paths and competing mechanisms. By combining individually generated intermediate states and chemical transition steps a network of such pathways can be constructed. Transition networks are a discretized representation of a potential energy landscape consisting of a multitude of reaction pathways connecting the end states of the reaction. The graph structure of the network allows an easy identification of the energetically most favorable pathways as well as a number of alternative routes.

  12. An Iodine Fluorescence Quenching Clock Reaction

    NASA Astrophysics Data System (ADS)

    Weinberg, Richard B.

    2007-05-01

    A fluorescent clock reaction is described that is based on the principles of the Landolt iodine reaction but uses the potent fluorescence quenching properties of triiodide to abruptly extinguish the ultraviolet fluorescence of optical brighteners present in liquid laundry detergents. The reaction uses easily obtained household products. One variation illustrates the sequential steps and mechanisms of the reaction; other variations maximize the dramatic impact of the demonstration; and a variation that uses liquid detergent in the Briggs Rauscher reaction yields a striking oscillating luminescence. The iodine fluorescence quenching clock reaction can be used in the classroom to explore not only the principles of redox chemistry and reaction kinetics, but also the photophysics of fluorescent pH probes and optical quenching.

  13. Computed potential energy surfaces for chemical reactions

    NASA Technical Reports Server (NTRS)

    Walch, Stephen P.

    1994-01-01

    Quantum mechanical methods have been used to compute potential energy surfaces for chemical reactions. The reactions studied were among those believed to be important to the NASP and HSR programs and included the recombination of two H atoms with several different third bodies; the reactions in the thermal Zeldovich mechanism; the reactions of H atom with O2, N2, and NO; reactions involved in the thermal De-NO(x) process; and the reaction of CH(squared Pi) with N2 (leading to 'prompt NO'). These potential energy surfaces have been used to compute reaction rate constants and rates of unimolecular decomposition. An additional application was the calculation of transport properties of gases using a semiclassical approximation (and in the case of interactions involving hydrogen inclusion of quantum mechanical effects).

  14. Computed potential energy surfaces for chemical reactions

    NASA Technical Reports Server (NTRS)

    Walch, Stephen P.

    1990-01-01

    The objective was to obtain accurate potential energy surfaces (PES's) for a number of reactions which are important in the H/N/O combustion process. The interest in this is centered around the design of the SCRAM jet engine for the National Aerospace Plane (NASP), which was envisioned as an air-breathing hydrogen-burning vehicle capable of reaching velocities as large as Mach 25. Preliminary studies indicated that the supersonic flow in the combustor region of the scram jet engine required accurate reaction rate data for reactions in the H/N/O system, some of which was not readily available from experiment. The most important class of combustion reactions from the standpoint of the NASP project are radical recombinaton reactions, since these reactions result in most of the heat release in the combustion process. Theoretical characterizations of the potential energy surfaces for these reactions are presented and discussed.

  15. Diastereodivergent organocatalytic asymmetric vinylogous Michael reactions.

    PubMed

    Li, Xin; Lu, Min; Dong, Yun; Wu, Wenbin; Qian, Qingqing; Ye, Jinxing; Dixon, Darren J

    2014-07-24

    One of the major challenges of modern asymmetric catalysis is the ability to selectively control the formation of all diastereoisomers of reaction products possessing multiple stereocenters. Pioneers of such diastereodivergent catalytic asymmetric processes have focused on reactions where the newly formed stereogenic centres are proximal to the active carbonyl group. To date, however, diastereodivergent reactions at remote positions remain an unmet challenge. Herein, we describe a catalyst-controlled diastereodivergence in the formation of remote stereocenters in the direct vinylogous Michael reactions of β, γ-unsaturated butenolides to α, β-unsaturated ketones. The reactions are enabled by two complementary, non-enantiomeric multifunctional catalysts, which mutually activate and organise both reactants, affording either the syn- or anti-adduct with high diastereo- and enantioselectivity. These two catalytic systems are also applicable in the Mukaiyama-Michael reactions and tandem Michael-Michael reactions.

  16. The ozone-iodine-chlorate clock reaction.

    PubMed

    Sant'Anna, Rafaela T P; Monteiro, Emily V; Pereira, Juliano R T; Faria, Roberto B

    2013-01-01

    This work presents a new clock reaction based on ozone, iodine, and chlorate that differs from the known chlorate-iodine clock reaction because it does not require UV light. The induction period for this new clock reaction depends inversely on the initial concentrations of ozone, chlorate, and perchloric acid but is independent of the initial iodine concentration. The proposed mechanism considers the reaction of ozone and iodide to form HOI, which is a key species for producing non-linear autocatalytic behavior. The novelty of this system lies in the presence of ozone, whose participation has never been observed in complex systems such as clock or oscillating reactions. Thus, the autocatalysis demonstrated in this new clock reaction should open the possibility for a new family of oscillating reactions.

  17. Nonequilibrium thermodynamics and a fluctuation theorem for individual reaction steps in a chemical reaction network

    NASA Astrophysics Data System (ADS)

    Pal, Krishnendu; Das, Biswajit; Banerjee, Kinshuk; Gangopadhyay, Gautam

    2015-09-01

    We have introduced an approach to nonequilibrium thermodynamics of an open chemical reaction network in terms of the propensities of the individual elementary reactions and the corresponding reverse reactions. The method is a microscopic formulation of the dissipation function in terms of the relative entropy or Kullback-Leibler distance which is based on the analogy of phase space trajectory with the path of elementary reactions in a network of chemical process. We have introduced here a fluctuation theorem valid for each opposite pair of elementary reactions which is useful in determining the contribution of each sub-reaction on the nonequilibrium thermodynamics of overall reaction. The methodology is applied to an oligomeric enzyme kinetics at a chemiostatic condition that leads the reaction to a nonequilibrium steady state for which we have estimated how each step of the reaction is energy driven or entropy driven to contribute to the overall reaction.

  18. Hypersensitivity reactions to iodinated contrast media.

    PubMed

    Guéant-Rodriguez, Rosa-Maria; Romano, Antonino; Barbaud, Annick; Brockow, Knut; Guéant, Jean-Louis

    2006-01-01

    Adverse reactions after iodinate contrast media (ICM) administration have been observed, which can be classified as immediate (i.e., occurring within one hour after administration) and delayed or non-immediate (i.e., occurring more than one hour after administration). Even though the incidence of ICM adverse reactions has been significantly reduced by the introduction of non-ionic compounds, immediate reactions still occur in about 3% of administrations. Different pathogenic mechanisms have been suggested for ICM reactions, including immunologic ones. Basophils and mast cells participate in immediate reactions through the release of mediators like histamine and tryptase, whereas a T-cell-mediated pathogenic mechanism is involved in most non-immediate reactions, particularly maculopapular rashes. Skin tests and specific IgE assays are carried out to diagnose immediate hypersensitivity reactions, while both delayed-reading intradermal tests and patch tests are usually performed to evaluate non-immediate reactions. However, in vitro specific IgE assays are not commercially available. As far as in vitro tests are concerned, a response involving ICM-related T-cell activity may be assessed by the lymphocyte transformation test. Allergologic evaluation appears to be indicated in hypersensitivity reactions to ICM, although the sensitivity, specificity, and predictive values of allergologic tests have not yet been established. This paper summarizes the current state of the art and addresses the research that is still needed on the pathogenic mechanisms, diagnosis, and prevention of ICM-induced hypersensitivity reactions.

  19. Anaphylactic reaction to lupine flour.

    PubMed

    Brennecke, Sabine; Becker, Wolf-Meinhard; Lepp, Ute; Jappe, Uta

    2007-09-01

    Roasted lupine seeds have been used as snack food in Mediterranean countries for years. Since the 1990s, lupine flour has been used as a substitute for or additive to other flours in countries of the European Union; usually the amount is so low that no declaration is required. Since 1994, a number of cases of immediate-type allergy to lupine flour-containing products have been published. A 52-year-old woman developed facial and mucosal edema, followed by dizziness and shortness of breath a few minutes after ingestion of a nut croissant containing lupine flour; she required emergency care. Allergy diagnostic tests revealed a total IgE of 116 kU/l, a highly elevated concentration of IgE specific for lupine seed (42.9 kU/l) and birch pollen IgE of 2.57 kU/l. Skin prick test with native lupine flour was strongly positive. Allergy against lupine seeds may develop de novo or via cross-reactivity to legumes, particularly peanuts, the latter being detectable in up to 88% of cases, founded on a strong sequence similarity between lupine and peanut allergens. In our patient, no cross-reactivity could be detected via immunoblotting, indicating a rare monovalent sensitization to lupine flour. Treatment consists of avoidance of lupine flour-containing products. Patients with proven peanut allergy should also avoid lupine flour because of the major risk of cross-reaction.

  20. Mediating chemical reactions using polysaccharides

    NASA Astrophysics Data System (ADS)

    Tyler, Lauren E.

    We have studied the NaBH4-mediated hydrogenation of select alkenes catalyzed by polysaccharide-stabilized nanoparticles. We compared the catalytic properties of Ni-based nanoparticles or Au/Co-based nanoparticles on the hydrogenation of cinnamic acid, cinnamide, cinnamyl alcohol, and ethyl cinnamate. We evaluated the possibility that the type of stabilizing polysaccharide surrounding the nanoparticle may affect the selectivity towards the alkene compounds that undergo the hydrogenation reaction. We found that the hydrogenation of cinnamide or ethyl cinnamate proceeded readily to 100% completion independent of the type of polysaccharide stabilizing the nanoparticle. However, the extent of the hydrogenation of cinnamyl alcohol and cinnamic acid varied greatly depending on the type of polysaccharide stabilizing the nanoparticle. In the course of these studies, we observed that some polysaccharides by themselves promoted the hydrolysis of ethyl cinnamate. Thus, we have raised the hypothesis that some polysaccharides may act as "esterases" and explored the interaction between select polysaccharides and a variety of ester compounds.

  1. Vertical two chamber reaction furnace

    DOEpatents

    Blaugher, Richard D.

    1999-03-16

    A vertical two chamber reaction furnace. The furnace comprises a lower chamber having an independently operable first heating means for heating the lower chamber and a gas inlet means for admitting a gas to create an ambient atmosphere, and an upper chamber disposed above the lower chamber and having an independently operable second heating means for heating the upper chamber. Disposed between the lower chamber and the upper chamber is a vapor permeable diffusion partition. The upper chamber has a conveyor means for conveying a reactant there through. Of particular importance is the thallinating of long-length thallium-barium-calcium-copper oxide (TBCCO) or barium-calcium-copper oxide (BCCO) precursor tapes or wires conveyed through the upper chamber to thereby effectuate the deposition of vaporized thallium (being so vaporized as the first reactant in the lower chamber at a temperature between about 700.degree. and 800.degree. C.) on TBCCO or BCCO tape or wire (the second reactant) at its simultaneous annealing temperature in the upper chamber of about 800.degree. to 950.degree. C. to thereby replace thallium oxide lost from TBCCO tape or wire because of the high annealing temperature or to deposit thallium on BCCO tape or wire. Continuously moving the tape or wire provides a single-step process that effectuates production of long-length TBCCO superconducting product.

  2. Vertical two chamber reaction furnace

    DOEpatents

    Blaugher, R.D.

    1999-03-16

    A vertical two chamber reaction furnace is disclosed. The furnace comprises a lower chamber having an independently operable first heating means for heating the lower chamber and a gas inlet means for admitting a gas to create an ambient atmosphere, and an upper chamber disposed above the lower chamber and having an independently operable second heating means for heating the upper chamber. Disposed between the lower chamber and the upper chamber is a vapor permeable diffusion partition. The upper chamber has a conveyor means for conveying a reactant there through. Of particular importance is the thallinating of long-length thallium-barium-calcium copper oxide (TBCCO) or barium-calcium-copper oxide (BCCO) precursor tapes or wires conveyed through the upper chamber to thereby effectuate the deposition of vaporized thallium (being so vaporized as the first reactant in the lower chamber at a temperature between about 700 and 800 C) on TBCCO or BCCO tape or wire (the second reactant) at its simultaneous annealing temperature in the upper chamber of about 800 to 950 C to thereby replace thallium oxide lost from TBCCO tape or wire because of the high annealing temperature or to deposit thallium on BCCO tape or wire. Continuously moving the tape or wire provides a single-step process that effectuates production of long-length TBCCO superconducting product. 2 figs.

  3. Reaction products of chlorine dioxide.

    PubMed Central

    Stevens, A A

    1982-01-01

    Inspection of the available literature reveals that a detailed investigation of the aqueous organic chemistry of chlorine dioxide and systematic identification of products formed during water disinfection has not been considered. This must be done before an informed assessment can be made of the relative safety of using chlorine dioxide as a disinfectant alternative to chlorine. Although trihalomethanes are generally not formed by the action of chlorine dioxide, the products of chlorine dioxide treatment of organic materials are oxidized species, some of which also contain chlorine. The relative amounts of species types may depend on the amount of chlorine dioxide residual maintained and the concentration and nature of the organic material present in the source water. The trend toward lower concentrations of chlorinated by-products with increasing ClO2 concentration, which was observed with phenols, has not been observed with natural humic materials as measured by the organic halogen parameter. Organic halogen concentrations have been shown to increase with increasing chlorine dioxide dose, but are much lower than those observed when chlorine is applied. Aldehydes have been detected as apparent by-products of chlorine dioxide oxidation reactions in a surface water that is a drinking water source. Some other nonchlorinated products of chlorine dioxide treatment may be quinones and epoxides. The extent of formation of these moieties within the macromolecular humic structure is also still unknown. PMID:7151750

  4. Demisable Reaction-Wheel Assembly

    NASA Technical Reports Server (NTRS)

    Roder, Russell; Ahronovich, Eliezer; Davis, Milton C., III

    2008-01-01

    A document discusses the concept of a demisable motor-drive-and-flywheel assembly [reaction-wheel assembly (RWA)] used in controlling the attitude of a spacecraft. Demisable as used here does not have its traditional legal meaning; instead, it signifies susceptible to melting, vaporizing, and/or otherwise disintegrating during re-entry of the spacecraft into the atmosphere of the Earth so as not to pose a hazard to anyone or anything on the ground. Prior RWAs include parts made of metals (e.g., iron, steel, and titanium) that melt at high temperatures and include structures of generally closed character that shield some parts (e.g., magnets) against re-entry heating. In a demisable RWA, the flywheel would be made of aluminum, which melts at a lower temperature. The flywheel web would not be a solid disk but would have a more open, nearly-spoke-like structure so that it would disintegrate more rapidly; hence, the flywheel rim would separate more rapidly so that parts shielded by the rim would be exposed sooner to re-entry heating. In addition, clearances between the flywheel and other components would be made greater, imparting a more open character and thus increasing the exposure of those components.

  5. Reaction Coordinates and Mechanistic Hypothesis Tests.

    PubMed

    Peters, Baron

    2016-05-27

    Reaction coordinates are integral to several classic rate theories that can (a) predict kinetic trends across conditions and homologous reactions, (b) extract activation parameters with a clear physical interpretation from experimental rates, and (c) enable efficient calculations of free energy barriers and rates. New trajectory-based rare events methods can provide rates directly from dynamical trajectories without a reaction coordinate. Trajectory-based frameworks can also generate ideal (but abstract) reaction coordinates such as committors and eigenfunctions of the master equation. However, rates and mechanistic insights obtained from trajectory-based methods and abstract coordinates are not readily generalized across simulation conditions or reaction families. We discuss methods for identifying physically meaningful reaction coordinates, including committor analysis, variational transition state theory, Kramers-Langer-Berezhkovskii-Szabo theory, and statistical inference methods that can use path sampling data to screen, mix, and optimize thousands of trial coordinates. Special focus is given to likelihood maximization and inertial likelihood maximization approaches.

  6. Antibody-mediated cofactor-driven reactions

    DOEpatents

    Schultz, Peter G.

    1993-01-01

    Chemical reactions capable of being rate-enhanced by auxiliary species which interact with the reactants but do not become chemically bound to them in the formation of the final product are performed in the presence of antibodies which promote the reactions. The antibodies contain regions within their antigen binding sites which recognize the auxiliary species in a conformation which promotes the reaction. The antigen binding site frequently recognizes a particular transition state complex or other high energy complex along the reaction coordinate, thereby promoting the progress of the reaction along the desired route as opposed to other less favorable routes. Various classes of reaction together with appropriate antigen binding site specificities tailored for each are disclosed.

  7. Studying Reaction Intermediates Formed at Graphenic Surfaces

    NASA Astrophysics Data System (ADS)

    Sarkar, Depanjan; Sen Gupta, Soujit; Narayanan, Rahul; Pradeep, Thalappil

    2014-03-01

    We report in-situ production and detection of intermediates at graphenic surfaces, especially during alcohol oxidation. Alcohol oxidation to acid occurs on graphene oxide-coated paper surface, driven by an electrical potential, in a paper spray mass spectrometry experiment. As paper spray ionization is a fast process and the time scale matches with the reaction time scale, we were able to detect the intermediate, acetal. This is the first observation of acetal formed in surface oxidation. The process is not limited to alcohols and the reaction has been extended to aldehydes, amines, phosphenes, sugars, etc., where reaction products were detected instantaneously. By combining surface reactions with ambient ionization and mass spectrometry, we show that new insights into chemical reactions become feasible. We suggest that several other chemical transformations may be studied this way. This work opens up a new pathway for different industrially and energetically important reactions using different metal catalysts and modified substrate.

  8. Reaction Coordinates and Mechanistic Hypothesis Tests

    NASA Astrophysics Data System (ADS)

    Peters, Baron

    2016-05-01

    Reaction coordinates are integral to several classic rate theories that can (a) predict kinetic trends across conditions and homologous reactions, (b) extract activation parameters with a clear physical interpretation from experimental rates, and (c) enable efficient calculations of free energy barriers and rates. New trajectory-based rare events methods can provide rates directly from dynamical trajectories without a reaction coordinate. Trajectory-based frameworks can also generate ideal (but abstract) reaction coordinates such as committors and eigenfunctions of the master equation. However, rates and mechanistic insights obtained from trajectory-based methods and abstract coordinates are not readily generalized across simulation conditions or reaction families. We discuss methods for identifying physically meaningful reaction coordinates, including committor analysis, variational transition state theory, Kramers-Langer-Berezhkovskii-Szabo theory, and statistical inference methods that can use path sampling data to screen, mix, and optimize thousands of trial coordinates. Special focus is given to likelihood maximization and inertial likelihood maximization approaches.

  9. Anatomy of an Elementary Chemical Reaction

    NASA Astrophysics Data System (ADS)

    Alexander, Andrew J.; Zare, Richard N.

    1998-09-01

    The alchemists of old sought the knowledge to transform one material to another-for example, base metals into gold-as a path to the elixir of life. As chemists have concerned themselves with the transformation from compound to compound, so they have become involved in trying to uncover the structures of molecules and the pathways that reactions follow. Classically, the study of reaction mechanisms in chemistry encompasses reaction kinetics, the study of velocities or rates of reactions, and reaction dynamics, the study of the nanoscopic motion and rearrangement of atoms during a reactive event. An essential aim of this article is to bring the reader to a favorable vantage point with a brief introduction to reactive dynamics, and from there to describe some examples of recent strategies that have been employed to promote a fundamental understanding of the anatomy of elementary chemical reactions. In the final section we ponder future directions for this rapidly evolving field of research.

  10. Estimating the Backup Reaction Wheel Orientation Using Reaction Wheel Spin Rates Flight Telemetry from a Spacecraft

    NASA Technical Reports Server (NTRS)

    Rizvi, Farheen

    2013-01-01

    A report describes a model that estimates the orientation of the backup reaction wheel using the reaction wheel spin rates telemetry from a spacecraft. Attitude control via the reaction wheel assembly (RWA) onboard a spacecraft uses three reaction wheels (one wheel per axis) and a backup to accommodate any wheel degradation throughout the course of the mission. The spacecraft dynamics prediction depends upon the correct knowledge of the reaction wheel orientations. Thus, it is vital to determine the actual orientation of the reaction wheels such that the correct spacecraft dynamics can be predicted. The conservation of angular momentum is used to estimate the orientation of the backup reaction wheel from the prime and backup reaction wheel spin rates data. The method is applied in estimating the orientation of the backup wheel onboard the Cassini spacecraft. The flight telemetry from the March 2011 prime and backup RWA swap activity on Cassini is used to obtain the best estimate for the backup reaction wheel orientation.

  11. Cross-coupling reaction with lithium methyltriolborate.

    PubMed

    Yamamoto, Yasunori; Ikizakura, Kazuya; Ito, Hajime; Miyaura, Norio

    2012-12-28

    We newly developed lithium methyltriolborate as an air-stable white solid that is convenient to handle. The good performance of this triolborate for metal-catalyzed bond-forming reactions was demonstrated in palladium-catalyzed cross-coupling reactions with haloarenes. Cross-coupling reaction of [MeB(OCH₂)₃CCH₃]Li with aryl halides occurred in the presence of Pd(OAc)₂/RuPhos complex in refluxing MeOH/H₂O and the absence of bases.

  12. The Science of Low Energy Nuclear Reactions

    NASA Astrophysics Data System (ADS)

    Storms, Edmund

    2007-03-01

    The large literature describing the anomalous behavior attributed to cold fusion or low energy nuclear reactions has been critically described in a recently published book. Over 950 publications are evaluated allowing the phenomenon to be understood. A new class of nuclear reactions has been discovered that are able to generate practical energy without significant radiation or radioactivity. Edmund K Storms, The Science of Low Energy Nuclear Reactions, in press (2006). Also see: http://www.lenr-canr.org/StudentsGuide.htm .

  13. Hypersensitivity reactions to carboplatin in children.

    PubMed

    Lazzareschi, Ilaria; Ruggiero, Antonio; Riccardi, Riccardo; Attinà, Giorgio; Colosimo, Cesare; Lasorella, Anna

    2002-05-01

    Hypersensitivity reactions to carboplatin are rare but sometimes life-threatening events may occur requiring discontinuation of treatment. In our study, we describe clinical features and diagnostic procedures of carboplatin-associated reactions in children affected by low-grade astrocytoma and treated with multiple courses of carboplatin. In 6 out of 29 children, we reported allergic events. We also report a desensitization protocol for carboplatin administration, which allowed the patients to receive effective treatment without adverse reactions.

  14. AMSD Reaction Structure Cryo Deformation Test Plan

    NASA Technical Reports Server (NTRS)

    Eng, Ron; Hraba, John; Thornton, Gary; Baker, Mark; Haight, Harlan; Hadaway, James; Blackwell, Lisa; Stahl, Phil (Technical Monitor)

    2002-01-01

    The method developed for measuring both in-plane & out-of-plane cryo deformations of AMSD reaction structures at the XRCF will be presented. For in-plane measurements, a theodolite is used to track the positions of several (up to ten) targets on the reaction structure. For out-of-plane measurements, the Leica ADM is used to measure the change in distance to several (up to ten) corner cubes attached to the reaction structure.

  15. Reaction-diffusion waves in biology.

    PubMed

    Volpert, V; Petrovskii, S

    2009-12-01

    The theory of reaction-diffusion waves begins in the 1930s with the works in population dynamics, combustion theory and chemical kinetics. At the present time, it is a well developed area of research which includes qualitative properties of travelling waves for the scalar reaction-diffusion equation and for system of equations, complex nonlinear dynamics, numerous applications in physics, chemistry, biology, medicine. This paper reviews biological applications of reaction-diffusion waves. PMID:20416847

  16. Diamine Ligands in Copper-Catalyzed Reactions

    PubMed Central

    Surry, David S.

    2012-01-01

    The utility of copper-mediated cross-coupling reactions has been significantly increased by the development of mild reaction conditions and the ability to employ catalytic amounts of copper. The use of diamine-based ligands has been important in these advances and in this review we discuss these systems, including the choice of reaction conditions and applications in the synthesis of pharmaceuticals, natural products and designed materials. PMID:22384310

  17. Chemical-reaction model for Mexican wave

    NASA Astrophysics Data System (ADS)

    Nagatani, Takashi

    2003-05-01

    We present a chemical-reaction model to describe the Mexican wave ( La Ola) in football stadia. The spectator's action is described in terms of chemical reactions. The model is governed by three reaction rates k 1, k 2, and k3. We study the nonlinear waves on one- and two-dimensional lattices. The Mexican wave is formulated as a clockwise forwardly propagating wave. Waves are growing or disappear, depending on the values of reaction rates. In the specific case of k1= k2= k3=1, the nonlinear-wave equation produces a propagating pulse like soliton.

