Science.gov

Sample records for 25-disk rotary microfilter

  1. TESTING AND EVALUATION OF THE MODIFIED DESIGN OF THE 25-DISK ROTARY MICROFILTER

    SciTech Connect

    Herman, D; Michael Poirier, M; Samuel Fink, S

    2006-09-29

    This report details redesign of a commercially available rotary microfilter to meet the operational and maintenance requirements for radioactive service. Personnel developed the design and coordinated procurement of two filters followed by testing of one unit. System testing examined the ability to rinse soluble material from the system, filtration performance using several insoluble solids loadings, effectiveness in washing sludge, amount of wear to parts and maintenance of the system including the insertion and removal of the filter stack, and the ability to flush solids from the system. The test program examined flushing the filter for soluble material by filling the system with a Rhodamine WT dye solution. Results showed that draining the system and rinsing with 50 gallons of water resulted in grater than 100X reduction of the dye concentration. Personnel determined filter performance using various amounts of insoluble sludge solids ranging from 0.06 to 15 weight percent (wt%) insoluble solids in a 3 molar (M) sodium simulated supernate. Through approximately 120 hours of start-and-stop (i.e., day shift) operation and various insoluble solids loadings, the filter produced filtration rates between 3 and 7 gallons per minute (gpm) (0.12-0.29 gpm/ft{sup 2}) for a 25-disk filter. Personnel washed approximately 80 gallons of simulated sludge using 207 gallons of inhibited water. Washing occurred at constant volume with wash water fed to a well mixed tank at the same rate as filtrate removal. Performance measurement involved collecting and analyzing samples throughout the washing for density and sodium content. Results showed an effective washing, mimicking a predicted dilution calculation for a well mixed tank and reducing the sodium concentration from 3.2 M to less than 0.3 M. Filtration rates during the washing process ranged between 3 and 4.3 gpm for one filter unit. The filter system then concentrated the washed 15 wt% insoluble solids slurry to approximately 20

  2. BACKPRESSURE TESTING OF ROTARY MICROFILTER DISKS

    SciTech Connect

    Fowley, M.; Herman, D.

    2011-04-14

    The Savannah River National Laboratory (SRNL), under the Department of Energy (DOE) Office of Environmental Management (EM), is modifying and testing the SpinTek{trademark} rotary microfilter (RMF) for radioactive filtration service in the Department of Energy (DOE) complex. The RMF has been shown to improve filtration throughput when compared to other conventional methods such as cross-flow filtration. A concern with the RMF was that backpressure, or reverse flow through the disk, would damage the filter membranes. Reverse flow might happen as a result of an inadvertent valve alignment during flushing. Testing was completed in the Engineering Development Laboratory (EDL) located in SRNL to study the physical effects of backpressure as well as to determine the maximum allowable back-pressure for RMF disks. The RMF disks tested at the EDL were manufactured by SpinTek{trademark} Filtration and used a Pall Corporation PMM050 filter membrane (0.5 micron nominal pore size) made from 316L stainless steel. Early versions of the RMF disks were made from synthetic materials that were incompatible with caustic solutions and radioactive service as well as being susceptible to delaminating when subjected to backpressure. Figure 1-1 shows the essential components of the RMF; 3 rotating disks and 3 stationary turbulence promoters (or shear elements) are shown. Figure 1-2 show the assembly view of a 25 disk RMF proposed for use at the Savannah River Site (SRS) and at the Hanford Facility. The purpose of the testing discussed in this report was to determine the allowable backpressure for RMF disks as well as study the physical effects of backpressure on RMF disks made with the Pall PMM050 membrane. This was accomplished by pressurizing the disks in the reverse flow direction (backpressure) until the test limit was reached or until membrane failure occurred. Backpressure was applied to the disks with air while submerged in deionized (DI) water. This method provided a visual

  3. TESTING OF A FULL-SCALE ROTARY MICROFILTER FOR THE ENHANCED PROCESS FOR RADIONUCLIDES REMOVAL

    SciTech Connect

    Herman, D; David Stefanko, D; Michael Poirier, M; Samuel Fink, S

    2009-01-01

    Savannah River National Laboratory (SRNL) researchers are investigating and developing a rotary microfilter for solid-liquid separation applications in the Department of Energy (DOE) complex. One application involves use in the Enhanced Processes for Radionuclide Removal (EPRR) at the Savannah River Site (SRS). To assess this application, the authors performed rotary filter testing with a full-scale, 25-disk unit manufactured by SpinTek Filtration with 0.5 micron filter media manufactured by Pall Corporation. The filter includes proprietary enhancements by SRNL. The most recent enhancement is replacement of the filter's main shaft seal with a John Crane Type 28LD gas-cooled seal. The feed material was SRS Tank 8F simulated sludge blended with monosodium titanate (MST). Testing examined total insoluble solids concentrations of 0.06 wt % (126 hours of testing) and 5 wt % (82 hours of testing). The following are conclusions from this testing.

  4. Evaluation of Alternative Filter Media for the Rotary Microfilter

    SciTech Connect

    Poirier, M. R.; Herman, D. T.; Bhave, R.

    2011-11-09

    The Savannah River Site is currently developing and testing several processes to treat high level radioactive liquid waste. Each of these processes has a solid-liquid separation process that limits its throughput. Savannah River National Laboratory researchers identified and tested the rotary microfilter as a technology to increase solid-liquid separation throughput. The authors believe the rotary microfilter throughput can be improved by using a better filter membrane. Previous testing showed that asymmetric filters composed of a ceramic membrane on top of a stainless steel support produced higher filter flux than 100% stainless steel symmetric filters in crossflow filter tests. Savannah River National Laboratory and Oak Ridge National Laboratory are working together to develop asymmetric ceramic ? stainless steel composite filters and asymmetric 100% stainless steel filters to improve the throughput of the rotary microfilter. The Oak Ridge National Laboratory Inorganic Membrane Group fabricated samples of alternative filter membranes. In addition, Savannah River National Laboratory obtained samples of filter membranes from Pall, Porvair, and SpinTek. They tested these samples in a static test cell with feed slurries containing monosodium titanate and simulated sludge.

  5. EVALUATION OF ALTERNATIVE FILTER MEDIA FOR THE ROTARY MICROFILTER

    SciTech Connect

    Poirier, M.; Herman, D.; Bhave, R.

    2011-09-13

    SRS is currently developing and testing several processes to treat high level radioactive liquid waste. These processes include the Integrated Salt Disposition Process (ISDP), the Salt Waste Processing Facility (SWPF), and the Small Column Ion Exchange Process (SCIX). Each of these processes has a solid-liquid separation process that limits its throughput. SRNL researchers identified and tested the rotary microfilter as a technology to increase solid-liquid separation throughput. The testing showed significant improvement in filter flux with the rotary microfilter over the baseline crossflow filter (i.e., 2.5-6.5X during scoping tests, as much as 10X in actual waste tests, and approximately 3X in pilot-scale tests). SRNL received funding from DOE EM-21, and subsequently DOE EM-31 to develop the rotary microfilter for high level radioactive service. The work has included upgrading the rotary microfilter for radioactive service, testing with simulated SRS waste streams, and testing it with simulated Hanford waste streams. While the filtration rate is better than that obtained during testing of crossflow filters, the authors believe the rotary microfilter throughput can be improved by using a better filter membrane. The rotary microfilter membrane is made of stainless steel (Pall PMM050). Previous testing, funded by DOE EM-21, showed that asymmetric filters composed of a ceramic membrane on top of a stainless steel support produced higher filter flux than 100% stainless steel symmetric filters in crossflow filter tests. In that testing, the Pall Accusep and Graver filters produced 13-21% larger filter flux than the baseline 0.1 {micro}m Mott filter. While the improvement in flux is not as dramatic as the improvement of the rotary filter over a crossflow filter, a 13-21% increase could reduce the lifetime of a 30 year process by 4-6 years, with significant cost savings. Subsequent rotary filter testing showed the Pall PMM050 stainless steel filter membrane produced

  6. DEVELOPMENT OF A ROTARY MICROFILTER FOR RADIOACTIVE WASTE APPLICATIONS

    SciTech Connect

    Poirier, M; David Herman, D; Samuel Fink, S

    2008-02-25

    The processing rate of Savannah River Site (SRS) high-level waste decontamination processes are limited by the flow rate of the solid-liquid separation. The baseline process, using a 0.1 micron cross-flow filter, produces {approx}0.02 gpm/sq. ft. of filtrate under expected operating conditions. Savannah River National Laboratory (SRNL) demonstrated significantly higher filter flux for actual waste samples using a small-scale rotary filter. With funding from the U. S. Department of Energy Office of Cleanup Technology, SRNL personnel are evaluating and developing the rotary microfilter for radioactive service at SRS. The authors improved the design for the disks and filter unit to make them suitable for high-level radioactive service. They procured two units using the new design, tested them with simulated SRS wastes, and evaluated the operation of the units. Work to date provides the following conclusions and program status: (1) The authors modified the design of the filter disks to remove epoxy and Ryton{reg_sign}. The new design includes welding both stainless steel and ceramic coated stainless steel filter media to a stainless steel support plate. The welded disks were tested in the full-scale unit. They showed good reliability and met filtrate quality requirements. (2) The authors modified the design of the unit, making installation and removal easier. The new design uses a modular, one-piece filter stack that is removed simply by disassembly of a flange on the upper (inlet) side of the filter housing. All seals and rotary unions are contained within the removable stack. (3) While it is extremely difficult to predict the life of the seal, the vendor representative indicates a minimum of one year in present service conditions is reasonable. Changing the seal face material from silicon-carbide to a graphite-impregnated silicon-carbide is expected to double the life of the seal. Replacement of the current seal with an air seal could increase the lifetime to 5 years

  7. Recommendations for Additional Design Development of Components for the SpinTek Rotary Microfilter Prior to Radioactive Service

    SciTech Connect

    Herman, D.T.

    2004-02-13

    The SpinTek rotary microfilter is being considered as an alternative to crossflow filtration. Prior testing evaluated the vendor's standard design for a 1-disk and 3-disk design. We noted several areas of improvement during the testing of the two filter systems that can be included in the 25-disk plant size unit.This report outlines several potential enhancements and improvements to the vendor's standard design which would extend the lifetime of the unit and increase the ability to perform maintenance for units deployed in radioactive service. The enhancements proposed in this report can be implemented to the current design with minimal impact to the cost and schedule of the purchase of the standard unit. An example of this is the replacement of the current mechanical seal with a bellows seal. The improvements proposed will require an extensive redesign of components found in the current system such as the filter chamber.

  8. DEVELOPMENT OF A LAMINATED DISK FOR THE SPIN TEK ROTARY MICROFILTER

    SciTech Connect

    Herman, D.

    2011-06-03

    Funded by the Department of Energy Office of Environmental Management, EM-31, the Savannah River National Laboratory (SRNL) partnered with SpinTek Filtration{trademark} to develop a filter disk that would withstand a reverse pressure or flow during operation of the rotary microfilter. The ability to withstand a reverse pressure and flow eliminates a potential accident scenario that could have resulted in damage to the filter membranes. While the original welded filter disks have been shown to withstand and reverse pressure/flow in the static condition, the filter disk design discussed in this report will allow a reverse pressure/flow while the disks are rotating. In addition, the laminated disk increases the flexibility during filter startup and cleaning operations. The new filter disk developed by SRNL and SpinTek is manufactured with a more open structure significantly reducing internal flow restrictions in the disk. The prototype was tested at the University of Maryland and demonstrated to withstand the reverse pressure due to the centrifugal action of the rotary filter. The tested water flux of the disk was demonstrated to be 1.34 gpm in a single disk test. By comparison, the water flux of the current disk was 0.49 gpm per disk during a 25 disk test. The disk also demonstrated rejection of solids by filtering a 5 wt % Strontium Carbonate slurry with a filtrate clarity of less the 1.4 Nephelometric Turbidity Units (NTU) throughout the two hour test. The Savannah River National Laboratory (SRNL) has been working with SpinTek Filtration{trademark} to adapt the rotary microfilter for radioactive service in the Department of Energy (DOE) Complex. One potential weakness is the loose nature of the membrane on the filter disks. The current disk is constructed by welding the membrane at the outer edge of the disk. The seal for the center of the membrane is accomplished by an o-ring in compression for the assembled stack. The remainder of the membrane is free floating on

  9. EVALUATION OF ALTERNATIVE FILTER MEDIA FOR THE ROTARY MICROFILTER, PHASE 2

    SciTech Connect

    Fowley, M.

    2012-07-31

    Testing was conducted at the Savannah River National Laboratory (SRNL) to investigate filter membrane performance in an effort to increase rotary microfilter (RMF) throughput. Membranes were tested in the SpinTek Filtration, Inc. Static Test Cell (STC), which permitted quick and easy testing of several different membranes. Testing consisted of 100 hours tests with two different slurry feeds, based on recommendations from the phase 1 testing. One feed contained Monosodium Titanate (MST) solids in a simulated salt solution. The other feed contained simulated sludge batch 6 (SB6) solids in a simulated salt solution. Five membranes were tested, one each from filter manufactures Pall and Porvair and three from the Oak Ridge National Laboratory (ORNL). The membrane from Pall is the current membrane used on the latest generation RMF. The Porvair membrane performed well in previous STC tests as well as one of the ORNL membranes. The other two membranes from ORNL were recently developed and not available for the previous STC test. The results indicate that the Porvair filter performed best with the MST slurry and the ORNL SVB6-1B filter performed best with the SB6 slurry. Difficulty was encountered with the ORNL filters due to their dimensional thickness, which was greater than the recommended filter thickness for the STC. The STC equipment was modified to complete the testing of the ORNL filters.

  10. TESTING OF THE SPINTEK ROTARY MICROFILTER USING ACTUAL HANFORD WASTE SAMPLES

    SciTech Connect

    HUBER HJ

    2010-04-13

    The SpinTek rotary microfilter was tested on actual Hanford tank waste. The samples were a composite of archived Tank 241-AN-105 material and a sample representing single-shell tanks (SST). Simulants of the two samples have been used in non-rad test runs at the 222-S laboratory and at Savannah River National Laboratory (SRNL). The results of these studies are compared in this report. Two different nominal pore sizes for the sintered steel rotating disk filter were chosen: 0.5 and 0.1 {micro}m. The results suggest that the 0.5-{micro}m disk is preferable for Hanford tank waste for the following reasons: (1) The filtrate clarity is within the same range (<<4 ntu for both disks); (2) The filtrate flux is in general higher for the 0.5-{micro}m disk; and (3) The 0.1-{micro}m disk showed a higher likelihood of fouling. The filtrate flux of the actual tank samples is generally in the range of 20-30% compared to the equivalent non-rad tests. The AN-105 slurries performed at about twice the filtrate flux of the SST slurries. The reason for this difference has not been identified. Particle size distributions in both cases are very similar; comparison of the chemical composition is not conclusive. The sole hint towards what material was stuck in the filter pore holes came from the analysis of the dried flakes from the surface of the fouled 0.1-{micro}m disk. A cleaning approach developed by SRNL personnel to deal with fouled disks has been found adaptable when using actual Hanford samples. The use of 1 M nitric acid improved the filtrate flux by approximately two times; using the same simulants as in the non-rad test runs showed that the filtrate flux was restored to 1/2 of its original amount.

  11. EVALUATION OF AP-FARM SIMULANT COMPOSITION FOR ROTARY MICROFILTER TESTING

    SciTech Connect

    HUBER HJ

    2011-09-19

    This document identifies the feed composition of a Hanford AP tank farm simulant for rotary microfiltration testing. The composition is based on an Hanford Tank Waste Operations Simulator (HTWOS) model run in combination with Tank Waste Information Network (TWINS) data and mineralogical studies of actual waste solids. The feed simulant is intended to be used in test runs at SRNL. The simulant will be prepared in two parts: (1) A supernate, composed of water-soluble salts and (2) The undissolved (actually, undissolvable) solids. Test slurries with distinct solids concentrations (e.g., 0.5, 5 and 10 wt%) are then prepared as needed. The base for the composition of supernate and solids is the modeled feed sequence for a deployment scenario of the Supplemental Pretreatment units within AP-farm. These units comprise a filtration part, the RMF, and a Cesium-removal part, a Small Column Ion Exchange. The primary use of this simulant is for filtration testing - however, in case that it is also used for ion-exchange tests, the amount of Cs-137 that would need to be added is available in Table 1 and Attachment 3. A modified model run (MMR-049) of the Hanford Tank Waste Operations Simulator (HTWOS) system plan 6 case 3 was performed to identify the feed sequence. Case 3 assumed supplemental treatment besides the low activity waste (LAW) melter with supplemental pretreatment supporting the pretreatment facility. The MMR did not cap the duration of supplemental pretreatment to 15 months, but rather used it throughout the entire treatment mission as an add-on option to the pretreatment facility at the Waste Treatment and Immobilization Plant (WTP). Tank 241-AP-105 (AP-105) was chosen as the feed tank to the filtration unit. Other parameters included a fixed minimum of 0.5 wt% solids in the feed and a maximum Na-concentration of 5M in the supernate. The solids rejection from the filtration unit was set to 99.99% and the maximum allowed amount of solids within tank AP-105 was set

  12. TESTING OF THE SECOND GENERATION SPINTEK ROTARY FILTER -11357

    SciTech Connect

    Herman, D.; Poirier, M.; Fowley, M.; Keefer, M.; Huff, T.

    2011-02-02

    The SpinTek rotary microfilter has been developed under the Department of Energy (DOE) Office of Environmental Management (EM) for the purpose of deployment in radioactive service in the DOE complex. The unit that was fabricated and tested is the second generation of the filter that incorporates recommended improvements from previous testing. The completion of this test satisfied a key milestone for the EM technology development program and technology readiness for deployment by Savannah River Remediation in the Small Column Ion Exchange and Sludge Washing processes at the Savannah River Site (SRS). The Savannah River National Laboratory (SRNL) contracted SpinTek Filtration to fabricate a full scale 25 disk rotary filter and perform a 1000 hour endurance test with a simulated SRS sludge. Over 1500 hours of operation have been completed with the filter. SpinTek Filtration fabricated a prototypic 25 disk rotary filter including updates to manufacturing tolerances, an updated design to the rotary joint, improved cooling to the bottom journal, decreases in disk and filter shaft hydraulic resistances. The filter disks were fabricated with 0.5 {micro} pore size, sintered-metal filter media manufactured by Pall Corporation (M050). After fabrication was complete, the filter passed acceptance tests demonstrating rejection of solids and clean water flux with a 50% improvement over the previous filters. Once the acceptance test was complete, a 1000 hour endurance test was initiated simulating a sludge washing process. The test used a simulated SRS Sludge Batch 6 recipe. The insoluble solids started at 5 wt% and were raised to 10 and 15 wt% insoluble solids to simulate the concentration of a large volume tank. The filter system was automated and set up for 24 hour unattended operation. To facilitate this, process control logic was written to operate the filter. During the development it was demonstrated that the method of starting and stopping the filter can affect the build

  13. A microfilter utilizing a polyethersulfone porous membrane with nanopores

    NASA Astrophysics Data System (ADS)

    Gu, Ye; Miki, Norihisa

    2007-11-01

    We present a novel microfilter system used for the selective separation of solutes of molecular sizes 1-2 nm. The microfilter system consists of two layers of micro chambers made of PDMS and one piece of porous membrane made of polyethersulfone (PES) using the wet-phase inversion method. The PES membrane at the center of the two micro chambers acts as a barrier to molecules larger than its pores. A novel method of bonding the PES membrane to PDMS surface was developed in the device fabrication, whereby diffusion in the microfilter was theoretically derived and applied in the filtering evaluation. The filtering capacity of this microfilter for molecules of molecular sizes from 0.3 nm to 6.6 nm was evaluated using solution samples of sodium chloride (NaCl) and fluorescein isothiocyanate (FITC) dextrans with molecular weights of 4k, 20k and 70k, respectively. The filtering experiments indicated that the optimal membrane used for the device was P2S2. This microfilter system with optimal PES membrane was believed to be capable of selective separation at a molecular size barrier of 1-2 nm and also believed to have the potential for use in portable hemodialysis systems.

  14. Microbial quality of drinking water from microfiltered water dispensers.

    PubMed

    Sacchetti, R; De Luca, G; Dormi, A; Guberti, E; Zanetti, F

    2014-03-01

    A comparison was made between the microbial quality of drinking water obtained from Microfiltered Water Dispensers (MWDs) and that of municipal tap water. A total of 233 water samples were analyzed. Escherichia coli (EC), enterococci (ENT), total coliforms (TC), Staphylococcus aureus, Pseudomonas aeruginosa and heterotrophic plate count (HPC) at 22 °C and 37 °C were enumerated. In addition, information was collected about the principal structural and functional characteristics of each MWD in order to study the various factors that might influence the microbial quality of the water. EC and ENT were not detected in any of the samples. TC were never detected in the tap water but were found in 5 samples taken from 5 different MWDs. S. aureus was found in a single sample of microfiltered water. P. aeruginosa was found more frequently and at higher concentrations in the samples collected from MWDs. The mean HPCs at 22 °C and 37 °C were significantly higher in microfiltered water samples compared to those of the tap water. In conclusion, the use of MWDs may increase the number of bacteria originally present in tap water. It is therefore important to monitor the quality of the dispensed water over time, especially if it is destined for vulnerable users.

  15. Rotary engine

    SciTech Connect

    Brownfield, L.A.

    1980-12-02

    The major components of this rotary engine are two equal sized rotary units, the housing containing them along with associated ignition and cooling systems. Each of the rotary units consists of a shaft, gear, two outer compressor wheels, and one center power wheel which has twice the axial thickness as the compressor wheel. All the wheels are cylindrical in shape with a lobe section comprising a 180/sup 0/ arc on the periphery of each wheel which forms an expanding and contracting volumetric chamber by means of leading and trailing lips. The lobes of the first rotary unit are situated 180/sup 0/ opposite the lobes of the second adjacent mating rotary unit, thus lobes can intermesh with its corresponding wheel.

  16. Rotary Transformer

    NASA Technical Reports Server (NTRS)

    McLyman, Colonel Wm. T.

    1996-01-01

    None given. From first Par: Many spacecraft (S/C) and surface rovers require the transfer of signals and power across rotating interfaces. Science instruments, antennas and solar arrays are elements needing rotary power transfer for certain (S/C) configurations. Delivery of signal and power has mainly been done by using the simplest means, the slip ring approach. This approach, although simple, leaves debris generating noise over a period of time...The rotary transformer is a good alternative to slip rings for signal and power transfer.

  17. Rotary ATPases

    PubMed Central

    Stewart, Alastair G.; Sobti, Meghna; Harvey, Richard P.; Stock, Daniela

    2013-01-01

    Rotary ATPases are molecular rotary motors involved in biological energy conversion. They either synthesize or hydrolyze the universal biological energy carrier adenosine triphosphate. Recent work has elucidated the general architecture and subunit compositions of all three sub-types of rotary ATPases. Composite models of the intact F-, V- and A-type ATPases have been constructed by fitting high-resolution X-ray structures of individual subunits or sub-complexes into low-resolution electron densities of the intact enzymes derived from electron cryo-microscopy. Electron cryo-tomography has provided new insights into the supra-molecular arrangement of eukaryotic ATP synthases within mitochondria and mass-spectrometry has started to identify specifically bound lipids presumed to be essential for function. Taken together these molecular snapshots show that nano-scale rotary engines have much in common with basic design principles of man made machines from the function of individual “machine elements” to the requirement of the right “fuel” and “oil” for different types of motors. PMID:23369889

  18. ROTARY SWITCH

    DOEpatents

    Watterberg, J.P.E.

    1960-03-15

    BS>A compact rotary-type switoh was designed wherein an insulating shell carries circumferentially spaced contacts exposed to its interior and also carries, on a re-entrant portion, resilient contact arms having contact portions aligned wth and biased toward the spaced contacts. A dielectric rotor with a movable wall between the contacts and contact arms has an aperture that may be turned into or out of registry with the contacts so as to establish or interrupt circuits.

  19. Rotary latch

    NASA Technical Reports Server (NTRS)

    Kramer, Joel M. (Inventor)

    1995-01-01

    A rotary latch is disclosed, including a hollow, cylindrical outer member and a concentrically arranged inner rotor. The rotor is rotatable within the outer cylindrical member. The outer cylindrical member includes a pair of aligned openings as a cylinder first end facing a latch pin. The rotor includes a pair of aligned slots at a rotor first end facing the latch pin. Slot extensions are provided in the rotor, the slot extensions extending generally perpendicularly to the slots and generally parallel to the rotor first end. In a first position, the outer cylindrical member openings and the rotor slots are aligned to allow receipt of the latch pin. In a second position, the openings and the slot extensions are aligned thereby engaging the latch pin within a closed area defined by the rotor slot extensions and the outer cylinder openings.

  20. Rotary engine

    SciTech Connect

    Meyman, U.

    1987-02-03

    A rotary engine is described comprising: two covers spaced from one another; rotors located between the covers and rotating and planetating in different phases; the rotors interengaging to form working chambers therebetween; means to supply fluid to the working chambers and means to exhaust fluid from the working chambers during the operating cycle of the engine; gearing for synchronizing rotation and planetation of the rotors and each including first and second gears arranged so that one of the gears is connected with the rotors while the other of the gears is connected with an immovable part of the engine and the gears engage with one another; carriers interconnecting the rotors and planetating in the same phase with the planetation of the rotors for synchronizing the rotation and planetation of the rotors; shafts arranged to support the carriers during their planetations; and elements for connecting the covers with one another.

  1. A cancer detection platform which measures telomerase activity from live circulating tumor cells captured on microfilter

    PubMed Central

    Xu, Tong; Lu, Bo; Tai, Yu-Chong; Goldkorn, Amir

    2010-01-01

    Circulating tumor cells (CTCs) quantified in cancer patients’ blood can predict disease outcome and response to therapy. However, the CTC analysis platforms commonly used cannot capture live CTCs and only apply to tumors of epithelial origin. To address these limitations, we have developed a novel cancer detection platform which measures telomerase activity from live CTCs captured on a Parylene-C slot microfilter. Using a constant low-pressure delivery system, the new microfilter platform was capable of cell capture from 1 ml of whole blood in less than 5 minutes, achieving 90% capture efficiency, 90% cell viability and 200-fold sample enrichment. Importantly, the captured cells retained normal morphology by scanning electron microscopy and could be readily manipulated, further analyzed, or expanded on or off filter. Telomerase activity – a well-recognized universal cancer marker – was reliably detected by qPCR from as few as 25 cancer cells spiked into 7.5 ml whole blood and captured on microfilter. Moreover, significant telomerase activity elevation also was measured from patient blood samples and from single cancer cells lifted off the microfilter. Live CTC capture and analysis is fast and simple yet highly quantitative, versatile, and applicable to nearly all solid tumor types, making this a highly promising new strategy for cancer detection and characterization. PMID:20663903

  2. Rotary engine

    SciTech Connect

    Russell, R.L.

    1987-03-31

    An internal combustion four cycle rotary engine is described comprising: a generally cylindrical having one or more accurately spaced cylinders, each carrying a piston therein extending radially of a central rotational axis of the rotor; stationary bearings support shaft means disposed coaxially of the rotor, unitary combustion chamber means carrying main bearing means for rotatably supporting the same on the shaft means and providing one or more individual combustion chambers, each independently communicating with one of the cylinders; the chamber means being mounted concentrically of the rotor and rotatably moveable therewith about the shaft means; cam means comprising a pair of registeringly aligned, axially spaced, continuously curvilinear cam track means which are formed radially assymmetrical about a central axis coincident with the rotational axis of the rotor; the pair of cam track means being located axially outwardly of the cylinders in parallel planes lying formal to the rotational axis and adjacent opposite axial ends of the rotor; cam rider assembly means, each having follower means engaged with the track means for following the contour thereof; and means coupling a rider assembly means to the piston in each cylinder whereby to effect reciprocal strokes of each piston coaxially of its associated cylinder and radially of the rotor in response to the movements of the follower means along the track means; the track means being constructed and arranged to produce distinctly dissimilar movements of the pistons, to produce strokes of unequal duration and length during the respective intake, compression, combustion and exhaust strokes thereof.

  3. Isolation of plasma from whole blood using planar microfilters for lab-on-a-chip applications.

    PubMed

    Crowley, Timothy A; Pizziconi, Vincent

    2005-09-01

    Researchers are actively developing devices for the microanalysis of complex fluids, such as blood. These devices have the potential to revolutionize biological analysis in a manner parallel to the computer chip by providing very high throughput screening of complex samples and massively parallel bioanalytical capabilities. A necessary step performed in clinical chemistry is the isolation of plasma from whole blood, and effective sample preparation techniques are needed for the development of miniaturized clinical diagnostic devices. This study demonstrates the use of passive, operating entirely on capillary action, transverse-flow microfilter devices for the microfluidic isolation of plasma from whole blood. Using these planar microfilters, blood can be controllably fractionated with minimal cell lysis. A characterization of the device performance reveals that plasma filter flux is dependent upon the wall shear rate of blood in the filtration channel, and this result is consistent with macroscale blood filtration using microporous membranes. Also, an innovative microfluidic layout is demonstrated that extends device operation time via capillary action from seconds to minutes. Efficiency of these microfilters is approximately three times higher than the separation efficiencies predicted for microporous membranes under similar conditions. As such, the application of the microscale blood filtration designs used in this study may have broad implications in the design of lab-on-a-chip devices, as well as the field of separation science.

  4. Rotary drive mechanism

    DOEpatents

    Kenderdine, Eugene W.

    1991-01-01

    A rotary drive mechanism includes a rotary solenoid having a stator and multi-poled rotor. A moving member rotates with the rotor and is biased by a biasing device. The biasing device causes a further rotational movement after rotation by the rotary solenoid. Thus, energization of the rotary solenoid moves the member in one direction to one position and biases the biasing device against the member. Subsequently, de-energization of the rotary solenoid causes the biasing device to move the member in the same direction to another position from where the moving member is again movable by energization and de-energization of the rotary solenoid. Preferably, the moving member is a multi-lobed cam having the same number of lobes as the rotor has poles. An anti-overdrive device is also preferably provided for preventing overdrive in the forward direction or a reverse rotation of the moving member and for precisely aligning the moving member.

  5. Rotary drill bit with rotary cutters

    SciTech Connect

    Brandenstein, M.; Ernst, H.M.; Kunkel, H.; Olschewski, A.; Walter, L.

    1981-03-31

    A rotary drill bit is described that has a drill bit body and at least one trunnion projecting from the drill bit body and a rotary cutter supported on at least one pair of radial rolling bearings on the trunnion. The rolling elements of at least one bearing are guided on at last one axial end facing the drill bit body in an outer bearing race groove incorporated in the bore of the rotary cutter. The inner bearing groove is formed on the trunnion for the rolling elements of the radial roller bearing. A filling opening is provided for assembly of the rolling elements comprising a channel which extends through the drill bit body and trunnion and is essentially axially oriented having one terminal end adjacent the inner bearing race groove and at least one filler piece for sealing the opening. The filling opening is arranged to provide a common filling means for each radial bearing.

  6. Rotary drill bit with rotary cutters

    SciTech Connect

    Lachonius, L.

    1981-04-28

    A rotary drill bit is described having a drill bit body and at least one trunnion projecting from the drill bit body and a rotary cutter supported on at least one radial roller bearing on the trunnion. The rolling elements of the bearing are guided on at least one axial end facing the drill bit body in an outer bearing race groove incorporated in the bore of the rotary cutter. The inner bearing race groove is formed on the trunnion for the rolling elements of the radial roller bearing. At least one filling opening is provided which extends through the drill bit body and trunnion and is essentially axially oriented having one terminal end adjacent the inner bearing race groove and at least one pair of filler piece for sealing the opening. One of the filler pieces is made of an elastically compressible material.

