Science.gov

Sample records for 25-dihydroxyvitamin d3-induced osteoclastogenesis

  1. 1,25-Dihydroxyvitamin D3 induced histone profiles guide discovery of VDR action sites.

    PubMed

    Meyer, Mark B; Benkusky, Nancy A; Pike, J Wesley

    2014-10-01

    The chromatin environment dictates activity throughout the genome. Post-translational modification of the N-terminal tails of histone proteins allow nucleosomes to shift, the chromatin to relax and genes to become activated. Histone modification events and markers will change in response to environmental stimuli; therefore they present a method for identification of sites of transcription factor activity. 1,25-Dihydroxyvitamin D3 induces the vitamin D receptor (VDR) to bind to DNA and activate transcription. These actions alter the chromatin environment and can be detected by increases or decreases in the histone modifications. In fact, in genomic loci with multiple enhancers, selective modulation of those enhancers after vitamin D3 stimulation can be readily detected by histone modifications. We provide an example of these actions on the Mmp13 gene locus where VDR binds selectively to an enhancer 10kb upstream of the transcriptional start site. This binding event is accompanied by an enhancer-selective increase in histone 3 lysine 9 acetylation (H3K9Ac). ChIP-seq analysis of histone modifications requires less genomic material than transcription factor ChIP-seq, thus proving advantageous to in vivo assays with limited cellular material. Therefore, histone modification activity alone may be used as a guide for discovering sites of VDR action for further biochemical analysis. This article is part of a Special Issue entitled '16th Vitamin D Workshop'.

  2. Downregulation of Runx2 by 1,25-Dihydroxyvitamin D3 Induces the Transdifferentiation of Osteoblasts to Adipocytes

    PubMed Central

    Kim, Jung Ha; Seong, Semun; Kim, Kabsun; Kim, Inyoung; Jeong, Byung-Chul; Kim, Nacksung

    2016-01-01

    1,25-Dihydroxyvitamin D3 (1,25(OH)2D3) indirectly stimulates bone formation, but little is known about its direct effect on bone formation. In this study, we observed that 1,25(OH)2D3 enhances adipocyte differentiation, but inhibits osteoblast differentiation during osteogenesis. The positive role of 1,25(OH)2D3 in adipocyte differentiation was confirmed when murine osteoblasts were cultured in adipogenic medium. Additionally, 1,25(OH)2D3 enhanced the expression of adipocyte marker genes, but inhibited the expression of osteoblast marker genes in osteoblasts. The inhibition of osteoblast differentiation and promotion of adipocyte differentiation mediated by 1,25(OH)2D3 were compensated by Runx2 overexpression. Our results suggest that 1,25(OH)2D3 induces the transdifferentiation of osteoblasts to adipocytes via Runx2 downregulation in osteoblasts. PMID:27213351

  3. 1,25-Dihydroxyvitamin-D3 Induces Avian β-Defensin Gene Expression in Chickens

    PubMed Central

    Zhang, Guolong; Ouyang, Linghua; Robinson, Kelsy; Tang, Yanqiang; Zhu, Qing; Li, Diyan; Hu, Yaodong; Liu, Yiping

    2016-01-01

    Host defense peptides (HDPs) play a critical role in innate immunity. Specific modulation of endogenous HDP synthesis by dietary compounds has been regarded as a novel approach to boost immunity and disease resistance in animal production. 1,25-dihydroxy vitamin D3 (1,25D3) is well known as a powerful HDP inducer in humans, but limited information about the effect of 1,25D3 on HDPs in poultry is available. Here, we sought to examine whether 1,25D3 could stimulate avian β-defensin (AvBD) expression in chickens. We used chicken embryo intestinal epithelial cells (CEIEPCs) and peripheral blood mononuclear cells (PBMCs) to study the effect of 1,25D3 on the expression of AvBDs. We observed that 1,25D3 is able to up-regulate the expression of several AvBDs in CEIEPCs and PBMCs, whereas it increased the amounts of AvBD4 mRNA in CEIEPCs only in the presence of lipopolysaccharide (LPS). On the other hand, LPS treatment not only inhibited the expression of CYP24A1 but also altered the expression pattern of VDR in CEIEPCs. Furthermore, AvBDs were not directly regulated by 1,25D3, as cycloheximide completely blocked 1,25D3-induced expression of AvBDs. Our observations suggest that 1,25D3 is capable of inducing AvBD gene expression and is a potential antibiotic alternative through augmentation of host innate immunity as well as disease control in chickens. PMID:27135828

  4. RUNX2 Mutation Impairs 1α,25-Dihydroxyvitamin D3 mediated Osteoclastogenesis in Dental Follicle Cells.

    PubMed

    Wang, X Z; Sun, X Y; Zhang, C Y; Yang, X; Yan, W J; Ge, L H; Zheng, S G

    2016-01-01

    Cleidocranial dysplasia (CCD), a skeletal disorder characterized by delayed permanent tooth eruption and other dental abnormalities, is caused by heterozygous RUNX2 mutations. As an osteoblast-specific transcription factor, RUNX2 plays a role in bone remodeling, tooth formation and tooth eruption. To investigate the crosstalk between RUNX2 and 1α,25-dihydroxyvitamin D3 (1α,25-(OH)2D3) in human dental follicle cells (hDFCs) during osteoclast formation, we established a co-culture system of hDFCs from CCD patient and healthy donors with peripheral blood mononuclear cells (PBMCs). Expression of the osteoclast-associated genes and the number of TRAP(+) cells were reduced in CCD hDFCs, indicating its suppressed osteoclast-inductive ability, which was reflected by the downregulated RANKL/OPG ratio. In addition, 1α,25-(OH)2D3-stimulation elevated the expression of osteoclast-related genes, as well as RANKL mRNA levels and RANKL/OPG ratios in control hDFCs. Conversely, RUNX2 mutation abolished this 1α,25-(OH)2D3-induced RANKL gene activation and osteoclast formation in CCD hDFCs. Therefore, RUNX2 haploinsufficiency impairs dental follicle-induced osteoclast formation capacity through RANKL/OPG signaling, which may be partially responsible for delayed permanent tooth eruption in CCD patients. Furthermore, this abnormality was not rescued by 1α,25-(OH)2D3 application because 1α,25-(OH)2D3-induced RANKL activation in hDFCs is mediated principally via the RUNX2-dependent pathway. PMID:27068678

  5. The impact of methylmercury on 1,25-dihydroxyvitamin D3-induced transcriptomic responses in dolphin skin cells.

    PubMed

    Ellis, Blake C; Gattoni-Celli, Sebastiano; Kindy, Mark S

    2010-01-01

    The Atlantic bottlenose dolphin has been the focus of much attention owing to the considerable impact of environmental stress on its health and the associated implications for human health. Here, we used skin cells from the dolphin to investigate the protective role of the vitamin D pathway against environmental stressors. We previously reported that dolphin skin cells respond to 1,25-dihydroxyvitamin D3 (1,25D3), the bioactive metabolite of vitamin D3, by upregulation of the vitamin D receptor (VDR) and expression of several genes. Methylmercury is a highly bioaccumulative environmental stressor of relevance to the dolphin. We currently report that in dolphin cells sublethal concentrations of methylmercury compromise the ability of 1,25D3 to upregulate VDR, to transactivate a vitamin D-sensitive promoter, and to express specific target genes. These results help elucidate the effects of vitamin D and methylmercury on innate immunity in dolphin skin and potentially in human skin as well, considering similarities in the vitamin D pathway between the two species.

  6. 8-Cl-Adenosine enhances 1,25-dihydroxyvitamin D3-induced growth inhibition without affecting 1,25-dihydroxyvitamin D3-stimulated differentiation of primary mouse epidermal keratinocytes

    PubMed Central

    Bollag, Wendy B; Zhong, Xiaofeng; Josephson, Sarah

    2004-01-01

    Background Epidermal keratinocytes continuously proliferate and differentiate to form the mechanical and water permeability barrier that makes terrestrial life possible. In certain skin diseases, these processes become dysregulated, resulting in abnormal barrier formation. In particular, skin diseases such as psoriasis, actinic keratosis and basal and squamous cell carcinomas are characterized by hyperproliferation and aberrant or absent differentiation of epidermal keratinocytes. We previously demonstrated that 8-Cl-adenosine (8-Cl-Ado) can induce keratinocyte growth arrest without inducing differentiation. Results To determine if this agent might be useful in treating hyperproliferative skin disorders, we investigated whether 8-Cl-Ado could enhance the ability of 1,25-dihydroxyvitamin D3 [1,25(OH)2D3], a known keratinocyte differentiating agent and a clinical treatment for psoriasis, to inhibit keratinocyte growth. We found that low concentrations of 8-Cl-Ado and 1,25(OH)2D3 appeared to act additively to reduce proliferation of primary mouse epidermal keratinocytes. However, another agent (transforming growth factor-beta) that triggers growth arrest without inducing differentiation also coincidentally inhibits differentiation elicited by other agents; inhibition of differentiation is suboptimal for treating skin disorders, as differentiation is often already reduced. Thus, we determined whether 8-Cl-Ado also decreased keratinocyte differentiation induced by 1,25(OH)2D3, as measured using the early and late differentiation markers, keratin 1 protein levels and transglutaminase activity, respectively. 8-Cl-Ado did not affect 1,25(OH)2D3-stimulated keratin 1 protein expression or transglutaminase activity. Conclusions Our results suggest that 8-Cl-Ado might be useful in combination with differentiating agents for the treatment of hyperproliferative disorders of the skin. PMID:15279680

  7. 1,25-Dihydroxyvitamin D3 Induces Nitric Oxide Synthase and Suppresses Growth of Mycobacterium tuberculosis in a Human Macrophage-Like Cell Line

    PubMed Central

    Rockett, Kirk A.; Brookes, Roger; Udalova, Irina; Vidal, Vincent; Hill, Adrian V. S.; Kwiatkowski, Dominic

    1998-01-01

    Inducible synthesis of nitric oxide (NO) by macrophages is an important mechanism of the host defense against intracellular infection in mice, but the evidence for significant levels of inducible NO production by human macrophages is controversial. Here we report that the human promyelocytic cell line HL-60, when differentiated to a macrophage-like phenotype, acquires the ability to produce substantial amounts of NO on stimulation with LPS or 1,25-dihydroxyvitamin D3 (1,25-D3) in the absence of activating factors such as gamma interferon. Expression of the inducible nitric oxide synthase (NOS2) was confirmed by sequencing of the reverse transcription-PCR product from stimulated HL-60 cells. Kinetic studies after lipopolysaccharide stimulation show that NOS2 mRNA levels rise within 3 to 6 h, that conversion of [14C]arginine to [14C]citrulline is maximal at 5 to 6 days, and that levels of reactive nitrogen intermediates stabilize at around 20 μM at 7 to 8 days. We find that 1,25-D3 acts to suppress the growth of Mycobacterium tuberculosis in these cells and that this effect is inhibited by NG-monomethyl-l-arginine, suggesting that vitamin D-induced NO production may play a role in the host defense against human tuberculosis. PMID:9784538

  8. Novel Mechanism of Negative Regulation of 1,25-Dihydroxyvitamin D3-induced 25-Hydroxyvitamin D3 24-Hydroxylase (Cyp24a1) Transcription

    PubMed Central

    Seth-Vollenweider, Tanya; Joshi, Sneha; Dhawan, Puneet; Sif, Said; Christakos, Sylvia

    2014-01-01

    The SWI/SNF chromatin remodeling complex facilitates gene transcription by remodeling chromatin using the energy of ATP hydrolysis. Recent studies have indicated an interplay between the SWI/SNF complex and protein-arginine methyltransferases (PRMTs). Little is known, however, about the role of SWI/SNF and PRMTs in vitamin D receptor (VDR)-mediated transcription. Using SWI/SNF-defective cells, we demonstrated that Brahma-related gene 1 (BRG1), an ATPase that is a component of the SWI/SNF complex, plays a fundamental role in induction by 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) of the transcription of Cyp24a1 encoding the enzyme 25-hydroxyvitamin D3 24-hydroxylase involved in the catabolism of 1,25(OH)2D3. BRG1 was found to associate with CCAAT-enhancer-binding protein (C/EBP) β and cooperate with VDR and C/EBPβ in regulating Cyp24a1 transcription. PRMT5, a type II PRMT that interacts with BRG1, repressed Cyp24a1 transcription and mRNA expression. Our findings indicate the requirement of the C/EBP site for the inhibitory effect of PRMT5 via its methylation of H3R8 and H4R3. These findings indicate that the SWI/SNF complex and PRMT5 may be key factors involved in regulation of 1,25(OH)2D3 catabolism and therefore in the maintenance of calcium homeostasis by vitamin D. These studies also define epigenetic events linked to a novel mechanism of negative regulation of VDR-mediated transcription. PMID:25324546

  9. 1,25-Dihydroxyvitamin D3 Induces LL-37 and HBD-2 Production in Keratinocytes from Diabetic Foot Ulcers Promoting Wound Healing: An In Vitro Model

    PubMed Central

    Gonzalez-Curiel, Irma; Trujillo, Valentin; Montoya-Rosales, Alejandra; Rincon, Kublai; Rivas-Calderon, Bruno; deHaro-Acosta, Jeny; Marin-Luevano, Paulina; Lozano-Lopez, Daniel; Enciso-Moreno, Jose A.; Rivas-Santiago, Bruno

    2014-01-01

    Diabetic foot ulcers (DFU) are one of the most common diabetes-related cause of hospitalization and often lead to severe infections and poor healing. It has been recently reported that patients with DFU have lower levels of antimicrobial peptides (AMPs) at the lesion area, which contributes with the impairment of wound healing. The aim of this study was to determine whether 1,25-dihydroxyvitamin D3 (1,25 (OH)2 D3) and L-isoleucine induced HBD-2 and LL-37 in primary cultures from DFU. We developed primary cell cultures from skin biopsies from 15 patients with DFU and 15 from healthy donors. Cultures were treated with 1,25 (OH)2D3 or L-isoleucine for 18 h. Keratinocytes phenotype was identified by western blot and flow cytometry. Real time qPCR for DEFB4, CAMP and VDR gene expression was performed as well as an ELISA to measure HBD-2 and LL-37 in supernatant. Antimicrobial activity, in vitro, wound healing and proliferation assays were performed with conditioned supernatant. The results show that primary culture from DFU treated with 1,25(OH)2D3, increased DEFB4 and CAMP gene expression and increased the production of HBD-2 and LL-37 in the culture supernatant. These supernatants had antimicrobial activity over E. coli and induced remarkable keratinocyte migration. In conclusion the 1,25(OH)2D3 restored the production of AMPs in primary cell from DFU which were capable to improve the in vitro wound healing assays, suggesting their potential therapeutic use on the treatment of DFU. PMID:25337708

  10. Raf-1 signaling is required for the later stages of 1,25-dihydroxyvitamin D3-induced differentiation of HL60 cells but is not mediated by the MEK/ERK module.

    PubMed

    Wang, Xuening; Studzinski, George P

    2006-11-01

    We are interested in determining the signaling pathways for 1,25-dihydroxyvitamin D3 (1,25D)-induced differentiation of HL60 leukemic cells. One possible candidate is Raf-1, which is known to signal cell proliferation and neoplastic transformation through MEK, ERK, and downstream targets. It can also participate in the regulation of cell survival and various forms of cell differentiation, though the precise pathways are less well delineated. Here we report that Raf-1 has a role in monocytic differentiation of human myeloid leukemia HL60, which is not mediated by MEK and ERK, but likely by direct interaction with p90RSK. Specifically, we show that Raf-1 and p90RSK are increasingly activated in the later stages of differentiation of HL60 cells, at the same time as activation of MEK and ERK is decreasing. Transfection of a wild-type Raf-1 construct enhances 1,25D-induced differentiation, while antisense Raf-1 or short interfering (si) Raf-1 reduces 1,25D-induced differentiation. In contrast, antisense oligodeoxynucleotides (ODN) and siRNAs to MEK or ERK have no detectable effect on differentiation. In late stage differentiating cells Raf-1 and p90RSK are found as a complex, and inhibition of Raf-1, but not MEK or ERK expression reduces the levels of phosphorylated p90 RSK. These findings support the thesis that Raf-1 signals cell proliferation and cell differentiation through different intermediary proteins.

  11. Novel mechanism of negative regulation of 1,25-dihydroxyvitamin D3-induced 25-hydroxyvitamin D3 24-hydroxylase (Cyp24a1) Transcription: epigenetic modification involving cross-talk between protein-arginine methyltransferase 5 and the SWI/SNF complex.

    PubMed

    Seth-Vollenweider, Tanya; Joshi, Sneha; Dhawan, Puneet; Sif, Said; Christakos, Sylvia

    2014-12-01

    The SWI/SNF chromatin remodeling complex facilitates gene transcription by remodeling chromatin using the energy of ATP hydrolysis. Recent studies have indicated an interplay between the SWI/SNF complex and protein-arginine methyltransferases (PRMTs). Little is known, however, about the role of SWI/SNF and PRMTs in vitamin D receptor (VDR)-mediated transcription. Using SWI/SNF-defective cells, we demonstrated that Brahma-related gene 1 (BRG1), an ATPase that is a component of the SWI/SNF complex, plays a fundamental role in induction by 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) of the transcription of Cyp24a1 encoding the enzyme 25-hydroxyvitamin D3 24-hydroxylase involved in the catabolism of 1,25(OH)2D3. BRG1 was found to associate with CCAAT-enhancer-binding protein (C/EBP) β and cooperate with VDR and C/EBPβ in regulating Cyp24a1 transcription. PRMT5, a type II PRMT that interacts with BRG1, repressed Cyp24a1 transcription and mRNA expression. Our findings indicate the requirement of the C/EBP site for the inhibitory effect of PRMT5 via its methylation of H3R8 and H4R3. These findings indicate that the SWI/SNF complex and PRMT5 may be key factors involved in regulation of 1,25(OH)2D3 catabolism and therefore in the maintenance of calcium homeostasis by vitamin D. These studies also define epigenetic events linked to a novel mechanism of negative regulation of VDR-mediated transcription.

  12. The human cytomegalovirus lytic cycle is induced by 1,25-dihydroxyvitamin D3 in peripheral blood monocytes and in the THP-1 monocytic cell line.

    PubMed

    Wu, Shu-En; Miller, William E

    2015-09-01

    Human cytomegalovirus (HCMV) resides in a latent form in hematopoietic progenitors and undifferentiated cells within the myeloid lineage. Maturation and differentiation along the myeloid lineage triggers lytic replication. Here, we used peripheral blood monocytes and the monocytic cell line THP-1 to investigate the effects of 1,25-dihydroxyvitamin D3 on HCMV replication. Interestingly, 1,25-dihydroxyvitamin D3 induces lytic replication marked by upregulation of HCMV gene expression and production of infectious virus. Moreover, we demonstrate that the effects of 1,25-dihydroxyvitamin D3 correlate with maturation/differentiation of the monocytes and not by directly stimulating the MIEP. These results are somewhat surprising as 1,25-dihydroxyvitamin D3 typically boosts immunity to bacteria and viruses rather than driving the infectious life cycle as it does for HCMV. Defining the signaling pathways kindled by 1,25-dihydroxyvitamin D3 will lead to a better understanding of the underlying molecular mechanisms that determine the fate of HCMV once it infects cells in the myeloid lineage. PMID:25965798

  13. The human cytomegalovirus lytic cycle is induced by 1,25-dihydroxyvitamin D3 in peripheral blood monocytes and in the THP-1 monocytic cell line.

    PubMed

    Wu, Shu-En; Miller, William E

    2015-09-01

    Human cytomegalovirus (HCMV) resides in a latent form in hematopoietic progenitors and undifferentiated cells within the myeloid lineage. Maturation and differentiation along the myeloid lineage triggers lytic replication. Here, we used peripheral blood monocytes and the monocytic cell line THP-1 to investigate the effects of 1,25-dihydroxyvitamin D3 on HCMV replication. Interestingly, 1,25-dihydroxyvitamin D3 induces lytic replication marked by upregulation of HCMV gene expression and production of infectious virus. Moreover, we demonstrate that the effects of 1,25-dihydroxyvitamin D3 correlate with maturation/differentiation of the monocytes and not by directly stimulating the MIEP. These results are somewhat surprising as 1,25-dihydroxyvitamin D3 typically boosts immunity to bacteria and viruses rather than driving the infectious life cycle as it does for HCMV. Defining the signaling pathways kindled by 1,25-dihydroxyvitamin D3 will lead to a better understanding of the underlying molecular mechanisms that determine the fate of HCMV once it infects cells in the myeloid lineage.

  14. 1,25-dihydroxyvitamin D sub 3 up-regulates the 1,25-dihydroxyvitamin D sub 3 receptor in vivo

    SciTech Connect

    Strom, M.; Sandgren, M.E.; Brown, T.A.; DeLuca, H.F. )

    1989-12-01

    The level of mRNA encoding the 1,25-dihydroxyvitamin D{sub 3} receptor in the intestine of vitamin D-deficient rats given 1,25-dihydroxyvitamin D{sub 3} was determined by Northern blot analysis using a {sup 32}P-labeled cDNA probe to the 1,25-dihydroxyvitamin D{sub 3} receptor. mRNA levels increased 10-fold above deficiency levels at 6 and 12 hr after an intravenous dose of 1,25-dihydroxyvitamin D{sub 3}, returning to predosing levels at 24 hr. Total receptor protein level determined by an immunoradiometric assay was increased 2-fold at 12 hr. No change in unoccupied receptor levels determined by ligand-binding assay was observed during this period. These results suggest that 1,25-dihydroxyvitamin D{sub 3} increases receptor mRNA and total receptor level to maintain constant levels of unoccupied receptor.

  15. Biological activity of 1,25-dihydroxyvitamin D sub 2 and 24-epi-1,25-dihydroxyvitamin D sub 2

    SciTech Connect

    DeLuca, H.F.; Sicinski, R.R.; Tanaka, Y.; Stern, P.H.; Smith, C.M. Northwestern Univ., Chicago, IL )

    1988-04-01

    The biological activity of 1,25-dihydroxyvitamin D{sub 2} (1,25(OH){sub 2}D{sub 2}) and 24-epi-1,25-dihydroxyvitamin D{sub 2} (24-epi-1,25(OH){sub 2}D{sub 2}) has been determined in vitamin D-deficient rats. The biological effectiveness of 1,25(OH){sub 2}D{sub 2} is equal to that reported previously for 1,25-dihydroxyvitamin D{sub 3} (1,25(OH){sub 2}D{sub 3}) in intestinal calcium transport, mineralization of bone, mobilization of bone calcium, and elevation of plasma inorganic phosphorus of rachitic rats. However, 24-epi-1,25(OH){sub 2}D{sub 2} is at best one-half as active as 1,25(OH){sub 2}D{sub 2} in stimulating intestinal calcium transport and in the mineralization of rachitic bone. The 24-epi-1,25(OH){sub 2}D{sub 2} is one-third as active as 1,25(OH){sub 2}D{sub 3} in binding to the chick intestinal receptor for 1,25(OH){sub 2}D{sub 3}. Thus receptor discrimination may account for the twofold difference in intestinal calcium transport activity. 24-Epi-1,25(OH){sub 2}D{sub 2} appeared inactive in in vivo mobilization of bone calcium or bone phosphorus. On the other hand, in fetal rat bone culture, the epi compound was only five times less active than 1,25(OH){sub 2}D{sub 2} in inducing resorption. Short-term experiments on bone mineral mobilization in vivo show that the 24-epi-1,25(OH){sub 2}D{sub 2} does induce bone calcium mobilization but that its activity in this respect is short lived. It is suggested that 24-epi-1,25(OH){sub 2}D{sub 2} is more rapidly degraded in vivo than 1,25(OH){sub 2}D{sub 2}, and, as a result, it shows preferential activity on intestine whose response to a single dose of 1,25(OH){sub 2}D{sub 2} remains for several days, whereas the short-lived bone system does not remain stimulated during the 24-h period between doses.

  16. Retinoic acid and 1,25-dihydroxyvitamin D3 stimulate osteoclast formation by different mechanisms

    SciTech Connect

    Scheven, B.A.; Hamilton, N.J. )

    1990-01-01

    The effects of retinoic acid (RA) and 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3) on osteoclast formation were examined in intact fetal long bones of different ages/developmental stages maintained in organ culture using a chemically defined medium with or without the presence of serum. Besides stimulating bone resorption, RA and 1,25-(OH)2D3 increased the number of osteoclasts in 19-day-old fetal rat tibiae. Likewise, these bone-resorbing agents induced and stimulated osteoclast formation in 19- and 18-day-old metatarsal bones which were osteoclast-free at the beginning of the culture. The response to 1,25-(OH)2D3 was greatly enhanced by 10% fetal bovine serum (FBS) irrespective of the developmental stage of the long bone. The response to RA was not. Light microscopic autoradiography after labeling of the cultures with tritiated thymidine showed that both RA and 1,25-(OH)2D3 induced osteoclast differentiation from proliferating and postmitotic precursors. However, neither agent was able to stimulate proliferation of osteoclast progenitor cells in the older bones (19 days). Studies on the formation of osteoclast-like (tartrate-resistant acid phosphatase positive) cells in bone marrow cultures indicated that FBS was a potent inducer of osteoclast-like cell formation. In the presence of FBS, 1,25-(OH)2D3 significantly stimulated this response, but RA did not. The results demonstrate that although both RA and 1,25-(OH)2D3 stimulate osteoclast formation from proliferating and postmitotic precursors in long bones in vitro, they do so by different mechanisms.

  17. Skeletal unloading decreases production of 1,25-dihydroxyvitamin D

    NASA Technical Reports Server (NTRS)

    Halloran, B. P.; Bikle, D. D.; Harris, J.; Foskett, H. C.; Morey-Holton, E.

    1993-01-01

    The plasma concentration of 1,25-dihydroxyvitamin D [1,25(OH)2D] decreases during skeletal unloading and increases when normal weight bearing is restored. To determine whether these changes in plasma 1,25(OH)2D reflect changes in production, metabolic clearance, or both we measured the kinetics of 1,25(OH)2D metabolism in rats whose skeletons were normally loaded, unloaded, or reloaded after a period of nonweight bearing. Skeletal unloading produced a transient but striking fall in the production (-73%) and plasma concentration (-72%) of 1,25(OH)2D without having a significant effect (< 20%) on metabolic clearance. Skeletal reloading returned production to normal. Bone formation predictably decreased during unloading and returned to normal after return to weight bearing. No consistent changes in blood ionized calcium, plasma immunoreactive parathyroid hormone (irPTH), or plasma phosphorus occurred. These data suggest that the changes in plasma 1,25-(OH)2D associated with changes in skeletal weight bearing primarily reflect changes in 1,25(OH)2D production. The data provide no evidence that the changes in 1,25(OH)2D production are a consequence of changes in blood ionized calcium, plasma irPTH, or phosphorus.

  18. Isotopic labeling affects 1,25-dihydroxyvitamin D metabolism

    SciTech Connect

    Halloran, B.P.; Bikle, D.D.; Castro, M.E.; Gee, E.

    1989-02-07

    Isotope substitution can change the biochemical properties of vitamin D. To determine the effect of substituting 3H for 1H on the metabolism of 1,25(OH)2D3, we measured the metabolic clearance rate and renal metabolism of unlabeled and 3H-labeled 1,25(OH)2D3. Substitution of 3H for 1H on carbons 26 and 27 (1,25(OH)2(26,27(n)-3H)D3) or on carbons 23 and 24 (1,25(OH)2(23,24(n)-3H)D3) reduced the in vivo metabolic clearance rate of 1,25(OH)2D3 by 36% and 37%, respectively, and reduced the in vitro renal catabolism of 1,25(OH)2D3 by 11% and 54%, respectively. Substitutions of 3H for 1H on carbons 23 and 24 as opposed to carbons 26 and 27 reduced conversion of (3H)1,25(OH)2D3 to (3H)1,24,25(OH)2D3 by 25% and to putative 24-oxo-1,23,25-dihydroxyvitamin D3 by 1600%. These results indicate that substitution of 3H for 1H on carbons 26 and 27 or on carbons 23 and 24 can reduce the metabolic clearance rate and in vitro metabolism of 1,25(OH)2D3 and quantitatively alter the pattern of metabolic products produced.

  19. Interleukin-1α mediates the antiproliferative effects of 1,25-dihydroxyvitamin D3 in prostate progenitor/stem cells.

    PubMed

    Maund, Sophia L; Barclay, Wendy W; Hover, Laura D; Axanova, Linara S; Sui, Guangchao; Hipp, Jason D; Fleet, James C; Thorburn, Andrew; Cramer, Scott D

    2011-08-01

    Vitamin D(3) is a promising preventative and therapeutic agent for prostate cancer, but its implementation is hampered by a lack of understanding about its mechanism of action. Upon treatment with 1α,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3), vitamin D(3)], the metabolically active form of vitamin D(3), adult prostate progenitor/stem cells (PrP/SC) undergo cell-cycle arrest, senescence, and differentiation to an androgen receptor-positive luminal epithelial cell fate. Microarray analyses of control- and vitamin D(3)-treated PrP/SCs revealed global gene expression signatures consistent with induction of differentiation. Interestingly, one of the most highly upregulated genes by vitamin D(3) was the proinflammatory cytokine interleukin-1α (IL-1α). Systems biology analyses supported a central role for IL-1α in the vitamin D(3) response in PrP/SCs. siRNA-mediated knockdown of IL-1α abrogated vitamin D(3)-induced growth suppression, establishing a requirement for IL-1α in the antiproliferative effects of vitamin D(3) in PrP/SCs. These studies establish a system to study the molecular profile of PrP/SC differentiation, proliferation, and senescence, and they point to an important new role for IL-1α in vitamin D(3) signaling in PrP/SCs.

  20. Diminished internalization and action of 1,25-dihydroxyvitamin D3 in dermal fibroblasts cultured from New World primates

    SciTech Connect

    Adams, J.S.; Gacad, M.A.; Baker, A.J.; Kheun, G.; Rude, R.K.

    1985-06-01

    We investigated the occurrence of 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3)-resistant osteomalacia in the New World primate colony of Saguinus imperator at the Los Angeles Zoo. The mean serum concentration of 1,25-(OH)2D3 was elevated 5-fold in the New World primates compared to that in their Old World counterparts. The specific internalization of 0.6 nM (/sup 3/H)1,25-(OH)2D3 by cultured dermal fibroblasts from New World primates was reduced 75% compared to that by cells from Old World primates or man. The decrease in hormone uptake resulted from a decrease in the number of high affinity intracellular binding sites for 1,25-(OH)2D3 and apparently caused a 90-95% reduction in 1,25-(OH)2D3-induced 25-hydroxyvitamin-D3-24-hydroxylase activity. There was no alteration in the capacity or avidity of New World primate serum for 1,25-(OH)2D3 compared to that of serum from Old World primates. These data suggest that the occurrence of vitamin D-resistant osteomalacia in New World primates is the result of decreased high affinity, receptor-mediated uptake of 1,25-(OH)2D3 by the target cell.

  1. Activation of the fructose 1,6-bisphosphatase gene by 1,25-dihydroxyvitamin D3 during monocytic differentiation.

    PubMed Central

    Solomon, D H; Raynal, M C; Tejwani, G A; Cayre, Y E

    1988-01-01

    Cells from the human leukemia cell line HL-60 undergo terminal monocyte-like differentiation after exposure to either the active circulating form of vitamin D3, 1,25-dihydroxyvitamin D3 [1,25-(OH)2D3], or phorbol 12-myristate 13-acetate. Little is known about the genes that regulate monocytic differentiation. Using clonal variant cells of HL-60 origin, we constructed a cDNA library enriched for genes that are induced by 1,25-(OH)2D3. We now report that in HL-60, the fructose 1,6-bisphosphatase (FBPase; D-fructose-1,6-bisphosphate 1-phosphohydrolase, EC 3.1.3.11) gene is activated during 1,25-(OH)2D3-induced monocytic differentiation. This gene encodes two closely related mRNAs; one, activated by 1,25-(OH)2D3 at an early stage of HL-60 differentiation, encodes a protein that has homology to mammalian FBPase, a key enzyme in gluconeogenesis, although it does not exhibit its classical enzymatic activity. A second mRNA is activated by 1,25-(OH)2D3 mainly in peripheral blood monocytes. This mRNA is present in kidney as a unique transcript and encodes a protein with FBPase activity. Our data also show that this FBPase-encoding mRNA can be activated during monocytic maturation since it was detected in human alveolar macrophages. Images PMID:2842796

  2. Metabolism and pharmacokinetics of 24,25-dihydroxyvitamin D3 in the vitamin D3-replete rat

    SciTech Connect

    Jarnagin, K.; Zeng, S.Y.; Phelps, M.; DeLuca, H.F.

    1985-11-05

    The time course of in vivo metabolism of 24,25-dihydroxyvitamin D3 in rats has been examined. Several tissues were surveyed in an effort to discover new metabolites of 24,25-dihydroxyvitamin D3 and to estimate the concentrations of previously identified metabolites. Rapidly growing male rats were dosed with 24,25-dihydroxyvitamin D3 orally until plasma concentrations of 24,25-dihydroxyvitamin D3 were at steady state. 24,25-Dihydroxyvitamin (3-TH)D3 was then administered. At 10 min and 1, 6, 15, 24, 96, and 192 h after dosing, the animals were killed, and plasma, liver, intestine, and bones were analyzed with a newly developed gradient straight-phase high performance liquid chromatography system. The high performance liquid chromatography system is capable of base-line resolution of most of the major vitamin D metabolites. 24,25-Dihydroxyvitamin D3 clearance from plasma, liver, and kidney but not intestine followed a two-compartment model. 24,25-Dihydroxyvitamin D3 disappeared from plasma with a half-life of 0.55 h (fast phase) and 73.8 h (slow phase). Only two lipid-soluble metabolites of 24,25-dihydroxyvitamin D3 were detected: 24-oxo-25-hydroxyvitamin D3 and 1,24,25-trihydroxyvitamin D3. These compounds circulate at very low concentrations in the plasma (50 pg/ml of plasma).

  3. 1,25-Dihydroxyvitamin D3 activates Raf kinase and Raf perinuclear translocation via a protein kinase C-dependent pathway.

    PubMed

    Lissoos, T W; Beno, D W; Davis, B H

    1993-11-25

    1,25-Dihydroxyvitamin D3's (D3) potential mitogenic mechanism of action was pursued in cultured rat hepatic Ito cells, a fibrogenic effector cell which proliferates in vivo during liver injury and fibrogenesis. D3 stimulated Ito cell DNA synthesis and potentiated platelet-derived growth factor-induced mitogenesis. D3's enhancement of [3H]thymidine incorporation was associated with nuclear Egr expression. Recent studies have causally linked the activated proto-oncogene c-Raf with downstream Egr induction. The serine-threonine kinase Raf protein is phosphorylation-activated by a large array of agonists including plasma membrane and cytoplasmic tyrosine kinases but has not previously been associated with the steroid superfamily of mediators. To consider potential prenuclear acute pathways of D3-induced stimulation, the activation of Raf was examined following D3 exposure. D3 induced Raf activation as assessed via (a) enhanced Raf phosphorylation following in vivo 32P labeling, (b) enhanced kinase function utilizing exogenous histone 1 protein as substrate, and (c) the shift in Raf physical localization changing from a diffuse cytoplasmic distribution to a perinuclear domain. A similar activation of Raf kinase was found in 3T3 cells exposed to D3 with enhanced histone phosphorylation detectable within 1 min following stimulation. The proximal cascade leading to Raf kinase activation may involve a protein kinase activity was severely attenuated by stimulated kinase activity was severely attenuated by previous phorbol ester treatment for 20 h or staurosporine pretreatment.

  4. Familial vitamin D resistant rickets: End-organ resistance to 1,25-dihydroxyvitamin D.

    PubMed

    Choudhury, Sangita; Jebasingh, K Felix; Ranabir, Salam; Singh, Th Premchand

    2013-10-01

    Rickets is softening of bones due to defective mineralization of cartilage in the epiphyseal growth plate, leading to widening of ends of long bones, growth retardation, and skeletal deformities in children. The predominant cause is deficiency or impaired metabolism of vitamin D. The observation that some forms of rickets could not be cured by regular doses of vitamin D, led to the discovery of rare inherited abnormalities of vitamin D metabolism or vitamin D receptor. Vitamin D dependent rickets (VDDR) is of two types: Type I is due to defective renal tubular 25-hydroxyvitamin D 1-α hydroxylase and type II is due to end-organ resistance to active metabolite of vitamin D. Typical signs are observed from the first month of life. The patient with rickets described below had markedly increased serum alkaline phosphatase and 1,25-dihydroxyvitamin D. We attribute these abnormalities to impaired end-organ responsiveness to 1,25-dihydroxyvitamin D.

  5. Impaired 1,25-dihydroxyvitamin D production in pregnancy-induced hypertension.

    PubMed

    Frølich, A; Rudnicki, M; Storm, T; Rasmussen, N; Hegedüs, L

    1992-10-23

    The aim of the study was to evaluate the calcium metabolism in pregnancy-induced hypertension. Fifty-three women with pregnancy-induced hypertension were studied and the control groups comprised 20 women with uncomplicated pregnancies in the third trimester and 51 non-pregnant women, respectively. The mean serum concentrations of 1,25-dihydroxyvitamin D in women with pregnancy-induced hypertension was low (38.6 +/- 21.4 pg/ml) compared to women with uncomplicated pregnancies (91.0 +/- 18.2 pg/ml), but comparable to levels in non-pregnant women (32.2 +/- 11.9 pg/ml). Mean serum levels of PTH and ionized calcium were comparable in women with pregnancy-induced hypertension and women with uncomplicated pregnancies. In conclusion, the calcium metabolism in pregnancy-induced hypertension was changed compared to uncomplicated pregnancies with respect to the serum concentration of 1,25-dihydroxyvitamin D. PMID:1426508

  6. Reduced serum levels of 1 alpha,25-dihydroxyvitamin D during long-term total parenteral nutrition.

    PubMed

    Klein, G L; Horst, R L; Norman, A W; Ament, M E; Slatopolsky, E; Coburn, J W

    1981-05-01

    Painful bone disease, characterized by patchy osteomalacia and inactive bone, can develop in patients treated with total parenteral nutrition for more than 3 months. Serum levels of 1 alpha,25-dihydroxyvitamin D (1 alpha, 25(OH)2D), 24,25-dihydroxyvitamin D and 25-hydroxyvitamin D were measured in seven adults and five children treated with parenteral nutrition for 9 to 60 months. Serum levels of 1 alpha, 25(OH)2D were markedly reduced, while levels of 25-hydroxyvitamin D and 24,25-dihydroxyvitamin D were normal. Serum calcium and phosphorus levels were normal or slightly increased, and immunoreactive parathyroid hormone levels were normal or low. Renal function was normal or minimally reduced. Skeletal symptoms disappeared and serum 1 alpha, 25(OH)2D levels rose to normal in one patient when nutrient infusions were discontinued for 6 weeks. Removal of calcium from the nutrient solution for 2 to 4 days was associated with no change in serum 1 alpha, 25(OH)2D in two patients. The cause of the reduction in serum levels of 1 alpha, 25(OH)2D and its role in the pathogenesis of bone disease in these patients remain uncertain. PMID:6786151

  7. Specific 1,25-dihydroxyvitamin D/sub 3/ binding macromolecule in chicken bone

    SciTech Connect

    Mellon, W.S.; DeLuca, H.F.

    1980-05-10

    Cytosol prepared from homogenates of bone from vitamin D/sub 3/-deficient chicks contains a 3.7 S macromolecule having high affinity and low capacity for 1,25-dihydroxyvitamin D/sub 3/. Employing 1,25-dihydroxy-(26,27-/sup 3/H)vitamin D/sub 3/ (160 Ci/mmol) an apparent K/sub d/ has been calcuated to be 7.6 x 10/sup -11/ M while the association and dissociation rate constants for the binding process at 25/sup 0/C were determined to be 9.5 x 10/sup 8/ M/sup -1/min/sup -1/ and 2.3 x 10/sup -2/ min/sup -1/, respectively. A 5.5 S molecule is also present which binds 1,25-dihydroxyvitamin D/sub 3/ and 25-hydroxyvitamin D/sub 3/ but appears to prefer 25-hydroxyvitamin D/sub 3/ and is increased by the addition of chick serum to cytosol. The 3.7 S material is neither a serum contaminant nor a component of the 5.5 S molecular species and is likely of intracellular origin. Under low salt conditions the 3.7 S macromolecule migrates to 4.3 S and 5.5 S regions on sucrose gradients suggesting aggregation of the protein. Several vitamin D/sub 3/ metabolites are capable of specifically binding to the 3.7 S macromolecule. The relative order of potency for several analogs causing displacement of specifically bound 1,25-dihydroxy-(26,27-/sup 3/H)vitamin D/sub 3/ is: 1,25-dihydroxyvitamin D/sub 3/ > 1 ..cap alpha..-hydroxyvitamin D/sub 3/ greater than or equal to 25-hydroxyvitamin D/sub 3/ > 24(R),25-dihydroxyvitamin D/sub 3/. It is concluded that chick bone cytosol contains a macromolecule of high affinity and low capacity for 1,25-dihydroxyvitamin D/sub 3/ which may function as a receptor for some physiological events in bone.

  8. Conversion of 25-hydroxyvitamin D3 to 1,25-dihydroxyvitamin D3 and 24,25-dihydroxyvitamin D3 in renal slices from the rat

    SciTech Connect

    Armbrecht, H.J.; Zenser, T.V.; Davis, B.B.

    1981-07-01

    Isolated renal cortical slices were used to study the conversion of 25-hydroxyvitamin D3 to 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3) and 24,25-dihydroxyvitamin D3 (24,25)(OH2)D3) by the rat kidney. Production of 1,25-(OH)2D3 and 24,25-(OH)2D3 was linear with time (30-90 min) and tissue weight (40-250 mg). Production of 1,25-(OH)2D3 was greatest (134 +/- 17 pg/mg tissue.h) in animals fed a low calcium, vitamin D-deficient diet. The greatest 24,25-(OH)2D3 production (106 +/- 17 pg/mg tissue.h) was seen in animals fed a high calcium, vitamin D-replete diet, 1,25-(OH)2D3 production was reduced to 23% of maximum by the addition of 1.2% calcium or 0.8% strontium to the vitamin D-deficient, low calcium diet. Production of 1,25-(OH)2D3 and 24,25-(OH)2D3 was greatly reduced in renal cortical slices that had been heated before incubation. Slices of renal medulla produced only small amounts of 1,25-(OH)2D3 compared to slices of renal cortex. These studies provide direct evidence for the production of 1,25-(OH)2D3 and 24,25-(OH)2D3 by the mammalian renal cortex. They also demonstrate that this production may be modulated by dietary calcium, strontium, and vitamin D.

  9. Expression of nephronectin is enhanced by 1α,25-dihydroxyvitamin D3.

    PubMed

    Hiranuma, Katsuhiro; Yamada, Atsushi; Kurosawa, Tamaki; Aizawa, Ryo; Suzuki, Dai; Saito, Yoshiro; Nagahama, Ryo; Ikehata, Mikiko; Tsukasaki, Masayuki; Morimura, Naoko; Chikazu, Daichi; Maki, Koutaro; Shirota, Tatsuo; Takami, Masamichi; Yamamoto, Matsuo; Iijima, Takehiko; Kamijo, Ryutaro

    2016-09-01

    The extracellular matrix protein nephronectin (Npnt), also called POEM, is considered to play critical roles as an adhesion molecule in development and functions of various tissues, such as the kidneys, liver, and bone. In the present study, we examined the molecular mechanism of Npnt gene expression and found that vitamin D3 (1α,25-dihydroxyvitamin D3,VD 3) strongly enhanced Npnt mRNA expression in MC3T3-E1 cells from a mouse osteoblastic cell line. The VD 3-induced increase in Npnt expression is both time- and dose-dependent and is mediated by the vitamin D receptor (VDR). PMID:27642554

  10. 1,25-dihydroxyvitamin D3 stimulates transforming growth factor-beta1 synthesis by mouse renal proximal tubular cells.

    PubMed

    Weinreich, T; Landolt, M; Booy, C; Wüthrich, R; Binswanger, U

    1999-01-01

    1,25-dihydroxyvitamin D3 [1,25-(OH)2 D3] is a secosteroid hormone with effects on cell growth, differentiation and immunoregulatory functions in a number of tissues not primarily involved in mineral metabolism. We recently demonstrated growth-regulating effects of 1, 25-(OH)2 D3 on human mesangial cells and proximal tubular cells. To investigate whether 1,25-(OH)2 D3 might also affect the synthesis of cytokines and growth factors in proximal tubular cells, we assessed in the present study the expression and secretion of transforming growth factor-beta1 (TGF-beta1) in a mouse proximal tubular cell line (MCT) in vitro. TGF-beta1 synthesis was measured by a monospecific ELISA in culture supernatant. The secreted TGF-beta1 was proven to be biologically active by means of a bioassay system (CCL-64 mink lung epithelial cell proliferation assay). TGF-beta1 gene expression was assessed by RT-PCR. To analyze whether TGF-beta1 expression mediates the 1,25-(OH)2 D3-induced antiproliferative actions in MCT, proliferation studies in the absence or presence of a blocking monoclonal anti TGF-beta1-3 antibody were performed. 1, 25-(OH)2 D3 (10(-11) to 10(-7) M) specifically increased the TGF-beta1 protein secretion in MCT with a maximum at 10(-8) M. No detectable effect was found with 25 D3 at 10 times higher concentrations. A synthetic 20-epi analogue, MC 1288, increased TGF-beta1 secretion up to similar amounts at equimolar concentrations as the natural hormone 1,25-(OH)2 D3. Steady-state TGF-beta1 mRNA concentration in MCT was transiently increased by 1, 25-(OH)2 D3 between 12 and 24 h, returning to control values at 48 h. Blocking TGF-beta1 did not reduce or abrogate the antiproliferative effect of 1,25-(OH)2 D3. In conclusion, 1,25-(OH)2 D3 stimulates TGF-beta1 expression in renal proximal tubular cells, a growth factor with anti-inflammatory and profibrotic actions which plays an important role in the development and progression of nephrosclerosis. PMID:10394107

  11. Primary Human Osteoblasts in Response to 25-Hydroxyvitamin D3, 1,25-Dihydroxyvitamin D3 and 24R,25-Dihydroxyvitamin D3

    PubMed Central

    van der Meijden, Karen; Lips, Paul; van Driel, Marjolein; Heijboer, Annemieke C.; Schulten, Engelbert A. J. M.; den Heijer, Martin; Bravenboer, Nathalie

    2014-01-01

    The most biologically active metabolite 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) has well known direct effects on osteoblast growth and differentiation in vitro. The precursor 25-hydroxyvitamin D3 (25(OH)D3) can affect osteoblast function via conversion to 1,25(OH)2D3, however, it is largely unknown whether 25(OH)D3 can affect primary osteoblast function on its own. Furthermore, 25(OH)D3 is not only converted to 1,25(OH)2D3, but also to 24R,25-dihydroxyvitamin D3 (24R,25(OH)2D3) which may have bioactivity as well. Therefore we used a primary human osteoblast model to examine whether 25(OH)D3 itself can affect osteoblast function using CYP27B1 silencing and to investigate whether 24R,25(OH)2D3 can affect osteoblast function. We showed that primary human osteoblasts responded to both 25(OH)D3 and 1,25(OH)2D3 by reducing their proliferation and enhancing their differentiation by the increase of alkaline phosphatase, osteocalcin and osteopontin expression. Osteoblasts expressed CYP27B1 and CYP24 and synthesized 1,25(OH)2D3 and 24R,25(OH)2D3 dose-dependently. Silencing of CYP27B1 resulted in a decline of 1,25(OH)2D3 synthesis, but we observed no significant differences in mRNA levels of differentiation markers in CYP27B1-silenced cells compared to control cells after treatment with 25(OH)D3. We demonstrated that 24R,25(OH)2D3 increased mRNA levels of alkaline phosphatase, osteocalcin and osteopontin. In addition, 24R,25(OH)2D3 strongly increased CYP24 mRNA. In conclusion, the vitamin D metabolites 25(OH)D3, 1,25(OH)2D3 and 24R,25(OH)2D3 can affect osteoblast differentiation directly or indirectly. We showed that primary human osteoblasts not only respond to 1,25(OH)2D3, but also to 24R,25(OH)2D3 by enhancing osteoblast differentiation. This suggests that 25(OH)D3 can affect osteoblast differentiation via conversion to the active metabolite 1,25(OH)2D3, but also via conversion to 24R,25(OH)2D3. Whether 25(OH)D3 has direct actions on osteoblast function needs further

  12. Interleukin-1 alpha mediates the anti-proliferative effects of 1,25 dihydroxyvitamin D3 in prostate progenitor/stem cells

    PubMed Central

    Maund, Sophia L.; Barclay, Wendy W.; Hover, Laura D.; Axanova, Linara S.; Sui, Guangchao; Hipp, Jason D.; Fleet, James C.; Thorburn, Andrew; Cramer, Scott D.

    2011-01-01

    Vitamin D3 is a promising preventative and therapeutic agent for prostate cancer, but its implementation is hampered by a lack of understanding about its mechanism of action. Upon treatment with 1α,25 dihydroxyvitamin D3 (vitamin D3), the metabolically active form of vitamin D3, adult prostate progenitor/stem cells (PrP/SC) undergo cell-cycle arrest, senescence, and differentiation to an androgen receptor-positive luminal epithelial cell fate. Microarray analyses of control- and vitamin D3-treated PrP/SC revealed global gene expression signatures consistent with induction of differentiation. Interestingly, one of the most highly-upregulated genes by vitamin D3 was the pro-inflammatory cytokine interleukin-1 alpha (IL1α). Systems biology analyses supported a central role for IL1α in the vitamin D3 response in PrP/SC. siRNA-mediated knockdown of IL1α abrogated vitamin D3-induced growth suppression, establishing a requirement for IL1α in the anti-proliferative effects of vitamin D3 in PrP/SC. These studies establish a system to study the molecular profile of PrP/SC differentiation, proliferation, and senescence, and they point to an important new role for IL1α in vitamin D3 signaling in prostate progenitor/stem cells. PMID:21653679

  13. Effect of simulated weightlessness and chronic 1,25-dihydroxyvitamin D administration on bone metabolism

    NASA Technical Reports Server (NTRS)

    Halloran, B. P.; Bikle, D. D.; Globus, R. K.; Levens, M. J.; Wronski, T. J.; Morey-Holton, E.

    1985-01-01

    Weightlessness, as experienced during space flight, and simulated weightlessness induce osteopenia. Using the suspended rat model to simulate weightlessness, a reduction in total tibia Ca and bone formation rate at the tibiofibular junction as well as an inhibition of Ca-45 and H-3-proline uptake by bone within 5-7 days of skeletal unloading was observed. Between days 7 and 15 of unloading, uptake of Ca-45 and H-3-proline, and bone formation rate return to normal, although total bone Ca remains abnormally low. To examine the relationship between these characteristic changes in bone metabolism induced by skeletal unloading and vitamin D metabolism, the serum concentrations of 25-hydroxyvitamin D (25-OH-D), 24, 25-dihydroxyvitamin D (24,25(OH)2D) and 1,25-dihydroxyvitamin D (1,25(OH)2D) at various times after skeletal unloading were measured. The effect of chronic infusion of 1,25(OH)2D3 on the bone changes associated with unloading was also determined.

  14. Hypercalcemia from metastatic pancreatic neuroendocrine tumor secreting 1,25-dihydroxyvitamin D

    PubMed Central

    Zhu, Viola; de las Morenas, Antonio; Janicek, Milos

    2014-01-01

    Malignant hypercalcemia occurs in about 20-30% of patients with cancer, both solid tumors and hematologic malignancies. The secretion of parathyroid hormone-related protein (PTH-rP) is the most common cause and has been shown to be the etiology of hypercalcemia associated with neuroendocrine tumors. Here we report the case of a patient with metastatic pancreatic neuroendocrine tumor who developed hypercalcemia more than 4 years after the initial diagnosis as a result of secretion of 1,25-dihydroxyvitamin D, a mechanism only commonly seen in lymphomas. The successful control of the patient’s disease with capecitabine and temozolomide led to the alleviation of this paraneoplastic syndrome. PMID:25083313

  15. A humanized mouse model of hereditary 1,25-dihydroxyvitamin D-resistant rickets without alopecia.

    PubMed

    Lee, Seong Min; Goellner, Joseph J; O'Brien, Charles A; Pike, J Wesley

    2014-11-01

    The syndrome of hereditary 1,25-dihydroxyvitamin D-resistant rickets (HVDRR) is a genetic disease of altered mineral homeostasis due to mutations in the vitamin D receptor (VDR) gene. It is frequently, but not always, accompanied by the presence of alopecia. Mouse models that recapitulate this syndrome have been prepared through genetic deletion of the Vdr gene and are characterized by the presence of rickets and alopecia. Subsequent studies have revealed that VDR expression in hair follicle keratinocytes protects against alopecia and that this activity is independent of the protein's ability to bind 1,25-dihydroxyvitamin D3 [1,25(OH)2D3]. In the present study, we introduced into VDR-null mice a human VDR (hVDR) bacterial artificial chromosome minigene containing a mutation that converts leucine to serine at amino acid 233 in the hVDR protein, which prevents 1,25(OH)2D3 binding. We then assessed whether this transgene recreated features of the HVDRR syndrome without alopecia. RT-PCR and Western blot analysis in one strain showed an appropriate level of mutant hVDR expression in all tissues examined including skin. The hVDR-L233S mutant failed to rescue the aberrant systemic and skeletal phenotype characteristic of the VDR null mouse due to the inability of the mutant receptor to activate transcription after treatment with 1,25(OH)2D3. Importantly, however, neither alopecia nor the dermal cysts characteristic of VDR-null mice were observed in the skin of these hVDR-L233S mutant mice. This study confirms that we have created a humanized mouse model of HVDRR without alopecia that will be useful in defining additional features of this syndrome and in identifying potential novel functions of the unoccupied VDR.

  16. 1,25-Dihydroxyvitamin D3 stimulates rat osteoblastic cells to release a soluble factor that increases osteoclastic bone resorption.

    PubMed Central

    McSheehy, P M; Chambers, T J

    1987-01-01

    Although 1,25-dihydroxyvitamin D3 stimulates osteoclastic bone resorption in vivo and in organ culture, the mechanism by which it effects this stimulation is unknown. We have recently found that the agent does not stimulate resorption by osteoclasts mechanically disaggregated from bone and incubated on slices of cortical bone. This suggests that the osteoclasts were removed by disaggregation from the influence of some cell type, present in intact bone, that mediates hormone responsiveness. We therefore tested the ability of osteoblastic cells derived from neonatal rat calvariae and of cloned, hormone-responsive osteosarcoma cells (UMR106) to restore hormone responsiveness to unresponsive populations of osteoclasts. We found that osteoblastic cells from both sources induced a two- to fourfold stimulation of osteoclastic bone resorption in the presence of 1,25-dihydroxyvitamin D3. Stimulation was observed at concentrations of 10(-10) M and above. Actinomycin D and cycloheximide did not affect bone resorption by osteoclasts incubated alone, but abolished the capacity of osteoblastic cells to stimulate osteoclastic resorption in the presence of 1,25-dihydroxyvitamin D3. When calvarial cells or osteoblastlike UMR cells were incubated with the hormone, they produced a factor in cell-free supernatants that stimulated bone resorption by disaggregated osteoclasts. These experiments suggest that 1,25-dihydroxyvitamin D3 stimulates bone resorption through a primary action on osteoblastic cells, that are induced by the hormone to produce a factor that stimulates osteoclastic bone resorption. PMID:3611354

  17. Targeted delivery of 1,25-dihydroxyvitamin D3 to colon tissue and identification of a major 1,25-dihydroxyvitamin D3 glycoside from Solanumglaucophyllum plant leaves.

    PubMed

    Zimmerman, Duane R; Koszewski, Nicholas J; Hoy, Derrel A; Goff, Jesse P; Horst, Ronald L

    2015-04-01

    Leaves of the Solanum glaucophyllum (Sg) plant, indigenous to South America, have long been known for their calcinogenic toxicity in ruminant animals. It was determined the leaves contained glycosidic derivatives of 1,25-dihydroxyvitamin D3 (1,25D3) and liberation of the free hormone by rumen bacterial populations elicited a hypercalcemic response. Our interest in the leaves is predicated on the concept that the glycoside forms of 1,25D3 would target release of the active hormone in the lower gut of non-ruminant mammals. This would provide a means of delivering 1,25D3 directly to the colon, where the hormone has been shown to have beneficial effects in models of inflammatory bowel disease (IBD) and colon cancer. We fed mice for 10 days with variable amounts of Sg leaf. Feeding 7-333μg leaf/day produced no changes in plasma Ca(2+) and 1,25D3 concentrations, and only at ≥1000μg leaf/day did these values become significantly elevated compared to controls. Gene expression studies from colon tissue indicated a linear relationship between the amount of leaf consumed and expression of the Cyp24a1 gene. In contrast, Cyp24a1 gene expression in the duodenums and ileums of these mice was unchanged compared to controls. One of the major 1,25D3-glycosides was isolated from leaves following extraction and purification by Sep-Pak cartridges and HPLC fractionation. Ultraviolet absorbance was consistent with modification of the 1-hydroxyl group, and positive ion ESI mass spectrometry indicated a diglycoside of 1,25D3. 2-Dimensional NMR analyses were carried out and established the C1 proton of the A-ring was interacting with a C1' sugar proton, while the C3 proton of the A-ring was linked with a second C1' sugar proton. The structure of the isolated compound is therefore consistent with a β-linked 1,3-diglycoside of 1,25D3. Thus, Sg leaf administered to mice at up to 333 ug/day can elicit colon-specific enhancement of Cyp24a1 gene expression without inducing hypercalcemia, and

  18. Effect of 1,25-dihydroxyvitamin D3 on the expression of mannose receptor, DC-SIGN and autophagy genes in pulmonary tuberculosis.

    PubMed

    Afsal, K; Selvaraj, P

    2016-07-01

    1,25-dihydroxyvitamin D3 [1,25(OH)2D3] is a powerful immuno-modulator, which enhances expression of antimicrobial peptides and induces autophagy in monocytes/macrophages. Since 1,25(OH)2D3 increases the phagocytic potential of monocytes/macrophages, we have explored the effect of 1,25(OH)2D3 on the expression of receptors such as mannose receptor (CD206) and DC-SIGN (CD209) as well as autophagy genes such as ATG5 and Beclin-1 (BECN1) in monocytes/macrophages of healthy controls (HCs) and pulmonary tuberculosis (PTB) patients with and without cavitary disease. Peripheral blood mononuclear cells (PBMCs) were isolated from 40 HCs and 40 PTB patients and were cultured for 72 h with Mtb in the presence or absence of 1,25(OH)2D3 at 10(-7) M concentration. 1,25(OH)2D3 significantly upregulated the expression of mannose receptor, ATG5 and BECN1; whereas DC-SIGN expression was suppressed in Mtb infected cells of both study groups (p < 0.05). The 1,25(OH)2D3-induced expression of CD206, ATG5 and BECN1 genes was lower in PTB patients compared to HCs, whereas expression of these genes was impaired in PTB patients with cavitary disease. Moreover, the relative expression of ATG5 and BECN1 was positively correlated with monocyte/macrophage phagocytosis and cathelicidin antimicrobial peptide gene expression in HCs and PTB patients (p < 0.05). Our study results suggest that vitamin D supplementation in PTB patients without cavitary disease could enhance innate immune functions and may help to control intracellular growth of mycobacteria in macrophages.

  19. 1,25-Dihydroxyvitamin D3 Suppresses Inflammation-Induced Expression of Plasminogen Activator Inhibitor-1 by Blocking Nuclear Factor-κB Activation

    PubMed Central

    Chen, Yunzi; Kong, Juan; Sun, Tao; Li, George; Szeto, Frances L.; Liu, Weicheng; Deb, Dilip K.; Wang, Youli; Zhao, Qun; Thadhani, Ravi; Li, Yan Chun

    2011-01-01

    Plasminogen activator inhibitor (PAI)-1 is a major fibrinolytic inhibitor. High PAI-1 is associated with increased renal and cardiovascular disease risk. Previous studies demonstrated PAI-1 down-regulation by 1,25-dihydroxyvitamin D3 (1,25(OH)2D3), but the molecular mechanism remains unknown. Here we show that exposure of mouse embryonic fibroblasts to TNFα or LPS led to a marked induction of PAI-1, which was blunted by 1,25(OH)2D3, NF-κB inhibitor or p65 siRNA, suggesting the involvement of NF-κB in 1,25(OH)2D3-induced repression. In mouse Pai-1 promoter a putative cis-κB element was identified at −299. EMSA and ChIP assays showed that TNF-α increased p65/p50 binding to this κB site, which was disrupted by 1,25(OH)2D3. Luciferase reporter assays showed that PAI-1 promoter activity was induced by TNFα or LPS, and the induction was blocked by 1,25(OH)2D3. Mutation of the κB site blunted TNFα, LPS or 1,25(OH)2D3 effects. 1,25(OH)2D3 blocked IκBα degradation and arrested p50/p65 nuclear translocation. In mice LPS stimulated PAI-1 expression in the heart and macrophages, and the stimulation was blunted by pre-treatment with a vitamin D analog. Together these data demonstrate that 1,25(OH)2D3 down-regulates PAI-1 by blocking NF-κB activation. Inhibition of PAI-1 production may contribute to the reno- and cardio-protective effects of vitamin D. PMID:21176770

  20. The Use of 1α,25-Dihydroxyvitamin D3 as an Anticancer Agent

    PubMed Central

    Marcinkowska, Ewa; Wallace, Graham R.; Brown, Geoffrey

    2016-01-01

    The notion that vitamin D can influence the incidence of cancer arose from epidemiological studies. The major source of vitamin D in the organism is skin production upon exposure to ultra violet-B. The very first observation of an inverse correlation between exposure of individuals to the sun and the likelihood of cancer was reported as early as 1941. In 1980, Garland and Garland hypothesised, from findings from epidemiological studies of patients in the US with colon cancer, that vitamin D produced in response to sun exposure is protective against cancer as opposed to sunlight per se. Later studies revealed inverse correlations between sun exposure and the occurrence of prostate and breast cancers. These observations prompted laboratory investigation of whether or not vitamin D had an effect on cancer cells. Vitamin D is not active against cancer cells, but the most active metabolite 1α,25-dihydroxyvitamin D3 (1,25D) has profound biological effects. Here, we review the anticancer action of 1,25D, clinical trials of 1,25D to date and the prospects of the future therapeutic use of new and low calcaemic analogues. PMID:27187375

  1. 1α,25-dihydroxyvitamin D₃ counteracts the effects of cigarette smoke in airway epithelial cells.

    PubMed

    Zhang, Ruhui; Zhao, Haijin; Dong, Hangming; Zou, Fei; Cai, Shaoxi

    2015-06-01

    Cigarette smoke extracts (CSE) alter calpain-1 expression via ERK signaling pathway in bronchial epithelial cells. 1α,25-dihydroxyvitamin D3 (1,25D3) inhibits cigarette smoke-induced epithelial barrier disruption. This study was aimed to explore whether the 1,25D3 counteracted the CSE effects in a human bronchial epithelial cell line (16HBE). In particular, transepithelial electrical resistance (TER) and permeability, expression and distribution of E-cadherin and β-catenin, calpain-1 expression, and ERK phosphorylation were assessed in the CSE-stimulated 16HBE cells. The CSE induced the ERK phosphorylation, improved the calpain-1 expression, increased the distribution anomalies and the cleaving of E-cadherin and β-catenin, and resulted in the TER reduction and the permeability increase. The 1,25D3 reduced these pathological changes. The 1,25D3 mediated effects were associated with a reduced ERK phosphorylation. In conclusion, the present study provides compelling evidences that the 1,25D3 may be considered a possible valid therapeutic option in controlling the cigarette smoke-induced epithelial barrier disruption.

  2. 1,25-Dihydroxyvitamin D{sub 3} regulates genes responsible for detoxification in intestine

    SciTech Connect

    Kutuzova, Galina D.; DeLuca, Hector F. . E-mail: deluca@biochem.wisc.edu

    2007-01-01

    1{alpha},25-Dihydroxyvitamin D{sub 3} (1,25-(OH){sub 2}D{sub 3}), the biologically active form of vitamin D{sub 3}, not only plays a major role in mammalian calcium and phosphorous homeostasis but also exerts pleiotropic effects on cell proliferation, differentiation and the immune system. Further, vitamin D is believed to play a significant role in the prevention of colon, prostate, and breast cancer and in reducing the risk of autoimmune diseases. To gain insight into the mechanism whereby vitamin D can have such diverse actions, we have employed microarray technology. We studied the effect of a single dose of 1,25-(OH){sub 2}D{sub 3} on gene expression in the intestine of vitamin D-deficient rats. Within 6 h, 1,25-(OH){sub 2}D{sub 3} stimulates the expression of several phase I and phase II biotransformation genes. There is also an increased expression of antioxidant genes. These results support the idea that vitamin D is a significant factor in detoxification and protection against environmental toxins.

  3. The Use of 1α,25-Dihydroxyvitamin D₃ as an Anticancer Agent.

    PubMed

    Marcinkowska, Ewa; Wallace, Graham R; Brown, Geoffrey

    2016-01-01

    The notion that vitamin D can influence the incidence of cancer arose from epidemiological studies. The major source of vitamin D in the organism is skin production upon exposure to ultra violet-B. The very first observation of an inverse correlation between exposure of individuals to the sun and the likelihood of cancer was reported as early as 1941. In 1980, Garland and Garland hypothesised, from findings from epidemiological studies of patients in the US with colon cancer, that vitamin D produced in response to sun exposure is protective against cancer as opposed to sunlight per se. Later studies revealed inverse correlations between sun exposure and the occurrence of prostate and breast cancers. These observations prompted laboratory investigation of whether or not vitamin D had an effect on cancer cells. Vitamin D is not active against cancer cells, but the most active metabolite 1α,25-dihydroxyvitamin D₃ (1,25D) has profound biological effects. Here, we review the anticancer action of 1,25D, clinical trials of 1,25D to date and the prospects of the future therapeutic use of new and low calcaemic analogues. PMID:27187375

  4. A rapid assay for 25-hydroxyvitamin D and 1,25-dihydroxyvitamin D 24-hydroxylase

    SciTech Connect

    Burgos-Trinidad, M.; Brown, A.J.; DeLuca, H.F. )

    1990-10-01

    A rapid method for the measurement of the 24-hydroxylated metabolites of 25-hydroxy(26,27-3H)vitamin D3 and 1,25-dihydroxy(26,27-3H)vitamin D3 has been developed. This measurement has, in turn, made possible a rapid assay for the 24-hydroxylases of the vitamin D system. The assay involves the use of 26,27-3H-labeled 1,25-dihydroxyvitamin D3 or 25-hydroxyvitamin D3 as the substrate and treatment of the enzyme reaction mixture with sodium periodate, which specifically cleaves the 24-hydroxylated products between carbons 24 and 25, releasing tritiated acetone. The acetone is measured after its separation from the labeled substrate by using a reversed-phase cartridge. The results obtained with this assay were validated by comparison with the results obtained with a well-established high-performance liquid chromatography assay. The activity of the enzyme determined by both methods was equal. This assay has been successfully used for the rapid screening of column fractions during purification of the enzyme and in the screening for monoclonal antibodies to the 24-hydroxylase.

  5. Modulation of the Bovine Innate Immune Response by Production of 1alpha,25-Dihydroxyvitamin D3 in Bovine Monocytes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In cattle, the kidney has been the only known site for production of 1,25-dihydroxyvitamin D3 (1,25[OH]2D3) from 25-hydroxyvitamin D3 25(OH)D3 by 1alpha-hydroxylase (1alpha-OHase). However, recent studies have shown that human monocytes express 1alpha-OHase and produce 1,25(OH)2D3 in response to to...

  6. Plasma 1,25-Dihydroxyvitamin D and the Risk of Developing Hypertension: The Prevention of Renal and Vascular End-Stage Disease Study.

    PubMed

    van Ballegooijen, Adriana J; Gansevoort, Ron T; Lambers-Heerspink, Hiddo J; de Zeeuw, Dick; Visser, Marjolein; Brouwer, Ingeborg A; Kema, Ido P; de Borst, Martin H; Bakker, Stephan J L; Joosten, Michel M

    2015-09-01

    Previous observational studies on the vascular effects of vitamin D have predominantly relied on measurement of its inactive precursor, 25-hydroxyvitamin D, whereas the active metabolite 1,25-dihydroxyvitamin D may be of more physiological relevance. We prospectively studied the associations of 1,25-dihydroxyvitamin D and 25-hydroxyvitamin D with hypertension risk (blood pressure ≥140/90 mm Hg or initiation of blood pressure-lowering drugs) in 5066 participants aged 28 to 75 years, free of hypertension at baseline from the Prevention of Renal and Vascular End-Stage Disease Study, a well-defined cohort with serial follow-up. We measured plasma 1,25-dihydroxyvitamin D and 25-hydroxyvitamin D using liquid chromatography-tandem mass spectrometry. Mean±SD plasma concentration of 1,25-dihydroxyvitamin D was 145±47.0 pmol/L and 25-hydroxyvitamin D was 58.6±23.8 nmol/L. During a median follow-up of 6.4 years, 1036 participants (20.5%) developed hypertension. As expected, low 25-hydroxyvitamin D was associated with a higher hypertension risk; each 1-SD decrement in 25-hydroxyvitamin D was associated with a 8% higher hypertension risk (hazard ratio, 1.08; 95% confidence interval, 1.01-1.16) after adjustment for potential confounders. However, the association of 1,25-dihydroxyvitamin D was in the opposite direction; each 1-SD decrement of 1,25-dihydroxyvitamin D was associated with a 10% lower hypertension risk (hazard ratio, 0.90; 95% confidence interval, 0.84-0.96), independent of potential confounders. In contrast to the inverse association between 25-hydroxyvitamin D and hypertension risk, 1,25-dihydroxyvitamin D was positively associated with risk of hypertension. Thus, higher circulating concentrations of 1,25-dihydroxyvitamin D are associated with a higher risk of hypertension.

  7. 1α,25-dihydroxyvitamin D3 inhibits cell growth and NFκB signaling in tamoxifen-resistant breast cancer cells.

    PubMed

    Lundqvist, Johan; Yde, Christina W; Lykkesfeldt, Anne E

    2014-07-01

    Resistance to antiestrogens is a major clinical problem in current breast cancer treatment and development of new treatment strategies for these tumors is highly prioritized. In this study, we have investigated the effects of 1α,25-dihydroxyvitamin D3 on the proliferation of tamoxifen-resistant cells. Further, we have investigated on a molecular level the effects of vitamin D on NFkB signaling in tamoxifen-resistant breast cancer cells. Parental human breast cancer MCF-7 cells and four tamoxifen-resistant sublines have been used to investigate the effects of 1α,25-dihydroxyvitamin D3 on cell proliferation using a colorimetric method, gene expression using quantitative PCR, protein phosphorylation using Western blot analysis and cellular localization of proteins using immunofluorescence microscopy. We found that 1α,25-dihydroxyvitamin D3 is able to strongly decrease the growth of both tamoxifen-sensitive and -resistant breast cancer cells and that this antiproliferative effect of 1α,25-dihydroxyvitamin D3 might be mediated via inhibition of the NFκB pathway. We found that 1α,25-dihydroxyvitamin D3 stimulates the gene expression of IkB, an NFκB-inhibiting protein, and that cells pretreated with 1α,25-dihydroxyvitamin D3 have a decreased sensitivity to TNFα stimulation. Further, we show that 1α,25-dihydroxyvitamin D3 treatment strongly decreases the TNFα-induced translocation of p65 into the nucleus. This manuscript reports novel findings regarding the effects of 1α,25-dihydroxyvitamin D3 on NFκB signaling in tamoxifen-resistant breast cancer cells and suggests that vitamin D might be interesting for further evaluation as a new strategy to treat antiestrogen-resistant breast cancers.

  8. 1α,25-dihydroxyvitamin D3 stimulates human SOST gene expression and sclerostin secretion.

    PubMed

    Wijenayaka, Asiri R; Yang, Dongqing; Prideaux, Matthew; Ito, Nobuaki; Kogawa, Masakazu; Anderson, Paul H; Morris, Howard A; Solomon, Lucian B; Loots, Gabriela G; Findlay, David M; Atkins, Gerald J

    2015-09-15

    Sclerostin, the SOST gene product, is a negative regulator of bone formation and a positive regulator of bone resorption. In this study, treatment of human primary osteoblasts, including cells differentiated to an osteocyte-like stage, with 1α,25-dihydroxyvitaminD3 (1,25D) resulted in the dose-dependent increased expression of SOST mRNA. A similar effect was observed in human trabecular bone samples cultured ex vivo, and in osteocyte-like cultures of differentiated SAOS2 cells. Treatment of SAOS2 cells with 1,25D resulted in the production and secretion of sclerostin protein. In silico analysis of the human SOST gene revealed a single putative DR3-type vitamin D response element (VDRE) at position -6216 bp upstream of the transcription start site (TSS). This sequence was confirmed to have strong VDRE activity by luciferase reporter assays and electrophoretic mobility shift analysis (EMSA). Sequence substitution in the VDR/RXR half-sites abolished VDRE reporter activity and binding of nuclear proteins. A 6.3 kb fragment of the human proximal SOST promoter demonstrated responsiveness to 1,25D. The addition of the evolutionary conserved region 5 (ECR5), a known bone specific enhancer region, ahead of the 6.3 kb fragment increased basal promoter activity but did not increase 1,25D responsiveness. Site-specific mutagenesis abolished the responsiveness of the 6.3 kb promoter to 1,25D. We conclude that 1,25D is a direct regulator of human SOST gene and sclerostin protein expression, extending the pathways of control of sclerostin expression. At least some of this responsiveness is mediated by the identified classical VDRE however the nature of the transcriptional regulation by 1,25D warrants further investigation.

  9. Determinants of serum 1,25-dihydroxyvitamin D concentration in healthy premenopausal subjects.

    PubMed

    Ho, S C; Mac Donald, D; Chan, C; Fan, Y K; Chan, S S; Swaminathan, R

    1994-10-14

    Concentrations of serum phosphate and parathyroid hormone (PTH) are well known regulators of the production of 1,25-dihydroxyvitamin D (1,25-(OH)2D) and acidosis is known to affect the serum concentration of 1,25-(OH)2D. However, the factors that play a role in the regulation of serum 1,25-(OH)2D concentration in healthy subjects have not been fully evaluated. The associations of ionised calcium, pH, serum concentration of phosphate, PTH, 25-hydroxyvitamin D (25-OHD) and serum 1,25-(OH)2D were examined in 296 healthy premenopausal women (age range 17-40 years). Calculation of partial correlation coefficients showed that serum 1,25-(OH)2D was significantly correlated with phosphate (r = -0.148, P < 0.01), pH (r = 0.221, P < 0.001) and PTH (r = 0.136. P < 0.01). Ionised calcium was not related to serum 1,25-(OH)2D. When the results were stratified according to quartiles based on serum 1,25-(OH)2D concentration, significant trends (by analysis of variance) were seen in phosphate, pH, age, albumin and 25-OHD. Stepwise multiple regression analysis showed that phosphate and pH were the major contributors of serum 1,25-(OH)2D levels. There was a small contribution from PTH and 25-OHD. The results suggest that in young healthy premenopausal women plasma phosphate and pH may be important determinants of serum 1,25-(OH)2D concentration.

  10. 1,25-Dihydroxyvitamin D and Klotho: A Tale of Two Renal Hormones Coming of Age.

    PubMed

    Haussler, Mark R; Whitfield, G Kerr; Haussler, Carol A; Sabir, Marya S; Khan, Zainab; Sandoval, Ruby; Jurutka, Peter W

    2016-01-01

    1,25-Dihydroxyvitamin D3 (1,25D) is the renal metabolite of vitamin D that signals through binding to the nuclear vitamin D receptor (VDR). The ligand-receptor complex transcriptionally regulates genes encoding factors stimulating calcium and phosphate absorption plus bone remodeling, maintaining a skeleton with reduced risk of age-related osteoporotic fractures. 1,25D/VDR signaling exerts feedback control of Ca/PO4 via regulation of FGF23, klotho, and CYP24A1 to prevent age-related, ectopic calcification, fibrosis, and associated pathologies. Vitamin D also elicits xenobiotic detoxification, oxidative stress reduction, neuroprotective functions, antimicrobial defense, immunoregulation, anti-inflammatory/anticancer actions, and cardiovascular benefits. Many of the healthspan advantages conferred by 1,25D are promulgated by its induction of klotho, a renal hormone that is an anti-aging enzyme/coreceptor that protects against skin atrophy, osteopenia, hyperphosphatemia, endothelial dysfunction, cognitive defects, neurodegenerative disorders, and impaired hearing. In addition to the high-affinity 1,25D hormone, low-affinity nutritional VDR ligands including curcumin, polyunsaturated fatty acids, and anthocyanidins initiate VDR signaling, whereas the longevity principles resveratrol and SIRT1 potentiate VDR signaling. 1,25D exerts actions against neural excitotoxicity and induces serotonin mood elevation to support cognitive function and prosocial behavior. Together, 1,25D and klotho maintain the molecular signaling systems that promote growth (p21), development (Wnt), antioxidation (Nrf2/FOXO), and homeostasis (FGF23) in tissues crucial for normal physiology, while simultaneously guarding against malignancy and degeneration. Therefore, liganded-VDR modulates the expression of a "fountain of youth" array of genes, with the klotho target emerging as a major player in the facilitation of health span by delaying the chronic diseases of aging. PMID:26827953

  11. Noncalcemic actions of 1,25-dihydroxyvitamin D3 and clinical applications.

    PubMed

    Holick, M F

    1995-08-01

    Vitamin D is absolutely essential for the maintenance of a healthy skeleton. Without vitamin D, children develop rickets and adults exacerbate their osteoporosis and develop osteomalacia. Casual exposure to sunlight is the major source of vitamin D for most people. During exposure to sunlight, ultraviolet B photons photolyze cutaneous stores of 7-dehydrocholesterol to previtamin D3. Previtamin D3 undergoes a thermal isomerization to form vitamin D3. Increased skin pigmentation, changes in latitude, time of day, sunscreen use, and aging can have a marked influence on the cutaneous production of vitamin D3. Once vitamin D3 is formed in the skin or ingested in the diet, it must be hydroxylated in the liver and kidney to 1,25-dihydroxyvitamin D3 [1,25(OH)2D3]. It is now recognized that a wide variety of tissues and cells, both related to calcium metabolism and unrelated to calcium metabolism, are target sites for 1,25(OH)2D3. 1,25(OH)2D3 stimulates intestinal calcium absorption and mobilizes stem cells to mobilize calcium stores from bone. Noncalcemic tissues that possess receptors for 1,25(OH)2D3 respond to the hormone in a variety of ways. Of great interest is that 1,25(OH)2D3 is a potent antiproliferative and prodifferentiation mediator. As a result, 1,25(OH)2D3 and its analogs have wide clinical application in such diverse clinical disorders as rheumatoid and psoriatic arthritis; diabetes mellitus type I; hypertension; cardiac arrhythmias; seizure disorders; cancers of the breast, prostate, and colon; some leukemias and myeloproliferative disorders; chemotherapy-induced hair loss; and skin rejuvenation as well as skin diseases like psoriasis and ichthyosis.

  12. Noncalcemic actions of 1,25-dihydroxyvitamin D3 and clinical applications.

    PubMed

    Holick, M F

    1995-08-01

    Vitamin D is absolutely essential for the maintenance of a healthy skeleton. Without vitamin D, children develop rickets and adults exacerbate their osteoporosis and develop osteomalacia. Casual exposure to sunlight is the major source of vitamin D for most people. During exposure to sunlight, ultraviolet B photons photolyze cutaneous stores of 7-dehydrocholesterol to previtamin D3. Previtamin D3 undergoes a thermal isomerization to form vitamin D3. Increased skin pigmentation, changes in latitude, time of day, sunscreen use, and aging can have a marked influence on the cutaneous production of vitamin D3. Once vitamin D3 is formed in the skin or ingested in the diet, it must be hydroxylated in the liver and kidney to 1,25-dihydroxyvitamin D3 [1,25(OH)2D3]. It is now recognized that a wide variety of tissues and cells, both related to calcium metabolism and unrelated to calcium metabolism, are target sites for 1,25(OH)2D3. 1,25(OH)2D3 stimulates intestinal calcium absorption and mobilizes stem cells to mobilize calcium stores from bone. Noncalcemic tissues that possess receptors for 1,25(OH)2D3 respond to the hormone in a variety of ways. Of great interest is that 1,25(OH)2D3 is a potent antiproliferative and prodifferentiation mediator. As a result, 1,25(OH)2D3 and its analogs have wide clinical application in such diverse clinical disorders as rheumatoid and psoriatic arthritis; diabetes mellitus type I; hypertension; cardiac arrhythmias; seizure disorders; cancers of the breast, prostate, and colon; some leukemias and myeloproliferative disorders; chemotherapy-induced hair loss; and skin rejuvenation as well as skin diseases like psoriasis and ichthyosis. PMID:8579891

  13. Identification of 1,25-dihydroxyvitamin D3 receptors and activities in muscle

    SciTech Connect

    Simpson, R.U.; Thomas, G.A.; Arnold, A.J.

    1985-07-25

    Cytosols from cultured myoblast cells prepared in high salt possesses receptor like proteins for 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3) that sediment in the 3.2 S region of sucrose gradients. These receptors were characterized as having high affinity for 1,25-(OH)2D3 and are in low capacity. Analog competition for receptor binding revealed that 1,25-(OH)2D3 was more potent than 24,25-(OH)2D3, or 25-(OH)2D3 for displacement of 1,25-(OH)2(TH)D3 from these 3.2 S region sedimenting receptors. Furthermore, the receptor proteins had affinity for DNA and eluted from Sephacryl S-200 as a macromolecule with Stokes radius (Rs) of 32 A. High salt cytosol from collagenase-dispersed skeletal muscle cells was also found to possess a 3.2 S 1,25-(OH)2D3 receptor-like protein. The 1,25-(OH)2D3 receptor concentration was found to down-regulate by 50-70% when cells were stimulated to differentiate to myotubes by lowering fetal calf serum to 5% of the medium. Moreover, the authors demonstrated that 1,25-(OH)2D3 can inhibit DNA synthesis and cell proliferation of the G-8 myoblast cells in a dose-dependent manner. The data support the possibility that muscle is a target tissue for 1,25-(OH)2D3 and the hormone may act to initiate terminal differentiation of myoblast cells.

  14. Gravity affects the responsiveness of Runx2 to 1, 25-dihydroxyvitamin D3 (VD3)

    NASA Astrophysics Data System (ADS)

    Guo, Feima; Dai, Zhongquan; Wu, Feng; Liu, Zhaoxia; Tan, Yingjun; Wan, Yumin; Shang, Peng; Li, Yinghui

    2013-03-01

    Bone loss resulting from spaceflight is mainly caused by decreased bone formation, and decreased osteoblast proliferation and differentiation. Transcription factor Runx2 plays an important role in osteoblast differentiation and function by responding to microenvironment changes including cytokine and mechanical factors. The effects of 1, 25-dihydroxyvitamin D3 (VD3) on Runx2 in terms of mechanical competence is far less clear. This study describes how gravity affects the response of Runx2 to VD3. A MC3T3-6OSE2-Luc osteoblast model was constructed in which the activity of Runx2 was reflected by reporter luciferase activity identifed by bone-related cytokines. The results showed that luciferase activity in MC3T3-6OSE2-Luc cells transfected with Runx2 was twice that of the vacant vector. Alkaline phosphatase (ALP) activity was increased in MC3T3-6OSE2-Luc cells by different concentrations of IGF-I and BMP2. MC3T3-6OSE2-Luc cells were cultured under simulated microgravity or centrifuge with or without VD3. In simulated microgravity, luciferase activity was decreased after 48 h of clinorotation culture, but increased in the centrifuge culture. Luciferase activity was increased after VD3 treatment in normal conditions and simulated microgravity, the increase in luciferase activity in simulated microgravity was lower than that in the 1 g condition when simultaneously treated with VD3 and higher than that in the centrifuge condition. Co-immunoprecipitation showed that the interaction between the VD3 receptor (VDR) and Runx2 was decreased by simulated microgravity, but increased by centrifugation. From these results, we conclude that gravity affects the response of Runx2 to VD3 which results from an alteration in the interaction between VDR and Runx2 under different gravity conditions.

  15. Influence of dietary calcium on serum 1,25-dihydroxyvitamin D concentrations in renal stone formers.

    PubMed

    D'Amour, P; Gascon-Barré, M; Dufresne, L; Perreault, J P

    1984-11-01

    The role of 1,25-dihydroxyvitamin D (1,25(OH)2D) in the pathogenesis of idiopathic hypercalciuria was studied in 37 renal stone formers who, during two 10-day periods, followed first a normal and then a low calcium diet. The following samples were taken during each diet; 24 h urine; fasting blood and urine; blood and urine following a 1 g oral calcium load. Patients were divided according to serum calcium level, 24 h urinary calcium excretion on the first diet and fasting calcium excretion on the second diet. Eight patients were found to be normocalciuric (NSF), 16 had absorptive hypercalciuria (AH), five renal hypercalciuria (RH) and eight primary hyperparathyroidism. In NSF and AH, a positive correlation was found between the fasting and the 24 hour urinary calcium (r = 0.787, P less than 0.001), while negative correlations were found between the fasting urinary calcium and the serum parathyroid hormone (r = -0.703, P less than 0.001) or the fasting urinary cyclic AMP (r = -0.434, P less than 0.01). Patients with RH had higher serum PTH and urinary cAMP levels for a given degree of fasting calciuria mainly on the low calcium diet. Mean serum 1,25(OH)2D was similar in NSF (43.6 +/- 4.5 pg/ml), AH (43.6 +/- 2.3 pg/ml) and RH (40.4 +/- 4.8 pg/ml) on the first diet; increases were similar in all groups after 10 d of calcium restriction. A positive correlation was found between the serum 1,25(OH)2D concentrations and the 24 h urinary calcium excretion on the first diet in NSF (r = 0.889, P less than 0.001) but not in AH or RH. There was no evidence of such correlation with the low calcium diet. No correlation between the calciuric response to calcium loading and the serum concentrations of 1,25(OH)2D was found. The results suggest that serum concentrations of 1,25(OH)2D may be related to urinary calcium excretion in NSF more than in AH or RH. The factors responsible for the hyperabsorption of calcium in the latter patients remain to be elucidated.

  16. Pregnancy does not alter the metabolic clearance of 1,25-dihydroxyvitamin D in rats

    SciTech Connect

    Paulson, S.K.; Ford, K.K.; Langman, C.B. )

    1990-01-01

    Increased circulating levels of 1,25-dihydroxyvitamin D (1,25(OH)2D) during pregnancy could be due to an increase in production or decrease in the metabolic clearance rate of 1,25(OH)2D. To answer this question an isotope dilution method was used to determine the clearance rate of 1,25(OH)2D in pregnant and aged-matched nonpregnant female rats. A bolus of 0.146 muCi 1,25(OH)2(3H)D3 was given to 60 pregnant and 60 aged-matched nonpregnant rats and the disappearance of the isotope was followed in these animals over the next 48 h. In 12 pregnant rats vs. 14 nonpregnant controls not injected with tracer, plasma calcium (9.6 +/- 0.41 vs. 10.7 +/- 0.17 mg/ml) and 25(OH)D (17.1 +/- 1.15 vs. 25.4 +/- 1.58 ng/ml) levels were significantly lower (P less than 0.01 and P less than 0.001), whereas plasma 1,25(OH)2D levels (110 +/- 16.1 pg/ml vs. 77 +/- 6.0 pg/ml) were significantly higher (P less than 0.05). Clearance rates of 1,25(OH)2D of 25.8 +/- 1.31 microliters/min in pregnant rats and 20.2 20.2 +/- 1.38 microliters/min in nonpregnant aged-matched rats were not significantly different. Similarly, the apparent volume of distribution of 1,25(OH)2D in the pregnant rats (15 +/- 1.0 ml) was not significantly different from that in the nonpregnant control animals (18 +/- 2.1 ml). Production rates of.1,25(OH)2D were elevated in the pregnant rats (2.83 pg/min) compared with the nonpregnant controls (1.55 pg/min). In conclusion, the elevated maternal plasma 1,25(OH)2D level during pregnancy is a result of increased production and is not due to a decreased clearance.

  17. Evaluation of a photolabile derivative of 1,25-dihydroxyvitamin D3 as a photoaffinity probe for 1,25-dihydroxyvitamin-D3 receptor in chick intestinal cytosol

    SciTech Connect

    Ray, R.; Rose, S.; Holick, S.A.; Holick, M.F.

    1985-10-15

    The authors evaluated the viability of 1 alpha, 25-dihydroxyvitamin D3-3 beta-(N-(4-azido-2-nitrophenyl)glycinate) (1,25-(OH)2-D3-ANG), an analog of 1 alpha, 25-dihydroxyvitamin D3 (1,25-(OH)2-D3) as a photoaffinity probe for 1,25-(OH)2-D3 receptor in chick intestinal cytosol. A competitive-binding assay revealed that chick intestinal cytosolic 1,25-(OH)2- D3 receptor bound to 1,25-(OH)2-D3-ANG approximately 20-times less effectively than it did to 1,25-(OH)2-D3. Irradiation of 1,25-(OH)2-D3- ANG in the presence of chick intestinal cytosolic preparation significantly diminished subsequent binding to /sup 3/H-1,25-(OH)2-D3, suggesting that the photoaffinity analog was covalently attached to the receptor. Therefore the nitroarylazide derivative of 1,25-(OH)2-D3 may be a valuable photoaffinity probe for the characterization of the 1,25-(OH)2-D3 receptor.

  18. Phosphorylation of the human 1,25-dihydroxyvitamin D3 receptor by cAMP-dependent protein kinase, in vitro, and in transfected COS-7 cells.

    PubMed

    Jurutka, P W; Hsieh, J C; Haussler, M R

    1993-03-31

    We report that the human 1,25-dihydroxyvitamin D3 receptor is an efficient substrate for cAMP-dependent protein kinase, in vitro. This phosphorylation reaction is rapid and neither dependent upon nor significantly affected by the presence of the 1,25-dihydroxyvitamin D3 ligand. Preliminary mapping experiments utilizing C-terminal truncation mutants reveal that the primary site(s) of phosphorylation, in vitro, is localized between amino acids 133 and 201. Cotransfection of the catalytic subunit of murine cAMP-dependent protein kinase and the human 1,25-dihydroxyvitamin D3 receptor into monkey kidney (COS-7) cells not only results in a dramatic kinase-dependent increase in receptor phosphorylation but also elicits an attenuation in 1,25-dihydroxyvitamin D3-dependent transcriptional activation of a reporter gene. These observations suggest a potential role for cAMP-dependent protein kinase in the modulation of 1,25-dihydroxyvitamin D3 receptor-mediated gene regulation. PMID:8385450

  19. The role of 1,25-dihydroxyvitamin D in the inhibition of bone formation induced by skeletal unloading

    NASA Technical Reports Server (NTRS)

    Halloran, B. P.; Bikle, D. D.; Wronski, T. J.; GLOBUS. R.; Levens, M. J.; Morey-Holton, E.

    1983-01-01

    Skeletal unloading results in osteopenia. To examine the involvement of vitamin D in this process, the rear limbs of growing rats were unloaded and alterations in bone calcium and bone histology were related to changes in serum calcium (Ca), inorganic phosphorus (P sub i), 25-hydroxyvitamin D (25-OH-D), 24,25-dihydroxyvitamin D (24,25(OH)2D and 1,25-dihydroxyvitamin D (1,25(OH)2D. Acute skeletal unloading induced a transitory inhibition of Ca accumulation in unloaded bones. This was accompanied by a transitory rise in serum Ca, a 21% decrease in longitudinal bone growth (P 0.01), a 32% decrease in bone surface lined with osteoblasts (P .05), no change in bone surface lined with osteoclasts and a decrease in circulating (1,25(OH)2D. No significant changes in the serum concentrations of P sub i, 25-OH-D or 24,25(OH)2D were observed. After 2 weeks of unloading, bone Ca stabilized at approximately 70% of control and serum Ca and 1,25(OH)2D returned to control values. Maintenance of a constant serum 1,25(OH)2D concentration by chronic infusion of 1,25(OH)2D (Alza osmotic minipump) throughout the study period did not prevent the bone changes induced by acute unloading. These results suggest that acute skeletal unloading in the growing rat produces a transitory inhibition of bone formation which in turn produces a transitory hypercalcemia.

  20. 23(S),25(R)-1,25-dihydroxyvitamin D3-26,23-lactone stimulates murine bone formation in vivo

    SciTech Connect

    Shima, M.; Tanaka, H.; Norman, A.W.; Yamaoka, K.; Yoshikawa, H.; Takaoka, K.; Ishizuka, S.; Seino, Y. )

    1990-02-01

    23(S),25(R)-1,25-Dihydroxyvitamin D3-26,23-lactone (1,25-lactone) has been shown to have unique actions different from those of 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3). In contrast to 1,25-(OH)2D3, 1,25-lactone causes a significant reduction in the serum Ca2+ level, stimulates collagen production in an osteoblastic cell line, and inhibits bone resorption induced by 1,25-(OH)2D3. A possible effect of 1,25-lactone on bone formation was examined in experiments on ectopic bone formation using a bone-inducing factor derived from Dunn osteosarcomas. 1,25-Lactone, a metabolite of 1,25-(OH)2D3, increased (3H)proline uptake at the stage of chondrogenesis and {sup 85}Sr uptake during bone formation. Significantly enlarged bone was also induced by this compound 3 weeks after implantation. These results suggest that the 1,25-lactone may be able to stimulate bone formation under in vivo conditions.

  1. Redox regulation of cAMP levels by ascorbate in 1,25-dihydroxy- vitamin D3-induced differentiation of HL-60 cells.

    PubMed Central

    López-Lluch, G; Burón, M I; Alcaín, F J; Quesada, J M; Navas, P

    1998-01-01

    1alpha,25-Dihydroxyvitamin D3 [1,25-(OH)2D3] induces differentiation to monocyte-macrophage lineage of several leukaemic cell lines such as HL-60, U937, M1 and Mono Mac 6. Ascorbate also modulates growth and differentiation of different animal cells in culture. We have previously reported the stimulating effect of ascorbate on 1, 25-(OH)2D3-induced HL-60 cell differentiation. We show here that 1, 25-(OH)2D3 induces a transient increase in cAMP levels in these cells, and ascorbate significantly increases these cAMP levels. Ascorbate alone does not have any effect. Other cAMP-increasing agents such as isobutylmethylxanthine, forskolin and prostaglandin E2 maintain high levels of cAMP at 48 h of incubation and also enhance differentiation along the monocytic pathway induced by 1, 25-(OH)2D3, as revealed by specific differentiation markers, demonstrating the importance of cAMP in the differentiation process. It is also shown that the presence of ascorbate and its free radical (AFR) during 1,25-(OH)2D3-induced differentiation significantly decreases cytoplasmic NADH levels compared with those induced by 1,25-(OH)2D3 in HL-60 cells. The results indicate that NADH is an inhibitor of adenylate cyclase in these cells. AFR is an electron acceptor of the trans-plasma-membrane electron-transport system, and NADH is the electron donor. Through this system, ascorbate and AFR keep levels of NADH low, thereby decreasing its inhibitory effect on adenylate cyclase activity and so increasing cAMP synthesis. We also demonstrate that other ascorbate derivatives, such as ascorbate 2-phosphate and dehydroascorbate, both of which are unable to produce AFR, do not alter intracellular NADH levels during 1, 25-(OH)2D3-induced differentiation. Also, ascorbate and AFR increase specific differentiation markers (CD14 and NitroBlue Tetrazolium reduction) but neither ascorbate 2-phosphate nor dehydroascorbate show this enhancing activity. In summary, we propose that the effect of ascorbate on 1

  2. Antiproliferative Activity of Double Point Modified Analogs of 1,25-Dihydroxyvitamin D2 Against Human Malignant Melanoma Cell Lines

    PubMed Central

    Piotrowska, Anna; Wierzbicka, Justyna; Nadkarni, Sharmin; Brown, Geoffrey; Kutner, Andrzej; Żmijewski, Michał A.