  18. Energy distribution among reaction products. V.

    NASA Technical Reports Server (NTRS)

    Anlauf, K. G.; Horne, D. S.; Macdonald, R. G.; Polanyi, J. C.; Woodall, K. B.

    1972-01-01

    Discussion of three reactions, one point of theoretical interest being the predicted correlation between barrier height and barrier location. The H + Br 2 reaction having a lower activation barrier than H + Cl 2, should have an earlier barrier, and hence a greater percentage attractive energy release and higher efficiency of vibrational excitation. Information is developed concerning the effect of isotopic substitution in the pair of reactions H + Cl 2 and D + Cl 2. The 'arrested relaxation' method was used. Essentially, the method involves reacting two diffuse reagent beams in a reaction vessel with background pressure less than 0.001 torr, and with walls cooled by liquid nitrogen or liquid helium.

  19. Categorization of some oscillatory enzymatic reactions

    SciTech Connect

    Schreiber, I.; Hung, Y.F.; Ross, J.

    1996-05-16

    We investigate the categorization of two or more proposed reaction mechanisms for each of the following oscillatory enzymatic reactions: (1) the peroxidase-oxidase reaction; (2) glycolytic oscillations; (3) oscillations of cyclic AMP in smile mold cells; (4) enzymatic pH oscillations; (5) calcium spiking in cytosol. We use prior work in stoichiometric network analysis and categorization of oscillatory reactions to identify in each proposed reaction mechanism essential and nonessential species, the specific role of each essential species, the connectivity of the essential species, including the identification of the reactions leading to oscillatory instabilities, and the category. For each model, we predict the result of several experiments including relative amplitudes, quench amplitudes, phase shifts, and sign symbolic concentration shifts and compare them with those from available experiments. These and several other experiments such as bifurcation analysis, phase response curves, entrainment experiments, qualitative and quantitative pulsed species response, delay experiments, and external periodic perturbation provide stringent tests of proposed reaction mechanisms, and appropriate ones are suggested to discriminate among competing mechanisms for a given reaction. We find the necessity for introducing a new subcategory in our categorization of oscillatory reactions. 45 refs., 6 figs., 6 tabs.

  20. Acute anaphylactoid reactions during hemodialysis in France.

    PubMed

    Forêt, M; Kuentz, F; Meftahi, H; Milongo, R; Hachache, T; Elsener, M; Dechelette, E; Cordonnier, D

    1987-04-01

    A retrospective survey of anaphylactoid reactions during dialysis in France was conducted. In 52 of 112 hemodialysis units surveyed 111 patients who had suffered one or more anaphylactoid reactions during dialysis were identified. According to the Hamilton/Adkinson classification, in 31 patients reactions were minor, in 54 patients moderate, and in 26 patients severe. Four patients died of their reactions. A preponderance of reactions (75 and 11%) occurred with cuprammonium cellulose hollow-fiber and plate dialyzers, respectively. Severe dialyzer reactions were found to occur more frequently after the long (weekend) interdialytic interval. In an in vitro study, six brands of cuprammonium cellulose hollow-fiber dialyzers were rinsed with water and the eluates analyzed by size exclusion chromatography for contaminant particles. Substantial variation in the amount of extractable material was found between dialyzers of different brands, despite the fact that all dialyzers used membranes from the same manufacturer. Previous data by others has suggested that this extractable material is a derivative of cellulose. Results of our epidemiologic survey in France are similar to those previously reported in the United States and suggest an increased incidence of dialyzer reactions with ethylene oxide-sterilized cuprammonium cellulose dialyzers. The presence of cellulose-derived particles in the rinsing fluid of such dialyzers and the possible increased incidence of reactions after the long (weekend) interdialytic interval suggest that allergy to cellulose-derived particles eluted from cellulosic dialyzers may contribute to dialyzer hypersensitivity reactions.

  1. Reaction Kinetics of Nanostructured Silicon Carbide

    NASA Astrophysics Data System (ADS)

    Wallis, Kendra; Zerda, T. W.

    2006-10-01

    Nanostructured silicon carbide (SiC) is of interest particularly for use in nanocomposites that demonstrate high hardness as well as for use in semiconductor applications. Reaction kinetics studies of solid-solid reactions are relatively recent and present a method of determining the reaction mechanism and activation energy by measuring reaction rates. We have used induction heating to heat quickly, thus reducing the error in reaction time measurements. Data will be presented for reactions using silicon nanopowder (< 30 nm) and carbon multi-walled nanotubes with diameter 60 - 100 nm at five different temperatures below the melting point of silicon. Using the well-known Avrami-Erofeev model, a two-parameter chi- square fit of the data provided a rate constant (k) and parameter (n), related to the reaction mechanism, for each temperature. From these data, an activation energy of 138 kJ/mol was calculated. In addition, the parameter n suggests the reaction mechanism, which will also be discussed. Experiments are continuing at higher temperatures to consider the liquid- solid reaction as well.

  2. A Lewis acid-promoted Pinner reaction

    PubMed Central

    Pfaff, Dominik; Nemecek, Gregor

    2013-01-01

    Summary Carbonitriles and alcohols react in a Lewis acid-promoted Pinner reaction to carboxylic esters. Best results are obtained with two equivalents of trimethylsilyl triflate as Lewis acid. Good yields are achieved with primary alcohols and aliphatic or benzylic carbonitriles, but the straightforward synthesis of acrylates and benzoates starting with acrylonitrile and benzonitrile, respectively, is similarly possible. Phenols are not acylated under these reaction conditions. The method has been used for the first total synthesis of the natural product monaspilosin. In the reaction of benzyl alcohols variable amounts of amides are formed in a Ritter-type side reaction. PMID:23946857

  3. Chemical reactions in low-g

    NASA Technical Reports Server (NTRS)

    Grodzka, P. G.; Facemire, B. R.

    1978-01-01

    The Apollo-Soyuz flight experiment, 'Chemical Foams' demonstrated that foams and air/liquid dispersions are much more stable in low-gravity than on the ground. It thus should be possible to conduct unique chemical reactions in space foams. The low-g results and subsequent ground work on the formaldehyde clock reaction indicate that the reaction is strongly influenced by (1) dissociated and undissociated solution species being adsorbed at solid/liquid and gas/liquid surfaces and (2) chemical reaction rates apparently being affected by long-range forces determined by the liquid mass and the extent and nature of all surface interfaces.

  4. EXFOR Library of Experimental Nuclear Reaction Data

    DOE Data Explorer

    The EXFOR library contains an extensive compilation of experimental nuclear reaction data up to 1 GeV. Neutron reactions have been compiled systematically since the discovery of the neutron, while charged particle(up to carbon) and photon reactions have been covered less extensively. Files contain nuclear reaction data such as cross sections, spectra, angular distributions, polarizations, etc, along with information on experimental technique, error analysis, and applied standards. Numerous search parameters include: target, beam, product, experimental method, and even author and publication names. The library contains data from more than 20,000 experiments. (Specialized Interface)

  5. Carbon-Fixing Reactions of Photosynthesis.

    PubMed

    2016-07-01

    Summaryplantcell;28/7/tpc.116.tt0716/FIG1F1fig1Photosynthesis in plants converts the energy of sunlight into chemical energy. Although photosynthesis involves many proteins and catalytic processes, it often is described as two sets of reactions, the light-dependent reactions and the carbon-fixing reactions. This lesson introduces the core biochemistry of the carbon-fixing reactions of photosynthesis, as well as its variations, C4 and CAM. Finally, it addresses how and why plants are affected by rising atmospheric CO2 levels, and research efforts to increase photosynthetic efficiency in current and future conditions.

  6. Carbon-Fixing Reactions of Photosynthesis.

    PubMed

    2016-07-01

    Summaryplantcell;28/7/tpc.116.tt0716/FIG1F1fig1Photosynthesis in plants converts the energy of sunlight into chemical energy. Although photosynthesis involves many proteins and catalytic processes, it often is described as two sets of reactions, the light-dependent reactions and the carbon-fixing reactions. This lesson introduces the core biochemistry of the carbon-fixing reactions of photosynthesis, as well as its variations, C4 and CAM. Finally, it addresses how and why plants are affected by rising atmospheric CO2 levels, and research efforts to increase photosynthetic efficiency in current and future conditions. PMID:27493209

  7. Process for operating equilibrium controlled reactions

    DOEpatents

    Nataraj, Shankar; Carvill, Brian Thomas; Hufton, Jeffrey Raymond; Mayorga, Steven Gerard; Gaffney, Thomas Richard; Brzozowski, Jeffrey Richard

    2001-01-01

    A cyclic process for operating an equilibrium controlled reaction in a plurality of reactors containing an admixture of an adsorbent and a reaction catalyst suitable for performing the desired reaction which is operated in a predetermined timed sequence wherein the heating and cooling requirements in a moving reaction mass transfer zone within each reactor are provided by indirect heat exchange with a fluid capable of phase change at temperatures maintained in each reactor during sorpreaction, depressurization, purging and pressurization steps during each process cycle.

  8. Accelerated glass reaction under PCT conditions

    SciTech Connect

    Ebert, W.L.; Bates, J.K.; Buck, E.C.; Bradley, C.R.

    1992-01-01

    Static leach tests similar to PCT (Product Consistency Test) were performed for up to 2 years to assess long-term reaction behavior of high-level nuclear waste glasses similar to those at Defense Waste Processing Facility. These tests show the reaction rate to decrease with the reaction time from an initially high rate to a low rate, but then to accelerate to a higher rate after reaction times of about 1 year, depending on glass surface area/leachant volume ratio used. Solution concentrations of soluble glass components increase as the reaction is accelerated, while release of other glass components into solution is controlled by secondary phases. Net result is that transformation of glass to stable phases is accelerated while the solution becomes enriched in soluble components not effectively contained in secondary phases. Rate becomes linear in time after the acceleration and may be similar to the initial forward rate. A current model of glass reaction predicts that the glass reaction will be accelerated upon the formation of secondary phases which lower the silicic acid solution concentration. These tests show total Si concentration to increase upon reaction acceleration, however, which may be due to the slightly higher pH attained with the acceleration. The sudden change in the reaction rate is likely due to secondary phase formation. 17 refs, 2 tabs, 3 figs.

  9. Accelerated glass reaction under PCT conditions

    SciTech Connect

    Ebert, W.L.; Bates, J.K.; Buck, E.C.; Bradley, C.R.

    1992-12-31

    Static leach tests similar to PCT (Product Consistency Test) were performed for up to 2 years to assess long-term reaction behavior of high-level nuclear waste glasses similar to those at Defense Waste Processing Facility. These tests show the reaction rate to decrease with the reaction time from an initially high rate to a low rate, but then to accelerate to a higher rate after reaction times of about 1 year, depending on glass surface area/leachant volume ratio used. Solution concentrations of soluble glass components increase as the reaction is accelerated, while release of other glass components into solution is controlled by secondary phases. Net result is that transformation of glass to stable phases is accelerated while the solution becomes enriched in soluble components not effectively contained in secondary phases. Rate becomes linear in time after the acceleration and may be similar to the initial forward rate. A current model of glass reaction predicts that the glass reaction will be accelerated upon the formation of secondary phases which lower the silicic acid solution concentration. These tests show total Si concentration to increase upon reaction acceleration, however, which may be due to the slightly higher pH attained with the acceleration. The sudden change in the reaction rate is likely due to secondary phase formation. 17 refs, 2 tabs, 3 figs.

  10. Allergic reactions to foods by inhalation.

    PubMed

    James, John M; Crespo, Jesús Fernández

    2007-06-01

    Although allergic reactions to foods occur most commonly after ingestion, inhalation of foods can also be an underlying cause of these reactions. For example, published reports have highlighted the inhalation of allergens from fish, shellfish, seeds, soybeans, cereal grains, hen's egg, cow's milk, and many other foods in allergic reactions. Symptoms have typically included respiratory manifestations such as rhinoconjunctivitis, coughing, wheezing, dyspnea, and asthma. In some cases, anaphylaxis has been observed. In addition, there have been many investigations of occupational asthma following the inhalation of relevant food allergens. This report reviews the current literature focusing on allergic reactions to foods by inhalation.

  11. Time scale in quasifission reactions

    SciTech Connect

    Back, B.B.; Paul, P.; Nestler, J.

    1995-08-01

    The quasifission process arises from the hindrance of the complete fusion process when heavy-ion beams are used. The strong dissipation in the system tends to prevent fusion and lead the system towards reseparation into two final products of similar mass reminiscent of a fission process. This dissipation slows down the mass transfer and shape transformation and allows for the emission of high energy {gamma}-rays during the process, albeit with a low probability. Giant Dipole {gamma} rays emitted during this time have a characteristic spectral shape and may thus be discerned in the presence of a background of {gamma} rays emitted from the final fission-like fragments. Since the rate of GDR {gamma} emission is very well established, the strength of this component may therefore be used to measure the timescale of the quasifission process. In this experiment we studied the reaction between 368-MeV {sup 58}Ni and a {sup 165}Ho target, where deep inelastic scattering and quasifission processes are dominant. Coincidences between fission fragments (detected in four position-sensitive avalanche detectors) and high energy {gamma} rays (measured in a 10{close_quotes} x 10{close_quotes} actively shielded NaI detector) were registered. Beams were provided by the Stony Brook Superconducting Linac. The {gamma}-ray spectrum associated with deep inelastic scattering events is well reproduced by statistical cooling of projectile and target-like fragments with close to equal initial excitation energy sharing. The y spectrum associated with quasifission events is well described by statistical emission from the fission fragments alone, with only weak evidence for GDR emission from the mono-nucleus. A 1{sigma} limit of t{sub ss} < 11 x 10{sup -21} s is obtained for the mono-nucleus lifetime, which is consistent with the lifetime obtained from quasifission fragment angular distributions. A manuscript was accepted for publication.

  12. Some Concepts in Reaction Dynamics

    NASA Technical Reports Server (NTRS)

    Polannyi, John C.

    1972-01-01

    In 1929 London 1 published a very approximate solution of the Schroedinger equation for a system of chemical interest: H3. To the extent that chemistry can be regarded as existing separately from physics, this was a landmark in the history of chemistry, comparable in importance to the landmark in the history of physics marked by the appearance of the Heitler-London equation for H2. The expression for H3, was, of necessity, even less accurate than that for H2, but chemists, like the habitual poor, were accustomed to this sort of misfortune. Together with the physicists they enjoyed the sensation of living in a renaissance. The physicists still could not calculate a great deal that was of interest to them, and the chemists could calculate less, but both could now dream. It would be too easy to say that their dreams were dreams of unlimited computer time. Their dreams were a lot more productive than that. Two years after London published his equation, H. Eyring and M. Polanyi obtained the first numerical energy surface for H3. They infused the London equation with a measure of empiricism to produce an energy surface which, whether or not it was correct in its details, provided a basis for further speculations of an important sort. The existence of a tangible energy surface in 1931 stimulated speculation along two different lines. The following year Pelzer and Wigner used this London-Eyring-Polanyi (LEP) energy surface for a thermodynamic treatment of the reaction rate in H + H2. This important development reached its full flowering a few years later. In these remarks I shall be concerned with another line of development. A second more-or-less distinct category of speculation that began with (and, indeed, in) the 1931 paper has to do with the dynamics of individual reactive encounters under the influence of specified interaction potentials.

  13. Hypersensitivity reactions associated with oxaliplatin.

    PubMed

    Saif, M Wasif

    2006-09-01

    The reported incidence of hypersensitivity reactions (HSRs) associated with oxaliplatin in patients with colorectal cancer (CRC) is approximately 12%, with 1 - 2% of patients developing grade 3 or 4 in severity. However, the recent rising incidence of HSR to oxaliplatin observed is the result of increasing clinical use. HSR to oxaliplatin may manifest as facial flushing, rash/hives, tachycardia, dyspnoea, erythema, pruritus, fever, tongue swelling, headache, chills, weakness, vomiting, burning sensations, dizziness and oedema. Anaphylactic shock is rare but serious, and must be considered in the event of hypotension. No definitive approaches to prevent and treat HSR associated with oxaliplatin are available; however, few successful strategies have been reported. Such strategies include: slowing the infusion rate, use of steroids and antagonists of type 1 and 2 histamine receptors, and desensitisation. Successful implementation of oxaliplatin desensitisation protocols based on other platinum-containing compounds have been reported, which could enable a small number of patients who experience severe HSR to further receive an effective therapy for CRC. However, reintroductions have only been reported as single case studies or small cohorts. Large-scale validation on desensitisation strategies are still missing. Recently, subcutaneous adrenaline has also been utilised as an alternative approach to manage HSR to oxaliplatin. Knowledge of this rare but real toxicity of oxaliplatin is paramount because the use of this drug continues to increase not only for the treatment of patients with stage II-IV CRC, but also other solid malignancies. In this article, the author discusses the incidence, clinical presentation, pathogenesis, risk factors and current strategies of management of HSR associated with oxaliplatin. PMID:16907658

  14. Stoichiometry of smectite dissolution reaction

    NASA Astrophysics Data System (ADS)

    Metz, Volker; Amram, Keren; Ganor, Jiwchar

    2005-04-01

    The dissolution stoichiometry of smectite-rich bentonites SAz-1, STx-1 and SWy-1 was studied at 50°C and pH 2 and 3 using flow-through reactors. In addition to smectite, these samples contain considerable amounts of silica phases (quartz, cristobalite and/or amorphous silica). As a result, the molar Al/Si ratios of the bulk samples are significantly lower than those of the pure smectite. Smectite dissolution was highly incongruent during the first few hundred to few thousand hours of the experiments. Release rates of Si, Mg, Ca and Na underwent a distinct transition from an initial period of rapid release to significantly lower release rate at steady state. A reversed trend was observed for release of Al, which gradually increased from very low starting release rate to higher release rate at steady state. At steady state the ratio of released Al to released Si was found to be constant and independent of the experimental conditions. We suggest that this ratio represents the Al/Si ratio of the smectite itself, and it is not influenced by the presence of accessory phases in the sample. The rapid release of calcium, sodium and magnesium from the interlayer sites is explained by ion-exchange reactions, whereas the fast release of silicon is explained by dissolution of amorphous silica. We interpret the initial slow release of Al as the result of inhibition of smectite dissolution due to coating or cementation of the smectite aggregates by amorphous silica. As the silica is dissolved, the aggregates fall apart and more smectite surfaces are exposed, resulting in an increase in the smectite dissolution rate. Thereafter, the system approaches steady state, in which the major tetrahedral and octahedral cations of smectite are released congruently.

  15. Stability of sharp reaction fronts in porous rocks and implications for non-sharp reaction zones

    NASA Astrophysics Data System (ADS)

    Wangen, Magnus

    2014-05-01

    The flow of reactive fluids in the subsurface, like for instance acids, may create reaction fronts. A sharp reaction front is an idealization of the narrow zone where the reaction takes place. Narrow reaction zones are studied with a one-component reaction transport model, where a first order reaction changes the porosity. The porosity field is coupled to the permeability field, where an increasing porosity leads to an increasing permeability. Therefore, the reaction has a feed-back on the flow field. We have derived 1D approximate solutions for the change in concentration and porosity across the reaction zone. These solutions are used to derive a condition for reaction fronts to be narrow. The condition gives a minimum reaction rate necessary for 90% of the reaction to be restricted to the given area. Sharp fronts are idealizations of narrow fronts that are more amendable for analytical treatment. A condition has recently been derived for the stability of sharp reaction fronts in homogeneous porous medium using linear stability analysis. The condition gives that a perturbation of a flat reaction front of any wave-length becomes unstable if the permeability behind the front increases. The front instability grows faster for short wave lengths than for long wave lengths. Similarly, the perturbations of the front will die out if the permeability behind the front decreases, and short wave length perturbations will die out faster than long wave length perturbations. It is a condition that applies for both 2D and 3D porous media. Numerical experiments are shown that demonstrate the front stability criterion, when the fronts are narrow, but not sharp. The sharp front approximation turns out to be useful for the interpretation of reactions that are not sufficiently fast to give narrow reaction zones, when the reaction alters the porosity- and the permeability fields. Dissolution is an important example of reactions that increase the porosity and therefore the permeability

  16. Organic syntheses employing supercritical carbon dioxide as a reaction solvent

    NASA Technical Reports Server (NTRS)

    Barstow, Leon E. (Inventor); Ward, Glen D. (Inventor); Bier, Milan (Inventor)

    1991-01-01

    Chemical reactions are readily carried out using supercritical carbon dioxide as the reaction medium. Supercritical carbon dioxide is of special value as a reaction medium in reactions for synthesizing polypeptides, for sequencing polypeptides, or for amino acid analysis.

  17. Organic syntheses employing supercritical carbon dioxide as a reaction solvent

    NASA Technical Reports Server (NTRS)

    Barstow, Leon E. (Inventor); Ward, Glen D. (Inventor); Bier, Milan (Inventor)

    1993-01-01

    Chemical reactions are readily carried out using supercritical carbon dioxide as the reaction medium. Supercritical carbon dioxide is of special value as a reaction medium in reactions for synthesizing polypeptides, for sequencing polypeptides, or for amino acid analysis.

  18. Organic Reaction Mechanisms at A-Level.

    ERIC Educational Resources Information Center

    Norman, R. O. C.; Waddington, D. J.

    1979-01-01

    Advocates teaching of organic reaction mechanisms through the methods which are used in elucidating them. This also provides a useful way of illustrating the theories and methods of physical chemistry. Describes an approach to teaching three reaction mechanisms: substitution in alkanes; addition to alkenes; and ester hydrolysis. (Author/GA)

  19. Reliability of a Shuttle reaction timer

    NASA Technical Reports Server (NTRS)

    Hays, Russell D.; Mazzocca, Augustus D.; Rashid, Michael; Siconolfi, Steven F.

    1992-01-01

    Reaction, movement, and task times refer to the times needed to initially respond to a stimulus, make the specific movement, and complete the entire task. This study evaluated the reliability of a simple reaction timer designed to mimic a Space Shuttle task (turning on an overhead switch).

  20. Catalysis and Multi-Component Reactions

    NASA Astrophysics Data System (ADS)

    Shibasaki, Masakatsu; Yus, Miguel; Bremner, Stacy; Comer, Eamon; Shore, Gjergji; Morin, Sylvie; Organ, Michael G.; van der Eycken, Erik; Merkul, Eugen; Dorsch, Dieter; Müller, Thomas J. J.; Ryabukhin, Sergey V.; Ostapchuk, Eugeniy N.; Plaskon, Andrey S.; Volochnyuk, Dmitriy M.; Shivanyuk, Alexander N.; Tolmachev, Andrey A.; Sheibani, Hassan; Babaie, Maryam; Behzadi, Soheila; Dabiri, Minoo; Bahramnejad, Mahboobeh; Bashiribod, Sahareh; Hekmatshoar, Rahim; Sadjadi, Sodeh; Khorasani, Mohammad; Polyakov, Anatoliy I.; Eryomina, Vera A.; Medvedeva, Lidiya A.; Tihonova, Nadezhda I.; Listratova, Anna V.; Voskressensky, Leonid G.; Merkul, Eugen; Dorsch, Dieter; Müller, Thomas J. J.; Sheibani, Hassan; Esfandiarpoor, Zeinab; Behzadi, Soheila; Titova, Julia A.; Fedorova, Olga V.; Ovchinnikova, Irina G.; Valova, Marina S.; Koryakova, Olga V.; Rusinov, Gennady L.; Charushin, Valery N.; Hekmatshoar, Rahim; Sadjadi, Sodeh

    We have been studying the development of new asymmetric two-center catalysis using rare earth alkoxides and bifunctional sugar and related ligands. In The Fourth International Conference on Multi-Component Reactions and Related Chemistry (MCR 2009), new catalytic asymmetric reactions using catalysts 1 and 2 and catalytic asymmetric syntheses of ranirestat 3 and tamiflu 4 will be presented.

  1. pH & Rate of Enzymatic Reactions.

    ERIC Educational Resources Information Center

    Clariana, Roy B.