  7. Rotary drill bit with rotary cutter

    SciTech Connect

    Brandenstein, M.; Kunkel, H.; Olschewski, A.; Walter, L.

    1981-03-17

    A rotary drill bit having a drill bit body and at least one trunnion projecting from the drill bit body and a rotary cutter supported on at least one radial roller bearing on the trunnion. The rolling elements of the bearing are guided on at least one axial end facing the drill bit body in an outer bearing race groove incorporated in the bore of the rotary cutter. The inner bearing race groove is formed on the trunnion for the rolling elements of the radial roller bearing. At least one filling opening is provided which extends through the drill bit body and trunnion and is essentially axially oriented having one terminal end adjacent the inner bearing race groove and at least one filler piece for sealing the opening.

  8. Rotary filtration system

    DOEpatents

    Herman, David T.; Maxwell, David N.

    2011-04-19

    A rotary filtration apparatus for filtering a feed fluid into permeate is provided. The rotary filtration apparatus includes a container that has a feed fluid inlet. A shaft is at least partially disposed in the container and has a passageway for the transport of permeate. A disk stack made of a plurality of filtration disks is mounted onto the shaft so that rotation of the shaft causes rotation of the filtration disks. The filtration disks may be made of steel components and may be welded together. The shaft may penetrate a filtering section of the container at a single location. The rotary filtration apparatus may also incorporate a bellows seal to prevent leakage along the shaft, and an around the shaft union rotary joint to allow for removal of permeate. Various components of the rotary filtration apparatus may be removed as a single assembly.

  9. Flow rate through microfilters: Influence of the pore size distribution, hydrodynamic interactions, wall slip, and inertia

    NASA Astrophysics Data System (ADS)

    Jensen, Kaare H.; Valente, André X. C. N.; Stone, Howard A.

    2014-05-01

    We examine the fluid mechanics of viscous flow through filters consisting of perforated thin plates. We classify the effects that contribute to the hydraulic resistance of the filter. Classical analyses assume a single pore size and account only for filter thickness. We extend these results to obtain an analytical formula for the pressure drop across the microfilter versus the flow rate that accounts for the non-uniform distribution of pore sizes, the hydrodynamic interactions between the pores given their layout pattern, and wall slip. Further, we discuss inertial effects and their order of scaling.

  10. Equations For Rotary Transformers

    NASA Technical Reports Server (NTRS)

    Salomon, Phil M.; Wiktor, Peter J.; Marchetto, Carl A.

    1988-01-01

    Equations derived for input impedance, input power, and ratio of secondary current to primary current of rotary transformer. Used for quick analysis of transformer designs. Circuit model commonly used in textbooks on theory of ac circuits.

  11. Compact rotary sequencer

    NASA Technical Reports Server (NTRS)

    Appleberry, W. T.

    1980-01-01

    Rotary sequencer is assembled from conventional planetary differential gearset and latching mechanism utilizing inputs and outputs which are coaxial. Applications include automated production-line equipment in home appliances and in vehicles.

  12. 3D microfilter device for viable circulating tumor cell (CTC) enrichment from blood.

    PubMed

    Zheng, Siyang; Lin, Henry K; Lu, Bo; Williams, Anthony; Datar, Ram; Cote, Richard J; Tai, Yu-Chong

    2011-02-01

    Detection of circulating tumor cells has emerged as a promising minimally invasive diagnostic and prognostic tool for patients with metastatic cancers. We report a novel three dimensional microfilter device that can enrich viable circulating tumor cells from blood. This device consists of two layers of parylene membrane with pores and gap precisely defined with photolithography. The positions of the pores are shifted between the top and bottom membranes. The bottom membrane supports captured cells and minimize the stress concentration on cell membrane and sustain cell viability during filtration. Viable cell capture on device was investigated with scanning electron microscopy, confocal microscopy, and immunofluorescent staining using model systems of cultured tumor cells spiked in blood or saline. The paper presents and validates this new 3D microfiltration concept for circulation tumor cell enrichment application. The device provides a highly valuable tool for assessing and characterizing viable enriched circulating tumor cells in both research and clinical settings.

  13. Practical advances in cortisol (F) and dehydroepiandrosterone sulfate (DS) radioimmunoassay using the microfilter paper method

    SciTech Connect

    Pang, S.; Shine, S.; Levine, L.S.; New, M.I.

    1980-04-01

    A new reliable microfilter paper technique for measuring F and DS by RIA has been developed to overcome the difficulties of venipuncture and the inconvenience of storage and transportation of serum samples. This method requires only a drop of whole capillary blood, to impregnate filter paper for obtaining a 1/8-inch disc specimen. The dried filter paper specimen was eluted with buffer, and a further diluted eluate was used in RIA directly for DS and, after ether extraction, for F. Steroid concentrations of F and DS were not detectable in either hemolysate of 20 ..mu..l of packed washed red blood cells or dexamethasone-suppressed whole blood specimens. The percent recoveries of both added radiolabeled and unlabeled steroid from whole blood filter paper specimens were similar to those of the plasma studies. These steroid concentrations remained unchanged in dried whole blood on filter paper for up to 30 days when stored at room temperature. Evaluation of plasma volume in disc samples with varying hematocrits (27% to 51%) indicated a constant plasma volume in the disc (1.52 to 1.72 ..mu..l per 1/8-inch disc) regardless of the hematocrit range. Furthermore, plasma concentrations of these steroids in the filter paper disc, based on a mean constant plasma volume in the disc (1.66 ..mu..l per 1/8-inch disc), were similar to that of the plasma sample. This indicates that the microfilter paper method has the specificity, sensitivity, accuracy, and precision of RIA of DS and F in whole plasma, and simplifies sample collection, storage, and transportation.

  14. Rotary Series Elastic Actuator

    NASA Technical Reports Server (NTRS)

    Ihrke, Chris A. (Inventor); Mehling, Joshua S. (Inventor); Parsons, Adam H. (Inventor); Griffith, Bryan Kristian (Inventor); Radford, Nicolaus A. (Inventor); Permenter, Frank Noble (Inventor); Davis, Donald R. (Inventor); Ambrose, Robert O. (Inventor); Junkin, Lucien Q. (Inventor)

    2013-01-01

    A rotary actuator assembly is provided for actuation of an upper arm assembly for a dexterous humanoid robot. The upper arm assembly for the humanoid robot includes a plurality of arm support frames each defining an axis. A plurality of rotary actuator assemblies are each mounted to one of the plurality of arm support frames about the respective axes. Each rotary actuator assembly includes a motor mounted about the respective axis, a gear drive rotatably connected to the motor, and a torsion spring. The torsion spring has a spring input that is rotatably connected to an output of the gear drive and a spring output that is connected to an output for the joint.

  15. Rotary series elastic actuator

    NASA Technical Reports Server (NTRS)

    Ihrke, Chris A. (Inventor); Mehling, Joshua S. (Inventor); Parsons, Adam H. (Inventor); Griffith, Bryan Kristian (Inventor); Radford, Nicolaus A. (Inventor); Permenter, Frank Noble (Inventor); Davis, Donald R. (Inventor); Ambrose, Robert O. (Inventor); Junkin, Lucien Q. (Inventor)

    2012-01-01

    A rotary actuator assembly is provided for actuation of an upper arm assembly for a dexterous humanoid robot. The upper arm assembly for the humanoid robot includes a plurality of arm support frames each defining an axis. A plurality of rotary actuator assemblies are each mounted to one of the plurality of arm support frames about the respective axes. Each rotary actuator assembly includes a motor mounted about the respective axis, a gear drive rotatably connected to the motor, and a torsion spring. The torsion spring has a spring input that is rotatably connected to an output of the gear drive and a spring output that is connected to an output for the joint.

  16. Smart hybrid rotary damper

    NASA Astrophysics Data System (ADS)

    Yang, C. S. Walter; DesRoches, Reginald

    2014-03-01

    This paper develops a smart hybrid rotary damper using a re-centering smart shape memory alloy (SMA) material as well as conventional energy-dissipating metallic plates that are easy to be replaced. The ends of the SMA and steel plates are inserted in the hinge. When the damper rotates, all the plates bend, providing energy dissipating and recentering characteristics. Such smart hybrid rotary dampers can be installed in structures to mitigate structural responses and to re-center automatically. The damaged energy-dissipating plates can be easily replaced promptly after an external excitation, reducing repair time and costs. An OpenSEES model of a smart hybrid rotary was established and calibrated to reproduce the realistic behavior measured from a full-scale experimental test. Furthermore, the seismic performance of a 3-story moment resisting model building with smart hybrid rotary dampers designed for downtown Los Angeles was also evaluated in the OpenSEES structural analysis software. Such a smart moment resisting frame exhibits perfect residual roof displacement, 0.006", extremely smaller than 18.04" for the conventional moment resisting frame subjected to a 2500 year return period ground motion for the downtown LA area (an amplified factor of 1.15 on Kobe earthquake). The smart hybrid rotary dampers are also applied into an eccentric braced steel frame, which combines a moment frame system and a bracing system. The results illustrate that adding smart hybrid rotaries in this braced system not only completely restores the building after an external excitation, but also significantly reduces peak interstory drifts.

  17. TESTING OF THE DUAL ROTARY FILTER SYSTEM

    SciTech Connect

    Herman, D.; Fowley, M.; Stefanko, D.

    2011-08-29

    The Savannah River National Laboratory (SRNL) installed and tested two hydraulically connected SpinTek rotary microfilter (RMF) units to determine the behavior of a multiple filter system. Both units were successfully controlled by a control scheme written in DELTA-V architecture by Savannah River Remediation (SRR) Process Control Engineering personnel. The control system was tuned to provide satisfactory response to changing conditions during the operation of the multi-filter system. Stability was maintained through the startup and shutdown of one of the filter units while the second was still in operation. The installation configuration originally proposed by the Small Colum Ion Exchange (SCIX) project of independent filter and motor mountings may be susceptible to vibration. Significant stiffening of the filter and motor mounts was required to minimize the vibration. Alignment of the motor to the filter was a challenge in this test configuration. The deployment configuration must be easy to manipulate and allow for fine adjustment. An analysis of the vibration signature of the test system identified critical speeds. Whether it corresponds to the resonance frequency of a rotor radial vibration mode that was excited by rotor unbalance is uncertain based upon the measurements. A relative motion series should be completed on the filter with the final shaft configuration to determine if the resonances exist in the final filter design. The instrumentation selected for deployment, including the concentrate discharge control valve and flow meters, performed well. Automation of the valve control integrated well with the control scheme and when used in concert with the other control variables, allowed automated control of the dual RMF system. The one area of concern with the instrumentation was the condition resulting when the filtrate flow meter operated with less than three gpm. This low flow was at the lower range of performance for the flow meter. This should not be

  18. Solar heated rotary kiln

    SciTech Connect

    Shell, Pamela K.

    1984-01-01

    A solar heated rotary kiln utilized for decomposition of materials, such as zinc sulfate. The rotary kiln has an open end and is enclosed in a sealed container having a window positioned for directing solar energy into the open end of the kiln. The material to be decomposed is directed through the container into the kiln by a feed tube. The container is also provided with an outlet for exhaust gases and an outlet for spent solids, and rests on a tiltable base. The window may be cooled and kept clear of debris by coolant gases.

  19. Solar heated rotary kiln

    SciTech Connect

    Shell, P.K.

    1984-04-17

    A solar heated rotary kiln utilized for decomposition of materials, such as zinc sulfate. The rotary kiln has an open end and is enclosed in a sealed container having a window positioned for directing solar energy into the open end of the kiln. The material to be decomposed is directed through the container into the kiln by a feed tube. The container is also provided with an outlet for exhaust gases and an outlet for spent solids, and rests on a tiltable base. The window may be cooled and kept clear of debris by coolant gases.

  20. Rotary mechanical latch

    DOEpatents

    Spletzer, Barry L.; Martinez, Michael A.; Marron, Lisa C.

    2012-11-13

    A rotary mechanical latch for positive latching and unlatching of a rotary device with a latchable rotating assembly having a latching gear that can be driven to latched and unlatched states by a drive mechanism such as an electric motor. A cam arm affixed to the latching gear interfaces with leading and trailing latch cams affixed to a flange within the drive mechanism. The interaction of the cam arm with leading and trailing latch cams prevents rotation of the rotating assembly by external forces such as those due to vibration or tampering.

  1. Rotary blasthole drilling update

    SciTech Connect

    Fiscor, S.

    2008-02-15

    Blasthole drilling rigs are the unsung heroes of open-pit mining. Recently manufacturers have announced new tools. Original equipment manufactures (OEMs) are making safer and more efficient drills. Technology and GPS navigation systems are increasing drilling accuracy. The article describes features of new pieces of equipment: Sandvik's DR460 rotary blasthole drill, P & H's C-Series drills and Atlas Copco's Pit Viper PV275 multiphase rotary blasthole drill rig. DrillNav Plus is a blasthole navigation system developed by Leica Geosystems. 5 photos.

  2. Contactless Rotary Electrical Couplings

    NASA Technical Reports Server (NTRS)

    Kumagai, Hiroyuki

    2003-01-01

    Rotary electrical couplings based on induction (transformer action) rather than conduction between rotating and stationary circuitry have been invented. These couplings provide an alternative to slip rings and contact brushes. Mechanical imperfections of slip-ring and brush contact surfaces and/or dust particles trapped between these surfaces tend to cause momentary interruptions in electrical contact and thereby give rise to electrical noise. This source of noise can be eliminated in the inductive rotary couplings because no direct contact is necessary for transformer action.

  3. Rotary magnetic heat pump

    DOEpatents

    Kirol, L.D.

    1987-02-11

    A rotary magnetic heat pump constructed without flow seals or segmented rotor accomplishes recuperation and regeneration by using split flow paths. Heat exchange fluid pumped through heat exchangers and returned to the heat pump splits into two flow components: one flowing counter to the rotor rotation and one flowing with the rotation. 5 figs.

  4. Rotary magnetic heat pump

    DOEpatents

    Kirol, Lance D.

    1988-01-01

    A rotary magnetic heat pump constructed without flow seals or segmented rotor accomplishes recuperation and regeneration by using split flow paths. Heat exchange fluid pumped through heat exchangers and returned to the heat pump splits into two flow components: one flowing counter to the rotor rotation and one flowing with the rotation.

  5. Rotary pneumatic valve

    DOEpatents

    Hardee, Harry C.

    1991-01-01

    A rotary pneumatic valve which is thrust balanced and the pneumatic pressure developed produces only radial loads on the valve cylinder producing negligible resistance and thus minimal torque on the bearings of the valve. The valve is multiplexed such that at least two complete switching cycles occur for each revolution of the cylinder spindle.

  6. Rotary echo nutation NMR

    NASA Astrophysics Data System (ADS)

    Janssen, R.; Tijink, G. A. H.; Veeman, W. S.

    1988-01-01

    A two-dimensional solid state NMR experiment which combines rotary echoes and nutation NMR is investigated and used to study different sodium sites in zeolite NaA. It is shown that with this technique sodium ions with different relaxation rates in the rotating frame can be distinguished.

  7. Rotary shaft sealing assembly

    DOEpatents

    Dietle, Lannie L; Schroeder, John E; Kalsi, Manmohan S; Alvarez, Patricio D

    2013-08-13

    A rotary shaft sealing assembly in which a first fluid is partitioned from a second fluid in a housing assembly having a rotary shaft located at least partially within. In one embodiment a lip seal is lubricated and flushed with a pressure-generating seal ring preferably having an angled diverting feature. The pressure-generating seal ring and a hydrodynamic seal may be used to define a lubricant-filled region with each of the seals having hydrodynamic inlets facing the lubricant-filled region. Another aspect of the sealing assembly is having a seal to contain pressurized lubricant while withstanding high rotary speeds. Another rotary shaft sealing assembly embodiment includes a lubricant supply providing a lubricant at an elevated pressure to a region between a lip seal and a hydrodynamic seal with a flow control regulating the flow of lubricant past the lip seal. The hydrodynamic seal may include an energizer element having a modulus of elasticity greater than the modulus of elasticity of a sealing lip of the hydrodynamic seal.

  8. Rotary shaft sealing assembly

    DOEpatents

    Dietle, Lannie L.; Schroeder, John E.; Kalsi, Manmohan S.; Alvarez, Patricio D.

    2010-09-21

    A rotary shaft sealing assembly in which a first fluid is partitioned from a second fluid in a housing assembly having a rotary shaft located at least partially within. In one embodiment a lip seal is lubricated and flushed with a pressure-generating seal ring preferably having an angled diverting feature. The pressure-generating seal ring and a hydrodynamic seal may be used to define a lubricant-filled region with each of the seals having hydrodynamic inlets facing the lubricant-filled region. Another aspect of the sealing assembly is having a seal to contain pressurized lubricant while withstanding high rotary speeds. Another rotary shaft sealing assembly embodiment includes a lubricant supply providing a lubricant at an elevated pressure to a region between a lip seal and a hydrodynamic seal with a flow control regulating the flow of lubricant past the lip seal. The hydrodynamic seal may include an energizer element having a modulus of elasticity greater than the modulus of elasticity of a sealing lip of the hydrodynamic seal.

  9. Development of Laser-Mediated Nanodroplet Real-Time PCR on Circulating Tumor Cells (CTC) by Microfilter Platform

    DTIC Science & Technology

    2015-06-01

    for droplet PCR on the University of Miami microfilters, we have extended our DNA melting temperature calibration methodology to use DNA hairpins...of contact-quenched fluorescently labeled DNA oligomers. An oligomer labeled with a 5’ fluorescent reporter is contact-quenched by a 3’ quencher on...6 degrees Celsius when a thermal melt is performed with the high melt DNA hairpin. ! Figure 3: (a) Fluorescence profile of a 115 µm aqueous

  10. Recirculating rotary gas compressor

    DOEpatents

    Weinbrecht, J.F.

    1992-02-25

    A positive displacement, recirculating Roots-type rotary gas compressor is described which operates on the basis of flow work compression. The compressor includes a pair of large diameter recirculation conduits which return compressed discharge gas to the compressor housing, where it is mixed with low pressure inlet gas, thereby minimizing adiabatic heating of the gas. The compressor includes a pair of involutely lobed impellers and an associated port configuration which together result in uninterrupted flow of recirculation gas. The large diameter recirculation conduits equalize gas flow velocities within the compressor and minimize gas flow losses. The compressor is particularly suited to applications requiring sustained operation at higher gas compression ratios than have previously been feasible with rotary pumps, and is particularly applicable to refrigeration or other applications requiring condensation of a vapor. 12 figs.

  11. Recirculating rotary gas compressor

    DOEpatents

    Weinbrecht, John F.

    1992-01-01

    A positive displacement, recirculating Roots-type rotary gas compressor which operates on the basis of flow work compression. The compressor includes a pair of large diameter recirculation conduits (24 and 26) which return compressed discharge gas to the compressor housing (14), where it is mixed with low pressure inlet gas, thereby minimizing adiabatic heating of the gas. The compressor includes a pair of involutely lobed impellers (10 and 12) and an associated port configuration which together result in uninterrupted flow of recirculation gas. The large diameter recirculation conduits equalize gas flow velocities within the compressor and minimize gas flow losses. The compressor is particularly suited to applications requiring sustained operation at higher gas compression ratios than have previously been feasible with rotary pumps, and is particularly applicable to refrigeration or other applications requiring condensation of a vapor.

  12. Piezoelectric Rotary Tube Motor

    NASA Technical Reports Server (NTRS)

    Fisher, Charles D.; Badescu, Mircea; Braun, David F.; Culhane, Robert

    2011-01-01

    A custom rotary SQUIGGLE(Registered TradeMark) motor has been developed that sets new benchmarks for small motor size, high position resolution, and high torque without gear reduction. Its capabilities cannot be achieved with conventional electromagnetic motors. It consists of piezoelectric plates mounted on a square flexible tube. The plates are actuated via voltage waveforms 90 out of phase at the resonant frequency of the device to create rotary motion. The motors were incorporated into a two-axis postioner that was designed for fiber-fed spectroscopy for ground-based and space-based projects. The positioner enables large-scale celestial object surveys to take place in a practical amount of time.

  13. Experimental study on non-woven filamentous fibre micro-filter with high filtration speed.

    PubMed

    Niu, Siping; Park, Kisoo; Guerra, Heidi B; Kim, Youngchul

    2015-01-01

    A laboratory study was undertaken to pursue the filter performance of a micro-filter module employing highly porous fibre media under a high filtration rate (≥1,500 m/day), faster than that of any conventional filter process. The effects of filtration rate, head loss, raw water turbidity, and filter aid chemicals on filter performance were analysed. In spite of the extremely high filtration rate, the filter achieved an attractive efficiency, reducing the raw water turbidity by over 80%. As with other filter systems, the filter aid used ((polyaluminium chloride (PAC)) greatly affected the performance of this particular fibre filter. Long-term repetitive runs were additionally carried out to confirm the reproducibility of the filter performance. Also, a comparison was carried out with other high-rate filter systems which are either being tested for use in experimental studies, or are already commercially available. This study reveals that the filter performance under a high filtration speed is still attractive especially as PAC is used. Due to the high porosity of the fibre, the filter had small head loss even though the filtration rate was high. These results ascertain that it is possible to operate the filters with high filtration rate achieving reliable treatment performance.

  14. Low-Cost Photolithographic Fabrication of Nanowires and Microfilters for Advanced Bioassay Devices

    PubMed Central

    Doan, Nhi M.; Qiang, Liangliang; Li, Zhe; Vaddiraju, Santhisagar; Bishop, Gregory W.; Rusling, James F.; Papadimitrakopoulos, Fotios

    2015-01-01

    Integrated microfluidic devices with nanosized array electrodes and microfiltration capabilities can greatly increase sensitivity and enhance automation in immunoassay devices. In this contribution, we utilize the edge-patterning method of thin aluminum (Al) films in order to form nano- to micron-sized gaps. Evaporation of high work-function metals (i.e., Au, Ag, etc.) on these gaps, followed by Al lift-off, enables the formation of electrical uniform nanowires from low-cost, plastic-based, photomasks. By replacing Al with chromium (Cr), the formation of high resolution, custom-made photomasks that are ideal for low-cost fabrication of a plurality of array devices were realized. To demonstrate the feasibility of such Cr photomasks, SU-8 micro-pillar masters were formed and replicated into PDMS to produce micron-sized filters with 3–4 µm gaps and an aspect ratio of 3. These microfilters were capable of retaining 6 µm beads within a localized site, while allowing solvent flow. The combination of nanowire arrays and micro-pillar filtration opens new perspectives for rapid R&D screening of various microfluidic-based immunoassay geometries, where analyte pre-concentration and highly sensitive, electrochemical detection can be readily co-localized. PMID:25774709

  15. Development and integration of xerogel polymeric absorbance micro-filters into lab-on-chip systems.

    PubMed

    Carregal-Romero, Ester; Fernández-Sánchez, César; Eguizabal, Alma; Demming, Stefanie; Büttgenbach, Stephanus; Llobera, Andreu

    2012-10-08

    This work reports on the implementation of different absorption micro-filters based on a dye-doped hybrid organic-inorganic xerogel polymeric material synthesized by the sol-gel process. Microstructures containing eight different filter widths were fabricated in polydimethylsiloxane (PDMS), bonded to glass substrates and filled with the corresponding dye doped polymeric material by a soft lithography approach. The filtering capacity as a function of dye concentration and filter width was studied and revealed a linear dependence with both parameters, as expected according to the Beer-Lambert law. Zero passband transmittance values and relatively sharp stopband regions were achieved with all the filters, also showing rejection levels between -6 dB and -55 dB. Finally, such filters were monolithically integrated into a disposable fluorescence-based photonic lab-on-a-chip (PhLoC) approach. Calibration curves carried out with a model fluorophore target analyte showed an over two-fold increase in sensitivity and a thirty-fold decrease of the limit of detection (LOD) compared with the values recorded using the same PhLoC system but without the polymeric filter structure. The results presented herein clearly indicate the feasibility of these xerogel-based absorbance filtering structures for being applied as low-cost optical components that can be easily incorporated into disposable fluorescence-based photonic lab on a chip systems.

  16. Development and shelf-life determination of pasteurized, microfiltered, lactose hydrolyzed skim milk.

    PubMed

    Antunes, A E C; Silva E Alves, A T; Gallina, D A; Trento, F K H S; Zacarchenco, P B; Van Dender, A G F; Moreno, I; Ormenese, R C S C; Spadoti, L M

    2014-09-01

    The segment of the world population showing permanent or temporary lactose intolerance is quite significant. Because milk is a widely consumed food with an high nutritional value, technological alternatives have been sought to overcome this dilemma. Microfiltration combined with pasteurization can not only extend the shelf life of milk but can also maintain the sensory, functional, and nutritional properties of the product. This studied developed a pasteurized, microfiltered, lactose hydrolyzed (delactosed) skim milk (PMLHSM). Hydrolysis was performed using β-galactosidase at a concentration of 0.4mL/L and incubation for approximately 21h at 10±1°C. During these procedures, the degree of hydrolysis obtained (>90%) was accompanied by evaluation of freezing point depression, and the remaining quantity of lactose was confirmed by HPLC. Milk was processed using a microfiltration pilot unit equipped with uniform transmembrane pressure (UTP) ceramic membranes with a mean pore size of 1.4 μm and UTP of 60 kPa. The product was submitted to physicochemical, microbiological, and sensory evaluations, and its shelf life was estimated. Microfiltration reduced the aerobic mesophilic count by more than 4 log cycles. We were able to produce high-quality PMLHSM with a shelf life of 21 to 27d when stored at 5±1°C in terms of sensory analysis and proteolysis index and a shelf life of 50d in regard to total aerobic mesophile count and titratable acidity.

  17. Sequenced drive for rotary valves

    DOEpatents

    Mittell, Larry C.

    1981-01-01

    A sequenced drive for rotary valves which provides the benefits of applying rotary and linear motions to the movable sealing element of the valve. The sequenced drive provides a close approximation of linear motion while engaging or disengaging the movable element with the seat minimizing wear and damage due to scrubbing action. The rotary motion of the drive swings the movable element out of the flowpath thus eliminating obstruction to flow through the valve.

  18. Deformability-based circulating tumor cell separation with conical-shaped microfilters: Concept, optimization, and design criteria

    PubMed Central

    Chen, Xiaolin; Xu, Jie

    2015-01-01

    Circulating tumor cells (CTCs) separation technology has made positive impacts on cancer science in many aspects. The ability of detecting and separating CTCs can play a key role in early cancer detection and treatment. In recent years, there has been growing interest in using deformability-based CTC separation microfilters due to their simplicity and low cost. Most of the previous studies in this area are mainly based on experimental work. Although experimental research provides useful insights in designing CTC separation devices, there is still a lack of design guidelines based on fundamental understandings of the cell separation process in the filters. While experimental efforts face challenges, especially microfabrication difficulties, we adopt numerical simulation here to study conical-shaped microfilters using deformability difference between CTCs and blood cells for the separation process. We use the liquid drop model for modeling a CTC passing through such microfilters. The accuracy of the model in predicting the pressure signature of the system is validated by comparing it with previous experiments. Pressure-deformability analysis of the cell going through the channel is then carried out in detail in order to better understand how a CTC behaves throughout the filtration process. Different system design criteria such as system throughput and unclogging of the system are discussed. Specifically, pressure behavior under different system throughput is analyzed. Regarding the unclogging issue, we define pressure ratio as a key parameter representing the ability to overcome clogging in such CTC separation devices and investigate the effect of conical angle on the optimum pressure ratio. Finally, the effect of unclogging applied pressure on the system performance is examined. Our study provides detailed understandings of the cell separation process and its characteristics, which can be used for developing more efficient CTC separation devices. PMID:26064193

  19. Deformability-based circulating tumor cell separation with conical-shaped microfilters: Concept, optimization, and design criteria.

    PubMed

    Aghaamoo, Mohammad; Zhang, Zhifeng; Chen, Xiaolin; Xu, Jie

    2015-05-01

    Circulating tumor cells (CTCs) separation technology has made positive impacts on cancer science in many aspects. The ability of detecting and separating CTCs can play a key role in early cancer detection and treatment. In recent years, there has been growing interest in using deformability-based CTC separation microfilters due to their simplicity and low cost. Most of the previous studies in this area are mainly based on experimental work. Although experimental research provides useful insights in designing CTC separation devices, there is still a lack of design guidelines based on fundamental understandings of the cell separation process in the filters. While experimental efforts face challenges, especially microfabrication difficulties, we adopt numerical simulation here to study conical-shaped microfilters using deformability difference between CTCs and blood cells for the separation process. We use the liquid drop model for modeling a CTC passing through such microfilters. The accuracy of the model in predicting the pressure signature of the system is validated by comparing it with previous experiments. Pressure-deformability analysis of the cell going through the channel is then carried out in detail in order to better understand how a CTC behaves throughout the filtration process. Different system design criteria such as system throughput and unclogging of the system are discussed. Specifically, pressure behavior under different system throughput is analyzed. Regarding the unclogging issue, we define pressure ratio as a key parameter representing the ability to overcome clogging in such CTC separation devices and investigate the effect of conical angle on the optimum pressure ratio. Finally, the effect of unclogging applied pressure on the system performance is examined. Our study provides detailed understandings of the cell separation process and its characteristics, which can be used for developing more efficient CTC separation devices.

  20. Rotary and Magnus balances

    NASA Technical Reports Server (NTRS)

    Malcolm, G. N.

    1981-01-01

    Two wind tunnel techniques for determining part of the aerodynamic information required to describe the dynamic bahavior of various types of vehicles in flight are described. Force and moment measurements are determined with a rotary-balance apparatus in a coning motion and with a Magnus balance in a high-speed spinning motion. Coning motion is pertinent to both aircraft and missiles, and spinning is important for spin stabilized missiles. Basic principles of both techniques are described, and specific examples of each type of apparatus are presented. Typical experimental results are also discussed.

  1. Rotary multiposition valve

    DOEpatents

    Barclay, John A.; Dyson, Jack E.

    1985-01-01

    The disclosure is directed to a rotary multiposition valve for selectively directing the flow of a fluid through a plurality of paths. The valve comprises an inner member and a hollow housing with a row of ducts on its outer surface. The ducts are in fluid communication with the housing. An engaging section of the inner member is received in the housing. A seal divides the engaging section into a hollow inlet segment and a hollow outlet segment. A plurality of inlet apertures are disposed in the inlet segment and a plurality of outlet apertures are disposed in the outlet segment. The inlet apertures are disposed in a longitudinally and radially spaced-apart pattern that can be a helix. The outlet apertures are disposed in a corresponding pattern. As the inner member is rotated, whenever an inlet aperture overlaps one of the ducts, the corresponding outlet aperture overlaps a different duct, thus forming a fluid pathway.

  2. Rotary shaft seal

    DOEpatents

    Langebrake, C.O.

    1984-01-01

    The invention is a novel rotary shaft seal assembly which provides positive-contact sealing when the shaft is not rotated and which operates with its sealing surfaces separated by a film of compressed ambient gas whose width is independent of the speed of shaft rotation. In a preferred embodiment, the assembly includes a disc affixed to the shaft for rotation therewith. Axially movable, non-rotatable plates respectively supported by sealing bellows are positioned on either side of the disc to be in sealing engagement therewith. Each plate carries piezoelectric transucer elements which are electrically energized at startup to produce films of compressed ambient gas between the confronting surfaces of the plates and the disc. Following shutdown of the shaft, the transducer elements are de-energized. A control circuit responds to incipient rubbing between the plate and either disc by altering the electrical input to the transducer elements to eliminate rubbing.

