Science.gov

Sample records for 24s-t aluminum-alloy flat

  1. Charts for the minimum-weight design of 24s-t aluminum-alloy flat compression panels with longitudinal z-section stiffeners

    NASA Technical Reports Server (NTRS)

    Schuette, Evan H

    1945-01-01

    Design charts are developed for 24s-t aluminum-alloy flat compression panels with longitudinal z-section stiffeners. These charts make possible the design of the lightest panels of this type for a wide range of design requirements. Examples of the use of the charts are given and it is pointed out on the basis of these examples that, over a wide range of design conditions, the maintenance of buckle-free surfaces does not conflict with the achievement of high structural efficiency. The achievement of the maximum possible structural efficiency with 24s-t aluminum-alloy panels, however, requires closer stiffener spacings than those now in common use.

  2. Torsion Tests of 24S-T Aluminum-alloy Noncircular Bar and Tubing

    NASA Technical Reports Server (NTRS)

    Moore, R L; Paul, D A

    1943-01-01

    Tests of 24S-T aluminum alloy have been made to determine the yield and ultimate strengths in torsion of noncircular bar and tubing. An approximate basis for predicting these torsional strength characteristics has been indicated. The results show that the torsional stiffness and maximum shearing stresses within the elastic range may be computed quite closely by means of existing formulas based on mathematical analysis and the membrane analogy.

  3. Effect of Brake Forming on the Strength of 24S-T Aluminum-alloy Sheet

    NASA Technical Reports Server (NTRS)

    Heimerl, George J; Woods, Walter

    1946-01-01

    Tests were made to determine the effect of brake forming on the strength of 24S-T aluminum alloy sheet that had been formed to an inside bend radius of three times the sheet thickness. The results for both directions of the grain of the material showed that the compressive yield stresses were appreciably increased, that the tensile yield stresses were moderately increased, that the ultimate tensile stresses were only slightly increased, that the elongations were considerably reduced, and that the shapes of the tensile and compressive stress-strain curves were markedly changed.

  4. The Effect of Artificial Aging on the Tensile Properties of Alclad 24S-T and 24S-T Aluminum Alloy

    NASA Technical Reports Server (NTRS)

    Kotanchik, Joseph N.; Woods, Walter; Zender, George W.

    1943-01-01

    An experimental study was made to determine the effect of artificial aging on the tensile properties of alclad 24S-T and 24S-T aluminum-alloy sheet material. The results of the tests show that certain combinations of aging time and temperature cause a marked increase in the yield strength and a small increase in the ultimate strength; these increases are accompanied by a very large decrease in elongation. A curve is presented that shows the maximum yield strengths that can be obtained by aging this material at various combinations of time and temperature. The higher values of yield stress are obtained in material aged at relatively longer times and lower temperatures.

  5. Axial-Load Fatigue Properties of 24S-T and 75S-T Aluminum Alloy as Determined in Several Laboratories

    NASA Technical Reports Server (NTRS)

    Grover, H J; Hyler, W S; Kuhn, Paul; Landers, Charles B; Howell, F M

    1954-01-01

    In the initial phase of a NACA program on fatigue research, axial-load tests on 24S-T3 and 75S-T6 aluminum-alloy sheet have been made at the Battelle Memorial Institute and at the Langley Aeronautical Laboratory of the National Advisory Committee for Aeronautics. The test specimens were polished and unnotched. The manufacturer of the material, the Aluminum Company of America, has made axial-load tests on 24S-T4 and 75S-T6 rod material. The test techniques used at the three laboratories are described in detail; the test results are presented and are compared with each other and with results obtained on unpolished sheet by the National Bureau of Standards. (author)

  6. Direct-reading design charts for 75S-T6 aluminum-alloy flat compression panels having longitudinal extruded Z-section stiffeners

    NASA Technical Reports Server (NTRS)

    Hickman, William A; Dow, Norris F

    1951-01-01

    Direct-reading design charts are presented for 75S-T6 aluminum-alloy flat compression panels having longitudinal extruded Z-section stiffeners. These charts, which cover a wide range of proportions, make possible the direct determination of the stress and all panel dimensions required to carry a given intensity of loading with a given skin thickness and effective length of panel.

  7. Aluminum alloy

    NASA Technical Reports Server (NTRS)

    Blackburn, Linda B. (Inventor); Starke, Edgar A., Jr. (Inventor)

    1989-01-01

    This invention relates to aluminum alloys, particularly to aluminum-copper-lithium alloys containing at least about 0.1 percent by weight of indium as an essential component, which are suitable for applications in aircraft and aerospace vehicles. At least about 0.1 percent by weight of indium is added as an essential component to an alloy which precipitates a T1 phase (Al2CuLi). This addition enhances the nucleation of the precipitate T1 phase, producing a microstructure which provides excellent strength as indicated by Rockwell hardness values and confirmed by standard tensile tests.

  8. Column and Plate Compressive Strength of Extruded XB75S-T Aluminum Alloy

    NASA Technical Reports Server (NTRS)

    Heimerl, George J.; Roy, J. Albert

    1944-01-01

    Results are presented of tests to determine the column and plate compressive strength of extruded XB75S-T aluminum alloy, and comparative values are shown for 24S-T aluminum-alloy sheet. Stress-strain curves are also given,

  9. Bearing Strengths of Some Wrought-aluminum Alloys

    NASA Technical Reports Server (NTRS)

    Moore, R L; Wescoat, C

    1943-01-01

    Although a number of investigations of the bearing strength of aluminum alloys have been made, the problem remains one of considerable interest to the aircraft industry. For this reason it has seemed advisable to make additional tests of the commonly used aircraft alloys in an effort to establish a better basis for the selection of allowable bearing values. Current design practice does not recognize the effect of edge distance upon bearing strengths, and for this reason edge distance was one of the principal variables considered in this investigation. The increasing emphasis being placed upon permanent set limitations makes it essential that more information on bearing yield phenomena be obtained. The object of this investigation was to determine bearing yield and ultimate strengths of the following aluminum alloy products: 17S-T, 24S-T, Alclad 24S-T, 24S-RT, 52S-0, 52S-1/2H, 52S-H, 53S-T, and 61S-T extrusions. Ratios of these bearing properties to tensile properties were also determined.

  10. Aluminum alloys with improved strength

    NASA Technical Reports Server (NTRS)

    Deiasi, R.; Adler, P.

    1975-01-01

    Mechanical strength and stress corrosion of new BAR and 7050 alloys that include Zn instead of Cr have been studied and compared with those of 7075 aluminum alloy. Added mechanical strength of new alloys is attributed to finer grain size of 5 to 8 micrometers, however, susceptibility to stress corrosion attack is increased.

  11. Nd:YAG laser welding aluminum alloys

    SciTech Connect

    Jimenez, E. Jr.

    1992-02-01

    Autogenous Nd:YAG laser welding wrought 4047, 1100, 3003, 2219, 5052, 5086, 5456, and 6061 and cast A356 aluminum alloys to cast A356 aluminum alloy in restrained annular weld joints was investigated. The welds were 12.7 mm (0.375 in.) and 9.5 mm (0.375 in.) diameter with approximately 0.30 mm (0.012 in.) penetration. This investigation determined 4047 aluminum alloy to be the optimum alloy for autogenous Nd:YAG laser welding to cast A356 aluminum alloy. This report describes the investigation and its results.

  12. Laser welding of aluminum alloys

    SciTech Connect

    Leong, K.H.; Sabo, K.R.; Sanders, P.G.; Spawr, W.J.

    1997-03-01

    Recent interest in reducing the weight of automobiles to increase fuel mileage has focused attention on the use of aluminum and associated joining technologies. Laser beam welding is one of the more promising methods for high speed welding of aluminum. Consequently, substantial effort has been expended in attempting to develop a robust laser beam welding process. Early results have not been very consistent in the process requirements but more definitive data has been produced recently. This paper reviews the process parameters needed to obtain consistent laser welds on 5,000 series aluminum alloys and discusses the research necessary to make laser processing of aluminum a reality for automotive applications.

  13. Modeling dissolution in aluminum alloys

    NASA Astrophysics Data System (ADS)

    Durbin, Tracie Lee

    2005-07-01

    Aluminum and its alloys are used in many aspects of modern life, from soda cans and household foil to the automobiles and aircraft in which we travel. Aluminum alloy systems are characterized by good workability that enables these alloys to be economically rolled, extruded, or forged into useful shapes. Mechanical properties such as strength are altered significantly with cold working, annealing, precipitation-hardening, and/or heat-treatments. Heat-treatable aluminum alloys contain one or more soluble constituents such as copper, lithium, magnesium, silicon and zinc that individually, or with other elements, can form phases that strengthen the alloy. Microstructure development is highly dependent on all of the processing steps the alloy experiences. Ultimately, the macroscopic properties of the alloy depend strongly on the microstructure. Therefore, a quantitative understanding of the microstructural changes that occur during thermal and mechanical processing is fundamental to predicting alloy properties. In particular, the microstructure becomes more homogeneous and secondary phases are dissolved during thermal treatments. Robust physical models for the kinetics of particle dissolution are necessary to predict the most efficient thermal treatment. A general dissolution model for multi-component alloys has been developed using the front-tracking method to study the dissolution of precipitates in an aluminum alloy matrix. This technique is applicable to any alloy system, provided thermodynamic and diffusion data are available. Treatment of the precipitate interface is explored using two techniques: the immersed-boundary method and a new technique, termed here the "sharp-interface" method. The sharp-interface technique is based on a variation of the ghost fluid method and eliminates the need for corrective source terms in the characteristic equations. In addition, the sharp-interface method is shown to predict the dissolution behavior of precipitates in aluminum

  14. Study of stress corrosion in aluminum alloys

    NASA Technical Reports Server (NTRS)

    Brummer, S. B.

    1967-01-01

    Mechanism of the stress corrosion cracking of high-strength aluminum alloys was investigated using electrochemical, mechanical, and electron microscopic techniques. The feasibility of detecting stress corrosion damage in fabricated aluminum alloy parts by nondestructive testing was investigated using ultrasonic surface waves and eddy currents.

  15. Solution Potentials Indicate Aluminum-Alloy Tempers

    NASA Technical Reports Server (NTRS)

    Danford, M. D.

    1985-01-01

    Report discusses use of solution potential as measure of temper of aluminum alloys. Technique based on fact that different tempers or heat treatments exhibit different solution potentials as function of aging time.

  16. Advanced powder metallurgy aluminum alloys and composites

    NASA Technical Reports Server (NTRS)

    Lisagor, W. B.; Stein, B. A.

    1982-01-01

    The differences between powder and ingot metallurgy processing of aluminum alloys are outlined. The potential payoff in the use of advanced powder metallurgy (PM) aluminum alloys in future transport aircraft is indicated. The national program to bring this technology to commercial fruition and the NASA Langley Research Center role in this program are briefly outlined. Some initial results of research in 2000-series PM alloys and composites that highlight the property improvements possible are given.

  17. Normal pressure tests on unstiffened flat plates

    NASA Technical Reports Server (NTRS)

    Head, Richard M; Sechler, Ernest J

    1944-01-01

    Flat sheet panels of aluminum alloy (all 17S-T except for two specimens of 24S-T) were tested under normal pressures with clamped edge supports in the structures laboratory of the Guggenheim Aeronautical Laboratory, California Institute of Technology. The thicknesses used ranged from 0.010 to 0.080 inch; the panel sizes ranged from 10 by 10 inches to 10 by 40 inches; and the pressure range was from 0 to 60-pounds-per-square-inch gage. Deflection patterns were measured and maximum tensile strains in the center of the panel were determined by electric strain gages. The experimental data are presented by pressure-strain, pressure-maximum-deflection, and pressure-deflection curves. The results of these tests have been compared with the corresponding strains and deflections as calculated by the simple membrane theory and by large deflection theories.

  18. Roll Casting of Aluminum Alloy Clad Strip

    SciTech Connect

    Nakamura, R.; Tsuge, H.; Haga, T.; Watari, H.; Kumai, S.

    2011-01-17

    Casting of aluminum alloy three layers of clad strip was tried using the two sets of twin roll casters, and effects of the casting parameters on the cladding conditions were investigated. One twin roll caster was mounted on the other twin roll caster. Base strip was 8079 aluminum alloy and overlay strips were 6022 aluminum alloy. Effects of roll-load of upper and lower casters and melt temperature of the lower caster were investigated. When the roll-load of the upper and lower caster was large enough, the overlay strip could be solidified and be connected. The overlay strip could be connected when the melt of the overlay strip cast by the lower caster was low enough. Sound three layers of clad strip could be cast by proper conditions.

  19. Seacoast stress corrosion cracking of aluminum alloys

    NASA Technical Reports Server (NTRS)

    Humphries, T. S.; Nelson, E. E.

    1981-01-01

    The stress corrosion cracking resistance of high strength, wrought aluminum alloys in a seacoast atmosphere was investigated and the results were compared with those obtained in laboratory tests. Round tensile specimens taken from the short transverse grain direction of aluminum plate and stressed up to 100 percent of their yield strengths were exposed to the seacoast and to alternate immersion in salt water and synthetic seawater. Maximum exposure periods of one year at the seacoast, 0.3 or 0.7 of a month for alternate immersion in salt water, and three months for synthetic seawater were indicated for aluminum alloys to avoid false indications of stress corrosion cracking failure resulting from pitting. Correlation of the results was very good among the three test media using the selected exposure periods. It is concluded that either of the laboratory test media is suitable for evaluating the stress corrosion cracking performance of aluminum alloys in seacoast atmosphere.

  20. Welding of Aluminum Alloys to Steels: An Overview

    DTIC Science & Technology

    2013-08-01

    95] K. Kimapong1, T. Watanabe, Effect of welding process parameters on mechanical property of FSW lap joint between aluminum alloy and steel ...UNCLASSIFIED: Distribution Statement A. Approved for public release. 1 UNCLASSIFIED Welding of aluminum alloys to steels : an overview M. Mazar...welding methods for joining aluminum alloys to steels . The microstructural development, mechanical properties and application of the joints are discussed

  1. Mechanical Properties of Aluminum-alloy Rivets

    NASA Technical Reports Server (NTRS)

    Brueggeman, Wm C

    1936-01-01

    The development of metal construction for aircraft has created a need for accurate and detailed information regarding the strength of riveted joints in aluminum-alloy structures. To obtain this information the National Bureau of Standards in cooperation with the National Advisory Committee for Aeronautics is investigating the strength of riveted joints in aluminum alloys. The strength of riveted joints may be influenced by the form of the head, the ratio of the rivet diameter to the sheet thickness, the driving stress, and other factors. This note gives the results of tests to develop the riveting technique for test specimens and to determine the effects of these factors.

  2. PREPARATION OF URANIUM-ALUMINUM ALLOYS

    DOEpatents

    Moore, R.H.

    1962-09-01

    A process is given for preparing uranium--aluminum alloys from a solution of uranium halide in an about equimolar molten alkali metal halide-- aluminum halide mixture and excess aluminum. The uranium halide is reduced and the uranium is alloyed with the excess aluminum. The alloy and salt are separated from each other. (AEC)

  3. Weldable aluminum alloy has improved mechanical properties

    NASA Technical Reports Server (NTRS)

    Westerlund, R. W.

    1966-01-01

    Weldable aluminum alloy has good resistance to stress-corrosion cracking, shows unchanged strength and formability after storage at room temperature, and can be pre-aged, stretched, and aged. Since toxic fumes of cadmium oxide are evolved when the new alloy is welded, adequate ventilation must be provided.

  4. Corrosion of aluminum and aluminum alloys

    SciTech Connect

    Davis, J.R.

    1999-01-01

    This new handbook presents comprehensive coverage of the corrosion behavior of aluminum and aluminum alloys, with emphasis on practical information about how to select and process these materials in order to prevent corrosion attack. Described are the characteristics of these materials and the influences of composition, mechanical working, heat treatment, joining methods, microstructure, and environmental variables on their corrosion.

  5. Precipitation hardening in aluminum alloy 6022

    SciTech Connect

    Miao, W.F.; Laughlin, D.E.

    1999-03-05

    Although the precipitation process in Al-Mg-Si alloys has been extensively studied, the understanding of the hardening process is still incomplete, since any change in composition, processing and aging practices, etc., could affect the precipitation hardening behavior. In this paper, hardness measurements, differential scanning calorimetry and transmission electron microscopy have been utilized to study the precipitation hardening behavior in aluminum alloy 6022.

  6. Major and Minor Constituents of Aluminum Alloys

    DTIC Science & Technology

    1986-03-01

    sample alloys obtained by both techniques. Keywords: Atomic Absorption Spectroscopy (AAS), Inductively Coupled Plasma Atomic Emission Spectroscopy(ICP-AES).... absorption spectroscopy and inductively coupled plasma atomic emission spectroscopy are used for the determination of major magnesium, lithium, copper, zinc...An accurate analysis of aluminum alloys is required for quality control and characterization purposes. The two analytical techniques atomic

  7. The Delayed Fracture of Aluminum Alloys.

    DTIC Science & Technology

    1981-01-01

    if necessary and Identify by block number) aluminum alloys, stress - corrosion cracking, oxide film, Auger electron spectroscopy, Auger depth profiling...revere Ide If r ecester’ nd Ientify by block number). b -. ,h 0 unJaInenta mechanZsm of stress - corrosion cracking (SCC) has been studied for high-purity...these specimens is not intergranular. Fracture appears to have originated through pitting corrosion , which caused local stress concentration leading to

  8. FABRICATION OF URANIUM-ALUMINUM ALLOYS

    DOEpatents

    Saller, H.A.

    1959-12-15

    A process is presented for producing a workable article of a uranium- aluminum alloy in which the uranium content is between 14 and 70% by weight; aluminum powder and powdered UAl/sub 2/, UAl/sub 3/, UAl/sub 5/, or UBe/sub 9/ are mixed, and the mixture is compressed into the shape desired and sintered at between 450 and 600 deg C.

  9. Degassing of Aluminum Alloys Using Ultrasonic Vibration

    SciTech Connect

    Meek, T. T.; Han, Q.; Xu, H.

    2006-06-01

    The research was intended to lead to a better fundamental understanding of the effect of ultrasonic energy on the degassing of liquid metals and to develop practical approaches for the ultrasonic degassing of alloys. The goals of the project described here were to evaluate core principles, establish a quantitative basis for the ultrasonic degassing of aluminum alloy melts, and demonstrate the application of ultrsaonic processing during ingot casting and foundry shape casting.

  10. Aluminum Alloy and Article Cast Therefrom

    NASA Technical Reports Server (NTRS)

    Lee, Jonathan A. (Inventor); Chen, Po-Shou (Inventor)

    2003-01-01

    A cast article from an aluminum alloy, which has improved mechanical properties at elevated temperatures, has the following composition in weight percent: Silicon 14 - 25.0, Copper 5.5 - 8.0, Iron 0.05 - 1.2, Magnesium 0.5 - 1.5, Nickel 0.05 - 0.9, Manganese 0.05 - 1.0, Titanium 0.05 - 1.2, Zirconium 0.05 - 1.2, Vanadium 0.05 - 1.2, Zinc 0.05 - 0.9, Phosphorus 0.001 - 0.1, and the balance is Aluminum, wherein the silicon-to-magnesium ratio is 10 - 25, and the copper-to-magnesium ratio is 4 - 15. The aluminum alloy contains a simultaneous dispersion of three types of Al3X compound particles (X=Ti, V, Zr) having a LI2, crystal structure, and their lattice parameters are coherent to the aluminum matrix lattice. A process for producing this cast article is also disclosed, as well as a metal matrix composite, which includes the aluminum alloy serving as a matrix and containing up to about 60% by volume of a secondary filler material.

  11. Mechanical properties of laser welded aluminum alloys

    SciTech Connect

    Douglass, D.M.; Mazumder, J.

    1996-12-31

    The demand for lighter weight vehicles has prompted accelerated development in processing aluminum alloys for automobile structural applications. One of the current research initiatives centers on laser beam welding of aluminum alloys. Autogenous butt welds have been performed on Al 3003, 5754, 6111, and 6061-T6 plates with a 6 kW CO2 laser. For 6061, tensile data indicate about 60% of the base metal strength was attained in the as-welded condition, with a brittle fracture occurring through the weld. A post-weld heat treatment to the T6 condition resulted in a recovery of original ultimate tensile strengths, although these also failed in the weld. Hardness measurements of the post-weld T6 reveal a uniform hardness across the HAZ and fusion zone that is comparable to the original hardness. All 3003 welds fractured in the parent material in a ductile fashion. A high quality bead was consistently achieved with the 3003 alloy, whereas the other alloys demonstrated bead irregularities. SEM photographs reveal large, spherical pores, suggesting that they were formed by gas entrapment rather than by shrinkage.

  12. Fatigue Strength and Related Characteristics of Aircraft Joints I : Comparison of Spot-Weld and Rivet Patterns in 24s-t Alclad and 75s-t Alclad

    NASA Technical Reports Server (NTRS)

    Russell, H W; Jackson, L R; Grover, H J; Beaver, W W

    1944-01-01

    Report contains detailed results of a number of fatigue tests on spot-welded joints in aluminum alloys. The tests described include: (1) fatigue tests on spot-welded lap joints in sheets of unequal thickness of alclad 24s-t. These tests indicate that the fatigue strength of a spot-welded joint in sheets of two different gages is slightly higher than that of a similar joint in two sheets of the thinner gage but definitely lower than that of a similar joint in two sheets of the thicker gage. (2) Fatigue tests on spot-welded alclad 75s-t spot-welded lap-joint specimens of alclad 75s-t were not any stronger in fatigue than similar specimens of alclad 24s-t. (3) Fatigue tests on lap-joint specimens spot -welded after various surface preparations--these included ac welding wire-brushed surfaces, dc welding wire-brushed surfaces, and dc welding chemically cleaned surfaces. While the ac welds were strongest statically, the dc welds on wire-brushed surfaces were strongest in fatigue. Specimens prepared in this way were very nearly as strong as the best riveted specimens tested for comparison. (4) Fatigue tests on specimens spot-welded with varying voltage so as to include a wide range of static spot-weld strengths. The fatigue strengths were in the same order as the static strengths but showed less range. (author)

  13. Fatigue Strength and Related Characteristics of Joints in 24s-t Alclad Sheet

    NASA Technical Reports Server (NTRS)

    Russell, H W; Jackson, L R; Grover, H J; Beaver, W W

    1944-01-01

    Report includes tension fatigue test results on the following types of samples of 0.040-inch alclad 24s-t: (1) monoblock sheet samples as received and after a post-aging heat treatment, (2) "sheet efficiency" samples (two equally stressed sheets joined by a single transverse row of spot welds) both as received and after post-aging, (3) spot-welded lap-joint samples as received and after post-aging, and (4) roll-welded lap-joint samples. (author)

  14. NASA-427: A New Aluminum Alloy

    NASA Technical Reports Server (NTRS)

    Nabors, Sammy A.

    2015-01-01

    NASA's Marshall Space Flight Center researchers have developed a new, stronger aluminum alloy, ideal for cast aluminum products that have powder or paint-baked thermal coatings. With advanced mechanical properties, the NASA-427 alloy shows greater tensile strength and increased ductility, providing substantial improvement in impact toughness. In addition, this alloy improves the thermal coating process by decreasing the time required for heat treatment. With improvements in both strength and processing time, use of the alloy provides reduced materials and production costs, lower product weight, and better product performance. The superior properties of NASA-427 can benefit many industries, including automotive, where it is particularly well-suited for use in aluminum wheels.

  15. Abnormal Grain Growth Suppression in Aluminum Alloys

    NASA Technical Reports Server (NTRS)

    Hales, Stephen J. (Inventor); Claytor, Harold Dale (Inventor); Alexa, Joel A. (Inventor)

    2015-01-01

    The present invention provides a process for suppressing abnormal grain growth in friction stir welded aluminum alloys by inserting an intermediate annealing treatment ("IAT") after the welding step on the article. The IAT may be followed by a solution heat treatment (SHT) on the article under effectively high solution heat treatment conditions. In at least some embodiments, a deformation step is conducted on the article under effective spin-forming deformation conditions or under effective superplastic deformation conditions. The invention further provides a welded article having suppressed abnormal grain growth, prepared by the process above. Preferably the article is characterized with greater than about 90% reduction in area fraction abnormal grain growth in any friction-stir-welded nugget.

  16. Alkaline oxide conversion coatings for aluminum alloys

    SciTech Connect

    Buchheit, R.G.

    1996-02-01

    Three related conversion coating methods are described that are based on film formation which occurs when aluminum alloys are exposed to alkaline Li salt solutions. Representative examples of the processing methods, resulting coating structure, composition and morphology are presented. The corrosion resistance of these coatings to aerated 0.5 M NaCl solution has been evaluated as a function of total processing time using electrochemical impedance spectroscopy (EIS). This evaluation shows that excellent corrosion resistance can be uniformly achieved using no more than 20 minutes of process time for 6061-T6. Using current methods a minimum of 80 minutes of process time is required to get marginally acceptable corrosion resistance for 2024-T3. Longer processing times are required to achieve uniformly good corrosion resistance.

  17. Investigation of the Compressive Strength and Creep Lifetime of 2024-T3 Aluminum-Alloy Plates at Elevated Temperatures

    NASA Technical Reports Server (NTRS)

    Mathauser, Eldon E; Deveikis, William D

    1957-01-01

    The results of elevated-temperature compressive strength and creep tests of 2024-t3 (formerly 24s-t3) aluminum alloy plates supported in v-grooves are presented. The strength-test results indicate that a relation previously developed for predicting plate compressive strength for plates of all materials at room temperature is also satisfactory for determining elevated-temperature strength. Creep-lifetime results are presented for plates in the form of master creep-lifetime curves by using a time-temperature parameter that is convenient for summarizing tensile creep-rupture data. A comparison is made between tensile and compressive creep lifetime for the plates and a method that made use of isochronous stress-strain curves for predicting plate-creep failure stresses is investigated.

  18. Systems study of transport aircraft incorporating advanced aluminum alloys

    NASA Technical Reports Server (NTRS)

    Sakata, I. F.

    1982-01-01

    A study was performed to quantify the potential benefits of utilizing advanced aluminum alloys in commercial transport aircraft and to define the effort necessary to develop fully the alloys to a viable commercial production capability. The comprehensive investigation (1) established realistic advanced aluminum alloy property goals to maximize aircraft systems effectiveness (2) identified performance and economic benefits of incorporating the advanced alloy in future advanced technology commercial aircraft designs (3) provided a recommended plan for development and integration of the alloys into commercial aircraft production (4) provided an indication of the timing and investigation required by the metal producing industry to support the projected market and (5) evaluate application of advanced aluminum alloys to other aerospace and transit systems as a secondary objective. The results of the investigation provided a roadmap and identified key issues requiring attention in an advanced aluminum alloy and applications technology development program.

  19. Gas-tungsten arc welding of aluminum alloys

    DOEpatents

    Frye, Lowell D.

    1984-01-01

    A gas-tungsten arc welding method for joining together structures formed of aluminum alloy with these structures disposed contiguously to a heat-damagable substrate of a metal dissimilar to the aluminum alloy. The method of the present invention is practiced by diamond machining the fay surfaces of the aluminum alloy structures to provide a mirror finish thereon having a surface roughness in the order of about one microinch. The fay surfaces are aligned and heated sufficiently by the tungsten electrode to fuse the aluminum alloy contiguous to the fay surfaces to effect the weld joint. The heat input used to provide an oxide-free weld is significantly less than that required if the fay surfaces were prepared by using conventional chemical and mechanical practices.

  20. Gas-tungsten arc welding of aluminum alloys

    DOEpatents

    Frye, L.D.

    1982-03-25

    The present invention is directed to a gas-tungsten arc welding method for joining together structures formed of aluminum alloy with these structures disposed contiguously to a heat-damagable substrate of a metal dissimilar to the aluminum alloy. The method of the present invention is practiced by diamond machining the fay surfaces of the aluminum alloy structures to profice a mirror finish thereon having a surface roughness in the order of about one microinch. The fay surface are aligned and heated sufficiently by the tungsten electrode to fuse the aluminum alloy continguous to the fay surfaces to effect the weld joint. The heat input used to provide an oxide-free weld is significantly less than that required if the fay surfaces were prepared by using conventional chemical and mechanical practices.

  1. Anisotropic Effects on Constitutive Model Parameters of Aluminum Alloys

    DTIC Science & Technology

    2012-01-01

    strength 7075-T651aluminum alloy . Johnson - Cook model constants determined for Al7075-T651 alloy bar material failed to simulate correctly the penetration...structural components made of high strength 7075-T651aluminum alloy . Johnson - Cook model constants determined for Al7075-T651 alloy bar material...rate sensitivity, Johnson - Cook , constitutive model. PACS: 62.20 .Dc, 62.20..Fe, S 62.50. +p, 83.60.La INTRODUCTION Aluminum 7075 alloys are

  2. Tensile strength on friction stir processed AMg5 (5083) aluminum alloy

    NASA Astrophysics Data System (ADS)

    Chumaevsky, A. V.; Eliseev, A. A.; Filippov, A. V.; Rubtsov, V. E.; Tarasov, S. Yu.

    2016-11-01

    The results of the tensile tests carried out both on AMg5 (5083) aluminum alloy samples base and those obtained using friction stir processing technique are reported. The tensile test samples have been prepared from the friction stir processed plates so that their tensile axis was parallel to the processing direction. The maximum tensile strength of the processed samples was 9% higher than of the base metal. The fractographic examination shows the presence of flat areas inherent of the brittle fracture in all three friction processed samples. The load-extension curves show that friction stir processing may suppress the serrated yielding.

  3. Spray-forming monolithic aluminum alloy and metal matrix composite strip

    SciTech Connect

    McHugh, K.M.

    1995-10-01

    Spray forming with de Laval nozzles is an advanced materials processing technology that converts a bulk liquid metal to a near-net-shape solid by depositing atomized droplets onto a suitably shaped substrate. Using this approach, aluminum alloys have been spray formed as strip, with technoeconomic advantages over conventional hot mill processing and continuous casting. The spray-formed strip had a flat profile, minimal porosity, high yield, and refined microstructure. In an adaptation to the technique, 6061 Al/SiC particulate-reinforced metal matrix composite strip was produced by codeposition of the phases.

  4. Friction Pull Plug Welding in Aluminum Alloys

    NASA Technical Reports Server (NTRS)

    Brooke, Shane A.; Bradford, Vann

    2012-01-01

    NASA's Marshall Space Flight Center (MSFC) has recently invested much time and effort into the process development of Friction Pull Plug Welding (FPPW). FPPW, is a welding process similar to Friction Push Plug Welding in that, there is a small rotating part (plug) being spun and simultaneously pulled (forged) into a larger part. These two processes differ, in that push plug welding requires an internal reaction support, while pull plug welding reacts to the load externally. FPPW was originally conceived as a post proof repair technique for the Space Shuttle fs External Tank. FPPW was easily selected as the primary weld process used to close out the termination hole on the Constellation Program's ARES I Upper Stage circumferential Self-Reacting Friction Stir Welds (SR-FSW). The versatility of FPPW allows it to also be used as a repair technique for both SR-FSW and Conventional Friction Stir Welds. To date, all MSFC led development has been concentrated on aluminum alloys (2195, 2219, and 2014). Much work has been done to fully understand and characterize the process's limitations. A heavy emphasis has been spent on plug design, to match the various weldland thicknesses and alloy combinations. This presentation will summarize these development efforts including weld parameter development, process control, parameter sensitivity studies, plug repair techniques, material properties including tensile, fracture and failure analysis.

  5. Friction Pull Plug Welding in Aluminum Alloys

    NASA Technical Reports Server (NTRS)

    Brooke, Shane A.; Bradford, Vann; Burkholder, Jonathon

    2011-01-01

    NASA fs Marshall Space Flight Center (MSFC) has recently invested much time and effort into the process development of Friction Pull Plug Welding (FPPW). FPPW, is a welding process similar to Friction Push Plug Welding in that, there is a small rotating part (plug) being spun and simultaneously pulled (forged) into a larger part. These two processes differ, in that push plug welding requires an internal reaction support, while pull plug welding reacts to the load externally. FPPW was originally conceived as a post proof repair technique for External Tank. FPPW was easily selected as the primary process used to close out the termination hole on the Constellation Program fs ARES I Upper Stage circumferential Self ] Reacting Friction Stir Welds (SR ]FSW). The versatility of FPPW allows it to also be used as a repair technique for both SR ]FSW and Conventional Friction Stir Welds. To date, all MSFC led development has been concentrated on aluminum alloys (2195, 2219, and 2014). Much work has been done to fully understand and characterize the process fs limitations. A heavy emphasis has been spent on plug design, to match the various weldland thicknesses and alloy combinations. This presentation will summarize these development efforts including weld parameter development, process control, parameter sensitivity studies, plug repair techniques, material properties including tensile, fracture and failure analysis.

  6. The Elastic Constants for Wrought Aluminum Alloys

    NASA Technical Reports Server (NTRS)

    Templin, R L; Hartmann, E C

    1945-01-01

    There are several constants which have been devised as numerical representations of the behavior of metals under the action of loadings which stress the metal within the range of elastic action. Some of these constants, such as Young's modulus of elasticity in tension and compression, shearing modulus of elasticity, and Poisson's ratio, are regularly used in engineering calculations. Precise tests and experience indicate that these elastic constants are practically unaffected by many of the factors which influence the other mechanical properties of materials and that a few careful determinations under properly controlled conditions are more useful and reliable than many determinations made under less favorable conditions. It is the purpose of this paper to outline the methods employed by the Aluminum Research Laboratories for the determination of some of these elastic constants, to list the values that have been determined for some of the wrought aluminum alloys, and to indicate the variations in the values that may be expected for some of the commercial products of these alloys.

  7. Aluminum-Alloy-Matrix/Alumina-Reinforcement Composites

    NASA Technical Reports Server (NTRS)

    Kashalikar, Uday; Rozenoyer, Boris

    2004-01-01

    Isotropic composites of aluminum-alloy matrices reinforced with particulate alumina have been developed as lightweight, high-specific-strength, less-expensive alternatives to nickel-base and ferrous superalloys. These composites feature a specific gravity of about 3.45 grams per cubic centimeter and specific strengths of about 200 MPa/(grams per cubic centimeter). The room-temperature tensile strength is 100 ksi (689 MPa) and stiffness is 30 Msi (206 GPa). At 500 F (260 C), these composites have shown 80 percent retention in strength and 95 percent retention in stiffness. These materials also have excellent fatigue tolerance and tribological properties. They can be fabricated in net (or nearly net) sizes and shapes to make housings, pistons, valves, and ducts in turbomachinery, and to make structural components of such diverse systems as diesel engines, automotive brake systems, and power-generation, mining, and oil-drilling equipment. Separately, incorporation of these metal matrix composites within aluminum gravity castings for localized reinforcement has been demonstrated. A composite part of this type can be fabricated in a pressure infiltration casting process. The process begins with the placement of a mold with alumina particulate preform of net or nearly net size and shape in a crucible in a vacuum furnace. A charge of the alloy is placed in the crucible with the preform. The interior of the furnace is evacuated, then the furnace heaters are turned on to heat the alloy above its liquidus temperature. Next, the interior of the furnace is filled with argon gas at a pressure about 900 psi (approximately equal to 6.2 MPa) to force the molten alloy to infiltrate the preform. Once infiltrated, the entire contents of the crucible can be allowed to cool in place, and the composite part recovered from the mold.

  8. Friction stir welding process to repair voids in aluminum alloys

    NASA Technical Reports Server (NTRS)

    Rosen, Charles D. (Inventor); Litwinski, Edward (Inventor); Valdez, Juan M. (Inventor)

    1999-01-01

    The present invention provides an in-process method to repair voids in an aluminum alloy, particularly a friction stir weld in an aluminum alloy. For repairing a circular void or an in-process exit hole in a weld, the method includes the steps of fabricating filler material of the same composition or compatible with the parent material into a plug form to be fitted into the void, positioning the plug in the void, and friction stir welding over and through the plug. For repairing a longitudinal void (30), the method includes machining the void area to provide a trough (34) that subsumes the void, fabricating filler metal into a strip form (36) to be fitted into the trough, positioning the strip in the trough, and rewelding the void area by traversing a friction stir welding tool longitudinally through the strip. The method is also applicable for repairing welds made by a fusing welding process or voids in aluminum alloy workpieces themselves.

  9. Issues for conversion coating of aluminum alloys with hydrotalcite

    SciTech Connect

    Drewien, C.A.; Buchheit, R.G.

    1993-12-01

    Hydrotalcite coatings on aluminum alloys are being developed for corrosion protection of aluminum in aggressive saline environments. Coating bath composition, surface pretreatment, and alloying elements in aluminum all influence the performance of these coatings during salt spray testing. The coating bath, comprised of lithium carbonate, requires aging by dissolution of aluminum into the bath in order to grow corrosion resistant coatings. Coatings formed in non- aged baths do not perform well in salt spray testing. The alloying elements in aluminum alloys, especially copper, influence the coating growth and formation leading to thin coatings. The effect of the alloy elements is to limit the supply of aluminum to the coating/electrolyte interface and hinder growth of hydrotalcite upon aluminum alloys.

  10. Characterization of Nanocrystalline Aluminum Alloy 5083 Powders Produced by Cryogenic Attrition

    DTIC Science & Technology

    2014-11-01

    Characterization of Nanocrystalline Aluminum Alloy 5083 Powders Produced by Cryogenic Attrition by Tiffany Ngo ARL-TN-0643...November 2014 Characterization of Nanocrystalline Aluminum Alloy 5083 Powders Produced by Cryogenic Attrition Tiffany Ngo Weapons and...3. DATES COVERED (From - To) August 2014 4. TITLE AND SUBTITLE Characterization of Nanocrystalline Aluminum Alloy 5083 Powders Produced by

  11. Aluminum alloy welding and stress-corrosion testing. Final report

    SciTech Connect

    Gates, W.G.; Jimenez, E.

    1981-04-01

    The weldability, strength, and corrosion resistance of four 5XXX aluminum alloys electron beam welded to 6061-T6 aluminum alloy without a filler metal were evaluated. Adding filler metal raises weld energy requirements and makes the process more difficult to control. In this study, instead of using a filler metal, a high-magnesium 5XXX alloy was welded to the 6061 alloy. The four 5XXX alloys used (5456-H321, 5052-H34, 5086-H323, and 5083-H32) were selected for their high magnesium content which reduces weld crack sensitivity.

  12. Fusion boundary microstructure evolution in aluminum alloys

    NASA Astrophysics Data System (ADS)

    Kostrivas, Anastasios Dimitrios

    2000-10-01

    A melting technique was developed to simulate the fusion boundary of aluminum alloys using the GleebleRTM thermal simulator. Using a steel sleeve to contain the aluminum, samples were heated to incremental temperatures above the solidus temperature of a number of alloys. In alloy 2195, a 4wt%Cu-1wt%Li alloy, an equiaxed non-dendritic zone (EQZ) could be formed by heating in the temperature range from approximately 630 to 640°C. At temperatures above 640°C, solidification occurred by the normal epitaxial nucleation and growth mechanism. Fusion boundary behavior was also studied in alloys 5454-H34, 6061-T6, and 2219-T8. Additionally, experimental alloy compositions were produced by making bead on plate welds using an alloy 5454-H32 base metal and 5025 or 5087 filler metals. These filler metals contain zirconium and scandium additions, respectively, and were expected to influence nucleation and growth behavior. Both as-welded and welded/heat treated (540°C and 300°C) substrates were tested by melting simulation, resulting in dendritic and EQZ structures depending on composition and substrate condition. Orientation imaging microscopy (OIM(TM)) was employed to study the crystallographic character of the microstructures produced and to verify the mechanism responsible for EQZ formation. OIM(TM) proved that grains within the EQZ have random orientation. In all other cases, where the simulated microstructures were dendritic in nature, it was shown that epitaxy was the dominant mode of nucleation. The lack of any preferred crystallographic orientation relationship in the EQZ supports a theory proposed by Lippold et al that the EQZ is the result of heterogeneous nucleation within the weld unmixed zone. EDS analysis of the 2195 on STEM revealed particles with ternary composition consisted of Zr, Cu and Al and a tetragonal type crystallographic lattice. Microdiffraction line scans on EQZ grains in the alloy 2195 showed very good agreement between the measured Cu

  13. High strength cast aluminum alloy development

    NASA Astrophysics Data System (ADS)

    Druschitz, Edward A.

    The goal of this research was to understand how chemistry and processing affect the resulting microstructure and mechanical properties of high strength cast aluminum alloys. Two alloy systems were investigated including the Al-Cu-Ag and the Al-Zn-Mg-Cu systems. Processing variables included solidification under pressure (SUP) and heat treatment. This research determined the range in properties that can be achieved in BAC 100(TM) (Al-Cu micro-alloyed with Ag, Mn, Zr, and V) and generated sufficient property data for design purposes. Tensile, stress corrosion cracking, and fatigue testing were performed. CuAl2 and Al-Cu-Fe-Mn intermetallics were identified as the ductility limiting flaws. A solution treatment of 75 hours or longer was needed to dissolve most of the intermetallic CuAl 2. The Al-Cu-Fe-Mn intermetallic was unaffected by heat treatment. These results indicate that faster cooling rates, a reduction in copper concentration and a reduction in iron concentration might increase the ductility of the alloy by decreasing the size and amount of the intermetallics that form during solidification. Six experimental Al-Zn-Mg-Cu series alloys were produced. Zinc concentrations of 8 and 12wt% and Zn/Mg ratios of 1.5 to 5.5 were tested. Copper was held constant at 0.9%. Heat treating of the alloys was optimized for maximum hardness. Al-Zn-Mg-Cu samples were solution treated at 441°C (826°F) for 4 hours before ramping to 460°C (860°F) for 75 hours and then aged at 120°C (248°F) for 75 hours. X-ray diffraction showed that the age hardening precipitates in most of these alloys was the T phase (Mg32Zn 31.9Al17.1). Tensile testing of the alloys showed that the best mechanical properties were obtained in the lowest alloy condition. Chilled Al-8.2Zn-1.4Mg-0.9Cu solidified under pressure resulted in an alloy with a yield strength of 468MPa (68ksi), tensile strength of 525MPa (76ksi) and an elongation of 9%.

  14. An improved stress corrosion test medium for aluminum alloys

    NASA Technical Reports Server (NTRS)

    Humphries, T. S.; Coston, J. E.

    1981-01-01

    A laboratory test method that is only mildly corrosive to aluminum and discriminating for use in classifying the stress corrosion cracking resistance of aluminum alloys is presented along with the method used in evaluating the media selected for testing. The proposed medium is easier to prepare and less expensive than substitute ocean water.

  15. Corrosion protection of aluminum alloys in contact with other metals

    NASA Technical Reports Server (NTRS)

    Kuster, C. A.

    1969-01-01

    Study establishes the quality of chemical and galvanized protection afforded by anodized and aldozided coatings applied to test panels of various aluminum alloys. The test panels, placed in firm contact with panels of titanium alloys, were subjected to salt spray tests and visually examined for corrosion effect.

  16. Characteristics of aluminum alloy microplastic deformation in different structural states

    SciTech Connect

    Seregin, G.V.; Efimenko, L.L.; Leonov, M.V.

    1995-07-01

    The solution to the problem of improving the mechanical properties (including cyclic strength) of structural materials is largely dependent on our knowledge of the laws governing the development of microplastic deformations in them. The effect of heat and mechanical treatment on the elastoplastic properties and fatigue resistance of the commercial aluminum alloys AK4-1 and D16 is analyzed.

  17. Benign joining of ultrafine grained aerospace aluminum alloys using nanotechnology.

    PubMed

    Longtin, Rémi; Hack, Erwin; Neuenschwander, Jürg; Janczak-Rusch, Jolanta

    2011-12-22

    Ultrafine grained aluminum alloys have restricted applicability due to their limited thermal stability. Metalized 7475 alloys can be soldered and brazed at room temperature using nanotechnology. Reactive foils are used to release heat for milliseconds directly at the interface between two components leading to a metallurgical joint without significantly heating the bulk alloy, thus preserving its mechanical properties.

  18. Aluminum alloy material structure impact localization by using FBG sensors

    NASA Astrophysics Data System (ADS)

    Zhu, Xiubin

    2014-12-01

    The aluminum alloy structure impact localization system by using fiber Bragg grating (FBG) sensors and impact localization algorithm was investigated. A four-FBG sensing network was established. And the power intensity demodulation method was initialized employing the narrow-band tunable laser. The wavelet transform was used to weaken the impact signal noise. And the impact signal time difference was extracted to build the time difference localization algorithm. At last, a fiber Bragg grating impact localization system was established and experimentally verified. The experimental results showed that in the aluminum alloy plate with the 500 mm*500 mm*2 mm test area, the maximum and average impact abscissa localization errors were 11 mm and 6.25 mm, and the maximum and average impact ordinate localization errors were 9 mm and 4.25 mm, respectively. The fiber Bragg grating sensors and demodulation system are feasible to realize the aviation aluminum alloy material structure impact localization. The research results provide a reliable method for the aluminum alloy material structure impact localization.

  19. Bending Tests of Circular Cylinders of Corrugated Aluminum-alloy Sheet

    NASA Technical Reports Server (NTRS)

    Buckwalter, John C; Reed, Warren D; Niles, Alfred S

    1937-01-01

    Bending tests were made of two circular cylinders of corrugated aluminum-alloy sheet. In each test failure occurred by bending of the corrugations in a plane normal to the skin. It was found, after analysis of the effect of short end bays, that the computed stress on the extreme fiber of a corrugated cylinder is in excess of that for a flat panel of the same basic pattern and panel length tested as a pin-ended column. It is concluded that this increased strength was due to the effects of curvature of the pitch line. It is also concluded from the tests that light bulkheads closely spaced strengthen corrugated cylinders very materially.

  20. Welding high-strength aluminum alloys at the Paton Institute

    SciTech Connect

    Kuchuk, Yatsenko, S.I.; Cherednichok, V.T.; Semenov, L.A. )

    1993-07-01

    The choice of the flash method for welding aluminum-alloy sections was governed first of all by the possibility of producing homogeneous-structure joints with the minimum amount of possible discontinuities and an insignificant metal strength loss in the welding zone. The aluminum alloy welding technology under consideration relies on the method of flash welding without using any protective atmospheres. The reason is first of all that a complex cross-sectional shape of workpieces being joined, their configuration and considerable overall dimensions make it difficult to use chambers of any type. Besides, conducted studies ascertained that in flash welding, in contrast to various fusion welding processes, the use of protective atmospheres or a vacuum is of little benefit. Here are the results of studying the specifics of thermal and electric processes in flashing, the physical features of weld joint formation, the basics of the welding technology, and the characteristics of the equipment.

  1. Filler wire for aluminum alloys and method of welding

    NASA Technical Reports Server (NTRS)

    Bjorkman, Jr., Gerald W. O. (Inventor); Cho, Alex (Inventor); Russell, Carolyn K. (Inventor)

    2003-01-01

    A weld filler wire chemistry has been developed for fusion welding 2195 aluminum-lithium. The weld filler wire chemistry is an aluminum-copper based alloy containing high additions of titanium and zirconium. The additions of titanium and zirconium reduce the crack susceptibility of aluminum alloy welds while producing good weld mechanical properties. The addition of silver further improves the weld properties of the weld filler wire. The reduced weld crack susceptibility enhances the repair weldability, including when planishing is required.

  2. Materials data handbook: Aluminum alloy 2014, 2nd edition

    NASA Technical Reports Server (NTRS)

    Muraca, R. F.; Whittick, J. S.

    1972-01-01

    A revised edition of the materials data handbook on the aluminum alloy 2014 is presented. The scope of the information presented includes physical and mechanical property data at cryogenic, ambient and elevated temperatures, supplemented with useful information in such areas as material procurement, metallurgy of the alloy, corrosion, environmental effects, fabrication and joining techniques. Design data are presented, as available, and these data are complemented with information on the typical behavior of the alloy.

  3. Thermoelectrical power analysis of precipitation in 6013 aluminum alloy

    SciTech Connect

    Abdala, M.R.W.S.; Garcia de Blas, J.C. Acselrad, O.

    2008-03-15

    The 6013 aluminum alloy was first developed for application in the aircraft industry and, more recently, as a replacement option for the use of the 6061 alloy in the automotive industry. The present work describes the evolution of the process of formation and dissolution of different kinds of precipitates in 6013 aluminum alloy, subjected to different conditions of heat treatment, using for this purpose measurements of thermoelectrical power, Vickers microhardness and differential scanning calorimeter (DSC). Although in the last years many works have been published on the use of thermoelectrical power (TEP) measurements for the analysis of precipitation process in traditional alloys such as 6061, there is still little information related to 6013 alloy. The results obtained are compared with a previous characterization work on the same alloy using transmission electron microscopy. It was observed that TEP measurements are very sensitive to precipitation phenomena in this alloy, and it has been found that there is an inverse relation between TEP and Vickers microhardness values, which allowed proposing a precipitation sequence for 6013 aluminum alloy.

  4. Welding of aluminum alloy with high power direct diode laser

    NASA Astrophysics Data System (ADS)

    Abe, Nobuyuki; Morikawa, Atsuhito; Tsukamoto, Masahiro; Maeda, Koichi; Namba, Keizo

    2003-06-01

    Characterized by high conversion efficiency, small size, light weight and a long lifetime, high power diode lasers are currently being developed for application to various types of metal fabrication, such as welding. In this report, a 4kW high power direct diode laser was used to weld aluminum alloys, which are the focus of increasing attention from the automobile industry because of their light weight, high formability and easy recyclability. The applicability of a direct diode laser to aluminum alloy bead-on plate, butt and lap-fillet welding was studied under various welding conditions. A sound bead without cracks was successfully obtained when 1 mm thick aluminum alloy was welded by bead-on welding at a speed of 12m/min. Moreover, the bead cross section was heat conduction welding type rather than the keyhole welding type of conventional laser welding. Investigation of the welding phenomena with a high-speed video camera showed no spattering or laser plasma, so there was no problem with laser plasma damaging the focusing lens despite the diode laser's short focusing distance.

  5. High Strength Aluminum Alloy For High Temperature Applications

    NASA Technical Reports Server (NTRS)

    Lee, Jonathan A. (Inventor); Chen, Po-Shou (Inventor)

    2005-01-01

    A cast article from an aluminum alloy has improved mechanical properties at elevated temperatures. The cast article has the following composition in weight percent: Silicon 6.0-25.0, Copper 5.0-8.0, Iron 0.05-1.2, Magnesium 0.5-1.5, Nickel 0.05-0.9, Manganese 0.05-1.2, Titanium 0.05-1.2, Zirconium 0.05-1.2, Vanadium 0.05-1.2, Zinc 0.05-0.9, Strontium 0.001-0.1, Phosphorus 0.001-0.1, and the balance is Aluminum, wherein the silicon-to-magnesium ratio is 10-25, and the copper-to-magnesium ratio is 4-15. The aluminum alloy contains a simultaneous dispersion of three types of Al3X compound particles (X=Ti, V, Zr) having a LI2 crystal structure, and their lattice parameters are coherent to the aluminum matrix lattice. A process for producing this cast article is also disclosed, as well as a metal matrix composite, which includes the aluminum alloy serving as a matrix containing up to about 60% by volume of a secondary filler material.

  6. Crack Initiation and Growth Behavior at Corrosion Pit in 7075-T6 High Strength Aluminum Alloy

    DTIC Science & Technology

    2013-06-01

    CRACK INITIATION AND GROWTH BEHAVIOR AT CORROSION PIT IN 7075-T6 HIGH STRENGTH ALUMINUM ALLOY THESIS Eric M. Hunt, Second Lieutenant, USAF AFIT-ENY...7075-T6 HIGH STRENGTH ALUMINUM ALLOY THESIS Presented to the Faculty Department of Aerospace and Astronautical Engineering Graduate School of Engineering...RELEASE; DISTRIBUTION UNLIMITED AFIT-ENY-13-J-01 CRACK INITIATION AND GROWTH BEHAVIOR AT CORROSION PIT IN 7075-T6 HIGH STRENGTH ALUMINUM ALLOY Eric M

  7. Crack Initiation and Growth Behavior at Corrosion Pit in 2024-T3 Aluminum Alloy

    DTIC Science & Technology

    2014-09-01

    aluminum alloy [35] ... 26 Table 3.2: Mechanical properties of a typical sample of 2024-T3 aluminum alloy [35]. 26 Table 3.3: Details of test...mechanical properties . Table 3.1: Component materials of a typical sample of 2024-T3 aluminum alloy [35]. Element %component Aluminum , Al 90.7-94.7...Silicon, Si Max0.5 Titanium, Ti Max 0.15 Zinc, Zn Max0.25 Table 3.2: Mechanical properties of a typical sample of 2024-T3 aluminum alloy

  8. Acoustic Measurements of Residual Stresses and Grain Sizes in Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Fisher, Martin John

    The theory of acoustoelasticity relates the velocity of an acoustic wave in a solid to the elastic stress state in that solid. This thesis presents new theories, measurement techniques, and methodologies related to the use of longitudinal wave acoustoelasticity in aluminum alloys. A one-dimensional model has been developed to provide a simple understanding of the acoustoelastic effect. A new acoustic device for accurately measuring relative thickness variations has been designed and built. This device is used--in conjunction with a pulse-echo phase measurement device and a computer controlled scanning system--to measure acoustic velocity variations in plastically deformed and non-flat-and-parallel samples. Acoustic velocity variations from point to point in an unstressed sample can sometimes be on the same order as velocity changes due to applied or residual stresses, and this can make stress measurements difficult. A statistical theory has been developed to relate these unstressed velocity variations to the average grain size in the sample and to the active area of the acoustic transducer used. Large transducers and small grain sizes will minimize these variations. This relationship has been verified by tests on a number of aluminum alloys and a new method for non-destructive grain size determination has been suggested. A systematic methodology has been developed and tested for studying the influence of uniaxial plastic deformation on the acoustoelastic response. Samples have been plastically deformed in four-point bending to produce elastic-plastic and residual stress states. Acoustic measurements of these stresses have then been compared directly to theoretical predictions based on the materials' stress-strain curves and simple beam theory. In the aluminum alloys tested (2024-T351 and 7075-T651), the acoustoelastic constants are shown to be virtually unchanged by uniaxial plastic strains of less than 2.5%. Thus, the acoustoelastic technique can be reliably

  9. Optimization of Squeeze Casting for Aluminum Alloy Parts

    SciTech Connect

    David Schwam; John F. Wallace; Qingming Chang; Yulong Zhu

    2002-07-30

    This study was initiated with the installation of a new production size UBE 350 Ton VSC Squeeze Casting system in the Metal Casting Laboratory at Case Western University. A Lindberg 75k W electrical melting furnace was installed alongside. The challenge of installation and operation of such industrial-size equipment in an academic environment was met successfully. Subsequently, a Sterling oil die heater and a Visi-Track shot monitoring system were added. A significant number of inserts were designed and fabricated over the span of the project, primarily for squeeze casting different configurations of test bars and plates. A spiral ''ribbon insert'' for evaluation of molten metal fluidity was also fabricated. These inserts were used to generate a broad range of processing conditions and determine their effect on the quality of the squeeze cast parts. This investigation has studied the influence of the various casting variables on the quality of indirect squeeze castings primarily of aluminum alloys. The variables studied include gating design, fill time and fill patter, metal pressure and die temperature variations. The quality of the die casting was assessed by an analysis of both their surface condition and internal soundness. The primary metal tested was an aluminum 356 alloy. In addition to determining the effect of these casting variables on casting quality as measured by a flat plate die of various thickness, a number of test bar inserts with different gating designs have been inserted in the squeeze casting machine. The mechanical properties of these test bars produced under different squeeze casting conditions were measured and reported. The investigation of the resulting properties also included an analysis of the microstructure of the squeeze castings and the effect of the various structural constituents on the resulting properties. The main conclusions from this investigation are as follows: The ingate size and shape are very important since it must

  10. Microstructural issues in a friction-stir-welded aluminum alloy

    SciTech Connect

    Flores, O.V.; Kennedy, C.; Murr, L.E.; Brown, D.; Pappu, S.; Nowak, B.M.; McClure, J.C.

    1998-02-03

    Recent observations of microstructures associated with friction-stir welding (FSW) in a number of aluminum alloys have consistently demonstrated the actual weld zone to consist of a (dynamically) recrystallized grain structure resulting from the extreme, solid-state, plastic deformation characterizing the process. Because of solubilities associated with the various precipitates in 7075 and 6061 aluminum alloys, and the fact that the precipitates were either homogeneously distributed throughout both the original (unwelded) work-piece plates and the well zones (or formed varying densities of Widmanstaetten patterns within the original and recrystallized grains), it has been difficult to follow the stirring of stable, second-phase particles from the base metal (work-piece) into the weld zone. In the present investigation, a compositionally modified 1100 aluminum alloy (nominally 99.2% Al, 0.5% Fe, 0.15% Cu, 0.12% Si, 0.05 Mn, 0.04 Ti, balance in weight percent of Be and Mg), forming a stable microdendritic (second-phase), equiaxed, cell structure was friction-stir welded. These thermally stable, geometrically specific, precipitates in the base metal were compared with their disposition within the friction-stir-weld zone. In addition, as-cast plates of this alloy were cold-rolled 50% and friction-stir-welded in order to compare these two schedules (as-cast and 50% cold-rolled) in terms of residual hardness variations and related microstructural issues as well as the effect of prior deformation on the friction-stir welding process.

  11. Stress corrosion in high-strength aluminum alloys

    NASA Technical Reports Server (NTRS)

    Dorward, R. C.; Hasse, K. R.

    1980-01-01

    Report describes results of stress-corrosion tests on aluminum alloys 7075, 7475, 7050, and 7049. Tests compare performance of original stress-corrosion-resistant (SCR) aluminum, 7075, with newer, higher-strength SCR alloys. Alloys 7050 and 7049 are found superior in short-transverse cross-corrosion resistance to older 7075 alloy; all alloys are subject to self-loading effect caused by wedging of corrosion products in cracks. Effect causes cracks to continue to grow, even at very-low externally applied loads.

  12. Corrosion Behavior of SiC Reinforced Aluminum Alloys

    DTIC Science & Technology

    1987-09-25

    observed for AA- 7075 -T6. Microscopic examination of the sur- faces showed that pitting behavior was nearly identical to that observed for the 6061...of the MMC was a dark grey which may indicate that the surface oxide was thicker. The anodic behavior of SiC/AA- 7075 -T6 and AA- 7075 -T6 sug- gested...m-- - osION BEHAVIOR OF SIC REINFORCED ALUMINUM ALLOYS (N) 0 BY J. F. MulNTYRE A. H. LE . GOLLEDGE R. CONRAD RESEARCH AND TECHNOLOGY DEPARTMENT 25

  13. Hot corrosion resistance of nickel-chromium-aluminum alloys

    NASA Technical Reports Server (NTRS)

    Santoro, G. J.; Barret, C. A.

    1977-01-01

    The hot corrosion resistance of nickel-chromium-aluminum alloys was examined by cyclically oxidizing sodium sulfate-coated specimens in still air at 900, 1000, and 1100 C. The compositions tested were within the ternary region: Ni, Ni-50 at.% Cr, and Ni-50 at.% Al. At each temperature the corrosion data were statistically fitted to a third order regression equation as a function of chromium and aluminum contents. From these equations corrosion isopleths were prepared. Compositional regions with the best hot corrosion resistance were identified.

  14. Approaches for mechanical joining of 7xxx series aluminum alloys

    NASA Astrophysics Data System (ADS)

    Jäckel, M.; Grimm, T.; Landgrebe, D.

    2016-10-01

    This paper shows a numerical and experimental analysis of the different problems occurring during or after the conventional self-pierce riveting with semi-tubular and solid rivets of the high strength aluminum alloy EN AW-7021 T4. Furthermore this paper describes different pre-process methods by which the fracture in the high strength aluminum, caused by the self-pierce riveting processes, can be prevented and proper joining results are achieved. On this basis, the different approaches are compared regarding joint strength.

  15. Corrosion fatigue of 2219-T87 aluminum alloy

    NASA Technical Reports Server (NTRS)

    Mcmillan, V. C.

    1986-01-01

    Corrosion fatigue studies were conducted on bare, chemical conversion coated, and anodized 2219-T87 aluminum alloy. These tests were performed using a rotating beam machine running at a velocity of 2500 rpm. The corrosive environments tested were distilled water, 100 ppm NaCl, and 3.5 percent NaCl. Results were compared to the endurance limit in air. An evaluation of the effect of protective coatings on corrosion fatigue was made by comparing the fatigue properties of specimens with coatings to those without.

  16. Excimer laser induced plasma for aluminum alloys surface carburizing

    NASA Astrophysics Data System (ADS)

    Fariaut, F.; Boulmer-Leborgne, C.; Le Menn, E.; Sauvage, T.; Andreazza-Vignolle, C.; Andreazza, P.; Langlade, C.

    2002-01-01

    Currently, while light alloys are useful for automotive industries, their weak wear behavior is a limiting factor. The excimer laser carburizing process reported here has been developed to enhance the mechanical and chemical properties of aluminum alloys. An excimer laser beam is focused onto the alloy surface in a cell containing 1 bar methane or/and propylene gas. A vapor plasma expands from the surface, the induced shock wave dissociates and ionizes the ambient gas. Carbon atoms diffuse into the plasma in contact with the irradiated surface. An aluminum carbide layer is created by carbon diffusion in the surface liquid layer during the recombination phase of the plasma.

  17. Hot corrosion resistance of nickel-chromium-aluminum alloys

    NASA Technical Reports Server (NTRS)

    Santoro, G. J.; Barrett, C. A.

    1977-01-01

    The hot corrosion resistance of nickel-chromium-aluminum alloy was examined by cyclically oxidizing sodium sulfate coated specimens in still air at 900, 1000 and 1100 C. The compositions tested were within the ternary region: Ni; Ni-50 at.% Cr; and Ni-50 at.% Al. At each temperature the corrosion data were statistically fitted to a third order regression equation as a function of chromium and aluminum contents. Corrosion isopleths were prepared from these equations. Compositional regions with the best hot corrosion resistance were identified.

  18. Electrodeposition of magnesium and magnesium/aluminum alloys

    DOEpatents

    Mayer, Anton

    1988-01-01

    Electrolytes and plating solutions for use in processes for electroplating and electroforming pure magnesium and alloys of aluminum and magnesium and also electrodeposition processes. An electrolyte of this invention is comprised of an alkali metal fluoride or a quaternary ammonium halide, dimethyl magnesium and/or diethyl magnesium, and triethyl aluminum and/or triisobutyl aluminum. An electrolyte may be dissolved in an aromatic hydrocarbon solvent to form a plating solution. The proportions of the component compounds in the electrolyte are varied to produce essentially pure magnesium or magnesium/aluminum alloys having varying selected compositions.

  19. Electrodeposition of magnesium and magnesium/aluminum alloys

    DOEpatents

    Mayer, A.

    1988-01-21

    Electrolytes and plating solutions for use in processes for electroplating and electroforming pure magnesium and alloys of aluminum and magnesium and also electrodeposition processes. An electrolyte of this invention is comprised of an alkali metal fluoride or a quaternary ammonium halide, dimethyl magnesium and/or diethyl magnesium, and triethyl aluminum and/or triisobutyl aluminum. An electrolyte may be dissolved in an aromatic hydrocarbon solvent to form a plating solution. The proportions of the component compounds in the electrolyte are varied to produce essentially pure magnesium or magnesium/aluminum alloys having varying selected compositions.

  20. An investigation of plastic fracture in aluminum alloys

    NASA Technical Reports Server (NTRS)

    Low, J. R., Jr.; Vanstone, R. H.; Merchant, R. H.

    1972-01-01

    The brittle fracture of many high strength alloys such as steel, titanium, and aluminum was shown to occur by a process called plastic fracture. According to this process microscopic voids form at impurity particles, then grow and coalesce to cause the final rupture. To further understand the role of impurities, four aluminum alloys were investigated: 2024-T851, 2124-T851, 7075-T7351 and 7079-T651. Fractography, quantitative metallography, and microprobe studies assessed the roles of various impurity particles relative to these alloys.

  1. Investigation of High Speed Friction Test for Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Ooki, K.; Takahashi, S.

    2016-08-01

    To shorten the development stage of automobiles, FEM simulation has been applied. It was important to increase the accuracy of the sheet metal simulation results. The friction coefficient between the sheet metal and dies the greatly affected the simulation results. Therefore, apparatus for measuring the friction coefficient with a specific press forming speed (300 mm/s) has been developed. The materials of the sheet metals and dies were aluminum alloys and die steel respectively. It was found that the friction was affected by the difference between the velocity of the sheet metal and that of the dies.