    1991-01-01

    A quantitative and inexpensive way to measure the rate of enzymatic reaction is provided. The effects of different pH levels on the reaction rate of an enzyme from yeast are investigated and the results graphed. Background information, a list of needed materials, directions for preparing solutions, procedure, and results and discussion are…

  2. Resonant structures in heavy-ion reactions

    SciTech Connect

    Sanders, S.J.; Henning, W.; Ernst, H.; Geesaman, D.F.; Jachcinski, C.; Kovar, D.G.; Paul, M.; Schiffer, J.P.

    1980-01-01

    An investigation of heavy-ion resonance structures using the /sup 24/Mg(/sup 16/O, /sup 12/C)/sup 28/Si reaction is presented. The data are analyzed in the context of Breit-Wigner resonances added to a direct-reaction background.

  3. Hawking fluxes, back reaction and covariant anomalies

    NASA Astrophysics Data System (ADS)

    Kulkarni, Shailesh

    2008-11-01

    Starting from the chiral covariant effective action approach of Banerjee and Kulkarni (2008 Phys. Lett. B 659 827), we provide a derivation of the Hawking radiation from a charged black hole in the presence of gravitational back reaction. The modified expressions for charge and energy flux, due to the effect of one-loop back reaction are obtained.

  4. Heuristics-Guided Exploration of Reaction Mechanisms.

    PubMed

    Bergeler, Maike; Simm, Gregor N; Proppe, Jonny; Reiher, Markus

    2015-12-01

    For the investigation of chemical reaction networks, the efficient and accurate determination of all relevant intermediates and elementary reactions is mandatory. The complexity of such a network may grow rapidly, in particular if reactive species are involved that might cause a myriad of side reactions. Without automation, a complete investigation of complex reaction mechanisms is tedious and possibly unfeasible. Therefore, only the expected dominant reaction paths of a chemical reaction network (e.g., a catalytic cycle or an enzymatic cascade) are usually explored in practice. Here, we present a computational protocol that constructs such networks in a parallelized and automated manner. Molecular structures of reactive complexes are generated based on heuristic rules derived from conceptual electronic-structure theory and subsequently optimized by quantum-chemical methods to produce stable intermediates of an emerging reaction network. Pairs of intermediates in this network that might be related by an elementary reaction according to some structural similarity measure are then automatically detected and subjected to an automated search for the connecting transition state. The results are visualized as an automatically generated network graph, from which a comprehensive picture of the mechanism of a complex chemical process can be obtained that greatly facilitates the analysis of the whole network. We apply our protocol to the Schrock dinitrogen-fixation catalyst to study alternative pathways of catalytic ammonia production. PMID:26642988

  5. Oxidative hemoglobin reactions: Applications to drug metabolism.

    PubMed

    Spolitak, Tatyana; Hollenberg, Paul F; Ballou, David P

    2016-06-15

    Hb is a protein with multiple functions, acting as an O2 transport protein, and having peroxidase and oxidase activities with xenobiotics that lead to substrate radicals. However, there is a lack of evidence for intermediates involved in these reactions of Hb with redox-active compounds, including those with xenobiotics such as drugs, chemical carcinogens, and sulfides. In particular, questions exist as to what intermediates participate in reactions of either metHb or oxyHb with sulfides. The studies presented here elaborate kinetics and intermediates involved in the reactions of Hb with oxidants (H2O2 and mCPBA), and they demonstrate the formation of high valent intermediates, providing insights into mechanistic issues of sulfur and drug oxidations. Overall, we propose generalized mechanisms that include peroxidatic reactions using H2O2 generated from the autooxidation of oxyHb, with involvement of substrate radicals in reactions of Hb with oxidizable drugs such as metyrapone or 2,4-dinitrophenylhydrazine and with sulfides. We identify ferryl intermediates (with a Soret band at 407 nm) in oxidative reactions with all of the above-mentioned reactions. These spectral properties are consistent with a protonated ferryl heme, such as Cpd II or Cpd ES-like species (Spolitak et al., JIB, 2006, 100, 2034-2044). Mechanism(s) of Hb oxidative reactions are discussed.

  6. A Light-Activated Reaction Manifold.

    PubMed

    Hiltebrandt, Kai; Elies, Katharina; D'hooge, Dagmar R; Blinco, James P; Barner-Kowollik, Christopher

    2016-06-01

    We introduce an efficient reaction manifold where the rate of a thermally induced ligation can be controlled by a photonic field via two competing reaction channels. The effectiveness of the reaction manifold is evidenced by following the transformations of macromolecular chain termini via high-resolution mass spectrometry and subsequently by selective block copolymer formation. The light-controlled reaction manifold consists of a so-called o-quinodimethane species, a photocaged diene, that reacts in the presence of light with suitable enes in a Diels-Alder reaction and undergoes a transformation into imines with amines in the absence of light. The chemical selectivity of the manifold is controlled by the amount of ene present in the reaction and can be adjusted from 100% imine formation (0% photo product) to 5% imine formation (95% photo product). The reported light-controlled reaction manifold is highly attractive because a simple external field is used to switch the selectivity of specific reaction channels. PMID:27151599

  7. What is a "DNA-Compatible" Reaction?

    PubMed

    Malone, Marie L; Paegel, Brian M

    2016-04-11

    DNA-encoded synthesis can generate vastly diverse screening libraries of arbitrarily complex molecules as long as chemical reaction conditions do not compromise DNA's informational integrity, a fundamental constraint that "DNA-compatible" reaction development does not presently address. We devised DNA-encoded reaction rehearsal, an integrated analysis of reaction yield and impact on DNA, to acquire these key missing data. Magnetic DNA-functionalized sensor beads quantitatively report the % DNA template molecules remaining viable for PCR amplification after exposure to test reaction conditions. Analysis of solid-phase bond forming (e.g., Suzuki-Miyaura cross-coupling, reductive amination) and deprotection reactions (e.g., allyl esters, silyl ethers) guided the definition and optimization of DNA-compatible reaction conditions (>90% yield, >30% viable DNA molecules), most notably in cases that involved known (H(+), Pd) and more obscure (Δ, DMF) hazards to DNA integrity. The data provide an empirical yet mechanistically consistent and predictive framework for designing successful DNA-encoded reaction sequences for combinatorial library synthesis. PMID:26971959

  8. A reusable prepositioned ATP reaction chamber

    NASA Technical Reports Server (NTRS)

    Hoffman, D. G.

    1972-01-01

    Luminescence biometer detects presence of life by means of light-emitting chemical reaction of luciferin and luciferase with adenosine triphosphate (ATP) that occurs in all living cells. Amount of light in reaction chamber is measured to determine presence and extent of life.

  9. Miniature reaction chamber and devices incorporating same

    DOEpatents

    Mathies, Richard A.; Woolley, Adam T.

    2000-10-17

    The present invention generally relates to miniaturized devices for carrying out and controlling chemical reactions and analyses. In particular, the present invention provides devices which have miniature temperature controlled reaction chambers for carrying out a variety of synthetic and diagnostic applications, such as PCR amplification, nucleic acid hybridization, chemical labeling, nucleic acid fragmentation and the like.

  10. Oxygen reduction reaction: A framework for success

    DOE PAGESBeta

    Allendorf, Mark D.

    2016-05-06

    Oxygen reduction at the cathode of fuel cells typically requires a platinum-based material to catalyse the reaction, but lower-cost, more stable catalysts are sought. Here, an intrinsically conductive metal–organic framework based on cheaper elements is shown to be a durable, structurally well-defined catalyst for this reaction.

  11. The Iodine Clock Reaction and Hypothermia.

    ERIC Educational Resources Information Center

    Gennaro, Gene; Munson, Bruce

    1988-01-01

    Explains an activity which can be used to compare the effect of temperature on the rate of chemical reactions to the metabolic reactions that take place within the body. Outlines directions and materials needed to perform the experiment. Lists a number of the body's defenses against extremely low temperatures. (RT)

  12. Nuclear excitation and precompound nuclear reactions

    SciTech Connect

    De, A.; Ray, S.; Ghosh, S.K.

    1988-06-01

    The angular distribution of nucleons emitted in nucleon-induced precompound nuclear reactions are calculated taking into account the effect of excitation on the kinematics of nucleon-nucleon scattering inside the target-plus-projectile system. The results are compared with quantum mechanical calculations and those of reaction models based on a pure nucleon-nucleon collision picture.

  13. Chemical Principles Revisited: Annotating Reaction Equations.

    ERIC Educational Resources Information Center

    Tykodi, R. J.

    1987-01-01

    Urges chemistry teachers to have students annotate the chemical reactions in aqueous-solutions that they see in their textbooks and witness in the laboratory. Suggests this will help students recognize the reaction type more readily. Examples are given for gas formation, precipitate formation, redox interaction, acid-base interaction, and…

  14. The Thermit Reaction: A Dazzling Thermochemical Demonstration.

    ERIC Educational Resources Information Center

    Kauffman, George B.

    1997-01-01

    Describes an outdoor scientific demonstration of metal reduction, a reaction known as the thermit process. Heat from an ignition mixture is required to initiate the reaction, which then becomes self-sustaining. The demonstration provides a dazzling introduction to such fundamental general chemistry topics as oxidation-reduction, metallurgy,…

  15. Entropy Generation in a Chemical Reaction

    ERIC Educational Resources Information Center

    Miranda, E. N.

    2010-01-01

    Entropy generation in a chemical reaction is analysed without using the general formalism of non-equilibrium thermodynamics at a level adequate for advanced undergraduates. In a first approach to the problem, the phenomenological kinetic equation of an elementary first-order reaction is used to show that entropy production is always positive. A…

  16. Enzyme Substrate Reactions in High Magnetic Fields

    PubMed Central

    Maling, J. E.; Weissbluth, M.; Jacobs, E. E.

    1965-01-01

    The reaction rates of two enzyme substrate systems, ribonuclease-RNA and succinate-cytochrome c reductase, were followed as a function of magnetic field from zero to 48,000 gauss. The reaction rates remained constant to within 10 per cent. PMID:5884011

  17. Intramolecular hydrogen transfer reaction: menthon from isopulegol.

    PubMed

    Schaub, Thomas; Rüdenauer, Stefan; Weis, Martine

    2014-05-16

    The flavor menthon (isomeric mixture of (-)-menthon and (+)-isomenthon) was obtained in good yields and selectivities by a solventless ruthenium catalyzed isomerization of the homoallylic alcohol (-)-isopulegol. In contrast to most previous assumptions on such "isomerization" reactions, this reaction follows an intermolecular pathway, with menthol and pulegon being the central intermediates in this transformation. PMID:24779450

  18. Gold(I)-catalyzed enantioselective cycloaddition reactions.

    PubMed

    López, Fernando; Mascareñas, José L

    2013-10-30

    In recent years there have been extraordinary developments of gold(I)-catalyzed enantioselective processes. This includes progress in the area of cycloaddition reactions, which are of particular interest due to their potential for the rapid construction of optically active cyclic products. In this article we will summarize some of the most remarkable examples, emphasizing reaction mechanisms and key intermediates involved in the processes.

  19. Photosynthetic reaction center complexes from heliobacteria

    NASA Technical Reports Server (NTRS)

    Trost, J. T.; Vermaas, W. F. J.; Blankenship, R. E.

    1991-01-01

    The goal of this project is to understand the early evolutionary development of photosynthesis by examining the properties of reaction centers isolated from certain contemporary organisms that appear to contain the simplest photosynthetic reaction centers. The major focus of this project is the family of newly discovered strictly anaerobic photosynthetic organisms known as Heliobacteria. These organisms are the only known photosynthetic organisms that are grouped with the gram-positive phylum of bacteria. The properties of these reaction centers suggest that they might be the decendants of an ancestor that also gave rise to Photosystem 1 found in oxygen-evolving photosynthetic organisms. Photoactive reaction center-core antenna complexes have been isolated from the photosynthetic bacteria Heliobacillus mobilis and Heliobacterium gestii. The absorption and fluorescence properties of membranes and reaction centers are almost identical, suggesting that a single pigment-protein complex serves as both antenna and reaction center. Experiments in progress include sequence determination of the 48,000 Mr reaction center protein, and evolutionary comparisons with other reaction center proteins.

  20. Pediatric bupropion-induced serum sicknesslike reaction.

    PubMed

    Hack, Sabine

    2004-01-01

    This reports the first 2 cases of serum sicknesslike reaction to bupropion in children (age 12 and 14). Serum sicknesslike reactions are an example of immune-complex medicated disease. The cardinal symptoms of serum sickness are fever, lymphadenopathy, arthralgias or arthritis, and urticaria. Symptoms usually resolve without long-term sequela following discontinuation of the exogenous antigen. It is likely that serum sicknesslike reactions to bupropion are either relatively rare or underrecognized and underreported. Between May 1998 and May 2001, GlaxoSmith Kline received 172 reports of seizures (a well-known adverse drug reaction) and only 37 reports of serum sicknesslike reactions (Wooltorton 2002). We do not know if children and adolescents are more prone than adults to develop serum sicknesslike reactions to bupropion. Luckily, the reported cases of serum sicknesslike reactions to bupropion have not caused irreversible morbidity or mortality. Nevertheless, the symptoms are painful, temporarily disfiguring and disabling, and warrant prompt medical attention. Parents and patients should be educated about this potential side effect at the onset of treatment, because symptoms are similar to many infectious childhood illnesses, and the treatment of serum sicknesslike reactions to bupropion should include the discontinuation of bupropion.

  1. Transition-Metal-Catalyzed Bioorthogonal Cycloaddition Reactions.

    PubMed

    Yang, Maiyun; Yang, Yi; Chen, Peng R

    2016-02-01

    In recent years, bioorthogonal reactions have emerged as a powerful toolbox for specific labeling and visualization of biomolecules, even within the highly complex and fragile living systems. Among them, copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) reaction is one of the most widely studied and used biocompatible reactions. The cytotoxicity of Cu(I) ions has been greatly reduced due to the use of Cu(I) ligands, which enabled the CuAAC reaction to proceed on the cell surface, as well as within an intracellular environment. Meanwhile, other transition metals such as ruthenium, rhodium and silver are now under development as alternative sources for catalyzing bioorthogonal cycloadditions. In this review, we summarize the development of CuAAC reaction as a prominent bioorthogonal reaction, discuss various ligands used in reducing Cu(I) toxicity while promoting the reaction rate, and illustrate some of its important biological applications. The development of additional transition metals in catalyzing cycloaddition reactions will also be briefly introduced. PMID:27572985

  2. Asthma and anaphylactoid reactions to food additives.

    PubMed Central

    Tarlo, S. M.; Sussman, G. L.

    1993-01-01

    Presumed allergic reactions to hidden food additives are both controversial and important. Clinical manifestations include asthma, urticaria, angioedema, and anaphylactic-anaphylactoid events. Most adverse reactions are caused by just a few additives, such as sulfites and monosodium glutamate. Diagnosis is suspected from the history and confirmed by specific challenge. The treatment is specific avoidance. PMID:8499792

  3. Magnetite-supported sulfonic acid: a retrievable nanocatalyst for the Ritter reaction and multicomponent reactions

    EPA Science Inventory

    Magnetite-sulfonic acid (NanocatFe-OSO3H), prepared by wet-impregnation method, serves as a magnetically retrievable sustainable catalyst for the Ritter reaction which can be used in several reaction cycles without any loss of activity.

  4. TRIMOLECULAR REACTIONS OF URANIUM HEXAFLUORIDE WITH WATER

    SciTech Connect

    Westbrook, M.; Becnel, J.; Garrison, S.

    2010-02-25

    The hydrolysis reaction of uranium hexafluoride (UF{sub 6}) is a key step in the synthesis of uranium dioxide (UO{sub 2}) powder for nuclear fuels. Mechanisms for the hydrolysis reactions are studied here with density functional theory and the Stuttgart small-core scalar relativistic pseudopotential and associated basis set for uranium. The reaction of a single UF{sub 6} molecule with a water molecule in the gas phase has been previously predicted to proceed over a relatively sizeable barrier of 78.2 kJ {center_dot} mol{sup -1}, indicating this reaction is only feasible at elevated temperatures. Given the observed formation of a second morphology for the UO{sub 2} product coupled with the observations of rapid, spontaneous hydrolysis at ambient conditions, an alternate reaction pathway must exist. In the present work, two trimolecular hydrolysis mechanisms are studied with density functional theory: (1) the reaction between two UF{sub 6} molecules and one water molecule, and (2) the reaction of two water molecules with a single UF{sub 6} molecule. The predicted reaction of two UF{sub 6} molecules with one water molecule displays an interesting 'fluorine-shuttle' mechanism, a significant energy barrier of 69.0 kJ {center_dot} mol{sup -1} to the formation of UF{sub 5}OH, and an enthalpy of reaction ({Delta}H{sub 298}) of +17.9 kJ {center_dot} mol{sup -1}. The reaction of a single UF{sub 6} molecule with two water molecules displays a 'proton-shuttle' mechanism, and is more favorable, having a slightly lower computed energy barrier of 58.9 kJ {center_dot} mol{sup -1} and an exothermic enthalpy of reaction ({Delta}H{sub 298}) of -13.9 kJ {center_dot} mol{sup -1}. The exothermic nature of the overall UF{sub 6} + 2 {center_dot} H{sub 2}O trimolecular reaction and the lowering of the barrier height with respect to the bimolecular reaction are encouraging; however, the sizable energy barrier indicates further study of the UF{sub 6} hydrolysis reaction mechanism is

  5. Adverse reaction; patent blue turning patient blue.

    PubMed

    Joshi, Meera; Hart, Matthew; Ahmed, Farid; McPherson, Sandy

    2012-11-30

    The authors report a severe anaphylactic reaction to Patent Blue V dye used in sentinel node biopsy for lymphatic mapping during breast cancer surgery to stage the axilla. Patent Blue dye is the most widely used in the UK; however, adverse reactions have been reported with the blue dye previously. This case highlights that reactions may not always be immediately evident and to be vigilant in all patients that have undergone procedures using blue dye. If the patients are not responding appropriately particularly during an anaesthetic, one must always think of a possible adverse reaction to the dye. All surgical patients should give consent for adverse reactions to patent blue dye preoperatively. Alternative agents such as methylene blue are considered.

  6. Multilayer Network Analysis of Nuclear Reactions

    NASA Astrophysics Data System (ADS)

    Zhu, Liang; Ma, Yu-Gang; Chen, Qu; Han, Ding-Ding

    2016-08-01

    The nuclear reaction network is usually studied via precise calculation of differential equation sets, and much research interest has been focused on the characteristics of nuclides, such as half-life and size limit. In this paper, however, we adopt the methods from both multilayer and reaction networks, and obtain a distinctive view by mapping all the nuclear reactions in JINA REACLIB database into a directed network with 4 layers: neutron, proton, 4He and the remainder. The layer names correspond to reaction types decided by the currency particles consumed. This combined approach reveals that, in the remainder layer, the β-stability has high correlation with node degree difference and overlapping coefficient. Moreover, when reaction rates are considered as node strength, we find that, at lower temperatures, nuclide half-life scales reciprocally with its out-strength. The connection between physical properties and topological characteristics may help to explore the boundary of the nuclide chart.

  7. Low energy ion-molecule reactions

    SciTech Connect

    Farrar, J.M.

    1993-12-01

    This project is concerned with elucidating the dynamics of elementary ion-molecule reactions at collision energies near and below 1 eV. From measurements of the angular and energy distributions of the reaction products, one can infer intimathe details about the nature of collisions leading to chemical reaction, the geometries and lifetimes of intermediate complexes that govern the reaction dynamics, and the collision energy dependence of these dynamical features. The author employs crossed-beam low energy mass spectrometry technology developed over the last several years, with the focus of current research on proton transfer and hydrogen atom transfer reactions of te O{sup {minus}} ion with species such as HF, H{sub 2}O, and NH{sub 3}.

  8. Multilayer Network Analysis of Nuclear Reactions.

    PubMed

    Zhu, Liang; Ma, Yu-Gang; Chen, Qu; Han, Ding-Ding

    2016-08-25

    The nuclear reaction network is usually studied via precise calculation of differential equation sets, and much research interest has been focused on the characteristics of nuclides, such as half-life and size limit. In this paper, however, we adopt the methods from both multilayer and reaction networks, and obtain a distinctive view by mapping all the nuclear reactions in JINA REACLIB database into a directed network with 4 layers: neutron, proton, (4)He and the remainder. The layer names correspond to reaction types decided by the currency particles consumed. This combined approach reveals that, in the remainder layer, the β-stability has high correlation with node degree difference and overlapping coefficient. Moreover, when reaction rates are considered as node strength, we find that, at lower temperatures, nuclide half-life scales reciprocally with its out-strength. The connection between physical properties and topological characteristics may help to explore the boundary of the nuclide chart.

  9. [Metabolism of drugs. I. Basic metabolic reactions].

    PubMed

    Dyderski, Stanisław; Grzymisławski, Marian

    2005-04-01

    Pharmacologic effect of the drug results from its metabolism to metabolites showing decreased lipophilic properties and increased solubility in water. Transformations leading to inactivation of the drug are usually conducted by microsomal enzymes combined with cytochrome P-450. Main types of the metabolic reactions involved in the metabolism of exogenous substances are: oxidative reactions, hydrolysis and coupling reactions (often called second phase reactions). Estimation of the appearance of metabolites containing reactive groups (amino- or hydroxyl) should take into consideration the factor influencing the coupling reactions with glucuronic acid, sulphides, but also N-acetylation and methylation, coupling with glutathione or amino acids (mainly glycine and glutamine). Liver plays basic role in the metabolism of the drugs, but this metabolic activity appears also in the alimentary canal, where under influence of hydrochloric acid in stomach and intestine enzymes some xenobiotics are degraded. A special role is also played by intestine microflora.

  10. Mukaiyama Aldol Reactions in Aqueous Media

    PubMed Central

    Kitanosono, Taku; Kobayashi, Shū

    2013-01-01

    Mukaiyama aldol reactions in aqueous media have been surveyed. While the original Mukaiyama aldol reactions entailed stoichiometric use of Lewis acids in organic solvents under strictly anhydrous conditions, Mukaiyama aldol reactions in aqueous media are not only suitable for green sustainable chemistry but are found to produce singular phenomena. These findings led to the discovery of a series of water-compatible Lewis acids such as lanthanide triflates in 1991. Our understanding on these beneficial effects in the presence of water will be deepened through the brilliant examples collected in this review. 1 Introduction 2 Rate Enhancement by Water in the Mukaiyama Aldol Reaction 3 Lewis Acid Catalysis in Aqueous or Organic Solvents 3.1 Water-Compatible Lewis Acids 4 Lewis-Base Catalysis in Aqueous or Organic Solvents 5 The Mukaiyama Aldol Reactions in 100% Water 6 Asymmetric Catalysts in Aqueous Media and Water 7 Conclusions and Perspective PMID:24971045

  11. Multilayer Network Analysis of Nuclear Reactions

    PubMed Central

    Zhu, Liang; Ma, Yu-Gang; Chen, Qu; Han, Ding-Ding

    2016-01-01

    The nuclear reaction network is usually studied via precise calculation of differential equation sets, and much research interest has been focused on the characteristics of nuclides, such as half-life and size limit. In this paper, however, we adopt the methods from both multilayer and reaction networks, and obtain a distinctive view by mapping all the nuclear reactions in JINA REACLIB database into a directed network with 4 layers: neutron, proton, 4He and the remainder. The layer names correspond to reaction types decided by the currency particles consumed. This combined approach reveals that, in the remainder layer, the β-stability has high correlation with node degree difference and overlapping coefficient. Moreover, when reaction rates are considered as node strength, we find that, at lower temperatures, nuclide half-life scales reciprocally with its out-strength. The connection between physical properties and topological characteristics may help to explore the boundary of the nuclide chart. PMID:27558995

  12. Tandem Catalysis Utilizing Olefin Metathesis Reactions.

    PubMed

    Zieliński, Grzegorz K; Grela, Karol

    2016-07-01

    Since olefin metathesis transformation has become a favored synthetic tool in organic synthesis, more and more distinct non-metathetical reactions of alkylidene ruthenium complexes have been developed. Depending on the conditions applied, the same olefin metathesis catalysts can efficiently promote isomerization reactions, hydrogenation of C=C double bonds, oxidation reactions, and many others. Importantly, these transformations can be carried out in tandem with olefin metathesis reactions. Through addition of one portion of a catalyst, a tandem process provides structurally advanced products from relatively simple substrates without the need for isolation of the intermediates. These aspects not only make tandem catalysis very attractive from a practical point of view, but also open new avenues in (retro)synthetic planning. However, in the literature, the term "tandem process" is sometimes used improperly to describe other types of multi-reaction sequences. In this Concept, a number of examples of tandem catalysis involving olefin metathesis are discussed with an emphasis on their synthetic value.