  3. Rotary shaft seal

    DOEpatents

    Langebrake, Clair O.

    1984-01-01

    The invention is a novel rotary shaft seal assembly which provides positive-contact sealing when the shaft is not rotated and which operates with its sealing surfaces separated by a film of compressed ambient gas whose width is independent of the speed of shaft rotation. In a preferred embodiment, the assembly includes a disc affixed to the shaft for rotation therewith. Axially movable, non-rotatable plates respectively supported by sealing bellows are positioned on either side of the disc to be in sealing engagement therewith. Each plate carries piezoelectric transducer elements which are electrically energized at startup to produce films of compressed ambient gas between the confronting surfaces of the plates and the disc. Following shutdown of the shaft, the transducer elements are de-energized. A control circuit responds to incipient rubbing between the plate and either disc by altering the electrical input to the transducer elements to eliminate rubbing.

  4. Rotary multiposition valve

    DOEpatents

    Barclay, J.A.; Dyson, J.E.

    1984-04-06

    The disclosure is directed to a rotary multiposition valve for selectively directing the flow of a fluid through a plurality of paths. The valve comprises an inner member and a hollow housing with a row of ducts on its outer surface. The ducts are in fluid communication with the housing. An engaging section of the inner member is received in the housing. A seal divides the engaging section into a hollow inlet segment and a hollow outlet segment. A plurality of inlet apertures are disposed in the inlet sgegment and a plurality of outlet apertures are disposed in the outlet segment. The inlet apertures are disposed in a longitudinally and radially spaced-apart pattern that can be a helix. The outlet apertures are disposed in a corresponding pattern. As the inner member is rotated, whenever an inlet aperture overlaps one of the ducts, the corresponding outlet aperture overlaps a different duct, thus forming a fluid pathway.

  5. Rotary Blood Pump

    NASA Technical Reports Server (NTRS)

    Bozeman, Richard J., Jr. (Inventor); Akkerman, James W. (Inventor); Aber, Gregory S. (Inventor); VanDamm, George A. (Inventor); Bacak, James W. (Inventor); Svejkovsky, Paul A. (Inventor); Benkowski, Robert J. (Inventor)

    1996-01-01

    A rotary blood pump includes a pump housing for receiving a flow straightener, a rotor mounted on rotor bearings and having an inducer portion and an impeller portion, and a diffuser. The entrance angle, outlet angle, axial and radial clearances of blades associated with the flow straightener, inducer portion, impeller portion and diffuser are optimized to minimize hemolysis while maintaining pump efficiency. The rotor bearing includes a bearing chamber that is filled with cross-linked blood or other bio-compatible material. A back emf integrated circuit regulates rotor operation and a microcomputer may be used to control one or more back emf integrated circuits. A plurality of magnets are disposed in each of a plurality of impeller blades with a small air gap. A stator may be axially adjusted on the pump housing to absorb bearing load and maximize pump efficiency.

  6. Rotary blood pump

    NASA Technical Reports Server (NTRS)

    Bozeman, Richard J. (Inventor); Akkerman, James W. (Inventor); Aber, Greg S. (Inventor); Vandamm, George A. (Inventor); Bacak, James W. (Inventor); Svejkovsky, Paul A. (Inventor); Benkowski, Robert J. (Inventor)

    1993-01-01

    A rotary blood pump is presented. The pump includes a pump housing for receiving a flow straightener, a rotor mounted on rotor bearings and having an inducer portion and an impeller portion, and a diffuser. The entrance angle, outlet angle, axial, and radial clearances of the blades associated with the flow straightener, inducer portion, impeller portion, and diffuser are optimized to minimize hemolysis while maintaining pump efficiency. The rotor bearing includes a bearing chamber that is filled with crosslinked blood or other bio-compatible material. A back emf integrated circuit regulates rotor operation and a microcomputer may be used to control one or more back emf integrated circuits. A plurality of magnets are disposed in each of a plurality of impeller blades with a small air gap. A stator may be axially adjusted on the pump housing to absorb bearing load and maximize pump efficiency.

  7. Characteristics of flux and gel layer on microfilter and non-woven fabric filter surface based on anoxic-aerobic MBRs.

    PubMed

    Lee, Jung-Yeol; Choi, Bo-Kyung; Ahn, Kyu-Hong; Maeng, Sung Kyu; Song, Kyung-Guen

    2012-10-01

    Non-woven fabric filter- (NWFF) and microfilter-MBR modules were made using 100 μm polypropylene and 0.25 μm polyethylene materials, respectively. The performances and mechanisms of the two processes were investigated, including additional batch filtration tests to find the function of the dynamic gel layer on the membrane surface. The HRT of both MBRs was 9 h and the operating permeate flux was 13 L/m(2)/h. The two MBRs consisted of an anoxic and aerobic reactor. The NWFF or microfilter (MF) was submerged in each of the aerobic reactors. The two MBRs showed similar performances for the removal of organic matters, suspended solids and nitrogen. Cake formation on the NWFF contributed to major resistance, while the gel layer on the microfilter or internal fouling of the pores played a key role in the fouling of the membrane surface. The amount of soluble extracellular polymer substances (EPS) (13 mg/L) of the attached sludge on the NWFF surface was larger than that (11 mg/L) of that suspended sludge. Consequently, the functional gel layer for the coarse and microfilter is established based on the relationship among the EPS, transmembrane pressure and MLSS.

  8. Seals cap rotary kiln emissions

    SciTech Connect

    Gunkle, D.W. )

    1993-09-01

    The possibility of producing fugitive emissions is one of the most critical aspects of an incineration system. Whether such a system processes hazardous, medical, mixed or municipal waste, fugitive emissions are of special concern to system operators and the public alike. Effectively designed rotary-kiln seals can reduce fugitive emissions to acceptable, minimal levels. Modern air monitoring systems track incineration site emissions. Possible emissions sources include excavation and transfer sites, storage areas, material-feed systems, rotary kiln seals, and exhaust stacks. Several options are available for rotary-kiln seals. Six are discussed here: labyrinth; overlapping spring plate; graphite block; pneumatic; shrouded; and overpressure. Kiln seals are used to prevent process gases from escaping or ambient air from entering a rotary kiln uncontrolled. They are not designed to function as material seals, or prevent spills of solids or liquids. Seal design involves considering differential pressure produced by a kiln's internal-to-external temperature, pressure excursions (explosions) and material spills.

  9. Rotary kiln seal

    SciTech Connect

    Drexler, Robert L.

    1992-01-01

    A rotary seal used to prevent the escape of contaminates from a rotating kiln incinerator. The rotating seal combines a rotating disc plate which is attached to the rotating kiln shell and four sets of non-rotating carbon seal bars housed in a primary and secondary housing and which rub on the sides of the disc. A seal air system is used to create a positive pressure in a chamber between the primary and secondary seals to create a positive air flow into the contaminated gas chamber. The seal air system also employs an air inlet located between the secondary and tertiary seals to further insure that no contaminates pass the seal and enter the external environment and to provide makeup air for the air which flows into the contaminated gas chamber. The pressure exerted by the seal bars on the rotating disc is controlled by means of a preload spring. The seal is capable of operating in a thermally changing environment where the both radial expansion and axial movement of the rotating kiln do not result in the failure of the seal.

  10. Repulsive force actuated rotary micromirror

    NASA Astrophysics Data System (ADS)

    He, Siyuan; Ben Mrad, Ridha

    2004-09-01

    In this paper, a novel repulsive force based rotary micromirror is proposed. A repulsive force is produced in the rotary micromirror and the mirror plate is pushed up and away from the substrate. Therefore the rotation angle of the micromirror is not limited to the space underneath the mirror plate and thus the "pull-in" effect is completely circumvented. The novel rotary micromirror can achieve a large rotation angle with a large mirror plate. In addition the novel micromirror has a very simple structure and can be fabricated by standard surface micromachining technology. Numerical simulation is used to verify the working principle of the novel micromirror. A prototype of the novel rotary micromirror is fabricated by a commercially available surface microfabrication process called MUMPs. The prototype has a mirror size of 300μm x 300μm. The experimental measurements show that the prototype can achieve a mechanical rotation of 2.25 degrees (an optical angle of 4.5 degrees) at a driving voltage of 170 volts. A conventional surface micromachined attractive force based rotary micromirror of the same size can only achieve an angle of 0.1~0.2 degree.

  11. Rotary Power Transformer and Inverter Circuit

    NASA Technical Reports Server (NTRS)

    Mclyman, C. W. T.; Bridgeforth, A. O.

    1985-01-01

    Noise lower than with sliprings. Rotary transformer transfers electric power across rotary joint. No wearing contacts, no contact noise, and no contamination from lubricants or wear debris. Because additional inductor not required, size and complexity of circuit reduced considerably.

  12. Solar-heated rotary kiln

    DOEpatents

    Shell, P.K.

    1982-04-14

    A solar heated rotary kiln utilized for decomposition of materials, such as zinc sulfate is disclosed. The rotary kiln has an open end and is enclosed in a sealed container having a window positioned for directing solar energy into the open end of the kiln. The material to be decomposed is directed through the container into the kiln by a feed tube. The container is also provided with an outlet for exhaust gases and an outlet for spent solids, and rests on a tiltable base. The window may be cooled and kept clear of debris by coolant gases.

  13. Rotary head type reproducing apparatus

    DOEpatents

    Takayama, Nobutoshi; Edakubo, Hiroo; Kozuki, Susumu; Takei, Masahiro; Nagasawa, Kenichi

    1986-01-01

    In an apparatus of the kind arranged to reproduce, with a plurality of rotary heads, an information signal from a record bearing medium having many recording tracks which are parallel to each other with the information signal recorded therein and with a plurality of different pilot signals of different frequencies also recorded one by one, one in each of the recording tracks, a plurality of different reference signals of different frequencies are simultaneously generated. A tracking error is detected by using the different reference signals together with the pilot signals which are included in signals reproduced from the plurality of rotary heads.

  14. Adiabatic Wankel type rotary engine

    NASA Technical Reports Server (NTRS)

    Kamo, R.; Badgley, P.; Doup, D.

    1988-01-01

    This SBIR Phase program accomplished the objective of advancing the technology of the Wankel type rotary engine for aircraft applications through the use of adiabatic engine technology. Based on the results of this program, technology is in place to provide a rotor and side and intermediate housings with thermal barrier coatings. A detailed cycle analysis of the NASA 1007R Direct Injection Stratified Charge (DISC) rotary engine was performed which concluded that applying thermal barrier coatings to the rotor should be successful and that it was unlikely that the rotor housing could be successfully run with thermal barrier coatings as the thermal stresses were extensive.

  15. Regenerative rotary displacer Stirling engine

    SciTech Connect

    Isshiki, Naotsugu; Watanabe, Hiroichi; Raggi, L.; Isshiki, Seita; Hirata, Koichi

    1996-12-31

    A few rotary displacer Stirling engines in which the displacer has one gas pocket space at one side and rotates in a main enclosed cylinder, which is heated from one side and cooled from opposite side without any regenerator, have been studied for some time by the authors. The authors tried to improve this engine by equipping it with a regenerator, because without a regenerator, pressure oscillation and efficiency are too small. Here, several types of regenerative rotary displacer piston Stirling engines are proposed. One is the contra-rotating tandem two disc type displacer engine using axial heat conduction through side walls or by heat pipes and another is a single disc type with circulating fluid regenerator or heat pipes. Stirling engines of this new rotary displacer type are thought to attain high speed. Here, experimental results of the original rotary displacer Stirling engine without a regenerator, and one contra-rotating tandem displacer engine with side wall regenerator by axial heat conduction are reported accompanied with a discussion of the results.

  16. ROTARY FILTER FINES TESTING FOR SMALL COLUMN ION EXCHANGE

    SciTech Connect

    Herman, D.

    2011-08-03

    SRNL was requested to quantify the amount of 'fines passage' through the 0.5 micron membranes currently used for the rotary microfilter (RMF). Testing was also completed to determine if there is any additional benefit to utilizing a 0.1 micron filter to reduce the amount of fines that could pass through the filter. Quantifying of the amount of fines that passed through the two sets of membranes that were tested was accomplished by analyzing the filtrate by Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES) for titanium. Even with preparations to isolate the titanium, all samples returned results of less than the instrument's detection limit of 0.184 mg/L. Test results show that the 0.5 micron filters produced a significantly higher flux while showing a negligible difference in filtrate clarity measured by turbidity. The first targeted deployment of the RMF is with the Small Column Ion Exchange (SCIX) at the Savannah River Site (SRS). SCIX uses crystalline silicotitanate (CST) to sorb cesium to decontaminate a clarified salt solution. The passage of fine particles through the filter membranes in sufficient quantities has the potential to impact the downstream facilities. To determine the amount of fines passage, a contract was established with SpinTek Filtration to operate a 3-disk pilot scale unit with prototypic filter disk and various feeds and two different filter disk membranes. SpinTek evaluated a set of the baseline 0.5 micron filter disks as well as a set of 0.1 micron filter disks to determine the amount of fine particles that would pass the membrane and to determine the flux each set produced. The membrane on both disk sets is manufactured by the Pall Corporation (PMM 050). Each set of disks was run with three feed combinations: prototypically ground CST, CST plus monosodium titanate (MST), and CST, MST, plus Sludge Batch 6 (SB6) simulant. Throughout the testing, samples of the filtrate were collected, measured for turbidity, and sent back

  17. Large hole rotary drill performance

    SciTech Connect

    Workman, J.L.; Calder, P.N.

    1996-12-31

    Large hole rotary drilling is one of the most common methods of producing blastholes in open pit mining. Large hole drilling generally refers to diameters from 9 to 17 inch (229 to 432 mm), however a considerable amount of rotary drilling is done in diameters from 6{1/2} to 9 inch (165 to 229 mm). These smaller diameters are especially prevalent in gold mining and quarrying. Rotary drills are major mining machines having substantial capital cost. Drill bit costs can also be high, depending on the bit type and formation being drilled. To keep unit costs low the drills must perform at a high productivity level. The most important factor in rotary drilling is the penetration rate. This paper discusses the factors affecting penetration rate. An empirical factor in rotary drilling is the penetration rate. This paper discusses the factors affecting penetration rate. An empirical factor is given for calculating the penetration rate based on rock strength, pulldown weight and the RPM. The importance of using modern drill performance monitoring systems to calibrate the penetration equation for specific rock formations is discussed. Adequate air delivered to the bottom of the hole is very important to achieving maximum penetration rates. If there is insufficient bailing velocity cuttings will not be transported from the bottom of the hole rapidly enough and the penetration rate is very likely to decrease. An expression for the balancing air velocity is given. The amount by which the air velocity must exceed the balancing velocity for effective operation is discussed. The effect of altitude on compressor size is also provided.

  18. High torque miniature rotary actuator

    NASA Astrophysics Data System (ADS)

    Nalbandian, Ruben

    2005-07-01

    This paper summarizes the design and the development of a miniature rotary actuator (36 mm diameter by 100 mm length) used in spacecraft mechanisms requiring high torques and/or ultra-fine step resolution. This actuator lends itself to applications requiring high torque but with strict volume limitations which challenge the use of conventional rotary actuators. The design challenge was to develop a lightweight (less than 500 grams), very compact, high bandwidth, low power, thermally stable rotary actuator capable of producing torques in excess of 50 N.m and step resolutions as fine as 0.003 degrees. To achieve a relatively high torsional stiffness in excess of 1000 Nm/radian, the design utilizes a combination of harmonic drive and multistage planetary gearing. The unique design feature of this actuator that contributes to its light weight and extremely precise motion capability is a redundant stepper motor driving the output through a multistage reducing gearbox. The rotary actuator is powered by a high reliability space-rated stepper motor designed and constructed by Moog, Inc. The motor is a three-phase stepper motor of 15 degree step angle, producing twenty-four full steps per revolution. Since micro-stepping is not used in the design, and un-powered holding torque is exhibited at every commanded step, the rotary actuator is capable of reacting to torques as high as 35 Nm by holding position with the power off. The output is driven through a gear transmission having a total train ratio of 5120:1, resulting in a resolution of 0.003 degrees output rotation per motor step. The modular design of the multi-stage output transmission makes possible the addition of designs having different output parameters, such as lower torque and higher output speed capability. Some examples of an actuator family based on this growth capability will be presented in the paper.

  19. Effect of mesophilic lactobacilli and enterococci adjunct cultures on the final characteristics of a microfiltered milk Swiss-type cheese.

    PubMed

    Bouton, Yvette; Buchin, Solange; Duboz, Gabriel; Pochet, Sylvie; Beuvier, Eric

    2009-04-01

    The effect of four associations of adjunct cultures composed of mesophilic lactobacilli and enterococci, either solely or combined, on the microbiological, biochemical and sensory characteristics of Swiss-type cheese made using microfiltered cows' milk and supplemented with propionibacteria was studied. The global pattern of growth was similar to that generally observed in raw milk cheese and interactions between microflora were highlighted during ripening. Enterococci, which negatively affected the survival of streptococci starters, seemed to play a limited role in the formation of volatile compounds, probably due to their low levels throughout ripening. On the contrary, mesophilic lactobacilli, which affected the evolution of propionibacteria, enterococci and L. delbrueckii subsp. lactis starter counts, modified free amino acid content, production of volatile compounds and organoleptic properties of mature cheese. This population appeared to be of major importance in the formation of cheese flavor as it was positively related to numerous potential flavor compounds such as alcohols and their corresponding esters, acetaldehyde and 4-methyl-4-heptanone. The original mesophilic lactobacilli present in milk could play an important role in the sensorial diversity of raw milk Swiss-type cheeses such as Comte.

  20. Rotary Transformer Seals Power In

    NASA Technical Reports Server (NTRS)

    Studer, P. A.; Paulkovich, J.

    1982-01-01

    Rotary transformer originally developed for spacecraft transfers electrical power from stationary primary winding to rotating secondary without sliding contacts and very little leakage of electromagnetic radiation. Transformer has two stationary primary windings connected in parallel. Secondary, mounted on a shaft that extends out of housing, rotates between two windings of primary. Shaft of secondary is composed of electrically conducting inner and outer parts separated by an insulator. Electrical contact is made from secondary winding, through shaft, to external leads.

  1. Improved Superconducting Magnetic Rotary Bearings

    NASA Technical Reports Server (NTRS)

    Flom, Yury; Royston, James

    1992-01-01

    Improved magnetic rotary bearings designed by exploiting properties of type-II superconducting materials. Depending on design and application, bearing provides fixed or adjustable compensation for lateral vector component of weight or other lateral load on rotor. Allows applied magnetic field to penetrate partially in clusters of field lines, with concomitant establishment of undamped circulating electrical currents within material. Type-II superconductors have critical magnetic fields and critical temperatures greater than type-I superconductors.

  2. Rotary balances: A selected, annotated bibliography

    NASA Technical Reports Server (NTRS)

    Tuttle, Marie H.; Kilgore, Robert A.; Sych, Karen L.

    1989-01-01

    This bibliography on rotary balances contains 102 entries. It is part of NASA's support of the AGARD Fluid Dynamics Panel Working Group 11 on Rotary Balances. This bibliography includes works that might be useful to anyone interested in building or using rotor balances. Emphasis is on the rotary balance rigs and testing techniques rather than the aerodynamic data. Also included are some publications of historical interest which relate to key events in the development and use of rotary balances. The arrangement is chronological by date of publication in the case of reports and by presentation in the case of papers.

  3. Rotary kilns - transport phenomena and transport processes

    SciTech Connect

    Boateng, A.

    2008-01-15

    Rotary kilns and rotating industrial drying ovens are used for a wide variety of applications including processing raw minerals and feedstocks as well as heat-treating hazardous wastes. They are particularly critical in the manufacture of Portland cement. Their design and operation is critical to their efficient usage, which if done incorrectly can result in improperly treated materials and excessive, high fuel costs. This book treats all engineering aspects of rotary kilns, including thermal and fluid principles involved in their operation, as well as how to properly design an engineering process that uses rotary kilns. Chapter 1: The Rotary Kiln Evolution and Phenomenon Chapter 2: Basic Description of Rotary Kiln Operation Chapter 3: Freeboard Aerodynamic Phenomena Chapter 4: Granular Flows in Rotary Kilns Chapter 5: Mixing and Segregation Chapter 6: Combustion and Flame - includes section on types of fuels used in rotary kilns, coal types, ranking and analysis, petroleum coke combustion, scrap tire combustion, pulverized fuel (coal/coke) firing in kilns, pulverized fuel delivery and firing systems. Chapter 7: Freeboard Heat Transfer Chapter 8: Heat Transfer Processes in the Rotary Kiln Bed Chapter 9: Mass and Energy Balance Chapter 10: Rotary Kiln Minerals Process Applications.

  4. Rotary mode system initial instrument calibration

    SciTech Connect

    Johns, B.R.

    1994-10-01

    The attached report contains the vendor calibration procedures used for the initial instrument calibration of the rotary core sampling equipment. The procedures are from approved vendor information files.

  5. Rotary high power transfer apparatus

    NASA Technical Reports Server (NTRS)

    Jacobson, Peter E. (Inventor); Porter, Ryan S. (Inventor)

    1987-01-01

    An apparatus for reducing terminal-to-terminal circuit resistance and enhancing heat transfer in a rotary power transfer apparatus of the roll ring type comprising a connecting thimble for attaching an external power cable to a cone shaped terminal which is attached to a tab integral to an outer ring. An inner ring having a spherical recess mates with the spherical end of a tie connector. A cone shaped terminal is fitted to a second connecting thimble for attaching a second external power cable.

  6. Split Coil Forms for Rotary Transformers

    NASA Technical Reports Server (NTRS)

    Mclyman, C. W. T.

    1982-01-01

    Split cores for rotor and stator windings of rotary transformer mounted around their respective coils (which are in bobbins) and cemented together. This arrangement simplifies winding of stator coil to go in a slot in inner diameter of stator coil. One practical application of rotary transformers fabricated according to this technique is for centrifuges, in which conventional sliprings are of uncertain reliability.

  7. Torque-balanced vibrationless rotary coupling

    DOEpatents

    Miller, Donald M.

    1980-01-01

    This disclosure describes a torque-balanced vibrationless rotary coupling for transmitting rotary motion without unwanted vibration into the spindle of a machine tool. A drive member drives a driven member using flexible connecting loops which are connected tangentially and at diametrically opposite connecting points through a free floating ring.

  8. A multifunctional rotary photoelectric encoder management system

    NASA Astrophysics Data System (ADS)

    Ye, Zunzhong; Ying, Yibin

    2005-11-01

    The rotary photoelectric encoder can be used in many fields, such as robot research, fruit assembly lines, and so on. If there have many photoelectric encoders in one system, it's difficult to manage them and acquire the right pulse number. So it's important to design a multifunctional management system. It includes a powerful microchip with high processing speed, assuring the acquisition precision of rotary pulse. It uses a special method to judge the rotary direction and will be competent for many occasions which rotary direction changes quickly. Considering encoder data transmission, the management system provides a serial port using RS-485 protocol to transmit current pulse data and rotary direction. It allows linking a maximum of 100 management systems using only two communication lines to up-systems and also configing the encoder counting pattern locally (using the keyboard) or remotely (through the computer).

  9. Floating seal system for rotary devices

    DOEpatents

    Banasiuk, Hubert A.

    1983-01-01

    This invention relates to a floating seal system for rotary devices to reduce gas leakage around the rotary device in a duct and across the face of the rotary device to an adjacent duct. The peripheral seal bodies are made of resilient material having a generally U-shaped cross section wherein one of the legs is secured to a support member and the other of the legs forms a contacting seal against the rotary device. The legs of the peripheral seal form an extended angle of intersection of about 10.degree. to about 30.degree. in the unloaded condition to provide even sealing forces around the periphery of the rotary device. The peripheral seal extends around the periphery of the support member except where intersected by radial seals which reduce gas leakage across the face of the rotary device and between adjacent duct portions. The radial seal assembly is fabricated from channel bars, the smaller channel bar being secured to the divider of the support member and a larger inverted rigid floating channel bar having its legs freely movable over the legs of the smaller channel bar forming therewith a tubular channel. A resilient flexible tube is positioned within the tubular channel for substantially its full length to reduce gas leakage across the tubular channel. A spacer extends beyond the face of the floating channel near each end of the floating channel a distance to provide desired clearance between the floating channel and the face of the rotary device.

  10. Floating seal system for rotary devices

    DOEpatents

    Banasiuk, H.A.

    1983-08-23

    This invention relates to a floating seal system for rotary devices to reduce gas leakage around the rotary device in a duct and across the face of the rotary device to an adjacent duct. The peripheral seal bodies are made of resilient material having a generally U-shaped cross section wherein one of the legs is secured to a support member and the other of the legs forms a contacting seal against the rotary device. The legs of the peripheral seal form an extended angle of intersection of about 10[degree] to about 30[degree] in the unloaded condition to provide even sealing forces around the periphery of the rotary device. The peripheral seal extends around the periphery of the support member except where intersected by radial seals which reduce gas leakage across the face of the rotary device and between adjacent duct portions. The radial seal assembly is fabricated from channel bars, the smaller channel bar being secured to the divider of the support member and a larger inverted rigid floating channel bar having its legs freely movable over the legs of the smaller channel bar forming therewith a tubular channel. A resilient flexible tube is positioned within the tubular channel for substantially its full length to reduce gas leakage across the tubular channel. A spacer extends beyond the face of the floating channel near each end of the floating channel a distance to provide desired clearance between the floating channel and the face of the rotary device. 5 figs.

  11. Rotary Valve FY 2016 Highlights

    SciTech Connect

    Fitsos, P.

    2016-12-07

    The fiscal year started with the Rotary Valve (RV) being reassembled after having crashed in June of 2015. The crash occurred when the RV inner surface contacted the housing. The cause of the crash was never confirmed. No particles were found in the 2.5 thousandths of an inch gap and the filters the helium gas passed through were all clean. There were marks on the bearings that looked like electrostatic discharge as shown below in Figure 1. These marks hadn’t been seen before and there were similar discharge marks on some of the ball bearings. Examples of this were found in a literature search of bearing failures. This leads to a possible cause due to this arcing affecting the rotational accuracy of the bearings driving the RV into the housing.

  12. Rotary recuperative magnetic heat pump

    NASA Astrophysics Data System (ADS)

    Kirol, Lance D.; Dacus, Michael W.

    A bench scale rotary magnetic heat pump now being built is described. The unique design feature of this heat pump is the method for achieving recuperator fluid flow, which relies simply on parallel flow paths; the primary flow leg allows heat transfer between external load and sink and magnetic working material, while parallel flow accomplishes recuperation. The bench scale test is intended to demonstrate feasibility of the concept and to verify that all significant loss mechanisms are identified and treated properly in performance models, but is not a scaled down version of a practical heat pump. Working material is gadolinium foil 76 microns thick with 127-micron spaces for fluid flow. Magnetic fields are created by neodymium-iron-boron-permanent magnets with an air gap field of about 0.9 Tesla. Due to the low field (practical heat pumps will use superconducting magnets with field strength around 9 T); temperature lift is limited to 11 K.

  13. Enclosed rotary disc air pulser

    DOEpatents

    Olson, A. L.; Batcheller, Tom A.; Rindfleisch, J. A.; Morgan, John M.

    1989-01-01

    An enclosed rotary disc air pulser for use with a solvent extraction pulse olumn includes a housing having inlet, exhaust and pulse leg ports, a shaft mounted in the housing and adapted for axial rotation therein, first and second disc members secured to the shaft within the housing in spaced relation to each other to define a chamber therebetween, the chamber being in communication with the pulse leg port, the first disc member located adjacent the inlet port, the second disc member being located adjacent the exhaust port, each disc member having a milled out portion, the disc members positioned on the shaft so that as the shaft rotates, the milled out portions permit alternative cyclical communication between the inlet port and the chamber and the exhaust port and the chamber.

  14. Ultrasonic rotary-hammer drill

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph (Inventor); Badescu, Mircea (Inventor); Sherrit, Stewart (Inventor); Bao, Xiaoqi (Inventor); Kassab, Steve (Inventor)

    2010-01-01

    A mechanism for drilling or coring by a combination of sonic hammering and rotation. The drill includes a hammering section with a set of preload weights mounted atop a hammering actuator and an axial passage through the hammering section. In addition, a rotary section includes a motor coupled to a drive shaft that traverses the axial passage through the hammering section. A drill bit is coupled to the drive shaft for drilling by a combination of sonic hammering and rotation. The drill bit includes a fluted shaft leading to a distal crown cutter with teeth. The bit penetrates sampled media by repeated hammering action. In addition, the bit is rotated. As it rotates the fluted bit carries powdered cuttings helically upward along the side of the bit to the surface.

  15. Aerodynamic seals for rotary machine

    DOEpatents

    Bidkar, Rahul Anil; Cirri, Massimiliano; Thatte, Azam Mihir; Williams, John Robert

    2016-02-09

    An aerodynamic seal assembly for a rotary machine includes multiple sealing device segments disposed circumferentially intermediate to a stationary housing and a rotor. Each of the segments includes a shoe plate with a forward-shoe section and an aft-shoe section having multiple labyrinth teeth therebetween facing the rotor. The sealing device segment also includes multiple flexures connected to the shoe plate and to a top interface element, wherein the multiple flexures are configured to allow the high pressure fluid to occupy a forward cavity and the low pressure fluid to occupy an aft cavity. Further, the sealing device segments include a secondary seal attached to the top interface element at one first end and positioned about the flexures and the shoe plate at one second end.

  16. Rotary adsorbers for continuous bulk separations

    DOEpatents

    Baker, Frederick S [Oak Ridge, TN

    2011-11-08

    A rotary adsorber for continuous bulk separations is disclosed. The rotary adsorber includes an adsorption zone in fluid communication with an influent adsorption fluid stream, and a desorption zone in fluid communication with a desorption fluid stream. The fluid streams may be gas streams or liquid streams. The rotary adsorber includes one or more adsorption blocks including adsorbent structure(s). The adsorbent structure adsorbs the target species that is to be separated from the influent fluid stream. The apparatus includes a rotary wheel for moving each adsorption block through the adsorption zone and the desorption zone. A desorption circuit passes an electrical current through the adsorbent structure in the desorption zone to desorb the species from the adsorbent structure. The adsorbent structure may include porous activated carbon fibers aligned with their longitudinal axis essentially parallel to the flow direction of the desorption fluid stream. The adsorbent structure may be an inherently electrically-conductive honeycomb structure.

  17. Unidirectional rotary motion in achiral molecular motors.

    PubMed

    Kistemaker, Jos C M; Štacko, Peter; Visser, Johan; Feringa, Ben L

    2015-11-01

    Control of the direction of motion is an essential feature of biological rotary motors and results from the intrinsic chirality of the amino acids from which the motors are made. In synthetic autonomous light-driven rotary motors, point chirality is transferred to helical chirality, and this governs their unidirectional rotation. However, achieving directional rotary motion in an achiral molecular system in an autonomous fashion remains a fundamental challenge. Here, we report an achiral molecular motor in which the presence of a pseudo-asymmetric carbon atom proved to be sufficient for exclusive autonomous disrotary motion of two appended rotor moieties. Isomerization around the two double bonds enables both rotors to move in the same direction with respect to their surroundings--like wheels on an axle--demonstrating that autonomous unidirectional rotary motion can be achieved in a symmetric system.

  18. Unidirectional rotary motion in achiral molecular motors

    NASA Astrophysics Data System (ADS)

    Kistemaker, Jos C. M.; Štacko, Peter; Visser, Johan; Feringa, Ben L.