  2. Effects of Machining on the Microstructure of Aluminum Alloy 7075

    NASA Astrophysics Data System (ADS)

    Tabei, A.; Liang, S. Y.; Garmestani, H.

    Experimental investigations show that depending on the parameters, aggressive machining of aluminum alloy 7075 can trigger several microstructural phenomena including recrystallization, grain growth and crystallographic texture modifications below the machined surface. Increasing the depth of cut will lead to a significant recrystallization and consequently grain refinement. On the other hand, increasing the feed rate will result into development of a unique crystallographic texture. The mechanical and thermal loads imposed to the material experiences by machining leads to such microstructural phenomena. Finite element analysis is used to determine these loads.

  3. Microstructural and superplastic characteristics of friction stir processed aluminum alloys

    NASA Astrophysics Data System (ADS)

    Charit, Indrajit

    Friction stir processing (FSP) is an adapted version of friction stir welding (FSW), which was invented at The Welding Institute (TWI), 1991. It is a promising solid state processing tool for microstructural modification at localized scale. Dynamic recrystallization occurs during FSP resulting in fine grained microstructure. The main goal of this research was to establish microstructure/superplasticity relationships in FSP aluminum alloys. Different aluminum alloys (5083 Al, 2024 Al, and Al-8.9Zn-2.6Mg-0.09Sc) were friction stir processed for investigating the effect of alloy chemistry on resulting superplasticity. Tool rotation rate and traverse speeds were controlled as the prime FSP parameters to produce different microstructures. In another study, lap joints of 7475 Al plates were also studied to explore the possibility of developing FSW/superplastic forming route. Microstructures were evaluated using optical, scanning and transmission electron microscopy, orientation imaging microscopy and differential scanning calorimetry. Mechanical properties were evaluated using tensile testing. FSP 2024 Al (3.9 mum grain size) exhibited an optimum ductility of 525% at a strain rate of 10-2 s-1 and 430°C. Grain boundary sliding mechanism was found to be the dominant mode of deformation in this alloy. In 5083 Al alloy, it was found that changing the process parameters, grain sizes in the range of 3.5--8.5 mum grain size could be obtained. Material processed with colder processing parameters showed a decrease in ductility due to microstructural instability, and followed solute drag dislocation glide mechanism. On the other hand, materials processed with hotter parameter combinations showed mode of deformation related to grain boundary sliding mechanism. FSP of as-cast Al-Zn-Mg-Sc alloy resulted in ultrafine grains (0.68 mum) with attractive combination of high strain rate and low temperature superplasticity. This also demonstrated that superplastic microstructures could be

  4. Outgassing measurement of the aluminum alloy UHV chamber

    NASA Technical Reports Server (NTRS)

    Miyamoto, M.; Itoh, T.; Komaki, S.; Narushima, K.; Ishimaru, H.

    1986-01-01

    A large vacuum chamber (580 mm diameter) was fabricated from an aluminum alloy surface treated by a special process normally used on small chambers. The chamber was tested unbaked and baked at various temperatures, pressures, and holding periods. The chamber was filled with N2 gas, and the outgassing rate was measured after one hour. Then the ultimate pressure was measured. Outgassing rates for baked and unbaked groups were compared. It is concluded that the same surface treatment technique can be used on both large and small chambers produced by the same special extrusion process.

  5. Overcoming residual stresses and machining distortion in the production of aluminum alloy satellite boxes.

    SciTech Connect

    Younger, Mandy S.; Eckelmeyer, Kenneth Hall

    2007-11-01

    Distortion frequently occurs during machining of age hardening aluminum alloys due to residual stresses introduced during the quenching step in the heat treatment process. This report quantifies, compares, and discusses the effectiveness of several methods for minimizing residual stresses and machining distortion in aluminum alloys 7075 and 6061.

  6. Cast B2-phase iron-aluminum alloys with improved fluidity

    DOEpatents

    Maziasz, Philip J.; Paris, Alan M.; Vought, Joseph D.

    2002-01-01

    Systems and methods are described for iron aluminum alloys. A composition includes iron, aluminum and manganese. A method includes providing an alloy including iron, aluminum and manganese; and processing the alloy. The systems and methods provide advantages because additions of manganese to iron aluminum alloys dramatically increase the fluidity of the alloys prior to solidification during casting.

  7. Fatigue crack growth in an aluminum alloy-fractographic study

    NASA Astrophysics Data System (ADS)

    Salam, I.; Muhammad, W.; Ejaz, N.

    2016-08-01

    A two-fold approach was adopted to understand the fatigue crack growth process in an Aluminum alloy; fatigue crack growth test of samples and analysis of fractured surfaces. Fatigue crack growth tests were conducted on middle tension M(T) samples prepared from an Aluminum alloy cylinder. The tests were conducted under constant amplitude loading at R ratio 0.1. The stress applied was from 20,30 and 40 per cent of the yield stress of the material. The fatigue crack growth data was recorded. After fatigue testing, the samples were subjected to detailed scanning electron microscopic (SEM) analysis. The resulting fracture surfaces were subjected to qualitative and quantitative fractographic examinations. Quantitative fracture analysis included an estimation of crack growth rate (CGR) in different regions. The effect of the microstructural features on fatigue crack growth was examined. It was observed that in stage II (crack growth region), the failure mode changes from intergranular to transgranular as the stress level increases. In the region of intergranular failure the localized brittle failure was observed and fatigue striations are difficult to reveal. However, in the region of transgranular failure the crack path is independent of the microstructural features. In this region, localized ductile failure mode was observed and well defined fatigue striations were present in the wake of fatigue crack. The effect of interaction of growing fatigue crack with microstructural features was not substantial. The final fracture (stage III) was ductile in all the cases.

  8. Crack Repair in Aerospace Aluminum Alloy Panels by Cold Spray

    NASA Astrophysics Data System (ADS)

    Cavaliere, P.; Silvello, A.

    2017-02-01

    The cold-spray process has recently been recognized as a very useful tool for repairing metallic sheets, achieving desired adhesion strengths when employing optimal combinations of material process parameters. We present herein the possibility of repairing cracks in aluminum sheets by cold spray. A 2099 aluminum alloy panel with a surface 30° V notch was repaired by cold spraying of 2198 and 7075 aluminum alloy powders. The crack behavior of V-notched sheets subjected to bending loading was studied by finite-element modeling (FEM) and mechanical experiments. The simulations and mechanical results showed good agreement, revealing a remarkable K factor reduction, and a consequent reduction in crack nucleation and growth velocity. The results enable prediction of the failure initiation locus in the case of repaired panels subjected to bending loading and deformation. The stress concentration was quantified to show how the residual stress field and failure are affected by the mechanical properties of the sprayed materials and by the geometrical and mechanical properties of the interface. It was demonstrated that the crack resistance increases more than sevenfold in the case of repair using AA2198 and that cold-spray repair can contribute to increased global fatigue life of cracked structures.

  9. Laser shocking of 2024 and 7075 aluminum alloys

    NASA Technical Reports Server (NTRS)

    Clauer, A. H.; Fairand, B. P.; Slater, J. E.

    1977-01-01

    The effect of laser generated stress waves on the microstructure, hardness, strength and stress corrosion resistance of 2024 and 7075 aluminum alloys was investigated. Pulsed CO2 and neodymium-glass lasers were used to determine the effect of wavelength and pulse duration on pressure generation and material property changes. No changes in material properties were observed with CO2 laser. The strength and hardness of 2024-T351 and the strength of 7075-T73 aluminum alloys were substantially improved by the stress wave environments generated with the neodymium-glass laser. The mechanical properties of 2024-T851 and 7075-T651 were unchanged by the laser treatment. The correlation of the laser shock data with published results of flyer plate experiments demonstrated that a threshold pressure needed to be exceeded before strengthening and hardening could occur. Peak pressures generated by the pulsed laser source were less than 7.0 GPa which was below the threshold pressure required to change the mechanical properties of 2024-T851 and 7075-T651. Corrosion studies indicated that laser shocking increased the resistance to local attack in 2024-T351 and 7075-T651.

  10. Conversion Coatings for Aluminum Alloys by Chemical Vapor Deposition Mechanisms

    NASA Technical Reports Server (NTRS)

    Reye, John T.; McFadden, Lisa S.; Gatica, Jorge E.; Morales, Wilfredo

    2004-01-01

    With the rise of environmental awareness and the renewed importance of environmentally friendly processes, the United States Environmental Protection Agency has targeted surface pre-treatment processes based on chromates. Indeed, this process has been subject to regulations under the Clean Water Act as well as other environmental initiatives, and there is today a marked movement to phase the process out in the near future. Therefore, there is a clear need for new advances in coating technology that could provide practical options for replacing present industrial practices. Depending on the final application, such coatings might be required to be resistant to corrosion, act as chemically resistant coatings, or both. This research examined a chemical vapor deposition (CVD) mechanism to deposit uniform conversion coatings onto aluminum alloy substrates. Robust protocols based on solutions of aryl phosphate ester and multi-oxide conversion coating (submicron) films were successfully grown onto the aluminum alloy samples. These films were characterized by X-ray Photoelectron Spectroscopy (XPS). Preliminary results indicate the potential of this technology to replace aqueous-based chromate processes.

  11. Direct-soldering 6061 aluminum alloys with ultrasonic coating.

    PubMed

    Ding, Min; Zhang, Pei-lei; Zhang, Zhen-yu; Yao, Shun

    2010-02-01

    In this study, the authors applied furnace soldering with ultrasonic coating method to solder 6061 aluminum alloy and investigated the effects of both coating time and soldering temperature on its properties. The following results were obtained: firstly, the solder region mainly composed of four kinds of microstructure zones: rich Sn zone, rich-Pb zone, Sn-Pb eutectic phase and rich Al zone. Meanwhile, the microanalysis identified a continuous reaction product at the alumina-solder interface as a rich-Pb zone. Therefore, the joint strength changed with soldering time and soldering temperature. Secondly, the tensile data had significantly greater variability, with values ranging from 13.99MPa to 24.74MPa. The highest value was obtained for the samples coated with Sn-Pb-Zn alloy for 45s. Fractures occurred along the solder-alumina interface for the 6061 aluminum alloy with its surface including hybrid tough fracture of dimple and tear ridge. The interface could initially strip at the rich Bi zone with the effect of shear stress.

  12. Particulate and gaseous emissions when welding aluminum alloys.

    PubMed

    Cole, Homer; Epstein, Seymour; Peace, Jon

    2007-09-01

    Fabrication and repair of aluminum components and structures commonly involves the use of electric arc welding. The interaction of the arc and the metal being welded generates ultraviolet radiation, metallic oxides, fumes, and gases. Aluminum is seldom used as the pure metal but is often alloyed with other metals to improve strength and other physical properties. Therefore, the exact composition of any emissions will depend on the welding process and the particular aluminum alloy being welded. To quantify such emissions, The Aluminum Association sponsored several studies to characterize arc welding emissions by the gas metal arc welding (GMAW) and gas tungsten arc welding (GTAW) processes for various combinations of base and filler alloys. In all cases, the tests were conducted under conditions that could be found in a production weld shop without forced ventilation. The concentrations of each analyte that a welder could be exposed to were greatly affected by the welding process, the composition of the base and filler alloys, the position of the welder, and the welding helmet. The results obtained can be used by employers to identify and control potential hazards associated with the welding of aluminum alloys and can provide the basis for hazard communication to employees involved in the welding of these alloys.

  13. Mechanical properties of anodized coatings over molten aluminum alloy.

    PubMed

    Grillet, Anne M; Gorby, Allen D; Trujillo, Steven M; Grant, Richard P; Hodges, V Carter; Parson, Ted B; Grasser, Thomas W

    2008-01-01

    A method to measure interfacial mechanical properties at high temperatures and in a controlled atmosphere has been developed to study anodized aluminum surface coatings at temperatures where the interior aluminum alloy is molten. This is the first time that the coating strength has been studied under these conditions. We have investigated the effects of ambient atmosphere, temperature, and surface finish on coating strength for samples of aluminum alloy 7075. Surprisingly, the effective Young's modulus or strength of the coating when tested in air was twice as high as when samples were tested in an inert nitrogen or argon atmosphere. Additionally, the effective Young's modulus of the anodized coating increased with temperature in an air atmosphere but was independent of temperature in an inert atmosphere. The effect of surface finish was also examined. Sandblasting the surface prior to anodization was found to increase the strength of the anodized coating with the greatest enhancement noted for a nitrogen atmosphere. Machining marks were not found to significantly affect the strength.

  14. Microstructural Characteristics and Mechanical Properties of Friction Stir Welded Thick 5083 Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Imam, Murshid; Sun, Yufeng; Fujii, Hidetoshi; Ma, Ninshu; Tsutsumi, Seiichiro; Murakawa, Hidekazu

    2017-01-01

    Joining thick sections of aluminum alloys by friction stir welding (FSW) in a single pass needs to overcome many challenges before it comes to full-scale industrial use. Important parameters controlling the structure-properties relationships both across weld cross-section and through thickness direction were investigated through mechanical testing, electron backscatter diffraction technique, transmission electron microscopy, and occurrence of serrated plastic flow. The evolution of the properties in the weld cross-section shows that the presence of undissolved and fragmented Al_6MnFe particles cause discrepancies in establishing the Hall-Petch relationship, and derive the strengthening from the Orowan strengthening mechanism. A `stop action' friction stir weld has been prepared to understand the role of geometrical features of the tool probe in the development of the final microstructure after complete weld. Sectioning through the `stop action' weld with the probe in situ displays the individual effect of thread and flat on the grain structure formation. The material at the thread surface experiences more severe deformation than the material at flat surface. Both the high-angle boundaries and mean grain size are found to be higher at the thread surface. The strain hardening capacity, stress serration amplitude, and frequency are observed to be higher in the stir zone than other weld regions.

  15. Constant amplitude and post-overload fatigue crack growth behavior in PM aluminum alloy AA 8009

    NASA Technical Reports Server (NTRS)

    Reynolds, A. P.

    1991-01-01

    A recently developed, rapidly solidified, powder metallurgy, dispersion strengthened aluminum alloy, AA 8009, was fatigue tested at room temperature in lab air. Constant amplitude/constant delta kappa and single spike overload conditions were examined. High fatigue crack growth rates and low crack closure levels compared to typical ingot metallurgy aluminum alloys were observed. It was proposed that minimal crack roughness, crack path deflection, and limited slip reversibility, resulting from ultra-fine microstructure, were responsible for the relatively poor da/dN-delta kappa performance of AA 8009 as compared to that of typical IM aluminum alloys.

  16. Chromate-free talc chemical conversion coatings for aluminum alloys

    SciTech Connect

    Buchheit, R.G.; Drewien, C.A.; Stoner, G.E.

    1993-10-01

    We have found that aluminum alloys exhibit unusual passivity when exposed to alkaline Li-salt solutions. Observed passivity is due to the formation of a polycrystalline Li{sub 2}[Al{sub 2}(OH){sub 6}]{sub 2}{center_dot}CO{sub 3}{center_dot}3H{sub 2}O film on the aluminum surface. This film is persistent in aggressive environments and provides a significant degree of corrosion protection. On this basis, we have developed a simple non-electrolytic method of forming corrosion resistant coatings in alkaline Li-salt solution. This process is procedurally similar to traditional conversion coating methods, offers desirable properties, and has a low toxic hazard. In this paper, coating methods, coating characterization, and coating properties are presented. Results from parallel test performed with a commercial chromate conversion coatings are presented for comparison.

  17. The effects of aluminum alloy compositions in DIMOX process

    SciTech Connect

    Kim, Chang Wook; Kim, Cheol Soo

    1996-12-31

    Al{sub 2}O{sub 3}-Al composites have been produced by the directed oxidation of binary and ternary aluminum alloys. The Mg, Si, Zn, Sn, Cu, Ni, Ca and Ce have been investigated as alloying elements. The oxidation amount of Al-1wt%Mg alloy was more than that of Al-3wt%Mg alloy. The ternary systems such as Al-Mg-(Si, Sn) alloys were fabricated in the form of porous composites with large amount of oxidation. The amount of oxidation in Al-Mg-(Cu, Ni) was relatively less than that in Al-Mg-(Si, Sn) with some micro pores. Al{sub 2}O{sub 3}-Al composite is always locally growing in Al-xMg-xZn alloys at 1200{degrees}C.

  18. The Weathering of Aluminum Alloy Sheet Materials Used in Aircraft

    NASA Technical Reports Server (NTRS)

    Mutchler, Willard

    1935-01-01

    This report presents the results of an investigation of the corrosion of aluminum alloy sheet materials used in aircraft. It has for its purpose to study the causes of corrosion embrittlement in duralumin-type alloys and the development of methods for its elimination. The report contains results, obtained in an extensive series of weather-exposure tests, which reveal the extent to which the resistance of the materials to corrosion was affected by variable factors in their heat treatment and by the application of various surface protective coatings. The results indicate that the sheet materials are to be regarded as thoroughly reliable, from the standpoint of their permanence in service, provided proper precautions are taken to render them corrosion-resistant.

  19. Mechanisms of pressure filtration of liquid aluminum alloys

    NASA Astrophysics Data System (ADS)

    Cao, X.

    2006-12-01

    The Prefil Footprinter, a portable pressure filtration instrument, is usually used to detect the quality of liquid aluminum alloys. However, no investigations have ever been done to calculate the cake resistance to date. Based on the identification and classification of flow behavior using the first derivative method for filtrate mass vs filtration time curves, conventional filtration equations are successfully employed to understand the filtration behaviors. From the analyses of the variations of cake resistance with filtration time, the filtration mechanisms are discussed in detail over the different filtration stages. During the steady stage, either incompressible or compressible cake mode is the main mechanism. At the initial and terminal transient stages, however, deep-bed filtration, complete straining, and solidification clogging may appear. Solid inclusions in liquid metal have significant influence on the cake structures and properties. Some important issues related to the heterogeneity of filter media and test methodology are highlighted in this work.

  20. Environmental Effects on Fatigue Crack Growth in 7075 Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Bonakdar, A.; Wang, F.; Williams, J. J.; Chawla, N.

    2012-08-01

    The fatigue behavior of aluminum alloys is greatly influenced by the environmental conditions. In this article, fatigue crack growth rates were measured for 7075-T651 Al alloy under ultrahigh vacuum (UHV, ~10-10 Torr), dry air, and water vapor. Standard compact tension (CT) specimens were tested along the L-T orientation under various load ratios of 0.1, 0.5, and 0.8. Fracture surfaces and crack morphologies were studied using scanning electron microscopy and crack deflection analysis. The crack growth behavior under vacuum was affected by friction and possible rewelding of crack surfaces, causing an asymmetry in the crack growth behavior, from load shedding to constant load. The enhancement of crack growth at higher moisture levels was observed and is discussed in terms of moisture decreasing friction between the crack faces. The effect of crack deflection as a function of R ratio and environment is also presented.

  1. Advanced powder metallurgy aluminum alloys via rapid solidification technology

    NASA Technical Reports Server (NTRS)

    Ray, R.

    1984-01-01

    Aluminum alloys containing 10 to 11.5 wt. pct. of iron and 1.5 to 3 wt. pct. of chromium using the technique of rapid solidification powder metallurgy were studied. Alloys were prepared as thin ribbons (.002 inch thick) rapidly solidified at uniform rate of 10(6) C/second by the melt spinning process. The melt spun ribbons were pulverized into powders (-60 to 400 mesh) by a rotating hammer mill. The powders were consolidated by hot extrusion at a high reduction ratio of 50:1. The powder extrusion temperature was varied to determine the range of desirable processing conditions necessary to yield useful properties. Powders and consolidated alloys were characterized by SEM and optical metallography. The consolidated alloys were evaluated for (1) thermal stability, (2) tensile properties in the range, room temperature to 450 F, and (3) notch toughness in the range, room temperature to 450 F.

  2. Laser beam welding of 5182 aluminum alloys sheet.

    SciTech Connect

    Leong, K. H.; Sabo, K. R.; Altshuller, B.; Wilkinson, T. L.; Albright, C. E.; Technology Development; Alcan International Limited; Reynolds Metals Co.; Ohio State Univ.

    1999-06-01

    Conditions were determined for consistent coupling of a CO{sub 2} laser beam to weld 5182 aluminum alloy sheet. Full penetration butt and bead-on-plate welds on 0.8 and 1.8 mm sheets were performed. Process conditions examined included beam mode, spot size and irradiance, shielding gas flow, and edge quality and fitup. The observed weld quality variations with the different process parameters were consistent with physical phenomena and a threshold irradiance model. Optimal conditions were determined for obtaining consistent welds on 5182 alloy sheets. Formability and tensile tests were performed on the welded samples. All test failures occurred in the fusion zone. Reduction in formability and tensile strength of the welded samples are discussed with respect to weld profiles and process parameters.

  3. Chromate-free corrosion resistant conversion coatings for aluminum alloys

    SciTech Connect

    Buchheit, R.G.; Drewien, C.A.; Martinez, M.A.; Stoner, G.E.

    1995-03-01

    Inorganic polycrystalline hydrotalcite, Li{sub 2}[Al{sub 2}(OH){sub 6}]{sub 2}{center_dot}CO{sub 3}{center_dot}3H{sub 2}O, coatings can be formed on aluminum and aluminum alloys by exposure to alkaline lithium carbonate solutions. This process is conducted using methods similar to traditional chromate conversion coating procedures, but does not use or produce toxic chemicals. The coating provides anodic protection and delays the onset of pitting during anodic polarization. Cathodic reactions are also inhibited which may also contribute to corrosion protection. Recent studies have shown that corrosion resistance can be increased by sealing hydrotalcite coated surfaces to transition metal salt solutions including Ce(NO{sub 3}){sub 3}, KMnO{sub 4} and Na{sub 2}MoO{sub 4}. Results from these studies are also reported.

  4. Elevated temperature fracture of RS/PM aluminum alloy 8009

    NASA Technical Reports Server (NTRS)

    Porr, William C., Jr.; Yang, Leng; Gangloff, Richard P.

    1991-01-01

    The fracture behavior of advanced powder metallurgy Al-Fe-V-Si alloy 8009 (previously called FVS0812) is being characterized under monotonic loads, as a function of temperature. Particular attention is focused on contributions to the fracture mechanism from the fine grained dispersoid strengthened microstructure, dissolved solute from rapid solidification, and the moist air environment. Time-dependent crack growth is characterized in advanced aluminum alloys at elevated temperatures with the fracture mechanics approach, and cracking mechanisms are examined with a metallurgical approach. Specific tasks were to obtain standard load crack growth experimental information from a refined testing system; to correlate crack growth kinetics with the j-integral and time dependent C(sub t)(t); and to investigate the intermediate temperature embrittlement of 8009 alloy in order to understand crack growth mechanisms.

  5. Aluminum alloy 6013 sheet for new U. S. Navy aircraft

    SciTech Connect

    Kaneko, R.S.; Bakow, L.; Lee, E.W. Naval Air Development Center, Warminster, PA )

    1990-05-01

    The recently developed aluminum alloy 6013-T6 has been selected for the fuselage skin and other applications on the U.S. Navy's P-7A airplane, in place of the traditional 2024-T3 clad sheet. Alloy 6013-T6 is naturally corrosion resistant, like the well-established alloy 6061, and hence is used unclad. Its fatigue strength, fatigue crack growth and fracture toughness compare favorably with 2024-T3. Replacement of alloy 2024 with alloy 6013 also reduces manufacturing costs for formed parts, because 6013 is readily formed in the T4 temper, then simply aged to T6, thus avoiding the costly heat treatments and straightening required for alloy 2024. 5 refs.

  6. Small-crack effects in high-strength aluminum alloys

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.; Wu, X. R.; Venneri, S. L.; Li, C. G.

    1994-01-01

    The National Aeronautics and Space Administration and the Chinese Aeronautical Establishment participated in a Fatigue and Fracture Mechanics Cooperative Program. The program objectives were to identify and characterize crack initiation and growth of small cracks (10 microns to 2 mm long) in commonly used US and PRC aluminum alloys, to improve fracture mechanics analyses of surface- and corner-crack configurations, and to develop improved life-prediction methods. Fatigue and small-crack tests were performed on single-edgenotch tension (SENT) specimens and large-crack tests were conducted on center-crack tension specimens for constant-amplitude (stress ratios of -1, 0, and 0.5) and Mini-TWIST spectrum loading. The plastic replica method was used to monitor the initiation and growth of small fatigue cracks at the semicircular notch. Crack growth results from each laboratory on 7075-T6 bare and LC9cs clad aluminum alloys agreed well and showed that fatigue life was mostly crack propagation from a material defect (inclusion particles or void) or from the cladding layer. Finite-element and weight-function methods were used to determine stress intensity factors for surface and corner cracks in the SENT specimens. Equations were then developed and used in a crack growth and crack-closure model to correlate small- and large-crack data and to make life predictions for various load histories. The cooperative program produced useful experimental data and efficient analysis methods for improving life predictions. The results should ultimately improve aircraft structural reliability and safety.

  7. Formability analysis of aluminum alloys through deep drawing process

    NASA Astrophysics Data System (ADS)

    Pranavi, U.; Janaki Ramulu, Perumalla; Chandramouli, Ch; Govardhan, Dasari; Prasad, PVS. Ram

    2016-09-01

    Deep drawing process is a significant metal forming process used in the sheet metal forming operations. From this process complex shapes can be manufactured with fewer defects. Deep drawing process has different effectible process parameters from which an optimum level of parameters should be identified so that an efficient final product with required mechanical properties will be obtained. The present work is to evaluate the formability of Aluminum alloy sheets using deep drawing process. In which effects of punch radius, lubricating conditions, die radius, and blank holding forces on deep drawing process observed for AA 6061 aluminum alloy sheet of 2 mm thickness. The numerical simulations are performed for deep drawing of square cups using three levels of aforesaid parameters like lubricating conditions and blank holding forces and two levels of punch radii and die radii. For numerical simulation a commercial FEM code is used in which Hollomon's power law and Hill's 1948 yield criterions are implemented. The deep drawing setup used in the FEM code is modeled using a CAD tool by considering the modeling requirements from the literature. Two different strain paths (150x150mm and 200x200mm) are simulated. Punch forces, thickness distributions and dome heights are evaluated for all the conditions. In addition failure initiation and propagation is also observed. From the results, by increasing the coefficient of friction and blank holding force, punch force, thickness distribution and dome height variations are observed. The comparison has done and the optimistic parameters were suggested from the results. From this work one can predict the formability for different strain paths without experimentation.

  8. Development of Enriched Borated Aluminum Alloy for Basket Material of Cask for Spent Nuclear Fuel

    SciTech Connect

    Katsura Kajihara; Yasuhiro Aruga; Jun Shimojo; Hiroaki Taniuchi; Tsutomu Takeda; Masatosi Sasaki

    2002-07-01

    New enriched borated aluminum alloys manufactured by melting process are developed, which resulted in supplying structural basket materials for spent nuclear fuel packagings. In this process, the borated aluminum alloys were melted in a vacuum induction furnace at elevated temperature than that of ordinary aluminum melting processes. Boron dissolves into the matrix at the temperature of 1273 K or more, and fine aluminum diboride is precipitated and uniformly dispersed upon cooling rapidity. It is confirmed that boron is homogeneously dispersed with the fine particles of approximate 5 in average size in the product. Tensile strength and creep property at elevated temperature in 1 mass-%B 6061-T651 plate and 1 mass-%B 3004 extruded rectangular pipe as structural materials are examined. It is confirmed that the both of borated aluminum alloys have stable strength and creep properties that are similar to those of ordinary aluminum alloys. (authors)

  9. Finite Element Simulation of Plastic Joining Processes of Steel and Aluminum Alloy Sheets

    SciTech Connect

    Mori, K.; Abe, Y.; Kato, T.

    2007-05-17

    Various high tensile strength steel sheets and an aluminum alloy sheet were joined with a self-piercing rivet. It is not easy to weld the aluminum alloy sheet and high tensile strength sheets by means of conventional resistance welding because of very different melting points. To obtain optimum joining conditions, joining defects were categorized into separation of the sheets and an inner fracture. The joining range of ultra high tensile strength steel and aluminum alloy sheets was extended by means of dies optimized by finite element simulation. The joint strength is greatly influenced by not only the strength of the sheets and rivets but also the ratio of the thickness of the lower sheet to the total thickness. In addition, mechanical clinching of high strength steel and aluminum alloy sheets was simulated.

  10. Finite Element Simulation of Plastic Joining Processes of Steel and Aluminum Alloy Sheets

    NASA Astrophysics Data System (ADS)

    Mori, K.; Abe, Y.; Kato, T.

    2007-05-01

    Various high tensile strength steel sheets and an aluminum alloy sheet were joined with a self-piercing rivet. It is not easy to weld the aluminum alloy sheet and high tensile strength sheets by means of conventional resistance welding because of very different melting points. To obtain optimum joining conditions, joining defects were categorized into separation of the sheets and an inner fracture. The joining range of ultra high tensile strength steel and aluminum alloy sheets was extended by means of dies optimized by finite element simulation. The joint strength is greatly influenced by not only the strength of the sheets and rivets but also the ratio of the thickness of the lower sheet to the total thickness. In addition, mechanical clinching of high strength steel and aluminum alloy sheets was simulated.

  11. New water-soluble metal working fluids additives from phosphonic acid derivatives for aluminum alloy materials.

    PubMed

    Kohara, Ichitaro; Tomoda, Hideyuki; Watanabe, Shoji

    2007-01-01

    Water-soluble metal working fluids are used for processing of aluminum alloy materials. This short paper describes properties of new additives for water-soluble cutting fluids for aluminum alloy materials. Some alkyldiphosphonic acids were prepared with known method. Amine salts of these phosphonic acids showed anti-corrosion property for aluminum alloy materials. However, they have no hard water tolerance. Monoesters of octylphosphonic acid were prepared by the reaction of octylphosphonic acid dichloride with various alcohols in the presence of triethylamine. Amine salts of monoester of octylphosphonic acid with diethyleneglycol monomethyl ether, ethyleneglycol monomethyl ether and triethyleneglycol monomethyl ether showed both of a good anti-corrosion property for aluminum alloy materials and hard water tolerance.

  12. The mechanism of stress-corrosion cracking in 7075 aluminum alloy

    NASA Technical Reports Server (NTRS)

    Jacobs, A. J.

    1970-01-01

    Various aspects of stress-corrosion cracking in 7075 aluminum alloy are discussed. A model is proposed in which the continuous anodic path along which the metal is preferentially attacked consists of two phases which alternate as anodes.

  13. Laser cutting of rectangular geometry into aluminum alloy: Effect of cut sizes on thermal stress field

    NASA Astrophysics Data System (ADS)

    Akhtar, Sohail; Kardas, Omer Ozgur; Keles, Omer; Yilbas, Bekir Sami

    2014-10-01

    Laser cutting of a rectangular geometry into aluminum alloy 2024 is carried out. Temperature and stress fields are predicted in the cutting section using the ABAQUS finite element code in line with the experimental conditions. Effect of the size of the rectangular geometry on the thermal stress fields is examined in the cutting section. Temperature predictions are validated through the thermocouple data. To identify the morphological changes in the cutting section, an experiment is carried out and the resulting cutting sections are examined under optical and scanning electron microscopes. It is found that temperature and stress fields are affected by the size of the rectangular cut geometry. Temperature and von Mises stress attains higher values for small size rectangular geometry as compared to its counterpart corresponding to the large size geometry. Laser cut sections are free from large size asperities including sideways burning and out-off flatness at the cut edges. Locally scattered some small dross attachments are observed at the kerf exit.

  14. Chemically short-crack behavior of the 7075-T6 aluminum alloy

    NASA Astrophysics Data System (ADS)

    Dolley, Evan Jarrett, Jr.

    Commercial and military aircraft are exposed to deleterious environments (such as salt spray) that can enhance the fatigue-crack-growth (FCG) rates in structural components. This phenomenon, generically termed corrosion fatigue (CF) can have a large effect on their fatigue lives. CFCG behavior may be separated into two regimes: a chemically long-crack regime and a chemically short-crack regime. FCG rates in the chemically long-crack regime for the 7075-T6 aluminum alloy are approximately one order of magnitude greater than those in a dehumidified environment and exhibit growth rate similitude under a constant crack driving force ( D K). FCG rates in the chemically short-crack regime exhibit a breakdown in growth rate similitude at crack lengths shorter than 7 mm. The growth rates at 0.5 mm are 2 times greater than those in the long-crack regime and decay with increasing crack length to the long-crack rates at approximately 7 mm. The extent of the chemically short-crack behavior in the 7075-T6 aluminum alloy depends on D K, crack length and dissolved oxygen concentration in the aqueous solution. Mathematical modeling of the mass transport of dissolved oxygen to the crack tip region shows a good correlation between the chemically short-crack behavior and the amount of dissolved oxygen at the crack tip. The short-crack behavior is not observed in a deaerated solution. The enhanced growth rates are caused by hydrogen embrittlement. Fracture in dehumidified air occurs along the 100 fracture plane while cracking in the chemically short and long-crack regimes occur on 100 and 110 (flat brittle type fracture) planes with the fractional area of the 110 fracture decreasing with increasing crack length in the chemically short-crack regime. Predicted and actual FCG rates correlate well showing that the enhancement of growth rates in the deleterious environment depends on the amount of 110 fracture. The chemically short-crack behavior may reduce the FCG life of a structure by

  15. Chemical interactions and thermodynamic studies in aluminum alloy/molten salt systems

    NASA Astrophysics Data System (ADS)

    Narayanan, Ramesh

    The recycling of aluminum and aluminum alloys such as Used Beverage Container (UBC) is done under a cover of molten salt flux based on (NaCl-KCl+fluorides). The reactions of aluminum alloys with molten salt fluxes have been investigated. Thermodynamic calculations are performed in the alloy/salt flux systems which allow quantitative predictions of the equilibrium compositions. There is preferential reaction of Mg in Al-Mg alloy with molten salt fluxes, especially those containing fluorides like NaF. An exchange reaction between Al-Mg alloy and molten salt flux has been demonstrated. Mg from the Al-Mg alloy transfers into the salt flux while Na from the salt flux transfers into the metal. Thermodynamic calculations indicated that the amount of Na in metal increases as the Mg content in alloy and/or NaF content in the reacting flux increases. This is an important point because small amounts of Na have a detrimental effect on the mechanical properties of the Al-Mg alloy. The reactions of Al alloys with molten salt fluxes result in the formation of bluish purple colored "streamers". It was established that the streamer is liquid alkali metal (Na and K in the case of NaCl-KCl-NaF systems) dissipating into the melt. The melts in which such streamers were observed are identified. The metal losses occurring due to reactions have been quantified, both by thermodynamic calculations and experimentally. A computer program has been developed to calculate ternary phase diagrams in molten salt systems from the constituting binary phase diagrams, based on a regular solution model. The extent of deviation of the binary systems from regular solution has been quantified. The systems investigated in which good agreement was found between the calculated and experimental phase diagrams included NaF-KF-LiF, NaCl-NaF-NaI and KNOsb3-TINOsb3-LiNOsb3. Furthermore, an insight has been provided on the interrelationship between the regular solution parameters and the topology of the phase

  16. Fatigue Behavior of Long and Short Cracks in Wrought and Powder Aluminum Alloys.

    DTIC Science & Technology

    1986-05-01

    6 mm aluminum alloy 7075 and, unlike behavior in cycle -l) near the fatigue threshold stress in- steels (4-61, were not consistent with lower tensity...NO. ACCESSION NO. ____ _.-__’__ ____ ___ ____ ___ _ _ __2306 Al I 11. TITLE (Include Security Classification) FATIGUE BEHAVIOR OF LONG AND SHORT...amplitude loading; Fatigue in aluminum alloys; Fatigue behavior of lon and short cracks; Fatigue cracks: crack closure . ABSTRACT (Continue on reverse if

  17. The Effect of Impurities on the Processing of Aluminum Alloys

    SciTech Connect

    Zi-Kui Liu; Shengjun Zhang; Qingyou Han; Vinod Sikka

    2007-04-23

    For this Aluminum Industry of the Future (IOF) project, the effect of impurities on the processing of aluminum alloys was systematically investigated. The work was carried out as a collaborative effort between the Pennsylvania State University and Oak Ridge National Laboratory. Industrial support was provided by ALCOA and ThermoCalc, Inc. The achievements described below were made. A method that combines first-principles calculation and calculation of phase diagrams (CALPHAD) was used to develop the multicomponent database Al-Ca-K-Li-Mg-Na. This method was extensively used in this project for the development of a thermodynamic database. The first-principles approach provided some thermodynamic property data that are not available in the open literature. These calculated results were used in the thermodynamic modeling as experimental data. Some of the thermodynamic property data are difficult, if not impossible, to measure. The method developed and used in this project allows the estimation of these data for thermodynamic database development. The multicomponent database Al-Ca-K-Li-Mg-Na was developed. Elements such as Ca, Li, Na, and K are impurities that strongly affect the formability and corrosion behavior of aluminum alloys. However, these impurity elements are not included in the commercial aluminum alloy database. The process of thermodynamic modeling began from Al-Na, Ca-Li, Li-Na, K-Na, and Li-K sub-binary systems. Then ternary and higher systems were extrapolated because of the lack of experimental information. Databases for five binary alloy systems and two ternary systems were developed. Along with other existing binary and ternary databases, the full database of the multicomponent Al-Ca-K-Li-Mg-Na system was completed in this project. The methodology in integrating with commercial or other aluminum alloy databases can be developed. The mechanism of sodium-induced high-temperature embrittlement (HTE) of Al-Mg is now understood. Using the thermodynamic

  18. Materials Design for Joinable, High Performance Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Glamm, Ryan James

    An aluminum alloy compatible with friction stir welding is designed for automotive and aerospace structural applications. Current weldable automotive aluminum alloys do not possess the necessary strength to meet safety standards and therefore are not able to replace steel in the automotive body. Significant weight savings could be achieved if steel components are replaced with aluminum. Current aerospace alloys are not weldable, requiring machining of large pieces that are then riveted together. If an aerospace alloy could be friction stir welded, smaller pieces could be welded, reducing material waste. Using a systems approach for materials design, property goals are set from performance objectives. From previous research and computational predictions, a structure is designed for a prototype alloy containing dynamic precipitates to readily dissolve and re-precipitate and high stability precipitates to resist dissolution and coarsening in the weld region. It is found that a Ag modified Al-3.9Mg-0.04Cu (at. %) alloy enhanced the rate and magnitude of hardening during ageing, both beneficial effects for dynamic precipitation. In the same alloy, ageing at 350°C results in hardening from Al 3(Sc,Zr) precipitates. Efforts to effectively precipitate both populations simultaneously are unsuccessful. The Al3(Sc,Zr) precipitation hardened prototype is friction stir processed and no weak zones are found in the weld hardness profile. An aerospace alloy design is proposed, utilizing the dual precipitate structure shown in the prototype. The automotive alloy is designed using a basic strength model with parameters determined from the initial prototype alloy analysis. After ageing to different conditions, the alloy is put through a simulated heat affected zone thermal cycle with a computer controlled induction heater. The aged samples lose hardness from the weld cycle but recover hardness from a post weld heat treatment. Atom probe tomography and transmission electron

  19. Computational Investigation of Hardness Evolution During Friction-Stir Welding of AA5083 and AA2139 Aluminum Alloys

    DTIC Science & Technology

    2011-01-01

    is combined with the basic physical metallurgy of two wrought aluminum alloys to predict/assess their FSW behaviors. The two alloys selected are AA5083... Aluminum Alloys Report Title ABSTRACT A fully coupled thermo-mechanical finite-element analysis of the friction-stir welding ( FSW ) process developed in our...previous work is combined with the basic physical metallurgy of two wrought aluminum alloys to predict/assess their FSW behaviors. The two alloys

  20. Chemical conditions inside occluded regions on corroding aircraft aluminum alloys.

    PubMed

    Lewis, K S; Yuan, J; Kelly, R G

    1999-07-30

    Corrosion of aluminum alloy structures costs the US Air Force in the order of US$1 x 10(9) annually. Corrosion develops in areas of overlap such as aircraft lap-splice joints and under protective organic coatings. Capillary electrophoresis (CE) has been used to determine the local chemistries at these corrosion sites of solutions that were extracted using a microsampling system. Analysis of the local solution within lap-splice joints from aircraft has been performed in two ways: rehydration of corrosion products and direct microsampling. The solutions collected were analyzed with CE to quantitatively determine the species present during corrosion. The most common ions detected were Cl-, NO2-, NO3-, HCO3-, K+, Al3+, Ca2+, Na+ and Mg2+. Studies of the solution chemistry under local coating defects are required to understand coating failure and develop more durable coatings. A microsampling system and micro pH sensor were developed to extract solution from and measure pH in defects with diameters as small as 170 microns. Actively corroding defects contained high concentrations of Cl-, Al3+, Mg2+, Mn2+ and Cu2+ whereas only trace levels of Mg2+ were found in repassivated defects. The effects of these species on initiation and propagation of corrosion are discussed.

  1. Tool For Friction Stir Tack Welding of Aluminum Alloys

    NASA Technical Reports Server (NTRS)

    Bjorkman, Gerald W.; Dingler, Johnny W.; Loftus, Zachary

    2003-01-01

    A small friction-stir-welding tool has been developed for use in tack welding of aluminum-alloy workpieces. It is necessary to tack-weld the workpieces in order to hold them together during friction stir welding because (1) in operation, a full-size friction-stir-welding tool exerts a large force that tends to separate the workpieces and (2) clamping the workpieces is not sufficient to resist this force. It is possible to tack the pieces together by gas tungsten arc welding, but the process can be awkward and time-consuming and can cause sufficient damage to necessitate rework. Friction stir tack welding does not entail these disadvantages. In addition, friction stir tack welding can be accomplished by use of the same automated equipment (except for the welding tool) used in subsequent full friction stir welding. The tool for friction stir tack welding resembles the tool for full friction stir welding, but has a narrower shoulder and a shorter pin. The shorter pin generates a smaller workpiece-separating force so that clamping suffices to keep the workpieces together. This tool produces a continuous or intermittent partial-penetration tack weld. The tack weld is subsequently consumed by action of the larger tool used in full friction stir welding tool.

  2. Thermal Decoating of Aerospace Aluminum Alloys for Aircraft Recycling

    NASA Astrophysics Data System (ADS)

    Muñiz Lerma, Jose Alberto; Jung, In-Ho; Brochu, Mathieu

    2016-06-01

    Recycling of aircraft aluminum alloys can be complex due to the presence of their corrosion protection coating that includes inorganic compounds containing Cr(VI). In this study, the characterization and thermal degradation behavior of the coating on aluminum substrates coming from an aircraft destined for recycling are presented. Elements such as Sr, Cr, Si, Ba, Ti, S, C, and O were found in three different layers by EDS elemental mapping corresponding to SrCrO4, Rutile-TiO2, SiO2, and BaSO4 with an overall particle size D 50 = 1.96 µm. The thermal degradation profile analyzed by TGA showed four different stages. The temperature of complete degradation at the fourth stage occurred at 753.15 K (480 °C) at lower heating rates. At higher heating rates and holding an isotherm at the same temperature, the residence time to fully decompose the aircraft coating has been estimated as 4.0 ± 0.2 minutes. The activation energy calculated by the Flynn-Wall-Ozawa and the modified Coats-Redfern methods for multiple fraction of decomposition showed a non-constant behavior indicating the complexity of the reaction. Finally, the concentration of Cr(VI) released to the environment during thermal decoating was obtained by UV-Vis spectroscopy. It was found that 2.6 ± 0.1 µg of Cr(VI)/mm2 of aluminum substrate could be released unless adequate particle controls are used.

  3. Numerical simulation of high speed incremental forming of aluminum alloy

    NASA Astrophysics Data System (ADS)

    Giuseppina, Ambrogio; Teresa, Citrea; Luigino, Filice; Francesco, Gagliardi

    2013-12-01

    In this study, an innovative process is analyzed with the aim to satisfy the industrial requirements, such as process flexibility, differentiation and customizing of products, cost reduction, minimization of execution time, sustainable production, etc. The attention is focused on incremental forming process, nowadays used in different fields such as: rapid prototyping, medical sector, architectural industry, aerospace and marine, in the production of molds and dies. Incremental forming consists in deforming only a small region of the workspace through a punch driven by a NC machine. SPIF is the considered variant of the process, in which the punch gives local deformation without dies and molds; consequently, the final product geometry can be changed by the control of an actuator without requiring a set of different tools. The drawback of this process is its slowness. The aim of this study is to assess the IF feasibility at high speeds. An experimental campaign will be performed by a CNC lathe with high speed to test process feasibility and the influence on materials formability mainly on aluminum alloys. The first results show how the material presents the same performance than in conventional speed IF and, in some cases, better material behavior due to the temperature field. An accurate numerical simulation has been performed to investigate the material behavior during the high speed process substantially confirming experimental evidence.

  4. Modeling the Controlled Recrystallization of Particle-Containing Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Adam, Khaled; Root, Jameson M.; Long, Zhengdong; Field, David P.

    2017-01-01

    The recrystallized fraction for AA7050 during the solution heat treatment is highly dependent upon the history of deformation during thermomechanical processing. In this work, a state variable model was developed to predict the recrystallization volume fraction as a function of processing parameters. Particle stimulated nucleation (PSN) was observed as a dominant mechanism of recrystallization in AA7050. The mesoscale Monte Carlo Potts model was used to simulate the evolved microstructure during static recrystallization with the given recrystallization fraction determined already by the state variable model for AA7050 alloy. The spatial inhomogeneity of nucleation is obtained from the measurement of the actual second-phase particle distribution in the matrix identified using backscattered electron (BSE) imaging. The state variable model showed good fit with the experimental results, and the simulated microstructures were quantitatively comparable to the experimental results for the PSN recrystallized microstructure of 7050 aluminum alloy. It was also found that the volume fraction of recrystallization did not proceed as dictated by the Avrami equation in this alloy because of the presence of the growth inhibitors.

  5. Anisotropic effects on constitutive model parameters of aluminum alloys

    NASA Astrophysics Data System (ADS)

    Brar, Nachhatter S.; Joshi, Vasant S.

    2012-03-01

    Simulation of low velocity impact on structures or high velocity penetration in armor materials heavily rely on constitutive material models. Model constants are determined from tension, compression or torsion stress-strain at low and high strain rates at different temperatures. These model constants are required input to computer codes (LS-DYNA, DYNA3D or SPH) to accurately simulate fragment impact on structural components made of high strength 7075-T651 aluminum alloy. Johnson- Cook model constants determined for Al7075-T651 alloy bar material failed to simulate correctly the penetration into 1' thick Al-7075-T651plates. When simulation go well beyond minor parameter tweaking and experimental results show drastically different behavior it becomes important to determine constitutive parameters from the actual material used in impact/penetration experiments. To investigate anisotropic effects on the yield/flow stress of this alloy quasi-static and high strain rate tensile tests were performed on specimens fabricated in the longitudinal "L", transverse "T", and thickness "TH" directions of 1' thick Al7075 Plate. While flow stress at a strain rate of ~1/s as well as ~1100/s in the thickness and transverse directions are lower than the longitudinal direction. The flow stress in the bar was comparable to flow stress in the longitudinal direction of the plate. Fracture strain data from notched tensile specimens fabricated in the L, T, and Thickness directions of 1' thick plate are used to derive fracture constants.

  6. Anisotropic Effects on Constitutive Model Parameters of Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Brar, Nachhatter; Joshi, Vasant

    2011-06-01

    Simulation of low velocity impact on structures or high velocity penetration in armor materials heavily rely on constitutive material models. The model constants are required input to computer codes (LS-DYNA, DYNA3D or SPH) to accurately simulate fragment impact on structural components made of high strength 7075-T651 aluminum alloys. Johnson-Cook model constants determined for Al7075-T651 alloy bar material failed to simulate correctly the penetration into 1' thick Al-7075-T651plates. When simulations go well beyond minor parameter tweaking and experimental results are drastically different it is important to determine constitutive parameters from the actual material used in impact/penetration experiments. To investigate anisotropic effects on the yield/flow stress of this alloy we performed quasi-static and high strain rate tensile tests on specimens fabricated in the longitudinal, transverse, and thickness directions of 1' thick Al7075-T651 plate. Flow stresses at a strain rate of ~1100/s in the longitudinal and transverse direction are similar around 670MPa and decreases to 620 MPa in the thickness direction. These data are lower than the flow stress of 760 MPa measured in Al7075-T651 bar stock.

  7. Aluminum alloy anode materials for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Sun, Z. H.; Chen, Z. F.; Fu, Q. W.; Jiang, X. Y.

    2017-03-01

    Aluminum has larger theoretical capacity of 2235 mAh/g than that of graphite (372 mAh/g), but it has big disadvantages including shorter cycle life and higher irreversible capacity loss. Improving cycle performance can be obtained via alloying of aluminum. In this paper, two ternary aluminum alloy, Al7Cu2Fe and Al73Cu5Fe22 were prepared. The main phase of Al7Cu2Fe alloy was Al7Cu2Fe. The heat treatment increased the proportion of Al7Cu2Fe. The main phase of Al73Cu5Fe22 alloy was Al60Cu30Fe10. The heat treatment reduced the proportion of Al60Cu30Fe10. For two alloys, the heat treatment could increase discharge capacity compared with cast alloy. The discharge capacity was improved by 50%. The content of aluminum in alloys has little effect on improving cycle performance, and it has obvious influence on the phase structure of alloy with heat treatment.

  8. Modeling the Controlled Recrystallization of Particle-Containing Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Adam, Khaled; Root, Jameson M.; Long, Zhengdong; Field, David P.

    2016-12-01

    The recrystallized fraction for AA7050 during the solution heat treatment is highly dependent upon the history of deformation during thermomechanical processing. In this work, a state variable model was developed to predict the recrystallization volume fraction as a function of processing parameters. Particle stimulated nucleation (PSN) was observed as a dominant mechanism of recrystallization in AA7050. The mesoscale Monte Carlo Potts model was used to simulate the evolved microstructure during static recrystallization with the given recrystallization fraction determined already by the state variable model for AA7050 alloy. The spatial inhomogeneity of nucleation is obtained from the measurement of the actual second-phase particle distribution in the matrix identified using backscattered electron (BSE) imaging. The state variable model showed good fit with the experimental results, and the simulated microstructures were quantitatively comparable to the experimental results for the PSN recrystallized microstructure of 7050 aluminum alloy. It was also found that the volume fraction of recrystallization did not proceed as dictated by the Avrami equation in this alloy because of the presence of the growth inhibitors.

  9. A New Creep Constitutive Model for 7075 Aluminum Alloy Under Elevated Temperatures

    NASA Astrophysics Data System (ADS)

    Lin, Y. C.; Jiang, Yu-Qiang; Zhou, Hua-Min; Liu, Guan

    2014-12-01

    Exposure of aluminum alloy to an elastic loading, during "creep-aging forming" or other manufacturing processes at relatively high temperature, may lead to the lasting creep deformation. The creep behaviors of 7075 aluminum alloy are investigated by uniaxial tensile creep experiments over wide ranges of temperature and external stress. The results show that the creep behaviors of the studied aluminum alloy strongly depend on the creep temperature, external stress, and creep time. With the increase of creep temperature and external stress, the creep strain increases quickly. In order to overcome the shortcomings of the Bailey-Norton law and θ projection method, a new constitutive model is proposed to describe the variations of creep strain with time for the studied aluminum alloy. In the proposed model, the dependences of creep strain on the creep temperature, external stress, and creep time are well taken into account. A good agreement between the predicted and measured creep strains shows that the established creep constitutive model can give an accurate description of the creep behaviors of 7075 aluminum alloy. Meanwhile, the obtained stress exponent indicates that the creep process is controlled by the dislocation glide, which is verified by the microstructural observations.

  10. Lightweight materials for automotive applications/topic 2: Wear resistant aluminum alloy

    SciTech Connect

    Viswanathan, S.

    1997-01-31

    The replacement of cast iron by aluminum alloys in automotive engine blocks and heads represents a significant weight reduction in automobiles. The primary hurdle to the widespread use of aluminum alloy engine blocks in the North American automobile industry was high cost. The lack of wear resistance in most aluminum alloys added to manufacturing cost, since expensive procedures such as the incorporation of cast iron liners or special coatings were needed to achieve the required wear properties. The project targeted the development of a wear resistant aluminum alloy, as well as tools and the knowledge-base required to design the casting process, to allow it to be cast economically into engine blocks without the use of a cast iron liner or special coating, thereby providing benefits to both the material and manufacturing aspects of the process. The project combined the alloy development, wear and microstructural characterization, and casting modeling capabilities of the laboratory with the partners extensive alloy and casting process development and manufacturing experience to develop a suitable wear resistant aluminum alloy and casting process.

  11. Deformation behavior of aluminum alloy 6111-T4

    NASA Astrophysics Data System (ADS)

    Tseng, Carol

    2000-10-01

    Although aluminum alloys have found increasing usage in the automotive industry, their lower tensile elongations as compared with the low carbon steels they replace has raised concern about their lower formability. Lower formability imposes design and economic constraints on the automakers. The cause behind this lower elongation is the primary focus of this research. The specific alloy studied is 6111-T4 (Al-0.76Si-0.61Mg-0.82Cu in w/o), which is used in automobile outer body panels. In order to determine the factors that are limiting the elongation, it is critical to understand the deformation behavior of this alloy. To investigate the deformation behavior of this alloy, uniaxial tensile tests were performed at various temperatures (300K, 77K and 4.2K), strain rates (10-4, 5 x 10-4 , 10-3, 10-2, 10 -1/s) and specimen geometries. The work hardening and deformation behavior were examined both qualitatively and quantitatively. Ex-situ and in-situ observations were made on the tensile samples by using videography and optical microscopy. Several important findings resulted from this study. First, oscillations in the work hardening are due to the formation and propagation of deformation islands and deformation bands. Deformation islands are areas of localized deformation that occur in a cluster of grains. Second, the microstructural feature dominating the formation and propagation of the islands are the clustering of similarly oriented grains and the clustering of large sized grains. Third, the sharp drop in work hardening near the diffuse necking criterion for the 300K, 10-4 is test samples is due to the inhomogeneous deformation arising from these clusters. Finally, diffuse and local necks form before the theoretical predictions. The inhomogeneous microstructures causing the deformation islands and bands to form and propagate, thus leading to strain localization and eventual premature failure.

  12. Theoretical calculation of positron affinities of solute clusters in aluminum alloys

    NASA Astrophysics Data System (ADS)

    Mizuno, Masataka; Araki, Hideki; Shirai, Yasuharu

    2016-01-01

    We have performed theoretical calculations of positron states for solute clusters in aluminum alloys to estimate the positron affinity of solute clusters. Positron states of solute clusters in aluminum alloys were calculated under the electronic structures obtained by first- principles molecular orbital calculations using Al158-X13 clusters. We defined the positron affinity of the solute clusters by the difference in the lowest potential sensed by positrons between the solute clusters and Al bulk. With increasing atomic number of 3d metals, the annihilation fraction of the solute clusters rapidly increases at Mn and shows a maximum at Ni. A similar trend is observed for 4d metals. The localization of positron at the solute clusters mainly arises from charge transfer from Al matrix to solute clusters. The positron affinity defined in this work well represents the localization of positron at the solute clusters in aluminum alloys.

  13. Upgrading scrap automotive aluminum alloys with the impulse atomization and quench technique

    SciTech Connect

    Olsen, K.; Sterzik, G.; Henein, H.

    1995-12-31

    As aluminum alloy usage in automobiles grows, there are increasing demands on recycling processes and facilities to deal with mixed alloy automotive aluminum scrap. These processes and facilities strive to produce near virgin aluminum stock, which can be relatively costly and difficult. One alternative is to use physical processing methods to upgrade the scrap properties instead of chemically refining the scrap. The Impulse Atomization Process (IAP, patent pending) is a new process for making metallic and ceramic powders. It can produce fine homogeneous microstructures in scrap aluminum alloys due to high undercooling and rapid solidification. The particles have a very narrow size distribution and are in a convenient form for consolidation. This paper compares and contrasts the microstructural features of Impulse Atomized and quenched Impulse Atomized powders, for both AL6061 and a scrap aluminum alloy composition.

  14. Effect of Multi-repair Welding on Fatigue Performance of Aluminum Alloy Profile Welded Joint

    NASA Astrophysics Data System (ADS)

    Diao, You-De; Shi, Chun-Yuan; Tian, Hong-Lei

    2016-05-01

    Aluminum alloy profile has been widely used in the manufacture of the rail vehicles. But it's necessary for the repair welding of the welded joints to be conducted because some defects exist in the weld such as porosity, inclusions and incomplete penetrations in the welding processes. In this paper, the influence of the multi-repair welding of 6005A aluminum alloy profile butt welded joints on the fatigue performance are investigated based on the results of fatigue tests. The parameters of curves and the fatigue strength of the welded joints are calculated, and Goodman fatigue limit diagram is also obtained. The results show that fatigue strength of aluminum alloy profile butt welded joints, in condition of 107 cycle life, meet the standard requirement for the as-welded, repair welded state one time or two times respectively.

  15. Commercialization of NASA's High Strength Cast Aluminum Alloy for High Temperature Applications

    NASA Technical Reports Server (NTRS)

    Lee, Jonathan A.

    2003-01-01

    In this paper, the commercialization of a new high strength cast aluminum alloy, invented by NASA-Marshall Space Flight Center, for high temperature applications will be presented. Originally developed to meet U.S. automotive legislation requiring low- exhaust emission, the novel NASA aluminum alloy offers dramatic improvement in tensile and fatigue strengths at elevated temperatures (450 F-750 F), which can lead to reducing part weight and cost as well as improving performance for automotive engine applications. It is an ideal low cost material for cast components such as pistons, cylinder heads, cylinder liners, connecting rods, turbo chargers, impellers, actuators, brake calipers and rotors. NASA alloy also offers greater wear resistance, dimensional stability, and lower thermal expansion compared to conventional aluminum alloys, and the new alloy can be produced economically from sand, permanent mold and investment casting. Since 2001, this technology was licensed to several companies for automotive and marine internal combustion engines applications.

  16. A study on friction stir welding of 12mm thick aluminum alloy plates

    NASA Astrophysics Data System (ADS)

    Kumar, Deepati Anil; Biswas, Pankaj; Tikader, Sujoy; Mahapatra, M. M.; Mandal, N. R.

    2013-12-01

    Most of the investigations regarding friction stir welding (FSW) of aluminum alloy plates have been limited to about 5 to 6 mm thick plates. In prior work conducted the various aspects concerning the process parameters and the FSW tool geometry were studied utilizing friction stir welding of 12 mm thick commercial grade aluminum alloy. Two different simple-to-manufacture tool geometries were used. The effect of varying welding parameters and dwell time of FSW tool on mechanical properties and weld quality was examined. It was observed that in order to achieve a defect free welding on such thick aluminum alloy plates, tool having trapezoidal pin geometry was suitable. Adequate tensile strength and ductility can be achieved utilizing a combination of high tool rotational speed of about 2000 r/min and low speed of welding around 28 mm/min. At very low and high dwell time the ductility of welded joints are reduced significantly.

  17. Monte Carlo Modeling of Gamma Ray Backscattering for Crack Identification in the Aluminum alloy Plate

    NASA Astrophysics Data System (ADS)

    Wirawan, Rahadi; Waris, Abdul; Djamal, Mitra; Gunawan, H.; Kim, H. J.

    2017-01-01

    A Monte Carlo simulation study has been conducted of the Cs-37 gamma ray backscattering in the aluminum alloy plate. This simulation was performed in order to identify the existence of the crack in the aluminum alloy plate, the correlation between the backscattering peak and the crack width. We are able to analyze the absorbed energy distribution in the NaI(Tl) scintillation detector. For the experimental measurement, we are using 5 μCi of a Cs-137 gamma source and 2 in. x 2in. NaI(Tl) scintillation detector with the PMT. The aluminum alloy dimension is about 8 cm x 6 cm x 1 cm. The crack model is represented by the slit with the varying width (1 mm, 2 mm, 4 mm, and 6 mm). The existence of a crack is identified by the decreasing intensity of the gamma backscattering energy peak. These predicted results have a good agreement with the experimental measurement.

  18. The effect of pre-existing corrosion on the fatigue cracking behavior of aluminum alloys

    SciTech Connect

    Hagerdorn, E.L.; Koch, G.H.

    1996-10-01

    In order to assess the effect of preexisting corrosion on the fatigue crack behavior of aluminum alloys 2024-T3 and 7074-T6 crack initiation and growth data were obtained using fracture mechanics specimens. These specimens incorporated mechanically thinned areas and areas that had been preexposed to environments which produced various degrees of pitting or exfoliation corrosion. The data obtained from these laboratory experiments indicate that specific corrosive was most pronounced in the fatigue cracking behavior of aluminum alloys. The effect of preexisting corrosion was most pronounced in the fatigue crack initiation stage. Based on the results of this study, it was concluded that the effect of preexisting corrosion on the fatigue cracking behavior of both aluminum alloys 2024-T3 and 7075-T6 is a combination of stress concentrations as a result of material loss, and altered material properties, possible as a result of hydrogen entry into the lattice.

  19. Macrosegregation in aluminum alloy ingot cast by the semicontinuous direct chill method

    NASA Technical Reports Server (NTRS)

    Yu, H.; Granger, D. A.

    1984-01-01

    A theoretical model of the semicontinuous DC casting method is developed to predict the positive segregation observed at the subsurface and the negative segregation commonly found at the center of large commercial-size aluminum alloy ingot. Qualitative analysis of commercial-size aluminum alloy semicontinuous cast direct chill (DC) ingot is carried out. In the analysis, both positive segregation in the ingot subsurface and negative segregation at the center of the ingot are examined. Ingot subsurface macrosegregation is investigated by considering steady state casting of a circular cross-section binary alloy ingot. Nonequilibrium solidification is assumed with no solid diffusion, constant equilibrium partition ratio, and constant solid density.

  20. Fabrication of super-hydrophobic surfaces on aluminum alloy substrates by RF-sputtered polytetrafluoroethylene coatings

    SciTech Connect

    Wang, Yang; Liu, Xiao Wei; Zhang, Hai Feng Zhou, Zhi Ping

    2014-03-15

    In this work, we present a method of fabricating super-hydrophobic surface on aluminum alloy substrate. The etching of aluminum surfaces has been performed using Beck's dislocation etchant for different time to create micrometer-sized irregular steps. An optimised etching time of 50 s is found to be essential before polytetrafluoroethylene (PTFE) coating, to obtain a highest water contact angle of 165±2° with a lowest contact angle hysteresis as low as 5±2°. The presence of patterned microstructure as revealed by scanning electron microscopy (SEM) together with the low surface energy ultrathin RF-sputtered PTFE films renders the aluminum alloy surfaces highly super-hydrophobic.

  1. Fatigue Behavior of P/M 7091 and I/M 7475 Aluminum Alloys

    DTIC Science & Technology

    1989-10-01

    properties, fatigue behavior , microstruc - ture, and fractograph. TENSILE PROPERTIES Tensile test results of P/M 7091-T7E69 and l/M 7475-T7351...REPORT NO. NADC-89090-60 •1! <-.< (_ FATIGUE BEHAVIOR OF P/M 7091 AND l/M 7475 ALUMINUM ALLOYS A PA -221 79® ( Eun U. Lee . Air Vehicle and... Behavior of P/M 7091 and I/M 7475 Aluminum Alloys 12. PERSONAL AUTHOR(S) Eun U. Lee 13a. TYPE OF REPORT Phase 13b. TIME COVERED FROM TO 14. DATE

  2. The hydrogen diffusion in liquid aluminum alloys from ab initio molecular dynamics

    NASA Astrophysics Data System (ADS)

    Jakse, N.; Pasturel, A.

    2014-09-01

    We study the hydrogen diffusion in liquid aluminum alloys through extensive ab initio molecular dynamics simulations. At the microscopic scale, we show that the hydrogen motion is characterized by a broad distribution of spatial jumps that does not correspond to a Brownian motion. To determine the self-diffusion coefficient of hydrogen in liquid aluminum alloys, we use a generalized continuous time random walk model recently developed to describe the hydrogen diffusion in pure aluminum. In particular, we show that the model successfully accounts the effects of alloying elements on the hydrogen diffusion in agreement with experimental features.