    2016-01-01

    Vitamin D is a lipid soluble steroid hormone with pleiotropic biological properties, including regulation of cell proliferation, differentiation and apoptosis. As to these desirable anticancer actions, 1,25-dihydroxyvitamins D and analogs have been reported to inhibit the proliferation and to induce differentiation of a wide variety of cancer cell types, including human malignant melanoma. However, there is a need for novel and more efficacious vitamin D analogs, and how best to design such is still an open issue. A series of double point modified (DPM) analogs of 1,25-dihydroxyvitamin D2 (1,25(OH)2D2) induced differentiation of the vitamin D receptor (VDR) positive A375 and VDR negative SK-MEL 188b human malignant melanoma cell lines. Surprisingly, the dose of 1,25(OH)2D2 required to inhibit the proliferation of the A375 melanoma cell line by was several fold lower than that required in the case of 1,25(OH)2D3. To evaluate the impact of the modification in the side chain (additional 22-hydroxyl) and in the A-ring (5,6-trans modification), the regular side-chain of vitamin D2 or D3 was retained in the structure of our analogs. As expected, 5,6-trans modification was advantageous to enhancing the anti-proliferative activity of analogs, but not as a single point modification (SPM). Very unexpectedly, the additional 22-hydroxyl in the side-chain reduced significantly the anti-proliferative activity of both the natural and 5,6-trans series analogs. Finally, an induction of pigmentation in melanoma SK-MEL 188b cells was observed to sensitized cells to the effect of vitamin D analogs. PMID:26760999

  3. 1,25-Dihydroxyvitamin D3 Enhances Innate Immune Responses of Bovine Mammary Epithelial Cells that are Triggered by Toll-like Receptor Signaling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recently, 1,25-dihydroxyvitamin D3 (1,25[OH]2D3) has been found to play an important role in the bovine innate immune response. 1,25(OH)2D3 is the active vitamin D metabolite and is produced from the major circulating metabolite, 25-hydroxyvitamin D3, by the enzyme 1alpha-hydroxylase (1alpha-OHase)...

  4. 1α,25-Dihydroxyvitamin D3 Regulates Mitochondrial Oxygen Consumption and Dynamics in Human Skeletal Muscle Cells.

    PubMed

    Ryan, Zachary C; Craig, Theodore A; Folmes, Clifford D; Wang, Xuewei; Lanza, Ian R; Schaible, Niccole S; Salisbury, Jeffrey L; Nair, K Sreekumaran; Terzic, Andre; Sieck, Gary C; Kumar, Rajiv

    2016-01-15

    Muscle weakness and myopathy are observed in vitamin D deficiency and chronic renal failure, where concentrations of the active vitamin D3 metabolite, 1α,25-dihydroxyvitamin D3 (1α,25(OH)2D3), are low. To evaluate the mechanism of action of 1α,25(OH)2D3 in skeletal muscle, we examined mitochondrial oxygen consumption, dynamics, and biogenesis and changes in expression of nuclear genes encoding mitochondrial proteins in human skeletal muscle cells following treatment with 1α,25(OH)2D3. The mitochondrial oxygen consumption rate (OCR) increased in 1α,25(OH)2D3-treated cells. Vitamin D3 metabolites lacking a 1α-hydroxyl group (vitamin D3, 25-hydroxyvitamin D3, and 24R,25-dihydroxyvitamin D3) decreased or failed to increase OCR. 1α-Hydroxyvitamin D3 did not increase OCR. In 1α,25(OH)2D3-treated cells, mitochondrial volume and branching and expression of the pro-fusion protein OPA1 (optic atrophy 1) increased, whereas expression of the pro-fission proteins Fis1 (fission 1) and Drp1 (dynamin 1-like) decreased. Phosphorylated pyruvate dehydrogenase (PDH) (Ser-293) and PDH kinase 4 (PDK4) decreased in 1α,25(OH)2D3-treated cells. There was a trend to increased PDH activity in 1α,25(OH)2D3-treated cells (p = 0.09). 83 nuclear mRNAs encoding mitochondrial proteins were changed following 1α,25(OH)2D3 treatment; notably, PDK4 mRNA decreased, and PDP2 mRNA increased. MYC, MAPK13, and EPAS1 mRNAs, which encode proteins that regulate mitochondrial biogenesis, were increased following 1α,25(OH)2D3 treatment. Vitamin D receptor-dependent changes in the expression of 1947 mRNAs encoding proteins involved in muscle contraction, focal adhesion, integrin, JAK/STAT, MAPK, growth factor, and p53 signaling pathways were observed following 1α,25(OH)2D3 treatment. Five micro-RNAs were induced or repressed by 1α,25(OH)2D3. 1α,25(OH)2D3 regulates mitochondrial function, dynamics, and enzyme function, which are likely to influence muscle strength. PMID:26601949

  5. 1α,25-Dihydroxyvitamin D3 Regulates Mitochondrial Oxygen Consumption and Dynamics in Human Skeletal Muscle Cells.

    PubMed

    Ryan, Zachary C; Craig, Theodore A; Folmes, Clifford D; Wang, Xuewei; Lanza, Ian R; Schaible, Niccole S; Salisbury, Jeffrey L; Nair, K Sreekumaran; Terzic, Andre; Sieck, Gary C; Kumar, Rajiv

    2016-01-15

    Muscle weakness and myopathy are observed in vitamin D deficiency and chronic renal failure, where concentrations of the active vitamin D3 metabolite, 1α,25-dihydroxyvitamin D3 (1α,25(OH)2D3), are low. To evaluate the mechanism of action of 1α,25(OH)2D3 in skeletal muscle, we examined mitochondrial oxygen consumption, dynamics, and biogenesis and changes in expression of nuclear genes encoding mitochondrial proteins in human skeletal muscle cells following treatment with 1α,25(OH)2D3. The mitochondrial oxygen consumption rate (OCR) increased in 1α,25(OH)2D3-treated cells. Vitamin D3 metabolites lacking a 1α-hydroxyl group (vitamin D3, 25-hydroxyvitamin D3, and 24R,25-dihydroxyvitamin D3) decreased or failed to increase OCR. 1α-Hydroxyvitamin D3 did not increase OCR. In 1α,25(OH)2D3-treated cells, mitochondrial volume and branching and expression of the pro-fusion protein OPA1 (optic atrophy 1) increased, whereas expression of the pro-fission proteins Fis1 (fission 1) and Drp1 (dynamin 1-like) decreased. Phosphorylated pyruvate dehydrogenase (PDH) (Ser-293) and PDH kinase 4 (PDK4) decreased in 1α,25(OH)2D3-treated cells. There was a trend to increased PDH activity in 1α,25(OH)2D3-treated cells (p = 0.09). 83 nuclear mRNAs encoding mitochondrial proteins were changed following 1α,25(OH)2D3 treatment; notably, PDK4 mRNA decreased, and PDP2 mRNA increased. MYC, MAPK13, and EPAS1 mRNAs, which encode proteins that regulate mitochondrial biogenesis, were increased following 1α,25(OH)2D3 treatment. Vitamin D receptor-dependent changes in the expression of 1947 mRNAs encoding proteins involved in muscle contraction, focal adhesion, integrin, JAK/STAT, MAPK, growth factor, and p53 signaling pathways were observed following 1α,25(OH)2D3 treatment. Five micro-RNAs were induced or repressed by 1α,25(OH)2D3. 1α,25(OH)2D3 regulates mitochondrial function, dynamics, and enzyme function, which are likely to influence muscle strength.

  6. 1,25-Dihydroxyvitamin D3 is a negative endocrine regulator of the renin-angiotensin system

    PubMed Central

    Li, Yan Chun; Kong, Juan; Wei, Minjie; Chen, Zhou-Feng; Liu, Shu Q.; Cao, Li-Ping

    2002-01-01

    Inappropriate activation of the renin-angiotensin system, which plays a central role in the regulation of blood pressure, electrolyte, and volume homeostasis, may represent a major risk factor for hypertension, heart attack, and stroke. Mounting evidence from clinical studies has demonstrated an inverse relationship between circulating vitamin D levels and the blood pressure and/or plasma renin activity, but the mechanism is not understood. We show here that renin expression and plasma angiotensin II production were increased severalfold in vitamin D receptor–null (VDR-null) mice, leading to hypertension, cardiac hypertrophy, and increased water intake. However, the salt- and volume-sensing mechanisms that control renin synthesis are still intact in the mutant mice. In wild-type mice, inhibition of 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] synthesis also led to an increase in renin expression, whereas 1,25(OH)2D3 injection led to renin suppression. We found that vitamin D regulation of renin expression was independent of calcium metabolism and that 1,25(OH)2D3 markedly suppressed renin transcription by a VDR-mediated mechanism in cell cultures. Hence, 1,25(OH)2D3 is a novel negative endocrine regulator of the renin-angiotensin system. Its apparent critical role in electrolytes, volume, and blood pressure homeostasis suggests that vitamin D analogues could help prevent or ameliorate hypertension. PMID:12122115

  7. 1. alpha. ,25-dihydroxyvitamin D sub 3 regulates the expression of carbonic anhydrase II in nonerythroid avian bone marrow cells

    SciTech Connect

    Billecocq, A.; Emanuel, J.R.; Levenson, R.; Baron, R. )

    1990-08-01

    1{alpha},25-Dihydroxyvitamin D{sub 3} (1,25(OH){sub 2}D{sub 3}), the active metabolite of the steroid hormone vitamin D, is a potent regulator of macrophage and osteoclast differentiation. The mature osteoclast, unlike the circulating monocyte or the tissue macrophage, expresses high levels of carbonic anhydrase II (CAII). This enzyme generates protons and bicarbonate from water and carbon dioxide and is involved in bone resorption and acid-base regulation. To test whether 1,25(OH){sub 2}D{sub 3} could induce the differentiation of myelomonocytic precursors toward osteoclasts rather than macrophages, analyzed its effects on the expression of CAII in bone marrow cultures containing precursors common to both cell types. The expression of CAII was markedly increased by 1,25(OH){sub 2}D{sub 3} in a dose-and time-dependent manner. In bone marrow, this increase occurred at the mRNA and protein levels and was detectable as early as 24 hr after stimulation. 1,25(OH){sub 2}D{sub 3} was also found to induce CAII expression in a transformed myelomonocytic avian cell line. These results suggest that 1,25(OH){sub 2}D{sub 3} regulates the level at which myelomonocytic precursors express CAII, an enzyme that is involved in the function of the mature osteoclast.

  8. Gene Regulatory Scenarios of Primary 1,25-Dihydroxyvitamin D3 Target Genes in a Human Myeloid Leukemia Cell Line

    PubMed Central

    Ryynänen, Jussi; Seuter, Sabine; Campbell, Moray J.; Carlberg, Carsten

    2013-01-01

    Genome- and transcriptome-wide data has significantly increased the amount of available information about primary 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) target genes in cancer cell models, such as human THP-1 myelomonocytic leukemia cells. In this study, we investigated the genes G0S2, CDKN1A and MYC as master examples of primary vitamin D receptor (VDR) targets being involved in the control of cellular proliferation. The chromosomal domains of G0S2 and CDKN1A are 140–170 kb in size and contain one and three VDR binding sites, respectively. This is rather compact compared to the MYC locus that is 15 times larger and accommodates four VDR binding sites. All eight VDR binding sites were studied by chromatin immunoprecipitation in THP-1 cells. Interestingly, the site closest to the transcription start site of the down-regulated MYC gene showed 1,25(OH)2D3-dependent reduction of VDR binding and is not associated with open chromatin. Four of the other seven VDR binding regions contain a typical DR3-type VDR binding sequence, three of which are also occupied with VDR in macrophage-like cells. In conclusion, the three examples suggest that each VDR target gene has an individual regulatory scenario. However, some general components of these scenarios may be useful for the development of new therapy regimens. PMID:24202443

  9. Elevated 1,25-dihydroxyvitamin D levels in patients with chronic obstructive pulmonary disease treated with prednisone

    NASA Technical Reports Server (NTRS)

    Bikle, D. D.; Halloran, B.; Fong, L.; Steinbach, L.; Shellito, J.

    1993-01-01

    Glucocorticoid administration is a well established cause of osteopenia. Mechanisms underlying the deleterious effect of glucocorticoids on bone may include direct inhibition of bone formation as well as indirect effects through changes in intestinal calcium absorption, renal calcium excretion, and/or levels of the calciotropic hormones. To further examine the potential role of the calciotropic hormones we measured serum levels of PTH and 1,25 dihydroxyvitamin D [1,25(OH)2D], as well as serum and urine levels of calcium and vertebral bone density in patients with chronic obstructive pulmonary disease being managed with or without prednisone. Patients treated with prednisone had lower spinal bone density (53 vs. 106 mg/cm3) and higher serum calcium (2.40 vs. 2.33 mmol/l), urine calcium (6.9 vs. 2.7 mmol/24h), and 1,25(OH)2D levels (147 vs. 95 pmol/L). Compared to the patients not treated with glucocorticoids. PTH levels also tended to be higher (33 vs. 26 microliters-eq/ml), but the difference was not significant. Serum and urine calcium levels correlated positively with 1,25(OH)2D levels, but none of these measurements correlated with PTH levels. Our results suggest that prednisone treatment alters the regulation of 1,25(OH)2D production, and this may contribute to the loss of bone mineral induced by prednisone.

  10. Serum FGF23 levels may not be associated with serum phosphate and 1,25-dihydroxyvitamin D levels in patients with Fanconi syndrome–induced hypophosphatemia

    PubMed Central

    Goto, Shunsuke; Fujii, Hideki; Kono, Keiji; Watanabe, Kentaro; Nakai, Kentaro; Nishi, Shinichi

    2016-01-01

    Fibroblast growth factor 23 (FGF23) is regulated by sustained phosphate supplementation and restriction. However, few studies have investigated FGF23 levels in patients with Fanconi syndrome. Therefore, we evaluated intact and C-terminal FGF23 and FGF23-associated parameters in four patients with Fanconi syndrome. Serum intact and C-terminal FGF23 levels were extremely low. Although serum phosphate and 1,25-dihydroxyvitamin D levels improved to or above the normal range within 1 year of treatment with oral phosphate and calcitriol, serum FGF23 levels remained low. Serum FGF23 levels in patients with Fanconi syndrome might be regulated by novel factors other than serum phosphate and 1,25-dihydroxyvitamin D levels. PMID:27679714

  11. Serum FGF23 levels may not be associated with serum phosphate and 1,25-dihydroxyvitamin D levels in patients with Fanconi syndrome-induced hypophosphatemia.

    PubMed

    Goto, Shunsuke; Fujii, Hideki; Kono, Keiji; Watanabe, Kentaro; Nakai, Kentaro; Nishi, Shinichi

    2016-10-01

    Fibroblast growth factor 23 (FGF23) is regulated by sustained phosphate supplementation and restriction. However, few studies have investigated FGF23 levels in patients with Fanconi syndrome. Therefore, we evaluated intact and C-terminal FGF23 and FGF23-associated parameters in four patients with Fanconi syndrome. Serum intact and C-terminal FGF23 levels were extremely low. Although serum phosphate and 1,25-dihydroxyvitamin D levels improved to or above the normal range within 1 year of treatment with oral phosphate and calcitriol, serum FGF23 levels remained low. Serum FGF23 levels in patients with Fanconi syndrome might be regulated by novel factors other than serum phosphate and 1,25-dihydroxyvitamin D levels. PMID:27679714

  12. Serum FGF23 levels may not be associated with serum phosphate and 1,25-dihydroxyvitamin D levels in patients with Fanconi syndrome–induced hypophosphatemia

    PubMed Central

    Goto, Shunsuke; Fujii, Hideki; Kono, Keiji; Watanabe, Kentaro; Nakai, Kentaro; Nishi, Shinichi

    2016-01-01

    Fibroblast growth factor 23 (FGF23) is regulated by sustained phosphate supplementation and restriction. However, few studies have investigated FGF23 levels in patients with Fanconi syndrome. Therefore, we evaluated intact and C-terminal FGF23 and FGF23-associated parameters in four patients with Fanconi syndrome. Serum intact and C-terminal FGF23 levels were extremely low. Although serum phosphate and 1,25-dihydroxyvitamin D levels improved to or above the normal range within 1 year of treatment with oral phosphate and calcitriol, serum FGF23 levels remained low. Serum FGF23 levels in patients with Fanconi syndrome might be regulated by novel factors other than serum phosphate and 1,25-dihydroxyvitamin D levels.

  13. Photoactivable analogs for labeling 25-hydroxyvitamin D3 serum binding protein and for 1,25-dihydroxyvitamin D3 intestinal receptor protein

    NASA Technical Reports Server (NTRS)

    Kutner, A.; Link, R. P.; Schnoes, H. K.; DeLuca, H. F.

    1986-01-01

    3-Azidobenzoates and 3-azidonitrobenzoates of 25-hydroxyvitamin D3 as well as 3-deoxy-3-azido-25-hydroxyvitamin D3 and 3-deoxy-3-azido-1,25-dihydroxyvitamin D3 were prepared as photoaffinity labels for vitamin D serum binding protein and 1,25-dihydroxyvitamin D3 intestinal receptor protein. The compounds prepared were easily activated by short- or long-wavelength uv light, as monitored by uv and ir spectrometry. The efficacy of the compounds to compete with 25-hydroxyvitamin D3 or 1,25-dihydroxyvitamin D3 for the binding site of serum binding protein and receptor, respectively, was studied to evaluate the vitamin D label with the highest affinity for the protein. The presence of an azidobenzoate or azidonitrobenzoate substituent at the C-3 position of 25-OH-D3 significantly decreased (10(4)- to 10(6)-fold) the binding activity. However, the labels containing the azido substituent attached directly to the vitamin D skeleton at the C-3 position showed a high affinity, only 20- to 150-fold lower than that of the parent compounds with their respective proteins. Therefore, 3-deoxy-3-azidovitamins present potential ligands for photolabeling of vitamin D proteins and for studying the structures of the protein active sites.

  14. Rapid Enhancement of Chick Intestinal DNA-Dependent RNA Polymerase II Activity by 1α,25-Dihydroxyvitamin D3, In Vivo

    PubMed Central

    Zerwekh, Joseph E.; Haussler, Mark R.; Lindell, Thomas J.

    1974-01-01

    1α,25-dihydroxyvitamin D3 was examined for its ability to affect the DNA-dependent RNA polymerases (nucleosidetriphosphate:RNA nucleotidyltransferase, EC 2.7.7.6) of rachitic chick intestinal cell nuclei in vivo. Nucleoplasmic (form II) RNA polymerase activity was stimulated 2-fold (P < 0.05) within 2-3 hr after an oral dose of 0.27 μg (0.65 nmol) of 1α,25-dihydroxyvitamin D3 to rachitic chicks. The form II polymerase activity returned to control values by 5-9 hr after dosing with the sterol. In contrast, the nucleolar (form I) RNA polymerase was not increased within this period. Solubilization of nuclear protein and resolution of the two RNA polymerases on DEAE-Sephadex also revealed that there was an increase in polymerase II activity when assayed on exogenous DNA template. This evidence suggests that 1α,25-dihydroxyvitamin D3 acts at the level of the enzymology of intestinal cell transcription and that increased mRNA synthesis after administration of this hormone cannot be due solely to a change in chromatin template activity. PMID:4526209

  15. Transformation of 25- and 1 alpha-hydroxyvitamin D3 to 1 alpha, 25-dihydroxyvitamin D3 by using Streptomyces sp. strains.

    PubMed Central

    Sasaki, J; Mikami, A; Mizoue, K; Omura, S

    1991-01-01

    To enzymatically synthesize vitamin D derivatives, we screened about 300 Streptomyces sp. strains. Streptomyces sclerotialus FERM BP-1370 and Streptomyces roseoporus FERM BP-1574 were found to have the ability to convert 25-hydroxyvitamin D3 and 1 alpha-hydroxyvitamin D3, respectively, to 1 alpha, 25-dihydroxyvitamin D3. The average rates of 1 alpha hydroxylation of 25-hydroxyvitamin D3 were 6.9 micrograms liter-1 min-1 with FERM BP-1370 and 7.0 micrograms liter-1 min-1 with FERM BP-1574. The specific cytochrome P-450 inhibitors carbon monoxide, SKF-525-A, and metyrapone inhibited the hydroxylation of 1 alpha- and 25-hydroxyvitamin D3 to 1 alpha, 25-dihydroxyvitamin D3 by FERM BP-1370 and FERM BP-1574. The cytochromes P-450 of these strains were detected by reduced CO difference spectra in the whole-cell suspensions. The appearance of cytochrome P-450 suggests that the cytochromes P-450 of FERM BP-1370 and FERM BP-1574 carry out the hydroxylation of 25- and 1 alpha-hydroxyvitamin D3 to 1 alpha, 25-dihydroxyvitamin D3. PMID:1746944

  16. An ochre mutation in the vitamin D receptor gene causes hereditary 1,25-dihydroxyvitamin D sub 3 -resistant rickets in three families

    SciTech Connect

    Ritchie, H.H.; Hughes, M.R.; Thompson, E.T.; Pike, J.W.; O'Malley, B.W. ); Malloy, P.J.; Feldman, D. ); Hochberg, Z. )

    1989-12-01

    Hereditary 1,25-dihydroxyvitamin D{sub 3}-resistant rickets is a rare autosomal-recessive disease resulting from target-organ resistance to the action of the active hormonal form of vitamin D. Four affected children from three related families with the classical syndrome of hereditary 1,25-dihydroxyvitamin D{sub 3}-resistant rickets and the absence of detectable binding to the vitamin D receptor (VDR) in cultured fibroblasts or lymphoblasts were examined for genetic abnormalities in the VDR gene. Genomic DNA from Epstein-Barr virus-transformed lymphoblasts of eight family members was isolated and amplified by polymerase chain reaction techniques. Amplified fragments containing the eight structural exons encoding the VDR protein were sequenced. The DNA from all affected children exhibited a single C {yields} A base substitution within exon 7 at nucleotide 970. Although the affected children were all homozygotic for the mutation, the four parents tested all exhibited both wild-type and mutant alleles, indicating a heterozygous state. Recreated mutant receptor exhibited no specific 1,25-({sup 3}H)dihydroxyvitamin D{sub 3} binding and failed to activate a cotransfected VDR promoter-reporter gene construct. Thus these findings identify an ochre mutation in a human steroid hormone receptor in patients with hereditary 1,25-dihydroxyvitamin D{sub 3}-resistant rickets.

  17. Identification and regulation of 1,25-dihydroxyvitamin D3 receptor activity and biosynthesis of 1,25-dihydroxyvitamin D3. Studies in cultured bovine aortic endothelial cells and human dermal capillaries.

    PubMed Central

    Merke, J; Milde, P; Lewicka, S; Hügel, U; Klaus, G; Mangelsdorf, D J; Haussler, M R; Rauterberg, E W; Ritz, E

    1989-01-01

    Because 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) has been shown to play roles in both proliferation and differentiation of novel target cells, the potential expression of 1,25(OH)2D3 receptor (VDR) activity was investigated in cultured bovine aortic endothelial cells (BAEC). Receptor binding assays performed on nuclear extracts of BAEC revealed a single class of specific, high-affinity VDR that displayed a 4.5-fold increase in maximal ligand binding (Nmax) in rapidly proliferating BAEC compared with confluent, density-arrested cells. When confluent BAEC were incubated with activators of protein kinase C (PKC), Nmax increased 2.5-fold within 6-24 h and this upregulation was prevented by sphingosine, an inhibitor of PKC, as well as by actinomycin D or cycloheximide. Immunohistochemical visualization using a specific MAb disclosed nuclear localized VDR in venular and capillary endothelial cells of human skin biopsies, documenting the expression of VDR, in vivo, and validating the BAEC model. Finally, additional experiments indicated that BAEC formed the 1,25(OH)2D3 hormonal metabolite from 25(OH)D3 substrate, in vitro, and growth curves of BAEC maintained in the presence of 10(-8) M 1,25(OH)2D3 showed a 36% decrease in saturation density. These data provide evidence for the presence of a vitamin D microendocrine system in endothelial cells, consisting of the VDR and a 1 alpha-hydroxylase enzyme capable of producing 1,25(OH)2D3. That both components of this system are coordinately regulated, and that BAEC respond to the 1,25(OH)2D3 hormone by modulating growth kinetics, suggests the existence of a vitamin D autocrine loop in endothelium that may play a role in the development and/or functions of this pathophysiologically significant cell population. Images PMID:2542376

  18. Role of carbonic anhydrase in bone resorption induced by 1,25 dihydroxyvitamin D3 in vitro

    NASA Technical Reports Server (NTRS)

    Hall, G. E.; Kenny, A. D.

    1985-01-01

    The calvaria of 5-to-6-day-old mice treated with 1 x 10 to the -8th M of 1,25(OH)2D3 in vitro for 48 hours are examined in order to study the function of carbonic anhydrase in bone resorption. Calcium concentrations in the culture were measured to assess bone resorption. It is observed that 1,25(OH)2D3 effectively stimulates bone resorption in vitro and the resorption is dose-dependent. The effects of azetazolamide on 1,25(OH)2D3-induced bone resorption are investigated. The data reveal that 1,25(OH)2D3-induced calcium release is associated with an increase in the carbonic anhydrase activity of bone, and bone alkaline phosphatase activity is decreased and acid phosphatase activity is increased in response to 1,25(OH)2D3. A two-fold mechanism for 1,25(OH)2D3-induced bone resorption is proposed; the first mechanism is an indirect activation of osteoclasts and the second involves an interaction between hormone and osteoclast precursors.

  19. 1,25-Dihydroxyvitamin D Modulates Antibacterial and Inflammatory Response in Human Cigarette Smoke-Exposed Macrophages

    PubMed Central

    Heulens, Nele; Korf, Hannelie; Mathyssen, Carolien; Everaerts, Stephanie; De Smidt, Elien; Dooms, Christophe; Yserbyt, Jonas; Gysemans, Conny; Gayan-Ramirez, Ghislaine; Mathieu, Chantal; Janssens, Wim

    2016-01-01

    Cigarette smoking is associated with increased inflammation and defective antibacterial responses in the airways. Interestingly, vitamin D has been shown to suppress inflammation and to improve antibacterial defense. However, it is currently unknown whether vitamin D may modulate inflammation and antibacterial defects in human cigarette smoke (CS)-exposed airways. To explore these unresolved issues, alveolar macrophages obtained from non-smoking and smoking subjects as well as human cigarette smoke extract (CSE)-treated THP-1 macrophages were stimulated with 1,25-dihydroxyvitamin D (1,25(OH)2D) to address inflammatory and antibacterial responses. Although basal levels of inflammatory cytokines and chemokines did not differ between non-smoking and smoking subjects, 1,25(OH)2D did reduce levels of IL-6, TNF-α and MCP-1 in alveolar macrophages in response to LPS/IFN-γ, although not statistically significant for TNF-α and IL-6 in smokers. CSE did not significantly alter vitamin D metabolism (expression levels of CYP24A1 or CYP27B1) in THP-1 macrophages. Furthermore, stimulation with 1,25(OH)2D reduced mRNA expression levels and/or protein levels of IL-8, TNF-α and MCP-1 in CSE-treated THP-1 macrophages. 1,25(OH)2D did not improve defects in phagocytosis of E. coli bacteria or the oxidative burst response in CSE-treated THP-1 macrophages or alveolar macrophages from smokers. However, 1,25(OH)2D significantly enhanced mRNA expression and/or protein levels of the antimicrobial peptide cathelicidin in alveolar macrophages and THP-1 macrophages, independently of CS exposure. In conclusion, our results provide the first evidence that vitamin D could be a new strategy for attenuating airway inflammation and improving antibacterial defense in CS-exposed airways. PMID:27513734

  20. Research resource: whole transcriptome RNA sequencing detects multiple 1α,25-dihydroxyvitamin D(3)-sensitive metabolic pathways in developing zebrafish.

    PubMed

    Craig, Theodore A; Zhang, Yuji; McNulty, Melissa S; Middha, Sumit; Ketha, Hemamalini; Singh, Ravinder J; Magis, Andrew T; Funk, Cory; Price, Nathan D; Ekker, Stephen C; Kumar, Rajiv

    2012-09-01

    The biological role of vitamin D receptors (VDR), which are abundantly expressed in developing zebrafish (Danio rerio) as early as 48 h after fertilization, and before the development of a mineralized skeleton and mature intestine and kidney, is unknown. We probed the role of VDR in developing zebrafish biology by examining changes in expression of RNA by whole transcriptome shotgun sequencing (RNA-seq) in fish treated with picomolar concentrations of the VDR ligand and hormonal form of vitamin D(3), 1α,25-dihydroxyvitamin D(3) [1α,25(OH)(2)D(3))].We observed significant changes in RNAs of transcription factors, leptin, peptide hormones, and RNAs encoding proteins of fatty acid, amino acid, xenobiotic metabolism, receptor-activator of NFκB ligand (RANKL), and calcitonin-like ligand receptor pathways. Early highly restricted, and subsequent massive changes in more than 10% of expressed cellular RNA were observed. At days post fertilization (dpf) 2 [24 h 1α,25(OH)(2)D(3)-treatment], only four RNAs were differentially expressed (hormone vs. vehicle). On dpf 4 (72 h treatment), 77 RNAs; on dpf 6 (120 h treatment) 1039 RNAs; and on dpf 7 (144 h treatment), 2407 RNAs were differentially expressed in response to 1α,25(OH)(2)D(3). Fewer RNAs (n = 481) were altered in dpf 7 larvae treated for 24 h with 1α,25(OH)(2)D(3) vs. those treated with hormone for 144 h. At dpf 7, in 1α,25(OH)(2)D(3)-treated larvae, pharyngeal cartilage was larger and mineralization was greater. Changes in expression of RNAs for transcription factors, peptide hormones, and RNAs encoding proteins integral to fatty acid, amino acid, leptin, calcitonin-like ligand receptor, RANKL, and xenobiotic metabolism pathways, demonstrate heretofore unrecognized mechanisms by which 1α,25(OH)(2)D(3) functions in vivo in developing eukaryotes.

  1. 1,25-Dihydroxyvitamin D Modulates Antibacterial and Inflammatory Response in Human Cigarette Smoke-Exposed Macrophages.

    PubMed

    Heulens, Nele; Korf, Hannelie; Mathyssen, Carolien; Everaerts, Stephanie; De Smidt, Elien; Dooms, Christophe; Yserbyt, Jonas; Gysemans, Conny; Gayan-Ramirez, Ghislaine; Mathieu, Chantal; Janssens, Wim

    2016-01-01

    Cigarette smoking is associated with increased inflammation and defective antibacterial responses in the airways. Interestingly, vitamin D has been shown to suppress inflammation and to improve antibacterial defense. However, it is currently unknown whether vitamin D may modulate inflammation and antibacterial defects in human cigarette smoke (CS)-exposed airways. To explore these unresolved issues, alveolar macrophages obtained from non-smoking and smoking subjects as well as human cigarette smoke extract (CSE)-treated THP-1 macrophages were stimulated with 1,25-dihydroxyvitamin D (1,25(OH)2D) to address inflammatory and antibacterial responses. Although basal levels of inflammatory cytokines and chemokines did not differ between non-smoking and smoking subjects, 1,25(OH)2D did reduce levels of IL-6, TNF-α and MCP-1 in alveolar macrophages in response to LPS/IFN-γ, although not statistically significant for TNF-α and IL-6 in smokers. CSE did not significantly alter vitamin D metabolism (expression levels of CYP24A1 or CYP27B1) in THP-1 macrophages. Furthermore, stimulation with 1,25(OH)2D reduced mRNA expression levels and/or protein levels of IL-8, TNF-α and MCP-1 in CSE-treated THP-1 macrophages. 1,25(OH)2D did not improve defects in phagocytosis of E. coli bacteria or the oxidative burst response in CSE-treated THP-1 macrophages or alveolar macrophages from smokers. However, 1,25(OH)2D significantly enhanced mRNA expression and/or protein levels of the antimicrobial peptide cathelicidin in alveolar macrophages and THP-1 macrophages, independently of CS exposure. In conclusion, our results provide the first evidence that vitamin D could be a new strategy for attenuating airway inflammation and improving antibacterial defense in CS-exposed airways. PMID:27513734

  2. Regulation of Adipogenesis and Key Adipogenic Gene Expression by 1, 25-Dihydroxyvitamin D in 3T3-L1 Cells

    PubMed Central

    Ji, Shuhan; Doumit, Matthew E.; Hill, Rodney A.

    2015-01-01

    The functions of 1, 25-dihydroxyvitamin D (1, 25-(OH)2D3) in regulating adipogenesis, adipocyte differentiation and key adipogenic gene expression were studied in 3T3-L1 preadipocytes. Five concentrations (0.01, 0.1, 1, 10, 100nM) of 1, 25-(OH)2D3 were studied and lipid accumulation measured by Oil Red O staining and expression of adipogenic genes quantified using quantitative real-time PCR. Adipogenic responses to 1, 25-(OH)2D3 were determined on 6, and 12 h, and days 1-10 after induction of adipogenesis by a hormonal cocktail with or without 1, 25-(OH)2D3. In response to 1, 25-(OH)2D3 (1, 10, and 100 nM), lipid accumulation and the expression of PPARγ, C/EBPα, FABP4 and SCD-1 were inhibited through day 10, and vitamin D receptor expression was inhibited in the early time points. The greatest inhibitory effect was upon expression of FABP4. Expression of SREBP-1c was only affected on day 2. The lowest concentrations of 1, 25-(OH)2D3 tested did not affect adipocyte differentiation or adipogenic gene expression. The C/EBPα promoter activity response to 1, 25-(OH)2D3 was also tested, with no effect detected. These results indicate that 1, 25-(OH)2D3 inhibited adipogenesis via suppressing adipogenic-specific genes, and is invoked either during PPARγ activation or immediately up-stream thereof. Gene expression down-stream of PPARγ especially FABP4 was strongly inhibited, and we suggest that the role of 1, 25-(OH)2D3 in regulating adipogenesis will be informed by further studies of adipogenic-specific gene promoter activity. PMID:26030589

  3. 1,25-Dihydroxyvitamin D3 inhibition of col1a1 promoter expression in calvariae from neonatal transgenic mice

    NASA Technical Reports Server (NTRS)

    Bedalov, A.; Salvatori, R.; Dodig, M.; Kapural, B.; Pavlin, D.; Kream, B. E.; Clark, S. H.; Woody, C. O.; Rowe, D. W.; Lichtler, A. C.

    1998-01-01

    We studied the effect of 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) on organ cultures of transgenic mouse calvariae containing segments of the Col1a1 promoter extending to -3518, -2297, -1997, -1794, -1763, and -1719 bp upstream of the transcription start site fused to the chloramphenicol acetyltransferase (CAT) reporter gene. 1,25(OH)2D3 had a dose-dependent inhibitory effect on the expression of the -3518 bp promoter construct (ColCAT3.6), with maximal inhibition of about 50% at 10 nM. This level of inhibition was consistent with the previously observed effect on the endogenous Col1a1 gene in bone cell models. All of the shorter constructs were also inhibited by 10 nM 1,25(OH)2D3, suggesting that the sequences required for 1, 25(OH)2D3 inhibition are downstream of -1719 bp. The inhibitory effect of 1,25(OH)2D3 on transgene mRNA was maintained in the presence of the protein synthesis inhibitor cycloheximide, suggesting that the inhibitory effect on Col1a1 gene transcription does not require de novo protein synthesis. We also examined the in vivo effect of 1,25(OH)2D3 treatment of transgenic mice on ColCAT activity, and found that 48 h treatment caused a dose-dependent inhibition of CAT activity in calvariae comparable to that observed in organ cultures. In conclusion, we demonstrated that 1,25(OH)2D3 inhibits Col1A1 promoter activity in transgenic mouse calvariae, both in vivo and in vitro. The results indicate that there is a 1, 25(OH)2D3 responsive element downstream of -1719 bp. The inhibitory effect does not require new protein synthesis.

  4. Low-calcium diets increase both production and clearance of 1,25-dihydroxyvitamin D3 in rats

    SciTech Connect

    Fox, J.; Bunker, J.E.; Kamimura, M.; Wong, P.F. )

    1990-02-01

    Administration of large doses of 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) to animals induces 1,25(OH)2D3 side-chain oxidative pathways. This study determined if the elevated plasma 1,25(OH)2D3 seen in rats fed low-Ca diets is associated not only with an increased production rate (PR) but also with an increased metabolic clearance rate (MCR) of the hormone. In vitamin D-replete rats fed a Ca-deficient diet for 3-4 wk, the PR increased 21-fold, plasma levels 15-fold, and the MCR by 37%. The increased MCR in Ca-deficient rats was associated with a 48% increase in hepatic microsomal UDP glucuronyl transferase enzyme activity, whereas 1,25(OH)2D3 catabolism by homogenates of liver and small intestinal mucosa was unchanged. In contrast to the effects of low-Ca diets, acute (7 h) pharmacological elevation of plasma 1,25(OH)2D3 to 1.5 ng/ml in normal rats did not influence the MCR. Thus chronically elevated 1,25(OH)2D3 levels are necessary to stimulate clearance. In conclusion, 1,25(OH)2D3 clearance in rats can be stimulated not only by chronic pharmacological doses of 1,25(OH)2D3 but also by the physiological stimulus of a low-Ca diet. Hence, plasma 1,25(OH)2D3 levels can be regulated by changes in both PR and MCR.

  5. Plasma 24,25-dihydroxyvitamin D concentration of Dahl salt-sensitive rats decreases during high salt intake

    NASA Technical Reports Server (NTRS)

    Thierry-Palmer, Myrtle; Tewolde, Teclemicael K.; Forte, Camille; Wang, Min; Bayorh, Mohamed A.; Emmett, Nerimiah L.; White, Jolanda; Griffin, Keri

    2002-01-01

    Dahl salt-sensitive rats, but not salt-resistant rats, develop hypertension in response to high salt intake. We have previously shown an inverse relationship between plasma 25-hydroxyvitamin D (25-OHD) concentration and blood pressure of Dahl salt-sensitive rats during high salt intake. In this study, we report on the relationship between high salt intake and plasma 24,25-dihydroxyvitamin D (24,25-(OH)(2)D) concentration of Dahl salt-sensitive and salt-resistant rats. Rats were fed a high salt diet (8%) and sacrificed at day 2, 7, 14, 21, and 28. Plasma 24,25-(OH)(2)D concentrations of salt-sensitive rats were reduced to 50% of that at baseline at day 2-when blood pressure and plasma 25-OHD concentration were unchanged, but 25-OHD content in the kidney was 81% of that at baseline. Plasma 24,25-(OH)(2)D concentration was reduced further to 10% of that at baseline from day 7 to 14 of high salt intake, a reduction that was prevented in rats switched to a low salt (0.3%) diet at day 7. Exogenous 24,25-dihydroxycholecalciferol (24,25-(OH)(2)D(3)), administered at a level that increased plasma 24,25-(OH)(2)D concentration to five times normal, did not attenuate the salt-induced hypertension of salt-sensitive rats. Plasma 24,25-(OH)(2)D concentration of salt-resistant rats was gradually reduced to 50% of that at baseline at day 14 and returned to baseline value at day 28 of high salt intake. We conclude that the decrease in plasma 24,25-(OH)(2)D concentration in salt-sensitive rats during high salt intake is caused by decreased 25-OHD content in the kidney and also by another unidentified mechanism.

  6. Patterns of Transcriptional Response to 1,25-Dihydroxyvitamin D3 and Bacterial Lipopolysaccharide in Primary Human Monocytes

    PubMed Central

    Kariuki, Silvia N.; Blischak, John D.; Nakagome, Shigeki; Witonsky, David B.; Di Rienzo, Anna

    2016-01-01

    The active form of vitamin D, 1,25-dihydroxyvitamin D3 (1,25D), plays an important immunomodulatory role, regulating transcription of genes in the innate and adaptive immune system. The present study examines patterns of transcriptome-wide response to 1,25D, and the bacterial lipopolysaccharide (LPS) in primary human monocytes, to elucidate pathways underlying the effects of 1,25D on the immune system. Monocytes obtained from healthy individuals of African-American and European-American ancestry were treated with 1,25D, LPS, or both, simultaneously. The addition of 1,25D during stimulation with LPS induced significant upregulation of genes in the antimicrobial and autophagy pathways, and downregulation of proinflammatory response genes compared to LPS treatment alone. A joint Bayesian analysis enabled clustering of genes into patterns of shared transcriptional response across treatments. The biological pathways enriched within these expression patterns highlighted several mechanisms through which 1,25D could exert its immunomodulatory role. Pathways such as mTOR signaling, EIF2 signaling, IL-8 signaling, and Tec Kinase signaling were enriched among genes with opposite transcriptional responses to 1,25D and LPS, respectively, highlighting the important roles of these pathways in mediating the immunomodulatory activity of 1,25D. Furthermore, a subset of genes with evidence of interethnic differences in transcriptional response was also identified, suggesting that in addition to the well-established interethnic variation in circulating levels of vitamin D, the intensity of transcriptional response to 1,25D and LPS also varies between ethnic groups. We propose that dysregulation of the pathways identified in this study could contribute to immune-mediated disease risk. PMID:26976439

  7. In vitro vitamin K(2) and 1α,25-dihydroxyvitamin D(3) combination enhances osteoblasts anabolism of diabetic mice.

    PubMed

    Poon, Christina C W; Li, Rachel W S; Seto, Sai Wang; Kong, Siu Kai; Ho, Ho Pui; Hoi, Maggie P M; Lee, Simon M Y; Ngai, Sai Ming; Chan, Shun Wan; Leung, George P H; Kwan, Yiu Wa

    2015-11-15

    In this study, we evaluated the anabolic effect and the underlying cellular mechanisms involved of vitamin K2 (10 nM) and 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3) (10 nM), alone and in combination, on primary osteoblasts harvested from the iliac crests of C57BL/KsJ lean (+/+) and obese/diabetic (db/db) mice. A lower alkaline phosphatase (ALP) activity plus a reduced expression of bone anabolic markers and bone formation transcription factors (osteocalcin, Runx2, Dlx5, ATF4 and OSX) were consistently detected in osteoblasts of db/db mice compared to lean mice. A significantly higher calcium deposits formation in osteoblasts was observed in lean mice when compared to db/db mice. Co-administration of vitamin K2 (10 nM) and 1,25(OH)2D3 (10 nM) caused an enhancement of calcium deposits in osteoblasts in both strains of mice. Vitamins K2 and 1,25(OH)2D3 co-administration time-dependently (7, 14 and 21 days) increased the levels of bone anabolic markers and bone formation transcription factors, with a greater magnitude of increase observed in osteoblasts of db/db mice. Combined vitamins K2 plus 1,25(OH)2D3 treatment significantly enhanced migration and the re-appearance of surface microvilli and ruffles of osteoblasts of db/db mice. Thus, our results illustrate that vitamins K2 plus D3 combination could be a novel therapeutic strategy in treating diabetes-associated osteoporosis.

  8. Detection of 1α,25-dihydroxyvitamin D-regulated miRNAs in zebrafish by whole transcriptome sequencing.

    PubMed

    Craig, Theodore A; Zhang, Yuji; Magis, Andrew T; Funk, Cory C; Price, Nathan D; Ekker, Stephen C; Kumar, Rajiv

    2014-06-01

    The sterol hormone, 1α,25-dihydroxyvitamin D₃ (1α,25(OH)₂D₃), regulates gene expression and messenger RNA (mRNA) concentrations in zebrafish in vivo. Since mRNA concentrations and translation are influenced by micro-RNAs (miRNAs), we examined the influence of 1α,25(OH)₂D₃ on miRNA expression in zebrafish in vivo with whole transcriptome RNA sequencing, searched for miRNA binding sites in 1α,25(OH)₂D₃-sensitive genes, and performed correlation analyses between 1α,25(OH)₂D₃-sensitive miRNAs and mRNAs. In vehicle- and 1α,25(OH)₂D₃-treated, 7-day postfertilization larvae, between 282 and 295 known precursor miRNAs were expressed, and in vehicle- and 1α,25(OH)₂D₃-treated fish, between 83 and 122 novel miRNAs were detected. Following 1α,25(OH)₂D₃ treatment, 31 precursor miRNAs were differentially expressed (p<0.05). The differentially expressed miRNAs are predicted to potentially alter mRNAs for metabolic enzymes, transcription factors, growth factors, and Jak-STAT signaling. We verified the role of a 1α,25(OH)₂D₃-sensitive miRNA, miR125b, by demonstrating alterations in the concentrations of the mRNA of a 1α,25(OH)₂D₃-regulated gene, Cyp24a1, following transfection of renal cells with a miR125b miRNA mimic. Changes in the Cyp24a1 mRNA concentration by the miR125b miRNA mimic were associated with changes in the protein for Cyp24a1. Our data show that 1α,25(OH)₂D₃ regulates miRNA in zebrafish larvae in vivo and could thereby influence vitamin D-sensitive mRNA concentrations.

  9. 24R,25-Dihydroxyvitamin D3 Protects against Articular Cartilage Damage following Anterior Cruciate Ligament Transection in Male Rats.

    PubMed

    Boyan, Barbara D; Hyzy, Sharon L; Pan, Qingfen; Scott, Kayla M; Coutts, Richard D; Healey, Robert; Schwartz, Zvi

    2016-01-01

    Osteoarthritis (OA) in humans is associated with low circulating 25-hydroxyvitamin D3 [25(OH)D3]. In vitamin D replete rats, radiolabeled 24R,25-dihydroxyvitamin D3 [24R,25(OH)2D3] accumulates in articular cartilage following injection of [3H]-25(OH)D3. Previously, we showed that 24R,25(OH)2D3 blocks chondrocyte apoptosis via phospholipase D and p53, suggesting a role for 24R,25(OH)2D3 in maintaining cartilage health. We examined the ability of 24R,25(OH)2D3 to prevent degenerative changes in articular cartilage in an OA-like environment and the potential mechanisms involved. In vitro, rat articular chondrocytes were treated with IL-1β with and without 24R,25(OH)2D3 or 1α,25(OH)2D3. 24R,25(OH)2D3 but not 1α,25(OH)2D3 blocked the effects of IL-1β in a dose-dependent manner, and its effect was partially mediated through the TGF-β1 signaling pathway. In vivo, unilateral anterior cruciate ligament transections were performed in immunocompetent rats followed by intra-articular injections of 24R,25(OH)2D3 or vehicle (t = 0, 7, 14, 21 days). Tissues were harvested on day 28. Joints treated with vehicle had changes typical of OA whereas joints treated with 24R,25(OH)2D3 had less articular cartilage damage and levels of inflammatory mediators. These results indicate that 24R,25(OH)2D3 protects against OA, and suggest that it may be a therapeutic approach for preventing trauma-induced osteoarthritis. PMID:27575371

  10. Mapping Variation in Cellular and Transcriptional Response to 1,25-Dihydroxyvitamin D3 in Peripheral Blood Mononuclear Cells

    PubMed Central

    Kariuki, Silvia N.; Maranville, Joseph C.; Baxter, Shaneen S.; Jeong, Choongwon; Nakagome, Shigeki; Hrusch, Cara L.; Witonsky, David B.; Sperling, Anne I.; Di Rienzo, Anna

    2016-01-01

    The active hormonal form of vitamin D, 1,25-dihydroxyvitamin D (1,25D) is an important modulator of the immune system, inhibiting cellular proliferation and regulating transcription of immune response genes. In order to characterize the genetic basis of variation in the immunomodulatory effects of 1,25D, we mapped quantitative traits of 1,25D response at both the cellular and the transcriptional level. We carried out a genome-wide association scan of percent inhibition of cell proliferation (Imax) induced by 1,25D treatment of peripheral blood mononuclear cells from 88 healthy African-American individuals. Two genome-wide significant variants were identified: rs1893662 in a gene desert on chromosome 18 (p = 2.32 x 10−8) and rs6451692 on chromosome 5 (p = 2.55 x 10−8), which may influence the anti-proliferative activity of 1,25D by regulating the expression of nearby genes such as the chemokine gene, CCL28, and the translation initiation gene, PAIP1. We also identified 8 expression quantitative trait loci at a FDR<0.10 for transcriptional response to 1,25D treatment, which include the transcriptional regulator ets variant 3-like (ETV3L) and EH-domain containing 4 (EHD4). In addition, we identified response eQTLs in vitamin D receptor binding sites near genes differentially expressed in response to 1,25D, such as FERM Domain Containing 6 (FRMD6), which plays a critical role in regulating both cell proliferation and apoptosis. Combining information from the GWAS of Imax and the response eQTL mapping enabled identification of putative Imax-associated candidate genes such as PAIP1 and the transcriptional repressor gene ZNF649. Overall, the variants identified in this study are strong candidates for immune traits and diseases linked to vitamin D, such as multiple sclerosis. PMID:27454520

  11. 1,25-dihydroxyvitamin D{sub 3} impairs NF-{kappa}B activation in human naive B cells

    SciTech Connect

    Geldmeyer-Hilt, Kerstin; Heine, Guido; Hartmann, Bjoern; Baumgrass, Ria; Radbruch, Andreas; Worm, Margitta

    2011-04-22

    Highlights: {yields} In naive B cells, VDR activation by calcitriol results in reduced NF-{kappa}B p105 and p50 protein expression. {yields} Ligating the VDR with calcitriol causes reduced nuclear translocation of NF-{kappa}B p65. {yields} Reduced nuclear amount of p65 after calcitriol incubation results in reduced binding of p65 on the p105 promoter. {yields} Thus, vitamin D receptor signaling may reduce or prevent activation of B cells and unwanted immune responses, e.g. in IgE dependent diseases such as allergic asthma. -- Abstract: 1{alpha},25-dihydroxyvitamin D{sub 3} (calcitriol), the bioactive metabolite of vitamin D, modulates the activation and inhibits IgE production of anti-CD40 and IL-4 stimulated human peripheral B cells. Engagement of CD40 results in NF-{kappa}B p50 activation, which is essential for the class switch to IgE. Herein, we investigated by which mechanism calcitriol modulates NF-{kappa}B mediated activation of human naive B cells. Naive B cells were predominantly targeted by calcitriol in comparison with memory B cells as shown by pronounced induction of the VDR target gene cyp24a1. Vitamin D receptor activation resulted in a strongly reduced p105/p50 protein and mRNA expression in human naive B cells. This effect is mediated by impaired nuclear translocation of p65 and consequently reduced binding of p65 to its binding site in the p105 promoter. Our data indicate that the vitamin D receptor reduces NF-{kappa}B activation by interference with NF-{kappa}B p65 and p105. Thus, the vitamin D receptor inhibits costimulatory signal transduction in naive B cells, namely by reducing CD40 signaling.

  12. Biological Evaluation of Double Point Modified Analogues of 1,25-Dihydroxyvitamin D2 as Potential Anti-Leukemic Agents

    PubMed Central

    Corcoran, Aoife; Nadkarni, Sharmin; Yasuda, Kaori; Sakaki, Toshiyuki; Brown, Geoffrey; Kutner, Andrzej; Marcinkowska, Ewa

    2016-01-01

    Structurally similar double-point modified analogues of 1,25-dihydroxyvitamin D2 (1,25D2) were screened in vitro for their pro-differentiating activity against the promyeloid cell line HL60. Their affinities towards human full length vitamin D receptor (VDR) and metabolic stability against human vitamin D 24-hydroxylase (CYP24A1) were also tested. The analogues (PRI-1730, PRI-1731, PRI-1732, PRI-1733 and PRI-1734) contained 5,6-trans modification of the A-ring and of the triene system, additional hydroxyl or unsaturation at C-22 in the side chain and reversed absolute configuration (24-epi) at C-24 of 1,25D2. As presented in this paper, introduction of selected structural modifications simultaneously in two distinct parts of the vitamin D molecule resulted in a divergent group of analogues. Analogues showed lower VDR affinity in comparison to that of the parent hormones, 1,25D2 and 1,25D3, and they caused effective HL60 cell differentiation only at high concentrations of 100 nM and above. Unexpectedly, introducing of a 5,6-trans modification combined with C-22 hydroxyl and 24-epi configuration switched off entirely the cell differentiation activity of the analogue (PRI-1734). However, this analogue remained a moderate substrate for CYP24A1, as it was metabolized at 22%, compared to 35% for 1,25D2. Other analogues from this series were either less (12% for PRI-1731 and PRI-1733) or more (52% for PRI-1732) resistant to the enzymatic deactivation. Although the inactive analogue PRI-1734 failed to show VDR antagonism, when tested in HL60 cells, its structure might be a good starting point for our design of a vitamin D antagonist. PMID:26840307

  13. 24R,25-Dihydroxyvitamin D3 Protects against Articular Cartilage Damage following Anterior Cruciate Ligament Transection in Male Rats

    PubMed Central

    Boyan, Barbara D.; Hyzy, Sharon L.; Pan, Qingfen; Scott, Kayla M.; Coutts, Richard D.; Healey, Robert; Schwartz, Zvi

    2016-01-01

    Osteoarthritis (OA) in humans is associated with low circulating 25-hydroxyvitamin D3 [25(OH)D3]. In vitamin D replete rats, radiolabeled 24R,25-dihydroxyvitamin D3 [24R,25(OH)2D3] accumulates in articular cartilage following injection of [3H]-25(OH)D3. Previously, we showed that 24R,25(OH)2D3 blocks chondrocyte apoptosis via phospholipase D and p53, suggesting a role for 24R,25(OH)2D3 in maintaining cartilage health. We examined the ability of 24R,25(OH)2D3 to prevent degenerative changes in articular cartilage in an OA-like environment and the potential mechanisms involved. In vitro, rat articular chondrocytes were treated with IL-1β with and without 24R,25(OH)2D3 or 1α,25(OH)2D3. 24R,25(OH)2D3 but not 1α,25(OH)2D3 blocked the effects of IL-1β in a dose-dependent manner, and its effect was partially mediated through the TGF-β1 signaling pathway. In vivo, unilateral anterior cruciate ligament transections were performed in immunocompetent rats followed by intra-articular injections of 24R,25(OH)2D3 or vehicle (t = 0, 7, 14, 21 days). Tissues were harvested on day 28. Joints treated with vehicle had changes typical of OA whereas joints treated with 24R,25(OH)2D3 had less articular cartilage damage and levels of inflammatory mediators. These results indicate that 24R,25(OH)2D3 protects against OA, and suggest that it may be a therapeutic approach for preventing trauma-induced osteoarthritis. PMID:27575371

  14. Effect of 24,25-dihydroxyvitamin D3 on 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3) metabolism in vitamin D-deficient rats infused with 1,25-(OH)2D3

    SciTech Connect

    Yamato, H.; Matsumoto, T.; Fukumoto, S.; Ikeda, K.; Ishizuka, S.; Ogata, E.

    1989-01-01

    Previous studies revealed that administration of 24,25-dihydroxyvitamin D3 (24,25-(OH)2D3) to calcium (Ca)-deficient rats causes a dose-dependent reduction in markedly elevated serum 1,25-(OH)2D3 level. Although the results suggested that the metabolism of 1,25-(OH)2D3 was accelerated by 24,25-(OH)2D3, those experiments could not define whether the enhanced metabolism of 1,25-(OH)2D3 played a role in the reduction in the serum 1,25-(OH)2D3 level. In the present study, in order to address this issue more specifically, serum 1,25-(OH)2D3 was maintained solely by exogenous administration through miniosmotic pumps of 1,25-(OH)2D3 into vitamin D-deficient rats. Thus, by measuring the serum 1,25-(OH)2D3 concentration, the effect of 24,25-(OH)2D3 on the MCR of 1,25-(OH)2D3 could be examined. Administration of 24,25-(OH)2D3 caused a dose-dependent enhancement in the MCR of 1,25-(OH)2D3, and 1 microgram/100 g rat.day 24,25-(OH)2D3, which elevated serum 24,25-(OH)2D3 to 8.6 +/- 1.3 ng/ml, significantly increased MCR and suppressed serum levels of 1,25-(OH)2D3. The effect of 24,25-(OH)2D3 on 1,25-(OH)2D3 metabolism developed with a rapid time course, and the recovery of iv injected (1 beta-3H)1,25-(OH)2D3 in blood was significantly reduced within 1 h. In addition, there was an increase in radioactivity in the water-soluble fraction of serum as well as in urine, suggesting that 1,25-(OH)2D3 is rapidly degraded to a water-soluble metabolite(s). Furthermore, the reduction in serum 1,25-(OH)2D3 was associated with a reduction in both serum and urinary Ca levels. Because the conversion of (3H)24,25-(OH)2D3 to (3H)1,24,25-(OH)2D3 or other metabolites was minimal in these rats, 24,25-(OH)2D3 appears to act without being converted into other metabolites. These results demonstrate that 24,25-(OH)2D3 rapidly stimulates the metabolism of 1,25-(OH)2D3 and reduces its serum level.

  15. Epigenetic regulation of the 1,25-dihydroxyvitamin D3 24-hydroxylase (CYP24A1) in colon cancer cells

    PubMed Central

    Höbaus, Julia; Fetahu, Irfete Sh.; Khorchide, Maya; Manhardt, Teresa; Kallay, Enikö

    2013-01-01

    Calcitriol is the hormonally active form of vitamin D and has anti-proliferative and pro-apoptotic effects. Calcitriol and its precursor calcidiol (25(OH)D3) are degraded by the 1,25-dihydroxyvitamin D3 24-hydroxylase (CYP24A1). This enzyme is overexpressed in colorectal tumors, however, the mechanisms of this overexpression remain to be elucidated. CYP24A1 mRNA level differs among colorectal cancer cell lines and range from almost undetectable to high. Since DNA methylation and histone acetylation regulate CYP24A1 gene expression in prostate cancer cell lines, we investigated whether epigenetic mechanisms could explain the differences in basal expression of CYP24A1 in colon cancer cells. Methyltransferase inhibitor 5-aza-2′-deoxycytidine (DAC) treatment resulted in an over 50-fold induction of CYP24A1 mRNA expression in Coga1A and HT-29 cells but in no response in Caco2/AQ and Coga13 cells. This finding is supported by a strong increase in CYP24A1 activity after DAC treatment in Coga1A (35%). In addition, calcitriol and DAC had synergistic effects on CYP24A1 gene transcription. Interestingly, the CYP24A1 promoter was not methylated in Coga1A and HT-29 (<5%), while in Caco2/AQ it was 62% methylated. This suggests that DNA demethylation must activate genes upstream of CYP24A1 rather than act on the gene itself. However, transcriptional regulators of CYP24A1 such as vitamin D receptor (VDR), retinoid X receptor (RXR), specificity protein 1 (SP1), or mediator complex subunit 1 (MED1) were not upregulated. We conclude that in colon cancer cells, CYP24A1 gene expression is inducible by methyltransferase and some histone deacetylase inhibitors in a cell line-dependent manner. This effect does not correlate with the methylation state of the promoter and therefore must affect genes upstream of CYP24A1. This article is part of a Special Issue ‘Vitamin D Workshop’. PMID:22940288

  16. 1,25-Dihydroxyvitamin D3-mediated vesicular transport of calcium in intestine: time-course studies

    SciTech Connect

    Nemere, I.; Norman, A.W.

    1988-06-01

    Previous work has biochemically identified lysosomes containing calcium and calbindin-D28K (CaBP) in chick intestine that are sensitive to 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3) status. In the present work, lysosomal accumulation of 45Ca was optimal after 30 min of absorption from in situ ligated duodenal loops. The areas under the curves, defined as lysosomal fractions in Percoll gradients, were calculated, and values after 10, 20, 30, and 40 min of transport were (+D/-D ratio) 0.90, 1.62, 1.88, and 1.78, respectively. Lysosomal CaBP also increased in parallel with the time of absorption and was not due to nonspecific adsorption. When lysosomal 45Ca was determined 2.5, 5, 10, 15, and 43 h after administration of 1.3 nmol 1,25-(OH)2D3 or vehicle, the area ratios were 1.02, 1.47, 3.10, 1.88, and 1.29, respectively. Analyses of serum 45Ca in the same birds yielded a closely parallel time course with 1,25-(OH)2D3-dependent intestinal calcium absorption; values were 108 +/- 12% (+/- SE), 164 +/- 29%, 300 +/- 35%, 340 +/- 39%, and 169 +/- 8% of vitamin D-deficient control values at 2.5, 5, 10, 15, and 43 h, respectively. Immunoreactive CaBP in lysosomal fractions did not change significantly between 5-43 h after administration of seco-steroid. A similar series of experiments was conducted with microsomal membranes containing putative endocytic vesicles, which are believed to deliver calcium to the lysosomes. The brush border origin of the vesicles was supported by the internalization of anti-CaBP immunoglobulin G after 3 min of absorption. Accumulation of 45Ca by endocytic vesicles was subsequently found to be maximal after 20 min of absorption (+D/-D = 1.48), declining again at 30 min (+D/-D = 1.16), while CaBP levels in the same fractions remained unchanged between 0-30 min of absorption.

  17. Gene-by-Diet Interactions Affect Serum 1,25-Dihydroxyvitamin D Levels in Male BXD Recombinant Inbred Mice.

    PubMed

    Fleet, James C; Replogle, Rebecca A; Reyes-Fernandez, Perla; Wang, Libo; Zhang, Min; Clinkenbeard, Erica L; White, Kenneth E

    2016-02-01

    1,25-Dihydroxyvitamin D (1,25[OH]2D) regulates calcium (Ca), phosphate, and bone metabolism. Serum 1,25(OH)2D levels are reduced by low vitamin D status and high fibroblast growth factor 23 (FGF23) levels and increased by low Ca intake and high PTH levels. Natural genetic variation controls serum 25-hydroxyvitamin D (25[OH]D) levels, but it is unclear how it controls serum 1,25(OH)2D or the response of serum 1,25(OH)2D levels to dietary Ca restriction (RCR). Male mice from 11 inbred lines and from 51 BXD recombinant inbred lines were fed diets with either 0.5% (basal) or 0.25% Ca from 4 to 12 weeks of age (n = 8 per line per diet). Significant variation among the lines was found in basal serum 1,25(OH)2D and in the RCR as well as basal serum 25(OH)D and FGF23 levels. 1,25(OH)2D was not correlated to 25(OH)D but was negatively correlated to FGF23 (r = -0.5). Narrow sense heritability of 1,25(OH)2D was 0.67 on the 0.5% Ca diet, 0.66 on the 0.25% Ca diet, and 0.59 for the RCR, indicating a strong genetic control of serum 1,25(OH)2D. Genetic mapping revealed many loci controlling 1,25(OH)2D (seven loci) and the RCR (three loci) as well as 25(OH)D (four loci) and FGF23 (two loci); a locus on chromosome 18 controlled both 1,25(OH)2D and FGF23. Candidate genes underlying loci include the following: Ets1 (1,25[OH]2D), Elac1 (FGF23 and 1,25[OH]2D), Tbc1d15 (RCR), Plekha8 and Lyplal1 (25[OH]D), and Trim35 (FGF23). This report is the first to reveal that serum 1,25(OH)2D levels are controlled by multiple genetic factors and that some of these genetic loci interact with the dietary environment. PMID:26587785

  18. 1,25-Dihydroxyvitamin D inhibits glutamine metabolism in Harvey-ras transformed MCF10A human breast epithelial cell.

    PubMed

    Zhou, Xuanzhu; Zheng, Wei; Nagana Gowda, G A; Raftery, Daniel; Donkin, Shawn S; Bequette, Brian; Teegarden, Dorothy

    2016-10-01

    Breast cancer is the second most common cancer among women in the US. The active form of vitamin D, 1,25-dihydroxyvitamin D (1,25(OH)2D), is proposed to inhibit cellular processes and to prevent breast cancer. The current studies investigated the effect of 1,25(OH)2D on glutamine metabolism during cancer progression employing Harvey-ras oncogene transformed MCF10A human breast epithelial cells (MCF10A-ras). Treatment with 1,25(OH)2D significantly reduced intracellular glutamine and glutamate levels measured by nuclear magnetic resonance (NMR) by 23±2% each. Further, 1,25(OH)2D treatment reduced glutamine and glutamate flux, determined by [U-(13)C5] glutamine tracer kinetics, into the TCA cycle by 31±0.2% and 17±0.4%, respectively. The relative levels of mRNA and protein abundance of the major glutamine transporter, solute linked carrier family 1 member A5 (SLC1A5), was significantly decreased by 1,25(OH)2D treatment in both MCF10A-ras cells and MCF10A which overexpress ErbB2 (HER-2/neu). Consistent with these results, glutamine uptake was reduced by 1,25(OH)2D treatment and the impact was eliminated with the SLC1A5 inhibitor L-γ-Glutamyl-p-nitroanilide (GPNA). A consensus sequence to the vitamin D responsive element (VDRE) was identified in silico in the SLC1A5 gene promoter, and site-directed mutagenesis analyses with reporter gene studies demonstrate a functional negative VDRE in the promoter of the SLC1A5 gene. siRNA-SLC1A5 transfection in MCF10A-ras cells significantly reduced SLC1A5 mRNA expression as well as decreased viable cell number similar to 1,25(OH)2D treatment. SLC1A5 knockdown also induced an increase in apoptotic cells in MCF10A-ras cells. These results suggest 1,25(OH)2D alters glutamine metabolism in MCF10A-ras cells by inhibiting glutamine uptake and utilization, in part through down-regulation of SLC1A5 transcript abundance. Thus, 1,25(OH)2D down-regulation of the glutamine transporter, SLC1A5, may facilitate vitamin D prevention of breast

  19. 1,25-Dihydroxyvitamin D to PTH(1–84) Ratios Strongly Predict Cardiovascular Death in Heart Failure

    PubMed Central

    Gruson, Damien; Ferracin, Benjamin; Ahn, Sylvie A.; Zierold, Claudia; Blocki, Frank; Hawkins, Douglas M.; Bonelli, Fabrizio; Rousseau, Michel F.

    2015-01-01

    Objectives Vitamin D deficiency and hyperparathyroidism are common in patients with heart failure (HF). There is a growing body of evidence supporting the role of vitamin D and parathyroid hormone (PTH) in cardiac remodeling and worsening of HF. Lack of reliable automated testing of 1,25-dihydroxyvitamin D (1,25(OH)2D), the biologically active metabolite of vitamin D, has limited its contribution to the prognostic assessment of HF. Here, the association of 1,25(OH)2D and PTH(1–84) levels was evaluated for prediction of cardiovascular death in chronic HF patients. Methods We conducted a single center prospective cohort including 170 chronic HF patients (females n = 36; males n = 134; NYHA II-IV; mean age: 67 years; etiology: ischemic n = 119, dilated cardiomyopathy n = 51; mean LVEF: 23%). The primary outcome was cardiovascular death. Results Serum levels of 1,25(OH)2D decreased markedly with increased HF severity. Medians were 33.3 pg/mL for NYHA-II patients, 23.4 pg/mL for NYHA-III, and 14.0 pg/mL for NYHA-IV patients (p<0.001). Most patients had levels of 25(OH)D below 30ng/mL, and stratification by NYHA functional class did not show significant differences (p = 0.249). The 1,25(OH)2D to PTH(1–84) ratio and the (1,25(OH)2D)2 to PTH(1–84) ratio were found to be the most significantly related to HF severity. After a median follow-up of 4.1 years, 106 out of 170 patients reached the primary endpoint. Cox proportional hazard modeling revealed 1,25(OH)2D and the 1,25(OH)2D to PTH(1–84) ratios to be strongly predictive of outcomes. Conclusions 1,25(OH)2D and its ratios to PTH(1–84) strongly and independently predict cardiovascular mortality in chronic HF. PMID:26308451

  20. Role of 1,25-dihydroxyvitamin D3 on intestinal phosphate absorption in rats with a normal vitamin D supply.

    PubMed

    Rizzoli, R; Fleisch, H; Bonjour, J P

    1977-09-01

    In vitamin D-deficient rats, impaired intestinal phosphorus (P) absorption can be corrected by 1,25-dihydroxyvitamin D(3)[1,25-(OH)(2)D(3)]. In the present study, it was investigated whether changes in 1,25-(OH)(2)D(3) production can influence intestinal P transport also in animals with a normal supply of vitamin D. The intestinal P absorption was evaluated in rats using both the in situ duodenal loop technique and the determination of the overall gastrointestinal absorption under three conditions known to influence the production of 1,25-(OH)(2)D(3): (a) variation in dietary P, (b) thyroparathyroidectomy (TPTX) with or without administration of parathyroid hormone (PTH), and (c) treatment with disodium ethane-1-hydroxy-1,1-diphosphonate (EHDP). In all circumstances changes in duodenal absorption paralleled the changes in the overall fractional absorption. (a) Lowering dietary P stimulated P absorption. (b) TPTX decreased P absorption. This effect was corrected either by the administration of PTH or by the administration of 1,25-(OH)(2)D(3). (c) EHDP, when given at a dose known to inhibit 1,25-(OH)(2)D(3) formation, decreased the duodenal P absorption in both intact and TPTX animals. This effect was corrected by 1,25-(OH)(2)D(3). In the TPTX-EHDP-treated animals, the administration of PTH did not rectify the low duodenal P absorption. These results support the thesis that, in rats with normal vitamin D supply, variations in the endogenous production of 1,25-(OH)(2)D(3) change the rate of P absorption. However, these changes are in such magnitude that they are of relatively small importance when compared to the effect of variation in the dietary intake of P. These results also strongly suggest that the action of PTH on duodenal P transport is mediated by its effect on 1,25-(OH)(2)D(3) production, inasmuch as the effect of the hormone is abolished after blocking the renal 1-hydroxylation with EHDP.

  1. Gene-by-Diet Interactions Affect Serum 1,25-Dihydroxyvitamin D Levels in Male BXD Recombinant Inbred Mice.

    PubMed

    Fleet, James C; Replogle, Rebecca A; Reyes-Fernandez, Perla; Wang, Libo; Zhang, Min; Clinkenbeard, Erica L; White, Kenneth E

    2016-02-01

    1,25-Dihydroxyvitamin D (1,25[OH]2D) regulates calcium (Ca), phosphate, and bone metabolism. Serum 1,25(OH)2D levels are reduced by low vitamin D status and high fibroblast growth factor 23 (FGF23) levels and increased by low Ca intake and high PTH levels. Natural genetic variation controls serum 25-hydroxyvitamin D (25[OH]D) levels, but it is unclear how it controls serum 1,25(OH)2D or the response of serum 1,25(OH)2D levels to dietary Ca restriction (RCR). Male mice from 11 inbred lines and from 51 BXD recombinant inbred lines were fed diets with either 0.5% (basal) or 0.25% Ca from 4 to 12 weeks of age (n = 8 per line per diet). Significant variation among the lines was found in basal serum 1,25(OH)2D and in the RCR as well as basal serum 25(OH)D and FGF23 levels. 1,25(OH)2D was not correlated to 25(OH)D but was negatively correlated to FGF23 (r = -0.5). Narrow sense heritability of 1,25(OH)2D was 0.67 on the 0.5% Ca diet, 0.66 on the 0.25% Ca diet, and 0.59 for the RCR, indicating a strong genetic control of serum 1,25(OH)2D. Genetic mapping revealed many loci controlling 1,25(OH)2D (seven loci) and the RCR (three loci) as well as 25(OH)D (four loci) and FGF23 (two loci); a locus on chromosome 18 controlled both 1,25(OH)2D and FGF23. Candidate genes underlying loci include the following: Ets1 (1,25[OH]2D), Elac1 (FGF23 and 1,25[OH]2D), Tbc1d15 (RCR), Plekha8 and Lyplal1 (25[OH]D), and Trim35 (FGF23). This report is the first to reveal that serum 1,25(OH)2D levels are controlled by multiple genetic factors and that some of these genetic loci interact with the dietary environment.

  2. Role of 25-hydroxyvitamin D3 dose in determining rat 1,25-dihydroxyvitamin D3 production

    SciTech Connect

    Vieth, R.; McCarten, K.; Norwich, K.H. )

    1990-05-01

    To understand the relationships among (1) the dose of 25-hydroxyvitamin D (25(OH)D) in vivo, (2) the activity of 1-hydroxylase in renal mitochondria, and (3) the production of 1,25-dihydroxyvitamin D (1,25(OH)2D) in vivo, we gave rats different chronic or acute doses of 25-hydroxyvitamin D3 (25(OH)D3). We followed the metabolism of intracardially administered (25-hydroxy-26,27-methyl-3H)cholecalciferol (25(OH)(3H)D3) for 24 h before killing by measuring extracts of serum by chromatography. Specific activity of 1-hydroxylase in kidney was measured at death. In rats given 0-2,000 pmol 25(OH)D3 chronically by mouth, there was a dose-dependent decline in the percent of serum radioactivity made up of 1,25-dihydroxy-(26,27-methyl-3H)cholecalciferol (1,25(OH)2(3H)D3) as well as a decline in mitochondrial 1-hydroxylase, and these correlated significantly (r = 0.83, P less than 0.001). Serum %1,25(OH)2(3H)D3 in this experiment ranged from 0.8 to 42%. A small part of this range could be accounted for by a faster metabolic clearance rate (MCR) of 1,25(OH)2D3 from rats supplemented with 25(OH)D3 (MCR, 2.12 +/- 0.10 ml/min) compared with rats restricted in vitamin D (MCR, 0.94 +/- 0.06 ml/min, P less than 0.001). The activity of 1-hydroxylase was by far the major factor determining serum %1,25(OH)2(3H)D3. When different acute doses of 25(OH)D3 were given to rats with identical specific activities of 1-hydroxylase, the resulting 1,25(OH)2D3 concentrations in serum correlated with the 25(OH)D3 dose (r = 0.99, P less than 0.001). We conclude that the behavior of 1-hydroxylase in vivo is analogous to the classic behavior in vitro of an enzyme functioning below its Michaelis constant (Km). The amount of 1-hydroxylase present in renal mitochondria determines the fraction (not simply the quantity) of 25(OH)D metabolized to 1,25(OH)2D3 in vivo.

  3. 24- and 26-homo-1,25-dihydroxyvitamin D/sub 3/: preferential activity in inducing differentiation of human leukemia cells HL-60 in vitro inducing differentiation of human leukemia cells HL-60 in vitro

    SciTech Connect

    Ostrem, V.K.; Tanaka, Y.; Prahl, J.; DeLuca, H.F.; Ikekawa, N.

    1987-05-01

    1,25-Dihydroxyvitamin D/sub 3/, the hormonal form of vitamin D/sub 3/, promotes the differentiation of HL-60 human promyelocytic leukemia cells into monocytes. Differentiation changes include the induction of phagocytosis, the initiation of nitroblue tetrazolium-reducing activity, and the appearance of nonspecific acid esterase. The authors have found that the 24-homo- and 26-homo-1,25-dihydroxyvitamin D/sub 3/ and their ..delta../sup 22/ analogues are 10-fold more potent than 1,25-dihydroxyvitamin D/sub 3/ in inducing differentiation of HL-60 cells in vitro. In vivo, these analogues show activity similar to 1,25-dihydroxy-vitamin D/sub 3/ in stimulating intestinal calcium transport in vitamin D-deficient rats. The 24-homoanalogues are significantly less active, whereas the 26-homo derivatives are more active than the natural hormone in mobilizing calcium from bone. This unusual activity pattern cannot be explained on the basis of the affinity of these analogues for the 1,25-dihydroxy-vitamin D/sub 3/ intracellular receptor: both 24-homo- and 26-homo-1,25-dihydroxyvitamin D/sub 3/ have the same effectiveness as 1,25-dihydroxyvitamin D/sub 3/ in displacing the tritiated hormone from its receptor in rat intestine of HL-60 cells. These analogues of 1,25-dihydroxyvitamin D/sub 3/ may be of some interest as possible therapeutic substances, or as tools in understanding the action of 1,25-dihydroxyvitamin D/sub 3/ in inducing differentiation.

  4. Inhibitory effects of 1alpha, 25dihydroxyvitamin D3 and Ajuga iva extract on oxidative stress, toxicity and hypo-fertility in diabetic rat testes.

    PubMed

    Hamden, K; Carreau, S; Jamoussi, K; Ayadi, F; Garmazi, F; Mezgenni, N; Elfeki, A

    2008-09-01

    The aim of the current study is to investigate the therapeutic and preventive effects of 1alpha, 25dihydroxyvitaminD3 (1,25 (OH)2 D3) and Afuga iva (AI) extract on diabetes toxicity in rats testes. Thus diabetic rats were treated with 1alpha, 25dihydroxyvitaminD3 or Ajuga iva extract as both therapeutic and preventive treatments on diabetes toxicity in rats testes. Our results showed that diabetes induced a decrease in testosterone and 17beta-estradiol levels in testes and plasma. Besides, a fall in testicular antioxidant capacity appeared by a decrease in both antioxidant (superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) activities) and nonenzymatic antioxidant (copper (Cu), magnesium (Mg) and iron (Fe) levels). All theses changes enhanced testicular toxicity (increase in testicular aspartate amino transaminase (AST), alanine amino transaminase (ALT), lactate dehydrogenase (LDH) activities and the lipid peroxidation and triglyceride (TG) levels). In addition, a decrease in testicular total cholesterol (TCh) level was observed in diabetic rats testes. All the changes lead to a decrease in the total number and mobility of epididymal spermatozoa. The administration of 1alpha,25dihydroxyvitaminD3 and Ajuga iva extract three weeks before and after diabetes induction interfered and prevented diabetes toxicity in the reproductive system. 1,25 (OH)2 D3 and Ajuga iva extract blunted all changes observed in diabetic rats. To sum up, the data suggested that 1,25 (OH)2 D3 and Ajuga iva extract have a protective effect on alloxan-induced damage in reproductive system by enhancing the testosterone and 17beta-estradiol levels, consequently protecting from oxidative stress, cellular toxicity and maintaining the number and motility of spermatozoids.

  5. Diverse Osteoclastogenesis of Bone Marrow From Mandible versus Long Bone

    PubMed Central

    Chaichanasakul, Thawinee; Kang, Benjamin; Bezouglaia, Olga; Aghaloo, Tara L.; Tetradis, Sotirios

    2015-01-01

    Background Mandible (MB) and maxilla possess unique metabolic and functional properties and demonstrate discrete responses to homeostatic, mechanical, hormonal and developmental stimuli. Osteogenic potential of bone marrow stromal cells (BMSCs) differs between MB versus long bones (LB). Furthermore, MB versus LB derived osteoclasts (OCs) have disparate functional properties. Here, we explored the osteoclastogenic potential of rat MB versus LB marrow in vitro and in vivo under basal and stimulated conditions. Methods Bone marrow from rat MB and LB was cultured in osteoblastic or osteoclastic differentiation media. Tartrate resistant acid phosphatase (TRAP) staining, resorption pit assays, and real-time PCR were performed. Additionally, osmotic mini-pumps were implanted in animals, mandibles and tibiae were isolated and multinucleated cells (MNCs) were measured. Results MB versus LB marrow cultures differentiated with RANKL and M-CSF produced more TRAP+ multinucleated cells (MNCs) and greater resorptive area. To explore MB versus LB BMSC supported osteoclastogenesis, confluent BMSCs were cultured with parathyroid hormone (PTH), 1α,25-dihydroxyvitaminD3 (1,25D3), or PTH+1,25D3. 1,25D3 or PTH+1,25D3 treated LB BMSCs expressed significantly higher RANKL and lower OPG mRNA and increased RANKL:OPG ratio. When whole marrow was cultured with PTH+1,25D3, more TRAP+ MNCs were seen in LB versus MB cultures. Ultimately, rats were infused with PTH+1,25D3 and MB versus tibia MNCs were measured. Hormonal stimulation increased osteoclastogenesis in both MB and tibia. However, higher TRAP+ MNC numbers were observed in tibia versus MB under basal and hormonal stimulation. Conclusions Collectively, our data illustrate differences both on osteoclastogenic potential and OC numbers of MB versus LB marrow. PMID:24003963

  6. Maternal Hypercalcemia Due to Failure of 1,25-Dihydroxyvitamin-D3 Catabolism in a Patient With CYP24A1 Mutations

    PubMed Central

    Hsiao, Edward C.; O'Donnell, Betsy; Salmeen, Kirsten; Nussbaum, Robert; Krebs, Michael; Baumgartner-Parzer, Sabina; Kaufmann, Martin; Jones, Glenville; Bikle, Daniel D.; Wang, YongMei; Mathew, Allen S.; Shoback, Dolores; Block-Kurbisch, Ingrid

    2015-01-01

    Context: Calcium metabolism changes in pregnancy and lactation to meet fetal needs, with increases in 1,25-dihydroxyvitamin D [1,25-(OH)2D] during pregnancy playing an important role. However, these changes rarely cause maternal hypercalcemia. When maternal hypercalcemia occurs, further investigation is essential, and disorders of 1,25-(OH)2D catabolism should be carefully considered in the differential diagnosis. Case: A patient with a childhood history of recurrent renal stone disease and hypercalciuria presented with recurrent hypercalcemia and elevated 1,25-(OH)2D levels during pregnancy. Laboratory tests in the fourth pregnancy showed suppressed PTH, elevated 1,25-(OH)2D, and high-normal 25-hydroxyvitamin D levels, suggesting disordered vitamin D metabolism. Analysis revealed low 24,25-dihydroxyvitamin D3 and high 25-hydroxyvitamin D3 levels, suggesting loss of function of CYP24A1 (25-hydroxyvitamin-D3-24-hydroxylase). Gene sequencing confirmed that she was a compound heterozygote with the E143del and R396W mutations in CYP24A1. Conclusions: This case broadens presentations of CYP24A1 mutations and hypercalcemia in pregnancy. Furthermore, it illustrates that patients with CYP24A1 mutations can maintain normal calcium levels during the steady state but can develop hypercalcemia when challenged, such as in pregnancy when 1,25-(OH)2D levels are physiologically elevated. PMID:26097993

  7. A Methylene Group on C-2 of 24,24-Difluoro-19-nor-1α,25-Dihydroxyvitamin D3 Markedly Increases Bone Calcium Mobilization in vivo

    PubMed Central

    Flores, Agnieszka; Massarelli, Ilaria; Thoden, James B.; Plum, Lori A.; DeLuca, Hector F.

    2015-01-01

    Four side chain fluorinated analogues of 1α,25-dihydroxy-19-norvitamin D have been prepared in convergent syntheses using the Wittig-Horner reaction as a key step. Structures and absolute configurations of analogues 3 and 5 were confirmed by X-ray crystallography. All analogues showed high potency in HL-60 cell differentiation and vitamin D-24-hydroxylase (24-OHase) transcription as compared to 1α,25-dihydroxyvitamin D3 (1). Most important is that all of the 20S-configured derivatives (4 and 6) had high bone mobilizing activity in vivo. However, in the 20R series, a 2-methylene group was required for high bone mobilizing activity. A change in positioning of the 20R molecule in the vitamin D receptor when the 2-methylene group is present may provide new insight into the molecular basis of bone calcium mobilization induced by vitamin D. PMID:26630444

  8. The enhanced hypercalcemic response to 20-epi-1,25-dihydroxyvitamin D3 results from a selective and prolonged induction of intestinal calcium-regulating genes.

    PubMed

    Zella, Lee A; Meyer, Mark B; Nerenz, Robert D; Pike, J Wesley

    2009-08-01

    20-Epi-1,25-dihydroxyvitamin D(3) (20-epi-1,25(OH)(2)D(3)) is a vitamin D analog that exhibits unique biologic properties. The mechanism(s) responsible for these activities remains unclear. Here we explore the ability of 20-epi-1,25(OH)(2)D(3) to induce calcemic responses in mice in vivo and identify a potential mechanism. Surprisingly, the levels of calcemia induced at 24 h after single injections of equivalent doses of 1,25(OH)(2)D(3) or 20-epi-1,25(OH)(2)D(3) were similar, suggesting that both compounds were equal in both potency and efficacy. This similarity was also observed at genes involved in calcium homeostasis including, S100g (calbindin D9K), Trpv6, Cldn2 (claudin 2), Trpv5, and Tnfsf11 (Rankl) as well as Cyp24a1. Despite this, the activities of the two compounds at 48 h were strikingly different. Thus, whereas the activity of 1,25-dihydroxyvitamin D(3) declined at this time point, the response to 20-epi-1,25(OH)(2)D(3) was increased. This unique profile was not due to an exaggerated induction of calcium regulating genes in the intestine, kidney, or bone but to a sustained action on these genes in the intestine. This conclusion was supported by studies using in vivo chromatin immunoprecipitation analysis, which revealed a prolonged presence of vitamin D receptor and RNA polymerase II at the Trpv6 and Cyp24a1 promoters and a sustained increase in histone 4 acetylation in these gene regions as well. We conclude that 20-epi-1,25(OH)(2)D(3) displays superagonist properties largely as a result of its duration of action in the intestine. This action is likely due to a decrease in the rate of intestinal-specific degradation of the ligand rather than to an increase in the functional stability of the vitamin D receptor.

  9. The Effect of Analogues of 1α,25-Dihydroxyvitamin D2 on the Regrowth and Gene Expression of Human Colon Cancer Cells Refractory to 5-Fluorouracil

    PubMed Central

    Neska, Jacek; Swoboda, Paweł; Przybyszewska, Małgorzata; Kotlarz, Agnieszka; Bolla, Narasimha Rao; Miłoszewska, Joanna; Grygorowicz, Monika Anna; Kutner, Andrzej; Markowicz, Sergiusz

    2016-01-01

    This study aimed to evaluate the capacity of hypocalcemic analogues of 1α,25-dihydroxyvitamin D2 (1,25D2) and 1α,25-dihydroxyvitamin D3 (1,25D3) to inhibit regrowth and regulate the stemness-related gene expression in colon cancer cells undergoing renewal after exposure to 5-fluorouracil (5-FU). All of the tested analogues of 1,25D2 equally potently decreased the clonogenicity and the proliferative activity of HT-29 cells which survived the exposure to 5-FU, but differently regulated gene expression of these cells during their renewal. 1,25D2 and analogues (PRI-1907 and PRI-1917), as well as 1,25D3 and analogue PRI-2191, decreased the relative expression level of several stemness-related genes, such as NANOG, OCT3/4, PROM1, SOX2, ALDHA1, CXCR4, in HT-29/5-FU cells during their renewal, in comparison to untreated HT-29/5-FU cells. The other 1,25D2 analogues (PRI-1906 and PRI-1916) were not capable of downregulating the expression of these stemness-related genes as the analogues PRI-1907 and PRI-1917 did. All of the tested vitamin D analogues upregulated CDH1, the gene encoding E-cadherin associated with epithelial phenotype. Out of the series of analogues studied, side-chain branched analogues of 1,25D2 (PRI-1907, PRI-1917) and the analogue of 1,25D3 (PRI-2191) might be used to target cancer cells with stem-like phenotypes that survive conventional chemotherapy. PMID:27314328

  10. 1α,25-dihydroxyvitamin D3 stimulates activin A production to fine-tune osteoblast-induced mineralization.

    PubMed

    Woeckel, V J; van der Eerden, B C J; Schreuders-Koedam, M; Eijken, M; Van Leeuwen, J P T M

    2013-11-01

    In healthy bones, mineralization has to be tightly controlled to avoid pathological phenotypes. In this study, we investigated interactions between 1α,25(OH)2 D3 (1,25D3) and activin A in the regulation of osteoblast induced mineralization. In human osteoblast cultures, we demonstrated that besides stimulation of mineralization, 1,25D3 also induced activin A, a strong inhibitor of mineralization. Simultaneously, follistatin (FST), the natural antagonist of activin A, was down-regulated by1,25D3. This resulted in an increase in activin A activity during 1,25D3 treatment. We also showed that in 1,25D3-treated osteoblasts, mineralization can be further increased when activin A activity was abrogated by adding exogenous FST. This observation implies that, besides stimulation of mineralization, 1,25D3 also controls activin A-mediated inhibition of mineralization. Besides activin A, 1,25D3 also induces osteocalcin (BGLAP), another inhibitor of mineralization. Warfarin, which has been shown to inactivate osteocalcin, increased 1,25D3-induced mineralization. Interaction between these two systems became evident from the synergistic increase in BGLAP expression upon blocking activin activity in 1,25D3-treated cultures. In conclusion, we demonstrate that 1,25D3 stimulation of mineralization by human osteoblasts is suppressed by concomitant induction of inhibitors of mineralization. Mineralization induction by 1,25D3 may actually be controlled via interplay with activin A and osteocalcin. Finally, this complex regulation of mineralization substantiates the significance of tight control of mineralization to prevent excessive mineralization and consequently reduction in bone quality and strength.

  11. Association of Arsenic and Metals with Concentrations of 25-Hydroxyvitamin D and 1,25-Dihydroxyvitamin D among Adolescents in Torreón, Mexico

    PubMed Central

    Zamoiski, Rachel D.; Guallar, Eliseo; García-Vargas, Gonzalo G.; Rothenberg, Stephen J.; Resnick, Carol; Andrade, Marisela Rubio; Steuerwald, Amy J.; Parsons, Patrick J.; Weaver, Virginia M.; Navas-Acien, Ana

    2014-01-01

    Background: Limited data suggest that lead (Pb), cadmium (Cd), and uranium (U) may disrupt vitamin D metabolism and inhibit production of 1,25-dihydroxyvitamin D [1,25(OH)2D], the active vitamin D metabolite, from 25-hydroxyvitamin D [25(OH)D] in the kidney. Objectives: We evaluated the association between blood lead (BPb) and urine arsenic (As), Cd, molybdenum (Mo), thallium (Tl), and U with markers of vitamin D metabolism [25(OH)D and 1,25(OH)2D]. Methods: We conducted a cross-sectional study of 512 adolescents in Torreón, a town in Mexico with a Pb smelter near residential areas. BPb was measured using atomic absorption spectrometry. Urine As, Cd, Mo, Tl, and U were measured using inductively coupled plasma mass spectrometry. Serum 25(OH)D and 1,25(OH)2D were measured using a chemiluminescent immunoassay and a radioimmunoassay, respectively. Multivariable linear models with vitamin D markers as the outcome were used to estimate associations of BPb and creatinine-corrected urine As and metal concentrations with serum vitamin D concentrations, controlling for age, sex, adiposity, smoking, socioeconomic status, and time outdoors. Results: Serum 25(OH)D was positively associated with urine Mo and Tl [1.5 (95% CI: 0.4, 2.6) and 1.2 (95% CI: 0.3, 2.1) ng/mL higher with a doubling of exposure, respectively]. Serum 1,25(OH)2D was positively associated with urine As and U [3.4 (95% CI: 0.9, 5.9) and 2.2 (95% CI: 0.7, 3.7) pg/mL higher, respectively], with little change in associations after additional adjustment for serum 25(OH)D. Pb and Cd were not associated with 25(OH)D or 1,25(OH)2D concentrations. Conclusions: Overall, our findings did not support a negative effect of As or metal exposures on serum 1,25(OH)2D concentrations. Additional research is needed to confirm positive associations between serum 1,25(OH)2D and urine U and As concentrations and to clarify potential underlying mechanisms. Citation: Zamoiski RD, Guallar E, García-Vargas GG, Rothenberg SJ

  12. Stimulation by 1,25-dihydroxyvitamin D3 of in vitro mineralization induced by osteoblast-like MC3T3-E1 cells

    SciTech Connect

    Matsumoto, T.; Igarashi, C.; Takeuchi, Y.; Harada, S.; Kikuchi, T.; Yamato, H.; Ogata, E. )

    1991-01-01

    Although vitamin D is essential for mineralization of bone, it is as yet unclear whether vitamin D has a direct stimulatory effect on the bone mineralization process. In the present study, the effect of 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) on in vitro mineralization mediated by osteoblast-like MC3T3-E1 cells was examined. MC3T3-E1 cells continued to grow after they reached confluency, and DNA content and alkaline phosphatase activity increased linearly until about 16 days of culture, whereas 45Ca accumulation into cell and matrix layer remained low. After this period, DNA content plateaued, and 45Ca accumulation increased sharply. Histological examination by von Kossa staining revealed that calcium was accumulated into extracellular matrix. In addition, needle-shaped mineral crystals similar to hydroxyapatite crystals could be demonstrated in between collagen fibrils by electron microscopy. Thus, MC3T3-E1 cells differentiate in vitro into cells with osteoblastic phenotype and exhibit mineralization. When MC3T3-E1 cells were treated with 1,25(OH)2D3 at this stage of culture, there was a dose-dependent stimulation of 45Ca accumulation by 1,25(OH)2D3, and a significant stimulation of 45Ca accumulation was observed with 3 x 10(-10) M 1,25(OH)2D3. Although 1,25(OH)2D3 enhanced alkaline phosphatase activity and collagen synthesis at the early phase of culture, it did not affect any of these parameters at the late phase when 1,25(OH)2D3 stimulated mineralization. Neither 24,25-dihydroxyvitamin D3 nor human PTH(1-34) affected mineralization in the presence or absence of 1,25(OH)2D3. These results demonstrate that 1,25(OH)2D3 stimulates matrix mineralization induced by osteoblastic MC3T3-E1 cells, and are consistent with the possibility that 1,25(OH)2D3 has a direct stimulatory effect on bone mineralization process.

  13. 1,25-Dihydroxyvitamin D3 and its analogues increase catalase at the mRNA, protein and activity level in a canine transitional carcinoma cell line.

    PubMed

    Middleton, R P; Nelson, R; Li, Q; Blanton, A; Labuda, J A; Vitt, J; Inpanbutr, N

    2015-12-01

    Antioxidant enzymes, such as catalase, superoxide dismutases (SOD), MnSOD and Cu/ZnSOD, protect cells by scavenging reactive oxygen species (ROS). Numerous studies have reported the anti-cancer effects of 1,25-dihydroxyvitamin D3 (calcitriol) and its related analogues, seocalcitol and analogue V. In this study, canine bladder transitional cell carcinoma (cbTCC) cells were used to determine effects of calcitriol and its related analogues on antioxidant enzyme gene expression, protein expression and activity. Catalase mRNA was increased in response to calcitriol (10(-7) M), and seocalcitol (10(-7) and 10(-9) M). MnSOD mRNA was decreased in response to calcitriol at 10(-7) M. Catalase was significantly increased in response to calcitriol (10(-7) and 10(-9) M), and seocalcitol (10(-9) M). Catalase enzymatic activity increased in response to calcitriol, seocalcitol and analogue V (10(-9) M). In addition, global gene expression analysis identified the involvement of mitogen-activated protein kinase (MAPK) signalling in cbTCC's response to calcitriol and seocalcitol treatment.

  14. 1,25-Dihydroxyvitamin D3 Protects against Immune-Mediated Killing of Neurons in Culture and in Experimental Autoimmune Encephalomyelitis.