    2015-11-01

    Control of the direction of motion is an essential feature of biological rotary motors and results from the intrinsic chirality of the amino acids from which the motors are made. In synthetic autonomous light-driven rotary motors, point chirality is transferred to helical chirality, and this governs their unidirectional rotation. However, achieving directional rotary motion in an achiral molecular system in an autonomous fashion remains a fundamental challenge. Here, we report an achiral molecular motor in which the presence of a pseudo-asymmetric carbon atom proved to be sufficient for exclusive autonomous disrotary motion of two appended rotor moieties. Isomerization around the two double bonds enables both rotors to move in the same direction with respect to their surroundings—like wheels on an axle—demonstrating that autonomous unidirectional rotary motion can be achieved in a symmetric system.

  19. Rotary stripper for shielded and unshielded FCC

    NASA Technical Reports Server (NTRS)

    Angele, W.; Chambers, C. M.

    1971-01-01

    Rotary stripper removes narrow strips of insulation and shielding to any desired depth. Unshielded cables are stripped on both sides with one stroke, shielded cables are stripped in steps of different depths.

  20. High Bandwidth Rotary Fast Tool Servos and a Hybrid Rotary/Linear Electromagnetic Actuator

    SciTech Connect

    Montesanti, Richard Clement

    2005-09-01

    This thesis describes the development of two high bandwidth short-stroke rotary fast tool servos and the hybrid rotary/linear electromagnetic actuator developed for one of them. Design insights, trade-o® methodologies, and analytical tools are developed for precision mechanical systems, power and signal electronic systems, control systems, normal-stress electromagnetic actuators, and the dynamics of the combined systems.

  1. Man-made rotary nanomotors: a review of recent developments

    NASA Astrophysics Data System (ADS)

    Kim, Kwanoh; Guo, Jianhe; Liang, Z. X.; Zhu, F. Q.; Fan, D. L.

    2016-05-01

    The development of rotary nanomotors is an essential step towards intelligent nanomachines and nanorobots. In this article, we review the concept, design, working mechanisms, and applications of state-of-the-art rotary nanomotors made from synthetic nanoentities. The rotary nanomotors are categorized according to the energy sources employed to drive the rotary motion, including biochemical, optical, magnetic, and electric fields. The unique advantages and limitations for each type of rotary nanomachines are discussed. The advances of rotary nanomotors is pivotal for realizing dream nanomachines for myriad applications including microfluidics, biodiagnosis, nano-surgery, and biosubstance delivery.

  2. Airborne rotary air separator study

    NASA Technical Reports Server (NTRS)

    Acharya, A.; Gottzmann, C. F.; Nowobilski, J. J.

    1990-01-01

    Several air breathing propulsion concepts for future earth-to-orbit transport vehicles utilize air collection and enrichment, and subsequent storage of liquid oxygen for later use in the vehicle emission. Work performed during the 1960's established the feasibility of substantially reducing weight and volume of a distillation type air separator system by operating the distillation elements in high 'g' fields obtained by rotating the separator assembly. This contract studied the capability test and hydraulic behavior of a novel structured or ordered distillation packing in a rotating device using air and water. Pressure drop and flood points were measured for different air and water flow rates in gravitational fields of up to 700 g. Behavior of the packing follows the correlations previously derived from tests at normal gravity. The novel ordered packing can take the place of trays in a rotating air separation column with the promise of substantial reduction in pressure drop, volume, and system weight. The results obtained in the program are used to predict design and performance of rotary separators for air collection and enrichment systems of interest for past and present concepts of air breathing propulsion (single or two-stage to orbit) systems.

  3. Coal desulfurization in a rotary kiln combustor

    SciTech Connect

    Cobb, J.T. Jr.

    1992-09-11

    The purpose of this project was to demonstrate the combustion of coal and coal wastes in a rotary kiln reactor with limestone addition for sulfur control. The rationale for the project was the perception that rotary systems could bring several advantages to combustion of these fuels, and may thus offer an alternative to fluid-bed boilers. Towards this end, an existing wood pyrolysis kiln (the Humphrey Charcoal kiln) was to be suitably refurbished and retrofitted with a specially designed version of a patented air distributor provided by Universal Energy, Inc. (UEI). As the project progressed beyond the initial stages, a number of issues were raised regarding the feasibility and the possible advantages of burning coals in a rotary kiln combustor and, in particular, the suitability of the Humphrey Charcoal kiln as a combustor. Instead, an opportunity arose to conduct combustion tests in the PEDCO Rotary Cascading-Bed Boiler (RCBB) commercial demonstration unit at the North American Rayon CO. (NARCO) in Elizabethton, TN. The tests focused on anthracite culm and had two objectives: (a) determine the feasibility of burning anthracite culms in a rotary kiln boiler and (b) obtain input for any further work involving the Humphrey Charcoal kiln combustor. A number of tests were conducted at the PEDCO unit. The last one was conducted on anthracite culm procured directly from the feed bin of a commercial circulating fluid-bed boiler. The results were disappointing; it was difficult to maintain sustained combustion even when large quantities of supplemental fuel were used. Combustion efficiency was poor, around 60 percent. The results suggest that the rotary kiln boiler, as designed, is ill-suited with respect to low-grade, hard to burn solid fuels, such as anthracite culm. Indeed, data from combustion of bituminous coal in the PEDCO unit suggest that with respect to coal in general, the rotary kiln boiler appears inferior to the circulating fluid bed boiler.

  4. Coal gasification: New challenge for the Beaumont rotary feeder

    NASA Technical Reports Server (NTRS)

    Stelian, J.

    1977-01-01

    The use of rotary feeders in the coal gasification process is described with emphasis on the efficient conversion of coal to clean gaseous fuels. Commercial applications of the rotary feeder system are summarized.

  5. System and method for calibrating a rotary absolute position sensor

    NASA Technical Reports Server (NTRS)

    Davis, Donald R. (Inventor); Permenter, Frank Noble (Inventor); Radford, Nicolaus A (Inventor)

    2012-01-01

    A system includes a rotary device, a rotary absolute position (RAP) sensor generating encoded pairs of voltage signals describing positional data of the rotary device, a host machine, and an algorithm. The algorithm calculates calibration parameters usable to determine an absolute position of the rotary device using the encoded pairs, and is adapted for linearly-mapping an ellipse defined by the encoded pairs to thereby calculate the calibration parameters. A method of calibrating the RAP sensor includes measuring the rotary position as encoded pairs of voltage signals, linearly-mapping an ellipse defined by the encoded pairs to thereby calculate the calibration parameters, and calculating an absolute position of the rotary device using the calibration parameters. The calibration parameters include a positive definite matrix (A) and a center point (q) of the ellipse. The voltage signals may include an encoded sine and cosine of a rotary angle of the rotary device.

  6. A bistable electromagnetically actuated rotary gate microvalve

    NASA Astrophysics Data System (ADS)

    Luharuka, Rajesh; Hesketh, Peter J.

    2008-03-01

    Two types of rotary gate microvalves are developed for flow modulation in microfluidic systems. These microvalves have been tested for an open flow rate of up to 100 sccm and operate under a differential pressure of 6 psig with flow modulation of up to 100. The microvalve consists of a suspended gate that rotates in the plane of the chip to regulate flow through the orifice. The gate is suspended by a novel fully compliant in-plane rotary bistable micromechanism (IPRBM) that advantageously constrains the gate in all degrees of freedom except for in-plane rotational motion. Multiple inlet/outlet orifices provide flexibility of operating the microvalve in three different flow configurations. The rotary gate microvalve is switched with an external electromagnetic actuator. The suspended gate is made of a soft magnetic material and its electromagnetic actuation is based on the operating principle of a variable-reluctance stepper motor.

  7. 21 CFR 886.1665 - Ophthalmic rotary prism.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ophthalmic rotary prism. 886.1665 Section 886.1665...) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1665 Ophthalmic rotary prism. (a) Identification. An ophthalmic rotary prism is a device with various prismatic powers intended to be handheld...

  8. 21 CFR 886.1665 - Ophthalmic rotary prism.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Ophthalmic rotary prism. 886.1665 Section 886.1665...) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1665 Ophthalmic rotary prism. (a) Identification. An ophthalmic rotary prism is a device with various prismatic powers intended to be handheld...

  9. 21 CFR 886.1665 - Ophthalmic rotary prism.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Ophthalmic rotary prism. 886.1665 Section 886.1665...) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1665 Ophthalmic rotary prism. (a) Identification. An ophthalmic rotary prism is a device with various prismatic powers intended to be handheld...

  10. 21 CFR 886.1665 - Ophthalmic rotary prism.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Ophthalmic rotary prism. 886.1665 Section 886.1665...) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1665 Ophthalmic rotary prism. (a) Identification. An ophthalmic rotary prism is a device with various prismatic powers intended to be handheld...

  11. 21 CFR 886.1665 - Ophthalmic rotary prism.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Ophthalmic rotary prism. 886.1665 Section 886.1665...) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1665 Ophthalmic rotary prism. (a) Identification. An ophthalmic rotary prism is a device with various prismatic powers intended to be handheld...

  12. Methods and apparatus for controlling rotary machines

    DOEpatents

    Bagepalli, Bharat Sampathkumaran; Jansen, Patrick Lee; Barnes, Gary R.; Fric, Thomas Frank; Lyons, James Patrick Francis; Pierce, Kirk Gee; Holley, William Edwin; Barbu, Corneliu

    2009-09-01

    A control system for a rotary machine is provided. The rotary machine has at least one rotating member and at least one substantially stationary member positioned such that a clearance gap is defined between a portion of the rotating member and a portion of the substantially stationary member. The control system includes at least one clearance gap dimension measurement apparatus and at least one clearance gap adjustment assembly. The adjustment assembly is coupled in electronic data communication with the measurement apparatus. The control system is configured to process a clearance gap dimension signal and modulate the clearance gap dimension.

  13. Stratified charge rotary engine for general aviation

    NASA Technical Reports Server (NTRS)

    Mount, R. E.; Parente, A. M.; Hady, W. F.

    1986-01-01

    A development history, a current development status assessment, and a design feature and performance capabilities account are given for stratified-charge rotary engines applicable to aircraft propulsion. Such engines are capable of operating on Jet-A fuel with substantial cost savings, improved altitude capability, and lower fuel consumption by comparison with gas turbine powerplants. Attention is given to the current development program of a 400-hp engine scheduled for initial operations in early 1990. Stratified charge rotary engines are also applicable to ground power units, airborne APUs, shipboard generators, and vehicular engines.

  14. Rotary machine having back to back turbines

    NASA Technical Reports Server (NTRS)

    Burgy, N. Frank (Inventor); Palgon, Alfred M. (Inventor); Branstrom, Bruce R. (Inventor)

    1992-01-01

    A rotary machine having a pair of back to back turbines in serial flow relationship is disclosed. Various construction details are developed which permit for a compact design. In one detailed embodiment the turbine has a housing having an inlet manifold and an exit manifold which are disposed between the outlet manifold for an associated turbopump.

  15. Deformation analysis of rotary combustion engine housings

    NASA Technical Reports Server (NTRS)

    Vilmann, Carl

    1991-01-01

    This analysis of the deformation of rotary combustion engine housings targeted the following objectives: (1) the development and verification of a finite element model of the trochoid housing, (2) the prediction of the stress and deformation fields present within the trochoid housing during operating conditions, and (3) the development of a specialized preprocessor which would shorten the time necessary for mesh generation of a trochoid housing's FEM model from roughly one month to approximately two man hours. Executable finite element models were developed for both the Mazda and the Outboard Marine Corporation trochoid housings. It was also demonstrated that a preprocessor which would hasten the generation of finite element models of a rotary engine was possible to develop. The above objectives are treated in detail in the attached appendices. The first deals with finite element modeling of a Wankel engine center housing, and the second with the development of a preprocessor that generates finite element models of rotary combustion engine center housings. A computer program, designed to generate finite element models of user defined rotary combustion engine center housing geometries, is also included.

  16. 21 CFR 872.4840 - Rotary scaler.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Rotary scaler. 872.4840 Section 872.4840 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES... during dental cleaning and periodontal (gum) therapy. (b) Classification. Class II....

  17. Automated Welding of Rotary Forge Hammers

    DTIC Science & Technology

    1994-05-01

    NUMBER OF PAGES Plasma Transferred Arc (PTA) Welding. Metal Inert Gas (MIG) Welding, 34 Metal Powder, Rotary Forge Hammers. Hardfacing 16. PRICE CODE 17...filled with required hardfacing materials ............................................... 26 8. Top and side schematic views, respectively, of forging...superalloy hardfacing deposit. In addition to the hardfacing layer, an underlying layer of buffer material must first be deposited to minimize cracking

  18. Benefits of the rotary diaphragm pump.

    PubMed

    Borstell, D

    2005-03-01

    The huge variety of applications in the medical field represents a challenge for the design of miniature pumps. There are well-known designs such as piston pumps, eccenter diaphragm pumps and peristaltic pumps. There are lesser-known types such as the rotary diaphragm pump, the subject of this article. Its design features, variants, and advantages and disadvantages are examined.

  19. 21 CFR 872.4840 - Rotary scaler.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Rotary scaler. 872.4840 Section 872.4840 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES... abrasive device intended to be attached to a powered handpiece to remove calculus deposits from...

  20. 21 CFR 872.4840 - Rotary scaler.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Rotary scaler. 872.4840 Section 872.4840 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES... abrasive device intended to be attached to a powered handpiece to remove calculus deposits from...

  1. 21 CFR 872.4840 - Rotary scaler.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Rotary scaler. 872.4840 Section 872.4840 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES... abrasive device intended to be attached to a powered handpiece to remove calculus deposits from...

  2. 21 CFR 872.4840 - Rotary scaler.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Rotary scaler. 872.4840 Section 872.4840 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES... abrasive device intended to be attached to a powered handpiece to remove calculus deposits from...

  3. Stratified charge rotary engine combustion studies

    NASA Technical Reports Server (NTRS)

    Shock, H.; Hamady, F.; Somerton, C.; Stuecken, T.; Chouinard, E.; Rachal, T.; Kosterman, J.; Lambeth, M.; Olbrich, C.

    1989-01-01

    Analytical and experimental studies of the combustion process in a stratified charge rotary engine (SCRE) continue to be the subject of active research in recent years. Specifically to meet the demand for more sophisticated products, a detailed understanding of the engine system of interest is warranted. With this in mind the objective of this work is to develop an understanding of the controlling factors that affect the SCRE combustion process so that an efficient power dense rotary engine can be designed. The influence of the induction-exhaust systems and the rotor geometry are believed to have a significant effect on combustion chamber flow characteristics. In this report, emphasis is centered on Laser Doppler Velocimetry (LDV) measurements and on qualitative flow visualizations in the combustion chamber of the motored rotary engine assembly. This will provide a basic understanding of the flow process in the RCE and serve as a data base for verification of numerical simulations. Understanding fuel injection provisions is also important to the successful operation of the stratified charge rotary engine. Toward this end, flow visualizations depicting the development of high speed, high pressure fuel jets are described. Friction is an important consideration in an engine from the standpoint of lost work, durability and reliability. MSU Engine Research Laboratory efforts in accessing the frictional losses associated with the rotary engine are described. This includes work which describes losses in bearing, seal and auxillary components. Finally, a computer controlled mapping system under development is described. This system can be used to map shapes such as combustion chamber, intake manifolds or turbine blades accurately.

  4. Microfluidic device with integrated microfilter of conical-shaped holes for high efficiency and high purity capture of circulating tumor cells.

    PubMed

    Tang, Yadong; Shi, Jian; Li, Sisi; Wang, Li; Cayre, Yvon E; Chen, Yong

    2014-08-13

    Capture of circulating tumor cells (CTCs) from peripheral blood of cancer patients has major implications for metastatic detection and therapy analyses. Here we demonstrated a microfluidic device for high efficiency and high purity capture of CTCs. The key novelty of this approach lies on the integration of a microfilter with conical-shaped holes and a micro-injector with cross-flow components for size dependent capture of tumor cells without significant retention of non-tumor cells. Under conditions of constant flow rate, tumor cells spiked into phosphate buffered saline could be recovered and then cultured for further analyses. When tumor cells were spiked in blood of healthy donors, they could also be recovered at high efficiency and high clearance efficiency of white blood cells. When the same device was used for clinical validation, CTCs could be detected in blood samples of cancer patients but not in that of healthy donors. Finally, the capture efficiency of tumor cells is cell-type dependent but the hole size of the filter should be more closely correlated to the nuclei size of the tumor cells. Together with the advantage of easy operation, low-cost and high potential of integration, this approach offers unprecedented opportunities for metastatic detection and cancer treatment monitoring.

  5. Microfluidic device with integrated microfilter of conical-shaped holes for high efficiency and high purity capture of circulating tumor cells

    NASA Astrophysics Data System (ADS)

    Tang, Yadong; Shi, Jian; Li, Sisi; Wang, Li; Cayre, Yvon E.; Chen, Yong

    2014-08-01

    Capture of circulating tumor cells (CTCs) from peripheral blood of cancer patients has major implications for metastatic detection and therapy analyses. Here we demonstrated a microfluidic device for high efficiency and high purity capture of CTCs. The key novelty of this approach lies on the integration of a microfilter with conical-shaped holes and a micro-injector with cross-flow components for size dependent capture of tumor cells without significant retention of non-tumor cells. Under conditions of constant flow rate, tumor cells spiked into phosphate buffered saline could be recovered and then cultured for further analyses. When tumor cells were spiked in blood of healthy donors, they could also be recovered at high efficiency and high clearance efficiency of white blood cells. When the same device was used for clinical validation, CTCs could be detected in blood samples of cancer patients but not in that of healthy donors. Finally, the capture efficiency of tumor cells is cell-type dependent but the hole size of the filter should be more closely correlated to the nuclei size of the tumor cells. Together with the advantage of easy operation, low-cost and high potential of integration, this approach offers unprecedented opportunities for metastatic detection and cancer treatment monitoring.

  6. Compact fast analyzer of rotary cuvette type

    DOEpatents

    Thacker, Louis H.

    1976-01-01

    A compact fast analyzer of the rotary cuvette type is provided for simultaneously determining concentrations in a multiplicity of discrete samples using either absorbance or fluorescence measurement techniques. A rigid, generally rectangular frame defines optical passageways for the absorbance and fluorescence measurement systems. The frame also serves as a mounting structure for various optical components as well as for the cuvette rotor mount and drive system. A single light source and photodetector are used in making both absorbance and fluorescence measurements. Rotor removal and insertion are facilitated by a swing-out drive motor and rotor mount. BACKGROUND OF THE INVENTION The invention relates generally to concentration measuring instruments and more specifically to a compact fast analyzer of the rotary cuvette type which is suitable for making either absorbance or fluorescence measurements. It was made in the course of, or under, a contract with the U.S. Atomic Energy Commission.

  7. Rotary-scanning optical resolution photoacoustic microscopy

    NASA Astrophysics Data System (ADS)

    Qi, Weizhi; Xi, Lei

    2016-10-01

    Optical resolution photoacoustic microscopy (ORPAM) is currently one of the fastest evolving photoacoustic imaging modalities. It has a comparable spatial resolution to pure optical microscopic techniques such as epifluorescence microscopy, confocal microscopy, and two-photon microscopy, but also owns a deeper penetration depth. In this paper, we report a rotary-scanning (RS)-ORPAM that utilizes a galvanometer scanner integrated with objective to achieve rotary laser scanning. A 15 MHz cylindrically focused ultrasonic transducer is mounted onto a motorized rotation stage to follow optical scanning traces synchronously. To minimize the loss of signal to noise ratio, the acoustic focus is precisely adjusted to reach confocal with optical focus. Black tapes and carbon fibers are firstly imaged to evaluate the performance of the system, and then in vivo imaging of vasculature networks inside the ears and brains of mice is demonstrated using this system.

  8. Transient phenomena in rotary-kiln incineration

    SciTech Connect

    Linak, W.P.; Kilgroe, J.D.; McSorley, J.A.; Wendt, J.O.L.; Dunn, J.E.

    1989-01-01

    This paper describes results of an ongoing experimental investigation at the U.S. EPA into the waste properties and kiln parameters that determine both the instantaneous intensity and the total magnitude of transient puffs leaving the kiln. (NOTE: The batch introduction of waste-filled drums or containers into practical rotary-kiln incinerators can lead to transient overcharging conditions which, for brevity, are here denoted as 'puffs.') The experimental apparatus utilized was a 73-kW laboratory rotary-kiln simulator. Surrogate solid wastes (plastic rods) and surrogate liquid wastes (on corncob sorbent in cardboard containers) were investigated. A statistically designed parametric study was used to determine the extent to which waste and kiln variables (e.g., charge mass, charge surface area, charge composition, kiln temperature, and kiln rotation speed) affected the intensity (hydrocarbon peak height) and magnitude (hydrocarbon peak area) of puffs.

  9. Design considerations for bearingless rotary pumps.

    PubMed

    Kung, R T; Hart, R M

    1997-07-01

    The designs of rotary blood pumps have shown substantial technical progress over recent years, especially contact bearing designs. However, the concern for potential thromboembolism remains and can only be eliminated by the use of bearingless pumps. Bearingless designs can be achieved through the application of magnetic, hydrodynamic, and hydrostatic forces or a proper combination of these forces. Although a purely magnetically suspended, actively controlled system can be designed, judicious use of hydraulic forces can allow simplification of device configuration and control. In this study, bearingless designs were evaluated for both axial and centrifugal pump configurations. Trade-offs between shear rates and bearing leak rates were considered based upon constraints imposed by hemolysis and residence time. These principles were used for determining the design feasibility of a rotary pump using combined magnetic and hydraulic stabilizing forces.

  10. Equivalent dynamic model of DEMES rotary joint

    NASA Astrophysics Data System (ADS)

    Zhao, Jianwen; Wang, Shu; Xing, Zhiguang; McCoul, David; Niu, Junyang; Huang, Bo; Liu, Liwu; Leng, Jinsong

    2016-07-01

    The dielectric elastomer minimum energy structure (DEMES) can realize large angular deformations by a small voltage-induced strain of the dielectric elastomer (DE), so it is a suitable candidate to make a rotary joint for a soft robot. Dynamic analysis is necessary for some applications, but the dynamic response of DEMESs is difficult to model because of the complicated morphology and viscoelasticity of the DE film. In this paper, a method composed of theoretical analysis and experimental measurement is presented to model the dynamic response of a DEMES rotary joint under an alternating voltage. Based on measurements of equivalent driving force and damping of the DEMES, the model can be derived. Some experiments were carried out to validate the equivalent dynamic model. The maximum angle error between model and experiment is greater than ten degrees, but it is acceptable to predict angular velocity of the DEMES, therefore, it can be applied in feedforward-feedback compound control.

  11. Rotary Mode Core Sample System availability improvement

    SciTech Connect

    Jenkins, W.W.; Bennett, K.L.; Potter, J.D.; Cross, B.T.; Burkes, J.M.; Rogers, A.C.

    1995-02-28

    The Rotary Mode Core Sample System (RMCSS) is used to obtain stratified samples of the waste deposits in single-shell and double-shell waste tanks at the Hanford Site. The samples are used to characterize the waste in support of ongoing and future waste remediation efforts. Four sampling trucks have been developed to obtain these samples. Truck I was the first in operation and is currently being used to obtain samples where the push mode is appropriate (i.e., no rotation of drill). Truck 2 is similar to truck 1, except for added safety features, and is in operation to obtain samples using either a push mode or rotary drill mode. Trucks 3 and 4 are now being fabricated to be essentially identical to truck 2.

  12. Dental Diamond Rotary Instruments. Test and Evaluation

    DTIC Science & Technology

    1983-09-01

    Service, USAF School of Aerospace Med- icine. 17. DISTRIBUTION STATEMENT (of the ebetract entered In Block 20, it different from Report) 13...SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse ide iI neceseay and identify by block number) Dental diamond rotary instruments Diamond instrument cutting...performance Diamond instrument quality ABS.TLRACT fConi on, revere aide It neceeary aid Identify by block number) -’In this test and evaluation of the

  13. Helical rotary screw expander power system

    NASA Technical Reports Server (NTRS)

    Mckay, R. A.; Sprankle, R. S.

    1974-01-01

    An energy converter for the development of wet steam geothermal fields is described. A project to evaluate and characterize a helical rotary screw expander for geothermal applications is discussed. The helical screw expander is a positive displacement machine which can accept untreated corrosive mineralized water of any quality from a geothermal well. The subjects of corrosion, mineral deposition, the expansion process, and experience with prototype devices are reported.

  14. High pressure rotary piston coal feeder

    NASA Technical Reports Server (NTRS)

    Gardner, J. F.; Gencsoy, H. T.; Strimbeck, D. C.

    1977-01-01

    This feeder concept uniquely combines the functions of solids feeding, metering, and pressurization into one compact system. Success with the rotary-piston concept would provide a lower-cost alternative to lock-hopper systems. The design of the feeder is presented, with special emphasis on the difficult problem of seal design. Initial tests will be to check seal performance. Subsequent tests will evaluate solids-feeding ability.

  15. Coal desulfurization in a rotary kiln combustor

    SciTech Connect

    Cobb, J.T. Jr.

    1990-08-15

    BCR National Laboratory (BCRNL) has initiated a project aimed at evaluating the technical and economic feasibility of using a rotary kiln, suitably modified, to burn Pennsylvania anthracite wastes, co-fired with high-sulfur bituminous coal. Limestone will be injected into the kiln for sulfur control, to determine whether high sulfur capture levels can be achieved with high sorbent utilization. The principal objectives of this work are: (1) to prove the feasibility of burning anthracite refuse, with co-firing of high-sulfur bituminous coal and with limestone injection for sulfur emissions control, in a rotary kiln fitted with a Universal Energy International (UEI) air injector system; (2) to determine the emissions levels of SO{sub x} and NO{sub x} and specifically to identify the Ca/S ratios that are required to meet New Source Performance Standards; (3) to evaluate the technical and economic merits of a commercial rotary kiln combustor in comparison to fluidized bed combustors; and, (4) to ascertain the need for further work, including additional combustion tests, prior to commercial application, and to recommend accordingly a detailed program towards this end.

  16. Coal desulfurization in a rotary kiln combustor

    SciTech Connect

    Cobb, J.T. Jr.

    1991-04-22

    The focus of our work during the first quarter of 1991 was on combustion tests at the PEDCO rotary kiln reactor at North American Rayon (NARCO) plant in Elizabethton, TN. The tests had essentially tow related objectives: (a) to obtain basic data on the combustion of anthracite culm in a rotary kiln reactor, and (b) upon the test results, determine how best to proceed with our own planned program at the Humphrey Charcoal kiln in Brookville, PA. The rationale for the tests at PEDCO arose from process analysis which posted red flags on the feasibility of burning low-grade, hard-to-burn fuels like anthracite culms, in the rotary kiln. The PEDCO unit afforded a unique opportunity to obtain some quick answers at low cost. Two different anthracite culm fuels were tested: a so-called Jeddo culm with an average heating value of 7000 Btu/lb, and a relatively poorer culm, and Emerald'' culm, with an average heating value of 5000 Btu/lb. An attempt was also made to burn a blend of the Emerald culm with bituminous coal in 75/25 percent proportions. This report describes the tests, their chronology, and preliminary results. As it turned out, the PEDCO unit is not configured properly for the combustion of anthracite culm. As a result, it proved difficult to achieve a sustained period of steady-state combustion operation, and combustion efficiencies were low even when supplemental fuel was used to aid combustion of the culm. 1 fig., 2 tabs.

  17. High Pressure Rotary Shaft Sealing Mechanism

    DOEpatents

    Dietle, Lannie; Gobeli, Jeffrey D.

    2001-05-08

    A laterally translatable pressure staged rotary shaft sealing mechanism having a seal housing with a shaft passage therein being exposed to a fluid pressure P1 and with a rotary shaft being located within the shaft passage. At least one annular laterally translatable seal carrier is provided. First and second annular resilient sealing elements are supported in axially spaced relation by the annular seal carriers and have sealing relation with the rotary shaft. The seal housing and at least one seal carrier define a first pressure staging chamber exposed to the first annular resilient sealing element and a second pressure staging chamber located between and exposed to the first and second annular resilient sealing elements. A first fluid is circulated to the first pressure chamber at a pressure P1, and a second staging pressure fluid is circulated to the second pressure chamber at a fraction of pressure P1 to achieve pressure staging, cooling of the seals. Seal placement provides hydraulic force balancing of the annular seal carriers.

  18. Analysis of Apex Seal Friction Power Loss in Rotary Engines

    NASA Technical Reports Server (NTRS)

    Handschuh, Robert F.; Owen, A. Karl

    2010-01-01

    An analysis of the frictional losses from the apex seals in a rotary engine was developed. The modeling was initiated with a kinematic analysis of the rotary engine. Next a modern internal combustion engine analysis code was altered for use in a rotary engine to allow the calculation of the internal combustion pressure as a function of rotor rotation. Finally the forces from the spring, inertial, and combustion pressure on the seal were combined to provide the frictional horsepower assessment.

  19. Study on the Oil Supply System for Rotary Compressors

    NASA Astrophysics Data System (ADS)

    Ito, Takahide; Kobayashi, Hiroyuki; Fujitani, Makoto; Murata, Nobuo

    Research has been undertaken to clarify the shaft oil pump mechanisms and oil supply network systems for rotary compressors. Numerical expressions were developed for each part of the rotary compressor,(such as drive shaft,oil pump and journal bearing grooves)in order to confirm that the calculated values agree with the experimental results. Finally,a computer program has been developed to evaluate the oil supply system performance under steady conditions for rotary compressors.

  20. Forebody flow physics due to rotary motion

    NASA Astrophysics Data System (ADS)

    Iwanski, Kenneth Paul

    An experimental investigation of the aerodynamic behavior of an isolated forebody undergoing rotary motion was conducted in a small-scale wind tunnel. Force balance, surface pressure, and flow visualization data was acquired over a range of AOA, for a round and chined configuration of a generic tangent ogive shape. The nature of the fixed location of separation of the chined forebody develops a strong, symmetrical leeward side flowfield. In comparison, the round forebody develops a lateral asymmetry, as a function of AOA, from the naturally occurring separated flow. Quantifying the side force behavior due to the rotary motion of the two distinctively different forebody configurations will lead to a better understanding of the flowfield which plays a primary role in the overall stability and control of an air vehicle. For the round forebody, the side force behavior due to the rotary motion ( CYW ) is dependent upon flow speed (ReD), AOA, as well as the direction and magnitude of rotation ( W=wLV ). In the low AOA range, the rotary-induced flowfield is insufficient in promoting a side force development. In the high AOA range a damping in side force behavior is a result of the "moving wall" effect where the flow along the windward region of the forebody is the predominant influence. In the AOA range where an asymmetrical flowfield is established in a static environment, the rotary motion does not disrupt the natural asymmetric state of the vortices. Additionally, neither the presence of a static side force nor its direction is apparently sufficient in determining the CYW behavior from the axially-varying flowfield. The CYW behavior of the chined forebody is related to the leeward side vortices' vertical trajectory, which is a function of AOA. A slight propelling side force behavior develops in an AOA range where an increased suction develops from the upwind vortex. In the high AOA range there is a diminishing influence from the leeward side vortex suction resulting

  1. The Rotary Combustion Engine: a Candidate for General Aviation. [conferences

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The state of development of the rotary combustion engine is discussed. The nonturbine engine research programs for general aviation and future requirements for general aviation powerplants are emphasized.

  2. Development of a rapid and sensitive method combining a cellulose ester microfilter and a real-time quantitative PCR assay to detect Campylobacter jejuni and Campylobacter coli in 20 liters of drinking water or low-turbidity waters.