  3. The Column Strength of Two Extruded Aluminum-Alloy H-Sections

    NASA Technical Reports Server (NTRS)

    Osgood, William R; Holt, Marshall

    1939-01-01

    Extruded aluminum-alloy members of various cross sections are used in aircraft as compression members either singly or as stiffeners for aluminum-alloy sheet. In order to design such members, it is necessary to know their column strength or, in the case of stiffeners, the value of the double modulus, which is best obtained for practical purposes from column tests. Column tests made on two extruded h-sections are described, and column formulas and formulas for the ratio of the double modulus to Young's modulus, based on the tests, are given.

  4. Evaluation of Sc-Bearing Aluminum Alloy C557 for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Domack, Marcia S.; Dicus, Dennis L.

    2002-01-01

    The performance of the Al-Mg-Sc alloy C557 was evaluated to assess its potential for a broad range of aerospace applications, including airframe and launch vehicle structures. Of specific interest were mechanical properties at anticipated service temperatures and thermal stability of the alloy. Performance was compared with conventional airframe aluminum alloys and with other emerging aluminum alloys developed for specific service environments. Mechanical properties and metallurgical structure were evaluated for commercially rolled sheet in the as-received H116 condition and after thermal exposures at 107 C. Metallurgical analyses were performed to de.ne grain morphology and texture, strengthening precipitates, and to assess the effect of thermal exposure.

  5. Superhydrophobic aluminum alloy surfaces by a novel one-step process.

    PubMed

    Saleema, N; Sarkar, D K; Paynter, R W; Chen, X-G

    2010-09-01

    A simple one-step process has been developed to render aluminum alloy surfaces superhydrophobic by immersing the aluminum alloy substrates in a solution containing NaOH and fluoroalkyl-silane (FAS-17) molecules. Scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and water contact angle measurements have been performed to characterize the morphological features, chemical composition and superhydrophobicity of the surfaces. The resulting surfaces provided a water contact angle as high as ∼162° and a contact angle hysteresis as low as ∼4°. The study indicates that it is possible to fabricate superhydrophobic aluminum surfaces easily and effectively without involving the traditional two-step processes.

  6. Multi-Response Optimization of Friction-Stir-Welded AA1100 Aluminum Alloy Joints

    NASA Astrophysics Data System (ADS)

    Rajakumar, S.; Balasubramanian, V.

    2012-06-01

    AA1100 aluminum alloy has gathered wide acceptance in the fabrication of light weight structures. Friction stir welding process (FSW) is an emerging solid state joining process in which the material that is being welded does not melt and recast. The process and tool parameters of FSW play a major role in deciding the joint characteristics. In this research, the relationships between the FSW parameters (rotational speed, welding speed, axial force, shoulder diameter, pin diameter, and tool hardness) and the responses (tensile strength, hardness, and corrosion rate) were established. The optimal welding conditions to maximize the tensile strength and minimize the corrosion rate were identified for AA1100 aluminum alloy and reported here.

  7. Corrosion characterization of aluminum alloys treated with a new sealing process -- Part 2

    SciTech Connect

    Banerjee, G.; Miller, A.E.; Vasanth, K.L.

    1999-07-01

    Continuing an earlier investigation a new sealing solution that contains catalytic amount of chromium (1--10{micro}g) was developed. Aluminum alloys 2024-T6 and 6061-T6 coupons were anodized and sealed with the new sealing formulation. Passivation characteristics of these samples were evaluated using potentiodynamic anodic polarization tests. Al 6061-T6 coupons were further subjected to prohesion tests. In this paper, the results obtained from these tests are compared to those obtained by aluminum alloy treated with standard chromate conversion coating.

  8. Elevated temperature crack growth in advanced powder metallurgy aluminum alloys

    NASA Technical Reports Server (NTRS)

    Porr, William C., Jr.; Gangloff, Richard P.

    1990-01-01

    Rapidly solidified Al-Fe-V-Si powder metallurgy alloy FVS0812 is among the most promising of the elevated temperature aluminum alloys developed in recent years. The ultra fine grain size and high volume fraction of thermally stable dispersoids enable the alloy to maintain tensile properties at elevated temperatures. In contrast, this alloy displays complex and potentially deleterious damage tolerant and time dependent fracture behavior that varies with temperature. J-Integral fracture mechanics were used to determine fracture toughness (K sub IC) and crack growth resistance (tearing modulus, T) of extruded FVS0812 as a function of temperature. The alloy exhibits high fracture properties at room temperature when tested in the LT orientation, due to extensive delamination of prior ribbon particle boundaries perpendicular to the crack front. Delamination results in a loss of through thickness constraint along the crack front, raising the critical stress intensity necessary for precrack initiation. The fracture toughness and tensile ductility of this alloy decrease with increasing temperature, with minima observed at 200 C. This behavior results from minima in the intrinsic toughness of the material, due to dynamic strain aging, and in the extent of prior particle boundary delaminations. At 200 C FVS0812 fails at K levels that are insufficient to cause through thickness delamination. As temperature increases beyond the minimum, strain aging is reduced and delamination returns. For the TL orientation, K (sub IC) decreased and T increased slightly with increasing temperature from 25 to 316 C. Fracture in the TL orientation is governed by prior particle boundary toughness; increased strain localization at these boundaries may result in lower toughness with increasing temperature. Preliminary results demonstrate a complex effect of loading rate on K (sub IC) and T at 175 C, and indicate that the combined effects of time dependent deformation, environment, and strain aging

  9. Diffusion Bonding and Characterization of a Dispersion Strengthened Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Cooke, Kavian Omar

    Aluminum metal matrix composites (Al-MMC's) containing silicon carbide or alumina particle reinforcements are used extensively in automotive and aircraft industries. The addition of a reinforcing phase has led to significant improvements in the mechanical properties of these alloys. However, despite substantial improvements in the properties, the lack of a reliable joining method has restricted their full potential. The differences in physical and metallurgical properties between the ceramic phase and the Al-MMC, prevents the successful application of the fusion welding processes, conventionally used for joining monolithic aluminum alloys. Therefore, alternative techniques that prevent microstructural changes in the base metal need to be developed. In this study, the transient liquid phase diffusion bonding and eutectic bonding of a particle reinforced Al 6061-MMC was investigated to identify a method that could control particle segregation within the joint and increase the final joint strength. The results showed that TLP bonding using Ni-foil was possible at 600°C for 10 minutes using a pressure of 0.01 MPa. However, characterization of the bond interface showed a wide particle segregated zone due to the "pushing effect" of the solid/liquid interface during isothermal solidification stage of bonding. The presence of this particle segregated zone was shown to cause low joint strengths. In order to overcome these problems, TLP bonding was performed using electrodeposited coatings of Ni and Ni-Al 2O3 as a way of controlling the volume of eutectic liquid formed at the joint. Theoretical and experimental work showed that the use of thin coatings was successful in reducing the width of the segregated zone formed at the joint and this had the effect of increasing joint shear strength values. Furthermore, lower bonding temperature could also be used as a method of reducing particle segregation and therefore, a Cu-Sn interlayer was used to form a eutectic bond. The

  10. Effect of tool pin features on process response variables during friction stir welding of dissimilar aluminum alloys

    SciTech Connect

    Rabby, Reza; Tang, Wei; Reynolds, A. P.

    2015-05-13

    In this article, the effect of pin features and orientation/placement of the materials on advancing side were investigated for friction stir welding (FSW) of dissimilar aluminum alloys AA2050 and AA6061. Pins for FSW were produced with a 2.12 mm pitch thread having three flats/flutes. Three sets of rotational speed/welding speed were used to perform a series of welds in a butt joint arrangement. The results show that, joint quality, process response variables and welding temperature are highly affected by pin features and material orientation in FSW. Defect free joints with effective material transportation in the weld nugget zone were obtained when welding was performed with AA2050 on the advancing side. The tool also encounters less in-plane reaction force for welding with 2050 on the advancing side. Pin with thread+3 flats produces quality welds at low rotational and travel speed regardless of the location of alloys on advancing or retreating side.

  11. Effect of tool pin features on process response variables during friction stir welding of dissimilar aluminum alloys

    DOE PAGES

    Rabby, Reza; Tang, Wei; Reynolds, A. P.

    2015-05-13

    In this article, the effect of pin features and orientation/placement of the materials on advancing side were investigated for friction stir welding (FSW) of dissimilar aluminum alloys AA2050 and AA6061. Pins for FSW were produced with a 2.12 mm pitch thread having three flats/flutes. Three sets of rotational speed/welding speed were used to perform a series of welds in a butt joint arrangement. The results show that, joint quality, process response variables and welding temperature are highly affected by pin features and material orientation in FSW. Defect free joints with effective material transportation in the weld nugget zone were obtainedmore » when welding was performed with AA2050 on the advancing side. The tool also encounters less in-plane reaction force for welding with 2050 on the advancing side. Pin with thread+3 flats produces quality welds at low rotational and travel speed regardless of the location of alloys on advancing or retreating side.« less

  12. The change of atomic distribution and hardness by nitrogen implantation into aluminum alloy.

    PubMed

    Chung, J P; Lee, J S; Kim, K R; Choi, B H

    2008-02-01

    Through many studies of the nitrogen implantation into aluminum alloy, researchers have concluded that AlN (aluminum nitride) formation is the key to hardening the aluminum surface. We implanted nitrogen ions into the Al6061, using an ion implanter which has a modified Bernas ion source. We changed the incident ion energies (25 keV, 50 keV) and fluences (1x10(17)-2x10(18) ions/cm(2)). To measure the depth hardness of implanted samples, we used nanoindentation test. The test results showed that the hardness of the implanted sample increased as the incident ion fluence increased until 1x10(18) ions/cm(2). However, the hardness did not increase at the fluence of 2x10(18) ions/cm(2). Furthermore, another result showed that the hardness was slightly decreased. To see the depth distribution of elements, we used Auger electron spectroscopy (AES) analysis with depth profiling. Through the AES analysis, we observed that the nitrogen atomic ratio did not increase; since the atomic ratio reached its maximum point (50%), the depth profile formed a flat curve in the AES. It is determined by the AlN structure (1:1 combination), that is, by the stoichiometrical rule. The nitrogen atoms diffused to the inner and outer sides rather than made a narrowly ranged accumulation. We observed that the flat curve was lowered downward a little at the fluence of 2x10(18) ions/cm(2). Observing the atomic distribution of oxygen in AES, we could conclude that the lowered curve was due to the recoil implantation of oxygen which had been originally combined with the aluminum surface in the aluminum oxide (Al(2)O(3)) layer. Comparing the AES result and the nanoindention result, we concluded that the recoiled oxygen atoms are not effective on hardening the Al surface. In this study, we observed the tendency to stop increasing the samples' hardness over the ion fluence of 1x10(18) ions/cm(2). We observed the saturation of the atomic ratio by the stoichiometrical rule.

  13. Fractographic analysis of the low energy fracture of an aluminum alloy

    NASA Technical Reports Server (NTRS)

    Tanaka, J.; Pampillo, C. A.; Low, J. R., Jr.

    1972-01-01

    A study of the fracture process in a high strength aluminum alloy, 2014T6, was undertaken to identify the void nucleating particles in this material, to determine their composition, and to suggest means by which they might be eliminated without loss of strength.

  14. Thermal stress-relief treatments for 2219 aluminum alloy are evaluated

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Evaluation of three thermal stress relief treatments for 2219 aluminum alloy in terms of their effect on residual stress, mechanical properties, and stress corrosion resistance. The treatments are post aging and stress relieving fullscale and subscale parts formed in the aged T81 condition, and aging subscale parts formed in the unaged T31 condition.

  15. The corrosion protection of several aluminum alloys by chromic acid and sulfuric acid anodizing

    NASA Technical Reports Server (NTRS)

    Danford, M. D.

    1994-01-01

    The corrosion protection afforded 7075-T6, 7075-T3, 6061-T6, and 2024-T3 aluminum alloys by chromic acid and sulfuric acid anodizing was examined using electrochemical techniques. From these studies, it is concluded that sulfuric acid anodizing provides superior corrosion protection compared to chromic acid anodizing.

  16. Exploratory Development for Design Data on Structural Aluminum Alloys in Representative Aircraft Environments

    DTIC Science & Technology

    1977-07-01

    Alloy," Final Report under Naval Air Systems Command Contract N00019-69- C-0292, January 1970. 6. D. J. Brownhill, C. F. Babilon , G. E. Nordmark and D. 0...34Further Development of Aluminum Alloy X7050," Final Report under Naval Air Systems Command Contract N00019- 71-C-0131, May 1972. 9. C. F. Babilon , R

  17. Single-point incremental forming of 2024-T3 aluminum alloy sheets

    NASA Astrophysics Data System (ADS)

    Li, Xiaoqiang; Yu, Honghan; Guo, Guiqiang; Li, Dongsheng

    2013-12-01

    Many aluminum alloy sheet metal parts with complex geometry in airplane are often formed by drop hammer forming with intermediate annealing and then heat treated into T temper. The manufacturing cost is very high because of a number of forming and heat treatment steps. Incremental sheet forming can form complex parts because of larger forming limit than conventional stamping. So the research that the part is formed directly from T temper aluminum alloy sheet using incremental sheet forming is very attractive. 2024-T3 is the aluminum alloy used mostly in aerospace manufacturing. Single-point incremental forming experiments with 2024-T3 are carried to form cone shape parts. In this work, the formability of 2024-T3 aluminum alloy sheets in single-point incremental forming was preliminarily studied. Effect of tool diameter and wall angle on the formability were investigated. It is found that the surface roughness can be reduced and the forming depth of the cone shape part can be increased by increasing the tool diameter.

  18. Effect of aging on mechanical properties of aluminum-alloy rivets

    NASA Technical Reports Server (NTRS)

    Roop, Frederick C

    1941-01-01

    Curves and tabular data present the results of strength tests made during and after 2 1/2 years of aging on rivets and rivet wire of 3/16-inch nominal diameter. The specimens were of aluminum alloy: 24s, 17s, and a17s of the duralumin type and 53s of the magnesium-silicide type.

  19. Environmentally assisted crack growth rates of high-strength aluminum alloys

    NASA Astrophysics Data System (ADS)

    Connolly, Brain J.; Deffenbaugh, Kristen L.; Moran, Angela L.; Koul, Michelle G.

    2003-01-01

    The scope of this project is to evaluate the environmentally assisted long crack growth behavior of candidate high-strength aluminum alloys/tempers, specifically AA7150-T7751 and AA7040-T7651, for consideration as viable replacements/refurbishment for stress-corrosion cracking in susceptible AA7075-T6 aircraft components found in aging aircraft systems.

  20. Effect of aging on mechanical properties of aluminum-alloy rivets

    NASA Technical Reports Server (NTRS)

    Roop, Frederick C

    1941-01-01

    Curves and tabular data present the results of strength tests made during and after 2 1/2 years of aging on rivets and rivet wire of 3/16-inch nominal diameter. The specimens were of aluminum alloy: 24S, 17S, and A17S of the duralumin type and 53S of the magnesium-silicide type.

  1. A mathematical model to predict the strength of aluminum alloys subjected to precipitation hardening

    SciTech Connect

    Qureshi, F.S.; Sheikh, A.K.; Rashid, M.

    1999-06-01

    A number of alloys, notably most of the aluminum alloys, can be heat treated by aging. This aging due to time-dependent precipitation hardening increases the strength and hardness as well as modifying other mechanical properties. Precipitation hardening has been a popular strengthening mechanism for many decades; therefore, extensive information is available in literature about the precipitation-hardening response of various series of aluminum alloys. The age-hardening response of these alloys is usually represented in graphical form as plotted between property changes and aging time for different temperatures. In designing a suitable precipitation-hardening strategy, one can refer to these graphs. However, for automatic control of aging furnaces, as well as for decision making regarding optimal selection of aging conditions (time/temperature combination), it is desirable to express these relationships in a formal mathematical structure. A mathematical model is developed in this article for widely used heat treatable aluminum alloys used in the extrusion industry. This model is a condensed representation of all {sigma} = f(T,t) curves in different series of aluminum alloys, and the parameters of this model characterize the various compositions of the alloys in the series.

  2. The effect of hydrogen embrittlement on the localized plastic deformation of aluminum alloy

    SciTech Connect

    Bochkareva, Anna Lunev, Aleksey; Barannikova, Svetlana; Gorbatenko, Vadim; Shlyakhova, Galina; Zuev, Lev

    2015-10-27

    The effect of hydrogen embrittlement on the localized plastic deformation of aluminum alloy D1 was investigated. The studies were performed for the test samples of aluminum alloy subjected to electrolytic hydrogenation. It is found that the mechanical properties and localized plastic deformation parameters of aluminum alloy are affected adversely by hydrogen embrittlement. The hydrogenated counterpart of alloy has a lower degree of ductility relative to the original alloy; however, the plastic flow behavior of material remains virtually unaffected. Using scanning electron and atomic force microscopy methods, the changes in the fracture surface were investigated. The deformation diagrams were examined for the deformed samples of aluminum alloy. These are found to show all the plastic flow stages: the linear, parabolic and pre-failure stages would occur for the respective values of the exponent n from the Ludwik-Holomon equation. Using digital speckle image technique, the local strain patterns were being registered for the original alloy D1 and the counterpart subjected to electrolytic hydrogenation for 100 h.

  3. Quench sensitivity of hot extruded 6061-T6 and 6069-T6 aluminum alloys

    SciTech Connect

    Bergsma, S C; Kassner, M E; Li, X; Rosen, R S

    2000-08-08

    The purpose of this study is to investigate the quench sensitivity of mechanical properties of hot extruded 6061 and 6069 aluminum alloys. The relationship between mechanical properties and quench delzty time at various temperatures between 200-500 C was determined. It was concluded that the 6069-T6 was somewhat more quench sensitive than 6061, which may be consistent with the composition difference.

  4. Precipitate evolution in friction stir welding of 2219-T6 aluminum alloys

    SciTech Connect

    Chen, Y.C.; Feng, J.C.; Liu, H.J.

    2009-06-15

    Precipitate evolution in friction stir welding of 2219-T6 aluminum alloys was characterized by transmission electron microscopy. In the weld nugget zone and the thermo-mechanically affected zone some metastable precipitates overaged to equilibrium phase while others solutionized into the aluminum solid solution. In the heat-affected zone the precipitates coarsened.

  5. Industrial capability to chem-mill aluminum alloy 2219 in T-37 and T-87

    NASA Technical Reports Server (NTRS)

    Milewski, C., Jr.; Chen, K. C. S.

    1979-01-01

    Procedures and chemical baths were developed for chem-milling aluminum alloy 2219. Using a series of sample etchings, it was found that good etching results could be obtained by using 'white plastic for porcelain repair (toluol, xylol, and petroleum distillates)' on top of cellosolve acetate as resist coatings and ferric chloride as on etchant.

  6. Fabrication of superhydrophobic surface with improved corrosion inhibition on 6061 aluminum alloy substrate

    NASA Astrophysics Data System (ADS)

    Li, Xuewu; Zhang, Qiaoxin; Guo, Zheng; Shi, Tian; Yu, Jingui; Tang, Mingkai; Huang, Xingjiu

    2015-07-01

    This work has developed a simple and low-cost method to render 6061 aluminum alloy surface superhydrophobicity and excellent corrosion inhibition. The superhydrophobic aluminum alloy surface has been fabricated by hydrochloric acid etching, potassium permanganate passivation and fluoroalkyl-silane modification. Meanwhile, the effect of the etching and passivation time on the wettability and corrosion inhibition of the fabricated surface has also been investigated. Results show that with the etching time of 6 min and passivation time of 180 min the fabricated micro/nano-scale terrace-like hierarchical structures accompanying with the nanoscale coral-like network bulge structures after being modified can result in superhydrophobicity with a water contact angle (CA) of 155.7°. Moreover, an extremely weak adhesive force to droplets as well as an outstanding self-cleaning behavior of the superhydrophobic surface has also been proved. Finally, corrosion inhibition in seawater of the as-prepared aluminum alloy surface is characterized by potentiodynamic polarization curves and electrochemical impedance spectroscopy. Evidently, the fabricated superhydrophobic surface attained an improved corrosion inhibition efficiency of 83.37% compared with the traditional two-step processing consisting of etching and modification, which will extend the further applications of aluminum alloy especially in marine engineering fields.

  7. Microbiologically induced corrosion of aluminum alloys in fuel-oil/aqueous system.

    PubMed

    Yang, S S; Lin, J Y; Lin, Y T

    1998-09-01

    To investigate the microbiologically induced corrosion of aluminum alloys in fuel-oil/aqueous system, aluminum alloys A356, AA 5052, AA 5083 and AA 6061 were chosen as the test alloys and Cladosporium and several fuel-oil contaminated microbes isolated in Taiwan were used as test organisms. Aluminum alloy AA 5083 in fuel-oil/aqueous system was the most susceptible material for microbial corrosion, then followed by aluminum alloys AA 5052 and A356, and AA 6061 was more resistant to microbial aggression. Mixed culture had high capability of corrosion, then followed by Penicillium sp. AM-F5, Fusarium sp. AM-F1, Pseudomonas aeruginosa AM-B5, Ps. fluorescens AM-B9, C. resinae ATCC 22712, Penicillium sp. AM-F2, Candida sp. AM-Y1 and Ps. aeruginosa AM-B11. From energy dispersive spectrometer analysis, aluminum and magnesium contents decreased in the corrosion area, while chlorine and sulfur contents increased. The major organic acid produced in fuel-oil/aqueous system was acetic acid, and the total organic acids content had a positive correlation with the degree of microbial corrosion.

  8. Odontologic use of copper/aluminum alloys: mitochondrial respiration as sensitive parameter of biocompatibility.

    PubMed

    Rodrigues, Luiz Erlon A; Carvalho, Antônio A V F; Azevedo, Antônio L M; Cruz, Cecília B B V; Maia, Antônio Wanderley C

    2003-01-01

    Copper/aluminum alloys are largely utilized in odontological restorations because they are less expensive than gold or platinum. However, tarnishing and important corrosion in intrabuccal prostheses made with copper/aluminum alloys after 28 days of use have been reported. Several kinds of food and beverage may attack and corrode these alloys. Copper is an essential component of several important enzymes directly involved in mitochondrial respiratory metabolism. Aluminum, in contrast, is very toxic and, when absorbed, plasma values as small as 1.65 to 21.55 microg/dl can cause severe lesions to the nervous system, kidneys, and bone marrow. Because mitochondria are extremely sensitive to minimal variation of cellular physiology, the direct relationship between the mitocondrial respiratory chain and cell lesions has been used as a sensitive parameter to evaluate cellular aggression by external agents. This work consisted in the polarographic study of mitochondrial respiratory metabolism of livers and kidneys of rabbits with femoral implants of titanium or copper/aluminum alloy screws. The experimental results obtained did not show physiological modifications of hepatic or renal mitochondria isolated from animals of the three experimental groups, which indicate good biocompatibility of copper/ aluminum alloys and suggest their odontological use.

  9. Genetically engineered peptides for inorganics: study of an unconstrained bacterial display technology and bulk aluminum alloy.

    PubMed

    Adams, Bryn L; Finch, Amethist S; Hurley, Margaret M; Sarkes, Deborah A; Stratis-Cullum, Dimitra N

    2013-09-06

    The first-ever peptide biomaterial discovery using an unconstrained engineered bacterial display technology is reported. Using this approach, we have developed genetically engineered peptide binders for a bulk aluminum alloy and use molecular dynamics simulation of peptide conformational fluctuations to demonstrate sequence-dependent, structure-function relationships for metal and metal oxide interactions.

  10. Tribological characteristics of aluminum alloys against steel lubricated by ammonium and imidazolium ionic liquids

    SciTech Connect

    Qu, Jun; Blau, Peter Julian; Dai, Sheng; Luo, Huimin; Meyer III, Harry M; Truhan, John J.

    2009-01-01

    Sliding friction and wear characteristics of aluminum alloys against AISI 52100 steel lubricated by ionic liquids (ILs) were investigated at both room and elevated temperatures. The tested aluminum alloys include a commercially pure aluminum Al 1100, a wrought alloy Al 6061-T6511, and a cast alloy Al 319-T6. The lubricating performance of two ILs with the same anion, one ammonium-based [C8H17]3NH.Tf2N and one imidazolium-based C10mim.Tf2N, were compared each other and benchmarked against that of a conventional fully-formulated engine oil. Significant friction (up to 35%) and wear (up to 55%) reductions were achieved by the ammonium IL when lubricating the three aluminum alloys compared to the engine oil. The imidazolium IL performed better than the oil but not as well as the ammonium IL for Al 1100 and 319 alloys. However, accelerated wear was unexpectedly observed for Al 6061 alloy when lubricated by C10mim.Tf2N. Surface chemical analyses implied complex tribochemical reactions between the aluminum surfaces and ILs during the wear testing, which has been demonstrated either beneficial by forming a protective boundary film or detrimental by causing severe tribo-corrosion. The effects of the IL cation structure, aluminum alloy composition, and tribo-testing condition on the friction and wear results have been discussed.

  11. Aluminum alloys for satellite boxes : engineering guidelines for obtaining adequate strength while minimizing residual stresses and machining distortion.

    SciTech Connect

    Younger, Mandy S.; Eckelmeyer, Kenneth Hall

    2007-11-01

    This report provides strategies for minimizing machining distortion in future designs of aluminum alloy satellite boxes, based in part on key findings from this investigation. The report outlines types of aluminum alloys and how they are heat treated, how residual stresses develop during heat treatment of age hardening alloys, ways residual stresses can be minimized, and the design of machining approaches to minimize distortion in parts that contain residual stresses. Specific recommendations are made regarding alloy selection, heat treatment, stress relieving, and machining procedures for boxes requiring various strength levels with emphasis on 6061 and 7075 aluminum alloys.

  12. Effect of Rivet Pitch upon the Fatigue Strength of Single-row Riveted Joints of 0.025- to 0.025-inch 24S-T Alclad

    NASA Technical Reports Server (NTRS)

    Seliger, Victor

    1943-01-01

    S-N curves at the range ratio of 0.2 were experimentally obtained for each of the following values of rivet pitch P as used in a single-row lap joint of 0.025- to 0.025-inch 24S-T alclad with one-eight AN430 round-head rivets: p=0.5, 0.75, 1.0, 1.5. Families of constant rivet pitch curves, which define the fatigue life for specimens studied, were developed. Curves showing the variation of the effective stress concentration factor in fatigue with rivet pitch and maximum load per rivet were also established.

  13. A study on the surface shape and roughness of aluminum alloy for heat exchanger using ball end milling

    NASA Astrophysics Data System (ADS)

    Lee, E.; Kim, Y.; jeong, H.; Chung, H.

    2015-09-01

    Aluminum alloy is a material with a high strength-weight ratio and excellent thermal conductivity. It neither readily corrodes nor quickly weakens at low temperatures, but can be easily recycled. Because of these features, aluminum heat exchangers are widely used in aluminum alloy. In addition, the aluminum alloy used in other areas is expected to gradually increase. As a result, researchers have been continuously studying the cutting patterns of aluminium alloy. However, such studies are fewer than those on the cutting patterns of ordinary steel. Moreover, the research on ball end milling with aluminium alloys has not received much attention. Therefore, in this study, an attempt was made to find the optimal cutting pattern among the seven cutting patterns for the machining of the commonly used aluminum alloy using ball end milling for a heat exchanger. The optimal pattern was found by comparing the different shapes and surface roughness values produced by the seven patterns.

  14. Finite Element Analysis and Die Design of Non-specific Engineering Structure of Aluminum Alloy during Extrusion

    SciTech Connect

    Chen, D.-C.; Lu, Y.-Y.

    2010-06-15

    Aluminum extension applies to industrial structure, light load, framework rolls and conveyer system platform. Many factors must be controlled in processing the non-specific engineering structure (hollow shape) of the aluminum alloy during extrusion, to obtain the required plastic strain and desired tolerance values. The major factors include the forming angle of the die and temperature of billet and various materials. This paper employs rigid-plastic finite element (FE) DEFORM 3D software to investigate the plastic deformation behavior of an aluminum alloy (A6061, A5052, A3003) workpiece during extrusion for the engineering structure of the aluminum alloy. This work analyzes effective strain, effective stress, damage and die radius load distribution of the billet under various conditions. The analytical results confirm the suitability of the current finite element software for the non-specific engineering structure of aluminum alloy extrusion.

  15. [Comparison of texture distribution of cold rolled DC and CC AA 5052 aluminum alloy at different positions through thickness direction by XRD].

    PubMed

    Chen, Ming-biao; Ma, Min; Yang, Qing-xiang; Wang, Shan; Liu, Wen-chang; Zhao, Ying-mei

    2013-09-01

    To provide gist of DC AA 5052 and CC AA 5052 aluminum alloy to industry production and application, the texture variation of cold rolled sheets through thickness direction was studied by X-ray diffraction method, and the difference in texture at surface, quarter and center layer was analyzed. The hot plates of direct chill cast (DC) AA 5052 and continuous cast (CC) AA 5052 aluminum alloy were annealed at 454 degrees C for 4 hours and then cold rolled to different reductions. The strength and volume fraction of the fiber in CC AA 5052 aluminum alloy is larger than in DC AA 5052 aluminum alloy after same rolling reduction The volume fraction of the recrystallization texture cube in the CC AA 5052 aluminum alloy is less than in the DC AA 5052 aluminum alloy, which result in that CC AA 5052 aluminum alloy needs less cold rolling reduction than DC AA 5052 aluminum alloy for generating the texture with same intensity and volume fraction at surface layer, quarter layer and center layer. The manufacturability and performance of CC AA 5052 aluminum alloy is superior to DC AA 5052 aluminum alloy for use in stamping.

  16. Continuous Severe Plastic Deformation Processing of Aluminum Alloys

    SciTech Connect

    Raghavan Srinivasan; Prabir K. Chaudhury; Balakrishna Cherukuri; Qingyou Han; David Swenson; Percy Gros

    2006-06-30

    by SPD techniques. This combination of properties makes UFG metals produced by SPD very attractive as machining, forging or extrusion stock, both from the point of view of formability as well as energy and cost saving. However, prior to this work there had been no attempt to transfer these potential benefits observed in the laboratory scale to industrial shop floor. The primary reason for this was that the laboratory scale studies had been conducted to develop a scientific understanding of the processes that result in grain refinement during SPD. Samples that had been prepared in the laboratory scale were typically only about 10-mm diameter and 50-mm long (about 0.5-inch diameter and 2-inches long). The thrust of this project was three-fold: (i) to show that the ECAE/P process can be scaled up to produce long samples, i.e., a continuous severe plastic deformation (CSPD) process, (ii) show the process can be scaled up to produce large cross section samples that could be used as forging stock, and (iii) use the large cross-section samples to produce industrial size forgings and demonstrate the potential energy and cost savings that can be realized if SPD processed stock is adopted by the forging industry. Aluminum alloy AA-6061 was chosen to demonstrate the feasibility of the approach used. The CSPD process developed using the principles of chamber-less extrusion and drawing, and was demonstrated using rolling and wire drawing equipment that was available at Oak Ridge National Laboratory. In a parallel effort, ECAE/P dies were developed for producing 100-mm square cross section SPD billets for subsequent forging. This work was carried out at Intercontinental Manufacturing Co. (IMCO), Garland TX. Forging studies conducted with the ECAE/P billets showed that many of the potential benefits of using UFG material can be realized. In particular, the material yield can be increased, and the amount of material that is lost as scrap can be reduced by as much as 50%. Forging

  17. Investigation of Cold Expansion of Short Edge Margin Holes with Pre-existing Cracks in 2024-T351 Aluminum Alloy

    DTIC Science & Technology

    2011-12-01

    INVESTIGATION OF COLD EXPANSION OF SHORT EDGE MARGIN HOLES WITH PREEXISTING CRACKS IN 2024-T351 ALUMINUM ALLOY by Dallen Lee...Aluminum Alloy 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Dallen Lee Andrew 5d. PROJECT NUMBER 5e. TASK NUMBER...SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT UU 18. NUMBER OF PAGES 207 19a. NAME OF RESPONSIBLE PERSON a. REPORT

  18. Preparations and properties of anti-corrosion additives of water-soluble metal working fluids for aluminum alloy materials.

    PubMed

    Watanabe, Shoji

    2008-01-01

    This short review describes various types of anti-corrosion additives of water-soluble metal working fluids for aluminum alloy materials. It is concerned with synthetic additives classified according to their functional groups; silicone compounds, carboxylic acids and dibasic acids, esters, Diels-Alder adducts, various polymers, nitrogen compounds, phosphoric esters, phosphonic acids, and others. Testing methods for water-soluble metal working fluids for aluminum alloy materials are described for a practical application in a laboratory.

  19. The Cleaning of OAB Universal Covers - An Origin of Smut in Aluminum Alloys

    SciTech Connect

    Shen, T

    2002-05-14

    The smut that appeared on the universal covers after the OAB cleaning process consists of sub-micron size aluminum particles originating from the machining of these parts prior to cleaning. The rigorous gross and precision cleanings with Brulin in the OAB cleaning process could not completely wash these fine particles away from the surfaces. However, applying a phosphoric acid etch before the cleaning helped to remove these fine aluminum particles. Experimental results again showed that an acid etching before cleaning is essential in preventing the occurrence of smut in aluminum alloy after gross/precision cleaning. A mechanism, based on the electrostatic {zeta}-potential, is proposed to explain the occurrence of smut that is often encountered during the cleaning of aluminum alloys.

  20. Manufacturing a durable superhydrophobic polypropylene coating on aluminum alloy substrate by adding nano-titania nanoparticles.

    PubMed

    Jiang, Haiyun; Wu, Ruomei; Hu, Zhongliang; Yuan, Zhiqing; Zhao, Xuehui; Liu, Qilong

    2014-07-01

    A superhydrophobic polypropylene (PP) coating on the surface of aluminum alloy coupons is unstable because of the existence of metastable state in curing process. Nano-titania particles were added into PP solution to form hierarchical micro- and nano-structures of PP coatings on the surface of aluminum alloy coupons. The morphology of the coatings was observed with Scanning Electron Microscopy (SEM), and the corresponding structure and components were investigated with Energy Dispersive Spectrometer (EDS) and X-ray diffractometer (XRD), respectively. The results indicated that nano-TiO2 particles are the main nucleation cores in the curing of the coatings; PP in solution is enclosed in these cores and crystallizes gradually. The coatings can preserve the stable micro- and nano-structure on six months due to the nucleation action of nano-TiO2 particles, and its durable water contact angle (WCA) is about 164 +/- 1.5 degrees.

  1. Effect of Electromagnetic Treatment on Fatigue Resistance of 2011 Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Mohin, M. A.; Toofany, H.; Babutskyi, A.; Lewis, A.; Xu, Y. G.

    2016-08-01

    Beneficial effects of the electromagnetic treatment on fatigue resistance were reported on several engineering alloys. These could be linked to the dislocation activity and the rearrangement of the crystal structure of the material under the electromagnetic field (EMF), resulting in delayed crack initiation. This paper presents an experimental study on the effect of pulsed electromagnetic treatment on the fatigue resistance of 2011 aluminum alloy. Circular cantilever specimens with loads at their ends were tested on rotating fatigue machine SM1090. Fatigue lives of treated and untreated specimens were analyzed and compared systematically. It has been found that the effect of the pulsed electromagnetic treatment on the fatigue resistance is dependent on the intensity of the pulsed EMF and the number of the treatment applied. Clear beneficial effect of the pulsed electromagnetic treatment on the fatigue resistance of the aluminum alloys has been observed, demonstrating a potential new technique to industries for fatigue life extension.

  2. Acoustic emission location on aluminum alloy structure by using FBG sensors and PSO method

    NASA Astrophysics Data System (ADS)

    Lu, Shizeng; Jiang, Mingshun; Sui, Qingmei; Dong, Huijun; Sai, Yaozhang; Jia, Lei

    2016-04-01

    Acoustic emission location is important for finding the structural crack and ensuring the structural safety. In this paper, an acoustic emission location method by using fiber Bragg grating (FBG) sensors and particle swarm optimization (PSO) algorithm were investigated. Four FBG sensors were used to form a sensing network to detect the acoustic emission signals. According to the signals, the quadrilateral array location equations were established. By analyzing the acoustic emission signal propagation characteristics, the solution of location equations was converted to an optimization problem. Thus, acoustic emission location can be achieved by using an improved PSO algorithm, which was realized by using the information fusion of multiple standards PSO, to solve the optimization problem. Finally, acoustic emission location system was established and verified on an aluminum alloy plate. The experimental results showed that the average location error was 0.010 m. This paper provided a reliable method for aluminum alloy structural acoustic emission location.

  3. Ultrasonic-promoted rapid TLP bonding of fine-grained 7034 high strength aluminum alloys.

    PubMed

    Guo, Weibing; Leng, Xuesong; Luan, Tianmin; Yan, Jiuchun; He, Jingshan

    2017-05-01

    High strength aluminum alloys are extremely sensitive to the thermal cycle of welding. An ultrasonic-promoted rapid TLP bonding with an interlayer of pure Zn was developed to join fine-grained 7034 aluminum alloys at the temperature of lower 400°C. The oxide film could be successfully removed with the ultrasonic vibration, and the Al-Zn eutectic liquid phase generated once Al and Zn contacted with each other. Longer ultrasonic time can promote the diffusion of Zn into the base metal, which would shorten the holding time to complete isothermal solidification. The joints with the full solid solution of α-Al can be realized with the ultrasonic action time of 60s and holding time of only 3min at 400°C, and the shear strength of joints could reach 223MPa. The joint formation mechanism and effects of ultrasounds were discussed in details.

  4. Effect of polymer coatings on fatigue strength of aluminum alloy 2024 box beams

    NASA Technical Reports Server (NTRS)

    Nordmark, G. E.; Kelsey, R. A.

    1972-01-01

    Previous investigators have shown that polymer coatings raise the fatigue strength of metals tested in air to about the same level as that of uncoated specimens tested in vacuum. The results are given of tests to determine if a polymer coating would improve the fatigue strength of built-up aluminum alloy members simulating aircraft construction. Aluminum alloy 2024-T4 riveted box beams were subjected to constant amplitude fatigue tests in air as well as in salt water fog. The coating did not improve the fatigue strength of beams tested in either environment. This is believed to result from the fact that most failures originated at rivet holes, which were isolated from both the coating and the environment.

  5. Surface treatment of aluminum alloy at room temperature with titanium-nitride films by dynamic mixing

    NASA Astrophysics Data System (ADS)

    Sato, T.; Ohata, K.; Asahi, N.; Ono, Y.; Oka, Y.; Hashimoto, I.; Arimatsu, K.

    Titanium-nitride coating films were prepared on aluminum alloy plates at room temperature with simultaneous ion implantation and metal vapor deposition (dynamic mixing) by using a high current ion source. The films were analysed by means of Auger electron spectroscopy, X-ray photoelectron spectroscopy and X-ray diffraction. The results showed the presence of small amount of oxygen and carbon impurities due to a high current density (0.5-1.0 mA/cm 2) of the nitrogen beam (energy: 20 keV). Films of 1.2 μm thickness showed uniform composition. Titanium-nitride coated aluminum alloy (film thickness: 15 μm) was ten times harder than the untreated one. The coated plate was examined by a pin-on-disc wear tester. The results showed better wear properties.

  6. The role of hydrogen in hot-salt stress corrosion cracking of titanium-aluminum alloys

    NASA Technical Reports Server (NTRS)

    Ondrejcin, R. S.

    1971-01-01

    Additional support is presented for the previously proposed role of hydrogen as an embrittling agent in hot-salt stress corrosion cracking of titanium-aluminum alloys. The main source of hydrogen formed during the reactions of titanium alloys with hot salt was identified as water associated with the salt. Hydrogen is produced by the reaction of an intermediate (hydrogen halide) with the alloy rather than from metal-water reactions. The fracture mode of precracked tensile specimens was ductile when the specimens were tested in air, and brittle when tests were made in high-pressure hydrogen. Stressed titanium-aluminum alloys also were cracked by bombardment with hydrogen ions produced in a proton accelerator. The approximate concentrations of the hydrogen ions in the alloys were calculated.

  7. Evaluation of Aluminum Alloy 2050-T84 Microstructure Mechanical Properties at Ambient and Cryogenic Temperatures

    NASA Technical Reports Server (NTRS)

    Hafley, Robert A.; Domack, Marcia S.; Hales, Stephen J.; Shenoy, Ravi N.

    2011-01-01

    Aluminum alloy 2050 is being considered for the fabrication of cryogenic propellant tanks to reduce the mass of future heavy-lift launch vehicles. The alloy is available in section thicknesses greater than that of the incumbent aluminum alloy, 2195, which will enable the designs with greater structural efficiency. While ambient temperature design allowable properties are available for alloy 2050, cryogenic properties are not available. To determine its suitability for use in cryogenic propellant tanks, tensile, compression and fracture tests were conducted on 4 inch thick 2050-T84 plate at ambient temperature and at -320 F. Various metallurgical analyses were also performed in order to provide an understanding of the compositional homogeneity and microstructure of 2050.

  8. Evaluation of Aluminum Alloy 2050-T84 Microstructure and Mechanical Properties at Ambient and Cryogenic Temperatures

    NASA Technical Reports Server (NTRS)

    Hafley, Robert A.; Domack, Marcia S.; Hales, Stephen J.; Shenoy, Ravi N.

    2011-01-01

    Aluminum alloy 2050 is being considered for the fabrication of cryogenic propellant tanks to reduce the mass of future heavy-lift launch vehicles. The alloy is available in section thicknesses greater than that of the incumbent aluminum alloy, 2195, which will enable designs with greater structural efficiency. While ambient temperature design allowable properties are available for alloy 2050, cryogenic properties are not available. To determine its suitability for use in cryogenic propellant tanks, tensile, compression and fracture tests were conducted on 4 inch thick 2050-T84 plate at ambient temperature and at -320degF. Various metallurgical analyses were also performed in order to provide an understanding of the compositional homogeneity and microstructure of 2050.

  9. Susceptibility of Aluminum Alloys to Corrosion in Simulated Fuel Blends Containing Ethanol

    SciTech Connect

    Thomson, Jeffery K; Pawel, Steven J; Wilson, Dane F

    2013-01-01

    The compatibility of aluminum and aluminum alloys with synthetic fuel blends comprised of ethanol and reference fuel C (a 50/50 mix of toluene and iso-octane) was examined as a function of water content and temperature. Commercially pure wrought aluminum and several cast aluminum alloys were observed to be similarly susceptible to substantial corrosion in dry (< 50 ppm water) ethanol. Corrosion rates of all the aluminum materials examined was accelerated by increased temperature and ethanol content in the fuel mixture, but inhibited by increased water content. Pretreatments designed to stabilize passive films on aluminum increased the incubation time for onset of corrosion, suggesting film stability is a significant factor in the mechanism of corrosion.

  10. Effect and kinetic mechanism of ultrasonic vibration on solidification of 7050 aluminum alloy

    NASA Astrophysics Data System (ADS)

    Jiang, Ripeng; Li, Xiaoqian; Chen, Pinghu; Li, Ruiqing; Zhang, Xue

    2014-07-01

    The work described in this paper dealt with the effect of ultrasonic vibration on the solidification of 7050 aluminum alloy. Two experiments were carried out through introducing ultrasound into the semi-continuous direct-chill (DC) casting of aluminum alloy and into alloy solidifying in a crucible, respectively. Results show that ultrasonic vibration can refine grains in the whole cross-section of a billet in the first experiment and is able to increase the cooling rate within the temperature range from 625 °C to 590 °C in the other one. The mechanism of particle resonance caused by ultrasonic vibration was illustrated on the basis of theoretical analysis of the kinetics and energy conversion during the solidification. It is demonstrated that the kinetic energy of resonant particles are mainly from the latent heat energy of solidification, which can shorten the cooling time, inhibit the crystal growth and then lead to the grain refinement.

  11. Integral Hot Gas Pressure Forming of an AA2219 Aluminum Alloy Ellipsoidal Shell

    NASA Astrophysics Data System (ADS)

    Yuan, S. J.; Zhang, R.; Zhang, W. W.

    2017-02-01

    To overcome the poor plastic deformation performance of AA2219 aluminum alloy sheet and its weld seam at room temperature, an integral hot gas pressure forming (IHGPF) process for a combined welded ellipsoidal shell was proposed. A simulation of the IHGPF process was conducted to analyze the axis length variation and thickness distribution during the forming process of the combined welded ellipsoidal shell at elevated temperature. The results demonstrated that lengths of the short and long axes were 150 mm and 220 mm, respectively, and that maximum wall thinning occurred at the pole. Furthermore, an experiment was conducted using IHGPF, and the forming accuracy was measured by three-dimensional video technology. A sound ellipsoidal shell with final axis length ratio of 1.5 was obtained with a shell diameter accuracy of more than 99.3%. It was experimentally proven that an aluminum alloy ellipsoidal shell can be formed using the proposed IHGPF technology.

  12. Ultrasonic semi-solid coating soldering 6061 aluminum alloys with Sn-Pb-Zn alloys.

    PubMed

    Yu, Xin-ye; Xing, Wen-qing; Ding, Min

    2016-07-01

    In this paper, 6061 aluminum alloys were soldered without a flux by the ultrasonic semi-solid coating soldering at a low temperature. According to the analyses, it could be obtained that the following results. The effect of ultrasound on the coating which promoted processes of metallurgical reaction between the components of the solder and 6061 aluminum alloys due to the thermal effect. Al2Zn3 was obtained near the interface. When the solder was in semi-solid state, the connection was completed. Ultimately, the interlayer mainly composed of three kinds of microstructure zones: α-Pb solid solution phases, β-Sn phases and Sn-Pb eutectic phases. The strength of the joints was improved significantly with the minimum shear strength approaching 101MPa.

  13. Stress Corrosion Cracking of Wrought and P/M High Strength Aluminum Alloys.

    DTIC Science & Technology

    1983-03-01

    M 1 Jan. 1982 - 31 Dec. 1982 High Strength Aluminum Alloys 6. PERFORMING ORG. REPORT NUMBER ,". A4THOR( s ) 0. CONTRACT OR GRANT NUMBER(&) F, W...program are presented, C-3 with emphasis on the stress corrosion cracking and hydrogen embrittlement of S the P/M X-7090 AValloy. More complete results...specimens. The value obtained, about 󈧋 cm / s -is one of the first successful measurements of this type. We remain confident that we have established

  14. Microstructure-sensitive plasticity and fatigue modeling of extruded 6061 aluminum alloys

    NASA Astrophysics Data System (ADS)

    McCullough, Robert Ross

    In this study, the development of fatigue failure and stress anisotropy in light weight ductile metal alloys, specifically Al-Mg-Si aluminum alloys, was investigated. The experiments were carried out on an extruded 6061 aluminum alloy. Reverse loading experiments were performed up to a prestrain of 5% in both tension-followed-by-compression and compression-followed-by-tension. The development of isotropic and kinematic hardening and subsequent anisotropy was indicated by the observation of the Bauschinger effect phenomenon. Experimental results show that 6061 aluminum alloy exhibited a slight increase in the kinematic hardening versus applied prestrain. However, the ratio of kinematic-to-isotropic hardening remained near unity. An internal state variable (ISV) plasticity and damage model was used to capture the evolution of the anisotropy for the as-received T6 and partially annealed conditions. Following the stress anisotropy experiments, the same extruded 6061 aluminum alloy was tested under fully reversing, strain-controlled low cycle fatigue at up to 2.5% strain amplitudes and two heat treatment conditions. Observations were made of the development of striation fields up to the point of nucleation at cracked and clustered precipitants and free surfaces through localized precipitant slip band development. A finite element enabled micro-mechanics study of fatigue damage development of local strain field in the presence of hard phases was conducted. Both the FEA and experimental data sets were utilized in the implementation of a multi-stage fatigue model in order to predict the microstructure response, including fatigue nucleation and propagation contributions on the total fatigue life in AA6061. Good correlation between experimental and predicted results in the number of cycles to final failure was observed. The AA6061 material maintained relatively consistent low cycle fatigue performance despite two different heat treatments.

  15. Effect of Two-Stage Aging on Microstructure of 7075 Aluminum Alloys

    DTIC Science & Technology

    1981-04-01

    which particular microstructural characteristic is of greatest significance in the stress corrosion behavior of 7075 in a high strength condition. 2...is expected that RRA may provide less improvement in the stress corrosion behavior of 7050 than of I I 7075 . Data from these tests would allow...I v h EFFECT OF TWO-STAGE AGING ON MICROSTRUCTURE OF 7075 ALUMINUM ALLOYS RE- 627 "Final Report E April 1981 "by 7! Jonn M. Papazian OT i. Prepared

  16. Investigation of Fatigue Crack-Growth Resistance of Aluminum Alloys under Spectrum Loading.

    DTIC Science & Technology

    1983-04-01

    42 15 Longitudinal Microstructure of 7075 -T651 ..................... 43 16 Comparison of Fatigue Crack Growth Behavior Under Constant Amplitude...strength will exhibit similar retardation behavior . ( 2 0 ) Chanani(1) found that this was not the case for 2024-T8 and 7075 -T73 heat treated to the same...34 ASTM STP 595, 1976. 9. G.R. Chanani, "Effect of Thickness on Retardation Behavior of 7075 and 2024 Aluminum Alloys," ASTM STP 631, 1977. 10. G.R

  17. On Microstructural Control of Near-Threshold Fatigue Crack Growth in 7000-Series Aluminum Alloys.

    DTIC Science & Technology

    1982-04-02

    crack growth rate behavior for different microstruc - tural conditions in aluminum alloys is also in quantitative agreement with the predictions of the...34 .. . -~ Introduction ! A number of recent studies have been conducted to ascertain the influence of microstructure on fatigue crack growth behavior in aluminum...161. The da/dN data, obtained over a very broad spectrum of ,K, characterize the near-threshold growth-rate behavior unusually well. Predictions of

  18. Self-Reacting Friction Stir Welding for Aluminum Alloy Circumferential Weld Applications

    NASA Technical Reports Server (NTRS)

    Bjorkman, Gerry; Cantrell, Mark; Carter, Robert

    2003-01-01

    Friction stir welding is an innovative weld process that continues to grow in use, in the commercial, defense, and space sectors. It produces high quality and high strength welds in aluminum alloys. The process consists of a rotating weld pin tool that plasticizes material through friction. The plasticized material is welded by applying a high weld forge force through the weld pin tool against the material during pin tool rotation. The high weld forge force is reacted against an anvil and a stout tool structure. A variation of friction stir welding currently being evaluated is self-reacting friction stir welding. Self-reacting friction stir welding incorporates two opposing shoulders on the crown and root sides of the weld joint. In self-reacting friction stir welding, the weld forge force is reacted against the crown shoulder portion of the weld pin tool by the root shoulder. This eliminates the need for a stout tooling structure to react the high weld forge force required in the typical friction stir weld process. Therefore, the self-reacting feature reduces tooling requirements and, therefore, process implementation costs. This makes the process attractive for aluminum alloy circumferential weld applications. To evaluate the application of self-reacting friction stir welding for aluminum alloy circumferential welding, a feasibility study was performed. The study consisted of performing a fourteen-foot diameter aluminum alloy circumferential demonstration weld using typical fusion weld tooling. To accomplish the demonstration weld, weld and tack weld development were performed and fourteen-foot diameter rings were fabricated. Weld development consisted of weld pin tool selection and the generation of a process map and envelope. Tack weld development evaluated gas tungsten arc welding and friction stir welding for tack welding rings together for circumferential welding. As a result of the study, a successful circumferential demonstration weld was produced leading

  19. Laser welding of automotive aluminum alloys to achieve defect-free, structurally sound and reliable welds

    SciTech Connect

    DebRoy, T.

    2000-11-17

    The objective of this program was to seek improved process control and weldment reliability during laser welding of automotive aluminum alloys while retaining the high speed and accuracy of the laser beam welding process. The effects of various welding variables on the loss of alloying elements and the formation of porosity and other geometric weld defects such as underfill and overfill were studied both experimentally and theoretically.

  20. The application of acoustic emission technique to fatigue crack measurement. [in aluminum alloys

    NASA Technical Reports Server (NTRS)

    Singh, J. J.; Davis, W. T.; Crews, J. H., Jr.

    1974-01-01

    The applicability of acoustic emission technique to measure fatigue cracks in aluminum alloy specimens was investigated. There are several variables, such as the metallurgical and the physical treatment of the specimen, that can affect the level of acoustic activity of a fatigue specimen. It is therefore recommended that the acoustic emission technique be supplemented by other nondestructive evaluation methods to obtain quantitative data on crack growth.

  1. Correlation between shear punch and tensile data for neutron-irradiated aluminum alloys

    SciTech Connect

    Hamilton, M.L.; Edwards, D.J.; Toloczko, M.B.

    1995-04-01

    This work was performed to determine whether shear punch and tensile data obtained on neutron irradiated aluminum alloys exhibited the same type of relationship as had been seen in other work and to assess the validity of extrapolating the results to proton-irradiated alloys. This work was also meant to be the first of a series of similar test matrices designed to determine whether the shear punch/tensile relationship varied or was the same for different alloy classes.

  2. The effect of retrogression and reaging on the properties of the 7249 aluminum alloy

    NASA Astrophysics Data System (ADS)

    Es-Said, Omar S.; Frazier, William E.; Lee, Eui W.

    2003-01-01

    The retrogression and reaging (RRA) heat-treatment process and recent developments in high-strength 7xxx series aluminum alloys are summarized in this article. The results of experimental work indicate that RRA 7249 aluminum has the strength equivalent to or greater than 7249-T6 and superior corrosion resistance. This work is the result of collaborative efforts between the U.S. Navy and Loyola Marymount University.

  3. Determination of design allowable properties. Fracture of 2219-T87 aluminum alloy

    NASA Technical Reports Server (NTRS)

    Engstrom, W. L.

    1972-01-01

    A literature survey was conducted to provide a comprehensive report of available valid data on tensile properties, fracture toughness, fatigue crack propagation, and sustained load behavior of 2219-T87 aluminum alloy base metal and weldments, as applicable to manned spacecraft tankage. Most of the data found were from tests conducted at room temperature, -320 F and -423 F. Data are presented in graphical and tabular form, and areas in which data are lacking are established.

  4. NBS: Nondestructive evaluation of nonuniformities in 2219 aluminum alloy plate: Relationship to processing

    NASA Technical Reports Server (NTRS)

    Swartzendruber, L.; Boettinger, W.; Ives, L.; Coriell, S.; Ballard, D.; Laughlin, D.; Clough, R.; Biancanieilo, F.; Blau, P.; Cahn, J.

    1980-01-01

    The compositional homogeneity, microstructure, hardness, electrical conductivity and mechanical properties of 2219 aluminum alloy plates are influenced by the process variables during casting, rolling and thermomechanical treatment. The details of these relationships wre investigated for correctly processed 2219 plate as well as for deviations caused by improper quenching after solution heat treatment. Primary emphasis was been placed on the reliability of eddy current electrical conductivity and hardness as NDE tools to detect variations in mechanical properties.

  5. The plastic compressibility of 7075-T651 aluminum-alloy plate

    NASA Technical Reports Server (NTRS)

    Freed, A. D.; Sandor, B. I.

    1986-01-01

    The change in volume, and therefore the change in mass density, of an aluminum alloy was measured in uniaxial tension using clip-on extensometers. The experimental data do not agree with the assumption of plastic incompressibility found in the classical theories of plasticity. In fact, the elastic and plastic volume changes are of the same order of magnitude. Plastic anisotropy is thought to be the prime cause of this plastic compressibility.

  6. Magnesium Rich Primer for Chrome Free Protection of Aluminum Alloys (Preprint)

    DTIC Science & Technology

    2007-12-01

    the solubility of aluminum oxide and its hydrates (FIGURE 4), one can’t help but wonder if the ability to maintain a local pH near neutrality is an...FIGURE 4 – Solubility of aluminum oxide and its hydrates as a function of pH.8 7 QUALIFICATION AND TRANSITION PLAN The preliminary results...AFRL-RX-WP-TP-2008-4012 MAGNESIUM RICH PRIMER FOR CHROME FREE PROTECTION OF ALUMINUM ALLOYS (Preprint) Joel A. Johnson Nonstructural

  7. NDT of Grain Boundaries in Microcrystalline Aluminum Alloy Using Methods of Nonlinear Acoustics

    SciTech Connect

    Korobov, Alexander I.; Mekhedov, Dmitry M.; Izosimova, Maria Y.

    2008-06-24

    The research of grain boundary influence on nonlinear elastic properties of aluminum alloy was carried out. It has been found that starting with certain threshold value of static tensile deformation, sharp increase of nonlinear acoustic parameter occurred. Compression deformation hasn't effect significantly on nonlinear elastic properties of polycrystal. On the basis of experimental data, distribution function of deformation on grain boundaries was calculated.

  8. The Column Strength of Two Extruded Aluminum-Alloy H-Sections

    DTIC Science & Technology

    1938-09-30

    National Bureau of Standards for research in this fieId, and a part of these funds was used to investigate the cohmm strength of an extruded aluminum-alloy...id and discussed in part I of this report. The materkd for this investigation was supplied by the Aluminum Company of herica. Column tests were...requested by the NationaI Advisory Committee for Aeronautics. The results of these tests are presented and disoussed in part II of this report. A

  9. Influence of Process Parameters on Laser Weld Characteristics in Aluminum Alloys

    DTIC Science & Technology

    1988-08-01

    1 1󈧚 , 4 4 2.1.2 Alloying Element Vaporization Alloying elements added to aluminum for improving the mechanical properties and corrosion...effects the properties of the base metal surrounding the weld zone called the heat affected zone (HAZ). In the non-heat treatable aluminum alloys in the...Hydrogen in Aluminum . Magnesium, Copper, and Their Alloys . Int. Metall. Reviews, Review 201, 20:166-184. 31. Hatch, J.E. 1984. Aluminum , Properties and

  10. Fabrication of Porous Aluminum Using Gases Intrinsically Contained in Aluminum Alloy Die Castings

    NASA Astrophysics Data System (ADS)

    Hangai, Yoshihiko; Utsunomiya, Takao

    2009-06-01

    Closed-cell porous aluminum was fabricated using gases intrinsically contained in aluminum alloy die castings without using a blowing agent. By incorporating the friction stir processing technique, porous aluminum with a porosity of more than 50 pct was successfully obtained at a holding temperature of 923 to 948 K and a holding time of 10 minutes. This proposed die-casting route has high potential for fabricating porous aluminum at a low cost by a higher productivity process.

  11. Interface Effects of the Properties and Processing of Graded Composite Aluminum Alloys

    DTIC Science & Technology

    2015-08-31

    Final Report: Interface effects of the properties and processing of graded composite aluminum alloys Report Title The objective of this STIR program...architecturally graded aluminum composite with a diffuse interface between alloys 5456 and 7055. The program supported the education and training of one graduate...2015 Approved for Public Release; Distribution Unlimited Final Report: Interface effects of the properties and processing of graded composite aluminum

  12. Time-dependent corrosion fatique crack propagation in 7000 series aluminum alloys. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Mason, Mark E.

    1995-01-01

    The goal of this research is to characterize environmentally assisted subcritical crack growth for the susceptible short-longitudinal orientation of aluminum alloy 7075-T651, immersed in acidified and inhibited NaCl solution. This work is necessary in order to provide a basis for incorporating environmental effects into fatigue crack propagation life prediction codes such as NASA-FLAGRO (NASGRO). This effort concentrates on determining relevant inputs to a superposition model in order to more accurately model environmental fatigue crack propagation.

  13. High Strength and Compatible Aluminum Alloy for Hydrogen-Peroxide Fuel Tanks

    NASA Technical Reports Server (NTRS)

    Lee, Jonathan A.

    2004-01-01

    This paper describes the development of a new high strength and Hydrogen Peroxide (HP) propellant compatible aluminum alloy for NASA Hyper-X vehicle's fuel tanks and structures. The tensile strength of the new alloy is more than 3 times stronger than the conventional 5254 alloy while it still maintains HP compatibility similar to 5254 (Class 1 category). The alloy development strategy consists of selecting certain rare earth and transition metals, with unique electrochemical properties, that will not act as catalysts to decompose liquid HP at the atomic level. Such elements will added to the aluminum alloy and the mixture will be cast and rolled into thin sheet metals. Test coupons are machined from sheet metals for HP long-term exposure testing and mechanical properties testing. In addition, the ability to weld the new alloy using Friction Stir Welding has also been explored. Currently, aluminum alloy 5254 is the state-of-the-art material for HP storage, but its yield strength is very low (420 ksi) and may not be suitable for the development of light-weight fuel tanks for Hyper-X vehicles. The new high strength and HP compatible alloy could represent an enabling material technology for NASA's Hyper-X vehicles, where flight weight reduction is a critical requirement. These X-planes are currently under studied as air-breathing hypersonic research vehicles featuring a lifting body configuration with a Rocket Based Combined Cycle (RBCC) engine system.

  14. Advanced powder metallurgy aluminum alloys via rapid solidification technology, phase 2

    NASA Technical Reports Server (NTRS)

    Ray, Ranjan; Jha, Sunil C.

    1987-01-01

    Marko's rapid solidification technology was applied to processing high strength aluminum alloys. Four classes of alloys, namely, Al-Li based (class 1), 2124 type (class 2), high temperature Al-Fe-Mo (class 3), and PM X7091 type (class 4) alloy, were produced as melt-spun ribbons. The ribbons were pulverized, cold compacted, hot-degassed, and consolidated through single or double stage extrusion. The mechanical properties of all four classes of alloys were measured at room and elevated temperatures and their microstructures were investigated optically and through electron microscopy. The microstructure of class 1 Al-Li-Mg alloy was predominantly unrecrystallized due to Zr addition. Yield strengths to the order of 50 Ksi were obtained, but tensile elongation in most cases remained below 2 percent. The class 2 alloys were modified composition of 2124 aluminum alloy, through addition of 0.6 weight percent Zr and 1 weight percent Ni. Nickel addition gave rise to a fine dispersion of intermetallic particles resisting coarsening during elevated temperature exposure. The class 2 alloy showed good combination of tensile strength and ductility and retained high strength after 1000 hour exposure at 177 C. The class 3 Al-Fe-Mo alloy showed high strength and good ductility both at room and high temperatures. The yield and tensile strength of class 4 alloy exceeded those of the commercial 7075 aluminum alloy.

  15. A method for studying weld fusion boundary microstructure evolution in aluminum alloys

    SciTech Connect

    Kostrivas, A.; Lippold, J.C.

    2000-01-01

    Aluminum alloys may exhibit a variety of microstructures within the fusion zone adjacent to the fusion boundary. Under conventional weld solidification conditions, epitaxial nucleation occurs off grains in the heat-affected zone (HAZ) and solidification proceeds along preferred growth directions. In some aluminum alloys, such as those containing Li and Zr, a nondendritic equiaxed grain zone (EQZ) has been observed along the fusion boundary that does not nucleate epitaxially from the HAZ substrate. The EQZ has been the subject of considerable study because of its susceptibility to cracking during initial fabrication and repair. The motivation of this investigation was to develop a technique that would allow the nature and evolution of the fusion boundary to be studied under controlled thermal conditions. A melting technique was developed to simulate the fusion boundary of aluminum alloys using the Gleeble{reg{underscore}sign} thermal simulator. Using a steel sleeve to contain the aluminum, samples wee heated to incremental temperatures above the solidus temperature of a number of alloys. In Alloy 2195, a 4Cu-1Li alloy, an EQZ could be formed by heating in the temperature range approximately from 630--640 C. At temperatures above 640 C, solidification occurred by the normal epitaxial nucleation and growth mechanism. Fusion boundary behavior was also studied in Alloys 5454-H34, 6061-T6 and 2219-T8. Nucleation in these alloys was observed to be epitaxial. Details of the technique and its effectiveness for performing controlled melting experiments at incremental temperatures above the solidus are described.

  16. Ultrasonic Impact Treatment to Improve Stress Corrosion Cracking Resistance of Welded Joints of Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Yu, J.; Gou, G.; Zhang, L.; Zhang, W.; Chen, H.; Yang, Y. P.

    2016-07-01

    Stress corrosion cracking is one of the major issues for welded joints of 6005A-T6 aluminum alloy in high-speed trains. High residual stress in the welded joints under corrosion results in stress corrosion cracking. Ultrasonic impact treatment was used to control the residual stress of the welded joints of 6005A-T6 aluminum alloy. Experimental tests show that ultrasonic impact treatment can induce compressive longitudinal and transverse residual stress in the welded joint, harden the surface, and increase the tensile strength of welded joints. Salt-fog corrosion tests were conducted for both an as-welded sample and an ultrasonic impact-treated sample. The surface of the treated sample had far fewer corrosion pits than that of the untreated sample. The treated sample has higher strength and lower tensile residual stress than the untreated sample during corrosion. Therefore, ultrasonic impact treatment is an effective technique to improve the stress corrosion cracking resistance of the welded joints of 6005A-T6 aluminum alloy.