    PubMed

    Sloka, Scott; Zhornitsky, Simon; Silva, Claudia; Metz, Luanne M; Yong, V Wee

    2015-01-01

    Several studies have reported that low vitamin D levels are associated with an increased risk of developing multiple sclerosis (MS). As MS is an inflammatory disorder with degeneration of axons and neurons, we examined whether the biologically active form of vitamin D, 1,25-dihydroxyvitamin D3 (1,25D3), could protect against the T cell-mediated killing of human neurons in culture, and the axonal loss seen in mice with experimental autoimmune encephalomyelitis (EAE). Human neurons were exposed to activated human T lymphocytes and the loss of neurons was documented 24 hours later by counting the number of microtubule-associated protein-2 positive cells. Mice with EAE were harvested for counts of axonal profiles in the spinal cord. 1,25D3 was exposed to T cells in culture or administered to mice from peak EAE clinical severity when axonal loss was already evolving. Activated T lymphocytes killed human neurons prominently within 24 hours but toxicity was significantly attenuated when T cells were exposed to 1,25D3 prior to the co-culture. In EAE, 1,25D3 treatment initiated from peak clinical severity reduced the extent of clinical disability and mitigated the progressive loss of axons. The reduction of axonal and neuronal loss by 1,25D3 in the context of an inflammatory assault to the central nervous system is a potential contributor to the putative benefits of vitamin D in MS.

  15. The high affinity ligand binding conformation of the nuclear 1,25-dihydroxyvitamin D3 receptor is functionally linked to the transactivation domain 2 (AF-2).

    PubMed Central

    Nayeri, S; Kahlen, J P; Carlberg, C

    1996-01-01

    The nuclear receptor for 1,25-dihydroxyvitamin D3 (VD), VDR, is a transcription factor that mediates all genomic actions of the hormone. The activation of VDR by ligand induces a conformational change within its ligand binding domain (LBD). Due to the lack of a crystal structure analysis, biochemical methods have to be applied in order to investigate the details of this receptor-ligand interaction. The limited protease digestion assay can be used as a tool for the determination of a functional dissociation constant (K(df)) of VDR with any potential ligand. This method provided with the natural hormone VD two protease-resistant fragments of the VDR LBD and with the 20-epi conformation of VD, known as MC1288, even an additional fragment of intermediate size. These fragments were interpreted as different receptor conformations and their decreasing size was found to be associated with decreasing ligand binding affinity. A critical amino acid for VDR's high ligand binding conformation has been identified by C-terminal receptor truncations and point mutations as phenylalanine 422. This amino acid appears to directly contact the ligand and belongs to the ligand-inducible activation function-2 (AF-2) domain. Moreover, functional assays supported the observation that high affinity ligand binding is directly linked to transactivation function. PMID:8948643

  16. Simultaneous Quantification of 25-Hydroxyvitamin D3 and 24,25-Dihydroxyvitamin D3 in Rats Shows Strong Correlations between Serum and Brain Tissue Levels.

    PubMed

    Xue, Ying; He, Xin; Li, Huan-De; Deng, Yang; Yan, Miao; Cai, Hua-Lin; Tang, Mi-Mi; Dang, Rui-Li; Jiang, Pei

    2015-01-01

    While vitamin D3 is recognized as a neuroactive steroid affecting both brain development and function, efficient analytical method in determining vitamin D3 metabolites in the brain tissue is still lacking, and the relationship of vitamin D3 status between serum and brain remains elusive. Therefore, we developed a novel analysis method by using high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) to simultaneously quantify the concentrations of 25-hydroxyvitamin D3 (25(OH)D3) and 24,25-dihydroxyvitamin D3 (24,25(OH)2D3) in the serum and brain of rats fed with different dose of vitamin D3. We further investigated whether variations of serum vitamin D3 metabolites could affect vitamin D3 metabolite levels in the brain. Serum and brain tissue were analyzed by HPLC-MS/MS with electrospray ionization following derivatization with 4-phenyl-1,2,4-triazoline-3,5-dione (PTAD). The method is highly sensitive, specific, and accurate to quantify 25(OH)D3 and 24,25(OH)2D3 in animal brain tissue. Vitamin D3 metabolites in brain tissue were significantly lower in rats fed with a vitamin D deficiency diet than in rats fed with high vitamin D3 diet. There was also a strong correlation of vitamin D3 metabolites in serum and brain. These results indicate that vitamin D3 status in serum affects bioavailability of vitamin D3 metabolites in the brain. PMID:26713090

  17. Simultaneous Quantification of 25-Hydroxyvitamin D3 and 24,25-Dihydroxyvitamin D3 in Rats Shows Strong Correlations between Serum and Brain Tissue Levels

    PubMed Central

    Xue, Ying; He, Xin; Li, Huan-De; Deng, Yang; Yan, Miao; Cai, Hua-Lin; Tang, Mi-Mi; Dang, Rui-Li; Jiang, Pei

    2015-01-01

    While vitamin D3 is recognized as a neuroactive steroid affecting both brain development and function, efficient analytical method in determining vitamin D3 metabolites in the brain tissue is still lacking, and the relationship of vitamin D3 status between serum and brain remains elusive. Therefore, we developed a novel analysis method by using high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) to simultaneously quantify the concentrations of 25-hydroxyvitamin D3 (25(OH)D3) and 24,25-dihydroxyvitamin D3 (24,25(OH)2D3) in the serum and brain of rats fed with different dose of vitamin D3. We further investigated whether variations of serum vitamin D3 metabolites could affect vitamin D3 metabolite levels in the brain. Serum and brain tissue were analyzed by HPLC-MS/MS with electrospray ionization following derivatization with 4-phenyl-1,2,4-triazoline-3,5-dione (PTAD). The method is highly sensitive, specific, and accurate to quantify 25(OH)D3 and 24,25(OH)2D3 in animal brain tissue. Vitamin D3 metabolites in brain tissue were significantly lower in rats fed with a vitamin D deficiency diet than in rats fed with high vitamin D3 diet. There was also a strong correlation of vitamin D3 metabolites in serum and brain. These results indicate that vitamin D3 status in serum affects bioavailability of vitamin D3 metabolites in the brain. PMID:26713090

  18. 1,25-Dihydroxyvitamin D3 Protects against Immune-Mediated Killing of Neurons in Culture and in Experimental Autoimmune Encephalomyelitis.

    PubMed

    Sloka, Scott; Zhornitsky, Simon; Silva, Claudia; Metz, Luanne M; Yong, V Wee

    2015-01-01

    Several studies have reported that low vitamin D levels are associated with an increased risk of developing multiple sclerosis (MS). As MS is an inflammatory disorder with degeneration of axons and neurons, we examined whether the biologically active form of vitamin D, 1,25-dihydroxyvitamin D3 (1,25D3), could protect against the T cell-mediated killing of human neurons in culture, and the axonal loss seen in mice with experimental autoimmune encephalomyelitis (EAE). Human neurons were exposed to activated human T lymphocytes and the loss of neurons was documented 24 hours later by counting the number of microtubule-associated protein-2 positive cells. Mice with EAE were harvested for counts of axonal profiles in the spinal cord. 1,25D3 was exposed to T cells in culture or administered to mice from peak EAE clinical severity when axonal loss was already evolving. Activated T lymphocytes killed human neurons prominently within 24 hours but toxicity was significantly attenuated when T cells were exposed to 1,25D3 prior to the co-culture. In EAE, 1,25D3 treatment initiated from peak clinical severity reduced the extent of clinical disability and mitigated the progressive loss of axons. The reduction of axonal and neuronal loss by 1,25D3 in the context of an inflammatory assault to the central nervous system is a potential contributor to the putative benefits of vitamin D in MS. PMID:26679341

  19. Longitudinal changes in maternal serum 1,25-dihydroxyvitamin D and insulin like growth factor I levels in pregnant women who developed preeclampsia: comparison with normotensive pregnant women.

    PubMed

    Halhali, Ali; Villa, Antonio R; Madrazo, Elsie; Soria, María Celina; Mercado, Erendira; Díaz, Lorenza; Avila, Euclides; Garabédian, Michèle; Larrea, Fernando

    2004-05-01

    This study was undertaken to determine the longitudinal changes of serum 1,25-dihydroxyvitamin D (1,25-(OH)(2)D) and insulin like growth factor I (IGF-I) levels at 20.7, 27.6, and 35.5 week periods of gestation in 40 pregnant women who remained normotensive (NT) and in 10 women who developed preeclampsia (PE). As compared with the first period, significant increases (P < 0.01) in maternal serum 1,25-(OH)(2)D and IGF-I were observed in the NT group. In the PE group, a similar increase in serum 1,25-(OH)(2)D was observed. In contrast, significant (P < 0.05) lower IGF-I levels were observed in the PE group at the moment of diagnosis. In addition a high incidence of subjects with low increase in IGF-I levels (

  20. Role of nitric oxide in the anti-tumoral effect of retinoic acid and 1,25-dihydroxyvitamin D3 on human promonocytic leukemic cells.

    PubMed

    Dugas, N; Mossalayi, M D; Calenda, A; Léotard, A; Bécherel, P; Mentz, F; Ouaaz, F; Arock, M; Debré, P; Dornand, J; Dugas, B

    1996-11-01

    All trans retinoic acid and vitamin D3 derivatives are well known for their antileukemic activity, while the precise mechanism of this effect remains to be clarified. Using human leukemic U937 and THP-1 promonocytic cell lines, we analyzed the effect of all-trans retinoic acid (RA) and/or 1,25-dihydroxyvitamin D3 (VD) on the generation of nitric oxide (NO), a potent antitumoral mediator. U937 cell differentiation with VD or with both RA and VD (RA/VD) correlated with gene transcription and functional expression of inducible nitric oxide synthase (iNOS). Nitrites and L-citrulline were also detected in U937 cell supernatants as soon as 24 hours following cell incubation with VD or RA/VD, but not in cells treated with RA alone. Inhibition of iNOS activity by NG-monomethyl-L-arginine (LNMMA) significantly decreased in vitro U937 cell differentiation with VD and RA/VD as shown by the expression of cell differentiation markers (CD14 and CD68) and by the capacity of these cells to undergo a luminol-dependent chemiluminescence in response to opsonized zymosan. Similar results were obtained using the THP-1 cell line strengthening the role of NO in the VD- and RA/VD-induced growth arrest and terminal differentiation of promonocytic leukemia cells.

  1. Protective effect of 1,25-dihydroxyvitamin D3 on ethanol-induced intestinal barrier injury both in vitro and in vivo.

    PubMed

    Chen, Shan-Wen; Ma, Yuan-Yuan; Zhu, Jing; Zuo, Shuai; Zhang, Jun-Ling; Chen, Zi-Yi; Chen, Guo-Wei; Wang, Xin; Pan, Yi-Sheng; Liu, Yu-Cun; Wang, Peng-Yuan

    2015-09-01

    Studies have suggested the role of 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) in protecting intestinal barrier function from injuries induced by multiple reagents. Vitamin D deficiency was reported to be associated with poor prognosis in patients with alcoholic liver disease (ALD). This study is designed to investigate the effect of 1,25(OH)2D3 on ethanol-induced intestinal barrier dysfunction and the underlying mechanisms utilizing Caco-2 cell monolayers and a mouse model with acute ethanol injury. In Caco-2 monolayers, ethanol significantly increased monolayer permeability, disrupted TJ distribution, increased phosphorylation level of MLC, and induced generation of ROS compared with controls. However, pre-treatment with 1,25(OH)2D3 greatly ameliorated the ethanol-induced barrier dysfunction, TJ disruption, phosphorylation level of MLC, and generation of ROS compared with ethanol-exposed monolayers. Mice fed with vitamin d-sufficient diet had a higher plasma level of 25(OH)D3 and were more resistant to ethanol-induced acute intestinal barrier injury compared with the vitamin d-deficient group. These results suggest that the suppression of generation of ROS and increased phosphorylation level of MLC might be one of the mechanisms underlying the protective effect of 1,25(OH)2D3 on ethanol-induced intestinal barrier injury and provide evidence for the application of vitamin D as therapeutic factors against ethanol-induced gut leakiness.

  2. Immunomodulatory Effects of 1,25-Dihydroxyvitamin D3 on Dendritic Cells Promote Induction of T Cell Hyporesponsiveness to Myelin-Derived Antigens

    PubMed Central

    Willekens, Barbara; Cras, Patrick; Goossens, Herman; Martínez-Cáceres, Eva; Berneman, Zwi N.

    2016-01-01

    While emerging evidence indicates that dendritic cells (DC) play a central role in the pathogenesis of multiple sclerosis (MS), their modulation with immunoregulatory agents provides prospect as disease-modifying therapy. Our observations reveal that 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) treatment of monocyte-derived DC results in a semimature phenotype and anti-inflammatory cytokine profile as compared to conventional DC, in both healthy controls and MS patients. Importantly, 1,25(OH)2D3-treated DC induce T cell hyporesponsiveness, as demonstrated in an allogeneic mixed leukocyte reaction. Next, following a freeze-thaw cycle, 1,25(OH)2D3-treated immature DC could be recovered with a 78% yield and 75% viability. Cryopreservation did not affect the expression of membrane markers by 1,25(OH)2D3-treated DC nor their capacity to induce T cell hyporesponsiveness. In addition, the T cell hyporesponsiveness induced by 1,25(OH)2D3-treated DC is antigen-specific and robust since T cells retain their capacity to respond to an unrelated antigen and do not reactivate upon rechallenge with fully mature conventional DC, respectively. These observations underline the clinical potential of tolerogenic DC (tolDC) to correct the immunological imbalance in MS. Furthermore, the feasibility to cryopreserve highly potent tolDC will, ultimately, contribute to the large-scale production and the widely applicable use of tolDC. PMID:27703987

  3. 1α, 25-Dihydroxyvitamin D3 and the vitamin D receptor regulates ΔNp63α levels and keratinocyte proliferation

    PubMed Central

    Hill, N T; Zhang, J; Leonard, M K; Lee, M; Shamma, H N; Kadakia, M

    2015-01-01

    1α, 25-dihydroxyvitamin D3 (VD3), a secosteriod that has been explored as an anti-cancer agent, was also shown to promote cell survival. Its receptor, the Vitamin D Receptor (VDR), is a direct target of the proto-oncogene ΔNp63α, which is overexpressed in non-melanoma skin cancers. The interconnection between VDR/VD3 signaling and ΔNp63α, led us to examine whether VDR/VD3 signaling promotes keratinocyte proliferation by regulating ΔNp63α levels. Our data demonstrate that VDR regulates ΔNp63α expression at both the transcript and protein level. Interestingly, although low doses of VD3 led to an increase in ΔNp63α protein levels and keratinocyte proliferation, high doses of VD3 failed to increase ΔNp63α protein levels and resulted in reduced proliferation. Increased expression of ΔNp63α by low dose VD3 was shown to be dependent on VDR and critical for the proliferative effects of VD3. VD3-mediated increases in ΔNp63α protein levels occur via activation of both p38 MAPK and Akt kinases. Finally, analysis of samples from patients with squamous cell carcinoma (SCC), basal cell carcinoma and precursors to invasive SCC demonstrated a significant correlation between p63 and VDR levels when compared with healthy normal skin control samples. Delineation of the mechanisms by which VD3 exerts its effect on ΔNp63α and cell proliferation is critical for determining the future of VD3 in cancer therapies. PMID:26068789

  4. CD8+ T cells are not necessary for 1α,25-dihydroxyvitamin D3 to suppress experimental autoimmune encephalomyelitis in mice

    PubMed Central

    Meehan, Terrence F.; DeLuca, Hector F.

    2002-01-01

    In addition to its role in calcium and phosphorous homeostasis, 1α,25-dihydroxyvitamin D3 [1,25-(OH)2D3] appears to be a modulator of the immune system. Administration of 1,25-(OH)2D3 prevents disease in several autoimmune animal models, including experimental autoimmune encephalomyelitis (EAE). The vitamin D receptor is believed to mediate this activity. Among cells of the immune system, CD8+ T cells have the highest levels of the vitamin D receptor. Because CD8+ T cells have been implicated as both suppressors and effectors of the inflammation associated with multiple sclerosis and EAE, we examined the question of whether the 1,25-(OH)2D3 suppression of EAE occurs through a CD8+ T cell-dependent mechanism. To test this hypothesis, mice that are homozygous knockouts for the α chain of the CD8 receptor and have been characterized as lacking functional CD8+ T cells (CD8+ −/−) were provided 1,25-(OH)2D3 in their diet before EAE induction. Although CD8+ −/− mice fed the same diet lacking 1,25-(OH)2D3 have a high incidence of EAE, EAE did not occur in CD8+ −/− mice fed the diet containing 1,25-(OH)2D3. We conclude that CD8+ T cells neither are needed nor do they play a role in the prevention of EAE by 1,25-(OH)2D3. PMID:11929984

  5. Retinoid X receptor:vitamin D3 receptor heterodimers promote stable preinitiation complex formation and direct 1,25-dihydroxyvitamin D3-dependent cell-free transcription.

    PubMed Central

    Lemon, B D; Fondell, J D; Freedman, L P

    1997-01-01

    The numerous members of the steroid/nuclear hormone receptor superfamily act as direct transducers of circulating signals, such as steroids, thyroid hormone, and vitamin or lipid metabolites, and modulate the transcription of specific target genes, primarily as dimeric complexes. The receptors for 9-cis retinoic acid and 1,25-dihydroxyvitamin D3 [1,25(OH)2D3], RXR and VDR, respectively, as members of this superfamily, form a heterodimeric complex and bind cooperatively to vitamin D responsive elements (VDREs) to activate or repress the transcription of a multitude of genes which regulate a variety of physiological functions. To directly investigate RXR- and VDR-mediated transactivation, we developed a cell-free transcription system for 1,25(OH)2D3 signaling by utilizing crude nuclear extracts and a G-free cassette-based assay. Transcriptional enhancement in vitro was dependent on purified, exogenous RXR and VDR and was responsive to physiological concentrations of 1,25(OH)2D3. We found that RXR and VDR transactivated selectively from VDRE-linked templates exclusively as a heterodimeric complex, since neither receptor alone enhanced transcription in vitro. By the addition of low concentrations of the anionic detergent Sarkosyl to limit cell-free transcription to a single round and the use of agarose gel mobility shift experiments to assay factor complex assembly, we observed that 1,25(OH)2D3 enhanced RXR:VDR-mediated stabilization or assembly of preinitiation complexes to effect transcriptional enhancement from VDRE-linked promoter-containing DNA. PMID:9121440

  6. Fibroblast growth factor 23 regulates renal 1,25-dihydroxyvitamin D and phosphate metabolism via the MAP kinase signaling pathway in Hyp mice.

    PubMed

    Ranch, Daniel; Zhang, Martin Yh; Portale, Anthony A; Perwad, Farzana

    2011-08-01

    In X-linked hypophosphatemia (XLH) and in its murine homologue, the Hyp mouse, increased circulating concentrations of fibroblast growth factor 23 (FGF-23) are critical to the pathogenesis of disordered metabolism of phosphate (P(i)) and 1,25-dihydroxyvitamin D [1,25(OH)(2)D]. In this study, we hypothesized that in Hyp mice, FGF-23-mediated suppression of renal 1,25(OH)(2)D production and P(i) reabsorption depends on activation of mitogen-activated protein kinase (MAPK) signaling. Wild-type and Hyp mice were administered either vehicle or the MEK inhibitor PD0325901 (12.5 mg/kg) orally daily for 4 days. At baseline, the renal abundance of early growth response 1 (egr1) mRNA was approximately 2-fold greater in Hyp mice than in wild-type mice. Treatment with PD0325901 greatly suppressed egr1 mRNA abundance in both wild-type and Hyp mice. In Hyp mice, PD0325901 induced an 8-fold increase in renal 1α-hydroxylase mRNA expression and a 4-fold increase in serum 1,25(OH)(2)D concentrations compared with vehicle-treated Hyp mice. Serum P(i) levels in Hyp mice increased significantly after treatment with PD0325901, and the increase was associated with increased renal Npt2a mRNA abundance and brush-border membrane Npt2a protein expression. These findings provide evidence that in Hyp mice, MAPK signaling is constitutively activated in the kidney and support the hypothesis that the FGF-23-mediated suppression of renal 1,25(OH)(2)D production and P(i) reabsorption depends on activation of MAPK signaling via MEK/ERK1/2. These findings demonstrate the physiologic importance of MAPK signaling in the actions of FGF-23 in regulating renal 1,25(OH)(2)D and P(i) metabolism.

  7. Fibroblast Growth Factor 23 Regulates Renal 1,25-Dihydroxyvitamin D and Phosphate Metabolism via the MAP Kinase Signaling Pathway in Hyp Mice

    PubMed Central

    Ranch, Daniel; Zhang, Martin YH; Portale, Anthony A; Perwad, Farzana

    2015-01-01

    In X-linked hypophosphatemia (XLH) and in its murine homologue, the Hyp mouse, increased circulating concentrations of fibroblast growth factor 23 (FGF-23) are critical to the pathogenesis of disordered metabolism of phosphate (Pi) and 1,25-dihydroxyvitamin D [1,25(OH)2D]. In this study, we hypothesized that in Hyp mice, FGF-23-mediated suppression of renal 1,25(OH)2D production and Pi reabsorption depends on activation of mitogen-activated protein kinase (MAPK) signaling. Wild-type and Hyp mice were administered either vehicle or the MEK inhibitor PD0325901 (12.5 mg/kg) orally daily for 4 days. At baseline, the renal abundance of early growth response 1 (egr1) mRNA was approximately 2-fold greater in Hyp mice than in wild-type mice. Treatment with PD0325901 greatly suppressed egr1 mRNA abundance in both wild-type and Hyp mice. In Hyp mice, PD0325901 induced an 8-fold increase in renal 1α-hydroxylase mRNA expression and a 4-fold increase in serum 1,25(OH)2D concentrations compared with vehicle-treated Hyp mice. Serum Pi levels in Hyp mice increased significantly after treatment with PD0325901, and the increase was associated with increased renal Npt2a mRNA abundance and brush-border membrane Npt2a protein expression. These findings provide evidence that in Hyp mice, MAPK signaling is constitutively activated in the kidney and support the hypothesis that the FGF-23-mediated suppression of renal 1,25(OH)2D production and Pi reabsorption depends on activation of MAPK signaling via MEK/ERK1/2. These findings demonstrate the physiologic importance of MAPK signaling in the actions of FGF-23 in regulating renal 1,25(OH)2D and Pi metabolism. PMID:21472778

  8. Rapid changes in skeletal muscle calcium uptake induced in vitro by 1,25-dihydroxyvitamin D/sub 3/ are suppressed by calcium channel blockers

    SciTech Connect

    de Boland, A.R.; Boland, R.L.

    1987-05-01

    Previous investigations have shown that 1,25-dihydroxyvitamin D/sub 3/ (1,25-(OH)/sub 2/D/sub 3/) stimulates muscle Ca uptake through a nuclear mechanism. The possibility that 1,25-(OH)/sub 2/D/sub 3/ would induce rapid changes in muscle Ca fluxes independent of de novo protein synthesis was investigated in the present work. In vitro preparations of soleus muscles obtained from vitamin D-deficient chicks were used. A significant increase in /sup 45/Ca labeling of the tissue was already observed after 3-min treatment with 2.4 X 10(-10) M 1,25-(OH)/sub 2/D/sub 3/. This early stimulation in muscle Ca uptake became maximal at 10-15 min. Cycloheximide (50 microM) did not block the effect of the metabolite at 15 and 30 min. However, the antibiotic effectively blocked the increase in Ca uptake induced by 1,25-(OH)/sub 2/D/sub 3/ after 1-h treatment. The rapid 1,25-(OH)/sub 2/D/sub 3/-dependent stimulation of /sup 45/Ca labeling of soleus muscle was not associated to changes in lipid synthesis as assessed by measurements of /sup 3/H-glycerol incorporation into the tissue lipids. However, the calcium antagonists verapamil and nifedipine (50 microM) abolished the stimulation in Ca uptake produced by 1,25-(OH)/sub 2/D/sub 3/ in 5 min. These results suggest that 1,25-(OH)/sub 2/D/sub 3/ can act directly at the muscle membrane level affecting Ca fluxes through Ca channels.

  9. Effect of lowered vitamin D binding protein levels on the biological activity and metabolism of 1,25-dihydroxyvitamin D/sub 3/

    SciTech Connect

    Kost, S.B.; Londowski, J.; Audran, M.; Kumar, R.

    1986-03-01

    The authors studied the effect of lowered vitamin D binding protein levels on the biological activity and metabolism of 1,25-dihydroxyvitamin D/sub 3/ (1,25(OH)/sub 2/D/sub 3/) in vivo. Estrogen administration to vitamin D-deficient rats resulted in decrease of plasma vitamin D binding protein concentrations by about 20%. The authors administered graded doses of 1,25(OH)/sub 2/D/sub 3/ (5 - 5000 pmol intravenously) to vitamin D-deficient rats given estrogen or vehicle, and studied the biological response in intestine and bone. Intestinal calcium transport, following the administration of 1,25(OH)/sub 2/D/sub 3/, was similar in the estrogen or vehicle-treated groups. Serum calcium concentrations were lower in the estrogen-treated rats when compared to rats given vehicle. Serum calcium in both groups, however, increased the same amount over the range of 1,25(OH)/sub 2/D/sub 3/ given. The uptake of (/sup 3/H) 1,25(OH)/sub 2/D/sub 3/ by the intestine and bone 8 hours after the administration of (/sup 3/H) 1,25(OH)/sub 2/D/sub 3/ was similar in estrogen- and vehicle-treated rats. The amount of (/sup 3/H) 1,25(OH)/sub 2/D/sub 3/ in plasma of estrogen-treated rats was the same as in vehicle-treated rats. The authors conclude that in estrogen-treated rats, lowered vitamin D binding protein levels do not alter the effect of 1,25(OH)/sub 2/D/sub 3/ on intestine or bone and do not alter the metabolism of 1,25(OH)/sub 2/D/sub 3/.

  10. Measurement of Circulating 1,25-Dihydroxyvitamin D: Comparison of an Automated Method with a Liquid Chromatography Tandem Mass Spectrometry Method

    PubMed Central

    Zittermann, Armin; Ernst, Jana B.; Becker, Tobias; Dreier, Jens; Knabbe, Cornelius; Gummert, Jan F.; Kuhn, Joachim

    2016-01-01

    Background. The clinical relevance of circulating 1,25-dihydroxyvitamin D (1,25(OH)2D) is probably underappreciated, but variations in the measurement of this difficult analyte between different methods limit comparison of results. Methods. In 129 clinical samples, we compared a new automated assay with a commercially available liquid chromatography tandem mass spectrometry (LC-MS/MS) kit. Results. Median (interquartile range) 1,25(OH)2D concentrations with the automated assay and the LC-MS/MS method were 26.6 pg/mL (18.5–39.0 pg/mL) and 23.6 pg/mL (16.1–31.3 pg/mL), respectively (P = 0.001). Using the method-specific cut-offs for deficient 1,25(OH)2D levels (<20 pg/mL for the automated assay and <17 pg/mL for the LC-MS/MS method), the percentage of patients classified as 1,25(OH)2D deficient was 28.7% and 27.1%, respectively. However, concordance between the two methods for deficient levels was only 62% and the concordance correlation coefficient was poor (0.534). The regression equation resulted in an intercept of −1.99 (95% CI: −7.33–1.31) and a slope of 1.27 (95% CI: 1.04–1.52) for the automated assay. The mean bias with respect to the mean of the two methods was −3.8 (1.96 SD: −28.3–20.8) pg/mL for the LC-MS/MS method minus the automated assay. Conclusions. The two methods show only modest correlation and further standardization is required to improve reliability and comparability of 1,25(OH)2D test procedures. PMID:27127512

  11. Primary 1,25-Dihydroxyvitamin D3 Response of the Interleukin 8 Gene Cluster in Human Monocyte- and Macrophage-Like Cells

    PubMed Central

    Ryynänen, Jussi; Carlberg, Carsten

    2013-01-01

    Genome-wide analysis of vitamin D receptor (VDR) binding sites in THP-1 human monocyte-like cells highlighted the interleukin 8 gene, also known as chemokine CXC motif ligand 8 (CXCL8). CXCL8 is a chemotactic cytokine with important functions during acute inflammation as well as in the context of various cancers. The nine genes of the CXCL cluster and the strong VDR binding site close to the CXCL8 gene are insulated from neighboring genes by CCCTC-binding factor (CTCF) binding sites. Only CXCL8, CXCL6 and CXCL1 are expressed in THP-1 cells, but all three are up-regulated primary 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) target genes. Formaldehyde-assisted isolation of regulatory elements sequencing analysis of the whole CXCL cluster demonstrated 1,25(OH)2D3-dependent chromatin opening exclusively for the VDR binding site. In differentiated THP-1 cells the CXCL8 gene showed a 33-fold higher basal expression, but is together with CXCL6 and CXCL1 still a primary 1,25(OH)2D3 target under the control of the same genomic VDR binding site. In summary, both in undifferentiated and differentiated THP-1 cells the genes CXCL8, CXCL6 and CXCL1 are under the primary control of 1,25(OH)2D3 and its receptor VDR. Our observation provides further evidence for the immune-related functions of vitamin D. PMID:24250750

  12. A new insight into the role of rat cytochrome P450 24A1 in metabolism of selective analogs of 1α,25-dihydroxyvitamin D3

    PubMed Central

    Rhieu, Steve Y.; Annalora, Andrew J.; Gathungu, Rose M.; Vouros, Paul; Uskokovic, Milan R.; Schuster, Inge; Palmore, G. Tayhas R.; Reddy, G. Satyanarayana

    2012-01-01

    We examined the metabolism of two synthetic analogs of 1α,25-dihydroxyvitamin D3 (1), namely 1α,25-dihydroxy-16-ene-23-yne-vitamin D3 (2) and 1α,25-dihydroxy-16-ene-23-yne-26,27-dimethyl-vitamin D3 (4) using rat cytochrome P450 24A1 (CYP24A1) in a reconstituted system. We noted that 2 is metabolized into a single metabolite identified as C26-hydroxy-2 while 4 is metabolized into two metabolites, identified as C26-hydroxy-4 and C26a-hydroxy-4. The structural modification of adding methyl groups to the side chain of 1 as in 4 is also featured in another analog, 1α,25-dihydroxy-22,24-diene-24,26,27-trihomo-vitamin D3 (6). In a previous study, 6 was shown to be metabolized exactly like 4, however, the enzyme responsible for its metabolism was found to be not CYP24A1. To gain a better insight into the structural determinants for substrate recognition of different analogs, we performed an in silico docking analysis using the crystal structure of rat CYP24A1 that had been solved for the substrate-free open form. Whereas analogs 2 and 4 docked similar to 1, 6 showed altered interactions for both the A-ring and side chain, despite prototypical recognition of the CD-ring. These findings hint that CYP24A1 metabolizes selectively different analogs of 1, based on their ability to generate discrete recognition cues required to close the enzyme and trigger the catalytic mechanism. PMID:21338573

  13. Measurement of 25-hydroxyvitamin D2&3 and 1, 25-dihydroxyvitamin D2&3 by Tandem Mass Spectrometry: A Primate Multispecies Comparison

    PubMed Central

    Ziegler, Toni E.; Kapoor, Amita; Hedman, Curtis J.; Binkley, Neil; Kemnitz, Joseph W.

    2015-01-01

    Vitamin D metabolites are widely studied for their roles in bone health, immune functions and other potential physiologic roles in humans. However, the optimal blood levels of vitamin D metabolites are still unclear. Various methods for measuring vitamin D metabolites have been used and recently liquid chromatography tandem mass spectroscopy (LC-MS/MS) has been adopted as the gold standard for vitamin D metabolite measurement. Here we report the use of LC-MS/MS to measure 25-hydroxyvitamin D (25(OH)D2&3), and 1,25-dihydroxyvitamin D (1,25(OH)2D2&3), in three laboratory nonhuman primate species: common marmoset (Callithrix jacchus), rhesus macaque (Macaca mulatta), and cynomolgus macaque (Macaca fascicularis), and compare them to humans using the same technique. The nonhuman primates showed blood levels for 25(OH)D3 and 1,25(OH)2D3 significantly higher than human values with marmosets having the highest levels. Marmoset samples showed significantly more variability among individuals than those from macaques for both metabolites, but all three nonhuman primate species exhibited large variation within species for both 25(OH)D2&3 and 1,25(OH)2D2&3. Marmoset females had significantly lower values than the males for 25(OH)D3, while rhesus males showed a significant decrease in 25(OH)D3 with age. The most striking finding is the variation within species for vitamin D levels even in laboratory primates that have a controlled diet, UV exposure, and in some cases, genetic constraints. Similar variation in 25(OH)D responses to a fixed dose of oral vitamin D supplementation has been reported in humans. We suggest that these species can provide primate models for examining the factors influencing variation in the levels of vitamin D necessary for human and nonhuman primate health. PMID:25845705

  14. Preeclampsia is associated with low circulating levels of insulin-like growth factor I and 1,25-dihydroxyvitamin D in maternal and umbilical cord compartments.

    PubMed

    Halhali, A; Tovar, A R; Torres, N; Bourges, H; Garabedian, M; Larrea, F

    2000-05-01

    Insulin-like growth factor I (IGF-I) stimulates renal and placental 1,25-dihydroxyvitamin D [1,25-(OH)2D] and is considered an important regulator of fetal growth. As 1,25-(OH)2D and birth weight are low in preeclampsia, this study was undertaken to determine whether circulating levels of IGF-I were associated with serum 1,25-(OH)2D concentrations in preeclamptic (PE group) and normotensive (NT group) pregnancies. Maternal and umbilical cord serum levels of IGF-I and 1,25-(OH)2D were significantly (P < 0.01) lower in the PE group than in the NT group. The concentrations of these two hormones correlated significantly in the umbilical cord (P < 0.05) and in the maternal (P < 0.001) compartments of the PE and NT groups, respectively. The amount of IGFBP-3 was 64% lower whereas that of IGFBP-1 was 2.9-fold higher in umbilical cord serum of the PE group compared with the NT group. In addition, maternal and umbilical cord serum IGF-I correlated significantly (P < 0.05) with weight and length at birth only in the PE group. In conclusion, the results of this study indicate that circulating IGF-I and 1,25-(OH)2D levels in both maternal and umbilical cord compartments are low in preeclampsia. Furthermore, this study suggests a differential regulatory effect of IGF-I on 1,25-(OH)2D synthesis and fetal growth depending on the presence or absence of preeclampsia.

  15. 1,25-Dihydroxyvitamin D3 Controls a Cohort of Vitamin D Receptor Target Genes in the Proximal Intestine That Is Enriched for Calcium-regulating Components.

    PubMed

    Lee, Seong Min; Riley, Erin M; Meyer, Mark B; Benkusky, Nancy A; Plum, Lori A; DeLuca, Hector F; Pike, J Wesley

    2015-07-17

    1,25-Dihydroxyvitamin D3 (1,25(OH)2D3) plays an integral role in calcium homeostasis in higher organisms through its actions in the intestine, kidney, and skeleton. Interestingly, although several intestinal genes are known to play a contributory role in calcium homeostasis, the entire caste of key components remains to be identified. To examine this issue, Cyp27b1 null mice on either a normal or a high calcium/phosphate-containing rescue diet were treated with vehicle or 1,25(OH)2D3 and evaluated 6 h later. RNA samples from the duodena were then subjected to RNA sequence analysis, and the data were analyzed bioinformatically. 1,25(OH)2D3 altered expression of large collections of genes in animals under either dietary condition. 45 genes were found common to both 1,25(OH)2D3-treated groups and were composed of genes previously linked to intestinal calcium uptake, including S100g, Trpv6, Atp2b1, and Cldn2 as well as others. An additional distinct network of 56 genes was regulated exclusively by diet. We then conducted a ChIP sequence analysis of binding sites for the vitamin D receptor (VDR) across the proximal intestine in vitamin D-sufficient normal mice treated with vehicle or 1,25(OH)2D3. The residual VDR cistrome was composed of 4617 sites, which was increased almost 4-fold following hormone treatment. Interestingly, the majority of the genes regulated by 1,25(OH)2D3 in each diet group as well as those found in common in both groups contained frequent VDR sites that likely regulated their expression. This study revealed a global network of genes in the intestine that both represent direct targets of vitamin D action in mice and are involved in calcium absorption.

  16. Tumor suppressor microRNAs, miR-100 and -125b, are regulated by 1,25-dihydroxyvitamin D in primary prostate cells and in patient tissue

    PubMed Central

    Giangreco, Angeline A; Vaishnav, Avani; Wagner, Dennis; Finelli, Antonio; Fleshner, Neil; Van der Kwast, Theodorus; Vieth, Reinhold; Nonn, Larisa

    2013-01-01

    MiR-100 and miR-125b are lost in many cancers and have potential function as tumor suppressors. Using both primary prostatic epithelial cultures and laser-capture-microdissected prostate epithelium from 45 patients enrolled in a vitamin D3 randomized trial, we identified miR-100 and -125b as targets of 1,25-dihydroxyvitamin D3 (1,25D). In patients, miR-100 and -125b levels were significantly lower in tumor tissue than in benign prostate. Similarly, miR-100 and -125b were lower in primary PCa cells than in cells derived from benign prostate. Prostatic concentrations of 1,25D positively correlated with these miRNA levels in both PCa and benign epithelium, demonstrating that PCa patients may still benefit from vitamin D3. In cell assays, upregulation of these miRNAs by 1,25D was vitamin D receptor-dependent. Transfection of pre-miR-100 and pre-miR-125b in the presence or absence of 1,25D decreased invasiveness of cancer cell, RWPE-2. Pre-miR-100 and pre-miR-125b decreased proliferation in primary cells and cancer cells respectively. Pre-miR-125b transfection suppressed migration and clonal growth of PCa cells while knockdown of miR-125b in normal cells increased migration indicates a tumor suppressor function. 1,25D suppressed expression of previously bona fide mRNA targets of these miRNAs, E2F3 and Plk1, in a miRNA-dependent manner. Together, these findings demonstrate that vitamin D3 supplementation augments tumor suppressive miRNAs in patient prostate tissue, providing evidence that miRNAs could be key physiologic mediators of vitamin D3 activity in prevention and early treatment of PCa. PMID:23503652

  17. 1,25-Dihydroxyvitamin D3 curtails the inflammatory and T cell stimulatory capacity of macrophages through an IL-10-dependent mechanism.

    PubMed

    Korf, Hannelie; Wenes, Mathias; Stijlemans, Benoit; Takiishi, Tatiana; Robert, Sofie; Miani, Michela; Eizirik, Decio L; Gysemans, Conny; Mathieu, Chantal

    2012-12-01

    The vitamin D receptor (VDR) is a hormone nuclear receptor regulating bone and calcium homeostasis. Studies revealing the expression of VDR on immune cells point toward a role for VDR-dependent signaling pathways in immunity. Here we verified the ability of the natural VDR ligand, 1,25-dihydroxyvitamin D(3) (1,25(OH)(2)D(3)) to interfere in inflammatory and T cell stimulatory capacity of macrophages, in particular within a chronic inflammatory disease features of experimental type 1 diabetes (T1D). We demonstrated that VDR is constitutively expressed in macrophages and both the levels of VDR and its downstream targets, are clearly induced by 1,25(OH)(2)D(3). In control mice, macrophage programming with 1,25(OH)(2)D(3) partially abrogated the activation-provoked expression of IL-12p40, TNFα and iNOS as well as the effector T cell-recruiting chemokines, CXCL9, CXCL10 and CXCL11. Targeting VDR signaling in macrophages counteracted their T-cell stimulatory ability despite essentially unaltered expression of antigen-presenting and costimulatory molecules. Furthermore, even in non-obese diabetic (NOD) mice, where macrophages/monocytes featured a heightened responsiveness toward danger signals and a superior T cell stimulatory capacity, 1,25(OH)(2)D(3) successfully curtailed these basic macrophage-mediated functions. Interestingly, the inhibitory action of the active compound was associated with an IL-10-dependent mechanism since 1,25(OH)(2)D(3)-treatment of IL-10-deficient macrophages failed to reproduce the characteristic repression on inflammatory mediators or T cell proliferation. Combined, these results highlight the possible therapeutic applicability of this natural immunomodulator, due to its ability to counteract macrophage inflammatory and T cell-activating pathways. PMID:22944250

  18. Conformational change and enhanced stabilization of the vitamin D receptor by the 1,25-dihydroxyvitamin D3 analog KH1060.

    PubMed Central

    van den Bemd, G C; Pols, H A; Birkenhäger, J C; van Leeuwen, J P

    1996-01-01

    The 1,25-dihydroxyvitamin D3 [1,25-(OH)2vitamin D3] analog KH1060 exerts very potent effects on cell proliferation and cell differentiation via the vitamin D receptor (VDR). However, the activities of KH1060 are not associated with an increased affinity for the VDR. We now show that increased stabilization of the VDR-KH1060 complex could be an explanation for its high potencies. VDR half-life studies performed with cycloheximide-translational blocked rat osteoblast-like ROS 17/2.8 cells demonstrated that, in the absence of ligand, VDR levels rapidly decreased. After 2 hr, less than 10% of the initial VDR level could be measured. In the presence of 1,25-(OH)2vitamin D3, the VDR half-life was 15 hr. After 24 hr. less than 20% of the initial VDR content was detectable, whereas, at this time-point, when the cells were incubated with KH1060 80% of the VDR was still present. Differences in 1,25-(OH)2vitamin D3- and KH1060-induced conformational changes of the VDR could underlie the increased VDR stability. As assessed by limited proteolytic digestion analysis, both 1,25-(OH)2vitamin D3 and KH1060 caused a specific conformational change of the VDR. Compared with 1,25-(OH)2vitamin D3, KH1060 induced a conformational change that led to a far more dramatic protection of the VDR against proteolytic degradation. In conclusion, the altered VDR stability and the possibly underlying change in VDR conformation caused by KH1060 could be an explanation for its enhanced bioactivity. Images Fig. 3 Fig. 4 Fig. 5 Fig. 7 PMID:8855240

  19. 1α,25-dihydroxyvitamin D3 modulates the hair-inductive capacity of dermal papilla cells: therapeutic potential for hair regeneration.

    PubMed

    Aoi, Noriyuki; Inoue, Keita; Chikanishi, Toshihiro; Fujiki, Ryoji; Yamamoto, Hanako; Kato, Harunosuke; Eto, Hitomi; Doi, Kentaro; Itami, Satoshi; Kato, Shigeaki; Yoshimura, Kotaro

    2012-08-01

    Dermal papilla cells (DPCs) have the potential to induce differentiation of epithelial stem cells into hair, and Wnt signaling is deeply involved in the initiation process. The functional limitation of expanded adult DPCs has been a difficult challenge for cell-based hair regrowth therapy. We previously reported that 1α,25-dihydroxyvitamin D(3) (VD(3)) upregulates expression of transforming growth factor (TGF)-β2 and alkaline phosphatase (ALP) activity, both features of hair-inducing human DPCs (hDPCs). In this study, we further examined the effects and signaling pathways associated with VD(3) actions on DPCs. VD(3) suppressed hDPC proliferation in a dose-dependent, noncytotoxic manner. Among the Wnt-related genes investigated, Wnt10b expression was significantly upregulated by VD(3) in hDPCs. Wnt10b upregulation, as well as upregulation of ALPL (ALP, liver/bone/kidney) and TGF-β2, by VD(3) was specific in hDPCs and not detected in human dermal fibroblasts. Screening of paracrine or endocrine factors in the skin indicated that all-trans retinoic acid (atRA) upregulated Wnt10b gene expression, although synergistic upregulation (combined atRA and VD(3)) was not seen. RNA interference with vitamin D receptor (VDR) revealed that VD(3) upregulation of Wnt10b, ALPL, and TGF-β2 was mediated through the genomic VDR pathway. In a rat model of de novo hair regeneration by murine DPC transplantation, pretreatment with VD(3) significantly enhanced hair folliculogenesis. Specifically, a greater number of outgrowing hair shafts and higher maturation of regenerated follicles were observed. Together, these data suggest that VD(3) may promote functional differentiation of DPCs and be useful in preserving the hair follicle-inductive capacity of cultured DPCs for hair regeneration therapies.

  20. 1α, 25-Dihydroxyvitamin D regulates hypoxia-inducible factor-1α in untransformed and Harvey-ras transfected breast epithelial cells.

    PubMed

    Jiang, Yan; Zheng, Wei; Teegarden, Dorothy

    2010-12-01

    The purpose of this study was to determine the mechanism by which 1α, 25-dihydroxyvitamin D (1,25(OH)(2)D) alters hypoxia-inducible factor-1α (HIF-1α) protein in untransformed and Harvey-ras (H-ras) oncogene transfected MCF10A breast epithelial cells. Treatment with 1,25(OH)(2)D (10nM) increased both mRNA (2.55±0.6-fold vs. vehicle, p=0.03) and protein levels (2.37±0.3-fold vs. vehicle, p<0.0001) of HIF-1α in MCF10A cells in 12h, which remained elevated at 24h. However, in H-ras transfected MCF10A cells, 1,25(OH)(2)D treatment increased HIF-1α protein level (2.08±0.38-fold vs. vehicle, p=0.05) at 12h, with no change in mRNA level and HIF-1α protein level returned to baseline after 24h. A transcription inhibitor prevented the 1,25(OH)(2)D induction of HIF-1α protein and mRNA levels in MCF10A cells, but failed to alter the induction of HIF-1α protein level in H-ras transfected MCF10A cells. On the other hand, inhibition of proteasomal degradation prevented the 1,25(OH)(2)D-induced HIF-1α protein level in H-ras transfected MCF10A but not in MCF10A cells. These results support that 1,25(OH)(2)D regulates HIF-1α protein level via transcriptional regulation in MCF10A cells in contrast to through proteosomal degradation with the presence of H-ras oncogene in MCF10A cells.

  1. Perspectives of Differentiation Therapies of Acute Myeloid Leukemia: The Search for the Molecular Basis of Patients’ Variable Responses to 1,25-Dihydroxyvitamin D and Vitamin D Analogs

    PubMed Central

    Marchwicka, Aleksandra; Cebrat, Małgorzata; Sampath, Preetha; Śnieżewski, Łukasz; Marcinkowska, Ewa

    2014-01-01

    The concept of differentiation therapy of cancer is ~40 years old. Despite many encouraging results obtained in laboratories, both in vitro and in vivo studies, the only really successful clinical application of differentiation therapy was all-trans-retinoic acid (ATRA)-based therapy of acute promyelocytic leukemia (APL). ATRA, which induces granulocytic differentiation of APL leukemic blasts, has revolutionized the therapy of this disease by converting it from a fatal to a curable one. However, ATRA does not work for other acute myeloid leukemias (AMLs). Since 1,25-dihydroxyvitamin D3 (1,25D) is capable of inducing monocytic differentiation of leukemic cells, the idea of treating other AMLs with vitamin D analogs (VDAs) was widely accepted. Also, some types of solid cancers responded to in vitro applied VDAs, and hence it was postulated that VDAs can be used in many clinical applications. However, early clinical trials in which cancer patients were treated either with 1,25D or with VDAs, did not lead to conclusive results. In order to search for a molecular basis of such unpredictable responses of AML patients toward VDAs, we performed ex vivo experiments using patient’s blast cells. Experiments were also performed using 1,25D-responsive and 1,25D-non-responsive cell lines, to study their mechanisms of resistance toward 1,25D-induced differentiation. We found that one of the possible reasons might be due to a very low expression level of vitamin D receptor (VDR) mRNA in resistant cells, which can be increased by exposing the cells to ATRA. Our considerations concerning the molecular mechanism behind the low VDR expression and its regulation by ATRA are reported in this paper. PMID:24904835

  2. Effects of Placental Ischemia Are Attenuated by 1,25-Dihydroxyvitamin D Treatment and Associated with Reduced Apoptosis and Increased Autophagy.

    PubMed

    Tian, Xiaoyu; Ma, Suling; Wang, Yaqi; Hou, Lianguo; Shi, Yun; Yao, Min; Wang, Xiaoning; Zhang, Huifeng; Jiang, Lingling

    2016-02-01

    We evaluated the effects of administration of 1,25-dihydroxyvitamin D (1,25(OH)2D) during pregnancy on relieving adverse outcomes of preeclampsia and the pathologic and biochemical changes in reduction in uteroplacental perfusion (RUPP) model of rats. On day 1, 7, and 14 of pregnancy, rats in pregnant RUPP plus 1,25(OH)2D (RUPP+VD) group (n = 15) received 120 ng/100 g body weight/week of 1,25(OH)2D by subcutaneous injection, while rats in normal pregnant (n = 12) and the RUPP group (n = 14) received 1,25(OH)2D vehicle (saline solution). On day 19 of pregnancy, after measure of blood pressure and cardiac function and urine collection, rats were euthanized, and fetal and maternal serum, placenta, and heart and kidney were collected. Fetal mortality, urinary protein, glucose, and parameters for kidney function in serum were measured. We evaluated vitamin D receptor expression and pathological and ultrastructural changes in rat heart, kidney, and placenta. Levels of oxidative stress, endoplasmic reticulum (ER) stress, apoptosis, and autophagy were measured in placenta. Compared to RUPP rats, 1,25(OH)2D decreased fetal mortality, mean blood pressure, 24-h urinary protein, urine microalbumin, and hyperglycemia in RUPP+VD rats. These were consistent with the improvements of structure impairment in heart, kidney, and placenta of RUPP rat by 1,25(OH)2D. In placenta of RUPP rat, the decrease in oxidative stress and ER stress by 1,25(OH)2D treatment was accompanied by autophagy activation and apoptosis attenuation. 1,25(OH)2D plays a beneficial effect on preeclampsia at the early gestation and might be used as a potential protective agent for preeclampsia. However, the RUPP model only recapitulated the hypoxic origin of preeclampsia; further randomized controlled trial is expected to be performed for validation and evaluation. PMID:26562100

  3. Increased calcium absorption in prehypertensive spontaneously hypertensive rat. Role of serum 1,25-dihydroxyvitamin D3 levels and intestinal brush border membrane fluidity.

    PubMed Central

    Lau, K; Langman, C B; Gafter, U; Dudeja, P K; Brasitus, T A

    1986-01-01

    Changes in Ca absorption have been described in the spontaneously hypertensive rat (SHR) compared with Wistar-Kyoto (WKy) rats. In 3.5-wk-old SHR and age-matched WKy controls, we measured direct arterial blood pressure, Ca absorption, and serum 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] levels and small intestine brush border membrane (BBM) fluidity and lipid composition. The two objectives were (a) to define the nature of the absorptive changes before detectable hypertension and (b) to evaluate the potential mechanism(s). We found that even at this normotensive stage (106 +/- 4 vs. 107 +/- 2 torr for the female and 109 +/- 3 vs. 104 +/- 3 torr for the male), the SHR (a) absorbed more Ca (1.46 +/- 0.06 vs. 1.14 +/- 0.08 mmol/d and 1.53 +/- 0.06 vs. 1.28 +/- 0.06 mmol/d, respectively) and retained more Ca, (b) had higher serum 1,25(OH)2D3 levels (340 +/- 36 vs. 160 +/- 18 pg/ml and 230 +/- 25 vs. 150 +/- 16 pg/ml, respectively), and (c) possessed BBM with increased fluidity and with reduced fatty acyl saturation index owing to decreased stearic (32.2 +/- 2.6% vs. 38.2 +/- 0.9%) but increased linoleic acids (12.2 +/- 2.0% vs. 7.6 +/- 1.6%). These results demonstrate increased Ca absorption in prehypertensive SHR associated with increased serum 1,25(OH)2D3 levels, increased intestinal BBM fluidity, and reduced saturation index, which singly or in combination could produce the changes in intestinal Ca transport. PMID:3760184

  4. 1,25-dihydroxyvitamin D3 and its nuclear receptor repress human α1(I) collagen expression and type I collagen formation

    PubMed Central

    Potter, James J.; Liu, Xiaopu; Koteish, Ayman; Mezey, Esteban

    2013-01-01

    Background Vitamin D deficiency is common in chronic liver disease particularly in those with severe liver fibrosis. Aims: To determine the effect of 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3) on the human α1(I) collagen promoter and collagen formation by human stellate LX-2 cells and the mechanism of the effect of the vitamin D receptor (VDR) on the promoter. Methods Type I collagen was assessed by measurements of collagen mRNA and collagen protein and by transfection experiments. Binding of VDR to the α1(I) collagen promoter was determined by EMSA and ChIP assays. Results 1,25-(OH)2D3 decreased human α1(I) collagen mRNA and protein and the secretion of type I collagen by stellate cells after exposure to TGFβ1. Furthermore, 1,25-(OH)2D3 inhibited TGFβ1–induced activation of the α1(I) collagen promoter in transfected LX-2 cells. The effect of 1, 25-(OH)2D3 is mediated by the VDR, which binds at a proximal Sp1 site and also at a newly identified distal site on the collagen promoter. A VDR expression vector reduced the activities of the collagen promoter in transfected LX-2 cells. Conclusions 1,25-(OH)2D3 inhibits type I collagen formation in human stellate cells. The effect of 1,25-(OH)2D3 is mediated by its receptor which binds at a proximal Sp1.1 site and at a newly identified distal site on the collagen promoter. Correction of vitamin D deficiency in patients with chronic liver disease is a potential therapy to inhibit progression of fibrosis. PMID:23413886

  5. Effects of hPTH(1-34) Infusion on Circulating Serum Phosphate, 1,25-Dihydroxyvitamin D, and FGF23 Levels in Healthy Men

    PubMed Central

    Burnett-Bowie, Sherri-Ann M.; Henao, Maria P.; Dere, Melissa E.; Lee, Hang; Leder, Benjamin Z.

    2009-01-01

    Fibroblast growth factor 23 (FGF23) promotes phosphaturia and suppresses 1,25-dihydroxyvitamin D [1,25(OH)2D] production. PTH also promotes phosphaturia, but, in contrast, stimulates 1,25(OH)2D production. The relationship between FGF23 and PTH is unclear, and the acute effect of pharmacologically dosed PTH on FGF23 secretion is unknown. Twenty healthy men were infused with human PTH(1-34) [hPTH(1-34)] at 44 ng/kg/h for 24 h. Compared with baseline, FGF23, 1,25(OH)2D, ionized calcium (iCa), and serum N-telopeptide (NTX) increased significantly over the 18-h hPTH(1-34) infusion (p < 0.0001), whereas serum phosphate (PO4) transiently increased and then returned to baseline. FGF23 increased from 35 ± 10 pg/ml at baseline to 53 ± 20 pg/ml at 18 h (p = 0.0002); 1,25(OH)2D increased from 36 ± 16 pg/ml at baseline to 80 ± 33 pg/ml at 18 h (p < 0.0001); iCa increased from 1.23 ± 0.03 mM at baseline to 1.46 ± 0.05 mM at hour 18 (p < 0.0001); and NTX increased from 17 ± 4 nM BCE at baseline to 28 ± 8 nM BCE at peak (p < 0.0001). PO4 was 3.3 ± 0.6 mg/dl at baseline, transiently rose to 3.7 ± 0.4 mg/dl at hour 6 (p = 0.016), and then returned to 3.4 ± 0.5 mg/dl at hour 12 (p = 0.651). hPTH(1-34) infusion increases endogenous 1,25(OH)2D and FGF23 within 18 h in healthy men. Whereas it is possible that the rise in PO4 contributed to the observed increase in FGF23, the increase in 1,25(OH)2D was more substantial and longer sustained than the change in serum phosphate. Given prior data that suggest that neither PTH nor calcium stimulate FGF23 secretion, these data support the assertion that 1,25(OH)2D is a potent physiologic stimulator of FGF23 secretion. PMID:19419295

  6. 1alpha,25-Dihydroxyvitamin D(3) triggered vitamin D receptor and farnesoid X receptor-like effects in rat intestine and liver in vivo.

    PubMed

    Chow, Edwin C Y; Maeng, Han-Joo; Liu, Shanjun; Khan, Ansar A; Groothuis, Geny M M; Pang, K Sandy

    2009-11-01

    1alpha,25-Dihydroxyvitamin D(3) (1,25(OH)(2)D(3)), a natural ligand of the vitamin D receptor (VDR), was found to increase the rat ileal Asbt and bile acid absorption. The effects of VDR, whose expression is low in liver, on hepatic transporters and enzymes are unknown. Protein and mRNA levels of target genes in the small intestine, colon and liver after intraperitoneal dosing of 1,25(OH)(2)D(3) (0-2.56 nmol/kg/day for 4 days) to the rat were determined by Western blotting and qPCR, respectively. The 1,25(OH)(2)D(3) treatment increased total Cyp3a protein and Cyp3a1 mRNA expressions in the proximal small intestine, and the short heterodimer partner (SHP), the fibroblast growth factor 15 (FGF15), organic solute transporter (Ostalpha and Ostbeta) mRNA and Asbt protein expressions in the ileum. About 50% higher portal bile acid concentration (65.1+/-14.9 vs 41.9+/-7.8 microm, p<0.05) and elevated expressions of the hepatic farnesoid X receptor (FXR) and SHP mRNA resulted with 1,25(OH)(2)D(3) treatment. Increased Bsep and Ostalpha mRNA expressions in liver and a>50% reduction in the Cyp7a1 protein level (p<0.05) and cholesterol metabolism in rat liver microsomes (p=0.002), likely consequences of the bile acid-FXR-SHP cascade and activation of the signaling pathway for Cyp7a1 inhibition by FGF15, were found. Increased hepatic multidrug resistance-associated protein (Mrp3) and multidrug resistance protein 1a (Mdr1a) mRNA and P-gp protein were also observed. It was concluded that the changes in hepatic transporters and enzymes in the rat were indirect, secondary effects of the liver FXR-SHP cascade due to increased intestinal absorption of bile acids and elevated levels of FGF15, events that led to the activation of FXR.

  7. Expression of a 1,25-dihydroxyvitamin D3 membrane-associated rapid-response steroid binding protein during human tooth and bone development and biomineralization.

    PubMed

    Mesbah, Mohand; Nemere, Ilka; Papagerakis, Petros; Nefussi, Jean-Raphael; Orestes-Cardoso, Silvana; Nessmann, Catherine; Berdal, Ariane

    2002-09-01

    The calciotropic hormone 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] has been established to control skeletal tissue formation and biomineralization via the regulation of gene expression. This action involves the well-characterized nuclear 1,25(OH)2D3 receptor. However, it has been recognized that several cellular responses to 1,25(OH)2D3 may not to be related to the exclusive nuclear receptor. Indeed, this secosteroid is able to generate rapid responses that have been proposed to be mediated by interactions of the ligand, which is a putative cell membrane-associated rapid-response steroid (MARRS) binding protein for 1,25(OH)2D3 [1,25D3-MARRS]. The nongenomic pathway of 1,25(OH)2D3 was studied here in detail by immunolocalization of the 1,25D3-MARRS during the specific context of human prenatal development. Western blotting with proteins extracted from 4 week- to 27-week-old embryos was performed, evidencing a 65-kDa molecular species recognized by antibody Ab 099 generated against synthetic peptides corresponding to the N terminus of the 1,25D3-MARRS from chick intestinal basolateral membranes. Based on this biochemical conservation of protein in the human species, the temporospatial expression patterns were established in the craniofacial skeleton at the same ages. Comparative analysis was performed in teeth and bones from early morphogenesis to terminal cell differentiation and extracellular biomineralization. The data show the potential implication of 1,25D3-MARRS in the heterogeneous cell population including ameloblasts, odontoblasts, osteoblasts, and osteoclasts. The epithelial-mesenchymal cascade related to odontogenesis was coincident with a sequence of up- and down-regulation of immunoreactive 1,25D3-MARRS. Biomineralization was associated with a striking up-regulation in the adjoining secretory cells in all tissues. Finally, osteoclasts appeared also to express the 1,25D3-MARRS during these early phases of bone modeling. Previously obtained data of the

  8. Modulation of 1alpha,25-dihydroxyvitamin D3-membrane associated, rapid response steroid binding protein expression in mouse odontoblasts by 1alpha,25-(OH)2D3.

    PubMed

    Teillaud, Christophe; Nemere, Ilka; Boukhobza, Florine; Mathiot, Claire; Conan, Nicole; Oboeuf, Martine; Hotton, Dominique; Macdougall, Mary; Berdal, Ariane

    2005-01-01

    The rapid, nongenomic effects of 1alpha,25-dihydroxyvitamin D3 (1alpha,25-(OH)2D3 have been related to a 1,25D3-membrane associated, rapid response steroid binding protein or 1,25D3-[MARRS]bp, with a molecular weight of 65 kDa, in several tissues and species. Currently, no information is available concerning the nongenomic responses to 1alpha,25-(OH)2D3 in dental tissues. In order to investigate the expression of 1,25D3-[MARRS]bp in dental cells, in the presence or absence of 1alpha,25-(OH)2D3, we have used rabbit polyclonal antibodies directed against the N-terminus of the 1,25D3-[MARRS]bp (Ab099) that recognizes the 1alpha,25-(OH)2D3 binding protein in chick intestinal basolateral membranes and a mouse odontoblast-like cell line (MO6-G3). Western blotting and flow cytometric analyses with Ab099 specifically detected 1,25D3-[MARRS]bp in MO6-G3 cells. Moreover, 1,25D3-[MARRS]bp was up-regulated, in vivo, in differentiated dental cells. Electron microscopic analysis confirmed the plasma membrane localization of this binding protein and also showed its intracellular presence. Incubation of MO6-G3 cells with different doses of 1alpha,25-(OH)2D3 for 36 h resulted in an inhibition of 1,25D3-[MARRS]bp expression with a maximal effect at 50 nM steroid. In addition, the culture media of MO6-G3 cells contains immunoreactive 1,25D3-[MARRS]bp. Immunogold positive membrane vesicle-like structures are present in the extracellular matrix of MO6-G3 cells. Altogether, these results indicate that the 1,25D3-[MARRS]bp expression in MO6-G3 cells is modulated by 1alpha,25-(OH)2D3. In conclusion, this 1alpha,25-(OH)2D3 binding protein could play an important role in the rapid, nongenomic responses to 1alpha,25-(OH)2D3 in dental cells.

  9. Comparative regulation of gene expression by 1,25-dihydroxyvitamin D3 in cells derived from normal mammary tissue and breast cancer

    PubMed Central

    Beaudin, Sarah G; Robilotto, Samantha; Welsh, JoEllen

    2016-01-01

    Previous genomic profiling of immortalized, non-tumorigenic human breast epithelial cells identified a set of 1,25-dihydroxyvitamin D3 (1,25D) regulated genes with potential relevance to breast cancer prevention. In this report, we characterized the effect of 1,25D on a subset of these genes in six cell lines derived from mammary tissue and breast cancers. Non-tumorigenic cell lines included hTERT-HME1, HME and MCF10A cells which are often used to model normal breast epithelial cells. Breast cancer cell lines included MCF7 cells (a model of early stage, estrogen-dependent disease), DCIS.com cells (a derivative of MCF10A cells that models in situ breast cancer) and Hs578T cells (a model of metastatic disease). All of these cell lines express the vitamin D receptor (VDR) and exhibit anti-cancer responses to 1,25D such as changes in proliferation, apoptosis, metabolism, or invasion. Our comparative data demonstrate highly variable responses to 1,25D (100nM, 24h) between the cell lines. In both hTERT-HME1 and HME cell lines, CYP24A1, SLC1A1 and ITGB3 were up-regulated whereas KDR, GLUL and BIRC3 were down-regulated in response to 1,25D. In contrast, no changes in SLC1A1, ITGB3 or GLUL expression were detected in 1,25D treated MCF10A cells although KDR and BIRC3 were down-regulated by 1,25D. The effects of 1,25D on these genes in the breast cancer cell lines were blunted, with the DCIS.com cells exhibiting the most similar responses to the immortalized hTERT-HME1 and HME cells. The differences in cellular responses were not due to general impairment in VDR function as robust CYP24A1 induction was observed in all cell lines. Thus, our data indicate that the genomic changes induced by 1,25D are highly cell-type specific even in model cell lines derived from the same tissue. The implication of these findings is that genomic responses to changes in vitamin D status in vivo are likely to be distinct from individual to individual, particularly in neoplastic tissue. PMID

  10. Circulating 25-Hydroxyvitamin D and 1,25-Dihydroxyvitamin D Concentrations and Postoperative Infections in Cardiac Surgical Patients: The CALCITOP-Study

    PubMed Central

    Zittermann, Armin; Kuhn, Joachim; Ernst, Jana B.; Becker, Tobias; Larisch, Julia; Dreier, Jens; Knabbe, Cornelius; Börgermann, Jochen; Gummert, Jan F.

    2016-01-01

    Background Vitamin D has immunomodulatory properties and seems to reduce the risk of infections. Whether low vitamin D concentrations are independent risk factors for nosocomial postoperative infections in surgical patients remains to be studied in detail. Methods In 3,340 consecutive cardiac surgical patients, we investigated the association of circulating 25-hydroxyvitamin D (25OHD; indicator of nutritional vitamin D status) and 1,25-dihydroxyvitamin D (1,25[OH]2D; active vitamin D hormone) with nosocomicial infections. The primary endpoint was a composite of thoracic wound infection, sepsis, and broncho-pulmonary infection. Vitamin D status was measured on the last preoperative day. Infections were assessed until discharge. Logistic regression analysis was used to examine the association between vitamin D metabolite concentrations and the composite endpoint. Results The primary endpoint was reached by 5.6% (n = 186). In patients who reached and did not reach the endpoint, in-hospital mortality was 13.4% and 1.5%, respectively (P<0.001). Median (IQR) 25OHD and 1,25(OH)2D concentrations were 43. 2 (29.7–61.9) nmol/l and 58.0 (38.5–77.5) pmol/l, respectively. Compared with the highest 1,25(OH)2D quintile (>81.0 pmol/l), the multivariable–adjusted odds ratio of infection was 2.57 (95%CI:1.47–4.49) for the lowest 1,25(OH)2D quintile (<31.5 pmol/l) and 1.85 (95%CI:1.05–3.25) for the second lowest quintile (31.5–49.0 pmol/l). There was no significant association between 25OHD concentrations and the primary endpoint. Conclusions Our data indicate an independent association of low 1,25(OH)2D levels with the risk of postoperative infections in cardiac surgical patients. Future studies should pay more attention on the clinical relevance of circulating 1,25(OH)2D and its regulation. PMID:27355377

  11. Sensitive induction of apoptosis in breast cancer cells by a novel 1,25-dihydroxyvitamin D3 analogue shows relation to promoter selectivity.

    PubMed

    Danielsson, C; Mathiasen, I S; James, S Y; Nayeri, S; Bretting, C; Hansen, C M; Colston, K W; Carlberg, C

    1997-09-15

    The biologically active form of vitamin D3, the nuclear hormone 1 alpha,25-dihydroxyvitamin D3 (VD), is an important regulator of cellular growth, differentiation, and death. The hormone mediates its action through the activation of the transcription factor VDR, which is a member of the superfamily of nuclear receptors. In most cases the ligand-activated VDR is found in complex with the retinoid X receptor (RXR) and stimulates gene transcription mainly from VD response elements (VDREs) that are formed by two hexameric core binding motifs and are arranged either as a direct repeat spaced by three nucleotides (DR3) or as an inverted palindrome spaced by nine nucleotides (1P9). The two VD analogues CB1093 and EB1089 are both very potent inhibitors of the proliferation of MCF-7 cultured breast cancer cells displaying approximately 100-fold lower IC50 values (0.1 nM) than the natural hormone. In addition, CB1093 is even more potent in vivo than EB1089 in producing regression of experimental mammary tumors. Moreover, both VD analogues induce apoptosis in MCF-7 cells, but CB1093 is effective at concentrations approximately 10-fold lower than EB1089. In accordance, the reduction of Bcl-2 protein expression showed CB1093 to be more potent than EB1089. This suggests that the antiproliferative effect of CB1093 may be related mainly to its apoptosis inducing effect, whereas EB1089 may preferentially have effects on growth arrest. EB1089 is known to result in a selectivity for the activation of IP9-type VDREs, whereas CB1093 shows a preference for the activation of DR3-type VDREs. This promoter selectivity suggests that the effects of VD and its analogues on growth arrest and the induction of apoptosis may be mediated by different primary VD responding genes. In conclusion, CB1093 was found to be a potent inhibitor of rat mammary tumor growth in vivo. CB1093 also displayed a high potency in vitro in the induction of apoptosis, a process that may be linked to a promoter

  12. Mineralization of three-dimensional osteoblast cultures is enhanced by the interaction of 1α,25-dihydroxyvitamin D3 and BMP2 via two specific vitamin D receptors.

    PubMed

    Chen, Jiaxuan; Dosier, Christopher R; Park, Jung Hwa; De, Subhendu; Guldberg, Robert E; Boyan, Barbara D; Schwartz, Zvi

    2016-01-01

    1α,25-Dihydroxyvitamin D3 [1α,25(OH)2D3] and bone morphogenetic protein-2 (BMP2) are both used to stimulate osteoblastic differentiation. 1α,25(OH)2D3 regulates osteoblasts through classical steroid hormone receptor mechanisms and through rapid responses that are mediated by two receptors, the traditional vitamin D receptor (VDR) and protein disulphide isomerase family A member 3 (Pdia3). The interaction between 1α,25(OH)2D3 and BMP2, especially in three-dimensional (3D) culture, and the roles of the two vitamin D receptors in this interaction are not well understood. We treated wild-type (WT), Pdia3-silenced (Sh-Pdia3) and VDR-silenced (Sh-VDR) pre-osteoblastic MC3T3-E1 cells with either 1α,25(OH)2D3, or BMP2, or with 1α,25(OH)2D3 and BMP2 together, and measured osteoblast marker expression in 2D culture and mineralization in a 3D poly(ε-caprolactone)-collagen scaffold model. Quantitative PCR showed that silencing Pdia3 or VDR had a differential effect on baseline expression of osteoblast markers. 1α,25(OH)2D3 + BMP2 caused a synergistic increase in osteoblast marker expression in WT cells, while silencing either Pdia3 or VDR attenuated this effect. 1α,25(OH)2D3 + BMP2 also caused a synergistic increase in Dlx5 in both silenced cell lines. Micro-computed tomography (μCT) showed that the mineralized volume of untreated Sh-Pdia3 and Sh-VDR 3D cultures was greater than that of WT. 1α,25(OH)2D3 reduced mineral in WT and Sh-VDR cultures; BMP2 increased mineralization; and 1α,25(OH)2D3 + BMP2 caused a synergistic increase, but only in WT cultures. SEM showed that mineralized matrix morphology in 3D cultures differed for silenced cells compared to WT cells. These data indicate a synergistic crosstalk between 1α,25(OH)2D3 and BMP2 toward osteogenesis and mineral deposition, involving both VDR and Pdia3.

  13. Leptin stimulates fibroblast growth factor 23 expression in bone and suppresses renal 1alpha,25-dihydroxyvitamin D3 synthesis in leptin-deficient mice.

    PubMed

    Tsuji, Kiyomi; Maeda, Toyonobu; Kawane, Tetsuya; Matsunuma, Ayako; Horiuchi, Noboru

    2010-08-01

    Leptin is the LEP (ob) gene product secreted by adipocytes. We previously reported that leptin decreases renal expression of the 25-hydroxyvitamin D(3) 1alpha-hydroxylase (CYP27B1) gene through the leptin receptor (ObRb) by indirectly acting on the proximal tubules. This study focused on bone-derived fibroblast growth factor 23 (FGF-23) as a mediator of the influence of leptin on renal 1alpha-hydroxylase mRNA expression in leptin-deficient ob/ob mice. Exposure to leptin (200 ng/mL) for 24 hours stimulated FGF-23 expression by primary cultured rat osteoblasts. Administration of leptin (4 mg/kg i.p. at 12-hour intervals for 2 days) to ob/ob mice markedly increased the serum FGF-23 concentration while significantly reducing the serum levels of calcium, phosphate, and 1alpha,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)]. Administration of FGF-23 (5 microg i.p. at 12-hour intervals for 2 days) to ob/ob mice suppressed renal 1alpha-hydroxylase mRNA expression. The main site of FGF-23 mRNA expression was the bone, and leptin markedly increased the FGF-23 mRNA level in ob/ob mice. In addition, leptin significantly reduced 1alpha-hydroxylase and sodium-phosphate cotransporters (NaP(i)-IIa and NaP(i)-IIc) mRNA levels but did not affect Klotho mRNA expression in the kidneys of ob/ob mice. Furthermore, the serum FGF-23 level and renal expression of 1alpha-hydroxylase mRNA were not influenced by administration of leptin to leptin receptor-deficient (db/db) mice. These results indicate that leptin directly stimulates FGF-23 synthesis by bone cells in ob/ob mice, suggesting that inhibition of renal 1,25(OH)(2)D(3) synthesis in these mice is at least partly due to elevated bone production of FGF-23.

  14. 6-s-cis locked analogues of the steroid hormone 1alpha, 25-dihydroxyvitamin D(3). Synthesis Of novel A-ring stereoisomeric 1, 25-dihydroxy-3-epi-19-nor-previtamin D(3) derivatives.

    PubMed

    Díaz, M; Ferrero, M; Fernández, S; Gotor, V

    2000-09-01

    Efficient syntheses of A-ring synthons 24 and 32 are described from hydroxy ester 16, which is easily available on a preparative scale from (-)-quinic acid. Key features of the syntheses were (a) the ability to selectively perform desilylations in the presence of p-nitrobenzoate esters and (b) the excellent yield and complete stereospecificity with which the configuration of alcohols 16, 18, and 26 could be inverted under Mitsunobu conditions. Thus, A-ring synthons 24 and 32 were both prepared in 35-38% yield (eight steps) from the common precursor 16. The coupling of A-ring synthons 24 and 32 with the appropriate CD-ring/side chain fragment 7 provides access to novel 6-s-cis locked analogues of steroid hormone 1alpha, 25-dihydroxyvitamin D(3): 1alpha, 25-dihydroxy-3-epi-19-nor-previtamin D(3) (37) and 1beta, 25-dihydroxy-3-epi-19-nor-previtamin D(3) (38), which are unable to undergo rearrangement to the respective vitamin D form by virtue of the absence of the C-19 methyl group. Compounds 37 and 38 can be used as tools for studying the genomic and nongenomic mechanisms of action of the previtamin form of the hormone 1alpha, 25-dihydroxyvitamin D(3).

  15. Human and murine osteocalcin gene expression: conserved tissue restricted expression and divergent responses to 1,25-dihydroxyvitamin D3 in vivo.

    PubMed

    Sims, N A; White, C P; Sunn, K L; Thomas, G P; Drummond, M L; Morrison, N A; Eisman, J A; Gardiner, E M

    1997-10-01

    Human and murine osteocalcin genes demonstrate similar cell-specific expression patterns despite significant differences in gene locus organization and sequence variations in cis-acting regulatory elements. To investigate whether differences in these regulatory regions result in an altered response to 1,25-dihydroxyvitamin D3 [1,25-(OH)2D3] in vivo, we compared the response of the endogenous mouse osteocalcin gene to a bacterial reporter gene directed by flanking regions of the human osteocalcin gene in transgenic mice. Transgene expression colocalized with endogenous osteocalcin expression in serial sections, being detected in osteoblasts, osteocytes and hypertrophic chondrocytes. In calvarial cell culture lysates from transgenic and nontransgenic mice, the endogenous mouse osteocalcin gene did not respond to 1,25-(OH)2D3 treatment. Despite this, transgene activity was significantly increased in the same cells. Similarly, Northern blots of total cellular RNA and in situ hybridization studies of transgenic animals demonstrated a maximal increase in transgene expression at 6 h after 1,25-(OH)2D3 injection (23.6+/-3.6-fold) with a return to levels equivalent to uninjected animals by 24 h (1.2+/-0.1-fold). This increase in transgene expression was also observed at 6 h after 1,25-(OH)2D3 treatment in animals on a low calcium diet (25.2+/-7.7-fold) as well as in transgenic mice fed a vitamin D-deficient diet containing strontium chloride to block endogenous 1,25-(OH)2D3 production (7.5+/-0.9-fold). In contrast to the increased transgene expression levels, neither endogenous mouse osteocalcin mRNA levels nor serum osteocalcin levels were significantly altered after 1,25-(OH)2D3 injection in transgenic or nontransgenic mice, regardless of dietary manipulations, supporting evidence for different mechanisms regulating the response of human and mouse osteocalcin genes to 1,25-(OH)2D3. Although the cis- and trans-acting mechanisms directing cell-specific gene expression

  16. Differential skeletal responses of hindlimb unloaded rats on a vitamin D-deficient diet to 1,25-dihydroxyvitamin D3 and its analog, seocalcitol (EB1089)

    NASA Technical Reports Server (NTRS)

    Narayanan, Ramesh; Allen, Matthew R.; Gaddy, Dana; Bloomfield, Susan A.; Smith, Carolyn L.; Weigel, Nancy L.

    2004-01-01

    Conditions of disuse in bed rest patients, as well as microgravity experienced by astronauts are accompanied by reduced mechanical loading, reduced calcium absorption, and lower serum levels of 1,25(OH)2D3 (1,25-D), the active metabolite of vitamin D, all contributing to bone loss. To determine whether 1,25-D or a less calcemic analog, Seocalcitol or EB1089 (1 alpha,25-dihydroxy-22,24-diene-24,26,27-trihomovitamin D3) can alleviate bone loss in a rat hindlimb unloading model of disuse osteopenia, mature male rats originally on a vitamin D replete diet containing 1.01% calcium were transferred to a vitamin D-deficient diet containing 0.48% calcium and then tail suspended and treated for 28 days with vehicle, 0.05 microg/kg 1,25-D, or 0.05 microg/kg EB1089. The vitamin D-deficient diet caused a substantial decrease in bone mineral density (-8%), which may be compounded by hindlimb unloading (-10%). Exogenous 1,25-D not only prevented the bone loss but also increased the bone mineral density to greater than the baseline level (+7%). EB1089 was less effective in preventing bone loss. Analysis of site and cell-specific effects of 1,25-D and EB1089 revealed that 1,25-D was more active than EB1089 in the intestine, the site of calcium absorption, and in inducing osteoclastogenesis and bone resorption whereas EB1089 was more effective in inducing osteoblast differentiation. These studies suggest that elevating circulating 1,25-D levels presumably increasing calcium absorption can counteract bone loss induced by disuse or microgravity with its associated reductions in circulating 1,25-D and decreased calcium absorption.

  17. [Transcriptome analysis and epigenetic analysis during osteoclastogenesis].

    PubMed

    Nakamura, Shinya; Tanaka, Sakae

    2016-04-01

    The importance of receptor activator of nuclear factor-κB ligand(RANKL)during osteoclastogenesis was discovered in 1998. After that Nfatc1, downstream gene of RANKL-RANK signaling, was identified as a master regulator of osteoclastogenesis by transcriptome analysis. In recent years, with the advancement of epigenetic analysis method and big data analysis technology, epigenetic analysis about osteoclastogenesis gradually progresses. Some papers using H3K4me3 and H3K27me3 histone modification change data, DNase-seq data and formaldehyde-assisted isolation of regulatory elements(FAIRE)-seq data during osteoclastogenesis were published recently. It will probably contribute to elucidate the crosstalk between osteoclasts and osteoblasts, osteocytes or chondrocytes in the future. PMID:27013627

  18. Taurine inhibits osteoclastogenesis through the taurine transporter.

    PubMed

    Yuan, Ling-Qing; Liu, Wei; Cui, Rong-Rong; Wang, Dan; Meng, Ji-Cai; Xie, Hui; Wu, Xian-Ping; Zhou, Hou-De; Lu, Ying; Liao, Er-Yuan

    2010-06-01

    Several studies have suggested a direct link between taurine and bone homeostasis. However, the mechanisms of taurine on the regulation of bone metabolism have not been elucidated. Using a coculture of osteoblasts and bone marrow cells as a model for the study of osteoclastogenesis, RANKL-stimulated RAW264.7 cells and M-CSF- and RANKL-induced bone marrow macrophages were investigated to elucidate the possible roles of taurine in osteoclastogenesis. Taurine inhibited osteoclastogenesis in the coculture of osteoblasts and bone marrow cells, but did not influence the expression of OPG and RANKL in osteoblasts. The taurine transporter (TAUT) expressed by RAW264.7 and bone marrow macrophages exhibited typical taurine uptake activity. Taurine directly reduced osteoclastogenesis in RANKL-stimulated RAW264.7 cells and M-CSF- and RANKL-induced bone marrow macrophages, while TAUT siRNA relieved this effect. Our study demonstrated that taurine directly inhibited osteoclastogenesis through the taurine transporter. Taken together, these data suggest that taurine plays a direct role in bone homeostasis by inhibiting osteoclastogenesis.

  19. Regulated expression of the MRP8 and MRP14 genes in human promyelocytic leukemic HL-60 cell treated with the differentiation-inducing agents mycophenolic acid and 1{alpha},25-Dihydroxyvitamin D{sub 3}

    SciTech Connect

    Warner-Bartnicki, A.L.; Murao, S.; Collart, F.R.; Huberman, E.

    1992-12-31

    The calcium-binding proteins MRP8 and MEP14 are present in mature monomyelocytic cells and are induced during differentiation. Previous studies have demonstrated that the proteins may mediate the growth arrest in differentiating HL-60 cells. We determined the levels of a protein complex (PC) containing MRP8 and MRP14 and investigated the mechanism by which the genes encoding these proteins are regulated in HL-60 cells treated with the differentiation-inducing agent mycophenorc acid (MPA)While the PC was barely detectable in untreated cells, MPA treatment resulted in elevated levels of the PC which were maximal at 3-4 d, and were found to directly parallel gains in the steady-state levels of MRP8 and MRP14 MRNA. Transcription studies with the use of nuclear run-on experiments revealed increased transcription initiation at the MRP8 and MRP14 promoters after MPA treatment. 1{alpha},25-Dihydroxyvitamin D{sub 3}, which induces HL-60 cell differentiation by another mechanism, was also found to increase transcription initiation at the MRP8 and MRP14 promoters. Our results suggest that this initiation is the major control of maturation agent-mediated increases in MRP8 and MRPl4 gene expression, and support a role for the PC in terminal differentiation of human monomyelocytic cells.

  20. Combination of lenalidomide with vitamin D3 induces apoptosis in mantle cell lymphoma via demethylation of BIK

    PubMed Central

    Brosseau, C; Dousset, C; Touzeau, C; Maïga, S; Moreau, P; Amiot, M; Le Gouill, S; Pellat-Deceunynck, C

    2014-01-01

    Mantle cell lymphoma (MCL) is a currently incurable B-cell malignancy. Lenalidomide (Len) has been demonstrated to be one of the most efficient new treatment options. Because Len and 1α,25-dihydroxyvitamin (VD3) synergize to kill breast cancer cells, we investigated whether VD3 could increase the ability of Len to induce MCL cell death. While MCL cells were weakly sensitive to Len (1 μM), the addition of VD3 at physiological dose (100 nM) strongly increased cell death, accompanied by slowdown in cell cycle progression in MCL cell lines (n=4 out of 6) and primary samples (n=5 out of 7). The Len/VD3 treatment markedly increased the expression of the BH3-only BCL2-interacting killer (Bik) without affecting the expression of other Bcl-2 molecules. Immunoprecipitation assays demonstrated that Bik was free from anti-apoptotic partners, Bcl-2 and Bcl-xL, in treated cells. Moreover, silencing of BIK prevented apoptosis induced by Len/VD3, confirming the direct involvement of Bik in cell death. Bik accumulation induced by Len/VD3 was related to an increase in BIK mRNA levels, which resulted from a demethylation of BIK CpG islands. The sensitivity of MCL cells to Len/VD3 was similar to the response to 5-azacytidine, which also induced demethylation of BIK CpG islands. These preclinical data provide the rationale to investigate the role of VD3 in vivo in the response to Len. PMID:25165875

  1. Differential effect of 1{alpha},25-dihydroxyvitamin D{sub 3} on Hsp28 and PKC{beta} gene expression in the phorbol ester-resistant human myeloid HL-525 leukemic cells

    SciTech Connect

    Lee, Yong J.; Galoforo, S.S.; Berns, C.M.

    1997-08-01

    We investigated the effect of 1{alpha},25-dihydroxyvitamin D{sub 3} [1,25-(OH){sub 2}D{sub 3}] on the expression of the 28-kDa heat shock protein gene (hsp28) and the protein kinase C beta gene (PKC{beta}) in the human myeloid HL-60 leukemic cell variant HL-525, which is resistance to phorbol ester-induced macrophage differentiation. Northern and Western blot analysis showed little or no hsp28 gene expression in the HL-60 cell variant, HL-205, which is susceptible to such differentiation, while a relatively high basal level of hps28 gene expression was observed in the HL-525 cells. However, both cell lines demonstrated heat shock-induced expression of this gene. During treatment with 50-300 nM 1,25-(OH){sub 2}D{sub 3}, a marked reduction of hsp28 gene expression was not associated with heat shock transcription factor-heat shock element (HSF-HSE) binding activity. Our results suggest that the differential effect of 1,25-(OH){sub 2}D{sub 3} on hsp28 and PKC{beta} gene expression is due to the different sequence composition of the vitamin D response element in the in the promoter region as well as an accessory factor for each gene or that 1,25-(OH){sub 2}D{sub 3} increases PKC{beta} gene expression, which in turn negatively regulates the expression of the hsp28 gene, or vice versa.

  2. Expression of human kinase suppressor of Ras 2 (hKSR-2) gene in HL60 leukemia cells is directly upregulated by 1,25-dihydroxyvitamin D{sub 3} and is required for optimal cell differentiation

    SciTech Connect

    Wang Xuening; Wang, T.-T.; White, John H.; Studzinski, George P. . E-mail: studzins@umdnj.edu

    2007-08-15

    Induction of terminal differentiation of neoplastic cells offers potential for a novel approach to cancer therapy. One of the agents being investigated for this purpose in preclinical studies is 1,25-dihydroxyvitamin D{sub 3} (1,25D), which can convert myeloid leukemia cells into normal monocyte-like cells, but the molecular mechanisms underlying this process are not fully understood. Here, we report that 1,25D upregulates the expression of hKSR-2, a new member of a small family of proteins that exhibit evolutionarily conserved function of potentiating ras signaling. The upregulation of hKSR-2 is direct, as it occurs in the presence of cycloheximide, and occurs primarily at the transcriptional level, via activation of vitamin D receptor, which acts as a ligand-activated transcription factor. Two VDRE-type motifs identified in the hKSR-2 gene bind VDR-RXR alpha heterodimers present in nuclear extracts of 1,25D-treated HL60 cells, and chromatin immunoprecipitation assays show that these VDRE motifs bind VDR in 1,25D-dependent manner in intact cells, coincident with the recruitment of RNA polymerase II to these motifs. Treatment of the cells with siRNA to hKSR-2 reduced the proportion of the most highly differentiated cells in 1,25D-treated cultures. These results demonstrate that hKSR-2 is a direct target of 1,25D in HL60 cells, and is required for optimal monocytic differentiation.

  3. The effect of 1,25 dihydroxyvitamin D3 treatment on the mRNA levels of β catenin target genes in mice with colonic inactivation of both APC alleles

    PubMed Central

    DeWitt, Marsha; Johnson, Robert L.; Snyder, Paul; Fleet, James C.

    2015-01-01

    In colon cancer, adenomatous polyposis coli (APC) inactivating gene mutations increase nuclear β-catenin levels and stimulate proliferation. In vitro, 1,25 dihydroxyvitamin D (1,25(OH)2D), suppresses β-catenin-mediated gene transcription by inducing vitamin D receptor (VDR)-β-catenin interactions. We examined whether acute treatment with 1,25(OH)2D could suppress β-catenin-mediated gene transcription in the hyperplastic colonic lesions ofmice with colon-specific deletion of both APC gene alleles (CAC; APCΔ580/Δ580). At four weeks of age, CAC; APCΔ580/Δ580 and control mice were injected with vehicle or 1,25(OH)2D (1 μg/kg body weight) once a day for three days and then killed six hours after the last injection. mRNA levels of β-catenin target genes were elevated in the colon of CAC; APCΔ580/Δ580 mice. 1,25(OH)2D increased 25 hydroxyvitamin D-24 hydroxylase mRNA levels in the colon of CAC; APCΔ580/Δ580 and control mice indicating the treatments activated the VDR. However, 1,25(OH)2D had no effect on either β-catenin target gene mRNA levels or the proliferation index in CAC; APCΔ580/Δ580 or control mice. VDR mRNA and protein levels were lower (−65% and −90%) in the colon of CAC; APCΔ580/Δ580 mice compared to control mice, suggesting loss of colon responsiveness to vitamin D. Consistent with this, vitamin D-induced expression of Transient Receptor Potential cation channel, subfamily V, member 6 mRNA was reduced in the colon of CAC; APCΔ580/Δ580 mice. Our data show that short term exposure to 1,25(OH)2D does not suppress colonic β-catenin signaling in vivo. PMID:25597951

  4. Treatment of severe secondary hyperparathyroidism with administration of calcium carbonate, intermittent high oral doses of 1,25-dihydroxyvitamin D3 and dialysate with 3 mEq/1 calcium concentration.

    PubMed

    Perez-Mijares, R; Gomez-Fernandez, P; Almaraz-Jimenez, M; Ramos-Diaz, M; Rivero-Bohorquez, J

    1993-01-01

    In this study, we evaluated the effect of long-term administration of daily calcium carbonate (2-4 g/day) and intermittent high oral doses of 1,25-dihydroxyvitamin D3 [1,25-(OH)2D3, 3-4 micrograms, given twice a week] in conjunction with a 3-mEq/1 calcium concentration in the dialysate for the treatment of severe secondary hyperparathyroidism in 6 hemodialysis patients. All patients had reduced serum levels of 1,25-(OH)2D3, which increased significantly (p < 0.005) reaching the maximum level in the 4th month. Serum total and ionized calcium levels significantly increased also, in relation to those before treatment. No patients developed hypercalcemia. Serum phosphorus did not significantly change during the study. Initial serum intact parathyroid hormone (PTH) (1,241 +/- 233 pg/ml, mean +/- SEM) markedly decreased after starting treatment with 1,25-(OH)2D3, being 542 +/- 174 pg/ml in the 5th month and 477 +/- 174 pg/ml in the 8th month. These changes are statistically significant (p < 0.05 and < 0.007, respectively). Alkaline phosphatase behavior was similar to that of intact PTH. A constant direct correlation between intact PTH and alkaline phosphatase and an inverse significant correlation between intact PTH and 1,25-(OH)2D3 was evidenced by us. We conclude that oral 1,25-(OH)2D3 pulse therapy is very effective in suppressing PTH secretion. The administration of calcium carbonate and the use of dialysate with a reduced calcium concentration would allow to prevent hyperphosphatemia and the administration of high oral doses of 1,25-(OH)2D3 without concomitant hypercalcemia.

  5. Evidence of vitamin D and interferon-β cross-talk in human osteoblasts with 1α,25-dihydroxyvitamin D3 being dominant over interferon-β in stimulating mineralization.

    PubMed

    Woeckel, V J; Koedam, M; van de Peppel, J; Chiba, H; van der Eerden, B C J; van Leeuwen, J P T M

    2012-09-01

    It is well established that 1α-25-dihydroxyvitamin D3 (1,25D3) regulates osteoblast function and stimulates mineralization by human osteoblasts. The aim of this study was to identify processes underlying the 1,25D3 effects on mineralization. We started with gene expression profiling analyses of differentiating human pre-osteoblast treated with 1,25D3. Bioinformatic analyses showed interferon-related and -regulated genes (ISG) to be overrepresented in the set of 1,25D3-regulated genes. 1,25D3 down-regulated ISGs predominantly during the pre-mineralization period. This pointed to an interaction between the vitamin D and IFN signaling cascades in the regulation of osteoblast function. Separately, 1,25D3 enhances while IFNβ inhibits mineralization. Treatment of human osteoblasts with 1,25D3 and IFNβ showed that 1,25D3 completely overrules the IFNβ inhibition of mineralization. This was supported by analyses of extracellular matrix gene expression, showing a dominant effect of 1,25D3 over the inhibitory effect of IFNβ. We identified processes shared by IFNβ- and 1,25D3-mediated signaling by performing gene expression profiling during early osteoblast differentiation. Bioinformatic analyses revealed that genes being correlated or anti-correlated with interferon-induced protein with tetratricopeptide repeats 1 (IFIT1) were associated with osteoblast proliferation. In conclusion, the current study demonstrates a cross talk between 1,25D3 and IFNβ in osteoblast differentiation and bone formation/mineralization. The interaction is complex and depends on the process but importantly, 1,25D3 stimulation of mineralization is dominant over the inhibitory effect of IFNβ. These observations are of potential clinical relevance considering the impact of the immune system on bone metabolism in conditions such as rheumatoid arthritis.

  6. The proapoptotic protein Bim is up regulated by 1α,25-dihydroxyvitamin D3 and its receptor agonist in endothelial cells and transformed by viral GPCR associated to Kaposi sarcoma.

    PubMed

    Suares, Alejandra; Russo de Boland, Ana; Verstuyf, Annemieke; Boland, Ricardo; González-Pardo, Verónica

    2015-10-01

    We have previously shown that 1α,25-dihydroxyvitamin D3 [1α,25(OH)2D3] and its less calcemic analog TX 527 induce apoptosis via caspase-3 activation in endothelial cells (SVEC) and endothelial cells transformed by the viral G protein-coupled receptor associated to Kaposi sarcoma (vGPCR). In this work, we studied whether intrinsic apoptotic pathway could be activated by changing the balance between anti and pro-apoptotic proteins. Time response qRT-PCR analysis demonstrated that the mRNA level of anti-apoptotic gene Bcl-2 decreased after 12h and increased after 48h treatment with 1α,25(OH)2D3 or TX 527 in SVEC and vGPCR cells, whereas its protein level remained unchanged through time. mRNA levels of pro-apoptotic gene Bax significantly increased only in SVEC after 24 and 48h treatment with 1α,25(OH)2D3 and TX 527 although its protein levels remained unchanged in both cell lines. Bim mRNA and protein levels increased in SVEC and vGPCR cells. Bim protein increase by 1α,25(OH)2D3 and TX 527 was abolished when the expression of vitamin D receptor (VDR) was suppressed. On the other hand, Bortezomib (0.25-1nM), an inhibitor of NF-κB pathway highly activated in vGPCR cells, increased Bim protein levels and induced caspase-3 cleavage. Altogether, these results indicate that 1α,25(OH)2D3 and TX 527 trigger apoptosis by Bim protein increase which turns into the activation of caspase-3 in SVEC and vGPCR cells. Moreover, this effect is mediated by VDR and involves NF-κB pathway inhibition in vGPCR.

  7. The Effects of 1α, 25-dihydroxyvitamin D3 and Transforming Growth Factor-β3 on Bone Development in an Ex Vivo Organotypic Culture System of Embryonic Chick Femora

    PubMed Central

    Smith, Emma L.; Rashidi, Hassan; Kanczler, Janos M.; Shakesheff, Kevin M.; Oreffo, Richard O. C.

    2015-01-01

    Transforming growth factor-beta3 (TGF-β3) and 1α,25-dihydroxyvitamin D3 (1α,25 (OH) 2D3) are essential factors in chondrogenesis and osteogenesis respectively. These factors also play a fundamental role in the developmental processes and the maintenance of skeletal integrity, but their respective direct effects on these processes are not fully understood. Using an organotypic bone rudiment culture system the current study has examined the direct roles the osteotropic factors 1α,25 (OH)2D3 and TGF-β3 exert on the development and modulation of the three dimensional structure of the embryonic femur. Isolated embryonic chick femurs (E11) were organotypically cultured for 10 days in basal media, or basal media supplemented with either 1α,25 (OH) 2D3 (25 nM) or TGF-β3 (5 ng/mL & 15 ng/mL). Analyses of the femurs were undertaken using micro-computed tomography (μCT), histology and immunohistochemistry. 1α,25 (OH)2D3 supplemented cultures enhanced osteogenesis directly in the developing femurs with elevated levels of osteogenic markers such as type 1 collagen. In marked contrast organotypic femur cultures supplemented with TGF-β3 (5 ng/mL & 15 ng/mL) demonstrated enhanced chondrogenesis with a reduction in osteogenesis. These studies demonstrate the efficacy of the ex vivo organotypic embryonic femur culture employed to elucidate the direct roles of these molecules, 1α,25 (OH) 2D3 and TGF-β3 on the structural development of embryonic bone within a three dimensional framework. We conclude that 1α,25(OH)2D and TGF-β3 modify directly the various cell populations in bone rudiment organotypic cultures effecting tissue metabolism resulting in significant changes in embryonic bone growth and modulation. Understanding the roles of osteotropic agents in the process of skeletal development is integral to developing new strategies for the recapitulation of bone tissue in later life. PMID:25835745

  8. Effects of 1 alpha,25-dihydroxyvitamin D3 and cytokines on the expression of MHC antigens, complement receptors and other antigens on human blood monocytes and U937 cells: role in cell differentiation, activation and phagocytosis.