    PubMed

    Tissier, Adeline; Denis, Martine; Hartemann, Philippe; Gassilloud, Benoît

    2012-02-01

    Investigations of Campylobacter jejuni and Campylobacter coli in samples of drinking water suspected of being at the origin of an outbreak very often lead to negative results. One of the reasons for this failure is the small volume of water typically used for detecting these pathogens (10 to 1,000 ml). The efficiencies of three microfilters and different elution procedures were determined using real-time quantitative PCR to propose a procedure allowing detection of Campylobacter in 20 liters of drinking water or low-turbidity water samples. The results showed that more than 80% of the bacteria inoculated in 1 liter of drinking water were retained on each microfilter. An elution with a solution containing 3% beef extract, 0.05 M glycine at pH 9, combined with direct extraction of the bacterial genomes retained on the cellulose ester microfilter, allowed recovery of 87.3% (±22% [standard deviation]) of Campylobacter per 1 liter of tap water. Recoveries obtained from 20-liter volumes of tap water spiked with a C. coli strain were 69.5% (±10.3%) and 78.5% (±15.1%) for 91 CFU and 36 CFU, respectively. Finally, tests performed on eight samples of 20 liters of groundwater collected from an alluvial well used for the production of drinking water revealed the presence of C. jejuni and C. coli genomes, whereas no bacteria were detected with the normative culture method in volumes ranging from 10 to 1,000 ml. In the absence of available epidemiological data and information on bacterial viability, these last results indicate only that the water resource is not protected from contamination by Campylobacter.

  3. Rotary Wing Deceleration Use on Titan

    NASA Technical Reports Server (NTRS)

    Young, Larry A.; Steiner, Ted J.

    2011-01-01

    Rotary wing decelerator (RWD) systems were compared against other methods of atmospheric deceleration and were determined to show significant potential for application to a system requiring controlled descent, low-velocity landing, and atmospheric research capability on Titan. Design space exploration and down-selection results in a system with a single rotor utilizing cyclic pitch control. Models were developed for selection of a RWD descent system for use on Titan and to determine the relationships between the key design parameters of such a system and the time of descent. The possibility of extracting power from the system during descent was also investigated.

  4. Strain measurements in a rotary engine housing

    NASA Technical Reports Server (NTRS)

    Lee, C. M.; Bond, T. H.; Addy, H. E.; Chun, K. S.; Lu, C. Y.

    1989-01-01

    The development of structural design tools for Rotary Combustion Engines (RCE) using Finite Element Modeling (FEM) requires knowledge about the response of engine materials to various service conditions. This paper describes experimental work that studied housing deformation as a result of thermal, pressure and mechanical loads. The measurement of thermal loads, clamping pressure, and deformation was accomplished by use of high-temperature strain gauges, thermocouples, and a high speed data acquisition system. FEM models for heat transfer stress analysis of the rotor housing will be verified and refined based on these experimental results.

  5. Modelling and optimization of rotary parking system

    NASA Astrophysics Data System (ADS)

    Skrzyniowski, A.

    2016-09-01

    The increasing number of vehicles in cities is a cause of traffic congestion which interrupts the smooth traffic flow. The established EU policy underlines the importance of restoring spaces for pedestrian traffic and public communication. The overall vehicle parking process in some parts of a city takes so much time that it has a negative impact on the environment. This article presents different kinds of solution with special focus on the rotary parking system (PO). This article is based on a project realized at the Faculty of Mechanical Engineering of Cracow University of Technology.

  6. 38. DETAIL OF VIVIANNA WORKS ROTARY KILN FIREBOX ABOVE CHANNEL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    38. DETAIL OF VIVIANNA WORKS ROTARY KILN FIREBOX ABOVE CHANNEL FOR THE REMOVAL OF TAILINGS FROM THE ROTARY KILN LOOKING NORTHWEST. CONDENSER TO THE RIGHT, TWO STORY OFFICE AND STOREROOM STRUCTURE BEHIND. - Mariscal Quicksilver Mine & Reduction Works, Terlingua, Brewster County, TX

  7. Preliminary design development of 100 KW rotary power transfer device

    NASA Technical Reports Server (NTRS)

    Weinberger, S. M.

    1981-01-01

    Contactless power transfer devices for transferring electrical power across a rotating spacecraft interface were studied. A power level of 100 KW was of primary interest and the study was limited to alternating current devices. Rotary transformers and rotary capacitors together with the required dc to ac power conditioning electronics were examined. Microwave devices were addressed. The rotary transformer with resonant circuit power conditioning was selected as the most feasible approach. The rotary capacitor would be larger while microwave devices would be less efficient. A design analysis was made of a 100 KW, 20 kHz power transfer device consisting of a rotary transformer, power conditioning electronics, drive mechanism and heat rejection system. The size, weight and efficiency of the device were determined. The characteristics of a baseline slip ring were presented. Aspects of testing the 100 KW power transfer device were examined. The power transfer device is a feasible concept which can be implemented using presently available technologies.

  8. An overview of the NASA Rotary Engine Research Program

    SciTech Connect

    Meng, P.R.; Hady, W.F.

    1984-01-01

    This paper presents a brief overview and technical highlights of the research efforts and studies on rotary engines over the last several years at the NASA Lewis Research Center. The review covers the test results obtained from turbocharged rotary engines and preliminary results from a high performance single-rotor engine. Combustion modeling studies of the rotary engine and the use of a laser doppler velocimeter to confirm the studies are discussed. An in-house program in which a turbocharged rotary engine was installed in a Cessna Skymaster for ground test studies is also covered. Details are presented on single-rotor stratified-charge rotary engine research efforts, both in-house and on contract.

  9. Modeling of pulverized coal combustion in cement rotary kiln

    SciTech Connect

    Shijie Wang; Jidong Lu; Weijie Li; Jie Li; Zhijuan Hu

    2006-12-15

    In this paper, based on analysis of the chemical and physical processes of clinker formation, a heat flux function was introduced to take account of the thermal effect of clinker formation. Combining the models of gas-solid flow, heat and mass transfer, and pulverized coal combustion, a set of mathematical models for a full-scale cement rotary kiln were established. In terms of commercial CFD code (FLUENT), the distributions of gas velocity, gas temperature, and gas components in a cement rotary kiln were obtained by numerical simulation of a 3000 t/d rotary kiln with a four-channel burner. The predicted results indicated that the improved model accounts for the thermal enthalpy of the clinker formation process and can give more insight (such as fluid flow, temperature, etc,) from within the cement rotary kiln, which is a benefit to better understanding of combustion behavior and an improvement of burner and rotary kiln technology. 25 refs., 12 figs., 5 tabs.

  10. Development of a Piezoelectric Rotary Hammer Drill

    NASA Technical Reports Server (NTRS)

    Domm, Lukas N.

    2011-01-01

    The Piezoelectric Rotary Hammer Drill is designed to core through rock using a combination of rotation and high frequency hammering powered by a single piezoelectric actuator. It is designed as a low axial preload, low mass, and low power device for sample acquisition on future missions to extraterrestrial bodies. The purpose of this internship is to develop and test a prototype of the Piezoelectric Rotary Hammer Drill in order to verify the use of a horn with helical or angled cuts as a hammering and torque inducing mechanism. Through an iterative design process using models in ANSYS Finite Element software and a Mason's Equivalent Circuit model in MATLAB, a horn design was chosen for fabrication based on the predicted horn tip motion, electromechanical coupling, and neutral plane location. The design was then machined and a test bed assembled. The completed prototype has proven that a single piezoelectric actuator can be used to produce both rotation and hammering in a drill string through the use of a torque inducing horn. Final data results include bit rotation produced versus input power, and best drilling rate achieved with the prototype.

  11. Modeling of a rotary blood pump.

    PubMed

    Nestler, Frank; Bradley, Andrew P; Wilson, Stephen J; Timms, Daniel L

    2014-03-01

    The accurate representation of rotary blood pumps in a numerical environment is important for meaningful investigation of pump-cardiovascular system interactions. Although numerous models for ventricular assist devices (VADs) have been developed, modeling methods for rotary total artificial hearts (rTAHs) are still required. Therefore, an rTAH prototype was characterized in a steady flow, hydraulic test bench over a wide operational range for pump and hydraulic parameters. In order to develop a generic modeling method, a data-driven modeling approach was chosen. k-Nearest-neighbors, artificial neural networks, and support vector machines (SVMs) were the machine learning approaches evaluated. The best performing parameters for each algorithm were determined via optimization. The resulting multiple-input-multiple-output models were subsequently assessed under identical conditions, and a SVM with a radial basis function kernel was identified as the best performing. The achieved root mean squared errors were 0.03 L/min, 0.06 L/min, and 0.18 W for left and right flow and motor power consumption, respectively. In comparison with existing models for VADs, the flow errors are more than 70% lower. Further advantages of the SVM model are the robustness to measurement noise and the capability to operate outside of the trained parameter range. This proposed modeling method will accelerate further device refinements by providing a more appropriate numerical environment in which to evaluate the pump-cardiovascular system interaction.

  12. Rotary sequencing valve with flexible port plate

    DOEpatents

    Wagner, Glenn Paul

    2005-05-10

    Rotary sequencing valve comprising a rotor having a rotor face rotatable about an axis perpendicular to the rotor face, wherein the rotor face has a plurality of openings, one or more of which are disposed at a selected radial distance from the axis, and wherein the rotor includes at least one passage connecting at least one pair of the plurality of openings. The valve includes a flexible port plate having a first side and a second side, wherein the first side faces the rotor and engages the rotor such that the flexible port plate can be rotated coaxially by the rotor and can move axially with respect to the rotor, wherein the flexible port plate has a plurality of ports between the first and second sides, which ports are aligned with the openings in the rotor face. The valve also includes a stator having a stator face disposed coaxially with the rotor and the flexible port plate, wherein the second side of the flexible port plate is in sealable, slidable rotary contact with the stator face, wherein the stator face has a plurality of openings, some of which are disposed at the selected radial distance from the axis, and wherein the plurality of openings extend as passages through the stator. The valve may be used in pressure or temperature swing adsorption systems.

  13. A metering rotary nanopump for microfluidic systems.

    PubMed

    Darby, Scott G; Moore, Matthew R; Friedlander, Troy A; Schaffer, David K; Reiserer, Ron S; Wikswo, John P; Seale, Kevin T

    2010-12-07

    We describe the design, fabrication, and testing of a microfabricated metering rotary nanopump for the purpose of driving fluid flow in microfluidic devices. The miniature peristaltic pump is composed of a set of microfluidic channels wrapped in a helix around a central camshaft in which a non-cylindrical cam rotates. The cam compresses the helical channels to induce peristaltic flow as it is rotated. The polydimethylsiloxane (PDMS) nanopump design is able to produce intermittent delivery or removal of several nanolitres of fluid per revolution as well as consistent continuous flow rates ranging from as low as 15 nL min(-1) to above 1.0 µL min(-1). At back pressures encountered in typical microfluidic devices, the pump acts as a high impedance flow source. The durability, biocompatibility, ease of integration with soft-lithographic fabrication, the use of a simple rotary motor instead of multiple synchronized pneumatic or mechanical actuators, and the absence of power consumption or fluidic conductance in the resting state all contribute to a compact pump with a low cost of fabrication and versatile implementation. This suggests that the pump design may be useful for a wide variety of biological experiments and point of care devices.

  14. A metering rotary nanopump for microfluidic systems

    PubMed Central

    Darby, Scott G.; Moore, Matthew R.; Friedlander, Troy A.; Schaffer, David K.; Reiserer, Ron S.; Wikswo, John P.

    2014-01-01

    We describe the design, fabrication, and testing of a microfabricated metering rotary nanopump for the purpose of driving fluid flow in microfluidic devices. The miniature peristaltic pump is composed of a set of microfluidic channels wrapped in a helix around a central cam shaft in which a non-cylindrical cam rotates. The cam compresses the helical channels to induce peristaltic flow as it is rotated. The polydimethylsiloxane (PDMS) nanopump design is able to produce intermittent delivery or removal of several nanoliters of fluid per revolution as well as consistent continuous flow rates ranging from as low as 15 nL/min to above 1.0 µL/min. At back pressures encountered in typical microfluidic devices, the pump acts as a high impedance flow source. The durability, biocompatibility, ease of integration with soft-lithographic fabrication, the use of a simple rotary motor instead of multiple synchronized pneumatic or mechanical actuators, and the absence of power consumption or fluidic conductance in the resting state all contribute to a compact pump with a low cost of fabrication and versatile implementation. This suggests that the pump design may be useful for a wide variety of biological experiments and point of care devices. PMID:20959938

  15. Coal desulfurization in a rotary kiln combustor

    SciTech Connect

    Cobb, J.T. Jr.

    1991-08-29

    Several issues that could have an impact on the capability to burn anthracite culm in a rotary bed boiler were identified; specifically, questions were raised concerning the specifications of the anthracite culm itself and some relating to the equipment. The anthracite culm delivered was wet, (with more than 10 percent moisture), and coarser than feed material for fluidized boilers. It was felt that using finer fuel, ensuring that it is largely dry, would aid the combustion of anthracite culm. It also appeared that if provisions were made for more efficient internal and external recycle of ash, this would also enhance the combustion of this fuel. Accordingly, the decision was made to conduct an additional campaign of tests that would incorporate these changes. The tests, conducted on July 15 and 16, 1991, involved an anthracite culm that was, in fact, obtained from a fluidized bed a heating value of 3,000 Btu/lb and came with a top size of 1/4-inch. Despite these changes, sustained combustion could not be achieved without the use of large quantities of supplemental fuel. Based on these tests, we tend to conclude that the rotary kiln is ill suited for the combustion of hard-to-burn, low-grade solid fuels like anthracite culm.

  16. Fluid Dynamics in Rotary Piston Blood Pumps.

    PubMed

    Wappenschmidt, Johannes; Sonntag, Simon J; Buesen, Martin; Gross-Hardt, Sascha; Kaufmann, Tim; Schmitz-Rode, Thomas; Autschbach, Ruediger; Goetzenich, Andreas

    2017-03-01

    Mechanical circulatory support can maintain a sufficient blood circulation if the native heart is failing. The first implantable devices were displacement pumps with membranes. They were able to provide a sufficient blood flow, yet, were limited because of size and low durability. Rotary pumps have resolved these technical drawbacks, enabled a growing number of mechanical circulatory support therapy and a safer application. However, clinical complications like gastrointestinal bleeding, aortic insufficiency, thromboembolic complications, and impaired renal function are observed with their application. This is traced back to their working principle with attenuated or non-pulsatile flow and high shear stress. Rotary piston pumps potentially merge the benefits of available pump types and seem to avoid their complications. However, a profound assessment and their development requires the knowledge of the flow characteristics. This study aimed at their investigation. A functional model was manufactured and investigated with particle image velocimetry. Furthermore, a fluid-structure interaction computational simulation was established to extend the laboratory capabilities. The numerical results precisely converged with the laboratory measurements. Thus, the in silico model enabled the investigation of relevant areas like gap flows that were hardly feasible with laboratory means. Moreover, an economic method for the investigation of design variations was established.

  17. Rotary spectra analysis applied to static stabilometry.

    PubMed

    Chiaramello, E; Knaflitz, M; Agostini, V

    2011-01-01

    Static stabilometry is a technique aimed at quantifying postural sway during quiet standing in the upright position. Many different models and many different techniques to analyze the trajectories of the Centre of Pressure (CoP) have been proposed. Most of the parameters calculated according to these different approaches are affected by a relevant intra- and inter-subject variability or do not have a clear physiological interpretation. In this study we hypothesize that CoP trajectories have rotational characteristics, therefore we decompose them in clockwise and counter-clockwise components, using the rotary spectra analysis. Rotary spectra obtained studying a population of healthy subjects are described through the group average of spectral parameters, i.e., 95% spectral bandwidth, mean frequency, median frequency, and skewness. Results are reported for the clockwise and the counter-clockwise components and refer to the upright position maintained with eyes open or closed. This study demonstrates that the approach is feasible and that some of the spectral parameters are statistically different between the open and closed eyes conditions. More research is needed to demonstrate the clinical applicability of this approach, but results so far obtained are promising.

  18. [Pulsatile rotary pumps with low hemolysis].

    PubMed

    Qian, K; Zeng, P; Ru, W; Yuan, H; Feng, Z; Li, L

    2001-09-01

    As is well known, a pulsatile flow is important in assisted-circulation but it is difficult to produce a pulsatile flow with rotary pump, because excessive hemolysis will be generated. The authors have found that the turbulent shear is the main factor for red cell damage and therefore the key point of pulsatile rotary pumps is to reduce the turbulence by producing a pulsatile flow. In the authors' pulsatile axial pump, the pulsatile flow is obtained by axial reciprocation of constant rotating impeller; the rotation and reciprocation of the impeller are driven separately by a DC motor and a pneumatic device. Though a physiological pulsatile flow could be achieved and turbulence would not increase remarkably because the impeller rotates constantly, a second driver except a DC motor is nevertheless necessary, thus the system will become complicated. In the authors' pulsatile radial pump, a pulsatile flow is achieved by changing the rotating speed of the impeller periodically. Turbulence is minimized by a special design of twisted vanes which enable the blood flow to change its direction rather than its dimension during periodic change of rotating speed. Hemolysis tests demonstrated that the index of hemolysis(IH) of the author's pulsatile radial pump is 0.020, with is slightly more than that of the author's nonpulsatile radial pump(IH = 0.015). Animal experiments indicated that the pulsatile radial pump can assist the circulation of calves for several months without harm to blood elements and organ functions of the recipients.

  19. Spoilage of Microfiltered and Pasteurized Extended Shelf Life Milk Is Mainly Induced by Psychrotolerant Spore-Forming Bacteria that often Originate from Recontamination

    PubMed Central

    Doll, Etienne V.; Scherer, Siegfried; Wenning, Mareike

    2017-01-01

    Premature spoilage and varying product quality due to microbial contamination still constitute major problems in the production of microfiltered and pasteurized extended shelf life (ESL) milk. Spoilage-associated bacteria may enter the product either as part of the raw milk microbiota or as recontaminants in the dairy plant. To identify spoilage-inducing bacteria and their routes of entry, we analyzed end products for their predominant microbiota as well as the prevalence and biodiversity of psychrotolerant spores in bulk tank milk. Process analyses were performed to determine the removal of psychrotolerant spores at each production step. To detect transmission and recontamination events, strain typing was conducted with isolates obtained from all process stages. Microbial counts in 287 ESL milk packages at the end of shelf life were highly diverse ranging from <1 to 7.9 log cfu/mL. In total, 15% of samples were spoiled. High G+C Gram-positive bacteria were the most abundant taxonomic group, but were responsible for only 31% of spoilage. In contrast, psychrotolerant spores were isolated from 55% of spoiled packages. In 90% of samples with pure cultures of Bacillus cereus sensu lato and Paenibacillus spp., counts exceeded 6 log cfu/mL. In bulk tank milk, the concentration of psychrotolerant spores was low, accounting for merely 0.5 ± 0.8 MPN/mL. Paenibacillus amylolyticus/xylanexedens was by far the most dominant species in bulk tank milk (48% of all isolates), but was never detected in ESL milk, pointing to efficient removal during manufacturing. Six large-scale process analyses confirmed a high removal rate for psychrotolerant spores (reduction by nearly 4 log-units). B. cereus sensu lato, on the contrary, was frequently found in spoiled end products, but was rarely detected in bulk tank milk. Due to low counts in bulk tank samples and efficient spore removal during production, we suggest that shelf life is influenced only to a minor extent by raw

  20. Formation of technical requirements for flexible rotary machine nodes

    NASA Astrophysics Data System (ADS)

    Bulenkov, Y.; Mikhaylov, A.

    2016-11-01

    The method of parameters determining for the flexible rotary machines and lines and its individual components is described in this article. The method is based on the analysis of the fail safe performance probability. It allows determining the fail safe performance probability for tools, transportation and tool changing device nodes, elements of flexible rotary machine and is based on the analysis of flexible rotor line structure. The relationships between rational flexible rotary line structure and parameters of the individual nodes are shown on the flexible rotor line for the screws processing.

  1. Measurement and evaluation of static characteristics of rotary hydraulic motor

    NASA Astrophysics Data System (ADS)

    Hružík, Lumír; Vašina, Martin; Bureček, Adam

    2014-03-01

    The paper describes experimental equipment for measurement of static characteristics of rotary hydraulic motor. It is possible to measure flow, pressure, temperature, speed and torque by means of this equipment. It deals with measurement of static characteristics of a gear rotary hydraulic motor. Mineral oil is used as hydraulic liquid in this case. Flow, torque and speed characteristics are evaluated from measured parameters. Measured mechanical-hydraulic, flow and total efficiencies of the rotary hydraulic motor are adduced in the paper. It is possible to diagnose technical conditions of the hydraulic motor (eventually to recommend its exchange) from the experimental measurements.

  2. Rotary fast tool servo system and methods

    DOEpatents

    Montesanti, Richard C.; Trumper, David L.

    2007-10-02

    A high bandwidth rotary fast tool servo provides tool motion in a direction nominally parallel to the surface-normal of a workpiece at the point of contact between the cutting tool and workpiece. Three or more flexure blades having all ends fixed are used to form an axis of rotation for a swing arm that carries a cutting tool at a set radius from the axis of rotation. An actuator rotates a swing arm assembly such that a cutting tool is moved in and away from the lathe-mounted, rotating workpiece in a rapid and controlled manner in order to machine the workpiece. A pair of position sensors provides rotation and position information for a swing arm to a control system. A control system commands and coordinates motion of the fast tool servo with the motion of a spindle, rotating table, cross-feed slide, and in-feed slide of a precision lathe.

  3. The Rotary Mechanism of the ATP Synthase

    PubMed Central

    Nakamoto, Robert K.; Scanlon, Joanne A. Baylis; Al-Shawi, Marwan K.

    2008-01-01

    The FOF1 ATP synthase is a large complex of at least 22 subunits, more than half of which are in the membranous FO sector. This nearly ubiquitous transporter is responsible for the majority of ATP synthesis in oxidative and photo-phosphorylation, and its overall structure and mechanism have remained conserved throughout evolution. Most examples utilize the proton motive force to drive ATP synthesis except for a few bacteria, which use a sodium motive force. A remarkable feature of the complex is the rotary movement of an assembly of subunits that plays essential roles in both transport and catalytic mechanisms. This review addresses the role of rotation in catalysis of ATP synthesis/hydrolysis and the transport of protons or sodium. PMID:18515057

  4. Rotary plant growth accelerating apparatus. [weightlessness

    NASA Technical Reports Server (NTRS)

    Dedolph, R. D. (Inventor)

    1975-01-01

    Rotary plant growth accelerating apparatus for increasing plant yields by effectively removing the growing plants from the constraints of gravity and increasing the plant yield per unit of space is described. The apparatus is comprised of cylindrical plant beds supported radially removed from a primary axis of rotation, with each plant bed being driven about its own secondary axis of rotation and simultaneously moved in a planetary path about the primary axis of rotation. Each plant bed is formed by an apertured outer cylinder, a perforated inner cylinder positioned coaxially, and rooting media disposed in the space between. A rotatable manifold distributes liquid nutrients and water to the rooting media through the perforations in the inner cylinders as the plant beds are continuously rotated by suitable drive means.

  5. Torque for an Inertial Piezoelectric Rotary Motor

    PubMed Central

    Xing, Jichun

    2013-01-01

    For a novel inertial piezoelectric rotary motor, the equation of the strain energy in the piezoceramic bimorph and the equations of the strain energy and the kinetic energy in the rotor are given. Based on them, the dynamic equation of the motor is obtained. Using these equations, the inertial driving torque of the motor is investigated. The results show that the impulsive driving torque changes with changing peak voltage of the excitation signal, the piezoelectric stress constant, the thickness of the piezoceramic bimorph, and the rotor radius obviously. Tests about the motor torque are completed which verifies the theory analysis here in. The results can be used to design the operating performance of the motor. PMID:24470794

  6. Rotary seal with improved film distribution

    DOEpatents

    Dietle, Lannie Laroy; Schroeder, John Erick

    2013-10-08

    The present invention is a generally circular rotary seal that establishes sealing between relatively rotatable machine components for lubricant retention and environmental exclusion, and incorporates seal geometry that interacts with the lubricant during relative rotation to distribute a lubricant film within the dynamic sealing interface. The features of a variable inlet size, a variable dynamic lip flank slope, and a reduction in the magnitude and circumferentially oriented portion of the lubricant side interfacial contact pressure zone at the narrowest part of the lip, individually or in combination thereof, serve to maximize interfacial lubrication in severe operating conditions, and also serve to minimize lubricant shear area, seal torque, seal volume, and wear, while ensuring retrofitability into the seal grooves of existing equipment.

  7. Rotary seal with improved film distribution

    DOEpatents

    Dietle, Lannie Laroy; Schroeder, John Erick

    2015-09-01

    The present invention is a generally circular rotary seal that establishes sealing between relatively rotatable machine components for lubricant retention and environmental exclusion, and incorporates seal geometry that interacts with the lubricant during relative rotation to distribute a lubricant film within the dynamic sealing interface. The features of a variable inlet size, a variable dynamic lip flank slope, and a reduction in the magnitude and circumferentially oriented portion of the lubricant side interfacial contact pressure zone at the narrowest part of the lip, individually or in combination thereof, serve to maximize interfacial lubrication in severe operating conditions, and also serve to minimize lubricant shear area, seal torque, seal volume, and wear, while ensuring retrofitability into the seal grooves of existing equipment.

  8. Miniature linear-to-rotary motion actuator

    NASA Technical Reports Server (NTRS)

    Sorokach, Michael R., Jr.

    1993-01-01

    A miniature hydraulic actuation system capable of converting linear actuator motion to control surface rotary motion has been designed for application to active controls on dynamic wind tunnel models. Due to space constraints and the torque requirements of an oscillating control surface at frequencies up to 50 Hertz, a new actuation system was developed to meet research objectives. This new actuation system was designed and developed to overcome the output torque limitations and fluid loss/sealing difficulties associated with an existing vane type actuator. Static control surface deflections and dynamic control surface oscillations through a given angle are provided by the actuation system. The actuator design has been incorporated into a transonic flutter model with an active trailing edge flap and two active spoilers. The model is scheduled for testing in the LaRC 16 Foot Transonic Dynamics Tunnel during Summer 1993. This paper will discuss the actuation system, its design, development difficulties, test results, and application to aerospace vehicles.

  9. Film riding seals for rotary machines

    DOEpatents

    Bidkar, Rahul Anil; Sarawate, Neelesh Nandkumar; Wolfe, Christopher Edward; Ruggiero, Eric John; Raj Mohan, Vivek Raja

    2017-03-07

    A seal assembly for a rotary machine is provided. The seal assembly includes multiple sealing device segments disposed circumferentially intermediate to a stationary housing and a rotor. Each of the segments includes a shoe plate with a forward-shoe section and an aft-shoe section having one or more labyrinth teeth therebetween facing the rotor. The sealing device includes a stator interface element having a groove or slot for allowing disposal of a spline seal for preventing segment leakages. The sealing device segment also includes multiple bellow springs or flexures connected to the shoe plate and to the stator interface element. Further, the sealing device segments include a secondary seal integrated with the stator interface element at one end and positioned about the multiple bellow springs or flexures and the shoe plate at the other end.

  10. A rotary motor drives Flavobacterium gliding.

    PubMed

    Shrivastava, Abhishek; Lele, Pushkar P; Berg, Howard C

    2015-02-02

    Cells of Flavobacterium johnsoniae, a rod-shaped bacterium devoid of pili or flagella, glide over glass at speeds of 2-4 μm/s [1]. Gliding is powered by a protonmotive force [2], but the machinery required for this motion is not known. Usually, cells move along straight paths, but sometimes they exhibit a reciprocal motion, attach near one pole and flip end over end, or rotate. This behavior is similar to that of a Cytophaga species described earlier [3]. Development of genetic tools for F. johnsoniae led to discovery of proteins involved in gliding [4]. These include the surface adhesin SprB that forms filaments about 160 nm long by 6 nm in diameter, which, when labeled with a fluorescent antibody [2] or a latex bead [5], are seen to move longitudinally down the length of a cell, occasionally shifting positions to the right or the left. Evidently, interaction of these filaments with a surface produces gliding. To learn more about the gliding motor, we sheared cells to reduce the number and size of SprB filaments and tethered cells to glass by adding anti-SprB antibody. Cells spun about fixed points, mostly counterclockwise, rotating at speeds of 1 Hz or more. The torques required to sustain such speeds were large, comparable to those generated by the flagellar rotary motor. However, we found that a gliding motor runs at constant speed rather than at constant torque. Now, there are three rotary motors powered by protonmotive force: the bacterial flagellar motor, the Fo ATP synthase, and the gliding motor.

  11. Tank 241-TY-103 rotary core sampling and analysis

    SciTech Connect

    Jo, J.

    1995-10-30

    This Sampling and Analysis Plan (SAP) identifies characterization objectives pertaining to sample collection, laboratory analytical evaluation, and reporting requirements for two rotary-mode core samples from tank 241-TY-103

  12. 2. INTERIOR OF THE TIPPLE LOOKING SOUTH THROUGHT THE ROTARY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. INTERIOR OF THE TIPPLE LOOKING SOUTH THROUGHT THE ROTARY TIPPLE MECHANISM USED TO UNLOAD MINE COAL CARS. - Smith Mine, Tipple, Bear Creek 1.5 miles West of Town of Bear Creek, Red Lodge, Carbon County, MT

  13. Rotary endodontics in primary teeth – A review

    PubMed Central

    George, Sageena; Anandaraj, S.; Issac, Jyoti S.; John, Sheen A.; Harris, Anoop

    2015-01-01

    Endodontic treatment in primary teeth can be challenging and time consuming, especially during canal preparation, which is considered one of the most important steps in root canal therapy. The conventional instrumentation technique for primary teeth remains the “gold-standard” over hand instrumentation, which makes procedures much more time consuming and adversely affects both clinicians and patients. Recently nickel–titanium (Ni–Ti) rotary files have been developed for use in pediatric endodontics. Using rotary instruments for primary tooth pulpectomies is cost effective and results in fills that are consistently uniform and predictable. This article reviews the use of nickel–titanium rotary files as root canal instrumentation in primary teeth. The pulpectomy technique is described here according to different authors and the advantages and disadvantages of using rotary files are discussed. PMID:26792964

  14. Aircraft icing instrumentation: Unfilled needs. [rotary wing aircraft

    NASA Technical Reports Server (NTRS)

    Kitchens, P. F.

    1980-01-01

    A list of icing instrumentation requirements are presented. Because of the Army's helicopter orientation, many of the suggestions are specific to rotary wing aircraft; however, some of the instrumentation are also suitable for general aviation aircraft.

  15. Capillary array electrophoresis with confocal fluorescence rotary scanner.

    PubMed

    Wang, Jun; Sun, Guangming; Bai, Jiling; Wang, Li

    2003-12-01

    A capillary array electrophoresis system with a rotary confocal fluorescence scanner is reported. A high speed direct current rotary motor, combined with a rotary encoder and a reflection mirror, has been designed to direct the excitation laser beam precisely to a round array of capillaries which are symmetrically distributed around the motor. The rotary encoder is introduced to accurately orientate the position of each capillary and its output signal triggers the data acquisition system to record the fluorescence signal corresponding to each capillary. Separation of enantiomers of glutamic acid, methionine and tryptophan with different additives are demonstrated by this system. The experimental results indicate that this setup can be used to optimize separation methods for capillary electrophoresis as quickly as possible.