  17. Hybrid manufacturing processes for fusion welding and friction stir welding of aerospace grade aluminum alloys

    NASA Astrophysics Data System (ADS)

    Gegesky, Megan Alexandra

    Friction stir welding and processing can provide for joints in aerospace grade aluminum alloys that have preferable material properties as compared to fusion welding techniques. Aerospace grade aluminum alloys such as AA2024-T3 and AA7075-T6 are considered non-weldable by traditional fusion welding techniques. Improved mechanical properties over previously used techniques are usually preferable for aerospace applications. Therefore, by combining traditional fusion welding and friction stir processing techniques, it could be plausible to create more difficult geometries in manufactured parts instead of using traditional techniques. While this combination of fusion welding and friction stir processing is not a new technology, its introduction to aerospace grade aluminum alloys as well as non-weldable alloys, is new. This is brought about by a lowered required clamping force required by adding a fusion weld before a friction stir processing technique. The changes in properties associated with joining techniques include: microstructural changes, changes in hardness, tensile strength, and corrosion resistance. This thesis illustrates these changes for the non-weldable AA2024-T351 and AA7075-T651 as well as the weldable alloy AA5052-H32. The microhardness, tensile strength and corrosion resistance of the four processing states: base material, fusion welded material, friction stir welded material, and friction stir processed fusion welded material is studied. The plausibility of this hybrid process for the three different materials is characterized, as well as plausible applications for this joining technique.

  18. Disk Laser Weld Brazing of AW5083 Aluminum Alloy with Titanium Grade 2

    NASA Astrophysics Data System (ADS)

    Sahul, Miroslav; Sahul, Martin; Vyskoč, Maroš; Čaplovič, Ľubomír; Pašák, Matej

    2017-03-01

    Disk laser weld brazing of dissimilar metals was carried out. Aluminum alloy 5083 and commercially pure titanium Grade 2 with the thickness of 2.0 mm were used as experimental materials. Butt weld brazed joints were produced under different welding parameters. The 5087 aluminum alloy filler wire with a diameter of 1.2 mm was used for joining dissimilar metals. The elimination of weld metal cracking was attained by offsetting the laser beam. When the offset was 0 mm, the intermixing of both metals was too high, thus producing higher amount of intermetallic compounds (IMCs). Higher amount of IMCs resulted in poorer mechanical properties of produced joints. Grain refinement in the fusion zone occurred especially due to the high cooling rates during laser beam joining. Reactions at the interface varied in the dependence of its location. Continuous thin IMC layer was observed directly at the titanium-weld metal interface. Microhardness of an IMC island in the weld metal reached up to 452.2 HV0.1. The XRD analysis confirmed the presence of tetragonal Al3Ti intermetallic compound. The highest tensile strength was recorded in the case when the laser beam offset of 300 μm from the joint centerline toward aluminum alloy was utilized.

  19. Spray-coating of superhydrophobic aluminum alloys with enhanced mechanical robustness.

    PubMed

    Zhang, Youfa; Ge, Dengteng; Yang, Shu

    2014-06-01

    A superhydrophobic aluminum alloy was prepared by one-step spray coating of an alcohol solution consisting of hydrophobic silica nanoparticles (15-40 nm) and methyl silicate precursor on etched aluminum alloy with pitted morphology. The as-sprayed metal surface showed a water contact angle of 155° and a roll-off angle of 4°. The coating was subjected to repeated mechanical tests, including high-pressure water jetting, sand particles impacting, and sandpaper shear abrasion. It remained superhydrophobic with a roll-off angle <10° up to three cycles of water jetting (25 kPa for 10 min) and sand particle impinging. After five cycles, the roll-off angle increased, but no more than 19° while the water contact angle remained greater than 150°. The superhydrophobic state was also maintained after three cycles of sandpaper abrasion. It was found that the micro-protrusion structures on the etched aluminum alloy played an important role to enhance the coating mechanical robustness, where the nanoparticles could grab on the rough surface, specifically in the groove structures, in comparison with the smooth glass substrates spray coated with the same materials. Further, we showed that the superhydrophobicity could be restored by spray a new cycle of the nanocomposite solution on the damaged surface.

  20. A hot-cracking mitigation technique for welding high-strength aluminum alloy

    SciTech Connect

    Yang, Y.P.; Dong, P.; Zhang, J.; Tian, X.

    2000-01-01

    A hot-cracking mitigation technique for gas tungsten arc welding (GTAW) of high-strength aluminum alloy 2024 is presented. The proposed welding technique incorporates a trailing heat sink (an intense cooling source) with respect to the welding torch. The development of the mitigation technique was based on both detailed welding process simulation using advanced finite element techniques and systematic laboratory experiments. The finite element methods were used to investigate the detailed thermomechanical behavior of the weld metal that undergoes the brittle temperature range (BTR) during welding. As expected, a tensile deformation zone within the material BTR region was identified behind the weld pool under conventional GTA welding process conventional GTA welding process conditions for the aluminum alloy studied. To mitigate hot cracking, the tensile zone behind the weld pool must be eliminated or reduce to a satisfactory level if the weld metal hot ductility cannot be further improved. With detailed computational modeling, it was found that by the introduction of a trailing heat sink at some distance behind the welding arc, the tensile strain rate with respect to temperature in the zone encompassing the BTR region can be significantly reduced. A series of parametric studies were also conducted to derive optimal process parameters for the trailing heat sink. The experimental results confirmed the effectiveness of the trailing heat sink technique. With a proper implementation of the trailing heat sink method, hot cracking can be completely eliminated in welding aluminum alloy 2024 (AA 2024).

  1. Process Modeling of Low-Pressure Die Casting of Aluminum Alloy Automotive Wheels

    NASA Astrophysics Data System (ADS)

    Reilly, C.; Duan, J.; Yao, L.; Maijer, D. M.; Cockcroft, S. L.

    2013-09-01

    Although on initial inspection, the aluminum alloy automotive wheel seems to be a relatively simple component to cast based on its shape, further insight reveals that this is not the case. Automotive wheels are in a select group of cast components that have strict specifications for both mechanical and aesthetic characteristics due to their important structural requirements and their visibility on a vehicle. The modern aluminum alloy automotive wheel continues to experience tightened tolerances relating to defects to improve mechanical performance and/or the physical appearance. Automotive aluminum alloy wheels are assessed against three main criteria: wheel cosmetics, mechanical performance, and air tightness. Failure to achieve the required standards in any one of these categories will lead to the wheel either requiring costly repair or being rejected and remelted. Manufacturers are becoming more reliant on computational process modeling as a design tool for the wheel casting process. This article discusses and details examples of the use of computational process modeling as a predictive tool to optimize the casting process from the standpoint of defect minimization with the emphasis on those defects that lead to failure of aluminum automotive wheels, namely, macroporosity, microporosity, and oxide films. The current state of applied computational process modeling and its limitations with regard to wheel casting are discussed.

  2. General Corrosion Resistance Comparisons of Medium- and High-Strength Aluminum Alloys for DOD Systems Using Laboratory-Based Accelerated Corrosion Methods

    DTIC Science & Technology

    2009-09-01

    General Corrosion Resistance Comparisons of Medium- and High-Strength Aluminum Alloys for DOD Systems Using Laboratory-Based Accelerated... Aluminum Alloys for DOD Systems Using Laboratory-Based Accelerated Corrosion Methods Brian E. Placzankis Weapons and Materials Research Directorate...March 2006–October 2008 4. TITLE AND SUBTITLE General Corrosion Resistance Comparisons of Medium- and High-Strength Aluminum Alloys for DOD

  3. Crack-tip-opening angle measurements and crack tunneling under stable tearing in thin sheet 2024-T3 aluminum alloy

    NASA Technical Reports Server (NTRS)

    Dawicke, D. S.; Sutton, M. A.

    1993-01-01

    The stable tearing behavior of thin sheets 2024-T3 aluminum alloy was studied for middle crack tension specimens having initial cracks that were: flat cracks (low fatigue stress) and 45 degrees through-thickness slant cracks (high fatigue stress). The critical crack-tip-opening angle (CTOA) values during stable tearing were measured by two independent methods, optical microscopy and digital image correlation. Results from the two methods agreed well. The CTOA measurements and observations of the fracture surfaces showed that the initial stable tearing behavior of low and high fatigue stress tests is significantly different. The cracks in the low fatigue stress tests underwent a transition from flat-to-slant crack growth, during which the CTOA values were high and significant crack tunneling occurred. After crack growth equal to about the thickness, CTOA reached a constant value of 6 deg and after crack growth equal to about twice the thickness, crack tunneling stabilized. The initial high CTOA values, in the low fatigue crack tests, coincided with large three-dimensional crack front shape changes due to a variation in the through-thickness crack tip constraint. The cracks in the high fatigue stress tests reach the same constant CTOA value after crack growth equal to about the thickness, but produced only a slightly higher CTOA value during initial crack growth. For crack growth on the 45 degree slant, the crack front and local field variables are still highly three-dimensional. However, the constant CTOA values and stable crack front shape may allow the process to be approximated with two-dimensional models.

  4. A study of elastic and plastic stress concentration factors due to notches and fillets in flat plates

    NASA Technical Reports Server (NTRS)

    Hardrath, Herbert F; Ohman, Lachlan

    1953-01-01

    Six large 24s-t3 aluminum-alloy-sheet specimens containing various notches or fillets were tested in tension to determine their stress concentration factors in both the elastic and plastic ranges. The elastic stress concentration factors were found to be slightly higher than those calculated by Neuber's method and those obtained photoelastically by Frocht. The results showed further that the stress concentration factor decreases as strains at the discontinuity enter the plastic range. A generalization of Stowell's relation for the plastic stress concentration factor at a circular hole in an infinite plate was applied to the specimen shapes tested and gave good agreement with test results.

  5. Relationship between High-Strain-Rate Superplasticity and Interface Microstructure in Aluminum Alloy Composites

    SciTech Connect

    Koike, J.; Mitchell, T.E.; Sickafus, K.E.

    1999-02-01

    The Al alloy composites reinforced with Si3N4 or SiC have been reported to exhibit superplasticity at high strain rate of faster than 1x 10-2s-1. It has been shown in many aluminum alloy composites that the optimum superplastic temperature coincides with an incipient melting temperature. The coincidence suggests a contribution of the liquid phase to the superplasticity mechanism. This paper shows a direct evidence of partial melting along matrix grain boundaries and matrix-reinforcement interfaces. Based on the obtained results, the role of the liquid phase in the high-strain-rate superplasticity is discussed. The sample was Al-Mg (5052) alloy reinforced with 20vol% Si3N4 particles, fabricated by a powder metallurgy process. The sample showed an excellent superplasticity under the conditions given in Table 1. Partial melting was confirmed to occur at 821 K by differentail scanning calorimetry. The microstructural changes during heating were observed in situ by TEM using a heating stage. The structure of interfaces and grain boundaries was observed by HREM. Chemical analysis was performed with EDS attached to VG-STEM. A bright-field image of the composite is shown in Fig. 1. Notice that the edge of the Si3N4 particles are fragmented. Fig. 2 (a) shows a selected-area diffraction pattern taken at 821 K. A halo ring appears at this temperature, indicating partial melting. Fig. 2 (b) shows a dark- field image with an inverted contrast, taken from a part of the halo ring. The location of partial melting can be identified by a dark contrast along the matrix grain boundaries and the matrix- reinforcement interfaces. Above this temperature, grain-boundary corners become a rounded shape caused by the formation of the liquid phase at triple grain junctions. Figure 3 shows a concentration profile across a matrix-reinforcement interface. The left side is the aluminum matrix and the right is a Si3

  6. Solute Enhanced Strain Hardening of Aluminum Alloys to Achieve Improved Combinations of Strength and Toughness

    NASA Astrophysics Data System (ADS)

    Hovanec, Christopher James

    2011-12-01

    The feasibility of achieving improved combinations of strength and toughness in aluminum alloy 2524 through solute enhanced strain hardening (SESH) has been explored in this study and shown to be viable. The effectiveness of SESH is directly dependent on the strain hardening rate (SHR) of the material being processed. Aluminum alloy 2524 naturally ages to the T4-temper after solution heat treating and quenching. The SHR of strain free and post cold rolled material as a function of natural aging time has been measured by means of simple compression. It has been determined that the SHR of AA2524 is more effective with solute in solution rather than clustered into GP zones. It has also been shown that the typical rapid formation of GP zones at room temperature (natural aging) is inhibited by moderate cold rolling strains (□CR ≥ 0.2) through dislocation aided vacancy annihilation. The practical limitations of quenching rate have been determined using hardness and eddy current electrical conductivity measurements. It has been shown that too slow of a quench rate results in solute being lost to both the formation of GP zones and embrittling precipitates during the quench, while too rapid of a quench rate results in mid-plane cracking of the work piece during the SESH processing. The mid-plane cracking was overcome by using an uphill quenching procedure to relieve residual stresses within the work piece. Aluminum alloy 2524 strengthened through SESH to a yield strength 11% greater than that in the T6-Temper exhibits: equivalent toughness, 5% greater UTS, 1% greater elongation, 7% greater R.A., and absorbs 15% more energy during tensile testing. At yield strengths comparable to published data for 2x24 alloys, the SESH 2524 exhibited up to a 60% increase in fracture toughness. The fractured surfaces of the SESH material exhibited transgranular dimpled rupture as opposed to the grain boundary ductile fracture (GBPF) observed in the artificially aged material.

  7. Developing an Empirical Relationship to Predict Tensile Strength of Friction Stir Welded AA2219 Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Elangovan, K.; Balasubramanian, V.; Babu, S.

    2008-12-01

    AA2219 aluminum alloy (Al-Cu-Mn alloy) has gathered wide acceptance in the fabrication of lightweight structures requiring a high strength-to-weight ratio and good corrosion resistance. Friction stir welding (FSW) process is an emerging solid state joining process in which the material that is being welded does not melt and recast. This process uses a nonconsumable tool to generate frictional heat in the abutting surfaces. The welding parameters such as tool rotational speed, welding speed, axial force, etc., and tool pin profile play a major role in deciding the joint strength. An attempt has been made to develop an empirical relationship between FSW variables to predict tensile strength of the friction stir welded AA2219 aluminum alloy. To obtain the desired strength, it is essential to have a complete control over the relevant process parameters to maximize the tensile strength on which the quality of a weldment is based. Therefore, it is very important to select and control the welding process parameter for obtaining maximum strength. To achieve this various prediction methods such as response surface method (RSM), analysis of variance (ANOVA), Student’s t-test, coefficient of determination, etc., can be applied to define the desired output variables through developing mathematical models to specify the relationship between the output parameters and input variables. Four factors, five levels central composite design have been used to minimize number of experimental conditions. The developed mathematical relationship can be effectively used to predict the tensile strength of FSW joints of AA2219 aluminum alloy at 95% confidence level.

  8. Morphology of an aluminum alloy eroded by a jet of angular particles impinging at normal incidence

    NASA Technical Reports Server (NTRS)

    Rao, P. V.; Young, S. G.; Buckley, D. H.

    1983-01-01

    The erosion of an aluminum alloy impinged by crushed glass particles at normal incidence was studied. The erosion patterns were analyzed by scanning electron microscopy, energy dispersive X-ray spectroscopy, and surface profilometer measurements. From the analysis of specimens tested at various driving gas pressures and time intervals, four distinct erosion regions were identified. A study of pit morphology and its relationship to cumulative erosion was made. Cutting wear is believed to be the predominant material removal mechanism; some evidence of deformation wear was found during the incubation period.

  9. The Application of Neutron Radioscopy to Lithium-Aluminum Alloy Target Elements

    DTIC Science & Technology

    1990-04-01

    MTL TR 90-18 AD 00 m THE APPLICATION OF NEUTRON * NRADIOSCOPY TO LITHIUM-ALUMINUM * ALLOY TARGET ELEMENTS JOHN J. ANTAL and ALFRED S. MAROTTA U.S...PERFORMING ORG. REPORT NUMBER 7. AUTHOR(S) 0. CONTRACT OR GRANT NUMBER(s) John J. Antal, Alfred S. Marotta, Saleem R. Salaymeh,* and Thomas P. Varallo...1 ATTN: Dr. G. Prather. Deputy for Science & Technology I ATTN: Dr. W. Rryzik I Sr. J. R. Sculley , SARD 1 0. Rose 1 Lt. Col. Louis M. Jackson

  10. The NBS: Processing/Microstructure/Property Relationships in 2024 Aluminum Alloy Plates

    NASA Technical Reports Server (NTRS)

    Ives, L. K.; Swartzendruber, W. J.; Boettinger, W. J.; Rosen, M.; Ridder, S. D.

    1983-01-01

    As received plates of 2024 aluminum alloy were examined. Topics covered include: solidification segregation studies; microsegregation and macrosegregation in laboratory and commercially cast ingots; C-curves and nondestructive evaluation; time-temperature precipitation diagrams and the relationships between mechanical properties and NDE measurements; transmission electron microscopy studies; the relationship between microstructure and properties; ultrasonic characterization; eddy-current conductivity characterization; the study of aging process by means of dynamic eddy current measurements; and Heat flow-property predictions, property degradations due to improve quench from the solution heat treatment temperature.

  11. Durability of nanostructured coatings based on PTFE nanoparticles deposited on porous aluminum alloy

    NASA Astrophysics Data System (ADS)

    Ghalmi, Zahira; Farzaneh, Masoud

    2014-09-01

    Ice accumulation on outdoor structures is a serious problem in cold climate regions of the world. To address this issue, several surface treatment methods have been developed for structures made of aluminum alloys. In this study, an Al2O3 porous oxide layer was formed by anodization using a phosphoric acid electrolyte. Subsequently, polytetrafluoroethylene (PTFE) was used to coat the porous surface. After PTFE impregnation, a nanostructured surface along with a low surface energy of PTFE resulted in significantly reduced ice adhesion strength. In fact, even after fifteen icing/deicing cycles, the PTFE-based coating remained highly hydrophobic with static contact angles higher than smooth Teflon® surface.

  12. Radiographic detection of defects in friction stir welding on aluminum alloy AMg5M

    SciTech Connect

    Tarasov, Sergei Yu. Kolubaev, Evgeny A.; Rubtsov, Valery E.

    2014-11-14

    In order to reveal weld defects specific to friction stir welding we undertook radiographic inspection of AMg5M aluminum alloy welded joints. Weld defects in the form of voids have been revealed in the weld obtained under the non-optimal rotation and feed rate. Both shape and size of these defects have been confirmed by examining metallographically successive sections prepared in the weld plane as well as in the plane transversal to the tool feed direction. Linear defects have been also found in the sections that are not seen in the radiographic images. Both the preferable localization and origination of the defects have been analyzed.

  13. Thin Anodic Oxide Films on Aluminum Alloys and Their Role in the Durability of Adhesive Bonds.

    DTIC Science & Technology

    1980-02-01

    of each created interface B. Dynamic environment 1) stress 2) humidity and other atmospheric gases 3) temperature C. Failure analysis 1) fracture 2...fatigue 3) corrosion Studies involving the appropriate permutations and combina- tions of A, B, and C are needed to generate a data base for ad...is prominent ! -1 TABLE I NOMINAL CHEMICAL COMPOSITION OF ALUMINUM ALLOYS Alloy Si Cu Mn Mg Cr Zn Zr 2024 -- 4.5 0.6 1.5 ---- -- 7050 -- 2.3 -- 2.25

  14. Characterization of large 2219 aluminum alloy hand forgings for the space shuttle solid rocket booster

    NASA Technical Reports Server (NTRS)

    Brennecke, M. W.

    1978-01-01

    The mechanical properties, including fracture toughness, and stress corrosion properties of four types of 2219-T852 aluminum alloy hand forgings are presented. Weight of the forgings varied between 450 and 3500 lb at the time of heat treatment and dimensions exceeded the maximum covered in existing specifications. The forgings were destructively tested to develop reliable mechanical property data to replace estimates employed in the design of the Space Shuttle Solid Rocket Booster (SRB) and to establish minimum guaranteed properties for structural refinement and for entry into specification revisions. The report summarizes data required from the forgers and from the SRB Structures contractor.

  15. Evolution of microstructure and precipitates in 2xxx aluminum alloy after severe plastic deformation

    NASA Astrophysics Data System (ADS)

    Adamczyk-Cieslak, B.; Zdunek, J.; Mizera, J.

    2016-04-01

    This paper investigates the influence of precipitation on the microstructure development in a 2xxx aluminum alloy subjected to hydrostatic extrusion. A three step reduction of the diameter was performed using hydrostatic extrusion (HE) process: from 20mm (initial state) to 10 mm, 5 mm and 3 mm, which corresponds to the logarithmic deformations ɛ = 1.4, ɛ = 2.8 and ɛ = 3.8 respectively. The microstructure and precipitation analysis before and after deformation was performed using transmission electron microscope (TEM), and scanning electron microscopy (SEM). As a result of the tests, a very significant influence of precipitation on the degree of refinement and mechanism of microstructure transformation was stated.

  16. Stress corrosion evaluation of powder metallurgy aluminum alloy 7091 with the breaking load test method

    NASA Technical Reports Server (NTRS)

    Domack, Marcia S.

    1987-01-01

    The stress corrosion behavior of the P/M aluminum alloy 7091 is evaluated in two overaged heat treatment conditions, T7E69 and T7E70, using an accelerated test technique known as the breaking load test method. The breaking load data obtained in this study indicate that P/M 7091 alloy is highly resistant to stress corrosion in both longitudinal and transverse orientations at stress levels up to 90 percent of the material yield strength. The reduction in mean breaking stress as a result of corrosive attack is smallest for the more overaged T7E70 condition. Details of the test procedure are included.

  17. A microstructural study of flash welded and aged 6061 and 6013 aluminum alloys

    SciTech Connect

    Barbosa, C.; Dille, J.; Delplancke, J.-L.; Rebello, J.M.A.

    2006-09-15

    Extruded, flash welded and artificially aged 6061 and 6013 aluminum alloys were analyzed with the use of techniques such as transmission electron microscopy (TEM) imaging, selected area electron diffraction (SAD) and X-ray energy-dispersive spectroscopy (EDS) in order to identify the precipitates present in both alloys. Vickers microindentation hardness measurements were performed at different distances from the weld interface. The results show a small decrease in hardness near the 6013 alloy weld interface. On the other hand, there is an important hardness drop near the 6061 weld interface. This drop can be explained by a lack of fine structural precipitation during the aging treatment in the 6061 weld interface zone.

  18. Crack Initiation from Corrosion Pit in Three Aluminum Alloys Under Ambient and Saltwater Environments

    NASA Astrophysics Data System (ADS)

    Sabelkin, V.; Misak, H. E.; Perel, V. Y.; Mall, S.

    2016-04-01

    Corrosion-pit-to-crack transition behaviors of three aluminum alloys using two pit configurations were investigated under ambient and saltwater environments. Fatigue stress ranges for crack initiation from a through-pit were less than that from a corner-pit in both environments in all three materials, while stress intensity factor ranges showed the opposite trend. Further, stress ranges or stress intensity factor ranges for crack initiation were less in saltwater than that in ambient environment for both pit configurations. Fatigue damage mechanisms in a test environment were similar for both pit configurations in all three materials. An empirical relationship is proposed to estimate pit-to-crack transition fatigue cycles.

  19. Springback study in aluminum alloys based on the Demeri Benchmark Test : influence of material model

    SciTech Connect

    Greze, R.; Laurent, H.; Manach, P. Y.

    2007-04-07

    Springback is a serious problem in sheet metal forming. Its origin lies in the elastic recovery of materials after a deep drawing operation. Springback modifies the final shape of the part when removed from the die after forming. This study deals with Springback in an Al5754-O aluminum alloy. An experimental test similar to the Demeri Benchmark Test has been developed. The experimentally measured Springback is compared to predicted Springback simulation using Abaqus software. Several material models are analyzed, all models using isotropic hardening of Voce type and plasticity criteria such as Von Mises and Hill48's yield criterion.

  20. Effect of cooling rate on microstructure of friction-stir welded AA1100 aluminum alloy

    NASA Astrophysics Data System (ADS)

    Yi, D.; Mironov, S.; Sato, Y. S.; Kokawa, H.

    2016-06-01

    In this work, the microstructural changes occurring during cooling of friction-stir welded aluminum alloy AA1100 were evaluated. To this end, friction-stir welding (FSW) was performed in a wide range of cooling rates of 20-62 K/s and the evolved microstructures were studied by using electron backscatter diffraction. Below 0.6 Tm (Tm being the melting point), the stir zone material was found to experience no significant changes during cooling. At higher FSW temperatures, however, notable changes occurred in the welded material, including grain growth, sharpening of texture, reduction of the fraction of high-angle boundaries and material softening.

  1. Aerospace Patented High-Strength Aluminum Alloy Used in Commercial Industries

    NASA Technical Reports Server (NTRS)

    2004-01-01

    NASA structural materials engineer, Jonathan Lee, displays blocks and pistons as examples of some of the uses for NASA's patented high-strength aluminum alloy originally developed at Marshall Space Flight Center in Huntsville, Alabama. NASA desired an alloy for aerospace applications with higher strength and wear-resistance at elevated temperatures. The alloy is a solution to reduce costs of aluminum engine pistons and lower engine emissions for the automobile industry. The Boats and Outboard Engines Division at Bombardier Recreational Products of Sturtevant, Wisconsin is using the alloy for pistons in its Evinrude E-Tec outboard engine line.

  2. Study of Processing and Microstructure of a Superplastic 5083 Aluminum Alloy

    DTIC Science & Technology

    2002-09-01

    AA5083 aluminum alloys designated lot numbers 978083 and 978901 were conducted at the Naval Postgraduate School in conjunction with mechanical testing...the ARCO materials and corresponding AA5083 materials, designated lot numbers 978083(A25) and 978901(A20), that were deformed under tensile...the OIM system were the AA5083 alloys deformed at 500ºC and 3x10-4s-1 and designated lot numbers 978083(A24) or 978901(A17). The procedure used to

  3. Ultrasonic-assisted friction stir welding on V95AT1 (7075) aluminum alloy

    NASA Astrophysics Data System (ADS)

    Tarasov, S. Yu.; Rubtsov, V. Ye.; Kolubaev, E. A.; Ivanov, A. N.; Fortuna, S. V.; Eliseev, A. A.

    2015-10-01

    Ultrasonic-assisted friction stir butt welding on aluminum alloy V95AT1 (7075) has been carried out. Samples have been characterized using metallography, microhardness and XRD. As shown, ultrasonic treatment during welding provides extra plasticizing of metal and better stirring efficiency. The latter serves for elimination of defects, such as root flaw and grain refining in the stir zone. The stress state in the welded joint is characterized by tensile stress in the direction of the weld seam centerline and compression in the transversal direction. The ultrasonic treatment was shown to increase the compression stress and relieve the tensile one.

  4. Properties of a Retrogressed and Re-Aged 7075 Aluminum Alloy.

    DTIC Science & Technology

    1984-12-31

    Kerlins, & B. V. Whitenson, " Electon Fractograph Hand Book ", Air Fore Materials Lab. Report No. ML-T-DR-64-418, 1965. (w) Awrosoce SN~dOO&W Metals... Engineering and Applied Sclince. Contract No. N0001 4-81 -K--0292, May, 1962. (a) J. M. Papplaon: "Effect of Two-Stage Aging on Microstructure of 7075...Method of Test for Exfoliation Corrosion Susceptibilty In 7 Swries Copper Containi ng Aluminum Alloys (EXCO test). 1979 Annual Book of ASTM

  5. Influences of post-weld heat treatment on tensile properties of friction stir-welded AA6061 aluminum alloy joints

    SciTech Connect

    Elangovan, K.; Balasubramanian, V.

    2008-09-15

    This paper reports on studies of the influences of various post-weld heat treatment procedures on tensile properties of friction stir-welded AA6061 aluminum alloy joints. Rolled plates of 6-mm thick AA6061 aluminum alloy were used to fabricate the joints. Solution treatment, an artificial aging treatment and a combination of both were given to the welded joints. Tensile properties such as yield strength, tensile strength, elongation and joint efficiency were evaluated. Microstructures of the welded joints were analyzed using optical microscopy and transmission electron microscopy. A simple artificial aging treatment was found to be more beneficial than other treatment methods to enhance the tensile properties of the friction stir-welded AA6061 aluminum alloy joints.

  6. Theoretical simulation of melt ejection during the laser drilling process on aluminum alloy by single pulsed laser

    NASA Astrophysics Data System (ADS)

    Li, Mingxin; Jin, Guangyong; Guo, Ming; Wang, Di; Gu, Xiuying

    2014-12-01

    In this paper, we establish a physical model to simulate the melt ejection induced by millisecond pulsed laser on aluminum alloy and use the finite element method to simulate the melting and vaporization process of aluminum alloy. Compared with the conventional model, this model explicitly adds the source terms of gas dynamics in the thermal-hydrodynamic equations, completes the trace of the gas-liquid interface and improves the traditional level-set method. All possible effects which can impact the dynamic behavior of the keyhole are taken into account in this two-dimensional model, containing gravity, recoil pressure of the metallic vapor, surface tension and Marangoni effect. This simulation is based on the same experiment condition where single pulsed laser with 3ms pulse width, 57J energy and 1mm spot radius is used. By comparing the theoretical simulation data and the actual test data, we discover that: the relative error between the theoretical values and the actual values is about 9.8%, the melt ejection model is well consistent with the actual experiment; from the theoretical model we can see the surrounding air of the aluminum alloy surface exist the metallic vapor; an increment of the interaction time between millisecond pulsed laser and aluminum alloy material, the temperature at the center of aluminum alloy surface increases and evaporation happens after the surface temperature reaches boiling point and later the aluminum alloy material sustains in the status of equilibrium vaporization; the keyhole depth is linearly increased with the increase of laser energy, respectively; the growth of the keyhole radius is in the trend to be gentle. This research may provide the theoretical references to the understanding of the interaction between millisecond pulsed laser and many kinds of materials, as well as be beneficial to the application of the laser materials processing and military field.

  7. Fabrication of the micro/nano-structure superhydrophobic surface on aluminum alloy by sulfuric acid anodizing and polypropylene coating.

    PubMed

    Wu, Ruomei; Liang, Shuquan; Liu, Jun; Pan, Anqiang; Yu, Y; Tang, Yan

    2013-03-01

    The preparation of the superhydrophobic surface on aluminum alloy by anodizing and polypropylene (PP) coating was reported. Both the different anodizing process and different PP coatings of aluminum alloy were investigated. The effects of different anodizing conditions, such as electrolyte concentration, anodization time and current on the superhydrophobic surface were discussed. By PP coating after anodizing, a good superhydrophobic surface was facilely fabricated. The optimum conditions for anodizing were determined by orthogonal experiments. After the aluminium-alloy was grinded with 600# sandpaper, pretreated by 73 g/L hydrochloric acid solution at 1 min, when the concentration of sulfuric acid was 180 g/L, the concentration of oxalic acid was 5 g/L, the concentration of potassium dichromate was 10 g/L, the concentration of chloride sodium was 50 g/L and 63 g/L of glycerol, anodization time was 20 min, and anodization current was 1.2 A/dm2, anodization temperature was 30-35 degrees C, the best micro-nanostructure aluminum alloy films was obtained. On the other hand, the PP with different concentrations was used to the PP with different concentrations was used to coat the aluminum alloy surface after anodizing. The results showed that the best superhydrophobicity was achieved by coating PP, and the duration of the superhydrophobic surface was improved by modifying the coat the aluminum alloy surface after anodizing. The results showed that the best superhydrophobicity was surface with high concentration PP. The morphologies of micro/nano-structure superhydrophobic surface were further confirmed by scanning electron microscope (SEM). The material of PP with the low surface free energy combined with the micro/nano-structures of the surface resulted in the superhydrophobicity of the aluminum alloy surface.

  8. Mechanical and nonlinear elastic characteristics of polycrystalline AMg6 aluminum alloy and n-AMg6/C60 nanocomposite

    NASA Astrophysics Data System (ADS)

    Korobov, A. I.; Kokshaiskii, A. I.; Prokhorov, V. M.; Evdokimov, I. A.; Perfilov, S. A.; Volkov, A. D.

    2016-12-01

    The influence of nanostructuring on the mechanical and nonlinear elastic characteristics of polycrystalline AMg6 aluminum alloy and n-AMg6/C60 nanocomposite has been experimentally studied. The independent second- and third-order elastic coefficients are measured via the ultrasonic method. The thir-dorder elastic coefficients have been evaluated via the Tearstone-Bragger approach from the experimentally established velocities of shear and longitudinal bulk acoustic waves as the functions of the uniaxial compression in the studied samples. The nonlinear elastic properties are examined via the spectral acoustic technique in AMg6 aluminum alloy and n-AMg6/C60 nanocomposite, and the nonlinear acoustic parameters are determined.

  9. Property of anodic coatings obtained in an organic, environmental friendly electrolyte on aluminum alloy 2024-T3

    NASA Astrophysics Data System (ADS)

    Zhang, R. F.; Shi, H. W.; Liu, Z. L.; Zhang, S. F.; Zhang, Y. Q.; Guo, S. B.

    2014-01-01

    Anodic coatings were obtained by micro arc oxidation on aluminum alloy 2024-T3 in a solution containing only 10 g/L sodium phytate. The morphology, composition, structure and corrosion resistance of anodic coatings were systematically investigated. The results show that the working voltage continually increases during 3 min and bright sparks appear after 25 s. Anodic coatings are evenly formed on the substrate and about 2 μm thick. XPS and XRD analyses reveal that the obtained coatings are mainly composed of α-Al2O3 and γ-Al2O3. Compared with the substrate, the corrosion resistance of the anodized aluminum alloys is improved.

  10. Microstructure and Properties of Lap Joint Between Aluminum Alloy and Galvanized Steel by CMT

    NASA Astrophysics Data System (ADS)

    Niu, Song; Chen, Su; Dong, Honggang; Zhao, Dongsheng; Zhang, Xiaosheng; Guo, Xin; Wang, Guoqiang

    2016-05-01

    Lap joining of 1-mm-thick Novelist AC 170 PX aluminum alloy to 1.2-mm-thick ST06 Z galvanized steel sheets for automotive applications was conducted by cold metal transfer advanced welding process with ER4043 and ER4047 filler wires. Under the optimized welding parameters with ER4043 filler wire, the tensile shear strength of joint was 189 MPa, reaching 89% of the aluminum alloy base metal. Microstructure and elemental distribution were characterized by optical metalloscope and electron probe microanalysis. The lap joints with ER4043 filler wire had smaller wetting angle and longer bonded line length with better wettability than with ER4047 filler wire during welding with same parameters. The needle-like Al-Fe-Si intermetallic compounds (IMCs) were spalled into the weld and brought negative effect to the tensile strength of joints. With increasing welding current, the needle-like IMCs grew longer and spread further into the weld, which would deteriorate the tensile shear strength.

  11. System integration and demonstration of adhesive bonded high temperature aluminum alloys for aerospace structure, phase 2

    NASA Technical Reports Server (NTRS)

    Falcone, Anthony; Laakso, John H.

    1993-01-01

    Adhesive bonding materials and processes were evaluated for assembly of future high-temperature aluminum alloy structural components such as may be used in high-speed civil transport aircraft and space launch vehicles. A number of candidate high-temperature adhesives were selected and screening tests were conducted using single lap shear specimens. The selected adhesives were then used to bond sandwich (titanium core) test specimens, adhesive toughness test specimens, and isothermally aged lap shear specimens. Moderate-to-high lap shear strengths were obtained from bonded high-temperature aluminum and silicon carbide particulate-reinforced (SiC(sub p)) aluminum specimens. Shear strengths typically exceeded 3500 to 4000 lb/in(sup 2) and flatwise tensile strengths exceeded 750 lb/in(sup 2) even at elevated temperatures (300 F) using a bismaleimide adhesive. All faceskin-to-core bonds displayed excellent tear strength. The existing production phosphoric acid anodize surface preparation process developed at Boeing was used, and gave good performance with all of the aluminum and silicon carbide particulate-reinforced aluminum alloys investigated. The results of this program support using bonded assemblies of high-temperature aluminum components in applications where bonding is often used (e.g., secondary structures and tear stoppers).

  12. Design and Processing of Bimetallic Aluminum Alloys by Sequential Casting Technique

    NASA Astrophysics Data System (ADS)

    Karun, Akhil S.; Hari, S.; Ebhota, Williams S.; Rajan, T. P. D.; Pillai, U. T. S.; Pai, B. C.

    2017-01-01

    Sequential casting is a facile and fairly new technique to produce functionally graded materials (FGMs) and components by controlled mold filling process. In the present investigation, functionally graded bimetallic aluminum alloys are produced by sequential gravity casting using A390-A319 and A390-A6061 alloy combinations. The control in pouring time between two melts has shown a significant effect on the quality and nature of interface bonding. The microstructure reveals good interface miscibility achieved through diffusion bonding between the alloys. A higher hardness of 160 BHN in the A390 region is obtained in both sequential cast systems, and a minimum value of 105 and 91 BHN is observed in the A319 and A6061 regions, respectively. The tensile and compression strength for A390-A319 are 337 and 490 MPa, whereas for A390-A6061, they are 364 and 401 MPa, respectively, which are significantly higher compared with the standard values of the base alloys, which confirms strong interface bonding. The A390 region shows higher wear resistance compared with other regions of the sequential cast system. The process described in this study is a potential and efficient approach to create good bonding between two different aluminum alloys to develop advanced functional and structural materials.

  13. A Characterization for the Hot Flow Behaviors of As-extruded 7050 Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Quan, Guo-zheng; Liu, Jin; Mao, An; Liu, Bo; Zhang, Jin-sheng

    2015-11-01

    The deep understanding of flow behaviors of as-extruded 7050 aluminum alloy significantly contributes to the accuracy simulation for its various plastic forming processes. In order to obtain the improved Arrhenius-type equation with variable parameters for this alloy, a series of compression tests were performed at temperatures of 573 K, 623 K, 673 K, 723 K and strain rates of 0.01 s-1, 0.1 s-1, 1 s-1, 10 s-1 with a height reduction of 60% on Gleeble-1500 thermo-mechanical simulator. It is obvious that strain rate, strain and temperature all have a significant effect on the hot flow behaviors, and the true stress-true strain curves indicate three types after the peak value: decreasing gradually to a steady state with sustaining DRX softening till a balance with work hardening, decreasing continuously with sustaining increasing DRX softening beyond work hardening and maintaining higher stress level after the peak value with a balance between work hardening and DRV softening. Based on the experimental data, the improved Arrhenius-type constitutive model was established to predict the high temperature flow stress of as-extruded 7050 aluminum alloy. The accuracy and reliability of the improved Arrhenius-type model were further evaluated in terms of the correlation coefficient (R), here 0.98428, the average absolute relative error (AARE), here 3.5%. The results indicate that the improved Arrhenius-type constitutive model presents a good predictable ability.

  14. Surface passivation of aluminum alloy 6061 with gaseous trichlorosilane: A surface investigation

    NASA Astrophysics Data System (ADS)

    Ngongang, Rickielle; Marceau, Eric; Carrier, Xavier; Pradier, Claire-Marie; Methivier, Christophe; Blanc, Jean-Luc; Carre, Martine

    2014-02-01

    A molecular-scale investigation of the interaction at room temperature between gaseous trichlorosilane (HSiCl3), used as a passivating agent, and surfaces of aluminum alloy AA6061 in a polished or hydroxylated state is conducted. Atomic force microscopy (AFM) and scanning electron microscopy (SEM) provide information on the topography and morphology of AA6061 before and after hydroxylation and surface passivation, while surface chemistry has been investigated by Polarization Modulation Infrared Reflection-Absorption Spectroscopy (PM-IRRAS) and X-ray photoelectron spectroscopy (XPS). Oxidation and hydroxylation of the polished alloy surface in boiling water strongly modifies the roughness of the surface, with formation of platelets and needles of oxyhydroxide AlOOH. PM-IRRAS and XPS reveal that, upon adsorption, HSiCl3 dissociates and mainly forms HSiOHn(OAl)3-n, HSi(OSi)n(OAl)3-n and condensed HSiOx species, by reaction with sbnd OH groups from the AlOOH surface phase. The amount of deposited Si-containing species is larger on the rough surface of the hydroxylated alloy and this deposit is accompanied by a decrease of the amount of free sbnd OH groups evidenced by PM-IRRAS. These results can find applications in the field of functionalization of aluminum alloys. It is suggested that a homogeneous oxidation of the alloy surface prior to exposure to gaseous HSiCl3 may enhance the adsorption of the passivating agent.

  15. Preparation of semi-solid aluminum alloy slurry poured through a water-cooled serpentine channel

    NASA Astrophysics Data System (ADS)

    Chen, Zheng-Zhou; Mao, Wei-Min; Wu, Zong-Chuang

    2012-01-01

    A water-cooled serpentine channel pouring process was invented to produce semi-solid A356 aluminum alloy slurry for rheocasting, and the effects of pouring temperature and circulating cooling water flux on the microstructure of the slurry were investigated. The results show that at the pouring temperature of 640-680°C and the circulating cooling water flux of 0.9 m3/h, the semi-solid A356 aluminum alloy slurry with spherical primary α(Al) grains can be obtained, whose shape factors are between 0.78 and 0.86 and the grain diameter can reach 48-68 μm. When the pouring temperatures are at 660-680°C, only a very thin solidified shell remains inside the serpentine channel and can be removed easily. When the serpentine channel is cooled with circulating water, the microstructure of the semi-solid slurry can be improved, and the serpentine channel is quickly cooled to room temperature after the completion of one pouring. In terms of the productivity of the special equipment, the water-cooled serpentine channel is economical and efficient.

  16. Underwater Shock Response of Air-Backed Thin Aluminum Alloy Plates: An Experimental and Numerical Study

    NASA Astrophysics Data System (ADS)

    Ren, Peng; Zhang, Wei

    2013-06-01

    Studies on dynamic response of structures subjected to underwater explosion shock loading are of interest to ship designers. Understanding the deformation and failure mechanism of simple structures plays an important role in designing of a reliable structure under this kind of loading. The objective of this combined experimental and numerical study is to analyze the deformation and failure characteristics of 5A06 aluminum alloy plates under underwater shock loading. Some non-explosive underwater blast loading experiments were carried out on air backed circular plates of 2 mm thickness. The deformation history of the clamped circular plate was recorded using a high speed camera and the deflections of specimens at different radii were measured in order to identify deformation and failure modes. In the finite element simulations, the strength model of 5A06 aluminum alloy is considered using the slightly modified Johnson-cook mode to describe structure deformation. Good agreement between the numerical simulations and the experimental results is found. Detailed computational results of each scenario are offered to understand the deformation and failure mechanism. National Natural Science Foundation of China (NO.:11072072).

  17. Underwater shock response of air-backed thin aluminum alloy plates: An experimental and numerical study

    NASA Astrophysics Data System (ADS)

    Ren, Peng; Zhang, Wei

    2014-05-01

    Studies on dynamic response of structures subjected to underwater explosion shock loading are of interest to ship designers. Understanding the deformation and failure mechanism of simple structures plays an important role in designing of a reliable structure under this kind of loading. The objective of this combined experimental and numerical study is to analyze the deformation and failure characteristics of 5A06 aluminum alloy plates under underwater shock loading. Some non-explosive underwater blast loading experiments were carried out on air backed circular plates of 2 mm thickness. The deformation history of the clamped circular plate was recorded using a high speed camera and the deflections of specimens at different radii were measured in order to identify deformation and failure modes. In the finite element simulations, the strength model of 5A06 aluminum alloy is considered using the slightly modified Johnson-cook mode to describe structure deformation. Good agreement between the numerical simulations and the experimental results is found. Detailed computational results of each scenario are offered to understand the deformation and failure mechanism.

  18. Atmospheric Corrosion of Aluminum Alloy 3105 in Coastal Environments: Interim Report After 15 Months Exposure

    SciTech Connect

    Holcomb, G.R.

    1996-04-19

    In May of 1994, racks of corrosion samples were installed along the Oregon coast. The aluminum alloy 3105 samples were mounted on utility poles in Astoria, Manzanita, Lincoln City, Gold Beach, Brookings, Portland, and Albany. At each coastal location, samples were placed on four different poles at various distances from the coast (from as near as 50 feet to as far as 5 miles). The inland sites (Portland and Albany) have only one pole per site and are used as control sites. Besides the 3105 alloys, 5052 and 6061 aluminum alloys were placed at all sites. Since installation, one rack was lost due to the pole being taken down by the phone company (in Lincoln City), but the rest of the poles and racks are still in place.

    In August of 1995, the aluminum samples were visually inspected, and the remaining six 3105 aluminum samples in Lincoln City were removed for laboratory examination. Non-destructive x-ray analysis was used on the Lincoln City samples to obtain information a bout the nature of the corrosion products. Because the analysis was performed while the corrosion products remained on the surface, aluminum peaks dominated the diffraction pattern, and relative peak-heights were different from normal. Nevertheless, some minerals were identified as part of the corrosion products.

  19. Aluminum and aluminum alloys as sources of hydrogen for fuel cell applications

    NASA Astrophysics Data System (ADS)

    Soler, Lluís; Macanás, Jorge; Muñoz, Maria; Casado, Juan

    Production of hydrogen using aluminum and aluminum alloys with aqueous alkaline solutions is studied. This process is based on aluminum corrosion, consuming only water and aluminum which are cheaper raw materials than other compounds used for in situ hydrogen generation, such as chemical hydrides. In principle, this method does not consume alkali because the aluminate salts produced in the hydrogen generation undergo a decomposition reaction that regenerates the alkali. As a consequence, this process could be a feasible alternative for hydrogen production to supply fuel cells. Preliminary results showed that an increase of base concentration and working solution temperature produced an increase of hydrogen production rate using pure aluminum. Furthermore, an improvement of hydrogen production rates and yields was observed varying aluminum alloys composition and increasing their reactive surface, with interesting results for Al/Si and Al/Co alloys. The development of this idea could improve yields and reduce costs in power units based on fuel cells which use hydrides as raw material for hydrogen production.

  20. Experimental Study of Stationary Shoulder Friction Stir Welded 7N01-T4 Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Ji, S. D.; Meng, X. C.; Li, Z. W.; Ma, L.; Gao, S. S.

    2016-03-01

    Stationary shoulder friction stir welding (SSFSW) was successfully used to weld 7N01-T4 aluminum alloy with the thickness of 4 mm. Effects of welding speed on formations, microstructures, and mechanical properties of SSFSW joint were investigated in detail. Under a constant rotational velocity of 2000 rpm, defect-free joints with smooth surface and small flashes are attained using welding speeds of 20 and 30 mm/min. Macrostructure of nugget zone in cross section presents kettle shape. For 7N01-T4 aluminum alloy with low thermal conductivity, decreasing welding speed is beneficial to surface formation of joint. With the increase of welding speed, mechanical properties of joints firstly increase and then decrease. When the welding speed is 30 mm/min, the tensile strength and elongation of joint reach the maximum values of 379 MPa and 7.9%, equivalent to 84.2 and 52% of base material, respectively. Fracture surface morphology exhibits typical ductile fracture. In addition, the minimum hardness value of joint appears in the heat affected zone.

  1. Study on Microstructure and Electrochemical Corrosion Behavior of PEO Coatings Formed on Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Xiang, N.; Song, R. G.; Li, H.; Wang, C.; Mao, Q. Z.; Xiong, Y.

    2015-12-01

    Plasma electrolytic oxidation (PEO) treated 6063 aluminum alloy was applied in a silicate- and borate-based alkaline solution. The microstructure and electrochemical corrosion behavior were studied by scanning electron microscopy, electrochemical impedance spectroscopy (EIS), and potentiodynamic polarization techniques. The results showed that the silicate-based PEO coating was of a denser structure compared with that of borate-based PEO coating. In addition, the silicate-based PEO coating was composed of more phased (Al9Si) than borate-based PEO coating. The results of corrosion test indicated that the silicate-based PEO coating provided a superior protection to 6063 aluminum alloy substrate, while borate-based PEO coating with a porous structure showed an inferior conservancy against corrosive electrolyte. Furthermore, the EIS tests proved that both coatings were capable to resist the aggressive erosion in 0.5 M NaCl solution after 72 h of immersion. However, the borate-based PEO coating could not provide sufficient protection to the substrate after 72-h immersion in 1 M NaCl solution.

  2. Vertical Compensation Friction Stir Welding of 6061-T6 Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Ji, Shude; Meng, Xiangchen; Xing, Jingwei; Ma, Lin; Gao, Shuangsheng

    2016-09-01

    Vertical compensation friction stir welding (VCFSW) was proposed in order to solve the adverse effect caused by a big gap at the interface between two welded workpieces. VCFSW was successfully applied to weld 6061-T6 aluminum alloy with the thickness of 4 mm, while 2024-T4 aluminum alloy was selected as a rational compensation material. The results show that VCFSW is difficult to get a sound joint when the width of strip is no less than 1.5 mm. Decreasing the welding speed is beneficial to break compensation strip into pieces and then get higher quality joint. When the width of strip is 1 mm, the tensile strength and elongation of joint at the welding speed of 50 mm/min and rotational velocity of 1,800 rpm reach the maximum values of 203 MPa and 5.2%, respectively. Moreover, the addition of 2024-T4 alloy plays a strengthening effect on weld zone (WZ) of VCFSW joint. The fracture surface morphology of joint consisting of amounts of dimples exhibits ductile fracture.

  3. Initial bacterial deposition on bare and zeolite-coated aluminum alloy and stainless steel.

    PubMed

    Chen, Gexin; Beving, Derek E; Bedi, Rajwant S; Yan, Yushan S; Walker, Sharon L

    2009-02-03

    In this study, the impact of zeolite thin film coatings on bacterial deposition and "biofouling" of surfaces has been investigated in an aqueous environment. The synthesis of two types of zeolite coatings, ZSM-5 coated on aluminum alloy and zeolite A coated on stainless steel, and the characterization of the coated and bare metal surfaces are described. The extent of cell deposition onto the bare and zeolite-coated aluminum alloy and stainless steel surfaces is investigated in a parallel plate flow chamber system under a laminar flow conditions. The initial rates of bacterial transfer to the various surfaces are compared by utilizing a marine bacterium, Halomonas pacifica g, under a range of ionic strength conditions. H. pacifica g deposited onto bare metal surfaces to a greater extent as compared with cells deposited onto the zeolite coatings. The surface properties found to have the most notable effect on attachment are the electrokinetic and hydrophobicity properties of the metal and zeolite-coated surfaces. These results suggest that a combination of two chemical mechanisms-hydrophobic and electrostatic interactions-contribute to the antifouling nature of the zeolite surface. Additional observations on the relative role of the hydrodynamic and physical phenomena are also discussed.

  4. Effect of oxide layer formation on deformation of aluminum alloys under fire conditions

    DOE PAGES

    Yilmaz, Nadir; Vigil, Francisco M.; Tolendino, Greg; ...

    2015-05-14

    The purpose of this study is to investigate the structural behavior of aluminum alloys used in the aerospace industry when exposed to conditions similar to those of an accident scenario, such as a fuel fire. This study focuses on the role that the aluminum oxide layer plays in the deformation and the strength of the alloy above melting temperature. To replicate some of the thermal and atmospheric conditions that the alloys might experience in an accident scenario, aluminum rod specimens were subjected to temperatures near to or above their melting temperature in air, nitrogen, and vacuum environments. The characteristics ofmore » their deformation, such as geometry and rate of deformation, were observed. Tests were conducted by suspending aluminum rods vertically from an enclosure. This type of experiment was performed in two different environments: air and nitrogen. The change in environments allowed the effects of the oxide layer on the material strength to be analyzed by inhibiting the growth of the oxide layer. Observations were reported from imaging taken during the experiment showing creep behavior of aluminum alloys at elevated temperatures and time to failure. In addition, an example of tensile load–displacement data obtained in air and vacuum was reported to understand the effect of oxide layer on aluminum deformation and strength.« less

  5. Effect of oxide layer formation on deformation of aluminum alloys under fire conditions

    SciTech Connect

    Yilmaz, Nadir; Vigil, Francisco M.; Tolendino, Greg; Gill, Walt; Donaldson, A. Burl

    2015-05-14

    The purpose of this study is to investigate the structural behavior of aluminum alloys used in the aerospace industry when exposed to conditions similar to those of an accident scenario, such as a fuel fire. This study focuses on the role that the aluminum oxide layer plays in the deformation and the strength of the alloy above melting temperature. To replicate some of the thermal and atmospheric conditions that the alloys might experience in an accident scenario, aluminum rod specimens were subjected to temperatures near to or above their melting temperature in air, nitrogen, and vacuum environments. The characteristics of their deformation, such as geometry and rate of deformation, were observed. Tests were conducted by suspending aluminum rods vertically from an enclosure. This type of experiment was performed in two different environments: air and nitrogen. The change in environments allowed the effects of the oxide layer on the material strength to be analyzed by inhibiting the growth of the oxide layer. Observations were reported from imaging taken during the experiment showing creep behavior of aluminum alloys at elevated temperatures and time to failure. In addition, an example of tensile load–displacement data obtained in air and vacuum was reported to understand the effect of oxide layer on aluminum deformation and strength.

  6. Biomimetic superhydrophobic surface of high adhesion fabricated with micronano binary structure on aluminum alloy.

    PubMed

    Liu, Yan; Liu, Jindan; Li, Shuyi; Liu, Jiaan; Han, Zhiwu; Ren, Luquan

    2013-09-25

    Triggered by the microstructure characteristics of the surfaces of typical plant leaves such as the petals of red roses, a biomimetic superhydrophobic surface with high adhesion is successfully fabricated on aluminum alloy. The essential procedure is that samples were processed by a laser, then immersed and etched in nitric acid and copper nitrate, and finally modified by DTS (CH3(CH2)11Si(OCH3)3). The obtained surfaces exhibit a binary structure consisting of microscale crater-like pits and nanoscale reticula. The superhydrophobicity can be simultaneously affected by the micronano binary structure and chemical composition of the surface. The contact angle of the superhydrophobic surface reaches up to 158.8 ± 2°. Especially, the surface with micronano binary structure is revealed to be an excellent adhesive property with petal-effect. Moreover, the superhydrophobic surfaces show excellent stability in aqueous solution with a large pH range and after being exposed long-term in air. In this way, the multifunctional biomimetic structural surface of the aluminum alloy is fabricated. Furthermore, the preparation technology in this article provides a new route for other metal materials.

  7. Hazard of ultraviolet radiation emitted in gas tungsten arc welding of aluminum alloys.

    PubMed

    Nakashima, Hitoshi; Utsunomiya, Akihiro; Fujii, Nobuyuki; Okuno, Tsutomu

    2016-01-01

    Ultraviolet radiation (UVR) emitted during arc welding frequently causes keratoconjunctivitis and erythema. The extent of the hazard of UVR varies depending on the welding method and conditions. Therefore, it is important to identify the levels of UVR that are present under various conditions. In this study, we experimentally evaluated the hazard of UVR emitted in gas tungsten arc welding (GTAW) of aluminum alloys. The degree of hazard of UVR is measured by the effective irradiance defined in the American Conference of Governmental Industrial Hygienists guidelines. The effective irradiances measured in this study are in the range 0.10-0.91 mW/cm(2) at a distance of 500 mm from the welding arc. The maximum allowable exposure times corresponding to these levels are only 3.3-33 s/day. This demonstrates that unprotected exposure to UVR emitted by GTAW of aluminum alloys is quite hazardous in practice. In addition, we found the following properties of the hazard of UVR. (1) It is more hazardous at higher welding currents than at lower welding currents. (2) It is more hazardous when magnesium is included in the welding materials than when it is not. (3) The hazard depends on the direction of emission from the arc.

  8. Change of Hot Cracking Susceptibility in Welding of High Strength Aluminum Alloy AA 7075

    NASA Astrophysics Data System (ADS)

    Holzer, M.; Hofmann, K.; Mann, V.; Hugger, F.; Roth, S.; Schmidt, M.

    High strength aluminum alloys are known as hard to weld alloys due to their high hot crack susceptibility. However, they have high potential for applications in light weight constructions of automotive industry and therefore it is needed to increase weldability. One major issue is the high hot cracking susceptibility. Vaporization during laser beam welding leads to a change of concentration of the volatile elements magnesium and zinc. Hence, solidification range of the weld and therefore hot cracking susceptibility changes. Additionally, different welding velocities lead to changed solidification conditions with certain influence on hot cracking. This paper discusses the influence of energy per unit length during laser beam welding of AA 7075 on the change of element concentration in the weld seam and the resulting influence on hot cracking susceptibility. Therefore EDS-measurements of weld seams generated with different velocities are performed to determine the change of element concentration. These quantitative data is used to numerically calculate the solidification range in order to evaluate its influence on the hot cracking susceptibility. Besides that, relative hot crack length and mechanical properties are measured. The results increase knowledge about welding of high strength aluminum alloy AA 7075 and hence support further developing of the welding process.

  9. Hazard of ultraviolet radiation emitted in gas tungsten arc welding of aluminum alloys

    PubMed Central

    NAKASHIMA, Hitoshi; UTSUNOMIYA, Akihiro; FUJII, Nobuyuki; OKUNO, Tsutomu

    2015-01-01

    Ultraviolet radiation (UVR) emitted during arc welding frequently causes keratoconjunctivitis and erythema. The extent of the hazard of UVR varies depending on the welding method and conditions. Therefore, it is important to identify the levels of UVR that are present under various conditions. In this study, we experimentally evaluated the hazard of UVR emitted in gas tungsten arc welding (GTAW) of aluminum alloys. The degree of hazard of UVR is measured by the effective irradiance defined in the American Conference of Governmental Industrial Hygienists guidelines. The effective irradiances measured in this study are in the range 0.10–0.91 mW/cm2 at a distance of 500 mm from the welding arc. The maximum allowable exposure times corresponding to these levels are only 3.3–33 s/day. This demonstrates that unprotected exposure to UVR emitted by GTAW of aluminum alloys is quite hazardous in practice. In addition, we found the following properties of the hazard of UVR. (1) It is more hazardous at higher welding currents than at lower welding currents. (2) It is more hazardous when magnesium is included in the welding materials than when it is not. (3) The hazard depends on the direction of emission from the arc. PMID:26632121

  10. Effect of Service Stress on Impact Resistance, X-ray Diffraction Patterns, and Microstructure of 25s Aluminum Alloy

    NASA Technical Reports Server (NTRS)

    Kies, J A; Quick, G W

    1939-01-01

    Report presents the results of a great number of tests made to determine the effect of service stresses on the impact resistance, the x-ray diffraction patterns, and the microstructure of 25s aluminum alloy. Many of the specimens were taken from actual propeller blades and others were cut from 13/16-inch rod furnished by the Aluminum Company of America.

  11. Water-soluble metal working fluids additives derived from the esters of acid anhydrides with higher alcohols for aluminum alloy materials.

    PubMed

    Yamamoto, Syutaro; Tomoda, Hideyuki; Watanabe, Shoji

    2007-01-01

    Water-soluble metal working fluids are used for processing of aluminum alloy materials. This short article describes properties of new additives in water-soluble metal working fluids for aluminum alloy materials. Many half esters or diesters were prepared from the reactions of higher alcohols with acid anhydrides. Interestingly, diesters of PTMG (tetrahydrofuran oligomer, MW = 650 and 1000) and polybutylene oxide (MW = 650) with maleic anhydride and succinic anhydride showed both of an excellent anti-corrosion property for aluminum alloy and a good hard water tolerance. The industrial soluble type processing oils including these additives also showed anti-corrosion property and hard water tolerance.

  12. Experimental Damage Criterion for Static and Fatigue Life Assessment of Commercial Aluminum Alloy Die Castings

    NASA Astrophysics Data System (ADS)

    Battaglia, Eleonora; Bonollo, Franco; Ferro, Paolo

    2017-03-01

    Defects, particularly porosity and oxides, in high-pressure die casting can seriously compromise the in-service behavior and durability of products subjected to static or cyclic loadings. In this study, the influence of dimension, orientation, and position of casting defects on the mechanical properties of an AlSi12(b) (EN-AC 44100) aluminum alloy commercial component has been studied. A finite element model has been carried out in order to calculate the stress distribution induced by service loads and identify the crack initiation zones. Castings were qualitatively classified on the basis of porosities distribution detected by X-ray technique and oxides observed on fracture surfaces of specimens coming from fatigue and tensile tests. A damage criterion has been formulated which considers the influence of defects position and orientation on the mechanical strength of the components. Using the proposed damage criterion, it was possible to describe the mechanical behavior of the castings with good accuracy.

  13. Improved TIG weld joint strength in aluminum alloy 2219-T87 by filler metal substitution

    NASA Technical Reports Server (NTRS)

    Poorman, R. M.; Lovoy, C. V.

    1972-01-01

    The results of an investigation on weld joint characteristics of aluminum alloy 2219-T87 are given. Five different alloys were utilized as filler material. The mechanical properties of the joints were determined at ambient and cryogenic temperatures for weldments in the as-welded condition and also, for weldments after elevated temperature exposures. Other evaluations included hardness surveys, stress corrosion susceptibility, and to a limited extent, the internal metallurgical weld structures. The overall results indicate that M-943 filler weldments are superior in strength to weldments containing either the standard 2319 filler or fillers 2014, 2020, and a dual wire feed consisting of three parts 2319 and one part 5652. In addition, no deficiencies were evident in M-934 filler weldments with regard to ductility, joint strength after elevated temperature exposure, weld hardness, metallographic structures, or stress corrosion susceptibility.

  14. The Effect of Structural Quality on Fatigue Life in 319 Aluminum Alloy Castings

    NASA Astrophysics Data System (ADS)

    Özdeş, Hüseyin; Tiryakioğlu, Murat

    2016-12-01

    Tensile and fatigue life data for 319 aluminum alloy from seventeen datasets reported in four independent studies from the literature have been reanalyzed. Analysis of fatigue life data involved mean stress correction for different R ratios used in fatigue testing, inclusion of survival (runout) data along with failure data, as well as volumetric correction for Weibull distributions for different specimen sizes used in these studies. Tensile data have been transformed into the structural quality index, Q T, which is used as a measure of the structural quality of castings. A distinct relationship has been observed between the expected fatigue life and mean quality index. Moreover, fatigue strengths at 104 and 106 cycles have been found increase with quality index, providing further evidence about the relationship observed between structural quality and fatigue performance. Empirical equations between Basquin parameters and structural quality index have been developed. The use of the comprehensive methodology to estimate fatigue life is demonstrated with an example.

  15. The development of a fluidized bed process for the heat treatment of aluminum alloys

    NASA Astrophysics Data System (ADS)

    Keist, Jay

    2005-04-01

    Heat treating of aluminum alloys is often necessary to achieve the mechanical properties required for a part. With conventional furnaces, though, the heat-treating process requires several hours and manufacturers have traditionally utilized off-line, batch heat-treating operations. The long cycle times required for heat treating with conventional systems go contrary to lean manufacturing where the goal is to reduce the time a part spends in the factory. The fluidized bed technology offers rapid heating rates and excellent temperature control that allows one to significantly reduce the time required for heat treating by an order of magnitude. Technomics developed a fluidized bed conveying system that allows the manufacturer to bring the heat-treating system in-line with the casting or forging operation, obtaining a true lean manufacturing process.

  16. YIELD STRENGTH PREDICTION FOR RAPID AGE-HARDENING HEAT TREATMENT OF ALUMINUM ALLOYS

    SciTech Connect

    Yin, Hebi; Sabau, Adrian S; Ludtka, Gerard Michael; Skszek, Timothy; Niu, X

    2013-01-01

    A constitutive model has been developed to predict the yield strength aging curves for aluminum casting alloys during non-isothermal age-hardening processes. The model provides the specific relationship between the process variables and yield strength. Several aging heat treatment scenarios have been investigated using the proposed model, including two-step aging recipes. Two-step aging heat treatments involve a low temperature regime to promote nucleation of secondary phases and a second step at higher temperature for the growth of the secondary phases. The predicted results show that yield strength of approximately 300MPa might be obtained in shorter aging time, of approximately 30 minutes. Thus, better mechanical properties can be obtained by optimizing the time-temperature schedules for the precipitation hardening process of heat treatable aluminum alloys.