    PubMed Central

    Spittler, A; Willheim, M; Leutmezer, F; Ohler, R; Krugluger, W; Reissner, C; Lucas, T; Brodowicz, T; Roth, E; Boltz-Nitulescu, G

    1997-01-01

    The effect of calcitriol/1 alpha,25-dihydroxyvitamin D3, alone and in combination with cytokines, on the expression of various antigens (Ag) on human peripheral blood monocytes and U937 cells was studied by flow cytometry. Both constitutive and interferon-gamma (IFN-gamma), interleukin-4 (IL-4), IL-6 and tumour necrosis factor-alpha (TNF-alpha)-induced human leucocyte antigen (HLA)-DR, HLA-DP and HLA-DQ Ag expression on monocytes was significantly down-regulated by calcitriol, IL-10 and transforming growth factor-beta (TGF-beta). The effects of calcitriol were concentration dependent and reached maximal inhibitory levels after 3-5 days. Modulation of HLA-DR by calcitriol and IFN-gamma at the protein level correlated with the amount of mRNA specific for the HLA-DR alpha-chain, as judged by Northern blot analysis. The basal as well as IL-4, IL-6, IFN-gamma, TNF-alpha and TGF-beta-driven levels of HLA-ABC Ag were significantly diminished by calcitriol. On U937 cells calcitriol markedly induced CD11a and CD11b expression and weakly up-regulated CD11c whereas on monocytes, constitutive CD11a, CD11b and CD11c expression was significantly down-regulated by calcitriol. The expression of CD14 Ag was strongly induced on U937 cells but only modestly on monocytes. Both the basal level of CD71 and IL-4, IFN-gamma or TNF-alpha-driven expression was diminished on calcitriol-treated U937 cells. In addition, calcitriol suppressed the expression of CD71 Ag on monocytes. The ability of monocytes to phagocytize opsonized Escherichia coli was diminished by calcitriol. Our results demonstrate that calcitriol, alone or in combination with cytokines, modulates expression of MHC, CD11b, CD11c, CD14 and CD71 Ag on both monocytes and U937 cells, and impairs the phagocytic property of monocytes. Images Figure 2 PMID:9135559

  9. The effects of 1α, 25-dihydroxyvitamin D3 and transforming growth factor-β3 on bone development in an ex vivo organotypic culture system of embryonic chick femora.

    PubMed

    Smith, Emma L; Rashidi, Hassan; Kanczler, Janos M; Shakesheff, Kevin M; Oreffo, Richard O C

    2015-01-01

    Transforming growth factor-beta3 (TGF-β3) and 1α,25-dihydroxyvitamin D3 (1α,25 (OH) 2D3) are essential factors in chondrogenesis and osteogenesis respectively. These factors also play a fundamental role in the developmental processes and the maintenance of skeletal integrity, but their respective direct effects on these processes are not fully understood. Using an organotypic bone rudiment culture system the current study has examined the direct roles the osteotropic factors 1α,25 (OH)2D3 and TGF-β3 exert on the development and modulation of the three dimensional structure of the embryonic femur. Isolated embryonic chick femurs (E11) were organotypically cultured for 10 days in basal media, or basal media supplemented with either 1α,25 (OH) 2D3 (25 nM) or TGF-β3 (5 ng/mL & 15 ng/mL). Analyses of the femurs were undertaken using micro-computed tomography (μCT), histology and immunohistochemistry. 1α,25 (OH)2D3 supplemented cultures enhanced osteogenesis directly in the developing femurs with elevated levels of osteogenic markers such as type 1 collagen. In marked contrast organotypic femur cultures supplemented with TGF-β3 (5 ng/mL & 15 ng/mL) demonstrated enhanced chondrogenesis with a reduction in osteogenesis. These studies demonstrate the efficacy of the ex vivo organotypic embryonic femur culture employed to elucidate the direct roles of these molecules, 1α,25 (OH) 2D3 and TGF-β3 on the structural development of embryonic bone within a three dimensional framework. We conclude that 1α,25(OH)2D and TGF-β3 modify directly the various cell populations in bone rudiment organotypic cultures effecting tissue metabolism resulting in significant changes in embryonic bone growth and modulation. Understanding the roles of osteotropic agents in the process of skeletal development is integral to developing new strategies for the recapitulation of bone tissue in later life.

  10. 1,25-Dihydroxyvitamin D decreases HTRA1 promoter activity in the rhesus monkey--a plausible explanation for the influence of vitamin D on age-related macular degeneration?

    PubMed

    Pahl, Lisa; Schubert, Stephanie; Skawran, Britta; Sandbothe, Maria; Schmidtke, Jörg; Stuhrmann, Manfred

    2013-11-01

    Age-related macular degeneration is the major cause of blindness in the elderly worldwide and the risk is influenced by both environmental and genetic risk factors. One important disease-associated region in humans is located on 10q26 and includes the two candidate genes ARMS2 and HTRA1. However, determination of the causative gene has not yet been possible and examining the situation in the rhesus monkey may help understand the situation in humans. In a recent paper, we characterized the rhesus monkey 10q26-orthologue region on chromosome 9 in detail and identified the drusen-associated HTRA1 promoter SNP rs196357513 as a putative risk factor. In this study, we predicted 9 binding sites for the vitamin D-dependent transcription factor vitamin D receptor in the rhesus HTRA1 promoter, one of which is destroyed by the rs196357513-risk allele. As patients with vitamin D deficit are at increased risk for age-related macular degeneration, a luciferase assay in transiently transfected ARPE19-cells was performed to evaluate the influence of the SNP rs196357513 and of 1,25-dihydroxyvitamin D on the rhesus monkey HTRA1 promoter activity. This revealed that the luciferase activity of the promoter construct containing the rs196357513 wild type allele was significantly reduced after vitamin D stimulation. An in silico analysis and literature search imply that this regulation could also play a role in human HTRA1 expression. Moreover, HTRA1 promoter activity of the construct containing the rs196357513 risk allele appeared diminished in comparison to the construct with the wild type allele, albeit this difference was not significant. The lower promoter activity due to the rhesus monkey rs196357513 risk allele apparently contradicts the common hypothesis for the human HTRA1 promoter risk allele of SNP rs11200638, for which a higher promoter activity has been observed. Our data point to a yet unexpected effect of decreased HTRA1 expression on drusen pathogenesis. Thus not only a

  11. Differential expression and regulation of vitamin D hydroxylases and inflammatory genes in prostate stroma and epithelium by 1,25-dihydroxyvitamin D in men with prostate cancer and an in vitro model

    PubMed Central

    Giangreco, Angeline A.; Dambal, Shweta; Wagner, Dennis; Van der Kwast, Theodorus; Vieth, Reinhold; Prins, Gail S.; Nonn, Larisa

    2014-01-01

    Previous work on vitamin D in the prostate has focused on the prostatic epithelium, from which prostate cancer arises. Prostatic epithelial cells are surrounded by stroma, which has well-established regulatory control over epithelial proliferation, differentiation, and the inflammatory response. Here we examined the regulation of vitamin D-related genes and inflammatory genes by 1α,25-dihydroxyvitamin D3 (1,25(OH)2D) in laser-capture microdissected prostate tissue from a vitamin D3 clinical trial and in an in vitro model that facilitates stromal–epithelial crosstalk. Analysis of the trial tissues showed that VDR was present in both cell types, whereas expression of the hydroxylases was the highest in the epithelium. Examination of gene expression by prostatic (1,25(OH)2D) concentrations showed that VDR was significantly lower in prostate tissues with the highest concentration of 1,25(OH)2D, and down-regulation of VDR by 1,25(OH) 2D was confirmed in the primary cell cultures. Analysis of inflammatory genes in the patient tissues revealed that IL-6 expression was the highest in the prostate stroma while PTGS2 (COX2) levels were lowest in the prostate cancer tissues from men in the highest tertile of prostatic 1,25(OH)2D. In vitro, TNF-α, IL-6 and IL-8 were suppressed by 1,25 (OH)2D in the primary epithelial cells, whereas TNF-α and PTGS2 were suppressed by 1,25(OH) 2D in the stromal cells. Importantly, the ability of 1,25(OH)2D to alter pro-inflammatory-induced changes in epithelial cell growth were dependent on the presence of the stromal cells. In summary, whereas both stromal and epithelial cells of the prostate express VDR and can presumably respond to 1,25(OH)2D, which appears to be primarily produced by the prostatic epithelium. Further, while the prostate epithelium was more responsive to the anti-inflammatory activity of 1,25 (OH)2D than stromal cells, stroma–epithelial crosstalk enhanced the phenotypic effects of 1,25(OH)2D and the inflammatory

  12. 1,25-dihydroxyvitamin D inhibits vitamin E succinate-induced apoptosis in C3H10T1/2 cells but not Harvey ras-transfected cells.

    PubMed

    Stedman, Lynn; Nickel, Kwangok P; Castillo, S Sianna; Andrade, Juan; Burgess, John R; Teegarden, Dorothy

    2003-01-01

    In this study, the effect of 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] on regulation of apoptosis was compared in control C3H10T1/2 mouse fibroblast cells and those transfected with the Harvey ras oncogene. A known apoptotic stimulator, vitamin E succinate (VES), reduced cell number in a time- and dose-dependent manner in both cell types. In an assay for viable cells, there were significantly more C3H10T1/2 cells cotreated with VES and 1,25(OH)2D3 (-5.0 +/- 10.5% of vehicle-treated controls) compared to VES alone treated cells (-60.8 +/- 5.6%). In contrast, 1,25(OH)2D3 did not change the percentage of viable cells following treatment by VES in ras-transfected cells [-67.3 +/- 7.5%, VES alone compared to 57.3 +/-v 15.7% with VES and 1,25(OH)2D3 ]. Further studies confirmed that 1,25(OH)2D3 inhibited VES-mediated apoptosis (1.27 +/- 0.34-fold over vehicle control) compared to VES treatment alone (2.29 +/- 0.56-fold increase) in C3H10T1/2 cells, but not in ras-transfected cells [3.07 +/- 0.43-fold increase, VES treatment alone; 3.64 +/- 0.42-fold increase, VES and 1,25(OH)2D3]. Both C3H10T1/2 and ras-transfected cells treated with VES had increased concentrations of cellular VES with very little change in a-tocopherol, indicating that the cells took up VES intact. In addition, both cell lines contained similar levels of nuclear vitamin D receptor (VDR); however, the ras-transfected cells had reduced VDRE transcriptional activity. In conclusion, VES exerts its effect intact and 1,25(OH)2D3 preferentially protects C3H10T1/2 cells, whereas ras-transformed cells were not protected from VES-mediated apoptosis.

  13. Differential response to 1α, 25-dihydroxyvitamin D3 (1α,25(OH)2D3) in non-small cell lung cancer cells with distinct oncogene mutations1

    PubMed Central

    Zhang, Qiuhong; Kanterewicz, Beatriz; Shoemaker, Suzanne; Hu, Qiang; Liu, Song; Atwood, Kristopher; Hershberger, Pamela

    2012-01-01

    We previously demonstrated that non-small cell lung cancer (NSCLC) cells and primary human lung tumors aberrantly express the vitamin D3-catabolizing enzyme, CYP24, and that CYP24 restricts transcriptional regulation and growth control by 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3) in NSCLC cells. To ascertain the basis for CYP24 dysregulation, we assembled a panel of cell lines that represent distinct molecular classes of lung cancer: Cell lines were selected which harbored mutually exclusive mutations in either the K-ras or the Epidermal Growth Factor Receptor (EGFR) genes. We observed that K-ras mutant lines displayed a basal vitamin D receptor (VDR)lowCYP24high phenotype, whereas EGFR mutant lines had a VDRhighCYP24low phenotype. A mutation-associated difference in CYP24 expression was also observed in clinical specimens. Specifically, K-ras mutation was associated with a median 4.2-fold increase in CYP24 mRNA expression (p = 4.8 × 10−7) compared to EGFR mutation in a series of 147 primary lung adenocarcinoma cases. Because of their differential basal expression of VDR and CYP24, we hypothesized that NSCLC cells with an EGFR mutation would be more responsive to 1,25(OH)2D3 treatment than those with a K-ras mutation. To test this, we measured the ability of 1,25(OH)2D3 to increase reporter gene activity, induce transcription of endogenous target genes, and suppress colony formation. In each assay, the extent of 1,25(OH)2D3 response was greater in EGFR mutation-positive HCC827 and H1975 cells than in K-ras mutation-positive A549 and 128.88T cells. We subsequently examined the effect of combining 1,25(OH)2D3 with erlotinib, which is used clinically in the treatment of EGFR mutation-positive NSCLC. 1,25(OH)2D3/erlotinib combination resulted in significantly greater growth inhibition than either single agent in both the erlotinib-sensitive HCC827 cell line and the erlotinib-resistant H1975 cell line. These data are the first to suggest that EGFR mutations may

  14. The effect of 1,25 dihydroxyvitamin D3 treatment on the mRNA levels of β catenin target genes in mice with colonic inactivation of both APC alleles.

    PubMed

    DeWitt, Marsha; Johnson, Robert L; Snyder, Paul; Fleet, James C

    2015-04-01

    In colon cancer, adenomatous polyposis coli (APC) inactivating gene mutations increase nuclear β-catenin levels and stimulate proliferation. In vitro, 1,25 dihydroxyvitamin D (1,25(OH)2D), suppresses β-catenin-mediated gene transcription by inducing vitamin D receptor (VDR)-β-catenin interactions. We examined whether acute treatment with 1,25(OH)2D could suppress β-catenin-mediated gene transcription in the hyperplastic colonic lesions of mice with colon-specific deletion of both APC gene alleles (CAC; APC(Δ580/Δ580)). At four weeks of age, CAC; APC(Δ580/Δ580) and control mice were injected with vehicle or 1,25(OH)2D (1μg/kg body weight) once a day for three days and then killed six hours after the last injection. mRNA levels of β-catenin target genes were elevated in the colon of CAC; APC(Δ580/Δ580) mice. 1,25(OH)2D increased 25 hydroxyvitamin D-24 hydroxylase mRNA levels in the colon of CAC; APC(Δ580/Δ580) and control mice indicating the treatments activated the VDR. However, 1,25(OH)2D had no effect on either β-catenin target gene mRNA levels or the proliferation index in CAC; APC(Δ580/Δ580) or control mice. VDR mRNA and protein levels were lower (-65% and -90%) in the colon of CAC; APC(Δ580/Δ580) mice compared to control mice, suggesting loss of colon responsiveness to vitamin D. Consistent with this, vitamin D-induced expression of transient receptor potential cation channel, subfamily V, member 6 mRNA was reduced in the colon of CAC; APC(Δ580/Δ580) mice. Our data show that short term exposure to 1,25(OH)2D does not suppress colonic β-catenin signaling in vivo. This article is part of a special issue entitled '17th Vitamin D Workshop'.

  15. Topography Influences Adherent Cell Regulation of Osteoclastogenesis.

    PubMed

    Nagasawa, M; Cooper, L F; Ogino, Y; Mendonca, D; Liang, R; Yang, S; Mendonca, G; Uoshima, K

    2016-03-01

    The importance of osteoclast-mediated bone resorption in the process of osseointegration has not been widely considered. In this study, cell culture was used to investigate the hypothesis that the function of implant-adherent bone marrow stromal cells (BMSCs) in osteoclastogenesis is influenced by surface topography. BMSCs isolated from femur and tibia of Sprague-Dawley rats were seeded onto 3 types of titanium surfaces (smooth, micro, and nano) and a control surface (tissue culture plastic) with or without osteogenic supplements. After 3 to 14 d, conditioned medium (CM) was collected. Subsequently, rat bone marrow-derived macrophages (BMMs) were cultured in media supplemented with soluble receptor activator of NF-κB ligand (RANKL) and macrophage colony-stimulating factor (M-CSF) as well as BMSC CM from each of the 4 surfaces. Gene expression levels of soluble RANKL, osteoprotegerin, tumor necrosis factor α, and M-CSF in cultured BMSCs at different time points were measured by real-time polymerase chain reaction. The number of differentiated osteoclastic cells was determined after tartrate-resistant acid phosphatase staining. Analysis of variance and t test were used for statistical analysis. The expression of prominent osteoclast-promoting factors tumor necrosis factor α and M-CSF was increased by BMSCs cultured on both micro- and nanoscale titanium topographies (P < 0.01). BMSC CM contained a heat-labile factor that increased BMMs osteoclastogenesis. CM from both micro- and nanoscale surface-adherent BMSCs increased the osteoclast number (P < 0.01). Difference in surface topography altered BMSC phenotype and influenced BMM osteoclastogenesis. Local signaling by implant-adherent cells at the implant-bone interface may indirectly control osteoclastogenesis and bone accrual around endosseous implants. PMID:26553885

  16. Cross-sectional and longitudinal associations between the active vitamin D metabolite (1,25 dihydroxyvitamin D) and haemoglobin levels in older Australian men: the Concord Health and Ageing in Men Project.

    PubMed

    Hirani, Vasant; Cumming, Robert G; Blyth, Fiona; Naganathan, Vasi; Le Couteur, David G; Waite, Louise M; Handelsman, David J; Seibel, Markus J

    2015-02-01

    Anaemia and low 25 hydroxyvitamin D (25D) and 1,25 dihydroxyvitamin D (1,25D) levels are common in older people and may adversely affect morbidity and mortality. While there is some evidence for an association between low serum 25D levels and anaemia, there are limited studies among community-dwelling older people. In addition, the relationship between anaemia and the active vitamin D metabolite, 1,25D, has not been investigated. The aim of this study was to examine the associations between serum 25D and 1,25D with anaemia in community-living men aged ≥70 years. Population-based, cross-sectional analysis of the baseline phase and longitudinal analysis of the Concord Health and Ageing in Men Project (CHAMP), a large epidemiological study conducted in Sydney among men aged 70 years and older, were performed; 1666 men were seen at baseline (2005-2007), 1314 men at a 2-year follow-up (2007-2009) and 917 at a 5-year follow-up (2012-2013). The main outcome measurement was haemoglobin levels as a continuous measure. Covariates included 25D and 1,25D, estimated glomerular filtration rate, demographic information, lifestyle measures, health conditions and medication information. The prevalence of anaemia (Hb < 13.0 g/dL, WHO definition) was 14.6 %. In cross-sectional analysis, serum 25D concentrations were positively associated with haemoglobin levels in unadjusted analysis (β value 0.004; 95 % confidence interval (CI) 0.0009, 0.007; p = 0.01), but the associations were no longer significant after multivariate adjustment. The association between 1,25D levels and haemoglobin levels was significant in unadjusted analysis (β value 0.003; 95 % CI 0.002, 0.004; p < 0.0001) and remained significant in adjusted analysis (β value 0.001; 95 % CI 0.004, 0.003; p = 0.01). Serum 1,25D (but not 25D) levels at baseline were significantly associated with changes in haemoglobin over 2 and 5 years in unadjusted (β value 0.002; 95 % CI 0.0009, 0.003; p < 0

  17. Notch signaling drives multiple myeloma induced osteoclastogenesis

    PubMed Central

    Colombo, Michela; Thümmler, Katja; Mirandola, Leonardo; Garavelli, Silvia; Todoerti, Katia; Apicella, Luana; Lazzari, Elisa; Lancellotti, Marialuigia; Platonova, Natalia; Akbar, Moeed; Chiriva-Internati, Maurizio; Soutar, Richard; Neri, Antonino; Goodyear, Carl S.; Chiaramonte, Raffaella

    2014-01-01

    Multiple myeloma (MM) is closely associated with bone destruction. Once migrated to the bone marrow, MM cells unbalance bone formation and resorption via the recruitment and maturation of osteoclast precursors. The Notch pathway plays a key role in different types of cancer and drives several biological processes relevant in MM, including cell localization within the bone marrow, proliferation, survival and pharmacological resistance. Here we present evidences that MM can efficiently drive osteoclastogenesis by contemporaneously activating Notch signaling on tumor cells and osteoclasts through the aberrant expression of Notch ligands belonging to the Jagged family. Active Notch signaling in MM cells induces the secretion of the key osteoclastogenic factor, RANKL, which can be boosted in the presence of stromal cells. In turn, MM cells-derived RANKL causes the upregulation of its receptor, RANK, and Notch2 in pre-osteoclasts. Notch2 stimulates osteoclast differentiation by promoting autocrine RANKL signaling. Finally, MM cells through Jagged ligands expression can also activate Notch signaling in pre-osteoclast by direct contact. Such synergism between tumor cells and pre-osteoclasts in MM-induced osteoclastogenesis can be disrupted by silencing tumor-derived Jagged1 and 2. These results make the Jagged ligands new promising therapeutic targets in MM to contrast bone disease and the associated co-morbidities. PMID:25257302

  18. Crosstalk between the peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}) and the vitamin D receptor (VDR) in human breast cancer cells: PPAR{gamma} binds to VDR and inhibits 1{alpha},25-dihydroxyvitamin D{sub 3} mediated transactivation

    SciTech Connect

    Alimirah, Fatouma; Peng, Xinjian; Yuan, Liang; Mehta, Rajeshwari R.; Knethen, Andreas von; Choubey, Divaker; Mehta, Rajendra G.

    2012-11-15

    Heterodimerization and cross-talk between nuclear hormone receptors often occurs. For example, estrogen receptor alpha (ER{alpha}) physically binds to peroxisome proliferator-activated receptor gamma (PPAR{gamma}) and inhibits its transcriptional activity. The interaction between PPAR{gamma} and the vitamin D receptor (VDR) however, is unknown. Here, we elucidate the molecular mechanisms linking PPAR{gamma} and VDR signaling, and for the first time we show that PPAR{gamma} physically associates with VDR in human breast cancer cells. We found that overexpression of PPAR{gamma} decreased 1{alpha},25-dihydroxyvitamin D{sub 3} (1,25D{sub 3}) mediated transcriptional activity of the vitamin D target gene, CYP24A1, by 49% and the activity of VDRE-luc, a vitamin D responsive reporter, by 75% in T47D human breast cancer cells. Deletion mutation experiments illustrated that helices 1 and 4 of PPAR{gamma}'s hinge and ligand binding domains, respectively, governed this suppressive function. Additionally, abrogation of PPAR{gamma}'s AF2 domain attenuated its repressive action on 1,25D{sub 3} transactivation, indicating that this domain is integral in inhibiting VDR signaling. PPAR{gamma} was also found to compete with VDR for their binding partner retinoid X receptor alpha (RXR{alpha}). Overexpression of RXR{alpha} blocked PPAR{gamma}'s suppressive effect on 1,25D{sub 3} action, enhancing VDR signaling. In conclusion, these observations uncover molecular mechanisms connecting the PPAR{gamma} and VDR pathways. -- Highlights: PPAR{gamma}'s role on 1{alpha},25-dihydroxyvitamin D{sub 3} transcriptional activity is examined. Black-Right-Pointing-Pointer PPAR{gamma} physically binds to VDR and inhibits 1{alpha},25-dihydroxyvitamin D{sub 3} action. Black-Right-Pointing-Pointer PPAR{gamma}'s hinge and ligand binding domains are important for this inhibitory effect. Black-Right-Pointing-Pointer PPAR{gamma} competes with VDR for the availability of their binding partner, RXR{alpha}.

  19. Calebin A downregulates osteoclastogenesis through suppression of RANKL signalling.

    PubMed

    Tyagi, Amit K; Prasad, Sahdeo; Majeed, Muhammed; Aggarwal, Bharat B

    2016-03-01

    Osteoporosis is a bone disease that is exacerbated by aging and age-associated chronic diseases such as cancer. Cancer-induced bone loss is usually treated with bisphosphonates or denosumab, an antibody against receptor activator of nuclear factor (NF)-κB ligand (RANKL). Because these drugs are expensive and have numerous side effects and high rates of toxicity, safer, more effective, and more affordable therapies for osteoporosis are still needed. We identified a compound, calebin A (CA), derived from turmeric (Curcuma longa) that affects osteoclastogenesis through modulation of the RANKL signalling pathway. The CA's effect on NF-κB activation was examined by electrophoretic mobility shift assay. Using mouse macrophages in vitro model, we found that CA suppressed RANKL-induced osteoclast differentiation of macrophages into osteoclasts, and downregulate RANKL-induced osteoclastogenesis-related marker gene expression, including NFATc-1, TRAP, CTR, and cathepsin K. CA also suppressed the osteoclastogenesis induced by multiple myeloma and breast cancer cells. This effect of CA was correlated with suppression of the phosphorylation and degradation of inhibitor of κB and, thus, inhibition of NF-κB activation. Furthermore, we found that an NF-κB-specific inhibitory peptide blocked RANKL-induced osteoclastogenesis, demonstrating that the NF-κB signalling pathway is mandatory for RANKL-induced osteoclastogenesis. Our results conclusively indicate that CA downmodulates the osteoclastogenesis induced by RANKL and by tumour cells through suppression of NF-κB pathway.

  20. Inhibition of protein kinase CK2 reduces CYP24A1 expression and enhances 1,25-dihydroxyvitamin D3 anti-tumor activity in human prostate cancer cells

    PubMed Central

    Luo, Wei; Yu, Wei-Dong; Ma, Yingyu; Chernov, Mikhail; Trump, Donald L.; Johnson, Candace S.

    2013-01-01

    Vitamin D has broad range of physiological functions and anti-tumor effects. 24-hydroxylase, encoded by the CYP24A1 gene, is the key enzyme for degrading many forms of vitamin D including the most active form, 1,25D3. Inhibition of CYP24A1 enhances 1,25D3 anti-tumor activity. In order to isolate regulators of CYP24A1 expression in prostate cancer cells, we established a stable prostate cancer cell line PC3 with CYP24A1 promoter driving luciferase expression to screen a small molecular library for compounds that inhibit CYP24A1 promoter activity. From this screening, we identified, 4,5,6,7-tetrabromobenzimidazole (TBBz), a protein kinase CK2 selective inhibitor as a disruptor of CYP24A1 promoter activity. We show that TBBz inhibits CYP24A1 promoter activity induced by 1,25D3 in prostate cancer cells. In addition, TBBz downregulates endogenous CYP24A1 mRNA level in TBBz treated PC3 cells. Furthermore, siRNA-mediated CK2 knockdown reduces 1,25D3 induced CYP24A1 mRNA expression in PC3 cells. These results suggest that CK2 contributes to 1,25D3 mediated target gene expression. Lastly, inhibition of CK2 by TBBz or CK2 siRNA significantly enhanced 1,25D3 mediated anti-proliferative effect in vitro and in vivo in a xenograft model. In summary, our findings reveal that protein kinase CK2 is involved in the regulation of CYP24A1 expression by 1,25D3 and CK2 inhibitor enhances 1,25D3 mediated anti-tumor effect. PMID:23358686

  1. Mitf Induction by RANKL Is Critical for Osteoclastogenesis

    PubMed Central

    Lu, Ssu-Yi; Li, Mengtao

    2010-01-01

    Microphthalmia-associated transcription factor (Mitf) regulates the development and function of several cell lineages, including osteoclasts. In this report, we identified a novel mechanism by which RANKL regulates osteoclastogenesis via induction of Mitf isoform E (Mitf-E). Both Mitf-A and Mitf-E are abundantly present in osteoclasts. Unlike Mitf-A, which is ubiquitously expressed and is present in similar amounts in macrophages and osteoclasts, Mitf-E is almost nondetectable in macrophages, but its expression is significantly up-regulated during osteoclastogenesis. In addition to their different expression profiles, the two isoforms are drastically different in their abilities to support osteoclastogenesis, despite sharing all known functional domains. Unlike Mitf-A, small amounts of Mitf-E are present in nuclear lysates unless chromatin is digested/sheared during the extraction. Based on these data, we propose a model in which Mitf-E is induced during osteoclastogenesis and is closely associated with chromatin to facilitate its interaction with target promoters; therefore, Mitf-E has a stronger osteoclastogenic activity. Mitf-A is a weaker osteoclastogenic factor, but activated Mitf-A alone is not sufficient to fully support osteoclastogenesis. Therefore, this receptor activator for nuclear factor-κB ligand (RANKL)-induced Mitf phenomenon seems to play an important role during osteoclastogenesis. Although the current theory indicates that Mitf and its binding partner Tfe3 are completely redundant in osteoclasts, using RNA interference, we demonstrated that Mitf has a distinct role from Tfe3. This study provides the first evidence that RANKL-induced Mitf is critical for osteoclastogenesis and Mitf is not completely redundant with Tfe3. PMID:20357005

  2. Decreased osteoclastogenesis in serotonin-deficient mice

    PubMed Central

    Chabbi-Achengli, Yasmine; Coudert, Amélie E.; Callebert, Jacques; Geoffroy, Valérie; Côté, Francine; Collet, Corinne; de Vernejoul, Marie-Christine

    2012-01-01

    Peripheral serotonin, synthesized by tryptophan hydroxylase-1 (TPH1), has been shown to play a key role in several physiological functions. Recently, controversy has emerged about whether peripheral serotonin has any effect on bone density and remodeling.We therefore decided to investigate in detail bone remodeling in growing and mature TPH1 knockout mice (TPH1−/−). Bone resorption in TPH1−/− mice, as assessed by biochemical markers and bone histomorphometry, was markedly decreased at both ages. Using bone marrow transplantation, we present evidence that the decrease in bone resorption in TPH1−/− mice is cell-autonomous. Cultures from TPH1−/− in the presence of macrophage colony-stimulating factor and receptor activator for NF-KB ligand (RANKL) displayed fewer osteoclasts, and the decreased differentiation could be rescued by adding serotonin. Our data also provide evidence that in the presence of RANKL, osteoclast precursors express TPH1 and synthesize serotonin. Furthermore, pharmacological inhibition of serotonin receptor 1B with SB224289, and of receptor 2A with ketanserin, also reduced the number of osteoclasts. Our findings reveal that serotonin has an important local action in bone, as it can amplify the effect of RANKL on osteoclastogenesis. PMID:22308416

  3. The Modulatory Effects of Mesenchymal Stem Cells on Osteoclastogenesis

    PubMed Central

    Sharaf-Eldin, Wessam E.; Abu-Shahba, Nourhan; Mahmoud, Marwa; El-Badri, Nagwa

    2016-01-01

    The effect of mesenchymal stem cells (MSCs) on bone formation has been extensively demonstrated through several in vitro and in vivo studies. However, few studies addressed the effect of MSCs on osteoclastogenesis and bone resorption. Under physiological conditions, MSCs support osteoclastogenesis through producing the main osteoclastogenic cytokines, RANKL and M-CSF. However, during inflammation, MSCs suppress osteoclast formation and activity, partly via secretion of the key anti-osteoclastogenic factor, osteoprotegerin (OPG). In vitro, co-culture of MSCs with osteoclasts in the presence of high concentrations of osteoclast-inducing factors might reflect the in vivo inflammatory pathology and prompt MSCs to exert an osteoclastogenic suppressive effect. MSCs thus seem to have a dual effect, by stimulating or inhibiting osteoclastogenesis, depending on the inflammatory milieu. This effect of MSCs on osteoclast formation seems to mirror the effect of MSCs on other immune cells, and may be exploited for the therapeutic potential of MSCs in bone loss associated inflammatory diseases. PMID:26823668

  4. Autocrine signaling is a key regulatory element during osteoclastogenesis

    PubMed Central

    Kopesky, Paul; Tiedemann, Kerstin; Alkekhia, Dahlia; Zechner, Christoph; Millard, Bjorn; Schoeberl, Birgit; Komarova, Svetlana V.

    2014-01-01

    ABSTRACT Osteoclasts are responsible for bone destruction in degenerative, inflammatory and metastatic bone disorders. Although osteoclastogenesis has been well-characterized in mouse models, many questions remain regarding the regulation of osteoclast formation in human diseases. We examined the regulation of human precursors induced to differentiate and fuse into multinucleated osteoclasts by receptor activator of nuclear factor kappa-B ligand (RANKL). High-content single cell microscopy enabled the time-resolved quantification of both the population of monocytic precursors and the emerging osteoclasts. We observed that prior to induction of osteoclast fusion, RANKL stimulated precursor proliferation, acting in part through an autocrine mediator. Cytokines secreted during osteoclastogenesis were resolved using multiplexed quantification combined with a Partial Least Squares Regression model to identify the relative importance of specific cytokines for the osteoclastogenesis outcome. Interleukin 8 (IL-8) was identified as one of RANKL-induced cytokines and validated for its role in osteoclast formation using inhibitors of the IL-8 cognate receptors CXCR1 and CXCR2 or an IL-8 blocking antibody. These insights demonstrate that autocrine signaling induced by RANKL represents a key regulatory component of human osteoclastogenesis. PMID:25063197

  5. Saliva suppresses osteoclastogenesis in murine bone marrow cultures.

    PubMed

    Caballé-Serrano, J; Cvikl, B; Bosshardt, D D; Buser, D; Lussi, A; Gruber, R

    2015-01-01

    Saliva can reach mineralized surfaces in the oral cavity; however, the relationship between saliva and bone resorption is unclear. Herein, we examined whether saliva affects the process of osteoclastogenesis in vitro. We used murine bone marrow cultures to study osteoclast formation. The addition of fresh sterile saliva eliminated the formation of multinucleated cells that stained positive for tartrate-resistant acid phosphatase (TRAP). In line with the histochemical staining, saliva substantially reduced gene expression of cathepsin K, calcitonin receptor, and TRAP. Addition of saliva led to considerably decreased gene expression of receptor activator of nuclear factor kappa-B (RANK) and, to a lesser extent, that of c-fms. The respective master regulators of osteoclastogenesis (c-fos and NFATc1) and the downstream cell fusion genes (DC-STAMP and Atp6v0d2) showed decreased expression after the addition of saliva. Among the costimulatory molecules for osteoclastogenesis, only OSCAR showed decreased expression. In contrast, CD40, CD80, and CD86-all costimulatory molecules of phagocytic cells-were increasingly expressed with saliva. The phagocytic capacity of the cells was confirmed by latex bead ingestion. Based on these in vitro results, it can be concluded that saliva suppresses osteoclastogenesis and leads to the development of a phagocytic cell phenotype.

  6. SHP2 regulates osteoclastogenesis by promoting preosteoclast fusion

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genes that regulate osteoclast development and function under physiological and disease conditions remain incompletely understood. Shp2, a ubiquitously expressed cytoplasmic protein tyrosine phosphatase, was implicated in regulating M-CSF and RANKL-evoked signaling, its role in osteoclastogenesis an...

  7. RBP-J-Regulated miR-182 Promotes TNF-α-Induced Osteoclastogenesis.

    PubMed

    Miller, Christine H; Smith, Sinead M; Elguindy, Mahmoud; Zhang, Tuo; Xiang, Jenny Z; Hu, Xiaoyu; Ivashkiv, Lionel B; Zhao, Baohong

    2016-06-15

    Increased osteoclastogenesis is responsible for osteolysis, which is a severe consequence of inflammatory diseases associated with bone destruction, such as rheumatoid arthritis and periodontitis. The mechanisms that limit osteoclastogenesis under inflammatory conditions are largely unknown. We previously identified transcription factor RBP-J as a key negative regulator that restrains TNF-α-induced osteoclastogenesis and inflammatory bone resorption. In this study, we tested whether RBP-J suppresses inflammatory osteoclastogenesis by regulating the expression of microRNAs (miRNAs) important for this process. Using high-throughput sequencing of miRNAs, we obtained the first, to our knowledge, genome-wide profile of miRNA expression induced by TNF-α in mouse bone marrow-derived macrophages/osteoclast precursors during inflammatory osteoclastogenesis. Furthermore, we identified miR-182 as a novel miRNA that promotes inflammatory osteoclastogenesis driven by TNF-α and whose expression is suppressed by RBP-J. Downregulation of miR-182 dramatically suppressed the enhanced osteoclastogenesis program induced by TNF-α in RBP-J-deficient cells. Complementary loss- and gain-of-function approaches showed that miR-182 is a positive regulator of osteoclastogenic transcription factors NFATc1 and B lymphocyte-induced maturation protein-1. Moreover, we identified that direct miR-182 targets, Foxo3 and Maml1, play important inhibitory roles in TNF-α-mediated osteoclastogenesis. Thus, RBP-J-regulated miR-182 promotes TNF-α-induced osteoclastogenesis via inhibition of Foxo3 and Maml1. Suppression of miR-182 by RBP-J serves as an important mechanism that restrains TNF-α-induced osteoclastogenesis. Our results provide a novel miRNA-mediated mechanism by which RBP-J inhibits osteoclastogenesis and suggest that targeting of the newly described RBP-J-miR-182-Foxo3/Maml1 axis may represent an effective therapeutic approach to suppress inflammatory osteoclastogenesis and bone

  8. Brucella abortus-infected B cells induce osteoclastogenesis.

    PubMed

    Pesce Viglietti, Ayelén Ivana; Arriola Benitez, Paula Constanza; Giambartolomei, Guillermo Hernán; Delpino, María Victoria

    2016-09-01

    Brucella abortus is an intracellular bacterium that establishes lifelong infections in livestock and humans although the mechanisms of its chronicity are poorly understood. Activated B cells have long lifespan and B. abortus infection activates B cells. Our results indicate that the direct infection of B cells with B. abortus induced matrix metalloproteinase-9 (MMP-9), receptor activator for NF κB ligand (RANKL), tumor necrosis factor (TNF)-α and interleukin (IL)-6 secretion. In addition, supernatants from B. abortus-infected B cells induced bone marrow-derived monocytes to undergo osteoclastogenesis. Using osteoprotegerin, RANKL's decoy receptor, we determined that RANKL is involved in osteoclastogenesis induced by supernatants from B. abortus-infected B cells. The results presented here shed light on how the interactions of B. abortus with B cells may have a role in the pathogenesis of brucellar osteoarticular disease.

  9. The molecular mechanism of osteoclastogenesis in rheumatoid arthritis

    PubMed Central

    Udagawa, Nobuyuki; Kotake, Shigeru; Kamatani, Naoyuki; Takahashi, Naoyuki; Suda, Tatsuo

    2002-01-01

    Bone-resorbing osteoclasts are formed from hemopoietic cells of the monocyte–macrophage lineage under the control of bone-forming osteoblasts. We have cloned an osteoblast-derived factor essential for osteoclastogenesis, the receptor activator of NF-κB ligand (RANKL). Synovial fibroblasts and activated T lymphocytes from patients with rheumatoid arthritis also express RANKL, which appears to trigger bone destruction in rheumatoid arthritis as well. Recent studies have shown that T lymphocytes produce cytokines other than RANKL such as IL-17, granulocyte–macrophage colony-stimulating factor and IFN-γ, which have powerful regulatory effects on osteoclastogenesis. The possible roles of RANKL and other cytokines produced by T lymphocytes in bone destruction are described. PMID:12223101

  10. Impact of acetylcholine and nicotine on human osteoclastogenesis in vitro.

    PubMed

    Ternes, Sebastian; Trinkaus, Katja; Bergen, Ivonne; Knaack, Sven; Gelinsky, Michael; Kilian, Olaf; Heiss, Christian; Lips, Katrin Susanne

    2015-11-01

    Recent studies showed that the non-neuronal cholinergic system (NNCS) is taking part in bone metabolism. Most studies investigated its role in osteoblasts, but up to now, the involvement of the NNCS in human osteoclastogenesis remains relatively unclear. Thus, aim of the present study was to determine whether the application of acetylcholine (ACh, 10(−4) M), nicotine (10(−6) M), mineralized collagen membranes or brain derived neurotrophic factor (BDNF, 40 ng/mL) influences the mRNA regulation of molecular components of the NNCS and the neurotrophin family during osteoclastogenesis. Peripheral blood mononuclear cells (PBMCs) were isolated from the blood of young healthy donors (n = 8) and incubated with bone fragments and osteoclast differentiation media for 21 days. All the results are based on the measurement of RNA. Real-time RT-PCR analysis demonstrated a down-regulation of nicotinic acetylcholine receptor (nAChR) subunit α2 and muscarinic acetylcholine receptor (mAChR) M3by osteoclastogenesis while BDNF mRNA expression was not regulated. Application of ACh, nicotine, BDNF or collagen membranes did not affect osteoclastic differentiation.No regulation was detected for nAChR subunit α7, tropomyosin-related kinase receptor B (TrkB), and cholineacetyl transferase (ChAT). Taken together, we assume that the transcriptional level of osteoclastogenesis of healthy young humans is not regulated by BDNF, ACh, and nicotine. Thus, these drugs do not seem to worsen bone degradation and might therefore be suitable as modulators of bone substitution materials if having a positive effect on bone formation.

  11. SHP2 regulates osteoclastogenesis by promoting preosteoclast fusion

    PubMed Central

    Zhou, Yi; Mohan, Aron; Moore, Douglas C.; Lin, Liangjun; Zhou, Frank Li; Cao, Jay; Wu, Qian; Qin, Yi-Xian; Reginato, Anthony M.; Ehrlich, Michael G.; Yang, Wentian

    2015-01-01

    Genes that regulate osteoclast (OC) development and function in both physiologic and disease conditions remain incompletely understood. Shp2 (the Src homology-2 domain containing protein tyrosine phosphatase 2), a ubiquitously expressed cytoplasmic protein tyrosine phosphatase, is implicated in regulating M-CSF and receptor activator of nuclear factor-κB ligand (RANKL)–evoked signaling; its role in osteoclastogenesis and bone homeostasis, however, remains unknown. Using a tissue-specific gene knockout approach, we inactivated Shp2 expression in murine OCs. Shp2 mutant mice are phenotypically osteopetrotic, featuring a marked increase of bone volume (BV)/total volume (TV) (+42.8%), trabeculae number (Tb.N) (+84.1%), structure model index (+119%), and a decrease of trabecular thickness (Tb.Th) (−34.1%) and trabecular spacing (Tb.Sp) (−41.0%). Biochemical analyses demonstrate that Shp2 is required for RANKL-induced formation of giant multinucleated OCs by up-regulating the expression of nuclear factor of activated T cells, cytoplasmic 1 (Nfatc1), a master transcription factor that is indispensable for terminal OC differentiation. Shp2 deletion, however, has minimal effect on M-CSF–dependent survival and proliferation of OC precursors. Instead, its deficiency aborts the fusion of OC precursors and formation of multinucleated OCs and decreases bone matrix resorption. Moreover, pharmacological intervention of Shp2 is sufficient to prevent preosteoclast fusion in vitro. These findings uncover a novel mechanism through which Shp2 regulates osteoclastogenesis by promoting preosteoclast fusion. Shp2 or its signaling partners could potentially serve as pharmacological targets to regulate the population of OCs locally and/or systematically, and thus treat OC-related diseases, such as periprosthetic osteolysis and osteoporosis.—Zhou, Y., Mohan, A., Moore, D. C., Lin, L., Zhou, F. L., Cao, J., Wu, Q., Qin, Y.–X., Reginato, A. M., Ehrlich, M. G., Yang, W. SHP2

  12. γ-Glutamyltranspeptidase is an endogenous activator of Toll-like receptor 4-mediated osteoclastogenesis

    PubMed Central

    Moriwaki, Sawako; Into, Takeshi; Suzuki, Keiko; Miyauchi, Mutsumi; Takata, Takashi; Shibayama, Keigo; Niida, Shumpei

    2016-01-01

    Chronic inflammation-associated bone destruction, which is observed in rheumatoid arthritis (RA) and periodontitis, is mediated by excessive osteoclastogenesis. We showed previously that γ-glutamyltranspeptidase (GGT), an enzyme involved in glutathione metabolism, acts as an endogenous activator of such pathological osteoclastogenesis, independent of its enzymatic activity. GGT accumulation is clinically observed in the joints of RA patients, and, in animals, the administration of recombinant GGT to the gingival sulcus as an in vivo periodontitis model induces an increase in the number of osteoclasts. However, the underlying mechanisms of this process remain unclear. Here, we report that Toll-like receptor 4 (TLR4) recognizes GGT to activate inflammation-associated osteoclastogenesis. Unlike lipopolysaccharide, GGT is sensitive to proteinase K treatment and insensitive to polymyxin B treatment. TLR4 deficiency abrogates GGT-induced osteoclastogenesis and activation of NF-κB and MAPK signaling in precursor cells. Additionally, GGT does not induce osteoclastogenesis in cells lacking the signaling adaptor MyD88. The administration of GGT to the gingival sulcus induces increased osteoclastogenesis in wild-type mice, but does not induce it in TLR4-deficient mice. Our findings elucidate a novel mechanism of inflammation-associated osteoclastogenesis, which involves TLR4 recognition of GGT and subsequent activation of MyD88-dependent signaling. PMID:27775020

  13. Vitamin E suppresses ex vivo osteoclastogenesis in ovariectomized rats.

    PubMed

    Johnson, Sarah A; Feresin, Rafaela G; Soung, Do Y; Elam, Marcus L; Arjmandi, Bahram H

    2016-03-01

    Postmenopausal osteoporosis may be caused, in part, by oxidative stress and inflammation. Vitamin E is a strong antioxidant which has been shown to have anti-inflammatory and bone-protective effects. The objective of this study was to investigate the effects of various doses of supplemental vitamin E on osteoclastogenesis in ovariectomized rats. Sixty 12-month-old female Sprague-Dawley rats were sham-operated (Sham) or ovariectomized (Ovx; 4 groups) and fed a diet containing basal levels of vitamin E (75 mg D-α tocopherol acetate per kg diet) for 220 days. Rats in three of the Ovx groups were given supplemental doses of vitamin E (300, 525, and 750 mg D-α tocopherol acetate per kg diet) for the last 100 days. Femoral bone marrow cells were isolated, cultured, and osteoclasts were counted and normalized to 1000 total bone marrow cells. Blood monocyte and lymphocyte counts were also determined. Osteoclast number was significantly higher in the Ovx control group and was suppressed by all three doses of vitamin E, although more effectively in the Ovx group that received 300 mg per kg diet vitamin E. Additionally, vitamin E suppressed the Ovx-induced increase in monocyte and lymphocyte production. The results of this study suggest that vitamin E supplementation suppresses osteoclastogenesis, possibly by inhibiting monocyte and lymphocyte production.

  14. Ameloblastin modulates osteoclastogenesis through the integrin/ERK pathway

    PubMed Central

    Atsawasuwan, Phimon; Dangaria, Smit; Yan, Xiulin; Wu, Tuojiang; Evans, Carla A.; Luan, Xianghong

    2014-01-01

    Proteins of the extracellular matrix often have multiple functions to facilitate complex tasks ranging from signaling to structural support. Here we have focused on the function of one of the matrix proteins expressed in bones and teeth, the matrix adhesion protein ameloblastin (AMBN). Transgenic mice with 5-fold elevated AMBN levels in mandibles suffered from root cementum resorption, delamination, and reduced alveolar bone thickness. AMBN gain of function also resulted in a significant reduction in trabecular bone volume and bone mass dentistry in 42 days postnatal mouse jaws. In an in vitro model of osteoclastogenesis, AMBN modulated osteoclast differentiation from bone marrow derived monocytes (BMMCs), and dramatically increased osteoclast numbers and resorption pits. Furthermore, AMBN more than doubled BMMC adhesion, accelerated cell spreading, and promoted podosome belt and actin ring formation. These effects were associated with elevated ERK1/2 and AKT phosphorylation as well as higher expression of osteoclast activation related genes. Blocking integrin α2β1 and ERK 1/2 pathways alleviated the effects of AMBN on osteoclast differentiation. Together, our data indicate that AMBN increases osteoclast number and differentiation as well as mineralized tissue resorption by regulating cell adhesion and actin cytoskeleton polymerization, initiating integrin-dependent extracellular matrix signaling cascades and enhancing osteoclastogenesis. PMID:23385480

  15. AG490 inhibits NFATc1 expression and STAT3 activation during RANKL induced osteoclastogenesis

    SciTech Connect

    Li, Chang-hong; Zhao, Jin-xia; Sun, Lin; Yao, Zhong-qiang; Deng, Xiao-li; Liu, Rui; Liu, Xiang-yuan

    2013-06-14

    Highlights: •AG490 inhibits RANKL-induced osteoclastogenesis in RAW264.7 cells. •AG490 affects cell proliferation and cell cycle distribution. •AG490 reduces NFATc1 expression during RANKL-induced osteoclastogenesis. •AG490 disrupts the activation of RANKL-mediated JAK2/STAT3 signaling pathway. •STAT3 depletion partly mimics the effect of AG490 on RANKL-induced osteoclastogenesis. -- Abstract: Commonly, JAK/STAT relays cytokine signals for cell activation and proliferation, and recent studies have shown that the elevated expression of JAK/STAT is associated with the immune rejection of allografts and the inflammatory processes of autoimmune disease. However, the role which JAK2/STAT3 signaling plays in the receptor activator of nuclear factor-κB ligand (RANKL)-mediated osteoclastogenesis is unknown. In this study, we investigated the effects of AG490, specific JAK2 inhibitor, on osteoclast differentiation in vitro. AG490 significantly inhibited osteoclastogenesis in murine osteoclast precursor cell line RAW264.7 induced by RANKL. AG490 suppressed cell proliferation and delayed the G1 to S cell cycle transition. Furthermore, AG490 also suppressed the expression of nuclear factor of activated T cells (NFAT) c1 but not c-Fos in RAW264.7. Subsequently, we investigated various intracellular signaling components associated with osteoclastogenesis. AG490 had no effects on RANKL-induced activation of Akt, ERK1/2. Interestingly, AG490 partly inhibited RANKL-induced phosphorylation of Ser{sup 727} in STAT3. Additionally, down-regulation of STAT3 using siRNA resulted in suppression of TRAP, RANK and NFATc1 expression. In conclusion, we demonstrated that AG490 inhibited RANKL-induced osteoclastogenesis by suppressing NFATc1 production and cell proliferation via the STAT3 pathway. These results suggest that inhibition of JAK2 may be useful for the treatment of bone diseases characterized by excessive osteoclastogenesis.

  16. MiR-125a TNF receptor-associated factor 6 to inhibit osteoclastogenesis

    SciTech Connect

    Guo, Li-Juan; Liao, Lan; Yang, Li; Li, Yu; Jiang, Tie-Jian

    2014-02-15

    MicroRNAs (miRNAs) play important roles in osteoclastogenesis and bone resorption. In the present study, we found that miR-125a was dramatically down-regulated during macrophage colony stimulating factor (M-CSF) and receptor activator of nuclear factor-κB ligand (RANKL) induced osteoclastogenesis of circulating CD14+ peripheral blood mononuclear cells (PBMCs). Overexpression of miR-125a in CD14+ PBMCs inhibited osteoclastogenesis, while inhibition of miR-125a promoted osteoclastogenesis. TNF receptor-associated factor 6 (TRAF6), a transduction factor for RANKL/RANK/NFATc1 signal, was confirmed to be a target of miR-125a. EMSA and ChIP assays confirmed that NFATc1 bound to the promoter of the miR-125a. Overexpression of NFATc1 inhibited miR-125a transcription, and block of NFATc1 expression attenuated RANKL-regulated miR-125a transcription. Here, we reported that miR-125a played a biological function in osteoclastogenesis through a novel TRAF6/ NFATc1/miR-125a regulatory feedback loop. It suggests that regulation of miR-125a expression may be a potential strategy for ameliorating metabolic disease. - Highlights: • MiR-125a was significantly down-regulated in osteoclastogenesis of CD14+ PBMCs. • MiR-125a inhibited osteoclast differentiation by targeting TRAF6. • NFATc1 inhibited miR-125a transciption by binding to the promoter of miR-125a. • TRAF6/NFATc1 and miR-125a form a regulatory feedback loop in osteoclastogenesis.

  17. Bioinspired Collagen/Glycosaminoglycan-Based Cellular Microenvironments for Tuning Osteoclastogenesis.

    PubMed

    Rother, Sandra; Salbach-Hirsch, Juliane; Moeller, Stephanie; Seemann, Thomas; Schnabelrauch, Matthias; Hofbauer, Lorenz C; Hintze, Vera; Scharnweber, Dieter

    2015-10-28

    Replicating the biocomplexity of native extracellular matrices (ECM) is critical for a deeper understanding of biochemical signals influencing bone homeostasis. This will foster the development of bioinspired biomaterials with adjustable bone-inducing properties. Collagen-based coatings containing single HA derivatives have previously been reported to promote osteogenic differentiation and modulate osteoclastogenesis and resorption depending on their sulfation degree. However, the potential impact of different GAG concentrations as well as the interplay of multiple GAGs in these coatings is not characterized in detail to date. These aspects were addressed in the current study by integrating HA and different sulfate-modified HA derivatives (sHA) during collagen in vitro fibrillogenesis. Besides cellular microenvironments with systematically altered single-GAG concentrations, matrices containing both low and high sHA (sHA1, sHA4) were characterized by biochemical analysis such as agarose gel electrophoresis, performed for the first time with sHA derivatives. The morphology and composition of the collagen coatings were altered in a GAG sulfation- and concentration-dependent manner. In multi-GAG microenvironments, atomic force microscopy revealed intermediate collagen fibril structures with thin fibrils and microfibrils. GAG sulfation altered the surface charge of the coatings as demonstrated by ζ-potential measurements revealed for the first time as well. This highlights the prospect of GAG-containing matrices to adjust defined surface charge properties. The sHA4- and the multi-GAG coatings alike significantly enhanced the viability of murine osteoclast-precursor-like RAW264.7 cells. Although in single-GAG matrices there was no dose-dependent effect on cell viability, osteoclastogenesis was significantly suppressed only on sHA4-coatings in a dose-dependent fashion. The multi-GAG coatings led to an antiosteoclastogenic effect in-between those with single-GAGs which

  18. Bioinspired Collagen/Glycosaminoglycan-Based Cellular Microenvironments for Tuning Osteoclastogenesis.

    PubMed

    Rother, Sandra; Salbach-Hirsch, Juliane; Moeller, Stephanie; Seemann, Thomas; Schnabelrauch, Matthias; Hofbauer, Lorenz C; Hintze, Vera; Scharnweber, Dieter

    2015-10-28

    Replicating the biocomplexity of native extracellular matrices (ECM) is critical for a deeper understanding of biochemical signals influencing bone homeostasis. This will foster the development of bioinspired biomaterials with adjustable bone-inducing properties. Collagen-based coatings containing single HA derivatives have previously been reported to promote osteogenic differentiation and modulate osteoclastogenesis and resorption depending on their sulfation degree. However, the potential impact of different GAG concentrations as well as the interplay of multiple GAGs in these coatings is not characterized in detail to date. These aspects were addressed in the current study by integrating HA and different sulfate-modified HA derivatives (sHA) during collagen in vitro fibrillogenesis. Besides cellular microenvironments with systematically altered single-GAG concentrations, matrices containing both low and high sHA (sHA1, sHA4) were characterized by biochemical analysis such as agarose gel electrophoresis, performed for the first time with sHA derivatives. The morphology and composition of the collagen coatings were altered in a GAG sulfation- and concentration-dependent manner. In multi-GAG microenvironments, atomic force microscopy revealed intermediate collagen fibril structures with thin fibrils and microfibrils. GAG sulfation altered the surface charge of the coatings as demonstrated by ζ-potential measurements revealed for the first time as well. This highlights the prospect of GAG-containing matrices to adjust defined surface charge properties. The sHA4- and the multi-GAG coatings alike significantly enhanced the viability of murine osteoclast-precursor-like RAW264.7 cells. Although in single-GAG matrices there was no dose-dependent effect on cell viability, osteoclastogenesis was significantly suppressed only on sHA4-coatings in a dose-dependent fashion. The multi-GAG coatings led to an antiosteoclastogenic effect in-between those with single-GAGs which

  19. Decitabine represses osteoclastogenesis through inhibition of RANK and NF-κB.

    PubMed

    Guan, Hanfeng; Mi, Baoguo; Li, Yong; Wu, Wei; Tan, Peng; Fang, Zhong; Li, Jing; Zhang, Yong; Li, Feng

    2015-05-01

    DNA methylation is essential for maintenance of stable repression of gene transcription during differentiation and tumorigenesis. Demethylating reagents including decitabine could release the repression, leading to perturbed transcription program. Recently others and we showed that, in B cell lymphomas, decitabine repressed B cell specific gene transcription and activated NF-κB signaling, causing decreased expression of translocated oncogenes including MYC and attenuated tumor cell proliferation. During osteoclastogenesis, changes in DNA methylation occurred in numerous genes, implicating important roles for DNA methylation in osteoclastogenesis. In the present study, we found that decitabine inhibited osteoclastogenesis. The inhibitory effect could be at least partially attributed to reduced expression of multiple osteoclast specific genes including RANK by decitabine. Moreover, decitabine inhibited activity of NF-κB, AP-1 and extracellular signal-regulated kinase (ERK), but not PI3K/Akt pathway. In vivo, using ovariectomized mouse as a model, we observed that decitabine reduced the osteoclast activity and bone loss. In conclusion, our findings demonstrated that decitabine was an inhibitor of osteoclastogenesis by repression of osteoclast specific transcription program including the RANK, NF-κB and AP-1 pathways. DNA methylation might be indispensable for osteoclastogenesis. The use of decitabine could represent a novel strategy in treatment of diseases associated with increased osteoclast activity.

  20. Human interleukin-1-induced murine osteoclastogenesis is dependent on RANKL, but independent of TNF-alpha.

    PubMed

    Ma, Ting; Miyanishi, Keita; Suen, Andrew; Epstein, Noah J; Tomita, Tetsuya; Smith, R Lane; Goodman, Stuart B

    2004-05-01

    Although interleukin-1 (IL-1) has been implicated in the pathogenesis of inflammatory osteolysis, the means by which it recruits osteoclasts and promotes bone destruction are largely unknown. Recently, a cytokine-driven, stromal cell-free mouse osteoclastogenesis model was established. A combination of macrophage colony stimulating factor (M-CSF) and receptor activator of NFkappaB ligand (RANKL) was proven to be sufficient in inducing differentiation of bone marrow hematopoietic precursor cells to bone-resorbing osteoclasts in the absence of stromal cells or osteoblasts. This study utilizes this model to examine the impact of human IL-1beta on in vitro osteoclastogenesis of bone marrow progenitor cells. We found that osteoclast precursor cells failed to undergo osteoclastogenesis when treated with IL-1 alone. In contrast, IL-1 dramatically up-regulated osteoclastogenesis by 2.5- to 4-folds in the presence of RANKL and M-CSF. The effect can be significantly blocked by IL-1 receptor antagonist (p < 0.01). Tumor necrosis factor-alpha (TNF-alpha) was undetectable in the culture medium of differentiating osteoclasts induced by IL-1. Adding exogenous TNF-alpha neutralizing antibody had no influence on the IL-1-induced effect as well. These results show that in the absence of stromal cells, IL-1 exacerbates osteoclastogenesis by cooperating with RANKL and M-CSF, while TNF-alpha is not involved in this IL-1-stimulated osteoclast differentiation pathway.

  1. Inhibition of osteoclastogenesis and inflammatory bone resorption by targeting BET proteins and epigenetic regulation.

    PubMed

    Park-Min, Kyung-Hyun; Lim, Elisha; Lee, Min Joon; Park, Sung Ho; Giannopoulou, Eugenia; Yarilina, Anna; van der Meulen, Marjolein; Zhao, Baohong; Smithers, Nicholas; Witherington, Jason; Lee, Kevin; Tak, Paul P; Prinjha, Rab K; Ivashkiv, Lionel B

    2014-11-13

    Emerging evidence suggests that RANKL-induced changes in chromatin state are important for osteoclastogenesis, but these epigenetic mechanisms are not well understood and have not been therapeutically targeted. In this study, we find that the small molecule I-BET151 that targets bromo and extra-terminal (BET) proteins that 'read' chromatin states by binding to acetylated histones strongly suppresses osteoclastogenesis. I-BET151 suppresses pathologic bone loss in TNF-induced inflammatory osteolysis, inflammatory arthritis and post-ovariectomy models. Transcriptome analysis identifies a MYC-NFAT axis important for osteoclastogenesis. Mechanistically, I-BET151 inhibits expression of the master osteoclast regulator NFATC1 by suppressing expression and recruitment of its newly identified upstream regulator MYC. MYC is elevated in rheumatoid arthritis macrophages and its induction by RANKL is important for osteoclastogenesis and TNF-induced bone resorption. These findings highlight the importance of an I-BET151-inhibited MYC-NFAT axis in osteoclastogenesis, and suggest targeting epigenetic chromatin regulators holds promise for treatment of inflammatory and oestrogen deficiency-mediated pathologic bone resorption.

  2. Hemin activation of innate cellular response blocks human immunodeficiency virus type-1-induced osteoclastogenesis

    SciTech Connect

    Takeda, Kazuyo; Adhikari, Rewati; Yamada, Kenneth M.; Dhawan, Subhash

    2015-08-14

    The normal skeletal developmental and homeostatic process termed osteoclastogenesis is exacerbated in numerous pathological conditions and causes excess bone loss. In cancer and HIV-1-infected patients, this disruption of homeostasis results in osteopenia and eventual osteoporesis. Counteracting the factors responsible for these metabolic disorders remains a challenge for preventing or minimizing this co-morbidity associated with these diseases. In this report, we demonstrate that a hemin-induced host protection mechanism not only suppresses HIV-1 associated osteoclastogenesis, but it also exhibits anti-osteoclastogenic activity for non-infected cells. Since the mode of action of hemin is both physiological and pharmacological through induction of heme oxygenase-1 (HO-1), an endogenous host protective response to an FDA-licensed therapeutic used to treat another disease, our study suggests an approach to developing novel, safe and effective therapeutic strategies for treating bone disorders, because hemin administration in humans has previously met required FDA safety standards. - Highlights: • HIV-1 infection induced osteoclastogenesis in primary human macrophages. • Heme oxygenase-1 (HO-1) induction inhibited HIV-1-induced osteoclastogenesis in macrophages. • HO-1 induction suppressed RANKL-enhanced osteoclastogenesis in HIV-1-infected macrophages. • This inverse relationship between HO-1 and HIV-1 pathogenesis may define a novel host defense response against HIV-1 infection.

  3. Inhibition of osteoclastogenesis and inflammatory bone resorption by targeting BET proteins and epigenetic regulation.

    PubMed

    Park-Min, Kyung-Hyun; Lim, Elisha; Lee, Min Joon; Park, Sung Ho; Giannopoulou, Eugenia; Yarilina, Anna; van der Meulen, Marjolein; Zhao, Baohong; Smithers, Nicholas; Witherington, Jason; Lee, Kevin; Tak, Paul P; Prinjha, Rab K; Ivashkiv, Lionel B

    2014-01-01

    Emerging evidence suggests that RANKL-induced changes in chromatin state are important for osteoclastogenesis, but these epigenetic mechanisms are not well understood and have not been therapeutically targeted. In this study, we find that the small molecule I-BET151 that targets bromo and extra-terminal (BET) proteins that 'read' chromatin states by binding to acetylated histones strongly suppresses osteoclastogenesis. I-BET151 suppresses pathologic bone loss in TNF-induced inflammatory osteolysis, inflammatory arthritis and post-ovariectomy models. Transcriptome analysis identifies a MYC-NFAT axis important for osteoclastogenesis. Mechanistically, I-BET151 inhibits expression of the master osteoclast regulator NFATC1 by suppressing expression and recruitment of its newly identified upstream regulator MYC. MYC is elevated in rheumatoid arthritis macrophages and its induction by RANKL is important for osteoclastogenesis and TNF-induced bone resorption. These findings highlight the importance of an I-BET151-inhibited MYC-NFAT axis in osteoclastogenesis, and suggest targeting epigenetic chromatin regulators holds promise for treatment of inflammatory and oestrogen deficiency-mediated pathologic bone resorption. PMID:25391636

  4. NanoUPLC-MS(E) proteomic analysis of osteoclastogenesis downregulation by IL-4.

    PubMed

    Freire, Mirna S; Cantuária, Ana Paula C; Lima, Stella M F; Almeida, Jeeser A; Murad, André M; Franco, Octavio L; Rezende, Taia M B

    2016-01-10

    Bone resorption is an important factor in bone homeostasis and imbalance can cause several diseases. In osteoimmunology, IL-4 has been described as an important factor in promoting M2 macrophage profile. In order to shed some light on the effect of IL-4 on osteoclast precursors in the presence of RANKL, cytokines and nitric oxide (NO) production and the proteomic profile were analyzed. The presence of IL-4 in in vitro osteoclastogenesis provides production of TNF-α, IL-1α, IL-1β, IL-10 and IL-12 at basal cell levels. Regarding NO production, IL-4 was sufficient to increase the basal NO levels. Proteomic analyses identified 877 global proteins. IL-4 in in vitro RANKL-mediated osteoclastogenesis leads to the expression of 118 proteins. The presence of rIL-4 in in vitro rRANKL-mediated-osteoclastogenesis downregulated this process. However, the proteomics findings in the osteoclastogenesis demonstrated a much greater effect on osteoclast precursor cells than on RANKL-differentiated osteoclasts. These results suggest that the main effect of IL-4 in pre-osteoclast cells leads to a M2 macrophage activation, and this probably contributed to a reduction in osteoclastogenesis when both stimuli were used. This study noticed that IL-4 plays an important regulatory role in bone homeostasis due to its suppressive potential of precursor osteoclast cells.

  5. Inhibition of Osteoclastogenesis and Inflammatory Bone Resorption by Targeting BET Proteins and Epigenetic Regulation

    PubMed Central

    Park-Min, Kyung-Hyun; Lim, Elisha; Lee, Min Joon; Park, Sung Ho; Giannopoulos, Eugenia; Yarilina, Anna; van der Meulen, Marjolein; Zhao, Baohong; Smithers, Nicholas; Witherington, Jason; Lee, Kevin; Tak, Paul P.; Prinjha, Rab K.; Ivashkiv, Lionel B.

    2014-01-01

    Emerging evidence suggests that RANKL-induced changes in chromatin state are important for osteoclastogenesis, but these epigenetic mechanisms are not well understood and have not been therapeutically targeted. In this study we find that the small molecule I-BET151 that targets bromo and extra-terminal (BET) proteins that “read” chromatin states by binding to acetylated histones strongly suppresses osteoclastogenesis. I-BET151 suppresses pathologic bone loss in TNF-induced inflammatory osteolysis, inflammatory arthritis, and post-ovariectomy models. Transcriptome analysis identifies a MYC-NFAT axis important for osteoclastogenesis. Mechanistically, I-BET151 inhibits expression of the master osteoclast regulator NFATC1 by suppressing expression and recruitment of its newly identified upstream regulator MYC. MYC is elevated in rheumatoid arthritis and its induction by RANKL is important for osteoclastogenesis and TNF-induced bone resorption. These findings highlight the importance of an I-BET151-inhibited MYC-NFAT axis in osteoclastogenesis, and suggest targeting epigenetic chromatin regulators holds promise for treatment of inflammatory and estrogen deficiency-mediated pathologic bone resorption. PMID:25391636

  6. Analysis of Osteoclastogenesis/Osteoblastogenesis on Nanotopographical Titania Surfaces.

    PubMed

    Silverwood, Robert K; Fairhurst, Paul G; Sjöström, Terje; Welsh, Findlay; Sun, Yuxin; Li, Gang; Yu, Bin; Young, Peter S; Su, Bo; Meek, Robert M D; Dalby, Matthew J; Tsimbouri, Penelope M

    2016-04-20

    A focus of orthopedic research is to improve osteointegration and outcomes of joint replacement. Material surface topography has been shown to alter cell adhesion, proliferation, and growth. The use of nanotopographical features to promote cell adhesion and bone formation is hoped to improve osteointegration and clinical outcomes. Use of block-copolymer self-assembled nanopatterns allows nanopillars to form via templated anodization with control over height and order, which has been shown to be of cellular importance. This project assesses the outcome of a human bone marrow-derived co-culture of adherent osteoprogenitors and osteoclast progenitors on polished titania and titania patterned with 15 nm nanopillars, fabricated by a block-copolymer templated anodization technique. Substrate implantation in rabbit femurs is performed to confirm the in vivo bone/implant integration. Quantitative and qualitative results demonstrate increased osteogenesis on the nanopillar substrate with scanning electron microscopy, histochemical staining, and real-time quantitative reverse-transcription polymerase chain reaction analysis performed. Osteoblast/osteoclast co-culture analysis shows an increase in osteoblastogenesis-related gene expression and reduction in osteoclastogenesis. Supporting this in vitro finding, in vivo implantation of substrates in rabbit femora indicates increased implant/bone contact by ≈20%. These favorable osteogenic characteristics demonstrate the potential of 15 nm titania nanopillars fabricated by the block-copolymer templated anodization technique. PMID:26890261

  7. Enterococcus faecalis promotes osteoclastogenesis and semaphorin 4D expression.

    PubMed

    Wang, Shuai; Deng, Zuhui; Seneviratne, Chaminda J; Cheung, Gary S P; Jin, Lijian; Zhao, Baohong; Zhang, Chengfei

    2015-10-01

    Enterococcus faecalis is considered a major bacterial pathogen implicated in endodontic infections and contributes considerably to periapical periodontitis. This study aimed to investigate the potential mechanisms by which E. faecalis accounts for the bone destruction in periapical periodontitis in vitro. Osteoclast precursor RAW264.7 cells were treated with E. faecalis ATCC 29212 and a wild strain of E. faecalis derived clinically from an infected root canal. The results showed that, to some extent, E. faecalis induced the RAW264.7 cells to form tartrate-resistant acid phosphatase (TRAP)-positive multinucleated osteoclast-like cells. This pathogen markedly stimulated RAW264.7 cells to express semaphorin 4D (Sema4D), which inhibits bone formation. Once RAW264.7 cells were primed by low-dose receptor activator of nuclear factor-kappa B ligand (RANKL), E. faecalis could significantly increase the production of TRAP-positive multinucleated cells and up-regulate the expression of osteoclast-specific markers, including NFATc1, TRAP and cathepsin K. Both p38 and ERK1/2 MAPK signaling pathways were activated by E. faecalis in RANKL-primed RAW264.7 cells, and meanwhile the expression of Sema4D was highly increased. In conclusion, E. faecalis may greatly contribute to the bone resorption in periapical periodontitis by promoting RANKL-dependent osteoclastogenesis and expression of Sema4D through activation of p38 and ERK1/2 MAPK signaling pathways.

  8. Molecular regulatory mechanisms of osteoclastogenesis through cytoprotective enzymes

    PubMed Central

    Kanzaki, Hiroyuki; Shinohara, Fumiaki; Kanako, Itohiya; Yamaguchi, Yuuki; Fukaya, Sari; Miyamoto, Yutaka; Wada, Satoshi; Nakamura, Yoshiki

    2016-01-01

    It has been reported that reactive oxygen species (ROS), such as hydrogen peroxide and superoxide, take part in osteoclast differentiation as intra-cellular signaling molecules. The current assumed signaling cascade from RANK to ROS production is RANK, TRAF6, Rac1, and then Nox. The target molecules of ROS in RANKL signaling remain unclear; however, several reports support the theory that NF-κB signaling could be the crucial downstream signaling molecule of RANKL-mediated ROS signaling. Furthermore, ROS exert cytotoxic effects such as peroxidation of lipids and phospholipids and oxidative damage to proteins and DNA. Therefore, cells have several protective mechanisms against oxidative stressors that mainly induce cytoprotective enzymes and ROS scavenging. Three well-known mechanisms regulate cytoprotective enzymes including Nrf2-, FOXO-, and sirtuin-dependent mechanisms. Several reports have indicated a crosslink between FOXO- and sirtuin-dependent regulatory mechanisms. The agonists against the regulatory mechanisms are reported to induce these cytoprotective enzymes successfully. Some of them inhibit osteoclast differentiation and bone destruction via attenuation of intracellular ROS signaling. In this review article, we discuss the above topics and summarize the current information available on the relationship between cytoprotective enzymes and osteoclastogenesis. PMID:26795736

  9. Global epigenomic analysis indicates protocadherin-7 activates osteoclastogenesis by promoting cell–cell fusion

    SciTech Connect

    Nakamura, Haruhiko; Nakashima, Tomoki; Hayashi, Mikihito; Izawa, Naohiro; Yasui, Tetsuro; Aburatani, Hiroyuki; Tanaka, Sakae; Takayanagi, Hiroshi

    2014-12-12

    Highlights: • Identification of epigenetically regulated genes during osteoclastogenesis. • Pcdh7 is regulated by H3K4me3 and H3K27me3 during osteoclastogenesis. • Pcdh7 expression is increased by RANKL during osteoclastogenesis. • Establishment of novel cell fusion analysis for osteoclasts by imaging cytometer. • Pcdh7 regulates osteoclastogenesis by promoting cell fusion related gene expressions. - Abstract: Gene expression is dependent not only on genomic sequences, but also epigenetic control, in which the regulation of chromatin by histone modification plays a crucial role. Histone H3 lysine 4 trimethylation (H3K4me3) and histone H3 lysine 27 trimethylation (H3K27me3) are related to transcriptionally activated and silenced sequences, respectively. Osteoclasts, the multinucleated cells that resorb bone, are generated by the fusion of precursor cells of monocyte/macrophage lineage. To elucidate the molecular and epigenetic regulation of osteoclast differentiation, we performed a chromatin immunoprecipitation sequencing (ChIP-seq) analysis for H3K4me3 and H3K27me3 in combination with RNA sequencing. We focused on the histone modification change from H3K4me3(+)H3K27me3(+) to H3K4me3(+)H3K27me3(–) and identified the protocadherin-7 gene (Pcdh7) to be among the genes epigenetically regulated during osteoclastogenesis. Pcdh7 was induced by RANKL stimulation in an NFAT-dependent manner. The knockdown of Pcdh7 inhibited RANKL-induced osteoclast differentiation due to the impairment of cell–cell fusion, accompanied by a decreased expression of the fusion-related genes Dcstamp, Ocstamp and Atp6v0d2. This study demonstrates that Pcdh7 plays a key role in osteoclastogenesis by promoting cell–cell fusion.

  10. RANKL downregulates cell surface CXCR6 expression through JAK2/STAT3 signaling pathway during osteoclastogenesis

    SciTech Connect

    Li, Changhong; Zhao, Jinxia; Sun, Lin; Yao, Zhongqiang; Liu, Rui; Huang, Jiansheng; Liu, Xiangyuan

    2012-12-14

    Highlights: Black-Right-Pointing-Pointer CXCR6 is down-regulated during RANKL-induced osteoclastogenesis in RAW264.7 cells. Black-Right-Pointing-Pointer CXCR6 reduction was nearly reversed by inhibition of JAK2/STAT3 signaling pathway. Black-Right-Pointing-Pointer CXCL16 alone does not positively regulate osteoclastogenesis. -- Abstract: The receptor activator of nuclear factor-{kappa}B ligand (RANKL), as a member of the tumor necrosis factor (TNF) family, plays an essential role in osteoclast differentiation and function. Chemokines and their receptors have recently been shown to play critical roles in osteoclastogenesis, however, whether CXCL16-CXCR6 plays role in RANKL-mediated osteoclastogenesis is unknown. In this study, we first reported that RANKL decreased CXCR6 in a dose-dependent manner, which may be through deactivation of Akt and STAT3 signaling induced by CXCL16. Interestingly, RANKL-mediated CXCR6 reduction may be associated to the activation of STAT3 by phosphorylation. When STAT3 activation was blocked by JAK2/STAT3 inhibitor AG490, RANKL failed to shut down CXCR6 expression during osteoclastogenesis. However, CXCL16 alone did not augment RANKL-mediated osteoclast differentiation and did not alter RANKL-receptor RANK mRNA expression. These results demonstrate that reduction of CXCL16-CXCR6 is critical in RANKL-mediated osteoclastogenesis, which is mainly through the activation of JAK2/STAT3 signaling. CXCL16-CXCR6 axis may become a novel target for the therapeutic intervention of bone resorbing diseases such as rheumatoid arthritis and osteoporosis.

  11. CD147 deficiency blocks IL-8 secretion and inhibits lung cancer-induced osteoclastogenesis

    SciTech Connect

    Wang, Hongkai; Zhuo, Yunyun; Hu, Xu; Shen, Weiwei; Zhang, Ying; Chu, Tongwei

    2015-03-06

    Bone is a frequent target of lung cancer metastasis, which is associated with significant morbidity and poor prognosis; however, the molecular basis of this process is still unknown. This study investigated the role of extracellular matrix metalloproteinase inducer (also known as cluster of differentiation (CD)147) in osteoclastogenesis resulting from bone metastasis, based on the enrichment of this glycoprotein on the surface of many malignant bone tumors. RNA interference was used to silence CD147 expression in A549 human lung cancer cells. Compared with conditioned medium (CM) from control cells (A549-CM), CM from CD147-deficient cells (A549-si-CM) suppressed receptor activator of nuclear factor κB ligand-stimulated osteoclastogenesis in RAW 264.7 cells and bone marrow-derived macrophages. The mRNA levels of osteoclast-specific genes such as tartrate-resistant acid phosphatase, calcitonin receptor, and cathepsin K were also reduced in the presence of A549-si-CM. CD147 knockdown in A549 cells decreased interleukin (IL)-8mRNA and protein expression. IL-8 is present in large amounts in A549-CM and mimicked its inductive effect on osteoclastogenesis; this was reversed by depletion of IL-8 from the medium. Taken together, these results indicate that CD147 promotes lung cancer-induced osteoclastogenesis by modulating IL-8 secretion, and suggest that CD147 is a potential therapeutic target for cancer-associated bone resorption in lung cancer patients. - Highlights: • Bone loss frequently results from lung cancer metastasis. • Cluster of differentiation (CD)147 was depleted in A549 lung adenocarcinoma cells. • RAW 264.7 cell osteoclastogenesis was blocked by medium from CD147-deficient cells. • Interleukin (IL)-8 level was reduced in the conditioned medium. • Osteoclastogenesis induced by lung tumor cells requires CD147-mediated IL-8 release.

  12. Myeloid thrombomodulin lectin-like domain inhibits osteoclastogenesis and inflammatory bone loss

    PubMed Central

    Cheng, Tsung-Lin; Lai, Chao-Han; Shieh, Shyh-Jou; Jou, Yin-Bo; Yeh, Jwu-Lai; Yang, Ai-Lun; Wang, Yan-Hsiung; Wang, Chau-Zen; Chen, Chung-Hwan; Shi, Guey-Yueh; Ho, Mei-Ling; Wu, Hua-Lin

    2016-01-01

    Osteoclastogenesis is an essential process during bone metabolism which can also be promoted by inflammatory signals. Thrombomodulin (TM), a transmembrane glycoprotein, exerts anti-inflammatory activities such as neutralization of proinflammatory high-mobility group box 1 (HMGB1) through TM lectin-like domain. This study aimed to identify the role of myeloid TM (i.e., endogenous TM expression on the myeloid lineage) in osteoclastogenesis and inflammatory bone loss. Using human peripheral blood mononuclear cells and mouse bone marrow-derived macrophages, we observed that the protein levels of TM were dramatically reduced as these cells differentiated into osteoclasts. In addition, osteoclastogenesis and extracellular HMGB1 accumulation were enhanced in primary cultured monocytes from myeloid-specific TM-deficient mice (LysMcre/TMflox/flox) and from TM lectin-like domain deleted mice (TMLeD/LeD) compared with their respective controls. Micro-computerized tomography scans showed that ovariectomy-induced bone loss was more pronounced in TMLeD/LeD mice compared with controls. Finally, the inhibiting effects of recombinant TM lectin-like domain (rTMD1) on bone resorption in vitro, and bone loss in both the ovariectomized model and collagen antibody-induced arthritis model has been detected. These findings suggested that the myeloid TM lectin-like domain may inhibit osteoclastogenesis by reducing HMGB1 signaling, and rTMD1 may hold therapeutic potential for inflammatory bone loss. PMID:27311356

  13. Spontaneous generation of functional osteoclasts from synovial fluid mononuclear cells as a model of inflammatory osteoclastogenesis.

    PubMed

    Greisen, Stinne R; Einarsson, Halldór Bjarki; Hvid, Malene; Hauge, Ellen-Margrethe; Deleuran, Bent; Kragstrup, Tue Wenzel

    2015-09-01

    In osteoimmunology, osteoclastogenesis is understood in the context of the immune system. Today, the in vitro model for osteoclastogenesis necessitates the addition of recombinant human receptor activator of nuclear factor kappa-B ligand (RANKL) and macrophage colony-stimulating factor (M-CSF). The peripheral joints of patients with rheumatoid arthritis (RA) and spondyloarthritis (SpA) are characterized by an immune-mediated inflammation that can lead to bone destruction. Here, we evaluate spontaneous in vitro osteoclastogenesis in cultures of synovial fluid mononuclear cells (SFMCs) activated only in vivo. SFMCs were isolated and cultured for 21 days at 0.5-1.0 × 10(6) cells/mL in culture medium. SFMCs and healthy control peripheral blood monocytes were cultured with RANKL and M-CSF as controls. Tartrate-resistant acid phosphatase (TRAP) positive multinucleated cells were found in the SFMC cultures after 21 days. These cells expressed the osteoclast genes calcitonin receptor, cathepsin K, and integrin β3, formed lacunae on dentin plates and secreted matrix metalloproteinase 9 (MMP9) and TRAP. Adding RANKL and M-CSF potentiated this secretion. In conclusion, we show that SFMCs from inflamed peripheral joints can spontaneously develop into functionally active osteoclasts ex vivo. Our study provides a simple in vitro model for studying inflammatory osteoclastogenesis.

  14. Smad4 is required to inhibit osteoclastogenesis and maintain bone mass

    PubMed Central

    Morita, Mayu; Yoshida, Shigeyuki; Iwasaki, Ryotaro; Yasui, Tetsuro; Sato, Yuiko; Kobayashi, Tami; Watanabe, Ryuichi; Oike, Takatsugu; Miyamoto, Kana; Takami, Masamichi; Ozato, Keiko; Deng, Chu-Xia; Aburatani, Hiroyuki; Tanaka, Sakae; Yoshimura, Akihiko; Toyama, Yoshiaki; Matsumoto, Morio; Nakamura, Masaya; Kawana, Hiromasa; Nakagawa, Taneaki; Miyamoto, Takeshi

    2016-01-01

    Bone homeostasis is maintained as a delicate balance between bone-resorption and bone-formation, which are coupled to maintain appropriate bone mass. A critical question is how bone-resorption is terminated to allow bone-formation to occur. Here, we show that TGFβs inhibit osteoclastogenesis and maintain bone-mass through Smad4 activity in osteoclasts. We found that latent-TGFβ1 was activated by osteoclasts to inhibit osteoclastogenesis. Osteoclast-specific Smad4 conditional knockout mice (Smad4-cKO) exhibited significantly reduced bone-mass and elevated osteoclast formation relative to controls. TGFβ1-activation induced expression of Irf8 and Bcl6, both of which encode factors inhibiting osteoclastogenesis, by blocking their negative regulator, Prdm1, in osteoclasts in a Smad4-dependent manner. Reduced bone-mass and accelerated osteoclastogenesis seen in Smad4-cKO were abrogated by Prdm1 deletion. Administration of latent-TGFβ1-Fc to wild-type mice antagonized LPS-induced bone destruction in a model of activated osteoclast-mediated bone destruction. Thus, latent-TGFβ1-Fc could serve as a promising new therapeutic agent in bone diseases marked by excessive resorption. PMID:27731422

  15. Mechanical loading prevents the stimulating effect of IL-1{beta} on osteocyte-modulated osteoclastogenesis

    SciTech Connect

    Kulkarni, Rishikesh N.; Bakker, Astrid D.; Everts, Vincent; Klein-Nulend, Jenneke

    2012-03-30

    Highlights: Black-Right-Pointing-Pointer Osteocyte incubation with IL-1{beta} stimulated osteocyte-modulated osteoclastogenesis. Black-Right-Pointing-Pointer Conditioned medium from IL-1{beta}-treated osteocytes increased osteoclastogenesis. Black-Right-Pointing-Pointer IL-1{beta} upregulated RANKL and downregulated OPG gene expression by osteocytes. Black-Right-Pointing-Pointer CYR61 is upregulated in mechanically stimulated osteocytes. Black-Right-Pointing-Pointer Mechanical loading of osteocytes may abolish IL-1{beta}-induced osteoclastogenesis. -- Abstract: Inflammatory diseases such as rheumatoid arthritis are often accompanied by higher plasma and synovial fluid levels of interleukin-1{beta} (IL-1{beta}), and by increased bone resorption. Since osteocytes are known to regulate bone resorption in response to changes in mechanical stimuli, we investigated whether IL-1{beta} affects osteocyte-modulated osteoclastogenesis in the presence or absence of mechanical loading of osteocytes. MLO-Y4 osteocytes were pre-incubated with IL-1{beta} (0.1-1 ng/ml) for 24 h. Cells were either or not subjected to mechanical loading by 1 h pulsating fluid flow (PFF; 0.7 {+-} 0.3 Pa, 5 Hz) in the presence of IL-1{beta} (0.1-1 ng/ml). Conditioned medium was collected after 1 h PFF or static cultures. Subsequently mouse bone marrow cells were seeded on top of the IL-1{beta}-treated osteocytes to determine osteoclastogenesis. Conditioned medium from mechanically loaded or static IL-1{beta}-treated osteocytes was added to co-cultures of untreated osteocytes and mouse bone marrow cells. Gene expression of cysteine-rich protein 61 (CYR61/CCN1), receptor activator of nuclear factor kappa-B ligand (RANKL), and osteoprotegerin (OPG) by osteocytes was determined immediately after PFF. Incubation of osteocytes with IL-1{beta}, as well as conditioned medium from static IL-1{beta}-treated osteocytes increased the formation of osteoclasts. However, conditioned medium from mechanically loaded IL

  16. Modeled microgravity and hindlimb unloading sensitize osteoclast precursors to RANKL-mediated osteoclastogenesis.

    PubMed

    Saxena, Ritu; Pan, George; Dohm, Erik D; McDonald, Jay M

    2011-01-01

    Mechanical forces are essential to maintain skeletal integrity, and microgravity exposure leads to bone loss. The underlying molecular mechanisms leading to the changes in osteoblasts and osteoclast differentiation and function remain to be fully elucidated. Because of the infrequency of spaceflights and payload constraints, establishing in vitro and in vivo systems that mimic microgravity conditions becomes necessary. We have established a simulated microgravity (modeled microgravity, MMG) system to study the changes induced in osteoclast precursors. We observed that MMG, on its own, was unable to induce osteoclastogenesis of osteoclast precursors; however, 24 h of MMG activates osteoclastogenesis-related signaling molecules ERK, p38, PLCγ2, and NFATc1. Receptor activator of NFkB ligand (RANKL) (with or without M-CSF) stimulation for 3-4 days in gravity of cells that had been exposed to MMG for 24 h enhanced the formation of very large tartrate-resistant acid phosphatase (TRAP)-positive multinucleated (>30 nuclei) osteoclasts accompanied by an upregulation of the osteoclast marker genes TRAP and cathepsin K. To validate the in vitro system, we studied the hindlimb unloading (HLU) system using BALB/c mice and observed a decrease in BMD of femurs and a loss of 3D microstructure of both cortical and trabecular bone as determined by micro-CT. There was a marked stimulation of osteoclastogenesis as determined by the total number of TRAP-positive multinucleated osteoclasts formed and also an increase in RANKL-stimulated osteoclastogenesis from precursors removed from the tibias of mice after 28 days of HLU. In contrast to earlier reported findings, we did not observe any histomorphometric changes in the bone formation parameters. Thus, the foregoing observations indicate that microgravity sensitizes osteoclast precursors for increased differentiation. The in vitro model system described here is potentially a valid system for testing drugs for preventing

  17. STAT5 is a key transcription factor for IL-3-mediated inhibition of RANKL-induced osteoclastogenesis

    PubMed Central

    Lee, Jongwon; Seong, Semun; Kim, Jung Ha; Kim, Kabsun; Kim, Inyoung; Jeong, Byung-chul; Nam, Kwang-Il; Kim, Kyung Keun; Hennighausen, Lothar; Kim, Nacksung

    2016-01-01

    Among the diverse cytokines involved in osteoclast differentiation, interleukin (IL)-3 inhibits RANKL-induced osteoclastogenesis. However, the mechanism underlying IL-3-mediated inhibition of osteoclast differentiation is not fully understood. Here we demonstrate that the activation of signal transducers and activators of transcription 5 (STAT5) by IL-3 inhibits RANKL-induced osteoclastogenesis through the induction of the expression of Id genes. We found that STAT5 overexpression inhibited RANKL-induced osteoclastogenesis. However, RANKL did not regulate the expression or activation of STAT5 during osteoclast differentiation. STAT5 deficiency prevented IL-3-mediated inhibition of osteoclastogenesis, suggesting a key role of STAT5 in IL-3-mediated inhibition of osteoclast differentiation. In addition, IL-3-induced STAT5 activation upregulated the expression of Id1 and Id2, which are negative regulators of osteoclastogenesis. Overexpression of ID1 or ID2 in STAT5-deficient cells reversed osteoclast development recovered from IL-3-mediated inhibition. Importantly, microcomputed tomography and histomorphometric analysis revealed that STAT5 conditional knockout mice showed reduced bone mass, with an increased number of osteoclasts. Furthermore, IL-3 inhibited RANKL-induced osteoclast differentiation less effectively in the STAT5 conditional knockout mice than in the wild-type mice after RANKL injection. Taken together, our findings indicate that STAT5 contributes to the remarkable IL-3-mediated inhibition of RANKL-induced osteoclastogenesis by activating Id genes and their associated pathways. PMID:27485735

  18. STAT5 is a key transcription factor for IL-3-mediated inhibition of RANKL-induced osteoclastogenesis.

    PubMed

    Lee, Jongwon; Seong, Semun; Kim, Jung Ha; Kim, Kabsun; Kim, Inyoung; Jeong, Byung-Chul; Nam, Kwang-Il; Kim, Kyung Keun; Hennighausen, Lothar; Kim, Nacksung

    2016-01-01

    Among the diverse cytokines involved in osteoclast differentiation, interleukin (IL)-3 inhibits RANKL-induced osteoclastogenesis. However, the mechanism underlying IL-3-mediated inhibition of osteoclast differentiation is not fully understood. Here we demonstrate that the activation of signal transducers and activators of transcription 5 (STAT5) by IL-3 inhibits RANKL-induced osteoclastogenesis through the induction of the expression of Id genes. We found that STAT5 overexpression inhibited RANKL-induced osteoclastogenesis. However, RANKL did not regulate the expression or activation of STAT5 during osteoclast differentiation. STAT5 deficiency prevented IL-3-mediated inhibition of osteoclastogenesis, suggesting a key role of STAT5 in IL-3-mediated inhibition of osteoclast differentiation. In addition, IL-3-induced STAT5 activation upregulated the expression of Id1 and Id2, which are negative regulators of osteoclastogenesis. Overexpression of ID1 or ID2 in STAT5-deficient cells reversed osteoclast development recovered from IL-3-mediated inhibition. Importantly, microcomputed tomography and histomorphometric analysis revealed that STAT5 conditional knockout mice showed reduced bone mass, with an increased number of osteoclasts. Furthermore, IL-3 inhibited RANKL-induced osteoclast differentiation less effectively in the STAT5 conditional knockout mice than in the wild-type mice after RANKL injection. Taken together, our findings indicate that STAT5 contributes to the remarkable IL-3-mediated inhibition of RANKL-induced osteoclastogenesis by activating Id genes and their associated pathways. PMID:27485735

  19. Structural basis of collagen recognition by human osteoclast-associated receptor and design of osteoclastogenesis inhibitors.

    PubMed

    Haywood, Joel; Qi, Jianxun; Chen, Chun-Chi; Lu, Guangwen; Liu, Yingxia; Yan, Jinghua; Shi, Yi; Gao, George F

    2016-01-26

    Human osteoclast-associated receptor (OSCAR) is an immunoglobulin (Ig)-like collagen receptor that is up-regulated on osteoclasts during osteoclastogenesis and is expressed in a range of myeloid cells. As a member of the leukocyte receptor complex family of proteins, OSCAR shares a high degree of sequence and structural homology with other collagen receptors of this family, including glycoprotein VI, leukocyte-associated Ig-like receptor-1, and leukocyte Ig-like receptor B4, but recognizes a unique collagen sequence. Here, we present the crystal structures of OSCAR in its free form and in complex with a triple-helical collagen-like peptide (CLP). These structures reveal that the CLP peptide binds only one of the two Ig-like domains, the membrane-proximal domain (domain 2) of OSCAR, with the middle and trailing chain burying a total of 661 Å(2) of solvent-accessible collagen surface. This binding mode is facilitated by the unusual topography of the OSCAR protein, which displays an obtuse interdomain angle and a rotation of domain 2 relative to the membrane-distal domain 1. Moreover, the binding of the CLP to OSCAR appears to be mediated largely by tyrosine residues and conformational changes at a shallow Phe pocket. Furthermore, we investigated CLP peptides as inhibitors of osteoclastogenesis and found that a peptide length of 40 amino acids is required to ensure adequate inhibition of osteoclastogenesis in vitro. These findings provide valuable structural insights into the mode of collagen recognition by OSCAR and into the use of synthetic peptide matrikines for osteoclastogenesis inhibition. PMID:26744311

  20. Structural basis of collagen recognition by human osteoclast-associated receptor and design of osteoclastogenesis inhibitors.

    PubMed

    Haywood, Joel; Qi, Jianxun; Chen, Chun-Chi; Lu, Guangwen; Liu, Yingxia; Yan, Jinghua; Shi, Yi; Gao, George F

    2016-01-26

    Human osteoclast-associated receptor (OSCAR) is an immunoglobulin (Ig)-like collagen receptor that is up-regulated on osteoclasts during osteoclastogenesis and is expressed in a range of myeloid cells. As a member of the leukocyte receptor complex family of proteins, OSCAR shares a high degree of sequence and structural homology with other collagen receptors of this family, including glycoprotein VI, leukocyte-associated Ig-like receptor-1, and leukocyte Ig-like receptor B4, but recognizes a unique collagen sequence. Here, we present the crystal structures of OSCAR in its free form and in complex with a triple-helical collagen-like peptide (CLP). These structures reveal that the CLP peptide binds only one of the two Ig-like domains, the membrane-proximal domain (domain 2) of OSCAR, with the middle and trailing chain burying a total of 661 Å(2) of solvent-accessible collagen surface. This binding mode is facilitated by the unusual topography of the OSCAR protein, which displays an obtuse interdomain angle and a rotation of domain 2 relative to the membrane-distal domain 1. Moreover, the binding of the CLP to OSCAR appears to be mediated largely by tyrosine residues and conformational changes at a shallow Phe pocket. Furthermore, we investigated CLP peptides as inhibitors of osteoclastogenesis and found that a peptide length of 40 amino acids is required to ensure adequate inhibition of osteoclastogenesis in vitro. These findings provide valuable structural insights into the mode of collagen recognition by OSCAR and into the use of synthetic peptide matrikines for osteoclastogenesis inhibition.