  16. Rotary roller of no. 2 seamless line in bays 19 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Rotary roller of no. 2 seamless line in bays 19 and 20 of the main pipe mill building looking north. - U.S. Steel National Tube Works, Main Pipe Mill Building, Along Monongahela River, McKeesport, Allegheny County, PA

  17. Rotary-To-Axial Motion Converter For Valve

    NASA Technical Reports Server (NTRS)

    Reinicke, Robert H.; Mohtar, Rafic

    1991-01-01

    Nearly frictionless mechanism converts rotary motion into axial motion. Designed for use in electronically variable pressure-regulator valve. Changes rotary motion imparted by motor into translation that opens and closes valve poppet. Cables spaced equidistantly around edge of fixed disk support movable disk. As movable disk rotated, cables twist, lifting it. When rotated in opposite direction, cables untwist, lowering it. Spider disk helps to prevent cables from tangling. Requires no lubrication and insensitive to contamination in fluid flowing through valve.

  18. Heat exchange apparatus and process for rotary kilns

    SciTech Connect

    De Beus, A.J.

    1987-06-30

    This patent describes a heat exchange apparatus for use in a rotary kiln, the heat exchange apparatus comprising: refractory means for transferring heat from an upper heated portion of a rotary kiln above a bed disposed in a lower portion to within the bed as the rotary kiln is rotated. The refractory means comprises: tubular refractory members; means for attaching the refractory means in a spaced apart relationship with an interior wall of the rotary kiln in order to cause the refractory means to pass through the bed with a portion of the bed passing under the refractory means. A portion of the bed passes over the refractory means in order to enhance heat transfer as the rotary kiln is rotated. The means for attaching the refractory means comprises rods supported by stanchions and tubular refractory member disposed on the rods; the means for attaching the refractory means and the refractory means is configured and operative for stirring the bed as the refractory means pass through the bed without significant lifting of the bed to the heated upper portions of the rotary kiln as the rotary kiln is rotated; and compressible refractory spacer means disposed between each tubular refractory member for accommodating heat expansion and compressible refractory sleeve means dispersed between the rods and the tubular refractory members for accommodating heat expansion of the rods. Compressible refractory sleeve means and tubular refractory member sized so that the tubular refractory members are tightly held against the tubular refractory spacer means when the rotary kiln is at operating temperatures in order to inhibit fracture of the tubular refractory member as they pass through the bed.

  19. Design study of a high power rotary transformer

    NASA Technical Reports Server (NTRS)

    Weinberger, S. M.

    1982-01-01

    A design study was made on a rotary transformer for transferring electrical power across a rotating spacecraft interface. The analysis was performed for a 100 KW, 20 KHz unit having a ""pancake'' geometry. The rotary transformer had a radial (vertical) gap and consisted of 4-25 KW modules. It was assumed that the power conditioning comprised of a Schwarz resonant circuit with a 20 KHz switching frequency. The rotary transformer, mechanical and structural design, heat rejection system and drive mechanism which provide a complete power transfer device were examined. The rotary transformer losses, efficiency, weight and size were compared with an axial (axial symmetric) gap transformer having the same performance requirements and input characteristics which was designed as part of a previous program. The ""pancake'' geometry results in a heavier rotary transformer primarily because of inefficient use of the core material. It is shown that the radial gap rotary transformer is a feasible approach for the transfer of electrical power across a rotating interface and can be implemented using presently available technology.

  20. Percussive Augmenter of Rotary Drills for Operating as a Rotary-Hammer Drill

    NASA Technical Reports Server (NTRS)

    Aldrich, Jack Barron (Inventor); Bar-Cohen, Yoseph (Inventor); Sherrit, Stewart (Inventor); Badescu, Mircea (Inventor); Bao, Xiaoqi (Inventor); Scott, James Samson (Inventor)

    2014-01-01

    A percussive augmenter bit includes a connection shaft for mounting the bit onto a rotary drill. In a first modality, an actuator percussively drives the bit, and an electric slip-ring provides power to the actuator while being rotated by the drill. Hammering action from the actuator and rotation from the drill are applied directly to material being drilled. In a second modality, a percussive augmenter includes an actuator that operates as a hammering mechanism that drives a free mass into the bit creating stress pulses that fracture material that is in contact with the bit.

  1. A MRI rotary phased array head coil.

    PubMed

    Li, Bing Keong; Weber, Ewald; Crozier, Stuart

    2013-08-01

    A new rotary phased array (RPA) head coil that can provide homogenous brain images comparable to volumetric radiofrequency coils is proposed for magnetic resonance brain imaging applications. The design of the RPA head coil is a departure from conventional circumferential array design method, as coil elements of the RPA head coil have a "paddle-like" structure consisting of a pair of main conductors located on opposite sides, inserted equi-angularly around and over the head. A prototype 2T receive-only 4-element RPA head coil was constructed and experimentally tested against a conventional receive-only 4-element phased array head coil and a commercial receive-only quadrature birdcage head coil. Homogenous phantom images acquired by the RPA head coil show that signal intensity deep at the center of the phantom was improved as compared to the conventional phased array head coil and this improvement allow the RPA head coil to acquire homogenous brain images similar to brain images acquired with the birdcage head coil. In addition, partial parallel imaging was used in conjunction with the RPA head coil to enable rapid imaging.

  2. Dynamics of complex fluids in rotary atomization

    NASA Astrophysics Data System (ADS)

    Keshavarz, Bavand; McKinley, Gareth; MIT, Mechanical Engineering Department Team

    2016-11-01

    We study the dynamics of fragmentation for different Newtonian and viscoelastic liquids in rotary atomization. In this process, at the rim of a spinning cup, the centripetal acceleration destabilizes the formed liquid torus due to the Rayleigh-Taylor instability. The resulting ligaments leave the liquid torus with a remarkably repeatable spacing that scales linearly with the inverse of the rotation rate. Filaments then follow a well-defined geometrical path-line that is described by the involute of the circle. Knowing the geometry of this phenomenon we derive the detailed kinematics of this process and compare it with the experimental observations. We show that the ligaments elongate tangentially to the involute of the circle and thin radially as they separate from the cup. A theoretical form is derived for the spatial variation of the filament deformation rate. Once the ligaments are far from the cup they breakup into droplets since they are not stretched fast enough (compared to the critical rate of capillary thinning). We couple these derivations with the known properties of Newtonian and viscoelastic liquids to provide a physical analysis for this fragmentation process that is compared in detail with our experiments.

  3. Transient phenomena in rotary kiln incineration

    SciTech Connect

    Linak, W.P.; Kilgroe, J.D.; Wendt, J.O.; Mc Sorley, J.A.; Dunn, J.E.

    1986-01-01

    This paper describes results of an ongoing experimental investigation at the U.S. Environmental Protection Agency into the waste properties and kiln parameters that determine both the instantaneous intensity and the total magnitude of transient puffs leaving the kiln. The experimental apparatus utilized was a 73 kW (250,000 Btu/hr) laboratory rotary kiln simulator. Surrogate solid wastes in the form of plastic rods and surrogate liquid wastes on corncob sorbent in cardboard containers were investigated. A statistically designed parametric study was used to determine the extent to which waste and kiln variables (such as charge mass, charge surface area, charge composition, kiln temperature, and kiln rotation speed) affected the intensity (hydrocarbon peak height) and magnitude (hydrocarbon peak area) of puffs. Results demonstrate the relative ease with which failure conditions are achieved, even at high excess air values and high kiln temperatures. Transient puffs arising from even innocuous surrogate wastes can contain a number of hazardous compounds. Increasing kiln temperature and kiln rotation speed can cause an adverse effect on puff intensity, probably due to increased devolatilization rates.

  4. Orienting members in a preselected rotary alignment

    DOEpatents

    Williams, Ray E.

    1987-01-01

    An apparatus for orienting members and for maintaining their rotary alignment during orienting members. The apparatus comprises first and second cylindrical elements, a rotation prevention element, a collar and a retainer. Each element has an outside wall, and first and second ends, each end having an outside edge. The first element has portions defining a first plurality of notches located at the outside edge of its first end. An external threaded portion is on the outside wall of the first element and next to the first plurality of notches. The second element has portions defining a second plurality of notches located at the outside edge of its first end. The first plurality has a different number than the second plurality. The first ends of the first and second tubes have substantially the same outside diameter and are abutted during connection so that a cavity is formed whenever first and second tube notches substantially overlap. A rotation prevention element is placed in the cavity to prevent rotation of the first and second elements. A collar with an internal threaded portion is slidably disposed about the second element. The internal threaded portion engages the external threaded portion of the first element to connect the elements. A lip connected to the collar prevents separation of the collar from the second element.

  5. Rotacor: a new rotary blood pump.

    PubMed

    Margreiter, R; Schwab, W; Klima, G; Koller, J; Baum, M; Dietrich, H; Hager, J; Königsrainer, A

    1990-01-01

    A new rotary blood pump was tested in calves for 6 hr. The pump consists of a rigid housing with a trochoidal internal surface, an inlet and outlet, and two lateral walls. A two-corner piston rotates on an eccentric shaft in a trochoidal path, thus creating a gap seal. The pump is driven by a water-cooled DC motor. For right ventricular assist, a cannula was inserted into the right ventricle through the right atrium, and into the left ventricle for left ventricular assist. From a total of 10 experiments, two left ventricular assists, two right ventricular assists, and three biventricular assists were evaluated. The pump produced a pulsatile flow of 3 L at 70 rpm. Energy requirements were 2.19 watts for left, 2.06 for right, and 7.26 for biventricular assists. Plasma hemoglobin remained as low as 10 mg/dl during monoventricular, and increased during biventricular assists to 20 mg/dl after 3 hr, when it started to chop again; after 6 hr it was 16 mg/dl. From these preliminary results it is concluded that this new type of blood pump may be suitable as a circulatory assist device.

  6. Hazardous-waste incineration in a rotary kiln

    SciTech Connect

    Owens, W.D. Jr.

    1991-01-01

    A rotary-kiln simulator was used to develop a better understanding of how hazardous materials are removed from sorbent clays. Experimental results and associated numerical modeling on the combustion and desorption of toluene from a montmorillonite clay sorbent are presented. The purpose of these tests was to understand the mass and heat transfer characteristics of the material in a rotary kiln environment. The experiments were done in a batch mode, simulating a control volume of solids moving down the length of a full-scale rotary kiln, exchanging time for distance as the independent variable. Studies investigating the effect of oxygen concentration, charge size, rotational velocity, and kiln cavity temperature on the desorption rate were completed. Also, effects of water in the montmorillonite were examined. Two comprehensive models were developed to predict the thermal and mass desorption characteristics of the bed, respectively. Another series of studies in the rotary kiln simulator was focused on NO, formation from nitrogenous waste constituents. These tests were performed to simulate materials (plastics, nylons, dyes, and process waste) usually destroyed in hazardous-waste incinerators. Four surrogate wastes, Aniline, Pyridine, Malononitrile, and Ethylenediamine, were absorbed onto the montmorillonite clay sorbent. A detailed discussion regarding the design, construction and operation of the rotary-kiln simulator for research on the destruction of hazardous waste materials is presented in the Appendices. All facility calibration techniques and calculations in addition to data acquisition and reduction algorithms are also discussed there.

  7. Planar Rotary Piezoelectric Motor Using Ultrasonic Horns

    NASA Technical Reports Server (NTRS)

    Sherrit, Stewart; Bao, Xiaoqi; Badescu, Mircea; Bar-Cohen, Yoseph; Geiyer, Daniel; Ostlund, Patrick N.; Allen, Phillip

    2011-01-01

    A motor involves a simple design that can be embedded into a plate structure by incorporating ultrasonic horn actuators into the plate. The piezoelectric material that is integrated into the horns is pre-stressed with flexures. Piezoelectric actuators are attractive for their ability to generate precision high strokes, torques, and forces while operating under relatively harsh conditions (temperatures at single-digit K to as high as 1,273 K). Electromagnetic motors (EM) typically have high rotational speed and low torque. In order to produce a useful torque, these motors are geared down to reduce the speed and increase the torque. This gearing adds mass and reduces the efficiency of the EM. Piezoelectric motors can be designed with high torques and lower speeds directly without the need for gears. Designs were developed for producing rotary motion based on the Barth concept of an ultrasonic horn driving a rotor. This idea was extended to a linear motor design by having the horns drive a slider. The unique feature of these motors is that they can be designed in a monolithic planar structure. The design is a unidirectional motor, which is driven by eight horn actuators, that rotates in the clockwise direction. There are two sets of flexures. The flexures around the piezoelectric material are pre-stress flexures and they pre-load the piezoelectric disks to maintain their being operated under compression when electric field is applied. The other set of flexures is a mounting flexure that attaches to the horn at the nodal point and can be designed to generate a normal force between the horn tip and the rotor so that to first order it operates independently and compensates for the wear between the horn and the rotor.

  8. Operator in-the-loop control of rotary cranes

    SciTech Connect

    Parker, G.G.; Robinett, R.D.; Driessen, B.J.; Dohrmann, C.R.

    1996-03-01

    An open-loop control method is presented for reducing the oscillatory motion of rotary crane payloads during operator commanded maneuvers. A typical rotary crane consists of a multiple degree-of-freedom platform for positioning a spherical pendulum with an attached payload. The crane operator positions the Payload by issuing a combination of translational and rotational commands to the platform as well as load-line length changes. Frequently, these pendulum modes are time-varying and exhibit low natural frequencies. Maneuvers are therefore performed at rates sufficiently slow so as not to excite oscillation. The strategy presented here generates crane commands which suppress vibration of the payload without a priori knowledge of the desired maneuver. Results are presented for operator in-the-loop positioning using a real-time dynamics simulation of a three-axis rotary crane where the residual sway magnitude is reduced in excess of 4OdB.

  9. A case study of air enrichment in rotary kiln incineration

    SciTech Connect

    Melo, G.F.; Lacava, P.T.; Carvalho, J.A. Jr.

    1998-07-01

    This paper presents a case study of air enrichment in an industrial rotary kiln type incineration unit. The study is based on mass and energy balances, considering the combustion reaction of a mixture composed by the residue and the auxiliary fuel with air enriched with oxygen. The steps are shown for the primary chamber (rotary kiln) and secondary chamber (afterburner). The residence times in the primary and secondary chamber are 2.0 and 3.2 sec, respectively. The pressure is atmospheric in both chambers. Based on constant chamber gas residence time and gas temperature, it is shown that the residue input rates can be increased by one order of magnitude as air is substituted by pure oxygen. As the residue consumption rate in the rotary kiln is also dependent on residue physical characteristics (mainly size), the study was also carried out for different percentages of oxygen in the oxidizer gas.

  10. Performance of rotary kiln reactor for the elephant grass pyrolysis.

    PubMed

    De Conto, D; Silvestre, W P; Baldasso, C; Godinho, M

    2016-10-01

    The influence of process conditions (rotary speed/temperature) on the performance of a rotary kiln reactor for non-catalytic pyrolysis of a perennial grass (elephant grass) was investigated. The product yields, the production of non-condensable gases as well as the biochar properties were evaluated. The maximum H2 yield was close to that observed for catalytic pyrolysis processes, while the bio-oil yield was higher than reported for pyrolysis of other biomass in rotary kiln reactors. A H2/CO ratio suitable for Fischer-Tropsch synthesis (FTS) was obtained. The biochars presented an alkaline pH (above 10) and interesting contents of nutrients, as well as low electrical conductivity, indicating a high potential as soil amendment.

  11. Design and performance of a piezoelectric actuated precise rotary positioner

    NASA Astrophysics Data System (ADS)

    Wang, Y. C.; Chang, S. H.

    2006-10-01

    Industries including semiconductor, biotechnology, and nanotechnology are seeking compact and reliable nanometer resolution positioning techniques. To address this demand, this article presents a friction-drive rotary stage driven by a piezoelectric transducer (PZT) actuator. This stage includes a multilayer PZT actuator, the Scott-Russell mechanism, an actuation stage, a preload spring, and an output shaft. Its rotary positioning is accomplished by the stick-slip effect between the wire electrodischarge-machining rotary stage and the output shaft. Finite element analysis and Taguchi optimization method were extensively conducted to analyze the displacement, stress, and vibration behavior for optimum design. As shown by the experimental results, the stage achieved a resolution of 0.13μrad and a speed of 0.15°/h by tuning of the preload spring.

  12. Rotary components, random ellipses and polarization: a statistical perspective.

    PubMed

    Walden, A T

    2013-02-13

    Rotary analysis decomposes vector motions on the plane into counter-rotating components, which have proved particularly useful in the study of geophysical flows influenced by the rotation of the Earth. For stationary random signals, the motion at any frequency takes the form of a random ellipse. Although there are numerous applications of rotary analysis, relatively little attention has been paid to the statistical properties of the random ellipses or to the estimated rotary coefficient, which measures the tendency to rotate counterclockwise or clockwise. The precise statistical structure of the ellipses is reviewed, including the random behaviour of the ellipse orientation, aspect ratio and intensity. Special attention is then paid to spectral matrix estimation from physical data and to hypothesis testing and confidence intervals computed using the estimated matrices.

  13. Application of a magnetic fluid seal to rotary blood pumps.

    PubMed

    Mitamura, Y; Arioka, S; Sakota, D; Sekine, K; Azegami, M

    2008-05-21

    A magnetic fluid seal enables mechanical contact-free rotation of a shaft without frictional heat and material wear and hence has excellent durability. However, the durability of a magnetic fluid seal decreases in liquid. The life of a seal applied to a rotary blood pump is not known. We have developed a magnetic fluid seal that has a shield mechanism minimizing the influence of the rotary pump on the magnetic fluid. The developed magnetic fluid seal worked for over 286 days in a continuous flow condition, for 24 days (on-going) in a pulsatile flow condition and for 24 h (electively terminated) in blood flow. The magnetic fluid seal is promising as a shaft seal for rotary blood pumps.

  14. 16 CFR 1205.5 - Walk-behind rotary power mower controls.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 2 2011-01-01 2011-01-01 false Walk-behind rotary power mower controls... rotary power mower controls. (a) Blade control systems—(1) Requirements for blade control. A walk-behind rotary power mower shall have a blade control system that will perform the following functions:...

  15. 16 CFR 1205.5 - Walk-behind rotary power mower controls.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Walk-behind rotary power mower controls... rotary power mower controls. (a) Blade control systems—(1) Requirements for blade control. A walk-behind rotary power mower shall have a blade control system that will perform the following functions:...

  16. How to select and apply positive-displacement rotary pumps

    SciTech Connect

    Neerken, R.F.

    1980-04-07

    The advantages of rotary pumps for process applications are promoted by these practical guidelines concerning the types available, facts about their operation and performance, and the fluid systems in which they can be used. Basic types of rotary pumps discussed include internal gear, sliding vane, single-screw (progressing cavity), cam and piston, flexible tube, flexible liner, external gear, circumferential piston, twin screw, triple screw, single lobe, and 3 lobe. Factors which are examined to make pump selection include suction requirements, viscosity of fluids, temperature at which process fluid is handled, working and allowable pressures, pump capacity, pump horsepower, materials of construction, and intended applications.

  17. Development of a ferromagnetic rotary vacuum sealed spacecraft spin fixture

    NASA Technical Reports Server (NTRS)

    Levine, M. B.

    1977-01-01

    A number of successful spacecraft tests were conducted on an environmental spin fixture which utilizes a ferrofluidic rotary vacuum seal. The 27 cm (10.5 inch) diameter fixture drive shaft supports and spins communications satellites during flight acceptance testing in a thermal vacuum chamber. The drive shaft rotary seal serves to maintain the canned drive system electro-mechanical components at ambient pressure within the space simulator. The ferromagnetic fluid seal was chosen over conventional mechanical sealing devices for its zero-leakage, zero-wear, and minimum friction drag characteristics, as well as its high reliability potential.

  18. Microwave lamp with multi-purpose rotary motor

    DOEpatents

    Ury, Michael G.; Turner, Brian; Wooten, Robert D.

    1999-01-01

    In a microwave powered electrodeless lamp, a single rotary motor is used to a) rotate the bulb and b) provide rotary motion to a blower or pump means for providing cooling fluid to the magnetron and/or to a forced gas cooling for providing cooler gas to the bulb. The blower may consist of only of an impeller without the usual blower housing. The motor, bulb stem and bulb, or motor, bulb stem, bulb and blower may be formed as an integral unit so as to facilitate replacement.

  19. Microwave lamp with multi-purpose rotary motor

    DOEpatents

    Ury, M.G.; Turner, B.; Wooten, R.D.

    1999-02-02

    In a microwave powered electrodeless lamp, a single rotary motor is used to (a) rotate the bulb and (b) provide rotary motion to a blower or pump means for providing cooling fluid to the magnetron and/or to a forced gas cooler for providing cooling gas to the bulb. The blower may consist of only of an impeller without the usual blower housing. The motor, bulb stem and bulb, or motor, bulb stem, bulb and blower may be formed as an integral unit so as to facilitate replacement. 8 figs.

  20. Note: A novel rotary actuator driven by only one piezoelectric actuator.

    PubMed

    Huang, Hu; Fu, Lu; Zhao, Hongwei; Shi, Chengli; Ren, Luquan; Li, Jianping; Qu, Han

    2013-09-01

    This paper presents a novel piezo-driven rotary actuator based on the parasitic motion principle. Output performances of the rotary actuator were tested and discussed. Experiment results indicate that using only one piezoelectric actuator and simple sawtooth wave control, the rotary actuator reaches the rotation velocity of about 20,097 μrad/s when the driving voltage is 100 V and the driving frequency is 90 Hz. The actuator can rotate stably with the minimum resolution of 0.7 μrad. This paper verifies feasibility of the parasitic motion principle for applications of rotary actuators, providing new design ideas for precision piezoelectric rotary actuators.

  1. A review of Curtiss-Wright rotary engine developments with respect to general aviation potential

    NASA Technical Reports Server (NTRS)

    Jones, C.

    1979-01-01

    Aviation related rotary (Wankel-type) engine tests, possible growth directions and relevant developments at Curtiss-Wright have been reviewed. Automotive rotary engines including stratified charge are described and flight test results of rotary aircraft engines are presented. The current 300 HP engine prototype shows basic durability and competitive performance potential. Recent parallel developments have separately confirmed the geometric advantages of the rotary engine for direct injected unthrottled stratified charge. Specific fuel consumption equal to or better than pre- or swirl-chamber diesels, low emission and multi-fuel capability have been shown by rig tests of similar rotary engine.

  2. Micro rotary machine and methods for using same

    DOEpatents

    Stalford, Harold L [Norman, OK

    2012-04-17

    A micro rotary machine may include a micro actuator and a micro shaft coupled to the micro actuator. The micro shaft comprises a horizontal shaft and is operable to be rotated by the micro actuator. A micro tool is coupled to the micro shaft and is operable to perform work in response to motion of the micro shaft.

  3. Improved Rotary Transformer For Shaft-Position Indicator

    NASA Technical Reports Server (NTRS)

    Mclyman, W. T.

    1991-01-01

    Improved rotary transformer for Inductosyn (or equivalent) shaft-position-indicating circuit has pair of ferrite cores instead of the solid-iron cores. Designed with view toward decreasing excitation power (to maximum allowable 2 W) supplied to shaft-position-indicating circuit to increase its output signal and make tracking system less vulnerable to electromagnetic interference.

  4. Dual Spark Plugs For Stratified-Charge Rotary Engine

    NASA Technical Reports Server (NTRS)

    Abraham, John; Bracco, Frediano V.

    1996-01-01

    Fuel efficiency of stratified-charge, rotary, internal-combustion engine increased by improved design featuring dual spark plugs. Second spark plug ignites fuel on upstream side of main fuel injector; enabling faster burning and more nearly complete utilization of fuel.

  5. Engineering study of the rotary-vee engine concept

    NASA Technical Reports Server (NTRS)

    Willis, Edward A.; Bartrand, Timothy A.; Beard, John E.

    1989-01-01

    The applicable thermodynamic cycle and performance considerations when the rotary-vee mechanism is used as an internal combustion (I.C.) heat engine are reviewed. Included is a simplified kinematic analysis and studies of the effects of design parameters on the critical pressures, torques and parasitic losses. A discussion of the principal findings is presented.

  6. INTERIOR OF SHT (ROTARY DRYER FOR SODA) BUILDING OR DRYSIDE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR OF SHT (ROTARY DRYER FOR SODA) BUILDING OR DRYSIDE DRYERS WHICH REMOVED TRACES OF LIQUID FROM STD FILTRATE. HEAT CONVERTED SODIUM BICARBONATE TO SODIUM CARBONATE OR SODA ASH, THE PRINCIPAL PRODUCT OF THE WORKS. - Solvay Process Company, SHT Building, Between Willis & Milton Avenues, Solvay, Onondaga County, NY

  7. MINIMIZATION OF TRANSIENT EMISSIONS FROM ROTARY KILN INCINERATORS

    EPA Science Inventory

    Transient emissions of organics can occur from rotary kiln incinerators when drums containing liquid wastes bound on sorbents are introduced in a batch-wise fashion. Physical processes controlling the release of waste from the sorbent material are greatly affected by the rotation...

  8. 37. VIEW OF SIX GAP ROTARY RECTIFIER FOR MAINTAINING CORONA ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    37. VIEW OF SIX GAP ROTARY RECTIFIER FOR MAINTAINING CORONA DISCHARGE IN THE COTTRELL ELECTROSTATIC GENERATORS. THE SYSTEM WAS CAPABLE OF PROVIDING 88,000 VOLTS TO THE ELECTRODES WITHIN THE PRECIPITATOR CHAMBER THE UNIT WAS LOCATED TO THE REAR OF BOILER 904 IN AN ENCLOSED ROOM. - New York, New Haven & Hartford Railroad, Cos Cob Power Plant, Sound Shore Drive, Greenwich, Fairfield County, CT

  9. Micro rotary machine and methods for using same

    DOEpatents

    Stalford, Harold

    2015-01-13

    A micro rotary machine may include a micro actuator and a micro shaft coupled to the micro actuator. The micro shaft comprises a horizontal shaft and is operable to be rotated by the micro actuator. A micro tool is coupled to the micro shaft and is operable to perform work in response to motion of the micro shaft.

  10. Multigrid convergence of inviscid fixed- and rotary-wing flows

    NASA Astrophysics Data System (ADS)

    Allen, C. B.

    2002-05-01

    The affect of multigrid acceleration implemented within an upwind-biased Euler method is presented, and applied to fixed-wing and rotary-wing flows. The convergence of fixed- and rotary-wing computations is shown to be vastly different, and multigrid is shown to be less effective for rotary-wing flows. The flow about a hovering rotor suffers from very slow convergence of the inner blade region, where the flow is effectively incompressible. Furthermore, the vortical wake must develop over several turns before convergence is achieved, whereas for fixed-wing computations the far-field grid and solution have little significance. Results are presented for single mesh and two, three, four, and five level multigrid, and using five levels a reduction in required CPU time of over 80 per cent is demonstrated for rotary-wing computations, but 94 per cent for fixed-wing computations. It is found that a simple V-cycle is the most effective, smoothing in the decreasing mesh density direction only, with a relaxed trilinear prolongation operator. Copyright

  11. TRANSIENT SUPPRESSION PACKAGING FOR REDUCED EMISSIONS FROM ROTARY KILN INCINERATORS

    EPA Science Inventory

    Experiments were performed on a 73 kW rotary kiln incinerator simulator to determine whether innovative waste packaging designs might reduce transient emissions of products of incomplete combustion due to batch charging of containerized liquid surrogate waste compounds bound on g...

  12. A unidirectional rotary solenoid as applied to stronglinks

    NASA Technical Reports Server (NTRS)

    Kenderdine, Eugene W.

    1989-01-01

    The design goals and results of an advanced development stronglink are discussed. Special emphasis is placed on a new rotary solenoid concept to provide improved security during the handling, storage, transporting, and deployment of weapons to prevent accidental detonation of the weapons in the event of abnormal environments, such as impact, fire, crush, etc.

  13. Solar Alpha Rotary Joint Anomaly: The Materials and Processes Perspective

    NASA Technical Reports Server (NTRS)

    Basta, Erin A.; Dasgupta, Rijib; Figert, John; Jerman, Greg; Wright, Clara; Petrakis, Dennis; Golden, Johnny L.

    2009-01-01

    This slide presentation reviews the anomaly discovered on the Solar Alpha Rotary Joint (SARJ). This anomaly was discovered when the SARJ mechanism produced anomalous telemetry and noticeable vibrations. Metallic debris was discovered throughout the vicinity of the mechanism. Samples were taken from the SARJ, and the findings of the analysis are discussed.

  14. Northwest view of rotary hearth furnace of the no. 2 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Northwest view of rotary hearth furnace of the no. 2 seamless line in bays 17 and 18 of the main pipe mill building. - U.S. Steel National Tube Works, Skelp Mill Building, Along Monongahela River, McKeesport, Allegheny County, PA

  15. Rotary roller mandrel of no. 2 seamless line in bays ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Rotary roller mandrel of no. 2 seamless line in bays 19 and 20 of the main pipe mill building looking south. - U.S. Steel National Tube Works, Main Pipe Mill Building, Along Monongahela River, McKeesport, Allegheny County, PA

  16. Northwest view of rotary hearth furnace of the no. 2 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Northwest view of rotary hearth furnace of the no. 2 seamless line in bays 17 and 18 of the main pipe mill building. - U.S. Steel National Tube Works, Main Pipe Mill Building, Along Monongahela River, McKeesport, Allegheny County, PA

  17. Southwest view of rotary hearth furnace of the no. 2 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Southwest view of rotary hearth furnace of the no. 2 seamless line in bays 17 and 18 of the main pipe mill building. - U.S. Steel National Tube Works, Main Pipe Mill Building, Along Monongahela River, McKeesport, Allegheny County, PA

  18. Southwest view of rotary hearth furnace of the no. 2 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Southwest view of rotary hearth furnace of the no. 2 seamless line in bays 17 and 18 of the main pipe mill building. - U.S. Steel National Tube Works, Skelp Mill Building, Along Monongahela River, McKeesport, Allegheny County, PA

  19. Ultrasonic/Sonic Rotary-Hammer Drills

    NASA Technical Reports Server (NTRS)

    Badescu, Mircea; Sherrit, Stewart; Bar-Cohen, Yoseph; Bao, Xiaoqi; Kassab, Steve

    2010-01-01

    Ultrasonic/sonic rotary-hammer drill (USRoHD) is a recent addition to the collection of apparatuses based on ultrasonic/sonic drill corer (USDC). As described below, the USRoHD has several features, not present in a basic USDC, that increase efficiency and provide some redundancy against partial failure. USDCs and related apparatuses were conceived for boring into, and/or acquiring samples of, rock or other hard, brittle materials of geological interest. They have been described in numerous previous NASA Tech Briefs articles. To recapitulate: A USDC can be characterized as a lightweight, lowpower, piezoelectrically driven jackhammer in which ultrasonic and sonic vibrations are generated and coupled to a tool bit. A basic USDC includes a piezoelectric stack, an ultrasonic transducer horn connected to the stack, a free mass ( free in the sense that it can bounce axially a short distance between hard stops on the horn and the bit), and a tool bit. The piezoelectric stack creates ultrasonic vibrations that are mechanically amplified by the horn. The bouncing of the free mass between the hard stops generates the sonic vibrations. The combination of ultrasonic and sonic vibrations gives rise to a hammering action (and a resulting chiseling action at the tip of the tool bit) that is more effective for drilling than is the microhammering action of ultrasonic vibrations alone. The hammering and chiseling actions are so effective that unlike in conventional twist drilling, little applied axial force is needed to make the apparatus advance into the material of interest. There are numerous potential applications for USDCs and related apparatuses in geological exploration on Earth and on remote planets. In early USDC experiments, it was observed that accumulation of cuttings in a drilled hole causes the rate of penetration of the USDC to decrease steeply with depth, and that the rate of penetration can be increased by removing the cuttings. The USRoHD concept provides for

  20. New Rotary Table Providing Improved Mass Property Measurements

    NASA Astrophysics Data System (ADS)

    Messing, R.; Appolloni, M.; Sablerolle, S.; Tavares, A.; Hervieu, M.