  13. Catalytic Conia-ene and related reactions.

    PubMed

    Hack, Daniel; Blümel, Marcus; Chauhan, Pankaj; Philipps, Arne R; Enders, Dieter

    2015-10-01

    Since its initial inception, the Conia-ene reaction, known as the intramolecular addition of enols to alkynes or alkenes, has experienced a tremendous development and appealing catalytic protocols have emerged. This review fathoms the underlying mechanistic principles rationalizing how substrate design, substrate activation, and the nature of the catalyst work hand in hand for the efficient synthesis of carbocycles and heterocycles at mild reaction conditions. Nowadays, Conia-ene reactions can be found as part of tandem reactions, and the road for asymmetric versions has already been paved. Based on their broad applicability, Conia-ene reactions have turned into a highly appreciated synthetic tool with impressive examples in natural product synthesis reported in recent years. PMID:26031492

  14. Cascade enzymatic reactions for efficient carbon sequestration.

    PubMed

    Xia, Shunxiang; Zhao, Xueyan; Frigo-Vaz, Benjamin; Zheng, Wenyun; Kim, Jungbae; Wang, Ping

    2015-04-01

    Thermochemical processes developed for carbon capture and storage (CCS) offer high carbon capture capacities, but are generally hampered by low energy efficiency. Reversible cascade enzyme reactions are examined in this work for energy-efficient carbon sequestration. By integrating the reactions of two key enzymes of RTCA cycle, isocitrate dehydrogenase and aconitase, we demonstrate that intensified carbon capture can be realized through such cascade enzymatic reactions. Experiments show that enhanced thermodynamic driving force for carbon conversion can be attained via pH control under ambient conditions, and that the cascade reactions have the potential to capture 0.5 mol carbon at pH 6 for each mole of substrate applied. Overall it manifests that the carbon capture capacity of biocatalytic reactions, in addition to be energy efficient, can also be ultimately intensified to approach those realized with chemical absorbents such as MEA.

  15. Catalytic Conia-ene and related reactions.

    PubMed

    Hack, Daniel; Blümel, Marcus; Chauhan, Pankaj; Philipps, Arne R; Enders, Dieter

    2015-10-01

    Since its initial inception, the Conia-ene reaction, known as the intramolecular addition of enols to alkynes or alkenes, has experienced a tremendous development and appealing catalytic protocols have emerged. This review fathoms the underlying mechanistic principles rationalizing how substrate design, substrate activation, and the nature of the catalyst work hand in hand for the efficient synthesis of carbocycles and heterocycles at mild reaction conditions. Nowadays, Conia-ene reactions can be found as part of tandem reactions, and the road for asymmetric versions has already been paved. Based on their broad applicability, Conia-ene reactions have turned into a highly appreciated synthetic tool with impressive examples in natural product synthesis reported in recent years.

  16. A generic reaction-based biogeochemical simulator

    SciTech Connect

    Fang, Yilin; Yabusaki, Steven B.; Yeh, Gour T.; C.T. Miller, M.W. Farthing, W.G. Gray, and G.F. Pinder

    2004-06-17

    This paper presents a generic biogeochemical simulator, BIOGEOCHEM. The simulator can read a thermodynamic database based on the EQ3/EQ6 database. It can also read user-specified equilibrium and kinetic reactions (reactions not defined in the format of that in EQ3/EQ6 database) symbolically. BIOGEOCHEM is developed with a general paradigm. It overcomes the requirement in most available reaction-based models that reactions and rate laws be specified in a limited number of canonical forms. The simulator interprets the reactions, and rate laws of virtually any type for input to the MAPLE symbolic mathematical software package. MAPLE then generates Fortran code for the analytical Jacobian matrix used in the Newton-Raphson technique, which are compiled and linked into the BIOGEOCHEM executable. With this feature, the users are exempted from recoding the simulator to accept new equilibrium expressions or kinetic rate laws. Two examples are used to demonstrate the new features of the simulator.

  17. Multilayer Network Analysis of Nuclear Reactions.

    PubMed

    Zhu, Liang; Ma, Yu-Gang; Chen, Qu; Han, Ding-Ding

    2016-01-01

    The nuclear reaction network is usually studied via precise calculation of differential equation sets, and much research interest has been focused on the characteristics of nuclides, such as half-life and size limit. In this paper, however, we adopt the methods from both multilayer and reaction networks, and obtain a distinctive view by mapping all the nuclear reactions in JINA REACLIB database into a directed network with 4 layers: neutron, proton, (4)He and the remainder. The layer names correspond to reaction types decided by the currency particles consumed. This combined approach reveals that, in the remainder layer, the β-stability has high correlation with node degree difference and overlapping coefficient. Moreover, when reaction rates are considered as node strength, we find that, at lower temperatures, nuclide half-life scales reciprocally with its out-strength. The connection between physical properties and topological characteristics may help to explore the boundary of the nuclide chart. PMID:27558995

  18. Apparatus for fluid-bed catalytic reactions

    SciTech Connect

    Harandi, M.; Owen, H.

    1991-09-17

    This patent describes an apparatus for the conversion of hydrocarbons. It comprises a reactor vessel for containing a fluid bed reaction zone including finely divided catalyst, the reactor vessel further comprising a feed distributor positioned in a lower portion of the reactor vessel, a heat exchange conduit within the reactor vessel in direct contact with the fluid bed reaction zone for transferring heat from a hot circulating fluid to the fluid bed reaction zone, and a catalyst separator positioned in an upper section of the reactor vessel for segregating reaction products from entrained spent catalyst; a first conduit for withdrawing spent catalyst from the fluid bed reaction zone; a feed preheater vessel operatively connected to the first conduit for contacting an aliphatic feedstream with a fluidized bed of the spent catalyst, the feed preheater vessel being sized to provide spent catalyst circulation through the preheater vessel of from about 0.1 to about 100 volumes of spent catalyst per hour.

  19. Idiosyncratic adverse reactions to antiepileptic drugs.

    PubMed

    Zaccara, Gaetano; Franciotta, Diego; Perucca, Emilio

    2007-07-01

    Idiosyncratic drug reactions may be defined as adverse effects that cannot be explained by the known mechanisms of action of the offending agent, do not occur at any dose in most patients, and develop mostly unpredictably in susceptible individuals only. These reactions are generally thought to account for up to 10% of all adverse drug reactions, but their frequency may be higher depending on the definition adopted. Idiosyncratic reactions are a major source of concern because they encompass most life-threatening effects of antiepileptic drugs (AEDs), as well as many other reactions requiring discontinuation of treatment. Based on the underlying mechanisms, idiosyncratic reactions can be differentiated into (1) immune-mediated hypersensitivity reactions, which may range from benign skin rashes to serious conditions such as drug-related rash with eosinophilia and systemic symptoms; (2) reactions involving unusual nonimmune-mediated individual susceptibility, often related to abnormal production or defective detoxification of reactive cytotoxic metabolites (as in valproate-induced liver toxicity); and (3) off-target pharmacology, whereby a drug interacts directly with a system other than that for which it is intended, an example being some types of AED-induced dyskinesias. Although no AED is free from the potential of inducing idiosyncratic reactions, the magnitude of risk and the most common manifestations vary from one drug to another, a consideration that impacts on treatment choices. Serious consequences of idiosyncratic reactions can be minimized by knowledge of risk factors, avoidance of specific AEDs in subpopulations at risk, cautious dose titration, and careful monitoring of clinical response.

  20. Autocatalysis-driven clock reaction II: kinetics of the pentathionate-periodate reaction.

    PubMed

    Xu, Li; Horváth, Attila K

    2014-10-23

    The pentathionate-periodate reaction has been investigated by spectrophotometrically monitoring the total amount of iodine evolved in the presence of phosphoric acid/dihydrogen phosphate buffer at 468 nm. The majority of the main characteristics of the title system is very reminiscent of that found recently in the pentathionate-iodate reaction, a system that led us to classify generally the clock reactions. Along with the pentathionate-iodate reaction the title system is proposed to belong to the autocatalysis-driven clock reactions as well. The kinetic model of the pentathionate-iodate system published recently was implemented by the necessary reactions of periodate to compose a 24-step kinetic model in which the mechanisms of the pentathionate-iodine, pentathionate-iodate, bisulfite-periodate, bisulfite-iodate, iodide-periodate, and the well-known Dushman reactions are combined. A thorough analysis revealed that the direct pentathionate-periodate reaction plays a role only to produce iodide ion via a finite sequence of reactions, and once its concentration reaches a certain level, the reaction is almost exclusively governed by the pentathionate-iodine, the iodide-periodate, and the Dushman reactions. As expected strong catalytic effect of the buffer composition is also found that can readily be explained by its well-known catalytic influence on the Dushman reaction. PMID:25268333

  1. A Green Multicomponent Reaction for the Organic Chemistry Laboratory: The Aqueous Passerini Reaction

    ERIC Educational Resources Information Center

    Hooper, Matthew M.; DeBoef, Brenton

    2009-01-01

    Water is the ideal green solvent for organic reactions. However, most organic molecules are insoluble in it. Herein, we report a laboratory module that takes advantage of this property. The Passerini reaction, a three-component coupling involving an isocyanide, aldehyde, and carboxylic acid, typically requires [similar to] 24 h reaction times in…

  2. Effect of Reaction Developing Training on Audio-Visual Feet Reaction Time in Wrestlers

    ERIC Educational Resources Information Center

    Kaya, Mustafa

    2016-01-01

    Reaction time is one of the most determinative elements for a successful sports performance. The purpose of this study was to investigate the effect of 12-week feet reaction developing trainings upon feet reaction time of females at 11-13 age interval. Volunteer sportsmen between 11 and 13 age interval who were active in Tokat Provincial…

  3. Model Experiment of Thermal Runaway Reactions Using the Aluminum-Hydrochloric Acid Reaction

    ERIC Educational Resources Information Center

    Kitabayashi, Suguru; Nakano, Masayoshi; Nishikawa, Kazuyuki; Koga, Nobuyoshi

    2016-01-01

    A laboratory exercise for the education of students about thermal runaway reactions based on the reaction between aluminum and hydrochloric acid as a model reaction is proposed. In the introductory part of the exercise, the induction period and subsequent thermal runaway behavior are evaluated via a simple observation of hydrogen gas evolution and…

  4. Acceleration of reaction in charged microdroplets.

    PubMed

    Lee, Jae Kyoo; Banerjee, Shibdas; Nam, Hong Gil; Zare, Richard N

    2015-11-01

    Using high-resolution mass spectrometry, we have studied the synthesis of isoquinoline in a charged electrospray droplet and the complexation between cytochrome c and maltose in a fused droplet to investigate the feasibility of droplets to drive reactions (both covalent and noncovalent interactions) at a faster rate than that observed in conventional bulk solution. In both the cases we found marked acceleration of reaction, by a factor of a million or more in the former and a factor of a thousand or more in the latter. We believe that carrying out reactions in microdroplets (about 1-15 μm in diameter corresponding to 0·5 pl - 2 nl) is a general method for increasing reaction rates. The mechanism is not presently established but droplet evaporation and droplet confinement of reagents appear to be two important factors among others. In the case of fused water droplets, evaporation has been shown to be almost negligible during the flight time from where droplet fusion occurs and the droplets enter the heated capillary inlet of the mass spectrometer. This suggests that (1) evaporation is not responsible for the acceleration process in aqueous droplet fusion and (2) the droplet-air interface may play a significant role in accelerating the reaction. We argue that this 'microdroplet chemistry' could be a remarkable alternative to accelerate slow and difficult reactions, and in conjunction with mass spectrometry, it may provide a new arena to study chemical and biochemical reactions in a confined environment.

  5. Photoinduced Electron Transfer Reactions for Macromolecular Syntheses.

    PubMed

    Dadashi-Silab, Sajjad; Doran, Sean; Yagci, Yusuf

    2016-09-14

    Photochemical reactions, particularly those involving photoinduced electron transfer processes, establish a substantial contribution to the modern synthetic chemistry, and the polymer community has been increasingly interested in exploiting and developing novel photochemical strategies. These reactions are efficiently utilized in almost every aspect of macromolecular architecture synthesis, involving initiation, control of the reaction kinetics and molecular structures, functionalization, and decoration, etc. Merging with polymerization techniques, photochemistry has opened up new intriguing and powerful avenues for macromolecular synthesis. Construction of various polymers with incredibly complex structures and specific control over the chain topology, as well as providing the opportunity to manipulate the reaction course through spatiotemporal control, are one of the unique abilities of such photochemical reactions. This review paper provides a comprehensive account of the fundamentals and applications of photoinduced electron transfer reactions in polymer synthesis. Besides traditional photopolymerization methods, namely free radical and cationic polymerizations, step-growth polymerizations involving electron transfer processes are included. In addition, controlled radical polymerization and "Click Chemistry" methods have significantly evolved over the last few decades allowing access to narrow molecular weight distributions, efficient regulation of the molecular weight and the monomer sequence and incredibly complex architectures, and polymer modifications and surface patterning are covered. Potential applications including synthesis of block and graft copolymers, polymer-metal nanocomposites, various hybrid materials and bioconjugates, and sequence defined polymers through photoinduced electron transfer reactions are also investigated in detail.

  6. Enzyme reaction annotation using cloud techniques.

    PubMed

    Huang, Chuan-Ching; Lin, Chun-Yuan; Chang, Cheng-Wen; Tang, Chuan Yi

    2013-01-01

    An understanding of the activities of enzymes could help to elucidate the metabolic pathways of thousands of chemical reactions that are catalyzed by enzymes in living systems. Sophisticated applications such as drug design and metabolic reconstruction could be developed using accurate enzyme reaction annotation. Because accurate enzyme reaction annotation methods create potential for enhanced production capacity in these applications, they have received greater attention in the global market. We propose the enzyme reaction prediction (ERP) method as a novel tool to deduce enzyme reactions from domain architecture. We used several frequency relationships between architectures and reactions to enhance the annotation rates for single and multiple catalyzed reactions. The deluge of information which arose from high-throughput techniques in the postgenomic era has improved our understanding of biological data, although it presents obstacles in the data-processing stage. The high computational capacity provided by cloud computing has resulted in an exponential growth in the volume of incoming data. Cloud services also relieve the requirement for large-scale memory space required by this approach to analyze enzyme kinetic data. Our tool is designed as a single execution file; thus, it could be applied to any cloud platform in which multiple queries are supported.

  7. Immediate and delayed reactions to cosmetic ingredients.

    PubMed

    Emmons, W W; Marks, J G

    1985-10-01

    The purpose of this study was to investigate the incidence and etiology of cutaneous reactions caused by cosmetics, with an emphasis on perfume sensitivity. 19 control subjects and 31 patch test clinic patients (16 with a history of adverse cosmetic reactions) were examined for sensitivity by history, open and patch testing using the North American Contact Dermatitis Group (NACDG) fragrance screening series and 11 other common allergens found in cosmetics. Contact urticaria was very frequent to certain chemicals; however, patients with a history of cosmetic sensitivity were not found to have a significant increase in positive reactions when compared to controls or patients with eczematous skin. 12 subjects had positive patch test reactions, most of which were not clinically relevant. 3 patients with a history of cosmetic sensitivity had positive reactions, only 1 of which was in the fragrance screening series (cinnamic alcohol). There were 6 reactions in patients with eczematous skin, 4 of which were to preservatives. 3 controls had positive reactions, each to thimerosal. A history of cosmetic sensitivity was not confirmed by open and closed skin testing in our subjects.

  8. Acceleration of reaction in charged microdroplets.

    PubMed

    Lee, Jae Kyoo; Banerjee, Shibdas; Nam, Hong Gil; Zare, Richard N

    2015-11-01

    Using high-resolution mass spectrometry, we have studied the synthesis of isoquinoline in a charged electrospray droplet and the complexation between cytochrome c and maltose in a fused droplet to investigate the feasibility of droplets to drive reactions (both covalent and noncovalent interactions) at a faster rate than that observed in conventional bulk solution. In both the cases we found marked acceleration of reaction, by a factor of a million or more in the former and a factor of a thousand or more in the latter. We believe that carrying out reactions in microdroplets (about 1-15 μm in diameter corresponding to 0·5 pl - 2 nl) is a general method for increasing reaction rates. The mechanism is not presently established but droplet evaporation and droplet confinement of reagents appear to be two important factors among others. In the case of fused water droplets, evaporation has been shown to be almost negligible during the flight time from where droplet fusion occurs and the droplets enter the heated capillary inlet of the mass spectrometer. This suggests that (1) evaporation is not responsible for the acceleration process in aqueous droplet fusion and (2) the droplet-air interface may play a significant role in accelerating the reaction. We argue that this 'microdroplet chemistry' could be a remarkable alternative to accelerate slow and difficult reactions, and in conjunction with mass spectrometry, it may provide a new arena to study chemical and biochemical reactions in a confined environment. PMID:26537403

  9. Transport-theoretical description of nuclear reactions

    NASA Astrophysics Data System (ADS)

    Buss, O.; Gaitanos, T.; Gallmeister, K.; van Hees, H.; Kaskulov, M.; Lalakulich, O.; Larionov, A. B.; Leitner, T.; Weil, J.; Mosel, U.

    2012-03-01

    In this review we first outline the basics of transport theory and its recent generalization to off-shell transport. We then present in some detail the main ingredients of any transport method using in particular the Giessen Boltzmann-Uehling-Uhlenbeck (GiBUU) implementation of this theory as an example. We discuss the potentials used, the ground state initialization and the collision term, including the in-medium modifications of the latter. The central part of this review covers applications of GiBUU to a wide class of reactions, starting from pion-induced reactions over proton and antiproton reactions on nuclei to heavy-ion collisions (up to about 30 AGeV). A major part concerns also the description of photon-, electron- and neutrino-induced reactions (in the energy range from a few 100 MeV to a few 100 GeV). For this wide class of reactions GiBUU gives an excellent description with the same physics input and the same code being used. We argue that GiBUU is an indispensable tool for any investigation of nuclear reactions in which final-state interactions play a role. Studies of pion-nucleus interactions, nuclear fragmentation, heavy-ion reactions, hypernucleus formation, hadronization, color transparency, electron-nucleus collisions and neutrino-nucleus interactions are all possible applications of GiBUU and are discussed in this article.

  10. A New Twist on the Iodine Clock Reaction: Determining the Order of a Reaction

    NASA Astrophysics Data System (ADS)

    Creary, Xavier; Morris, Karen M.

    1999-04-01

    The Landolt iodine clock reaction is a reliable and well-used chemistry demonstration owing to a variety of features: ease of solution preparation, striking color change indicating reaction completion, convenience in changing reaction "clock time", and effective dramatic presentation. The iodine clock reaction can also be used to illustrate the kinetic order of a reaction, and an overhead projector demonstration was developed three years ago for general chemistry classes at the University of Notre Dame showing this concept. This demonstration has been used successfully with consistent results since that time.

  11. Violent Reactions from Non-Shock Stimuli

    NASA Astrophysics Data System (ADS)

    Sandusky, Harold

    2007-06-01

    Most reactions are thermally initiated, whether from direct heating or dissipation of energy from mechanical, shock, or electrical stimuli. For other than prompt shock initiation, the reaction must be able to spread through porosity or over large surface area to become more violent than just rupturing any confinement. While burning rates are important, high-strain mechanical properties are nearly so, either by reducing existing porosity or generating additional surface area through fracture. The first example is deflagration-to-detonation transition (DDT) in porous beds. During the early stages, weak compressive waves ahead of the convective ignition front will reduce porosity, thereby restricting the spread of combustion and the pressure buildup. If, however, pressure increases faster than can be relieved by loss of confinement, coalescing compressive waves can initiate reaction at hot spots from rapid pore collapse. This compressive reaction can drive a shockwave that transits to detonation, the most violent reaction in any scenario. It has been shown that reaction violence is reduced in DDT experiments if the binder is softened, either by raising the initial temperature or adding a solvent. An example of the role of mechanical properties in enhancing reaction violence through fracturing occurs when cavities in projectile fills collapse during acceleration in the gun barrel, which is referred to as setback. Explosives with soft rubber binders will deform and undergo mild reaction from shear heating within the explosive and adiabatic compression of any gas in the cavity. Stiff explosives are similarly ignited, but also fracture and generate additional surface area for a violent event. The last example to be considered is slow cook-off, where thermal damage can increase burning rate as well as provide porosity to enhance the pressure buildup. As reaction spreads from the zone of thermal run-away, an explosive binder that resists breakup will limit the violence.

  12. ReactionMap: an efficient atom-mapping algorithm for chemical reactions.

    PubMed

    Fooshee, David; Andronico, Alessio; Baldi, Pierre

    2013-11-25

    Large databases of chemical reactions provide new data-mining opportunities and challenges. Key challenges result from the imperfect quality of the data and the fact that many of these reactions are not properly balanced or atom-mapped. Here, we describe ReactionMap, an efficient atom-mapping algorithm. Our approach uses a combination of maximum common chemical subgraph search and minimization of an assignment cost function derived empirically from training data. We use a set of over 259,000 balanced atom-mapped reactions from the SPRESI commercial database to train the system, and we validate it on random sets of 1000 and 17,996 reactions sampled from this pool. These large test sets represent a broad range of chemical reaction types, and ReactionMap correctly maps about 99% of the atoms and about 96% of the reactions, with a mean time per mapping of 2 s. Most correctly mapped reactions are mapped with high confidence. Mapping accuracy compares favorably with ChemAxon's AutoMapper, versions 5 and 6.1, and the DREAM Web tool. These approaches correctly map 60.7%, 86.5%, and 90.3% of the reactions, respectively, on the same data set. A ReactionMap server is available on the ChemDB Web portal at http://cdb.ics.uci.edu .

  13. Reaction synthesis of heat-resistant materials

    SciTech Connect

    Deevi, S.C.; Sikka, V.K.

    1995-12-31

    Exothermicity associated with the synthesis of aluminides can be utilized to obtain aluminides of transition metals. Combustion synthesis, extrusion, and hot pressing were utilized to obtain dense intermetallics and their composites. Composites were analyzed by X- ray diffraction and microscopy techniques, and tensile properties were measured on button-head and sheet specimens of intermetallics and their composites. Mechanical properties of intermetallics obtained by reaction synthesis and densification compare well with conventionally processed materials. Reaction-synthesis principles were also extended to weld overlays. Possible approaches to obtaining dense products by reaction synthesis and densification are summarized in a schematic illustration. 19 refs., 14 figs., 3 tabs.

  14. The Direct Catalytic Asymmetric Aldol Reaction

    PubMed Central

    Brindle, Cheyenne S.

    2013-01-01

    Asymmetric aldol reactions are a powerful method for the construction of carbon-carbon bonds in an enantioselective fashion. Historically this reaction has been performed in a stoichiometric fashion to control the various aspects of chemo-, diastereo-, regio- and enantioselectivity, however, a more atom economical approach would unite high selectivity with the use of only a catalytic amount of a chiral promoter. This critical review documents the development of direct catalytic asymmetric aldol methodologies, including organocatalytic and metal-based strategies. New methods have improved the reactivity, selectivity and substrate scope of the direct aldol reaction and enabled the synthesis of complex molecular targets PMID:20419212

  15. Low-energy proton capture reactions

    SciTech Connect

    Lipoglavsek, M.; Cvetinovic, A.; Gajevic, J.; Likar, A.; Vavpetic, P.; Petrovic, T.

    2014-05-09

    An overview of experimental problems in measuring the cross sections for (p,γ) and (p,n) reactions at low energies is given with a specific emphasis on electron screening in metallic targets. Thick target γ-ray and neutron yields are compared for Ni and NiO targets, V and VO{sub 2} targets and Mn and MnO targets. The {sup 1}H({sup 7}Li,α){sup 4}He reaction was studied in inverse kinematics with hydrogen loaded into Pd and PdAg alloy foils from gas phase. Based on these results, a new approach to electron screening in nuclear reactions is suggested.