  1. Effects of Inositol 1,4,5-triphosphate on Osteoclast Differentiation in RANKL-induced Osteoclastogenesis.

    PubMed

    Son, Aran; Kim, Min Seuk; Jo, Hae; Byun, Hae Mi; Shin, Dong Min

    2012-02-01

    The receptor activator of NF-κB ligand (RANKL) signal is an activator of tumor necrosis factor receptor-associated factor 6 (TRAF6), which leads to the activation of NF-κB and other signal transduction pathways essential for osteoclastogenesis, such as Ca(2+) signaling. However, the intracellular levels of inositol 1,4,5-trisphosphate (IP(3)) and IP(3)-mediated cellular function of RANKL during osteoclastogenesis are not known. In the present study, we determined the levels of IP(3) and evaluated IP(3)-mediated osteoclast differentiation and osteoclast activity by RANKL treatment of mouse leukemic macrophage cells (RAW 264.7) and mouse bone marrow-derived monocyte/macrophage precursor cells (BMMs). During osteoclastogenesis, the expression levels of Ca(2+) signaling proteins such as IP(3) receptors (IP(3)Rs), plasma membrane Ca(2+) ATPase, and sarco/endoplasmic reticulum Ca(2+) ATPase type2 did not change by RANKL treatment for up to 6 days in both cell types. At 24 h after RANKL treatment, a higher steady-state level of IP(3) was observed in RAW264.7 cells transfected with green fluorescent protein (GFP)-tagged pleckstrin homology (PH) domains of phospholipase C (PLC) δ, a probe specifically detecting intracellular IP(3) levels. In BMMs, the inhibition of PLC with U73122 [a specific inhibitor of phospholipase C (PLC)] and of IP(3)Rs with 2-aminoethoxydiphenyl borate (2APB; a non-specific inhibitor of IP(3)Rs) inhibited the generation of RANKL-induced multinucleated cells and decreased the bone-resorption rate in dentin slice, respectively. These results suggest that intracellular IP(3) levels and the IP(3)-mediated signaling pathway play an important role in RANKL-induced osteoclastogenesis.

  2. Effects of bisphosphonates on osteoclastogenesis in RAW264.7 cells.

    PubMed

    Abe, Keigo; Yoshimura, Yoshitaka; Deyama, Yoshiaki; Kikuiri, Takashi; Hasegawa, Tomokazu; Tei, Kanchu; Shinoda, Hisashi; Suzuki, Kuniaki; Kitagawa, Yoshimasa

    2012-06-01

    Bisphosphonates are used as therapeutic agents for the management of osteoporosis and other bone diseases. However, the precise effects and mechanisms of bisphosphonates on osteoclastogenesis are unclear, as previous studies have reported contradictory findings and no studies have circumstantially assessed the effects of bisphosphonates on osteoclastogenesis. Therefore, the aim of this study was to determine the effects of bisphosphonates on osteoclastogenesis in RAW264.7 (RAW) cells. To examine the direct effects of bisphosphonates on osteoclast differentiation via receptor activator of nuclear factor-κB (RANK) ligand (RANKL), RAW cells were cultured with bisphosphonates. Addition of bisphosphonates to RAW cells led to a significant decrease in the number of osteoclasts and large osteoclasts (≥ 8 nuclei) in a bisphosphonate concentration-dependent and time-dependent manner. The cytotoxicity of non-nitrogen-containing bisphosphonates was specific to osteoclasts, while nitrogen-containing bisphosphonates were cytotoxic and induced cell death in both osteoclasts and RAW cells. Resorption activity was significantly diminished by treatment with bisphosphonates, thus confirming that bisphosphonates impair the absorptive activity of osteoclasts. We also investigated the effects of bisphosphonates on the mRNA expression of genes associated with osteoclastogenesis, osteoclast-specific markers and apoptosis-related genes using quantitative real-time PCR. The results suggest that bisphosphonates suppress osteoclast differentiation and infusion, and induce osteoclast apoptosis. With regard to osteoclast apoptosis induced by bisphosphonates, we further investigated the detection of DNA fragmentation and Caspase-Glo 3/7 assay. DNA fragmentation was confirmed after treatment with bisphosphonates, while caspase-3/7 activity increased significantly when compared with controls. In conclusion, bisphosphonates directly inhibited RANKL-stimulated osteoclast differentiation and

  3. Structural basis of collagen recognition by human osteoclast-associated receptor and design of osteoclastogenesis inhibitors

    PubMed Central

    Haywood, Joel; Qi, Jianxun; Chen, Chun-Chi; Lu, Guangwen; Liu, Yingxia; Yan, Jinghua; Shi, Yi; Gao, George F.

    2016-01-01

    Human osteoclast-associated receptor (OSCAR) is an immunoglobulin (Ig)-like collagen receptor that is up-regulated on osteoclasts during osteoclastogenesis and is expressed in a range of myeloid cells. As a member of the leukocyte receptor complex family of proteins, OSCAR shares a high degree of sequence and structural homology with other collagen receptors of this family, including glycoprotein VI, leukocyte-associated Ig-like receptor-1, and leukocyte Ig-like receptor B4, but recognizes a unique collagen sequence. Here, we present the crystal structures of OSCAR in its free form and in complex with a triple-helical collagen-like peptide (CLP). These structures reveal that the CLP peptide binds only one of the two Ig-like domains, the membrane-proximal domain (domain 2) of OSCAR, with the middle and trailing chain burying a total of 661 Å2 of solvent-accessible collagen surface. This binding mode is facilitated by the unusual topography of the OSCAR protein, which displays an obtuse interdomain angle and a rotation of domain 2 relative to the membrane-distal domain 1. Moreover, the binding of the CLP to OSCAR appears to be mediated largely by tyrosine residues and conformational changes at a shallow Phe pocket. Furthermore, we investigated CLP peptides as inhibitors of osteoclastogenesis and found that a peptide length of 40 amino acids is required to ensure adequate inhibition of osteoclastogenesis in vitro. These findings provide valuable structural insights into the mode of collagen recognition by OSCAR and into the use of synthetic peptide matrikines for osteoclastogenesis inhibition. PMID:26744311

  4. Effects of Inositol 1,4,5-triphosphate on Osteoclast Differentiation in RANKL-induced Osteoclastogenesis

    PubMed Central

    Son, Aran; Kim, Min Seuk; Jo, Hae; Byun, Hae Mi

    2012-01-01

    The receptor activator of NF-κB ligand (RANKL) signal is an activator of tumor necrosis factor receptor-associated factor 6 (TRAF6), which leads to the activation of NF-κB and other signal transduction pathways essential for osteoclastogenesis, such as Ca2+ signaling. However, the intracellular levels of inositol 1,4,5-trisphosphate (IP3) and IP3-mediated cellular function of RANKL during osteoclastogenesis are not known. In the present study, we determined the levels of IP3 and evaluated IP3-mediated osteoclast differentiation and osteoclast activity by RANKL treatment of mouse leukemic macrophage cells (RAW 264.7) and mouse bone marrow-derived monocyte/macrophage precursor cells (BMMs). During osteoclastogenesis, the expression levels of Ca2+ signaling proteins such as IP3 receptors (IP3Rs), plasma membrane Ca2+ ATPase, and sarco/endoplasmic reticulum Ca2+ ATPase type2 did not change by RANKL treatment for up to 6 days in both cell types. At 24 h after RANKL treatment, a higher steady-state level of IP3 was observed in RAW264.7 cells transfected with green fluorescent protein (GFP)-tagged pleckstrin homology (PH) domains of phospholipase C (PLC) δ, a probe specifically detecting intracellular IP3 levels. In BMMs, the inhibition of PLC with U73122 [a specific inhibitor of phospholipase C (PLC)] and of IP3Rs with 2-aminoethoxydiphenyl borate (2APB; a non-specific inhibitor of IP3Rs) inhibited the generation of RANKL-induced multinucleated cells and decreased the bone-resorption rate in dentin slice, respectively. These results suggest that intracellular IP3 levels and the IP3-mediated signaling pathway play an important role in RANKL-induced osteoclastogenesis. PMID:22416217

  5. Cysteine cathepsin activity suppresses osteoclastogenesis of myeloid-derived suppressor cells in breast cancer.

    PubMed

    Edgington-Mitchell, Laura E; Rautela, Jai; Duivenvoorden, Hendrika M; Jayatilleke, Krishnath M; van der Linden, Wouter A; Verdoes, Martijn; Bogyo, Matthew; Parker, Belinda S

    2015-09-29

    Cysteine cathepsin proteases contribute to many normal cellular functions, and their aberrant activity within various cell types can contribute to many diseases, including breast cancer. It is now well accepted that cathepsin proteases have numerous cell-specific functions within the tumor microenvironment that function to promote tumor growth and invasion, such that they may be valid targets for anti-metastatic therapeutic approaches. Using activity-based probes, we have examined the activity and expression of cysteine cathepsins in a mouse model of breast cancer metastasis to bone. In mice bearing highly metastatic tumors, we detected abundant cysteine cathepsin expression and activity in myeloid-derived suppressor cells (MDSCs). These immature immune cells have known metastasis-promoting roles, including immunosuppression and osteoclastogenesis, and we assessed the contribution of cysteine cathepsins to these functions. Blocking cysteine cathepsin activity with multiple small-molecule inhibitors resulted in enhanced differentiation of multinucleated osteoclasts. This highlights a potential role for cysteine cathepsin activity in suppressing the fusion of osteoclast precursor cells. In support of this hypothesis, we found that expression and activity of key cysteine cathepsins were downregulated during MDSC-osteoclast differentiation. Another cysteine protease, legumain, also inhibits osteoclastogenesis, in part through modulation of cathepsin L activity. Together, these data suggest that cysteine protease inhibition is associated with enhanced osteoclastogenesis, a process that has been implicated in bone metastasis.

  6. Osteoclastogenesis is influenced by modulation of gap junctional communication with antiarrhythmic peptides.

    PubMed

    Kylmäoja, Elina; Kokkonen, Hanna; Kauppinen, Kyösti; Hussar, Piret; Sato, Tetsuji; Haugan, Ketil; Larsen, Bjarne Due; Tuukkanen, Juha

    2013-03-01

    Osteoclasts are formed by the fusion of mononuclear precursor cells of the monocyte-macrophage lineage. Among several putative mechanisms, gap-junctional intercellular communication (GJC) has been proposed to have a role in osteoclast fusion and bone resorption. We examined the role of GJC in osteoclastogenesis and in vitro bone resorption with mouse bone marrow hematopoietic stem cells and RAW 264.7 cells. Blocking of gap junctions with 18-α-glycyrrhetinic acid (18GA) led to inhibition of osteoclastogenesis and in vitro bone resorption. Similarly, the GJC inhibitor GAP27 inhibited osteoclast formation. GJC modulation with the antiarrhythmic peptides (AAPs) led to increased amounts of multinuclear RAW 264.7 osteoclasts as well as increased number of nuclei per multinuclear cell. In the culture of bone marrow hematopoietic stem cells in the presence of bone marrow stromal cells AAP reduced the number of osteoclasts, and coculture of MC3T3-E1 preosteoblasts with RAW 264.7 macrophages prevented the action of AAPs to promote osteoclastogenesis. The present data indicate that AAPs modulate the fusion of the pure culture of cells of the monocyte-macrophage lineage. However, the fusion is influenced by GJC in cells of the osteoblast lineage.

  7. Dihydroartemisinin attenuates lipopolysaccharide-induced osteoclastogenesis and bone loss via the mitochondria-dependent apoptosis pathway

    PubMed Central

    Dou, C; Ding, N; Xing, J; Zhao, C; Kang, F; Hou, T; Quan, H; Chen, Y; Dai, Q; Luo, F; Xu, J; Dong, S

    2016-01-01

    Dihydroartemisinin (DHA) is a widely used antimalarial drug isolated from the plant Artemisia annua. Recent studies suggested that DHA has antitumor effects utilizing its reactive oxygen species (ROS) yielding mechanism. Here, we reported that DHA is inhibitory on lipopolysaccharide (LPS)-induced osteoclast (OC) differentiation, fusion and bone-resorption activity in vitro. Intracellular ROS detection revealed that DHA could remarkably increase ROS accumulation during LPS-induced osteoclastogenesis. Moreover, cell apoptosis was also increased by DHA treatment. We found that DHA-activated caspase-3 increased Bax/Bcl-2 ratio during LPS-induced osteoclastogenesis. Meanwhile, the translocation of apoptotic inducing factor (AIF) and the release of cytochrome c from the mitochondria into the cytosol were observed, indicating that ROS-mediated mitochondrial dysfunction is crucial in DHA-induced apoptosis during LPS-induced osteoclastogenesis. In vivo study showed that DHA treatment decreased OC number, prevents bone loss, rescues bone microarchitecture and restores bone strength in LPS-induced bone-loss mouse model. Together, our findings indicate that DHA is protective against LPS-induced bone loss through apoptosis induction of osteoclasts via ROS accumulation and the mitochondria-dependent apoptosis pathway. Therefore, DHA may be considered as a new therapeutic candidate for treating inflammatory bone loss. PMID:27031959

  8. Purification and identification of lactoperoxidase in milk basic proteins as an inhibitor of osteoclastogenesis.

    PubMed

    Morita, Y; Ono, A; Serizawa, A; Yogo, K; Ishida-Kitagawa, N; Takeya, T; Ogawa, T

    2011-05-01

    A milk protein fraction with alkaline isoelectric points (milk basic protein, MBP) inhibits both bone resorption and osteoclastogenesis for in vitro models. We previously identified bovine angiogenin as a component of MBP that inhibits bone resorption. However, purified angiogenin had no effect on osteoclastogenesis, suggesting that MBP contains unidentified component(s) that inhibit osteoclast formation. In this study, we purified lactoperoxidase (LPO) as the predominant inhibitor of osteoclastogenesis in MBP. The LPO treatment downregulated levels of reactive oxygen species in osteoclasts. Signaling by receptor activator of NF-kappa-B ligand/receptor activator of NF-kappa-B (RANKL/RANK) was downregulated in LPO-treated cells, and, in particular, the ubiquitination of tumor necrosis factor receptor associate factor 6 (TRAF6) and activation of downstream signaling cascades (JNK, p38, ERK, and NFκB) were suppressed. Ultimately, LPO treatment led to decreased expression of c-Fos and NFAT2. These results suggest that MBP contains at least 2 components that independently suppress bone resorption through a unique mechanism: angiogenin inhibits bone resorption and LPO inhibits RANKL-induced osteoclast differentiation. These data explain many of the positive aspects of milk consumption on bone health.

  9. Bu-Shen-Ning-Xin decoction suppresses osteoclastogenesis via increasing dehydroepiandrosterone to prevent postmenopausal osteoporosis.

    PubMed

    Gui, Yuyan; Qiu, Xuemin; Xu, Yingping; Li, Dajin; Wang, Ling

    2015-06-01

    Bu-Shen-Ning-Xin decoction (BSNXD), a traditional Chinese medicine, has been used to prevent and treat age-related diseases such as postmenopausal osteoporosis (PMO) for decades. This study sought to investigate the underlying mechanisms of BSNXD in terms of receptor activation of nuclear factor κB ligand (RANKL)-induced osteoclastogenesis in vitro because of the critical roles of bone resorption in the development and progression of osteoporosis. In mice, serum levels of dehydroepiandrosterone (DHEA), dehydroepiandrosterone sulfate (DHEAS), and 17-β-estradiol (E2) were evaluated with an enzyme immunoassay kit after ovariectomy. Levels of DHEA and DHEAS increased significantly following administration of BSNXD while the level of E2 did not. In addition, tartrate-resistance acid phosphatase staining showed that DHEA profoundly inhibited RANKL-induced osteoclastogenesis in vitro in a dose-dependent manner via estrogen receptor α (ERα) but not via estrogen receptor β or androgen receptors. Cytotoxicity was not detected in the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. These data suggest that BSNXD prevents PMO by increasing DHEA via the ERαpathway to suppress osteoclastogenesis.

  10. Design of a RANK-Mimetic Peptide Inhibitor of Osteoclastogenesis with Enhanced RANKL-Binding Affinity.

    PubMed

    Hur, Jeonghwan; Ghosh, Ambarnil; Kim, Kabsun; Ta, Hai Minh; Kim, Hyunju; Kim, Nacksung; Hwang, Hye-Yeon; Kim, Kyeong Kyu

    2016-04-30

    The receptor activator of nuclear factor κB (RANK) and its ligand RANKL are key regulators of osteoclastogenesis and well-recognized targets in developing treatments for bone disorders associated with excessive bone resorption, such as osteoporosis. Our previous work on the structure of the RANK-RANKL complex revealed that Loop3 of RANK, specifically the non-canonical disulfide bond at the tip, performs a crucial role in specific recognition of RANKL. It also demonstrated that peptide mimics of Loop3 were capable of interfering with the function of RANKL in osteoclastogenesis. Here, we reported the structure-based design of a smaller peptide with enhanced inhibitory efficiency. The kinetic analysis and osteoclast differentiation assay showed that in addition to the sharp turn induced by the disulfide bond, two consecutive arginine residues were also important for binding to RANKL and inhibiting osteoclastogenesis. Docking and molecular dynamics simulations proposed the binding mode of the peptide to the RANKL trimer, showing that the arginine residues provide electrostatic interactions with RANKL and contribute to stabilizing the complex. These findings provided useful information for the rational design of therapeutics for bone diseases associated with RANK/RANKL function.

  11. MCP-1 expressed by osteoclasts stimulates osteoclastogenesis in an autocrine/paracrine manner

    SciTech Connect

    Miyamoto, Kana; Ninomiya, Ken; Sonoda, Koh-Hei; Miyauchi, Yoshiteru; Hoshi, Hiroko; Iwasaki, Ryotaro; Miyamoto, Hiroya; and others

    2009-06-05

    Monocyte chemoattractant protein-1 (MCP-1) is a chemokine that plays a critical role in the recruitment and activation of leukocytes. Here, we describe that multinuclear osteoclast formation was significantly inhibited in cells derived from MCP-1-deficient mice. MCP-1 has been implicated in the regulation of osteoclast cell-cell fusion; however defects of multinuclear osteoclast formation in the cells from mice deficient in DC-STAMP, a seven transmembrane receptor essential for osteoclast cell-cell fusion, was not rescued by recombinant MCP-1. The lack of MCP-1 in osteoclasts resulted in a down-regulation of DC-STAMP, NFATc1, and cathepsin K, all of which were highly expressed in normal osteoclasts, suggesting that osteoclast differentiation was inhibited in MCP-1-deficient cells. MCP-1 alone did not induce osteoclastogenesis, however, the inhibition of osteoclastogenesis in MCP-1-deficient cells was restored by addition of recombinant MCP-1, indicating that osteoclastogenesis was regulated in an autocrine/paracrine manner by MCP-1 under the stimulation of RANKL in osteoclasts.

  12. Cysteine cathepsin activity suppresses osteoclastogenesis of myeloid-derived suppressor cells in breast cancer

    PubMed Central

    Edgington-Mitchell, Laura E.; Rautela, Jai; Duivenvoorden, Hendrika M.; Jayatilleke, Krishnath M.; van der Linden, Wouter A.; Verdoes, Martijn; Bogyo, Matthew; Parker, Belinda S.

    2015-01-01

    Cysteine cathepsin proteases contribute to many normal cellular functions, and their aberrant activity within various cell types can contribute to many diseases, including breast cancer. It is now well accepted that cathepsin proteases have numerous cell-specific functions within the tumor microenvironment that function to promote tumor growth and invasion, such that they may be valid targets for anti-metastatic therapeutic approaches. Using activity-based probes, we have examined the activity and expression of cysteine cathepsins in a mouse model of breast cancer metastasis to bone. In mice bearing highly metastatic tumors, we detected abundant cysteine cathepsin expression and activity in myeloid-derived suppressor cells (MDSCs). These immature immune cells have known metastasis-promoting roles, including immunosuppression and osteoclastogenesis, and we assessed the contribution of cysteine cathepsins to these functions. Blocking cysteine cathepsin activity with multiple small-molecule inhibitors resulted in enhanced differentiation of multinucleated osteoclasts. This highlights a potential role for cysteine cathepsin activity in suppressing the fusion of osteoclast precursor cells. In support of this hypothesis, we found that expression and activity of key cysteine cathepsins were downregulated during MDSC-osteoclast differentiation. Another cysteine protease, legumain, also inhibits osteoclastogenesis, in part through modulation of cathepsin L activity. Together, these data suggest that cysteine protease inhibition is associated with enhanced osteoclastogenesis, a process that has been implicated in bone metastasis. PMID:26308073

  13. Design of a RANK-Mimetic Peptide Inhibitor of Osteoclastogenesis with Enhanced RANKL-Binding Affinity

    PubMed Central

    Hur, Jeonghwan; Ghosh, Ambarnil; Kim, Kabsun; Ta, Hai Minh; Kim, Hyunju; Kim, Nacksung; Hwang, Hye-Yeon; Kim, Kyeong Kyu

    2016-01-01

    The receptor activator of nuclear factor κB (RANK) and its ligand RANKL are key regulators of osteoclastogenesis and well-recognized targets in developing treatments for bone disorders associated with excessive bone resorption, such as osteoporosis. Our previous work on the structure of the RANK-RANKL complex revealed that Loop3 of RANK, specifically the non-canonical disulfide bond at the tip, performs a crucial role in specific recognition of RANKL. It also demonstrated that peptide mimics of Loop3 were capable of interfering with the function of RANKL in osteoclastogenesis. Here, we reported the structure-based design of a smaller peptide with enhanced inhibitory efficiency. The kinetic analysis and osteoclast differentiation assay showed that in addition to the sharp turn induced by the disulfide bond, two consecutive arginine residues were also important for binding to RANKL and inhibiting osteoclastogenesis. Docking and molecular dynamics simulations proposed the binding mode of the peptide to the RANKL trimer, showing that the arginine residues provide electrostatic interactions with RANKL and contribute to stabilizing the complex. These findings provided useful information for the rational design of therapeutics for bone diseases associated with RANK/RANKL function. PMID:26923188

  14. Dihydroartemisinin attenuates lipopolysaccharide-induced osteoclastogenesis and bone loss via the mitochondria-dependent apoptosis pathway.

    PubMed

    Dou, C; Ding, N; Xing, J; Zhao, C; Kang, F; Hou, T; Quan, H; Chen, Y; Dai, Q; Luo, F; Xu, J; Dong, S

    2016-01-01

    Dihydroartemisinin (DHA) is a widely used antimalarial drug isolated from the plant Artemisia annua. Recent studies suggested that DHA has antitumor effects utilizing its reactive oxygen species (ROS) yielding mechanism. Here, we reported that DHA is inhibitory on lipopolysaccharide (LPS)-induced osteoclast (OC) differentiation, fusion and bone-resorption activity in vitro. Intracellular ROS detection revealed that DHA could remarkably increase ROS accumulation during LPS-induced osteoclastogenesis. Moreover, cell apoptosis was also increased by DHA treatment. We found that DHA-activated caspase-3 increased Bax/Bcl-2 ratio during LPS-induced osteoclastogenesis. Meanwhile, the translocation of apoptotic inducing factor (AIF) and the release of cytochrome c from the mitochondria into the cytosol were observed, indicating that ROS-mediated mitochondrial dysfunction is crucial in DHA-induced apoptosis during LPS-induced osteoclastogenesis. In vivo study showed that DHA treatment decreased OC number, prevents bone loss, rescues bone microarchitecture and restores bone strength in LPS-induced bone-loss mouse model. Together, our findings indicate that DHA is protective against LPS-induced bone loss through apoptosis induction of osteoclasts via ROS accumulation and the mitochondria-dependent apoptosis pathway. Therefore, DHA may be considered as a new therapeutic candidate for treating inflammatory bone loss. PMID:27031959

  15. Bortezomib Inhibits Osteoclastogenesis and Porphyromonas gingivalis Lipopolysaccharide-induced Alveolar Bone Resorption.

    PubMed

    Kim, Y-G; Kang, J H; Kim, H J; Kim, H J; Kim, H-H; Kim, J-Y; Lee, Y

    2015-09-01

    Healthy bone is maintained by the coordinated activities of osteoblast-mediated bone formation and osteoclast-dependent bone resorption. Pathologic conditions such as hormonal imbalance and inflammation cause increased osteoclastogenesis resulting in osteoporosis, rheumatoid arthritis, and periodontitis. Bortezomib is novel antimyeloma agent that has a direct beneficial effect on bone formation. However, the role of bortezomib in osteoclastogenesis and underlying mechanisms remains to be fully comprehended. In the present study, we show that bortezomib directly inhibited the receptor activator of nuclear factor κB ligand (RANKL)- and lipopolysaccharide-dependent osteoclast differentiation. Interestingly, the bortezomib-mediated inhibition of osteoclastogenesis was transient, since the removal of bortezomib from culture completely restored osteoclast differentiation. Bortezomib impeded the induction and nuclear localization of nuclear factor of activated T cells, cytoplasmic 1 and reduced both macrophage colony-stimulating factor- and RANKL-induced extracellular-signal-regulated kinase (ERK) phosphorylation. In a mouse model of periodontitis, bortezomib prevented alveolar bone erosion induced by Porphyromonas gingivalis lipopolysaccharide. These data not only suggest a previously unappreciated mechanism by which bortezomib regulates bone resorption but also propose novel applications of bortezomib beyond its use as an antimyeloma agent.

  16. Molecular basis of requirement of receptor activator of nuclear factor κB signaling for interleukin 1-mediated osteoclastogenesis.

    PubMed

    Jules, Joel; Zhang, Ping; Ashley, Jason W; Wei, Shi; Shi, Zhenqi; Liu, Jianzhong; Michalek, Suzanne M; Feng, Xu

    2012-05-01

    IL-1, a proinflammatory cytokine, is implicated in bone loss in various pathological conditions by promoting osteoclast formation, survival, and function. Although IL-1 alone can sufficiently prolong osteoclast survival and activate osteoclast function, IL-1-mediated osteoclastogenesis requires the receptor activator of NF-κB (RANK) ligand (RANKL). However, the molecular basis of the dependence of IL-1-mediated osteoclastogenesis on RANKL is not fully understood. Here we show that although IL-1 cannot activate the expression of the osteoclast genes encoding matrix metalloproteinase 9, cathepsin K, tartrate-resistant acid phosphatase, and carbonic anhydrase II in bone marrow macrophages (BMMs), RANKL renders these osteoclast genes responsive to IL-1. We further demonstrate that IL-1 alone fails to induce the expression of nuclear factor of activated T cell cytoplasmic 1 (NFATc1), a master transcriptional regulator of osteoclastogenesis), in BMMs but can up-regulate its expression in the presence of permissive levels of RANKL or with RANKL pretreatment. The RANK IVVY motif, which has been previously shown to commit BMMs to the osteoclast lineage in RANKL- and TNF α-mediated osteoclastogenesis, also plays a crucial role in IL-1-mediated osteoclastogenesis by changing the four osteoclast marker and NFATc1 genes to an IL-1-inducible state. Finally, we show that MyD88, a known critical component of the IL-1 receptor I signaling pathway, plays a crucial role in IL-1-mediated osteoclastogenesis from RANKL-primed BMMs by up-regulating the expression of the osteoclast marker and NFATc1 genes. This study reveals a novel mechanism of IL-1-mediated osteoclastogenesis and supports the promising potential of the IVVY motif to serve as a therapeutic target for inflammatory bone loss.

  17. Determination of 1,25-dihydroxyvitamin D2 and 1,25-dihydroxyvitamin D3 in human serum using liquid chromatography with tandem mass spectrometry.

    PubMed

    Fang, Huiling; Yu, Songlin; Cheng, Qian; Cheng, Xinqi; Han, Jianhua; Qin, Xuzhen; Xia, Liangyu; Jiang, Xiaomei; Qiu, Ling

    2016-08-01

    Vitamin D plays important roles in skeletal metabolism and many other diseases, including chronic renal failure, hypoparathyroidism, sarcoidosis and rickets. 1α,25-dihydroxy vitamin D (1α,25(OH)2D), the active form of vitamin D, exhibits an extremely low serum concentration, which makes its quantification very challenging. High performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS) is considered to be the "gold standard" for the determination of these chemicals, which are found in low concentrations in the serum, but conventionally, it needs tedious sample pretreatment procedures, such as solid phase extraction and derivatization. Herein, we describe a simple and rapid HPLC-MS/MS method for the simultaneous quantification of 1α,25-dihydroxy vitamin D3 (1α,25(OH)2D3) and 1α,25-dihydroxy vitamin D2 (1α,25(OH)2D2). The analytes were extracted from the matrix by liquid-liquid extraction, centrifuged to dryness and reconstituted with 75% methanol. Lithium acetate was employed to improve the ionization efficiency of 1α,25(OH)2D. The assay was sensitive with a low limit of quantitation of 10.0pg/mL for both 1α,25(OH)2D3 and 1α,25(OH)2D2 using a 0.5mL sample aliquot. Linearity was obtained over the range of 10.0pg/mL to 500pg/mL. Both the inter-assay and intra-assay precisions were <15%, and the analytical recoveries were within 100±5%. The performance evaluation of this assay demonstrated that it was a practical, sensitive and specific method for measuring the serum 1α,25(OH)2D3 and 1α,25(OH)2D2 concentrations. PMID:27240300

  18. Interleukin-3 plays dual roles in osteoclastogenesis by promoting the development of osteoclast progenitors but inhibiting the osteoclastogenic process

    SciTech Connect

    Hong, Huixian; Shi, Zhenqi; Qiao, Ping; Li, Hui; McCoy, Erin M.; Mao, Ping; Xu, Hui; Feng, Xu; Wang, Shunqing

    2013-11-01

    Highlights: •IL-3 treatment of bone marrow cells generates a population of hematopoietic cells. •IL-3-dependent hematopoietic cells are capable of differentiating into osteoclasts. •Osteoclasts derived from IL-3-dependent hematopoietic cells are functional. •IL-3 promotes the development of osteoclast progenitors. •IL-3 inhibits the osteoclastogenic process. -- Abstract: Interleukin (IL)-3, a multilineage hematopoietic growth factor, is implicated in the regulation of osteoclastogenesis. However, the role of IL-3 in osteoclastogenesis remains controversial; whereas early studies showed that IL-3 stimulates osteoclastogenesis, recent investigations demonstrated that IL-3 inhibits osteoclast formation. The objective of this work is to further address the role of IL-3 in osteoclastogenesis. We found that IL-3 treatment of bone marrow cells generated a population of cells capable of differentiating into osteoclasts in tissue culture dishes in response to the stimulation of the monocyte/macrophage-colony stimulating factor (M-CSF) and the receptor activator of nuclear factor kappa B ligand (RANKL). The IL-3-dependent hematopoietic cells were able to further proliferate and differentiate in response to M-CSF stimulation and the resulting cells were also capable of forming osteoclasts with M-CSF and RANKL treatment. Interestingly, IL-3 inhibits M-CSF-/RANKL-induced differentiation of the IL-3-dependent hematopoietic cells into osteoclasts. The flow cytometry analysis indicates that while IL-3 treatment of bone marrow cells slightly affected the percentage of osteoclast precursors in the surviving populations, it considerably increased the percentage of osteoclast precursors in the populations after subsequent M-CSF treatment. Moreover, osteoclasts derived from IL-3-dependent hematopoietic cells were fully functional. Thus, we conclude that IL-3 plays dual roles in osteoclastogenesis by promoting the development of osteoclast progenitors but inhibiting the

  19. Tensile force on human macrophage cells promotes osteoclastogenesis through receptor activator of nuclear factor κB ligand induction.

    PubMed

    Kao, Chia-Tze; Huang, Tsui-Hsien; Fang, Hsin-Yuan; Chen, Yi-Wen; Chien, Chien-Fang; Shie, Ming-You; Yeh, Chia-Hung

    2016-07-01

    Little is known about the effects of tensile forces on osteoclastogenesis by human monocytes in the absence of mechanosensitive cells, including osteoblasts and fibroblasts. In this study we consider the effects of tensile force on osteoclastogenesis in human monocytes. The cells were treated with receptor activator of nuclear factor κB ligand (RANKL) to promote osteoclastogenesis. Then,expression and secretion of cathepsin K were examined. RANKL and the formation of osteoclasts during the osteoclast differentiation process under continual tensile stress were evaluated by Western blot. It was also found that -100 kPa or lower induces RANKL-enhanced tartrate-resistant acid phosphatase activity in a dose-dependent manner. Furthermore, an increased tensile force raises the expression and secretion of cathepsin K elevated by RANKL, and is concurrent with the increase of TNF-receptor-associated factor 6 induction and nuclear factor κB activation. Overall, the current report demonstrates that tensile force reinforces RANKL-induced osteoclastogenesis by retarding osteoclast differentiation. The tensile force is able to modify every cell through dose-dependent in vitro RANKL-mediated osteoclastogenesis, affecting the fusion of preosteoclasts and function of osteoclasts. However, tensile force increased TNF-receptor-associated factor 6 expression. These results are in vitro findings and were obtained under a condition of tensile force. The current results help us to better understand the cellular roles of human macrophage populations in osteoclastogenesis as well as in alveolar bone remodeling when there is tensile stress.

  20. Strontium ranelate inhibits titanium-particle-induced osteolysis by restraining inflammatory osteoclastogenesis in vivo.

    PubMed

    Liu, Xing; Zhu, Shijun; Cui, Jingfu; Shao, Hongguo; Zhang, Wen; Yang, Huilin; Xu, Yaozeng; Geng, Dechun; Yu, Long

    2014-11-01

    Wear-particle-induced osteolysis is considered to be the main reason for revision after arthroplasty. Although the exact mechanism remains unclear, inflammatory osteoclastogenesis plays an important role in this process. Strontium ranelate (SR) was found to have a therapeutic effect on osteoporosis in postmenopausal women. Based on prior studies, the present authors hypothesized that SR prevents wear-particle-induced osteolysis through restraining inflammatory osteoclastogenesis. The present study used 80 male C57BL/J6 mice to test this hypothesis in a murine osteolysis model. All experimental animals were randomly divided into four groups: a control group; a SR group; a titanium group; and a titanium+SR group. Once titanium particles had been implanted in mice, the mice were administered SR (900 mg kg(-1) day(-1)) by gavage for 14 days. After 14 days, the calvaria were collected for micro-computed tomography (μCT), histological and molecular analysis. The results of μCT and histomorphometric analysis demonstrated that SR markedly inhibited bone resorption and the generation of tartrate-resistant acid-phosphatase-positive cells in vivo, compared with titanium-stimulated calvaria. Reverse transcription polymerase chain reaction and ELISAs showed that SR stimulated the mRNA and protein expression of osteoprotegerin, and inhibited gene and protein expression of receptor activators of nuclear factor-kappa B ligand in titanium-particle-charged calvaria. In addition, SR obviously reduced the secretion of tumor necrosis factor-α and interleukin-1β in the calvaria of the titanium group. It was concluded that SR inhibits titanium-induced osteolysis by restraining inflammatory osteoclastogenesis, and that it could be developed as a new drug to prevent and treat aseptic loosening. PMID:25078426

  1. RBP-J imposes a requirement for ITAM-mediated costimulation of osteoclastogenesis.

    PubMed

    Li, Susan; Miller, Christine H; Giannopoulou, Eugenia; Hu, Xiaoyu; Ivashkiv, Lionel B; Zhao, Baohong

    2014-11-01

    Osteoclastogenesis requires activation of RANK signaling as well as costimulatory signals from immunoreceptor tyrosine-based activation motif-containing (ITAM-containing) receptors/adaptors, predominantly tyrosine kinase-binding proteins DAP12 and FcRγ, in osteoclast precursors. It is not well understood how costimulatory signals are regulated and integrated with RANK signaling. Here, we found that osteopetrotic bone phenotypes in mice lacking DAP12 or DAP12 and FcRγ are mediated by the transcription factor RBP-J, as deletion of Rbpj in these mice substantially rescued the defects of bone remodeling. Using a TNF-α-induced model of inflammatory bone resorption, we determined that RBP-J deficiency enables TNF-α to induce osteoclast formation and bone resorption in DAP12-deficient animals. Thus, RBP-J imposes a requirement for ITAM-mediated costimulation of RANKL or TNF-α-induced osteoclastogenesis. Mechanistically, RBP-J suppressed induction of key osteoclastogenic factors NFATc1, BLIMP1, and c-FOS by inhibiting ITAM-mediated expression and function of PLCγ2 and activation of downstream calcium-CaMKK/PYK2 signaling. Moreover, RBP-J suppressed Plcg2 expression and downstream calcium oscillations indirectly by a TGF-β/PLCγ2/calcium axis. Together, our findings indicate that RBP-J suppresses ITAM-mediated costimulation, thereby limiting crosstalk between ITAM and RANK/TNFR signaling and allowing fine tuning of osteoclastogenesis during bone homeostasis and under inflammatory conditions. Furthermore, these data suggest that environmental cues that regulate RBP-J expression/function potentially modulate the requirement for costimulatory signaling for osteoclast differentiation and bone remodeling.

  2. In vitro and in silico analysis of an inhibitory mechanism of osteoclastogenesis by salubrinal and guanabenz.

    PubMed

    Hamamura, Kazunori; Chen, Andy; Tanjung, Nancy; Takigawa, Shinya; Sudo, Akihiro; Yokota, Hiroki

    2015-02-01

    Inactivating bone-resorbing osteoclasts is a prime therapeutic strategy for the prevention of bone loss in patients with osteopenia and osteoporosis. Synthetic agents such as salubrinal and guanabenz, which attenuate stress to the endoplasmic reticulum, are reported to inhibit development of osteoclasts. However, the mechanism of their inhibitory action on osteoclasts is largely unknown. Using genome-wide expression profiles, we predicted key transcription factors that downregulated nuclear factor of activated T-cells, cytoplasmic 1 (NFATc1), a master transcription factor for osteoclastogenesis. Principal component analysis (PCA) predicted a list of transcription factors that were potentially responsible for reversing receptor activator of nuclear factor kappa-B ligand (RANKL)-driven stimulation of osteoclastogenesis. A partial silencing of NFATc1 allowed a selection of transcription factors that were likely to be located upstream of NFATc1. We validated the predicted transcription factors by focusing on two AP-1 transcription factors (c-Fos and JunB) using RAW264.7 pre-osteoclasts as well as primary bone marrow cells. As predicted, their mRNA and protein levels were elevated by RANKL, and the elevation was suppressed by salubrinal and guanabenz. A partial silencing of c-Fos or JunB by RNA interference decreased NFATc1 as well as tartrate-resistant acid phosphatase (TRAP) mRNA. Collectively, a systems-biology approach allows the prediction of a RANKL-salubrinal/guanabenz-NFATc1 regulatory axis, and in vitro assays validate an involvement of AP-1 transcription factors in suppression of osteoclastogenesis. PMID:25435425

  3. Mechanisms of enhanced osteoclastogenesis in girls and young women with Turner's Syndrome.

    PubMed

    Faienza, Maria Felicia; Brunetti, Giacomina; Ventura, Annamaria; Piacente, Laura; Messina, Maria Francesca; De Luca, Filippo; Ciccarelli, Maria; Oranger, Angela; Mori, Giorgio; Natale, Maria Pia; Gigante, Margherita; Ranieri, Elena; Gesualdo, Loreto; Colucci, Silvia; Cavallo, Luciano; Grano, Maria

    2015-12-01

    Subjects with hypergonadotropic hypogonadism due to Turner's syndrome show low cortical mineral density, osteoporosis and risk of fractures. It is not clear if this bone fragility derives from chromosomal abnormalities or is the result of inadequate bone formation due to estrogen deficiency. The aim of this study was to investigate the cellular mechanisms underlying bone fragility in subjects with Turner's syndrome before induction of puberty and after hormonal replacement therapy (HRT). For this purpose, we have evaluated the osteoclastogenic potential of non-fractioned and T-cell depleted cultures of peripheral blood mononuclear cells (PBMCs) belonging to girls with Turner's syndrome who had not been treated with HRT yet, girls and young women who were on HRT and age-matched controls. Untreated subjects showed high FSH serum levels, whereas the other subjects displayed normal FSH serum levels. T-cell immunophenotype was analyzed through flow cytometry. Biochemical and DXA analyses were performed. Spontaneous osteoclastogenesis in non-fractioned and T-cell depleted cultures of PBMC belonging to girls with high FSH levels was more evident than in cultures of subjects with normal FSH levels. In the former, osteoclastogenesis was sustained by monocytes expressing high levels of c-fms, TNF-α and RANK, and T-cells producing high RANKL and TNF-α; in the latter it was supported by T-cells expressing high RANKL levels. CD4(+)CD25(high) T-cells were reduced in all subjects, whereas CD3(+)/CD16(+)/CD56(+) NKT-cells were increased in those with high FSH levels. High RANKL and CTX levels were detected in the sera. Bone impairment was already detectable by DXA in subjects aged under 10, although it became more evident with aging. In conclusion, our results demonstrated that bone fragility in subjects with Turner's syndrome is associated to enhanced osteoclastogenesis. This process seems to be due to high FSH serum levels before HRT, whereas it is caused by high RANKL during

  4. RBP-J imposes a requirement for ITAM-mediated costimulation of osteoclastogenesis

    PubMed Central

    Li, Susan; Miller, Christine H.; Giannopoulou, Eugenia; Hu, Xiaoyu; Ivashkiv, Lionel B.; Zhao, Baohong

    2014-01-01

    Osteoclastogenesis requires activation of RANK signaling as well as costimulatory signals from immunoreceptor tyrosine-based activation motif-containing (ITAM-containing) receptors/adaptors, predominantly tyrosine kinase–binding proteins DAP12 and FcRγ, in osteoclast precursors. It is not well understood how costimulatory signals are regulated and integrated with RANK signaling. Here, we found that osteopetrotic bone phenotypes in mice lacking DAP12 or DAP12 and FcRγ are mediated by the transcription factor RBP-J, as deletion of Rbpj in these mice substantially rescued the defects of bone remodeling. Using a TNF-α–induced model of inflammatory bone resorption, we determined that RBP-J deficiency enables TNF-α to induce osteoclast formation and bone resorption in DAP12-deficient animals. Thus, RBP-J imposes a requirement for ITAM-mediated costimulation of RANKL or TNF-α–induced osteoclastogenesis. Mechanistically, RBP-J suppressed induction of key osteoclastogenic factors NFATc1, BLIMP1, and c-FOS by inhibiting ITAM-mediated expression and function of PLCγ2 and activation of downstream calcium-CaMKK/PYK2 signaling. Moreover, RBP-J suppressed Plcg2 expression and downstream calcium oscillations indirectly by a TGF-β/PLCγ2/calcium axis. Together, our findings indicate that RBP-J suppresses ITAM-mediated costimulation, thereby limiting crosstalk between ITAM and RANK/TNFR signaling and allowing fine tuning of osteoclastogenesis during bone homeostasis and under inflammatory conditions. Furthermore, these data suggest that environmental cues that regulate RBP-J expression/function potentially modulate the requirement for costimulatory signaling for osteoclast differentiation and bone remodeling. PMID:25329696

  5. In vitro investigation of the roles of the proinflammatory cytokines tumor necrosis factor-α and interleukin-1 in murine osteoclastogenesis.

    PubMed

    Jules, Joel; Feng, Xu

    2014-01-01

    Whereas the monocyte/macrophage-colony stimulating factor (M-CSF) and the receptor activator of NF-кB ligand (RANKL) are essential and sufficient for osteoclastogenesis, a number of other cytokines including two proinflammatory cytokines, tumor necrosis factor-α (TNF-α), and interleukin-1 (IL-1), can exert profound effects on the osteoclastogenic process. However, the precise mode of action of TNF-α and IL-1 in osteoclastogenesis remains controversial. While some groups demonstrated that these two cytokines can promote murine osteoclastogenesis in vitro in the presence of M-CSF only, we and others showed that TNF-α-/IL-1-mediated osteoclastogenesis requires permissive levels of RANKL. This chapter describes the method that we have used to investigate the effects of TNF-α and IL-1 on osteoclast formation in in vitro osteoclastogenesis assays using primary murine bone marrow macrophages (BMMs). Detailed experimental conditions are provided and critical points are discussed to help the reader use the method to independently evaluate the roles of TNF-α and IL-1 in osteoclastogenesis in vitro. Moreover, this method can be used to further elucidate the signaling mechanisms by which these two cytokines act in concert with RANKL or with each other to modulate osteoclastogenesis.

  6. Insights into monocyte-driven osteoclastogenesis and its link with hematopoiesis: regulatory roles of PECAM-1 (CD31) and SHP-1.

    PubMed

    Wu, Yue; Madri, Joseph

    2010-01-01

    Osteoclasts are derived from hematopoietic cells of monocyte-macrophage lineage. Osteoclastogenesis is orchestrated by the migration of monocytic osteoclast progenitor cells in close proximity to bone surfaces destined for resorption. Although the overall roles of monocyte migratory behavior in osteoclastogenesis remain enigmatic, impaired monocyte migration can lead to either decreased or increased osteoclastogenesis, which appears contingent upon the roles of migration in either fusion events required for osteoclast formation or terminal differentiation of osteoclasts. The cell adhesion molecule PECAM-1 (platelet endothelial cell adhesion molecule 1), in concert with the tyrosine phosphatase SHP-1 (Src homology 2-containing protein tyrosine phosphatase 1) and tyrosine kinase Syk-1 (spleen tyrosine kinase 1), functions as a negative regulator of osteoclastogenesis. Both PECAM-1 (CD31) and SHP-1 knockout mice exhibit not only increased osteoclastogenesis but also abnormal hematopoiesis, which is suggestive of the intricate interplay between hematopoiesis and osteoclastogenesis. Interestingly, the most pronounced effect of PECAM-1 deficiency on hematopoiesis is reflected by excessive megakaryocytopoiesis. Emerging data have suggested the role of megakaryocytes in bone remodeling. Megakaryocytopoiesis-osteoclastogenesis interactions are discussed herein, reconciling the discrepancies shown by different studies in this area. PECAM-1 and non-receptor tyrosine phosphatase polymorphisms have been revealed in a spectrum of diseases. The complex regulatory roles of PECAM-1 and SHP-1 in vivo suggest the potential utilization of polymorphisms of these genes for diagnostic purposes. PMID:21083524

  7. Hedgehog signaling induced by breast cancer cells promotes osteoclastogenesis and osteolysis.

    PubMed

    Das, Shamik; Samant, Rajeev S; Shevde, Lalita A

    2011-03-18

    Bone integrity is maintained by a dynamic equilibrium between the activities of bone-forming osteoblasts and bone-resorbing osteoclasts. Osteolytic lesions are a painful consequence of metastasis of breast cancer cells to bone in an overwhelming majority of breast cancer patients. Factors secreted by breast cancer cells propel a cascade of events that trigger osteoclastogenesis and elevated bone resorption. In the present study, we show that the Hedgehog (Hh) ligands secreted by breast cancer cells promote osteoclast differentiation and potentiate the activity of mature osteoclasts. Paracrine Hh signaling induced by breast cancer cells mediates a detrimental chain of events by the up-regulation of osteopontin (OPN), which in turn enhances osteoclastic activity by up-regulating cathepsin K and MMP9. Hh signaling is essential for osteoclasts because blocking the Hh pathway using the pharmacological Hh inhibitor, cyclopamine, results in an overall decrease in osteoclastogenesis and resorptive activity. Our studies suggest that inhibiting Hh signaling interferes with the ability of pre-osteoclasts to respond to the stimulatory effects of the breast cancer cells, indicating that Hh signaling is vital to osteoclast activity. PMID:21169638

  8. Akermanite bioceramics promote osteogenesis, angiogenesis and suppress osteoclastogenesis for osteoporotic bone regeneration.

    PubMed

    Xia, Lunguo; Yin, Zhilan; Mao, Lixia; Wang, Xiuhui; Liu, Jiaqiang; Jiang, Xinquan; Zhang, Zhiyuan; Lin, Kaili; Chang, Jiang; Fang, Bing

    2016-01-01

    It is a big challenge for bone healing under osteoporotic pathological condition with impaired angiogenesis, osteogenesis and remodeling. In the present study, the effect of Ca, Mg, Si containing akermanite bioceramics (Ca2MgSi2O7) extract on cell proliferation, osteogenic differentiation and angiogenic factor expression of BMSCs derived from ovariectomized rats (BMSCs-OVX) as well as the expression of osteoclastogenic factors was evaluated. The results showed that akermanite could enhance cell proliferation, ALP activity, expression of Runx2, BMP-2, BSP, OPN, OCN, OPG and angiogenic factors including VEGF and ANG-1. Meanwhile, akermanite could repress expression of osteoclastogenic factors including RANKL and TNF-α. Moreover, akermanite could activate ERK, P38, AKT and STAT3 signaling pathways, while crosstalk among these signaling pathways was evident. More importantly, the effect of akermanite extract on RANKL-induced osteoclastogenesis was evaluated by TRAP staining and real-time PCR assay. The results showed that akermanite could suppress osteoclast formation and expression of TRAP, cathepsin K and NFATc1. The in vivo experiments revealed that akermanite bioceramics dramatically stimulated osteogenesis and angiogenesis in an OVX rat critical-sized calvarial defect model. All these results suggest that akermanite bioceramics with the effects of Mg and Si ions on osteogenesis, angiogenesis and osteoclastogenesis are promising biomaterials for osteoporotic bone regeneration. PMID:26911441

  9. DEL-1 restrains osteoclastogenesis and inhibits inflammatory bone loss in nonhuman primates.

    PubMed

    Shin, Jieun; Maekawa, Tomoki; Abe, Toshiharu; Hajishengallis, Evlambia; Hosur, Kavita; Pyaram, Kalyani; Mitroulis, Ioannis; Chavakis, Triantafyllos; Hajishengallis, George

    2015-09-30

    DEL-1 (developmental endothelial locus-1) is an endothelial cell-secreted protein that regulates LFA-1 (lymphocyte function-associated antigen-1) integrin-dependent leukocyte recruitment and inflammation in various tissues. We identified a novel regulatory mechanism of DEL-1 in osteoclast biology. Specifically, we showed that DEL-1 is expressed by human and mouse osteoclasts and regulates their differentiation and resorptive function. Mechanistically, DEL-1 inhibited the expression of NFATc1, a master regulator of osteoclastogenesis, in a Mac-1 integrin-dependent manner. In vivo mechanistic analysis has dissociated the anti-inflammatory from the anti-bone-resorptive action of DEL-1 and identified structural components thereof mediating these distinct functions. Locally administered human DEL-1 blocked inflammatory periodontal bone loss in nonhuman primates-a relevant model of human periodontitis. The ability of DEL-1 to regulate both upstream (inflammatory cell recruitment) and downstream (osteoclastogenesis) events that lead to inflammatory bone loss paves the way to a new class of endogenous therapeutics for treating periodontitis and perhaps other inflammatory disorders. PMID:26424570

  10. Niclosamide suppresses RANKL-induced osteoclastogenesis and prevents LPS-induced bone loss.

    PubMed

    Cheon, Yoon-Hee; Kim, Ju-Young; Baek, Jong Min; Ahn, Sung-Jun; So, Hong-Seob; Oh, Jaemin

    2016-02-01

    Niclosamide (5-chloro-salicyl-(2-chloro-4-nitro) anilide) is an oral anthelmintic drug used for treating intestinal infection of most tapeworms. Recently, niclosamide was shown to have considerable efficacy against some tumor cell lines, including colorectal, prostate, and breast cancers, and acute myelogenous leukemia. Specifically, the drug was identified as a potent inhibitor of signal transducer and activator of transcription 3 (STAT3), which is associated with osteoclast differentiation and function. In this study, we assessed the effect of niclosamide on osteoclastogenesis in vitro and in vivo. Our in vitro study showed that receptor activator of nuclear factor-kappaB ligand (RANKL)-induced osteoclast differentiation was inhibited by niclosamide, due to inhibition of serine-threonine protein kinase (Akt) phosphorylation, inhibitor of nuclear factor-kappaB (IκB), and STAT3 serine(727). Niclosamide decreased the expression of the major transcription factors c-Fos and NFATc1, and thereafter abrogated the mRNA expression of osteoclast-specific genes, including TRAP, OSCAR, αv/β3 integrin (integrin αv, integrin β3), and cathepsin K (CtsK). In an in vivo model, niclosamide prevented lipopolysaccharide-induced bone loss by diminishing osteoclast activity. Taken together, our results show that niclosamide is effective in suppressing osteoclastogenesis and may be considered as a new and safe therapeutic candidate for the clinical treatment of osteoclast-related diseases such as osteoporosis. PMID:26792726

  11. PLCγ2 regulates osteoclastogenesis via its interaction with ITAM proteins and GAB2

    PubMed Central

    Mao, Dailing; Epple, Holly; Uthgenannt, Brian; Novack, Deborah V.; Faccio, Roberta

    2006-01-01

    Excessive bone loss in arthritic diseases is mostly due to abnormal activation of the immune system leading to stimulation of osteoclasts. While phospholipase Cγ (PLCγ) isoforms are known modulators of T and B lymphocyte–mediated immune responses, we found that blockade of PLCγ enzymatic activity also blocks early osteoclast development and function. Importantly, targeted deletion of Plcg2 in mice led to an osteopetrotic phenotype. PLCγ2, independent of PLCγ1, was required for receptor activator of NF-κB ligand–induced (RANKL-induced) osteoclastogenesis by differentially regulating nuclear factor of activated T cells c1 (NFATc1), activator protein–1 (AP1), and NF-κB. Specifically, we show that NFATc1 upregulation is dependent on RANKL-mediated phosphorylation of PLCγ2 downstream of Dap12/Fc receptor γ (Dap12/FcRγ) receptors and is blocked by the PLCγ inhibitor U73122. In contrast, activation of JNK and NF-κB was not affected by U73122 or Dap12/FcRγ deletion. Interestingly, we found that in osteoclasts, PLCγ2 formed a complex with the regulatory adapter molecule GAB2, was required for GAB2 phosphorylation, and modulated GAB2 recruitment to RANK. Thus, PLCγ2 mediates RANKL-induced osteoclastogenesis and is a potential candidate for antiresorptive therapy. PMID:17053833

  12. DEL-1 restrains osteoclastogenesis and inhibits inflammatory bone loss in nonhuman primates

    PubMed Central

    Shin, Jieun; Maekawa, Tomoki; Abe, Toshiharu; Hajishengallis, Evlambia; Hosur, Kavita; Pyaram, Kalyani; Mitroulis, Ioannis; Chavakis, Triantafyllos; Hajishengallis, George

    2015-01-01

    DEL-1 is an endothelial cell-secreted protein that regulates LFA-1-integrin–dependent leukocyte recruitment and inflammation in various tissues. Here we identified a novel regulatory mechanism of DEL-1 in osteoclast biology. Specifically, we showed that DEL-1 is expressed by human and mouse osteoclasts and regulates their differentiation and resorptive function. Mechanistically, DEL-1 inhibited the expression of NFATc1, a master regulator of osteoclastogenesis, in a Mac-1-integrin–dependent manner. In vivo mechanistic analysis has dissociated the anti-inflammatory from the anti-bone resorptive action of DEL-1 and identified structural components thereof mediating these distinct functions. Importantly, locally administered human DEL-1 blocked inflammatory periodontal bone loss in nonhuman primates—a relevant model of human periodontitis. The ability of DEL-1 to regulate both upstream (inflammatory cell recruitment) and downstream (osteoclastogenesis) events that lead to inflammatory bone loss paves the way to a new class of endogenous therapeutics for treating periodontitis and perhaps other inflammatory disorders. PMID:26424570

  13. SH3BP2 is an activator of NFAT activity and osteoclastogenesis

    SciTech Connect

    Lietman, Steven A. Yin Lihong; Levine, Michael A.

    2008-07-11

    Heterozygous activating mutations in exon 9 of SH3BP2 have been found in most patients with cherubism, an unusual genetic syndrome characterized by excessive remodeling of the mandible and maxilla due to spontaneous and excessive osteoclastic bone resorption. Osteoclasts differentiate after binding of sRANKL to RANK induces a number of downstream signaling effects, including activation of the calcineurin/NFAT (nuclear factor of activated T cells) pathway. Here, we have investigated the functional significance of SH3BP2 protein on osteoclastogenesis in the presence of sRANKL. Our results indicate that SH3BP2 both increases nuclear NFATc1 in sRANKL treated RAW 264.7 preosteoclast cells and enhances expression of tartrate resistant acid phosphatase (TRAP), a specific marker of osteoclast differentiation. Moreover, overexpression of SH3BP2 in RAW 264.7 cells potentiates sRANKL-stimulated phosphorylation of PLC{gamma}1 and 2, thus providing a mechanistic pathway for the rapid translocation of NFATc1 into the nucleus and increased osteoclastogenesis in cherubism.

  14. Osteoblast-derived WNT16 represses osteoclastogenesis and prevents cortical bone fragility fractures

    PubMed Central

    Movérare-Skrtic, Sofia; Henning, Petra; Liu, Xianwen; Nagano, Kenichi; Saito, Hiroaki; Börjesson, Anna E; Sjögren, Klara; Windahl, Sara H; Farman, Helen; Kindlund, Bert; Engdahl, Cecilia; Koskela, Antti; Zhang, Fu-Ping; Eriksson, Emma E; Zaman, Farasat; Hammarstedt, Ann; Isaksson, Hanna; Bally, Marta; Kassem, Ali; Lindholm, Catharina; Sandberg, Olof; Aspenberg, Per; Sävendahl, Lars; Feng, Jian Q; Tuckermann, Jan; Tuukkanen, Juha; Poutanen, Matti; Baron, Roland; Lerner, Ulf H; Gori, Francesca; Ohlsson, Claes

    2015-01-01

    The WNT16 locus is a major determinant of cortical bone thickness and nonvertebral fracture risk in humans. The disability, mortality and costs caused by osteoporosis-induced nonvertebral fractures are enormous. We demonstrate here that Wnt16-deficient mice develop spontaneous fractures as a result of low cortical thickness and high cortical porosity. In contrast, trabecular bone volume is not altered in these mice. Mechanistic studies revealed that WNT16 is osteoblast derived and inhibits human and mouse osteoclastogenesis both directly by acting on osteoclast progenitors and indirectly by increasing expression of osteoprotegerin (Opg) in osteoblasts. The signaling pathway activated by WNT16 in osteoclast progenitors is noncanonical, whereas the pathway activated in osteoblasts is both canonical and noncanonical. Conditional Wnt16 inactivation revealed that osteoblast-lineage cells are the principal source of WNT16, and its targeted deletion in osteoblasts increases fracture susceptibility. Thus, osteoblast-derived WNT16 is a previously unreported key regulator of osteoclastogenesis and fracture susceptibility. These findings open new avenues for the specific prevention or treatment of nonvertebral fractures, a substantial unmet medical need. PMID:25306233

  15. Vps35 loss promotes hyperresorptive osteoclastogenesis and osteoporosis via sustained RANKL signaling

    PubMed Central

    Xia, Wen-Fang; Tang, Fu-Lei; Xiong, Lei; Xiong, Shan; Jung, Ji-Ung; Lee, Dae-Hoon; Li, Xing-Sheng; Feng, Xu; Mei, Lin

    2013-01-01

    Receptor activator of NF-κB (RANK) plays a critical role in osteoclastogenesis, an essential process for the initiation of bone remodeling to maintain healthy bone mass and structure. Although the signaling and function of RANK have been investigated extensively, much less is known about the negative regulatory mechanisms of its signaling. We demonstrate in this paper that RANK trafficking, signaling, and function are regulated by VPS35, a major component of the retromer essential for selective endosome to Golgi retrieval of membrane proteins. VPS35 loss of function altered RANK ligand (RANKL)–induced RANK distribution, enhanced RANKL sensitivity, sustained RANKL signaling, and increased hyperresorptive osteoclast (OC) formation. Hemizygous deletion of the Vps35 gene in mice promoted hyperresorptive osteoclastogenesis, decreased bone formation, and caused a subsequent osteoporotic deficit, including decreased trabecular bone volumes and reduced trabecular thickness and density in long bones. These results indicate that VPS35 critically deregulates RANK signaling, thus restraining increased formation of hyperresorptive OCs and preventing osteoporotic deficits. PMID:23509071

  16. Neuronal TRPV1 activation regulates alveolar bone resorption by suppressing osteoclastogenesis via CGRP.

    PubMed

    Takahashi, Naoki; Matsuda, Yumi; Sato, Keisuke; de Jong, Petrus R; Bertin, Samuel; Tabeta, Koichi; Yamazaki, Kazuhisa

    2016-01-01

    The transient receptor potential vanilloid 1 (TRPV1) channel is abundantly expressed in peripheral sensory neurons where it acts as an important polymodal cellular sensor for heat, acidic pH, capsaicin, and other noxious stimuli. The oral cavity is densely innervated by afferent sensory neurons and is a highly specialized organ that protects against infections as well as physical, chemical, and thermal stresses in its capacity as the first part of the digestive system. While the function of TRPV1 in sensory neurons has been intensively studied in other organs, its physiological role in periodontal tissues is unclear. In this study we found that Trpv1(-/-) mice developed severe bone loss in an experimental model of periodontitis. Chemical ablation of TRPV1-expressing sensory neurons recapitulated the phenotype of Trpv1(-/-) mice, suggesting a functional link between neuronal TRPV1 signaling and periodontal bone loss. TRPV1 activation in gingival nerves induced production of the neuropeptide, calcitonin gene-related peptide (CGRP), and CGRP treatment inhibited osteoclastogenesis in vitro. Oral administration of the TRPV1 agonist, capsaicin, suppressed ligature-induced bone loss in mice with fewer tartrate-resistant acid phosphatase (TRAP)-positive cells in alveolar bone. These results suggest that neuronal TRPV1 signaling in periodontal tissue is crucial for the regulation of osteoclastogenesis via the neuropeptide CGRP. PMID:27388773

  17. LIGHT/TNFSF14 increases osteoclastogenesis and decreases osteoblastogenesis in multiple myeloma-bone disease

    PubMed Central

    Oranger, Angela; Gigante, Isabella; Mori, Giorgio; Taurino, Grazia; Mongelli, Teresa; Colaianni, Graziana; Di Benedetto, Adriana; Tamma, Roberto; Ingravallo, Giuseppe; Napoli, Anna; Faienza, Maria Felicia; Mestice, Anna; Curci, Paola; Specchia, Giorgina

    2014-01-01

    LIGHT, a TNF superfamily member, is involved in T-cell homeostasis and erosive bone disease associated with rheumatoid arthritis. Herein, we investigated whether LIGHT has a role in Multiple Myeloma (MM)-bone disease. We found that LIGHT was overproduced by CD14+ monocytes, CD8+ T-cells and neutrophils of peripheral blood and bone marrow (BM) from MM-bone disease patients. We also found that LIGHT induced osteoclastogenesis and inhibited osteoblastogenesis. In cultures from healthy-donors, LIGHT induced osteoclastogenesis in RANKL-dependent and -independent manners. In the presence of a sub-optimal RANKL concentration, LIGHT and RANKL synergically stimulated osteoclast formation, through the phosphorylation of Akt, NFκB and JNK pathways. In cultures of BM samples from patients with bone disease, LIGHT inhibited the formation of CFU-F and CFU-OB as well as the expression of osteoblastic markers including collagen-I, osteocalcin and bone sialoprotein-II. LIGHT indirectly inhibited osteoblastogenesis in part through sclerostin expressed by monocytes. In conclusion, our findings for the first time provide evidence for a role of LIGHT in MM-bone disease development. PMID:25460501

  18. Neuronal TRPV1 activation regulates alveolar bone resorption by suppressing osteoclastogenesis via CGRP

    PubMed Central

    Takahashi, Naoki; Matsuda, Yumi; Sato, Keisuke; de Jong, Petrus R.; Bertin, Samuel; Tabeta, Koichi; Yamazaki, Kazuhisa

    2016-01-01

    The transient receptor potential vanilloid 1 (TRPV1) channel is abundantly expressed in peripheral sensory neurons where it acts as an important polymodal cellular sensor for heat, acidic pH, capsaicin, and other noxious stimuli. The oral cavity is densely innervated by afferent sensory neurons and is a highly specialized organ that protects against infections as well as physical, chemical, and thermal stresses in its capacity as the first part of the digestive system. While the function of TRPV1 in sensory neurons has been intensively studied in other organs, its physiological role in periodontal tissues is unclear. In this study we found that Trpv1−/− mice developed severe bone loss in an experimental model of periodontitis. Chemical ablation of TRPV1-expressing sensory neurons recapitulated the phenotype of Trpv1−/− mice, suggesting a functional link between neuronal TRPV1 signaling and periodontal bone loss. TRPV1 activation in gingival nerves induced production of the neuropeptide, calcitonin gene-related peptide (CGRP), and CGRP treatment inhibited osteoclastogenesis in vitro. Oral administration of the TRPV1 agonist, capsaicin, suppressed ligature-induced bone loss in mice with fewer tartrate-resistant acid phosphatase (TRAP)-positive cells in alveolar bone. These results suggest that neuronal TRPV1 signaling in periodontal tissue is crucial for the regulation of osteoclastogenesis via the neuropeptide CGRP. PMID:27388773

  19. Functional osteoclastogenesis: the baseline variability in blood donor precursors is not associated with age and gender.

    PubMed

    Pivetta, Eliana; Wassermann, Bruna; Bulian, Pietro; Steffan, Agostino; Colombatti, Alfonso; Polesel, Jerry; Spessotto, Paola

    2015-10-13

    Mononuclear osteoclast precursors circulate in the monocyte fraction of peripheral blood and form multinuclear cells with all osteoclastic phenotypic characteristics when cultured in the presence of macrophage colony stimulating factor (M-CSF) and receptor activator of nuclear factor kB ligand (RANKL). The method to obtain osteoclast precursors from peripheral blood is simple but the number of recovered osteoclasts is often largely insufficient for functional analyses. The original aim of this study was to develop a rapid and efficient method that could overcome the donor variability and enrich the osteoclast precursors from a small volume of peripheral blood as a basis for future clinical studies to correlate the differentiation potential of circulating osteoclast precursors with bone lesions in cancer patients. We improved the efficiency of osteoclastogenesis by reducing isolation and purification times and overcame the use of flow cytometry and immunomagnetic purification procedures. In our culture system the osteoclast number was increased several-fold and the precursors were able to reach a full differentiation within seven days of culture. Both age as well as gender differences in osteoclastogenesis efficiency were no longer evident by processing limited volume blood samples with this simple and rapid method.

  20. Akermanite bioceramics promote osteogenesis, angiogenesis and suppress osteoclastogenesis for osteoporotic bone regeneration

    PubMed Central

    Xia, Lunguo; Yin, Zhilan; Mao, Lixia; Wang, Xiuhui; Liu, Jiaqiang; Jiang, Xinquan; Zhang, Zhiyuan; Lin, Kaili; Chang, Jiang; Fang, Bing

    2016-01-01

    It is a big challenge for bone healing under osteoporotic pathological condition with impaired angiogenesis, osteogenesis and remodeling. In the present study, the effect of Ca, Mg, Si containing akermanite bioceramics (Ca2MgSi2O7) extract on cell proliferation, osteogenic differentiation and angiogenic factor expression of BMSCs derived from ovariectomized rats (BMSCs-OVX) as well as the expression of osteoclastogenic factors was evaluated. The results showed that akermanite could enhance cell proliferation, ALP activity, expression of Runx2, BMP-2, BSP, OPN, OCN, OPG and angiogenic factors including VEGF and ANG-1. Meanwhile, akermanite could repress expression of osteoclastogenic factors including RANKL and TNF-α. Moreover, akermanite could activate ERK, P38, AKT and STAT3 signaling pathways, while crosstalk among these signaling pathways was evident. More importantly, the effect of akermanite extract on RANKL-induced osteoclastogenesis was evaluated by TRAP staining and real-time PCR assay. The results showed that akermanite could suppress osteoclast formation and expression of TRAP, cathepsin K and NFATc1. The in vivo experiments revealed that akermanite bioceramics dramatically stimulated osteogenesis and angiogenesis in an OVX rat critical-sized calvarial defect model. All these results suggest that akermanite bioceramics with the effects of Mg and Si ions on osteogenesis, angiogenesis and osteoclastogenesis are promising biomaterials for osteoporotic bone regeneration. PMID:26911441

  1. Cordycepin Prevents Bone Loss through Inhibiting Osteoclastogenesis by Scavenging ROS Generation

    PubMed Central

    Dou, Ce; Cao, Zhen; Ding, Ning; Hou, Tianyong; Luo, Fei; Kang, Fei; Yang, Xiaochao; Jiang, Hong; Xie, Zhao; Hu, Min; Xu, Jianzhong; Dong, Shiwu

    2016-01-01

    Cordycepin was previously reported to have anti-tumor, anti-inflammatory and anti-oxidant activity. However, the potential role of cordycepin in bone metabolism and cell biology of osteoclasts remains unclear. In our study, we focused on the in vitro effects of cordycepin on osteoclastogenesis and its in vivo effects in ovariectomized (OVX) mice. Osteoclast differentiation, formation and fusion were evaluated by Tartrate-resistant acid phosphatase (TRAP) stain, focal adhesion stain and fusion assay, respectively. Osteoclastic bone resorption was evaluated by pit formation assay. Reactive oxygen species (ROS) generation and removal were detected by the ROS assay. OVX mice were orally administered with 10 mg/kg of cordycepin daily for four weeks. In vitro results revealed that cordycepin inhibited receptor activator of nuclear factor κB ligand (RANKL)-induced osteoclast differentiation, formation, fusion and bone resorption activity. We further proved that cordycepin treatments scavenged the generation of ROS, upregulated interferon regulatory factor 8 (IRF-8) and suppressed the activity of nuclear factor of activated T cells c1 (NFATc1) during osteoclastogenesis. In vivo results indicated cordycepin prevents bone loss, rescues bone microarchitecture, and restores bone mineralization in OVX mice. Our observations strongly suggested that cordycepin is an efficient osteoclast inhibitor and hold potential therapeutic value in preventing bone loss among postmenopausal osteoporosis patients. PMID:27104563

  2. Calcitonin may be a useful therapeutic agent for osteoclastogenesis syndromes involving premature eruption of the tooth.

    PubMed

    Qin, Han; Yang, Fu Sheng

    2008-01-01

    Tooth eruption is a complex and tightly regulated process that involves cells of the tooth organ and the surrounding alveolus. Recent researches have shown that tooth eruption depends on the presence of osteoclasts to create an eruption pathway through the alveolar bone. The most important physiologic role likely being at the eruptive site, in the formation of osteoclasts through signaling via the RANKL/OPG pathway. Calcitonin is an endogenous inhibitor of osteoclast development and function and thus of bone resorption. Specific calcitonin receptors are expressed on osteoclasts and their activation leads to the inhibition of osteoclast development and functions. Recent concepts about inhibiting osteoclastogenesis of calcitonin is that RANKL-induced osteoclastogenesis were blocked by the endogenous decoy receptor osteoprotegerin and were also strongly reduced by calcitonin, we hypothesize that calcitonin may has anti-eruption properties. For the clinical point of view, we can inject calcitonin in the oral mucosa of the affected tooth to inhibit bone resorption, then to facilitate root forming which may useful to premature eruption of tooth and short root anomaly disease (SRA) caused by every reasons such as hypoplasia of teeth root (HTR), Singleton-Mertern syndrome (SMS), infection and iatrogenic factors, etc. PMID:18023993

  3. Hepatocyte growth factor can substitute for M-CSF to support osteoclastogenesis

    SciTech Connect

    Adamopoulos, Iannis E. . E-mail: iadamopoulos@path.wustl.edu; Xia Zhidao; Lau, Y.S.; Athanasou, Nicholas A.

    2006-11-17

    Osteopetrotic mice lacking functional macrophage-colony stimulating factor (M-CSF) recover with ageing, suggesting that alternative osteoclastogenesis pathways exist. Hepatocyte growth factor (HGF) and M-CSF signal through tyrosine kinase receptors and phosphorylate common transducers and effectors such as Src, Grb2, and PI3-Kinase. HGF is known to play a role in osteoclast formation, and in this study we have determined whether HGF could replace M-CSF to support human osteoclastogenesis. We found that the HGF receptor, c-Met, is expressed by the CD14{sup +} monocyte fraction of human peripheral blood mononuclear cells (PBMC). HGF was able to support monocyte-osteoclast differentiation in the presence of receptor activator for nuclear factor {kappa}B ligand as evidenced by the formation of numerous multinucleated tartrate-resistant acid phosphatase and vitronectin receptor positive cells which formed F-actin rings and were capable of lacunar resorption. The addition of a neutralising antibody to M-CSF did not inhibit osteoclast differentiation. HGF is a well-established survival factor and viability assays and live/dead staining showed that it promoted the survival and proliferation of monocytes and osteoclasts in a manner similar to M-CSF. Our findings indicate that HGF can substitute for M-CSF to support human osteoclast formation.

  4. Osteoactivin inhibition of osteoclastogenesis is mediated through CD44-ERK signaling

    PubMed Central

    Sondag, Gregory R; Mbimba, Thomas S; Moussa, Fouad M; Novak, Kimberly; Yu, Bing; Jaber, Fatima A; Abdelmagid, Samir M; Geldenhuys, Werner J; Safadi, Fayez F

    2016-01-01

    Osteoactivin is a heavily glycosylated protein shown to have a role in bone remodeling. Previous studies from our lab have shown that mutation in Osteoactivin enhances osteoclast differentiation but inhibits their function. To date, a classical receptor and a signaling pathway for Osteoactivin-mediated osteoclast inhibition has not yet been characterized. In this study, we examined the role of Osteoactivin treatment on osteoclastogenesis using bone marrow-derived osteoclast progenitor cells and identify a signaling pathway relating to Osteoactivin function. We reveal that recombinant Osteoactivin treatment inhibited osteoclast differentiation in a dose-dependent manner shown by qPCR, TRAP staining, activity and count. Using several approaches, we show that Osteoactivin binds CD44 in osteoclasts. Furthermore, recombinant Osteoactivin treatment inhibited ERK phosphorylation in a CD44-dependent manner. Finally, we examined the role of Osteoactivin on receptor activator of nuclear factor-κ B ligand (RANKL)-induced osteolysis in vivo. Our data indicate that recombinant Osteoactivin inhibits RANKL-induced osteolysis in vivo and this effect is CD44-dependent. Overall, our data indicate that Osteoactivin is a negative regulator of osteoclastogenesis in vitro and in vivo and that this process is regulated through CD44 and ERK activation. PMID:27585719

  5. CD200:CD200R Interactions Regulate Osteoblastogenesis and Osteoclastogenesis in Space

    NASA Astrophysics Data System (ADS)

    Kos, Olha; Lee, Lydia; Gorezynski, Reginald M.

    2008-06-01

    We report data from studies on a recent FOTON mission, using an eOSTEO cell culture system developed by Systems Technologies Canada Inc., showing that in space overexpression of CD200 (using cell cultures derived from transgenic mice expressing CD200 under control of a doxycycline-inducible promoter) is associated with an attenuation in the suppression of mRNA markers of osteoblastogeneis (including BSP, OPG) with concomitant loss of the preferential increased osteoclastogenesis which is otherwise seen in the absence of CD200. In separate cultures we also explored the additional effect of altered inflammatory cytokines on the perturbation of expression of these bone-related genes, using cells from cytokine-receptor knockout mice. Our data suggest that while exogenous inflammatory cytokines (TNFα+IL1β) increased mRNAs typical for osteoclastogenesis under ground conditions, they appeared to produce no further modification of mRNA expression in flight. We suggest that altered mRNA expression in flight is not primarily driven by altered expression of inflammatory cytokines.

  6. Tetraspanin CD9 regulates osteoclastogenesis via regulation of p44/42 MAPK activity

    SciTech Connect

    Yi, TacGhee; Kim, Hye-Jin; Cho, Je-Yoel; Woo, Kyung Mi; Ryoo, Hyun-Mo; Kim, Gwan-Shik; Baek, Jeong-Hwa . E-mail: baekjh@snu.ac.kr

    2006-08-18

    Tetraspanin CD9 has been shown to regulate cell-cell fusion in sperm-egg fusion and myotube formation. However, the role of CD9 in osteoclast, another multinucleated cell type, is not still clear. Therefore, we investigated the role of CD9 in osteoclast differentiation. CD9 was expressed in osteoclast lineage cells and its expression level increased during the progression of RANKL-induced osteoclastogenesis. KMC8, a neutralizing antibody specific to CD9, significantly suppressed RANKL-induced multinucleated osteoclast formation and the mRNA expression of osteoclast differentiation marker genes. To define CD9-regulated osteoclastogenic signaling pathway, MAPK pathways were examined. KMC8 induced long-term phosphorylation of p44/42 MAPK, but not of p38 MAPK. Constitutive activation of p44/42 MAPK by overexpressing constitutive-active mutant of MEK1 almost completely blocked osteoclast differentiation. Taken together, these results suggest that CD9 expressed on osteoclast lineage cells might positively regulate osteoclastogenesis via the regulation of p44/42 MAPK activity.

  7. Osteoactivin inhibition of osteoclastogenesis is mediated through CD44-ERK signaling.

    PubMed

    Sondag, Gregory R; Mbimba, Thomas S; Moussa, Fouad M; Novak, Kimberly; Yu, Bing; Jaber, Fatima A; Abdelmagid, Samir M; Geldenhuys, Werner J; Safadi, Fayez F

    2016-01-01

    Osteoactivin is a heavily glycosylated protein shown to have a role in bone remodeling. Previous studies from our lab have shown that mutation in Osteoactivin enhances osteoclast differentiation but inhibits their function. To date, a classical receptor and a signaling pathway for Osteoactivin-mediated osteoclast inhibition has not yet been characterized. In this study, we examined the role of Osteoactivin treatment on osteoclastogenesis using bone marrow-derived osteoclast progenitor cells and identify a signaling pathway relating to Osteoactivin function. We reveal that recombinant Osteoactivin treatment inhibited osteoclast differentiation in a dose-dependent manner shown by qPCR, TRAP staining, activity and count. Using several approaches, we show that Osteoactivin binds CD44 in osteoclasts. Furthermore, recombinant Osteoactivin treatment inhibited ERK phosphorylation in a CD44-dependent manner. Finally, we examined the role of Osteoactivin on receptor activator of nuclear factor-κ B ligand (RANKL)-induced osteolysis in vivo. Our data indicate that recombinant Osteoactivin inhibits RANKL-induced osteolysis in vivo and this effect is CD44-dependent. Overall, our data indicate that Osteoactivin is a negative regulator of osteoclastogenesis in vitro and in vivo and that this process is regulated through CD44 and ERK activation. PMID:27585719

  8. Induction of osteoclastogenesis and bone loss by human autoantibodies against citrullinated vimentin

    PubMed Central

    Harre, Ulrike; Georgess, Dan; Bang, Holger; Bozec, Aline; Axmann, Roland; Ossipova, Elena; Jakobsson, Per-Johan; Baum, Wolfgang; Nimmerjahn, Falk; Szarka, Eszter; Sarmay, Gabriella; Krumbholz, Grit; Neumann, Elena; Toes, Rene; Scherer, Hans-Ulrich; Catrina, Anca Irinel; Klareskog, Lars; Jurdic, Pierre; Schett, Georg

    2012-01-01

    Autoimmunity is complicated by bone loss. In human rheumatoid arthritis (RA), the most severe inflammatory joint disease, autoantibodies against citrullinated proteins are among the strongest risk factors for bone destruction. We therefore hypothesized that these autoantibodies directly influence bone metabolism. Here, we found a strong and specific association between autoantibodies against citrullinated proteins and serum markers for osteoclast-mediated bone resorption in RA patients. Moreover, human osteoclasts expressed enzymes eliciting protein citrullination, and specific N-terminal citrullination of vimentin was induced during osteoclast differentiation. Affinity-purified human autoantibodies against mutated citrullinated vimentin (MCV) not only bound to osteoclast surfaces, but also led to robust induction of osteoclastogenesis and bone-resorptive activity. Adoptive transfer of purified human MCV autoantibodies into mice induced osteopenia and increased osteoclastogenesis. This effect was based on the inducible release of TNF-α from osteoclast precursors and the subsequent increase of osteoclast precursor cell numbers with enhanced expression of activation and growth factor receptors. Our data thus suggest that autoantibody formation in response to citrullinated vimentin directly induces bone loss, providing a link between the adaptive immune system and bone. PMID:22505457

  9. Induction of osteoclastogenesis and bone loss by human autoantibodies against citrullinated vimentin.

    PubMed

    Harre, Ulrike; Georgess, Dan; Bang, Holger; Bozec, Aline; Axmann, Roland; Ossipova, Elena; Jakobsson, Per-Johan; Baum, Wolfgang; Nimmerjahn, Falk; Szarka, Eszter; Sarmay, Gabriella; Krumbholz, Grit; Neumann, Elena; Toes, Rene; Scherer, Hans-Ulrich; Catrina, Anca Irinel; Klareskog, Lars; Jurdic, Pierre; Schett, Georg

    2012-05-01

    Autoimmunity is complicated by bone loss. In human rheumatoid arthritis (RA), the most severe inflammatory joint disease, autoantibodies against citrullinated proteins are among the strongest risk factors for bone destruction. We therefore hypothesized that these autoantibodies directly influence bone metabolism. Here, we found a strong and specific association between autoantibodies against citrullinated proteins and serum markers for osteoclast-mediated bone resorption in RA patients. Moreover, human osteoclasts expressed enzymes eliciting protein citrullination, and specific N-terminal citrullination of vimentin was induced during osteoclast differentiation. Affinity-purified human autoantibodies against mutated citrullinated vimentin (MCV) not only bound to osteoclast surfaces, but also led to robust induction of osteoclastogenesis and bone-resorptive activity. Adoptive transfer of purified human MCV autoantibodies into mice induced osteopenia and increased osteoclastogenesis. This effect was based on the inducible release of TNF-α from osteoclast precursors and the subsequent increase of osteoclast precursor cell numbers with enhanced expression of activation and growth factor receptors. Our data thus suggest that autoantibody formation in response to citrullinated vimentin directly induces bone loss, providing a link between the adaptive immune system and bone. PMID:22505457

  10. Vitamin B(12) deficiency stimulates osteoclastogenesis via increased homocysteine and methylmalonic acid.

    PubMed

    Vaes, Bart L T; Lute, Carolien; Blom, Henk J; Bravenboer, Nathalie; de Vries, Teun J; Everts, Vincent; Dhonukshe-Rutten, Rosalie A; Müller, Michael; de Groot, Lisette C P G M; Steegenga, Wilma T

    2009-05-01

    The risk of nutrient deficiencies increases with age in our modern Western society, and vitamin B(12) deficiency is especially prevalent in the elderly and causes increased homocysteine (Hcy) and methylmalonic acid (MMA) levels. These three factors have been recognized as risk factors for reduced bone mineral density and increased fracture risk, though mechanistic evidence is still lacking. In the present study, we investigated the influence of B(12), Hcy, and MMA on differentiation and activity of bone cells. B(12) deficiency did not affect the onset of osteoblast differentiation, maturation, matrix mineralization, or adipocyte differentiation from human mesenchymal stem cells (hMSCs). B(12) deficiency caused an increase in the secretion of Hcy and MMA into the culture medium by osteoblasts, but Hcy and MMA appeared to have no effect on hMSC osteoblast differentiation. We further studied the effect of B(12), Hcy, and MMA on the formation of multinucleated tartrate-resistant acid phosphatase-positive osteoclasts from mouse bone marrow. We observed that B(12) did not show an effect on osteoclastogenesis. However, Hcy as well as MMA were found to induce osteoclastogenesis in a dose-dependent manner. On the basis of these results, we conclude that B(12) deficiency may lead to decreased bone mass by increased osteoclast formation due to increased MMA and Hcy levels.

  11. Inhibition of Osteoclastogenesis and Bone Resorption in vitro and in vivo by a prenylflavonoid xanthohumol from hops.

    PubMed

    Li, Jing; Zeng, Li; Xie, Juan; Yue, Zhiying; Deng, Huayun; Ma, Xueyun; Zheng, Chunbing; Wu, Xiushan; Luo, Jian; Liu, Mingyao

    2015-01-01

    Excessive RANKL signaling leads to superfluous osteoclast formation and bone resorption, is widespread in the pathologic bone loss and destruction. Therefore, targeting RANKL or its signaling pathway has been a promising and successful strategy for this osteoclast-related diseases. In this study, we examined the effects of xanthohumol (XN), an abundant prenylflavonoid from hops plant, on osteoclastogenesis, osteoclast resorption, and RANKL-induced signaling pathway using both in vitro and in vivo assay systems. In mouse and human, XN inhibited osteoclast differentiation and osteoclast formation at the early stage. Furthermore, XN inhibited osteoclast actin-ring formation and bone resorption in a dose-dependent manner. In ovariectomized-induced bone loss mouse model and RANKL-injection-induced bone resorption model, we found that administration of XN markedly inhibited bone loss and resorption by suppressing osteoclast activity. At the molecular level, XN disrupted the association of RANK and TRAF6, resulted in the inhibition of NF-κB and Ca(2+)/NFATc1 signaling pathway during osteoclastogenesis. As a results, XN suppressed the expression of osteoclastogenesis-related marker genes, including CtsK, Nfatc1, Trap, Ctr. Therefore, our data demonstrated that XN inhibits osteoclastogenesis and bone resorption through RANK/TRAF6 signaling pathways. XN could be a promising drug candidate in the treatment of osteoclast-related diseases such as postmenopausal osteoporosis. PMID:26620037

  12. Involvement of SOCS3 in regulation of CD11c+ dendritic cell-derived osteoclastogenesis and severe alveolar bone loss.

    PubMed

    Zhang, Xiaoxia; Alnaeeli, Mawadda; Singh, Bhagirath; Teng, Yen-Tung A

    2009-05-01

    To investigate the role of suppressor of cytokine signaling (SOCS) molecules in periodontal immunity and RANKL-mediated dendritic cell (DC)-associated osteoclastogenesis, we analyzed SOCS expression profiles in CD4(+) T cells and the effect of SOCS3 expression in CD11c(+) DCs during periodontal inflammation-induced osteoclastogenesis and bone loss in nonobese diabetic (NOD) versus humanized NOD/SCID mice. Our results of ex vivo and in vitro analyses showed that (i) there is significantly higher SOCS3 expression associated with RANKL(+) T-cell-mediated bone loss in correlation with increased CD11c(+) DC-mediated osteoclastogenesis; (ii) the transfection of CD11c(+) DC using an adenoviral vector carrying a dominant negative SOCS3 gene significantly abrogates TRAP and bone-resorptive activity; and (iii) inflammation-induced TRAP expression, bone resorption, and SOCS3 activity are not associated with any detectable change in the expression levels of TRAF6 and mitogen-activated protein kinase signaling adaptors (i.e., Erk, Jnk, p38, and Akt) in RANKL(+) T cells. We conclude that SOCS3 plays a critical role in modulating cytokine signaling involved in RANKL-mediated DC-derived osteoclastogenesis during immune interactions with T cells and diabetes-associated severe inflammation-induced alveolar bone loss. Therefore, the development of SOCS3 inhibitors may have therapeutic potential as the target to halt inflammation-induced bone loss under pathological conditions in vivo. PMID:19255186

  13. Inhibition of Osteoclastogenesis and Bone Resorption in vitro and in vivo by a prenylflavonoid xanthohumol from hops

    PubMed Central

    Li, Jing; Zeng, Li; Xie, Juan; Yue, Zhiying; Deng, Huayun; Ma, Xueyun; Zheng, Chunbing; Wu, Xiushan; Luo, Jian; Liu, Mingyao

    2015-01-01

    Excessive RANKL signaling leads to superfluous osteoclast formation and bone resorption, is widespread in the pathologic bone loss and destruction. Therefore, targeting RANKL or its signaling pathway has been a promising and successful strategy for this osteoclast-related diseases. In this study, we examined the effects of xanthohumol (XN), an abundant prenylflavonoid from hops plant, on osteoclastogenesis, osteoclast resorption, and RANKL-induced signaling pathway using both in vitro and in vivo assay systems. In mouse and human, XN inhibited osteoclast differentiation and osteoclast formation at the early stage. Furthermore, XN inhibited osteoclast actin-ring formation and bone resorption in a dose-dependent manner. In ovariectomized-induced bone loss mouse model and RANKL-injection-induced bone resorption model, we found that administration of XN markedly inhibited bone loss and resorption by suppressing osteoclast activity. At the molecular level, XN disrupted the association of RANK and TRAF6, resulted in the inhibition of NF-κB and Ca2+/NFATc1 signaling pathway during osteoclastogenesis. As a results, XN suppressed the expression of osteoclastogenesis-related marker genes, including CtsK, Nfatc1, Trap, Ctr. Therefore, our data demonstrated that XN inhibits osteoclastogenesis and bone resorption through RANK/TRAF6 signaling pathways. XN could be a promising drug candidate in the treatment of osteoclast-related diseases such as postmenopausal osteoporosis. PMID:26620037

  14. Pioglitazone affects the OPG/RANKL/RANK system and increase osteoclastogenesis.

    PubMed

    Xu, Fei; Dong, Yonghui; Huang, Xin; Chen, Peng; Guo, Fengjing; Chen, Anmin; Huang, Shilong

    2016-09-01

    Thiazolidinediones are traditional anti‑diabetic therapeutic agents that have been associated with bone loss and increased fracture risk. However, the underlying mechanisms of this side effect require further elucidation. The present study aimed to investigate the effect of pioglitazone (PIO), a thiazolidinedione, on osteoblastogenesis, osteoclastogenesis and the osteoprotegerin (OPG) / receptor activator of nuclear factor‑κB ligand (RANKL) / RANK system. The MC3T3‑E1 murine pre‑osteoblastic cell line was treated with PIO and processed for reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR) analysis of OPG, RANKL, peroxisome proliferator‑activated receptor γ (PPARγ), Runt‑related transcription factor 2 (RUNX2), alkaline phosphatase (ALP) and osteocalcin (OCN), and western blotting analysis of OPG and RANKL. The culture medium was collected for ELISA analysis of OPG and RANKL. Murine bone marrow monocytes (BMMCs) were treated with PIO in the presence of RANKL and macrophage‑colony stimulating factor and subjected to tartrate‑resistant acid phosphatase (TRAP) staining and activity measurement, and RT‑qPCR analysis of cathepsin K, TRAP and RANK. Co‑culture of MC3T3‑E1 and BMMCs was performed in the presence of PIO, and TRAP staining was also conducted. PIO inhibited the osteoblastic differentiation of MC3T3‑E1 cells, and promoted the osteoclastic differentiation of BMMCs with or without co‑culturing with MC3T3‑E1 cells. ELISA analysis indicated increased RANKL and decreased OPG expression levels in the medium of MC3T3‑E1 cells treated with PIO. PIO upregulated expression of RANKL and PPARγ and downregulated expression of OPG, RUNX2, ALP and OCN in MC3T3‑E1 cells, while expression levels of RANK in BMMCs remained unchanged. These results suggest that PIO suppresses osteoblastogenesis and enhances osteoclastogenesis. In addition, PIO may also promote osteoclastogenesis by affecting the OPG

  15. GDF11 decreases bone mass by stimulating osteoclastogenesis and inhibiting osteoblast differentiation

    PubMed Central

    Liu, Weiqing; Zhou, Liyan; Zhou, Chenchen; Zhang, Shiwen; Jing, Junjun; Xie, Liang; Sun, Ningyuan; Duan, Xiaobo; Jing, Wei; Liang, Xing; Zhao, Hu; Ye, Ling; Chen, Qianming; Yuan, Quan

    2016-01-01

    Osteoporosis is an age-related disease that affects millions of people. Growth differentiation factor 11 (GDF11) is a secreted member of the transforming growth factor beta (TGF-β) superfamily. Deletion of Gdf11 has been shown to result in a skeletal anterior–posterior patterning disorder. Here we show a role for GDF11 in bone remodelling. GDF11 treatment leads to bone loss in both young and aged mice. GDF11 inhibits osteoblast differentiation and also stimulates RANKL-induced osteoclastogenesis through Smad2/3 and c-Fos-dependent induction of Nfatc1. Injection of GDF11 impairs bone regeneration in mice and blocking GDF11 function prevents oestrogen-deficiency-induced bone loss and ameliorates age-related osteoporosis. Our data demonstrate that GDF11 is a previously unrecognized regulator of bone remodelling and suggest that GDF11 is a potential target for treatment of osteoporosis. PMID:27653144

  16. The Dimension of Titania Nanotubes Influences Implant Success for Osteoclastogenesis and Osteogenesis Patients.

    PubMed

    Li, Yong; Li, Feng; Zhang, Chengcheng; Gao, Biao; Tan, Peng; Mi, Baoguo; Zhang, Yong; Cheng, Hao; Liao, Hui; Huo, Kaifu; Xiong, Wei

    2015-06-01

    Implants that can inhibit osteoclastogenesis and enhance osteogenesis are desirable for osteoporosis patients. In this study, titania nanotube (Ti-NT) materials, having nanotube diameters of 30, 80, and 120 nm, were produced separately by anodization at 10, 40, and 60 V, respectively. The introduction of Ti-NTs to titanium substrates significantly reduced the formation and activity of osteoclasts on samples. With the enlargement of the nanotube diameter, the osteoclasts number, tartrate-resistant acid phosphatase staining and activity, and related gene expressions of osteoclasts were further reduced. Osteogenic ability was enhanced by increasing the nanotube diameter. Thus, larger-diameter nanotube implants, such as NT60, were better able to inhibit bone absorption and enhance bone formation to prevent implant loss and failure, especially for osteoporosis patients.

  17. Reactive oxygen species and oxidative stress in osteoclastogenesis, skeletal aging and bone diseases.

    PubMed

    Callaway, Danielle A; Jiang, Jean X

    2015-07-01

    Osteoclasts are cells derived from bone marrow macrophages and are important in regulating bone resorption during bone homeostasis. Understanding what drives osteoclast differentiation and activity is important when studying diseases characterized by heightened bone resorption relative to formation, such as osteoporosis. In the last decade, studies have indicated that reactive oxygen species (ROS), including superoxide and hydrogen peroxide, are crucial components that regulate the differentiation process of osteoclasts. However, there are still many unanswered questions that remain. This review will examine the mechanisms by which ROS can be produced in osteoclasts as well as how it may affect osteoclast differentiation and activity through its actions on osteoclastogenesis signaling pathways. In addition, the contribution of ROS to the aging-associated disease of osteoporosis will be addressed and how targeting ROS may lead to the development of novel therapeutic treatment options.