    2014-06-01

    ESA Test Centre at ESTEC, Noordwijk is a unique place in Europe, which is geared to perform environmental tests on large spacecraft at system level. The Test Centre includes the whole environmental facilities family: shakers, acoustic chamber, mass properties measurement facilities, electro-magnetic compatibility facilities and thermal vacuum chambers.Center of gravity (CoG) measurements require at least two force measurements in combination with a mass measurement to determine the CoG in the horizontal x-y plane. To achieve more quickly two or more orientations of the specimen with respect to the force cell the Test Centre implemented a rotary table on top of its W50/M6 mass property machine. This paper focuses on the acceptance and implementation of the rotary table and how by its use the CoG measurements could be improved in terms of measurement time, measurement uncertainty and measurement reliability.

  1. A rotary nano ion pump: a molecular dynamics study.

    PubMed

    Lohrasebi, A; Feshanjerdi, M

    2012-09-01

    The dynamics of a rotary nano ion pump, inspired by the F (0) part of the F(0)F(1)-ATP synthase biomolecular motor, were investigated. This nanopump is composed of a rotor, which is constructed of two carbon nanotubes with benzene rings, and a stator, which is made of six graphene sheets. The molecular dynamics (MD) method was used to simulate the dynamics of the ion nanopump. When the rotor of the nanopump rotates mechanically, an ion gradient will be generated between the two sides of the nanopump. It is shown that the ion gradient generated by the nanopump is dependant on parameters such as the rotary frequency of the rotor, temperature and the amounts and locations of the positive and negative charges of the stator part of the nanopump. Also, an electrical potential difference is generated between the two sides of the pump as a result of its operation.

  2. Rotary molecular motion at the nanoscale: motors, propellers, wheels

    NASA Astrophysics Data System (ADS)

    Vukovic, Lela; Wang, Boyang; Kral, Petr

    2009-03-01

    We describe by molecular dynamics simulations nanoscale systems that could realize rotary motion. First, we study molecular propellers formed by carbon nanotube rotors with attached aromatic blades [1]. We show that these propellers could pump different types of liquids, and their pumping efficiency strongly depends on the chemistry of the (hydrophobic or hydrophilic) liquid-blade interface. We also investigate nanoscopic wheels with hydrophobic surfaces that show rolling activity on water when driven. Finally, we model efficient molecular motors driven by electron tunneling, which could drive rotary molecular systems [2]. [3pt] [1] B. Wang and P. Kr'al, . Rev. Lett. 98, 266102 (2007).[0pt] [2] B. Wang, L. Vukovic and P. Kr'al, Phys. Rev. Lett. 101, 186808 (2008).

  3. Incidence of instrument separation using LightSpeed rotary instruments.

    PubMed

    Knowles, Kenneth I; Hammond, Nathan B; Biggs, Stephen G; Ibarrola, Jose L

    2006-01-01

    The use of nickel-titanium rotary instrument systems has gained popularity over the past 10 years. One of these instrument systems is the LightSpeed (LightSpeed Technology, Inc, San Antonio, TX). One drawback for all nickel-titanium rotary instruments is the incidence of instrument separation. The purpose of this study was to evaluate the incidence of nonretrievable instrument separation using the LightSpeed system in a clinical setting. A total of 3543 canals were treated over a 24 month period and during that time, 46 LightSpeed instruments were separated and found to be nonretrievable, resulting in a separation rate of 1.30%. This rate was lower than previous reported studies.

  4. Recent developments in rotary-wing aerodynamic theory

    NASA Technical Reports Server (NTRS)

    Johnson, W.

    1986-01-01

    Current progress in the computational analysis of rotary-wing flowfields is surveyed, and some typical results are presented in graphs. Topics examined include potential theory, rotating coordinate systems, lifting-surface theory (moving singularity, fixed wing, and rotary wing), panel methods (surface singularity representations, integral equations, and compressible flows), transonic theory (the small-disturbance equation), wake analysis (hovering rotor-wake models and transonic blade-vortex interaction), limitations on computational aerodynamics, and viscous-flow methods (dynamic-stall theories and lifting-line theory). It is suggested that the present algorithms and advanced computers make it possible to begin working toward the ultimate goal of turbulent Navier-Stokes calculations for an entire rotorcraft.

  5. Rotary wave-ejector enhanced pulse detonation engine

    NASA Astrophysics Data System (ADS)

    Nalim, M. R.; Izzy, Z. A.; Akbari, P.

    2012-01-01

    The use of a non-steady ejector based on wave rotor technology is modeled for pulse detonation engine performance improvement and for compatibility with turbomachinery components in hybrid propulsion systems. The rotary wave ejector device integrates a pulse detonation process with an efficient momentum transfer process in specially shaped channels of a single wave-rotor component. In this paper, a quasi-one-dimensional numerical model is developed to help design the basic geometry and operating parameters of the device. The unsteady combustion and flow processes are simulated and compared with a baseline PDE without ejector enhancement. A preliminary performance assessment is presented for the wave ejector configuration, considering the effect of key geometric parameters, which are selected for high specific impulse. It is shown that the rotary wave ejector concept has significant potential for thrust augmentation relative to a basic pulse detonation engine.

  6. Bearing And Power Transfer Assembly (BAPTA) with rotary transformer

    NASA Astrophysics Data System (ADS)

    Auer, W.

    1980-06-01

    The utilization of rotary transformers as an alternative to slip rings for the power transfer from solar panels to a satellite's main body could be advantageous, especially if an ac bus system is taken into consideration. Different approaches for bearing and power transfer assembly (BAPTA's) with rotary transformers were investigated with main emphasis on the electromagnetic design. Test results show that a 1.5 kW transformer can be operated with a 98% efficiency. A furhter increase to the specified 99% efficiency seems to be possible. In the present configuration, two 1.5 kW transformers are mounted with in one housing. A preloaded ball bearing arrangement assures proper air gaps and a relatively constant torque over temperature. The BAPTA is driven by a TELDIX stepper motor.

  7. High Bandwidth Short Stroke Rotary Fast Tool Servo

    SciTech Connect

    Montesanti, R C; Trumper, D L

    2003-08-22

    This paper presents the design and performance of a new rotary fast tool servo (FTS) capable of developing the 40 g's tool tip acceleration required to follow a 5 micron PV sinusoidal surface at 2 kHz with a planned accuracy of 50 nm, and having a full stroke of 50 micron PV at lower frequencies. Tests with de-rated power supplies have demonstrated a closed-loop unity-gain bandwidth of 2 kHz with 20 g's tool acceleration, and we expect to achieve 40 g's with supplies providing {+-} 16 Amp to the Lorentz force actuator. The use of a fast tool servo with a diamond turning machine for producing non-axisymmetric or textured surfaces on a workpiece is well known. Our new rotary FTS was designed to specifically accommodate fabricating prescription textured surfaces on 5 mm diameter spherical target components for High Energy Density Physics experiments on the National Ignition Facility Laser (NIF).

  8. Multiple quantum magic-angle spinning using rotary resonance excitation

    NASA Astrophysics Data System (ADS)

    Vosegaard, Thomas; Florian, Pierre; Massiot, Dominique; Grandinetti, Philip J.

    2001-03-01

    We have discovered rotary resonances between rf field strength, ω1, and magic-angle spinning (MAS) frequency, ωR, which dramatically enhance the sensitivity of triple quantum preparation and mixing in the multiple-quantum MAS experiment, particularly for quadrupolar nuclei having low gyromagnetic ratios or experiencing strong quadrupole couplings. Triple quantum excitation efficiency minima occur when 2ω1=nωR, where n is an integer, with significant maxima occurring between these minima. For triple quantum mixing we observe maxima when ω1=nωR. In both preparation and mixing the pulse lengths required to reach maxima exceed one rotor period. We have combined these rotary resonance conditions into a new experiment called FASTER MQ-MAS, and have experimentally demonstrated a factor of 3 enhancement in sensitivity in comparison to conventional MQ-MAS.

  9. Stratified charge rotary aircraft engine technology enablement program

    NASA Technical Reports Server (NTRS)

    Badgley, P. R.; Irion, C. E.; Myers, D. M.

    1985-01-01

    The multifuel stratified charge rotary engine is discussed. A single rotor, 0.7L/40 cu in displacement, research rig engine was tested. The research rig engine was designed for operation at high speeds and pressures, combustion chamber peak pressure providing margin for speed and load excursions above the design requirement for a high is advanced aircraft engine. It is indicated that the single rotor research rig engine is capable of meeting the established design requirements of 120 kW, 8,000 RPM, 1,379 KPA BMEP. The research rig engine, when fully developed, will be a valuable tool for investigating, advanced and highly advanced technology components, and provide an understanding of the stratified charge rotary engine combustion process.

  10. Electrical rotary joint apparatus for large space structures

    NASA Technical Reports Server (NTRS)

    Belew, R. R.; Boehme, R. J. (Inventor)

    1981-01-01

    A structural array and electrical rotary joint for transmitting an electrical power between large space structures having relative rotational movement is disclosed which includes large support framework structures which rotate relative to one another about a common axis of rotation. A rotary interface joint is defined between the structures. A cylindrical hub member is carried by one structure and a cylindrical hub member is carried by a support structure with a third hub member being concentrically within a fourth hub member for relative rotation. Tension connecting cables connect hub members with their associated outer structures whereby relative rotational movement between the structures is transmitted to the cylindrical hub members for unitary motion therewith. Electrical conductor brush members are carried by one hub and electrical contact rings are carried by another hub member in sliding electrical contact with the brushes for transmission of electrical power during relative rotational movement between the two support structures.

  11. Error correction of photoelectric rotary and angle encoder

    NASA Astrophysics Data System (ADS)

    Zhou, Liang; She, Wen-ji; Huang, Jing

    2014-02-01

    The photoelectric rotary and angle encoder is a digital angle measuring device, which is integrated with optics, mechanics and electrics. Because of its simple structure, high resolution, and high accuracy, it has been widely used in precision measurement of angle, digital control and digital display system. With the needs of fast tracking and accurate orientation on the horizon and air targets, putting forward higher requirements on accuracy of angle measurement and resolution of photoelectric rotary and angle encoder. Influences of manufacturing, electronics segmentation, optical and mechanical structure and eccentric shaft to photoelectric encoder precision and reducing methods are introduced. Focusing on the eccentricity error, building up an error correction model to improve the resolution of angle encoder and the model was verified by test.

  12. Rotary engine performance computer program (RCEMAP and RCEMAPPC): User's guide

    NASA Technical Reports Server (NTRS)

    Bartrand, Timothy A.; Willis, Edward A.

    1993-01-01

    This report is a user's guide for a computer code that simulates the performance of several rotary combustion engine configurations. It is intended to assist prospective users in getting started with RCEMAP and/or RCEMAPPC. RCEMAP (Rotary Combustion Engine performance MAP generating code) is the mainframe version, while RCEMAPPC is a simplified subset designed for the personal computer, or PC, environment. Both versions are based on an open, zero-dimensional combustion system model for the prediction of instantaneous pressures, temperature, chemical composition and other in-chamber thermodynamic properties. Both versions predict overall engine performance and thermal characteristics, including bmep, bsfc, exhaust gas temperature, average material temperatures, and turbocharger operating conditions. Required inputs include engine geometry, materials, constants for use in the combustion heat release model, and turbomachinery maps. Illustrative examples and sample input files for both versions are included.

  13. Development of a rotary instrumentation system, phase 2

    NASA Technical Reports Server (NTRS)

    Adler, A.; Skidmore, W.

    1982-01-01

    A rotary instrumentation system which consists of ruggedized miniature telemetry transmitters installed on the rotating shaft of a gas turbine engine to telemeter the outputs of sensors (strain gages, thermocouples, etc.) on rotating engine components was designed. A small prototype system, which demonstrates the capabilities of performing in the intended environment and demonstrates that the system is expandable to handle about 100 data channels was developed.

  14. Zink rotary kiln seal: Cam followers. Revision 1

    SciTech Connect

    Fisher, D.L.

    1994-12-09

    The CIF will treat hazardous and mixed low-level radioactive waste in a rotary kiln and secondary combustion chamber. A high efficiency air pollution control system follows the secondary chamber. The rotary kiln is designed with a gas seal at each end of its rotating barrel which provides a barrier between the interior of the kiln and outside air. The internal pressure of the rotary kiln will be maintained below atmospheric pressure, so exterior air passing the seals is forced into the kiln`s interior. Positive pressure may be applied in the seal labyrinth, adding a barrier to flow. Both CIF seals will be covered entirely with exhaust hoods, drawing air over the outside of the seal and into a HEPA filtered exhaust system. Cam follower misalignment on a John Zink rotary kiln seal caused damage to the seal`s rotor. The misalignment was quantified, corrected, and checked to verify straightness. The primary purpose of the correction was to allow seal testing 1 to continue, but the information is applicable to the Consolidated Incineration Facility (CIF) since two large seals of similar design will be installed there. Cam follower straightness was off as much as 3.5{degrees}, causing followers to run untrue on the rotor. High contact forces resulted, removing flakes of metal from the rotor surface. The misalignment caused weight bearing followers on one side of the seal to back out of their threaded mounts. The root cause was poor machining of the follower mounting holes. Correction was accomplished by relieving the holes and installing machined spacers and retaining nuts. Cam followers on the CIF`s Zink seals should be inspected for straightness before the seals are installed.

  15. Development of a rotary instrumentation system, phase 2

    NASA Astrophysics Data System (ADS)

    Adler, A.; Skidmore, W.

    1982-12-01

    A rotary instrumentation system which consists of ruggedized miniature telemetry transmitters installed on the rotating shaft of a gas turbine engine to telemeter the outputs of sensors (strain gages, thermocouples, etc.) on rotating engine components was designed. A small prototype system, which demonstrates the capabilities of performing in the intended environment and demonstrates that the system is expandable to handle about 100 data channels was developed.

  16. 5. Photocopied August 1978. FRONT OF A HORRY ROTARY FURNACE, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. Photocopied August 1978. FRONT OF A HORRY ROTARY FURNACE, SHOWING INTERIOR ELECTRODES. THE RAW MATERIALS FOR CALCIUM CARBIDE PRODUCTION--LIMESTONE AND COKE--WERE FED BY HOPPERS PLACED BETWEEN THESE ELECTRODES INTO THE ELECTRIC ARC. THE REMOVABLE PLATES ON THE EXTERNAL CIRCUMSTANCE OF THE HORRY FURNACE ARE SHOWN ON THE FIRST THREE FURNACES. (M) - Michigan Lake Superior Power Company, Portage Street, Sault Ste. Marie, Chippewa County, MI

  17. STANDBY TOP AND BOTTOM ROTARY MILLING CUTTERS FOR TORIN LINE. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    STANDBY TOP AND BOTTOM ROTARY MILLING CUTTERS FOR TORIN LINE. SOME PRODUCT FROM THE #43 HOT ROLL IS PROCESSED ON THE TORIN LINE TO REMOVE OXIDIZED SURFACE MATERIAL. IN PRACTICE 15-20/1000 IS CUT FROM THE UPPER AND LOWER SURFACES OF THE STRIP AND RECYCLED TO THE CASTING SHOP. TORIN LINE ADDED AS PART OF 1981 EXPANSION PROGRAM. - American Brass Foundry, 70 Sayre Street, Buffalo, Erie County, NY

  18. Skew and twist resistant hydrodynamic rotary shaft seal

    DOEpatents

    Dietle, L.; Kalsi, M.S.

    1999-02-23

    A hydrodynamically lubricated squeeze packing type rotary shaft seal suitable for lubricant retention and environmental exclusion which incorporates one or more resilient protuberances which cooperate with the gland walls to hold the seal straight in its installation groove in unpressurized and low pressure lubricant retention applications thereby preventing skew-induced wear caused by impingement of abrasive contaminants present in the environment, and which also serve as radial bearings to prevent tipping of the seal within its installation gland. 14 figs.

  19. Skew and twist resistant hydrodynamic rotary shaft seal

    DOEpatents

    Dietle, Lannie; Kalsi, Manmohan Singh

    1999-01-01

    A hydrodynamically lubricated squeeze packing type rotary shaft seal suitable for lubricant retention and environmental exclusion which incorporates one or more resilient protuberances which and cooperate with the gland walls to hold the seal straight in its installation groove in unpressurized and low pressure lubricant retention applications thereby preventing skew-induced wear caused by impingement of abrasive contaminants present in the environment, and which also serve as radial bearings to prevent tipping of the seal within its installation gland.

  20. FLIR systems submicro rotary stirling cycle IDCA for imaging systems

    NASA Astrophysics Data System (ADS)

    Bin-Nun, Uri

    2011-05-01

    The advantages of the common Rotary Stirling cycle coolers over the Split Stirling Linear are the overall size, light weight, low cooler input power and high efficiency. The main disadvantage has always been self induced vibration. Self induced vibration is a major consideration in the design of stabilized IR imaging systems/(GIMBALS) due to the effect it has on image quality i.e. Jitter. The "irregular shape" of the Rotary cooling engine attached to the payload and optics is also a problem in terms of the limits it has on optical system size. To address these issues, FLIR Systems Inc in Boston MA, developed a new rotary Stirling cycle cooling engine known as the FLIR Submicro Cooler. The Submicro is now in production and has been applied in a few products especially in FLIR"S smallest GIMBAL which measures 7.0 inch in spherical diameter. In this paper we discuss the improvements made in terms of IDCA implementation in stabilized imaging systems.

  1. FLIR systems submicro rotary stirling cycle IDCA for imaging systems

    NASA Astrophysics Data System (ADS)

    Uri, Bin-Nun

    2011-06-01

    The advantages of the common Rotary Stirling cycle coolers over the Split Stirling Linear are the overall size, light weight, low cooler input power and high efficiency. The main disadvantage has always been self induced vibration. Self induced vibration is a major consideration in the design of stabilized IR imaging systems/(GIMBALS) due to the effect it has on image quality i.e. Jitter. The "irregular shape" of the Rotary cooling engine attached to the payload and optics is also a problem in terms of the limits it has on optical system size. To address these issues, FLIR Systems Inc in Boston MA, developed a new rotary Stirling cycle cooling engine known as the FLIR Submicro Cooler. The Submicro is now in production and has been applied in a few products especially in FLIR"S smallest GIMBAL which measures 7.0 inch in spherical diameter. In this paper we discuss the improvements made in terms of IDCA implementation in stabilized imaging systems.

  2. Evaluation of different rotary devices on bone repair in rabbits.

    PubMed

    Ribeiro Junior, Paulo Domingos; Barleto, Christiane Vespasiano; Ribeiro, Daniel Araki; Matsumoto, Mariza Akemi

    2007-01-01

    In oral surgery, the quality of bone repair may be influenced by several factors that can increase the morbidity of the procedure. The type of equipment used for ostectomy can directly affect bone healing. The aim of this study was to evaluate bone repair of mandible bone defects prepared in rabbits using three different rotary devices. Fifteen New Zealand rabbits were randomly assigned to 3 groups (n=5) according to type of rotary device used to create bone defects: I--pneumatic low-speed rotation engine, II--pneumatic high-speed rotation engine, and III--electric low-speed rotation engine. The anatomic pieces were surgically obtained after 2, 7 and 30 days and submitted to histological and morphometric analysis. The morphometric results were expressed as the total area of bone remodeling matrix using an image analysis system. Increases in the bone remodeling matrix were noticed with time along the course of the experiment. No statistically significant differences (p>0.05) were observed among the groups at the three sacrificing time points considering the total area of bone mineralized matrix, although the histological analysis showed a slightly advanced bone repair in group III compared to the other two groups. The findings of the present study suggest that the type of rotary device used in oral and maxillofacial surgery does not interfere with the bone repair process.

  3. Rotation of artificial rotor axles in rotary molecular motors.

    PubMed

    Baba, Mihori; Iwamoto, Kousuke; Iino, Ryota; Ueno, Hiroshi; Hara, Mayu; Nakanishi, Atsuko; Kishikawa, Jun-Ichi; Noji, Hiroyuki; Yokoyama, Ken

    2016-10-04

    F1- and V1-ATPase are rotary molecular motors that convert chemical energy released upon ATP hydrolysis into torque to rotate a central rotor axle against the surrounding catalytic stator cylinder with high efficiency. How conformational change occurring in the stator is coupled to the rotary motion of the axle is the key unknown in the mechanism of rotary motors. Here, we generated chimeric motor proteins by inserting an exogenous rod protein, FliJ, into the stator ring of F1 or of V1 and tested the rotation properties of these chimeric motors. Both motors showed unidirectional and continuous rotation, despite no obvious homology in amino acid sequence between FliJ and the intrinsic rotor subunit of F1 or V1 These results showed that any residue-specific interactions between the stator and rotor are not a prerequisite for unidirectional rotation of both F1 and V1 The torque of chimeric motors estimated from viscous friction of the rotation probe against medium revealed that whereas the F1-FliJ chimera generates only 10% of WT F1, the V1-FliJ chimera generates torque comparable to that of V1 with the native axle protein that is structurally more similar to FliJ than the native rotor of F1 This suggests that the gross structural mismatch hinders smooth rotation of FliJ accompanied with the stator ring of F1.

  4. Testing and Development of a Percussive Augmenter for Rotary Drills

    NASA Technical Reports Server (NTRS)

    Donnelly, Christopher; Bar-Cohen, Yoseph; Chang, Zensheu; Badescu, Mircea; Sherrit, Stewart

    2011-01-01

    Hammering drills are effective in fracturing the drilled medium while rotary drills remove cuttings. The combination provides a highly effective penetration mechanism. Piezoelectric actuators were integrated into an adapter to produce ultrasonic percussion; augmenting rotary drilling. The drill is capable of operating at low power, low applied force and, with proper tuning, low noise. These characteristics are of great interest for future NASA missions and the construction/remodeling industry. The developed augmenter connects a commercially available drill and bit and was tested to demonstrate its capability. Input power to the drill was read using a multimeter and the augmenter received a separate input voltage. The drive frequency of the piezoelectric actuator was controlled by a hill climb algorithm that optimizes and records average power usage to operate the drill at resonating frequency. Testing the rotary drill and augmenter across a range of combinations with total power constant at 160 Watts has shown results in concrete and limestone samples that are as good as or better than the commercial drill. The drill rate was increased 1.5 to over 10 times when compared to rotation alone.

  5. Study of advanced rotary combustion engines for commuter aircraft

    NASA Technical Reports Server (NTRS)

    Berkowitz, M.; Jones, C.; Myers, D.

    1983-01-01

    Performance, weight, size, and maintenance data for advanced rotary aircraft engines suitable for comparative commuter aircraft system evaluation studies of alternate engine candidates are provided. These are turbocharged, turbocompounded, direct injected, stratified charge rotary engines. Hypothetical engines were defined (an RC4-74 at 895 kW and an RC6-87 at 1490 kW) based on the technologies and design approaches used in the highly advanced engine of a study of advanced general aviation rotary engines. The data covers the size range of shaft power from 597 kW (800 hp) to 1865 kW (2500 hp) and is in the form of drawings, tables, curves and written text. These include data on internal geometry and configuration, installation information, turbocharging and turbocompounding arrangements, design features and technologies, engine cooling, fuels, scaling for weight size BSFC and heat rejection for varying horsepower, engine operating and performance data, and TBO and maintenance requirements. The basic combustion system was developed and demonstrated; however the projected power densities and performance efficiencies require increases in engine internal pressures, thermal loading, and rotative speed.

  6. Multi-fuel rotary engine for general aviation aircraft

    NASA Technical Reports Server (NTRS)

    Jones, C.; Ellis, D. R.; Meng, P. R.

    1983-01-01

    Design studies of advanced multifuel general aviation and commuter aircraft rotary stratified charge engines are summarized. Conceptual design studies were performed at two levels of technology, on advanced general aviation engines sized to provide 186/250 shaft kW/hp under cruise conditions at 7620 (25000 m/ft) altitude. A follow on study extended the results to larger (2500 hp max.) engine sizes suitable for applications such as commuter transports and helicopters. The study engine designs were derived from relevant engine development background including both prior and recent engine test results using direct injected unthrottled rotary engine technology. Aircraft studies, using these resultant growth engines, define anticipated system effects of the performance and power density improvements for both single engine and twin engine airplanes. The calculated results indicate superior system performance and 27 to 33 percent fuel economy improvement for the rotary engine airplanes as compared to equivalent airframe concept designs with current baseline engines. The research and technology activities required to attain the projected engine performance levels are also discussed.

  7. Multi-Fuel Rotary Engine for General Aviation Aircraft

    NASA Technical Reports Server (NTRS)

    Jones, C.; Ellis, D. R.; Meng, P. R.

    1983-01-01

    Design studies, conducted for NASA, of Advanced Multi-fuel General Aviation and Commuter Aircraft Rotary Stratified Charge Engines are summarized. Conceptual design studies of an advanced engine sized to provide 186/250 shaft KW/HP under cruise conditions at 7620/25,000 m/ft. altitude were performed. Relevant engine development background covering both prior and recent engine test results of the direct injected unthrottled rotary engine technology, including the capability to interchangeably operate on gasoline, diesel fuel, kerosene, or aviation jet fuel, are presented and related to growth predictions. Aircraft studies, using these resultant growth engines, define anticipated system effects of the performance and power density improvements for both single engine and twin engine airplanes. The calculated results indicate superior system performance and 30 to 35% fuel economy improvement for the Rotary-engine airplanes as compared to equivalent airframe concept designs with current baseline engines. The research and technology activities required to attain the projected engine performance levels are also discussed.

  8. Rotary union for use with ultrasonic thickness measuring probe

    DOEpatents

    Nachbar, H.D.

    1992-09-15

    A rotary union for rotatably supporting an ultrasonic probe operable to nondestructively measure the thickness of steam generator tubes to determine the amount of corrosion experienced by the tubes includes a stationary body having a bore therethrough and an outlet drain, and a fitting rotatably mounted within the upper end of the body. The fitting has a bore aligned with the bore of the body. An electrical cable positioned within a water supply tube in an annular arrangement passes through the bore of the body and the bore of the fitting. This annular arrangement, in turn, is positioned within a connector element which extends outwardly from the fitting bore and is connected to the ultrasonic probe. An elastomeric lower bushing seals the annular arrangement to the lower end of the rotary union body and an elastomeric upper bushing seals the connector element to the fitting to permit the connector element and the ultrasonic probe connected thereto to rotate with the fitting relative to the body. The lower and upper bushings permit water to be passed through the annular arrangement and into the ultrasonic probe and thereafter discharged between the annular arrangement and the connector element to the outlet drain of the rotary union body. 5 figs.

  9. Thermal treatment of medical waste in a rotary kiln.

    PubMed

    Bujak, J

    2015-10-01

    This paper presents the results of a study of an experimental system with thermal treatment (incineration) of medical waste conducted at a large complex of hospital facilities. The studies were conducted for a period of one month. The processing system was analysed in terms of the energy, environmental and economic aspects. A rotary combustion chamber was designed and built with the strictly assumed length to inner diameter ratio of 4:1. In terms of energy, the temperature distribution was tested in the rotary kiln, secondary combustion (afterburner) chamber and heat recovery system. Calorific value of medical waste was 25.0 MJ/kg and the thermal efficiency of the entire system equalled 66.8%. Next, measurements of the pollutant emissions into the atmosphere were performed. Due to the nature of the disposed waste, particular attention was paid to the one-minute average values of carbon oxide and volatile organic compounds as well as hydrochloride, hydrogen fluoride, sulphur dioxide and total dust. Maximum content of non-oxidized organic compounds in slag and bottom ash were also verified during the analyses. The best rotary speed for the combustion chamber was selected to obtain proper afterburning of the bottom slag. Total organic carbon content was 2.9%. The test results were used to determine the basic economic indicators of the test system for evaluating the profitability of its construction. Simple payback time (SPB) for capital expenditures on the implementation of the project was 4 years.

  10. Rotary union for use with ultrasonic thickness measuring probe

    DOEpatents

    Nachbar, Henry D.

    1992-01-01

    A rotary union for rotatably supporting an ultrasonic probe operable to nondestructively measure the thickness of steam generator tubes to determine the amount of corrosion experienced by the tubes includes a stationary body having a bore therethrough and an outlet drain, and a fitting rotatably mounted within the upper end of the body. The fitting has a bore aligned with the bore of the body. An electrical cable positioned within a water supply tube in an annular arrangement passes through the bore of the body and the bore of the fitting. This annular arrangement, in turn, is positioned within a connector element which extends outwardly from the fitting bore and is connected to the ultrasonic probe. An elastomeric lower bushing seals the annular arrangement to the lower end of the rotary union body and an elastomeric upper bushing seals the connector element to the fitting to permit the connector element and the ultrasonic probe connected thereto to rotate with the fitting relative to the body. The lower and upper bushings permit water to be passed through the annular arrangement and into the ultrasonic probe and thereafter discharged between the annular arrangement and the connector element to the outlet drain of the rotary union body.

  11. Rotary device for removing particulates from a gas stream

    NASA Technical Reports Server (NTRS)

    Collins, Jr., Earl R. (Inventor)

    1992-01-01

    A rotary particulate separator for removing particulates from a pressurized gas stream such as that emanating from a reactor vessel is disclosed which precharges the particles in the gas stream, and then utilizes the charge on the particles to induce them from the main flow path through an airblock and into the rotary particulate separator. The rotor of the rotary particulate separator has polarized plates which use a first charge opposite that on the charged particles to attract the particles as they enter the rotation chamber, and then use a second charge of the same polarity as the charge on the charged particles to release the particles into a control gas flow vortex which draws the particles radially inwardly into an exit aperture contained in the center of one of the rotor segments and out from the device. Pressure letdown devices are used to drop the pressure of both the control gas flow exiting the separator with the particles and the cleaned gas stream.

  12. Robustness of the rotary catalysis mechanism of F1-ATPase.

    PubMed

    Watanabe, Rikiya; Matsukage, Yuki; Yukawa, Ayako; Tabata, Kazuhito V; Noji, Hiroyuki

    2014-07-11

    F1-ATPase (F1) is the rotary motor protein fueled by ATP hydrolysis. Previous studies have suggested that three charged residues are indispensable for catalysis of F1 as follows: the P-loop lysine in the phosphate-binding loop, GXXXXGK(T/S); a glutamic acid that activates water molecules for nucleophilic attack on the γ-phosphate of ATP (general base); and an arginine directly contacting the γ-phosphate (arginine finger). These residues are well conserved among P-loop NTPases. In this study, we investigated the role of these charged residues in catalysis and torque generation by analyzing alanine-substituted mutants in the single-molecule rotation assay. Surprisingly, all mutants continuously drove rotary motion, even though the rotational velocity was at least 100,000 times slower than that of wild type. Thus, although these charged residues contribute to highly efficient catalysis, they are not indispensable to chemo-mechanical energy coupling, and the rotary catalysis mechanism of F1 is far more robust than previously thought.