  16. Observation of a rapid amorphization reaction

    SciTech Connect

    Hufnagel, T.C. ); Brennan, S. ); Payne, A.P.; Clemens, B.M. )

    1992-08-01

    We have observed a rapid amorphization reaction at ambient temperature in the Gd/Co system by employing grazing incidence x-ray scattering. We find that a 135 A crystalline Gd film is amporhized in less than 30 min by deposition of Co. We postulate that the rapidity of the reaction is due to surface diffusion of Co atoms after deposition to fast diffusion sites such as grain boundaries in the Gd film. Once the interfacial region has been amorphized these fast diffusion paths are sealed off from the surface, rapid diffusion of Co into the Gd crystalline layer is prevented, and the amorphization reaction stops.

  17. Idiosyncratic allergic reaction to textured saline implants.

    PubMed

    Sabbagh, W H; Murphy, R X; Kucirka, S J; Okunski, W J

    1996-04-01

    In the literature, multiple conditions, including hematomas, self-limited cutaneous eruptions, and generalized systemic complaints, have been attributed to breast implants. We report the first case of idiosyncratic allergic reaction to the textured surface of a mammary prosthesis. The reaction was documented by patch testing of the textured surface compared with smooth-surface silicone controls. Symptoms resolved with removal of the implants and have not recurred after insertion of smooth-walled implants. Whereas the physiology of this condition remains unclear at this time, it is important to recognize the possibility of a delayed hypersensitivity reaction when considering reconstruction with a textured breast implant.

  18. Reactions in droplets in microfluidic channels.

    PubMed

    Song, Helen; Chen, Delai L; Ismagilov, Rustem F

    2006-11-13

    Fundamental and applied research in chemistry and biology benefits from opportunities provided by droplet-based microfluidic systems. These systems enable the miniaturization of reactions by compartmentalizing reactions in droplets of femoliter to microliter volumes. Compartmentalization in droplets provides rapid mixing of reagents, control of the timing of reactions on timescales from milliseconds to months, control of interfacial properties, and the ability to synthesize and transport solid reagents and products. Droplet-based microfluidics can help to enhance and accelerate chemical and biochemical screening, protein crystallization, enzymatic kinetics, and assays. Moreover, the control provided by droplets in microfluidic devices can lead to new scientific methods and insights.

  19. Reaction of communities to impulse noise

    NASA Astrophysics Data System (ADS)

    Seshagiri, B. V.

    1981-01-01

    In order to assess the reaction of communities to impulse noise, a sociological survey was conducted in three communities in Ontario, Canada. The dominant industrial noise in these locations is due to drop forging operations. Nearly 600 completed interviews were recorded. Detailed sound level measurements were carried out in the areas surveyed. The results clearly indicate the extent of adverse reaction to the forging noise. This research has been compared with the reaction of the respondents to traffic noise prevailing in their communities. Regression lines are presented showing the relationship between the percent of people disturbed by the forging noise and the sound level of the impulses.

  20. Reaction-diffusion in the NEURON simulator.

    PubMed

    McDougal, Robert A; Hines, Michael L; Lytton, William W

    2013-01-01

    In order to support research on the role of cell biological principles (genomics, proteomics, signaling cascades and reaction dynamics) on the dynamics of neuronal response in health and disease, NEURON's Reaction-Diffusion (rxd) module in Python provides specification and simulation for these dynamics, coupled with the electrophysiological dynamics of the cell membrane. Arithmetic operations on species and parameters are overloaded, allowing arbitrary reaction formulas to be specified using Python syntax. These expressions are then transparently compiled into bytecode that uses NumPy for fast vectorized calculations. At each time step, rxd combines NEURON's integrators with SciPy's sparse linear algebra library. PMID:24298253

  1. Physiological aspects of free-radical reactions.

    PubMed Central

    Yamazaki, I; Tamura, M; Nakajima, R; Nakamura, M

    1985-01-01

    Enzymes which catalyze the formation of free radicals in vitro will catalyze similar reactions in vivo. We believe that the formation of some kinds of free radicals has definite physiological meanings in metabolism. In this sense, the enzymes forming such free radicals are concluded to be in evolutionally advanced states. Elaborated structure and function of enzymes such as horseradish peroxidase and microsomal flavoproteins support the idea. Deleterious and side reactions caused by free radicals are assumed to be minimized in vivo by localizing the reactions, but this assumption should be verified by future studies. PMID:3007098

  2. Fractional diffusion equations coupled by reaction terms

    NASA Astrophysics Data System (ADS)

    Lenzi, E. K.; Menechini Neto, R.; Tateishi, A. A.; Lenzi, M. K.; Ribeiro, H. V.

    2016-09-01

    We investigate the behavior for a set of fractional reaction-diffusion equations that extend the usual ones by the presence of spatial fractional derivatives of distributed order in the diffusive term. These equations are coupled via the reaction terms which may represent reversible or irreversible processes. For these equations, we find exact solutions and show that the spreading of the distributions is asymptotically governed by the same the long-tailed distribution. Furthermore, we observe that the coupling introduced by reaction terms creates an interplay between different diffusive regimes leading us to a rich class of behaviors related to anomalous diffusion.

  3. Power law behavior in chemical reactions.

    PubMed

    Claycomb, J R; Nawarathna, D; Vajrala, V; Miller, J H

    2004-12-22

    Reactions between metals and chloride solutions have been shown to exhibit magnetic field fluctuations over a wide range of size and time scales. Power law behavior observed in these reactions is consistent with models said to exhibit self-organized criticality. Voltage fluctuations observed during the dissolution of magnesium and aluminum in copper chloride solution are qualitatively similar to the recorded magnetic signals. In this paper, distributions of voltage and magnetic peak sizes, noise spectra, and return times are compared for both reactions studied. PMID:15606263

  4. Power law behavior in chemical reactions

    NASA Astrophysics Data System (ADS)

    Claycomb, J. R.; Nawarathna, D.; Vajrala, V.; Miller, J. H.

    2004-12-01

    Reactions between metals and chloride solutions have been shown to exhibit magnetic field fluctuations over a wide range of size and time scales. Power law behavior observed in these reactions is consistent with models said to exhibit self-organized criticality. Voltage fluctuations observed during the dissolution of magnesium and aluminum in copper chloride solution are qualitatively similar to the recorded magnetic signals. In this paper, distributions of voltage and magnetic peak sizes, noise spectra, and return times are compared for both reactions studied.

  5. Quantum Radiation Reaction: From Interference to Incoherence.

    PubMed

    Dinu, Victor; Harvey, Chris; Ilderton, Anton; Marklund, Mattias; Torgrimsson, Greger

    2016-01-29

    We investigate quantum radiation reaction in laser-electron interactions across different energy and intensity regimes. Using a fully quantum approach which also accounts exactly for the effect of the strong laser pulse on the electron motion, we identify in particular a regime in which radiation reaction is dominated by quantum interference. We find signatures of quantum radiation reaction in the electron spectra which have no classical analogue and which cannot be captured by the incoherent approximations typically used in the high-intensity regime. These signatures are measurable with presently available laser and accelerator technology.

  6. Allergic reactions to insect stings and bites.

    PubMed

    Moffitt, John E

    2003-11-01

    Insect stings are an important cause of anaphylaxis. Anaphylaxis can also occur from insect bites but is less common. Insect venoms contain several well-characterized allergens that can trigger anaphylactic reactions. Effective methods to diagnose insect sting allergy and assess risk of future sting reactions have been developed. Management strategies using insect avoidance measures, self-injectable epinephrine, and allergen immunotherapy are very effective in reducing insect-allergic patients' risk of reaction from future stings. Diagnostic and management strategies for patients allergic to insect bites are less developed.

  7. Nuclear chain reaction: forty years later

    SciTech Connect

    Sachs, R.G.

    1984-01-01

    The proceedings from a 1982 symposium 40 years after the first controlled nuclear chain reaction took place in Chicago covers four sessions and public discussion. The session covered the history of the chain reaction; peaceful uses in technology, medicine, and biological science; peaceful uses in power generation; and nuclear weapons control. Among the speakers were Eugene Wigner, Glenn Seaborg, Alvin Weinberg, and others who participated in the first chain reaction experiments. The proceedings reflect differences of opinion among the scientists as well as the general public. References, slides, and tables used to illustrate the individual talks are included with the papers.

  8. Binomial moment equations for stochastic reaction systems.

    PubMed

    Barzel, Baruch; Biham, Ofer

    2011-04-15

    A highly efficient formulation of moment equations for stochastic reaction networks is introduced. It is based on a set of binomial moments that capture the combinatorics of the reaction processes. The resulting set of equations can be easily truncated to include moments up to any desired order. The number of equations is dramatically reduced compared to the master equation. This formulation enables the simulation of complex reaction networks, involving a large number of reactive species much beyond the feasibility limit of any existing method. It provides an equation-based paradigm to the analysis of stochastic networks, complementing the commonly used Monte Carlo simulations. PMID:21568538

  9. Supercritical Fluid Reactions for Coal Processing

    SciTech Connect

    Charles A. Eckert

    1997-11-01

    Exciting opportunities exist for the application of supercritical fluid (SCF) reactions for the pre-treatment of coal. Utilizing reactants which resemble the organic nitrogen containing components of coal, we developed a method to tailor chemical reactions in supercritical fluid solvents for the specific application of coal denitrogenation. The tautomeric equilibrium of a Schiff base was chosen as one model system and was investigated in supercritical ethane and cosolvent modified supercritical ethane. The Diels-Alder reaction of anthracene and 4-phenyl-1,2,4-triazoline-3,5-dione (PTAD) was selected as a second model system, and it was investigated in supercritical carbon dioxide.

  10. Polar reactions of acyclic conjugated bisallenes

    PubMed Central

    Stamm, Reiner

    2013-01-01

    Summary The chemical behaviour of various alkyl-substituted, acyclic conjugated bisallenes in reactions involving polar intermediates and/or transition states has been investigated on a broad scale for the first time. The reactions studied include lithiation, reaction of the thus formed organolithium salts with various electrophiles (among others, allyl bromide, DMF and acetone), oxidation to cyclopentenones and epoxides, hydrohalogenation (HCl, HBr addition), halogenation (Br2 and I2 addition), and [2 + 2] cycloaddition with chlorosulfonyl isocyanate. The resulting adducts were fully characterized by spectroscopic and analytical methods; they constitute interesting substrates for further organic transformations. PMID:23400309

  11. Allergic Reactions to Pine Nut: A Review.

    PubMed

    Cabanillas, B; Novak, N

    2015-01-01

    Pine nut is a nutrient-rich food with a beneficial impact on human health. The many bioactive constituents of pine nut interact synergistically to affect human physiology in a favorable way. However, pine nut can trigger dangerous allergic reactions. Severe anaphylactic reactions to pine nut accounted for most of the 45 cases reported in the scientific literature. Pine nut allergy seems to be characterized by low IgE cross-reactivity with other commonly consumed nuts and a high monosensitization rate. The present review provides updated information on allergic reactions to pine nut, molecular characterization of its allergens, and potential homologies with other nut allergens.

  12. On the Violence of High Explosive Reactions

    SciTech Connect

    Tarver, C M; Chidester, S K

    2004-02-09

    High explosive reactions can be caused by three general energy deposition processes: impact ignition by frictional and/or shear heating; bulk thermal heating; and shock compression. The violence of the subsequent reaction varies from benign slow combustion to catastrophic detonation of the entire charge. The degree of violence depends on many variables, including the rate of energy delivery, the physical and chemical properties of the explosive, and the strength of the confinement surrounding the explosive charge. The current state of experimental and computer modeling research on the violence of impact, thermal, and shock-induced reactions is reviewed.

  13. Serpentinization reaction pathways: implications for modeling approach

    SciTech Connect

    Janecky, D.R.

    1986-01-01

    Experimental seawater-peridotite reaction pathways to form serpentinites at 300/sup 0/C, 500 bars, can be accurately modeled using the EQ3/6 codes in conjunction with thermodynamic and kinetic data from the literature and unpublished compilations. These models provide both confirmation of experimental interpretations and more detailed insight into hydrothermal reaction processes within the oceanic crust. The accuracy of these models depends on careful evaluation of the aqueous speciation model, use of mineral compositions that closely reproduce compositions in the experiments, and definition of realistic reactive components in terms of composition, thermodynamic data, and reaction rates.

  14. The Acrosome Reaction: A Historical Perspective.

    PubMed

    Okabe, Masaru

    2016-01-01

    Acrosome reaction is often referred to as acrosomal exocytosis, but it differs significantly from normal exocytosis. While the vesicle membrane initially holding excreting molecules remains on the cell surface during exocytosis, the outer acrosomal membrane and plasma membrane are lost by forming vesicles during acrosome reaction. In this context, the latter process resembles a release of exosome. However, recent experimental data indicate that the most important roles of acrosome reaction lie not in the release of acrosomal contents (or "vesiculated" plasma and outer acrosomal membrane complexes) but rather in changes in sperm membrane. This review describes the mechanism of fertilization vis-a-vis sperm membrane change, with a brief historical overview of the half-century study of acrosome reaction. PMID:27194347

  15. Polymerization as a Model Chain Reaction

    ERIC Educational Resources Information Center

    Morton, Maurice

    1973-01-01

    Describes the features of the free radical, anionic, and cationic mechanisms of chain addition polymerization. Indicates that the nature of chain reactions can be best taught through the study of macromolecules. (CC)

  16. Chemical Reactions at Surfaces. Final Progress Report

    SciTech Connect

    2003-02-21

    The Gordon Research Conference (GRC) on Chemical Reactions at Surfaces was held at Holiday Inn, Ventura, California, 2/16-21/03. Emphasis was placed on current unpublished research and discussion of the future target areas in this field.

  17. The Genetics of Drug Hypersensitivity Reactions.

    PubMed

    Cornejo-García, J A; Jurado-Escobar, R; Doña, I; Perkins, J R; Agúndez, J A; García-Martín, E; Viguera, E; Blanca-López, N; Canto, G; Blanca, M

    2016-01-01

    DHRs are induced by various mechanisms and encompass a heterogeneous set of potentially life-threatening clinical entities. In addition to environmental effects, individual factors play a key role in this intricate puzzle. However, despite commendable efforts in recent years to identify individual predisposing factors, our knowledge of the genetic basis of these reactions remains incomplete. In this manuscript, we summarize current research on the genetics of DHRs, focusing on specific immune-mediated reactions (immediate and nonimmediate) and on pharmacologically mediated reactions (cross-intolerance to nonsteroidal anti-inflammatory drugs). We also provide some thoughts on potential technological approaches that would help us to decipher the molecular mechanisms underlying DHRs. We believe this manuscript will be of interest not only for allergists and basic researchers in the field, but also for clinicians from various areas of expertise who manage these reactions in their clinical practice.

  18. The Kinetic Rate Law for Autocatalytic Reactions.

    ERIC Educational Resources Information Center

    Mata-Perez, Fernando; Perez-Benito, Joaquin F.

    1987-01-01

    Presented is a method of obtaining accurate rate constants for autocatalytic reactions. The autocatalytic oxidation of dimethylamine by permanganate ion in aqueous solution is used as an example. (RH)

  19. Extrauterine decidual reaction associated with pregnancy.

    PubMed

    Czopek, J; Lazar, A; Demczuk, S; Opławski, M

    2014-12-01

    A case of pregnancy associated extrauterine decidual reaction of great omentum in a 25 year old woman, incidentally discovered during microscopic examination is described with a short review of literature.

  20. Hypersensitivity reactions to synthetic haemodialysis membranes.

    PubMed

    Sánchez-Villanueva, Rafael J; González, Elena; Quirce, Santiago; Díaz, Raquel; Alvarez, Laura; Menéndez, David; Rodríguez-Gayo, Lucía; Bajo, M Auxiliadora; Selgas, Rafael

    2014-01-01

    Undergoing a haemodialysis (HD) session poses a certain risk of hypersensitivity adverse reactions as large quantities of blood are in contact with various synthetic materials. Hypersensitivity reactions to ethylene oxide and non-biocompatible membranes, such as cuprophane, have been described in HD. Cases of hypersensitivity with biocompatible membranes, such as polysulfone, and even polysulfone-polyvinylpyrrolidone, have also been reported. In this article we describe six cases of mostly early-stage hypersensitivity reactions to HD occurring in our department, characterised by malaise, desaturation, bronchospasm and arterial hypotension, with good response to the session’s temporary suspension and with reappearance in subsequent sessions that used a synthetic dialyser. No hypersensitivity reactions reappeared in successive observations when the sessions were carried out using a cellulose membrane.

  1. Adsorption Isotherms and Surface Reaction Kinetics

    ERIC Educational Resources Information Center

    Lobo, L. S.; Bernardo, C. A.

    1974-01-01

    Explains an error that occurs in calculating the conditions for a maximum value of a rate expression for a bimolecular reaction. The rate expression is derived using the Langmuir adsorption isotherm to relate gas pressures and corresponding surface coverages. (GS)

  2. Enantioselective aldol reactions with masked fluoroacetates

    NASA Astrophysics Data System (ADS)

    Saadi, Jakub; Wennemers, Helma

    2016-03-01

    Despite the growing importance of organofluorines as pharmaceuticals and agrochemicals, the stereoselective introduction of fluorine into many prominent classes of natural products and chemotherapeutic agents is difficult. One long-standing unsolved challenge is the enantioselective aldol reaction of fluoroacetate to enable access to fluorinated analogues of medicinally relevant acetate-derived compounds, such as polyketides and statins. Herein we present fluoromalonic acid halfthioesters as biomimetic surrogates of fluoroacetate and demonstrate their use in highly stereoselective aldol reactions that proceed under mild organocatalytic conditions. We also show that the methodology can be extended to formal aldol reactions with fluoroacetaldehyde and consecutive aldol reactions. The synthetic utility of the fluorinated aldol products is illustrated by the synthesis of a fluorinated derivative of the top-selling drug atorvastatin. The results show the prospects of the method for the enantioselective introduction of fluoroacetate to access a wide variety of highly functionalized fluorinated compounds.

  3. Immune Reactions Among Marine and Other Invertebrates

    ERIC Educational Resources Information Center

    Bang, Frederik B.

    1973-01-01

    Discusses the defense mechanisms and immune reaction found in invertebrates, and examines the wealth of related biological problems that need study and many of the leads that have recently been developed. (JR)

  4. Computed potential energy surfaces for chemical reactions

    NASA Technical Reports Server (NTRS)

    Walch, Stephen P.; Levin, Eugene

    1993-01-01

    A new global potential energy surface (PES) is being generated for O(P-3) + H2 yields OH + H. This surface is being fit using the rotated Morse oscillator method, which was used to fit the previous POL-CI surface. The new surface is expected to be more accurate and also includes a much more complete sampling of bent geometries. A new study has been undertaken of the reaction N + O2 yields NO + O. The new studies have focused on the region of the surface near a possible minimum corresponding to the peroxy form of NOO. A large portion of the PES for this second reaction has been mapped out. Since state to state cross sections for the reaction are important in the chemistry of high temperature air, these studies will probably be extended to permit generation of a new global potential for reaction.

  5. Solar thermal aerosol flow reaction process

    SciTech Connect

    Weimer, Alan W.; Dahl, Jaimee K.; Pitts, J. Roland; Lewandowski, Allan A.; Bingham, Carl; Tamburini, Joseph R.

    2005-03-29

    The present invention provides an environmentally beneficial process using concentrated sunlight to heat radiation absorbing particles to carry out highly endothermic gas phase chemical reactions ultimately resulting in the production of hydrogen or hydrogen synthesis gases.

  6. Micelle Catalysis of an Aromatic Substitution Reaction

    ERIC Educational Resources Information Center

    Corsaro, Gerald; Smith J. K.

    1976-01-01

    Describes an experiment in which the iodonation of aniline reaction is shown to undergo catalysis in solution of sodium lauryl sulfate which forms micelles with negatively charged pseudo surfaces. (MLH)

  7. Graphic Characterization and Taxonomy of Organic Reactions.

    ERIC Educational Resources Information Center

    Fujita, Shinsaku

    1990-01-01

    Discussed are the substructures (subgraphs) of imaginary transition structures that provide an effective approach to the characterization of organic reactions. A comparison of conventional methods and this method is presented. (CW)

  8. Adverse drug reactions: classification, susceptibility and reporting.

    PubMed

    Kaufman, Gerri

    2016-08-10

    Adverse drug reactions (ADRs) are increasingly common and are a significant cause of morbidity and mortality. Historically, ADRs have been classified as type A or type B. Type A reactions are predictable from the known pharmacology of a drug and are associated with high morbidity and low mortality. Type B reactions are idiosyncratic, bizarre or novel responses that cannot be predicted from the known pharmacology of a drug and are associated with low morbidity and high mortality. Not all ADRs fit into type A and type B categories; therefore, additional categories have been developed. These include type C (continuing), type D (delayed use), and type E (end of use) reactions. Susceptibility to ADRs is influenced by age, gender, disease states, pregnancy, ethnicity and polypharmacy. Drug safety is reliant on nurses and other healthcare professionals being alert to the possibility of ADRs, working with patients to optimise medicine use and exercising vigilance in the reporting of ADRs through the Yellow Card Scheme. PMID:27507394

  9. Common Parent Reactions to the NICU

    MedlinePlus

    ... in the early part of their NICU stay. Anger Anger is also a common reaction to the initial ... weeks?”). Most parents of NICU babies feel some anger, and they express it in different ways. Some ...

  10. Enzyme Reactions in Nanoporous, Picoliter Volume Containers

    SciTech Connect

    Siuti, Piro; Retterer, Scott T; Choi, Chang Kyoung; Doktycz, Mitchel John

    2012-01-01

    Advancements in nanoscale fabrication allow creation of small volume reaction containers that can facilitate the screening and characterization of enzymes. A porous, ~19 pL volume vessel has been used in this work to carry out enzyme reactions under varying substrate concentrations. Glucose oxidase and horseradish peroxidase can be contained in these structures and diffusively fed with a solution containing glucose and the fluorogenic substrate Amplex Red through the engineered nanoscale pore structure. Fluorescent microscopy was used to monitor the reaction, which was carried out under microfluidic control. Kinetic characteristics of the enzyme were evaluated and compared with results from conventional scale reactions. These picoliter, nanoporous containers can facilitate quick determination of enzyme kinetics in microfluidic systems without the requirement of surface tethering and can be used for applications in drug discovery, clinical diagnostics and high-throughput screening.

  11. Connectionist and diffusion models of reaction time.

    PubMed

    Ratcliff, R; Van Zandt, T; McKoon, G

    1999-04-01

    Two connectionist frameworks, GRAIN (J. L. McClelland, 1993) and brain-state-in-a-box (J. A. Anderson, 1991), and R. Ratcliff's (1978) diffusion model were evaluated using data from a signal detection task. Dependent variables included response probabilities, reaction times for correct and error responses, and shapes of reaction-time distributions. The diffusion model accounted for all aspects of the data, including error reaction times that had previously been a problem for all response-time models. The connectionist models accounted for many aspects of the data adequately, but each failed to a greater or lesser degree in important ways except for one model that was similar to the diffusion model. The findings advance the development of the diffusion model and show that the long tradition of reaction-time research and theory is a fertile domain for development and testing of connectionist assumptions about how decisions are generated over time.

  12. Multistage reaction pathways in detonating high explosives

    SciTech Connect

    Li, Ying; Kalia, Rajiv K.; Nakano, Aiichiro; Nomura, Ken-ichi; Vashishta, Priya

    2014-11-17

    Atomistic mechanisms underlying the reaction time and intermediate reaction products of detonating high explosives far from equilibrium have been elusive. This is because detonation is one of the hardest multiscale physics problems, in which diverse length and time scales play important roles. Here, large spatiotemporal-scale reactive molecular dynamics simulations validated by quantum molecular dynamics simulations reveal a two-stage reaction mechanism during the detonation of cyclotrimethylenetrinitramine crystal. Rapid production of N{sub 2} and H{sub 2}O within ∼10 ps is followed by delayed production of CO molecules beyond ns. We found that further decomposition towards the final products is inhibited by the formation of large metastable carbon- and oxygen-rich clusters with fractal geometry. In addition, we found distinct unimolecular and intermolecular reaction pathways, respectively, for the rapid N{sub 2} and H{sub 2}O productions.