  18. Using a Novel MicroRNA Delivery System to Inhibit Osteoclastogenesis

    PubMed Central

    Yao, Yanlan; Jia, Tingting; Pan, Yang; Gou, Hongna; Li, Yulong; Sun, Yu; Zhang, Rui; Zhang, Kuo; Lin, Guigao; Xie, Jiehong; Li, Jinming; Wang, Lunan

    2015-01-01

    Previously, we developed a novel microRNA (miRNA) delivery system based on bacteriophage MS2 virus-like particles (MS2 VLPs). In this current study, we used this system to transport miR-146a into human peripheral blood mononuclear cells (PBMCs), and demonstrated the inhibition of osteoclastogenesis in precursors. Two cytokines, receptor activator of NF-κB ligand (RANKL), and macrophage-colony stimulating factor (M-CSF) were used to induce osteoclastogenesis. MS2 VLPs were transfected into PBMCs. qRT-PCR was applied to measure expression levels of miR-146a and osteoclast (OC)-specific genes. Western blot (WB) was conducted to evaluate miR-146a downstream target proteins: epidermal growth factor receptor (EGFR) and tumor necrosis factor (TNF) receptor-associated factor 6 (TRAF6). The formation and activity of OCs were assessed by cytochemical staining and bone resorption assay, respectively. In PBMCs treated with MS2-miR146a VLPs, qRT-PCR assays showed increased expression of miR-146a (p < 0.01) and decreased expression of all four OC-specific genes (p < 0.05). WB results indicated decreased expression of EGFR (p < 0.01) and TRAF6 (p < 0.05). The number of OCs decreased markedly and bone resorption assay demonstrated inhibited activity. This miR-146a delivery system could be applied to induce overexpression of miR-146a and to inhibit the differentiation and function of OCs. PMID:25874760

  19. Lipopolysaccharide-stimulated osteoclastogenesis is mediated by tumor necrosis factor via its P55 receptor.

    PubMed Central

    Abu-Amer, Y; Ross, F P; Edwards, J; Teitelbaum, S L

    1997-01-01

    Chronic bone infection, as attends periodontitis, is often complicated by severe osteolysis. While LPS is believed to be central to the pathogenesis of the osteolytic lesion, the mechanisms by which this bacteria-derived molecule promotes bone resorption are unknown. We find that LPS induces bone marrow macrophages (BMMs) to express c-src, a protooncogene product that we demonstrate is a specific marker of commitment to the osteoclast phenotype. We next turned to possible soluble mediators of LPS-induced c-src. Of a number of osteoclastogenic cytokines tested, only TNF-alpha mirrors the c-src-enhancing effect of LPS. Suggesting that LPS augmentation of c-src is TNF-mediated, endotoxin sequentially induces BMM expression of TNF, followed by c-src. TNF and c-src expression, by cultured BMMs derived from LPS-injected mice, reflects duration of exposure to circulating endotoxin, intimating that endotoxin's effect in vivo is also mediated by TNF. Consistent with these findings, thalidomide (which antagonizes TNF action) attenuates c-src induction by LPS. An anti-TNF antibody blocks LPS enhancement of c-src mRNA, validating the cytokine's modulating role in vitro. Using BMMs of TNF receptor-deleted mice, we demonstrate that TNF induction of c-src is transmitted through the cytokine's p55, but not p75, receptor. Most importantly, LPS administered to wild-type mice prompts osteoclast precursor differentiation, manifest by profound osteoclastogenesis in marrow cultured ex vivo, and by a profusion of marrow-residing cells expressing the osteoclast marker tartrate resistant acid phosphatase, in vivo. In contrast, LPS does not substantially enhance osteoclast proliferation in mice lacking the p55TNF receptor, confirming that LPS-induced osteoclastogenesis is mediated by TNF in vivo via this receptor. Thus, therapy targeting TNF and/or its p55 receptor presents itself as a means of preventing the osteolysis of chronic bacterial infection. PMID:9294124

  20. Sphingosine-1-Phosphate Receptor 2 Regulates Proinflammatory Cytokine Production and Osteoclastogenesis

    PubMed Central

    2016-01-01

    Sphingosine-1-phosphate receptor 2 (S1PR2) couples with the Gi, Gq, and G12/13 group of proteins, which modulate an array of cellular signaling pathways and affect immune responses to multiple stimuli. In this study, we demonstrated that knockdown of S1PR2 by a specific S1PR2 shRNA lentiviral vector significantly inhibited IL-1β, IL-6, and TNF-α protein levels induced by oral pathogen Aggregatibacter actinomycetemcomitans (A. actinomycetemcomitans) in murine bone marrow-derived monocytes and macrophages (BMMs) compared with controls. In addition, knockdown of S1PR2 by the S1PR2 shRNA lentiviral vector suppressed p-PI3K, p-ERK, p-JNK, p-p38, and p-NF-κBp65 protein expressions induced by A. actinomycetemcomitans. Furthermore, bone marrow cells treated with the S1PR2 shRNA lentiviral vector inhibited osteoclastogenesis induced by RANKL compared with controls. The S1PR2 shRNA suppressed the mRNA levels of six osteoclastogenic factors including nuclear factor of activated T-cells cytoplasmic calcineurin-dependent 1 (NFATc1), cathepsin K (Ctsk), acid phosphatase 5 (Acp5), osteoclast-associated receptor (Oscar), dendritic cells specific transmembrane protein (Dcstamp), and osteoclast stimulatory transmembrane protein (Ocstamp) in bone marrow cells. We conclude that S1PR2 plays an essential role in modulating proinflammatory cytokine production and osteoclastogenesis. Blocking S1PR2 signaling might be a novel therapeutic strategy to treat inflammatory bone loss diseases. PMID:27224249

  1. IL-17 in synovial fluids from patients with rheumatoid arthritis is a potent stimulator of osteoclastogenesis

    PubMed Central

    Kotake, Shigeru; Udagawa, Nobuyuki; Takahashi, Naoyuki; Matsuzaki, Kenichiro; Itoh, Kanami; Ishiyama, Shigeru; Saito, Seiji; Inoue, Kazuhiko; Kamatani, Naoyuki; Gillespie, Matthew T.; Martin, T. John; Suda, Tatsuo

    1999-01-01

    IL-17 is a newly discovered T cell–derived cytokine whose role in osteoclast development has not been fully elucidated. Treatment of cocultures of mouse hemopoietic cells and primary osteoblasts with recombinant human IL-17 induced the formation of multinucleated cells, which satisfied major criteria of osteoclasts, including tartrate-resistant acid phosphatase activity, calcitonin receptors, and pit formation on dentine slices. Direct interaction between osteoclast progenitors and osteoblasts was required for IL-17–induced osteoclastogenesis, which was completely inhibited by adding indomethacin or NS398, a selective inhibitor of cyclooxgenase-2 (COX-2). Adding IL-17 increased prostaglandin E2 (PGE2) synthesis in cocultures of bone marrow cells and osteoblasts and in single cultures of osteoblasts, but not in single cultures of bone marrow cells. In addition, IL-17 dose-dependently induced expression of osteoclast differentiation factor (ODF) mRNA in osteoblasts. ODF is a membrane-associated protein that transduces an essential signal(s) to osteoclast progenitors for differentiation into osteoclasts. Osteoclastogenesis inhibitory factor (OCIF), a decoy receptor of ODF, completely inhibited IL-17–induced osteoclast differentiation in the cocultures. Levels of IL-17 in synovial fluids were significantly higher in rheumatoid arthritis (RA) patients than osteoarthritis (OA) patients. Anti–IL-17 antibody significantly inhibited osteoclast formation induced by culture media of RA synovial tissues. These findings suggest that IL-17 first acts on osteoblasts, which stimulates both COX-2–dependent PGE2 synthesis and ODF gene expression, which in turn induce differentiation of osteoclast progenitors into mature osteoclasts, and that IL-17 is a crucial cytokine for osteoclastic bone resorption in RA patients. PMID:10225978

  2. Lupeol acetate ameliorates collagen-induced arthritis and osteoclastogenesis of mice through improvement of microenvironment.

    PubMed

    Wang, Wei-Hsun; Chuang, Hui-Yen; Chen, Chien-Hui; Chen, Wun-Ke; Hwang, Jeng-Jong

    2016-04-01

    Lupeol has been shown with anti-inflammation and antitumor capability, however, the poor bioavailability limiting its applications in living subjects. Lupeol acetate (LA), a derivative of lupeol, shows similar biological activities as lupeol but with better bioavailability. Here RAW 264.7 cells and bone marrow-derived macrophages (BMDMs) stimulated by lipopolysaccharide (LPS) were treated with 0-80μM of LA, and assayed for TNF-α, IL-1β, COX-2, MCP-1 using Western blotting. Moreover, osteoclatogenesis was examined with reverse transcription PCR (RT-PCR) and tartrate-resistant acid phosphatase (TRAP) staining. For in vivo study, collagen-induced arthritis (CIA)-bearing DBA/1J mice were randomly separated into three groups: vehicle, LA-treated (50mg/kg) and curcumin-treated (100mg/kg). Therapeutic efficacies were assayed by the clinical score, expression levels of serum cytokines including TNF-α and IL-1β, (18)F-fluorodeoxyglucose ((18)F-FDG) microPET/CT and histopathology. The results showed that LA could inhibit the activation, migration, and formation of osteoclastogenesis of macrophages in a dose-dependent manner. In RA-bearing mice, the expressions of inflammation-related cytokines were suppressed, and clinical symptoms and bone erosion were ameliorated by LA. The accumulation of (18)F-FDG in the joints of RA-bearing mice was also significantly decreased by LA. The results indicate that LA significantly improves the symptoms of RA by down-regulating expressions of inflammatory cytokines and osteoclastogenesis. PMID:27044833

  3. Imatinib mesylate inhibits osteoclastogenesis and joint destruction in rats with collagen-induced arthritis (CIA).

    PubMed

    Ando, Wataru; Hashimoto, Jun; Nampei, Akihide; Tsuboi, Hideki; Tateishi, Kosuke; Ono, Takeshi; Nakamura, Norimasa; Ochi, Takahiro; Yoshikawa, Hideki

    2006-01-01

    Macrophage colony-stimulating factor (M-CSF) is a key factor for osteoclastogenesis at the bone-pannus interface in patients with rheumatoid arthritis as well as a receptor activator of NF-kappaB ligand (RANKL). Imatinib mesylate inhibits the phosphorylation of c-fms, a receptor for M-CSF. The present study investigates the effect of imatinib mesylate on joint destruction in rats with collagen-induced arthritis (CIA) and on osteoclastogenesis in vitro. Imatinib mesylate (50 or 150 mg/kg), dexamethasone, or vehicle was administered daily to CIA rats for 4 weeks from the onset of arthritis. Hind-paw swelling and body weight were measured weekly. At weeks 2 and 4, the metatarsophalangeal (MTP) joints and the ankle and subtalar joints were radiographically and histologically assessed. The effect of imatinib mesylate on osteoclast formation from rat bone marrow cells with M-CSF and soluble RANKL (sRANKL) in vitro was also examined. Radiographic assessment showed that 150 mg/kg imatinib mesylate suppressed the destruction of the MTP and the ankle and subtalar joints at week 2, and MTP joint destruction at week 4 in CIA rats, although hind-paw swelling was not suppressed. The number of TRAP-positive cells at the bone-pannus interface was significantly reduced in the group administered with 150 mg/kg imatinib mesylate compared with that given vehicle at week 4. Imatinib mesylate dose-dependently inhibited the proliferation of M-CSF-dependent osteoclast precursor cells in vitro as well as osteoclast formation induced by M-CSF and sRANKL. These findings suggest that imatinib mesylate could prevent joint destruction in patients with rheumatoid arthritis.

  4. Dexamethasone Enhances 1α,25-Dihydroxyvitamin D3 Effects by Increasing Vitamin D Receptor Transcription*

    PubMed Central

    Hidalgo, Alejandro A.; Deeb, Kristin K.; Pike, J. Wesley; Johnson, Candace S.; Trump, Donald L.

    2011-01-01

    Calcitriol, the active form of vitamin D, in combination with the glucocorticoid dexamethasone (Dex) has been shown to increase the antitumor effects of calcitriol in squamous cell carcinoma. In this study we found that pretreatment with Dex potentiates calcitriol effects by inhibiting cell growth and increasing vitamin D receptor (VDR) and VDR-mediated transcription. Treatment with actinomycin D inhibits Vdr mRNA synthesis, indicating that Dex regulates VDR expression at transcriptional level. Real time PCR shows that treatment with Dex increases Vdr transcripts in a time- and a dose-dependent manner, indicating that Dex directly regulates expression of Vdr. RU486, an inhibitor of glucocorticoids, inhibits Dex-induced Vdr expression. In addition, the silencing of glucocorticoid receptor (GR) abolishes the induction of Vdr by Dex, indicating that Dex increases Vdr transcripts in a GR-dependent manner. A fragment located 5.2 kb upstream of Vdr transcription start site containing two putative glucocorticoid response elements (GREs) was evaluated using a luciferase-based reporter assay. Treatment with 100 nm Dex induces transcription of luciferase driven by the fragment. Deletion of the GRE distal to transcription start site was sufficient to abolish Dex induction of luciferase. Also, chromatin immunoprecipitation reveals recruitment of GR to distal GRE with Dex treatment. We conclude that Dex increases VDR and vitamin D effects by increasing Vdr de novo transcription in a GR-dependent manner. PMID:21868377

  5. Resistance to 1,25-dihydroxyvitamin D. Association with heterogeneous defects in cultured skin fibroblasts

    SciTech Connect

    Liberman, U.A.; Eil, C.; Marx, S.J.

    1983-02-01

    The authors evaluated the interaction of (/sub 3/H)1,25(OH)/sup 2/D3 with skin fibroblasts cultured from normal subjects or from affected members of six kindreds with rickets and resistance to 1-alpha, 25(OH)/sub 2/D (1,25(OH)/sub 2/D). They analyzed two aspects of the radioligand interaction; nuclear uptake with dispersed, intact cells at 37 degrees C and binding at 0 degrees C with soluble extract (cytosol) prepared from cells disrupted in buffer. With normal fibroblasts the affinity and capacity of nuclear uptake of (/sub 3/H)1,25(OH)/sup 2/D3 were 0.5 nM and 10,300 sites per cell, respectively; for binding with cytosol these were 0.13 nM and 8,900 sites per cell, respectively. The following four patterns of interaction with (/sub 3/H)1,25(OH)/sup 2/D3 were observed with cells cultured from affected patients. In all cases where the radioligand bound with high affinity in nucleus or cytosol, the nucleus- or cytosol-associated radioligand exhibited normal sedimentation velocity on sucrose density gradients. When two kindreds exhibited similar patterns (i.e. pattern a or c) with the analyses of cultured fibroblasts, clinical features in affected members suggested that the underlying genetic defects were not identical. In conclusion: (a) Fibroblasts cultured from human skin manifest nuclear uptake and cytosol binding of (/sub 3/H)1,25(OH)/sup 2/D3 that is an expression of the genes determining these processes in target tissues. (b) Based upon data from clinical evaluations and from analyses of cultured fibroblasts, severe resistance to 1,25(OH)/sup 2/D resulted from five or six distinct genetic mutations in six kindreds.

  6. Resistance to 1,25-dihydroxyvitamin D. Association with heterogeneous defects in cultured skin fibroblasts

    SciTech Connect

    Liberman, U.A.; Eil, C.; Marx, S.J.

    1983-02-01

    We evaluated the interaction of (/sup 3/H)1,25(OH)/sub 2/D/sub 3/ with skin fibroblasts cultured from normal subjects or from affected members of six kindreds with rickets and resistance to 1-alpha, 25(OH)/sub 2/D (1,25(OH)/sub 2/D). We analyzed two aspects of the radioligand interaction; nuclear uptake with dispersed, intact cells at 37 degrees C and binding at 0 degrees C with soluble extract (cytosol) prepared from cells disrupted in buffer containing 300 mM KCl and 10 mM sodium molybdate. With normal fibroblasts the affinity and capacity of nuclear uptake of (/sup 3/H)1,25(OH)/sub 2/D/sub 3/ were 0.5 nM and 10,300 sites per cell, respectively; for binding with cytosol these were 0.13 nM and 8,900 sites per cell, respectively. In all cases where the radioligand bound with high affinity in nucleus or cytosol, the nucleus- or cytosol-associated radioligand exhibited normal sedimentation velocity on sucrose density gradients. When two kindreds exhibited similar patterns (i.e. pattern a or c) with the analyses of cultured fibroblasts, clinical features in affected members suggested that the underlying genetic defects were not identical. In conclusion: (a) Fibroblasts cultured from human skin manifest nuclear uptake and cytosol binding of (/sup 3/H)1,25(OH)/sub 2/D/sub 3/ that is an expression of the genes determining these processes in target tissues. (b) Based upon data from clinical evaluations and from analyses of cultured fibroblasts, severe resistance to 1,25(OH)/sub 2/D resulted from five or six distinct genetic mutations in six kindreds.

  7. 1,25 Dihydroxyvitamin D3 Inhibits TGFβ1-Mediated Primary Human Cardiac Myofibroblast Activation

    PubMed Central

    Meredith, Anna; Boroomand, Seti; Carthy, Jon; Luo, Zongshu; McManus, Bruce

    2015-01-01

    Aims Epidemiological and interventional studies have suggested a protective role for vitamin D in cardiovascular disease, and basic research has implicated vitamin D as a potential inhibitor of fibrosis in a number of organ systems; yet little is known regarding direct effects of vitamin D on human cardiac cells. Given the critical role of fibrotic responses in end stage cardiac disease, we examined the effect of active vitamin D treatment on fibrotic responses in primary human adult ventricular cardiac fibroblasts (HCF-av), and investigated the relationship between circulating vitamin D (25(OH)D3) and cardiac fibrosis in human myocardial samples. Methods and Results Interstitial cardiac fibrosis in end stage HF was evaluated by image analysis of picrosirius red stained myocardial sections. Serum 25(OH)D3 levels were assayed using mass spectrometry. Commercially available HCF-av were treated with transforming growth factor (TGF)β1 to induce activation, in the presence or absence of active vitamin D (1,25(OH)2D3). Functional responses of fibroblasts were analyzed by in vitro collagen gel contraction assay. 1,25(OH)2D3 treatment significantly inhibited TGFβ1-mediated cell contraction, and confocal imaging demonstrated reduced stress fiber formation in the presence of 1,25(OH)2D3. Treatment with 1,25(OH)2D3 reduced alpha-smooth muscle actin expression to control levels and inhibited SMAD2 phosphorylation. Conclusions Our results demonstrate that active vitamin D can prevent TGFβ1-mediated biochemical and functional pro-fibrotic changes in human primary cardiac fibroblasts. An inverse relationship between vitamin D status and cardiac fibrosis in end stage heart failure was observed. Collectively, our data support an inhibitory role for vitamin D in cardiac fibrosis. PMID:26061181

  8. Osteosarcoma is characterised by reduced expression of markers of osteoclastogenesis and antigen presentation compared with normal bone

    PubMed Central

    Endo-Munoz, L; Cumming, A; Sommerville, S; Dickinson, I; Saunders, N A

    2010-01-01

    Background: Osteosarcoma (OS) is the most common primary bone tumour in children and adolescents. Patients who respond poorly to chemotherapy have a higher risk of metastatic disease and 5-year survival rates of only 10–20%. Therefore, identifying molecular targets that are specific for OS, or more specifically, metastatic OS, will be critical to the development of new treatment strategies to improve patient outcomes. Methods: We performed a transcriptomic analysis of chemo-naive OS biopsies and non-malignant bone biopsies to identify differentially expressed genes specific to OS, which could provide insight into OS biology and chemoresistance. Results: Statistical analysis of the OS transcriptomes found differential expression of several metallothionein family members, as well as deregulation of genes involved in antigen presentation. Tumours also exhibited significantly increased expression of ID1 and profound down-regulation of S100A8, highlighting their potential as therapeutic targets for OS. Finally, we found a significant correlation between OS and impaired osteoclastogenesis and antigen-presenting activity. The reduced osteoclastogenesis and antigen-presenting activity were more profound in the chemoresistant OS samples. Conclusion: Our results indicate that OS displays gene signatures consistent with decreased antigen-presenting activity, enhanced chemoresistance, and impaired osteoclastogenesis. Moreover, these alterations are more pronounced in chemoresistant OS tumour samples. PMID:20551950

  9. Changing expression profiles of lncRNAs, mRNAs, circRNAs and miRNAs during osteoclastogenesis

    PubMed Central

    Dou, Ce; Cao, Zhen; Yang, Bo; Ding, Ning; Hou, Tianyong; Luo, Fei; Kang, Fei; Li, Jianmei; Yang, Xiaochao; Jiang, Hong; Xiang, Junyu; Quan, Hongyu; Xu, Jianzhong; Dong, Shiwu

    2016-01-01

    Bone is a dynamic organ continuously undergoing shaping, repairing and remodeling. The homeostasis of bone is maintained by the balance between osteoblastic bone formation and osteoclastic bone resorption. Osteoclasts (OCs) are specialized multinucleated cells derived from hematopoietic stem cells (HSCs) or monocytes/macrophage progenitor cells. There are different stages during osteoclastogenesis, and one of the most important steps to form functional osteoclasts is realized by cell-cell fusion. In our study, microarray was performed to detect the expression profiles of lncRNA, mRNA, circRNA and miRNA at different stages during osteoclastogenesis of RAW264.7 cells. Often changed RNAs were selected and clustered among the four groups with Venn analysis. The results revealed that expressions of 518 lncRNAs, 207 mRNAs, 24 circRNAs and 37 miRNAs were often altered at each stage during OC differentiation. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) biological pathway analysis were performed to predict the functions of differentially expressed lncRNAs and co-expressed potential targeting genes. Co-expression networks of lncRNA-mRNA and circRNA-miRNA were constructed based on the correlation analysis between the differentially expressed RNAs. The present study provided a systematic perspective on the potential function of non-coding RNAs (ncRNAs) during osteoclastogenesis. PMID:26856880

  10. CXCL8 and CCL20 Enhance Osteoclastogenesis via Modulation of Cytokine Production by Human Primary Osteoblasts

    PubMed Central

    Pathak, Janak L.; Bakker, Astrid D.; Verschueren, Patrick; Lems, Willem F.; Luyten, Frank P.; Klein-Nulend, Jenneke; Bravenboer, Nathalie

    2015-01-01

    Generalized osteoporosis is common in patients with inflammatory diseases, possibly because of circulating inflammatory factors that affect osteoblast and osteoclast formation and activity. Serum levels of the inflammatory factors CXCL8 and CCL20 are elevated in rheumatoid arthritis, but whether these factors affect bone metabolism is unknown. We hypothesized that CXCL8 and CCL20 decrease osteoblast proliferation and differentiation, and enhance osteoblast-mediated osteoclast formation and activity. Human primary osteoblasts were cultured with or without CXCL8 (2–200 pg/ml) or CCL20 (5–500 pg/ml) for 14 days. Osteoblast proliferation and gene expression of matrix proteins and cytokines were analyzed. Osteoclast precursors were cultured with CXCL8 (200 pg/ml) and CCL20 (500 pg/ml), or with conditioned medium (CM) from CXCL8 and CCL20-treated osteoblasts with or without IL-6 inhibitor. After 3 weeks osteoclast formation and activity were determined. CXCL8 (200 pg/ml) and CCL20 (500 pg/ml) enhanced mRNA expression of KI67 (2.5–2.7-fold), ALP (1.6–1.7-fold), and IL-6 protein production (1.3–1.6-fold) by osteoblasts. CXCL8-CM enhanced the number of osteoclasts with 3–5 nuclei (1.7-fold), and with >5 nuclei (3-fold). CCL20-CM enhanced the number of osteoclasts with 3–5 nuclei (1.3-fold), and with >5 nuclei (2.8-fold). IL-6 inhibition reduced the stimulatory effect of CXCL8-CM and CCL20-CM on formation of osteoclasts. In conclusion, CXCL8 and CCL20 did not decrease osteoblast proliferation or gene expression of matrix proteins. CXCL8 and CCL20 did not directly affect osteoclastogenesis. However, CXCL8 and CCL20 enhanced osteoblast-mediated osteoclastogenesis, partly via IL-6 production, suggesting that CXCL8 and CCL20 may contribute to osteoporosis in rheumatoid arthritis by affecting bone cell communication. PMID:26103626

  11. Identification of Nedd9 as a TGF-β-Smad2/3 Target Gene Involved in RANKL-Induced Osteoclastogenesis by Comprehensive Analysis

    PubMed Central

    Yasui, Tetsuro; Hirose, Jun; Izawa, Naohiro; Matsumoto, Takumi; Imai, Yuuki; Seo, Sachiko; Kurokawa, Mineo; Tsutsumi, Shuichi; Kadono, Yuho; Morimoto, Chikao; Aburatani, Hiroyuki; Miyamoto, Takeshi; Tanaka, Sakae

    2016-01-01

    TGF-ß is a multifunctional cytokine that is involved in cell proliferation, differentiation and function. We previously reported an essential role of the TGF-ß -Smad2/3 pathways in RANKL-induced osteoclastogenesis. Using chromatin immunoprecipitation followed by sequencing, we comprehensively identified Smad2/3 target genes in bone marrow macrophages. These genes were enriched in the gene population upregulated by TGF-ß and downregulated by RANKL. Recent studies have revealed that histone modifications, such as trimethylation of histone H3 lysine 4 (H3K4me3) and lysine 27 (H3K27me3), critically regulate key developmental steps. We identified Nedd9 as a Smad2/3 target gene whose histone modification pattern was converted from H3K4me3(+)/H3K4me27(+) to H3K4me3(+)/H3K4me27(-) by TGF-ß. Nedd9 expression was increased by TGF-ß and suppressed by RANKL. Overexpression of Nedd9 partially rescued an inhibitory effect of a TGF-ß inhibitor, while gene silencing of Nedd9 suppressed RANKL-induced osteoclastogenesis. RANKL-induced osteoclastogenesis were reduced and stimulatory effects of TGF-ß on RANKL-induced osteoclastogenesis were partially abrogated in cells from Nedd9-deficient mice although knockout mice did not show abnormal skeletal phenotypes. These results suggest that Nedd9 is a Smad2/3 target gene implicated in RANKL-induced osteoclastogenesis. PMID:27336669

  12. Trapidil, a platelet-derived growth factor antagonist, inhibits osteoclastogenesis by down-regulating NFATc1 and suppresses bone loss in mice.

    PubMed

    Kim, Sun-Don; Kim, Ha-Neui; Lee, Jong-Ho; Jin, Won Jong; Hwang, Soon Jung; Kim, Hong-Hee; Ha, Hyunil; Lee, Zang Hee

    2013-09-15

    Trapidil, a platelet-derived growth factor antagonist, was originally developed as a vasodilator and anti-platelet agent and has been used to treat patients with ischemic coronary heart, liver, and kidney disease. In this study, we investigated the effects of trapidil on osteoclastogenesis and elucidated the possible mechanism of action of trapidil. Trapidil strongly inhibited osteoclast formation in co-cultures of bone marrow cells and osteoblasts without affecting receptor activator of NF-κB ligand (RANKL) or osteoprotegerin expression in osteoblasts. In addition, trapidil suppressed RANKL-induced osteoclast formation from osteoclast precursors. Trapidil reduced RANKL-induced expression of nuclear factor of activated T cells, cytoplasmic 1 (NFATc1), a master transcription factor for osteoclastogenesis, without affecting the expression of c-Fos that functions as a key upstream activator of NFATc1 during osteoclastogenesis. Ectopic expression of a constitutively active form of NFATc1 reversed the anti-osteoclastogenic effect of trapidil, indicating that NFATc1 is a critical target of the anti-osteoclastogenic action of trapidil. RANKL-induced calcium oscillation and Pim-1 expression, which are required for NFATc1 induction and osteoclastogenesis, were abrogated by trapidil. Consistent with the in vitro results, trapidil had a potent inhibitory effect on osteoclast formation and bone resorption induced by interleukin-1 in an animal model. Taken together, our data demonstrate that trapidil abrogates RANKL-induced calcium oscillation and Pim-1 expression required for NFATc1 induction, thereby inhibiting osteoclastogenesis. PMID:23928189

  13. Extremely High Expression of Antisense RNA for Wilms' Tumor 1 in Active Osteoclasts: Suppression of Wilms' Tumor 1 Protein Expression during Osteoclastogenesis.

    PubMed

    Li, Yin-Ji; Kukita, Akiko; Kyumoto-Nakamura, Yukari; Kukita, Toshio

    2016-09-01

    Wilms' tumor 1 (WT1), a zinc-finger transcription regulator of the early growth response family, identified as the product of a tumor suppressor gene of Wilms' tumors, bears potential ability to induce macrophage differentiation in blood cell differentiation. Herein, we examined the involvement of WT1 in the regulation of osteoclastogenesis. We detected a high level of WT1 protein expression in osteoclast precursors; however, WT1 expression was markedly suppressed during osteoclastogenesis. We examined expression of WT1 transcripts in bone tissue by RNA in situ hybridization. We found a high level of antisense transcripts in osteoclasts actively resorbing bone in mandible of newborn rats. Expression of antisense WT1 RNA in mandible was also confirmed by Northern blot analysis and strand-specific RT-PCR. Overexpression of antisense WT1 RNA in RAW-D cells, an osteoclast precursor cell line, resulted in a marked enhancement of osteoclastogenesis, suggesting that antisense WT1 RNA functions to suppress expression of WT1 protein in osteoclastogenesis. High level expression of antisense WT1 RNA may contribute to commitment to osteoclastogenesis, and may allow osteoclasts to maintain or stabilize their differentiation state.

  14. Interleukin-21 promotes osteoclastogenesis in RAW264.7 cells through the PI3K/AKT signaling pathway independently of RANKL.

    PubMed

    Xing, Rui; Zhang, Yingjian; Li, Changhong; Sun, Lin; Yang, Lin; Zhao, Jinxia; Liu, Xiangyuan

    2016-10-01

    Cytokines play a key role in the bone destruction of rheumatoid arthritis (RA). Interleukin-21 (IL-21) promotes osteoclastogenesis in RA in a receptor activator of nuclear factor-κB ligand (RANKL)-dependent way. Whether IL-21 is capable of promoting osteoclastogenesis directly in the absence of RANKL remains unknown. In the present study, we examined the osteoclastogenic activity of IL-21 in RAW264.7 cells in the absence of RANKL. We found that IL-21 enhanced osteoclastogenesis and this was demonstrated by increased numbers of tartrate-resistant acid phosphatase (TRAP)-positive stained, multinucleated cells compared with the negative control. Western blot analysis and immunocytochemistry showed the positive expression of calcitonin receptor (CTR) in the IL-21 group. RT-PCR and RT-qPCR also verified the increased mRNA expression of CTR and cathepsin K in the IL-21 group compared with the negative control. The scanning electronic microscope images showed a few resorption pits on the bone slices cultured with IL-21. The phosphoinositide 3-kinase (PI3K)/AKT pathway inhibitor LY294002 significantly suppressed IL-21-induced osteoclastogenesis. Taken together, these findings suggest that IL-21 has direct osteoclastogenic potential independently of RANKL. IL-21 may promote osteoclastogenesis through the PI3K/AKT signaling pathway. Therapy targeting IL-21 may be of value in preventing bone erosions in patients with RA. PMID:27599586

  15. Interleukin-21 promotes osteoclastogenesis in RAW264.7 cells through the PI3K/AKT signaling pathway independently of RANKL

    PubMed Central

    Xing, Rui; Zhang, Yingjian; Li, Changhong; Sun, Lin; Yang, Lin; Zhao, Jinxia; Liu, Xiangyuan

    2016-01-01

    Cytokines play a key role in the bone destruction of rheumatoid arthritis (RA). Interleukin-21 (IL-21) promotes osteoclastogenesis in RA in a receptor activator of nuclear factor-κB ligand (RANKL)-dependent way. Whether IL-21 is capable of promoting osteoclastogenesis directly in the absence of RANKL remains unknown. In the present study, we examined the osteoclastogenic activity of IL-21 in RAW264.7 cells in the absence of RANKL. We found that IL-21 enhanced osteoclastogenesis and this was demonstrated by increased numbers of tartrate-resistant acid phosphatase (TRAP)-positive stained, multinucleated cells compared with the negative control. Western blot analysis and immunocytochemistry showed the positive expression of calcitonin receptor (CTR) in the IL-21 group. RT-PCR and RT-qPCR also verified the increased mRNA expression of CTR and cathepsin K in the IL-21 group compared with the negative control. The scanning electronic microscope images showed a few resorption pits on the bone slices cultured with IL-21. The phosphoinositide 3-kinase (PI3K)/AKT pathway inhibitor LY294002 significantly suppressed IL-21-induced osteoclastogenesis. Taken together, these findings suggest that IL-21 has direct osteoclastogenic potential independently of RANKL. IL-21 may promote osteoclastogenesis through the PI3K/AKT signaling pathway. Therapy targeting IL-21 may be of value in preventing bone erosions in patients with RA. PMID:27599586

  16. Selective inhibition of NF-kappa B blocks osteoclastogenesis and prevents inflammatory bone destruction in vivo.

    PubMed

    Jimi, Eijiro; Aoki, Kazuhiro; Saito, Hiroaki; D'Acquisto, Fulvio; May, Michael J; Nakamura, Ichiro; Sudo, Testuo; Kojima, Takefumi; Okamoto, Fujio; Fukushima, Hidefumi; Okabe, Koji; Ohya, Keiichi; Ghosh, Sankar

    2004-06-01

    Bone destruction is a pathological hallmark of several chronic inflammatory diseases, including rheumatoid arthritis and periodontitis. Inflammation-induced bone loss of this sort results from elevated numbers of bone-resorbing osteoclasts. Gene targeting studies have shown that the transcription factor nuclear factor-kappa B (NF-kappa B) has a crucial role in osteoclast differentiation, and blocking NF-kappa B is a potential strategy for preventing inflammatory bone resorption. We tested this approach using a cell-permeable peptide inhibitor of the I kappa B-kinase complex, a crucial component of signal transduction pathways to NF-kappa B. The peptide inhibited RANKL-stimulated NF-kappa B activation and osteoclastogenesis both in vitro and in vivo. In addition, this peptide significantly reduced the severity of collagen-induced arthritis in mice by reducing levels of tumor necrosis factor-alpha and interleukin-1 beta, abrogating joint swelling and reducing destruction of bone and cartilage. Therefore, selective inhibition of NF-kappa B activation offers an effective therapeutic approach for inhibiting chronic inflammatory diseases involving bone resorption.

  17. Carvacrol Inhibits Osteoclastogenesis and Negatively Regulates the Survival of Mature Osteoclasts.

    PubMed

    Deepak, Vishwa; Kasonga, Abe; Kruger, Marlena Cathorina; Coetzee, Magdalena

    2016-07-01

    Bone is a dynamic tissue that undergoes continuous remodeling coupled with the action of osteoblasts and osteoclasts. Osteoclast activity is elevated during osteoporosis and periodontitis resulting in excessive loss of trabecular and alveolar bone. Osteoclasts are formed in an inflammatory response to cytokine production receptor activator of nuclear factor-kappaB (NF-κB) ligand (RANKL) and bacterial challenge lipopolysaccharide (LPS). Carvacrol, a monoterpenic phenol present in Origanum vulgare and Thymus vulgaris, is a natural compound with known medicinal properties. We investigated the effects of carvacrol on osteoclast formation induced by RANKL and LPS. Carvacrol suppressed RANKL-induced formation of tartrate resistant acid phosphatase (TRAP)-positive multinucleated cells in RAW264.7 macrophages and human CD14(+) monocytes. Furthermore, carvacrol inhibited LPS-induced osteoclast formation in RAW264.7 macrophages. Investigation of the underlying molecular mechanisms revealed that carvacrol downregulated RANKL-induced NF-κB activation in a dose-dependent manner. Furthermore, the suppression of NF-κB activation correlated with inhibition of inhibitor of kappaB (IκB) kinase (IKK) activation and attenuation of inhibitor of NF-κB (IκBa) degradation. Carvacrol potentiated apoptosis in mature osteoclasts by caspase-3 activation and DNA fragmentation. Moreover, carvacrol did not affect the viability of proliferating MC3T3-E1 osteoblast-like cells. Collectively, these results demonstrate that carvacrol mitigates osteoclastogenesis by impairing the NF-κB pathway and induction of apoptosis in mature osteoclasts. PMID:27170515

  18. Lrp4 in osteoblasts suppresses bone formation and promotes osteoclastogenesis and bone resorption

    PubMed Central

    Xiong, Lei; Jung, Ji-Ung; Wu, Haitao; Xia, Wen-Fang; Pan, Jin-Xiu; Shen, Chengyong; Mei, Lin; Xiong, Wen-Cheng

    2015-01-01

    Bone mass is maintained by balanced activity of osteoblasts and osteoclasts. Lrp4 (low-density lipoprotein receptor related protein 4) is a member of the LDL receptor family, whose mutations have been identified in patients with high–bone-mass disorders, such as sclerosteosis and van Buchem diseases. However, it remains unknown whether and how Lrp4 regulates bone-mass homeostasis in vivo. Here we provide evidence that Lrp4-null mutation or specific mutation in osteoblast-lineage cells increased cortical and trabecular bone mass, which was associated with elevated bone formation and impaired bone resorption. This phenotype was not observed in osteoclast-selective Lrp4 knockout mice. Mechanistic studies indicate that loss of Lrp4 function in osteoblast-lineage cells increased serum levels of sclerostin, a key factor for bone-mass homeostasis that interacts with Lrp4, but abolished the inhibition of Wnt/β-catenin signaling and osteoblastic differentiation by sclerostin. Concomitantly, sclerostin induction of RANKL (receptor activator of nuclear kappa B ligand) was impaired, leading to a lower ratio of RANKL over OPG (osteoprotegerin) (a key factor for osteoclastogenesis). Taken together, these results support the view for Lrp4 as a receptor of sclerostin to inhibit Wnt/β-catenin signaling and bone formation and identify Lrp4 as a critical player in bone-mass homeostasis. PMID:25733894

  19. Secretion of PDGF isoforms during osteoclastogenesis and its modulation by anti-osteoclast drugs.

    PubMed

    Rahman, M Motiur; Matsuoka, Kazuhiko; Takeshita, Sunao; Ikeda, Kyoji

    2015-06-26

    In an attempt to identify secretory products of osteoclasts that mediate the coupling of bone formation to resorption, we found that along with osteoclast differentiation, PDGF-A gene expression increase occurred first, by 12 h after stimulation of bone marrow macrophages with M-CSF and RANKL, and peaked at 36 h. This was next followed by a progressive increase in PDGF-B gene expression until a peak at 60 h, when mature osteoclasts formed. Isoform-specific ELISA of the conditioned medium collected every 24 h revealed that all three of the isoforms of PDGF-AA, AB and BB were secreted, in this temporal order as differentiation proceeded. Their secretion was enhanced when osteoclasts were activated by placing them on dentin slices. The secretion of all three isoforms was decreased in cathepsin K-deficient osteoclasts compared with wild-type osteoclasts. Pharmacological inhibition of cathepsin K with odanacatib also inhibited the secretion of all three isoforms, as was also the case with alendronate treatment. The secretion of sphingosine-1-phosphate, which increased during osteoclastogenesis, was reduced from cathepsin K-deficient osteoclasts, and was inhibited by treatment with odanacatib more profoundly than with alendronate. Thus, all three isoforms of PDGF, which are secreted at distinct differentiation stages of osteoclasts, appear to have distinct roles in the cell-cell communication that takes place in the microenvironment of bone remodeling, especially from the osteoclast lineage to mesenchymal cells and vascular cells, thereby stimulating osteogenesis and angiogenesis.

  20. The mammalian lectin galectin-8 induces RANKL expression, osteoclastogenesis, and bone mass reduction in mice

    PubMed Central

    Vinik, Yaron; Shatz-Azoulay, Hadas; Vivanti, Alessia; Hever, Navit; Levy, Yifat; Karmona, Rotem; Brumfeld, Vlad; Baraghithy, Saja; Attar-Lamdar, Malka; Boura-Halfon, Sigalit; Bab, Itai; Zick, Yehiel

    2015-01-01

    Skeletal integrity is maintained by the co-ordinated activity of osteoblasts, the bone-forming cells, and osteoclasts, the bone-resorbing cells. In this study, we show that mice overexpressing galectin-8, a secreted mammalian lectin of the galectins family, exhibit accelerated osteoclasts activity and bone turnover, which culminates in reduced bone mass, similar to cases of postmenopausal osteoporosis and cancerous osteolysis. This phenotype can be attributed to a direct action of galectin-8 on primary cultures of osteoblasts that secrete the osteoclastogenic factor RANKL upon binding of galectin-8. This results in enhanced differentiation into osteoclasts of the bone marrow cells co-cultured with galectin-8-treated osteoblasts. Secretion of RANKL by galectin-8-treated osteoblasts can be attributed to binding of galectin-8 to receptor complexes that positively (uPAR and MRC2) and negatively (LRP1) regulate galectin-8 function. Our findings identify galectins as new players in osteoclastogenesis and bone remodeling, and highlight a potential regulation of bone mass by animal lectins. DOI: http://dx.doi.org/10.7554/eLife.05914.001 PMID:25955862

  1. Bone marrow monocyte PECAM-1 deficiency elicits increased osteoclastogenesis resulting in trabecular bone loss.

    PubMed

    Wu, Yue; Tworkoski, Kathryn; Michaud, Michael; Madri, Joseph A

    2009-03-01

    In our investigations of the bone marrow (BM) of PECAM-1 null (knockout, KO) mice, we observed that the trabecular bone volume and number of trabeculae were significantly reduced in femoral and tibial long bones. Further studies in vitro revealed increased numbers and size of osteoclasts, enhanced bone resorption on dentin substrates, and hypersensitivity to macrophage CSF and receptor activator of NF-kappaB ligand in BM-derived osteoclast precursor cultures from KO mice. Associations among PECAM-1, Syk, and SHP-1 were found in wild-type BM monocyte derived osteoclast-like cells. The absence of PECAM-1 and SHP-1 interactions in the KO cells leads to the dysregulation of Syk kinases and/or phosphatases, possibly SHP-1. Indeed, KO derived osteoclast-like cells exhibited increased Syk tyrosine phosphorylation levels compared with WT cells. Lastly, WT mice engrafted with marrow from KO kindred showed loss of trabecular bone analogous to KO mice, consistent with increased osteoclastogenesis. PMID:19234161

  2. Mechanisms of TNF-alpha- and RANKL-mediated osteoclastogenesis and bone resorption in psoriatic arthritis.

    PubMed

    Ritchlin, Christopher T; Haas-Smith, Sally A; Li, Ping; Hicks, David G; Schwarz, Edward M

    2003-03-01

    Psoriatic arthritis (PsA) is an inflammatory joint disease characterized by extensive bone resorption. The mechanisms underlying this matrix loss have not been elucidated. We report here that blood samples from PsA patients, particularly those with bone erosions visible on plain radiographs, exhibit a marked increase in osteoclast precursors (OCPs) compared with those from healthy controls. Moreover, PsA PBMCs readily formed osteoclasts in vitro without exogenous receptor activator of NF-kappaB ligand (RANKL) or MCSF. Both osteoprotegerin (OPG) and anti-TNF antibodies inhibited osteoclast formation. Additionally, cultured PsA PBMCs spontaneously secreted higher levels of TNF-alpha than did healthy controls. In vivo, OCP frequency declined substantially in PsA patients following treatment with anti-TNF agents. Immunohistochemical analysis of subchondral bone and synovium revealed RANK-positive perivascular mononuclear cells and osteoclasts in PsA specimens. RANKL expression was dramatically upregulated in the synovial lining layer, while OPG immunostaining was restricted to the endothelium. These results suggest a model for understanding the pathogenesis of aggressive bone erosions in PsA. OCPs arise from TNF-alpha-activated PBMCs that migrate to the inflamed synovium and subchondral bone, where they are exposed to unopposed RANKL and TNF-alpha. This leads to osteoclastogenesis at the erosion front and in subchondral bone, resulting in a bidirectional assault on psoriatic bone.

  3. Activation of the hypoxia-inducible factor-1 in overloaded temporomandibular joint, and induction of osteoclastogenesis.

    PubMed

    Shirakura, Maya; Tanimoto, Keiji; Eguchi, Hidetaka; Miyauchi, Mutsumi; Nakamura, Hideaki; Hiyama, Keiko; Tanimoto, Kotaro; Tanaka, Eiji; Takata, Takashi; Tanne, Kazuo

    2010-03-19

    Vascular endothelial growth factor (Vegf) was previously shown to be expressed specifically in the condylar cartilage of temporomandibular joint-osteoarthritis (TMJ-OA) model rats. Here we demonstrate for the first time that hypoxia-inducible factor-1alpha (Hif-1alpha) is activated in mature chondrocytes of temporomandibular joint-osteoarthritis (TMJ-OA) model rat by mechanical overload, and that activated Hif-1 in chondrocytes can induce osteoclastogenesis via repression of osteoprotegerin (Opg) expression. In rat TMJs, degeneration of the condylar cartilage became prominent in proportion to the duration of overloading. Hif-1alpha expression was observed specifically in mature and hypertrophic chondrocytes, and Hif-1alpha-positivity, level of Vegf expression, and tartrate-resistant acid phosphatase (TRAP)-positive cell numbers all increased in the same manner. When ATDC5 cells induced differentiation by insulin were cultured under hypoxia, Hif-1alpha induction was observed in mature stage, but not in immature stage. Inductions of Hif-1-target genes showed a similar expression pattern. In addition, expression of Opg decreased in hypoxia, and Hif-1alpha played a role, in part, in its regulation. PMID:20171183

  4. Enhanced osteoclastogenesis by mitochondrial retrograde signaling through transcriptional activation of the cathepsin K gene.

    PubMed

    Guha, Manti; Srinivasan, Satish; Koenigstein, Alexander; Zaidi, Mone; Avadhani, Narayan G

    2016-01-01

    Mitochondrial dysfunction has emerged as an important factor in wide ranging human pathologies. We have previously defined a retrograde signaling pathway that originates from dysfunctional mitochondria (Mt-RS) and causes a global nuclear transcriptional reprograming as its end point. Mitochondrial dysfunction causing disruption of mitochondrial membrane potential and consequent increase in cytosolic calcium [Ca(2) ](c) activates calcineurin and the transcription factors NF-κB, NFAT, CREB, and C/EBPδ. In macrophages, this signaling complements receptor activator of nuclear factor kappa-B ligand (RANKL)-induced osteoclastic differentiation. Here, we show that the Mt-RS activated transcriptional coactivator heterogeneous ribonucleoprotein A2 (hnRNP A2) is induced by hypoxia in murine macrophages. We demonstrate that the cathepsin K gene (Ctsk), one of the key genes upregulated during osteoclast differentiation, is transcriptionally activated by Mt-RS factors. HnRNP A2 acts as a coactivator with nuclear transcription factors, cRel, and C/EBPδ for Ctsk promoter activation under hypoxic conditions. Notably, our study shows that hypoxia-induced activation of the stress target factors mediates effects similar to that of RANKL with regard to Ctsk activation. We therefore suggest that mitochondrial dysfunction and activation of Mt-RS, induced by various pathophysiologic conditions, is a potential risk factor for osteoclastogenesis and bone loss.

  5. Inter-relationship of vitamins A, D and K in incidence of renal calcification in A/J mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Matrix gamma-carboxyglutamic acid protein (MGP), a vitamin K-dependent protein, is involved in regulation of tissue calcification. In mice, 9-cis retinoic acid (9-cis RA) mitigates 1alpha, 25 dihydroxyvitamin D3 [1,25(OH)2D3]-induced renal calcification. It is not known if the mechanism(s) underlyin...

  6. Lycorine suppresses RANKL-induced osteoclastogenesis in vitro and prevents ovariectomy-induced osteoporosis and titanium particle-induced osteolysis in vivo

    PubMed Central

    Chen, Shuai; Jin, Gu; Huang, Kang-Mao; Ma, Jian-Jun; Wang, Qiang; Ma, Yan; Tang, Xiao-Zhen; Zhou, Zhi-Jie; Hu, Zhi-Jun; Wang, Ji-Ying; Qin, An; Fan, Shun-Wu

    2015-01-01

    Osteoclasts play an important role in diseases involving bone loss. In this study, we assessed the effect of a plant-derived natural alkaloid (lycorine, or LY) on osteoclastogenesis in vitro and in vivo. Our in vitro study showed that receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclastogenesis could be inhibited by LY; this effect was due to inhibition of mitogen-activated protein kinase (MAPK) signalling via MAP kinase kinases (MKKs). The MAPK agonist anisomycin could partially rescue the inhibitory effect of LY. Furthermore, LY also played a protective role in both a murine ovariectomy (OVX)-induced osteoporosis model and a titanium particle-induced osteolysis model. These results confirmed that LY was effective in preventing osteoclast-related diseases in vivo. In conclusion, our results show that LY is effective in suppressing osteoclastogenesis and therefore could be used to treat OVX-induced osteoporosis and wear particle-induced osteolysis. PMID:26238331

  7. Role of miR-222-3p in c-Src-Mediated Regulation of Osteoclastogenesis

    PubMed Central

    Takigawa, Shinya; Chen, Andy; Wan, Qiaoqiao; Na, Sungsoo; Sudo, Akihiro; Yokota, Hiroki; Hamamura, Kazunori

    2016-01-01

    MicroRNAs (miRNAs) are small non-coding RNAs that play a mostly post-transcriptional regulatory role in gene expression. Using RAW264.7 pre-osteoclast cells and genome-wide expression analysis, we identified a set of miRNAs that are involved in osteoclastogenesis. Based on in silico analysis, we specifically focused on miR-222-3p and evaluated its role in osteoclastogenesis. The results show that the inhibitor of miR-222-3p upregulated the mRNA levels of nuclear factor of activated T-cells, cytoplasmic 1 (NFATc1) and tartrate-resistant acid phosphatase (TRAP), while its mimicking agent downregulated their mRNA levels. Western blot analysis showed that its inhibitor increased the protein levels of TRAP and cathepsin K, while its mimicking agent decreased their levels. Genome-wide mRNA expression analysis in the presence and absence of receptor activator of nuclear factor κ-B ligand (RANKL) predicted c-Src as a potential regulatory target of miR-222-3p. Live cell imaging using a fluorescence resonance energy transfer (FRET) technique revealed that miR-222-3p acted as an inhibitor of c-Src activity, and a partial silencing of c-Src suppressed RANKL-induced expression of TRAP and cathepsin K, as well as the number of multi-nucleated osteoclasts and their pit formation. Collectively, the study herein demonstrates that miR-222-3p serves as an inhibitor of osteoclastogenesis and c-Src mediates its inhibition of cathepsin K and TRAP. PMID:26891296

  8. The matricellular protein CYR61 inhibits osteoclastogenesis by a mechanism independent of alphavbeta3 and alphavbeta5.

    PubMed

    Crockett, Julie C; Schütze, Norbert; Tosh, Denise; Jatzke, Susanne; Duthie, Angela; Jakob, Franz; Rogers, Michael J

    2007-12-01

    Cysteine-rich protein 61 (CYR61/CCN1) belongs to the family of CCN matricellular proteins. Most of the known effects of CCN proteins appear to be due to binding to extracellular growth factors or integrins, including alpha(v)beta(3) and alpha(v)beta(5). Although CYR61 can stimulate osteoblast differentiation, until now the effect of CYR61 on osteoclasts was unknown. We demonstrate that recombinant human CYR61 inhibits the formation of multinucleated, alpha(v)beta(3)-positive, or tartrate-resistant acid phosphatase-positive human, mouse, and rabbit osteoclasts in vitro. CYR61 markedly reduced the expression of the osteoclast phenotypic markers tartrate-resistant acid phosphatase, matrix metalloproteinase-9, calcitonin receptor, and cathepsin K. However, CYR61 did not affect the formation of multinucleated osteoclasts when added to osteoclast precursors prior to fusion or affect the number or resorptive activity of osteoclasts cultured on dentine discs, indicating that CYR61 affects early osteoclast precursors but not mature osteoclasts. CYR61 did not affect receptor activator of nuclear factor-kappaB (RANK) ligand-induced phosphorylation of p38 or ERK1/2 in human macrophages and did not affect RANK ligand-induced activation of nuclear factor-kappaB, indicating that CYR61 does not appear to inhibit osteoclastogenesis by affecting RANK signaling. Furthermore, a mutant form of CYR61 defective in binding to alpha(v)beta(3) also inhibited osteoclastogenesis, and CYR61 inhibited osteoclastogenesis similarly in cultures of mouse wild-type or beta(5)(-/-) macrophages. Thus, CYR61 does not appear to inhibit osteoclast formation by interacting with alpha(v)beta(3) or alpha(v)beta(5). These observations demonstrate that CYR61 is a hitherto unrecognized inhibitor of osteoclast formation, although the exact mechanism of inhibition remains to be determined. Given that CYR61 also stimulates osteoblasts, CYR61 could represent an important bifunctional local regulator of bone

  9. Curcumin analogue UBS109 prevents bone loss in breast cancer bone metastasis mouse model: involvement in osteoblastogenesis and osteoclastogenesis.

    PubMed

    Yamaguchi, Masayoshi; Zhu, Shijun; Zhang, Shumin; Wu, Daqing; Moore, Terry M; Snyder, James P; Shoji, Mamoru

    2014-07-01

    Bone metastasis of breast cancer typically leads to osteolysis, which causes severe pathological bone fractures and hypercalcemia. Bone homeostasis is skillfully regulated through osteoblasts and osteoclasts. Bone loss with bone metastasis of breast cancer may be due to both activation of osteoclastic bone resorption and suppression of osteoblastic bone formation. This study was undertaken to determine whether the novel curcumin analogue UBS109 has preventive effects on bone loss induced by breast cancer cell bone metastasis. Nude mice were inoculated with breast cancer MDA-MB-231 bone metastatic cells (10(6) cells/mouse) into the head of the right and left tibia. One week after inoculation, the mice were treated with control (vehicle), oral administration (p.o.) of UBS109 (50 or 150 mg/kg body weight), or intraperitoneal administration (i.p.) of UBS109 (10 or 20 mg/kg body weight) once daily for 5 days per week for 7 weeks. After UBS109 administration for 7 weeks, hind limbs were assessed using an X-ray diagnosis system and hematoxylin and eosion staining to determine osteolytic destruction. Bone marrow cells obtained from the femurs and tibias were cultured to estimate osteoblastic mineralization and osteoclastogenesis ex vivo and in vitro. Remarkable bone loss was demonstrated in the tibias of mice inoculated with breast cancer MDA-MB-231 bone metastatic cells. This bone loss was prevented by p.o. administration of UBS109 (50 and 150 mg/kg body weight) and i.p. treatment of UBS109 (10 and 20 mg/kg) in vivo. Culture of bone marrow cells obtained from the bone tissues of mice with breast cancer cell bone metastasis showed suppressed osteoblastic mineralization and stimulated osteoclastogenesis ex vivo. These changes were not seen after culture of the bone marrow cells obtained from mice treated with UBS109. Moreover, UBS109 was found to stimulate osteoblastic mineralization and suppress lipopolysaccharide (LPS)-induced osteoclastogenesis in bone marrow

  10. Methylsulfonylmethane Inhibits RANKL-Induced Osteoclastogenesis in BMMs by Suppressing NF-κB and STAT3 Activities

    PubMed Central

    Joung, Youn Hee; Darvin, Pramod; Kang, Dong Young; SP, Nipin; Byun, Hyo Joo; Lee, Chi-Ho; Lee, Hak Kyo; Yang, Young Mok

    2016-01-01

    Osteoclast differentiation is dependent on the activities of receptor activator NF-kB ligand (RANKL) and macrophage colony-stimulating factor (M-CSF). Given that RANKL plays a critical role in osteoclast formation and bone resorption, any new compounds found to alter its activity would be predicted to have therapeutic potential for disorders associated with bone loss. Methylsulfonylmethane (MSM) is a naturally occurring sulfur compound with well-documented anti-oxidant and anti-inflammatory properties; currently its effects on osteoclast differentiation are unknown. We sought to investigate whether MSM could regulate osteoclastogenesis, and if so, its mechanism of action. In this study, we investigated the effects of MSM on RANKL-induced osteoclast differentiation, together with STAT3’s involvement in the expression of osteoclastic gene markers. These experiments were conducted using bone marrow derived macrophages (BMMs) and cell line material, together with analyses that interrogated both protein and mRNA levels, as well as signaling pathway activity. Although MSM was not toxic to osteoclast precursors, MSM markedly inhibited RANKL-induced TRAP activity, multinucleated osteoclast formation, and bone resorptive activity. Additionally, the expression of several osteoclastogenesis-related marker genes, including TRAF6, c-Fos, NFATc1, cathepsin K, and OSCAR were suppressed by MSM. MSM mediated suppression of RANKL-induced osteoclastogenesis involved inhibition of ITAM signaling effectors such as PLCγ and Syk, with a blockade of NF-kB rather than MAPK activity. Furthermore, MSM inhibited RANKL-induced phosphorylation of STAT3 Ser727. Knockdown of STAT3 using shRNAs resulted in reduced RANKL-mediated phosphorylation of Ser727 STAT3, and TRAF6 in cells for which depletion of STAT3 was confirmed. Additionally, the expression of RANKL-induced osteoclastogenic marker genes were significantly decreased by MSM and STAT3 knockdown. Taken together, these results indicate

  11. Methylsulfonylmethane Inhibits RANKL-Induced Osteoclastogenesis in BMMs by Suppressing NF-κB and STAT3 Activities.

    PubMed

    Joung, Youn Hee; Darvin, Pramod; Kang, Dong Young; Sp, Nipin; Byun, Hyo Joo; Lee, Chi-Ho; Lee, Hak Kyo; Yang, Young Mok

    2016-01-01

    Osteoclast differentiation is dependent on the activities of receptor activator NF-kB ligand (RANKL) and macrophage colony-stimulating factor (M-CSF). Given that RANKL plays a critical role in osteoclast formation and bone resorption, any new compounds found to alter its activity would be predicted to have therapeutic potential for disorders associated with bone loss. Methylsulfonylmethane (MSM) is a naturally occurring sulfur compound with well-documented anti-oxidant and anti-inflammatory properties; currently its effects on osteoclast differentiation are unknown. We sought to investigate whether MSM could regulate osteoclastogenesis, and if so, its mechanism of action. In this study, we investigated the effects of MSM on RANKL-induced osteoclast differentiation, together with STAT3's involvement in the expression of osteoclastic gene markers. These experiments were conducted using bone marrow derived macrophages (BMMs) and cell line material, together with analyses that interrogated both protein and mRNA levels, as well as signaling pathway activity. Although MSM was not toxic to osteoclast precursors, MSM markedly inhibited RANKL-induced TRAP activity, multinucleated osteoclast formation, and bone resorptive activity. Additionally, the expression of several osteoclastogenesis-related marker genes, including TRAF6, c-Fos, NFATc1, cathepsin K, and OSCAR were suppressed by MSM. MSM mediated suppression of RANKL-induced osteoclastogenesis involved inhibition of ITAM signaling effectors such as PLCγ and Syk, with a blockade of NF-kB rather than MAPK activity. Furthermore, MSM inhibited RANKL-induced phosphorylation of STAT3 Ser727. Knockdown of STAT3 using shRNAs resulted in reduced RANKL-mediated phosphorylation of Ser727 STAT3, and TRAF6 in cells for which depletion of STAT3 was confirmed. Additionally, the expression of RANKL-induced osteoclastogenic marker genes were significantly decreased by MSM and STAT3 knockdown. Taken together, these results indicate that

  12. Osteoclastogenesis in Local Alveolar Bone in Early Decortication-Facilitated Orthodontic Tooth Movement

    PubMed Central

    Liu, Chang; Jiang, Yu-Xi; Qu, Hong; Li, Cui-Ying; Jiang, Jiu-Hui

    2016-01-01

    Objective In the current study, we aimed to investigate the effects of alveolar decortication on local bone remodeling, and to explore the possible mechanism by which decortication facilitates tooth movement. Materials and Methods Forty rabbits were included in the experiment. The left mandible was subjected to decortication-facilitated orthodontics, and the right mandible underwent traditional orthodontics as a control. The animals were sacrificed on the days 1, 3, 5, 7 and 14, after undergoing orthodontic procedures. Tooth movement was measured by Micro-CT, and the local periodontal tissues were investigated using H&E, Masson's trichrome and tartrate-resistant acid phosphatase (TRAP) staining. The mRNA levels of genes related to bone remodeling in the alveolar bone were analyzed using real-time PCR. Result On days 3, 5, 7 and 14, tooth movement was statistically accelerated by decortication (P < 0.05) and was accompanied by increased hyperemia. Despite the lack of new bone formation in both groups, more osteoclasts were noted in the decorticated group, with two peak counts (P < 0.05). The first peak count was consistent with the maximum values of ctsk and TRAP expression, and the second peak counts accompanied the maximum nfatc1 and jdp2 expression. The increased fra2 expression and the ratio of rankl/opg also accompanied the second peak counts. Conclusions Following alveolar decortication, osteoclastogenesis was initially induced to a greater degree than the new bone formation which was thought to have caused a regional acceleratory phenomenon (RAP). The amount of steoclastogenesis in the decorticated alveolar bone was found to have two peaks, perhaps due to attenuated local resistance. The first peak count in osteoclasts may have been due to previously existing osteoclast precursors, whereas the second may represent the differentiation of peripheral blood mononuclear cells which came from circulation as the result of hyperemia. PMID:27096621

  13. Secretory clusterin inhibits osteoclastogenesis by attenuating M-CSF-dependent osteoclast precursor cell proliferation

    SciTech Connect

    Choi, Bongkun; Kang, Soon-Suk; Kang, Sang-Wook; Min, Bon-Hong; Lee, Eun-Jin; Song, Da-Hyun; Kim, Sang-Min; Song, Youngsup; Yoon, Seung-Yong; Chang, Eun-Ju

    2014-07-18

    Highlights: • We describe the expression and secretion of clusterin in osteoclasts. • Endogenous clusterin deficiency does not affect osteoclast formation. • Exogenous treatment with secretory clusterin decreases osteoclast differentiation. • Secretory clusterin attenuates osteoclast precursor cell proliferation by inhibiting M-CSF-mediated ERK activation. - Abstract: Secretory clusterin (sCLU)/apolipoprotein J is a multifunctional glycoprotein that is ubiquitously expressed in various tissues. Reduced sCLU in the joints of patients with bone erosive disease is associated with disease activity; however, its exact role has yet to be elucidated. Here, we report that CLU is expressed and secreted during osteoclastogenesis in mouse bone marrow-derived macrophages (BMMs) that are treated with receptor activator of nuclear factor kappa-B ligand (RANKL) and macrophage colony-stimulating factor (M-CSF). CLU-deficient BMMs obtained from CLU{sup −/−} mice exhibited no significant alterations in OC differentiation in comparison with BMMs obtained from wild-type mice. In contrast, exogenous sCLU treatment significantly inhibited OC formation in both BMMs and OC precursor cultures. The inhibitory effect of sCLU was more prominent in BMMs than OC precursor cultures. Interestingly, treating BMMs with sCLU decreased the proliferative effects elicited by M-CSF and suppressed M-CSF-induced ERK activation of OC precursor cells without causing apoptotic cell death. This study provides the first evidence that sCLU reduces OC formation by inhibiting the actions of M-CSF, thereby suggesting its protective role in bone erosion.

  14. Influence of surface microstructure and chemistry on osteoinduction and osteoclastogenesis by biphasic calcium phosphate discs.

    PubMed

    Davison, N L; Su, J; Yuan, H; van den Beucken, J J J P; de Bruijn, J D; Barrère-de Groot, F

    2015-01-01

    It has been reported that surface microstructural dimensions can influence the osteoinductivity of calcium phosphates (CaPs), and osteoclasts may play a role in this process. We hypothesised that surface structural dimensions of ≤ 1 μm trigger osteoinduction and osteoclast formation irrespective of macrostructure (e.g., concavities, interconnected macropores, interparticle space) or surface chemistry. To test this, planar discs made of biphasic calcium phosphate (BCP: 80% hydroxyapatite, 20% tricalcium phosphate) were prepared with different surface structural dimensions - either ~ 1 μm (BCP1150) or ~ 2-4 μm (BCP1300) - and no macropores or concavities. A third material was made by sputter coating BCP1150 with titanium (BCP1150Ti), thereby changing its surface chemistry but preserving its surface structure and chemical reactivity. After intramuscular implantation in 5 dogs for 12 weeks, BCP1150 formed ectopic bone in 4 out of 5 samples, BCP1150Ti formed ectopic bone in 3 out of 5 samples, and BCP1300 formed no ectopic bone in any of the 5 samples. In vivo, large multinucleated osteoclast-like cells densely colonised BCP1150, smaller osteoclast-like cells formed on BCP1150Ti, and osteoclast-like cells scarcely formed on BCP1300. In vitro, RAW264.7 cells cultured on the surface of BCP1150 and BCP1150Ti in the presence of osteoclast differentiation factor RANKL (receptor activator for NF-κB ligand) proliferated then differentiated into multinucleated osteoclast-like cells with positive tartrate resistant acid phosphatase (TRAP) activity. However, cell proliferation, fusion, and TRAP activity were all significantly inhibited on BCP1300. These results indicate that of the material parameters tested - namely, surface microstructure, macrostructure, and surface chemistry - microstructural dimensions are critical in promoting osteoclastogenesis and triggering ectopic bone formation. PMID:26091730

  15. Therapeutic potentials of naringin on polymethylmethacrylate induced osteoclastogenesis and osteolysis, in vitro and in vivo assessments

    PubMed Central

    Li, Nianhu; Xu, Zhanwang; Wooley, Paul H; Zhang, Jianxin; Yang, Shang-You

    2014-01-01

    Wear debris associated periprosthetic osteolysis represents a major pathological process associated with the aseptic loosening of joint prostheses. Naringin is a major flavonoid identified in grapefruit. Studies have shown that naringin possesses many pharmacological properties including effects on bone metabolism. The current study evaluated the influence of naringin on wear debris induced osteoclastic bone resorption both in vitro and in vivo. The osteoclast precursor cell line RAW 264.7 was cultured and stimulated with polymethylmethacrylate (PMMA) particles followed by treatment with naringin at several doses. Tartrate resistant acid phosphatase (TRAP), calcium release, and gene expression profiles of TRAP, cathepsin K, and receptor activator of nuclear factor-kappa B were sequentially evaluated. PMMA challenged murine air pouch and the load bearing tibia titanium pin-implantation mouse models were used to evaluate the effects of naringin in controlling PMMA induced bone resorption. Histological analyses and biomechanical pullout tests were performed following the animal experimentation. The in vitro data clearly demonstrated the inhibitory effects of naringin in PMMA induced osteoclastogenesis. The naringin dose of 10 μg/mL exhibited the most significant influence on the suppression of TRAP activities. Naringin treatment also markedly decreased calcium release in the stimulated cell culture medium. The short-term air pouch mouse study revealed that local injection of naringin ameliorated the PMMA induced inflammatory tissue response and subsequent bone resorption. The long-term tibia pin-implantation mouse model study suggested that daily oral gavage of naringin at 300 mg/kg dosage for 30 days significantly alleviated the periprosthetic bone resorption. A significant increase of periprosthetic bone volume and regaining of the pin stability were found in naringin treated mice. Overall, this study suggests that naringin may serve as a potential therapeutic

  16. MAPK11 in breast cancer cells enhances osteoclastogenesis and bone resorption

    PubMed Central

    He, Zhimin; He, Jin; Liu, Zhiqiang; Xu, Jingda; Yi, Sofia F.; Liu, Huan; Yang, Jing

    2014-01-01

    Breast cancer cells frequently metastasize to bone and induce osteolytic bone destruction in patients. These metastases cause severe bone pain, high risk of fractures and hypercalcemia, and are essentially incurable and fatal. Recent studies show that breast cancer cells in bone activate osteoclastogenesis and bone resorption. However the underlying mechanism is poorly understood. This study shows that the p38 MAPK (p38) isoform MAPK11 (p38β) is expressed in breast cancer cells. By using specific small hairpin RNAs for MAPK11, we demonstrated that p38β-mediated p38 activity in breast cancer cells is responsible for breast cancer-induced osteolytic bone destruction. The addition of conditioned media from breast cancer cell lines MDA-MB-231 and MDA-MB-468, which have high expression of p38β, induced osteoclast differentiation and bone resorption. In contrast, knockdown of p38β in breast cancer cells reduced osteoclast differentiation in vitro and reduced bone destruction in severe combined immunodeficiency (SCID) mouse models. The knockdown of p38β did not affect tumor growth or survival or the ability of cancer cells to home to bone. Furthermore, our results showed that p38β upregulated the expression and secretion of monocyte chemotactic protein-1 (MCP-1) in breast cancer cells, and upregulated MCP-1 activates osteoclast differentiation and activity. This study elucidates a novel molecular mechanism of breast cancer cell-induced osteolytic bone destruction. This study also indicates that targeting breast cancer cell p38β and its product MCP-1 may be a viable approach to treat or prevent bone destruction in patients with bone-metastatic breast cancer. PMID:25066918

  17. Enhanced serine production by bone metastatic breast cancer cells stimulates osteoclastogenesis.

    PubMed

    Pollari, Sirkku; Käkönen, Sanna-Maria; Edgren, Henrik; Wolf, Maija; Kohonen, Pekka; Sara, Henri; Guise, Theresa; Nees, Matthias; Kallioniemi, Olli

    2011-01-01

    Since bone metastatic breast cancer is an incurable disease, causing significant morbidity and mortality, an understanding of the underlying molecular mechanisms would be highly valuable. Here, we describe in vitro and in vivo evidences for the importance of serine biosynthesis in the metastasis of breast cancer to bone. We first characterized the bone metastatic propensity of the MDA-MB-231(SA) cell line variant as compared to the parental MDA-MB-231 cells by radiographic and histological observations in the inoculated mice. Genome-wide gene expression profiling of this isogenic cell line pair revealed that all the three genes involved in the L: -serine biosynthesis pathway, phosphoglycerate dehydrogenase (PHGDH), phosphoserine aminotransferase 1 (PSAT1), and phosphoserine phosphatase (PSPH) were upregulated in the highly metastatic variant. This pathway is the primary endogenous source for L: -serine in mammalian tissues. Consistently, we observed that the proliferation of MDA-MB-231(SA) cells in serine-free conditions was dependent on PSAT1 expression. In addition, we observed that L: -serine is essential for the formation of bone resorbing human osteoclasts and may thus contribute to the vicious cycle of osteolytic bone metastasis. High expression of PHGDH and PSAT1 in primary breast cancer was significantly associated with decreased relapse-free and overall survival of patients and malignant phenotypic features of breast cancer. In conclusion, high expression of serine biosynthesis genes in metastatic breast cancer cells and the stimulating effect of L: -serine on osteoclastogenesis and cancer cell proliferation indicate a functionally critical role for serine biosynthesis in bone metastatic breast cancer and thereby an opportunity for targeted therapeutic interventions.

  18. A comprehensive mixture of tobacco smoke components retards orthodontic tooth movement via the inhibition of osteoclastogenesis in a rat model.

    PubMed

    Nagaie, Maya; Nishiura, Aki; Honda, Yoshitomo; Fujiwara, Shin-Ichi; Matsumoto, Naoyuki

    2014-10-15

    Tobacco smoke is a complex mixture of numerous components. Nevertheless, most experiments have examined the effects of individual chemicals in tobacco smoke. The comprehensive effects of components on tooth movement and bone resorption remain unexplored. Here, we have shown that a comprehensive mixture of tobacco smoke components (TSCs) attenuated bone resorption through osteoclastogenesis inhibition, thereby retarding experimental tooth movement in a rat model. An elastic power chain (PC) inserted between the first and second maxillary molars robustly yielded experimental tooth movement within 10 days. TSC administration effectively retarded tooth movement since day 4. Histological evaluation disclosed that tooth movement induced bone resorption at two sites: in the bone marrow and the peripheral bone near the root. TSC administration significantly reduced the number of tartrate-resistant acid phosphatase (TRAP)-positive osteoclastic cells in the bone marrow cavity of the PC-treated dentition. An in vitro study indicated that the inhibitory effects of TSCs on osteoclastogenesis seemed directed more toward preosteoclasts than osteoblasts. These results indicate that the comprehensive mixture of TSCs might be a useful tool for detailed verification of the adverse effects of tobacco smoke, possibly contributing to the development of reliable treatments in various fields associated with bone resorption.

  19. A comprehensive mixture of tobacco smoke components retards orthodontic tooth movement via the inhibition of osteoclastogenesis in a rat model.

    PubMed

    Nagaie, Maya; Nishiura, Aki; Honda, Yoshitomo; Fujiwara, Shin-Ichi; Matsumoto, Naoyuki

    2014-01-01

    Tobacco smoke is a complex mixture of numerous components. Nevertheless, most experiments have examined the effects of individual chemicals in tobacco smoke. The comprehensive effects of components on tooth movement and bone resorption remain unexplored. Here, we have shown that a comprehensive mixture of tobacco smoke components (TSCs) attenuated bone resorption through osteoclastogenesis inhibition, thereby retarding experimental tooth movement in a rat model. An elastic power chain (PC) inserted between the first and second maxillary molars robustly yielded experimental tooth movement within 10 days. TSC administration effectively retarded tooth movement since day 4. Histological evaluation disclosed that tooth movement induced bone resorption at two sites: in the bone marrow and the peripheral bone near the root. TSC administration significantly reduced the number of tartrate-resistant acid phosphatase (TRAP)-positive osteoclastic cells in the bone marrow cavity of the PC-treated dentition. An in vitro study indicated that the inhibitory effects of TSCs on osteoclastogenesis seemed directed more toward preosteoclasts than osteoblasts. These results indicate that the comprehensive mixture of TSCs might be a useful tool for detailed verification of the adverse effects of tobacco smoke, possibly contributing to the development of reliable treatments in various fields associated with bone resorption. PMID:25322153

  20. Polygonatum sibiricum polysaccharide inhibits osteoporosis by promoting osteoblast formation and blocking osteoclastogenesis through Wnt/β-catenin signalling pathway

    PubMed Central

    Du, Li; Nong, Meng-Ni; Zhao, Jin-Min; Peng, Xiao-Ming; Zong, Shao-Hui; Zeng, Gao-Feng

    2016-01-01

    Bone homeostasis is maintained by a balance between bone formation by osteoblasts and bone resorption by osteoclasts. Osteoporosis occurs when osteoclast activity surpasses osteoblast activity. Our previous studies showed the plant-derived natural polysaccharide (Polygonatum sibiricum polysaccharide or PSP) had significant anti-ovariectomy (OVX)-induced osteoporosis effects in vivo, but the mechanisms of PSP’s anti-osteoporosis effect remains unclear. In this study, we assessed PSP’s effect on the generation of osteoblast and osteoclast in vitro. This study showed that PSP promoted the osteogenic differentiation of mouse bone marrow stromal cells (BMSCs) without affecting BMPs signaling pathway. This effect was due to the increased nuclear accumulation of β-catenin, resulting in a higher expression of osteoblast-related genes. Furthermore, the study showed PSP could inhibit the receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclastogenesis and exert prophylatic protection against LPS-induced osteolysis in vivo. This effect was also related to the increased nuclear accumulation of β-catenin, resulting in the decreased expression of osteoclast-related genes. In conclusion, our results showed that PSP effectively promoted the osteogenic differentiation of mouse BMSCs and suppressed osteoclastogenesis; therefore, it could be used to treat osteoporosis. PMID:27554324

  1. The effect of enoxacin on osteoclastogenesis and reduction of titanium particle-induced osteolysis via suppression of JNK signaling pathway.

    PubMed

    Liu, Xuqiang; Qu, Xinhua; Wu, Chuanlong; Zhai, Zanjing; Tian, Bo; Li, Haowei; Ouyang, Zhengxiao; Xu, Xinchen; Wang, Wengang; Fan, Qiming; Tang, Tingting; Qin, An; Dai, Kerong

    2014-07-01

    The aim of this study was to assess the effect of enoxacin on osteoclastogenesis and titanium particle-induced osteolysis. Wear particles liberated from the surface of prostheses are associated with aseptic prosthetic loosening. It is well established that wear particles induce inflammation, and that extensive osteoclastogenesis plays a critical role in peri-implant osteolysis and subsequent prosthetic loosening. Therefore, inhibiting extensive osteoclast formation and bone resorption could be a potential therapeutic target to prevent prosthetic loosening. In this study, we demonstrated that enoxacin, a fluoroquinolone antibiotic, exerts potent inhibitory effects on titanium particle-induced osteolysis in a mouse calvarial model. Interestingly, the number of mature osteoclasts decreased after treatment with enoxacin in vivo, suggesting that osteoclast formation might be inhibited by enoxacin. We then performed in vitro studies to confirm our hypothesis and revealed the mechanism of action of enoxacin. Enoxacin inhibited osteoclast formation by specifically abrogating RANKL-induced JNK signaling. Collectively, these results suggest that enoxacin, an antibiotic with few side effects that is widely used in clinics, had significant potential for the treatment of particle-induced peri-implant osteolysis and other diseases caused by excessive osteoclast formation and function.

  2. M-CSF priming of osteoclast precursors can cause osteoclastogenesis-insensitivity, which can be prevented and overcome on bone.

    PubMed

    De Vries, Teun J; Schoenmaker, Ton; Aerts, David; Grevers, Lilyanne C; Souza, Pedro P C; Nazmi, Kamran; van de Wiel, Mark; Ylstra, Bauke; Lent, Peter L Van; Leenen, Pieter J M; Everts, Vincent

    2015-01-01

    Osteoclasts and macrophages share progenitors that must receive decisive lineage signals driving them into their respective differentiation routes. Macrophage colony stimulation factor M-CSF is a common factor; bone is likely the stimulus for osteoclast differentiation. To elucidate the effect of both, shared mouse bone marrow precursor myeloid blast was pre-cultured with M-CSF on plastic and on bone. M-CSF priming prior to stimulation with M-CSF and osteoclast differentiation factor RANKL resulted in a complete loss of osteoclastogenic potential without bone. Such M-CSF primed cells expressed the receptor RANK, but lacked the crucial osteoclastogenic transcription factor NFATc1. This coincided with a steeply decreased expression of osteoclast genes TRACP and DC-STAMP, but an increased expression of the macrophage markers F4/80 and CD11b. Compellingly, M-CSF priming on bone accelerated the osteoclastogenic potential: M-CSF primed cells that had received only one day M-CSF and RANKL and were grown on bone already expressed an array of genes that are associated with osteoclast differentiation and these cells differentiated into osteoclasts within 2 days. Osteoclastogenesis-insensitive precursors grown in the absence of bone regained their osteoclastogenic potential when transferred to bone. This implies that adhesion to bone dictates the fate of osteoclast precursors. Common macrophage-osteoclast precursors may become insensitive to differentiate into osteoclasts and regain osteoclastogenesis when bound to bone or when in the vicinity of bone.

  3. Plumbagin Inhibits Osteoclastogenesis and Reduces Human Breast Cancer-induced Osteolytic Bone Metastasis in Mice through Suppression of RANKL Signaling

    PubMed Central

    Sung, Bokyung; Oyajobi, Babatunde O.; Aggarwal, Bharat B.

    2011-01-01

    Bone loss is one of the major complications of advanced cancers such as breast cancer, prostate cancer and multiple myeloma; agents that can suppress this bone loss have therapeutic potential. Extensive research within the last decade has revealed that RANKL, a member of the tumor necrosis factor superfamily, plays a major role in cancer-associated bone resorption, and thus is a therapeutic target. We investigated the potential of vitamin K3 analogue plumbagin (derived from Chitrak, an Ayurvedic medicinal plant), to modulate RANKL signaling, osteoclastogenesis and breast cancer–induced osteolysis. Plumbagin suppressed RANKL-induced NF-κB activation in mouse monocytes, an osteoclast precursor cell, through sequential inhibition of activation of IκBα kinase, IκBα phosphorylation and IκBα degradation. Plumbagin also suppressed differentiation of these cells into osteoclasts induced either by RANKL or by human breast cancer or human multiple myeloma cells. When examined for its ability to prevent human breast cancer–induced bone loss in animals, plumbagin (2 mg/kg body weight), when administered via the intraperitoneal route, significantly decreased osteolytic lesions resulting in preservation of bone volume in nude mice bearing human breast tumors. Overall, our results indicate that plumbagin, a vitamin K analogue, is a potent inhibitor of osteoclastogenesis induced by tumor cells and of breast cancer–induced osteolytic metastasis through suppression of RANKL signaling. PMID:22090419

  4. The Inhibition of RANKL-Induced Osteoclastogenesis through the Suppression of p38 Signaling Pathway by Naringenin and Attenuation of Titanium-Particle-Induced Osteolysis

    PubMed Central

    Wang, Wengang; Wu, Chuanlong; Tian, Bo; Liu, Xuqiang; Zhai, Zanjing; Qu, Xinhua; Jiang, Chuan; Ouyang, Zhengxiao; Mao, Yuanqing; Tang, Tingting; Qin, An; Zhu, Zhenan

    2014-01-01

    The aim of this study was to assess the effect of naringenin on osteoclastogenesis and titanium particle-induced osteolysis. Osteolysis from wear-induced particles and aseptic loosening are the most frequent late complications of total joint arthroplasty leading to revision of the prosthesis. Osteolysis during aseptic loosening is most likely due to increased bone resorption by osteoclasts. Through in vitro studies, we demonstrated that naringenin, a naturally occurring flavanone in grapefruit and tomatoes, exerts potent inhibitory effects on the ligand of the receptor activator of nuclear factor-κB (RANKL)-induced osteoclastogenesis and revealed that the mechanism of action of naringenin, which inhibited osteoclastogenesis by suppression of the p38 signaling pathway. Through in vivo studies, we proved that naringenin attenuated titanium particle-induced osteolysis in a mouse calvarial model. In general, we demonstrated that naringenin inhibited osteoclastogenesis via suppression of p38 signaling in vitro and attenuated titanium particle-induced osteolysis in vivo. This study also suggested that naringenin has significant potential for the treatment of osteolysis-related diseases caused by excessive osteoclast formation and activity. PMID:25464380

  5. Ceylonamides A-F, Nitrogenous Spongian Diterpenes That Inhibit RANKL-Induced Osteoclastogenesis, from the Marine Sponge Spongia ceylonensis.

    PubMed

    El-Desoky, Ahmed H; Kato, Hikaru; Angkouw, Esther D; Mangindaan, Remy E P; de Voogd, Nicole J; Tsukamoto, Sachiko

    2016-08-26

    Seven new spongian diterpenes, ceylonamides A-F (1-6) and 15α,16-dimethoxyspongi-13-en-19-oic acid (7), were isolated from the Indonesian marine sponge Spongia ceylonensis along with eight known spongian diterpenes, 8-15. Compounds 1-6 were determined to be nitrogenous spongian diterpenes. The isolated compounds were examined for the inhibition of RANKL-induced osteoclastogenesis in RAW264 macrophages. Ceylonamide A (1) exhibited the most potent inhibitory activity with an IC50 value of 13 μM, followed by ceylonamide B (2) (IC50, 18 μM). An examination of the structure-activity relationships of the isolated compounds revealed that the position of the carbonyl group of the γ-lactam ring and bulkiness of the substituent at its nitrogen atom were important for inhibitory activity. PMID:27526327

  6. Biphasic silica/apatite co-mineralized collagen scaffolds stimulate osteogenesis and inhibit RANKL-mediated osteoclastogenesis

    PubMed Central

    Kai, Jiao; Niu, Li-na; Li, Qi-hong; Chen, Fa-ming; Zhao, Wei; Li, Jun-jie; Chen, Ji-hua; Cutler, Christopher W; Pashley, David H; Tay, Franklin R

    2016-01-01

    The effects of a biphasic mineralized collagen scaffold (BCS) containing intrafibrillar silica and apatite on osteogenesis of mouse mesenchymal stem cells (mMSCs) and inhibition of receptor activator of nuclear factor κB ligand (RANKL)-mediated osteoclastogenesis were investigated in the present study. mMSCs were cultured by exposing to BCS for 7 days for cell proliferation/viability examination, and stimulated to differentiate in osteogenic medium for 7–21 days for evaluation of alkaline phosphatase activity, secretion of osteogenic deposits and expression of osteoblast lineage-specific phenotypic markers. The effect of BCS-conditioned mMSCs on osteoclastogenesis of RAW 264.7 cells was evaluated by tartrate-resistant acid phosphatase staining and resorption pit analysis. The contributions of mitogen-activated protein kinase (MAPK) and phosphatidylinositol-3 kinase (PI3K) signal transduction pathways to osteogenesis of mMSCs and their osteoprotegerin (OPG) and RANKL expressions were also evaluated. Compared with unmineralized, intrafibrillarly-silicified or intrafibrillarly-calcified collagen scaffolds, BCS enhanced osteogenic differentiation of mMSCs by activation of the extracellular signal regulated kinases (ERK)/MAPK and p38/MAPK signaling pathways. After mMSCs were exposed to BCS, they up-regulated OPG expression and down-regulated RANKL expression through activation of the p38/MAPK and PI3K/ protein kinase B (Akt) pathways, resulting in inhibition of the differentiation of RAW 264.7 cells into multinucleated osteoclasts and reduction in osteoclast function. These observations collectively suggest that BCS has the potential to be used in bone tissue engineering when the demand for anabolic activities is higher than catabolic metabolism during the initial stage of wound rehabilitation. PMID:25792280

  7. Geraniin suppresses RANKL-induced osteoclastogenesis in vitro and ameliorates wear particle-induced osteolysis in mouse model

    SciTech Connect

    Xiao, Fei; Zhai, Zanjing; Jiang, Chuan; Liu, Xuqiang; Li, Haowei; Qu, Xinhua; Ouyang, Zhengxiao; Fan, Qiming; Tang, Tingting; Qin, An; Gu, Dongyun

    2015-01-01

    Wear particle-induced osteolysis and subsequent aseptic loosening remains the most common complication that limits the longevity of prostheses. Wear particle-induced osteoclastogenesis is known to be responsible for extensive bone erosion that leads to prosthesis failure. Thus, inhibition of osteoclastic bone resorption may serve as a therapeutic strategy for the treatment of wear particle induced osteolysis. In this study, we demonstrated for the first time that geraniin, an active natural compound derived from Geranium thunbergii, ameliorated particle-induced osteolysis in a Ti particle-induced mouse calvaria model in vivo. We also investigated the mechanism by which geraniin exerts inhibitory effects on osteoclasts. Geraniin inhibited RANKL-induced osteoclastogenesis in a dose-dependent manner, evidenced by reduced osteoclast formation and suppressed osteoclast specific gene expression. Specially, geraniin inhibited actin ring formation and bone resorption in vitro. Further molecular investigation demonstrated geraniin impaired osteoclast differentiation via the inhibition of the RANKL-induced NF-κB and ERK signaling pathways, as well as suppressed the expression of key osteoclast transcriptional factors NFATc1 and c-Fos. Collectively, our data suggested that geraniin exerts inhibitory effects on osteoclast differentiation in vitro and suppresses Ti particle-induced osteolysis in vivo. Geraniin is therefore a potential natural compound for the treatment of wear particle induced osteolysis in prostheses failure. - Highlights: • Geraniin suppresses osteoclasts formation and function in vitro. • Geraniin impairs RANKL-induced nuclear factor-κB and ERK signaling pathway. • Geraniin suppresses osteolysis in vivo. • Geraniin may be used for treating osteoclast related diseases.

  8. Toll-Like Receptor 2 Stimulation of Osteoblasts Mediates Staphylococcus Aureus Induced Bone Resorption and Osteoclastogenesis through Enhanced RANKL

    PubMed Central

    Kassem, Ali; Lindholm, Catharina; Lerner, Ulf H

    2016-01-01

    Severe Staphylococcus aureus (S. aureus) infections pose an immense threat to population health and constitute a great burden for the health care worldwide. Inter alia, S. aureus septic arthritis is a disease with high mortality and morbidity caused by destruction of the infected joints and systemic bone loss, osteoporosis. Toll-Like receptors (TLRs) are innate immune cell receptors recognizing a variety of microbial molecules and structures. S. aureus recognition via TLR2 initiates a signaling cascade resulting in production of various cytokines, but the mechanisms by which S. aureus causes rapid and excessive bone loss are still unclear. We, therefore, investigated how S. aureus regulates periosteal/endosteal osteoclast formation and bone resorption. S. aureus stimulation of neonatal mouse parietal bone induced ex vivo bone resorption and osteoclastic gene expression. This effect was associated with increased mRNA and protein expression of receptor activator of NF-kB ligand (RANKL) without significant change in osteoprotegerin (OPG) expression. Bone resorption induced by S. aureus was abolished by OPG. S. aureus increased the expression of osteoclastogenic cytokines and prostaglandins in the parietal bones but the stimulatory effect of S. aureus on bone resorption and Tnfsf11 mRNA expression was independent of these cytokines and prostaglandins. Stimulation of isolated periosteal osteoblasts with S. aureus also resulted in increased expression of Tnfsf11 mRNA, an effect lost in osteoblasts from Tlr2 knockout mice. S. aureus stimulated osteoclastogenesis in isolated periosteal cells without affecting RANKL-stimulated resorption. In contrast, S. aureus inhibited RANKL-induced osteoclast formation in bone marrow macrophages. These data show that S. aureus enhances bone resorption and periosteal osteoclast formation by increasing osteoblast RANKL production through TLR2. Our study indicates the importance of using different in vitro approaches for studies of how S

  9. Thymoquinone prevents RANKL-induced osteoclastogenesis activation and osteolysis in an in vivo model of inflammation by suppressing NF-KB and MAPK Signalling.

    PubMed

    Thummuri, Dinesh; Jeengar, Manish Kumar; Shrivastava, Shweta; Nemani, Harishankar; Ramavat, Ravindar Naik; Chaudhari, Pradip; Naidu, V G M

    2015-09-01

    Osteoclasts are multinuclear giant cells responsible for bone resorption in inflammatory bone diseases such as osteoporosis, rheumatoid arthritis and periodontitis. Because of deleterious side effects with currently available drugs the search continues for novel effective and safe therapies. Thymoquinone (TQ), the major bioactive component of Nigella sativa has been investigated for its anti-inflammatory, antioxidant and anticancer activities. However, its effects in osteoclastogenesis have not been reported. In the present study we show for the first time that TQ inhibits nuclear factor-KB ligand (RANKL) induced osteoclastogenesis in RAW 264.7 and primary bone marrow derived macrophages (BMMs) cells. RANKL induced osteoclastogenesis is associated with increased expression of multiple transcription factors via activation of NF-KB, MAPKs signalling and reactive oxygen species (ROS). Mechanistically TQ blocked the RANKL induced NF-KB activation by attenuating the phosphorylation of IkB kinase (IKKα/β). Interestingly, in RAW 264.7 cells TQ inhibited the RANKL induced phosphorylation of MAPKs and mRNA expression of osteoclastic specific genes such as TRAP, DC-STAMP, NFATc1 and c-Fos. In addition, TQ also decreased the RANKL stimulated ROS generation in macropahges (RAW 264.7) and H2O2 induced ROS generation in osteoblasts (MC-3T3-E1). Consistent with in vitro results, TQ inhibited lipopolysaccharide (LPS) induced bone resorption by suppressing the osteoclastogenesis. Indeed, micro-CT analysis showed that bone mineral density (BMD) and bone architecture parameters were positively modulated by TQ. Taken together our data demonstrate that TQ has antiosteoclastogenic effect by inhibiting inflammation induced activation of MAPKs, NF-KB and ROS generation followed by suppressing the gene expression of c-Fos and NFATc1 in osteoclast precursors.

  10. Wedelolactone enhances osteoblastogenesis by regulating Wnt/β-catenin signaling pathway but suppresses osteoclastogenesis by NF-κB/c-fos/NFATc1 pathway

    PubMed Central

    Liu, Yan-Qiu; Hong, Zhi-Lai; Zhan, Li-Bin; Chu, Hui-Ying; Zhang, Xiao-Zhe; Li, Guo-Hui

    2016-01-01

    Bone homeostasis is maintained by formation and destruction of bone, which are two processes tightly coupled and controlled. Targeting both stimulation on bone formation and suppression on bone resorption becomes a promising strategy for treating osteoporosis. In this study, we examined the effect of wedelolactone, a natural product from Ecliptae herba, on osteoblastogenesis as well as osteoclastogenesis. In mouse bone marrow mesenchymal stem cells (BMSC), wedelolactone stimulated osteoblast differentiation and bone mineralization. At the molecular level, wedelolactone directly inhibited GSK3β activity and enhanced the phosphorylation of GSK3β, thereafter stimulated the nuclear translocation of β-catenin and runx2. The expression of osteoblastogenesis-related marker gene including osteorix, osteocalcin and runx2 increased. At the same concentration range, wedelolactone inhibited RANKL-induced preosteoclastic RAW264.7 actin-ring formation and bone resorption pits. Further, wedelolactone blocked NF-kB/p65 phosphorylation and abrogated the NFATc1 nuclear translocation. As a result, osteoclastogenesis-related marker gene expression decreased, including c-src, c-fos, and cathepsin K. In ovariectomized mice, administration of wedelolactone prevented ovariectomy-induced bone loss by enhancing osteoblast activity and inhibiting osteoclast activity. Together, these data demonstrated that wedelolactone facilitated osteoblastogenesis through Wnt/GSK3β/β-catenin signaling pathway and suppressed RANKL-induced osteoclastogenesis through NF-κB/c-fos/NFATc1 pathway. These results suggested that wedelolacone could be a novel dual functional therapeutic agent for osteoporosis. PMID:27558652

  11. Isolation and partial characterization of fucan sulfates from the body wall of sea cucumber Stichopus japonicus and their ability to inhibit osteoclastogenesis.

    PubMed

    Kariya, Yutaka; Mulloy, Barbara; Imai, Kyoko; Tominaga, Akihiro; Kaneko, Takuji; Asari, Akira; Suzuki, Kiyoshi; Masuda, Hiroyuki; Kyogashima, Mamoru; Ishii, Tadashi

    2004-05-17

    Two types of fucan sulfate were isolated from chloroform/methanol extract of the body wall of the sea cucumber Stichopus japonicus. One type (type A) contained 3.41 mmol fucose/g and 2.35 mmol sulfate/g, and the molecular mass was determined to be 9 kDa by gel permeation chromatography (GPC). Structural analysis suggested that type A consists of a backbone of (1-->3)-linked fucosyl residues that are substituted at C-4 with fucosyl residues, and that fucosyl residues are sulfated at C-2 and/or C-4. Another type (type B) contained 3.90 mmol fucose/g and 3.07 mmol sulfate/g, and the molecular mass was determined to be 32kDa by GPC. Structural analysis showed that type B is largely composed of unbranched (1-->3)-linked fucosyl residues, and that sulfate substitution(s) occur at C-2 and/or C-4. The potential of both types to inhibit osteoclastogenesis was examined by an in vitro assay system, showing that both types of fucan sulfate inhibit osteoclastogenesis more than 95% at 50 microg/mL concentration. These results suggest that types A and B fucan sulfate from sea cucumber are potent inhibitors of osteoclastogenesis.

  12. A role for interleukin-1 alpha in the 1,25 dihydroxyvitamin D3 response in mammary epithelial cells.

    PubMed

    Maund, Sophia L; Shi, Lihong; Cramer, Scott D

    2013-01-01

    Breast cancer is the most common non-cutaneous malignancy in American women, and better preventative strategies are needed. Epidemiological and laboratory studies point to vitamin D3 as a promising chemopreventative agent for breast cancer. Vitamin D3 metabolites induce anti-proliferative effects in breast cancer cells in vitro and in vivo, but few studies have investigated their effects in normal mammary epithelial cells. We hypothesized that 1,25(OH)2D3, the metabolically active form of vitamin D3, is growth suppressive in normal mouse mammary epithelial cells. In addition, we have previously established a role for the cytokine interleukin-1 alpha (IL1α) in the anti-proliferative effects of 1,25(OH)2D3 in normal prostate cells, and so we hypothesized that IL1α is involved in the 1,25(OH)2D3 response in mammary cells. Evaluation of cell viability, clonogenicity, senescence, and induction of cell cycle regulators p21 and p27 supported an anti-proliferative role for 1,25(OH)2D3 in mammary epithelial cells. Furthermore, 1,25(OH)2D3 increased the intracellular expression of IL1α, which was necessary for the anti-proliferative effects of 1,25(OH)2D3 in mammary cells. Together, these findings support the chemopreventative potential of vitamin D3 in the mammary gland and present a role for IL1α in regulation of mammary cell proliferation by 1,25(OH)2D3.

  13. A Role for Interleukin-1 Alpha in the 1,25 Dihydroxyvitamin D3 Response in Mammary Epithelial Cells

    PubMed Central

    Maund, Sophia L.; Shi, Lihong; Cramer, Scott D.