  17. Role of Laser Cladding Parameters in Composite Coating (Al-SiC) on Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Riquelme, Ainhoa; Escalera-Rodriguez, María Dolores; Rodrigo, Pilar; Rams, Joaquin

    2016-08-01

    The effect of the different control parameters on the laser cladding fabrication of Al/SiCp composite coatings on AA6082 aluminum alloy was analyzed. A high-power diode laser was used, and the laser control parameters were optimized to maximize the size (height and width) of the coating and the substrate-coating interface quality, as well as to minimize the melted zone depth. The Taguchi DOE method was applied using a L18 to reduce the number of experiments from 81 to only 18 experiments. Main effects, signal-noise ratio and analysis of variance were used to evaluate the effect of these parameters in the characteristics of the coating and to determine their optimum values. The influence of four control parameters was evaluated: (1) laser power, (2) scanning speed, (3) focal condition, and (4) powder feed ratio. Confirmation test with the optimal control parameters was carried out to evaluate the Taguchi method's effectivity.

  18. Computational Contour of Mixed Mode Crack-Tip Plastic Zone for Aluminum Alloy 2024T351

    NASA Astrophysics Data System (ADS)

    Do, Tien Dung; Leroy, Rene; Joly, Damien

    2013-07-01

    The studies on mixed mode crack-tip plastic zones are one of the fundamental importance in describing the process of failure and in evaluation of the material life. The approach is also applied to predict crack initiation under mixed mode loading. The objective of this work is to study the contour of mixed mode crack-tip plastic zones, the minimum plastic zone radius (MPZR) and the direction of initial crack for aluminum alloy 2024T351 in Compact tension specimen by using Matlab software. This paper computed the shape, size of plastic zone at crack-tip and the minimum plastic zone radius with reference to the loading angle and stress intensity factor in linear elastic fracture mechanics regime for plane strain condition according to Von Mises yield criteria, the study is conducted for various loading angle. We found that the mixed mode loading (β = 60°) can lead to material fracture earlier than any mode loading.

  19. Synthetic sea water - An improved stress corrosion test medium for aluminum alloys

    NASA Technical Reports Server (NTRS)

    Humphries, T. S.; Nelson, E. E.

    1973-01-01

    A major problem in evaluating the stress corrosion cracking resistance of aluminum alloys by alternate immersion in 3.5 percent salt (NaCl) water is excessive pitting corrosion. Several methods were examined to eliminate this problem and to find an improved accelerated test medium. These included the addition of chromate inhibitors, surface treatment of specimens, and immersion in synthetic sea water. The results indicate that alternate immersion in synthetic sea water is a very promising stress corrosion test medium. Neither chromate inhibitors nor surface treatment (anodize and alodine) of the aluminum specimens improved the performance of alternate immersion in 3.5 percent salt water sufficiently to be classified as an effective stress corrosion test method.

  20. Iron-aluminum alloys having high room-temperature and method for making same

    DOEpatents

    Sikka, V.K.; McKamey, C.G.

    1993-08-24

    A wrought and annealed iron-aluminum alloy is described consisting essentially of 8 to 9.5% aluminum, an effective amount of chromium sufficient to promote resistance to aqueous corrosion of the alloy, and an alloying constituent selected from the group of elements consisting of an effective amount of molybdenum sufficient to promote solution hardening of the alloy and resistance of the alloy to pitting when exposed to solutions containing chloride, up to about 0.05% carbon with up to about 0.5% of a carbide former which combines with the carbon to form carbides for controlling grain growth at elevated temperatures, and mixtures thereof, and the balance iron, wherein said alloy has a single disordered [alpha] phase crystal structure, is substantially non-susceptible to hydrogen embrittlement, and has a room-temperature ductility of greater than 20%.

  1. Microstructures and Mechanical Properties of Friction Stir Spot Welded Aluminum Alloy AA2014

    NASA Astrophysics Data System (ADS)

    Babu, S.; Sankar, V. S.; Janaki Ram, G. D.; Venkitakrishnan, P. V.; Madhusudhan Reddy, G.; Prasad Rao, K.

    2013-01-01

    Friction stir spot welding (FSSW) is a relatively recent development, which can provide a superior alternative to resistance spot welding and riveting for fabrication of aluminum sheet metal structures. In the current work, FSSW experiments were conducted in 3-mm thick sheets of aluminum alloy 2014 in T4 and T6 conditions, with and without Alclad layers. The effects of tool geometry and welding process parameters on joint formation were investigated. A good correlation between process parameters, bond width, hook height, joint strength, and fracture mode was observed. The presence of Alclad layers and the base metal temper condition were found to have no major effect on joint formation and joint strength. Friction stir spot welds produced under optimum conditions were found to be superior to riveted joints in lap-shear and cross-tension tests. The prospects of FSSW in aluminum sheet metal fabrication are discussed.

  2. Local buckling of thin-walled channel member flange made of aluminum alloy

    NASA Astrophysics Data System (ADS)

    Szymczak, Czesław; Kujawa, Marcin

    2017-03-01

    The paper deals with local stability of the thin-walled compressed flange of channel columns and beams made of aluminum alloy. The aim of paper is to find critical stress of local buckling of the flange member taking into account the web-flange interaction in linear and nonlinear elastic range of the member material. The governing differential equation of the problem is derived with aid of the principle of stationary total potential energy. The equation solution leads to the critical buckling stress and assessment of the number of half-waves in linear elastic range of the member material. Taking into account these results the analytical formula of the critical buckling stress in nonlinear elastic range is established using the tangent modulus theory and the Ramberg-Osgood stress-strain relationship. Finally the analytical results for simply supported members are compared with the FEM solutions and good agreement is observed.

  3. Accelerated Threshold Fatigue Crack Growth Effect-Powder Metallurgy Aluminum Alloy

    NASA Technical Reports Server (NTRS)

    Piascik, R. S.; Newman, J. A.

    2002-01-01

    Fatigue crack growth (FCG) research conducted in the near threshold regime has identified a room temperature creep crack growth damage mechanism for a fine grain powder metallurgy (PM) aluminum alloy (8009). At very low (Delta) K, an abrupt acceleration in room temperature FCG rate occurs at high stress ratio (R = K(sub min)/K(sub max)). The near threshold accelerated FCG rates are exacerbated by increased levels of K(sub max) (K(sub max) = 0.4 K(sub IC)). Detailed fractographic analysis correlates accelerated FCG with the formation of crack-tip process zone micro-void damage. Experimental results show that the near threshold and K(sub max) influenced accelerated crack growth is time and temperature dependent.

  4. Laser Deep Penetration Welding of an Aluminum Alloy with Simultaneously Applied Vibrations

    NASA Astrophysics Data System (ADS)

    Woizeschke, Peer; Radel, Tim; Nicolay, Paul; Vollertsen, Frank

    2016-12-01

    In aluminum welding, the grain structure of produced seams is an essential factor with respect to the seam properties. In the casting technology the effect of mechanical vibrations on the grain growth during the solidification of liquid metals is known as a refinement method. In this paper, the transferability of this approach from comparatively long-time processes in the field of casting to the short-time process of laser deep penetration welding is investigated. Therefore, specimens were sinusoidal vibrated with frequencies up to 4 kHz during bead-on-plate full-penetration welding experiments. The resulting grain size was determined by applying the circular intercept procedure on the center of a cross-section micrograph of each weld. The results show that grain refinement is in general achievable by mechanical vibrations in the audible frequency range during laser full penetration keyhole welding of the aluminum alloy EN AW-5083.

  5. Intergranular fracture in some precipitation-hardened aluminum alloys at low temperatures

    SciTech Connect

    Kuramoto, S.; Itoh, G.; Kanno, M.

    1996-10-01

    Intergranular fracture at low temperatures from room temperature down to 4.2 K has been studied in some precipitation-hardened aluminum alloys. Microscopic appearance of intergranular facets is revealed to be greatly affected by the microstructure adjacent to the grain boundaries (GBs). When large precipitates on GBs and wide precipitation-free zones (PFZs) are present, coalescence of microvoids initiated at the GB precipitates causes the intergranular fracture with dimples. This fracture process is found to be unaffected by deformation temperature. On the other hand, in the presence of fine precipitates on GBs and narrow PFZs, matrix slip localization exerts significant influence on the fracture behavior. At low temperatures, large stress concentration at GBs leads to intergranular fracture, forming sharp ledges on the fracture surfaces, while at room temperature, the dynamic recovery process is thought to relax such stress concentration, resulting in a transgranular ductile rupture.

  6. Low temperature deformation behavior of an electromagnetically bulged 5052 aluminum alloy

    NASA Astrophysics Data System (ADS)

    Li, Zu; Li, Ning; Wang, Duzhen; Ouyang, Di; Liu, Lin

    2016-07-01

    The fundamental understanding of the deformation behavior of electromagnetically formed metallic components under extreme conditions is important. Here, the effect of low temperature on the deformation behavior of an electromagnetically-bulged 5052 aluminum alloy was investigated through uniaxial tension. We found that the Portevin-Le Chatelier Effect, designated by the serrated characteristic in stress-strain curves, continuously decays until completely disappears with decreasing temperature. The physical origin of the phenomenon is rationalized on the basis of the theoretical analysis and the Monte Carlo simulation, which reveal an increasing resistance to dislocation motion imposed by lowering temperature. The dislocations are captured completely by solute atoms at ‑50 °C, which results in the extinction of Portevin-Le Chatelier. The detailed mechanism responsible for this process is further examined through Monte Carlo simulation.

  7. Elasto-Plasticity Behavior of Type 5000 and 6000 Aluminum Alloy Sheets and Its Constitutive Modeling

    SciTech Connect

    Tamura, Shohei; Sumikawa, Satoshi; Hamasaki, Hiroshi; Yoshida, Fusahito; Uemori, Takeshi

    2010-06-15

    To examine the deformation characteristic of type 5000 and 6000 aluminum alloy sheets, uniaxial tension, biaxial stretching and in-plane cyclic tension-compression experiments were performed, and from these, r-values (r{sub 0}, r{sub 45} and r{sub 90}), yield loci and cyclic stress-strain responses were obtained. For the accurate description of anisotropies of the materials, high-ordered anisotropic yield functions, such as Gotoh's biquadratic yield function and Barlat's Yld2000-2d, are necessary. Furthermore, for the simulation of cyclic behavior, an advanced kinematic hardening model, such as Yoshida-Uemori model (Y-U model), should be employed. The effect of the selection of material models on the accuracy of the springback prediction was discussed by performing hat bending FE simulation using several yield functions and two types of hardening laws (the isotropic hardening model and Y-U model).

  8. Experiments and FEM simulations of fracture behaviors for ADC12 aluminum alloy under impact load

    NASA Astrophysics Data System (ADS)

    Hu, Yumei; Xiao, Yue; Jin, Xiaoqing; Zheng, Haoran; Zhou, Yinge; Shao, Jinhua

    2016-11-01

    Using the combination of experiment and simulation, the fracture behavior of the brittle metal named ADC12 aluminum alloy was studied. Five typical experiments were carried out on this material, with responding data collected on different stress states and dynamic strain rates. Fractographs revealed that the morphologies of fractured specimen under several rates showed different results, indicating that the fracture was predominantly a brittle one in nature. Simulations of the fracture processes of those specimens were conducted by Finite Element Method, whilst consistency was observed between simulations and experiments. In simulation, the Johnson- Cook model was chosen to describe the damage development and to predict the failure using parameters determined from those experimental data. Subsequently, an ADC12 engine mount bracket crashing simulation was conducted and the results indicated good agreement with the experiments. The accordance showed that our research can provide an accurate description for the deforming and fracture processes of the studied alloy.

  9. Metallurgical characterization of the fracture of several high strength aluminum alloys

    NASA Technical Reports Server (NTRS)

    Bhandarkar, M. D.; Lisagor, W. B.

    1977-01-01

    The fracture behavior for structural aluminum alloys (2024, 6061, 7075, and 7178) was examined in selected heat treatments. The investigation included tensile, shear, and precracked notch-bend specimens fractured at ambient temperature under monotonic loading. Specimens were obtained from thin sheets and thick plates and were tested in longitudinal and transverse orientations at different strain rates. Microstructures of alloys were examined using the optical microscope and the scanning electron microscope with associated energy dispersive X ray chemical analysis. Several different types of second phase particles, some not reported by other investigators, were identified in the alloys. Fracture morphology was related to microstructural variables, test variables, and type of commercial product. Specimen orientation examined in the present investigation had little effect on fracture morphology. Test strain rate changes resulted in some change in shear fracture morphology, but not in fracture morphology of tensile specimens.

  10. Correlation of stress-wave-emission characteristics with fracture aluminum alloys

    NASA Technical Reports Server (NTRS)

    Hartbower, C. E.; Reuter, W. G.; Morais, C. F.; Crimmins, P. P.

    1972-01-01

    A study to correlate stress wave emission characteristics with fracture in welded and unwelded aluminum alloys tested at room and cryogenic temperature is reported. The stress wave emission characteristics investigated were those which serve to presage crack instability; viz., a marked increase in:(1) signal amplitude; (2) signal repetition rate; and (3) the slope of cumulative count plotted versus load. The alloys were 7075-T73, 2219-T87 and 2014-T651, welded with MIG and TIG using 2319 and 4043 filler wire. The testing was done with both unnotched and part-through-crack (PTC) tension specimens and with 18-in.-dia subscale pressure vessels. In the latter testing, a real time, acoustic emission, triangulation system was used to locate the source of each stress wave emission. With such a system, multiple emissions from a given location were correlated with defects found by conventional nondestructive inspection.

  11. Low temperature deformation behavior of an electromagnetically bulged 5052 aluminum alloy

    PubMed Central

    Li, Zu; Li, Ning; Wang, Duzhen; Ouyang, Di; Liu, Lin

    2016-01-01

    The fundamental understanding of the deformation behavior of electromagnetically formed metallic components under extreme conditions is important. Here, the effect of low temperature on the deformation behavior of an electromagnetically-bulged 5052 aluminum alloy was investigated through uniaxial tension. We found that the Portevin-Le Chatelier Effect, designated by the serrated characteristic in stress-strain curves, continuously decays until completely disappears with decreasing temperature. The physical origin of the phenomenon is rationalized on the basis of the theoretical analysis and the Monte Carlo simulation, which reveal an increasing resistance to dislocation motion imposed by lowering temperature. The dislocations are captured completely by solute atoms at −50 °C, which results in the extinction of Portevin-Le Chatelier. The detailed mechanism responsible for this process is further examined through Monte Carlo simulation. PMID:27426919

  12. The effect of corrosion on the fatigue life of aluminum alloys

    NASA Astrophysics Data System (ADS)

    Dalla, P. T.; Tragazikis, I. K.; Exarchos, D. A.; Matikas, T. E.

    2016-04-01

    The corrosion behavior of metallic structures is an important factor of material performance. In case of aluminum matrix composites corrosion occurs via electrochemical reactions at the interface between the metallic matrix and the reinforcement. The corrosion rate is determined by equilibrium between two opposing electrochemical reactions, the anodic and the cathodic. When these two reactions are in equilibrium, the flow of electrons from each reaction type is balanced, and no net electron flow occurs. In the present study, aluminum alloy tensile-shape samples are immersed in NaCl solution with an objective to study the effect of the controlled pitting corrosion in a specific area. The rest of the material is completely sealed. In order to investigate the effect of pitting corrosion on the material performance, the specimens were subjected to cyclic loading. The effect of corrosion on the fatigue life was assessed using two complimentary nondestructive methods, infrared thermography and acoustic emission.

  13. High-speed mass-transport phenomena during carburization of aluminum alloy by laser plasma treatment

    NASA Astrophysics Data System (ADS)

    Fariaut, F.; Boulmer-Leborgne, C.; Semmar, N.; Le Menn, E.

    2006-04-01

    In the excimer laser carburizing process reported here, aluminum alloy samples have been treated in a propylene atmosphere, producing aluminum carbide surface layers. The layers have been characterized by nuclear reaction analysis that has shown carbon incorporation. X-ray diffraction at grazing incidence has evidenced aluminum carbide (Al4C3) phase. This study helps the understanding of the incorporation mechanisms of carbon in a surface. A micro-thermocapillary effect induced by heterogeneous surface formation has been evidenced. This original mass-transport phenomenon is very efficient in improving the carbon incorporation yield and hence in obtaining carbide layers several μm in thickness with a reduced laser pulse number. In order to obtain this micro-thermocapillary effect, the binary diagram of ceramic compounds must contain a peritectic.

  14. Microstructural evolution of a recycled aluminum alloy deformed by equal channel angular pressing process

    NASA Astrophysics Data System (ADS)

    Makhlouf, Thabet; Rebhi, Atef; Couzinié, Jean-Philippe; Champion, Yannick; Njah, Nabil

    2012-11-01

    The microstructural evolution of a recycled aluminum alloy after equal channel angular pressing (ECAP) up to four passes was investigated using X-ray diffraction (XRD) analysis and transmission electron microscopy (TEM). Microhardness tests were performed to determine the associated changes in mechanical properties. An ultrafine-grained material has been obtained with a microstructure showing a mixture of highly strained crystallites. A high density of dislocations was achieved as a result of severe plastic deformation (SPD) through the die. Changes in mechanical behavior are also revealed after ECAP due to strain hardening. Thermal analysis and TEM micrographs obtained after annealing indicate the succession of the recovery, recrystallization, and grain growth phenomena. Moreover, the energy stored during ECAP may be related to the dislocation density introduced by SPD. We finally emphasize the role played by the precipitates in this alloy.

  15. Beam and Torsion Tests of Aluminum-alloy 61S-T Tubing

    NASA Technical Reports Server (NTRS)

    Moore, R L; Holt, Marshall

    1942-01-01

    Tests were made to determine the effect of length and the effect of ratios of diameter to wall thickness upon the flexural and torsional moduli of failure of 61S-T aluminum-alloy tubing. The moduli of failure in bending, as determined by tests in which the tubing was loaded on the neutral axis at the one-third points of the span, were found to bear an approximately linear relationship with diameter-thickness ratio and were practically independent of span within the limits investigated. Empirical equations are given describing the relations obtained. The moduli of failure in torsion were found to be dependent upon length as well as upon diameter-thickness ratios. Empirical equations are given for predicting strengths within the range of plastic buckling. Within the elastic range, available torsion theories were found to be satisfactory.

  16. Iron-aluminum alloys having high room-temperature and method for making same

    DOEpatents

    Sikka, Vinod K.; McKamey, Claudette G.

    1993-01-01

    Iron-aluminum alloys having selectable room-temperature ductilities of greater than 20%, high resistance to oxidation and sulfidation, resistant pitting and corrosion in aqueous solutions, and possessing relatively high yield and ultimate tensile strengths are described. These alloys comprise 8 to 9.5% aluminum, up to 7% chromium, up to 4% molybdenum, up to 0.05% carbon, up to 0.5% of a carbide former such as zirconium, up to 0.1 yttrium, and the balance iron. These alloys in wrought form are annealed at a selected temperature in the range of 700.degree. C. to about 1100.degree. C. for providing the alloys with selected room-temperature ductilities in the range of 20 to about 29%.

  17. Nanoscale microstructure effects on hydrogen behavior in rapidly solidified aluminum alloys

    SciTech Connect

    Tashlykova-Bushkevich, Iya I.

    2015-12-31

    The present work summarizes recent progress in the investigation of nanoscale microstructure effects on hydrogen behavior in rapidly solidified aluminum alloys foils produced at exceptionally high cooling rates. We focus here on the potential of modification of hydrogen desorption kinetics in respect to weak and strong trapping sites that could serve as hydrogen sinks in Al materials. It is shown that it is important to elucidate the surface microstructure of the Al alloy foils at the submicrometer scale because rapidly solidified microstructural features affect hydrogen trapping at nanostructured defects. We discuss the profound influence of solute atoms on hydrogen−lattice defect interactions in the alloys. with emphasis on role of vacancies in hydrogen evolution; both rapidly solidified pure Al and conventionally processed aluminum samples are considered.

  18. Influence of deformation ageing treatment on microstructure and properties of aluminum alloy 2618

    SciTech Connect

    Wang Jianhua Yi Danqing; Su Xuping; Yin Fucheng

    2008-07-15

    The effects of deformation ageing treatment (DAT) on the microstructure and properties of aluminum alloy 2618 were investigated. The alloy was subjected to deformation ageing treatment which included solution treating at 535 deg. C quenching into water at room-temperature, cold rolling (10%) and further ageing to peak hardness level at 200 deg. C. The electron microscopic studies revealed that the treatment affects the ageing characteristics and the coarsening of ageing phase (S') at elevated-temperature. The dislocation-precipitate tangles substructure couldn't be found in alloy 2618. The tensile and hardness tests showed that deformation-ageing treatment causes a significant improvement in tensile strength and hardness to alloy 2618 at room- and elevated-temperature.

  19. Controlled Release from Core-Shell Nanoporous Silica Particles for Corrosion Inhibition of Aluminum Alloys

    DOE PAGES

    Jiang, Xingmao; Jiang, Ying-Bing; Liu, Nanguo; ...

    2011-01-01

    Ceriumore » m (Ce) corrosion inhibitors were encapsulated into hexagonally ordered nanoporous silica particles via single-step aerosol-assisted self-assembly. The core/shell structured particles are effective for corrosion inhibition of aluminum alloy AA2024-T3. Numerical simulation proved that the core-shell nanostructure delays the release process. The effective diffusion coefficient elucidated from release data for monodisperse particles in water was 1.0 × 10 − 14  m 2 s for Ce 3+ compared to 2.5 × 10 − 13  m 2 s for NaCl. The pore size, pore surface chemistry, and the inhibitor solubility are crucial factors for the application. Microporous hydrophobic particles encapsulating a less soluble corrosion inhibitor are desirable for long-term corrosion inhibition.« less

  20. Thermal Management in Friction-Stir Welding of Precipitation-Hardened Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Upadhyay, Piyush; Reynolds, Anthony P.

    2015-05-01

    Process design and implementation in friction-stir welding (FSW) is mostly dependent on empirical information. Basic science of FSW and processing can only be complete when fundamental interrelationships between the process control parameters and response variables and the resulting weld microstructure and properties are established to a reasonable extent. It is known that primary process control parameters such as tool rotation, translation rates, and forge axis force have complicated and interactive relationships to process-response variables such as peak temperature and time at temperature. Of primary influence on the other process-response parameters are temperature and its gradient in the deformation and heat-affected zones. Through a review of pertinent works in the literature and results from boundary condition experiments performed in precipitation-hardening aluminum alloys, this article partially elucidates the nature and effects of temperature transients caused by variation of thermal boundaries in FSW.

  1. Thermal Management in Friction-Stir Welding of Precipitation-Hardening Aluminum Alloys

    SciTech Connect

    Upadhyay, Piyush; Reynolds, Anthony

    2015-05-25

    Process design and implementation in FSW is mostly dependent on empirical information gathered through experience. Basic science of friction stir welding and processing can only be complete when fundamental interrelationships between process control parameters and response variables and resulting weld microstructure and properties are established to a reasonable extent. It is known that primary process control parameters like tool rotation and translation rate and forge axis force have complicated and interactive relationships to the process response variables such as peak temperature, time at temperature etc. Of primary influence to the other process response parameters are temperature and its gradient at the deformation and heat affected zones. Through review of pertinent works in the literature and some experimental results from boundary condition work performed in precipitation hardening aluminum alloys this paper will partially elucidate the nature and effects of temperature transients caused by variation of thermal boundaries in Friction Stir Welding.

  2. Character of melting and evaporation in laser beam welding of two aluminum alloys

    SciTech Connect

    Xijing, W.; Katayama, S.; Matsunawa, A.

    1997-02-01

    The phenomenon of evaporation within the keyhole during laser beam welding of aluminum Alloys A5052 and A5083 was investigated under different welding conditions. The character of the molten pool was compared and analyzed. It was found that the evaporation of the main alloying element for these alloys, magnesium, greatly influenced the reaction force induced between the metal vapor and thermal plasma, which in turn affected the degree of penetration. The results of these experiments also confirmed that increasing shielding gas flow rate, within a limit, and a light increase in the entrance angle of the laser beam improved meltability and increased penetration depth. Surface preparation was also observed to improve beam absorption and increase penetration.

  3. Stability of the grain structure in 2219-O aluminum alloy friction stir welds during solution treatment

    SciTech Connect

    Chen, Y.C. . E-mail: armstrong@hit.edu.cn; Feng, J.C.; Liu, H.J.

    2007-02-15

    The stability of the grain structure in 2219-O aluminum alloy friction stir welds during solution treatment has been investigated. Experimental results show that the solution treatment causes drastic grain growth, Grain growth initiates at the surface and the bottom of the weld and then extends to the weld centre within several minutes. The solution treatment temperature and the welding heat input have a significant effect on grain growth. The higher the solution temperature, or the higher the welding heat input, the greater the grain growth. The instability of the grains is attributed to an imbalance between thermodynamic driving forces for grain growth and the pinning forces impeding grain boundary migration during solution treatment.

  4. VAMAS tests of structural materials on aluminum alloy and composite material at cryogenic temperatures

    SciTech Connect

    Ogata, T.; Evans, D.

    1997-06-01

    A Technical Working Area 17, cryogenic structural materials, has been organized in the Versailles Project on Advanced Materials and Standards (VAMAS) to promote the prestandardization program on material properties tests of glass fiber reinforced polymer (GFRP) composite materials and alloys at liquid helium temperature. A series of international interlaboratory comparisons of both tensile and fracture toughness tests for aluminum alloy 2219 and compression and shear tests for composite material G-10CR were performed. Nine research institutes from seven nations have participated in this project. The results prove that there are few problems in cryogenic tensile tests for alloy materials. In compression and shear tests, the amount of data scatter was identified and further experiments are planned. This paper presents the program details and interim results of round robin tests.

  5. Relationship between Fracture Toughness and Tensile Properties of A357 Cast Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Alexopoulos, N. D.; Tiryakioğlu, M.

    2009-03-01

    The fracture-related mechanical properties of the A357 cast aluminum alloy, namely, elongation to fracture, tensile strain energy density (tensile toughness), strain-hardening exponent, and plane strain fracture toughness were investigated. Correlations between these properties have been established for 25 different artificial aging heat-treatment conditions and for five minor variations in chemical composition. Empirical relationships between the strain energy density and both the tensile elongation to fracture and the strain-hardening exponent have been developed. Analysis of the fracture surfaces indicated that the fracture mechanism of the investigated specimens varies according to the artificial aging conditions. Moreover, empirical relationships between the fracture toughness and strain energy density and between fracture toughness and strain-hardening exponent have been developed; these can be used to estimate the plane strain fracture toughness of A357 as a function of yield strength and tensile toughness.

  6. Studies on separation and purification of fission (99)Mo from neutron activated uranium aluminum alloy.

    PubMed

    Rao, Ankita; Kumar Sharma, Abhishek; Kumar, Pradeep; Charyulu, M M; Tomar, B S; Ramakumar, K L

    2014-07-01

    A new method has been developed for separation and purification of fission (99)Mo from neutron activated uranium-aluminum alloy. Alkali dissolution of the irradiated target (100mg) results in aluminum along with (99)Mo and a few fission products passing into solution, while most of the fission products, activation products and uranium remain undissolved. Subsequent purification steps involve precipitation of aluminum as Al(OH)3, iodine as AgI/AgIO3 and molybdenum as Mo-α-benzoin oxime. Ruthenium is separated by volatilization as RuO4 and final purification of (99)Mo was carried out using anion exchange method. The radiochemical yield of fission (99)Mo was found to be >80% and the purity of the product was in conformity with the international pharmacopoeia standards.

  7. Stress Ratio Effects on Crack Opening Loads and Crack Growth Rates in Aluminum Alloy 2024

    NASA Technical Reports Server (NTRS)

    Riddell, William T.; Piascik, Robert S.

    1998-01-01

    The effects of stress ratio (R) and crack opening behavior on fatigue crack growth rates (da/dN) for aluminum alloy (AA) 2024-T3 were investigated using constant-delta K testing, closure measurements, and fractography. Fatigue crack growth rates were obtained for a range of delta K and stress ratios. Results show that constant delta K fatigue crack growth for R ranging from near 0 to 1 is divided into three regions. In Region 1, at low R, da/dN increases with increasing R. In Region 2, at intermediate R, fatigue crack growth rates are relatively independent of R. In Region 3, at high R, further increases in da/dN are observed with increasing R.

  8. Effect of Current Pathways During Spark Plasma Sintering of an Aluminum Alloy Powder

    NASA Astrophysics Data System (ADS)

    Kellogg, Frank; McWilliams, Brandon; Cho, Kyu

    2016-12-01

    Spark plasma sintering has been a well-studied processing technique primarily for its very high cooling and heating rates. However, the underlying phenomenon driving the sintering behavior of powders under an electric field is still poorly understood. In this study, we look at the effect of changing current pathways through the powder bed by changing die materials, from conductive graphite to insulating boron nitride for sintering aluminum alloy 5083 powder. We found that the aluminum powder itself was insulating and that by changing the current paths, we had to find alternate processing methods to initiate sintering. Altering the current pathways led to faster temperature raises and faster melting (and potentially densification) of the aluminum powder. A flash sintering effect in metallic powders is observed in which the powder compact undergoes a rapid transition from electrically insulating to conducting at a temperature of 583 K (310 °C).

  9. Effect of surface nanostructuring of aluminum alloy on post plasma electrolytic oxidation

    NASA Astrophysics Data System (ADS)

    Masiha, H. R.; Bagheri, H. R.; Gheytani, M.; Aliofkhazraei, M.; Sabour Rouhaghdam, A.; Shahrabi, T.

    2014-10-01

    AA1230 aluminum alloy samples were coated by plasma electrolytic oxidation (PEO). The samples with and without surface mechanical attrition treatment (SMAT) were coated in phosphate- and silicate-based electrolytes and in the presence of Si3N4 nanoparticles. Besides, morphology and properties of the produced coatings were examined. To determine the corrosion resistance of the coatings, potentiodynamic polarization technique was used. All coated samples were subjected to wear test in order to compare coating wear properties of the SMATed and unSMATed samples. Then the effects of SMAT preprocessing and its duration on the properties of the coatings prepared by PEO were investigated. The results indicated that the mean coefficient of friction of the coated samples decreased by near 83% with respect to the uncoated (raw) samples. Furthermore, the SMATed samples showed thicker coatings as compared to unSMATed samples due to an increase in their matrix reactivity.

  10. Modeling of Flow Stress of High Titanium Content 6061 Aluminum Alloy Under Hot Compression

    NASA Astrophysics Data System (ADS)

    Chen, Wei; Guan, Yingping; Wang, Zhenhua

    2016-09-01

    Hot compression tests were performed on high titanium content 6061 aluminum alloy (AA 6061-Ti) using a Gleeble-3500 thermomechanical testing system at temperatures from 350 to 510 °C with a constant strain rate in the range of 0.001-10 s-1. Three types of flow stress models were established from the experimental stress-strain curves, the correlation coefficient ( R), mean absolute relative error ( MARE), and root mean square deviation ( RMSD) between the predicted data and the experimental data were also calculated. The results show that the Fields-Backofen model, which includes a softening factor, was the simplest mathematical expression with a level of precision appropriate for the numerical simulations. However, the Arrhenius and artificial neural network (ANN) models were also consistent with the experimental results but they are more limited in their application in terms of their accuracy and the mathematical expression of the models.

  11. Aerospace Patented High-Strength Aluminum Alloy Used in Commercial Industries

    NASA Technical Reports Server (NTRS)

    2004-01-01

    NASA structural materials engineers at Marshall Space Flight Center (MSFC) in Huntsville, Alabama developed a high-strength aluminum alloy for aerospace applications with higher strength and wear-resistance at elevated temperatures. The alloy is a solution to reduce costs of aluminum engine pistons and lower engine emissions for the automobile industry. The Boats and Outboard Engines Division at Bombardier Recreational Products of Sturtevant, Wisconsin is using the alloy for pistons in its Evinrude E-Tec outboard, 40-90 horsepower, engine line. The alloy pistons make the outboard motor quieter and cleaner, while improving fuel mileage and increasing engine durability. The engines comply with California Air resources Board emissions standards, some of the most stringent in the United States. (photo credit: Bombardiier Recreational Products)

  12. The Strength and Characteristics of VPPA Welded 2219-T87 Aluminum Alloy

    NASA Technical Reports Server (NTRS)

    Jemian, W. A.

    1985-01-01

    A study of the variable polarity plasma arc (VPPA) welding process and those factors that control the structure and properties of VPPA welded aluminum alloy 2219-T87 was conducted. The importance of joint preparation, alignment of parts and welding process variables are already established. Internal weld defects have been eliminated. However, a variation of properties was found to be due to the size variation of interdendritic particles in the fusion zone. These particles contribute to the void formation process, which controls the ultimate tensile strength of the welded alloy. A variation of 150 microns in particle size correlated with a 10 ksi variation of ultimate tensile strength. It was found that all fracture surfaces were of the dimple rupture type, with fracture initiating within the fusion zone.

  13. Structure and Hardness of 01570 Aluminum Alloy Friction Stir Welds Processed Under Different Conditions

    NASA Astrophysics Data System (ADS)

    Il'yasov, R. R.; Avtokratova, E. V.; Markushev, M. V.; Predko, P. Yu.; Konkevich, V. Yu.

    2015-10-01

    Structure and hardness of the 01570 aluminum alloy joints processed by friction stir welding at various speeds are investigated. It is shown that increasing the traverse tool speed lowers the probability of macrodefect formation in the nugget zone; however, this can lead to anomalous grain growth in the zone of contact with the tool shoulder. Typical "onion-like" structure of the weld consisting of rings that differ by optical contrast is formed for all examined welding regimes. It is demonstrated that this contrast is caused by the difference in the grain sizes in the rings rather than by their chemical or phase composition. Mechanisms of transformation of the alloy structure during friction stir welding are discussed.

  14. Protective Coatings for Aluminum Alloy Based on Hyperbranched 1,4-Polytriazoles.

    PubMed

    Armelin, Elaine; Whelan, Rory; Martínez-Triana, Yeimy Mabel; Alemán, Carlos; Finn, M G; Díaz, David Díaz

    2017-02-01

    Organic polymers are widely used as coatings and adhesives to metal surfaces, but aluminum is among the most difficult substrates because of rapid oxidative passivation of its surface. Poly(1,4-disubstituted 1,2,3-triazoles) made by copper-catalyzed azide-alkyne cycloaddition form strongly bonded interfaces with several metal substrates. In this work, a variety of alkyne and azide monomers were explored as precursors to anticorrosion coatings for a standard high-strength aluminum-copper alloy. Monomers of comparatively low valency (diazide and trialkyne) were found to act as superior barriers for electrolyte transfer to the aluminum surface. These materials showed excellent resistance to corrosive pitting due to the combination of three complementary properties: good formation of highly cross-linked films, as observed by Fourier transform infrared spectroscopy and differential scanning calorimetry; good adhesion to the aluminum alloy substrate, as shown by pull-off testing; and excellent impermeability, as demonstrated by electrochemical impedance spectroscopy.

  15. Constitutive Description of 7075 Aluminum Alloy During Hot Deformation by Apparent and Physically-Based Approaches

    NASA Astrophysics Data System (ADS)

    Mirzadeh, Hamed

    2015-03-01

    Hot flow stress of 7075 aluminum alloy during compressive hot deformation was correlated to the Zener-Hollomon parameter through constitutive analyses based on the apparent approach and the proposed physically-based approach which accounts for the dependence of the Young's modulus and the self-diffusion coefficient of aluminum on temperature. It was shown that the latter approach not only results in a more reliable constitutive equation, but also significantly simplifies the constitutive analysis, which in turn makes it possible to conduct comparative hot working studies. It was also demonstrated that the theoretical exponent of 5 and the lattice self-diffusion activation energy of aluminum (142 kJ/mol) can be set in the hyperbolic sine law to describe the peak flow stresses and the resulting constitutive equation was found to be consistent with that resulted from the proposed physically-based approach.

  16. Development and application of constitutive equation for the hot extrusion of 7A04 aluminum alloy

    NASA Astrophysics Data System (ADS)

    Xiao, Yanhong; Cui, Zhenshan; Guo, Cheng

    2013-05-01

    The high-temperature deformation behavior of 7A04 aluminum alloy was investigated by hot compression tests in the temperature range of 300 - 450° and the strain rate range of 0.01-10 s-1. The true stress - true strain curves show that the stress level decreases with increasing temperature and decreasing strain rate. A modified JC model was developed by means of fitting the experimental data and optimizing the material constants. Then, based on the established constitutive equation of 7A04, the hot extrusion process of fuze shell was analyzed using DEFORM-3D and the flow law of metal was obtained. Finally, the validity of this research results was proved by practice, which provides some references for engineering application.

  17. Proof test and fatigue crack growth modeling on 2024-T3 aluminum alloy

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.; Poe, C. C., Jr.; Dawicke, D. S.

    1990-01-01

    Pressure proof testing of aircraft fuselage structures has been suggested as a means of screening critical crack sizes and of extending their useful life. The objective of this paper is to study the proof-test concept and to model the crack-growth process on a ductile material. Simulated proof and operational fatigue life tests have been conducted on cracked panels made of 2024-T3 aluminum alloy sheet material. A fatigue crack-closure model was modified to simulate the proof test and operational fatigue cycling. Using crack-growth rate and resistance-curve data, the model was able to predict crack growth during and after the proof load. These tests and analyses indicate that the proof test increases fatigue life; but the beneficial life, after a 1.33 or 1.5 proof, was less than a few hundred cycles.

  18. Reasons for superior mechanical and corrosion properties of 2219 aluminum alloy electron beam welds

    SciTech Connect

    Koteswara Rao, S.R. . E-mail: sajjarkr@yahoo.com; Madhusudhan Reddy, G.; Srinivasa Rao, K.; Kamaraj, M.; Prasad Rao, K.

    2005-11-15

    Electron beam welds of aluminum alloy 2219 offer much higher strength compared to gas tungsten arc welds of the same alloy and the reasons for this have not been fully explored. In this study both types of welds were made and mechanical properties were evaluated by tensile testing and pitting corrosion resistance by potentio dynamic polarization tests. It is shown that electron beam welds exhibit superior mechanical and corrosion properties. The weld metals have been characterized by scanning electron microscopy; transmission electron microscopy and electron probe micro analysis. Presence of partially disintegrated precipitates in the weld metal, finer micro porosity and uniform distribution of copper in the matrix were found to be the reasons for superior properties of electron beam welds apart from the fine equiaxed grain structure. Transmission electron micrographs of the heat affected zones revealed the precipitate disintegration and over aging in gas tungsten arc welds.

  19. The Effect of Structural Quality on Fatigue Life in 319 Aluminum Alloy Castings

    NASA Astrophysics Data System (ADS)

    Özdeş, Hüseyin; Tiryakioğlu, Murat

    2017-02-01

    Tensile and fatigue life data for 319 aluminum alloy from seventeen datasets reported in four independent studies from the literature have been reanalyzed. Analysis of fatigue life data involved mean stress correction for different R ratios used in fatigue testing, inclusion of survival (runout) data along with failure data, as well as volumetric correction for Weibull distributions for different specimen sizes used in these studies. Tensile data have been transformed into the structural quality index, Q T, which is used as a measure of the structural quality of castings. A distinct relationship has been observed between the expected fatigue life and mean quality index. Moreover, fatigue strengths at 104 and 106 cycles have been found increase with quality index, providing further evidence about the relationship observed between structural quality and fatigue performance. Empirical equations between Basquin parameters and structural quality index have been developed. The use of the comprehensive methodology to estimate fatigue life is demonstrated with an example.

  20. Development of nanostructured coatings for protecting the surface of aluminum alloys against corrosion and ice accretion

    NASA Astrophysics Data System (ADS)

    Farhadi, Shahram

    Ice and wet snow accretion on outdoor structures is a severe challenge for cold climate countries. A variety of de-icing and anti-icing techniques have been developed so far to counter this problem. Passive approaches such as anti-icing or icephobic coatings that inhibit or retard ice accumulation on the surfaces are gaining in popularity. Metal corrosion should also be taken into account as metallic substrates are subject to corrosion problems when placed in humid or aggressive environments. Development of any ice-releasing coatings on aluminum structures, as they must be durable enough, is therefore closely related to anti-corrosive protection of that metal. Accordingly, series of experiments have been carried out to combine reduced ice adhesion and improved corrosion resistance on flat AA2024 substrates via thin films of single and double layer alkyl-terminated SAMs coatings. More precisely, alkyl-terminated aluminum substrates were prepared by depositing layer(s) of 18C-SAMs on BTSE-grafted AA2024 or mirror-polished AA2024 surfaces. This alloy is among the most widely used aluminum alloys in transportation systems (including aircraft), the military, etc. The stability of the coatings in an aggressive environment, their overall ice-repellent performance as well as their corrosion resistance was systematically studied. The stability of one-layer and two-layer coatings in different media was tested by means of CA measurements, demonstrating gradual loss of the hydrophobic property after ~1100-h-long immersion in water, associated by decrease in water CA. Surface corrosion was observed in all cases, except that the double-layer coating system provided improved anti-corrosive protection. All single layer coatings showed initial shear stress of ice detachment values of ~1.68 to 2 times lower than as-received aluminum surfaces and about ~1.22 to 1.5 times lower than those observed on mirror-polished surfaces. These values gradually increased after as many as 5 to 9

  1. Artificial Neural Network Modeling to Evaluate the Dynamic Flow Stress of 7050 Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Quan, Guo-zheng; Wang, Tong; Li, Yong-le; Zhan, Zong-yang; Xia, Yu-feng

    2016-02-01

    The flow stress data have been obtained by a set of isothermal hot compression tests, which were carried out in the temperature range of 573-723 K and strain rates of 0.01, 0.1, 1, and 10 s-1 with a reduction of 60% on a Gleeble-1500 thermo-mechanical simulator. On the basis of the experimental data, constitutive equation and an artificial neural network model were developed for the analysis and simulation of the flow behavior of the 7050 aluminum alloy. After training with standard back-propagation learning algorithm, the artificial neural network model has the ability to present the intrinsic relationship between the flow stress and the processing variables. In the present model, the temperature, strain, and strain rate were chosen as inputs, and the flow stress was chosen as output. By comparing the values of correlation coefficient and average absolute relative error, the prediction accuracy of the model and the improved Arrhenius-type model can be evaluated. The results indicated that the well-trained artificial neural network model is more accurate than the improved Arrhenius-type model in predicting the hot compressive behavior of the as-extruded 7050 aluminum alloy. Based on the predicted stress data and experimental stress data, the 3D continuous stress-strain maps at different strains, temperatures, and strain rates were plotted subsequently. Besides, the flow stress values at arbitrary temperature, strain rate, and strain are explicit on the 3D continuous stress-strain maps, which would be beneficial to articulate working processes more validly.

  2. The Effects of Defects on Tensile Properties of Cast ADC12 Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Okayasu, Mitsuhiro; Sakai, Hikoyuki

    2015-11-01

    To better understand the effects of cast defects on mechanical properties, cast aluminum alloys with various porosities were used. Porosity in the cast samples was created during the casting process, and to clearly identify the porosity effects on the mechanical properties, artificial defects (porosity-like tiny holes) were created mechanically. The tensile properties for the cast aluminum alloys appear to be attributed to the area fraction of the porosity on the fracture surface (namely, the defect rate, DR), although there were different trends because of the different stress concentrations: the ultimate tensile strength and 0.2 pct proof strength were linearly related to DR, while a non-linear correlation was detected for fracture strain. Even in Al alloys with small amounts of defects, significant reductions in the fracture strain were observed. These results were verified using tensile tests on specimens containing artificial defects. The effects of artificial defects on the tensile properties were further investigated using numerous tiny holes, created in several formations. The artificial defects (several small holes), lined up at perpendicular (90 deg) and 45 deg directions against the loading direction, made significant reductions in the tensile properties, even though only weak defect effects were observed for the 90 deg loading direction. No severe defect effects were obvious for the specimen with a tiny defect of ϕ0.1 mm, because of the lower stress concentration, compared to the microstructural effects in the cast Al alloys: the grain boundaries and the second phases. Such phenomena were clarified using tensile tests on cast samples with differently sized microstructures. There were no clear defect effects on the yield strength as the defect amount was less than 10 pct, and microstructural effects were not detected either in this case. Failure characteristics during tensile loading were revealed directly by in-situ strain observations using high

  3. Material characterization and finite element simulations of aluminum alloy sheets during non-isothermal forming process

    NASA Astrophysics Data System (ADS)

    Zhang, Nan

    The utilization of more non-ferrous materials is one of the key factors to succeed out of the constantly increasing demand for lightweight vehicles in automotive sector. Aluminum-magnesium alloys have been identified as the most promising substitutions to the conventional steel without significant compromise in structural stiffness and strength. However, the conventional forming methods to deform the aluminum alloy sheets are either costly or insufficient in formability which limit the wide applications of aluminum alloy sheets. A recently proposed non-isothermal hot stamping approach, which is also referred as Hot Blank - Cold Die (HB-CD) stamping, aims at fitting the commercial grade aluminum alloy sheets, such as AA5XXX and AA7XXX, into high-volume and cost-effective production for automotive sector. In essence, HB-CD is a mutation of the conventional hot stamping approach for boron steel (22MnB5) which deforms the hot blank within the cold tool set. By elevating the operation temperature, the formability of aluminum alloy sheets can be significantly improved. Meanwhile, heating the blank only and deforming within the cold tool sets allow to reduce the energy and time consumed. This research work aims at conducting a comprehensive investigation of HB-CD with particular focuses on material characterization, constitutive modeling and coupled thermo-mechanical finite element simulations with validation. The material properties of AA5182-O, a popular commercial grade of aluminum alloy sheet in automotive sector, are obtained through isothermal tensile testing at temperatures from 25° to 300°, covering a quasi-static strain-rate range (0.001--0.1s-1). As the state-of-the-art non-contact strain measurement technique, digital image correlation (DIC) system is utilized to evaluate the stress-strain curves as well as to reveal the details of material deformation with full-field and multi-axis strain measurement. Material anisotropy is characterized by extracting the

  4. Prediction of low-cycle fatigue-life by acoustic emission—1: 2024-T3 aluminum alloy, and —2: 7075-T6 aluminum alloy

    SciTech Connect

    Baram, J.; Rosen, M.

    1981-01-01

    1: In this paper, low-cycle fatigue tests were conducted by tension-tension until rupture, on a 2024-T3 aluminum alloy sheet. Initial crack sizes and orientations in the fatigue specimens were found to be randomly distributed. Acoustic emission was continuously monitored during the tests. Every few hundred cycles, the acoustic signal having the highest peak-amplitude, was recorded as an extremal event for the elapsed period. This high peak-amplitude is related to a fast crack propagation rate through a phenomenological relationship. The extremal peak amplitudes are shown by an ordered statistics treatment, to be extremally distributed. The statistical treatment enables the prediction of the number of cycles left until failure. Predictions performed a posteriori based on results gained early in each fatigue test are in good agreement with actual fatigue lives. Finally, the amplitude distribution analysis of the acoustic signals emitted during cyclic stress appears to be a promising nondestructive method of predicting fatigue life. 2: In this paper, low cycle high stress fatigue tests were conducted by tension-tension on an Alclad 7075-T6 aluminum sheet alloy, until rupture. Initial crack sizes and orientations in the fatigue specimens were randomly distributed. Acoustic emission was continuously monitored during the tests. Extremal peak-amplitudes, equivalent to extremal crack-propagation rates, are shown to be extremally Weibull distributed. The prediction of the number of cycles left until failure is made possible, using an ordered statistics treatment and an experimental equipment parameter obtained in previous experiments (Part 1). The predicted life-times are in good agreement with the actual fatigue lives. Finally, the amplitude distribution analysis of the acoustic signals emitted during cyclic stress has been proven to be a feasible nondestructive method of predicting fatigue life.

  5. Extended Performance Assessment in Accelerated Corrosion and Adhesion of CARC Prepared Aluminum Alloy 5059-H131 for Three Different Pretreatment Methods

    DTIC Science & Technology

    2008-03-01

    9540P Cyclic Accelerated Corrosion Analysis of Nonchromate Conversion Coatings on Aluminum Alloys 2024, 2219 , 5083, and 7075 Using DoD Paint Systems...PERFORMANCE ASSESSMENT IN ACCELERATED CORROSION AND ADHESION OF CARC PREPARED ALUMINUM ALLOY 5059-H131 FOR THREE DIFFERENT PRETREATMENT METHODS Brian E...whether or not the alloy differences will warrant modifications to current pretreatment processes. Keywords: Corrosion , Aluminum , 5059-H131, Cyclic

  6. Long-Term Accelerated Corrosion and Adhesion Assessment of CARC Prepared Aluminum Alloy 5059-H131 Using Three Different Surface Preparation Methods

    DTIC Science & Technology

    2008-08-01

    Long-Term Accelerated Corrosion and Adhesion Assessment of CARC Prepared Aluminum Alloy 5059-H131 Using Three Different Surface Preparation... Corrosion and Adhesion Assessment of CARC Prepared Aluminum Alloy 5059-H131 Using Three Different Surface Preparation Methods 5c. PROGRAM ELEMENT NUMBER 5d...TERMS corrosion , aluminum , 5059-H131, cyclic, GM 9540P, salt fog, adhesion, pull-off 16. SECURITY CLASSIFICATION OF: 19a. NAME OF RESPONSIBLE

  7. Microstructure evolution and thixoforming behavior of 7075 aluminum alloy in the semi-solid state prepared by RAP method

    NASA Astrophysics Data System (ADS)

    Fu, Jin-long; Wang, Kai-kun; Li, Xiao-wei; Zhang, Hai-kuan

    2016-12-01

    The effects of isothermal treatments on the microstructural evolution and coarsening rate of semi-solid 7075 aluminum alloy produced via the recrystallization and partial remelting (RAP) process were investigated. Samples of 7075 aluminum alloy were subjected to cold extrusion, and semi-solid treatment was carried out for 5-30 min at temperatures ranging from 580 to 605°C. A backward-extrusion experiment was conducted to investigate liquid segregation during the thixoforming process. The results revealed that obvious grain coarsening and spheroidization occurred during prolonged isothermal treatments. In addition, higher soaking temperatures promoted the spheroidization and coarsening process because of the increased liquid fraction and the melting of second phases. Segregation of the liquid phase caused by the difference in fluidity between the liquid and the solid phases was observed in different regions of the thixoformed specimens.

  8. Research on deformation of 7050 aluminum alloy panels with stiffeners by pre-stress shot peen forming

    NASA Astrophysics Data System (ADS)

    Wang, Mingtao; Zeng, Yuansong; Huang, Xia; Lv, Fenggong

    2016-10-01

    Pre-stress shot peen forming is an effective plastic forming method for integral panels with stiffeners used in aeronautical industry. 7050 aluminum alloy panels with stiffeners were pre-stress peen formed in an orthogonal experiment. The deformation rule of those workpieces whose exterior surfaces were convex bending was investigated. The results show that the contribution of peening parameters on workpiece deformation is in following order: air pressure, pre-load stress and moving velocity of workpiece. The deformation of workpiece whose merely exterior surface is peened is much lower than that whose two side-faces of stiffener are also peened. The decreasing rate is changed from 13% to 39% by means of parameters variation. Moreover, the regression formulas about the quantitative relationships between radius of curvature and peening parameters have been established. The results could offer some basic reference to peen forming aluminum alloy panels of future aircrafts.

  9. Mechanisms of Corrosion Fatigue in High Strength I/M (Ingot Metallurgy) and P/M (Powder Metallurgy) Aluminum Alloys.

    DTIC Science & Technology

    1983-02-01

    second year effort was devoted to the study of 7075 -T651 (I/Il) alloy, and X7091-T7E69 and X7091-T7E70 (P/M) alloys. The kinetics of fatigue crack...Qualification and Microstructural Characterization 6 3.2 Kinetics of Fatigue Crack Growth 7 3.2.1 7075 -T651 (I/M) Aluminum Alloy 8 3.2.2 X7091-T7E69...and X7091-T7E70 (P/M) Aluminum Alloys 10 3.2.3 Comparison between I/M and P/M Alloys and Discussions 12 3.3 Fractographic Analysis 14 3.3.1 7075 -T651

  10. Influence of Pre-straining and Heat Treatment on the Yield Surface of Precipitation Hardenable Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Lechner, Michael; Johannes, Maren; Kuppert, Andreas; Merklein, Marion

    Precipitation hardenable aluminum alloys are some of the most important lightweight materials. However, their range of applications in comparison to conventional deep drawing steels is limited by the low formability. Therefore, a new and innovative approach to enhance the formability of aluminum alloys in multistage forming operations was invented at the Institute of Manufacturing Technology, called intermediate heat treatment (IHT). Based on a short-term, laser-assisted heat treatment between two forming steps, it is possible to locally adapt the mechanical properties and realize an optimized strength distribution. For the successful application of the technology, the influence of the heat treatment on the mechanical properties has to be analyzed. Concerning the simulation of a multistage forming process, in particular, the yield surface of the material is very important. Within this paper, the influence of a combined pre-straining and a subsequent short-term, laser-assisted heat treatment on the yield surface will be presented.

  11. Avoidance of stress corrosion susceptibility in high strength aluminum alloys by control of grain boundary and matrix microstructure

    NASA Technical Reports Server (NTRS)

    Adler, P.; Deiasi, R.

    1974-01-01

    The relation of microstructure to the mechanical strength and stress corrosion resistance of highest strength and overaged tempers of BAR and 7050 aluminum alloys was investigated. Comparison is made with previously studied 7075 aluminum alloy. Optical microscopy, transmission electron microscopy, and differential scanning calorimetry were used to characterize the grain morphology, matrix microstructure, and grain boundary microstructure of these tempers. Grain boundary interparticle spacing was significant to stress corrosion crack propagation for all three alloys; increasing interparticle spacing led to increased resistance to crack propagation. In addition, the fire grain size in Bar and 7050 appears to enhance crack propagation. The highest strength temper of 7050 has a comparatively high resistance to crack initiation. Overall stress corrosion behavior is dependent on environment pH, and evaluation over a range of pH is recommended.

  12. Formability analysis of aluminum alloy sheets at elevated temperatures with numerical simulation based on the M-K method

    SciTech Connect

    Bagheriasl, Reza; Ghavam, Kamyar; Worswick, Michael

    2011-05-04

    The effect of temperature on formability of aluminum alloy sheet is studied by developing the Forming Limit Diagrams, FLD, for aluminum alloy 3000-series using the Marciniak and Kuczynski technique by numerical simulation. The numerical model is conducted in LS-DYNA and incorporates the Barlat's YLD2000 anisotropic yield function and the temperature dependant Bergstrom hardening law. Three different temperatures; room temperature, 250 deg. C and 300 deg. C, are studied. For each temperature case, various loading conditions are applied to the M-K defect model. The effect of the material anisotropy is considered by varying the defect angle. A simplified failure criterion is used to predict the onset of necking. Minor and major strains are obtained from the simulations and plotted for each temperature level. It is demonstrated that temperature improves the forming limit of aluminum 3000-series alloy sheet.

  13. Numerical Simulation and Experimental Characterization of a Binary Aluminum Alloy Spray - Application to the Spray Rolling Process

    SciTech Connect

    S. B. Johnson; J.-P. Delplanque; Y. Lin; Y. Zhou; E. J. Lavernia; K. M. McHugh

    2005-02-01

    A stochastic, droplet-resolved model has been developed to describe the behavior of a binary aluminum alloy spray during the spray-rolling process. In this process, a molten aluminum alloy is atomized and the resulting spray is depostied on the rolls of a twin-roll caster to produce aluminum strip. The one-way coupled spray model allows the prediction of spray characteristics such as enthalph and solid fraction, and their distribution between the nozzle and the depostion surface. This paper outlines the model development and compares the predicted spray dynamics to PDI measurements performed in a controlled configuration. Predicted and measured droplet velocity and size distributions are presented for two points along the spray centerline along with predicted spray averaged specific enthalph and solid fraction curves.

  14. Corrosion protection comparison of a chromate conversion coating to a novel conductive polymer coating on aluminum alloys

    SciTech Connect

    Racicot, R.J.; Yang, S.C.; Brown, R.

    1997-12-01

    Comparisons of the corrosion resistance performance of a novel polyaniline based double strand conductive polymer coating versus a chromate conversion coating on two aluminum alloys were made. Potentiodynamic scans, electrochemical impedance spectroscopy (EIS) in 0.5N NaCl solutions and ASTM B-117 salt spray tests were performed on coated samples of AA7075-T6 and AA2024-T3 aluminum alloys. Results show the conductive polymer film offers, at the least, an equivalent protection performance as the chromate coating with a two order of magnitude reduction in corrosion current densities in cyclic polarization tests, near equivalent impedance values and less undercutting of a scribed area in salt spray test samples. In an acidic salt solution of pH 3.6, the conductive polymer offers an improved performance with a one order of magnitude higher impedance over the chromate coatings.

  15. Crack growth behavior of 2219-T87 aluminum alloy from 20 K (-423 F) to 422 K (300 F)

    NASA Technical Reports Server (NTRS)

    Witzell, W. E.

    1973-01-01

    The aluminum alloy 2219-T87 has great potential for use as a cryogenic material for various manned and unmanned aerospace vehicles. Although its properties are generally known, toughness characteristics in various grain directions when the material is machined from thick plates and subjected to various environments have not been documented. This program, sponsored by the NASA Johnson Space Center, was designed to determine these properties between 20 K (-423 F) and 423 K (300 F).

  16. Prediction of the Properties of Heat-Affected Zone of Welded Joints of Sheets from Aluminum Alloys with Structured Surface

    NASA Astrophysics Data System (ADS)

    Mikhailov, V. G.

    2016-05-01

    Welded joints of light structured sheets from aluminum alloy EN AW-6181-T4 (DIN EN 515) of the Al - Si - Mg system are studied. The welding is performed in an argon environment with a short arc by the method of cold metal transfer (CMT®). The results of the study are used in an amended Leblond model for describing the variation of the properties of the heat-affected zone of welded joints of structured sheets.

  17. Corrosion Embrittlement of Duralumin II Accelerated Corrosion Tests and the Behavior of High-Strength Aluminum Alloys of Different Compositions

    NASA Technical Reports Server (NTRS)

    Rawdon, Henry S

    1928-01-01

    The permanence, with respect to corrosion, of light aluminum alloy sheets of the duralumin type, that is, heat-treatable alloys containing Cu, Mg, Mn, and Si is discussed. Alloys of this type are subject to surface corrosion and corrosion of the interior by intercrystalline paths. Results are given of accelerated corrosion tests, tensile tests, the effect on corrosion of various alloying elements and heat treatments, electrical resistance measurements, and X-ray examinations.

  18. Spectrum Fatigue Crack Growth Rate Characteristics of Cast Aluminum Alloys A201-T7 and A357-T6.

    DTIC Science & Technology

    The spectrum fatigue crack growth characteristics of cast aluminum alloys A201-T7 and A357 -T6 were evaluated and compared with wrought aluminum 7050...T76 data. For specimens tested at three different spectrum stress levels, A357 -T6 consistently possessed the longest fatigue life, nearly double that...Further analysis of the a vs. N record of each sample to obtain the crack growth rate (FCGR) vs. the corresponding stress intensity indicated that A357 -T6

  19. Towards the problem of forming full strength welded joints on aluminum alloy sheets. Part II: AA7475

    NASA Astrophysics Data System (ADS)

    Kalashnikova, Tatiana; Tarasov, Sergey; Eliseev, Alexander; Fortuna, Anastasiya

    2016-11-01

    The microstructural evolution in welded joint zones obtained both by friction stir welding and ultrasonic- assisted friction stir welding on dispersion hardened 7475 aluminum alloy has been examined together with the analysis of mechanical strength and microhardness. It was established that ultrasonic-assisted friction stir provided leveled microhardness profiles across the weld zones as well as higher joint strength as compared to those of standard friction stir welding.

  20. Effect of Postweld Aging Treatment on Fatigue Behavior of Pulsed Current Welded AA7075 Aluminum Alloy Joints

    NASA Astrophysics Data System (ADS)

    Balasubramanian, V.; Ravisankar, V.; Madhusudhan Reddy, G.

    2008-04-01

    This article reports the effect of postweld aging treatment on fatigue behavior of pulsed current welded AA 7075 aluminum alloy joints. AA7075 aluminum alloy (Al-Zn-Mg-Cu alloy) has gathered wide acceptance in the fabrication of light weight structures requiring high strength-to weight ratio, such as transportable bridge girders, military vehicles, road tankers, and railway transport systems. The preferred welding processes of AA7075 aluminum alloy are frequently gas tungsten arc welding (GTAW) process and gas metal arc welding (GMAW) process due to their comparatively easier applicability and better economy. Weld fusion zones typically exhibit coarse columnar grains because of the prevailing thermal conditions during weld metal solidification. This often results inferior weld mechanical properties and poor resistance to hot cracking. In this investigation, an attempt has been made to refine the fusion zone grains by applying pulsed current welding technique. Rolled plates of 10 mm thickness have been used as the base material for preparing multipass welded joints. Single V butt joint configuration has been prepared for joining the plates. The filler metal used for joining the plates is AA 5356 (Al-5Mg (wt.%)) grade aluminum alloy. Four different welding techniques have been used to fabricate the joints and they are: (i) continuous current GTAW (CCGTAW), (ii) pulsed current GTAW (PCGTAW), (iii) continuous current GMAW (CCGMAW), and (iv) pulsed current GMAW (PCGMAW) processes. Argon (99.99% pure) has been used as the shielding gas. Rotary bending fatigue testing machine has been used to evaluate fatigue behavior of the welded joints. Current pulsing leads to relatively finer and more equi-axed grain structure in GTA and GMA welds. Grain refinement is accompanied by an increase in fatigue life and endurance limit. Simple postweld aging treatment applied to the joints is found to be beneficial to enhance the fatigue performance of the welded joints.

  1. [Laser ignition assisted spark-induced breakdown spectroscopy for element analysis of aluminum alloy with enhanced sensitivity].

    PubMed

    Peng, Fei-fei; Zhou, Qi; Chen, Yu-qi; Li, Run-hua

    2013-09-01

    The analytical performance of laser ignition assisted spark-induced breakdown spectroscopy (LI-SIBS) for the analysis of trace metal in aluminum alloy was reported in the present article. In order to improve the analytical performance of spark-induced breakdown spectroscopy, a low energy laser pulse was focused on the surface of the sample to produce plasma between discharge electrodes to trigger high voltage spark discharge. Under current geometrical arrangement, optimized discharge voltage and capacitance were determined, and copper in aluminum alloy was analyzed under optimized experimental condition. The limit of detection of copper in aluminum alloy was determined to be 0.7 ppm. Both signal stability and measurement accuracy for spark-induced breakdown spectroscopy were improved with the assistance of laser ignition. The discharge voltage could be reduced and the spatial resolution could be improved with the assistance of laser ignition at the same time. It was demonstrated that LI-SIBS has the characteristics of high sensitivity, good stability and better spatial resolution and is suitable for trace elements analysis in different alloys.

  2. Identifying Combination of Friction Stir Welding Parameters to Maximize Strength of Lap Joints of AA2014-T6 Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Rajendrana, C.; Srinivasan, K.; Balasubramanian, V.; Balaji, H.; Selvaraj, P.

    2017-01-01

    AA2014 aluminum alloy (Al-Cu alloy) has been widely utilized in fabrication of lightweight structures like aircraft structures, demanding high strength to weight ratio and good corrosion resistance. The fusion welding of these alloys will lead to solidification problems such as hot cracking. Friction stir welding is a new solid state welding process, in which the material being welded does not melt and recast. Lot of research works have been carried out by many researchers to optimize process parameters and establish empirical relationships to predict tensile strength of friction stir welded butt joints of aluminum alloys. However, very few investigations have been carried out on friction stir welded lap joints of aluminum alloys. Hence, in this investigation, an attempt has been made to optimize friction stir lap welding (FSLW) parameters to attain maximum tensile strength using statistical tools such as design of experiment (DoE), analysis of variance (ANOVA), response graph and contour plots. By this method, it is found that maximum tensile shear fracture load of 12.76 kN can be achieved if a joint is made using tool rotational speed of 900 rpm, welding speed of 110 mm/min, tool shoulder diameter of 12 mm and tool tilt angle of 1.5°.

  3. Friction Stir Welding of Age-Hardenable Aluminum Alloys: A Parametric Approach Using RSM Based GRA Coupled With PCA

    NASA Astrophysics Data System (ADS)

    Vijayan, D.; Rao, V. S.