  13. Norms of reaction and diversifying selection.

    PubMed

    Wallace, B

    1994-01-01

    The numbers of progeny produced by comparable numbers of female Drosophila melanogaster of 26 geographic strains on nine different culture media are examined in the context of norms of reaction. Having emphasized that diversifying selection is seldom discussed simultaneously with its seemingly related topic, norms of reaction, I present the following argument: diversifying selection has generally been viewed as involving sub-populations inhabiting separate localities and subject to different patterns of selection, norms of reaction as variation whose weighted average determines the relative fitnesses of different genotypes within individual sub-populations. Should environmental challenges frequently involve life or death (including sterility) outcomes, norms of reaction involving components of fitness engender diversifying selection within local populations (demes). PMID:7958938

  14. Normative Mediation of Reactions to Crowding

    ERIC Educational Resources Information Center

    Karlin, Robert A.; And Others

    1976-01-01

    This study manipulated norms governing interaction levels in crowded groups of women. Results indicated norms influenced reactions to crowding as predicted. Women reacted most positively when interaction levels were high and most negatively when interaction levels were low. (Author)

  15. Controlling reaction specificity in pyridoxal phosphate enzymes

    PubMed Central

    Toney, Michael D.

    2012-01-01

    Pyridoxal 5'-phosphate enzymes are ubiquitous in the nitrogen metabolism of all organisms. They catalyze a wide variety of reactions including racemization, transamination, decarboxylation, elimination, retro-aldol cleavage, Claisen condensation, and others on substrates containing an amino group, most commonly α-amino acids. The wide variety of reactions catalyzed by PLP enzymes is enabled by the ability of the covalent aldimine intermediate formed between substrate and PLP to stabilize carbanionic intermediates at Cα of the substrate. This review attempts to summarize the mechanisms by which reaction specificity can be achieved in PLP enzymes by focusing on three aspects of these reactions: stereoelectronic effects, protonation state of the external aldimine intermediate, and interaction of the carbanionic intermediate with the protein side chains present in the active site. PMID:21664990

  16. Classical transition states for collinear chemical reactions

    NASA Astrophysics Data System (ADS)

    Maslen, V. W.

    An analysis of a simple model for the interaction region of the potential energy surface of a collinear atom-diatomic molecule reaction is used to interpret recent observations of periodic trajectories on accurate energy surfaces.

  17. Contact-Allergic Reactions to Cosmetics

    PubMed Central

    Goossens, An

    2011-01-01

    Contact-allergic reactions to cosmetics may be delayed-type reactions such as allergic and photo-allergic contact dermatitis, and more exceptionally also immediate-type reactions, that is, contact urticaria. Fragrances and preservative agents are the most important contact allergens, but reactions also occur to category-specific products such as hair dyes and other hair-care products, nail cosmetics, sunscreens, as well as to antioxidants, vehicles, emulsifiers, and, in fact, any possible cosmetic ingredient. Patch and prick testing to detect the respective culprits remains the golden standard for diagnosis, although additional tests might be useful as well. Once the specific allergens are identified, the patients should be informed of which products can be safely used in the future. PMID:21461388

  18. Method for predicting enzyme-catalyzed reactions

    DOEpatents

    Hlavacek, William S.; Unkefer, Clifford J.; Mu, Fangping; Unkefer, Pat J.

    2013-03-19

    The reactivity of given metabolites is assessed using selected empirical atomic properties in the potential reaction center. Metabolic reactions are represented as biotransformation rules. These rules are generalized from the patterns in reactions. These patterns are not unique to reactants but are widely distributed among metabolites. Using a metabolite database, potential substructures are identified in the metabolites for a given biotransformation. These substructures are divided into reactants or non-reactants, depending on whether they participate in the biotransformation or not. Each potential substructure is then modeled using descriptors of the topological and electronic properties of atoms in the potential reaction center; molecular properties can also be used. A Support Vector Machine (SVM) or classifier is trained to classify a potential reactant as a true or false reactant using these properties.

  19. Supplement to Theory of Neutron Chain Reactions

    DOE R&D Accomplishments Database

    Weinberg, Alvin M.; Noderer, L. C.

    1952-05-26

    General discussions are given of the theory of neutron chain reactions. These include observations on exponential experiments, the general reactor with resonance fission, microscopic pile theory, and homogeneous slow neutron reactors. (B.J.H.)

  20. Crystal blocking in heavy ion reactions

    SciTech Connect

    del Campo, J.G.

    1986-01-01

    The crystal blocking technique, used to measure very short lifetime (10/sup -18/ sec), was developed during the 1960's primarily in connection with the study of the channeling effect. Early blocking lifetime measurements involved light ion resonance reactions yielding typical lifetime values down to the order of 10/sup -17/ sec. Recently, studies of heavy-ion induced fission and fusion have extended the technique into the 10/sup -18/ to 10/sup -19/ sec scale. In this work measurements of fusion for /sup 16/O + Ge and deep inelastic reactions for /sup 28/Si + Ge are presented for bombarding energies around 8 nucleon. Also measurements of the projectile fragmenatation of 44 MeV/nucleon /sup 40/Ar + Ge are discussed. In all reactions studied the presence of particle evaporation is the dominant mechanism that determines the reaction times of about 10/sup -18/ sec extracted with the blocking technique. 16 refs., 9 figs.

  1. The Genetics of Drug Hypersensitivity Reactions.

    PubMed

    Cornejo-García, J A; Jurado-Escobar, R; Doña, I; Perkins, J R; Agúndez, J A; García-Martín, E; Viguera, E; Blanca-López, N; Canto, G; Blanca, M

    2016-01-01

    DHRs are induced by various mechanisms and encompass a heterogeneous set of potentially life-threatening clinical entities. In addition to environmental effects, individual factors play a key role in this intricate puzzle. However, despite commendable efforts in recent years to identify individual predisposing factors, our knowledge of the genetic basis of these reactions remains incomplete. In this manuscript, we summarize current research on the genetics of DHRs, focusing on specific immune-mediated reactions (immediate and nonimmediate) and on pharmacologically mediated reactions (cross-intolerance to nonsteroidal anti-inflammatory drugs). We also provide some thoughts on potential technological approaches that would help us to decipher the molecular mechanisms underlying DHRs. We believe this manuscript will be of interest not only for allergists and basic researchers in the field, but also for clinicians from various areas of expertise who manage these reactions in their clinical practice. PMID:27375032

  2. Langevin Equations for Reaction-Diffusion Processes.

    PubMed

    Benitez, Federico; Duclut, Charlie; Chaté, Hugues; Delamotte, Bertrand; Dornic, Ivan; Muñoz, Miguel A

    2016-09-01

    For reaction-diffusion processes with at most bimolecular reactants, we derive well-behaved, numerically tractable, exact Langevin equations that govern a stochastic variable related to the response field in field theory. Using duality relations, we show how the particle number and other quantities of interest can be computed. Our work clarifies long-standing conceptual issues encountered in field-theoretical approaches and paves the way for systematic numerical and theoretical analyses of reaction-diffusion problems. PMID:27636462

  3. Conjugate products of pyocyanin-glutathione reactions.

    PubMed

    Cheluvappa, Rajkumar; Eri, Rajaraman

    2015-08-01

    This "Letter to the Editor" is a "gentle but purposeful rejoinder" to specific comments made in pages 36-37 of your Muller and Merrett (2015) publication regarding the data presented in our Cheluvappa et al. (2008) paper. Our rebuttal topics include the effect of oxygen on the pyocyanin-glutathione reaction, relevance of reaction-duration to pathophysiology, rationale of experiments, veracity of statements germane to molecular-structure construction, and correction of hyperbole. PMID:26079058

  4. Nickel-Catalyzed Coupling Reactions of Alkenes

    PubMed Central

    Ng, Sze-Sze; Ho, Chun-Yu; Schleicher, Kristin D.; Jamison, Timothy F.

    2011-01-01

    Several reactions of simple, unactivated alkenes with electrophiles under nickel(0) catalysis are discussed. The coupling of olefins with aldehydes and silyl triflates provides allylic or homoallylic alcohol derivatives, depending on the supporting ligands and, to a lesser extent, the substrates employed. Reaction of alkenes with isocyanates yields N-alkyl acrylamides. In these methods, alkenes act as the functional equivalents of alkenyl- and allylmetal reagents. PMID:21814295

  5. Nefazadone-induced acute dystonic reaction.

    PubMed

    Burda, A; Webster, K; Leikin, J B; Chan, S B; Stokes, K A

    1999-10-01

    A 53-y-o patient presented approximately 2 h after taking her first dose of nefazadone. Chief complaint was lip smacking with hand and arm gesturing. The patient also took 25 mg meclizine which she had used before with no adverse effects. Diphenhydramine followed by benztropine led to resolution of symptoms within 1 h. Patient subsequently used meclizine with no untoward reactions. Nefazadone should be added to the list of agents that cause acute dystonic reactions. PMID:10509438

  6. Catalytic Friedel-Crafts reaction of aminocyclopropanes.

    PubMed

    de Nanteuil, Florian; Loup, Joachim; Waser, Jérôme

    2013-07-19

    A Lewis acid catalyzed Friedel-Crafts reaction between donor-acceptor aminocyclopropanes and indoles and other electron-rich aromatic compounds is reported. Indole alkylation at the C3 position was generally obtained for a broad range of functional groups and substitution patterns. In the case of C3-substituted indoles, C2 alkylation was observed. The reaction gives a rapid access to gamma amino acid derivatives present in numerous bioactive molecules. PMID:23815365

  7. Kinetics of Chemical Reactions in Flames

    NASA Technical Reports Server (NTRS)

    Zeldovich, Y.; Semenov, N.

    1946-01-01

    In part I of the paper the theory of flame propagation is developed along the lines followed by Frank-Kamenetsky and one of the writers. The development of chain processes in flames is considered. A basis is given for the application of the method of stationary concentrations to reactions in flames; reactions with branching chains are analyzed. The case of a diffusion coefficient different from the coefficient of temperature conductivity is considered.

  8. Direct Reactions with MoNA-LISA

    NASA Astrophysics Data System (ADS)

    Kuchera, Anthony

    2016-03-01

    Nuclear reactions can be used to probe the structure of nuclei. Direct reactions, which take place on short time scales, are well-suited for experiments with beams of short-lived nuclei. One such reaction is nucleon knockout where a proton or neutron is removed from the incoming beam from the interaction with a target. Single nucleon knockout reactions have been used to study the single-particle nature of nuclear wave functions. A recent experiment at the National Superconducting Cyclotron Laboratory was performed to measure cross sections from single nucleon knockout reactions for several p-shell nuclei. Detection of the residual nucleus in coincidence with any gamma rays emitted from the target allowed cross sections to ground and excited states to be measured. Together with input from reaction theory, ab initio structure theories can be tested. Simultaneously the accuracy of knockout reaction models can be validated by detecting the knocked out neutron with the Modular Neutron Array and Large multi-Institutional Scintillator Array (MoNA-LISA). Preliminary results from this experiment will be shown. Knockout reactions can also be used to populate nuclei which are neutron unbound, thus emit neutrons nearly instantaneously. The structure of these nuclei, therefore, cannot be probed with gamma ray spectroscopy. However, with large neutron detectors like MoNA-LISA the properties of these short-lived nuclei are able to be measured. Recent results using MoNA-LISA to study the structure of neutron-rich nuclei will be presented. The author would like to acknowledge support from the NNSA and NSF.

  9. Special Relativity and Reactions with Unstable Nuclei

    SciTech Connect

    Bertulani, C.A.

    2005-10-14

    Dynamical relativistic effects are often neglected in the description of reactions with unstable nuclear beams at intermediate energies (ELab {approx_equal} 100 MeV/nucleon). Evidently, this introduces sizable errors in experimental analysis and theoretical descriptions of these reactions. This is particularly important for the experiments held in GANIL/France, MSU/USA, RIKEN/Japan and GSI/Germany. I review a few examples where relativistic effects have been studied in nucleus-nucleus scattering at intermediate energies.

  10. Exclusive Reactions Involving Pions and Nucleons

    NASA Technical Reports Server (NTRS)

    Norbury, John W.; Blattnig, Steve R.; Tripathi, R. K.

    2002-01-01

    The HZETRN code requires inclusive cross sections as input. One of the methods used to calculate these cross sections requires knowledge of all exclusive processes contributing to the inclusive reaction. Conservation laws are used to determine all possible exclusive reactions involving strong interactions between pions and nucleons. Inclusive particle masses are subsequently determined and are needed in cross-section calculations for inclusive pion production.

  11. [Tattoo skin reactions: Management and treatment algorithm].

    PubMed

    Kluger, N

    2016-01-01

    So-called "allergic" reactions to ink or colouring agents constitute the main current complication associated with tattoos that lead individuals to consult. However, general practitioners are frequently at a loss about how to manage such complications. In order to assist clinicians in their daily practice, we propose an update of the modes of managing allergic reactions to tattoos, and we offer a therapeutic scale and a decision-making algorithm.

  12. Cyclic Peptidomimetics and Pseudopeptides from Multicomponent Reactions

    NASA Astrophysics Data System (ADS)

    Wessjohann, Ludger A.; Rhoden, Cristiano R. B.; Rivera, Daniel G.; Vercillo, Otilie Eichler

    Multicomponent reactions (MCRs) that provide in the final product amides are suitable to produce peptides and peptide-like moieties. The Passerini and Staudinger reactions provide one amide bond, and the Ugi-four-component reaction generates two amides from three or even four (or more) components, respectively. The Ugi-reaction thus is most important to produce peptides and peptoids while the Passerini reaction is useful to generate depsipeptoid moieties. In order to produce cyclic peptides and pseudopeptides, the linear peptidic MCR products have to be cyclized, usually with the help of bifunctional or activatable building blocks. Orthogonal but cyclizable secondary functionalities that need no protection in isonitrile MCRs commonly include alkenes (for ring closing metathesis), azide/alkyne (for Huisgen click reactions) or dienes and enoates (Diels-Alder) etc. If MCR-reactive groups are to be used also for the cyclisation, monoprotected bifunctional building blocks are used and deprotected after the MCR, e.g. for Ugi reactions as Ugi-Deprotection-Cyclisation (UDC). Alternatively one of the former building blocks or functional groups generated by the MCR can be activated. Most commonly these are activated amides (from so-called convertible isonitriles) which can be used e.g. for Ugi-Activation-Cyclisation (UAC) protocols, or most recently for a simultaneous use of both strategies Ugi-Deprotection/Activation-Cyclisation (UDAC). These methods mostly lead to small, medicinally relevant peptide turn mimics. In an opposing strategy, the MCR is rather used as ring-closing reaction, thereby introducing a (di-)peptide moiety. Most recently these processes have been combined to use MCRs for both, linear precursor synthesis and cyclisation. These multiple MCR approaches allow the most efficient and versatile one pot synthesis of macrocyclic pseudopeptides known to date.

  13. [Tattoo skin reactions: Management and treatment algorithm].

    PubMed

    Kluger, N

    2016-01-01

    So-called "allergic" reactions to ink or colouring agents constitute the main current complication associated with tattoos that lead individuals to consult. However, general practitioners are frequently at a loss about how to manage such complications. In order to assist clinicians in their daily practice, we propose an update of the modes of managing allergic reactions to tattoos, and we offer a therapeutic scale and a decision-making algorithm. PMID:27181822

  14. Asymmetric Aldol-Tishchenko Reaction of Sulfinimines.

    PubMed

    Foley, Vera M; McSweeney, Christina M; Eccles, Kevin S; Lawrence, Simon E; McGlacken, Gerard P

    2015-11-20

    Methods for the preparation of 1,3-amino alcohols and their derivatives containing two stereogenic centers usually involve a two-step installation of the chiral centers. An aldol-Tishchenko reaction of chiral sulfinimines which involves the first reported reduction of a C═N in this type of reaction is described. Two and even three chiral centers can be installed in one synthetic step, affording anti-1,3-amino alcohols in good diastereo- and enantioselectivity. PMID:26528888

  15. Langevin Equations for Reaction-Diffusion Processes

    NASA Astrophysics Data System (ADS)

    Benitez, Federico; Duclut, Charlie; Chaté, Hugues; Delamotte, Bertrand; Dornic, Ivan; Muñoz, Miguel A.

    2016-09-01

    For reaction-diffusion processes with at most bimolecular reactants, we derive well-behaved, numerically tractable, exact Langevin equations that govern a stochastic variable related to the response field in field theory. Using duality relations, we show how the particle number and other quantities of interest can be computed. Our work clarifies long-standing conceptual issues encountered in field-theoretical approaches and paves the way for systematic numerical and theoretical analyses of reaction-diffusion problems.

  16. Gold(I)-catalyzed enantioselective cycloaddition reactions

    PubMed Central

    2013-01-01

    Summary In recent years there have been extraordinary developments of gold(I)-catalyzed enantioselective processes. This includes progress in the area of cycloaddition reactions, which are of particular interest due to their potential for the rapid construction of optically active cyclic products. In this article we will summarize some of the most remarkable examples, emphasizing reaction mechanisms and key intermediates involved in the processes. PMID:24204438

  17. Impact of THM reaction rates for astrophysics

    NASA Astrophysics Data System (ADS)

    Lamia, L.; Spitaleri, C.; Tognelli, E.; Degl'Innocenti, S.; Pizzone, R. G.; Moroni, P. G. Prada; Puglia, S. M. R.; Romano, S.; Sergi, M. L.

    2015-10-01

    Burning reaction S(E)-factor determinations are among the key ingredients for stellar models when one has to deal with energy generation evaluation and the genesis of the elements at stellar conditions. To by pass the still present uncertainties in extrapolating low-energies values, S(E)-factor measurements for charged-particle induced reactions involving light elements have been made available by devote Trojan Horse Method (THM) experiments. The recent results are here discussed together with their impact in astrophysics.

  18. The Redox-A(3) Reaction.

    PubMed

    Seidel, Daniel

    2014-06-01

    This Highlight details the recent emergence of a new type of A(3) reaction (three-component condensation of an amine, an aldehyde and an alkyne). In contrast to the classic A(3) coupling process, the redox-A(3) reaction incorporates an iminium isomerization step and leads to amine α-alkynylation. The overall transformation is redox-neutral by virtue of a combined reductive N-alkylation/oxidative C-H bond functionalization.

  19. Reaction cycle and thermodynamics in bacteriorhodopsin

    NASA Technical Reports Server (NTRS)

    Lanyi, J. K.

    1992-01-01

    Light causes the all-trans to 13-cis isomerization of the retinal in bacteriorhodopsin; the thermal relaxation leading back to the initial state drives proton transport first via proton transfer between the retinal Schiff base and D85 and then between the Schiff base and D96. The reaction sequence and thermodynamics of this photocycle are described by measuring time-resolved absorption changes with a gated multichannel analyzer between 100 ns and 100 ms, at six temperatures between 5 degrees C and 30 degrees C. Analysis of the energetics of the chromophore reaction sequence is on the basis of a recently proposed model (Varo & Lanyi, Biochemistry 30, 5016-5022, 1991) which consists of a single cycle and many reversible reactions: BR -hv-->K<==>L<==>M1-->M2<==>N<==>O-->BR. The existence of the M1-->M2 reaction, which functions as the switch in the proton transfer, is confirmed by spectroscopic evidence. The calculated thermodynamic parameters indicate that the exchange of free energy between the protein and the protons is at the switch step. Further, a large entropy decrease at this reaction suggests a protein conformation change which will conserve delta G for driving the completion of the reaction cycle. The results provide insights to mechanism and energy coupling in this system, with possible relevance to the general question of how ion pumps function.

  20. N-Alkylation by Hydrogen Autotransfer Reactions.

    PubMed

    Ma, Xiantao; Su, Chenliang; Xu, Qing

    2016-06-01

    Owing to the importance of amine/amide derivatives in all fields of chemistry, and also the green and environmentally benign features of using alcohols as alkylating reagents, the relatively high atom economic dehydrative N-alkylation reactions of amines/amides with alcohols through hydrogen autotransfer processes have received much attention and have developed rapidly in recent decades. Various efficient homogeneous and heterogeneous transition metal catalysts, nano materials, electrochemical methods, biomimetic methods, asymmetric N-alkylation reactions, aerobic oxidative methods, and even certain transition metal-free, catalyst-free, or autocatalyzed methods, have also been developed in recent years. With a brief introduction to the background and developments in this area of research, this chapter focuses mainly on recent progress and technical and conceptual advances contributing to the development of this research in the last decade. In addition to mainstream research on homogeneous and heterogeneous transition metal-catalyzed reactions, possible mechanistic routes for hydrogen transfer and alcohol activation, which are key processes in N-alkylation reactions but seldom discussed in the past, the recent reports on computational mechanistic studies of the N-alkylation reactions, and the newly emerged N-alkylation methods based on novel alcohol activation protocols such as air-promoted reactions and transition metal-free methods, are also reviewed in this chapter. Problems and bottlenecks that remained to be solved in the field, and promising new research that deserves greater future attention and effort, are also reviewed and discussed.

  1. Low Energy Nuclear Reaction Products at Surfaces

    NASA Astrophysics Data System (ADS)

    Nagel, David J.

    2008-03-01

    This paper examines the evidence for LENR occurring on or very near to the surface of materials. Several types of experimental indications for LENR surface reactions have been reported and will be reviewed. LENR result in two types of products, energy and the appearance of new elements. The level of instantaneous power production can be written as the product of four factors: (1) the total area of the surface on which the reactions can occur, (2) the fraction of the area that is active at any time, (3) the reaction rate, that is, the number of reactions per unit active area per second, and (4) the energy produced per reaction. Each of these factors, and their limits, are reviewed. A graphical means of relating these four factors over their wide variations has been devised. The instantaneous generation of atoms of new elements can also be written as the product of the first three factors and the new elemental mass produced per reaction. Again, a graphical means of presenting the factors and their results over many orders of magnitude has been developed.

  2. Low Energy Nuclear Reactions: 2007 Update

    NASA Astrophysics Data System (ADS)

    Krivit, Steven B.

    2007-03-01

    This paper presents an overview of low energy nuclear reactions, a subset of the field of condensed matter nuclear science. Condensed matter nuclear science studies nuclear effects in and/or on condensed matter, including low energy nuclear reactions, an entirely new branch of science that gained widespread attention and notoriety beginning in 1989 with the announcement of a previously unrecognized source of energy by Martin Fleischmann and Stanley Pons that came to be known as cold fusion. Two branches of LENR are recognized. The first includes a set of reactions like those observed by Fleischmann and Pons that use palladium and deuterium and yield excess heat and helium-4. Numerous mechanisms have been proposed to explain these reactions, however there is no consensus for, or general acceptance of, any of the theories. The claim of fusion is still considered speculative and, as such, is not an ideal term for this work. The other branch is a wide assortment of nuclear reactions that may occur with either hydrogen or deuterium. Anomalous nuclear transmutations are reported that involve light as well as heavy elements. The significant questions that face this field of research are: 1) Are LENRs a genuine nuclear reaction? 2) If so, is there a release of excess energy? 3) If there is, is the energy release cost-effective?

  3. Cascade reactions catalyzed by metal organic frameworks.

    PubMed

    Dhakshinamoorthy, Amarajothi; Garcia, Hermenegildo

    2014-09-01

    Cascade or tandem reactions where two or more individual reactions are carried out in one pot constitute a clear example of process intensification, targeting the maximization of spatial and temporal productivity with mobilization of minimum resources. In the case of catalytic reactions, cascade processes require bi-/multifunctional catalysts that contain different classes of active sites. Herein, we show that the features and properties of metal-organic frameworks (MOFs) make these solids very appropriate materials for the development of catalysts for cascade reactions. Due to composition and structure, MOFs can incorporate different types of sites at the metal nodes, organic linkers, or at the empty internal pores, allowing the flexible design and synthesis of multifunctional catalysts. After some introductory sections on the relevance of cascade reactions from the point of view of competitiveness, sustainability, and environmental friendliness, the main part of the text provides a comprehensive review of the literature reporting the use of MOFs as heterogeneous catalysts for cascade reactions including those that combine in different ways acid/base, oxidation/reduction, and metal-organic centers. The final section summarizes the current state of the art, indicating that the development of a first commercial synthesis of a high-added-value fine chemical will be a crucial milestone in this area.