    2013-01-01

    Breast cancer is the most common non-cutaneous malignancy in American women, and better preventative strategies are needed. Epidemiological and laboratory studies point to vitamin D3 as a promising chemopreventative agent for breast cancer. Vitamin D3 metabolites induce anti-proliferative effects in breast cancer cells in vitro and in vivo, but few studies have investigated their effects in normal mammary epithelial cells. We hypothesized that 1,25(OH)2D3, the metabolically active form of vitamin D3, is growth suppressive in normal mouse mammary epithelial cells. In addition, we have previously established a role for the cytokine interleukin-1 alpha (IL1α) in the anti-proliferative effects of 1,25(OH)2D3 in normal prostate cells, and so we hypothesized that IL1α is involved in the 1,25(OH)2D3 response in mammary cells. Evaluation of cell viability, clonogenicity, senescence, and induction of cell cycle regulators p21 and p27 supported an anti-proliferative role for 1,25(OH)2D3 in mammary epithelial cells. Furthermore, 1,25(OH)2D3 increased the intracellular expression of IL1α, which was necessary for the anti-proliferative effects of 1,25(OH)2D3 in mammary cells. Together, these findings support the chemopreventative potential of vitamin D3 in the mammary gland and present a role for IL1α in regulation of mammary cell proliferation by 1,25(OH)2D3. PMID:24244740

  14. Dietary and serum phosphorus regulate fibroblast growth factor 23 expression and 1,25-dihydroxyvitamin D metabolism in mice.

    PubMed

    Perwad, Farzana; Azam, Nasreen; Zhang, Martin Y H; Yamashita, Takeyoshi; Tenenhouse, Harriet S; Portale, Anthony A

    2005-12-01

    Fibroblast growth factor-23 (FGF-23) is a novel circulating peptide that regulates phosphorus (Pi) and vitamin D metabolism, but the mechanisms by which circulating FGF-23 itself is regulated are unknown. To determine whether the serum FGF-23 concentration is regulated by dietary intake of Pi, we fed wild-type (WT), Npt2a gene-ablated (Npt2a(-/-)), and Hyp mice diets containing varying Pi contents (0.02-1.65%). In WT mice, increases in dietary Pi intake from 0.02-1.65% induced a 7-fold increase in serum FGF-23 and a 3-fold increase in serum Pi concentrations. Across the range of dietary Pi, serum FGF-23 concentrations varied directly with serum Pi concentrations (r(2) = 0.72; P < 0.001). In Npt2a(-/-) mice, serum FGF-23 concentrations were significantly lower than in WT mice, and these differences could be accounted for by the lower serum Pi levels in Npt2a(-/-) mice. The serum concentrations of FGF-23 in Hyp mice were 5- to 25-fold higher than values in WT mice, and the values varied with dietary Pi intake. Fgf-23 mRNA abundance in calvaria was significantly higher in Hyp mice than in WT mice on the 1% Pi diet; in both groups of mice, fgf-23 mRNA abundance in calvarial bone was suppressed by 85% on the low (0.02%) Pi diet. In WT mice fed the low (0.02%) Pi diet, renal mitochondrial 1alpha-hydroxylase activity and renal 1alpha-hydroxylase (P450c1alpha) mRNA abundance were significantly higher than in mice fed the higher Pi diets and varied inversely with serum FGF-23 concentrations (r(2) = 0.86 and r(2) = 0.64; P < 0.001, respectively). The present data demonstrate that dietary Pi regulates the serum FGF-23 concentration in mice, and such regulation is independent of phex function. The data suggest that genotype-dependent and dietary Pi-induced changes in the serum FGF-23 concentration reflect changes in fgf-23 gene expression in bone.

  15. 25-Hydroxyvitamin D Can Interfere With a Common Assay for 1,25-Dihydroxyvitamin D in Vitamin D Intoxication

    PubMed Central

    Hawkes, Colin P.; Schnellbacher, Sarah; Singh, Ravinder J.

    2015-01-01

    Context: Vitamin D intoxication is characterized by elevated serum 25-hydroxyvitamin D (25(OH)D) and suppressed serum 1,25-dihydroxvitamin D (1,25(OH)2D). We evaluated two adolescents with hypercalcemia due to vitamin D intoxication; both had elevated serum 1,25(OH)2D by Diasorin RIA, but normal serum 1,25(OH)2D concentrations by liquid chromatography–tandem mass spectrometry (LC-MS/MS). Objective: This study aimed to determine the effect of 25(OH)D2 and 25(OH)D3 on 1,25(OH)2D concentration determined using RIA and LC-MS/MS. Methods: Pools of normal serum and an artificial serum matrix were prepared and aliquots were spiked with >99% pure 25(OH)D2 or 25(OH)D3 (50–700 ng/mL). Samples were maintained at 4°C or heated to 56°C, and the concentrations of vitamin D metabolites were measured by LC-MS/MS and Diasorin RIA. Results: Median 1,25(OH)2D increased by 114% with RIA and 21% with LC-MS/MS with addition of 100 ng/mL 25(OH)D3, and 349% (RIA) and 117% (LC-MS/MS) with 700 ng/mL of 25(OH)D3. Each 1-ng/mL increase in 25(OH)D3 increased 1,25(OH)2D by 0.231 pg/mL (RIA) and 0.121 pg/mL (LC-MS/MS). Spiking with 25(OH)D2 led to similar changes. Heat inactivation of serum, and using an artificial serum matrix, were associated with similar effects of 25(OH)D on 1,25(OH)2D assays. Conclusions: Vitamin D intoxication with high serum levels of 25(OH)D2 or 25(OH)D3 can be associated with elevated levels of 1,25(OH)2D due to interference in a commonly used RIA. A similar but attenuated effect also occurs when 1,25(OH)2D is measured using LC-MS/MS but does not seem to be clinically significant. The basis for this effect on the LC-MS/MS assay is presently uncertain. PMID:26120794

  16. Tracer kinetics and actions of oral and intraperitoneal 1,25-dihydroxyvitamin D3 administration in rats

    SciTech Connect

    Vieth, R.; Kooh, S.W.; Balfe, J.W.; Rawlins, M.; Tinmouth, W.W. )

    1990-11-01

    Tracer kinetic parameters of ({sup 3}H)-1,25(OH)2D3 were calculated from data obtained following its acute oral (p.o.) or intraperitoneal (i.p.) administration. In normal rats studied after the tracer had distributed into the body, the slope and intercept of the log-serum ({sup 3}H)-1,25(OH)2D3 versus time relationship were not significantly influenced by the route of administration. Pretreatment with 1,25(OH)2D3 (0.2 micrograms/100 g/day) by the same route as the tracer resulted in the following changes: in p.o. rats the serum ({sup 3}H)-1,25(OH)2D3 intercept was much lower but the slope was not changed; in i.p. rats the intercept was not changed but the slope was increased. Both p.o. and i.p. treatment with 1,25(OH)2D3 lowered the weight gain and diet consumption, and increased serum calcium, kidney tissue calcium and urinary excretion of orally administered {sup 45}Ca. All the measures of bioactivity were greater in the i.p. dosed rats than in the p.o. dosed rats. We conclude that the p.o. 1,25(OH)2D3 was less potent because of diminished bioavailability due to self induction of its presystemic metabolism and inactivation.

  17. Decreased fractional urinary calcium excretion and serum 1,25-dihydroxyvitamin D and IGF-I levels in preeclampsia.

    PubMed

    Halhali, Ali; Díaz, Lorenza; Avila, Euclides; Ariza, Ana Carolina; Garabédian, Michèle; Larrea, Fernando

    2007-03-01

    During preeclampsia several alterations of calcium metabolism have been described, the most common of them is hypocalciuria, which pathophysiology is still unclear. In order to assess the contribution of calciotropic hormones to urinary calcium excretion, a cross-sectional study was done including 26 preeclamptic Mexican women (PE group) and 26 normotensive control pregnant women (NT group). Total and fractional urinary calcium excretion were significantly lower (P<0.0001) in the PE group than in the NT group (82+/-7 versus 171+/-7 mg/24h and 0.62+/-0.38 versus 1.38+/-0.71%, respectively), without significant differences in creatinine clearance, urinary sodium excretion and phosphate tubular reabsorption. In addition, serum 1,25-(OH)(2)D and IGF-I levels were significantly (P<0.05) lower in the PE than in NT group (43+/-9 versus 50+/-9 pg/mL and 195+/-67 versus 293+/-105 ng/mL, respectively), without significant differences in serum PTH levels. In the NT group, association analysis showed that total and fractional urinary calcium excretions positively correlated with serum levels of 1,25-(OH)(2)D (P<0.01) and IGF-I (P<0.001). In the PE group, total urinary calcium excretion positively correlated only with serum 1,25-(OH)(2)D (P<0.05). In conclusion, the results obtained in this study confirm that PE is associated with hypocalciuria and suggest that 1,25-(OH)(2)D and/or IGF-I may be involved in the regulation of urinary calcium excretion.

  18. Effect of 1,25-dihydroxyvitamin D3 on the Wnt pathway in non-malignant colonic cells.

    PubMed

    Gröschel, Charlotte; Aggarwal, Abhishek; Tennakoon, Samawansha; Höbaus, Julia; Prinz-Wohlgenannt, Maximilian; Marian, Brigitte; Heffeter, Petra; Berger, Walter; Kállay, Enikő

    2016-01-01

    Epidemiological studies suggest a correlation between vitamin D deficiency and colorectal cancer (CRC) incidence. The majority of sporadic tumors develop from premalignant lesions with aberrant activation of the Wnt/β-catenin signaling pathway. The adenoma cell line LT97 harbors an adenomatous polyposis coli (APC) mutation leading to constitutively active Wnt signaling. In these cells, expression of Wnt target genes leads to increased survival capacity. We hypothesized that 1,25-dihydroyvitamin D3 (1,25-D3), the active form of vitamin D3, promotes differentiation by modulating β-catenin/T-cell factor (TCF) 4-mediated gene transcription. The effect of dietary vitamin D on colonic Wnt signaling was investigated in mice fed either with 100 IU or 2500 IU vitamin D/kg diet. We examined the effect of 1,25-D3 on differentiation by measuring alkaline phosphatase activity. We analyzed mRNA expression of Wnt target genes by real time qRT-PCR. The impact of 1,25-D3 on β-catenin and TCF4 protein expression was assessed by western blot and immunohistochemistry. In LT97 cells, 1,25-D3 increased cellular differentiation and reduced nuclear β-catenin levels. Further, 1,25-D3 decreased mRNA expression of the Wnt target genes BCL-2, Cyclin D1, Snail1, CD44 and LGR5. In healthy colon of mice fed with high vitamin D diet, the mRNA levels of Wnt5a and ROR2, that promote degradation of β-catenin, were upregulated whereas β-catenin and TCF4 protein expression were decreased. In conclusion, 1,25-D3 inhibits Wnt signaling even in nonmalignant cells underlining its importance in protection against colorectal tumorigenesis and early tumor progression. This article is part of a Special Issue entitled '17th Vitamin D Workshop'. PMID:25777538

  19. Impact of Short-term 1,25-Dihydroxyvitamin D3 on the Chemopreventive Efficacy of Erlotinib against Oral Cancer.

    PubMed

    Bothwell, Katelyn D; Shaurova, Tatiana; Merzianu, Mihai; Suresh, Amritha; Kuriakose, Moni A; Johnson, Candace S; Hershberger, Pamela A; Seshadri, Mukund

    2015-09-01

    Activation of the epidermal growth factor receptor (EGFR) pathway is an early event in head and neck carcinogenesis. As a result, targeting EGFR for chemoprevention of head and neck squamous cell carcinomas (HNSCC) has received considerable attention. In the present study, we examined the impact of 1,25(OH)2D3, the active metabolite of the nutritional supplement vitamin D on the chemopreventive efficacy of the EGFR inhibitor, erlotinib, against HNSCC. Experimental studies were conducted in patient-derived xenografts (PDX) and the 4-nitroquinoline-1-oxide (4NQO) carcinogen-induced model of HNSCC. Short-term treatment (4 weeks) of PDX-bearing mice with 1,25(OH)2D3 and erlotinib resulted in significant inhibition of tumor growth. Noninvasive MRI enabled longitudinal monitoring of disease progression in the 4NQO model with 100% of control animals showing evidence of neoplastic lesions by 24 weeks. Among the experimental groups, animals treated with the combination regimen showed the greatest reduction in tumor incidence and volume (P < 0.05). Combination treatment was well tolerated and was not associated with any significant change in body weight. Histopathologic assessment revealed a significant reduction in the degree of dysplasia with combination treatment. Immunoblot analysis of whole tongue extracts showed downregulation of phospho-EGFR and phospho-Akt with the combination regimen. These results highlight the potential of 1,25(OH)2D3 to augment the efficacy of erlotinib against HNSCC. Further optimization of schedule and sequence of this combination regimen along with investigation into the activity of less calcemic analogues or dietary vitamin D is essential to fully realize the potential of this approach.

  20. Protective effects of 1α,25-Dihydroxyvitamin D3 on cultured neural cells exposed to catalytic iron.

    PubMed

    Uberti, Francesca; Morsanuto, Vera; Bardelli, Claudio; Molinari, Claudio

    2016-06-01

    Recent studies have postulated a role for vitamin D and its receptor on cerebral function, and anti-inflammatory, immunomodulatory and neuroprotective effects have been described; vitamin D can inhibit proinflammatory cytokines and nitric oxide synthesis during various neurodegenerative insults, and may be considered as a potential drug for the treatment of these disorders. In addition, iron is crucial for neuronal development and neurotransmitter production in the brain, but its accumulation as catalytic form (Fe(3+)) impairs brain function and causes the dysregulation of iron metabolism leading to tissue damage due to the formation of toxic free radicals (ROS). This research was planned to study the role of vitamin D to prevent iron damage in neuroblastoma BE(2)M17 cells. Mechanisms involved in neurodegeneration, including cell viability, ROS production, and the most common intracellular pathways were studied. Pretreatment with calcitriol (the active form of vitamin D) reduced cellular injury induced by exposure to catalytic iron.

  1. High-dose 1,25-dihydroxyvitamin D supplementation elongates the lifespan of Huntington's disease transgenic mice.

    PubMed

    Molnár, Máté Fort; Török, Rita; Szalárdy, Levente; Sümegi, Evelin; Vécsei, László; Klivényi, Péter

    2016-01-01

    Huntington's disease is an autosomal dominant progressive neurodegenerative disease, which results in a decreased quality of life and an early death. A high prevalence of vitamin D deficiency was first described in a 2013 study in patients with manifest Huntington's disease, where serum vitamin D level was found to be associated with motor capabilities of the patients. Our objective was to investigate the effect of a high-dose vitamin D3 supplementation on a transgenic mouse model of Huntington's disease. Our study was performed on N171-82Q Huntington's disease transgenic mice in age- and gender-matched groups. We collected data on the motor state and survival of the mice. The results demonstrate that though vitamin D3 had no effect on the motor performance of transgenic mice, but significantly increased the lifespan of transgenic animals (Kaplan-Meier survival curves: vehicle-supplemented group: 73 (67-94) days vs. vitamin D3-supplemented group: 101 (74-109) days, p=0.048 Mantel-Cox log rank test). Further investigations are needed to determine whether a neuroprotective or a general corroborative effect of vitamin D leads to the measured effect. Our findings support the potential influence of vitamin D deficiency on the disease course and propose that vitamin D may be an effective supplementary treatment to beneficially influence clinical features of Huntington's disease. PMID:27685770

  2. Effect of estrogen/gestagen and 24R,25-dihydroxyvitamin D3 therapy on bone formation in postmenopausal women

    SciTech Connect

    Thomsen, K.; Riis, B.; Christiansen, C.

    1986-12-01

    The effect of two different estrogen/gestagen regimens and 24R,25-(OH)2-cholecalciferol on bone formation was studied in a randomized trial with 144 healthy postmenopausal women. Urinary excretion (UE) of /sup 99m/technetium-diphosphonate and serum alkaline phosphatase (AP) was determined before and then once a year for 2 years of treatment. Both estimates of bone formation showed highly significant decreases (p less than .001) to normal premenopausal levels in women receiving unopposed 17 beta-estradiol or in a sequential combination with progestagen, whereas unchanged high values were found in the groups receiving 24R,25-(OH)2D3 and placebo. The data show that bone turnover increases in early postmenopausal women concomitantly with the loss of bone mass, and that hormonal substitutional therapy normalizes the total skeletal turnover as well as preventing bone loss.

  3. Wedelolactone Enhances Osteoblastogenesis but Inhibits Osteoclastogenesis through Sema3A/NRP1/PlexinA1 Pathway

    PubMed Central

    Liu, Yan-Qiu; Han, Xiao-Fei; Bo, Jun-Xia; Ma, Hui-Peng

    2016-01-01

    Bone remodeling balance is maintained by tight coupling of osteoblast-mediated bone formation and osteoclast-mediated bone resorption. Thus, agents with the capacity to regulate osteoblastogenesis and osteoclastogenesis have been investigated for therapy of bone-related diseases such as osteoporosis. In this study, we found that wedelolactone, a compound isolated from Ecliptae herba, and a 9-day incubation fraction of conditioned media obtained from wedelolactone-treated bone marrow mesenchymal stem cell (BMSC) significantly inhibited tartrate-resistant acid phosphatase (TRAP) activity in RANKL-stimulated osteoclastic RAW264.7 cells. Addition of the semaphorin 3A (Sema3A) antibody to the conditioned media partially blocked the medium’s inhibitory effects on the RAW264.7 cells. In BMSC, mRNA expression of Sema3A increased in the presence of different wedelolactone concentrations. Blocking Sema3A activity with its antibody reversed wedelolactone-induced alkaline phosphatase activity in BMSC and concurrently enhanced wedelolactone-reduced TRAP activity in osteoclastic RAW264.7 cells. Moreover, in BMSC, wedelolactone enhanced binding of Sema3A with cell-surface receptors, including neuropilin (NRP)1 and plexinA1. Furthermore, nuclear accumulation of β-catenin, a transcription factor acting downstream of wedelolactone-induced Sema3A signaling, was blocked by the Sema3A antibody. In osteoclastic RAW264.7 cells, conditioned media and wedelolactone promoted the formation of plexin A1-NRP1, but conditioned media also caused the sequestration of the plexin A1-DNAX-activating protein 12 (DAP12) complex and suppressed the phosphorylation of phospholipase C (PLC)γ2. These data suggest that wedelolactone promoted osteoblastogenesis through production of Sema3A, thus inducing the formation of a Sema3A-plexinA1-Nrp1 complex and β-catenin activation. In osteoclastic RAW264.7 cells, wedelolactone inhibited osteoclastogenesis through sequestration of the plexinA1-DAP12 complex

  4. Jolkinolide B inhibits RANKL-induced osteoclastogenesis by suppressing the activation NF-κB and MAPK signaling pathways.

    PubMed

    Ma, Xiaojun; Liu, Yupeng; Zhang, Yao; Yu, Xiaobing; Wang, Weiming; Zhao, Dewei

    2014-03-01

    Osteoclasts together with osteoblasts play pivotal roles in bone remodeling. The unique function and ability of osteoclasts to resorb bone makes them critical in both normal bone homeostasis and pathologic bone diseases such as osteoporosis and rheumatoid arthritis. Thus, new compounds that may inhibit osteoclastogenesis and osteoclast function may be of great value in the treatment of osteoclast-related diseases. In the present study, we examined the effect of jolkinolide B (JB), isolated from the root of Euphorbia fischeriana Steud on receptor activator of NF-κB ligand (RANKL)-induced osteoclast formation. We found that JB inhibited RANKL-induced osteoclast differentiation from bone marrow macrophages (BMMs) without cytotoxicity. Furthermore, the expression of osteoclastic marker genes, such as tartrate-resistant acid phosphatase (TRAP), cathepsin K (CtsK), and calcitonin receptor (CTR), was significantly inhibited. JB inhibited RANKL-induced activation of NF-κB by suppressing RANKL-mediated IκBα degradation. Moreover, JB inhibited RANKL-induced phosphorylation of mitogen-activated protein kinases (p38, JNK, and ERK). This study thus identifies JB as an inhibitor of osteoclast formation and provides evidence that JB might be an alternative medicine for preventing and treating osteolysis.

  5. Potential Effects of Phytoestrogen Genistein in Modulating Acute Methotrexate Chemotherapy-Induced Osteoclastogenesis and Bone Damage in Rats.

    PubMed

    King, Tristan J; Shandala, Tetyana; Lee, Alice M; Foster, Bruce K; Chen, Ke-Ming; Howe, Peter R; Xian, Cory J

    2015-08-06

    Chemotherapy-induced bone damage is a frequent side effect which causes diminished bone mineral density and fracture in childhood cancer sufferers and survivors. The intensified use of anti-metabolite methotrexate (MTX) and other cytotoxic drugs has led to the need for a mechanistic understanding of chemotherapy-induced bone loss and for the development of protective treatments. Using a young rat MTX-induced bone loss model, we investigated potential bone protective effects of phytoestrogen genistein. Oral gavages of genistein (20 mg/kg) were administered daily, for seven days before, five days during, and three days after five once-daily injections (sc) of MTX (0.75 mg/kg). MTX treatment reduced body weight gain and tibial metaphyseal trabecular bone volume (p < 0.001), increased osteoclast density on the trabecular bone surface (p < 0.05), and increased the bone marrow adipocyte number in lower metaphyseal bone (p < 0.001). Genistein supplementation preserved body weight gain (p < 0.05) and inhibited ex vivo osteoclast formation of bone marrow cells from MTX-treated rats (p < 0.001). However, MTX-induced changes in bone volume, trabecular architecture, metaphyseal mRNA expression of pro-osteoclastogenic cytokines, and marrow adiposity were not significantly affected by the co-administration of genistein. This study suggests that genistein may suppress MTX-induced osteoclastogenesis; however, further studies are required to examine its potential in protecting against MTX chemotherapy-induced bone damage.

  6. Irreversible inhibition of RANK expression as a possible mechanism for IL-3 inhibition of RANKL-induced osteoclastogenesis

    SciTech Connect

    Khapli, Shruti M.; Tomar, Geetanjali B.; Barhanpurkar, Amruta P.; Gupta, Navita; Yogesha, S.D.; Pote, Satish T.; Wani, Mohan R.

    2010-09-03

    Research highlights: {yields} IL-3 inhibits receptor activator of NF-{kappa}B ligand (RANKL)-induced osteoclastogenesis. {yields} IL-3 inhibits RANKL-induced JNK activation. {yields} IL-3 down-regulates expression of c-Fos and NFATc1 transcription factors. {yields} IL-3 down-regulates RANK expression posttranscriptionally and irreversibly. {yields} IL-3 inhibits in vivo RANK expression. -- Abstract: IL-3, a cytokine secreted by activated T lymphocytes, stimulates the proliferation, differentiation and survival of pluripotent hematopoietic stem cells. In this study, we investigated the mechanism of inhibitory action of IL-3 on osteoclast differentiation. We show here that IL-3 significantly inhibits receptor activator of NF-{kappa}B (RANK) ligand (RANKL)-induced activation of c-Jun N-terminal kinase (JNK). IL-3 down-regulates expression of c-Fos and nuclear factor of activated T cells (NFATc1) transcription factors. In addition, IL-3 down-regulates RANK expression posttranscriptionally in both purified osteoclast precursors and whole bone marrow cells. Furthermore, the inhibitory effect of IL-3 on RANK expression was irreversible. Interestingly, IL-3 inhibits in vivo RANK expression in mice. Thus, we provide the first evidence that IL-3 irreversibly inhibits RANK expression that results in inhibition of important signaling molecules induced by RANKL.

  7. Functional differences between AMPK α1 and α2 subunits in osteogenesis, osteoblast-associated induction of osteoclastogenesis, and adipogenesis

    PubMed Central

    Wang, Yu-gang; Han, Xiu-guo; Yang, Ying; Qiao, Han; Dai, Ke-rong; Fan, Qi-ming; Tang, Ting-ting

    2016-01-01

    The endocrine role of the skeleton-which is impaired in human diseases including osteoporosis, obesity and diabetes-has been highlighted previously. In these diseases, the role of AMPK, a sensor and regulator of energy metabolism, is of biological and clinical importance. Since AMPK’s main catalytic subunit α has two isoforms, it is unclear whether functional differences between them exist in the skeletal system. The current study overexpressed AMPKα1 and α2 in MC3T3-E1 cells, primary osteoblasts and mouse BMSCs by lentiviral transduction. Cells overexpressing AMPKα2 showed higher osteogenesis potential than AMPKα1, wherein androgen receptor (AR) and osteoactivin played important roles. RANKL and M-CSF were secreted at lower levels from cells overexpressing α2 than α1, resulting in decreased osteoblast-associated osteoclastogenesis. Adipogenesis was inhibited to a greater degree in 3T3-L1 cells overexpressing α2 than α1, which was modulated by AR. An abnormal downregulation of AMPKα2 was observed in human BMSCs exhibiting the fibrous dysplasia (FD) phenotype. Overexpression of AMPKα2 in these cells rescued the defect in osteogenesis, suggesting that AMPKα2 plays a role in FD pathogenesis. These findings highlight functional differences between AMPKα1 and α2, and provide a basis for investigating the molecular mechanisms of diseases associated with impaired functioning of the skeletal system. PMID:27600021

  8. Functional differences between AMPK α1 and α2 subunits in osteogenesis, osteoblast-associated induction of osteoclastogenesis, and adipogenesis.

    PubMed

    Wang, Yu-Gang; Han, Xiu-Guo; Yang, Ying; Qiao, Han; Dai, Ke-Rong; Fan, Qi-Ming; Tang, Ting-Ting

    2016-01-01

    The endocrine role of the skeleton-which is impaired in human diseases including osteoporosis, obesity and diabetes-has been highlighted previously. In these diseases, the role of AMPK, a sensor and regulator of energy metabolism, is of biological and clinical importance. Since AMPK's main catalytic subunit α has two isoforms, it is unclear whether functional differences between them exist in the skeletal system. The current study overexpressed AMPKα1 and α2 in MC3T3-E1 cells, primary osteoblasts and mouse BMSCs by lentiviral transduction. Cells overexpressing AMPKα2 showed higher osteogenesis potential than AMPKα1, wherein androgen receptor (AR) and osteoactivin played important roles. RANKL and M-CSF were secreted at lower levels from cells overexpressing α2 than α1, resulting in decreased osteoblast-associated osteoclastogenesis. Adipogenesis was inhibited to a greater degree in 3T3-L1 cells overexpressing α2 than α1, which was modulated by AR. An abnormal downregulation of AMPKα2 was observed in human BMSCs exhibiting the fibrous dysplasia (FD) phenotype. Overexpression of AMPKα2 in these cells rescued the defect in osteogenesis, suggesting that AMPKα2 plays a role in FD pathogenesis. These findings highlight functional differences between AMPKα1 and α2, and provide a basis for investigating the molecular mechanisms of diseases associated with impaired functioning of the skeletal system. PMID:27600021

  9. Allium cepa L. and Quercetin Inhibit RANKL/Porphyromonas gingivalis LPS-Induced Osteoclastogenesis by Downregulating NF-κB Signaling Pathway.

    PubMed

    Oliveira, Tatiane; Figueiredo, Camila A; Brito, Carlos; Stavroullakis, Alexander; Ferreira, Ana Carolina; Nogueira-Filho, Getulio; Prakki, Anuradha

    2015-01-01

    Objectives. We evaluated the in vitro modulatory effects of Allium cepa L. extract (AcE) and quercetin (Qt) on osteoclastogenesis under inflammatory conditions (LPS-induced). Methods. RAW 264.7 cells were differentiated with 30 ng/mL of RANKL, costimulated with PgLPS (1 µg/mL), and treated with AcE (50-1000 µg/mL) or Qt (1.25, 2.5, or 5 µM). Cell viability was determined by alamarBlue and protein assays. Nuclei morphology was analysed by DAPI staining. TRAP assays were performed as follows: p-nitrophenyl phosphate was used to determine the acid phosphatase activity of the osteoclasts and TRAP staining was used to evaluate the number and size of TRAP-positive multinucleated osteoclast cells. Von Kossa staining was used to measure osteoclast resorptive activity. Cytokine levels were measured on osteoclast precursor cell culture supernatants. Using western blot analysis, p-IκBα and IκBα degradation, inhibitor of NF-kappaB, were evaluated. Results. Both AcE and Qt did not affect cell viability and significantly reduced osteoclastogenesis compared to control. We observed lower production of IL-6 and IL-1α and an increased production of IL-3 and IL-4. AcE and Qt downregulated NF-κB pathway. Conclusion. AcE and Qt may be inhibitors of osteoclastogenesis under inflammatory conditions (LPS-induced) via attenuation of RANKL/PgLPS-induced NF-κB activation. PMID:26273314

  10. Calcineurin/NFAT pathway mediates wear particle-induced TNF-α release and osteoclastogenesis from mice bone marrow macrophages in vitro

    PubMed Central

    Liu, Feng-xiang; Wu, Chuan-long; Zhu, Zhen-an; Li, Mao-qiang; Mao, Yuan-qing; Liu, Ming; Wang, Xiao-qing; Yu, De-gang; Tang, Ting-ting

    2013-01-01

    Aim: To investigate the roles of the calcineurin/nuclear factor of activated T cells (NFAT) pathway in regulation of wear particles-induced cytokine release and osteoclastogenesis from mouse bone marrow macrophages in vitro. Methods: Osteoclasts were induced from mouse bone marrow macrophages (BMMs) in the presence of 100 ng/mL receptor activator of NF-κB ligand (RANKL). Acridine orange staining and MTT assay were used to detect the cell viability. Osteoclastogenesis was determined using TRAP staining and RT-PCR. Bone pit resorption assay was used to examine osteoclast phenotype. The expression and cellular localization of NFATc1 were examined using RT-PCR and immunofluorescent staining. The production of TNFα was analyzed with ELISA. Results: Titanium (Ti) or polymethylmethacrylate (PMMA) particles (0.1 mg/mL) did not significantly change the viability of BMMs, but twice increased the differentiation of BMMs into mature osteoclasts, and markedly increased TNF-α production. The TNF-α level in the PMMA group was significantly higher than in the Ti group (96 h). The expression of NFATc1 was found in BMMs in the presence of the wear particles and RANKL. In bone pit resorption assay, the wear particles significantly increased the resorption area and total number of resorption pits in BMMs-seeded ivory slices. Addition of 11R-VIVIT peptide (a specific inhibitor of calcineurin-mediated NFAT activation, 2.0 μmol/L) did not significantly affect the viability of BMMs, but abolished almost all the wear particle-induced alterations in BMMs. Furthermore, VIVIT reduced TNF-α production much more efficiently in the PMMA group than in the Ti group (96 h). Conclusion: Calcineurin/NFAT pathway mediates wear particles-induced TNF-α release and osteoclastogenesis from BMMs. Blockade of this signaling pathway with VIVIT may provide a promising therapeutic modality for the treatment of periprosthetic osteolysis. PMID:24056707

  11. Allium cepa L. and Quercetin Inhibit RANKL/Porphyromonas gingivalis LPS-Induced Osteoclastogenesis by Downregulating NF-κB Signaling Pathway

    PubMed Central

    Oliveira, Tatiane; Figueiredo, Camila A.; Brito, Carlos; Stavroullakis, Alexander; Ferreira, Ana Carolina; Nogueira-Filho, Getulio; Prakki, Anuradha

    2015-01-01

    Objectives. We evaluated the in vitro modulatory effects of Allium cepa L. extract (AcE) and quercetin (Qt) on osteoclastogenesis under inflammatory conditions (LPS-induced). Methods. RAW 264.7 cells were differentiated with 30 ng/mL of RANKL, costimulated with PgLPS (1 µg/mL), and treated with AcE (50–1000 µg/mL) or Qt (1.25, 2.5, or 5 µM). Cell viability was determined by alamarBlue and protein assays. Nuclei morphology was analysed by DAPI staining. TRAP assays were performed as follows: p-nitrophenyl phosphate was used to determine the acid phosphatase activity of the osteoclasts and TRAP staining was used to evaluate the number and size of TRAP-positive multinucleated osteoclast cells. Von Kossa staining was used to measure osteoclast resorptive activity. Cytokine levels were measured on osteoclast precursor cell culture supernatants. Using western blot analysis, p-IκBα and IκBα degradation, inhibitor of NF-kappaB, were evaluated. Results. Both AcE and Qt did not affect cell viability and significantly reduced osteoclastogenesis compared to control. We observed lower production of IL-6 and IL-1α and an increased production of IL-3 and IL-4. AcE and Qt downregulated NF-κB pathway. Conclusion. AcE and Qt may be inhibitors of osteoclastogenesis under inflammatory conditions (LPS-induced) via attenuation of RANKL/PgLPS-induced NF-κB activation. PMID:26273314

  12. Lectin-like oxidized low-density lipoprotein receptor-1 abrogation causes resistance to inflammatory bone destruction in mice, despite promoting osteoclastogenesis in the steady state.

    PubMed

    Nakayachi, Mai; Ito, Junta; Hayashida, Chiyomi; Ohyama, Yoko; Kakino, Akemi; Okayasu, Mari; Sato, Takuya; Ogasawara, Toru; Kaneda, Toshio; Suda, Naoto; Sawamura, Tatsuya; Hakeda, Yoshiyuki

    2015-06-01

    Inflammatory bone diseases have been attributed to increased bone resorption by augmented and activated bone-resorbing osteoclasts in response to inflammation. Although the production of diverse proinflammatory cytokines is induced at the inflamed sites, the inflammation also generates reactive oxygen species that modify many biological compounds, including lipids. Among the oxidized low-density lipoprotein (LDL) receptors, lectin-like oxidized LDL receptor-1 (LOX-1), which is a key molecule in the pathogenesis of multifactorial inflammatory atherosclerosis, was downregulated with osteoclast differentiation. Here, we demonstrate that LOX-1 negatively regulates osteoclast differentiation by basically suppressing the cell-cell fusion of preosteoclasts. The LOX-1-deleted (LOX-1(-/-)) mice consistently decreased the trabecular bone mass because of elevated bone resorption during the growing phase. In contrast, when the calvaria was inflamed by a local lipopolysaccharide-injection, the inflammation-induced bone destruction accompanied by the elevated expression of osteoclastogenesis-related genes was reduced by LOX-1 deficiency. Moreover, the expression of receptor activator of NF-κB ligand (RANKL), a trigger molecule for osteoclast differentiation, evoked by the inflammation was also abrogated in the LOX-1(-/-) mice. Osteoblasts, the major producers of RANKL, also expressed LOX-1 in response to proinflammatory agents, interleukin-1β and prostaglandin E2. In the co-culture of LOX-1(-/-) osteoblasts and wild-type osteoclast precursors, the osteoclastogenesis induced by interleukin-1β and prostaglandin E2 decreased; this process occurred in parallel with the downregulation of osteoblastic RANKL expression. Collectively, LOX-1 abrogation results in resistance to inflammatory bone destruction, despite promoting osteoclastogenesis in the steady state. Our findings indicate the novel involvement of LOX-1 in physiological bone homeostasis and inflammatory bone diseases.

  13. Benzo[a]pyrene inhibits osteoclastogenesis by affecting RANKL-induced activation of NF-kappaB.

    PubMed

    Voronov, I; Li, K; Tenenbaum, H C; Manolson, M F

    2008-05-15

    Exposure to polycyclic aryl hydrocarbons is linked to cancer, immunosuppression and other numerous health problems. We previously demonstrated that exposure to benzo[a]pyrene (BaP), an environmental pollutant present in high concentrations in urban smog and cigarette smoke, inhibits osteoclast differentiation and bone resorption. We hypothesized that this inhibition could be due to crosstalk between the receptor activator of NF-kappaB ligand (RANKL) and AhR signaling cascades competing for NF-kappaB, a common transcription factor for both pathways. RAW264.7 cells (a mouse macrophage cell line capable of differentiating into osteoclasts in the presence of RANKL) were exposed to different concentrations of RANKL and BaP and the effect on NF-kappaB activation, nuclear translocation, as well as the effect of NF-kappaB inhibitors on BaP-mediated CYP1B1 gene expression was measured. The results demonstrated that BaP inhibited both RANKL-induced NF-kappaB activation and nuclear translocation. At the same time, BaP-induced CYP1B1 gene expression was inhibited by two NF-kappaB inhibitors in a dose-dependent manner, demonstrating that NF-kappaB is involved in a BaP-mediated signaling pathway. A reporter gene assay showed that both BaP and RANKL-induced luciferase reporter gene transcription under the control of NF-kappaB response elements. Co-immunoprecipitation results demonstrated that AhR interacted with NF-kappaB p65 in RAW cells and BaP appeared to enhance this interaction. However, in the presence of RANKL, we did not observe any interaction between AhR and p65. These results support our hypothesis that BaP-mediated inhibition of osteoclastogenesis is a consequence of crosstalk between AhR and RANKL signaling pathways competing for the common transcription factor NF-kappaB. PMID:18396263

  14. Class A Scavenger Receptor Exacerbates Osteoclastogenesis by an Interleukin-6-Mediated Mechanism through ERK and JNK Signaling Pathways

    PubMed Central

    Guo, Shuyu; Ni, Yuanyuan; Ben, Jingjing; Xia, Yang; Zhou, Tingting; Wang, Dongyue; Ni, Jieli; Bai, Hui; Wang, Lin; Ma, Junqing; Chen, Qi

    2016-01-01

    Osteoclasts originate from bone marrow monocyte/macrophage lineage cells, which are important for bone health. Class A scavenger receptor (SR-A) is a multifunctional molecule that functions during differentiation of monocyte into macrophages and osteoclasts. To further characterize the role of SR-A in osteoclasts, we used the murine tooth movement model (TM) and the murine anterior cruciate ligament transection model of osteoarthritis (ACLT OA). In these two models the bones involved are of different origin and have different properties. Bone resorption was decreased in SR-A-/- mice compared to SR-A+/+ mice. Further evaluation showed that the number of multinucleated osteoclasts in SR-A-/- mice, compared to SR-A+/+ mice, was significantly decreased both in vivo and in vitro. The levels of interleukin-6 (IL-6) produced by osteoclasts were reduced in SR-A-/- mice compared to SR-A+/+ mice. In the in vitro marrow-derived osteoclast formation assay and in both mouse models, osteoclastogenesis was restored to normal in SR-A-/- mice by administration of recombinant murine IL-6. Moreover, neutralization of IL-6 reduced the number of osteoclasts formed in SR-A+/+ mice of TM model. Both extracellular signal-regulated kinase (ERK) and c-Jun N-terminal protein kinase (JNK), but not p38, signaling pathways were downregulated in receptor activator of nuclear factor-κB ligand (RANKL)-stimulated SR-A-/- osteoclasts. Importantly, when treated with either ERK or JNK inhibitor, the numbers of osteoclasts generated from RANKL-induced bone marrow derived-macrophages of SR-A+/+ mice, and their IL-6 production, were significantly decreased. This suggests that SR-A activates the ERK and JNK signaling pathways, and promotes production of IL-6 by osteoclasts to further stimulate osteoclast formation. PMID:27766031

  15. Acceleration of bone regeneration by local application of lithium: Wnt signal-mediated osteoblastogenesis and Wnt signal-independent suppression of osteoclastogenesis.

    PubMed

    Arioka, Masaki; Takahashi-Yanaga, Fumi; Sasaki, Masanori; Yoshihara, Tatsuya; Morimoto, Sachio; Hirata, Masato; Mori, Yoshihide; Sasaguri, Toshiyuki

    2014-08-15

    Inhibition of glycogen synthase kinase (GSK)-3 and the consequent activation of the Wnt/β-catenin signaling pathway have been reported to increase bone volume. To develop a novel pharmacotherapy for injured bone, we investigated whether GSK-3 inhibitor was effective in promoting bone formation. In in vitro experiments, we examined the effects of GSK-3 inhibitors LiCl and SB216763 on osteoblastogenesis of mesenchymal progenitor C3H10T1/2 cells and osteoclastogenesis of osteoclast precursor RAW-D cells. Both inhibitors promoted osteoblast differentiation, assessed by alkaline phosphatase activity and calcium deposition, stimulating the Wnt/β-catenin signaling pathway and thereby inducing Runx2. On the other hand, the GSK-3 inhibitors suppressed osteoclast differentiation, assessed by tartrate-resistant acid phosphatase staining and number of nuclei in the cells, reducing NFATc1 expression independently of the Wnt/β-catenin signaling pathway. In subsequently performed in vivo studies, we examined the effect of locally administered Li2CO3 on the recovery from a partial defect made on the rat tibia. Computerized tomography and bone histomorphometry showed that Li2CO3 accelerated bone regeneration in defect lesion with increased lamellar bone ratio compared with the controls. These results suggested that local application of lithium (or other GSK-3 inhibitors) might effectively facilitate recovery from bone injury by promoting osteoblastogenesis and inhibiting osteoclastogenesis.

  16. Acceleration of bone regeneration by local application of lithium: Wnt signal-mediated osteoblastogenesis and Wnt signal-independent suppression of osteoclastogenesis.

    PubMed

    Arioka, Masaki; Takahashi-Yanaga, Fumi; Sasaki, Masanori; Yoshihara, Tatsuya; Morimoto, Sachio; Hirata, Masato; Mori, Yoshihide; Sasaguri, Toshiyuki

    2014-08-15

    Inhibition of glycogen synthase kinase (GSK)-3 and the consequent activation of the Wnt/β-catenin signaling pathway have been reported to increase bone volume. To develop a novel pharmacotherapy for injured bone, we investigated whether GSK-3 inhibitor was effective in promoting bone formation. In in vitro experiments, we examined the effects of GSK-3 inhibitors LiCl and SB216763 on osteoblastogenesis of mesenchymal progenitor C3H10T1/2 cells and osteoclastogenesis of osteoclast precursor RAW-D cells. Both inhibitors promoted osteoblast differentiation, assessed by alkaline phosphatase activity and calcium deposition, stimulating the Wnt/β-catenin signaling pathway and thereby inducing Runx2. On the other hand, the GSK-3 inhibitors suppressed osteoclast differentiation, assessed by tartrate-resistant acid phosphatase staining and number of nuclei in the cells, reducing NFATc1 expression independently of the Wnt/β-catenin signaling pathway. In subsequently performed in vivo studies, we examined the effect of locally administered Li2CO3 on the recovery from a partial defect made on the rat tibia. Computerized tomography and bone histomorphometry showed that Li2CO3 accelerated bone regeneration in defect lesion with increased lamellar bone ratio compared with the controls. These results suggested that local application of lithium (or other GSK-3 inhibitors) might effectively facilitate recovery from bone injury by promoting osteoblastogenesis and inhibiting osteoclastogenesis. PMID:24955980

  17. p38 mitogen-activated protein kinase inhibitor LY2228820 enhances bortezomib-induced cytotoxicity and inhibits osteoclastogenesis in multiple myeloma; therapeutic implications.

    PubMed

    Ishitsuka, Kenji; Hideshima, Teru; Neri, Paola; Vallet, Sonia; Shiraishi, Norihiko; Okawa, Yutaka; Shen, Zhenxin; Raje, Noopur; Kiziltepe, Tanyel; Ocio, Enrique M; Chauhan, Dharminder; Tassone, Pierfrancesco; Munshi, Nikhil; Campbell, Robert M; Dios, Alfonso De; Shih, Chuan; Starling, James J; Tamura, Kazuo; Anderson, Kenneth C

    2008-05-01

    The interaction between multiple myeloma (MM) cells and the bone marrow (BM) microenvironment induces proliferation and survival of MM cells, as well as osteoclastogenesis. This study investigated the therapeutic potential of novel p38 mitogen-activated protein kinase (p38MAPK) inhibitor LY2228820 (LY) in MM. Although cytotoxicity against MM cell lines was modest, LY significantly enhanced the toxicity of bortezomib by down-regulating bortezomib-induced heat shock protein 27 phosphorylation. LY inhibited interleukin-6 secretion from long term cultured-BM stromal cells and BM mononuclear cells (BMMNCs) derived from MM patients in remission. LY also inhibited macrophage inflammatory protein-1alpha secretion from patient MM cells and BMMNCs as well as normal CD14 positive osteoclast precursor cells. Moreover, LY significantly inhibited in vitro osteoclastogenesis from CD14 positive cells induced by macrophage-colony stimulating factor and soluble receptor activator of nuclear factor-kappaB ligand. Finally, LY also inhibited in vivo osteoclatogenesis in a severe combined immunodeficiency mouse model of human MM. These results suggest that LY represents a promising novel targeted approach to improve MM patient outcome both by enhancing the effect of bortezomib and by reducing osteoskeletal events.

  18. The plant limonoid 7-oxo-deacetoxygedunin inhibits RANKL-induced osteoclastogenesis by suppressing activation of the NF-κB and MAPK pathways.

    PubMed

    Wisutsitthiwong, Chonnaree; Buranaruk, Chayanit; Pudhom, Khanitha; Palaga, Tanapat

    2011-11-18

    Osteoclasts together with osteoblasts play pivotal roles in bone remodeling. Aberrations in osteoclast differentiation and activity contribute to osteopenic disease. Osteoclasts differentiate from monocyte/macrophage progenitors, a process that is initiated by the interaction between receptor activator of NF-κB (RANK) and its ligand, RANKL. In this study, we identified 7-oxo-7-deacetoxygedunin (7-OG), a gedunin type limonoid from seeds of the mangrove Xylocarpus moluccensis, as a potent inhibitor of osteoclastogenesis. Additionally, 7-OG showed strong anti-osteoclastogenic activity with low cytotoxicity against the monocyte/macrophage progenitor cell line, RAW264.7. The IC50 for anti-osteoclastogenic activity was 4.14μM. Treatment with 7-OG completely abolished the appearance of multinucleated giant cells with tartrate-resistant acid phosphatase activity in RAW264.7 cells stimulated with RANKL. When the expression of genes related to osteoclastogenesis was investigated, a complete downregulation of NFATc1 and cathepsin K and a delayed downregulation of irf8 were observed upon 7-OG treatment in the presence of RANKL. Furthermore, treatment with this limonoid suppressed RANKL-induced activation of p38, MAPK and Erk and nuclear localization of NF-κB p65. Taken together, we present evidence indicating a plant limonoid as a novel osteoclastogenic inhibitor that could be used for osteoporosis and related conditions. PMID:22037580

  19. Total Saponin from Anemone flaccida Fr. Schmidt Prevents Bone Destruction in Experimental Rheumatoid Arthritis via Inhibiting Osteoclastogenesis.

    PubMed

    Liu, Chunfang; Yang, Yue; Sun, Danni; Wang, Chao; Wang, Hui; Jia, Shiwei; Liu, Liang; Lin, Na

    2015-12-01

    Anemone flaccida Fr. Schmidt is used in the clinical compound prescription for the treatment of rheumatoid arthritis (RA) in China and has the traditional use of draining dampness, diminishing swelling, and relieving pain. Total saponins (TS) are the characteristic components and also the main active ingredients of A. flaccida. Previous reports indicated that TS possess anti-inflammatory and immunoregulatory properties; however, the effects of TS on bone destruction of RA have not been evaluated. In this study, our data first showed the therapeutic effects of TS on severity of arthritis and arthritis progression in collagen-induced arthritis (CIA) rats. Then, by microfocal computed tomography (CT) quantification, TS significantly increased bone mineral density, bone volume fraction, and trabecular thickness and decreased trabecular separation of inflamed joints both at peri-articular and extra-articular locations. TS also diminished the level of the bone resorption marker CTX-I and simultaneously increased the bone formation marker osteocalcin in sera of CIA rats. Interestingly, TS prevented bone destruction by reducing the number of osteoclasts in inflamed joints, reducing the expression of receptor activator of nuclear factor-κF (RANK) ligand (RANKL) and RANK, increasing the expression of osteoprotegerin (OPG), at both mRNA and protein levels, and decreasing the ratio of RANKL to OPG in inflamed joints and sera of CIA rats. This was further confirmed in the co-culture system of human fibroblast-like synovial and peripheral blood mononuclear cells. In addition, TS inhibited the levels of pro-inflammatory cytokines implicated in bone resorption, such as interleukin-1β (IL-1β), tumor necrosis factor-α (TNFα), IL-6, IL-17, and IL-23 in sera and joints. These findings offer convincing evidence that TS attenuate RA partially by preventing both focal bone destruction and systemic bone loss. This anti-erosive effect results in part from inhibiting osteoclastogenesis

  20. Total Saponin from Anemone flaccida Fr. Schmidt Prevents Bone Destruction in Experimental Rheumatoid Arthritis via Inhibiting Osteoclastogenesis.

    PubMed

    Liu, Chunfang; Yang, Yue; Sun, Danni; Wang, Chao; Wang, Hui; Jia, Shiwei; Liu, Liang; Lin, Na

    2015-12-01

    Anemone flaccida Fr. Schmidt is used in the clinical compound prescription for the treatment of rheumatoid arthritis (RA) in China and has the traditional use of draining dampness, diminishing swelling, and relieving pain. Total saponins (TS) are the characteristic components and also the main active ingredients of A. flaccida. Previous reports indicated that TS possess anti-inflammatory and immunoregulatory properties; however, the effects of TS on bone destruction of RA have not been evaluated. In this study, our data first showed the therapeutic effects of TS on severity of arthritis and arthritis progression in collagen-induced arthritis (CIA) rats. Then, by microfocal computed tomography (CT) quantification, TS significantly increased bone mineral density, bone volume fraction, and trabecular thickness and decreased trabecular separation of inflamed joints both at peri-articular and extra-articular locations. TS also diminished the level of the bone resorption marker CTX-I and simultaneously increased the bone formation marker osteocalcin in sera of CIA rats. Interestingly, TS prevented bone destruction by reducing the number of osteoclasts in inflamed joints, reducing the expression of receptor activator of nuclear factor-κF (RANK) ligand (RANKL) and RANK, increasing the expression of osteoprotegerin (OPG), at both mRNA and protein levels, and decreasing the ratio of RANKL to OPG in inflamed joints and sera of CIA rats. This was further confirmed in the co-culture system of human fibroblast-like synovial and peripheral blood mononuclear cells. In addition, TS inhibited the levels of pro-inflammatory cytokines implicated in bone resorption, such as interleukin-1β (IL-1β), tumor necrosis factor-α (TNFα), IL-6, IL-17, and IL-23 in sera and joints. These findings offer convincing evidence that TS attenuate RA partially by preventing both focal bone destruction and systemic bone loss. This anti-erosive effect results in part from inhibiting osteoclastogenesis

  1. The plant limonoid 7-oxo-deacetoxygedunin inhibits RANKL-induced osteoclastogenesis by suppressing activation of the NF-{kappa}B and MAPK pathways

    SciTech Connect

    Wisutsitthiwong, Chonnaree; Buranaruk, Chayanit; Pudhom, Khanitha; Palaga, Tanapat

    2011-11-18

    Highlights: Black-Right-Pointing-Pointer A gedunin type limonoid from seeds of mangroves, 7-oxo-7-deacetoxygedunin, exhibits strong anti-osteoclastogenic activity. Black-Right-Pointing-Pointer Treatment with this limonoid results in significant decrease in expression of NFATc1 and osteoclast-related genes. Black-Right-Pointing-Pointer The mode of action of this limonoid is by inhibiting activation of the NF-{kappa}B and MAPK pathways which are activated by RANKL. -- Abstract: Osteoclasts together with osteoblasts play pivotal roles in bone remodeling. Aberrations in osteoclast differentiation and activity contribute to osteopenic disease. Osteoclasts differentiate from monocyte/macrophage progenitors, a process that is initiated by the interaction between receptor activator of NF-{kappa}B (RANK) and its ligand, RANKL. In this study, we identified 7-oxo-7-deacetoxygedunin (7-OG), a gedunin type limonoid from seeds of the mangrove Xylocarpus moluccensis, as a potent inhibitor of osteoclastogenesis. Additionally, 7-OG showed strong anti-osteoclastogenic activity with low cytotoxicity against the monocyte/macrophage progenitor cell line, RAW264.7. The IC50 for anti-osteoclastogenic activity was 4.14 {mu}M. Treatment with 7-OG completely abolished the appearance of multinucleated giant cells with tartrate-resistant acid phosphatase activity in RAW264.7 cells stimulated with RANKL. When the expression of genes related to osteoclastogenesis was investigated, a complete downregulation of NFATc1 and cathepsin K and a delayed downregulation of irf8 were observed upon 7-OG treatment in the presence of RANKL. Furthermore, treatment with this limonoid suppressed RANKL-induced activation of p38, MAPK and Erk and nuclear localization of NF-{kappa}B p65. Taken together, we present evidence indicating a plant limonoid as a novel osteoclastogenic inhibitor that could be used for osteoporosis and related conditions.

  2. Structural simulation of adenosine phosphate via plumbagin and zoledronic acid competitively targets JNK/Erk to synergistically attenuate osteoclastogenesis in a breast cancer model

    PubMed Central

    Qiao, H; Wang, T-y; Yu, Z-f; Han, X-g; Liu, X-q; Wang, Y-g; Fan, Q-m; Qin, A; Tang, T-t

    2016-01-01

    The treatment of breast cancer-induced osteolysis remains a challenge in clinical settings. Here, we explored the effect and mechanism of combined treatment with zoledronic acid (ZA) and plumbagin (PL), a widely investigated component derived from Plumbago zeylanica, against breast cancer-induced osteoclastogenesis. We found that the combined treatment with PL and ZA suppressed cell viability of precursor osteoclasts and synergistically inhibited MDA-MB-231-induced osteoclast formation (combination index=0.28) with the abrogation of recombinant mouse receptor activator of nuclear factor-κB ligand (RANKL)-induced activation of NF-κB/MAPK (nuclear factor-κB/mitogen-activated protein kinase) pathways. Molecular docking suggested a putative binding area within c-Jun N-terminal kinase/extracellular signal-regulated kinase (JNK/Erk) protease active sites through the structural mimicking of adenosine phosphate (ANP) by the spatial combination of PL with ZA. A homogeneous time-resolved fluorescence assay further illustrated the direct competitiveness of the dual drugs against ANP docking to phosphorylated JNK/Erk, contributing to the inhibited downstream expression of c-Jun/c-Fos/NFATc-1 (nuclear factor of activated T cells, cytoplasmic, calcineurin-dependent 1). Then, in vivo testing demonstrated that the combined administration of PL and ZA attenuated breast cancer growth in the bone microenvironment. Additionally, these molecules prevented the destruction of proximal tibia, with significant reduction of tartrate-resistant acid phosphatase (TRAcP)-positive osteoclast cells and potentiation of apoptotic cancer cells, to a greater extent when combined than when the drugs were applied independently. Altogether, the combination treatment with PL and ZA could significantly and synergistically suppress osteoclastogenesis and inhibit tumorigenesis both in vitro and in vivo by simulating the spatial structure of ANP to inhibit competitively phosphorylation of c-Jun N

  3. Harpagoside Inhibits RANKL-Induced Osteoclastogenesis via Syk-Btk-PLCγ2-Ca(2+) Signaling Pathway and Prevents Inflammation-Mediated Bone Loss.

    PubMed

    Kim, Ju-Young; Park, Sun-Hyang; Baek, Jong Min; Erkhembaatar, Munkhsoyol; Kim, Min Seuk; Yoon, Kwon-Ha; Oh, Jaemin; Lee, Myeung Su

    2015-09-25

    Harpagoside (HAR) is a natural compound isolated from Harpagophytum procumbens (devil's claw) that is reported to have anti-inflammatory effects; however, these effects have not been investigated in the context of bone development. The current study describes for the first time that HAR inhibits receptor activator of nuclear factor κB ligand (RANKL)-induced osteoclastogenesis in vitro and suppresses inflammation-induced bone loss in a mouse model. HAR also inhibited the formation of osteoclasts from mouse bone marrow macrophages (BMMs) in a dose-dependent manner as well as the activity of mature osteoclasts, including filamentous actin (F-actin) ring formation and bone matrix breakdown. This involved a HAR-induced decrease in extracellular signal-regulated kinase (ERK) and c-jun N-terminal kinase (JNK) phosphorylation, leading to the inhibition of Syk-Btk-PLCγ2-Ca(2+) in RANKL-dependent early signaling, as well as the activation of c-Fos and nuclear factor of activated T cells cytoplasmic 1 (NFATc1), which resulted in the down-regulation of various target genes. Consistent with these in vitro results, HAR blocked lipopolysaccharide (LPS)-induced bone loss in an inflammatory osteoporosis model. However, HAR did not prevent ovariectomy-mediated bone erosion in a postmenopausal osteoporosis model. These results suggest that HAR is a valuable agent against inflammation-related bone disorders but not osteoporosis induced by hormonal abnormalities. PMID:26308264

  4. Tenuigenin inhibits RANKL-induced osteoclastogenesis by down-regulating NF-κB activation and suppresses bone loss in vivo.

    PubMed

    Yang, Shuo; Li, Xianan; Cheng, Liang; Wu, Hongwei; Zhang, Can; Li, Kanghua

    2015-10-30

    Tenuigenin, a major active component of polygala tenuifolia root, has been used to treat patients with insomnia, dementia, and neurosis. In this study, we aimed to investigate the effects of tenuigenin on osteoclastogenesis and clarify the possible mechanism. We showed that tenuigenin inhibited receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast differentiation and bone resorption without cytotoxicity, which was further demonstrated by reduced osteoclast specific gene expression such as TRAP, c-Src, ATP6v0d2, etc. Moreover, the inhibitory effect of tenuigenin was associated with impaired NF-κB activity owing to delayed degradation/regeneration of IkBa and inhibition of p65 nuclear translocation. Consistent with the in vitro results, micro-ct scanning and analysis data showed that tenuigenin suppressed RANKL-induced bone loss in an animal model. Taken together, our data demonstrate that tenuigenin inhibit osteoclast formation and bone resorption both in vitro and in vivo, and comprise a potential therapeutic alternative for osteoclast-related disorders such as osteoporosis and cancer-induced bone destruction. PMID:26392312

  5. Aspirin inhibits osteoclastogenesis by suppressing the activation of NF-κB and MAPKs in RANKL-induced RAW264.7 cells

    PubMed Central

    Zeng, Yan-Ping; Yang, Chao; Li, Yuan; Fan, Yong; Yang, Hong-Jun; Liu, Bin; Sang, Hong-Xun

    2016-01-01

    Aspirin is a commonly used medicine as an effective antipyretic, analgesic and anti-inflammatory drug. Previous studies have demonstrated its potential effects of anti-postmenopausal osteoporosis, while the molecular mechanisms remain unclear. The effects of aspirin on receptor-activator of nuclear factor κB (NF-κB) ligand (RANKL)-induced osteoclasts were investigated in RAW264.7 cells in the current study. Using tartrate-resistant acid phosphatase (TRAP) staining, it was observed that aspirin inhibited the differentiation of RANKL-induced RAW264.7 cells. The mRNA expression of osteoclastic marker genes, including cathepsin K, TRAP, matrix metalloproteinase 9 and calcitonin receptor, were suppressed by aspirin as identified using reverse transcription-quantitative polymerase chain reaction analysis. The immunofluorescence assay indicated that aspirin markedly inhibited NF-κB p65 translocation to the nucleus in RANKL-induced RAW264.7 cells. In addition, aspirin also suppressed the phosphorylation of mitogen-activated protein kinases (MAPKs), observed by western blot analysis. Taken together, these data identified that aspirin inhibits osteoclastogenesis by suppressing the activation of NF-κB and MAPKs in RANKL-induced RAW264.7 cells, implying that aspirin may possess therapeutic potential for use in the prevention and treatment of osteoporosis. PMID:27430169

  6. Inhibition of osteoclastogenesis by 6-[10'(Z)-heptadecenyl] salicylic acid from Syzygium tetragonum Wall via preventing nuclear translocation of NFATc1.

    PubMed

    Zhang, Xin-Wen; Zhou, Chun; Zhu, Han-Dong; Shao, Weiwei; You, Yan; Peng, Jin; Yin, Sheng; Shen, Xiaoyan

    2014-06-15

    Syzygium tetragonum Wall is a Chinese folk medicine for the treatment of rheumatism, joint swelling and pain. By High Content Screening (HCS), 8 compounds (1-8) from Syzygium tetragonum Wall were evaluated for their inhibitory activity on the nuclear translocation of NFATc1 in EGFP-NFATc1 U2OS cells. Among them, 6-[10'(Z)-heptadecenyl] salicylic acid (8) exhibited a significant inhibitory activity. In RAW 264.7 cells, it could dose-dependently prevent nuclear NFATc1 translocation induced by receptor activator of nuclear factor κB ligand (RANKL). The differentiation of osteoclasts from bone marrow derived macrophages (BMMs) was significantly inhibited by 8 in a dose-dependent manner. The mRNA expression of TRAP, CtsK, and MMP9, key enzymes for the bone resorption secreted by osteoclasts, were also significantly down-regulated; and MMP9 activity was also obviously decreased. More importantly, the bone resorption activity of osteoclasts was dose-dependently suppressed by compound 8. Our results suggest that compound 8 can effectively inhibit osteoclastogenesis and bone erosion via preventing NFATc1 nuclear translocation and might be a promising drug candidate for relevant diseases.

  7. Aspirin inhibits osteoclastogenesis by suppressing the activation of NF-κB and MAPKs in RANKL-induced RAW264.7 cells.

    PubMed

    Zeng, Yan-Ping; Yang, Chao; Li, Yuan; Fan, Yong; Yang, Hong-Jun; Liu, Bin; Sang, Hong-Xun

    2016-09-01

    Aspirin is a commonly used medicine as an effective antipyretic, analgesic and anti-inflammatory drug. Previous studies have demonstrated its potential effects of anti-postmenopausal osteoporosis, while the molecular mechanisms remain unclear. The effects of aspirin on receptor‑activator of nuclear factor κB (NF‑κB) ligand (RANKL)‑induced osteoclasts were investigated in RAW264.7 cells in the current study. Using tartrate‑resistant acid phosphatase (TRAP) staining, it was observed that aspirin inhibited the differentiation of RANKL‑induced RAW264.7 cells. The mRNA expression of osteoclastic marker genes, including cathepsin K, TRAP, matrix metalloproteinase 9 and calcitonin receptor, were suppressed by aspirin as identified using reverse transcription‑quantitative polymerase chain reaction analysis. The immunofluorescence assay indicated that aspirin markedly inhibited NF‑κB p65 translocation to the nucleus in RANKL‑induced RAW264.7 cells. In addition, aspirin also suppressed the phosphorylation of mitogen‑activated protein kinases (MAPKs), observed by western blot analysis. Taken together, these data identified that aspirin inhibits osteoclastogenesis by suppressing the activation of NF‑κB and MAPKs in RANKL‑induced RAW264.7 cells, implying that aspirin may possess therapeutic potential for use in the prevention and treatment of osteoporosis. PMID:27430169

  8. Dietary calcium and 1,25-dihydroxyvitamin D3 regulate transcription of calcium transporter genes in calbindin-D9k knockout mice.

    PubMed

    Ko, Sang-Hwan; Lee, Geun-Shik; Vo, Thuy T B; Jung, Eui-Man; Choi, Kyung-Chul; Cheung, Ki-Wha; Kim, Jae Wha; Park, Jong-Gil; Oh, Goo Taeg; Jeung, Eui-Bae

    2009-04-01

    The effect(s) of oral calcium and vitamin D(3) were examined on the expression of duodenal and renal active calcium transport genes, i.e., calbindin-D9k (CaBP-9k) and calbindin-D28k (CaBP-28k), transient receptor potential cation channels (TRPV5 and TRPV6), Na(+)/Ca(2+) exchanger 1 (NCX1) and plasma membrane calcium ATPase 1b (PMCA1b), in CaBP-9k KO mice. Wild-type (WT) and KO mice were provided with calcium and vitamin D(3)-deficient diets for 10 weeks. The deficient diet significantly decreased body weights compared with the normal diet groups. The serum calcium concentration of the WT mice was decreased by the deficient diet but was unchanged in the KO mice. The deficient diet significantly increased duodenal transcription of CaBP-9k and TRPV6 in the WT mice, but no alteration was observed in the KO mice. In the kidney, the deficient diet significantly increased renal transcripts of CaBP-9k, TRPV6, PMCA1b, CaBP-28k and TRPV5 in the WT mice but did not alter calcium-relating genes in the KO mice. Two potential mediators of calcium-processing genes, vitamin D receptor (VDR) and parathyroid hormone receptor (PTHR), have been suggested to be useful for elucidating these differential regulations in the calcium-related genes of the KO mice. Expression of VDR was not significantly affected by diet or the KO mutation. Renal PTHR mRNA levels were reduced by the diet, and reduced expression was also seen in the KO mice given the normal diet. Taken together, these results suggest that the active calcium transporting genes in KO mice may have resistance to the deficiency diet of calcium and vitamin D(3).

  9. 1α,25-Dihydroxyvitamin D3 and Resolvin D1 Retune the Balance between Amyloid-β Phagocytosis and Inflammation in Alzheimer’s Disease Patients

    PubMed Central

    Mizwicki, Mathew T.; Liu, Guanghao; Fiala, Milan; Magpantay, Larry; Sayre, James; Siani, Avi; Mahanian, Michelle; Weitzman, Rachel; Hayden, Eric; Rosenthal, Mark J.; Nemere, Ilka; Ringman, John; Teplow, David B.

    2014-01-01

    As immune defects in amyloid-β (Aβ) phagocytosis and degradation underlie Aβ deposition and inflammation in Alzheimer’s disease (AD) brain, better understanding of the relation between Aβ phagocytosis and inflammation could lead to promising preventive strategies. We tested two immune modulators in peripheral blood mononuclear cells (PBMCs) of AD patients and controls: 1α,25(OH)2-vitamin D3 (1,25D3) and resolvin D1 (RvD1). Both 1,25D3 and RvD1 improved phagocytosis of FAM-Aβ by AD macrophages and inhibited fibrillar Aβ-induced apoptosis. The action of 1,25D3 depended on the nuclear vitamin D and the protein disulfide isomerase A3 receptors, whereas RvD1 required the chemokine receptor, GPR32. The activities of 1,25D3 and RvD1 commonly required intracellular calcium, MEK1/2, PKA, and PI3K signaling; however, the effect of RvD1 was more sensitive to pertussis toxin. In this case study, the AD patients: a) showed significant transcriptional up regulation of IL1RN, ITGB2, and NFκB; and b) revealed two distinct groups when compared to controls: group 1 decreased and group 2 increased transcription of TLRs, IL-1, IL1R1 and chemokines. In the PBMCs/macrophages of both groups, soluble Aβ (sAβ) increased the transcription/secretion of cytokines (e.g., IL1 and IL6) and chemokines (e.g., CCLs and CXCLs) and 1,25D3/RvD1 reversed most of the sAβ effects. However, they both further increased the expression of IL1 in the group 1, sβ-treated cells. We conclude that in vitro, 1,25D3 and RvD1 rebalance inflammation to promote Aβ phagocytosis, and suggest that low vitamin D3 and docosahexaenoic acid intake and/or poor anabolic production of 1,25D3/RvD1 in PBMCs could contribute to AD onset/pathology. PMID:23186989

  10. Bone mass and markers of bone and calcium metabolism in postmenopausal women treated with 1,25-dihydroxyvitamin D (Calcitriol) for four years.

    PubMed

    Sairanen, S; Kärkkäinen, M; Tähtelä, R; Laitinen, K; Mäkelä, P; Lamberg-Allardt, C; Välimäki, M J

    2000-08-01

    To evaluate the long-term effect of calcitriol treatment on bone mineral density (BMD) of the femoral neck and lumbar spine and the parameters of calcium and bone metabolism in elderly women, 55 healthy, postmenopausal women, all aged 66 years, were enrolled in the study. Eighteen started a 4-year supplementation with 0.5 microg of calcitriol daily and 37 served as controls. Calcium intake of all the subjects was adjusted to 800 mg daily. In 4 years femoral neck BMD increased by 3.0% in the calcitriol group, but decreased by 1.6% in the control group (P = 0.009). The respective changes in lumbar spine BMD were +2.3% and +0.9% (P = 0.067). Two years' treatment with calcitriol increased the intestinal absorption of strontium by 57% (P < 0.001), doubled the urinary excretion of calcium (P < 0. 001), and decreased the mean parathyroid hormone (PTH) level by 32% (P < 0.01). In the calcitriol group the marker of bone formation, serum osteocalcin, decreased by 27% (P < 0.01), and the marker of bone resorption, serum C-telopeptide of type I collagen (CTx), by 33% (P = 0.05) after 2 years. In two subjects the calcitriol dose had to be reduced because of hypercalciuria. We conclude that calcitriol treatment increases bone mass at the femoral neck and lumbar spine, the increases being maintained for up to 4 years. The gain in bone mass results from reduced bone turnover which is partly a consequence of the enhanced intestinal absorption of calcium and suppressed serum PTH levels. PMID:10920216

  11. Chitinase 3-like 1 expression by human (MG63) osteoblasts in response to lysophosphatidic acid and 1,25-dihydroxyvitamin D3.

    PubMed

    Mansell, J P; Cooke, M; Read, M; Rudd, H; Shiel, A I; Wilkins, K; Manso, M

    2016-01-01

    Chitinase 3-like 1, otherwise known as YKL-40, is a secreted glycoprotein purported to have a role in extracellular matrix metabolism. The first mammalian cell type found to express YKL-40 was the human osteosarcoma-derived osteoblast, MG63. In that first study the active vitamin D3 metabolite, 1,25-dihydroxycholecalciferol (1,25D), stimulated YKL-40 expression, thereby indicating that a vital factor for skeletal health promoted YKL-40 synthesis by bone forming cells. However, when these MG63 cells were exposed to 1,25D they were also exposed to serum, a rich source of the pleiotropic lipid mediator, lysophosphatidic acid (LPA). Given that 1,25D is now known to co-operate with selected growth factors, including LPA, to influence human osteoblast differentiation we hypothesised that 1,25D and LPA may work together to stimulate osteoblast YKL-40 expression. Herein we report that 1,25D and LPA synergistically promote YKL-40 expression by MG63 cells. Inhibitors targeting AP1, MEK, Sp1 and STAT3 blunted the expression of both alkaline phosphatase and YKL-40 by MG63 cells in response to co-stimulation with 1,25D and LPA. Other ligands of the vitamin D receptor also co-operated with LPA in driving YKL-40 mobilisation. Collectively our findings highlight another important role of 1,25D and LPA in the regulation of human osteoblast function. PMID:27575987

  12. The effect of 1,25-dihydroxyvitamin D3 on TSLP, IL-33 and IL-25 expression in respiratory epithelium.

    PubMed

    Paplińska-Goryca, Magdalena; Nejman-Gryz, Patrycja; Proboszcz, Małgorzata; Krenke, Rafał

    2016-06-01

    Airway epithelium is an active and important component of the immunological response in the pathophysiology of obstructive lung diseases. Recent studies suggest an important role for vitamin D3 in asthma severity and treatment response. Our study evaluated the influence of an active form of vitamin D3 on the expression of selected mediators of allergic inflammation in the respiratory epithelium. Primary nasal and bronchial epithelial cells were exposed to1,25D3 for 1 hour and were then stimulated or not with IL-4, TNF-α, LPS, and poly I:C. After 24 hours TSLP, IL-33, and IL-25 protein levels were measured in culture supernatants using ELISA and mRNA levels in cells by real time PCR. 1,25D3 increased TSLP concentration in unstimulated nasal epithelial cells, but did not influence IL-33 and IL-25 expression. In IL-4-stimulated epithelial cell cultures 1,25D3 mostly inhibited TSLP and IL-33 expression. In LPS-treated cultures 1,25D3 decreased IL-33 expression. Simultaneously 1,25D3 augmented IL-25 production in the same model of stimulation. Our study revealed the dual nature of vitamin D3 manifested in both pro- and anti-inflammatory properties observed in airway epithelial cells. PMID:27478079

  13. Chronic metabolic acidosis increases the serum concentration of 1,25-dihydroxyvitamin D in humans by stimulating its production rate. Critical role of acidosis-induced renal hypophosphatemia.

    PubMed Central

    Krapf, R; Vetsch, R; Vetsch, W; Hulter, H N

    1992-01-01

    Chronic metabolic acidosis results in metabolic bone disease, calcium nephrolithiasis, and growth retardation. The pathogenesis of each of these sequelae is poorly understood in humans. We therefore investigated the effects of chronic extrarenal metabolic acidosis on the regulation of 1,25-(OH)2D, parathyroid hormone, calcium, and phosphate metabolism in normal humans. Chronic extrarenal metabolic acidosis was induced by administering two different doses of NH4Cl [2.1 (low dose) and 4.2 (high dose) mmol/kg body wt per d, respectively] to four male volunteers each during metabolic balance conditions. Plasma [HCO3-] decreased by 4.5 +/- 0.4 mmol/liter in the low dose and by 9.1 +/- 0.3 mmol/liter (P < 0.001) in the high dose group. Metabolic acidosis induced renal hypophosphatemia, which strongly correlated with the severity of acidosis (Plasma [PO4] on plasma [HCO3-]; r = 0.721, P < 0.001). Both metabolic clearance and production rates of 1,25-(OH)2D increased in both groups. In the high dose group, the percentage increase in production rate was much greater than the percentage increase in metabolic clearance rate, resulting in a significantly increased serum 1,25-(OH)2D concentration. A strong inverse correlation was observed for serum 1,25-(OH)2D concentration on both plasma [PO4] (r = -0.711, P < 0.001) and plasma [HCO3-] (r = -0.725, P < 0.001). Plasma ionized calcium concentration did not change in either group whereas intact serum parathyroid hormone concentration decreased significantly in the high dose group. In conclusion, metabolic acidosis results in graded increases in serum 1,25-(OH)2D concentration by stimulating its production rate in humans. The increased production rate is explained by acidosis-induced hypophosphatemia/cellular phosphate depletion resulting at least in part from decreased renal tubular phosphate reabsorption. The decreased serum intact parathyroid hormone levels in more severe acidosis may be the consequence of hypophosphatemia and/or increased serum 1,25-(OH)2D concentrations. PMID:1469097

  14. Bu-Shen-Ning-Xin decoction: inhibition of osteoclastogenesis by abrogation of the RANKL-induced NFATc1 and NF-κB signaling pathways via selective estrogen receptor α

    PubMed Central

    Wang, Ling; Qiu, Xue-Min; Gui, Yu-Yan; Xu, Ying-Ping; Gober, Hans-Jürgen; Li, Da-Jin

    2015-01-01

    Introduction Bu-Shen-Ning-Xin decoction (BSNXD) is a traditional Chinese medicinal composition that has been used as a remedy for postmenopausal osteoporosis, but the mechanisms affecting bone metabolism are not fully understood. Purpose We investigated the molecular mechanism and signaling pathway underlying the effect of BSNXD on osteoclastogenesis. Materials and methods A postmenopausal osteoporosis animal model generated by ovariectomy was administered BSNXD and drug-derived serum was prepared. An enzyme immunoassay was conducted to measure the 17-β-estradiol (E2) concentration in the drug-derived serum. Bone marrow-derived monocyte/macrophage precursor cells were treated with drug-derived serum, and tartrate-resistance acid phosphatase staining was conducted to observe osteoclastogenesis. A bone resorption assay was performed to analyze the effect on osteoclastic resorptive function. Real-time PCR, flow cytometry, Western blotting, transfection, and luciferase assays were conducted to explore the related mechanism. Results E2 was not elevated in BSNXD-derived serum. BSNXD-derived serum suppressed receptor activation of nuclear factor κB ligand (RANKL)-activated osteoclastogenesis in a dose-dependent manner; this effect could be reversed by estrogen receptor α antagonist methyl-piperidino-pyrazole. The serum suppressed RANKL-induced NF-κB transcription and inhibited the accumulation of nuclear factor of activated T-cells, cytoplasmic 1 in osteoclast precursor cells; the inhibitory effect was abolished by methyl-piperidino-pyrazole but not the estrogen receptor β antagonist or androgen receptor antagonist. Conclusion These results collectively suggest that administration of BSNXD presents inhibitory effects on osteoclast differentiation by abrogating the RANKL-induced nuclear factor of activated T-cells, cytoplasmic 1 and NF-κB signaling pathways downstream of estrogen receptor α, thereby contributing to the inhibitory effect on bone resorption. PMID

  15. Inhibition of titanium-particle-induced inflammatory osteolysis after local administration of dopamine and suppression of osteoclastogenesis via D2-like receptor signaling pathway.

    PubMed

    Yang, Huilin; Xu, Yaozeng; Zhu, Mo; Gu, Ye; Zhang, Wen; Shao, Hongguo; Wang, Yijun; Ping, Zichuan; Hu, Xuanyang; Wang, Liangliang; Geng, Dechun

    2016-02-01

    Chronic inflammation and extensive osteoclast formation play critical roles in wear-debris-induced peri-implant osteolysis. We investigated the potential impact of dopamine on titanium-particle-induced inflammatory osteolysis in vivo and in vitro. Twenty-eight C57BL/6J mice were randomly assigned to four groups: sham control (PBS treatment), titanium (titanium/PBS treatment), low- (titanium/2 μg kg(-1) day(-1) dopamine) and high-dopamine (titanium/10 μg kg(-1) day(-1) dopamine). After 2 weeks, mouse calvariae were collected for micro-computed tomography (micro-CT) and histomorphometry analysis. Bone-marrow-derived macrophages (BMMs) were isolated to assess osteoclast differentiation. Dopamine significantly reduced titanium-particle-induced osteolysis compared with the titanium group as confirmed by micro-CT and histomorphometric data. Osteoclast numbers were 34.9% and 59.7% (both p < 0.01) lower in the low- and high-dopamine-treatment groups, respectively, than in the titanium group. Additionally, low RANKL, tumor necrosis factor-α, interleukin-1β and interleukin-6 immunochemistry staining were noted in dopamine-treatment groups. Dopamine markedly inhibited osteoclast formation, osteoclastogenesis-related gene expression and pro-inflammatory cytokine expression in BMMs in a dose-dependent manner. Moreover, the resorption area was decreased with 10(-9) M and 10(-8) M dopamine to 40.0% and 14.5% (both p < 0.01), respectively. Furthermore, the inhibitory effect of dopamine was reversed by the D2-like-receptor antagonist haloperidol but not by the D1-like-receptor antagonist SCH23390. These results suggest that dopamine therapy could be developed into an effective and safe method for osteolysis-related disease caused by chronic inflammation and excessive osteoclast formation.

  16. Whole body vibration improves osseointegration by up-regulating osteoblastic activity but down-regulating osteoblast-mediated osteoclastogenesis via ERK1/2 pathway.

    PubMed

    Zhou, Yi; Guan, Xiaoxu; Liu, Tie; Wang, Xinhua; Yu, Mengfei; Yang, Guoli; Wang, Huiming

    2015-02-01

    Due to the reduction in bone mass and deterioration in bone microarchitecture, osteoporosis is an important risk factor for impairing implant osseointegration. Recently, low-magnitude, high-frequency (LMHF) vibration (LM: <1×g; HF: 20-90Hz) has been shown to exhibit anabolic, but anti-resorptive effects on skeletal homeostasis. Therefore, we hypothesized that LMHF loading, in terms of whole body vibration (WBV), may improve implant fixation under osteoporotic status. In the in vivo study, WBV treatment (magnitude: 0.3g, frequency: 40Hz, time: 30min/12h, 5days/week) was applied after hydroxyapatite-coated titanium implants were inserted in the bilateral tibiae of ovariectomized rats. The bone mass and the osteospecific gene expressions were measured at 12weeks post implantation. In the in vitro study, the cellular and molecular mechanisms underlying osteoblastic and osteoclastic activities were fully investigated using various experimental assays. Micro-CT examination showed that WBV could enhance osseointegration by improving microstructure parameters surrounding implants. WBV-regulated gene levels in favor of bone formation over resorption may be the reason for the favorable adaptive bone remolding on bone-implant surface. The in vitro study showed that vibration (magnitude: 0.3g, frequency: 40Hz, time: 30min/12h) up-regulated osteoblast differentiation, matrix synthesis and mineralization. However, mechanically regulated osteoclastic activity was mainly through the effect on osteoblastic cells producing osteoclastogenesis-associated key soluble factors, including RANKL and M-CSF. Osteoblasts were therefore the direct target cells during the mechanotransduction process. The ERK1/2 pathway was demonstrated to play an essential role in vibration-induced enhancement of bone formation and decreased bone resorption. Our data suggests that WBV was a helpful non-pharmacological intervention for improving osseointegration under osteoporosis.

  17. Brucella abortus Invasion of Osteocytes Modulates Connexin 43 and Integrin Expression and Induces Osteoclastogenesis via Receptor Activator of NF-κB Ligand and Tumor Necrosis Factor Alpha Secretion.

    PubMed

    Pesce Viglietti, Ayelén Ivana; Arriola Benitez, Paula Constanza; Gentilini, María Virginia; Velásquez, Lis Noelia; Fossati, Carlos Alberto; Giambartolomei, Guillermo Hernán; Delpino, María Victoria

    2015-10-12

    Osteoarticular brucellosis is the most common localization of human active disease. Osteocytes are the most abundant cells of bone. They secrete factors that regulate the differentiation of both osteoblasts and osteoclasts during bone remodeling. The aim of this study is to determine if Brucella abortus infection modifies osteocyte function. Our results indicate that B. abortus infection induced matrix metalloproteinase 2 (MMP-2), receptor activator for NF-κB ligand (RANKL), proinflammatory cytokines, and keratinocyte chemoattractant (KC) secretion by osteocytes. In addition, supernatants from B. abortus-infected osteocytes induced bone marrow-derived monocytes (BMM) to undergo osteoclastogenesis. Using neutralizing antibodies against tumor necrosis factor alpha (TNF-α) or osteoprotegerin (OPG), RANKL's decoy receptor, we determined that TNF-α and RANKL are involved in osteoclastogenesis induced by supernatants from B. abortus-infected osteocytes. Connexin 43 (Cx43) and the integrins E11/gp38, integrin-α, integrin-β, and CD44 are involved in cell-cell interactions necessary for osteocyte survival. B. abortus infection inhibited the expression of Cx43 but did not modify the expression of integrins. Yet the expression of both Cx43 and integrins was inhibited by supernatants from B. abortus-infected macrophages. B. abortus infection was not capable of inducing osteocyte apoptosis. However, supernatants from B. abortus-infected macrophages induced osteocyte apoptosis in a dose-dependent manner. Taken together, our results indicate that B. abortus infection could alter osteocyte function, contributing to bone damage.

  18. Brucella abortus Invasion of Osteocytes Modulates Connexin 43 and Integrin Expression and Induces Osteoclastogenesis via Receptor Activator of NF-κB Ligand and Tumor Necrosis Factor Alpha Secretion

    PubMed Central

    Pesce Viglietti, Ayelén Ivana; Arriola Benitez, Paula Constanza; Gentilini, María Virginia; Velásquez, Lis Noelia; Fossati, Carlos Alberto; Giambartolomei, Guillermo Hernán

    2015-01-01

    Osteoarticular brucellosis is the most common localization of human active disease. Osteocytes are the most abundant cells of bone. They secrete factors that regulate the differentiation of both osteoblasts and osteoclasts during bone remodeling. The aim of this study is to determine if Brucella abortus infection modifies osteocyte function. Our results indicate that B. abortus infection induced matrix metalloproteinase 2 (MMP-2), receptor activator for NF-κB ligand (RANKL), proinflammatory cytokines, and keratinocyte chemoattractant (KC) secretion by osteocytes. In addition, supernatants from B. abortus-infected osteocytes induced bone marrow-derived monocytes (BMM) to undergo osteoclastogenesis. Using neutralizing antibodies against tumor necrosis factor alpha (TNF-α) or osteoprotegerin (OPG), RANKL's decoy receptor, we determined that TNF-α and RANKL are involved in osteoclastogenesis induced by supernatants from B. abortus-infected osteocytes. Connexin 43 (Cx43) and the integrins E11/gp38, integrin-α, integrin-β, and CD44 are involved in cell-cell interactions necessary for osteocyte survival. B. abortus infection inhibited the expression of Cx43 but did not modify the expression of integrins. Yet the expression of both Cx43 and integrins was inhibited by supernatants from B. abortus-infected macrophages. B. abortus infection was not capable of inducing osteocyte apoptosis. However, supernatants from B. abortus-infected macrophages induced osteocyte apoptosis in a dose-dependent manner. Taken together, our results indicate that B. abortus infection could alter osteocyte function, contributing to bone damage. PMID:26459511

  19. Impaired bone resorption in cathepsin K-deficient mice is partially compensated for by enhanced osteoclastogenesis and increased expression of other proteases via an increased RANKL/OPG ratio.

    PubMed

    Kiviranta, Riku; Morko, Jukka; Alatalo, Sari L; NicAmhlaoibh, Roisin; Risteli, Juha; Laitala-Leinonen, Tiina; Vuorio, Eero

    2005-01-01

    Previous reports indicate that mice deficient for cathepsin K (Ctsk), a key protease in osteoclastic bone resorption, develop osteopetrosis due to their inability to properly degrade organic bone matrix. Some features of the phenotype of Ctsk knockout mice, however, suggest the presence of mechanisms by which Ctsk-deficient mice compensate for the lack of cathepsin K. To study these mechanisms in detail, we generated Ctsk-deficient (Ctsk-/-) mice and analyzed them at the age of 2, 7, and 12 months using peripheral quantitative computed tomography, histomorphometry, resorption marker measurements, osteoclast and osteoblast differentiation cultures, and gene expression analyses. The present study verified the previously published osteopetrotic features of Ctsk-deficient mice. However, these changes did not exacerbate during aging indicating the absence of Ctsk to have its most severe effects during the rapid growth period. Resorption markers ICTP and CTX were decreased in the media of Ctsk-/- osteoclasts cultured on bone slices indicating impaired bone resorption. Ctsk-/- mice exhibited several mechanisms attempting to compensate for Ctsk deficiency. The number of osteoclasts in trabecular bone was significantly increased in Ctsk-/- mice compared to controls, as was the number of osteoclast precursors in bone marrow. The mRNA levels for receptor activator of nuclear factor (kappa)B ligand (RANKL) in Ctsk-/- bones were increased resulting in increased RANKL/OPG ratio favoring osteoclastogenesis. In addition, expression of mRNAs of osteoclastic enzymes (MMP-9, TRACP) and for osteoblastic proteases (MMP-13, MMP-14) were increased in Ctsk-/- mice compared to controls. Impaired osteoclastic bone resorption in Ctsk-/- mice results in activation of osteoblastic cells to produce increased amounts of other proteolytic enzymes and RANKL in vivo. We suggest that increased RANKL expression mediates enhanced osteoclastogenesis and increased protease expression by osteoclasts

  20. Citrus nobiletin suppresses bone loss in ovariectomized ddY mice and collagen-induced arthritis in DBA/1J mice: possible involvement of receptor activator of NF-kappaB ligand (RANKL)-induced osteoclastogenesis regulation.

    PubMed

    Murakami, Akira; Song, Meiyu; Katsumata, Shin-Ichi; Uehara, Mariko; Suzuki, Kazuharu; Ohigashi, Hajime

    2007-01-01

    Bone resorption is known to accelerate during the onset of several disorders, including osteoporosis (OP) and rheumatoid arthritis (RA). Some epidemiological surveys have suggested that a high intake of vegetables and fruits has an inverse relation to such disease incidence, though the number of active constituents elucidated thus far is limited. In the present study, we examined the efficacy of various food phytochemicals using two animal models. First, female ddY mice were ovariectomized (OVX) or sham-operated (sham), after which five different compounds (phenethyl isothiocyanate, zerumbone, auraptene, 1'-acetoxychavicol acetate, and nobiletin) were administered separately to OVX mice with a mini-osmotic pump at doses of 0.25 or 0.5 mg/day for 4 weeks, with 17beta-estradiol (E_{2}, 0.03 microg/day) used as a positive control. Nobiletin, in contrast to the other tested phytochemicals, significantly (P<0.05) suppressed the reduction of whole bone mineral density by 61%, which was comparable to or higher than the efficacy of E_{2}. Next, nobiletin given as an i.p. administration at 20 mg/kg of body weight, but not 2 mg/kg, to male DBA/1J mice every 2 days for 12 days led to a marked decrease in type II collagen-induced arthritis by 45% (P < 0.05). Furthermore, the flavonoid (4-50 microM) attenuated receptor activator of nuclear factor kappaB ligand (RANKL)-induced osteoclastogenesis of RAW264.7 cells, as detected by tartarate-resistant acid phosphatase activity and microscopic observations. Of note, nobiletin also suppressed RANKL-activated extracellular signal-regulated kinase1/2, c-Jun N-terminal kinase1/2, and p38 mitogen-activated protein kinase activities, and thereby regulated the promoter activation of nuclear factor kappaB (NFkappaB) and activator protein-1, key transcription factors for differentiation. Together, our results suggest that nobiletin is a promising phytochemical for the prevention or treatment of osteoclastogenesis-related disorders, including

  1. Osteoblastic γ-aminobutyric acid, type B receptors negatively regulate osteoblastogenesis toward disturbance of osteoclastogenesis mediated by receptor activator of nuclear factor κB ligand in mouse bone.

    PubMed

    Takahata, Yoshifumi; Takarada, Takeshi; Hinoi, Eiichi; Nakamura, Yukari; Fujita, Hiroyuki; Yoneda, Yukio

    2011-09-23

    The prevailing view is that signaling machineries for the neurotransmitter GABA are also expressed by cells outside the CNS. In cultured murine calvarial osteoblasts, mRNA was constitutively expressed for both subunits 1 and 2 of metabotropic GABA(B) receptor (GABA(B)R), along with inhibition by the GABA(B)R agonist baclofen of cAMP formation, alkaline phosphatase (ALP) activity, and Ca(2+) accumulation. Moreover, baclofen significantly inhibited the transactivation of receptor activator of nuclear factor-κB ligand (RANKL) gene in a manner sensitive to a GABA(B)R antagonist, in addition to decreasing mRNA expression of bone morphogenetic protein-2 (BMP2), osteocalcin, and osterix. In osteoblastic MC3T3-E1 cells stably transfected with GABA(B)R1 subunit, significant reductions were seen in ALP activity and Ca(2+) accumulation, as well as mRNA expression of osteocalcin, osteopontin, and osterix. In cultured calvarial osteoblasts from GABA(B)R1-null mice exhibiting low bone mineral density in tibia and femur, by contrast, both ALP activity and Ca(2+) accumulation were significantly increased together with promoted expression of both mRNA and proteins for BMP2 and osterix. No significant change was seen in the number of multinucleated cells stained for tartrate-resistant acid phosphatase during the culture of osteoclasts prepared from GABA(B)R1-null mice, whereas a significant increase was seen in the number of tartrate-resistant acid phosphatase-positive multinucleated cells in co-culture of osteoclasts with osteoblasts isolated from GABA(B)R1-null mice. These results suggest that GABA(B)R is predominantly expressed by osteoblasts to negatively regulate osteoblastogenesis through down-regulation of BMP2 expression toward disturbance of osteoclastogenesis after down-regulation of RANKL expression in mouse bone.

  2. Chronic Ethanol Consumption Leads to Disruption of Vitamin D3 Homeostasis Associated with Induction of Renal 1,25 Dihydroxyvitamin D3-24-Hydroxylase (CYP24A1)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bone loss resulting from chronic ethanol (EtOH) abuse is frequently accompanied by altered vitamin D3 homeostasis. In the current study, we examined EtOH effects in a female rat model in which control or EtOH-containing diets were infused intragastrically. EtOH treatment reduced plasma 1,25-dihydrox...

  3. The effect of 1. 25 dihydroxyvitamin D3 on binding and internalization of epidermal growth factor in cultures cells. Studies on BT-20 cells using quantitative electron microscope autoradiography

    SciTech Connect

    Frappart, L.; Lefebvre, M.F.; Saez, S. )

    1989-10-01

    The biological effects of 1.25 (OH)2D3 on epidermal growth receptor (EGF-R) and on EGF internalization were examined in human mammary carcinoma BT-20 cells. In this cell line, with known amplification of the epidermal growth factor receptor gene. EGF was not stimulatory for growth. Biological assay and quantitative EM autoradiography combined with iodinated ligand binding to specific receptors demonstrated that the number of binding sites unit of length of plasma membrane was 2.48-fold higher in treated than in control cells. I-EGF was progressively internalized in a time-and temperature-dependent manner after selective association with the membrane-coated pits. No modification of the time course of I-EGF internalization was noted in the control and in the treated cells, but a different distribution of the labeling in the subcellular compartment was observed in treated cells. In 1.25(OH)2D3-treated batches, the grain density remained low in the receptosomes throughout the experiment, whereas it was high and occurred early in the lysosomes. On the other hand, in control cells, the grain density of the receptosomes was high, whereas it occurred late and was relatively low in the lysosomes. These data suggest that 1.25(OH)2D3 is a regulator of EGF-R level in BT-20 cell line, but it cannot affirmed whether this effect is direct or mediated by other parameters.

  4. Adipose tissue-derived mesenchymal stem cells acquire bone cell-like responsiveness to fluid shear stress on osteogenic stimulation.

    PubMed

    Knippenberg, Marlene; Helder, Marco N; Doulabi, Behrouz Zandieh; Semeins, Cornelis M; Wuisman, Paul I J M; Klein-Nulend, Jenneke

    2005-01-01

    To engineer bone tissue, mechanosensitive cells are needed that are able to perform bone cell-specific functions, such as (re)modeling of bone tissue. In vivo, local bone mass and architecture are affected by mechanical loading, which is thought to provoke a cellular response via loading-induced flow of interstitial fluid. Adipose tissue is an easily accessible source of mesenchymal stem cells for bone tissue engineering, and is available in abundant amounts compared with bone marrow. We studied whether adipose tissue-derived mesenchymal stem cells (AT-MSCs) are responsive to mechanical loading by pulsating fluid flow (PFF) on osteogenic stimulation in vitro. We found that ATMSCs show a bone cell-like response to fluid shear stress as a result of PFF after the stimulation of osteogenic differentiation by 1,25-dihydroxyvitamin D3. PFF increased nitric oxide production, as well as upregulated cyclooxygenase-2, but not cyclooxygenase-1, gene expression in osteogenically stimulated AT-MSCs. These data suggest that AT-MSCs acquire bone cell-like responsiveness to pulsating fluid shear stress on 1,25-dihydroxyvitamin D3-induced osteogenic differentiation. ATMSCs might be able to perform bone cell-specific functions during bone (re)modeling in vivo and, therefore, provide a promising new tool for bone tissue engineering.

  5. Enoxacin directly inhibits osteoclastogenesis without inducing apoptosis.

    PubMed

    Toro, Edgardo J; Zuo, Jian; Ostrov, David A; Catalfamo, Dana; Bradaschia-Correa, Vivian; Arana-Chavez, Victor; Caridad, Aliana R; Neubert, John K; Wronski, Thomas J; Wallet, Shannon M; Holliday, L Shannon

    2012-05-18

    Enoxacin has been identified as a small molecule inhibitor of binding between the B2-subunit of vacuolar H+-ATPase (V-ATPase) and microfilaments. It inhibits bone resorption by calcitriol-stimulated mouse marrow cultures. We hypothesized that enoxacin acts directly and specifically on osteoclasts by disrupting the interaction between plasma membrane-directed V-ATPases, which contain the osteoclast-selective a3-subunit of V-ATPase, and microfilaments. Consistent with this hypothesis, enoxacin dose-dependently reduced the number of multinuclear cells expressing tartrate-resistant acid phosphatase (TRAP) activity produced by RANK-L-stimulated osteoclast precursors. Enoxacin (50 μM) did not induce apoptosis as measured by TUNEL and caspase-3 assays. V-ATPases containing the a3-subunit, but not the "housekeeping" a1-subunit, were isolated bound to actin. Treatment with enoxacin reduced the association of V-ATPase subunits with the detergent-insoluble cytoskeleton. Quantitative PCR revealed that enoxacin triggered significant reductions in several osteoclast-selective mRNAs, but levels of various osteoclast proteins were not reduced, as determined by quantitative immunoblots, even when their mRNA levels were reduced. Immunoblots demonstrated that proteolytic processing of TRAP5b and the cytoskeletal protein L-plastin was altered in cells treated with 50 μM enoxacin. Flow cytometry revealed that enoxacin treatment favored the expression of high levels of DC-STAMP on the surface of osteoclasts. Our data show that enoxacin directly inhibits osteoclast formation without affecting cell viability by a novel mechanism that involves changes in posttranslational processing and trafficking of several proteins with known roles in osteoclast function. We propose that these effects are downstream to blocking the binding interaction between a3-containing V-ATPases and microfilaments.