    2014-04-01

    Age-hardenable aluminum alloys, primarily used in the aerospace, automobile and marine industries (2×××, 6××× and 7×××), can be welded using solid-state welding techniques. Friction stir welding is an emerging solid-state welding technique used to join both similar and dissimilar materials. The strength of a friction stir welded joint depends on the joining process parameters. Therefore, a combination of the statistical techniques of a response surface methodology based on a grey relational analysis coupled to a principal component analysis was proposed to select the process parameters suitable for joining AA 2024 and AA 6061 aluminum alloys via friction stir welding. The significant process parameters, such as rotational speed, welding speed, axial load and pin shapes (PS) were considered during the statistical experiment. The results indicate that the square PS plays a vital role and yields an ultimate tensile strength of 141 MPa for an elongation of 12 % versus cylinder and taper pin profiles. The root cause for joint strength loss and fracture mode was analyzed using scanning electron microscopy. Severe material flow during macro defects, such as pin holes and porosity, degrades the joint strength by approximately 44 % for AA 2024 and 51 % for AA 6061 fabricated FS-welded aluminum alloys relative to the base material. The results of this approach are useful for accurately controlling the response and optimize the process parameters.

  4. An optimizing process of profiled cross-sectional aluminum alloy porthole die extrusion using response surface methodology

    NASA Astrophysics Data System (ADS)

    Zhou, Fujian; Li, Feng; Shi, Liansheng; Jiang, Hongwei

    2016-03-01

    The porthole die extrusion process of profiled cross-section hollow aluminum alloy is influenced by numerous factors, which brings inconvenience to the process design. In this paper, 7075 aluminum alloy is taken as an example, the fitting model of the ultimate load is analyzed by variance and regression analysis using response surface method (RSM). The influences of extrusion speed, friction factor and initial temperature on the change of extruded ultimate load are investigated systematically, and the important influence factors (initial temperature > friction factor > extrusion speed) to the load are determined eventually. By comparison, the error between the ultimate load model obtained after fitting and the calculated value is only 2.4%, further verifying the reliability of this model. The optimal objective is to minimize the ultimate load, then the optimum technological parameters are obtained by optimizing the process, where the initial temperature, the extrusion speed and the friction factor are 430∘C, 2.28mm/s and 0.31, respectively. The results provide a theoretical basis for the scientific design of the porthole die extrusion process of profiled cross-section hollow aluminum alloy.

  5. Detecting sensitization in aluminum alloys using acoustic resonance and EMAT ultrasound

    NASA Astrophysics Data System (ADS)

    Cobb, Adam; Macha, Erica; Bartlett, Jonathan; Xia, Yanquan

    2017-02-01

    Sensitization of 5xxx series aluminum alloys is characterized by the gradual precipitation of the alloying element magnesium as a beta phase (Al3Mg2) along the grain boundaries after prolonged exposure to the environment. While the 5xxx alloy is corrosion resistant, these beta phases are corrosive and thus their formation increases the susceptibility of the alloy to intergranular corrosion and stress corrosion cracking. The standardized approach for measuring the degree of sensitization (DoS) is the ASTM G67 test standard. This test, however, is time consuming, difficult to perform, and destructive, as it involves measurement of a mass loss after exposing the alloy to a nitric acid solution. Given the limitations of this test standard, there is a need to develop a nondestructive evaluation (NDE) solution that is easy-to-use, non-intrusive, and faster than current inspection methods while suitable for use outside a laboratory. This paper describes the development of an NDE method for quantifying the DoS value in an alloy using ultrasonic measurements. The work builds upon prior efforts described in the literature that use electromagnetic acoustic transducers (EMATs) to quantify DoS based on velocity measurements. The prior approaches used conventional ultrasonic inspection techniques with short-duration excitation signals (less than 3 cycles) to allow identification of the echo time-of-flight and amplitude decay pattern, but their success was limited by EMAT transducer inefficiency in general, especially at higher frequencies. To overcome these challenges, this paper presents a modified ultrasonic measurement strategy using long-duration excitation signals (greater than 100 cycles), where multiple reverberations in the material overlap. By sweeping through test frequencies, it is possible to establish an acoustic resonance when the wavelength is an integer multiple of twice the material thickness. This approach allows for greatly improved signal to noise ratios as

  6. Investigation and modeling of frictional boundary conditions in oblique cutting of aluminum alloys

    NASA Astrophysics Data System (ADS)

    Kilic, Dursun Sedat

    Friction at the cutting tool interface has been studied for 60 years, yet an accurate model of friction is largely unavailable, especially in operations such as turning, where the interface is inaccessible due the continuous contact between chip and tool. A historical perspective of friction in turning is provided to better understand the purpose of this thesis. The contradictions arising from different frictional boundary condition assumptions in machining were analyzed. Experimental observations were substantiated in the light of the literature review. Friction conditions at the tool chip interface were found to be more complex than the simple models of seizure followed by sliding, which is accepted in most machining models. This thesis investigated the surface topology of cutting tools in conventional turning operation, which is one of the oldest and common machining processes. Two different aluminum alloys Al-2024 and Al-6061 were used in turning experiments with carbide tools to define the frictional conditions as these alloys exhibited a wide range of frictional contacts at different machining conditions. Experiments were conducted using carbide cutting tools at a range of speeds, feed rates, and depths of cut, which are commonly utilized in industrial applications. The analysis of tool chip interface at microscopic levels revealed further details of seizure and sliding zone formation. Newer techniques developed in microscopy and surface characterization were used to characterize the interface in a non-destructive manner. Scanning electron microscopy (SEM), surface profilometer and laser scanning confocal microscopy (LSCM) techniques helped us in the understanding of the frictional boundaries. Analysis of SEM images obtained by turning experiments revealed three distinct regions whose topology is closely related to turning parameters. These different zones were named as primary sticking zone, sliding zone and secondary sticking zone. Furthermore, with the

  7. Modeling of porosity formation and feeding flow during casting of steel and aluminum alloys

    NASA Astrophysics Data System (ADS)

    Lin, Zhiping

    Porosity is one of the most important defects in metal casting. To quantitatively predict the porosity formation during casting two numerical models are developed for steel and aluminum alloys respectively. For steel, a multi-phase model is developed that predicts melt pressure, feeding flow, porosity (both microscopic and macroscopic), and riser pipe formation during casting. The phases included in the model are solid, liquid, porosity, and air. An energy equation is solved to determine solid fraction. A multi-phase momentum equation, which is valid everywhere in the solution domain, is derived. A pressure equation is then derived from this momentum equation and a mixture continuity equation developed that accounts for all phases. The partial pressure of a gas species dissolved in the melt is determined using the species concentration, which is found by solving a species conservation equation that accounts for convection. Porosity forms once the gas pressure exceeds the sum of the melt pressure and the capillary pressure. The amount of porosity that forms is determined from the mixture continuity equation. The riser pipe is determined from an air continuity equation. A pore size model, which considers the effects of the solidifying steel microstructure on pore size, is incorporated into the multi-phase model. The multi-phase model is applied to one-dimensional, two-dimensional, and three-dimensional simulations. The results clearly illustrate the basic physical phenomena involved and predict microporosity and macroporosity distributions, as well as a riser pipe. For aluminum alloys a gas microsegregation model is developed to quantitatively predict porosity, coupled with the calculations of the pressure field, feeding flow, and distribution of dissolved gas species throughout the casting. The effects of dendritic and eutectic microstructure on the pore shape and size are considered in a pore size model. The model is applied to one-dimensional simulations of A319

  8. Corrosion resistance and durability of siloxane ceramic/polymer films for aluminum alloys in marine environments

    NASA Astrophysics Data System (ADS)

    Kusada, Kentaro

    The objective of this study is to evaluate corrosion resistance and durability of siloxane ceramic/polymer films for aluminum alloys in marine environments. Al5052-H3 and Al6061-T6 were selected as substrates, and HCLCoat11 and HCLCoat13 developed in the Hawaii Corrosion Laboratory were selected for the siloxane ceramic/polymer coatings. The HCLCoat11 is a quasi-ceramic coating that has little to no hydrocarbons in its structure. The HCLCoat13 is formulated to incorporate more hydrocarbons to improve adhesion to substrate surfaces with less active functionalities. In this study, two major corrosion evaluation methods were used, which were the polarization test and the immersion test. The polarization tests provided theoretical corrosion rates (mg/dm 2/day) of bare, HCLCoat11-coated, and HCLCoat13-coated aluminum alloys in aerated 3.15wt% sodium chloride solution. From these results, the HCLCoat13-coated Al5052-H3 was found to have the lowest corrosion rate which was 0.073mdd. The next lowest corrosion rate was 0.166mdd of the HCLCoat11-coated Al5052-H3. Corrosion initiation was found to occur at preexisting breaches (pores) in the films by optical microscopy and SEM analysis. The HCLCoat11 film had many preexisting breaches of 1-2microm in diameter, while the HCLCoat13 film had much fewer preexisting breaches of less than 1microm in diameter. However, the immersion tests showed that the seawater immersion made HCLCoat13 film break away while the HCLCoat11 film did not apparently degrade, indicating that the HCLCoat11 film is more durable against seawater than the HCLCoat13. Raman spectroscopy revealed that there was some degradation of HCLCoat11 and HCLCoat13. For the HCLCoat11 film, the structure relaxation of Si-O-Si linkages was observed. On the other hand, seawater generated C-H-S bonds in the HCLCoat13 film resulting in the degradation of the film. In addition, it was found that the HCLCoat11 coating had anti-fouling properties due to its high water contact

  9. Multiscale Modeling of Damage Processes in Aluminum Alloys: Grain-Scale Mechanisms

    NASA Technical Reports Server (NTRS)

    Hochhalter, J. D.; Veilleux, M. G.; Bozek, J. E.; Glaessgen, E. H.; Ingraffea, A. R.

    2008-01-01

    This paper has two goals related to the development of a physically-grounded methodology for modeling the initial stages of fatigue crack growth in an aluminum alloy. The aluminum alloy, AA 7075-T651, is susceptible to fatigue cracking that nucleates from cracked second phase iron-bearing particles. Thus, the first goal of the paper is to validate an existing framework for the prediction of the conditions under which the particles crack. The observed statistics of particle cracking (defined as incubation for this alloy) must be accurately predicted to simulate the stochastic nature of microstructurally small fatigue crack (MSFC) formation. Also, only by simulating incubation of damage in a statistically accurate manner can subsequent stages of crack growth be accurately predicted. To maintain fidelity and computational efficiency, a filtering procedure was developed to eliminate particles that were unlikely to crack. The particle filter considers the distributions of particle sizes and shapes, grain texture, and the configuration of the surrounding grains. This filter helps substantially reduce the number of particles that need to be included in the microstructural models and forms the basis of the future work on the subsequent stages of MSFC, crack nucleation and microstructurally small crack propagation. A physics-based approach to simulating fracture should ultimately begin at nanometer length scale, in which atomistic simulation is used to predict the fundamental damage mechanisms of MSFC. These mechanisms include dislocation formation and interaction, interstitial void formation, and atomic diffusion. However, atomistic simulations quickly become computationally intractable as the system size increases, especially when directly linking to the already large microstructural models. Therefore, the second goal of this paper is to propose a method that will incorporate atomistic simulation and small-scale experimental characterization into the existing multiscale

  10. Fracture behavior of large-scale thin-sheet aluminum alloy

    NASA Technical Reports Server (NTRS)

    Dewit, Roland; Fields, Richard J.; Mordfin, Leonard; Low, Samuel R.; Harne, Donald

    1994-01-01

    A series of fracture tests on large-scale, pre-cracked, aluminum alloy panels is being carried out to examine and to characterize the process by which cracks propagate and link up in this material. Extended grips and test fixtures were specially designed to enable the panel specimens to be loaded in tension, in a 1780-kN-capacity universal testing machine. Twelve panel specimens, each consisting of a single sheet of bare 2024-T3 aluminum alloy, 3988 mm high, 2286 mm wide, and 1.016 mm thick are being fabricated with simulated through-cracks oriented horizontally at mid-height. Using existing information, a test matrix has been set up that explores regions of failure that are controlled by fracture mechanics, with additional tests near the boundary between plastic collapse and fracture. In addition, a variety of multiple site damage (MSD) configurations have been included to distinguish between various proposed linkage mechanisms. All tests but one use anti-buckling guides. At this writing seven specimens have been tested. Three were fabricated with a single central crack, three others had multiple cracks on each side of the central crack, and one had a single crack but no anti-buckling guides. Each fracture event was recorded on film, video, computer, magnetic tape, and occasionally optical microscopy. The visual showed the crack tip with a load meter in the field of view, using motion picture film for one tip and SVHS video tape for the other. The computer recorded the output of the testing machine load cell, the stroke, and twelve strain gages at 1.5 second intervals. A wideband FM magnetic tape recorder was used to record data from the same sources. The data were analyzed by two different procedures: (1) the plastic zone model based on the residual strength diagram; and (2) the R-curve. The first three tests were used to determine the basic material properties, and these results were then used in the analysis of the two subsequent tests with MSD cracks. There is

  11. Effect of magnesium and silicon on the DIMOX processing of aluminum alloys

    SciTech Connect

    Yang, L.; Zhu, D.; Zhang, J.; Xu, C.Q.; Zhang, J.

    1995-08-01

    This paper deals with the reaction mechanisms of the DIMOX processing of aluminum alloys. Emphasis is placed on the distribution of Mg and Si in the products so that the behaviors of these two crucial elements for the oxidation aluminum could be revealed. Alterative methods, including optical and SEM microscopy, electron-probing and wave spectrum analysis were applied to specify the microstructure characters of the products and locate the position of both Mg and Si in the reaction products. It is shown that the products can be divided into four regions from where directly connected to the residual bulky metals to the surface area distinguished by microstructure. Both Mg and Si are rather concentrated in specific regions than homogeneously distributed in the whole products. The contents of Mg and Si in the surface region are not as high as expected with most of the Mg being concentrated in the region directly neighboring to the bulky metals and most of the Si in the residual bulky metals, although the contents of these two elements in the surface region are a little higher than the regions next to the surface. These characters, combined with other investigations, lead to the suggestion that circulated reactions could be a possible mechanism to explain the decisive role of the slight amount of Mg and Si in the nucleation and growth of Al{sub 2}O{sub 3}.

  12. M551 metals melting experiment. [space manufacturing of aluminum alloys, tantalum alloys, stainless steels

    NASA Technical Reports Server (NTRS)

    Li, C. H.; Busch, G.; Creter, C.

    1976-01-01

    The Metals Melting Skylab Experiment consisted of selectively melting, in sequence, three rotating discs made of aluminum alloy, stainless steel, and tantalum alloy. For comparison, three other discs of the same three materials were similarly melted or welded on the ground. The power source of the melting was an electron beam unit. Results are presented which support the concept that the major difference between ground base and Skylab samples (i.e., large elongated grains in ground base samples versus nearly equiaxed and equal sized grains in Skylab samples) can be explained on the basis of constitutional supercooling, and not on the basis of surface phenomena. Microstructural observations on the weld samples and present explanations for some of these observations are examined. In particular, ripples and their implications to weld solidification were studied. Evidence of pronounced copper segregation in the Skylab A1 weld samples, and the tantalum samples studied, indicates a weld microhardness (and hence strength) that is uniformly higher than the ground base results, which is in agreement with previous predictions. Photographs are shown of the microstructure of the various alloys.

  13. The effect of thickness on fatigue crack propagation in 7475-T731 aluminum alloy sheet

    NASA Technical Reports Server (NTRS)

    Daiuto, R. A.; Hillberry, B. M.

    1984-01-01

    Tests were conducted on three thicknesses of 7475-T731 aluminum alloy sheet to investigate the effect of thickness on fatigue crack propagation under constant amplitude loading conditions and on retardation following a single peak overload. Constant amplitude loading tests were performed at stress ratios of 0.05 and 0.75 to obtain data for conditions with crack closure and without crack closure, respectively. At both stress ratios a thickness effect was clearly evident, with thicker specimens exhibiting higher growth rates in the transition from plane strain to plane stress region. The effect of thickness for a stress ratio of 0.05 corresponded well with the fracturing mode transitions observed on the specimens. A model based on the strain energy release rate which accounted for the fracture mode transition was found to correlate the thickness effects well. The specimens tested at the stress ratio of 0.75 did not make the transition from tensile mode to shear mode, indicating that another mechanism besides crack closure or fracture mode transition was active.

  14. Effect of friction stir welding on microstructure and corrosion behavior of LF6 aluminum alloy

    NASA Astrophysics Data System (ADS)

    Ghauri, Faizan Ali; Farooq, A.; Ahmad, A.; Deen, K. M.

    2017-03-01

    The LF6 aluminum alloy plates were joined by friction stir welding method. The tool rotational (1180 rpm) and transverse speed (0.56 mm s‑1) were kept constant during welding of 4 mm thick plates. The microstructural features, hardness and tensile properties of the welded samples were determined to evaluate the structural integrity in comparison with the base metal. The electrochemical behavior of base metal (BM), thermo-mechanically affected zone (TMAZ) and weld nugget zone (WNZ) was also investigated by potentiodynamic polarization and electrochemical impedance spectroscopy in 3.5% NaCl solution. The microstructural study revealed significant grain refinement and agglomeration of β (Mg2Al3) intermetallic precipitates in the WNZ. The relatively higher hardness and a decrease in the ductility (3%) also assured the formation of precipitates β precipitates in the WNZ welded samples. The fracture surface of welded sample also revealed the existence of β precipitates within the elongated dimples which may be considered as the crack initiation sites. The relatively lower corrosion rate (23.68 mpy) and higher charge transfer resistance (403 Ω cm2) of BM compared to WNZ could be associated with the galvanic dissolution of Al-matrix through competitive charge transfer and relaxation (adsorption/desorption of intermediate species) processes specifically at the vicinity of the β precipitates.

  15. Corrosion Properties and Morphology of Laser Melted Aluminum Alloy 8022 Surface

    NASA Astrophysics Data System (ADS)

    Yilbas, B. S.; Khaled, M.; Karatas, C.

    2009-02-01

    Laser surface melting of aluminum alloy 8022 is considered and electrochemical studies of the laser-melted and as-received alloy surface are carried out. The surface morphology and metallurgical changes in the laser-melted region are examined using optical microscopy, electron scanning microscopy (SEM), and atomic force microscopy (AFM). Elemental changes in the specimens after the laser-melting process are examined using energy dispersive spectroscopy (EDS), and x-ray diffraction (XRD) is used for assessment of the compound formed after the laser-treatment process. Nitrogen is used as an assisting gas during the laser-melting process to prevent high-temperature oxidation reactions. It is found that the laser-melted surfaces is free from cracks and deep cavities. The oxygen diffusion in the surface region of the melt layer forms Al2O3 compound in the surface vicinity. The corrosion current increases significantly for the laser-melted specimens due to the irregular surface structure. AC impedance results showed a decrease in pores resistant and an increase in pores capacitance. In addition, the surface morphology resulting from the laser melting gives rise to pitting sites at the surface.

  16. Enhanced Sintering Kinetics in Aluminum Alloy Powder Consolidated Using DC Electric Fields

    NASA Astrophysics Data System (ADS)

    McWilliams, Brandon; Yu, Jian; Kellogg, Frank; Kilczewski, Steven

    2017-02-01

    Direct current (DC) electric currents were applied during sintering of aluminum alloy (AA5083) green powder compacts and it was found that the kinetics of sintering were greatly enhanced compared to samples processed without a field. In situ sintering kinetics during pressure-less sintering employing electric field strengths and amperages ranging from 0 to 56 V/cm and 0 to 3 A were quantified using digital image correlation. It was found that the application of a DC field during sintering results in a discontinuous change in volume at a critical temperature along with a transition in electrical properties of the compact from insulating to conductive. This effect is similar to the phenomena observed in the flash sintering process currently being actively researched for ceramic powder processing. The temperature at which the flash event occurs was found to be field strength dependent and doubling the field strength was found to decrease the flash temperature by 25 pct. Joule heating of the specimen was measured using thermal imaging and it was found to not contribute enough additional thermal energy to account for the substantially increased sintering rates observed in specimens processed using electric fields.

  17. Hot tensile deformation behavior of twin roll casted 7075 aluminum alloy

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Yu, Huashun; Lee, Yunsoo; Kim, Hyoung-Wook

    2015-09-01

    High temperature deformation behavior of the 7075 aluminum alloy sheets fabricated by twin roll casting and rolling was investigated by hot tensile tests at different temperatures from 350 to 500 °C and various initial strain rates from 1×10-3 to 1×10-2 s-1. The results show that flow stress increased with increasing initial strain rate and decreasing deformation temperature. A large elongation of 200% was obtained at relatively high strain rate of 5×10-3 s-1 at 450 °C. It is closely related with the grain boundary sliding at elevated temperature attributed to the recrystallized fine grains and the large volume fraction of high-angle grain boundaries. The fracture transformation mechanism changes from ductile transgranular fracture to ductile intergranular fracture due to the recrystallized fine grains at high temperature. High density and uniform cavities observed in large elongation samples at high temperature reveals the contribution of grain boundary sliding. Necking-controlled failure mode was characterized by rare cavities with low elongation.

  18. Microstructure Analysis on 6061 Aluminum Alloy after Casting and Diffuses Annealing Process

    NASA Astrophysics Data System (ADS)

    Wang, H. Q.; Sun, W. L.; Xing, Y. Q.

    One factory using semi-continuous casting process produce the ф200×6000 mm 6061 aluminium alloy barstock, and then rotary forged for car wheels. 6061 distorting aluminium alloy is an forged aluminum alloy, and mainly containing Mg, Si, Cu and other alloying elements. The main strengthening phase is Mg2Si, and also has few phase of (FeMn) 3Si2Al15. In order to eliminate the segregation and separation which present in the crystal boundary, and make the distortion to be uniform, and does not present ear and fracture defects after the forging. So the 6061 distorting aluminium alloy adopt the diffusion annealing heat treatment before the forging process.According to the current conditions, we use the diffusion annealing which have the different heating temperature and different holding time.The best process we can obtain from the test which can improve the production efficiency and reduce the material waste, improve the mechanical properties, and eliminate the overheated film on the surface.Then,we using OM,SEM and EDS to analyse the microstructure and the chemical composition of compound between the surface and centre. The result shows that the amount of segregation were different in the surface and in the center, and the different diffusion annealing can cause the phase change in the surface and the center.

  19. Corrosion of aluminum alloy 2024 by microorganisms isolated from aircraft fuel tanks.

    PubMed

    McNamara, Christopher J; Perry, Thomas D; Leard, Ryan; Bearce, Ktisten; Dante, James; Mitchell, Ralph

    2005-01-01

    Microorganisms frequently contaminate jet fuel and cause corrosion of fuel tank metals. In the past, jet fuel contaminants included a diverse group of bacteria and fungi. The most common contaminant was the fungus Hormoconis resinae. However, the jet fuel community has been altered by changes in the composition of the fuel and is now dominated by bacterial contaminants. The purpose of this research was to determine the composition of the microbial community found in fuel tanks containing jet propellant-8 (JP-8) and to determine the potential of this community to cause corrosion of aluminum alloy 2024 (AA2024). Isolates cultured from fuel tanks containing JP-8 were closely related to the genus Bacillus and the fungi Aureobasidium and Penicillium. Biocidal activity of the fuel system icing inhibitor diethylene glycol monomethyl ether is the most likely cause of the prevalence of endospore forming bacteria. Electrochemical impedance spectroscopy and metallographic analysis of AA2024 exposed to the fuel tank environment indicated that the isolates caused corrosion of AA2024. Despite the limited taxonomic diversity of microorganisms recovered from jet fuel, the community has the potential to corrode fuel tanks.

  20. High Rotation Speed Friction Stir Welding for 2014 Aluminum Alloy Thin Sheets

    NASA Astrophysics Data System (ADS)

    Chen, Shujin; Zhou, Yang; Xue, Junrong; Ni, Ruiyang; Guo, Yue; Dong, Jianghui

    2017-02-01

    In this study, 2014 aluminum alloy sheets with 1 mm thickness are welded successfully by friction stir welding (FSW) robot under the condition of high rotation speed. When the high rotation speed of 10,000-16,500 rpm is applied, the lower axial pressure (less than 200 N) is obtained, which reduces stiffness requirements for equipment. Welding deformation is inevitable because high rotation speed can easily result in rapid heating rate and uneven heat input. The welding distortion caused by two cooling methods is measured, respectively, by laser range finder. The experimental results show that the welding distortion is smaller under the condition of water cooling. When the rotation speed is up to 15,000 rpm and welding speed 50-170 mm/min, the whole welding process is controllable. Under the higher rotation speed condition, the welding defects disappear gradually and more stable mechanical properties can be obtained up to 75% of base metal (ω = 16,000 rpm, ν = 110 mm/min). The results of different welding parameters demonstrate that the high rotation speed can increase material mixing and reduce the axial force (z force), and it can benefit lightweight sheet welding by using FSW robot.

  1. High Rotation Speed Friction Stir Welding for 2014 Aluminum Alloy Thin Sheets

    NASA Astrophysics Data System (ADS)

    Chen, Shujin; Zhou, Yang; Xue, Junrong; Ni, Ruiyang; Guo, Yue; Dong, Jianghui

    2017-03-01

    In this study, 2014 aluminum alloy sheets with 1 mm thickness are welded successfully by friction stir welding (FSW) robot under the condition of high rotation speed. When the high rotation speed of 10,000-16,500 rpm is applied, the lower axial pressure (less than 200 N) is obtained, which reduces stiffness requirements for equipment. Welding deformation is inevitable because high rotation speed can easily result in rapid heating rate and uneven heat input. The welding distortion caused by two cooling methods is measured, respectively, by laser range finder. The experimental results show that the welding distortion is smaller under the condition of water cooling. When the rotation speed is up to 15,000 rpm and welding speed 50-170 mm/min, the whole welding process is controllable. Under the higher rotation speed condition, the welding defects disappear gradually and more stable mechanical properties can be obtained up to 75% of base metal (ω = 16,000 rpm, ν = 110 mm/min). The results of different welding parameters demonstrate that the high rotation speed can increase material mixing and reduce the axial force (z force), and it can benefit lightweight sheet welding by using FSW robot.

  2. Control of back surface reflectance from aluminum alloyed contacts on silicon solar cells

    SciTech Connect

    Cudzinovic, M.; Sopori, B.

    1996-05-01

    A process for forming highly reflective aluminum back contacts with low contact resistance to silicon solar cells is described. By controlling the process conditions, it is possible to vary the silicon/aluminum interface from a specular to a diffuse reflector while maintaining a high interface reflectance. The specular interface is found to be a uniform silicon/aluminum alloy layer a few angstroms thick that has epitaxially regrown on the silicon. The diffuse interface consists of randomly distributed (111) pyramids produced by crystallographic out-diffusion of the bulk silicon. The light trapping ability of the diffuse contact is found to be close to the theoretical limit. Both types of contacts are found to have specific contact resistivities of 10{sup {minus}5} {Omega}-cm{sup 2}. The process for forming the contacts involves illuminating the devices with tungsten halogen lamps. The process is rapid (under 100 s) and low temperature (peak temperature < 580{degrees}C), making it favorable for commercial solar cell fabrication.

  3. The Bulging Behavior of Thick-Walled 6063 Aluminum Alloy Tubes Under Double-Sided Pressures

    NASA Astrophysics Data System (ADS)

    Cui, Xiao-Lei; Wang, Xiao-Song; Yuan, Shi-Jian

    2015-05-01

    To make further exploration on the deformation behavior of tube under double-sided pressures, the thick-walled 6063 aluminum alloy tubes with an outer diameter of 65 mm and an average thickness of 7.86 mm have been used to be bulged under the combined action of internal and external pressures. In the experiment, two ends of the thick-walled tubes were fixed using the tooth and groove match. Three levels of external pressure (0 MPa, 40 MPa, and 80 MPa), in conjunction with the internal pressure, were applied on the tube outside and inside simultaneously. The effect of external pressure on the bulging behavior of the thick-walled tubes, such as the limiting expansion ratio, the bulging zone profile, and the thickness distribution, has been investigated. It is shown that the limiting expansion ratio, the bulging zone profile, and the thickness distribution in the homogeneous bulging area are all insensitive to the external pressure. However, the external pressure can make the thick-walled tube achieve a thinner wall at the fracture area. It reveals that the external pressure can only improve the fracture limit of the thick-walled 6063 tubes, but it has very little effect on their homogeneous bulging behavior. It might be because the external pressure can only increase the magnitude of the hydrostatic pressure for the tube but has no effect on the Lode parameter.

  4. Some observations on cyclic deformation structures in the high-strength commercial aluminum alloy AA 7150

    SciTech Connect

    Hanlon, D.N.; Rainforth, W.M.

    1998-11-01

    Load-controlled fatigue testing of the aluminum alloy AA 7150 has been conducted using four-point bending with an R ratio of + 0.1 over a range of maximum stress levels from 60 to 120% of the 0.2% proof stress. The alloy, in the form of 12.5-mm rolled plate, was investigated in underaged (UA), peak-aged (PA), and overaged (OA) conditions, corresponding to a change in average precipitate sizes from 5 nm in the UA condition to 21 nm in the OA condition. Three orientations of the plate were investigated. Orientation and aging condition influenced the degree of surface topographical development but not fatigue life. Detailed transmission electron microscopy (TEM) of the fatigued surface indicated that deformation in all aging conditions occurred by planar slip. Slip was generally restricted to a single slip system within each grain, and subgrain boundaries offered little resistance to dislocation movement facilitating long slip line lengths (measured up to 310 {micro}m) between adjacent high-angle grain boundaries. Planar slip observed in the OA condition is attributed to shearing of large strengthening precipitates, which is promoted by long slip line lengths. No evidence of surface specific changes in slip character was observed.

  5. Computer-assisted Rheo-forging Processing of A356 Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Kim, H. H.; Kang, C. G.

    2010-06-01

    Die casting process has been used widely for complex automotive products such as the knuckle, arm and etc. Generally, a part fabricated by casting has limited strength due to manufacturing defects by origin such as the dendrite structure and segregation. As an attempt to offer a solution to these problems, forging has been used as an alternative process. However, the forging process provides limited formability for complex shape products. Rheo-forging of metal offers not only superior mechanical strength but also requires significantly lower machine loads than solid forming processes. In order to produce semi-solid materials of the desired microstructure, a stirring process is applied during solidification of A356 aluminum molten state. This paper presents the results of an A356 aluminum alloy sample, which were obtained by experiment and by simulation using DEFORM 3D V6.1. Samples of metal parts were subsequently fabricated by using hydraulic press machinery. In order to compare the influence of loading method, two types of samples were fabricated: (1) samples fabricated under direct loading die sets (2) those fabricated under indirect loading die sets. The formability and defects, which were predicted by FEM simulation, were similar to those of samples used in practice.

  6. CO2 laser beam welding of 6061-T6 aluminum alloy thin plate

    NASA Astrophysics Data System (ADS)

    Hirose, Akio; Kobayashi, Kojiro F.; Todaka, Hirotaka

    1997-12-01

    Laser beam welding is an attractive welding process for age-hardened aluminum alloys, because its low heat input minimizes the width of weld fusion and heat-affected zones (HAZs). In the present work, 1-mm-thick age-hardened Al-Mg-Si alloy, 6061-T6, plates were welded with full penetration using a 2.5-kW CO2 laser. Fractions of porosity in the fusion zones were less than 0.05 pct in bead-on-plate welding and less than 0.2 pct in butt welding with polishing the groove surface before welding. The width of a softened region in the-laser beam welds was less than 1/4 times that of a tungsten inert gas (TIG) weld. The softened region is caused by reversion of strengthening β″ (Mg2Si) precipitates due to weld heat input. The hardness values of the softened region in the laser beam welds were almost fully recovered to that of the base metal after an artificial aging treatment at 448 K for 28.8 ks without solution annealing, whereas those in the TIG weld were not recovered in a partly reverted region. Both the bead-on-plate weld and the butt weld after the postweld artificial aging treatment had almost equivalent tensile strengths to that of the base plate.

  7. Influence of machining parameters on cutting tool life while machining aluminum alloy fly ash composite

    NASA Astrophysics Data System (ADS)

    Rao, C. R. Prakash; chandra, Poorna; Kiran, R.; Asha, P. B.

    2016-09-01

    Metal matrix composites containing fly ash as reinforcement are primarily preferred because these materials possess lower density and higher strength to weight ratio. The metal matrix composites possess hetrogeneous microstructure which is due to the presence of hard ceramic particles. While turning composites, the catastrophic failure of cutting tools is attributed to the presence of hard particles. Selection of optimal cutting conditions for a given machining process and grade of cutting tools are of utmost importance to enhance the tool life during turning operation. Thus the research work was aimed at the experimental investigation of the cutting tool life while machining aluminum alloy composite containing 0-15% fly-ash. The experiments carried out following ISO3685 standards. The carbide inserts of grade K10 and style CGGN120304 were the turning tools. The cutting speed selected was between 200m/min to 500m/min in step of 100m/min, feed of 0.08 & 0.16 mm/revolution and constant depth of cut of 1.0 mm. The experimental results revealed that the performance of K10 grade carbide insert found better while machining composite containing 5% filler, at all cutting speeds and 0.08mm/revolution feed. The failures of carbide tools are mainly due to notch wear followed by built up edge and edge chipping.

  8. Stress ratio effects in fatigue of lost foam cast aluminum alloy 356

    NASA Astrophysics Data System (ADS)

    Palmer, David E.

    Lost foam casting is a highly versatile metalcasting process that offers significant benefits in terms of design flexibility, energy consumption, and environmental impact. In the present work, the fatigue behavior of lost foam cast aluminum alloy 356, in conditions T6 and T7, was investigated, under both zero and non-zero mean stress conditions, with either as-cast or machined surface finish. Scanning electron microscopy was used to identify and measure the defect from which fatigue fracture initiated. Based on the results, the applicability of nine different fatigue mean stress equations was compared. The widely-used Goodman equation was found to be highly non-conservative, while the Stulen, Topper-Sandor, and Walker equations performed reasonably well. Each of these three equations includes a material-dependent term for stress ratio sensitivity. The stress ratio sensitivity was found to be affected by heat treatment, with the T6 condition having greater sensitivity than the T7 condition. The surface condition (as-cast vs. machined) did not significantly affect the stress ratio sensitivity. The fatigue life of as-cast specimens was found to be approximately 60--70% lower than that of machined specimens at the same equivalent stress. This reduction could not be attributed to pore size alone, and is suspected to be due to the greater concentration of pyrolysis products at the as-cast surface. Directions for future work, including improved testing methods and some possible methods of improving the properties of lost foam castings, are discussed.

  9. Finite Element Modeling of Plane Strain Toughness for 7085 Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Karabin, M. E.; Barlat, F.; Shuey, R. T.

    2009-02-01

    In this work, the constitutive model for 7085-T7X (overaged) aluminum alloy plate samples with controlled microstructures was developed. Different lengths of 2nd step aging times produced samples with similar microstructure but different stress-strain curves ( i.e., different nanostructure). A conventional phenomenological strain-hardening law with no strain gradient effects was proposed to capture the peculiar hardening behavior of the material samples investigated in this work. The classical Gurson-Tvergaard potential, which includes the influence of void volume fraction (VVF) on the plastic flow behavior, as well as an extension proposed by Leblond et al.,[3] were considered. Unlike the former, the latter is able to account for the influence of strain hardening on the VVF growth. All the constitutive coefficients used in this work were based on experimental stress-strain curves obtained in uniaxial tension and on micromechanical modeling results of a void embedded in a matrix. These material models were used in finite element (FE) simulations of a compact tension (CT) specimen. An engineering criterion based on the instability of plastic flow at a crack tip was used for the determination of plane strain toughness K Ic . The influence of the microstructure was lumped into a single state variable, the initial void volume fraction. The simulation results showed that the strain-hardening behavior has a significant influence on K Ic .

  10. Mechanisms of Slow Fatigue Crack Growth in High Strength Aluminum Alloys: Role of Microstructure and Environment

    NASA Astrophysics Data System (ADS)

    Suresh, S.; Vasudévan, A. K.; Bretz, P. E.

    1984-02-01

    The role of microstructure and environment in influencing ultra-low fatigue crack propagation rates has been investigated in 7075 aluminum alloy heat-treated to underaged, peak-aged, and overaged conditions and tested over a range of load ratios. Threshold stress intensity range, ΔK0, values were found to decrease monotonically with increasing load ratio for all three heat treatments fatigue tested in 95 pct relative humidity air, with Δ K 0 decreasing at all load ratios with increased extent of aging. Comparison of the near-threshold fatigue behavior obtained in humid air with the data for vacuo, however, showed that the presence of moisture leads to a larger reduction in ΔK0 for the underaged microstructure than the overaged condition, at all load ratios. An examination of the nature of crack morphology and scanning Auger/SIMS analyses of near-threshold fracture surfaces revealed that although the crack path in the underaged structure was highly serrated and nonlinear, crack face oxidation products were much thicker in the overaged condition. The apparent differences in slow fatigue crack growth resistance of the three aging conditions are ascribed to a complex interaction among three mechanisms: the embrittling effect of moisture resulting in conventional corrosion fatigue processes, the role of microstructure and slip mode in inducing crack deflection, and crack closure arising from a combination of environmental and microstructural contributions.

  11. Fracture behavior of reinforced aluminum alloy matrix composites using thermal imaging tools

    NASA Astrophysics Data System (ADS)

    Avdelidis, N. P.; Exarchos, D.; Vazquez, P.; Ibarra-Castanedo, C.; Sfarra, S.; Maldague, X. P. V.; Matikas, T. E.

    2016-05-01

    In this work the influence of the microstructure at the vicinity of the interface on the fracture behavior of particulate-reinforced aluminum alloy matrix composites (Al/SiCp composites) is studied by using thermographic tools. In particular, infrared thermography was used to monitor the plane crack propagation behavior of the materials. The deformation of solid materials is almost always accompanied by heat release. When the material becomes deformed or is damaged and fractured, a part of the energy necessary to initiate and propagate the damage is transformed in an irreversible way into heat. The thermal camera detects the heat wave, generated by the thermo-mechanical coupling and the intrinsic dissipated energy during mechanical loading of the sample. By using an adapted detector, thermography records the two dimensional "temperature" field as it results from the infrared radiation emitted by the object. The principal advantage of infrared thermography is its noncontact, non-destructive character. This methodology is being applied to characterise the fracture behavior of the particulate composites. Infrared thermography is being used to monitor the plane crack propagation behavior of such materials. Furthermore, an innovative approach to use microscopic measurements using IR microscopic lenses was attempted, in order to enable smaller features (in the micro scale) to be imaged with accuracy and assurance.

  12. Surface Characterization of Carbon Fiber Polymer Composites and Aluminum Alloys After Laser Interference Structuring

    NASA Astrophysics Data System (ADS)

    Sabau, Adrian S.; Greer, Clayton M.; Chen, Jian; Warren, Charles D.; Daniel, Claus

    2016-07-01

    The increasing use of carbon fiber-reinforced polymer matrix composites (CFPC) and aluminum alloys as lightweight materials in the automotive and aerospace industries demands enhanced surface preparation and control of surface morphology prior to joining. In this study, surfaces of both composite and aluminum were prepared for joining using an Nd:YAG laser in a two-beam interference setup, enabling the (1) structuring of the AL 5182 surface, (2) removal of the resin layer on top of carbon fibers, and (3) structuring of the carbon fibers. CFPC specimens of T700S carbon fiber, Prepreg—T83 epoxy, 5 ply thick, 0°/90° plaques were used. The effects of laser fluence, scanning speed, and number of shots-per-spot were investigated on the removal rate of the resin without an excessive damage of the fibers. Optical micrographs, 3D imaging, and scanning electron microscope imaging were used to study the effect of the laser processing on the surface morphology. It was found that an effective resin ablation and a low density of broken fibers for CFPC specimens was attained using laser fluences of 1-2 J/cm2 and number of 2-4 pulses per spot. A relatively large area of periodic line structures due to energy interference were formed on the aluminum surface at laser fluences of 12 J/cm2 and number of 4-6 pulses per spot.

  13. Wear and Friction Characteristics of AlN/Diamond-Like Carbon Hybrid Coatings on Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Nakamura, Masashi; Kubota, Sadayuki; Suzuki, Hideto; Haraguchi, Tadao

    2015-10-01

    The use of diamond-like carbon (DLC) coatings has the potential to greatly improve the wear resistance and friction of aluminum alloys, but practical application has so far been limited by poor adhesion due to large difference in hardness and elasticity between the two materials. This study investigates the deposition of DLC onto an Al-alloy using an intermediate AlN layer with a graded hardness to create a hybrid coating. By controlling the hardness of the AlN film, it was found that the wear life of the DLC film could be improved 80-fold compared to a DLC film deposited directly onto Al-alloy. Furthermore, it was demonstrated through finite element simulation that creating a hardness gradient in the AlN intermediate layer reduces the distribution of stress in the DLC film, while also increasing the force of adhesion between the DLC and AlN layers. Given that both the DLC and AlN films were deposited using the same unbalanced magnetron sputtering method, this process is considered to represent a simple and effective means of improving the wear resistance of Al-alloy components commonly used within the aerospace and automotive industries.

  14. Slow strain rate testing of aluminum alloy 7050 in different tempers using various synthetic environments

    SciTech Connect

    Braun, R.

    1997-06-01

    The slow strain rate testing (SSRT) technique was used to investigate the stress corrosion cracking (SCC) behavior of aluminum alloy Al 7050 in different tempers in various electrolytes at the free-corrosion potential. Smooth tensile specimens were strained dynamically in the short transverse direction under permanent immersion conditions. Strain rates were from 5 {times} 10{sup {minus}8}/s to 1 {times} 10{sup {minus}4}/s. Using substitute ocean water, Al 7050 was found sensitive and immune to environmentally assisted cracking in the peak-aged temper T651 and in the over-aged temper T7351, respectively. In the less-over-aged heat treatment T7651, fracture energy data revealed a large scatter. An aqueous solution of 0.5 M sodium perchlorate was not conducive to environmentally assisted cracking. SSRT performed in an aqueous solution of 0.1 M sodium chloride + 0.05 M sodium sulfate + 0.05 M sodium nitrate + 0.01 M sodium bicarbonate at pH 3.5 indicated SCC susceptibility for Al 7050-T651. The latter electrolyte did not promote SCC with the alloy in the heat treatments T7651 and T7351. Scatter was observed in the fracture energy data of Al 7050-T7351 specimens dynamically strained in the mixed salt solution. Deterioration was attributed to pitting attack, as supported by fractography.

  15. Computer-assisted Rheo-forging Processing of A356 Aluminum Alloys

    SciTech Connect

    Kim, H. H.; Kang, C. G.

    2010-06-15

    Die casting process has been used widely for complex automotive products such as the knuckle, arm and etc. Generally, a part fabricated by casting has limited strength due to manufacturing defects by origin such as the dendrite structure and segregation. As an attempt to offer a solution to these problems, forging has been used as an alternative process. However, the forging process provides limited formability for complex shape products. Rheo-forging of metal offers not only superior mechanical strength but also requires significantly lower machine loads than solid forming processes. In order to produce semi-solid materials of the desired microstructure, a stirring process is applied during solidification of A356 aluminum molten state. This paper presents the results of an A356 aluminum alloy sample, which were obtained by experiment and by simulation using DEFORM 3D V6.1. Samples of metal parts were subsequently fabricated by using hydraulic press machinery. In order to compare the influence of loading method, two types of samples were fabricated: (1) samples fabricated under direct loading die sets (2) those fabricated under indirect loading die sets. The formability and defects, which were predicted by FEM simulation, were similar to those of samples used in practice.

  16. Mechanisms of fatigue crack retardation following single tensile overloads in powder metallurgy aluminum alloys

    NASA Technical Reports Server (NTRS)

    Bray, G. H.; Reynolds, A. P.; Starke, E. A., Jr.

    1992-01-01

    In ingot metallurgy (IM) alloys, the number of delay cycles following a single tensile overload typically increases from a minimum at an intermediate baseline stress intensity range, Delta-K(B), with decreasing Delta-K(B) approaching threshold and increasing Delta-K(B) approaching unstable fracture to produce a characteristic 'U' shaped curve. Two models have been proposed to explain this behavior. One model is based on the interaction between roughness and plasticity-induced closure, while the other model only utilizes plasticity-induced closure. This article examines these models, using experimental results from constant amplitude and single overload fatigue tests performed on two powder metallurgy (PM) aluminum alloys, AL-905XL and AA 8009. The results indicate that the 'U'-shaped curve is primarily due to plasticity-induced closure, and that the plasticity-induced retardation effect is through-thickness in nature, occurring in both the surface and interior regions. However, the retardation effect is greater at the surface, because the increase in plastic strain at the crack tip and overload plastic zone size are larger in the plane-stress surface regions than in the plane-strain interior regions. These results are not entirely consistent with either of the proposed models.

  17. Physical Simulation Method for the Investigation of Weld Seam Formation During the Extrusion of Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Fang, Gang; Nguyen, Duc-Thien; Zhou, Jie

    2016-12-01

    Extrusion through the porthole die is a predominant forming process used in the production of hollow aluminum alloy profiles across the aluminum extrusion industry. Longitudinal weld seams formed during the process may negatively influence the quality of extruded profiles. It is therefore of great importance to understand the formation of weld seams inside the welding chamber during extrusion, as affected by extrusion process variables and die design. Previously developed physical simulation methods could not fully reproduce the thermomechanical conditions inside the welding chamber of porthole die. In this research, a novel physical simulation method for the investigation of weld seam formation during extrusion was developed. With a tailor-designed tooling set mounted on a universal testing machine, the effects of temperature, speed, and strain on the weld seam quality of the 6063 alloy were investigated. The strains inside the welding chamber were found to be of paramount importance for the bonding of metal streams, accompanied by microstructural changes, i.e., recovery or recrystallization, depending on the local deformation condition. The method was shown to be able to provide guidelines for the design of porthole dies and choice of extrusion process variables, thereby reducing the scrap rate of aluminum extrusion operation.

  18. Instability of the Liquid Metal-Pattern Interface in the Lost Foam Casting of Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Griffiths, W. D.; Ainsworth, M. J.

    2016-06-01

    The nature of the liquid metal-pattern interface during mold filling in the Lost Foam casting of aluminum alloys was investigated using real-time X-ray radiography for both normal expanded polystyrene, and brominated polystyrene foam patterns. Filling the pattern under the action of gravity from above or below had little effect on properties, both cases resulting in a large scatter of tensile strength values, (quantified by their Weibull Modulus). Countergravity filling at different velocities demonstrated that the least scatter of tensile strength values (highest Weibull Modulus) was associated with the slowest filling, when a planar liquid metal-pattern interface occurred. Real-time X-ray radiography showed that the advancing liquid metal front became unstable above a certain critical velocity, leading to the entrainment of the degrading pattern material and associated defects. It has been suggested that the transition of the advancing liquid metal-pattern interface into an unstable regime may be a result of Saffman-Taylor Instability.

  19. Surface characterization of carbon fiber polymer composites and aluminum alloys after laser interference structuring

    DOE PAGES

    Sabau, Adrian S.; Greer, Clayton M.; Chen, Jian; ...

    2016-05-03

    Here, the increasing use of Carbon Fiber-reinforced Polymer matrix Composites (CFPC) and aluminum alloys as lightweight materials in the automotive and aerospace industries demands enhanced surface preparation and control of surface morphology prior to joining. In this study, surfaces of both composite and aluminum were prepared for joining using an Nd:YAG laser in a two-beam interference setup, enabling the (a) structuring of the AL 5182 surface, (b) removal of the resin layer on top of carbon fibers, and (c) structuring of the carbon fibers. CFPC specimens of T700S carbon fiber, Prepreg - T83 epoxy, 5 ply thick, 0/90o plaques weremore » used. The effect of laser fluence, scanning speed, and number of shots-per-spot was investigated on the removal rate of the resin without an excessive damage of the fibers. Optical micrographs, 3D imaging, and scanning electron microscope (SEM) imaging were used to study the effect of the laser processing on surface morphology.« less

  20. Microstructure and Mechanical Properties of Friction Stir Welded 5083 and 7075 Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Kalemba-Rec, I.; Hamilton, C.; Kopyściański, M.; Miara, D.; Krasnowski, K.

    2017-02-01

    Through microscopy, mechanical testing, and numerical modeling, the microstructure and mechanical performance of friction stir welded aluminum alloys 7075-T651 and 5083-H111 were characterized. In particular, the influence of the weld configuration, i.e., the locations of the 7075 and 5083 alloys alternately on the advancing and retreating sides, on material flow, microstructure, and mechanical properties was considered. Thermographic data in conjunction with a process simulation demonstrated that the weld configuration significantly impacts heat generation during friction stir welding. The microstructure in the stir zone was a clear visualization of the material flow and was characterized by a vortex-like structure with alternating bands of the alloys being joined. These bands differed in elemental content and grain size. The microstructure became more complex when greater heat generation (higher temperatures) occurred. The weld configuration strongly influenced the material flow, but did not impact the tensile properties (such as yield strength, tensile strength, and elongation). The configuration of 5083 on the advancing side and 7075 on the retreating side produced the most uniform material flow. The joint efficiencies of all tested welds were above 100%.

  1. Measurement and analysis of critical CTOA for an aluminum alloy sheet

    NASA Technical Reports Server (NTRS)

    Dawicke, D. S.; Sutton, M. A.; Newman, J. C., Jr.; Bigelow, C. A.

    1993-01-01

    The stable tearing behavior of thin sheets of 2024-T3 aluminum alloy was investigated for middle crack tension, M(T), and compact tension, C(T), specimens. The surface crack-tip opening angle (CTOA), applied loads, crack extension, and local displacements were measured. A critical CTOA fracture criterion was incorporated into a two-dimensional, elastic plastic finite element code and used to simulate the experimental fracture behavior. The CTOA measurements and observations of the fracture surfaces have shown that large values for surface CTOA were observed for small crack extensions (less than the sheet thickness); substantial tunneling of the crack was associated with small crack extensions; crack tunneling in the M(T) specimen was less than that observed in the C(T) configuration; for larger crack extensions, the measured CTOA values were determined to be approximately 6 degrees for both the M(T) and C(T) configuration; and for larger crack extensions, crack tunneling remained constant. The two-dimensional finite element predictions of fracture behavior assumed a constant critical CTOA value of 6 degrees and accounted for local crack tip constraint with a plane strain core of elements ahead of the crack tip. The plane strain core extended 5 mm above the crack plane. The simulations were within +/- 4 percent of the maximum applied load for the C(T) tests within 2 percent for the M(T) tests.

  2. The Effect of Electric Current and Strain Rate on Serrated Flow of Sheet Aluminum Alloy 5754

    NASA Astrophysics Data System (ADS)

    Zhao, Kunmin; Fan, Rong; Wang, Limin

    2016-03-01

    Electrically assisted tensile tests are carried out on sheet aluminum alloy AA5754 at electric current densities ranging from 0 to 30.4 A/mm2 and strain rates ranging from 10-3 to 10-1 s-1. The strain rate sensitivity and the serrated flow behavior are investigated in accordance with dynamic strain aging mechanism. The strain rate sensitivity changes from negative to positive and keeps increasing with current density. The tendency toward serrated flow is characterized by the onset of Portevin-Le Chatelier (PLC) instabilities, which are influenced by strain rate, temperature, and electric current. The evolutions of three types of serrated flow are observed and analyzed with respect to strain rate and current density. The magnitude of serration varies with strain rate and current density. The serrated flow can be suppressed by a high strain rate, a high temperature, or a strong electric current. The threshold values of these parameters are determined and discussed. Conventional oven-heated tensile tests are conducted to distinguish the electroplasticity. The flow stress reduces more in electrically assisted tension compared to oven-heated tension at the same temperature level. The electric current helps suppress the serrated flow at the similar temperature level of oven-heating.

  3. The effects of pitting on fatigue crack nucleation in 7075-T6 aluminum alloy

    NASA Technical Reports Server (NTRS)

    Ma, LI; Hoeppner, David W.

    1994-01-01

    A high-strength aluminum alloy, 7075-T6, was studied to quantitatively evaluate chemical pitting effects of its corrosion fatigue life. The study focused on pit nucleation, pit growth, and fatigue crack nucleation. Pitting corrosion fatigue experiments were conducted in 3.5 percent NaCl aqueous solution under constant amplitude sinusoidal loading at two frequencies, 5 and 20 Hz. Smooth and unnotched specimens were used in this investigation. A video recording system was developed to allow in situ observation of the surface changes of the specimens during testing. The results indicated that pitting corrosion considerably reduces the fatigue strength by accelerating fatigue crack nucleation. A metallographic examination was conducted on the specimens to evaluate the nature of corrosion pits. First, the actual shapes of the corrosion pits were evaluated by cross-sectioning the pits. Secondly, the relation between corrosion pits and microstructure was also investigated. Finally, the possibility of another corrosion mechanism that might be involved in pitting was explored in this investigation. The fractography of the tested specimens showed that corner corrosion pits were responsible for fatigue crack nucleation in the material due to the associated stress concentration. The pits exhibited variance of morphology. Fatigue life for the experimental conditions appeared to be strongly dependent on pitting kinetics and the crack nucleation stage.

  4. Computational Analysis of Material Flow During Friction Stir Welding of AA5059 Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Grujicic, M.; Arakere, G.; Pandurangan, B.; Ochterbeck, J. M.; Yen, C.-F.; Cheeseman, B. A.; Reynolds, A. P.; Sutton, M. A.

    2012-09-01

    Workpiece material flow and stirring/mixing during the friction stir welding (FSW) process are investigated computationally. Within the numerical model of the FSW process, the FSW tool is treated as a Lagrangian component while the workpiece material is treated as an Eulerian component. The employed coupled Eulerian/Lagrangian computational analysis of the welding process was of a two-way thermo-mechanical character (i.e., frictional-sliding/plastic-work dissipation is taken to act as a heat source in the thermal-energy balance equation) while temperature is allowed to affect mechanical aspects of the model through temperature-dependent material properties. The workpiece material (AA5059, solid-solution strengthened and strain-hardened aluminum alloy) is represented using a modified version of the classical Johnson-Cook model (within which the strain-hardening term is augmented to take into account for the effect of dynamic recrystallization) while the FSW tool material (AISI H13 tool steel) is modeled as an isotropic linear-elastic material. Within the analysis, the effects of some of the FSW key process parameters are investigated (e.g., weld pitch, tool tilt-angle, and the tool pin-size). The results pertaining to the material flow during FSW are compared with their experimental counterparts. It is found that, for the most part, experimentally observed material-flow characteristics are reproduced within the current FSW-process model.

  5. Ultrasonic attenuation peak in steel and aluminum alloy during rotating bending fatigue

    NASA Astrophysics Data System (ADS)

    Ogi, Hirotsugu; Hamaguchi, Takayuki; Hirao, Masahiko

    2000-04-01

    Using electromagnetic acoustic resonance (EMAR), we studied the evolution of the surface shearwave attenuation and phase velocity in a 0.45 pct C steel and a 5052 aluminum alloy exposed to rotating bending fatigue. In the EMAR method, we used electromagnetic acoustic transducers (EMATs) for the contactless measurements of the axial shear wave, which is a surface shear wave that propagates along a cylindrical surface in the circumferential direction, with an axial polarization. There has been no previous report of continuous and contactless monitoring of the surface wave attenuation and velocity being performed without interrupting the fatigue. The attenuation coefficient always showed sharp peaks around 90 pct of the fatigue life, independent of the fatigue-stress amplitude. To interpret this phenomenon, we made crack-growth observations using replicas and measurements of recovery of attenuation and velocity by stopping the cyclic loading before and after the peak. From these results, we concluded that the evolution of the ultrasonic properties is caused by a drastic change in dislocation mobility being accompanied by the crack growth at the final stage of the fatigue life.

  6. Using capillary electrophoresis to study the chemical conditions within cracks in aluminum alloys.

    PubMed

    Cooper, K R; Kelly, R G

    1999-07-30

    The environment-assisted cracking (EAC) susceptibility of some aluminum alloys used for airplane structural components currently limits their use in the peak strength condition. Understanding the mechanism of EAC will facilitate the development of crack-resistant alloys with optimum mechanical properties. One component towards understanding the fundamental processes responsible for EAC is a comprehensive knowledge of the chemical conditions within cracks. The present work uses capillary electrophoresis (CE) to quantify the crack chemistry in order to provide insight into the nature of the mechanism controlling cracking. The highly restricted geometry of cracks in metals means that a crack typically contains less than 10 microliters of solution. The high mass sensitivity combined with the inherently robust nature of CE makes it an ideal analytical technique for this application. Complicating factors in the accurate determination of the crack environment include high levels of sodium present from the test solution. Low sample volume and analyte matrix complexity necessitated the development of specific sampling, extraction and analysis methods. Analysis of the crack solutions in EAC-susceptible material revealed high levels of Al3+, Mg2+, Zn2+, and Cl- near the crack tip. Cations arise from the anodic dissolution of the alloy, whereas chloride ingress from the external environment occurs to maintain solution electroneutrality within the crack. In contrast, EAC-resistant material exhibited significantly lower concentrations of dissolution products.

  7. Effects of porosity on weld-joint tensile strength of aluminum alloys

    NASA Technical Reports Server (NTRS)

    Lovoy, C. V.

    1974-01-01

    Tensile properties in defect-free weldments of aluminum alloys 2014-T6 and 2219-T87 (sheet and plate) are shown to be related to the level or concentration of induced simulated porosity. The scatter diagram shows that the ultimate tensile strength of the weldments displays the most pronounced linear relationship with the level of porosity. The relationships between yield strength or elongation and porosity are either trivial or inconsequential in the lower and intermediate levels of porosity content. In highly concentrated levels of porosity, both yield strength and elongation values decrease markedly. Correlation coefficients were obtained by simple straight line regression analysis between the variables of ultimate tensile strength and pore level. The coefficients were greater, indicating a better correlation, using a pore area accumulation concept or pore volume accumulation than the accumulation of the pore diameters. These relationships provide a useful tool for assessing the existing aerospace radiographic acceptance standards with respect to permissible porosity. In addition, these relationships, in combination with known design load requirements, will serve as an engineering guideline in determining when a weld repair is necessary based on accumulative pore level as detected by radiographic techniques.

  8. Surface characterization of carbon fiber polymer composites and aluminum alloys after laser interference structuring

    SciTech Connect

    Sabau, Adrian S.; Greer, Clayton M.; Chen, Jian; Warren, Charles David; Daniel, Claus

    2016-05-03

    Here, the increasing use of Carbon Fiber-reinforced Polymer matrix Composites (CFPC) and aluminum alloys as lightweight materials in the automotive and aerospace industries demands enhanced surface preparation and control of surface morphology prior to joining. In this study, surfaces of both composite and aluminum were prepared for joining using an Nd:YAG laser in a two-beam interference setup, enabling the (a) structuring of the AL 5182 surface, (b) removal of the resin layer on top of carbon fibers, and (c) structuring of the carbon fibers. CFPC specimens of T700S carbon fiber, Prepreg - T83 epoxy, 5 ply thick, 0/90o plaques were used. The effect of laser fluence, scanning speed, and number of shots-per-spot was investigated on the removal rate of the resin without an excessive damage of the fibers. Optical micrographs, 3D imaging, and scanning electron microscope (SEM) imaging were used to study the effect of the laser processing on surface morphology.

  9. Neural network modeling of pulsed-laser weld pool shapes in aluminum alloy welds

    SciTech Connect

    Vitek, J.M.; Iskander, Y.S.; Oblow, E.M.; Babu, S.S.; David, S.A.; Fuerschbach, P.W.; Smartt, H.B.; Pace, D.P. Tolle, C.R.

    1998-11-01

    A model was developed to predict the weld pool shape in pulsed Nd:YAG laser welds of aluminum alloy 5754. The model utilized neural network analysis to relate the weld process conditions to four pool shape parameters: penetration, width, width at half-penetration, and cross-sectional area. The model development involved the identification of the input (process) variables, the desired output (shape) variables, and the optimal neural network architecture. The latter was influenced by the number of defined inputs and outputs as well as the amount of data that was available for training the network. After appropriate training, the best network was identified and was used to predict the weld shape. A routine to convert the shape parameters into predicted weld profiles was also developed. This routine was based on the actual experimental weld profiles and did not impose an artificial analytical function to describe the weld profile. The neural network model was tested on experimental welds. The model predictions were excellent. It was found that the predicted shapes were within the experimental variations that were found along the length of the welds (due to the pulsed nature of the weld power) and the reproducibility of welds made under nominally identical conditions.

  10. Neural network modeling of pulsed-laser weld pool shapes in aluminum alloy welds

    SciTech Connect

    Vitek, J.M.; Iskander, Y.S.; Oblow, E.M.; Babu, S.S.; David, S.A.; Fuerschbach, P.W.; Smartt, H.B.

    1998-09-01

    A model was developed to predict the weld pool shape in pulsed Nd:YAG laser welds of aluminum alloy 5754. The model utilized neural network analysis to relate the weld process conditions to four pool shape parameters: (1) penetration width, (2) width at half-penetration, and (3) cross-sectional area. The model development involved the identification of the input (process) variables, the desired output (shape) variables, and the optimal neural network architecture. The latter was influenced by the number of defined inputs and outputs as well as the amount of data that was available for training the network. After appropriate training, die best network was identified and was used to predict the weld shape. A routine to convert the shape parameters into predicted weld profiles was also developed. This routine was based on the actual experimental weld profiles and did not impose an artificial analytical function to describe the weld profile. The neural network model was tested on experimental welds. The model predictions were excellent. It was found that the predicted shapes were within the experimental variations that were found along the length of the welds (due to the pulsed nature of the weld power) and the reproducibility of welds made under nominally identical conditions.

  11. Metallurgical Mechanisms Controlling Mechanical Properties of Aluminum Alloy 2219 Produced by Electron Beam Freeform Fabrication

    NASA Technical Reports Server (NTRS)

    Domack, Marcia S.; Tainger, Karen M.

    2006-01-01

    The electron beam freeform fabrication (EBF3) layer-additive manufacturing process has been developed to directly fabricate complex geometry components. EBF3 introduces metal wire into a molten pool created on the surface of a substrate by a focused electron beam. Part geometry is achieved by translating the substrate with respect to the beam to build the part one layer at a time. Tensile properties demonstrated for electron beam deposited aluminum and titanium alloys are comparable to wrought products, although the microstructures of the deposits exhibit cast features. Understanding the metallurgical mechanisms controlling mechanical properties is essential to maximizing application of the EBF3 process. Tensile mechanical properties and microstructures were examined for aluminum alloy 2219 fabricated over a range of EBF3 process variables. Unique microstructures were observed within the deposited layers and at interlayer boundaries, which varied within the deposit height due to microstructural evolution associated with the complex thermal history experienced during subsequent layer deposition. Microstructures exhibited irregularly shaped grains with interior dendritic structures, described based on overall grain size, morphology, distribution, and dendrite spacing, and were correlated with deposition parameters. Fracture features were compared with microstructural elements to define fracture paths and aid in definition of basic processing-microstructure-property correlations.

  12. Damage Tolerance Assessment of Friction Pull Plug Welds in an Aluminum Alloy

    NASA Technical Reports Server (NTRS)

    McGill, Preston; Burkholder, Jonathan

    2012-01-01

    Friction stir welding is a solid state welding process used in the fabrication of cryogenic propellant tanks. Self-reacting friction stir welding is one variation of the friction stir weld process being developed for manufacturing tanks. Friction pull plug welding is used to seal the exit hole that remains in a circumferential self-reacting friction stir weld. A friction plug weld placed in a self-reacting friction stir weld results in a non-homogenous weld joint where the initial weld, plug weld, their respective heat affected zones and the base metal all interact. The welded joint is a composite plastically deformed material system with a complex residual stress field. In order to address damage tolerance concerns associated with friction plug welds in safety critical structures, such as propellant tanks, nondestructive inspection and proof testing may be required to screen hardware for mission critical defects. The efficacy of the nondestructive evaluation or the proof test is based on an assessment of the critical flaw size. Test data relating residual strength capability to flaw size in an aluminum alloy friction plug weld will be presented.