  4. N-Alkylation by Hydrogen Autotransfer Reactions.

    PubMed

    Ma, Xiantao; Su, Chenliang; Xu, Qing

    2016-06-01

    Owing to the importance of amine/amide derivatives in all fields of chemistry, and also the green and environmentally benign features of using alcohols as alkylating reagents, the relatively high atom economic dehydrative N-alkylation reactions of amines/amides with alcohols through hydrogen autotransfer processes have received much attention and have developed rapidly in recent decades. Various efficient homogeneous and heterogeneous transition metal catalysts, nano materials, electrochemical methods, biomimetic methods, asymmetric N-alkylation reactions, aerobic oxidative methods, and even certain transition metal-free, catalyst-free, or autocatalyzed methods, have also been developed in recent years. With a brief introduction to the background and developments in this area of research, this chapter focuses mainly on recent progress and technical and conceptual advances contributing to the development of this research in the last decade. In addition to mainstream research on homogeneous and heterogeneous transition metal-catalyzed reactions, possible mechanistic routes for hydrogen transfer and alcohol activation, which are key processes in N-alkylation reactions but seldom discussed in the past, the recent reports on computational mechanistic studies of the N-alkylation reactions, and the newly emerged N-alkylation methods based on novel alcohol activation protocols such as air-promoted reactions and transition metal-free methods, are also reviewed in this chapter. Problems and bottlenecks that remained to be solved in the field, and promising new research that deserves greater future attention and effort, are also reviewed and discussed. PMID:27573267

  5. Rat tissue reaction to MTA FILLAPEX®.

    PubMed

    Gomes-Filho, João Eduardo; Watanabe, Simone; Lodi, Carolina Simonetti; Cintra, Luciano Tavares Angelo; Nery, Mauro Juvenal; Filho, José Arlindo Otoboni; Dezan, Elói; Bernabé, Pedro Felício Estrada

    2012-12-01

    The aim of this study was to evaluate the rat subcutaneous tissue reaction to implanted polyethylene tubes filled with mineral trioxide aggregate (MTA) FILLAPEX® compared to the reaction to tubes filled with Sealapex® or Angelus MTA® . These materials were placed in polyethylene tubes and implanted into the dorsal connective tissue of Wistar rats for 7, 15, 30, 60, and 90 days. The specimens were stained with hematoxylin and eosin or Von Kossa or left unstained for examination under polarized light. Qualitative and quantitative evaluations of the reaction were performed. All materials caused moderate reactions after 7 days, which decreased with time. The reactions were moderate and similar to that evoked by the control and Sealapex® on the 15th day. MTA FILLAPEX(®) and Angelus MTA caused mild reactions beginning after 15 days. Mineralization and granulation birefringent to polarized light were observed with all materials. It was concluded that MTA FILLAPEX® was biocompatible and stimulated mineralization.

  6. [The reaction to trichophytin in dermatophytoses].

    PubMed

    Vilani-Moreno, F R; de Arruda, M S

    1992-01-01

    The authors investigated the specific immunological competence of 31 patients with dermatophytosis using tricophytin antigen. Among them, 54.8% showed reaction to the delay phase (48 h) in the following proportions: tinea inguinale, 75%; tinea pedis, 61.5%; tinea unguium, 50% and tinea corporis, 20%. Other 62.5% showed positive result to the early phase (30 m). The association between these reactions revealed that, although the majority of cases with early positive reaction showed negativity to the delayed reaction, 20.8% presented positively to both phases of the reaction. Out of the non-reactive patients to the delayed phase, 8 were submitted to the other cutaneous tests such as PPD, streptokinase, candidin, vaccinia and DNCB and showed preserved cellular immunity in 75%. These results suggest that, while using this reaction for immunological evaluation of patients with dermatophytosis, one should consider the overall immune status of the patient, the presence of early hypersensibility and the localization of the infection. PMID:1342118

  7. Reaction of atomic hydrogen with formic acid.

    PubMed

    Cao, Qian; Berski, Slawomir; Latajka, Zdzislaw; Räsänen, Markku; Khriachtchev, Leonid

    2014-04-01

    We study the reaction of atomic hydrogen with formic acid and characterize the radical products using IR spectroscopy in a Kr matrix and quantum chemical calculations. The reaction first leads to the formation of an intermediate radical trans-H2COOH, which converts to the more stable radical trans-cis-HC(OH)2via hydrogen atom tunneling on a timescale of hours at 4.3 K. These open-shell species are observed for the first time as well as a reaction between atomic hydrogen and formic acid. The structural assignment is aided by extensive deuteration experiments and ab initio calculations at the UMP2 and UCCSD(T) levels of theory. The simplest geminal diol radical trans-cis-HC(OH)2 identified in the present work as the final product of the reaction should be very reactive, and further reaction channels are of particular interest. These reactions and species may constitute new channels for the initiation and propagation of more complex organic species in the interstellar clouds.

  8. Reactions of halogen-pyridine systems

    SciTech Connect

    Coury, A.J.; Cahalan, P.T.

    1980-01-01

    The combination of halogens (acceptors) with pyridine derivatives (donors) produces, initially, charge transfer complexes with conductivities useful as depolarizers in lithium-halogen power cell cathodes. The complex most often employed in pacemaker batteries is I/sub 2//P2VP. Pyridines and halogens undergo additional reactions of consequence to cell performance. Such side reactions include: Alkyl group substitution, ring coupling, polymer molecular weight degradation, olefin addition and ring substitution. Instrumental analysis of model systems and the commercial iodine/poly-2-vinylpyridine (I/sub 2//P2VP) system provided evidence for alkyl group substitution, coupling and molecular weight degradation. The addition reaction was inferred from the presence of the needed reactants and their facile reactivity. Halogenation of the pyridine ring was not found. Side reactions cause reduced cathode capacity. Hydrogen halides generated by such side reactions may cause corrosion, but may enhance conductivity properties. Deleterious pressure buidup or dimensional changes may result from side reactions occurring within sealed battery cans. 7 refs.

  9. Dynamical properties of Discrete Reaction Networks.

    PubMed

    Paulevé, Loïc; Craciun, Gheorghe; Koeppl, Heinz

    2014-07-01

    Reaction networks are commonly used to model the dynamics of populations subject to transformations that follow an imposed stoichiometry. This paper focuses on the efficient characterisation of dynamical properties of Discrete Reaction Networks (DRNs). DRNs can be seen as modeling the underlying discrete nondeterministic transitions of stochastic models of reaction networks. In that sense, a proof of non-reachability in a given DRN has immediate implications for any concrete stochastic model based on that DRN, independent of the choice of kinetic laws and constants. Moreover, if we assume that stochastic kinetic rates are given by the mass-action law (or any other kinetic law that gives non-vanishing probability to each reaction if the required number of interacting substrates is present), then reachability properties are equivalent in the two settings. The analysis of two types of global dynamical properties of DRNs is addressed: irreducibility, i.e., the ability to reach any discrete state from any other state; and recurrence, i.e., the ability to return to any initial state. Our results consider both the verification of such properties when species are present in a large copy number, and in the general case. The necessary and sufficient conditions obtained involve algebraic conditions on the network reactions which in most cases can be verified using linear programming. Finally, the relationship of DRN irreducibility and recurrence with dynamical properties of stochastic and continuous models of reaction networks is discussed.

  10. Mathematical model to predict drivers' reaction speeds.

    PubMed

    Long, Benjamin L; Gillespie, A Isabella; Tanaka, Martin L

    2012-02-01

    Mental distractions and physical impairments can increase the risk of accidents by affecting a driver's ability to control the vehicle. In this article, we developed a linear mathematical model that can be used to quantitatively predict drivers' performance over a variety of possible driving conditions. Predictions were not limited only to conditions tested, but also included linear combinations of these tests conditions. Two groups of 12 participants were evaluated using a custom drivers' reaction speed testing device to evaluate the effect of cell phone talking, texting, and a fixed knee brace on the components of drivers' reaction speed. Cognitive reaction time was found to increase by 24% for cell phone talking and 74% for texting. The fixed knee brace increased musculoskeletal reaction time by 24%. These experimental data were used to develop a mathematical model to predict reaction speed for an untested condition, talking on a cell phone with a fixed knee brace. The model was verified by comparing the predicted reaction speed to measured experimental values from an independent test. The model predicted full braking time within 3% of the measured value. Although only a few influential conditions were evaluated, we present a general approach that can be expanded to include other types of distractions, impairments, and environmental conditions. PMID:22431214

  11. Quark catalysis of exothermal nuclear reactions.

    PubMed

    Zweig, G

    1978-09-15

    This article discusses circumstances under which free quarks catalyze exothermal nuclear reactions. It also presents possible methods for removing quarks sequestered by nuclear reaction products. Stable quarks that are negatively charged and significantly heavier than electrons attract positively charged nuclei to form new states of matter. The nuclei and quarks are closely bound, and presumably interact through both electromagnetic and nuclear forces. Nuclear fusion and fission are possible, as well as a new class of plural reactions in which either a quark isobar, isotope, or isotone is created in each individual reaction, with catalysis resulting in the overall system because the net transfer of charge, neutrons, or protons to the quarks is zero. The quark with quantum numbers of üü is a promising catalytic candidate. A satisfactory understanding of which reactions are or are not possible awaits the isolation of free quarks and a description of their strong interactions with matter. Finally, other kinds of stable negatively charged particles (such as heavy leptons), if discovered, can catalyze deuterium fusion reactions if thermal neutrons are used to liberate He(3)-bound catalytic particles. PMID:17743618

  12. Mathematical model to predict drivers' reaction speeds.

    PubMed

    Long, Benjamin L; Gillespie, A Isabella; Tanaka, Martin L

    2012-02-01

    Mental distractions and physical impairments can increase the risk of accidents by affecting a driver's ability to control the vehicle. In this article, we developed a linear mathematical model that can be used to quantitatively predict drivers' performance over a variety of possible driving conditions. Predictions were not limited only to conditions tested, but also included linear combinations of these tests conditions. Two groups of 12 participants were evaluated using a custom drivers' reaction speed testing device to evaluate the effect of cell phone talking, texting, and a fixed knee brace on the components of drivers' reaction speed. Cognitive reaction time was found to increase by 24% for cell phone talking and 74% for texting. The fixed knee brace increased musculoskeletal reaction time by 24%. These experimental data were used to develop a mathematical model to predict reaction speed for an untested condition, talking on a cell phone with a fixed knee brace. The model was verified by comparing the predicted reaction speed to measured experimental values from an independent test. The model predicted full braking time within 3% of the measured value. Although only a few influential conditions were evaluated, we present a general approach that can be expanded to include other types of distractions, impairments, and environmental conditions.

  13. Photoelectrochemical conversion using reaction-centre electrodes

    NASA Astrophysics Data System (ADS)

    Janzen, A. F.; Seibert, M.

    1980-08-01

    The production of photovoltages and photocurrents by a bacterial photosynthetic reaction center coupled to an SnO2 electrode is reported. Reaction centers isolated from membranes of the purple, nonsulfur photosynthetic bacterium Rhodopseudomonas sphaeroides R-26 were transferred to working electrode surfaces and photoeffects were monitored in the external circuit of a photoelectrochemical cell consisting of the working electrode, a platinized platinum or SnO2 counter electrode and a 0.1 M Na2SO4 and 5 M hydroquinone in water or Tricine buffer electrolyte. Small open-circuit photovoltages and short-circuit photocurrents were observed for platinized platinum electrodes coated with a thin film of reaction centers both before and after autoclaving, indicating that biologically active electron transfer is not involved. Reaction-center electrodes made using SnO2-coated glass were observed to generate photovoltages up to 70 mV and photocurrents of 0.3 microamp/sq cm. In addition, the action spectrum of the photocurrent in the external circuit was found to correspond to the absorbance spectra of reaction-center film and solution. It is concluded that charge separation generated across the reaction-center molecule as a result of the primary photochemistry of photosynthesis can be coupled directly to semiconductor electrodes and used to generate photoeffects in an external circuit.

  14. Anaphylaxis and Anaphylactoid Reactions: Diagnosis and Management.

    PubMed

    Luskin, Allan T.; Luskin, Susan S.

    1996-07-01

    Anaphylaxis is an acute fatal or potentially fatal hypersensitivity reaction. Anaphylaxis represent a clinical diagnosis based on history and physical examination and includes symptoms of airway obstruction, generalized skin reactions, particularly flushing, itching, urticaria, angioedema cardiovascular symptoms including hypotension and gastrointestinal symptoms. These symptoms result from the action of mast cell mediators, especially histamine and lipid mediators such as leukotrienes and platelet activating factor on shock tissue. The shock tissue includes blood vessels, mucous glands, smooth muscle, and nerve endings. Anaphylaxis follows the typical immediate hypersensitivity time course, with a reaction beginning within minutes of antigen exposure. A late-phase reaction hours after the initial reaction may occur. Mast cell mediator release can be triggered by both IgE and non--IgE-mediated factors. Therefore, anaphylaxis may be termed anaphylaxis (IgE mediated) or anaphylactoid (non--IgE mediated). The most common IgE-mediated triggers are drugs, typically penicillin or other beta-lactam antibiotics, foods, most commonly nuts, peanuts, fish and shellfish, or hymenoptera stings. Non-IgE-mediated causes include factors causing marked complement activation such as plasma proteins or compounds which act directly on the mast cell membrane, such as vancomycin, quinolone antibiotics, or radiographic contrast media. The pathophysiology of some trigger factors, such as aspirin, remains unclear. Therapy of anaphylaxis revolves around patient education, avoidance, desensitization or pharmacologic pretreatment when agents causing anaphylaxis need to be readministered, and early recognition and prompt therapy of reactions should they occur.

  15. Toward cell circuitry: Topological analysis of enzyme reaction networks via reaction route graphs

    NASA Astrophysics Data System (ADS)

    Datta, Ravindra; Vilekar, Saurabh A.; Fishtik, Ilie; Dittami, James P.

    2008-05-01

    The first step toward developing complete cell circuitry is to build quantitative networks for enzyme reactions. The conventional King-Altman-Hill (KAH) algorithm for topological analysis of enzyme networks, adapted from electrical networks, is based on “Reaction Graphs” that, unlike electrical circuits, are not quantitative, being straightforward renderings of conventional schematics of reaction mechanisms. Therefore, we propose the use of “Reaction Route (RR) Graphs” instead, as a more suitable graph-theoretical representation for topological analysis of enzyme reaction networks. The RR Graphs are drawn such that they are not only useful for visualizing the various reaction routes or pathways, but unlike Reaction Graphs possess network properties consistent with requisite kinetic, mass balance, and thermodynamic constraints. Therefore, they are better than the conventional Reaction Graphs for topological representation and analysis of enzyme reactions, both via the KAH methodology as well as via numerical matrix inversion. The difference between the two is highlighted based on the example of a single enzyme reaction network for the conversion of 7,8-dihydrofolate and NADPH into 5,6,7,8-tetrahydrofolate and NADP +, catalyzed by the enzyme dihydrofolate reductase.

  16. Biomixing by chemotaxis and efficiency of biological reactions: The critical reaction case

    NASA Astrophysics Data System (ADS)

    Kiselev, Alexander; Ryzhik, Lenya

    2012-11-01

    Many phenomena in biology involve both reactions and chemotaxis. These processes can clearly influence each other, and chemotaxis can play an important role in sustaining and speeding up the reaction. In continuation of our work [A. Kiselev and L. Ryzhik, "Biomixing by chemotaxis and enhancement of biological reactions," Comm. Partial Differential Equations 37, 298-318 (2012)], 10.1080/03605302.2011.589879, we consider a model with a single density function involving diffusion, advection, chemotaxis, and absorbing reaction. The model is motivated, in particular, by the studies of coral broadcast spawning, where experimental observations of the efficiency of fertilization rates significantly exceed the data obtained from numerical models that do not take chemotaxis (attraction of sperm gametes by a chemical secreted by egg gametes) into account. We consider the case of the weakly coupled quadratic reaction term, which is the most natural from the biological point of view and was left open in Kiselev and Ryzhik ["Biomixing by chemotaxis and enhancement of biological reactions," Comm. Partial Differential Equations 37, 298-318 (2012)], 10.1080/03605302.2011.589879. The result is that similarly to Kiselev and Ryzhik ["Biomixing by chemotaxis and enhancement of biological reactions," Comm. Partial Differential Equations 37, 298-318 (2012)], 10.1080/03605302.2011.589879, the chemotaxis plays a crucial role in ensuring efficiency of reaction. However, mathematically, the picture is quite different in the quadratic reaction case and is more subtle. The reaction is now complete even in the absence of chemotaxis, but the timescales are very different. Without chemotaxis, the reaction is very slow, especially for the weak reaction coupling. With chemotaxis, the timescale and efficiency of reaction are independent of the coupling parameter.

  17. Extension of a Kinetic-Theory Approach for Computing Chemical-Reaction Rates to Reactions with Charged Particles

    NASA Technical Reports Server (NTRS)

    Liechty, Derek S.; Lewis, Mark J.

    2010-01-01

    Recently introduced molecular-level chemistry models that predict equilibrium and nonequilibrium reaction rates using only kinetic theory and fundamental molecular properties (i.e., no macroscopic reaction rate information) are extended to include reactions involving charged particles and electronic energy levels. The proposed extensions include ionization reactions, exothermic associative ionization reactions, endothermic and exothermic charge exchange reactions, and other exchange reactions involving ionized species. The extensions are shown to agree favorably with the measured Arrhenius rates for near-equilibrium conditions.

  18. Silicon-based sleeve devices for chemical reactions

    DOEpatents

    Northrup, M. Allen; Mariella, Jr., Raymond P.; Carrano, Anthony V.; Balch, Joseph W.

    1996-01-01

    A silicon-based sleeve type chemical reaction chamber that combines heaters, such as doped polysilicon for heating, and bulk silicon for convection cooling. The reaction chamber combines a critical ratio of silicon and silicon nitride to the volume of material to be heated (e.g., a liquid) in order to provide uniform heating, yet low power requirements. The reaction chamber will also allow the introduction of a secondary tube (e.g., plastic) into the reaction sleeve that contains the reaction mixture thereby alleviating any potential materials incompatibility issues. The reaction chamber may be utilized in any chemical reaction system for synthesis or processing of organic, inorganic, or biochemical reactions, such as the polymerase chain reaction (PCR) and/or other DNA reactions, such as the ligase chain reaction, which are examples of a synthetic, thermal-cycling-based reaction. The reaction chamber may also be used in synthesis instruments, particularly those for DNA amplification and synthesis.

  19. Silicon-based sleeve devices for chemical reactions

    DOEpatents

    Northrup, M.A.; Mariella, R.P. Jr.; Carrano, A.V.; Balch, J.W.

    1996-12-31

    A silicon-based sleeve type chemical reaction chamber is described that combines heaters, such as doped polysilicon for heating, and bulk silicon for convection cooling. The reaction chamber combines a critical ratio of silicon and silicon nitride to the volume of material to be heated (e.g., a liquid) in order to provide uniform heating, yet low power requirements. The reaction chamber will also allow the introduction of a secondary tube (e.g., plastic) into the reaction sleeve that contains the reaction mixture thereby alleviating any potential materials incompatibility issues. The reaction chamber may be utilized in any chemical reaction system for synthesis or processing of organic, inorganic, or biochemical reactions, such as the polymerase chain reaction (PCR) and/or other DNA reactions, such as the ligase chain reaction, which are examples of a synthetic, thermal-cycling-based reaction. The reaction chamber may also be used in synthesis instruments, particularly those for DNA amplification and synthesis. 32 figs.

  20. Electrophilic addition and cyclization reactions of allenes.

    PubMed

    Ma, Shengming

    2009-10-20

    Modern organic synthesis depends on the development of highly selective methods for the efficient construction of potentially useful target molecules. A primary goal in our laboratory is the discovery of new reactions that convert readily available starting materials to complex products with complete control of regio- and stereoselectivity. Allenes are one underused moiety in organic synthesis, because these groups are often thought to be highly reactive. However, many compounds containing the allene group, including natural products and pharmaceuticals, are fairly stable. The chemistry of allenes has been shown to have significant potential in organic synthesis. Electrophilic additions to allenes have often been considered to be synthetically less attractive due to the lack of efficient control of the regio- and stereoselectivity. However, this Account describes electrophilic reactions of allenes with defined regio- and stereoselectivity developed in our laboratory. Many substituted allenes are readily available from propargylic alcohols. Our work has involved an exploration of the reactions of these allenes with many different electrophiles: the E- or Z-halo- or seleno-hydroxylations of allenyl sulfoxides, sulfones, phosphine oxides, carboxylates, sulfides or selenides, butenolides, and arenes, and the halo- or selenolactonization reactions of allenoic acids and allenoates. These reactions have produced a host of new compounds such as stereodefined allylic alcohols, ethers, amides, thiiranes, and lactones. In all these reactions, water acts as a reactant and plays an important role in determining the reaction pathway and the stereoselectivity. The differing electronic properties of the two C=C bonds in these allenes determine the regioselectivity of these reactions. Through mechanistic studies of chirality transfer, isolation and reactivity of cyclic intermediates, (18)O-labeling, and substituent effects, we discovered that the E-stereoselectivity of some

  1. Density functional study of chemical reaction equilibrium for dimerization reactions in slit and cylindrical nanopores.

    PubMed

    Malijevský, Alexandr; Lísal, Martin

    2009-04-28

    We present a theoretical study of the effects of confinement on chemical reaction equilibrium in slit and cylindrical nanopores. We use a density functional theory (DFT) to investigate the effects of temperature, pore geometry, bulk pressure, transition layering, and capillary condensation on a dimerization reaction that mimics the nitric oxide dimerization reaction, 2NO <==> (NO)(2), in carbonlike slit and cylindrical nanopores in equilibrium with a vapor reservoir. In addition to the DFT calculations, we also utilize the reaction ensemble Monte Carlo method to supplement the DFT results for reaction conversion. This work is an extension of the previous DFT study by Tripathi and Chapman [J. Chem. Phys. 118, 7993 (2003)] on the dimerization reactions confined in the planar slits.

  2. Reaction kinetics of dolomite rim growth

    NASA Astrophysics Data System (ADS)

    Helpa, V.; Rybacki, E.; Abart, R.; Morales, L. F. G.; Rhede, D.; Jeřábek, P.; Dresen, G.

    2014-04-01

    Reaction rims of dolomite (CaMg[CO3]2) were produced by solid-state reactions at the contacts of oriented calcite (CaCO3) and magnesite (MgCO3) single crystals at 400 MPa pressure, 750-850 °C temperature, and 3-146 h annealing time to determine the reaction kinetics. The dolomite reaction rims show two different microstructural domains. Elongated palisades of dolomite grew perpendicular into the MgCO3 interface with length ranging from about 6 to 41 µm. At the same time, a 5-71 µm wide rim of equiaxed granular dolomite grew at the contact with CaCO3. Platinum markers showed that the original interface is located at the boundary between the granular and palisade-forming dolomite. In addition to dolomite, a 12-80 µm thick magnesio-calcite layer formed between the dolomite reaction rims and the calcite single crystals. All reaction products show at least an axiotactic crystallographic relationship with respect to calcite reactant, while full topotaxy to calcite prevails within the granular dolomite and magnesio-calcite. Dolomite grains frequently exhibit growth twins characterized by a rotation of 180° around one of the equivalent axis. From mass balance considerations, it is inferred that the reaction rim of dolomite grew by counter diffusion of MgO and CaO. Assuming an Arrhenius-type temperature dependence, activation energies for diffusion of CaO and MgO are E a (CaO) = 192 ± 54 kJ/mol and E a (MgO) = 198 ± 44 kJ/mol, respectively.