  6. Wnt16 regulates osteoclast differentiation in conjunction with Wnt5a.

    PubMed

    Kobayashi, Yasuhiro; Thirukonda, Gnanasagar J; Nakamura, Yukio; Koide, Masanori; Yamashita, Teruhito; Uehara, Shunsuke; Kato, Hiroyuki; Udagawa, Nobuyuki; Takahashi, Naoyuki

    2015-08-01

    The canonical Wnt/β-catenin signaling pathway in osteoblast-lineage cells inhibits osteoclastogenesis through the expression of osteoprotegerin (Opg), a decoy receptor of receptor activator of Nf-κb (Rank) ligands. Wnt5a, a typical non-canonical Wnt ligand, enhances the expression of Rank in osteoclast precursors, which, in turn, promotes the Rank ligand (Rankl)-induced formation of osteoclasts. In contrast, Wnt16 and Wnt4 have been shown to inhibit the Rankl-induced formation of osteoclasts through non-canonical Wnt signals. However, the relationships among these Wnt ligands in osteoclastogenesis remained to be elucidated. We herein showed that Wnt16, but not Wnt4, inhibited the Rankl-induced osteoclastogenesis in bone marrow-derived macrophage (BMM) cultures. Wnt3a and Wnt4 inhibited the 1α,25-dihydroxy vitamin D3 (1,25D3)-induced osteoclastogenesis in co-cultures prepared from wild-type mice, but not in those from Opg(-/-) nice. Wnt16 inhibited the 1,25D3-induced formation of osteoclasts in both wild-type and Opg(-/-) co-cultures. Wnt16, Wnt4, and Wnt3a failed to inhibit the pit-forming activity of osteoclasts. Wnt16 failed to inhibit the Wnt5a-induced expression of Rank in osteoclast precursors. In contrast, Wnt5a abrogated the inhibitory effects of Wnt16 on Rankl-induced osteoclastogenesis. These results suggested that Wnt16 inhibited osteoclastogenesis, but not the function of osteoclasts and that Wnt16, an inhibitory Wnt ligand for osteoclastogenesis, regulates bone resorption in conjunction with Wnt5a.

  7. ERK 5/MAPK PATHWAY HAS A MAJOR ROLE IN 1α,25-(OH)2 VITAMIN D3-INDUCED TERMINAL DIFFERENTIATION OF MYELOID LEUKEMIA CELLS

    PubMed Central

    Wang, Xuening; Pesakhov, Stella; Weng, Ashley; Kafka, Michael; Gocek, Elzbieta; Nguyen, Mai; Harrison, Jonathan S.; Danilenko, Michael; Studzinski, George P.

    2013-01-01

    Vitamin D derivatives, including its physiological form 1α,25(OH)2 vitamin D3 (1,25D), have anti-tumor actions demonstrated in cell culture and confirmatory epidemiological associations are frequently reported. However, their promise for use in the cancer clinic is still incompletely fulfilled, suggesting that a better understanding of the molecular events initiated by these compounds is needed for therapeutic advances. While ERK1/2 has been intensely investigated and is known to transmit signals for cell survival, growth, and differentiation, the role of other MAPK pathways has been studied sporadically. Therefore, we utilized acute myeloid leukemia (AML) cells in culture (HL60 and U937), to determine if ERK5 has a role in 1,25D-induced terminal differentiation which is distinct from the previously shown involvement of ERK1/2. We previously found that inhibition of kinase activity of ERK5 by specific pharmacological inhibitors BIX02189 or XMD8-92 results in higher expression of general myeloid marker CD11b, but a lower expression of the monocytic marker CD14. In contrast, the inhibition of the ERK1/2 pathway by PD98059 or U0126 reduced the expression of all differentiation markers studied. We report here for the first time that the differentiation changes induced by ERK5 inhibitors are accompanied by the inhibition of cell proliferation, and this occurs in the both G1 and G2 phases of the cell cycle. Of note, inhibition of ERK5 auto-phosphorylation by XMD8-92 results in a particularly robust cell cycle arrest in G2 phase in AML cells. This study provides a link between the 1,25D-elevated ERK5 pathway and changes in the cell cycle phase transitions in AML cells. Thus, combinations of vitamin D derivatives and ERK5 inhibitors may be more successful in cancer clinics than 1,25D or analogs alone. PMID:24514755

  8. Effect of glycosphingolipids on osteoclastogenesis and osteolytic bone diseases

    PubMed Central

    Ersek, Adel; Karadimitris, Anastasios; Horwood, Nicole J.

    2012-01-01

    Alterations in glycosphingolipid (GSL) production results in lysosomal storage disorders associated with neurodegenerative changes. In Gaucher’s disease, the patients also develop osteoporosis that is ameliorated upon treatment for the underlying defect in GSL metabolism. The role of GSLs in osteoclast and osteoblast formation is discussed here as well as the potential therapeutic uses of already approved drugs that limit GSL production in bone loss disorders such as multiple myeloma and periodontal disease. PMID:22936926

  9. Perspective. Osteoclastogenesis and growth plate chondrocyte differentiation: emergence of convergence.

    PubMed

    Odgren, Paul R; Philbrick, William M; Gartland, Alison

    2003-01-01

    A "bone" is really a dynamic and highly interactive complex of many cell and tissue types. In particular, for the majority of skeletal elements to develop and grow, the process of endochondral ossification requires a constantly moving interface between cartilage, invading blood vessels, and bone. A great deal has been learned in recent years about the regulation of chondrocyte proliferation and differentiation by hormones, growth factors, and physiologic stimuli during skeletal development and growth. Likewise, the discovery that colony stimulating factor-1 (CSF-1, or M-CSF) and receptor activator of NF-kappaB ligand (RANKL, a tumor necrosis factor superfamily member also called TRANCE, ODF, OPGL, and TNFSF11) are pivotal in communicating from osteoblasts to osteoclasts has led to deeper insights into bone growth, turnover, and maintenance. Little is known, however, about how these two quite different systems communicate to solve the problem of providing integrated, continuous mechanical support during the dynamic invasion of cartilage by bone that characterizes endochondral bone growth. Evidence has accumulated in recent years that provides insight into the communication between growing bone and cartilage in the form of a subset of osteopetrotic mutations, which share a lack of osteoclasts and an accompanying chondrodysplasia of the growth plate. These mutations thus implicate some of the same gene products in regulating chondrocyte differentiation and bone resorption. We also consider expression studies of some known growth plate regulators, such as parathyroid hormone-related protein (PTHrP) and Indian hedgehog (Ihh), in light of this and propose a model in which the osteoclastogenic factors act also on chondrocytes, but downstream of PTRrP and Ihh in regulating proliferation and differentiation, and after early morphogenic patterns are established.

  10. Osteoclastogenesis, bone resorption, and osteoclast-based therapeutics.

    PubMed

    Zaidi, Mone; Blair, Harry C; Moonga, Baltit S; Abe, Etsuko; Huang, Christopher L H

    2003-04-01

    Over the past decade, advances in molecular tools, stem cell differentiation, osteoclast and osteoblast signaling mechanisms, and genetically manipulated mice models have resulted in major breakthroughs in understanding osteoclast biology. This review focuses on key advances in our understanding of molecular mechanisms underlying the formation, function, and survival of osteoclasts. These include key signals mediating osteoclast differentiation, including PU.1, RANK, CSF-1/c-fms, and src, and key specializations of the osteoclast including HCl secretion driven by H+-ATPase and the secretion of collagenolytic enzymes including cathepsin K and matrix metalloproteinases (MMPs). These pathways and highly expressed proteins provide targets for specific therapies to modify bone degradation. The main outstanding issues, basic and translational, will be considered in relation to the osteoclast as a target for antiresorptive therapies.

  11. Accelerated Lactate Dehydrogenase Activity Potentiates Osteoclastogenesis via NFATc1 Signaling.

    PubMed

    Ahn, Heejin; Lee, Kyunghee; Kim, Jin Man; Kwon, So Hyun; Lee, Seoung Hoon; Lee, Soo Young; Jeong, Daewon

    2016-01-01

    Osteoclasts seem to be metabolic active during their differentiation and bone-resorptive activation. However, the functional role of lactate dehydrogenase (LDH), a tetrameric enzyme consisting of an A and/or B subunit that catalyzes interconversion of pyruvate to lactate, in RANKL-induced osteoclast differentiation is not known. In this study, RANKL treatment induced gradual gene expression and activation of the LDH A2B2 isotype during osteoclast differentiation as well as the LDH A1B3 and B4 isotypes during osteoclast maturation after pre-osteoclast formation. Glucose consumption and lactate production in growth media were accelerated during osteoclast differentiation, together with enhanced expression of H+-lactate co-transporter and increased extracellular acidification, demonstrating that glycolytic metabolism was stimulated during differentiation. Further, oxygen consumption via mitochondria was stimulated during osteoclast differentiation. On the contrary, depletion of LDH-A or LDH-B subunit suppressed both glycolytic and mitochondrial metabolism, resulting in reduced mature osteoclast formation via decreased osteoclast precursor fusion and down-regulation of the osteoclastogenic critical transcription factor NFATc1 and its target genes. Collectively, our findings suggest that RANKL-induced LDH activation stimulates glycolytic and mitochondrial respiratory metabolism, facilitating mature osteoclast formation via osteoclast precursor fusion and NFATc1 signaling. PMID:27077737

  12. Accelerated Lactate Dehydrogenase Activity Potentiates Osteoclastogenesis via NFATc1 Signaling

    PubMed Central

    Kim, Jin Man; Kwon, So Hyun; Lee, Seoung Hoon; Lee, Soo Young; Jeong, Daewon

    2016-01-01

    Osteoclasts seem to be metabolic active during their differentiation and bone-resorptive activation. However, the functional role of lactate dehydrogenase (LDH), a tetrameric enzyme consisting of an A and/or B subunit that catalyzes interconversion of pyruvate to lactate, in RANKL-induced osteoclast differentiation is not known. In this study, RANKL treatment induced gradual gene expression and activation of the LDH A2B2 isotype during osteoclast differentiation as well as the LDH A1B3 and B4 isotypes during osteoclast maturation after pre-osteoclast formation. Glucose consumption and lactate production in growth media were accelerated during osteoclast differentiation, together with enhanced expression of H+-lactate co-transporter and increased extracellular acidification, demonstrating that glycolytic metabolism was stimulated during differentiation. Further, oxygen consumption via mitochondria was stimulated during osteoclast differentiation. On the contrary, depletion of LDH-A or LDH-B subunit suppressed both glycolytic and mitochondrial metabolism, resulting in reduced mature osteoclast formation via decreased osteoclast precursor fusion and down-regulation of the osteoclastogenic critical transcription factor NFATc1 and its target genes. Collectively, our findings suggest that RANKL-induced LDH activation stimulates glycolytic and mitochondrial respiratory metabolism, facilitating mature osteoclast formation via osteoclast precursor fusion and NFATc1 signaling. PMID:27077737

  13. Bacteria Induce Osteoclastogenesis via an Osteoblast-Independent Pathway

    PubMed Central

    Jiang, Yanling; Mehta, Chetan K.; Hsu, Tun-Yi; Alsulaimani, Fahad F. H.

    2002-01-01

    Bacteria or their products may cause chronic inflammation and subsequent bone loss. This inflammation and bone loss may be associated with significant morbidity in chronic otitis media, periodontitis, endodontic lesions, and loosening of orthopedic implants caused by lipopolysaccharide (LPS)-contaminated implant particles. Currently, it is not clear how bacteria or endotoxin-induced bone resorption occurs and what cell types are involved. Here we report that Porphyromonas gingivalis, a periodontal pathogen, and Escherichia coli LPS induce osteoclastic cell formation from murine leukocytes in the absence of osteoblasts. In contrast, stimulation with parathyroid hormone had no effect. These multinucleated, tartrate-resistant acid phosphatase-positive cells were positive for receptor activator of NF-κB (RANK), the receptor for osteoprotegerin ligand (OPGL), also known as RANK ligand (RANKL). Blocking antibodies demonstrated that their formation was dependent upon expression of OPGL and, to a lesser extent, on tumor necrosis factor alpha. Mononuclear cells represented a significant source of OPGL production. In vivo, P. gingivalis injection stimulated OPGL expression in both mononuclear leukocytes and osteoblastic cells. Thus, these findings describe a pathway by which bacteria could enhance osteolysis independently of osteoblasts and suggest that the mix of cells that participate in inflammatory and physiologic bone resorption may be different. This may give insight into new targets of therapeutic intervention. PMID:12011008

  14. Bacteria induce osteoclastogenesis via an osteoblast-independent pathway.

    PubMed

    Jiang, Yanling; Mehta, Chetan K; Hsu, Tun-Yi; Alsulaimani, Fahad F H

    2002-06-01

    Bacteria or their products may cause chronic inflammation and subsequent bone loss. This inflammation and bone loss may be associated with significant morbidity in chronic otitis media, periodontitis, endodontic lesions, and loosening of orthopedic implants caused by lipopolysaccharide (LPS)-contaminated implant particles. Currently, it is not clear how bacteria or endotoxin-induced bone resorption occurs and what cell types are involved. Here we report that Porphyromonas gingivalis, a periodontal pathogen, and Escherichia coli LPS induce osteoclastic cell formation from murine leukocytes in the absence of osteoblasts. In contrast, stimulation with parathyroid hormone had no effect. These multinucleated, tartrate-resistant acid phosphatase-positive cells were positive for receptor activator of NF-kappaB (RANK), the receptor for osteoprotegerin ligand (OPGL), also known as RANK ligand (RANKL). Blocking antibodies demonstrated that their formation was dependent upon expression of OPGL and, to a lesser extent, on tumor necrosis factor alpha. Mononuclear cells represented a significant source of OPGL production. In vivo, P. gingivalis injection stimulated OPGL expression in both mononuclear leukocytes and osteoblastic cells. Thus, these findings describe a pathway by which bacteria could enhance osteolysis independently of osteoblasts and suggest that the mix of cells that participate in inflammatory and physiologic bone resorption may be different. This may give insight into new targets of therapeutic intervention.

  15. MKP-1 Is Essential for Canonical Vitamin D-Induced Signaling through Nuclear Import and Regulates RANKL Expression and Function

    PubMed Central

    Griffin, Alfred C.; Kern, Michael J.

    2012-01-01

    Vitamin D3, and its most active form, 1,25(OH)2D3, are well known to stimulate osteoclastogenesis through stromal cell induction of the receptor activator of nuclear factor-κB ligand (RANKL). MAPK phosphatase-1 (MKP-1) is a phosphatase classically known to negatively regulate the innate immune response through dephosphorylation of p38, ERK, and c-Jun N-terminal kinase activity. This paper describes a new function of MKP-1 in permitting genomic 1,25(OH)2D3 signaling and downstream osteoclastogenesis through RANKL. Initially, quantitative RT-PCR (qRT-PCR) and immunoblot analysis comparing bone marrow stromal cells (BMSC) revealed that 1,25(OH)2D3-induced vitamin D receptor (VDR), cytochrome P 45024a1, and RANKL mRNA expression and protein were significantly attenuated or absent in MKP-1−/− BMSC. Immunoblot analysis from cellular fractions of wild type and MKP-1−/− BMSC stimulated with 10−7 m 1,25(OH)2D3 revealed retinoid X receptor (RXR)α nuclear import was impaired in MKP-1−/− BMSC, whereas VDR import was not. Proximity ligation assays revealed that baseline VDR-RXRα heterodimer translocation was unchanged, yet 1,25(OH)2D3-induced nuclear translocation of VDR-RXRα heterodimers was reduced in MKP-1−/− BMSC. A functional consequence was observed as BMSC from MKP-1−/− mice treated with 1,25(OH)2D3 and cocultured with RAW 264.7 cells had a 91% decrease in osteoclastogenesis and a 94.5% decrease in mineralized matrix resorption compared with wild-type cocultures (P < 0.01). These results reveal an unexpected, permissive role for MKP-1 in canonical 1,25(OH)2D3 signaling via VDR-RXRα heterodimer nuclear import and downstream osteoclastogenesis through stromal cell RANKL expression. PMID:22899855

  16. The interaction between burn injury and vitamin D metabolism and consequences for the patient.

    PubMed

    Klein, Gordon L

    2008-09-01

    The stress and inflammatory responses to burn injury are associated with bone loss. The stress response entails production of large amounts of endogenous glucocorticoids that decrease osteoblasts on the mineralization surface of bone and decreases differentiation of marrow stromal cells into osteoblasts, thereby decreasing the amount of bone formation. Deficiency of osteoblasts also blocks osteoclastogenesis thus leading to low bone turnover and bone loss. The inflammatory response generates cytokines such as interleukin 1-beta and interleukin-6, which normally increase osteoclastogenic bone resorption via stimulation of osteoblast production of RANK ligand. However, in the absence of osteoblasts as a target we postulate that they attack the parathyroid gland chief cells and up-regulate the calcium-sensing receptor. The consequence of this upregulation is the lowering of the circulating calcium necessary to suppress parathyroid hormone production and the development of hypocalcemia and urinary calcium wasting. It is the parathyroid hormone suppression that causes us to postulate acute deficiency of 1,25-dihydroxyvitamin D and the consequence of this for post-burn metabolism could include derepression of the gene that controls renin production, leading to elevated levels of angiotensin II, which can contribute to insulin resistance, as can vitamin D deficiency itself. Moreover, the skin from burned patients cannot synthesize vitamin D normally. Thus vitamin D supplementation is the only means by which to ensure vitamin D sufficiency for burn victims. The proper requirement for vitamin D in acutely burned patients remains unknown.

  17. Vitamin D Promotes Odontogenic Differentiation of Human Dental Pulp Cells via ERK Activation

    PubMed Central

    Woo, Su-Mi; Lim, Hae-Soon; Jeong, Kyung-Yi; Kim, Seon-Mi; Kim, Won-Jae; Jung, Ji-Yeon

    2015-01-01

    The active metabolite of vitamin D such as 1α,25-dihydroxyvitamin D3 (1α,25(OH)2D3) is a well-known key regulatory factor in bone metabolism. However, little is known about the potential of vitamin D as an odontogenic inducer in human dental pulp cells (HDPCs) in vitro. The purpose of this study was to evaluate the effect of vitamin D3 metabolite, 1α,25(OH)2D3, on odontoblastic differentiation in HDPCs. HDPCs extracted from maxillary supernumerary incisors and third molars were directly cultured with 1α,25(OH)2D3 in the absence of differentiation-inducing factors. Treatment of HDPCs with 1α,25(OH)2D3 at a concentration of 10 nM or 100 nM significantly upregulated the expression of dentin sialophosphoprotein (DSPP) and dentin matrix protein1 (DMP1), the odontogenesis-related genes. Also, 1α,25(OH)2D3 enhanced the alkaline phosphatase (ALP) activity and mineralization in HDPCs. In addition, 1α,25(OH)2D3 induced activation of extracellular signal-regulated kinases (ERKs), whereas the ERK inhibitor U0126 ameliorated the upregulation of DSPP and DMP1 and reduced the mineralization enhanced by 1α,25(OH)2D3. These results demonstrated that 1α,25(OH)2D3 promoted odontoblastic differentiation of HDPCs via modulating ERK activation. PMID:26062551

  18. RhoA-ROCK and p38MAPK-MSK1 mediate vitamin D effects on gene expression, phenotype, and Wnt pathway in colon cancer cells.

    PubMed

    Ordóñez-Morán, Paloma; Larriba, María Jesús; Pálmer, Héctor G; Valero, Ruth A; Barbáchano, Antonio; Duñach, Mireia; de Herreros, Antonio García; Villalobos, Carlos; Berciano, María Teresa; Lafarga, Miguel; Muñoz, Alberto

    2008-11-17

    The active vitamin D metabolite 1,25-dihydroxyvitamin D(3) (1,25(OH)(2)D(3)) inhibits proliferation and promotes differentiation of colon cancer cells through the activation of vitamin D receptor (VDR), a transcription factor of the nuclear receptor superfamily. Additionally, 1,25(OH)(2)D(3) has several nongenomic effects of uncertain relevance. We show that 1,25(OH)(2)D(3) induces a transcription-independent Ca(2+) influx and activation of RhoA-Rho-associated coiled kinase (ROCK). This requires VDR and is followed by activation of the p38 mitogen-activated protein kinase (p38MAPK) and mitogen- and stress-activated kinase 1 (MSK1). As shown by the use of chemical inhibitors, dominant-negative mutants and small interfering RNA, RhoA-ROCK, and p38MAPK-MSK1 activation is necessary for the induction of CDH1/E-cadherin, CYP24, and other genes and of an adhesive phenotype by 1,25(OH)(2)D(3). RhoA-ROCK and MSK1 are also required for the inhibition of Wnt-beta-catenin pathway and cell proliferation. Thus, the action of 1,25(OH)(2)D(3) on colon carcinoma cells depends on the dual action of VDR as a transcription factor and a nongenomic activator of RhoA-ROCK and p38MAPK-MSK1.

  19. Mouse and human BAC transgenes recapitulate tissue-specific expression of the vitamin D receptor in mice and rescue the VDR-null phenotype.

    PubMed

    Lee, Seong Min; Bishop, Kathleen A; Goellner, Joseph J; O'Brien, Charles A; Pike, J Wesley

    2014-06-01

    The biological actions of 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) are mediated by the vitamin D receptor (VDR), which is expressed in numerous target tissues in a cell type-selective manner. Recent studies using genomic analyses and recombineered bacterial artificial chromosomes (BACs) have defined the specific features of mouse and human VDR gene loci in vitro. In the current study, we introduced recombineered mouse and human VDR BACs as transgenes into mice and explored their expression capabilities in vivo. Individual transgenic mouse strains selectively expressed BAC-derived mouse or human VDR proteins in appropriate vitamin D target tissues, thereby recapitulating the tissue-specific expression of endogenous mouse VDR. The mouse VDR transgene was also regulated by 1,25(OH)2D3 and dibutyryl-cAMP. When crossed into a VDR-null mouse background, both transgenes restored wild-type basal as well as 1,25(OH)2D3-inducible gene expression patterns in the appropriate tissues. This maneuver resulted in the complete rescue of the aberrant phenotype noted in the VDR-null mouse, including systemic features associated with altered calcium and phosphorus homeostasis and disrupted production of parathyroid hormone and fibroblast growth factor 23, and abnormalities associated with the skeleton, kidney, parathyroid gland, and the skin. This study suggests that both mouse and human VDR transgenes are capable of recapitulating basal and regulated expression of the VDR in the appropriate mouse tissues and restore 1,25(OH)2D3 function. These results provide a baseline for further dissection of mechanisms integral to mouse and human VDR gene expression and offer the potential to explore the consequence of selective mutations in VDR proteins in vivo.

  20. Vitamin D3 analogs and their 24-oxo metabolites equally inhibit clonal proliferation of a variety of cancer cells but have differing molecular effects.

    PubMed

    Campbell, M J; Reddy, G S; Koeffler, H P

    1997-09-01

    The seco-steroid hormone, 1 alpha, 25 dihydroxyvitamin D3 (1 alpha,25(OH)2D3) binds to a specific nuclear receptor that acts as a ligand-inducible transcription factor. The resulting genomic effects include partial arrest in G0/G1 of the cell cycle and induction of differentiation; these effects have been observed in various types of cancer. Recently, we produced enzymatically the natural 24-oxo metabolites of 1 alpha,25(OH)2D3 and two of its potent synthetic analogs (1 alpha,25-(OH)2-16-ene-D3 and 1 alpha,25-(OH)2-20-epi-D3) using a rat kidney perfusion system. We have found that the 24-oxo metabolites of both 1 alpha,25(OH)2D3 and its analogs have either the same or greater antiproliferative activity against various cancer cells as their parental compounds. Notably, two cell lines (DU-145 (prostate cancer) and MDA-MB-436 [breast cancer]) that were extremely resistant to the antiproliferative effects of vitamin D3 analogs displayed greater sensitivity towards the 24-oxo metabolite of the vitamin D3 analog. Similarly, the 24-oxo metabolites had the capacity to induce differentiation and apoptosis and to diminish the proportion of cells in S phase. Most interestingly, while the analog 1 alpha,25(OH)2-20-epi-D3 induced expression of BRCA1 in MCF-7 breast cancer cells; its 24-oxo metabolite dramatically suppressed BRAC1 expression. Thus, we have shown for the first time that the various biological activities produced by the hormone 1 alpha,25(OH)2D3 and some of its analogs may represent a combination of actions by the hormone 1 alpha,25(OH)2D3 and its natural 24-oxo metabolites.

  1. Effect of KCA-098 on the function of osteoblast-like cells and the formation of TRAP-positive multinucleated cells in a mouse bone marrow cell population.

    PubMed

    Kawashima, K; Inoue, T; Tsutsumi, N; Endo, H

    1996-01-26

    KCA-098 (3,9-bis(N,N-dimethylcarbamoyloxy)-5H-benzofuro[3,2-c]quinol ine-6-one), an analogue of coumestrol (a naturally occurring weak phytoestrogen), dose-dependently increased alkaline phosphatase activity of osteoblastic ROS 17/2.8 cells and freshly-isolated osteoblasts from neonatal mouse calvaria, and reduced cell proliferation. In addition, KCA-098 increased the synthesis of collagenese-digestible protein (CDP) of ROS 17/2.8 cells. On the other hand, KCA-098 had no effect on the basal synthesis of osteocalcin but reduced the 1 alpha,25-dihydroxyvitamin D3 (1 alpha,25(OH)(2)D3)-induced increase in osteocalcin synthesized by ROS 17/2.8 cells. Therefore, KCA-098 had a bidirectional effect on the differentiation of osteoblasts (i.e., stimulating both alkaline phosphatase activity and synthesis of CDP and inhibiting osteocalcin synthesis). However, as KCA-098 stimulated the mineralization of chick embryonic bone in organ culture and recovered the bone density reduced by ovariectomy of rats, it would serve overall to stimulate the differentiation of osteoblasts. On the other hand, KCA-098 inhibited the formation of tartrate-resistant, acid phosphate-positive multinucleated cells (TRAP(+)MNC) induced by 1 alpha,25(OH)(2)D(3), parathyroid hormone (PTH), and prostaglandin E2 (PGE2) in cultures of mouse bone marrow cells, showing that it inhibits the formation of osteoclast-like cells. Coumestrol and 17beta-estradiol had no effect on the proliferation and alkaline phosphatase activity of ROS 17/2.8 cells. They did, however, dose-dependently inhibit osteoclast-like cell formation as well as KCA-098 did, indicating that the main action of coumestrol and 17beta-estradiol on bone tissue is the inhibition of bone resorption.

  2. Hepcidin and 1,25(OH)2D3 effectively restore Ca2+ transport in β-thalassemic mice: reciprocal phenomenon of Fe2+ and Ca2+ absorption.

    PubMed

    Kraidith, Kamonshanok; Svasti, Saovaros; Teerapornpuntakit, Jarinthorn; Vadolas, Jim; Chaimana, Rattana; Lapmanee, Sarawut; Suntornsaratoon, Panan; Krishnamra, Nateetip; Fucharoen, Suthat; Charoenphandhu, Narattaphol

    2016-07-01

    Previously, β-thalassemia, an inherited anemic disorder with iron overload caused by loss-of-function mutation of β-globin gene, has been reported to induce osteopenia and impaired whole body calcium metabolism, but the pathogenesis of aberrant calcium homeostasis remains elusive. Herein, we investigated how β-thalassemia impaired intestinal calcium absorption and whether it could be restored by administration of 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] or hepcidin, the latter of which was the liver-derived antagonist of intestinal iron absorption. The results showed that, in hemizygous β-globin knockout (BKO) mice, the duodenal calcium transport was lower than that in wild-type littermates, and severity was especially pronounced in female mice. Both active and passive duodenal calcium fluxes in BKO mice were found to be less than those in normal mice. This impaired calcium transport could be restored by 7-day 1,25(OH)2D3 treatment. The 1,25(OH)2D3-induced calcium transport was diminished by inhibitors of calcium transporters, e.g., L-type calcium channel, NCX1, and PMCA1b, as well as vesicular transport inhibitors. Interestingly, the duodenal calcium transport exhibited an inverse correlation with transepithelial iron transport, which was markedly enhanced in thalassemic mice. Thus, 3-day subcutaneous hepcidin injection and acute direct hepcidin exposure in the Ussing chamber were capable of restoring the thalassemia-associated impairment of calcium transport; however, the positive effect of hepcidin on calcium transport was completely blocked by proteasome inhibitors MG132 and bortezomib. In conclusion, both 1,25(OH)2D3 and hepcidin could be used to alleviate the β-thalassemia-associated impairment of calcium absorption. Therefore, our study has shed light on the development of a treatment strategy to rescue calcium dysregulation in β-thalassemia. PMID:27245334

  3. An essential role of the CAAT/enhancer binding protein-alpha in the vitamin D-induced expression of the human steroid/bile acid-sulfotransferase (SULT2A1).

    PubMed

    Song, Chung S; Echchgadda, Ibtissam; Seo, Young-Kyo; Oh, Taesung; Kim, Soyoung; Kim, Sung-A; Cho, Sunghwan; Shi, Liheng; Chatterjee, Bandana

    2006-04-01

    The vitamin D receptor (VDR) regulates steroid and drug metabolism by inducing the genes encoding phase I and phase II enzymes. SULT2A1 is a liver- and intestine-expressed sulfo-conjugating enzyme that converts the alcohol-OH of neutral steroids, bile acids, and drugs to water-soluble sulfated metabolites. 1alpha,25-Dihydroxyvitamin D3 [1,25-(OH)2D3] induces SULT2A1 gene transcription after the recruitment of VDR to the vitamin D-responsive chromatin region of SULT2A1. A composite element in human SULT2A1 directs the 1,25-(OH)2D3-mediated induction of natural and heterologous promoters. This element combines a VDR/retinoid X receptor-alpha-binding site [vitamin D response element (VDRE)], which is an imperfect inverted repeat 2 of AGCTCA, and a CAAT/enhancer binding protein (C/EBP)-binding site located 9 bp downstream to VDRE. The binding sites were identified by EMSA, antibody supershift, and deoxyribonuclease I footprinting. C/EBP-alpha at the composite element plays an essential role in the VDR regulation of SULT2A1, because 1) induction was lost for promoters with inactivating mutations at the VDRE or C/EBP element; 2) SULT2A1 induction by 1,25-(OH)2D3 in C/EBP-alpha-deficient cells required the expression of cotransfected C/EBP-alpha; and 3) C/EBP-beta did not substitute for C/EBP-alpha in this regulation. VDR and C/EBP-alpha were recruited concurrently to the composite element along with the coactivators p300, steroid receptor coactivator 1 (SRC-1), and SRC-2, but not SRC-3. VDR and C/EBP-alpha associated endogenously as a DNA-dependent, coimmunoprecipitable complex, which was detected at a markedly higher level in 1,25-(OH)2D3-treated cells. These results provide the first example of the essential role of the interaction in cis between C/EBP-alpha and VDR in directing 1,25-(OH)2D3-induced expression of a VDR target gene.

  4. Bone sialoprotein plays a functional role in bone formation and osteoclastogenesis

    PubMed Central

    Malaval, Luc; Wade-Guéye, Ndéyé Marième; Boudiffa, Maya; Fei, Jia; Zirngibl, Ralph; Chen, Frieda; Laroche, Norbert; Roux, Jean-Paul; Burt-Pichat, Brigitte; Duboeuf, François; Boivin, Georges; Jurdic, Pierre; Lafage-Proust, Marie-Hélène; Amédée, Joëlle; Vico, Laurence; Rossant, Janet; Aubin, Jane E.

    2008-01-01

    Bone sialoprotein (BSP) and osteopontin (OPN) are both highly expressed in bone, but their functional specificities are unknown. OPN knockout (−/−) mice do not lose bone in a model of hindlimb disuse (tail suspension), showing the importance of OPN in bone remodeling. We report that BSP−/− mice are viable and breed normally, but their weight and size are lower than wild-type (WT) mice. Bone is undermineralized in fetuses and young adults, but not in older (≥12 mo) BSP−/− mice. At 4 mo, BSP−/− mice display thinner cortical bones than WT, but greater trabecular bone volume with very low bone formation rate, which indicates reduced resorption, as confirmed by lower osteoclast surfaces. Although the frequency of total colonies and committed osteoblast colonies is the same, fewer mineralized colonies expressing decreased levels of osteoblast markers form in BSP−/− versus WT bone marrow stromal cultures. BSP−/− hematopoietic progenitors form fewer osteoclasts, but their resorptive activity on dentin is normal. Tail-suspended BSP−/− mice lose bone in hindlimbs, as expected. In conclusion, BSP deficiency impairs bone growth and mineralization, concomitant with dramatically reduced bone formation. It does not, however, prevent the bone loss resulting from loss of mechanical stimulation, a phenotype that is clearly different from OPN−/− mice. PMID:18458111

  5. Vitamin K2 stimulates osteoblastogenesis and suppresses osteoclastogenesis by suppressing NF-κB activation.

    PubMed

    Yamaguchi, Masayoshi; Weitzmann, M Neale

    2011-01-01

    Several bone protective factors are reported to exhibit stimulatory activities on bone formation coupled with inhibitory effects on bone resorption; one such factor is vitamin K2. Vitamin K species [K1 (phylloquinone) and K2 (menaquinone)] have long been associated with bone protective activities and are receiving intense interest as nutritional supplements for the prevention or amelioration of bone disease in humans. However, the mechanisms of vitamin K action on the skeleton are poorly defined. Activation of the nuclear factor κB (NF-κB) signal transduction pathway is essential for osteoclast formation and resorption. By contrast, NF-κB signaling potently antagonizes osteoblast differentiation and function, prompting us to speculate that NF-κB antagonists may represent a novel class of dual anti-catabolic and pro-anabolic agents. We now show that vitamin K2 action on osteoblast and osteoclast formation and activity is accomplished by down-regulating basal and cytokine-induced NF-κB activation, by increasing IκB mRNA, in a γ-carboxylation-independent manner. Furthermore, vitamin K2 prevented repression by tumor necrosis factor α (TNFα) of SMAD signaling induced by either transforming growth factor ß (TGFß) or bone morphogenetic protein-2 (BMP-2). Vitamin K2 further antagonized receptor activator of NF-κB (RANK) ligand (RANKL)-induced NF-κB activation in osteoclast precursors. Our data provide a novel mechanism to explain the dual pro-anabolic and anti-catabolic activities of vitamin K2, and may further support the concept that pharmacological modulation of NF-κB signal transduction may constitute an effective mechanism for ameliorating pathological bone loss and for promoting bone health. PMID:21072493

  6. Alliin Attenuated RANKL-Induced Osteoclastogenesis by Scavenging Reactive Oxygen Species through Inhibiting Nox1

    PubMed Central

    Chen, Yueqi; Sun, Jingjing; Dou, Ce; Li, Nan; Kang, Fei; Wang, Yuan; Cao, Zhen; Yang, Xiaochao; Dong, Shiwu

    2016-01-01

    The healthy skeleton requires a perfect coordination of the formation and degradation of bone. Metabolic bone disease like osteoporosis is resulted from the imbalance of bone formation and/or bone resorption. Osteoporosis also reflects lower level of bone matrix, which is contributed by up-regulated osteoclast-mediated bone resorption. It is reported that monocytes/macrophage progenitor cells or either hematopoietic stem cells (HSCs) gave rise to multinucleated osteoclasts. Thus, inhibition of osteoclastic bone resorption generally seems to be a predominant therapy for treating osteoporosis. Recently, more and more natural compounds have been discovered, which have the ability of inhibiting osteoclast differentiation and fusion. Alliin (S-allyl-l-cysteine sulfoxides, SACSO) is the major component of aged garlic extract (AGE), bearing broad-spectrum natural antioxidant properties. However, its effects on bone health have not yet been explored. Hence, we designed the current study to explore its effects and role in receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast fusion and differentiation. It was revealed that alliin had an inhibitory effect in osteoclasteogenesis with a dose-dependent manner via blocking the c-Fos-NFATc1 signaling pathway. In addition, alliin decreased the generation of reactive oxygen species (ROS) and down-regulated the expression of NADPH oxidase 1 (Nox1). The overall results revealed that alliin could be a potential therapeutic agent in the treatment of osteoporosis. PMID:27657047

  7. Osteoclastogenesis and Osteoclastic Resorption of Tricalcium Phosphate: Effect of Strontium and Magnesium Doping

    PubMed Central

    Roy, Mangal; Bose, Susmita

    2012-01-01

    Bone substitute materials are required to support the remodeling process, which consists of osteoclastic resorption and osteoblastic synthesis. Osteoclasts, the bone resorbing cells, generate from differentiation of hemopoietic mononuclear cells. In the present study we have evaluated the effects of 1.0 wt% strontium (Sr) and 1.0 wt% magnesium (Mg) doping in beta-tricalcium phosphate (β-TCP) on the differentiation of mononuclear cells into osteoclast-like cells and its resorptive activity. In vitro osteoclast-like cell formation, adhesion, and resorption were studied using osteoclast precursor RAW 264.7 cell, supplemented with receptor activator of nuclear factor κβ ligand (RANKL). Osteoclast-like cell formation was noticed on pure and Sr doped β-TCP samples at day 8 which was absent on Mg doped β-TCP samples indicating decrease in initial osteoclast differentiation due to Mg doping. After 21 days of culture, osteoclast-like cell formation was evident on all samples with osteoclastic markers such as actin ring, multiple nuclei, and presence of vitronectin receptor αvβ3 integrin. After osteoclast differentiation, all substrates showed osteoclast-like cell mediated degradation, however; significantly restricted for Mg doped β-TCP samples. Our present results indicated substrate chemistry controlled osteoclast differentiation and resorptive activity which can be used in designing TCP based resorbable bone substitutes with controlled degradation properties. PMID:22566212

  8. Methotrexate inhibits osteoclastogenesis by decreasing RANKL-induced calcium influx into osteoclast progenitors.

    PubMed

    Kanagawa, Hiroya; Masuyama, Ritsuko; Morita, Mayu; Sato, Yuiko; Niki, Yasuo; Kobayashi, Tami; Katsuyama, Eri; Fujie, Atsuhiro; Hao, Wu; Tando, Toshimi; Watanabe, Ryuichi; Miyamoto, Kana; Morioka, Hideo; Matsumoto, Morio; Toyama, Yoshiaki; Saya, Hideyuki; Miyamoto, Takeshi

    2016-09-01

    The increasing number of osteoporosis patients is a pressing issue worldwide. Osteoporosis frequently causes fragility fractures, limiting activities of daily life and increasing mortality. Many osteoporosis patients take numerous medicines due to other health issues; thus, it would be preferable if a single medicine could ameliorate osteoporosis and other conditions. Here, we screened 96 randomly selected drugs targeting various diseases for their ability to inhibit differentiation of osteoclasts, which play a pivotal role in development of osteoporosis, and identified methotrexate (MTX), as a potential inhibitor. MTX is currently used to treat sarcomas or leukemic malignancies or auto-inflammatory diseases such as rheumatoid arthritis (RA) through its anti-proliferative and immunosuppressive activities; however, a direct effect on osteoclast differentiation has not been shown. Here, we report that osteoclast formation and expression of osteoclastic genes such as NFATc1 and DC-STAMP, which are induced by the cytokine RANKL, are significantly inhibited by MTX. We found that RANKL-dependent calcium (Ca) influx into osteoclast progenitors was significantly inhibited by MTX. RA patients often develop osteoporosis, and osteoclasts are reportedly required for joint destruction; thus, MTX treatment could have a beneficial effect on RA patients exhibiting high osteoclast activity by preventing both osteoporosis and joint destruction.

  9. Screening of Korean medicinal plants for possible osteoclastogenesis effects in vitro

    PubMed Central

    Youn, Yu Na; Lim, Erang; Lee, Nari; Kim, Young Seop; Koo, Min Seon

    2007-01-01

    Bone undergoes continuous remodeling through bone formation and resorption, and maintaining the balance for skeletal rigidity. Bone resorption and loss are generally attributed to osteoclasts. Differentiation of osteoclasts is regulated by receptor activator of nuclear factor NF-kB ligand (RANKL), a member of tumor necrosis factor family. When the balance is disturbed, pathological bone abnormality ensues. Through the screening of traditional Korean medicinal plants, the effective molecules for inhibition and stimulation of RANKL-induced osteoclast differentiation in mouse bone marrow macrophages were identified. Among 222 methanol extracts, of medicinal plants, 10 samples exhibited ability to induce osteoclast differentiation. These include Dryobalanops aromatica, Euphoria longana, Lithospermum erythrorhizon, Prunus mume, Prunus nakaii, and Polygonatum odoratum. In contrast, Ailanthus altissima, Curcuma longa, Solanum nigrum, Taraxacum platycarpa, Trichosanthes kirilowii, and Daphne genkwa showed inhibitory effects in RANKL-induced osteoclast differentiation. PMID:18850234

  10. Short-Term Hypoxia Accelerates Bone Loss in Ovariectomized Rats by Suppressing Osteoblastogenesis but Enhancing Osteoclastogenesis

    PubMed Central

    Wang, Guixin; Wang, Jia; Sun, Dawei; Xin, Jingyi; Wang, Liping; Huang, Dong; Wu, Weichi; Xian, Cory J.

    2016-01-01

    Background Although it has been reported that hypoxic exposure can attenuate hypertension, heart disease, diabetes, and some other diseases, effects of hypoxia on osteoporosis are still unknown. Material/Methods The current study investigated whether short-term hypoxic exposure (in comparison with normoxic conditions) affects bone metabolism in normal or ovariectomized (OVX) adult female rats in an vivo study. Micro-computed tomography bone volume/structural analyses, histological examination, and serum bone turnover biochemical assays were used. In addition, the expressions of some associated major regulatory molecules were measured in osteoblastic cultures. Results While the 14-day hypoxic exposure did not change the bone-remodeling process in normal adult female rats, it decreased bone volume, osteoclast density, and serum bone formation marker (alkaline phosphatase) level, but increased osteoclast density and serum bone resorption marker (C-telopeptide of collagen) level in OVX rats. The bone marrow adipocyte number and serum fatty acid binding protein-4 level were increased in OVX-hypoxic rats compared with OVX-normoxic rats. Consistently, in human MG-63 osteoblastic cultures, the hypoxic condition suppressed protein expression of osteogenic transcriptional factors Runx2 and osterix, elevated protein expression of osteoclastogenic cytokine receptor activator of nuclear factor kappa-B ligand, but reduced that of osteoclastogenic inhibitor osteoprotegerin. Conclusions Our results suggest that, although no change occurred in the bone-remodeling process in normal adult female rats after hypoxic exposure, under the estrogen-deficient osteoporotic condition, the hypoxic condition can alter the bone microenvironment so that it may further impair osteoblastic differentiation and enhance osteoclastic formation, and thus reduce bone formation, enhance bone resorption, and accelerate bone loss. PMID:27550548

  11. Diabetes Stimulates Osteoclastogenesis by Acidosis-Induced Activation of Transient Receptor Potential Cation Channels

    PubMed Central

    Reni, Carlotta; Mangialardi, Giuseppe; Meloni, Marco; Madeddu, Paolo

    2016-01-01

    Patients with type 1 diabetes have lower bone mineral density and higher risk of fractures. The role of osteoblasts in diabetes-related osteoporosis is well acknowledged whereas the role of osteoclasts (OCLs) is still unclear. We hypothesize that OCLs participate in pathological bone remodeling. We conducted studies in animals (streptozotocin-induced type 1 diabetic mice) and cellular models to investigate canonical and non-canonical mechanisms underlying excessive OCL activation. Diabetic mice show an increased number of active OCLs. In vitro studies demonstrate the involvement of acidosis in OCL activation and the implication of transient receptor potential cation channel subfamily V member 1 (TRPV1). In vivo studies confirm the establishment of local acidosis in the diabetic bone marrow (BM) as well as the ineffectiveness of insulin in correcting the pH variation and osteoclast activation. Conversely, treatment with TRPV1 receptor antagonists re-establishes a physiological OCL availability. These data suggest that diabetes causes local acidosis in the BM that in turn increases osteoclast activation through the modulation of TRPV1. The use of clinically available TRPV1 antagonists may provide a new means to combat bone problems associated with diabetes. PMID:27468810

  12. Short-Term Hypoxia Accelerates Bone Loss in Ovariectomized Rats by Suppressing Osteoblastogenesis but Enhancing Osteoclastogenesis.

    PubMed

    Wang, Guixin; Wang, Jia; Sun, Dawei; Xin, Jingyi; Wang, Liping; Huang, Dong; Wu, Weichi; Xian, Cory J

    2016-01-01

    BACKGROUND Although it has been reported that hypoxic exposure can attenuate hypertension, heart disease, diabetes, and some other diseases, effects of hypoxia on osteoporosis are still unknown. MATERIAL AND METHODS The current study investigated whether short-term hypoxic exposure (in comparison with normoxic conditions) affects bone metabolism in normal or ovariectomized (OVX) adult female rats in an vivo study. Micro-computed tomography bone volume/structural analyses, histological examination, and serum bone turnover biochemical assays were used. In addition, the expressions of some associated major regulatory molecules were measured in osteoblastic cultures. RESULTS While the 14-day hypoxic exposure did not change the bone-remodeling process in normal adult female rats, it decreased bone volume, osteoclast density, and serum bone formation marker (alkaline phosphatase) level, but increased osteoclast density and serum bone resorption marker (C-telopeptide of collagen) level in OVX rats. The bone marrow adipocyte number and serum fatty acid binding protein-4 level were increased in OVX-hypoxic rats compared with OVX-normoxic rats. Consistently, in human MG-63 osteoblastic cultures, the hypoxic condition suppressed protein expression of osteogenic transcriptional factors Runx2 and osterix, elevated protein expression of osteoclastogenic cytokine receptor activator of nuclear factor kappa-B ligand, but reduced that of osteoclastogenic inhibitor osteoprotegerin. CONCLUSIONS Our results suggest that, although no change occurred in the bone-remodeling process in normal adult female rats after hypoxic exposure, under the estrogen-deficient osteoporotic condition, the hypoxic condition can alter the bone microenvironment so that it may further impair osteoblastic differentiation and enhance osteoclastic formation, and thus reduce bone formation, enhance bone resorption, and accelerate bone loss. PMID:27550548

  13. The Role of Sonic Hedgehog Signaling in Osteoclastogenesis and Jaw Bone Destruction.

    PubMed

    Shimo, Tsuyoshi; Matsumoto, Kenichi; Takabatake, Kiyofumi; Aoyama, Eriko; Takebe, Yuichiro; Ibaragi, Soichiro; Okui, Tatsuo; Kurio, Naito; Takada, Hiroyuki; Obata, Kyoichi; Pang, Pai; Iwamoto, Masahiro; Nagatsuka, Hitoshi; Sasaki, Akira

    2016-01-01

    Sonic hedgehog (SHH) and its signaling have been identified in several human cancers, and increased levels of its expression appear to correlate with disease progression and metastasis. However, the role of SHH in bone destruction associated with oral squamous cell carcinomas is still unclear. In this study we analyzed SHH expression and the role played by SHH signaling in gingival carcinoma-induced jawbone destruction. From an analysis of surgically resected lower gingival squamous cell carcinoma mandible samples, we found that SHH was highly expressed in tumor cells that had invaded the bone matrix. On the other hand, the hedgehog receptor Patched and the signaling molecule Gli-2 were highly expressed in the osteoclasts and the progenitor cells. SHH stimulated osteoclast formation and pit formation in the presence of the receptor activator for nuclear factor-κB ligand (RANKL) in CD11b+ mouse bone marrow cells. SHH upregulated phosphorylation of ERK1/2 and p38 MAPK, NFATc1, tartrate-resistant acid phosphatase (TRAP), and Cathepsin K expression in RAW264.7 cells. Our results suggest that tumor-derived SHH stimulated the osteoclast formation and bone resorption in the tumor jawbone microenvironment. PMID:27007126

  14. The Role of Sonic Hedgehog Signaling in Osteoclastogenesis and Jaw Bone Destruction

    PubMed Central

    Shimo, Tsuyoshi; Matsumoto, Kenichi; Takabatake, Kiyofumi; Aoyama, Eriko; Takebe, Yuichiro; Ibaragi, Soichiro; Okui, Tatsuo; Kurio, Naito; Takada, Hiroyuki; Obata, Kyoichi; Pang, Pai; Iwamoto, Masahiro; Nagatsuka, Hitoshi; Sasaki, Akira

    2016-01-01

    Sonic hedgehog (SHH) and its signaling have been identified in several human cancers, and increased levels of its expression appear to correlate with disease progression and metastasis. However, the role of SHH in bone destruction associated with oral squamous cell carcinomas is still unclear. In this study we analyzed SHH expression and the role played by SHH signaling in gingival carcinoma-induced jawbone destruction. From an analysis of surgically resected lower gingival squamous cell carcinoma mandible samples, we found that SHH was highly expressed in tumor cells that had invaded the bone matrix. On the other hand, the hedgehog receptor Patched and the signaling molecule Gli-2 were highly expressed in the osteoclasts and the progenitor cells. SHH stimulated osteoclast formation and pit formation in the presence of the receptor activator for nuclear factor-κB ligand (RANKL) in CD11b+ mouse bone marrow cells. SHH upregulated phosphorylation of ERK1/2 and p38 MAPK, NFATc1, tartrate-resistant acid phosphatase (TRAP), and Cathepsin K expression in RAW264.7 cells. Our results suggest that tumor-derived SHH stimulated the osteoclast formation and bone resorption in the tumor jawbone microenvironment. PMID:27007126

  15. Tritium isotope effect in high-pressure liquid chromatography of vitamin D metabolites

    SciTech Connect

    Worth, G.K.; Retallack, R.W.

    1988-10-01

    A significant chromatographic isotope effect is reported for 1,25-dihydroxyvitamin D3 in a wide variety of HPLC separation systems. The effect is also observed for 24,25-dihydroxyvitamin D3. Retention times differ from less than 1% up to 4% depending on the separation system and the degree and position of tritium substitution. Such an effect must be corrected for whenever both labeled and unlabeled vitamin D metabolites are used in HPLC cochromatography or assay recovery studies.

  16. Hypercalcemia in Upper Urinary Tract Urothelial Carcinoma: A Case Report and Literature Review

    PubMed Central

    McHugh, Jonathan B.; Miller, David C.; Esfandiari, Nazanene H.

    2013-01-01

    Objective. We here report a patient with upper urinary tract urothelial carcinoma with hypercalcemia likely due to elevated 1,25-dihydroxyvitamin D. Methods. We present a clinical case and a summary of literature search. Results. A 57-year-old man, recently diagnosed with a left renal mass, for which a core biopsy showed renal cell carcinoma, was admitted for hypercalcemia of 11.0 mg/mL He also had five small right lung nodules with a negative bone scan. Both intact parathyroid hormone and parathyroid hormone-related peptide were appropriately low, and 1,25-dihydroxyvitamin D was elevated at 118 pg/dL. The patient's calcium was normalized after hydration, and he underwent radical nephrectomy. On the postoperative day 6, a repeat 1,25-dihydroxyvitamin D was 24 pg/mL with a calcium of 8.1 mg/dL. Pathology showed a 6 cm high-grade urothelial carcinoma with divergent differentiation. We identified a total of 27 previously reported cases with hypercalcemia and upper tract urothelial carcinoma in English. No cases have a documented elevated 1,25-dihydroxyvitamin D level. Conclusion. This clinical course suggests that hypercalcemia in this case is from the patient's tumor, which was likely producing 1,25-dihydroxyvitamin D. Considering the therapeutic implications, hypercalcemia in patients with upper urinary tract urothelial carcinoma should be evaluated with 1,25-dihydroxyvitamin D. PMID:23476827

  17. Control of proliferating potential of myeloid leukemia cells during long-term treatment with vitamin D3 analogues and other differentiation inducers in combination with antileukemic drugs: in vitro and in vivo studies.

    PubMed

    Kasukabe, T; Honma, Y; Hozumi, M; Suda, T; Nishii, Y

    1987-01-15

    Growth inhibition of murine and human myeloid leukemia cells by differentiation inducers during long-term culture was examined to improve the strategy for therapy of myeloid leukemia by differentiation inducers. When the effect of 1 alpha,25-dihydroxyvitamin D3, a typical differentiation inducer, on proliferation of mouse myeloid leukemia M1 cells was examined at a constant product of time and concentration (480 nM in 20 days), the continuous treatment with 24 nM 1 alpha,25-dihydroxyvitamin D3 was the most effective for inhibition of cell proliferation. After 20 days, the cumulative cell number was reduced about 3 X 10(5) times by continuous treatment with 24 nM 1 alpha,25-dihydroxyvitamin D3. Similar results were obtained when M1 cells were treated continuously with dexamethasone. M1 cells resistant to 1 alpha,25-dihydroxyvitamin D3 appeared about 25 days after the start of continuous treatment with 24 nM 1 alpha,25-dihydroxyvitamin D3. On the other hand, when M1 cells were treated continuously with 1 alpha,25-dihydroxyvitamin D3 and noncytotoxic doses of antileukemic drugs such as 1-beta-D-arabinofuranosylcytosine and daunomycin, resistant cells did not appear for at least 35 days. A similar effect of 1 alpha,25-dihydroxyvitamin D3 and antileukemic drugs on cell proliferation was observed with the human monoblast-like cell line U937. The survival of syngeneic SL mice inoculated with M1 cells was prolonged more by treatment with both 1 alpha-hydroxyvitamin D3 and daunomycin than by treatment with either drug alone. These results suggest that continuous treatment with both differentiation inducers and certain antileukemic drugs may be more effective therapeutically than treatment with a differentiation inducer alone.

  18. Adequate dietary vitamin D and calcium are both required to reduce bone turnover and increased bone mineral volume.

    PubMed

    Lee, Alice M C; Sawyer, Rebecca K; Moore, Alison J; Morris, Howard A; O'Loughlin, Peter D; Anderson, Paul H

    2014-10-01

    Clinical studies indicate that the combination of vitamin D and dietary calcium supplementation is more effective for reducing fracture risk than either supplement alone. Our previous dietary studies demonstrated that an adequate serum 25-hydroxyvitamin D3 (25D) of 80nmol/L or more reduces bone RANKL expression, osteoclastogenesis and maintains the optimal levels of trabecular bone volume (BV/TV%) in young rats. The important clinical question of the interaction between vitamin D status, dietary calcium intake and age remains unclear. Hence, 9 month-old female Sprague-Dawley rats (n=5-6/group) were pair-fed a semi-synthetic diet containing varying levels of vitamin D (0, 2, 12 or 20IU/day) and dietary calcium (0.1% or 1%) for 6 months. At 15 months of age, animals were killed, for biochemical and skeletal analyses. While changes to serum 25D were determined by both dietary vitamin D and calcium levels, changes to serum 1,25-dihydroxyvitamin D3 (1,25D) were consistently raised in animals fed 0.1% Ca regardless of dietary vitamin D or vitamin D status. Importantly, serum cross-laps levels were significantly increased in animals fed 0.1% Ca only when combined with 0 or 2 IUD/day of vitamin D, suggesting a contribution of both dietary calcium and vitamin D in determining bone resorption activity. Serum 25(OH)D3 levels were positively correlated with both femoral mid-diaphyseal cortical bone volume (R(2)=0.24, P<0.01) and metaphyseal BV/TV% (R(2)=0.23, P<0.01, data not shown). In multiple linear regressions, serum 1,25(OH)2D3 levels were a negative determinant of CBV (R(2)=0.24, P<0.01) and were not a determinant of metaphyseal BV/TV% levels. These data support clinical data that reduced bone resorption and increased bone volume can only be achieved with adequate 25D levels in combination with high dietary calcium and low serum 1,25D levels. This article is part of a Special Issue entitled '16th Vitamin D Workshop'. PMID:24309068

  19. Metabolic profiling of major vitamin D metabolites using Diels-Alder derivatization and ultra-performance liquid chromatography-tandem mass spectrometry.

    PubMed

    Aronov, Pavel A; Hall, Laura M; Dettmer, Katja; Stephensen, Charles B; Hammock, Bruce D

    2008-07-01

    Biologically active forms of vitamin D are important analytical targets in both research and clinical practice. The current technology is such that each of the vitamin D metabolites is usually analyzed by individual assay. However, current LC-MS technologies allow the simultaneous metabolic profiling of entire biochemical pathways. The impediment to the metabolic profiling of vitamin D metabolites is the low level of 1alpha,25-dihydroxyvitamin D(3) in human serum (15-60 pg/mL). Here, we demonstrate that liquid-liquid or solid-phase extraction of vitamin D metabolites in combination with Diels-Alder derivatization with the commercially available reagent 4-phenyl-1,2,4-triazoline-3,5-dione (PTAD) followed by ultra-performance liquid chromatography (UPLC)-electrospray/tandem mass spectrometry analysis provides rapid and simultaneous quantification of 1alpha,25-dihydroxyvitamin D(3), 1alpha,25-dihydroxyvitamin D(2), 24R,25-dihydroxyvitamin D(3), 25-hydroxyvitamin D(3) and 25-hydroxyvitamin D(2) in 0.5 mL human serum at a lower limit of quantification of 25 pg/mL. Precision ranged from 1.6-4.8 % and 5-16 % for 25-hydroxyvitamin D(3) and 1alpha,25-dihydroxyvitamin D(3), respectively, using solid-phase extraction.

  20. Osteoprotegerin Reverses Osteoporosis by Inhibiting Endosteal Osteoclasts and Prevents Vascular Calcification by Blocking a Process Resembling Osteoclastogenesis

    PubMed Central

    Min, Hosung; Morony, Sean; Sarosi, Ildiko; Dunstan, Colin R.; Capparelli, Casey; Scully, Sheila; Van, Gwyneth; Kaufman, Steve; Kostenuik, Paul J.; Lacey, David L.; Boyle, William J.; Simonet, W. Scott

    2000-01-01

    High systemic levels of osteoprotegerin (OPG) in OPG transgenic mice cause osteopetrosis with normal tooth eruption and bone elongation and inhibit the development and activity of endosteal, but not periosteal, osteoclasts. We demonstrate that both intravenous injection of recombinant OPG protein and transgenic overexpression of OPG in OPG−/2 mice effectively rescue the osteoporotic bone phenotype observed in OPG-deficient mice. However, intravenous injection of recombinant OPG over a 4-wk period could not reverse the arterial calcification observed in OPG−/− mice. In contrast, transgenic OPG delivered from mid-gestation through adulthood does prevent the formation of arterial calcification in OPG−/− mice. Although OPG is normally expressed in arteries, OPG ligand (OPGL) and receptor activator of NF-κB (RANK) are not detected in the arterial walls of wild-type adult mice. Interestingly, OPGL and RANK transcripts are detected in the calcified arteries of OPG−/− mice. Furthermore, RANK transcript expression coincides with the presence of multinuclear osteoclast-like cells. These findings indicate that the OPG/OPGL/RANK signaling pathway may play an important role in both pathological and physiological calcification processes. Such findings may also explain the observed high clinical incidence of vascular calcification in the osteoporotic patient population. PMID:10952716

  1. Regulators of G protein signaling 12 (Rgs12) promotes osteoclastogenesis in bone remodeling and pathologic bone loss

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Calcium (Ca2+) signaling plays a pivotal role in controlling various cellular processes such as secretion, differentiation, proliferation, motility, and cell death through the release of Ca2+ from internal stores and entry from extracellular fluid. In bone, receptor activator of NF-kB ligand (RANKL)...

  2. Failure to Target RANKL Signaling Through p38-MAPK Results in Defective Osteoclastogenesis in the Microphthalmia Cloudy-Eyed Mutant.

    PubMed

    Carey, Heather A; Bronisz, Agnieszka; Cabrera, Jennifer; Hildreth, Blake E; Cuitiño, Maria; Fu, Qi; Ahmad, Asrar; Toribio, Ramiro E; Ostrowski, Michael C; Sharma, Sudarshana M

    2016-03-01

    The Microphthalmia-associated transcription factor (MITF) is a basic helix-loop-helix leucine zipper family factor that is essential for terminal osteoclast differentiation. Previous work demonstrates that phosphorylation of MITF by p38 MAPK downstream of Receptor Activator of NFkB Ligand (RANKL) signaling is necessary for MITF activation in osteoclasts. The spontaneous Mitf cloudy eyed (ce) allele results in production of a truncated MITF protein that lacks the leucine zipper and C-terminal end. Here we show that the Mitf(ce) allele leads to a dense bone phenotype in neonatal mice due to defective osteoclast differentiation. In response to RANKL stimulation, in vitro osteoclast differentiation was impaired in myeloid precursors derived from neonatal or adult Mitf(ce/ce) mice. The loss of the leucine zipper domain in Mitf(ce/ce) mice does not interfere with the recruitment of MITF/PU.1 complexes to target promoters. Further, we have mapped the p38 MAPK docking site within the region deleted in Mitf(ce). This interaction is necessary for the phosphorylation of MITF by p38 MAPK. Site-directed mutations in the docking site interfered with the interaction between MITF and its co-factors FUS and BRG1. MITF-ce fails to recruit FUS and BRG1 to target genes, resulting in decreased expression of target genes and impaired osteoclast function. These results highlight the crucial role of signaling dependent MITF/p38 MAPK interactions in osteoclast differentiation.

  3. Failure to Target RANKL Signaling Through p38-MAPK Results in Defective Osteoclastogenesis in the Microphthalmia Cloudy-Eyed Mutant.

    PubMed

    Carey, Heather A; Bronisz, Agnieszka; Cabrera, Jennifer; Hildreth, Blake E; Cuitiño, Maria; Fu, Qi; Ahmad, Asrar; Toribio, Ramiro E; Ostrowski, Michael C; Sharma, Sudarshana M

    2016-03-01

    The Microphthalmia-associated transcription factor (MITF) is a basic helix-loop-helix leucine zipper family factor that is essential for terminal osteoclast differentiation. Previous work demonstrates that phosphorylation of MITF by p38 MAPK downstream of Receptor Activator of NFkB Ligand (RANKL) signaling is necessary for MITF activation in osteoclasts. The spontaneous Mitf cloudy eyed (ce) allele results in production of a truncated MITF protein that lacks the leucine zipper and C-terminal end. Here we show that the Mitf(ce) allele leads to a dense bone phenotype in neonatal mice due to defective osteoclast differentiation. In response to RANKL stimulation, in vitro osteoclast differentiation was impaired in myeloid precursors derived from neonatal or adult Mitf(ce/ce) mice. The loss of the leucine zipper domain in Mitf(ce/ce) mice does not interfere with the recruitment of MITF/PU.1 complexes to target promoters. Further, we have mapped the p38 MAPK docking site within the region deleted in Mitf(ce). This interaction is necessary for the phosphorylation of MITF by p38 MAPK. Site-directed mutations in the docking site interfered with the interaction between MITF and its co-factors FUS and BRG1. MITF-ce fails to recruit FUS and BRG1 to target genes, resulting in decreased expression of target genes and impaired osteoclast function. These results highlight the crucial role of signaling dependent MITF/p38 MAPK interactions in osteoclast differentiation. PMID:26218069

  4. Tumor-induced osteomalacia. Kinetics of calcium, phosphorus, and vitamin D metabolism and characteristics of bone histomorphometry.

    PubMed

    Siris, E S; Clemens, T L; Dempster, D W; Shane, E; Segre, G V; Lindsay, R; Bilezikian, J P

    1987-02-01

    A patient with a mesenchymal tumor and hypophosphatemic osteomalacia was studied before and after tumor excision. Initial laboratory values included normal serum calcium, decreased serum phosphorus and tubular reabsorption of phosphate, undetectable 1,25-dihydroxyvitamin D, and normal parathyroid hormone. Histomorphometry of a bone biopsy specimen showed evidence of increased osteoclastic bone resorption. By 16 hours after tumor removal, 1,25-dihydroxyvitamin D level had normalized, but serum phosphorus level was unchanged; at 28 hours, both serum phosphorus value and tubular reabsorption of phosphate were within normal limits. It is concluded that tumor removal is associated with rapid correction both of 1,25-dihydroxyvitamin D production and of renal phosphate wasting. Increased bone resorption suggests the production of an osteoclast activator by the tumor and may explain the typically normal serum calcium value in this disorder. PMID:3812526

  5. Molecular actions of vitamin D contributing to cancer prevention.

    PubMed

    Fleet, James C

    2008-12-01

    The population-based relationship between low vitamin D status and increased cancer risk is now generally accepted. While these relationships are between serum 25 hydroxyvitamin D and cancer, cell-based studies show that the metabolite 1,25 dihydroxyvitamin D is biologically active and influences cell biology relevant to cancer through vitamin D receptor-mediated gene transcription. This review examines this paradox and also discusses the cell and gene targets influenced by 1,25 dihydroxyvitamin D that may account for the anti-cancer actions of vitamin D. A review of the literature shows that while vitamin D-induced growth arrest and apoptosis of tumor cells or their non-neoplastic progenitors are plausible mechanisms, other gene targets related to DNA repair and immunomodulation, and other cell targets such as the stromal cells and cells of the immune system, may be regulated by 1,25 dihydroxyvitamin D and contribute to vitamin D mediated cancer prevention.

  6. Hodgkin's disease with hypercalcemia detected by thallium-201 scintigraphy

    SciTech Connect

    Linde, R.; Basso, L.

    1987-01-01

    A 53-yr-old man with hypercalcemia was referred after an unsuccessful operative attempt to find a parathyroid adenoma. Metabolic evaluation showed relatively suppressed levels of parathyroid hormone with an elevation of serum 1,25-dihydroxyvitamin D. Thallium-technetium dual isotope imaging revealed localized mediastinal thallium uptake. A vascular mediastinal lesion was then demonstrated by arteriography, with subsequent surgical removal of a mass that proved to be lymphocyte predominant Hodgkin's disease. This case is noteworthy for the finding of isolated lymphocyte predominant Hodgkin's disease in the chest, the association of elevated serum 1,25-dihydroxyvitamin D with hypercalcemia that resolved postoperatively, and the uptake of thallium by the tumor.

  7. Tumor-induced osteomalacia. Evidence of a surgically correctable alteration in vitamin D metabolism.

    PubMed

    Parker, M S; Klein, I; Haussler, M R; Mintz, D H

    1981-02-01

    A 15-year-old boy was treated for nonfamilial hypophosphatemic rickets. Treatment with ergocalciferol, 100,000 units/day, and phosphorus, 2 to 4 g/day, failed to alleviate the rickets. Levels of 1 alpha, 25-dihydroxyvitamin D were low while levels of 25-hydroxyvitamin D were elevated. After removal of a benign fibroma, the level of 1 alpha, 25-dihydroxyvitamin D increased, the serum phosphorus level became normal, and the osteomalacia was cured. The alteration of vitamin D metabolism and associated hypophosphatemia in oncogenic osteomalacia is a potentially reversible cause of bone disease mediated by the tumor. PMID:7452873

  8. Calcium absorption, kinetics, bone density, and bone structure in patients with hereditary vitamin D-resistant rickets

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hereditary 1,25-dihydroxyvitamin D-resistant rickets (HVDRR) is caused by mutations in the vitamin D receptor gene. Children with HVDRR suffer from severe hypocalcemia and rickets that are treatable with extremely high-dose calcium supplements. Surprisingly, spontaneous recovery of calcium metabolis...

  9. Vitamin D analogues up-regulate p21 and p27 during growth inhibition of pancreatic cancer cell lines.

    PubMed Central

    Kawa, S.; Nikaido, T.; Aoki, Y.; Zhai, Y.; Kumagai, T.; Furihata, K.; Fujii, S.; Kiyosawa, K.

    1997-01-01

    To obtain information regarding the growth-inhibitory effect of 1,25-dihydroxyvitamin D3 and its non-calcaemic analogue 22-oxa-1,25-dihydroxyvitamin D3 on pancreatic cancer cell lines, differences in the effects of G1-phase cell cycle-regulating factors were studied in vitamin D-responsive and non-responsive cell lines. Levels of expression of cyclins (D1, E and A), cyclin-dependent kinases (2 and 4) and cyclin-dependent kinase inhibitors (p21 and p27) were analysed by Western blotting after treatment with these compounds. In the responsive cells (BxPC-3, Hs 700T and SUP-1), our observations were: (1) marked up-regulation of p21 and p27 after 24 h treatment with 10(-7) mol l(-1) 1,25-dihydroxyvitamin D3 and 22-oxa-1,25-dihydroxyvitamin D3; and (2) marked down-regulation of cyclins, cyclin-dependent kinases and cyclin-dependent kinase inhibitors after 7 days' treatment. In non-responsive cells (Hs 766T and Capan-1), no such changes were observed. In conclusion, vitamin D analogues up-regulate p21 and p27 as an early event, which in turn could block the G1/S transition and induce growth inhibition in responsive cells. Images Figure 3 Figure 5 Figure 6 PMID:9328147

  10. Vitamin D receptor in the paraventricular nucleus of the hypothalamus is necessary for beneficial effects of 1,25D[3] on peripheral glucose levels

    Technology Transfer Automated Retrieval System (TEKTRAN)

    While a wide range of data correlates low vitamin D levels with type 2 diabetes, few studies examine potential mechanisms by which vitamin D might impact key aspects of metabolism. The active form of 1alpha,25-dihydroxyvitamin D[3] (1,25D[3]; calcitriol) is hydroxylated in the liver and kidney from ...

  11. Serum 25-hydroxyvitamin D, calcium, and calcium-regulating hormones in preeclamptics and controls during first day postpartum.

    PubMed

    Dalmar, Ahmed; Raff, Hershel; Chauhan, Suneet P; Singh, Maharaj; Siddiqui, Danish S

    2015-02-01

    The evidence for a link between vitamin D and preeclampsia is conflicting. There is a paucity of studies reporting simultaneous 25-hydroxyvitamin D (inactive form) and 1,25-dihydroxyvitamin D (biologically active form). We investigated if levels of serum 25-hydroxyvitamin D, calcium-regulating hormones (1,25-dihydroxyvitamin D, parathyroid hormone), and calcium differ significantly between preeclamptics and controls. On postpartum day one, 98 subjects (44 with preeclampsia, 54 controls) were recruited among women admitted to the postdelivery unit, and their serum 25-hydroxyvitamin D, 1,25-dihydroxyvitamin D, parathyroid hormone, serum calcium, and serum albumin levels were prospectively measured. The majority of participants (70%) had serum 25-hydroxyvitamin D level<20 ng/mL; 53% had <15 ng/mL. Mean serum 25-hydroxyvitamin D level was similar between cases and controls (p=0.50). Mean total serum calcium adjusted for albumin and magnesium was similar between cases and controls (p=0.78). Mean serum 1,25-dihydroxyvitamin D and parathyroid hormone levels were normal, and there were no differences between cases and controls. The only significant differences found between preeclamptic cases and controls were mean body mass index, parity, and season of blood draw. Vitamin D levels did not differ among preeclamptic cases and controls.

  12. Syntheses of 24R,25-dihydroxy-(6,19,19-3H)vitamin D3 and 24R,25-dihydroxy-(6,19,19-2H)vitamin D3

    SciTech Connect

    Yamada, S.; Shimizu, M.; Fukushima, K.; Niimura, K.; Maeda, Y. )

    1989-08-01

    24R,25-Dihydroxy-(6,19,19-3H)vitamin D3 with a specific activity of 54 Ci/mmol and 24R,25-dihydroxy-(6,19,19-2H)vitamin D3 with 2.6 deuterium atoms/mol were synthesized in four steps starting from 24R,25-Dihydroxyvitamin D3 via its sulfur dioxide adduct.

  13. The effect of vitamin D2 and vitamin D3 on intestinal calcium absorption in Nigerian children with rickets

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Children with calcium-deficiency rickets have high 1,25-dihydroxyvitamin D values. The objective of the study was to determine whether vitamin D increased calcium absorption. This was an experimental study. The study was conducted at a teaching hospital. Participants included 17 children with nutrit...

  14. Development of 1-Amino-4-(phenylamino)anthraquinone-2-sulfonate Sodium Derivatives as a New Class of Inhibitors of RANKL-Induced Osteoclastogenesis.

    PubMed

    Lee, Chia-Chung; Chen, Chun-Liang; Liu, Fei-Lan; Chiou, Chung-Yu; Chen, Tsung-Chih; Wu, Cheng-Chi; Sun, Wei-Hsin; Chang, Deh-Ming; Huang, Hsu-Shan

    2016-05-01

    A series of 1-amino-4-(phenylamino)anthraquinone-2-sulfonate sodium derivatives was synthesized and evaluated for osteoclast inhibition using a TRAP-staining assay. Among them, two compounds, LCCY-13 and LCCY-15, dose-dependently suppressed receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast formation. Moreover, the cytotoxicity assay on RAW264.7 cells suggested that the inhibition of osteoclastic bone resorption by these compounds was not a result of their cytotoxicity. Further, the inhibitory activities of compounds LCCY-13 and LCCY-15 were further confirmed by including specific inhibition of NFATc1 expression levels in nuclei using an immunofluorescent analysis. In addition, LCCY-13 and LCCY-15 also significantly attenuated the bone resorption activity of osteoclasts according to a pit formation assay. Thus, a new class of 1-amino-4-(phenylamino)anthraquinone-2-sulfonate sodium compounds might be considered as an essential lead structure for the further development of anti-resorptive agents.

  15. Parthenolide inhibits osteoclast differentiation and bone resorbing activity by down-regulation of NFATc1 induction and c-Fos stability, during RANKL-mediated osteoclastogenesis.

    PubMed

    Kim, Ju-Young; Cheon, Yoon-Hee; Yoon, Kwon-Ha; Lee, Myeung Su; Oh, Jaemin

    2014-08-01

    Parthenolide, a natural product derived from Feverfew, prevents septic shock and inflammation. We aimed to identify the effects of parthenolide on the RANKL (receptor activator of NF-κB ligand)-induced differentiation and bone resorbing activity of osteoclasts. In this study, parthenolide dose-dependently inhibited RANKL-mediated osteoclast differentiation in BMMs, without any evidence of cytotoxicity and the phosphorylation of p38, ERK, and IκB, as well as IκB degradation by RANKL treatment. Parthenolide suppressed the expression of NFATc1, OSCAR, TRAP, DC-STAMP, and cathepsin K in RANKL-treated BMMs. Furthermore, parthenolide down-regulated the stability of c-Fos protein, but could not suppress the expression of c-Fos. Overexpression of NFATc1 and c-Fos in BMMs reversed the inhibitory effect of parthenolide on RANKL-mediated osteoclast differentiation. Parthenolide also inhibited the bone resorbing activity of mature osteoclasts. Parthenolide inhibits the differentiation and bone-resolving activity of osteoclast by RANKL, suggesting its potential therapeutic value for bone destructive disorders associated with osteoclast-mediated bone resorption.

  16. Decreased Osteoclastogenesis and High Bone Mass in Mice with Impaired Insulin Clearance Due to Liver-Specific Inactivation to CEACAM1

    PubMed Central

    Huang, S.; Kaw, M.; Harris, M.T.; Ebraheim, N.; McInerney, M.F.; Najjar, S.M.; Lecka-Czernik, B.

    2010-01-01

    Type 2 diabetes is associated with normal-to-higher bone mineral density (BMD) and increased rate of fracture. Hyperinsulinemia and hyperglycemia may affect bone mass and quality in the diabetic skeleton. In order to dissect the effect of hyperinsulinemia from the hyperglycemic impact on bone homeostasis, we have analyzed L-SACC1 mice, a murine model of impaired insulin clearance in liver causing hyperinsulinemia and insulin resistance without fasting hyperglycemia. Adult L-SACC1 mice exhibit significantly higher trabecular and cortical bone mass, attenuated bone formation as measured by dynamic histomorphometry, and reduced number of osteoclasts. Serum levels of bone formation (BALP) and bone resorption markers (TRAP5b and CTX) are decreased by approximately 50%. The L-SACC1 mutation in the liver affects myeloid cell lineage allocation in the bone marrow: the (CD3−CD11b−CD45R−) population of osteoclast progenitors is decreased by 40% and the number of (CD3−CD11b−CD45R+) B-cell progenitors is increased by 60%. L-SACC1 osteoclasts express lower levels of c-fos and RANK and their differentiation is impaired. In vitro analysis corroborated a negative effect of insulin on osteoclast recruitment, maturation and the expression levels of c-fos and RANK transcripts. Although bone formation is decreased in L-SACC1 mice, the differentiation potential and expression of the osteoblast-specific gene markers in L-SACC1-derived mesenchymal stem cells (MSC) remain unchanged as compared to the WT. Interestingly, however MSC from L-SACC1 mice exhibit increased PPARγ2 and decreased IGF-1 transcript levels. These data suggest that high bone mass in L-SACC1 animals results, at least in part, from a negative regulatory effect of insulin on bone resorption and formation, which leads to decreased bone turnover. Because low bone turnover contributes to decreased bone quality and an increased incidence of fractures, studies on L-SACC1 mice may advance our understanding of altered bone homeostasis in type 2 diabetes. PMID:20044046

  17. The blocking of uPAR suppresses lipopolysaccharide‐induced inflammatory osteoclastogenesis and the resultant bone loss through attenuation of integrin β3/Akt pathway

    PubMed Central

    Ishisaki, Akira; Miyashita, Mei; Matsuo, Osamu

    2016-01-01

    Abstract Introduction Chronic inflammatory diseases, such as rheumatoid arthritis and periodontitis, cause the bone destruction by promotion of the differentiation of monocyte/macrophage lineage cells into mature osteoclasts (OCs) with active bone‐resorbing character. However, the detailed mechanisms underlying this disorder remain unclear. We herein investigated the role of urokinase plasminogen activator receptor (uPAR) in the bone destruction caused by chronic inflammation. Methods We investigated that the effect of uPAR on inflammatory OC formation induced by lipopolysaccharide (LPS) in inflammatory diseases. Results We found that the LPS more weakly induced OC formation and the resultant bone loss in uPAR‐deficient mice than in wild‐type mice. Additionally, we demonstrated that uPAR significantly potentiated LPS‐induced OC formation of RAW264.7 mouse monocyte/macrophage linage cells in integrin β3/Akt‐dependent manner. Moreover, we showed that the blocking of uPAR function by the administration of anti‐uPAR neutralizing antibody significantly attenuated the LPS‐induced OC formation and the resultant bone loss in mice. Conclusions These results strongly suggest that uPAR negatively regulates the LPS‐induced inflammatory OC formation and the resultant bone loss mediated through the integrin β3/Akt pathway. Our findings partly clarify the molecular mechanisms underlying bone destruction caused by chronic inflammatory diseases, and would benefit research on identifying antibody therapy for the treatment of these diseases.

  18. The blocking of uPAR suppresses lipopolysaccharide‐induced inflammatory osteoclastogenesis and the resultant bone loss through attenuation of integrin β3/Akt pathway

    PubMed Central

    Ishisaki, Akira; Miyashita, Mei; Matsuo, Osamu

    2016-01-01

    Abstract Introduction Chronic inflammatory diseases, such as rheumatoid arthritis and periodontitis, cause the bone destruction by promotion of the differentiation of monocyte/macrophage lineage cells into mature osteoclasts (OCs) with active bone‐resorbing character. However, the detailed mechanisms underlying this disorder remain unclear. We herein investigated the role of urokinase plasminogen activator receptor (uPAR) in the bone destruction caused by chronic inflammation. Methods We investigated that the effect of uPAR on inflammatory OC formation induced by lipopolysaccharide (LPS) in inflammatory diseases. Results We found that the LPS more weakly induced OC formation and the resultant bone loss in uPAR‐deficient mice than in wild‐type mice. Additionally, we demonstrated that uPAR significantly potentiated LPS‐induced OC formation of RAW264.7 mouse monocyte/macrophage linage cells in integrin β3/Akt‐dependent manner. Moreover, we showed that the blocking of uPAR function by the administration of anti‐uPAR neutralizing antibody significantly attenuated the LPS‐induced OC formation and the resultant bone loss in mice. Conclusions These results strongly suggest that uPAR negatively regulates the LPS‐induced inflammatory OC formation and the resultant bone loss mediated through the integrin β3/Akt pathway. Our findings partly clarify the molecular mechanisms underlying bone destruction caused by chronic inflammatory diseases, and would benefit research on identifying antibody therapy for the treatment of these diseases. PMID:27621816

  19. Rebamipide Attenuates Mandibular Condylar Degeneration in a Murine Model of TMJ-OA by Mediating a Chondroprotective Effect and by Downregulating RANKL-Mediated Osteoclastogenesis

    PubMed Central

    Izawa, Takashi; Mori, Hiroki; Shinohara, Tekehiro; Mino-Oka, Akiko; Hutami, Islamy Rahma; Iwasa, Akihiko; Tanaka, Eiji

    2016-01-01

    Temporomandibular joint osteoarthritis (TMJ-OA) is characterized by progressive degradation of cartilage and changes in subchondral bone. It is also one of the most serious subgroups of temporomandibular disorders. Rebamipide is a gastroprotective agent that is currently used for the treatment of gastritis and gastric ulcers. It scavenges reactive oxygen radicals and has exhibited anti-inflammatory potential. The aim of this study was to investigate the impact of rebamipide both in vivo and in vitro on the development of cartilage degeneration and osteoclast activity in an experimental murine model of TMJ-OA, and to explore its mode of action. Oral administration of rebamipide (0.6 mg/kg and 6 mg/kg) was initiated 24 h after TMJ-OA was induced, and was maintained daily for four weeks. Rebamipide treatment was found to attenuate cartilage degeneration, to reduce the number of apoptotic cells, and to decrease the expression levels of matrix metalloproteinase-13 (MMP-13) and inducible nitric oxide synthase (iNOS) in TMJ-OA cartilage in a dose-dependent manner. Rebamipide also suppressed the activation of transcription factors (e.g., NF-κB, NFATc1) and mitogen-activated protein kinases (MAPK) by receptor activator of nuclear factor kappa-B ligand (RANKL) to inhibit the differentiation of osteoclastic precursors, and disrupted the formation of actin rings in mature osteoclasts. Together, these results demonstrate the inhibitory effects of rebamipide on cartilage degradation in experimentally induced TMJ-OA. Furthermore, suppression of oxidative damage, restoration of extracellular matrix homeostasis of articular chondrocytes, and reduced subchondral bone loss as a result of blocked osteoclast activation suggest that rebamipide is a potential therapeutic strategy for TMJ-OA. PMID:27123995

  20. Rebamipide Attenuates Mandibular Condylar Degeneration in a Murine Model of TMJ-OA by Mediating a Chondroprotective Effect and by Downregulating RANKL-Mediated Osteoclastogenesis.

    PubMed

    Izawa, Takashi; Mori, Hiroki; Shinohara, Tekehiro; Mino-Oka, Akiko; Hutami, Islamy Rahma; Iwasa, Akihiko; Tanaka, Eiji

    2016-01-01

    Temporomandibular joint osteoarthritis (TMJ-OA) is characterized by progressive degradation of cartilage and changes in subchondral bone. It is also one of the most serious subgroups of temporomandibular disorders. Rebamipide is a gastroprotective agent that is currently used for the treatment of gastritis and gastric ulcers. It scavenges reactive oxygen radicals and has exhibited anti-inflammatory potential. The aim of this study was to investigate the impact of rebamipide both in vivo and in vitro on the development of cartilage degeneration and osteoclast activity in an experimental murine model of TMJ-OA, and to explore its mode of action. Oral administration of rebamipide (0.6 mg/kg and 6 mg/kg) was initiated 24 h after TMJ-OA was induced, and was maintained daily for four weeks. Rebamipide treatment was found to attenuate cartilage degeneration, to reduce the number of apoptotic cells, and to decrease the expression levels of matrix metalloproteinase-13 (MMP-13) and inducible nitric oxide synthase (iNOS) in TMJ-OA cartilage in a dose-dependent manner. Rebamipide also suppressed the activation of transcription factors (e.g., NF-κB, NFATc1) and mitogen-activated protein kinases (MAPK) by receptor activator of nuclear factor kappa-B ligand (RANKL) to inhibit the differentiation of osteoclastic precursors, and disrupted the formation of actin rings in mature osteoclasts. Together, these results demonstrate the inhibitory effects of rebamipide on cartilage degradation in experimentally induced TMJ-OA. Furthermore, suppression of oxidative damage, restoration of extracellular matrix homeostasis of articular chondrocytes, and reduced subchondral bone loss as a result of blocked osteoclast activation suggest that rebamipide is a potential therapeutic strategy for TMJ-OA. PMID:27123995

  1. Fisetin inhibits osteoclastogenesis through prevention of RANKL-induced ROS production by Nrf2-mediated up-regulation of phase II antioxidant enzymes.

    PubMed

    Sakai, Eiko; Shimada-Sugawara, Megumi; Yamaguchi, Yu; Sakamoto, Hiroshi; Fumimoto, Reiko; Fukuma, Yutaka; Nishishita, Kazuhisa; Okamoto, Kuniaki; Tsukuba, Takayuki

    2013-01-01

    Osteoclasts (OCLs) are multinucleated bone-resorbing cells that are differentiated by stimulation with receptor activator of nuclear factor kappa-B ligand (RANKL) and macrophage colony-stimulating factor. We recently demonstrated that regulation of heme-oxygenase 1 (HO-1), a stress-induced cytoprotective enzyme, also functions in OCL differentiation. In this study, we investigated effects of fisetin, a natural bioactive flavonoid that has been reported to induce HO-1 expression, on the differentiation of macrophages into OCLs. Fisetin inhibited the formation of OCLs in a dose-dependent manner and suppressed the bone-resorbing activity of OCLs. Moreover, fisetin-treated OCLs showed markedly decreased phosphorylation of extracellular signal-regulated kinase, Akt, and Jun N-terminal kinase, but fisetin did not inhibit p38 phosphorylation. Fisetin up-regulated mRNA expression of phase II antioxidant enzymes including HO-1 and interfered with RANKL-mediated reactive oxygen species (ROS) production. Studies with RNA interference showed that suppression of NF-E2-related factor 2 (Nrf2), a key transcription factor for phase II antioxidant enzymes, rescued fisetin-mediated inhibition of OCL differentiation. Furthermore, fisetin significantly decreased RANKL-induced nuclear translocation of cFos and nuclear factor of activated T cells cytoplasmic-1 (NFATc1), which is a transcription factor critical for osteoclastogenic gene regulation. Therefore, fisetin inhibits OCL differentiation through blocking RANKL-mediated ROS production by Nrf2-mediated up-regulation of phase II antioxidant enzymes.

  2. Regulation of the vitamin D receptor by vitamin D lactam derivatives.

    PubMed

    Asano, Lisa; Waku, Tsuyoshi; Abe, Rumi; Kuwabara, Naoyuki; Ito, Ichiaki; Yanagisawa, Junn; Nagasawa, Kazuo; Shimizu, Toshiyuki

    2016-09-01

    The active metabolite of vitamin D3 , 1α,25-dihydroxyvitamin D3 , acts as a ligand for the vitamin D receptor (VDR) and activates VDR-mediated gene expression. Recently, we characterized 1α,25-dihydroxyvitamin D3 -26,23-lactams (DLAMs), which mimic vitamin D3 metabolites, as noncalcemic VDR ligands that barely activate the receptor. In this study, we present structural insights onto the regulation of VDR function by DLAMs. X-ray crystallographic analysis revealed that DLAMs induced a large conformational change in the loop region between helices H6 and H7 in the VDR ligand-binding domain. Our structural analysis suggests that targeting of the loop region may be a new mode of VDR regulation. PMID:27500498

  3. Clinical Significance of FGF-23 in Patients with CKD

    PubMed Central

    Russo, Domenico; Battaglia, Yuri

    2011-01-01

    FGF23 is a bone-derived hormone that plays an important role in the regulation of phosphate and 1,25-dihydroxy vitamin D metabolism. FGF23 principally acts in the kidney to induce urinary phosphate excretion and suppress 1,25-dihydroxyvitamin D synthesis in the presence of FGF receptor 1 (FGFR1) and its coreceptor Klotho. In patients with chronic kidney disease (CKD), circulating FGF23 levels are progressively increased to compensate for persistent phosphate retention, but this results in reduced renal production of 1,25-dihydroxyvitamin D and leads to hypersecretion of parathyroid hormone. Furthermore, FGF23 is associated with vascular dysfunction, atherosclerosis, and left ventricular hypertrophy. This paper summarizes the role of FGF23 in the pathogenesis of mineral, bone, and cadiovascular disorders in CKD. PMID:21603159

  4. Sunlight and Vitamin D

    PubMed Central

    Wacker, Matthias; Holick, Michael F.

    2013-01-01

    Vitamin D is the sunshine vitamin that has been produced on this earth for more than 500 million years. During exposure to sunlight 7-dehydrocholesterol in the skin absorbs UV B radiation and is converted to previtamin D3 which in turn isomerizes into vitamin D3. Previtamin D3 and vitamin D3 also absorb UV B radiation and are converted into a variety of photoproducts some of which have unique biologic properties. Sun induced vitamin D synthesis is greatly influenced by season, time of day, latitude, altitude, air pollution, skin pigmentation, sunscreen use, passing through glass and plastic, and aging. Vitamin D is metabolized sequentially in the liver and kidneys into 25-hydroxyvitamin D which is a major circulating form and 1,25-dihydroxyvitamin D which is the biologically active form respectively. 1,25-dihydroxyvitamin D plays an important role in regulating calcium and phosphate metabolism for maintenance of metabolic functions and for skeletal health. Most cells and organs in the body have a vitamin D receptor and many cells and organs are able to produce 1,25-dihydroxyvitamin D. As a result 1,25-dihydroxyvitamin D influences a large number of biologic pathways which may help explain association studies relating vitamin D deficiency and living at higher latitudes with increased risk for many chronic diseases including autoimmune diseases, some cancers, cardiovascular disease, infectious disease, schizophrenia and type 2 diabetes. A three-part strategy of increasing food fortification programs with vitamin D, sensible sun exposure recommendations and encouraging ingestion of a vitamin D supplement when needed should be implemented to prevent global vitamin D deficiency and its negative health consequences. PMID:24494042

  5. [Hypercalcemia in sarcoidosis--case report, prevalence, pathophysiology and therapeutic options].

    PubMed

    Ackermann, D

    2007-05-01

    Hypercalcemia is a highly prevalent complication of sarcoidosis. A medical history of a patient with sarcoidosis is shown as case report. Depending on the population studied about 2-63% of sarcoidosis patients show hypercalcemia. The major difference in the prevalence of hypercalcemia may be in part due to the undulating course of subacute sarcoidosis, so hypercalcemia may be missed when serum calcium is not frequently measured. Hypercalciuria appears to be twice as prevalent then hypercalcemia and should be looked for in every sarcoidosis patient. Hypercalcemia in sarcoidosis is due to the uncontrolled synthesis of 1,25-dihydroxyvitamin D3 by macrophages. 1,25-dihydroxyvitamin D3 leads to an increased absorption of calcium in the intestine and to an increased resorption of calcium in the bone. Immunoregulatory properties have been ascribed to 1,25-dihydroxyvitamin D3. It is an important inhibitor of interleukin-2 and of interferon-gamma-synthesis, two cytokines that are important in granuloma formation in sarcoidosis. It is thought that 1,25-dihydroxyvitamin D3 counterregulates uncontrolled granuloma formation. Treatment of hypercalcemia depends on the serum level of hypercalcemia and its persistence. Generally sarcoidotic patients should be advised to avoid sun exposition to reduce vitamin D3 synthesis in the skin, to omit fish oils that are rich of vitamin D and to produce more than two liters urine a day by adapting fluid intake. Although severe hypercalcemia seems to be rare, glucocorticosteroid treatment should be started if corrected total calcium level rises beyond 3 mmol/l. If hypercalcemia is symptomatic, treatment should be started even at lower levels. Glucocorticosteroids act by inhibition of the overly 1alpha-hydroxylase activity of macrophages. Alternatively, treatment with chloroquine or ketoconazole can be established. If isolated hypercalciuria without hypercalcemia is present with evidence for recurrent nephrolithiasis, patients can be treated

  6. [Vitamin D: implications for health and pregnancy].

    PubMed

    Díaz, L; Cariño, C; Méndez, I

    2001-01-01

    Vitamin D gained importance since the discovery of its steroid structure. Vitamin D participates in mineral homeostasis, regulation of gene expression, and cell differentiation. Recent advances in the study of the enzyme involved in the conversion of 25-hydroxyvitamin D3 into 1,25-dihydroxyvitamin D3 (calcitriol), as well as the discovery of it's hormone mechanism of action, have led to a better knowledge and understanding of vitamin D endocrine system, as well as it's implication in health and pregnancy.

  7. Inter-relationship of fat-soluble vitamins in progression of renal calcification

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Both 1alpha, 25 dihydroxyvitamin D3 (1,25D, 5.0 ug/kg diet) and 9-cis retinoic acid (9cRA, 15 mg/kg diet) inhibited lung carcinogenesis in a tobacco carcinogen (NNK)-initiated A/J mouse model, but 9cRA mitigated 1,25D-induced renal calcification (Mernitz et al, 2007). Matrix gamma-carboxyglutamic ac...

  8. Dahl salt-sensitive rats develop hypovitaminosis D and hyperparathyroidism when fed a standard diet

    NASA Technical Reports Server (NTRS)

    Thierry-Palmer, Myrtle; Cephas, Stacy; Sayavongsa, Phouyong; Doherty, Akins; Arnaud, Sara B.

    2005-01-01

    The Dahl salt-sensitive rat (S), a model for salt-sensitive hypertension, excretes protein-bound 25-hydroxyvitamin D (25-OHD) into urine when fed a low salt diet. Urinary 25-OHD increases during high salt intake. We tested the hypothesis that continuous loss of 25-OHD into urine would result in low plasma 25-OHD concentration in mature S rats raised on a standard diet. Dahl S and salt-resistant (R) male rats were raised to maturity (12-month-old) on a commercial rat diet (1% salt) and switched to 0.3% (low) or 2% (high) salt diets 3 weeks before euthanasia. Urine (24 h) was collected at the end of the dietary treatments. Urinary 25-OHD and urinary 25-OHD binding activity of S rats were three times that of R rats, resulting in lower plasma 25-OHD and 24,25-dihydroxyvitamin D concentrations in S rats than in R rats (P < 0.001). Plasma parathyroid hormone concentrations of S rats were twice that of R rats. S rats fed 2% salt had higher plasma 1,25-dihydroxyvitamin D concentrations than those fed 0.3% salt (P = 0.002). S rats excreted more calcium into urine than R rats (P < 0.001) and did not exhibit the expected calciuric response to salt. Proteinuria of the S rats was three times that of the R rats, suggesting kidney damage in the S rats. Low plasma 25-OHD and 24,25-dihydroxyvitamin D and high plasma 1,25-dihydroxyvitamin D and PTH concentrations seen in the mature S rats have also been reported for elderly patients with low-renin (salt-induced) hypertension. An implication of this study is that low vitamin D status may occur with age in salt-sensitive individuals, even when salt intake is norm