  13. Metallurgical Mechanisms Controlling Mechanical Properties of Aluminum Alloy 2219 Produced By Electron Beam Freeform Fabrication

    NASA Technical Reports Server (NTRS)

    Domack, Marcia S.; Taminger, Karen M. B.; Begley, Matthew

    2006-01-01

    The electron beam freeform fabrication (EBF3) layer-additive manufacturing process has been developed to directly fabricate complex geometry components. EBF3 introduces metal wire into a molten pool created on the surface of a substrate by a focused electron beam. Part geometry is achieved by translating the substrate with respect to the beam to build the part one layer at a time. Tensile properties have been demonstrated for electron beam deposited aluminum and titanium alloys that are comparable to wrought products, although the microstructures of the deposits exhibit features more typical of cast material. Understanding the metallurgical mechanisms controlling mechanical properties is essential to maximizing application of the EBF3 process. In the current study, mechanical properties and resulting microstructures were examined for aluminum alloy 2219 fabricated over a range of EBF3 process variables. Material performance was evaluated based on tensile properties and results were compared with properties of Al 2219 wrought products. Unique microstructures were observed within the deposited layers and at interlayer boundaries, which varied within the deposit height due to microstructural evolution associated with the complex thermal history experienced during subsequent layer deposition. Microstructures exhibited irregularly shaped grains, typically with interior dendritic structures, which were described based on overall grain size, morphology, distribution, and dendrite spacing, and were correlated with deposition parameters. Fracture features were compared with microstructural elements to define fracture paths and aid in definition of basic processing-microstructure-property correlations.

  14. Effect of Preheating in Hybrid Friction Stir Welding of Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Yaduwanshi, D. K.; Bag, S.; Pal, S.

    2014-10-01

    The controlled energy input into the system by introducing an extra heat source to enhance the material flow along with reduction of the plunging force remains a potential area of considerate for the development of hybrid friction stir welding (FSW) process. Hence, the effect of preheating on the weld joint properties is evaluated using plasma-assisted friction stir welding (P-FSW) process for joining aluminum alloy. A comparative study of mechanical and macro-microstructural characterizations of weld joint by FSW and P-FSW has been performed. Transverse tensile strength of weld joint is approximately 95% of base metal produced by P-FSW and is 8% more than conventional FSW welds. The effect of preheating enhances material flow and dissolution of fine oxide particles by plasma arc results in increase of strength and marginal modification of deformation behavior. The preheating brings uniformly distributed hardness in weld zone and the magnitude is higher in the advancing side with overall increase in average hardness value. Grain sizes are much finer due to the pinning effect of Al2O3 particles that retarded grain growth following recrystallization during P-FSW and thus led to more pronounced reduction in grain size and relatively brittle fracture during tensile loading of welded joint. Overall, the influence of preheating acts quite homogeneously throughout the structure as compared to conventional FSW. However, the results reveal that the development of P-FSW is still in initial stage and needs to improve in various aspects.

  15. Time dependence of solid-particle impingement erosion of an aluminum alloy

    NASA Technical Reports Server (NTRS)

    Veerabhadrarao, P.; Buckley, D. H.

    1983-01-01

    Erosion studies were conducted on 6061-T6511 aluminum alloy by using jet impingement of glass beads and crushed glass particles to investigate the influence of exposure time on volume loss rate at different pressures. The results indicate a direct relationship between erosion-versus-time curves and pitmorphology (width, depth, and width-depth ratio)-versus-time curves for both glass forms. Extensive erosion data from the literature were analyzed to find the variations of erosion-rate-versus-time curves with respect to the type of device, the size and shape of erodent particles, the abrasive charge, the impact velocity, etc. Analysis of the experimental data, obtained with two forms of glass, resulted in three types of erosion-rate-versus-time curves: (1) curves with incubation, acceleration, and steadystate periods (type 1); (2) curves with incubation, acceleration, decleration, and steady-state periods (type 3); and (3) curves with incubation, acceleration, peak rate, and deceleration periods (type 4). The type 4 curve is a less frequently seen curve and was not reported in the literature. Analysis of extensive literature data generally indicated three types of erosion-rate-versus-time curves. Two types (types 1 and 3) were observed in the present study; the third type involves incubation (and deposition), acceleration, and steady-state periods (type 2). Examination of the extensive literature data indicated that it is absolutely necessary to consider the corresponding stages or periods of erosion in correlating and characterizing erosion resistance of a wide spectrum of ductile materials.

  16. Compressive strength, plastic flow properties, and surface frictional effects of 1100, 3003 and 6061 aluminum alloys

    SciTech Connect

    Pinkerton, G.W.

    1993-12-31

    The purpose of this study is to find aluminum alloys that are effective for use as wire vacuum seals in the 800MeV particle accelerator located at the Louis Anderson Meson Physics Facility (LAMPF) in Los Alamos, NM. Three alloys, Al 1100, Al 3003, and Al 6061, are investigated under uniaxial compression to determine stresses for a given height reduction from 0 to 70 percent, and to find plastic flow and surface interaction effects. Right-circular cylindrical specimens are compressed on-end (cylindrically) and radially (for modeling as compressed wire). Aluminum 1100 and 3003 alloys are compared for length to diameter ratios of 1 and 2 for both compression types, and are then compared to results of radial compression of annealed small diameter Al 1100 wire currently used at LAMPE. The specimens are also compressed between three different platen surfaces, polished steel, etched steel, and aluminum 6061-T6, to determine effects of friction. The Al 3003 alloy exhibits 20 to 25% lower stresses at all height reductions than Al 1100 for both cylindrical and radial compression.

  17. A Positron Annihilation Study of Corrosion of Aluminum and Aluminum Alloy by NaOH

    NASA Astrophysics Data System (ADS)

    Wu, Y. C.; Zhai, T.; Coleman, P. G.

    2012-08-01

    Corrosion of fully-annealed pure aluminum and a continuous-cast AA2037 aluminum alloy (solutionized and water quenched) in a 1M NaOH solution for various periods of time were analyzed with positron beam-based Doppler broadening spectroscopy. By varying the energy of the incident positron beam, corrosion-induced defects at different depths from the surface were detected. It was found that the Doppler-broadened annihilation line-width parameter was significantly increased near the surface of pure aluminum after corrosion, probably due to the interaction between positrons and nanometer-sized voids formed near the aluminum surface during corrosion. Examination by atomic force microscopy indicated that many pits were formed on the aluminum surface after corrosion. In contrast, a significant decrease in the line-width parameter was observed in AA2037 alloy after corrosion and interpreted as being caused by copper enrichment at the metal-oxide interface during corrosion; such enrichment at large cavity sites was confirmed by energy dispersion spectrometry.

  18. Microstructural Evolution in the 2219 Aluminum Alloy During Severe Plastic Deformation

    SciTech Connect

    Kaibyshev, R.O.; Safarov, I.M.; Lesuen, D.R.

    2000-03-29

    Numerous investigations have demonstrated that intense plastic deformation is an attractive procedure for producing an ultrafine grain size in metallic materials. Torsional deformation under high pressure and equal-channel angular extrusion are two techniques that can produce microstructures with grain sizes in the submicrometer and nanometer range. Materials with these microstructures have many attractive properties. The microstructures formed by these two processing techniques are essentially the same and thus the processes occurring during deformation should be the same. Most previous studies have examined the final microstructures produced as a result of severe plastic deformation and the resulting properties. Only a limited number of studies have examined the evolution of microstructure. As a result, some important aspects of ultra-fine grain formation during severe plastic deformation remain unknown. There is also limited data on the influence of the initial state of the material on the microstructural evolution and mechanisms of ultra-fine grain formation. This limited knowledge base makes optimization of processing routes difficult and retards commercial application of these techniques. The objective of the present work is to examine the microstructure evolution during severe plastic deformation of a 2219 aluminum alloy. Specific attention is given to the mechanism of ultrafine grain formation as a result of severe plastic deformation.

  19. Microstructure characterization of the stir zone of submerged friction stir processed aluminum alloy 2219

    SciTech Connect

    Feng, Xiuli; Liu, Huijie; Lippold, John C.

    2013-08-15

    Aluminum alloy 2219-T6 was friction stir processed using a novel submerged processing technique to facilitate cooling. Processing was conducted at a constant tool traverse speed of 200 mm/min and spindle rotation speeds in the range from 600 to 800 rpm. The microstructural characteristics of the base metal and processed zone, including grain structure and precipitation behavior, were studied using optical microscopy (OM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Microhardness maps were constructed on polished cross sections of as-processed samples. The effect of tool rotation speed on the microstructure and hardness of the stir zone was investigated. The average grain size of the stir zone was much smaller than that of the base metal, but the hardness was also lower due to the formation of equilibrium θ precipitates from the base metal θ′ precipitates. Stir zone hardness was found to decrease with increasing rotation speed (heat input). The effect of processing conditions on strength (hardness) was rationalized based on the competition between grain refinement strengthening and softening due to precipitate overaging. - Highlights: • SZ grain size (∼ 1 μm) is reduced by over one order of magnitude relative to the BM. • Hardness in the SZ is lower than that of the precipitation strengthened BM. • Metastable θ′ in the base metal transforms to equilibrium θ in the stir zone. • Softening in the SZ results from a decrease of precipitation strengthening.

  20. Mechanism of Ultrafine Grain Formation During Intense Plastic Straining in an Aluminum Alloy at Intermediate Temperatures

    SciTech Connect

    Kaibyshev, R.; Sitdikov, O.; Mazurina, I,; Lesuer, D. R.

    2000-09-21

    The mechanism of grain formation during equal channel angular extrusion (ECAE) in a 2219 Al alloy has been studied at intermediate and high temperatures. It was shown that continuous dynamic recrystallization (CDRX) occurred during intense plastic straining and resulted in the formation of submicrometer grains at temperatures ranging from 250 C to 300 C. Higher temperatures (< 300 C) hindered CDRX. This is caused by the fact that nucleation controls CDRX in the aluminum alloy. Dislocation rearrangements result in the formation of low angle boundary networks at moderate strain. The density of lattice dislocations determines the rate of subgrain formation. In addition, at lower temperatures a low energy dislocation structure (LEDS) forms concurrently with the subgrain structure and stabilizes it. The stability of the subgrain structure is very important for the resulting conversion of low angle boundaries into high angle ones with strain by extensive accumulation of mobile lattice dislocations. Increasing temperature in the range of intermediate temperatures suppresses LEDS formation and decreases the lattice dislocation density. This reduces the rate of the subgrain formation process and CDRX. As a result, at T = 400 C no recrystallized grains were found. At T = 475 C, the new grains form due to geometric dynamic recrystallization (GRX).

  1. TIG welding of aluminum alloys for the APS storage ring - a UHV application

    SciTech Connect

    Goeppner, G.A.

    1996-05-29

    The Advanced Photon Source (APS) incorporates a 7-GeV positron storage ring 1104 meters in circumference. The storage ring vacuum system is designed to maintain a pressure of 1 nTorr or less with a circulating current of 300 mA to enable beam lifetimes of greater than 10 hours. The vacuum chamber is an aluminum extrusion of 6063T5 alloy. There are 235 separate aluminum vacuum chambers in the storage ring connected by stainless steel bellows assemblies. Aluminum was chosen for the vacuum chamber because it can be economically extruded and machined, has good thermal conductivity, low thermal emissivity, a low outgassing rate, low residual radioactivity, and is non-magnetic. The 6063 aluminum-silicon-magnesium alloy provides high strength combined with good machining and weldability characteristics. The extrusion process provides the interior surface finish needed for the ultrahigh vacuum (UHV) environments There are six different vacuum chambers with the same extrusion cross section. The average vacuum chamber length is 171.6 inches. The extruded vacuum chambers are welded to flange assemblies made up of machined 2219 aluminum alloy pieces and 2219 aluminum vacuum flanges from a commercial source.

  2. Ultrasonic method to determine gas porosity in aluminum alloy castings: Theory and experiment

    SciTech Connect

    Adler, L.; Rose, J.H.; Mobley, C.

    1986-01-15

    The characterization of porosity in solids using the frequency dependence of the ultrasonic attenuation is discussed both from the theoretical and experimental viewpoint. The major thrust of our work is the determination of the volume fraction and size of the voids for the case of dilute porosity (<6%) in structural materials. An aluminum alloy (A357) was chosen for study due to its economic importance in large-scale casting and the particular suitability of aluminum for this type of study. Following recent papers the attenuation is described by an independent scatterer model for spherical voids. Numerical results are presented in a form suitable for use with a range of materials. A method for determining the volume fraction and pore size is given. Specific tabular results are given for stainless steel, IN-100, Ti, Si3N4, as well as aluminum. Figures of merit which partially describe those situations in which the method is usable are also presented. In the experimental work a digitized spectrum analysis system was used to measure the frequency dependence of the attenuation coefficient in A357 aluminum cast alloys. In the cast materials the average pore size was in the order of 100 m and the pore concentration varied from essentially 0 to 6%. It was found that experimental measurement of the attenuation could be fit by the theoretical model. The resulting parameters yield a good estimate of the pore volume fraction.

  3. Ultrasonic method to determine gas porosity in aluminum alloy castings: Theory and experiment

    NASA Astrophysics Data System (ADS)

    Adler, Laszlo; Rose, James H.; Mobley, Carroll

    1986-01-01

    The characterization of porosity in solids using the frequency dependence of the ultrasonic attenuation is discussed both from the theoretical and experimental viewpoint. The major thrust of our work is the determination of the volume fraction and size of the voids for the case of dilute porosity (<6%) in structural materials. An aluminum alloy (A357) was chosen for study due to its economic importance in large-scale casting and the particular suitability of aluminum for this type of study. Following recent papers the attenuation is described by an independent scatterer model for spherical voids. Numerical results are presented in a form suitable for use with a range of materials. A method for determining the volume fraction and pore size is given. Specific tabular results are given for stainless steel, IN-100, Ti, Si3N4, as well as aluminum. Figures of merit which partially describe those situations in which the method is usable are also presented. In the experimental work a digitized spectrum analysis system was used to measure the frequency dependence of the attenuation coefficient in A357 aluminum cast alloys. In the cast materials the average pore size was in the order of 100 μm and the pore concentration varied from essentially 0 to 6%. It was found that experimental measurement of the attenuation could be fit by the theoretical model. The resulting parameters yield a good estimate of the pore volume fraction.

  4. Fracture testing of large-scale thin-sheet aluminum alloy

    NASA Astrophysics Data System (ADS)

    Dewit, Roland; Fields, Richard J.; Low, Samuel R., III; Harne, Donald E.; Foecke, Tim

    1995-05-01

    A series of fracture tests on large-scale, pre-cracked, aluminum alloy panel was carried out to examine and to characterize the process by which cracks propagate and link up in this material. Extended grips and test fixtures were specially designed to enable the panel specimens to be loaded in tension in a 1780-kN-capacity universal testing machine. Using existing information, a test matrix was set up to explore regions of failure controlled by fracture mechanics, with additional tests near the boundary between plastic collapse and fracture. In addition, a variety of multiple site damage (MSD) configurations were included to distinguish between various proposed linkage mechanisms. All tests but one used anti-buckling guides. The data were analyzed by two different procedures: (1) the plastic zone model based on the residual strength diagram; and (2) the R-curve. The first three tests were used to determine the basic material properties, and these results were then used in the analysis of the subsequent tests with MSD cracks.

  5. Predicting the impact of quenching on mechanical properties of complex-shaped aluminum alloy parts

    SciTech Connect

    Hall, D.D.; Mudawar, I.

    1995-05-01

    The mechanical properties of age-hardenable aluminum alloy extrusions are critically dependent on the rate at which the part is cooled (quenched) after the forming operation. The present study continues the development of an intelligent spray quenching system, which selects the optimal nozzle configuration based on part geometry and composition such that the magnitude and uniformity of hardness (or yield strength) is maximized while residual stresses are minimized. The quenching of a complex-shaped part with multiple, overlapping sprays was successfully modeled using spray heat transfer correlations as boundary conditions within a finite element program. The hardness distribution of the heat-treated part was accurately predicted using the quench factor technique; that is, the metallurgical transformations that occur within the part were linked to the cooling history predicted by the finite element program. This study represents the first successful attempt at systematically predicting the mechanical properties of a quenched metallic part from knowledge of only the spray boundary conditions. 26 refs., 8 figs., 1 tab.

  6. Effects of V addition on recrystallization resistance of 7150 aluminum alloy after simulative hot deformation

    SciTech Connect

    Lai, Jing; Shi, Cangji; Chen, X.-Grant

    2014-10-15

    The effects of different V contents (0.01 to 0.19 wt.%) on the recrystallization resistance of 7150 aluminum alloys during post-deformation heat treatment were investigated. The microstructural evolutions at as-cast, as-homogenized conditions and after post-deformation annealing were studied using optical, scanning electron and transmission electron microscopes and using the electron backscattered diffraction technique. The precipitation of Al{sub 21}V{sub 2} dispersoids was observed in alloys containing 0.11 to 0.19 wt.% V after homogenization. The dispersoids were mainly distributed in the dendrite cells, and the precipitate-free zones occurred in the interdendritic regions and near grain boundaries. V addition could significantly enhance the recrystallization resistance during post-deformation annealing, particularly in the presence of a great number of Al{sub 21}V{sub 2} dispersoids. Recrystallized grain growth was effectively restricted because of the dispersoid pinning effect. The alloy containing 0.15 wt.% V exhibited the highest recrystallization resistance amongst all V-containing alloys studied. - Highlights: • Investigated the effect of V level on microstructure and flow stress of 7150 alloys • Characterized microstructures using optical microscopy, SEM, TEM and EBSD • Described the precipitation behavior of V-dispersoids in the dendritic structure • Studied the V effect on recrystallization resistance during post heat treatment • V addition greatly enhanced the recrystallization resistance during annealing.

  7. Microstructure and Mechanical Properties of Friction Stir Welded 5083 and 7075 Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Kalemba-Rec, I.; Hamilton, C.; Kopyściański, M.; Miara, D.; Krasnowski, K.

    2017-03-01

    Through microscopy, mechanical testing, and numerical modeling, the microstructure and mechanical performance of friction stir welded aluminum alloys 7075-T651 and 5083-H111 were characterized. In particular, the influence of the weld configuration, i.e., the locations of the 7075 and 5083 alloys alternately on the advancing and retreating sides, on material flow, microstructure, and mechanical properties was considered. Thermographic data in conjunction with a process simulation demonstrated that the weld configuration significantly impacts heat generation during friction stir welding. The microstructure in the stir zone was a clear visualization of the material flow and was characterized by a vortex-like structure with alternating bands of the alloys being joined. These bands differed in elemental content and grain size. The microstructure became more complex when greater heat generation (higher temperatures) occurred. The weld configuration strongly influenced the material flow, but did not impact the tensile properties (such as yield strength, tensile strength, and elongation). The configuration of 5083 on the advancing side and 7075 on the retreating side produced the most uniform material flow. The joint efficiencies of all tested welds were above 100%.

  8. Laser direct marking applied to rasterizing miniature Data Matrix Code on aluminum alloy

    NASA Astrophysics Data System (ADS)

    Li, Xia-Shuang; He, Wei-Ping; Lei, Lei; Wang, Jian; Guo, Gai-Fang; Zhang, Teng-Yun; Yue, Ting

    2016-03-01

    Precise miniaturization of 2D Data Matrix (DM) Codes on Aluminum alloy formed by raster mode laser direct part marking is demonstrated. The characteristic edge over-burn effects, which render vector mode laser direct part marking inadequate for producing precise and readable miniature codes, are minimized with raster mode laser marking. To obtain the control mechanism for the contrast and print growth of miniature DM code by raster laser marking process, the temperature field model of long pulse laser interaction with material is established. From the experimental results, laser average power and Q frequency have an important effect on the contrast and print growth of miniature DM code, and the threshold of laser average power and Q frequency for an identifiable miniature DM code are respectively 3.6 W and 110 kHz, which matches the model well within normal operating conditions. In addition, the empirical model of correlation occurring between laser marking parameters and module size is also obtained, and the optimal processing parameter values for an identifiable miniature DM code of different but certain data size are given. It is also found that an increase of the repeat scanning number effectively improves the surface finish of bore, the appearance consistency of modules, which has benefit to reading. The reading quality of miniature DM code is greatly improved using ultrasonic cleaning in water by avoiding the interference of color speckles surrounding modules.

  9. Factors Affecting the Nucleation Kinetics of Microporosity Formation in Aluminum Alloy A356

    NASA Astrophysics Data System (ADS)

    Yao, Lu; Cockcroft, Steve; Reilly, Carl; Zhu, Jindong

    2012-03-01

    Metal cleanliness is one of the most critical parameters affecting microporosity formation in aluminum alloy castings. It is generally acknowledged that oxide inclusions in the melt promote microporosity formation by facilitating pore nucleation. In this study, microporosity formation under different casting conditions, which aimed to manipulate the tendency to form and entrain oxide films in small directionally cast A356 samples was investigated. Castings were prepared with and without the aid of argon gas shielding and with a varying pour surface area. Two alloy variants of A356 were tested in which the main difference was Sr content. Porous disc filtration analysis was used to assess the melt cleanliness and identify the inclusions in the castings. The porosity volume fraction and size distribution were measured using X-ray micro-tomography analysis. The measurements show a clear increment in the volume fraction, number density, and pore size in a manner consistent with an increasing tendency to form and entrain oxide films during casting. By fitting the experimental results with a comprehensive pore formation model, an estimate of the pore nucleation population has been made. The model predicts that increasing the tendency to form oxide films increases both the number of nucleation sites and reduces the supersaturation necessary for pore nucleation in A356 castings. Based on the model predictions, Sr modification impacts both the nucleation kinetics and the pore growth kinetics via grain structure.

  10. Use of Permanent Magnets in Electromagnetic Facilities for the Treatment of Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Beinerts, Toms; Bojarevičs, Andris; Bucenieks, Imants; Gelfgat, Yuri; Kaldre, Imants

    2016-06-01

    The possibility of applying the electromagnetic induction pump with permanent magnets for the transportation and stirring of aluminum melts in metallurgical furnaces is investigated. The electromagnetic and hydraulic characteristics of the pump have been investigated theoretically and experimentally with regard to its position in the furnace. The results of the experiments performed with a model in a eutectic InGaSn melt are in good agreement with the calculation data. Extrapolation of the experimental results on the physical characteristics of aluminum melts allows recommending such pumps for contactless control of motion and heat/mass transfer in aluminum melts in different technological processes. A high temperature and the aggressive properties of aluminum alloys make it complicated to use different mechanical devices to solve technological problems, such as liquid metal transportation, dosing, stirring, etc. In this case, any device units or elements moving in or contacting with the melt suffer from corrosion polluting the melt. Therefore, of more importance and topicality are contactless electromagnetic methods for processing of molten metals.

  11. Effect of nanostructuring on the elastic properties of aluminum alloy AMg6

    SciTech Connect

    Prokhorov, V. Perfilov, S.; Korobov, A. Kokshaiskii, A.; Volkov, A.

    2015-10-28

    We experimentally investigated the nanostructuring effect on the elastic properties of aluminum alloy AMg6 (Al–Mg–Mn system). The n-AMg6 nanostuctured specimens were prepared from a commercial polycrystalline alloy by refining and homogenizing a mixture of small chips of the alloy in a planetary mill. The resulting product consists of 200-500-micron agglomerates of nanoparticles with average nanoparticle size ∼ 40–60 nanometer according to the X-ray analysis. The compacted nanopowder was extruded at a temperature of 300°C with a reduction of cross-sectional area at least 4 times to 90 mm diameter. High resolution transmission electron microscopy studies confirmed the presence of the nanostructure with a grain size of ∼60 nanometers. For the experiments, nine parallelepiped shape specimens of 20×20×40 mm{sup 3} size were cut from the central and peripheral parts of the n-AMg6 rod. We measured of the second-order and third-order elastic coefficients of the obtained samples by ultrasonic method. The same measurements were made on specimens of the primary AMg6 alloy for comparison.

  12. Stress corrosion cracking of an aluminum alloy used in external fixation devices.

    PubMed

    Cartner, Jacob L; Haggard, Warren O; Ong, Joo L; Bumgardner, Joel D

    2008-08-01

    Treatment for compound and/or comminuted fractures is frequently accomplished via external fixation. To achieve stability, the compositions of external fixators generally include aluminum alloy components due to their high strength-to-weight ratios. These alloys are particularly susceptible to corrosion in chloride environments. There have been several clinical cases of fixator failure in which corrosion was cited as a potential mechanism. The aim of this study was to evaluate the effects of physiological environments on the corrosion susceptibility of aluminum 7075-T6, since it is used in orthopedic external fixation devices. Electrochemical corrosion curves and alternate immersion stress corrosion cracking tests indicated aluminum 7075-T6 is susceptible to corrosive attack when placed in physiological environments. Pit initiated stress corrosion cracking was the primary form of alloy corrosion, and subsequent fracture, in this study. Anodization of the alloy provided a protective layer, but also caused a decrease in passivity ranges. These data suggest that once the anodization layer is disrupted, accelerated corrosion processes occur.

  13. A Numerical Simulation for Dissimilar Aluminum Alloys Joined by Friction Stir Welding

    NASA Astrophysics Data System (ADS)

    Hamilton, Carter; Kopyściański, Mateusz; Węglowska, Aleksandra; Dymek, Stanisław; Pietras, Adam

    2016-09-01

    Dissimilar aluminum alloy sheets of 2017A-T451 and 7075-T651 (6 mm thickness) were friction stir welded in a butt weld configuration. A numerical simulation of the joining process was developed to visualize the material flow patterns and temperature distribution and to correlate the microstructure to the hardness behavior. Due to the complementary downward flow of surface material into the workpiece thickness and upward flow of mid-plane and bottom-plane material, the weld nugget is composed of alternating layers of 7075 and 2017A. These layers have unique temperature histories depending on the material's initial location within the cross section; therefore, they also have distinctive precipitate distributions. Supersaturated surface material flows into the process zone and forms a core in which GP zones reprecipitate upon cooling. Mid-plane and bottom-plane material flow toward the workpiece surface and encompass the surface material core. Within this region, the weld temperatures overage the equilibrium θ phase in 2017A, decreasing the hardness, and at the same time, dissolve the equilibrium η/ T phase in the 7075, leading to reprecipitation of GP zones upon cooling and a hardness recovery.

  14. A microscopic study of crack initiation mechanisms in 7075 aluminum alloy sheets.

    NASA Technical Reports Server (NTRS)

    Jones, D. L.; Liebowitz, H.

    1973-01-01

    A study of the opening mode of crack initiation in 7075-T6 aluminum alloy sheets has been conducted with the aid of a scanning electron microscope. Observations were made from several orientations, including the top view of the specimen which showed the notch profile and the edge view of the specimen which showed the entire notch front along the specimen thickness. It was found that the edge view exhibited the first signs of permanent deformation at about 55% of the breaking strength. These changes took the form of deformation bands which were aligned in the direction of the tensile axis and apparently defined limiting regions of homogeneous slip. It is felt that the appearance of microcracks at loads approaching the breaking strength was of fundamental importance in the formation of the final fracture surface. Many of these microcraks were initiated at intermetallic particles and other metallurgically weak regions on the notch surface. It was also possible to correlate the strain in the notch with the stress intensity factor for the various loads. Very large plastic strains were observed on the notch tip as compared to published values of elongation at fracture for unnotched specimens.

  15. A New Approach to Ultrasonic Degassing to Improve the Mechanical Properties of Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Puga, H.; Barbosa, J.; Teixeira, J. C.; Prokic, M.

    2014-10-01

    Ultrasonic degassing of liquid metals has been studied over the last years, but it has been limited to laboratorial scale experiments of low volumes of melt. In this work, the combined effect of acoustic cavitation with metal agitation induced by the mechanical vibration of the ultrasonic radiator itself was studied, using a specially designed low frequency mechanical vibrator coupled to the ultrasonic degassing unit. Liquid motion in water was characterized by high speed digital Photron—FastCam APX RS video camera and Laser Doppler Anemometry to select the most favorable US and mechanical vibrator frequencies to induce suitable water stirring. Selected parameters were used to degas 10 L of AlSi9Cu3(Fe) alloy. A suitable piezoelectric sensor was used to measure sound pressure at different distances from the sonotrode to identify the zone of higher acoustic activity. Results have shown that melt stirring significantly improves US degassing efficiency (since it is possible to achieve almost the aluminum alloy theoretical density after 3 min processing time) which contributed to increase the tensile properties of the alloy.

  16. Effect of Particle Size on Wear of Particulate Reinforced Aluminum Alloy Composites at Elevated Temperatures

    NASA Astrophysics Data System (ADS)

    Kumar, Suresh; Pandey, Ratandeep; Panwar, Ranvir Singh; Pandey, O. P.

    2013-11-01

    The present paper describes the effect of particle size on operative wear mechanism in particle reinforced aluminum alloy composites at elevated temperatures. Two composites containing zircon sand particles of 20-32 μm and 106-125 μm were fabricated by stir casting process. The dry sliding wear tests of the developed composites were performed at low and high loads with variation in temperatures from 50 to 300 °C. The transition in wear mode from mild-to-severe was observed with variation in temperature and load. The wear at 200 °C presented entirely different wear behavior from the one at 250 °C. The wear rate of fine size reinforced composite at 200 °C at higher load was substantially lower than that of coarse size reinforced composite. Examination of wear tracks and debris revealed that delamination occurs after run in wear mode followed by formation of smaller size wear debris, transfer of materials from the counter surfaces and mixing of these materials on the contact surfaces. The volume loss was observed to increase with increase in load and temperature. Composite containing bigger size particles exhibit higher loss under similar conditions.

  17. The influence of crack closure on fatigue crack growth thresholds in 2024-T3 aluminum alloy

    NASA Technical Reports Server (NTRS)

    Phillips, Edward P.

    1988-01-01

    Crack opening loads were determined in load-shedding fatigue crack growth threshold tests on 2024-T3 aluminum alloy at stress ratios R of -2, -1, 0, 0.33, 0.5, and 0.7. The effects of load-shedding procedure and rate were investigated. Values of threshold Delta-K were found to vary significantly with R, whereas values of threshold effective Delta-K did not. That is, the variation of threshold Delta-K with R was almost completely explained by accounting for the measured variation in crack opening load behavior with R. The load-shedding guidelines of ASTM Test Method for Measurement of Fatigue Crack Growth (E 647) produced a threshold Delta-K value for R = 0.7 that was in agreement with the value determined using a procedure that should minimize closure effects. At both R = 0 and R = 0.7, high load-shedding rates produced high values of threshold Delta-K caused by large closure effects.

  18. The optimized mechanical properties of the new aluminum alloy AA 6069

    SciTech Connect

    Bergsma, S.C.; Kassner, M.E.; Li, X.; Delos-Reyes, M.A.; Hayes, T.A.

    1996-02-01

    AA 6069, a new aluminum alloy, has been developed for application in hot and cold extrusion and forging. It contains {approximately}2 Mg + Si, {approximately}1% Cu, 0.2% Cr, and 0.1% V. Nominal T6 properties of the ingot without hot or cold deformation are 415 MPa (60 ksi) ultimate tensile strength (UTS), 380 MPa (55 ksi) yield strength, and 12% elongation. Properties after hot and cold extrusion in the T6 condition rate from 380 to 490 MPa (55 to 71 ksi) UTS, 345 to 450 MPa (50 to 65 ksi) yield strength, and 10 to 22% elongation. This alloy also has favorable fatigue and corrosion-fatigue properties due to a combination of composition, high solidification rate, controlled homogenization, thermal and mechanical processing, and T6 practice. Current development applications include cold-impact air-bag components, high-pressure cylinders, and automotive suspension and drive-train parts. Unlike alloys 2024-T3 and 7129-T6, of comparable strength, diluted 6069 is scrap compatible with many other 5xxx and 6xxx alloys.

  19. Corrosive wear of SiC whisker- and particulate-reinforced 6061 aluminum alloy composites

    SciTech Connect

    Yu, S.Y.; Ishii, H.; Chuang, T.H.

    1996-09-01

    Wear tests on SiC whisker- and SiC particulate-reinforced 6061-T6 aluminum matrix composites (SiCw/Al and SiCp/Al), fabricated using a high pressure infiltration method, were performed in laboratory air, ion-exchanged water and a 3 pct NaCl aqueous solution using a block-on-ring type apparatus. The effects of environment, applied load, and rotational (sliding) speed on the wear properties against a sintered alumina block were evaluated. Electrochemical measurements in ion-exchanged water and a 3 pct NaCl aqueous solution were also made under the same conditions as the wear tests. A comparison was made with the properties of the matrix aluminum alloy 6061-T6. The SiC-reinforced composites exhibited better wear resistance compared with the monolithic 6061 Al alloy even in a 3 pct NaCl aqueous solution. Increase in the wear resistance depended on the shape, size, and volume fraction of the SiC reinforcement. Good correlation was obtained between corrosion resistance and corrosion wear. The ratios of wear volume due to the corrosive effect to noncorrosive wear were 23 to 83 pct, depending on the wear conditions.

  20. A Review Of Modelling Small-Crack Behavior And Fatigue-Life Predictions For Aluminum Alloys

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.

    1994-01-01

    The small-crack effect, where small fatigue cracks grow faster and at lower stress-intensity factors than large cracks, has been found to be significant for many materials and loading conditions. In this paper, plasticity effects and crack-closure modelling of small fatigue cracks are reviewed. A crack-closure model with a cyclic-plastic zone-corrected effective stress-intensity factor range (related to the cyclic J-integral) and microstructural data on crack-initiation sites were used to calculate small-crack growth rates and fatigue lives for unnotched and notched specimens made of two aluminum alloys. The crack-closure transient from the plastic wake was shown to be the dominant cause of the small-crack effect and plasticity effects on the cyclic-plastic zone-corrected stress-intensity factor range were negligible except at extremely high stress levels. Small-crack growth rates and fatigue lives under both constant-amplitude and spectrum loading from tests and analyses agreed well.

  1. Review of modelling small-crack behavior and fatigue-life predictions for aluminum alloys

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.

    1994-01-01

    The small-crack effect, where small fatigue cracks grow faster and at lower stress-intensity factors than large cracks, has been found to be significant for many materials and loading conditions. In this paper, plasticity effects and crack-closure modelling of small fatigue cracks are reviewed. A crack-closure model with a cyclic-plastic-zone-corrected effective stress-intensity factor range (related to the cyclic J-integral) and microstructural data on crack-initiation sites were used to calculate small-crack growth rates and fatigue lives for unnotched and notched specimens made of two aluminum alloys. The crack-closure transient from the plastic wake was shown to be the dominant cause of the small-crack effect and plasticity effects on the cyclic-plastic-zone-corrected stress-intensity factor range were negligible except at extremely high stress levels. Small-crack growth rates and fatigue lives under both constant-amplitude and spectrum loading from tests and analyses agreed well.

  2. Ultrasonic attenuation peak in steel and aluminum alloy during rotating bending fatigue

    SciTech Connect

    Ogi, Hirotsugu; Hamaguchi, Takayuki; Hirao, Masahiko

    2000-04-01

    Using electromagnetic acoustic resonance (EMAR), the authors studied the evolution of the surface shear wave attenuation and phase velocity in a 0.45 pct C steel and a 5052 aluminum alloy exposed to rotating bending fatigue. In the EMAR method, they used electromagnetic acoustic transducers (EMATs) for the contactless measurements of the axial shear wave, which is a surface shear wave that propagates along a cylindrical surface in the circumferential direction, with an axial polarization. There has been no precious report of continuous and contactless monitoring of the surface wave attenuation and velocity being performed without interrupting the fatigue. The attenuation coefficient always showed sharp peaks around 90 pct of the fatigue life, independent of the fatigue-stress amplitude. To interpret this phenomenon, the authors made crack-growth observations using replicas and measurements of recovery of attenuation and velocity by stopping the cyclic loading before and after the peak. From these results, they concluded that the evolution of the ultrasonic properties is caused by a drastic change in dislocation mobility being accompanied by the crack growth at the final stage of the fatigue life.

  3. Development of an Optimization Methodology for the Aluminum Alloy Wheel Casting Process

    NASA Astrophysics Data System (ADS)

    Duan, Jianglan; Reilly, Carl; Maijer, Daan M.; Cockcroft, Steve L.; Phillion, Andre B.

    2015-08-01

    An optimization methodology has been developed for the aluminum alloy wheel casting process. The methodology is focused on improving the timing of cooling processes in a die to achieve improved casting quality. This methodology utilizes (1) a casting process model, which was developed within the commercial finite element package, ABAQUS™—ABAQUS is a trademark of Dassault Systèms; (2) a Python-based results extraction procedure; and (3) a numerical optimization module from the open-source Python library, Scipy. To achieve optimal casting quality, a set of constraints have been defined to ensure directional solidification, and an objective function, based on the solidification cooling rates, has been defined to either maximize, or target a specific, cooling rate. The methodology has been applied to a series of casting and die geometries with different cooling system configurations, including a 2-D axisymmetric wheel and die assembly generated from a full-scale prototype wheel. The results show that, with properly defined constraint and objective functions, solidification conditions can be improved and optimal cooling conditions can be achieved leading to process productivity and product quality improvements.

  4. Comparative Evaluation of Cast Aluminum Alloys for Automotive Cylinder Heads: Part I—Microstructure Evolution

    NASA Astrophysics Data System (ADS)

    Roy, Shibayan; Allard, Lawrence F.; Rodriguez, Andres; Watkins, Thomas R.; Shyam, Amit

    2017-03-01

    The present study stages a comparative evaluation of microstructure and associated mechanical and thermal response for common cast aluminum alloys that are used for manufacturing automotive cylinder heads. The systems considered are Al-Cu (206-T6), Al-Si-Cu (319-T7), and Al-Si (356-T6, A356-T6, and A356 + 0.5Cu-T6). The focus of the present manuscript is on the evaluation of microstructure at various length scales after aging, while the second manuscript will deal with the mechanical and thermal response of these alloys due to short-term (aging) and long-term (pre-conditioning) heat treatments. At the grain-scale, the Al-Cu alloy possessed an equiaxed microstructure as opposed to the dendritic structure for the Al-Si-Cu or Al-Si alloys which is related to the individual solidification conditions for these alloy systems. The composition and morphology of intermetallic precipitates within the grain and at the grain/dendritic boundary are dictated by the alloy chemistry, solidification, and heat treatment conditions. At the nanoscale, these alloys contain various metastable strengthening precipitates (GPI and θ^'' in Al-Cu alloy, θ^' in Al-Si-Cu alloy, and β^' in Al-Si alloys) with varying size, morphology, coherency, and thermal stability.

  5. Cast Aluminum Alloys for High Temperature Applications Using Nanoparticles Al2O3 and Al3-X Compounds (X = Ti, V, Zr)

    NASA Technical Reports Server (NTRS)

    Lee, Jonathan A.

    2009-01-01

    In this paper, the effect of nanoparticles Al2O3 and Al3-X compounds (X = Ti, V, Zr) on the improvement of mechanical properties of aluminum alloys for elevated temperature applications is presented. These nanoparticles were selected based on their low cost, chemical stability and low diffusions rates in aluminum at high temperatures. The strengthening mechanism at high temperature for aluminum alloy is based on the mechanical blocking of dislocation movements by these nanoparticles. For Al2O3 nanoparticles, the test samples were prepared from special Al2O3 preforms, which were produced using ceramic injection molding process and then pressure infiltrated by molten aluminum. In another method, Al2O3 nanoparticles can also be homogeneously mixed with fine aluminum powder and consolidated into test samples through hot pressing and sintering. With the Al3-X nanoparticles, the test samples are produced as precipitates from in-situ reactions with molten aluminum using conventional permanent mold or die casting techniques. It is found that cast aluminum alloy using nanoparticles Al3-X is the most cost effective method to produce high strength aluminum alloys for high temperature applications in comparison to nanoparticles Al2O3. Furthermore, significant mechanical properties retention in high temperature environment could be achieved with Al3-X nanoparticles, resulting in tensile strength of nearly 3 times higher than most 300- series conventional cast aluminum alloys tested at 600 F.

  6. Development of Surfaces Optically Suitable for Flat Solar Panels

    NASA Technical Reports Server (NTRS)

    Desmet, D.; Jason, A.

    1978-01-01

    Three areas of research in the development of flat solar panels are described. (1) A reflectometer which can separately evaluate the spectral and diffuse reflectivities of surfaces was developed. The reflectometer has a phase locked detection system. (2) A coating composed of strongly bound copper oxide that is formed by an etching process performed on an aluminum alloy with high copper content was also developed. Because of this one step fabrication process, fabrication costs are expected to be small. (3) A literature search was conducted and conclusions on the required optical properties of flat plate solar collectors are presented.

  7. Effect of Thermal Exposure on the Tensile Properties of Aluminum Alloys for Elevated Temperature Service

    NASA Technical Reports Server (NTRS)

    Edahl, Robert A., Jr.; Domack, Marcia

    2004-01-01

    Tensile properties were evaluated for four aluminum alloys that are candidates for airframe applications on high speed transport aircraft. These alloys included the Al-Cu-Mg-Ag alloys C415 and C416 and the Al-Cu-Li-Mg-Ag alloys RX818 and ML377. The Al-Cu-Mg alloys CM001, which was used on the Concorde SST, and 1143, which was modified from the alloy used on the TU144 Russian supersonic aircraft, were tested for comparison. The alloys were subjected to thermal exposure at 200 F, 225 F and 275 F for times up to 30,000 hours. Tensile tests were performed on thermally-exposed and as-received material at -65 F, room temperature, 200 F, 225 F and 275 F. All four candidate alloys showed significant tensile property improvements over CM001 and 1143. Room temperature yield strengths of the candidate alloys were at least 20% greater than for CM001 and 1143, for both the as-received and thermally-exposed conditions. The strength levels of alloy RX818 were the highest of all materials investigated, and were 5-10% higher than for ML377, C415 and C416 for the as-received condition and after 5,000 hours thermal exposure. RX818 was removed from this study after 5,000 hours exposure due to poor fracture toughness performance observed in a parallel study. After 30,000 hours exposure at 200 F and 225 F, the alloys C415, C416 and ML377 showed minor decreases in yield strength, tensile strength and elongation when compared to the as-received properties. Reductions in tensile strength from the as-received values were up to 25% for alloys C415, C416 and ML377 after 15,000 hours exposure at 275 F.

  8. Characterization of Molybdate Conversion Coatings for Aluminum Alloys by Electrochemical Impedance Spectroscopy

    NASA Technical Reports Server (NTRS)

    Calle, Luz Marina

    2000-01-01

    Electrochemical impedance spectroscopy (EIS) was used to investigate the corrosion inhibiting properties of newly developed proprietary molybdate conversion coatings on aluminum alloy 2024-T3 under immersion in aerated 5% (w/w) NaCl. Corrosion potential and EIS measurements were gathered for six formulations of the coating at several immersion times for two weeks. Nyquist as well as Bode plots of the data were obtained. The conversion-coated alloy panels showed an increase in the corrosion potential during the first 24 hours of immersion that later subsided and approached a steady value. Corrosion potential measurements indicated that formulations A, D, and F exhibit a protective effect on aluminum 2024-T3. The EIS spectra of the conversion-coated alloy were characterized by an impedance that is higher than the impedance of the bare alloy at all the immersion times. The low frequency impedance, Z(sub lf) (determined from the value at 0.05 Hz) for the conversion-coated alloy was higher at all the immersion times than that of the bare panel. This indicates improvement of corrosion resistance with addition of the molybdate conversion coating. Scanning electron microscopy (SEM) revealed the presence of cracks in the coating and the presence of cubic crystals believed to be calcium carbonate. Energy dispersive spectroscopy (EDS) of the test panels revealed the presence of high levels of aluminum, oxygen, and calcium but did not detect the presence of molybdenum on the test panels. X-ray photoelectron spectroscopy (XPS) indicated the presence of less than 0.01 atomic percent molybdenum on the surface of the coating.

  9. Microstructure and Mechanical Properties of Cryorolled Aluminum Alloy AA2219 in Different Thermomechanical Processing Conditions

    NASA Astrophysics Data System (ADS)

    Sarkar, Aditya; Saravanan, K.; Nayan, Niraj; Murty, S. V. S. Narayana; Narayanan, P. Ramesh; Venkitakrishnan, P. V.; Mukhopadhyay, J.

    2017-01-01

    In the present study, aluminum alloy AA2219-T87 bars were cryorolled to various amounts of deformation in two pre-deformation conditions: (1) without solution treatment i.e., as-received T87 (WST-CR) and (2) with solution treatment (ST + CR). The solution treated and cryorolled bars were further annealed leading to a third condition: (3) solution treated, cryorolled, and annealed (CR + Annealed). Room-temperature mechanical properties have been evaluated for all three cryorolled conditions. Significant improvement in the 0.2 pct YS and UTS values was obtained for bars cryorolled to cross-sectional area reduction of more than 50 pct in the solution-treated condition (ST + CR), whereas for bars cryorolled in the without solution-treated condition (WST-CR), only an improvement in the 0.2 pct YS was observed. Cryorolling did not enhance the precipitation kinetics nor did it increase the response of the alloy to aging. The mechanical properties were correlated to the microstructures obtained by optical and transmission electron microscopy. Microstructural evolution in the ST + CR condition indicated gradual progression of the principal restoration mechanism from dynamic recovery (DRV) to dynamic recrystallization with an increasing amount of plastic deformation. Transmission electron microscopy of WST-CR and ST + CR specimens showed an increase in dislocation density as a function of the amount of deformation indicating suppression of DRV at cryogenic temperatures. Cryorolling in the solution-treated condition to cross-sectional area reduction of more than 50 pct (ST + 70 pct CR) was found to impart an optimum combination of strength and percent elongation in the present study.

  10. Identification of modes of fracture in a 2618-T6 aluminum alloy using stereophotogrammetry

    SciTech Connect

    Salas Zamarripa, A.; Mata, M.P. Guerrero; Morales, M. Castillo; Beber-Solano, T.P.

    2011-12-15

    The identification and the development of a quantification technique of the modes of fracture in fatigue fracture surfaces of a 2618-T6 aluminum alloy were developed during this research. Fatigue tests at room and high temperature (230 Degree-Sign C) were carried out to be able to compare the microscopic fractographic features developed by this material under these testing conditions. The overall observations by scanning electron microscopy (SEM) of the fracture surfaces showed a mixture of transgranular and ductile intergranular fracture. The ductile intergranular fracture contribution appears to be more significant at room temperature than at 230 Degree-Sign C. A quantitative methodology was developed to identify and to measure the contribution of these microscopic fractographic features. The technique consisted of a combination of stereophotogrammetry and image analysis. Stereo-pairs were randomly taken along the crack paths and were then analyzed using the profile module of MeX software. The analysis involved the 3-D surface reconstruction, the trace of primary profile lines in both vertical and horizontal directions within the stereo-pair area, the measurements of the contribution of the modes of fracture in each profile, and finally, the calculation of the average contribution in each stereo-pair. The technique results confirmed a higher contribution of ductile intergranular fracture at room temperature than at 230 Degree-Sign C. Moreover, there was no indication of a direct relationship between this contribution and the strain amplitudes range applied during the fatigue testing. - Highlights: Black-Right-Pointing-Pointer Stereophotogrammetry and image analysis as a measuring tool of modes of fracture in fatigue fracture surfaces. Black-Right-Pointing-Pointer A mixture of ductile intergranular and transgranular fracture was identified at room temperature and 230 Degree-Sign C testing. Black-Right-Pointing-Pointer Development of a quantitative methodology to

  11. Microstructure Analysis of Directionally Solidified Aluminum Alloy Aboard the International Space Station

    NASA Astrophysics Data System (ADS)

    Angart, Samuel Gilbert

    This thesis entails a detailed microstructure analysis of directionally solidified (DS) Al-7Si alloys processed in microgravity aboard the International Space Station and similar duplicate ground based experiments at Cleveland State University. In recent years, the European Space Agency (ESA) has conducted experiments on alloy solidification in microgravity. NASA and ESA have collaborated for three DS experiments with Al- 7 wt. % Si alloy, aboard the International Space Station (ISS) denoted as MICAST6, MICAST7 and MICAST12. The first two experiments were processed on the ISS in 2009 and 2010. MICAST12 was processed aboard the ISS in the spring of 2014; the resulting experimental results of MICAST12 are not discussed in this thesis. The primary goal of the thesis was to understand the effect of convection in primary dendrite arm spacings (PDAS) and radial macrosegregation within DS aluminum alloys. The MICAST experiments were processed with various solidification speeds and thermal gradients to produce alloy with differences in microstructure features. PDAS and radial macrosegregation were measured in the solidified ingot that developed during the transition from one solidification speed to another. To represent PDAS in DS alloy in the presence of no convection, the Hunt-Lu model was used to represent diffusion-controlled growth. By sectioning cross-sections throughout the entire length of solidified samples, PDAS was measured and calculated. The ground-based (1-g) experiments done at Cleveland State University CSU were also analyzed for comparison to the ISS experiments (0-g). During steady state in the microgravity environment, there was a reasonable agreement between the measured and calculated PDAS. In ground-based experiments, transverse sections exhibited obvious radial macrosegregation caused by thermosolutal convection resulting in a non-agreement with the Hunt-Lu model. Using a combination of image processing techniques and Electron Microprobe Analysis

  12. Microstructural characterization of aluminum alloys using Weck's reagent, part I: Applications

    SciTech Connect

    Gao, Li; Harada, Yohei; Kumai, Shinji

    2015-09-15

    This paper focuses on the applications of a color etchant for aluminum alloys named Weck's reagent. The Al phase shows different colors from location to location after being etched by Weck's reagent. It is proved that Weck's reagent is very sensitive to the micro-segregations of Ti, Si and Mg in Al alloys so that characterization of the micro-segregations can be qualitatively realized which is usually done by electronic probe techniques. With the help of this characterization method, we are able to evaluate solid fractions for the semi-solid processed Al alloy with a better accuracy by excluding the Al grain growth during water quenching. To understand this reagent better, the color change during etching is investigated by applying different etching times at room temperature (25 °C). Among those results, 12 s shows the best color contrast after etching. Finally, we repeat the 12 second etching for four times through repeating a polishing–etching process. The result exhibits that Weck's reagent has a satisfying re-producibility with stable color and color distribution for the four times etching result. The second part of this study covers the coloring mechanism of Weck's reagent by characterizing the etched surface via various characterization methods. - Highlights: • The applications of Weck's reagent for Al alloys are introduced in detail. • Detailed relationship between micro-segregations in Al phase and the color difference revealed by Weck's reagent are studied. • Etching time has a strong influence on the color revealed by Weck's reagent. • Besides micro-segregation, grain boundaries can also be visualized by Weck's reagent, which was proved by EBSD analysis.

  13. Experimental investigation of micro-channels produced in aluminum alloy (AA 2024) through laser machining

    NASA Astrophysics Data System (ADS)

    Ahmed, Naveed; Alahmari, Abdulrahman M.; Darwish, Saied; Khan, Awais Ahmad

    2016-11-01

    Aluminum and its alloys are growingly used in various applications including micro-channel heat exchangers and heat sinks to facilitate heat transfer though micro-fluidic flows. Micro-channels with precise control over geometrical features are very important in order to design micro-fluidic flow dynamics and its characteristics. In this research, Nd:YAG laser beam micro-milling has been utilized to produce micro-channels in aluminum alloy (AA 2024) having cross-sectional size of 400 × 200 µm2. The objective was to control the material removal rate (MRR) of the process in order to get the micro-channels' geometries (width, depth and taperness of sidewalls) close to the designed geometries. In this context, parametric effects of predominant laser parameters on the process performance have been categorically studied. Quadratic mathematical models have further been developed to estimate the MRR and each geometrical aspect of micro-channels over different levels of laser parameters. Additionally, multi-objective optimization has been performed to get an optimized set of laser parameters generating the accurate machining geometries with appropriate material removal per laser scan. Finally, the models and optimization results were validated through confirmatory experimental tests. The results reveal that the précised micro-channel geometries can be obtained through laser beam micro-milling by selecting the appropriate combination of laser parameters (lamp current intensity of 84.48 %, laser pulse frequency of 35.70 kHz and laser scanning speed of 300 mm/s) that can collectively remove a required amount of material thickness per laser scan.

  14. Deformation behavior and microstructural evolution of 7075-T6 aluminum alloy at cryogenic temperatures

    NASA Astrophysics Data System (ADS)

    Lee, Woei-Shyan; Lin, Ching-Rong

    2016-10-01

    The impact deformation behavior and associated microstructural evolution of 7075-T6 aluminum alloy at cryogenic temperatures are investigated using a compressive split-Hopkinson pressure bar (SHPB) system. Cylindrical specimens are deformed at strain rates of 1 × 103 s-1, 2 × 103 s-1, 3 × 103 s-1 and 5 × 103 s-1 and temperatures of 0 °C, -100 °C and -196 °C. It is shown that the flow stress is strongly dependent on the strain rate and temperature. For a given temperature, the flow stress varies with the strain rate in accordance with a power law relation with an average exponent of 0.157 and an activation energy of 0.7 kJ/mol. Moreover, the coupled effects of the strain rate and temperature on the flow stress are adequately described by the Zener-Hollomon parameter (Z). For all test temperatures, catastrophic failure occurs only under the highest strain rate of 5 × 103 s-1, and is the result of adiabatic shear. An increasing strain rate or reducing temperature leads to a greater dislocation density and a smaller grain size. Finally, the dependence of the flow stress on the microstructural properties of the impacted 7075-T6 specimens is well described by a specific Hall-Petch constitutive model with constants of K = 108.3 MPa μm1/2 and K‧ = 16.1 MPa μm, respectively. Overall, the results presented in this study provide a useful insight into the combined effects of strain rate and temperature on the flow resistance and deformability of 7075-T6 alloy and confirm that 7075-T6 is well suited to the fabrication of fuel tanks and related structural components in the aerospace field.

  15. Effect of chemical composition variation on microstructure and mechanical properties of a 6060 aluminum alloy

    NASA Astrophysics Data System (ADS)

    Silva, M. S.; Barbosa, C.; Acselrad, O.; Pereira, L. C.

    2004-04-01

    The 6XXX series aluminum alloys (Al-Mg-Si) are widely used in many different engineering and architectural applications. These alloys usually undergo a thermal treatment, which consists of a heat treatment solution and artificial aging, since the desirable mechanical properties depend on the microstructural state of the material. The recycling of materials has been increasing recently for economic and ecologic reasons. By using scrap was raw material, important reductions in energy and total costs can be achieved, and, at the same time, negative environmental impacts can be greatly reduced. In the present work, the possibility of using a larger amount of scrap as raw material in the production of an AA 6060 alloy is evaluated by analyzing the difference in microstructure and mechanical properties between a commercial 6060 alloy and a variation with higher Fe and lower Si contents that was specially produced for this study. Both materials were placed into a heat treatment solution at 560 °C for 1 h, and then underwent water quenching followed by artificial aging at 180 °C for different periods of time. Hardness and tension tests were used to evaluate the mechanical properties. Light and transmission electron microscopy have been used to determine important features such as grain size before and after being placed into the heat treatment solution, and the characteristics of the second-phase particles in the two materials. This study leads to the conclusion that a higher amount of scrap material can be used in the production of 6060 Al alloy without significant changes in mechanical properties compared with the more usual compositions.

  16. The effects of microstructure on MIC susceptibility in high strength aluminum alloys

    SciTech Connect

    Walsh, D.W.

    1999-11-01

    Aluminum alloys, and in particular Al-Li-Cu alloys are attractive to the aerospace industry. The high specific strength and stiffness of these alloys will improve lift efficiency, fuel economy, performance and increase payload capabilities of air and spacecraft. The objectives of this work were to examine the corrosion behavior of Al 2195 (UNS A92195) (Al-4Cu-1Li) and to assess the effect of welding on corrosion behavior in biologically active and in sterile waters. Al 2219 (UNS A922 19) samples were used in parallel tests to provide a baseline for the data generated. In this study samples were exposed to mild corrosive water solutions in both the as received and as welded conditions. The results of the study indicate exposure to biologically active solutions increases the corrosion rate. In addition, welding increases the corrosion rate in both Al 2195 and Al 2219, and causes severe localization in Al 2195. Furthermore, autogenously welded Al 2195 samples were more susceptible to attack than heterogeneously welded Al 2195 samples. Heterogeneously welded samples in both materials also had high corrosion rates, but only the Al 2195 material was subject to localization of attack. The partially melted zones of Al 2195 samples were subject to severe, focused attack. In Al 2219, interdendritic constituents in welded areas and intergranular constituents in base material were cathodic to the Al rich matrix materials. In Al 2195, some interdendritic constituents in welded areas and intergranular constituents in base material were anodic to the Al rich matrix materials. Corrosion resistance was correlated to material microstructure using optical microscopy, scanning electron microscopy, electron probe microanalysis and polarization resistance.

  17. Effect of testing frequency on the corrosion fatigue of a squeeze-cast aluminum alloy

    SciTech Connect

    Shiozawa, Kazuaki; Sun, Shuming; Eadie, R.L.

    2000-04-01

    The corrosion fatigue crack propagation behavior of a squeeze-cast Al-Si-Mg-Cu aluminum alloy (AC8A-T6), which had been precracked in air, was investigated at testing frequencies of 0.1, 1, 5, and 10 Hz under a stress ration (R) of 0.1. Compact-toughness specimens were precracked about t mm in air prior to the corrosion fatigue test in a 3 pct saline solution. At some near-threshold conditions, these cracks propagated faster than would be predicted by the mechanical driving force. This anomalous corrosion fatigue crack growth was affected by the initial stress-intensity-factor range ({Delta}K{sub i}), the precracking conditions, and the testing frequency. The initial crack propagation rate was as much as one order of magnitude higher than the rate for the same conditions in air. This rapid rate was associated with preferential propagation along the interphase interface in the eutectic structure. It is believed that a chemical reaction at the crack tip and/or hydrogen-assisted cracking produced the phenomenon. Eventual retardation and complete arrest of crack growth after this initial rapid growth occurred within a short period at low {Delta}K values, when the testing frequency was low (0.1 and 1 Hz). This retardation was accompanied by corrosion product-induced crack closure and could be better explained by the contributory stress-intensity-factor range ({Delta}K{sub cont}) than by the effective stress-intensity-factor range ({Delta}k{sub eff}).

  18. Static Recovery Modeling of Dislocation Density in a Cold Rolled Clad Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Penlington, Alex

    Clad alloys feature one or more different alloys bonded to the outside of a core alloy, with non-equilibrium, interalloy interfaces. There is limited understanding of the recovery and recrystallization behaviour of cold rolled clad aluminum alloys. In order to optimize the properties of such alloys, new heat treatment processes may be required that differ from what is used for the monolithic alloys. This study examines the recovery behaviour of a cold rolled Novelis Fusion(TM) alloy containing an AA6XXX core with an AA3003 cladding on one side. The bond between alloys appears microscopically discrete and continuous, but has a 30 microm wide chemical gradient. The as-deformed structure at the interalloy region consists of pancaked sub-grains with dislocations at the misorientation boundaries and a lower density organized within the more open interiors. X-ray line broadening was used to extract the dislocation density from the interalloy region and an equivalently deformed AA6XXX following static annealing using a modified Williamson-Hall analysis. This analysis assumed that Gaussian broadening contributions in a pseudo-Voigt function corresponded only to strain from dislocations. The kinetics of the dislocation density evolution to recrystallization were studied isothermally at 2 minute intervals, and isochronally at 175 and 205°C. The data fit the Nes model, in which the interalloy region recovered faster than AA6XXX at 175°C, but was slower at 205°C. This was most likely caused by change in texture and chemistry within this region such as over-aging of AA6XXX . Simulation of a continuous annealing and self homogenization process both with and without pre-recovery indicates a detectable, though small change in the texture and grain size in the interalloy region.

  19. Flat growth of 7075, 7475, 7050 and 7049 aluminum alloy plate in stress corrosion environments: 2-year marine atmosphere results

    NASA Technical Reports Server (NTRS)

    Dorward, R. C.; Hasse, K. R.

    1978-01-01

    Marine atmospheric exposure of smooth and precracked specimens from 7075, 7475, 7050 and 7049 plates support the conclusion that for a given strength level, the short transverse stress corrosion resistance of 7050-T7X and 7049-T7X is superior to that of 7075-T7X. The threshold stress intensity (K sub Iscc) for these alloys is about 25 MPa square root m at a yield strength of about 460 MPa; the corresponding yield strength level for 7075-T7X at this SCR level is about 425 MPa. Additional tests on two lots of high-toughness 7475 plate indicate that this alloy is capable of achieving K sub Iscc values of about 35 MPa square root m at yield strengths of 400-450 MPa. Precracked specimens from all these 7XXX-series alloys are subject to self loading from corrosion product wedging. This effect causes stress corrosion cracks to continue growing at very low apparent stress intensities, and should therefore be considered a potential driving force for stress corrosion in design and materials selection.

  20. On the role of magnesium and silicon in the formation of alumina from aluminum alloys by means of DIMOX processing

    SciTech Connect

    Yang, L.; Zhu, D.; Xu, C.; Zhang, J.; Zhang, J.

    1996-08-01

    This article deals with the reaction mechanisms of the DIMOX (Directed Melt Oxided) processing of aluminum alloys. An orthogonalized experimental procedure was introduced to stipulate the effects of the reaction temperature, reaction time, and additional metallic elements, magnesium and silicon, on the oxidation process of aluminum alloys. Emphasis is placed on the distribution of magnesium and silicon in the products so that the behaviors of these two crucial elements for the formation of alumina from directed oxidation of aluminum alloys could be revealed. Alterative methods, including optical and scanning electron microscopy (SEM), electron probing, and wave spectrum analysis were applied to specify the microstructure characters of the products and locate the position of both magnesium and silicon in the reaction products. Judged by the weight gain after reaction, the results indicated that the temperature is the most influential factor in controlling the oxidation kinetics. Both magnesium and silicon are rather concentrated in specific regions than homogeneously distributed in the whole products. The contents of magnesium and silicon in the surface region are not as high as expected, and most of the magnesium being concentrated in the region directly neighboring the bulky metals and most of the Si in the residual bulky metals, although the contents of these two elements in the surface region are a little higher than the regions next to the surface. These characteristics, combined with other investigations, suggest that the decisive role of the slight amount of magnesium and silicon in the nucleation and growth of Al{sub 2}O{sub 3} could be explained by the proposed circulated reaction.

  1. On the role of magnesium and silicon in the formation of alumina from aluminum alloys by means of DIMOX processing

    NASA Astrophysics Data System (ADS)

    Yang, Liu; Zhu, Degui; Xu, Changqing; Zhang, Jun; Zhang, Jian

    1996-08-01

    This article deals with the reaction mechanisms of the DIMOX (Directed Melt Oxided) processing of aluminum alloys. An orthogonalized experimental procedure was introduced to stipulate the effects of the reaction temperature, reaction time, and additional metallic elements, magnesium and silicon, on the oxidation process of aluminum alloys. Emphasis is placed on the distribution of magnesium and silicon in the products so that the behaviors of these two crucial elements for the formation of alumina from directed oxidation of aluminum alloys could be revealed. Alterative methods, including optical and scanning electron microscopy (SEM), electron probing, and wave spectrum analysis were applied to specify the microstructure characters of the products and locate the position of both magnesium and silicon in the reaction products. Judged by the weight gain after reaction, the results indicated that the temperature is the most influential factor in controlling the oxidation kinetics. Silicon is more effective than magnesium in accelerating the process, although magnesium is indispensable for the process to take place. While judged by the morphology of the reaction products, an excessive amount of silicon is harmful to the DIMOX process in that the final products consist of a large amount of porosity. Both magnesium and silicon are rather concentrated in specific regions than homogeneously distributed in the whole products. The contents of magnesium and silicon in the surface region are not as high as expected, with most of the magnesium being concentrated in the region directly neighboring the bulky metals and most of the Si in the residual bulky metals, although the contents of these two elements in the surface region are a little higher than the regions next to the surface. These characteristics, combined with other investigations, suggest that the decisive role of the slight amount of magnesium and silicon in the nucleation and growth of Al2O3 could be explained by

  2. The Role of Entrained Surface Oxides in RS-PM Aluminum Alloys on Resultant Structures and Properties

    NASA Technical Reports Server (NTRS)

    Grant, N. J.

    1985-01-01

    The RS-PM aluminum alloys which show less than anticipated toughness properties were studied. After eliminating negative variables such as sodium and potassium in lithium containing alloys, hydrogen in all Al alloys, and trapped impurities from the atomization processing the data pointed to fine oxides, as the primary cause of poor toughness properties. The oxide content of aluminum powders increases with: decreasing powder size, deviations from spherical powder shapes, exposure to moist atmospheres either during atomization or in subsequent powder handling, and alloy compositions which contain significant amounts of lithium, magnesium, cerium, and other reactive elements.

  3. Effects of environmental variables on the crack initiation stages of corrosion fatigue of high strength aluminum alloys

    NASA Technical Reports Server (NTRS)

    Poteat, L. E.