  3. Conversion reactions for sodium-ion batteries.

    PubMed

    Klein, Franziska; Jache, Birte; Bhide, Amrtha; Adelhelm, Philipp

    2013-10-14

    Research on sodium-ion batteries has recently been rediscovered and is currently mainly focused on finding suitable electrode materials that enable cell reactions of high energy densities combined with low cost. Naturally, an assessment of potential electrode materials requires a rational comparison with the analogue reaction in lithium-ion batteries. In this paper, we systematically discuss the broad range of different conversion reactions for sodium-ion batteries based on their basic thermodynamic properties and compare them with their lithium analogues. Capacities, voltages, energy densities and volume expansions are summarized to sketch out the scope for future studies in this research field. We show that for a given conversion electrode material, replacing lithium by sodium leads to a constant shift in cell potential ΔE°(Li-Na) depending on the material class. For chlorides ΔE°(Li-Na) equals nearly zero. The theoretical energy densities of conversion reactions of sodium with fluorides or chlorides as positive electrode materials typically reach values between 700 W h kg(-1) and 1000 W h kg(-1). Next to the thermodynamic assessment, results on several conversion reactions between copper compounds (CuS, CuO, CuCl, CuCl2) and sodium are being discussed. Reactions with CuS and CuO were chosen because these compounds are frequently studied for conversion reactions with lithium. Chlorides are interesting because of ΔE°(Li-Na)≈ 0 V. As a result of chloride solubility in the electrolyte, the conversion process proceeds at defined potentials under rather small kinetic limitations. PMID:23936905

  4. ORAL ADVERSE DRUG REACTIONS TO CARDIOVASCULAR DRUGS.

    PubMed

    Torpet, Lis Andersen; Kragelund, Camilla; Reibel, Jesper; Nauntofte, Birgitte

    2004-01-01

    A great many cardiovascular drugs (CVDs) have the potential to induce adverse reactions in the mouth. The prevalence of such reactions is not known, however, since many are asymptomatic and therefore are believed to go unreported. As more drugs are marketed and the population includes an increasing number of elderly, the number of drug prescriptions is also expected to increase. Accordingly, it can be predicted that the occurrence of adverse drug reactions (ADRs), including the oral ones (ODRs), will continue to increase. ODRs affect the oral mucous membrane, saliva production, and taste. The pathogenesis of these reactions, especially the mucosal ones, is largely unknown and appears to involve complex interactions among the drug in question, other medications, the patient's underlying disease, genetics, and life-style factors. Along this line, there is a growing interest in the association between pharmacogenetic polymorphism and ADRs. Research focusing on polymorphism of the cytochrome P450 system (CYPs) has become increasingly important and has highlighted the intra- and inter-individual responses to drug exposure. This system has recently been suggested to be an underlying candidate regarding the pathogenesis of ADRs in the oral mucous membrane. This review focuses on those CVDs reported to induce ODRs. In addition, it will provide data on specific drugs or drug classes, and outline and discuss recent research on possible mechanisms linking ADRs to drug metabolism patterns. Abbreviations used will be as follows: ACEI, ACE inhibitor; ADR, adverse drug reaction; ANA, antinuclear antigen; ARB, angiotensin II receptor blocker; BAB, beta-adrenergic blocker; CCB, calcium-channel blocker; CDR, cutaneous drug reaction; CVD, cardiovascular drug; CYP, cytochrome P450 enzyme; EM, erythema multiforme; FDE, fixed drug eruption; I, inhibitor of CYP isoform activity; HMG-CoA, hydroxymethyl-glutaryl coenzyme A; NAT, N-acetyltransferase; ODR, oral drug reaction; RDM, reactive

  5. The smallest chemical reaction system with bistability

    PubMed Central

    Wilhelm, Thomas

    2009-01-01

    Background Bistability underlies basic biological phenomena, such as cell division, differentiation, cancer onset, and apoptosis. So far biologists identified two necessary conditions for bistability: positive feedback and ultrasensitivity. Results Biological systems are based upon elementary mono- and bimolecular chemical reactions. In order to definitely clarify all necessary conditions for bistability we here present the corresponding minimal system. According to our definition, it contains the minimal number of (i) reactants, (ii) reactions, and (iii) terms in the corresponding ordinary differential equations (decreasing importance from i-iii). The minimal bistable system contains two reactants and four irreversible reactions (three bimolecular, one monomolecular). We discuss the roles of the reactions with respect to the necessary conditions for bistability: two reactions comprise the positive feedback loop, a third reaction filters out small stimuli thus enabling a stable 'off' state, and the fourth reaction prevents explosions. We argue that prevention of explosion is a third general necessary condition for bistability, which is so far lacking discussion in the literature. Moreover, in addition to proving that in two-component systems three steady states are necessary for bistability (five for tristability, etc.), we also present a simple general method to design such systems: one just needs one production and three different degradation mechanisms (one production, five degradations for tristability, etc.). This helps modelling multistable systems and it is important for corresponding synthetic biology projects. Conclusion The presented minimal bistable system finally clarifies the often discussed question for the necessary conditions for bistability. The three necessary conditions are: positive feedback, a mechanism to filter out small stimuli and a mechanism to prevent explosions. This is important for modelling bistability with simple systems and for

  6. Intensive baseball practice improves the Go/Nogo reaction time, but not the simple reaction time.

    PubMed

    Kida, Noriyuki; Oda, Shingo; Matsumura, Michikazu

    2005-02-01

    Baseball hitters are required to make decisions whether to swing or not as quickly as possible. Therefore, we can assume that skilled baseball players have a quicker response. To verify this hypothesis, we assessed the effect of baseball experience or skill levels on simple reaction times and Go/Nogo reaction times in 82 university students (22 baseball players, 22 tennis players, and 38 nonathletes) and 17 professional baseball players. Also, to clarify whether this ability was innate or acquired, we examined the effects of long-term practice for baseball hitting in 94 senior high school students (26 baseball players and 68 non-baseball players). There were no differences in simple reaction time either for sports experience or for skill levels. On the contrary, the Go/Nogo reaction time for baseball players was significantly shorter than that of the tennis players and nonathletes. The Go/Nogo reaction time of higher-skill baseball players was significantly shorter than that of lower-skill players, while that of the professional baseball players was the shortest. The professional players showed the highest (almost linear) correlation between the Go/Nogo reaction time and simple reaction time. A longitudinal study showed that 2 years of hitting practice improved the Go/Nogo reaction time, while the simple reaction time remained constant. A cross-sectional study of high school non-baseball players showed no differences either in the simple or Go/Nogo reaction times in relation to school year. In conclusion, intensive practice, including Go or Nogo decision making, improved the Go/Nogo reaction time, but not the simple reaction time. PMID:15653298

  7. Reaction chemistry of nitrogen species in hydrothermal systems: Simple reactions, waste simulants, and actual wastes

    SciTech Connect

    Dell`Orco, P.; Luan, L.; Proesmans, P.; Wilmanns, E.

    1995-02-01

    Results are presented from hydrothermal reaction systems containing organic components, nitrogen components, and an oxidant. Reaction chemistry observed in simple systems and in simple waste simulants is used to develop a model which presents global nitrogen chemistry in these reactive systems. The global reaction path suggested is then compared with results obtained for the treatment of an actual waste stream containing only C-N-0-H species.

  8. Automatic NMR-based identification of chemical reaction types in mixtures of co-occurring reactions.

    PubMed

    Latino, Diogo A R S; Aires-de-Sousa, João

    2014-01-01

    The combination of chemoinformatics approaches with NMR techniques and the increasing availability of data allow the resolution of problems far beyond the original application of NMR in structure elucidation/verification. The diversity of applications can range from process monitoring, metabolic profiling, authentication of products, to quality control. An application related to the automatic analysis of complex mixtures concerns mixtures of chemical reactions. We encoded mixtures of chemical reactions with the difference between the (1)H NMR spectra of the products and the reactants. All the signals arising from all the reactants of the co-occurring reactions were taken together (a simulated spectrum of the mixture of reactants) and the same was done for products. The difference spectrum is taken as the representation of the mixture of chemical reactions. A data set of 181 chemical reactions was used, each reaction manually assigned to one of 6 types. From this dataset, we simulated mixtures where two reactions of different types would occur simultaneously. Automatic learning methods were trained to classify the reactions occurring in a mixture from the (1)H NMR-based descriptor of the mixture. Unsupervised learning methods (self-organizing maps) produced a reasonable clustering of the mixtures by reaction type, and allowed the correct classification of 80% and 63% of the mixtures in two independent test sets of different similarity to the training set. With random forests (RF), the percentage of correct classifications was increased to 99% and 80% for the same test sets. The RF probability associated to the predictions yielded a robust indication of their reliability. This study demonstrates the possibility of applying machine learning methods to automatically identify types of co-occurring chemical reactions from NMR data. Using no explicit structural information about the reactions participants, reaction elucidation is performed without structure elucidation of

  9. Intensive baseball practice improves the Go/Nogo reaction time, but not the simple reaction time.

    PubMed

    Kida, Noriyuki; Oda, Shingo; Matsumura, Michikazu

    2005-02-01

    Baseball hitters are required to make decisions whether to swing or not as quickly as possible. Therefore, we can assume that skilled baseball players have a quicker response. To verify this hypothesis, we assessed the effect of baseball experience or skill levels on simple reaction times and Go/Nogo reaction times in 82 university students (22 baseball players, 22 tennis players, and 38 nonathletes) and 17 professional baseball players. Also, to clarify whether this ability was innate or acquired, we examined the effects of long-term practice for baseball hitting in 94 senior high school students (26 baseball players and 68 non-baseball players). There were no differences in simple reaction time either for sports experience or for skill levels. On the contrary, the Go/Nogo reaction time for baseball players was significantly shorter than that of the tennis players and nonathletes. The Go/Nogo reaction time of higher-skill baseball players was significantly shorter than that of lower-skill players, while that of the professional baseball players was the shortest. The professional players showed the highest (almost linear) correlation between the Go/Nogo reaction time and simple reaction time. A longitudinal study showed that 2 years of hitting practice improved the Go/Nogo reaction time, while the simple reaction time remained constant. A cross-sectional study of high school non-baseball players showed no differences either in the simple or Go/Nogo reaction times in relation to school year. In conclusion, intensive practice, including Go or Nogo decision making, improved the Go/Nogo reaction time, but not the simple reaction time.

  10. Intramolecular anodic olefin coupling reactions: using competition studies to probe the mechanism of oxidative cyclization reactions.

    PubMed

    Xu, Hai-Chao; Moeller, Kevin D

    2010-04-16

    A competition experiment was designed so that the relative rates of anodic cyclization reactions under various electrolysis conditions can be determined. Reactions with ketene dithioacetal and enol ether-based substrates that use lithium methoxide as a base were shown to proceed through radical cation intermediates that were trapped by a sulfonamide anion. Results for the oxidative coupling of a vinyl sulfide with a sulfonamide anion using the same conditions were consistent with the reaction proceeding through a nitrogen-radical.

  11. Integrating reaction and analysis: investigation of higher-order reactions by cryogenic trapping

    PubMed Central

    Stockinger, Skrollan

    2013-01-01

    Summary A new approach for the investigation of a higher-order reaction by on-column reaction gas chromatography is presented. The reaction and the analytical separation are combined in a single experiment to investigate the Diels–Alder reaction of benzenediazonium-2-carboxylate as a benzyne precursor with various anthracene derivatives, i.e. anthracene, 9-bromoanthracene, 9-anthracenecarboxaldehyde and 9-anthracenemethanol. To overcome limitations of short reaction contact times at elevated temperatures a novel experimental setup was developed involving a cooling trap to achieve focusing and mixing of the reactants at a defined spot in a fused-silica capillary. This trap functions as a reactor within the separation column in the oven of a gas chromatograph. The reactants are sequentially injected to avoid undefined mixing in the injection port. An experimental protocol was developed with optimized injection intervals and cooling times to achieve sufficient conversions at short reaction times. Reaction products were rapidly identified by mass spectrometric detection. This new approach represents a practical procedure to investigate higher-order reactions at an analytical level and it simultaneously provides valuable information for the optimization of the reaction conditions. PMID:24062850

  12. Permeability Changes in Reaction Induced Fracturing

    NASA Astrophysics Data System (ADS)

    Ulven, Ole Ivar; Malthe-Sørenssen, Anders; Kalia, Rajiv

    2013-04-01

    The process of fracture formation due to a volume increasing chemical reaction has been studied in a variety of different settings, e.g. weathering of dolerites by Røyne et al.[4], serpentinization and carbonation of peridotite by Rudge et al.[3] and replacement reactions in silica-poor igneous rocks by Jamtveit et al.[1]. It is generally assumed that fracture formation will increase the net permeability of the rock, and thus increase the reactant transport rate and subsequently the total reaction rate, as summarised by Kelemen et al.[2]. Røyne et al.[4] have shown that transport in fractures will have an effect on the fracture pattern formed. Understanding the feedback process between fracture formation and permeability changes is essential in assessing industrial scale CO2 sequestration in ultramafic rock, but little is seemingly known about how large the permeability change will be in reaction-induced fracturing under compression, and it remains an open question how sensitive a fracture pattern is to permeability changes. In this work, we study the permeability of fractures formed under compression, and we use a 2D discrete element model to study the fracture patterns and total reaction rates achieved with different permeabilities. We achieve an improved understanding of the feedback processes in reaction-driven fracturing, thus improving our ability to decide whether industrial scale CO2 sequestration in ultramafic rock is a viable option for long-term handling of CO2. References [1] Jamtveit, B, Putnis, C. V., and Malthe-Sørenssen, A., "Reaction induced fracturing during replacement processes," Contrib. Mineral Petrol. 157, 2009, pp. 127 - 133. [2] Kelemen, P., Matter, J., Streit, E. E., Rudge, J. F., Curry, W. B., and Blusztajn, J., "Rates and Mechanisms of Mineral Carbonation in Peridotite: Natural Processes and Recipes for Enhanced, in situ CO2 Capture and Storage," Annu. Rev. Earth Planet. Sci. 2011. 39:545-76. [3] Rudge, J. F., Kelemen, P. B., and

  13. The mechanism of the modified Ullmann reaction.

    PubMed

    Sperotto, Elena; van Klink, Gerard P M; van Koten, Gerard; de Vries, Johannes G

    2010-11-21

    The copper-mediated aromatic nucleophilic substitution reactions developed by Fritz Ullmann and Irma Goldberg required stoichiometric amounts of copper and very high reaction temperatures. Recently, it was found that addition of relatively cheap ligands (diamines, aminoalcohols, diketones, diols) made these reactions truly catalytic, with catalyst amounts as low as 1 mol% or even lower. Since these catalysts are homogeneous, it has opened up the possibility to investigate the mechanism of these modified Ullmann reactions. Most authors agree that Cu(I) is the true catalyst even though Cu(0) and Cu(II) catalysts have also shown to be active. It should be noted however that Cu(I) is capable of reversible disproportionation into Cu(0) and Cu(II). In the first step, the nucleophile displaces the halide in the LnCu(I)X complex forming LnCu(I)ZR (Z = O, NR′, S). Quite a number of mechanisms have been proposed for the actual reaction of this complex with the aryl halide: 1. Oxidative addition of ArX forming a Cu(III) intermediate followed by reductive elimination; 2. Sigma bond metathesis; in this mechanism copper remains in the Cu(II) oxidation state; 3. Single electron transfer (SET) in which a radical anion of the aryl halide is formed (Cu(I)/Cu(II)); 4. Iodine atom transfer (IAT) to give the aryl radical (Cu(I)/Cu(II)); 5. π-complexation of the aryl halide with the Cu(I) complex, which is thought to enable the nucleophilic substitution reaction. Initially, the radical type mechanisms 3 and 4 where discounted based on the fact that radical clock-type experiments with ortho-allyl aryl halides failed to give the cyclised products. However, a recent DFT study by Houk, Buchwald and co-workers shows that the modified Ullmann reaction between aryl iodide and amines or primary alcohols proceeds either via an SET or an IAT mechanism. Van Koten has shown that stalled aminations can be rejuvenated by the addition of Cu(0), which serves to reduce the formed Cu(II) to Cu

  14. Theory and Modeling of Asymmetric Catalytic Reactions.

    PubMed

    Lam, Yu-Hong; Grayson, Matthew N; Holland, Mareike C; Simon, Adam; Houk, K N

    2016-04-19

    Modern density functional theory and powerful contemporary computers have made it possible to explore complex reactions of value in organic synthesis. We describe recent explorations of mechanisms and origins of stereoselectivities with density functional theory calculations. The specific functionals and basis sets that are routinely used in computational studies of stereoselectivities of organic and organometallic reactions in our group are described, followed by our recent studies that uncovered the origins of stereocontrol in reactions catalyzed by (1) vicinal diamines, including cinchona alkaloid-derived primary amines, (2) vicinal amidophosphines, and (3) organo-transition-metal complexes. Two common cyclic models account for the stereoselectivity of aldol reactions of metal enolates (Zimmerman-Traxler) or those catalyzed by the organocatalyst proline (Houk-List). Three other models were derived from computational studies described in this Account. Cinchona alkaloid-derived primary amines and other vicinal diamines are venerable asymmetric organocatalysts. For α-fluorinations and a variety of aldol reactions, vicinal diamines form enamines at one terminal amine and activate electrophilically with NH(+) or NF(+) at the other. We found that the stereocontrolling transition states are cyclic and that their conformational preferences are responsible for the observed stereoselectivity. In fluorinations, the chair seven-membered cyclic transition states is highly favored, just as the Zimmerman-Traxler chair six-membered aldol transition state controls stereoselectivity. In aldol reactions with vicinal diamine catalysts, the crown transition states are favored, both in the prototype and in an experimental example, shown in the graphic. We found that low-energy conformations of cyclic transition states occur and control stereoselectivities in these reactions. Another class of bifunctional organocatalysts, the vicinal amidophosphines, catalyzes the (3 + 2) annulation

  15. Synthesis of Cyclooctatetraenes through a Palladium-Catalyzed Cascade Reaction.

    PubMed

    Blouin, Sarah; Gandon, Vincent; Blond, Gaëlle; Suffert, Jean

    2016-06-13

    Reported is a cascade reaction leading to fully substituted cyclooctatetraenes. This unexpected transformation likely proceeds through a unique 8π electrocyclization reaction of a ene triyne. DFT computations provide the mechanistic basis of this surprizing reaction. PMID:27135905

  16. Unimolecular reaction dynamics of free radicals

    SciTech Connect

    Terry A. Miller

    2006-09-01

    Free radical reactions are of crucial importance in combustion and in atmospheric chemistry. Reliable theoretical models for predicting the rates and products of these reactions are required for modeling combustion and atmospheric chemistry systems. Unimolecular reactions frequently play a crucial role in determining final products. The dissociations of vinyl, CH2= CH, and methoxy, CH3O, have low barriers, about 13,000 cm-1 and 8,000 cm-1, respectively. Since barriers of this magnitude are typical of free radicals these molecules should serve as benchmarks for this important class of reactions. To achieve this goal, a detailed understanding of the vinyl and methoxy radicals is required. Results for dissociation dynamics of vinyl and selectively deuterated vinyl radical are reported. Significantly, H-atom scrambling is shown not to occur in this reaction. A large number of spectroscopic experiments for CH3O and CHD2O have been performed. Spectra recorded include laser induced fluorescence (LIF), laser excited dispersed fluorescence (LEDF), fluorescence dip infrared (FDIR) and stimulated emission pumping (SEP). Such results are critical for implementing dynamics experiments involving the dissociation of methoxy.

  17. Diagnosing ignition with DT reaction history

    SciTech Connect

    Wilson, D. C.; Bradley, P. A.; Herrmann, H. W.; Cerjan, C. J.; Salmonson, J. D.; Spears, B. K.; Hatchet, S. P. II; Glebov, V. Yu.

    2008-10-15

    A full range DT reaction history of an ignition capsule, from 10{sup 9} to 10{sup 20} neutrons/ns, offers the opportunity to diagnose fuel conditions hundreds of picoseconds before and during burn. The burn history begins with a sharp rise when the first shock reaches the center of the capsule. The level of this jump reflects the combined shock strength and the adiabat of DT fuel. Changes to the four laser pulses driving the capsule implosion which are large enough to degrade the yield make measurable changes to the reaction history. Low mode asymmetries grow during convergence but change the reaction history during the final {approx}100 ps. High mode asymmetry or turbulence mixing affects only the reaction history within {approx}50 ps of peak burn rate. A capsule with a tritium fuel layer containing a small amount of deuterium ({approx}1%) creates a reaction history similar to the ignition capsule, but without the final ignition burn. A combination of gas Cerenkov detectors and the neutron temporal diagnostic could be capable of diagnosing the full history of ignition and tritium rich capsules.

  18. Desaturation reactions catalyzed by soluble methane monooxygenase.

    PubMed

    Jin, Y; Lipscomb, J D

    2001-09-01

    Soluble methane monooxygenase (MMO) is shown to be capable of catalyzing desaturation reactions in addition to the usual hydroxylation and epoxidation reactions. Dehydrogenated products are generated from MMO-catalyzed oxidation of certain substrates including ethylbenzene and cyclohexadienes. In the reaction of ethylbenzene, desaturation of ethyl C-H occurred along with the conventional hydroxvlations of ethyl and phenyl C-Hs. As a result, styrene is formed together with ethylphenols and phenylethanols. Similarly, when 1,3- and 1,4-cyclohexadienes were used as substrates, benzene was detected as a product in addition to the corresponding alcohols and epoxides. In all cases, reaction conditions were found to significantly affect the distribution among the different products. This new activity of MMO is postulated to be associated with the chemical properties of the substrates rather than fundamental changes in the nature of the oxygen and C-H activation chemistries. The formation of the desaturated products is rationalized by formation of a substrate cationic intermediate, possibly via a radical precursor. The cationic species is then proposed to partition between recombination (alcohol formation) and elimination (alkene production) pathways. This novel function of MMO indicates close mechanistic kinship between the hydroxylation and desaturation reactions catalyzed by the nonheme diiron clusters.

  19. Oscillatory reactions on single crystal surfaces

    NASA Astrophysics Data System (ADS)

    Imbihl, R.

    1993-12-01

    Heterogeneous catalytic reactions exhibit under certain conditions kinetic oscillations which have been investigated both with polycrystalline materials and with single crystal surfaces as catalysts. The present paper reviews single-crystal experiments conducted under isothermal, low pressure conditions ( p < 10 -3 mbar). Two different reaction systems have been investigated: catalytic CO oxidation on various Pt and Pd orientations and catalytic NO reduction on Pt(100) using CO, H 2, or NH 3 as the reducing agent. The different reaction systems exhibit a wide variety of interesting phenomena which are well-known in nonlinear dynamics, for example, such as spatiotemporal pattern formation, the existence of Turing structures and the appearance of deterministic chaos, and chemical turbulence. The mechanistic steps leading to the observed phenomena have been investigated and appropriate mathematical models have been formulated and analyzed using bifurcation theory. The driving force for the rate oscillations has been shown to result from structural changes of the substrate in the case of catalytic CO oxidation on Pt surfaces, subsurface oxygen formation in the case of catalytic CO oxidation on Pd surfaces, and in the chemical reaction network described by a vacancy model in the case of the NO reduction reactions.

  20. Reaction products of ozone: a review.

    PubMed Central

    Glaze, W H

    1986-01-01

    The reaction products of ozone that form during the oxidation of compounds found in aqueous media are reviewed. Reaction products of ozone are well documented only for a limited number of substrates, and mechanistic information is quite rare. Decomposition of ozone during its reactions, sometimes induced by matrix impurities or by the by-products of the reactions, will generate highly reactive hydroxyl radicals. Thus, even reactions occurring at pH less than 7 may have radical character. More complete destruction of organic substrates may be enhanced by using catalysts, such as ultraviolet radiation or hydrogen peroxide, to accelerate radical formation. However, complete mineralization is generally not practical economically, so partially oxidized by-products can be expected under typical treatment conditions. Ozone by-products tend to be oxygenated compounds that are usually, but not always, more biodegradable and less toxic than xenobiotic precursors. Of particular interest are hydroperoxide by-products, which may have escaped detection because of their lability, and unsaturated aldehydes. Inorganic by-products tend to be in high oxidation states, which in some cases (e.g., some metallic elements) may lead to enhanced removal by flocculation and sedimentation. In other cases oxidation may lead to formation of reactive species such as hypobromous acid from bromide ion or permanganate from manganous ion. In general, more research is required before a valid assessment of the risks of ozone by-products can be made. PMID:3545802