    1981-01-01

    Fatigue initiation in six aluminum alloys used in the aircraft industry was investigated. Cyclic loading superimposed on a constant stress was alternated with atmospheric corrosion. Tests made at different stress levels revealed that a residual stress as low as 39% of the yield strength caused stress corrosion cracking in some of the alloys. An atmospheric corrosion rate meter developed to measure the corrosivity of the atmosphere is described. An easily duplicated hole in the square test specimen with a self-induced residual stress was developed.

  4. A study of environmental characterization of conventional and advanced aluminum alloys for selection and design. Phase 1: Literature review

    NASA Technical Reports Server (NTRS)

    Sprowls, D. O.

    1984-01-01

    A review of the literature is presented with the objectives of identifying relationships between various accelerated stress corrosion testing techniques, and for determining the combination of test methods best suited to selection and design of high strength aluminum alloys. The following areas are reviewed: status of stress-corrosion test standards, the influence of mechanical and environmental factors on stress corrosion testing, correlation of accelerated test data with in-service experience, and procedures used to avoid stress corrosion problems in service. Promising areas for further work are identified.

  5. Peculiarities of the influence of hot deformation and heat treatment on the corrosion resistance of aluminum alloys

    SciTech Connect

    Rabinovich, M.Kh.; Trifonov, V.G.

    1998-07-03

    The question about the influence of superplastic deformation (SPD) on mechanical properties of materials and the reliability of articles made out of these materials was studied sufficiently thoroughly. However, the information about the influence of microcrystalline (MC) structure processed by SPD on corrosion properties is rather limited. In respect to aluminum alloys this question was considered in some works. As known, the corrosion resistance plays a significant role in determining such an important aspect of reliability as endurance. The present paper is devoted to this problem.

  6. Overload and Underload Effects on the Fatigue Crack Growth Behavior of the 2024-T3 Aluminum Alloy

    NASA Technical Reports Server (NTRS)

    Dawicke, David S.

    1997-01-01

    Fatigue crack growth tests were conducted on 0.09 inch thick, 3.0 inch wide middle-crack tension specimens cut from sheets of 2024-T3 aluminum alloy. The tests were conducted using a load sequence that consisted of a single block of 2,500 cycles of constant amplitude loading followed by an overload/underload combination. The largest fatigue crack growth life occurred for the tests with the overload stress equal to 2 times the constant amplitude stress and the underload stress equal to the constant amplitude minimum stress. For the tests with compressive underloads, the fatigue crack growth life decreased with increasing compressive underload stress.

  7. Method for producing a heat exchanger having a flat tube and header pipes

    SciTech Connect

    Koisuka, M.; Aoki, H.

    1987-07-07

    This patent describes a method for producing a heat exchanger comprising a flat metal tube of an aluminum alloy for conveying fluid, and two header pipes joined respectively onto opposite ends of the flat tube, which comprises the steps of preparing the flat tube and the header pipes of an aluminum alloy other than a brazing filler metal, and preparing two brazing filler members of an aluminum alloy brazing filler metal. Each of the header pipes has an axial slot in a side wall for receiving an end of the flat tube. Each brazing filler member comprises an elongated plate portion arcuately curved transversely with a lengthwise elongated opening and with a flat sleeve portion projecting from an outer surface of the elongated plate portion overlying the elongated opening in registration. The sleeve portion has an inner surface congruent with the perimeter of the elongated opening, the sleeve portion inner surface and the elongated opening having an inner contour slightly larger than the outer contour of the flat tube; inserting each of opposite ends of the flat tube through both the sleeve portion and the elongated opening of a respective brazing filler member. It inserts each of the flat tube ends into a respective one of the header pipes through the axial slot while bringing the arcuately curved plate portions in contact with the outer surface of the corresponding header pipe. Brazing filler members are heated together with the header pipes and end portions of the flat tube to melt the brazing filler members. Header pipes are joined and brazed to the corresponding ends of the flat tube.

  8. Numerical simulation of melt ejection during the laser drilling process on aluminum alloy by millisecond pulsed laser

    NASA Astrophysics Data System (ADS)

    Wei, Zhang; Jin, Guangyong; Wang, Yibin

    2016-01-01

    In this paper, established a physical model to simulate the melt ejection induced by millisecond pulsed laser on aluminum alloy and use the finite element method to simulate the whole process. A semi-infinite axisymmetric model was established according to the experiment and the analytical solution of temperature in a solid phase was derived based on the thermal conduction equation. Mean while, by assuming that material was removed from the hole once it was melted, the function describing the hole's shape was obtained with the energy balance theory. This simulation is based on the interaction between single pulsed laser with different pulse-width and different peak energy and aluminum alloy material, the result of numerical simulation is that the hole's depth increases with the increase of laser energy and the hole's depth increases with the increase of laser pulse width, the keyhole depth is linearly increased with the increase of laser energy, respectively; the growth of the keyhole radius is in the trend to be gentle. By comparing the theoretical simulation data and the actual test data, we discover that: we discover that: the relative error between the theoretical values and the actual values is about 8.8%, the theoretical simulation curve is well consistent with the actual experimental curve. This research may provide the theoretical references to the understanding of the interaction between millisecond pulsed laser and many kinds of materials, as well as be beneficial to the application of the laser materials processing and military field.

  9. High temperature high cycle fatigue behavior of new aluminum alloy strengthened by (Co, Ni)3Al4 particles

    NASA Astrophysics Data System (ADS)

    Kim, Kyu-Sik; Sung, Si-Young; Han, Bum-Suck; Jung, Chang-Yeol; Lee, Kee-Ahn

    2014-03-01

    High cycle fatigue (HCF) behavior of a new heat-resistant aluminum alloy at elevated temperature was investigated. This alloy consists of an α-Al matrix, a small amount of precipitated Mg2Si, and distributed (Co, Ni)3Al4 strengthening particles. HCF tests were conducted with a stress ratio of (R)=0 and a frequency of (F)=30 Hz at 130 °C. The fatigue limit (maximum stress) of this alloy was 120 MPa at 107 cycles. This is a value superior to that of conventional heat-resistant aluminum alloys such as the A319 alloy. Furthermore, regardless of the stress conditions, the new heat-resistant Al alloy has an outstanding fatigue life at high temperatures. The results of fractography observation showed that second phases, especially (Co, Ni)3Al4 particles, were effective to the resistance of fatigue crack initiation and propagation. On the other hand, Mg2Si particles were more easily fractured by the fatigue crack. This study also clarifies the micromechanism of fatigue deformation behavior at elevated temperature related to its microstructure.

  10. Investigations on Laser Beam Welding of Different Dissimilar Joints of Steel and Aluminum Alloys for Automotive Lightweight Construction

    NASA Astrophysics Data System (ADS)

    Seffer, Oliver; Pfeifer, Ronny; Springer, André; Kaierle, Stefan

    Due to the enormous potential of weight saving, and the consequential reduction of pollutant emissions, the use of hybrid components made of steel and aluminum alloys is increasing steadily, especially concerning automotive lightweight construction. However, thermal joining of steel and aluminum is still being researched, due to a limited solubility of the binary system of iron and aluminum causing the formation of hard and brittle intermetallic phases, which decrease the strength and the formability of the dissimilar seam. The presented results show the investigation of laser beam welding for joining different dissimilar hybrid components of the steel materials HX220LAD+Z100, 22MnB5+AS150 and 1.4301, as well as the aluminum alloy AA6016-T4 as a lap joint. Among other things, the influences of the energy per unit length, the material grade, the sheet thickness t, the weld type (lap weld, fillet weld) and the arrangement of the base materials in a lap joint (aluminum-sided irradiation, steel-sided irradiation) on the achievable strengths are analyzed. The characterization of the dissimilar joints includes tensile shear tests and metallographic analyses, depending on the energy per unit length.

  11. Weld Growth Mechanisms and Failure Behavior of Three-Sheet Resistance Spot Welds Made of 5052 Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Li, Yang; Yan, Fuyu; Luo, Zhen; Chao, Y. J.; Ao, Sansan; Cui, Xuetuan

    2015-06-01

    This paper investigates the weld nugget formation in three-sheet aluminum alloy resistance spot welding. The nugget formation process in three equal thickness sheets and three unequal thickness sheets of 5052 aluminum alloy were studied. The results showed that the nugget was initially formed at the workpiece/workpiece interfaces (i.e., both upper interface and lower interface). The two small nuggets then grew along the radial direction and axial direction (welding direction) as the welding time increased. Eventually, the two nuggets fused into one large nugget. During the welding process, the Peltier effect between the Cu-Al caused the shift of the nugget in the welding direction. In addition, the mechanical strength and fracture mode of the weld nuggets at the upper and lower interfaces were also studied using tensile shear specimen configuration. Three failure modes were identified, namely interfacial, mixed, and pullout. The critical welding time and critical nugget diameter corresponding to the transitions of these modes were investigated. Finally, an empirical failure load formula for three-sheet weld similar to two-sheet spot weld was developed.

  12. AFM AND XPS Characterization of Zinc-Aluminum Alloy Coatings with Attention to Surface Dross and Flow Lines

    NASA Astrophysics Data System (ADS)

    Harding, Felipe A.; Alarcon, Nelson A.; Toledo, Pedro G.

    Surfaces of various zinc-aluminum alloy (Zn-Al) coated steel samples are studied with attention to foreign surface dross by atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS/ESCA). AFM topographic maps of zinc-aluminum alloy surfaces free of dross reveal the perfect nanoscale details of two kinds of dendrites: branched and globular. In all magnifications the dendrites appear smooth and, in general, very clean. XPS analysis of the extreme surface of a Zn-Al sample reveals Al, Zn, Si and O as the main components. The XPS results show no segregation or separation of phases other than those indicated by the ternary Al-Zn-Si diagram. For surfaces of Zn-Al plagued with impurities, high resolution AFM topographic maps reveal three situations: (1) areas with well-defined dendrites, relatively free of dross; (2) areas with small, millimeter-sized black spots known as dross; and (3) areas with large black stains, known as flow lines. Dendrite deformation and dross accumulation increase notably in the neighborhood, apparently clean to the naked eye, of dross or flow lines. XPS results of areas with dross and flow lines indicate unacceptable high concentration of Si and important Si phase separation. These results, in the light of AFM work, reveal that dross and flow lines are a consequence of a high local concentration of Si from high melting point silica and silicate impurities in the Zn-Al alloy source.

  13. Tensile deformation behavior of spray-deposited FVS0812 heat-resistant aluminum alloy sheet at elevated temperatures

    SciTech Connect

    Yan Qiqi; Fu Dingfa . E-mail: Fudingfa69@163.com; Deng Xuefeng; Zhang Hui; Chen Zhenhua

    2007-06-15

    The tensile deformation behavior of spray deposited FVS0812 heat-resistant aluminum alloy sheet was studied by uniaxial tension tests at temperatures ranging from 250 deg. C to 450 deg. C and strain rates from 0.001 to 0.1 s{sup -1}. The associated fracture surfaces were examined by scanning electron microscopy (SEM). The results show that the degree of work-hardening increases with decreasing temperature, and exhibits a small decrease with increasing strain rate; the strain rate sensitivity exponent increases with increasing temperature. The flow stress increases with increasing strain rate but decreases with increasing temperature. The total elongations to fracture increase not only with increasing temperature, but also with increasing strain rate, which is in marked contrast with the normal inverse dependence of elongation on the strain rate exhibited by conventional aluminum alloy sheets. The SEM fracture analysis indicates that the dependence of elongation on the strain rate may be due to the presence of a transition from plastic instability at lower strain rates to stable deformation at higher strain rates for fine-grained materials produced by spray deposition.

  14. Characterization of an Effective Cleaning Procedure for Aluminum Alloys: Surface Enhanced Raman Spectroscopy and Zeta Potential Analysis

    SciTech Connect

    Cherepy, N J; Shen, T H; Esposito, A P; Tillotson, T M

    2004-06-02

    We have developed a cleaning procedure for aluminum alloys for effective minimization of surface-adsorbed sub-micron particles and non-volatile residue. The procedure consists of a phosphoric acid etch followed by an alkaline detergent wash. To better understand the mechanism whereby this procedure reduces surface contaminants, we characterized the aluminum surface as a function of cleaning step using Surface Enhanced Raman Spectroscopy (SERS). SERS indicates that phosphoric acid etching re-establishes a surface oxide of different characteristics, including deposition of phosphate and increased hydration, while the subsequent alkaline detergent wash appears to remove the phosphate and modify the new surface oxide, possibly leading to a more compact surface oxide. We also studied the zeta potential of <5 micron pure aluminum and aluminum alloy 6061-T6 particles to determine how surface electrostatics may be affected during the cleaning process. The particles show a decrease in the magnitude of their zeta potential in the presence of detergent, and this effect is most pronounced for particles that have been etched with phosphoric acid. This reduction in magnitude of the surface attractive potential is in agreement with our observation that the phosphoric acid etch followed by detergent wash results in a decrease in surface-adsorbed sub-micron particulates.

  15. Finite Element Simulation of Temperature and Strain Distribution during Friction Stir Welding of AA2024 Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Jain, Rahul; Pal, Surjya Kanta; Singh, Shiv Brat

    2017-02-01

    Friction Stir Welding (FSW) is a solid state joining process and is handy for welding aluminum alloys. Finite Element Method (FEM) is an important tool to predict state variables of the process but numerical simulation of FSW is highly complex due to non-linear contact interactions between tool and work piece and interdependency of displacement and temperature. In the present work, a three dimensional coupled thermo-mechanical method based on Lagrangian implicit method is proposed to study the thermal history, strain distribution and thermo-mechanical process in butt welding of Aluminum alloy 2024 using DEFORM-3D software. Workpiece is defined as rigid-visco plastic material and sticking condition between tool and work piece is defined. Adaptive re-meshing is used to tackle high mesh distortion. Effect of tool rotational and welding speed on plastic strain is studied and insight is given on asymmetric nature of FSW process. Temperature distribution on the workpiece and tool is predicted and maximum temperature is found in workpiece top surface.

  16. The detection of tightly closed flaws by nondestructive testing (NDT) methods. [fatigue crack formation in aluminum alloy test specimens

    NASA Technical Reports Server (NTRS)

    Rummel, W. D.; Rathke, R. A.; Todd, P. H., Jr.; Mullen, S. J.

    1975-01-01

    Liquid penetrant, ultrasonic, eddy current and X-radiographic techniques were optimized and applied to the evaluation of 2219-T87 aluminum alloy test specimens in integrally stiffened panel, and weld panel configurations. Fatigue cracks in integrally stiffened panels, lack-of-fusion in weld panels, and fatigue cracks in weld panels were the flaw types used for evaluation. A 2319 aluminum alloy weld filler rod was used for all welding to produce the test specimens. Forty seven integrally stiffened panels containing a total of 146 fatigue cracks, ninety three lack-of-penetration (LOP) specimens containing a total of 239 LOP flaws, and one-hundred seventeen welded specimens containing a total of 293 fatigue cracks were evaluated. Nondestructive test detection reliability enhancement was evaluated during separate inspection sequences in the specimens in the 'as-machined or as-welded', post etched and post proof loaded conditions. Results of the nondestructive test evaluations were compared to the actual flaw size obtained by measurement of the fracture specimens after completing all inspection sequences. Inspection data were then analyzed to provide a statistical basis for determining the flaw detection reliability.

  17. Improvement of the liquid segregation phenomena of semisolid aluminum alloys by the multistage strain rate control in the compression test

    NASA Astrophysics Data System (ADS)

    Kang, C. G.; Jung, K. D.

    2001-08-01

    The deformation behavior of semisolid aluminum alloys in the range of solid fraction ( f s ) between 55 and 90% was investigated through compression tests for the variation of strain rate. In order to obtain the optimal conditions of the net shape forging process, the rheological behavior of aluminum alloy in the semisolid state has been examined by using parallel plate compression. The strain rate is the value of the strain rate corresponding to the stress to avoid the liquid segregation phenomena during compression tests. The material constants of semisolid material in the stress-strain curve are proposed to perform the numerical analysis for a die design of semisolid forging. The starting materials used in this experiment are A357, 86S (similar to A319), and A390 alloys, which are fabricated by the electromagnetic stirring process. The intelligent compression test with a controlled strain rate was performed. The liquid segregation in the overall cross-sectional areas is controlled as the multistage variation of the pressing velocity and variation of the solid fraction during the compression process. The characteristics of materials flow between solid and liquid phases, considering the liquid segregation, are discussed for various solid fractions and pressing velocities.

  18. Finite Element Simulation of Temperature and Strain Distribution during Friction Stir Welding of AA2024 Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Jain, Rahul; Pal, Surjya Kanta; Singh, Shiv Brat

    2016-06-01

    Friction Stir Welding (FSW) is a solid state joining process and is handy for welding aluminum alloys. Finite Element Method (FEM) is an important tool to predict state variables of the process but numerical simulation of FSW is highly complex due to non-linear contact interactions between tool and work piece and interdependency of displacement and temperature. In the present work, a three dimensional coupled thermo-mechanical method based on Lagrangian implicit method is proposed to study the thermal history, strain distribution and thermo-mechanical process in butt welding of Aluminum alloy 2024 using DEFORM-3D software. Workpiece is defined as rigid-visco plastic material and sticking condition between tool and work piece is defined. Adaptive re-meshing is used to tackle high mesh distortion. Effect of tool rotational and welding speed on plastic strain is studied and insight is given on asymmetric nature of FSW process. Temperature distribution on the workpiece and tool is predicted and maximum temperature is found in workpiece top surface.

  19. Analysis of Particle-Stimulated Nucleation (PSN)-Dominated Recrystallization for Hot-Rolled 7050 Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Adam, Khaled F.; Long, Zhengdong; Field, David P.

    2017-04-01

    In 7xxx series aluminum alloys, the constituent large and small second-phase particles present during deformation process. The fraction and spatial distribution of these second-phase particles significantly influence the recrystallized structure, kinetics, and texture in the subsequent treatment. In the present work, the Monte Carlo Potts model was used to model particle-stimulated nucleation (PSN)-dominated recrystallization and grain growth in high-strength aluminum alloy 7050. The driving force for recrystallization is deformation-induced stored energy, which is also strongly affected by the coarse particle distribution. The actual microstructure and particle distribution of hot-rolled plate were used as an initial point for modeling of recrystallization during the subsequent solution heat treatment. Measurements from bright-field TEM images were performed to enhance qualitative interpretations of the developed microstructure. The influence of texture inhomogeneity has been demonstrated from a theoretical point of view using pole figures. Additionally, in situ annealing measurements in SEM were performed to track the orientational and microstructural changes and to provide experimental support for the recrystallization mechanism of PSN in AA7050.

  20. Characterization of an effective cleaning procedure for aluminum alloys: surface enhanced Raman spectroscopy and zeta potential analysis.

    PubMed

    Cherepy, Nerine J; Shen, Tien H; Esposito, Anthony P; Tillotson, Thomas M

    2005-02-01

    We have developed a cleaning procedure for aluminum alloys for effective minimization of surface-adsorbed sub-micrometer particles and nonvolatile residue. The procedure consists of a phosphoric acid etch followed by an alkaline detergent wash. To better understand the mechanism whereby this procedure reduces surface contaminants, we characterized the aluminum surface as a function of cleaning step using surface enhanced Raman spectroscopy (SERS). SERS indicates that phosphoric acid etching re-establishes a surface oxide of different characteristics, including deposition of phosphate and increased hydration, while the subsequent alkaline detergent wash appears to remove the phosphate and modify the new surface oxide, possibly leading to a more compact surface oxide. We also studied the zeta potential of <5 microm pure aluminum and aluminum alloy 6061-T6 particles to determine how surface electrostatics may be affected during the cleaning process. The particles show a decrease in the magnitude of their zeta potential in the presence of detergent, and this effect is most pronounced for particles that have been etched with phosphoric acid.

  1. Textures in Strip-Cast Aluminum Alloys: Their On-Line Monitoring and Quantitative Effects on Formability. Final Technical Report

    SciTech Connect

    Man, Chi-Sing

    2003-07-27

    Aluminum sheets produced by continuous casting (CC) provide energy and economic savings of at least 25 and 14 percent, respectively, over sheets made from conventional direct chill (DC) ingot casting and rolling. As a result of the much simpler production route in continuous casting, however, the formability of CC aluminum alloys is often somewhat inferior to that of their DC counterparts. The mechanical properties of CC alloys can be improved by controlling their microstructure through optimal thermomechanical processing. Suitable annealing is an important means to improve the formability of CC aluminum alloy sheets. Recrystallization of deformed grains occurs during annealing, and it changes the crystallographic texture of the aluminum sheet. Laboratory tests in this project showed that this texture change can be detected by either laser-ultrasound resonance spectroscopy or resonance EMAT (electromagnetic acoustic transducer) spectroscopy, and that monitoring this change allows the degree of recrystallization or the ''recrystallized fraction'' in an annealed sheet to be ascertained. Through a plant trial conducted in May 2002, this project further demonstrated that it is feasible to monitor the recrystallized state of a continuous-cast aluminum sheet in-situ on the production line by using a laser-ultrasound sensor. When used in conjunction with inline annealing, inline monitoring of the recrystallized fraction by laser-ultrasound resonance spectroscopy offers the possibility of feed-back control that helps optimize processing parameters (e.g., annealing temperature), detect production anomalies, ensure product quality, and further reduce production costs of continuous-cast aluminum alloys. Crystallographic texture strongly affects the mechanical anisotropy/formability of metallic sheets. Clarification of the quantitative relationship between texture and anisotropy/formability of an aluminum alloy will render monitoring and control of its texture during the sheet

  2. Experimentally Derived Beta Corrections to Accurately Model the Fatigue Crack Growth Behavior at Cold Expanded Holes in 2024-T351 Aluminum Alloys

    DTIC Science & Technology

    2008-08-01

    format, citations, and bibliographic style are consistent and acceptable; (2) its illustrative materials including figures, tables , and charts are in... empirical correction factor β for the effects of cold expansion in 2024-T351 aluminum alloy. This method takes into account the interaction of the...thank you for your smiles. TABLE OF CONTENTS ABSTRACT

  3. Evaluation of mechanical property data on the 2219 aluminum alloy and application of the data to the design of liquid hydrogen tankage

    NASA Technical Reports Server (NTRS)

    Witzell, W. E.

    1977-01-01

    The potential use of thin guage 2219 aluminum alloy for airborne liquid hydrogen tankage was examined. Existing data were processed using the Newman two parameter equation, a prediction was made for the life expectancy of a hypothetical liquid hydrogen tank, and additional experimental data were generated in an attempt to correct the deficiencies in the existing data.

  4. Improvement of abrasion resistance in artificial seawater and corrosion resistance in NaCl solution of 7075 aluminum alloy processed by laser shock peening

    NASA Astrophysics Data System (ADS)

    Wang, Hao; Ning, Chengyi; Huang, Yihui; Cao, Zhenya; Chen, Xiaoxiao; Zhang, Wenwu

    2017-03-01

    As 7075 aluminum alloy is widely used in a humid environment, in order to enhance its abrasion resistance and electrochemical corrosion resistance, the paper studied the effect of laser shock peening on abrasion resistance in artificial seawater and corrosion resistance in 3.5% NaCl solution of 7075 aluminum alloy. Result shows that when specimens were treated once and twice with 7.17 GW/cm2 the abrasion loss would be reduced by 43.75% and 46.09% compare to untreated respectively, and the corrosion rate of 7075 aluminum alloy could be reduced as much as 50.32% by LSP treatment with 7.17 GW/cm2. What's more, the effects on the microhardness, microstructure and residual stress with different LSP impacts and power density were investigated to find out strengthening mechanism of laser shock peening, which were observed and measured by microhardness tester, optical microscope and X-ray diffraction (XRD) residual stress tester. In the entire laboratory tests, it is considered that LSP is a practical option to improve abrasion resistance in seawater and corrosion resistance of 7075 aluminum alloy.

  5. Stress Corrosion Cracking in Al-Zn-Mg-Cu Aluminum Alloys in Saline Environments

    NASA Astrophysics Data System (ADS)

    Holroyd, N. J. Henry; Scamans, G. M.

    2013-03-01

    Stress corrosion cracking of Al-Zn-Mg-Cu (AA7xxx) aluminum alloys exposed to saline environments at temperatures ranging from 293 K to 353 K (20 °C to 80 °C) has been reviewed with particular attention to the influences of alloy composition and temper, and bulk and local environmental conditions. Stress corrosion crack (SCC) growth rates at room temperature for peak- and over-aged tempers in saline environments are minimized for Al-Zn-Mg-Cu alloys containing less than ~8 wt pct Zn when Zn/Mg ratios are ranging from 2 to 3, excess magnesium levels are less than 1 wt pct, and copper content is either less than ~0.2 wt pct or ranging from 1.3 to 2 wt pct. A minimum chloride ion concentration of ~0.01 M is required for crack growth rates to exceed those in distilled water, which insures that the local solution pH in crack-tip regions can be maintained at less than 4. Crack growth rates in saline solution without other additions gradually increase with bulk chloride ion concentrations up to around 0.6 M NaCl, whereas in solutions with sufficiently low dichromate (or chromate), inhibitor additions are insensitive to the bulk chloride concentration and are typically at least double those observed without the additions. DCB specimens, fatigue pre-cracked in air before immersion in a saline environment, show an initial period with no detectible crack growth, followed by crack growth at the distilled water rate, and then transition to a higher crack growth rate typical of region 2 crack growth in the saline environment. Time spent in each stage depends on the type of pre-crack ("pop-in" vs fatigue), applied stress intensity factor, alloy chemistry, bulk environment, and, if applied, the external polarization. Apparent activation energies ( E a) for SCC growth in Al-Zn-Mg-Cu alloys exposed to 0.6 M NaCl over the temperatures ranging from 293 K to 353 K (20 °C to 80 °C) for under-, peak-, and over-aged low-copper-containing alloys (<0.2 wt pct) are typically ranging from

  6. Inhibition of environmental fatigue crack propagation in age-hardenable aluminum alloys

    NASA Astrophysics Data System (ADS)

    Warner, Jenifer S.

    Age-hardenable aluminum alloys, such as C47A-T86 (Al-Cu-Li) and 7075-T651 (Al-Zn-Mg-Cu), used in aerospace structures are susceptible to environment assisted fatigue crack propagation (EFCP) by hydrogen environment embrittlement. This research demonstrates effective inhibition of EFCP in C47A-T86 and 7075-T651 under both full immersion in aqueous chloride solution and atmospheric exposure which more accurately describes aircraft service conditions. Inhibition is attributed to the presence of a crack tip passive film reducing H production and uptake, as explained by the film rupture-hydrogen embrittlement mechanism, and can be accomplished through both addition of a passivating ion (ion-assisted inhibition) and localized-alloy corrosion creating passivating conditions (self inhibition). Addition of molybdate to both bulk chloride solution and surface chloride droplets eliminates the effect of environment on fatigue crack propagation in C47A-T86 and 7075-1651 at sufficiently low loading frequencies and high stress ratio by yielding crack growth rates equivalent to those for fatigue in ultra high vacuum. The preeminent corrosion inhibitor, chromate, has not been reported to produce such complete inhibition. Inhibition is promoted by reduced loading frequency, increased crack tip molybdate concentration, and potential at or anodic to free corrosion; each of which favors passivity. The inhibiting effect of molybdate parallels chromate, establishing molybdate as a viable chromate replacement inhibitor. The ability of molybdate to inhibit EFCP is enhanced by atmospheric exposures producing surface electrolyte droplets; crack growth rates are reduced by an order of magnitude under loading frequencies as high as 30 Hz, a frequency at which inhibition was not possible under full immersion. Al-Cu-Mg/Li alloys, including 2024-T351, are capable of self inhibition of EFCP. This behavior is attributed to localized corrosion through dealloying of anodic Al2CuMg or Al2Cu

  7. Effect of laser peening with different energies on fatigue fracture evolution of 6061-T6 aluminum alloy

    NASA Astrophysics Data System (ADS)

    Sheng, J.; Huang, S.; Zhou, J. Z.; Lu, J. Z.; Xu, S. Q.; Zhang, H. F.

    2016-03-01

    To deeply understand the effect of laser peening (LP) with different laser pulse energies on 6061-T6 aluminum alloy, the fatigue fracture morphologies evolution process at various fatigue crack growth (FCG) stages and the corresponding strengthen mechanism were investigated. At the initial stage of FCG, more fatigue micro-cliffs were found after LP, while the fatigue striation spacing simultaneously reduced. A "stop-continue" phenomenon of crack propagation was discovered for laser peened samples. The fatigue striation spacing at the middle stage of FCG increased significantly while compared with that at the initial stage, in addition, the fatigue striation spacing decreased with an increase in laser pulse energy. Fracture morphologies in transition region of laser peened samples exhibit a mixing fracture characteristic of striations and dimples. The laser peened sample with laser pulse energy of 7 J presents more circuitous growing paths. Due to the complex stress state induced by LP, dimples with different sizes appeared in the final fracture region.

  8. The Torsional and Bending Deflection of Full-Scale Aluminum-Alloy Propeller Blades Under Normal Operating Conditions

    NASA Technical Reports Server (NTRS)

    Hartman, Edwin P; Biermann, David

    1938-01-01

    The torsional deflection of the blades of three full-scale aluminum-alloy propellers operating under various loading conditions was measured by a light-beam method. Angular bending deflections were also obtained as an incidental part of the study. The deflection measurements showed that the usual present-day type of propeller blades twisted but a negligible amount under ordinary flight conditions. A maximum deflection of about 1/10 degree was found at a v/nd of 0.3 and a smaller deflection at higher values of v/nd for the station at 0.70 radius. These deflections are much smaller than would be expected from earlier tests, but the light-beam method is considered to be much more accurate than the direct-reading-transit method used in the previous test.

  9. Determination of in vitro lung solubility and intake-to-dose conversion factor for tritiated lanthanum nickel aluminum alloy.

    PubMed

    Farfán, Eduardo B; Labone, Thomas R; Staack, Gregory C; Cheng, Yung-Sung; Zhou, Yue; Varallo, Thomas P

    2012-09-01

    A sample of tritiated lanthanum nickel aluminum alloy (LaNi4.25Al0.75 or LANA.75) similar to that used at the Savannah River Site Tritium Facilities was analyzed to estimate the particle size distribution of this metal tritide powder and the rate at which this material dissolves in the human respiratory tract after it is inhaled. This information is used to calculate the committed effective dose received by a worker after inhaling the material. These doses, which were calculated using the same methodology given in the U.S. Department of Energy Tritium Handbook, are presented as inhalation intake-to-dose conversion factors (DCF). The DCF for this metal tritide was determined to be 9.4 × 10 Sv Bq, which is less than the DCF for tritiated water. Therefore, the radiation worker bioassay programs designed for tritiated water are adequate to monitor for intakes of this material.

  10. Structural State of a Weld Formed in Aluminum Alloy by Friction Stir Welding and Treated by Ultrasound

    NASA Astrophysics Data System (ADS)

    Klimenov, V. A.; Abzaev, Yu. A.; Potekaev, A. I.; Vlasov, V. A.; Klopotov, A. A.; Zaitsev, K. V.; Chumaevskii, A. V.; Porobova, S. A.; Grinkevich, L. S.; Tazin, I. D.; Tazin, D. I.

    2016-11-01

    The experimental data on structural state of an aluminum alloy, AlMg6, in the weld zone formed by friction stir welding are analyzed in order to evaluate the effect of its subsequent ultrasonic treatment. It is found that the crystal lattice transits into a low-stability state as a result of combined heat-induced and severe shear deformation. This transition is accompanied by considerable structural-phase changes that are manifested as an increased lattice parameter of the solid solution. This increase is caused by both high values of internal stresses and increased concentration of Mg atoms in the solid solution due to essential dissolution of the β-Al2Mg3 particles with the content of manganese higher than that in the matrix. This is accompanied by high-intensity diffusion and relaxation processes due to the low-stability state of crystal lattice (inhomogeneous stresses) in the weld zone.

  11. Effect of Loading History on Stress Corrosion Cracking of 7075-T651 Aluminum Alloy in Saline Aqueous Environment

    NASA Astrophysics Data System (ADS)

    Zhang, Jixi; Kalnaus, Sergiy; Behrooz, Majid; Jiang, Yanyao

    2011-02-01

    An experimental study of stress corrosion cracking (SCC) was conducted on 7075-T651 aluminum alloy in a chromate-inhibited, acidic 3.5 pct sodium chloride aqueous solution using compact tension specimens with a thickness of 3.8 mm under permanent immersion conditions. The effects of loading magnitude, overload, underload, and two-step high-low sequence loading on incubation time and crack growth behavior were investigated. The results show that the SCC process consists of three stages: incubation, transient crack growth, and stable crack growth. The incubation time is highly dependent on the load level. Tensile overload or compressive underload applied prior to SCC significantly altered the initiation time of corrosion cracking. Transition from a high to a low loading magnitude resulted in a second incubation but much shorter or disappearing transient stage. The stable crack growth rate is independent of stress intensity factor in the range of 10 to 22 MPa sqrt {{m}}.

  12. Effect of silicate-based corrosion inhibitor from rice husk ash on aluminum alloy in 0.5M HCl

    NASA Astrophysics Data System (ADS)

    Othman, N. K.; Mohamad, N.; Zulkafli, R.; Jalar, A.

    2013-05-01

    Silicate-based corrosion inhibitor prepared by treating silica powder extracted from rice husk ash with concentrated alkaline. The electrochemical behavior of the Al 6061 immersed in 0.5 M hydrochloric acid (HCl) has been studied using the measurements of weight loss, potentiodynamic polarization and optical or scanning electron microscopy (SEM). It was found that, the optimum concentration of silicate-based corrosion inhibitor was prominent at 5 ppm. The small addition of silicate-based corrosion inhibitor was exhibited the decreasing of the weight loss of Al 6061 in acidic medium. SEM micrograph proved that the morphology of untreated Al 6061 with silicate-base corrosion inhibitor contributes more corrosion attack on sample compared to that treated Al 6061. The purpose of this research is to understand the effect of silicate-based corrosion inhibitor concentration yielded from rice husk ash on aluminum alloy.

  13. Effect of Brake Forming in Various Tempers on the Strength of Alclad 75S-T Aluminum-alloy Sheet

    NASA Technical Reports Server (NTRS)

    Woods, Walter; Heimerl, George J

    1947-01-01

    Results are presented of tests to determine the effect of brake forming in various tempers on the strength of Alclad 75S-T aluminum alloy sheet in the direction parallel to the brake. The tensile and compressive strengths of Alclad 75S-T sheet, formed in the O and W tempers, were either increased or little affected compared with those of similarly treated unformed material. When Alclad 75S-T sheet 'as received' was formed, however, the tensile yield stress was reduced about 7 percent for the with-grain direction and 1 percent for the cross-grain direction, whereas the tensile ultimate and compressive yield stresses were increased somewhat. The elongation was always slightly reduced as a result of forming.

  14. Effect of external applied steady magnetic field on the morphology of laser welding joint of 4-mm 2024 aluminum alloy

    NASA Astrophysics Data System (ADS)

    Zhan, Xiaohong; Zhou, Junjie; Sun, Weihua; Chen, Jicheng; Wei, Yanhong

    2017-01-01

    Additional external steady magnetic fields were applied to investigate the influence of a steady magnetic field aligned perpendicular to the welding direction during laser beam welding of 2024 aluminum alloy. The flow pattern in the molten pool and the weld seam geometry were significantly changed by the induced Lorentz force distribution in the liquid metal. It revealed that the application of a steady magnetic field to laser beam welding was helpful to the suppression of the characteristic wineglass-shape and the depth-to-width ratio because of the Marangoni convection. The microstructures and component distributions at various laser power and magnetic field intensity were analyzed too. It was indicated that the suppression of the Marangoni convection by Lorentz force was beneficial to accumulation of component and grain coarsening near the fusion line.

  15. Geometric Limitation and Tensile Properties of Wire and Arc Additive Manufacturing 5A06 Aluminum Alloy Parts

    NASA Astrophysics Data System (ADS)

    Geng, Haibin; Li, Jinglong; Xiong, Jiangtao; Lin, Xin; Zhang, Fusheng

    2017-02-01

    Wire and arc additive manufacture (WAAM), as an emerging and promising technology of metal additive manufacturing, it lacks of experimental works to clarify the feature of geometrical configuration, microstructure and tensile properties, which can be used for further evaluating whether the as-deposited part can be used directly, and providing design reference for structure optimization. Taking 5A06 aluminum alloy additive manufacturing for example, in this paper, the geometric limitation and tensile property criteria are characterized using experimental method. The minimum angle and curvature radius that can be made by WAAM are 20° and 10 mm when the layer width is 7.2 mm. It shows isotropy when loading in build direction and perpendicular one. When loading in the direction of parallel and perpendicular to texture orientation, the tensile properties are anisotropic. The difference between them is 22 MPa.

  16. Surface treatment and analysis of aluminum alloy at room temperature with titanium-nitride films by dynamic mixing

    NASA Astrophysics Data System (ADS)

    Sato, T.; Ohata, K.; Fukushima, M.

    1988-06-01

    Titanium-nitride films were prepared on aluminum alloy (Al-11 wt.% Si) plates at room temperature by simultaneous ion bombardment and metal vapor deposition (dynamic mixing) using a high current ion source. The films were analysed by means of Auger electron spectroscopy and scanning electron microscopy. The results were compared with those made by metal vapor deposition and ion plating. The process of impurity inclusion in the titanium-nitride films made by dynamic mixing is discussed. Titanium films deposited by electron beam evaporation had high levels of oxygen impurities. However, when the same film was simultaneously bombarded by nitrogen ions, the levels of oxygen impurities decreased in the deposited titanium-nitride films.

  17. Constitutive Modeling of High-Temperature Flow Behavior of Al-0.62Mg-0.73Si Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Sun, Y.; Ye, W. H.; Hu, L. X.

    2016-04-01

    The high-temperature flow behavior of an aerospace structural material Al-0.62 Mg-0.73Si aluminum alloy was researched in this work. The isothermal compression tests were carried out in the temperature range of 683-783 K and strain rate range of 0.001-1 s-1. Based on the obtained true stress-true strain curves, the constitutive relationship of the alloy was revealed by establishing the Arrhenius-type constitutive model and a modified Johnson-Cook model. It was found that the flow characteristics were closely related to deformation temperature and strain rate. The activation energy of the studied material was calculated to be approximately 174 kJ mol-1. A comparative study has been conducted on the accuracy and reliability of the proposed models using statistics analysis method. It was proved by error analysis that the Arrhenius-type model had a better performance than the modified Johnson-Cook model.

  18. Role of atmospheric corrosion of aluminum alloys in viability of intrinsic-surface methods for tagging military hardware

    SciTech Connect

    Maiya, P.S.; Kassner, T.F.

    1991-11-01

    A primary requirement for authentication of tags for military equipment desigated as treaty-limited items (TLIs) is that the surface topograhy of the tag area be maintained after exposure to a variety of atmospheric conditions over many years. This report summarizes the chemical and physical properties of atmospheric as they relate to localized corrosion of aluminum and aluminum alloys. The role of impurity species that exacerbate corrison, and that hence may interfere with tag verification, is discussed. Because exposure times for the tag materials are much longer than those practical in laboratory experiments, it is important to understand the kinetics of processes occurring in these alloys and the viability of various protection schemes. General principles and limitations of testing in natural atmospheres and in the laboratory are discussed. Corrosion results indicate that the tag surface must be protected, and a tag protection scheme is proposed.

  19. Prediction of Crack Growth under Variable-Amplitude Loading in Thin-Sheet 2024-T3 Aluminum Alloys

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.

    1997-01-01

    The present paper is concerned with the application of a "plasticity-induced" crack closure model to study fatigue crack growth under various load histories. The model was based on the Dugdale model but modified to leave plastically deformed material in the wake of the advancing crack. The model was used to correlate crack growth rates under constant-amplitude loading and then used to predict crack growth under variable-amplitude and spectrum loading on thin-sheet 2024- T3 aluminum alloys. Predicted crack-opening stresses agreed well with test data from the literature. The crack-growth lives agreed within a factor of two for single and repeated spike overloads/underloads and within 20 percent for spectrum loading. Differences were attributed to fretting-product-debris-induced closure and three-dimensional affects not included in the model.

  20. Mechanical Characteristics of Welded Joints of Aluminum Alloy 6061 T6 Formed by Arc and Friction Stir Welding

    NASA Astrophysics Data System (ADS)

    Astarita, A.; Squillace, A.; Nele, L.

    2016-01-01

    Butt welds formed by arc welding in inert gas with nonconsumable electrode (tungsten inert gas (TIG) welding) and by friction stir welding (FSW) from aluminum alloy AA6061 T6 are studied. Comparative analysis of the structures and mechanical properties of the welded joints is performed using the results of optical and electron microscopy, tensile tests, tests for residual bending ductility, and measurements of microhardness. The changes in the microstructure in different zones and the degrees of degradation of the mechanical properties after the welding are determined. It is shown that the size of the tool for the friction stir welding affects the properties of the welds. Quantitative results showing the relation between the microscopic behavior of the alloy and the welding-induced changes in the microstructure are obtained. Friction stir welding is shown to provide higher properties of the welds.

  1. DETERMINATION OF IN-VITRO LUNG SOLUBILITY AND INTAKE-TO-DOSE CONVERSION FACTOR FOR TRITIATED LANTHANUM NICKEL ALUMINUM ALLOY

    SciTech Connect

    Farfan, E.; Labone, T.; Staack, G.; Cheng, Y.; Zhou, Y.; Varallo, T.

    2011-11-11

    A sample of tritiated lanthanum nickel aluminum alloy (LaNi4.25Al0.75 or LANA.75) similar to that used at the Savannah River Site Tritium Facilities was analyzed to estimate the particle size distribution of this metal tritide powder and the rate, at which this material dissolves in the human respiratory tract after it is inhaled. This information is used to calculate the committed effective dose received by a worker after inhaling the material. These doses, which were calculated using the same methodology given in the DOE Tritium Handbook, are presented as inhalation intake-to-dose conversion factors (DCF). The DCF for this metal tritide is less than the DCF for tritiated water and radiation worker bioassay programs designed for tritiated water are adequate to monitor for intakes of this material.

  2. Corrosion behavior of the friction-stir-welded joints of 2A14-T6 aluminum alloy

    NASA Astrophysics Data System (ADS)

    Qin, Hai-long; Zhang, Hua; Sun, Da-tong; Zhuang, Qian-yu

    2015-06-01

    The corrosion behavior of friction-stir-welded 2A14-T6 aluminum alloy was investigated by immersion testing in immersion exfoliation corrosion (EXCO) solution. Electrochemical measurements (open circuit potential, potentiodynamic polarization curves, and electrochemical impedance spectroscopy), scanning electron microscopy, and energy dispersive spectroscopy were employed for analyzing the corrosion mechanism. The results show that, compared to the base material, the corrosion resistance of the friction-stir welds is greatly improved, and the weld nugget has the highest corrosion resistance. The pitting susceptibility originates from the edge of Al-Cu-Fe-Mn-Si phase particles as the cathode compared to the matrix due to their high self-corrosion potential. No corrosion activity is observed around the θ phase (Al2Cu) after 2 h of immersion in EXCO solution.

  3. Grain structure and dislocation density measurements in a friction stir welded aluminum alloy using x-ray peak profile analysis

    SciTech Connect

    Woo, Wan Chuck; Balogh, Levente; Ungar, Prof Tomas; Choo, Hahn; Feng, Zhili

    2008-01-01

    The dislocation density and grain structure of a friction stir welded 6061-T6 aluminum alloy was determined as a function of distance from the weld centerline using high-resolution micro-beam x-ray diffraction. The results of the x-ray peak profile analysis show that the dislocation density is about 1.2 x 10^14 m-2 inside and 4.8 x 10^14 m-2 outside of the weld region. The average subgrain size is about 180 nm in both regions. Compared to the base material, the dislocation density was significantly decreased in the dynamic recrystallized zone of the friction stir welds, which is a good correlation with the TEM observations. The influence of the dislocation density on the strain hardening behavior during tensile deformation is also discussed.

  4. Auger electron spectroscopy study of initial stages of oxidation in a copper - 19.6-atomic-percent-aluminum alloy

    NASA Technical Reports Server (NTRS)

    Ferrante, J.

    1973-01-01

    Auger electron spectroscopy was used to examine the initial stages of oxidation of a polycrystalline copper - 19.6 a/o-aluminum alloy. The growth of the 55-eV aluminum oxide peak and the decay of the 59-, 62-, and 937-eV copper peaks were examined as functions of temperature, exposure, and pressure. Pressures ranged from 1x10 to the minus 7th power to 0.0005 torr of O2. Temperatures ranged from room temperature to 700 C. A completely aluminum oxide surface layer was obtained in all cases. Complete disappearance of the underlying 937-eV copper peak was obtained by heating at 700 C in O2 at 0.0005 torr for 1 hr. Temperature studies indicated that thermally activated diffusion was important to the oxidation studies. The initial stages of oxidation followed a logarithmic growth curve.

  5. Effect of Nano-crystalline Ceramic Coats Produced by Plasma Electrolytic Oxidation on Corrosion Behavior of AA5083 Aluminum Alloy

    SciTech Connect

    Thayananth, T.; Muthupandi, V.; Rao, S. R. Koteswara

    2010-10-04

    High specific strength offered by aluminum and magnesium alloys makes them desirable in modern transportation industries. Often the restrictions imposed on the usage of these alloys are due to their poor tribological and corrosion properties. However, their corrosion properties can be further enhanced by synthesizing ceramic coating on the substrate through Plasma Electrolytic Oxidation (PEO) process. In this study, nano-crystalline alumina coatings were formed on the surface of AA5083 aluminum alloy test coupons using PEO process in aqueous alkali-silicate electrolyte with and without addition of sodium aluminate. X-ray diffraction (XRD) studies showed that the crystallite size varied between 38 and 46 nm and {alpha}- and {gamma}- alumina were the dominant phases present in the coatings. Corrosion studies by potentiodynamic polarization tests in 3.5% NaCl revealed that the electrolyte composition has an influence on the corrosion resistance of nano-crystalline oxide layer formed.

  6. Effect of Welding Speeds on Mechanical Properties of Level Compensation Friction Stir Welded 6061-T6 Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Wen, Quan; Yue, Yumei; Ji, Shude; Li, Zhengwei; Gao, Shuangsheng

    2016-04-01

    In order to eliminate the flash, arc corrugation and concave in weld zone, level compensation friction stir welding (LCFSW) was put forward and successfully applied to weld 6061-T6 aluminum alloy with varied welding speed at a constant tool rotational speed of 1,800 rpm in the present study. The glossy joint with equal thickness of base material can be attained, and the shoulder affected zone (SAZ) was obviously reduced. The results of transverse tensile test indicate that the tensile strength and elongation reach the maximum values of 248 MPa and 7.1% when the welding speed is 600 mm/min. The microhardness of weld nugget (WN) is lower than that of base material. The tensile fracture position locates at the heat affected zone (HAZ) of the advancing side (AS), where the microhardness is the minimum. The fracture surface morphology represents the typical ductile fracture.

  7. The effect of hot isostatic pressing on crack initiation, fatigue, and mechanical properties of two cast aluminum alloys

    NASA Astrophysics Data System (ADS)

    Rich, T. P.; Orbison, J. G.; Duncan, R. S.; Olivero, P. G.; Peterec, R. H.

    1999-06-01

    This article presents the results of an experimental materials testing program on the effect of hot isostatic pressing (HIP) on the crack initiation, fatigue, and mechanical properties of two cast aluminum alloys: AMS 4220 and 4225. These alloys are often used in castings for high temperature applications. Standard tensile and instrumented Charpy impact tests were performed at room and elevated temperatures. The resulting data quantify improvements in ultimate tensile strength, ductility, and Charpy impact toughness from the HIP process while indicating little change in yield strength for both alloys. In addition standard fracture mechanics fatigue tests along with a set of unique fatigue crack initiation tests were performed on the alloys. Hot isostatic pressing was shown to produce a significant increase in cycles to crack initiation for AMS 4225, while no change was evident in traditional da/dN fatigue crack growth. The data permits comparisons of the two alloys both with and without the HIP process.

  8. Characteristics of Dissimilar FSW Welds of Aluminum Alloys 2017A and 7075 on the Basis of Multiple Layer Research

    NASA Astrophysics Data System (ADS)

    Mroczka, Krzysztof; Wójcicka, Anna; Pietras, Adam

    2013-09-01

    This work is concerned with the structure of the FSW joint of 2017A/7075 aluminum alloys, which was analyzed on the basis of a number of longitudinal and cross-sectional sections. Various ways and degrees of alloy stirring were identified, depending on the distance from the face of the weld. Furthermore, considerable variation in the length of the weld microstructures was demonstrated, reflecting the variability of the welding process. Studies of mechanical properties are also presented—the distributions of hardness on individual layers. A significant effect of plastic deformation on the hardness of the alloy 7075, which strengthened in deformed areas and shows weakness in the heat-affected zone, was noticed. The influence of the weld structure on the fracture of the sample, which was broken in the static tensile test, was analyzed applying scanning electron microscopy. The presence of non-deformed areas was revealed within the ductile fracture of the sample.

  9. Effect of service usage on tensile, fatigue, and fracture properties of 7075-T6 and 7178-T6 aluminum alloys

    NASA Technical Reports Server (NTRS)

    Everett, R. A., Jr.

    1975-01-01

    A study has been made to determine the effects of extensive service usage on some basic material properties of 7075-T6 and 7178-T6 aluminum alloy materials. The effects of service usage were determined by comparing material properties for new material (generally obtained from the literature) with those for material cut from the center wing box of a C-130B transport airplane with 6385 flight-hours of service. The properties investigated were notched and unnotched fatigue strengths, fatigue-crack-growth rate, fracture toughness, and tensile properties. For the properties investigated and the parameter ranges considered (crack length, stress ratio, etc.), the results obtained showed no significant difference between service and new materials.

  10. Effects of precrack environment on subsequent corrosion fatigue crack growth behavior of a squeeze-cast aluminum alloy

    SciTech Connect

    Shiozawa, Kazuaki; Sun, S.

    1995-11-01

    Corrosion fatigue occurs in all materials exposed to a corrosive environment and subjected to fatigue-type stresses. As in corrosion fatigue cracking, there are several aspects of the problem arising from mechanical, environmental, and metallurgical properties, which affect corrosion fatigue susceptibility. Corrosion fatigue crack propagation behavior will be obviously affected by different precrack conditions. However, studies regarding prefatigue crack environmental effects on subsequent corrosion fatigue crack growth and associated damage mechanisms are lacking to date. The present article gives a corrosion fatigue growth behavior of a through crack artificially obtained for long cracks relating to a different experimental precrack program in the air and the aqueous aggressive environments. A squeeze-cast Al-Si-Mg-Cu aluminum alloy (AC8A-T6) was used in this study. Chemical composition of the alloy is (in wt pct) 12Si-1.1Mg-1.1Cu-1.3Ni and balance Al.

  11. Influences of Hydrogen Micropores and Intermetallic Particles on Fracture Behaviors of Al-Zn-Mg-Cu Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Su, Hang; Yoshimura, Takuro; Toda, Hiroyuki; Bhuiyan, Md. Shahnewaz; Uesugi, Kentaro; Takeuchi, Akihisa; Sakaguchi, Nobuhito; Watanabe, Yoshio

    2016-12-01

    The combined effects of hydrogen micropores and intermetallic particles on the voids initiation and growth behavior of Al-Zn-Mg-Cu aluminum alloys during deformation and fracture are investigated with the help of the high-resolution X-ray tomography. It is interesting to note that the high-hydrogen concentration induced by an EDM cutting process results in the initiation of quasi-cleavage fracture near surface. With the increase of strain, the quasi-cleavage fracture is gradually replaced by dimple fracture. Voids initiation related to the dimple fracture is caused by both intermetallic particles fracture and interfacial debonding between particles and matrix. The nucleation of hydrogen micropores on intermetallic particles accelerates the voids initiation. The existence of triaxial stress ahead of the tip of a quasi-cleavage crack enhances growth rate for both hydrogen micropores and voids.

  12. Development and Processing Improvement of Aerospace Aluminum Alloys-Development of AL-Cu-Mg-Ag Alloy (2139)

    NASA Technical Reports Server (NTRS)

    Cho, Alex; Lisagor, W. Barry; Bales, Thomas T.

    2007-01-01

    This final report supplement in presentation format describes a comprehensive multi-tasked contract study to continue the development of the silver bearing alloy now registered as aluminum alloy 2139 by the Aluminum Association. Two commercial scale ingots were processed into nominal plate gauges of two, four and six inches, and were extensively characterized in terms of metallurgical and crystallographic structure, and resulting mechanical properties. This report includes comparisons of the property combinations for this alloy and 2XXX and 7XXX alloys more widely used in high performance applications. Alloy 2139 shows dramatic improvement in all combinations of properties, moreover, the properties of this alloy are retained in all gauge thicknesses, contrary to typical reductions observed in thicker gauges of the other alloys in the comparison. The advancements achieved in this study are expected to result in rapid, widespread use of this alloy in a broad range of ground based, aircraft, and spacecraft applications.

  13. Review of the Effects of Microstructure on Fatigue in Aluminum Alloys. Ph.D. Thesis - Cincinnati Univ.

    NASA Technical Reports Server (NTRS)

    Telesman, J.

    1984-01-01

    Literature survey was conducted to determine the effects of different microstructural features and different load histories on fatigue crack initiation and propagation of aluminum alloys. Comparison of microstructure and monotonic and cyclic properties between powder metallurgy (P/M) and ingot metallurgy (I/M) alloys is presented. The two alloys that are representative of each process on which the comparison is focused are X7091 and 7050. Included is a detailed description of the microstructure produced through the P/M and I/M proesses. The effect of each pertinent microstructural feature on monotonic and cyclic properties, such as yield strength, toughness, crack initiation and propagation is discussed. Also discussed are the proposed mechanisms for crack initiation and propagation, as well as the effects of aggressive environments on these cyclic properties. The effects of variable amplitude loadin on fatigue crack propagation and the various models proposed to predict load interaction effects are discussed.

  14. Effect of Mold Coating Materials and Thickness on Heat Transfer in Permanent Mold Casting of Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Hamasaiid, A.; Dargusch, M. S.; Davidson, C. J.; Tovar, S.; Loulou, T.; Rezaï-Aria, F.; Dour, G.

    2007-06-01

    In permanent mold casting or gravity die casting (GDC) of aluminum alloys, die coating at the casting-mold interface is the most important single factor controlling heat transfer and, hence, it has the greatest influence on the solidification rate and development of microstructure. This investigation studies the influence of coating thickness, coating composition, and alloy composition on the heat transfer at the casting-mold interface. Both graphite and TiO2-based coatings have been investigated. Two aluminum alloys have been investigated: Al-7Si-0.3Mg and Al-9Si-3Cu. Thermal histories throughout the die wall have been recorded by fine type-K thermocouples. From these measurements, die surface temperatures and heat flux density have been evaluated using an inverse method. Casting surface temperature was measured by infrared pyrometry, and the interfacial heat-transfer coefficient (HTC) has been determined using these combined pieces of information. While the alloy is liquid, the coating material has only a weak influence over heat flow and the thermal contact resistance seems to be governed more by coating porosity and thickness. The HTC decreases as the coating thickness increases. However, as solidification takes place and the HTC decreases, the HTC of graphite coating remains higher than that of ceramic coatings of similar thickness. After the formation of an air gap at the interface, the effect of coating material vanishes. The peak values of HTC and the heat flux density are larger for Al-7Si-0.3Mg than for Al-9Si-3Cu. Consequently, the apparent solidification time of Al-9Si-3Cu is larger than that of Al-7Si-0.3Mg and it increases with coating thickness.

  15. Reinforcement of the Cube texture during recrystallization of a 1050 aluminum alloy partially recrystallized and 10% cold-rolled

    SciTech Connect

    Wang Wei; Helbert, Anne-Laure Baudin, Thierry; Brisset, Francois; Penelle, Richard

    2012-02-15

    In high purity Aluminum, very strong {l_brace}100{r_brace}<001> recrystallization texture is developed after 98% cold rolling and annealing at 500 Degree-Sign C. On the contrary, in Aluminum alloys of commercial purity, the Cube component hardly exceeds 30% after complete recrystallization. Parameters controlling Cube orientation development are mainly the solute dragging due to impurities in solid solution and the stored deformation energy. In the present study, besides the 85% cold rolling, two extra annealings and a slight cold rolling are introduced in the processing route to increase the Cube volume fraction. The Cube development was analyzed by X-ray diffraction and Electron BackScattered Diffraction (EBSD). The nucleation and growth mechanisms responsible for the large Cube growth were investigated using FEG/EBSD in-situ heating experiments. Continuous recrystallization was observed in Cube oriented grains and competed with SIBM (Strain Induced Boundary Migration) mechanism. This latter was favored by the stored energy gap introduced during the additional cold-rolling between the Cube grains and their neighbors. Finally, a Cube volume fraction of 65% was reached after final recrystallization. - Highlights: Black-Right-Pointing-Pointer EBSD in-situ heating experiments of aluminum alloy of commercial purity. Black-Right-Pointing-Pointer A 10% cold-rolling after a partial recrystallization improved Cube nucleation and growth. Black-Right-Pointing-Pointer Annealing before cold-rolling limited the solute drag effect and permitted a large Cube growth. Black-Right-Pointing-Pointer Cube development is enhanced by continuous recrystallization of Cube sub-grains. Black-Right-Pointing-Pointer The preferential Cube growth occurs by SIBM of small Cube grains.

  16. The study on microstructural and mechanical properties of weld heat affected zone of 7075-T651 aluminum alloy

    SciTech Connect

    Hwang, R.Y.; Chou, C.P.

    1997-12-22

    Aluminum alloys play an important role in aerospace industry due to their high strength and low density. The general accepted precipitation behavior of 7075 alloy was represented as: supersaturated solid solution {alpha}{sub ss} {yields} Gp zones {yields} {eta}{prime}(MgZn{sub 2}) {yields} {eta}(MgZn{sub 2}). The Addition of Cu in Al-Zn-Mg alloy would promote the transformation of GP zones into {eta}{prime}(MgZn{sub 2}) phase and stabilize the {eta}(MgZn{sub 2}) phase. The T6 temper has the maximum strength but lower ductility. The T73 temper may lose some strength, but can gain higher corrosion resistance and lower susceptibility to stress corrosion cracking as compared to the T6 temper. The welding fabrication can produce thermal cycling on the weldment. In the heat affected zone (HAZ) beside the fusion zone, different temperatures can be obtained. This would cause change of microstructure in the HAZ of aluminum alloy weldment. Many workers studied the behavior of weld HAZ by cutting the HAZ into many small pieces or using short time isothermal heat treatment to simulate the HAZ. This may lose some information, especially near the fusion zone, because high temperature gradient occurred in this region. In this study, the Gleeble system was used to simulate the weld HAZ. It can accurately simulate every point of weld HAZ by heating and cooling the specimen to the thermal history of weld HAZ as the same as measured. The microstructural and mechanical properties of weld HAZ of 7075-T651 alloy were investigated.

  17. The effect of plasma electrolytic oxidation on the mean stress sensitivity of the fatigue life of the 6082 aluminum alloy

    NASA Astrophysics Data System (ADS)

    Winter, L.; Morgenstern, R.; Hockauf, K.; Lampke, T.

    2016-03-01

    In this work the mean stress influence on the high cycle fatigue behavior of the plasma electrolytic oxidized (PEO) 6082 aluminum alloy (AlSi1MgMn) is investigated. The present study is focused on the fatigue life time and the susceptibility of fatigue-induced cracking of the oxide coating and their dependence on the applied mean stress. Systematic work is done comparing conditions with and without PEO treatment, which have been tested using three different load ratios. For the uncoated substrate the cycles to failure show a significant dependence on the mean stress, which is typical for aluminum alloys. With increased load ratio and therefore increased mean stress, the fatigue strength decreases. The investigation confirms the well-known effect of PEO treatment on the fatigue life: The fatigue strength is significantly reduced by the PEO process, compared to the uncoated substrate. However, also the mean stress sensitivity of the fatigue performance is reduced. The fatigue limit is not influenced by an increasing mean stress for the PEO treated conditions. This effect is firstly shown in these findings and no explanation for this effect can be found in literature. Supposedly the internal compressive stresses and the micro-cracks in the oxide film have a direct influence on the crack initiation and growth from the oxide film through the interface and in the substrate. Contrary to these findings, the susceptibility of fatigue-induced cracking of the oxide coating is influenced by the load ratio. At tension-tension loading a large number of cracks, which grow partially just in the aluminum substrate, are present. With decreasing load ratio to alternating tension-compression stresses, the crack number and length increases and shattering of the oxide film is more pronounced due to the additional effective compressive part of the load cycle.

  18. Corrosion inhibition mechanisms of aluminum alloy 2024-T3 by selected non-chromate inhibitors

    NASA Astrophysics Data System (ADS)

    Lopez-Garrity, Omar A.

    The pursuit to find a chromate-alternative has led to the development of several chromate-free aerospace primers and coating systems that offer good protection. However, fundamental understanding of the functionality of the chromate-free pigments that are embedded within these coating systems is lacking. The objective of this study was to understand the fundamental mechanism of corrosion inhibition of aluminum alloy 2024-T3 by molybdate (MoO 42-), silicate (SiO32-), and praseodymium (Pr3+) with the goal of developing the kind of understanding that was accomplished for chromate. Furthermore, since most inhibiting conversion coatings and pigments act by releasing soluble species into the local environment, it was of interest to understand the mechanism of inhibition in aqueous 0.1 M NaCl solution. The mechanism of inhibition of AA2024-T3 by the select non-chromate inhibitors was investigated using various electrochemical, microscopic and spectroscopic techniques. Naturally aerated polarization curves showed that molybdate provided mixed inhibition in near-neutral pH and at a threshold concentration of 0.1 M. The largest effect was a 250 mV increase in the breakdown potential associated with pitting and a 350 mV decrease in the open-circuit potential (OCP). In addition, electrochemical impedance indicated that the corrosion inhibition mechanism is oxygen-dependent owing to the protection afforded by Mo(VI) species. It was proposed that the corrosion inhibition of AA2024-T3 by molybdate may occur following a two-step process whereby molybdate is rapidly reduced to MoO.(OH)2 over the intermetallic particles and is subsequently oxidized to intermediate molybdenum oxides (e.g. Mo4O11) in the presence of oxygen which is reduced. This in turn may lead to a local acidification, promoting the condensation and polymerization of molybdate species in solution to form polymolybdate species (Mo7O24 6- and Mo8O264-). Furthermore, S-phase particle dissolution is decreased

  19. Atom probe tomography study of the nanoscale heterostructure around an Al20Mn3Cu2 dispersoid in aluminum alloy 2024.

    PubMed

    Parvizi, Reza; Marceau, Ross K W; Hughes, Anthony E; Tan, Mike Y; Forsyth, Maria

    2014-12-16

    Atom probe tomography (APT) has been used to investigate the surface and sub-surface microstructures of aluminum alloy 2024 (AA2024) in the T3 condition (solution heat treated, cold worked, and naturally aged to a substantially stable condition). This study revealed surface Cu enrichment on the alloy matrix, local chemical structure around a dispersoid Al20Mn3Cu2 particle including a Cu-rich particle and S-phase particle on its external surface. Moreover, there was a significant level of hydrogen within the dispersoid, indicating that it is a hydrogen sink. These observations of the nanoscale structure around the dispersoid particle have considerable implications for understanding both corrosion and hydrogen embrittlement in high-strength aluminum alloys.

  20. The Influence of ScF3 Nanoparticles on the Physical and Mechanical Properties of New Metal Matrix Composites Based on A356 Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Vorozhtsov, S.; Zhukov, I.; Promakhov, V.; Naydenkin, E.; Khrustalyov, A.; Vorozhtsov, A.

    2016-12-01

    The development of the aerospace and automotive industries demands the development of aluminum alloys and composites reinforced with new nanoparticles. In this work, metal matrix composites (MMC) with an A356 aluminum alloy matrix reinforced with 0.2 wt.% and 1 wt.% of ScF3 nanoparticles were produced by ultrasonic dispersion of nanoparticles in the melt followed by casting in a metallic mold. Structure as well as physical and mechanical properties of the cast samples were examined using electron and optical microscopy, hardness and tensile testing. It is shown that nanoparticles clusters are formed during the solidification at grain boundaries and silicon inclusions. Increasing nanoparticles content significantly reduced the grain size in the MMC and increased the mechanical properties—ultimate tensile strength, elongation and hardness. The contribution of different strengthening mechanisms is discussed. It is suggested that the coefficient of thermal expansion mismatch between the nanoparticles ScF3 and the aluminum matrix is a dominant strengthening mechanism.