  13. Rotation of artificial rotor axles in rotary molecular motors

    PubMed Central

    Baba, Mihori; Iwamoto, Kousuke; Ueno, Hiroshi; Hara, Mayu; Nakanishi, Atsuko; Kishikawa, Jun-ichi; Noji, Hiroyuki; Yokoyama, Ken

    2016-01-01

    F1- and V1-ATPase are rotary molecular motors that convert chemical energy released upon ATP hydrolysis into torque to rotate a central rotor axle against the surrounding catalytic stator cylinder with high efficiency. How conformational change occurring in the stator is coupled to the rotary motion of the axle is the key unknown in the mechanism of rotary motors. Here, we generated chimeric motor proteins by inserting an exogenous rod protein, FliJ, into the stator ring of F1 or of V1 and tested the rotation properties of these chimeric motors. Both motors showed unidirectional and continuous rotation, despite no obvious homology in amino acid sequence between FliJ and the intrinsic rotor subunit of F1 or V1. These results showed that any residue-specific interactions between the stator and rotor are not a prerequisite for unidirectional rotation of both F1 and V1. The torque of chimeric motors estimated from viscous friction of the rotation probe against medium revealed that whereas the F1-FliJ chimera generates only 10% of WT F1, the V1-FliJ chimera generates torque comparable to that of V1 with the native axle protein that is structurally more similar to FliJ than the native rotor of F1. This suggests that the gross structural mismatch hinders smooth rotation of FliJ accompanied with the stator ring of F1. PMID:27647891

  14. Fragmentation of Newtonian and viscoelastic liquids during rotary atomization

    NASA Astrophysics Data System (ADS)

    Keshavarz, Bavand; Moore, John; Houze, Eric; Koerner, Michael; McKinley, Gareth; MIT Collaboration; Axalta Coating Systems Collaboration

    2015-11-01

    Animals drying their wet fur by rapidly shaking their body and rotary atomization in paint coating are just a few examples in which centripetal acceleration is used to disintegrate liquid films into smaller fragments. Narrower size distributions and well-defined geometrical fluid pathlines (similar to the involute of a circle) are the main advantages of this type of atomization as compared to air-assisted atomization. Despite these inherent advantages there is a paucity of fundamental knowledge about the roles of fluid rheology in this process. We study the effects of viscosity by performing rotary atomization tests on silicone oils with a wide range of viscosities (1-1000 mPa.s). Viscoelastic effects are also probed by spraying solutions of polyethylene oxide (PEO) dissolved in water at different concentrations. Our results show that understanding the effects of liquid properties on the instabilities that control rotary atomization (primarily Rayleigh-Taylor instability during the ligament formation followed by Rayleigh-Plateau instability during droplet pinch-off) can help us understand the resulting fragment size distributions.

  15. Robustness of the Rotary Catalysis Mechanism of F1-ATPase*

    PubMed Central

    Watanabe, Rikiya; Matsukage, Yuki; Yukawa, Ayako; Tabata, Kazuhito V.; Noji, Hiroyuki

    2014-01-01

    F1-ATPase (F1) is the rotary motor protein fueled by ATP hydrolysis. Previous studies have suggested that three charged residues are indispensable for catalysis of F1 as follows: the P-loop lysine in the phosphate-binding loop, GXXXXGK(T/S); a glutamic acid that activates water molecules for nucleophilic attack on the γ-phosphate of ATP (general base); and an arginine directly contacting the γ-phosphate (arginine finger). These residues are well conserved among P-loop NTPases. In this study, we investigated the role of these charged residues in catalysis and torque generation by analyzing alanine-substituted mutants in the single-molecule rotation assay. Surprisingly, all mutants continuously drove rotary motion, even though the rotational velocity was at least 100,000 times slower than that of wild type. Thus, although these charged residues contribute to highly efficient catalysis, they are not indispensable to chemo-mechanical energy coupling, and the rotary catalysis mechanism of F1 is far more robust than previously thought. PMID:24876384

  16. Experimental and Numerical Investigation of an Axial Rotary Blood Pump.

    PubMed

    Schüle, Chan Yong; Thamsen, Bente; Blümel, Bastian; Lommel, Michael; Karakaya, Tamer; Paschereit, Christian Oliver; Affeld, Klaus; Kertzscher, Ulrich

    2016-04-18

    Left ventricular assist devices (LVADs) have become a standard therapy for patients with severe heart failure. As low blood trauma in LVADs is important for a good clinical outcome, the assessment of the fluid loads inside the pump is critical. More specifically, the flow features on the surfaces where the interaction between blood and artificial material happens is of great importance. Therefore, experimental data for the near-wall flows in an axial rotary blood pump were collected and directly compared to computational fluid dynamic results. For this, the flow fields based on unsteady Reynolds-averaged Navier-Stokes simulations-computational fluid dynamics (URANS-CFD) of an axial rotary blood pump were calculated and compared with experimental flow data at one typical state of operation in an enlarged model of the pump. The focus was set on the assessment of wall shear stresses (WSS) at the housing wall and rotor gap region by means of the wall-particle image velocimetry technique, and the visualization of near-wall flow structures on the inner pump surfaces by a paint erosion method. Additionally, maximum WSS and tip leakage volume flows were measured for 13 different states of operation. Good agreement between CFD and experimental data was found, which includes the location, magnitude, and direction of the maximum and minimum WSS and the presence of recirculation zones on the pump stators. The maximum WSS increased linearly with pressure head. They occurred at the upstream third of the impeller blades and exceeded the critical values with respect to hemolysis. Regions of very high shear stresses and recirculation zones could be identified and were in good agreement with simulations. URANS-CFD, which is often used for pump performance and blood damage prediction, seems to be, therefore, a valid tool for the assessment of flow fields in axial rotary blood pumps. The magnitude of maximum WSS could be confirmed and were in the order of several hundred Pascal.

  17. System and method for cooling a superconducting rotary machine

    DOEpatents

    Ackermann, Robert Adolf; Laskaris, Evangelos Trifon; Huang, Xianrui; Bray, James William

    2011-08-09

    A system for cooling a superconducting rotary machine includes a plurality of sealed siphon tubes disposed in balanced locations around a rotor adjacent to a superconducting coil. Each of the sealed siphon tubes includes a tubular body and a heat transfer medium disposed in the tubular body that undergoes a phase change during operation of the machine to extract heat from the superconducting coil. A siphon heat exchanger is thermally coupled to the siphon tubes for extracting heat from the siphon tubes during operation of the machine.

  18. ROPEC - ROtary PErcussive Coring Drill for Mars Sample Return

    NASA Technical Reports Server (NTRS)

    Chu, Philip; Spring, Justin; Zacny, Kris

    2014-01-01

    The ROtary Percussive Coring Drill is a light weight, flight-like, five-actuator drilling system prototype designed to acquire core material from rock targets for the purposes of Mars Sample Return. In addition to producing rock cores for sample caching, the ROPEC drill can be integrated with a number of end effectors to perform functions such as rock surface abrasion, dust and debris removal, powder and regolith acquisition, and viewing of potential cores prior to caching. The ROPEC drill and its suite of end effectors have been demonstrated with a five degree of freedom Robotic Arm mounted to a mobility system with a prototype sample cache and bit storage station.

  19. Shear stress transmission model for the flagellar rotary motor.

    PubMed

    Mitsui, Toshio; Ohshima, Hiroyuki

    2008-09-01

    Most bacteria that swim are propelled by flagellar filaments, which are driven by a rotary motor powered by proton flux. The mechanism of the flagellar motor is discussed by reforming the model proposed by the present authors in 2005. It is shown that the mean strength of Coulomb field produced by a proton passing the channel is very strong in the Mot assembly so that the Mot assembly can be a shear force generator and induce the flagellar rotation. The model gives clear calculation results in agreement with experimental observations, e g., for the characteristic torque-velocity relationship of the flagellar rotation.

  20. Rotary Percussive Auto-Gopher for Deep Drilling and Sampling

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph; Badescu, Mircea; Sherrit, Stewart

    2009-01-01

    The term "rotary percussive auto-gopher" denotes a proposed addition to a family of apparatuses, based on ultrasonic/ sonic drill corers (USDCs), that have been described in numerous previous NASA Tech Briefs articles. These apparatuses have been designed, variously, for boring into, and/or acquiring samples of, rock or other hard, brittle materials of geological interest. In the case of the rotary percussive autogopher, the emphasis would be on developing an apparatus capable of penetrating to, and acquiring samples at, depths that could otherwise be reached only by use of much longer, heavier, conventional drilling-and-sampling apparatuses. To recapitulate from the prior articles about USDCs: A USDC can be characterized as a lightweight, low-power jackhammer in which a piezoelectrically driven actuator generates ultrasonic vibrations and is coupled to a tool bit through a free mass. The bouncing of the free mass between the actuator horn and the drill bit converts the actuator ultrasonic vibrations into sonic hammering of the drill bit. The combination of ultrasonic and sonic vibrations gives rise to a hammering action (and a resulting chiseling action at the tip of the tool bit) that is more effective for drilling than is the microhammering action of ultrasonic vibrations alone. The hammering and chiseling actions are so effective that the size of the axial force needed to make the tool bit advance into soil, rock, or another material of interest is much smaller than in ordinary rotary drilling, ordinary hammering, or ordinary steady pushing. The predecessor of the rotary percussive auto-gopher is an apparatus, now denoted an ultrasonic/sonic gopher and previously denoted an ultrasonic gopher, described in "Ultrasonic/ Sonic Mechanism for Drilling and Coring" (NPO-30291), NASA Tech Briefs Vol. 27, No. 9 (September 2003), page 65. The ultrasonic/sonic gopher is intended for use mainly in acquiring cores. The name of the apparatus reflects the fact that, like a

  1. A comparison of rotary- and stationary-head tape recorders

    NASA Technical Reports Server (NTRS)

    Watkinson, John R.

    1994-01-01

    Digital recording may take advantage of many types of media, but usually a preferred type of drive or transport emerges for each. In magnetic tape recording, two approaches have emerged in which essentially the same medium is tracked in two radically different ways. This paper compares the characteristics of Rotary- and Stationary-Head transports in an attempt to establish which approach might be considered for a given application. The conclusion is that in many cases there is no obvious choice based on recording physics and that often the choice will be made on the experimental knowledge of the designer.

  2. NASA Subsonic Rotary Wing Project - Structures and Materials Discipline

    NASA Technical Reports Server (NTRS)

    Halbig, Michael C.; Johnson, Susan M.

    2008-01-01

    The Structures & Materials Discipline within the NASA Subsonic Rotary Wing Project is focused on developing rotorcraft technologies. The technologies being developed are within the task areas of: 5.1.1 Life Prediction Methods for Engine Structures & Components 5.1.2 Erosion Resistant Coatings for Improved Turbine Blade Life 5.2.1 Crashworthiness 5.2.2 Methods for Prediction of Fatigue Damage & Self Healing 5.3.1 Propulsion High Temperature Materials 5.3.2 Lightweight Structures and Noise Integration The presentation will discuss rotorcraft specific technical challenges and needs as well as details of the work being conducted in the six task areas.

  3. Testing thread compounds for rotary-shouldered connections

    SciTech Connect

    Bailey, E.I. ); Smith, J.E. )

    1993-09-01

    Trouble-free rotary-shouldered-connection performance depends on proper joint makeup. Joints must be tight enough to prevent shoulder separation under bending and tensile loads but not so tight that their tensile capacity decreases or the pin or box is damaged. The preload in a connection from tightening depends on the makeup torque and frictional properties of the thread compound. In 1957, Farr developed and published a simplified torque formula to calculate makeup torque: T[sub mu] = ([sigma]A/12)[(p/2[pi])+(r[sub t]K[sub f]/cos [Theta])+r[sub s]K[sub f

  4. The IRAC Shutter Mechanism: Residual Magnetism and the Rotary Solenoid

    NASA Technical Reports Server (NTRS)

    Schwinger, Scott; Hakun, Claef; Brown, Gary; Blumenstock, Ken

    2002-01-01

    The Infrared Array Camera (IRAC) Shutter mechanism was originally presented in the paper, 'A Low Power Cryogenic Shutter Mechanism for Use on Infrared Imagers' at the 34th Aerospace Mechanisms Symposium, May 2000. At that time, the shutter was believed to be performing flawlessly and there was every indication it would continue to do so. In early spring of 2001, the calibration shutter, a rotary solenoid designed to be fail-safe open, remained in a closed state with no power to the electromagnetic coils. The ensuing investigation, subsequent testing, proposed remedy, and lessons learned are the focus of this paper.

  5. 6. Photocopied August 1978. LINEUP OF HORRY ROTARY FURNACES ON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. Photocopied August 1978. LINE-UP OF HORRY ROTARY FURNACES ON THE SECOND FLOOR OF THE MICHIGAN LAKE SUPERIOR POWER COMPANY POWER HOUSE. THE HOPPERS WHICH FED THE RAW MATERIALS INTO THE FURNACES ARE SHOWN ABOVE THE FURNACES. AS THE 'SPOOL' OF THE FURNACE ROTATED PAST THE ELECTRODES PLATES WERE ADDED TO HOLD THE FINISHED PRODUCT AND THE DESCENDING RAW MATERIALS IN PLACE. THE DIRECTION OF ROTATION OF THE FURNACES SHOWN IN THIS PHOTO IS CLOCKWISE, (M). - Michigan Lake Superior Power Company, Portage Street, Sault Ste. Marie, Chippewa County, MI

  6. Piezoelectric Versus Conventional Rotary Techniques for Impacted Third Molar Extraction

    PubMed Central

    Jiang, Qian; Qiu, Yating; Yang, Chi; Yang, Jingyun; Chen, Minjie; Zhang, Zhiyuan

    2015-01-01

    Abstract Impacted third molars are frequently encountered in clinical work. Surgical removal of impacted third molars is often required to prevent clinical symptoms. Traditional rotary cutting instruments are potentially injurious, and piezosurgery, as a new osteotomy technique, has been introduced in oral and maxillofacial surgery. No consistent conclusion has been reached regarding whether this new technique is associated with fewer or less severe postoperative sequelae after third molar extraction. The aim of this study was to compare piezosurgery with rotary osteotomy techniques, with regard to surgery time and the severity of postoperative sequelae, including pain, swelling, and trismus. We conducted a systematic literature search in the Cochrane Library, PubMed, Embase, and Google Scholar. The eligibility criteria of this study included the following: the patients were clearly diagnosed as having impacted mandibular third molars; the patients underwent piezosurgery osteotomy, and in the control group rotary osteotomy techniques, for removing impacted third molars; the outcomes of interest include surgery time, trismus, swelling or pain; the studies are randomized controlled trials. We used random-effects models to calculate the difference in the outcomes, and the corresponding 95% confidence interval. We calculated the weighted mean difference if the trials used the same measurement, and a standardized mean difference if otherwise. A total of seven studies met the eligibility criteria and were included in our analysis. Compared with rotary osteotomy, patients undergoing piezosurgery experienced longer surgery time (mean difference 4.13 minutes, 95% confidence interval 2.75–5.52, P < 0.0001). Patients receiving the piezoelectric technique had less swelling at postoperative days 1, 3, 5, and 7 (all Ps ≤0.023). Additionally, there was a trend of less postoperative pain and trismus in the piezosurgery groups. The number of included randomized controlled

  7. Multilayer growth in the APS rotary deposition system.

    SciTech Connect

    Conley, R.; Liu, C.; Kewish, C.M.; Macrander, A.T.; Morawe, C.; X-Ray Science Division; European Synchrotron Radiation Facility

    2007-01-01

    We report our progress in the growth of periodic and depth-graded multilayers in the APS rotary deposition system, a machine designed for fabrication of films tens of microns thick with thousands of layers. A computational method was employed to design depth-graded multilayers for use as wide-angular bandpass reflective optics. We present experimental results for a 154-layer WSi{sub 2}/Si multilayer system with bilayer thickness ranging from 2.2 nm to 5.5 nm that closely match theoretical flat-top reflectivity predictions of 9.8% from 15.6 mrad to 23.3 mrad at 8 keV.

  8. Skew And Twist Resistant Hydrodynamic Rotary Shaft Seal

    DOEpatents

    Dietle, Lannie; Kalsi, Manmohan Singh

    2000-03-14

    A hydrodynamically lubricated squeeze packing type rotary shaft seal suitable for lubricant retention and environmental exclusion which incorporates one or more resilient protuberances which and cooperate with the gland walls to hold the seal straight in its installation groove in unpressurized and low pressure lubricant retention applications thereby preventing skew-induced wear caused by impingement of abrasive contaminants present in the environment, and which also serve as radial bearings to prevent tipping of the seal within its installation gland. Compared to prior art, this invention provides a dramatic reduction of seal and shaft wear in abrasive environments and provides a significant increase in seal life.

  9. Preliminary Assessment of a Rotary Detonation Engine Concept.

    DTIC Science & Technology

    1983-09-01

    S3RSUYIN STATEMENT W 4 s~u do""d to afo 8% of mftsew= kenamoe) IL. 31uiP901111TAINY WOME Detonation Combustion Rotary Engine Intermittent Detonation Engine...There are several features to be noted. Mixture com- ponents entered separately from the right via valves 1, 2, and 3, entering the horizontally mounted...Mixing chamber pressure was indicated on the right . Both gages indicated in terms of absolute pressures with a range of zero to thirty psia. The mixed

  10. Estimation of drying parameters in rotary dryers using differential evolution

    NASA Astrophysics Data System (ADS)

    Lobato, F. S.; Steffen, V., Jr.; Arruda, E. B.; Barrozo, M. A. S.

    2008-11-01

    Inverse problems arise from the necessity of obtaining parameters of theoretical models to simulate the behavior of the system for different operating conditions. Several heuristics that mimic different phenomena found in nature have been proposed for the solution of this kind of problem. In this work, the Differential Evolution Technique is used for the estimation of drying parameters in realistic rotary dryers, which is formulated as an optimization problem by using experimental data. Test case results demonstrate both the feasibility and the effectiveness of the proposed methodology.

  11. 16 CFR 1205.5 - Walk-behind rotary power mower controls.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 16 Commercial Practices 2 2013-01-01 2013-01-01 false Walk-behind rotary power mower controls... ACT REGULATIONS SAFETY STANDARD FOR WALK-BEHIND POWER LAWN MOWERS The Standard § 1205.5 Walk-behind rotary power mower controls. (a) Blade control systems—(1) Requirements for blade control. A...

  12. 16 CFR 1205.6 - Warning label for reel-type and rotary power mowers.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... SAFETY ACT REGULATIONS SAFETY STANDARD FOR WALK-BEHIND POWER LAWN MOWERS The Standard § 1205.6 Warning label for reel-type and rotary power mowers. (a) General. Walk-behind power lawn mowers shall be labeled... size relation to each other and to the label as shown in Fig. 7. EC03OC91.016 (b) Rotary mowers....

  13. 16 CFR 1205.5 - Walk-behind rotary power mower controls.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 2 2014-01-01 2014-01-01 false Walk-behind rotary power mower controls... ACT REGULATIONS SAFETY STANDARD FOR WALK-BEHIND POWER LAWN MOWERS The Standard § 1205.5 Walk-behind rotary power mower controls. (a) Blade control systems—(1) Requirements for blade control. A...

  14. 16 CFR 1205.6 - Warning label for reel-type and rotary power mowers.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... SAFETY ACT REGULATIONS SAFETY STANDARD FOR WALK-BEHIND POWER LAWN MOWERS The Standard § 1205.6 Warning label for reel-type and rotary power mowers. (a) General. Walk-behind power lawn mowers shall be labeled... size relation to each other and to the label as shown in Fig. 7. EC03OC91.016 (b) Rotary mowers....

  15. 16 CFR 1205.5 - Walk-behind rotary power mower controls.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 16 Commercial Practices 2 2012-01-01 2012-01-01 false Walk-behind rotary power mower controls... ACT REGULATIONS SAFETY STANDARD FOR WALK-BEHIND POWER LAWN MOWERS The Standard § 1205.5 Walk-behind rotary power mower controls. (a) Blade control systems—(1) Requirements for blade control. A...

  16. 16 CFR 1205.6 - Warning label for reel-type and rotary power mowers.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... SAFETY ACT REGULATIONS SAFETY STANDARD FOR WALK-BEHIND POWER LAWN MOWERS The Standard § 1205.6 Warning label for reel-type and rotary power mowers. (a) General. Walk-behind power lawn mowers shall be labeled... size relation to each other and to the label as shown in Fig. 7. EC03OC91.016 (b) Rotary mowers....

  17. Math modeling and computer mechanization for real time simulation of rotary-wing aircraft

    NASA Technical Reports Server (NTRS)

    Howe, R. M.

    1979-01-01

    Mathematical modeling and computer mechanization for real time simulation of rotary wing aircraft is discussed. Error analysis in the digital simulation of dynamic systems, such as rotary wing aircraft is described. The method for digital simulation of nonlinearities with discontinuities, such as exist in typical flight control systems and rotor blade hinges, is discussed.

  18. Blast-free mining of coal seams by excavators equipped with rotary dynamic buckets

    SciTech Connect

    Labutin, V.N.; Mattis, A.R.; Zaitseva, A.A.

    2005-04-01

    The necessity to equip cable excavators with rotary buckets is substantiated. The results of graphic-analytical analysis of the rotary bucket operation are presented, and its main advantages are determined in comparison with conventional buckets in mining coal seams of complex structure.

  19. 16 CFR 1205.6 - Warning label for reel-type and rotary power mowers.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... adjacent supporting structure or assembly, with the warning label shown in Fig. 7. The label shall be at... size relation to each other and to the label as shown in Fig. 7. EC03OC91.016 (b) Rotary mowers. Walk-behind rotary mowers shall have one label as shown in Fig. 7, on the blade housing. The label shall...

  20. 16 CFR 1205.6 - Warning label for reel-type and rotary power mowers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... adjacent supporting structure or assembly, with the warning label shown in Fig. 7. The label shall be at... size relation to each other and to the label as shown in Fig. 7. EC03OC91.016 (b) Rotary mowers. Walk-behind rotary mowers shall have one label as shown in Fig. 7, on the blade housing. The label shall...

  1. Carbon reactivation by externally-fired rotary kiln furnace. Final report Oct 75-Jan 78

    SciTech Connect

    Chen, C.; Directo, L.S.

    1980-08-01

    An externally-fired rotary kiln furnace system has been evaluated for cost-effectiveness in carbon reactivation at the Pomona Advanced Wastewater Treatment Research Facility. The pilot scale rotary kiln furnace was operated within the range of 682 kg/day (1,500 lb/day) to 909 kg/day (2,000 lb/day). The rotary kiln furnace was found to be as effective as the multiple hearth furnace in reactivating the exhausted granular activated carbon. The operating and maintenance of the rotary kiln system required less operator skill than the multiple hearth furnace system. However, the corrosion rate was higher in the rotary tube than in the multiple hearth furnace. Cost estimates based on a typical regeneration capacity of 182 kg/hr (400 lb/hr) have been made for both rotary kiln and multiple hearth furnace systems. These indicate that the capital cost for the multiple hearth furnace is about two times that of the rotary kiln furnace. The operation and maintenance costs for both furnace systems are similar. The overall process costs for the multiple hearth and rotary kiln furnace systems are estimated to be 33.2 cents/kg (15.1 cents/lb) of carbon regenerated and 29.2 cents/kg (13.3 cents/lb) of carbon regenerated, respectively.

  2. Rotary-Percussive Drill for Planetary Exploration and a 3.5 m Vacuum Chamber Enabling Full Scale Testing

    NASA Astrophysics Data System (ADS)

    Zacny, K.; Paulsen, G.; Szczesiak, M.; Glass, B.; McKay, C.; Santoro, C.; Wilson, J.; Craft, J.

    2010-03-01

    We present a 1-meter-class rotary-percussive drill and test results comparing rotary and rotary-percussive drilling in various formations. A 3.5-m large vacuum chamber build for testing drill systems to a depth of >1 m is also presented.

  3. Development of a rotary power transformer and inverter drive for spacecraft

    NASA Technical Reports Server (NTRS)

    Mclyman, W. T.; Bridgeforth, A. O.

    1983-01-01

    Many future satellites and spacecraft with spun and despun configurations will require the transfer of power across rotating interfaces in lieu of slip-rings and/or flexures. This is particularly true of spacecraft that have to demonstrate a long life expectancy. The rotary transformer has the desirable characteristics of high reliability and low noise, which qualify it as a potential replacement for slip rings. Development of a rotary power transformer follows the successful completion of a task to develop rotary signal-level transformers for the Galileo Spacecraft Project. The physical configuration of a rotary power transformer has a significant effect on its magnetic and electrical characteristics and therefore impacts the design of the dc/ac inverter driver. Important characteristics addressed during this development effort include: operating frequency, efficiency, transformer gap size, leakage inductance, and leakage flux. A breadboard inverter and rotary transformer were designed, fabricated and tested.

  4. In vitro investigation of thrombogenesis in rotary blood pumps.

    PubMed

    Schima, H; Siegl, H; Mohammad, S F; Huber, L; Müller, M R; Losert, U; Thoma, H; Wolner, E

    1993-07-01

    Thrombus formation at sealing and stagnation areas remains a major problem in the development of rotary blood pumps. Until now, the complex phenomena could only be studied in vivo. In this study, an in vitro mock circulation previously used for hemolysis studies was adapted for thrombosis evaluation. Blood was collected in the slaughterhouse with strict avoidance of air contact and was heparinized (1.5 U heparin/ml blood; activated coagulation time [ACT]: initially, 140-180 s; after collection, 400-600 s). During the test, the ACT decreased gradually. The tests were stopped after 90 to 180 min at an ACT of 1.5 times the initial value. Thrombus formation was observed at the same locations as observed in left-heart assist devices (sealing area, connecting bolts, and stagnant water areas at connectors). The thrombi were similar in shape, color, and histology to those found after 2 to 4 days in vivo. This test provides a valuable tool for evaluating thrombus formation in prototypes and screening tests of different rotary pump designs.

  5. Cora valveless pulsatile rotary pump: new design and control.

    PubMed

    Monties, J R; Trinkl, J; Mesana, T; Havlik, P J; Demunck, J L

    1996-01-01

    For decades, research for developing a totally implantable artificial ventricle has been carried on. For 4 to 5 years, two devices have been investigated clinically. For many years, we have studied a rotary (but not centrifugal) pump that furnishes pulsatile flow without a valve and does not need external venting or a compliance chamber. It is a hypocycloidal pump based on the principle of the Maillard-Wankel rotary compressor. Currently made of titanium, it is activated by an electrical brushless direct-current motor. The motor-pump unit is totally sealed and implantable, without noise or vibration. This pump was implanted as a left ventricular assist device in calves. The midterm experiments showed good hemodynamic function. The hemolysis was low, but serious problems were encountered: blood components collecting on the gear mechanism inside the rotor jammed the pump. We therefore redesigned the pump to seal the gear mechanism. We used a double system to seal the open end of the rotor cavity with components polished to superfine optical quality. In addition, we developed a control system based on the study of the predicted shape of the motor current. The new design is now underway. We hope to start chronic experiments again in a few months. If the problem of sealing the bearing could be solved, the Cora ventricle could be used as permanent totally implantable left ventricular assist device.

  6. Results from Testing of Two Rotary Percussive Drilling Systems

    NASA Technical Reports Server (NTRS)

    Kriechbaum, Kristopher; Brown, Kyle; Cady, Ian; von der Heydt, Max; Klein, Kerry; Kulczycki, Eric; Okon, Avi

    2010-01-01

    The developmental test program for the MSL (Mars Science Laboratory) rotary percussive drill examined the e ect of various drill input parameters on the drill pene- tration rate. Some of the input parameters tested were drill angle with respect to gravity and percussive impact energy. The suite of rocks tested ranged from a high strength basalt to soft Kaolinite clay. We developed a hole start routine to reduce high sideloads from bit walk. The ongoing development test program for the IMSAH (Integrated Mars Sample Acquisition and Handling) rotary percussive corer uses many of the same rocks as the MSL suite. An additional performance parameter is core integrity. The MSL development test drill and the IMSAH test drill use similar hardware to provide rotation and percussion. However, the MSL test drill uses external stabilizers, while the IMSAH test drill does not have external stabilization. In addition the IMSAH drill is a core drill, while the MSL drill uses a solid powdering bit. Results from the testing of these two related drilling systems is examined.

  7. Constraints on models for the flagellar rotary motor.

    PubMed Central

    Berg, H C

    2000-01-01

    Most bacteria that swim are propelled by flagellar filaments, each driven at its base by a rotary motor embedded in the cell wall and cytoplasmic membrane. A motor is about 45 nm in diameter and made up of about 20 different kinds of parts. It is assembled from the inside out. It is powered by a proton (or in some species, a sodium-ion) flux. It steps at least 400 times per revolution. At low speeds and high torques, about 1000 protons are required per revolution, speed is proportional to protonmotive force, and torque varies little with temperature or hydrogen isotope. At high speeds and low torques, torque increases with temperature and is sensitive to hydrogen isotope. At room temperature, torque varies remarkably little with speed from about -100 Hz (the present limit of measurement) to about 200 Hz, and then it declines rapidly reaching zero at about 300 Hz. These are facts that motor models should explain. None of the existing models for the flagellar rotary motor completely do so. PMID:10836502

  8. A rotary arc furnace for aluminum dross processing

    SciTech Connect

    Drouet, M.G.; Meunier, J.; Laflamme, C.B.; Handfield, M.D.; Biscaro, A.; Lemire, C.

    1995-12-31

    Dross, a major by-product of all processes involving molten aluminum, forms at the surface of the molten metal as the latter reacts with the furnace atmosphere. It generally represents 1 to 5 wt% of the melt, depending on the process, and contains on average about 50% free aluminum dispersed in an oxide layer. Since aluminum production is highly energy-intensive, dross recycling is very attractive from both the energy and the economic standpoints. The conventional recycling process using salt rotary furnaces is thermally inefficient and environmentally non-acceptable because of the production of salt slags. Hydro-Quebec has developed and patented a new salt-free technology using a rotary furnace heated by an electric arc between two graphite electrodes, called DROSCAR{reg_sign}. A 600-kW pilot plant in operation at LTEE is in use to demonstrate the process. This process provides aluminum recovery rates over 90%, using a highly energy efficient, environmentally sound production method. In 1994, 400 tonnes of aluminum dross were treated in this facility and several tests on various types of dross have also been conducted in early 1995. A report on the results will be presented.

  9. Rotary ultrasonic motors actuated by traveling flexural waves

    NASA Astrophysics Data System (ADS)

    Bar-Cohen, Yoseph; Bao, Xiaoqi; Grandia, Willem

    1999-06-01

    Efficient miniature actuators that are compact and consume low power are needed to drive space and planetary mechanisms in future NASA missions. Ultrasonic rotary motors have the potential to meet this NASA need and they are developed as actuators for miniature telerobotic applications. These motors have emerged in commercial products but they need to be adapted for operation at the harsh space environments that include cryogenic temperatures and vacuum and also require effective analytical tools for the design of efficient motors. A finite element analytical model was developed to examine the excitation of flexural plate wave traveling in a piezoelectrically actuated rotary motor. The model uses 3D finite element and equivalent circuit models that are applied to predict the excitation frequency and modal response of the stator. This model incorporates the details of the stator including the teeth, piezoelectric ceramic, geometry, bonding layer, etc. The theoretical predictions were corroborated experimentally for the stator. In parallel, efforts have been made to determine the thermal and vacuum performance of these motors. Experiments have shown that the motor can sustain at least 230 temperature cycles from 0 degree(s)C to -90 degree(s)C at 7 Torr pressure significant performance change. Also, in an earlier study the motor lasted over 334 hours at -150 degree(s)C and vacuum. To explore telerobotic applications for USMs a robotic arm was constructed with such motors.

  10. Rotary ultrasonic motors actuated by traveling flexural waves

    NASA Astrophysics Data System (ADS)

    Bar-Cohen, Yoseph; Bao, Xiaoqi; Grandia, Willem

    1998-07-01

    Efficient miniature actuators that are compact and consume low power are needed to drive telerobotic devices and space mechanisms in future NASA missions. Ultrasonic rotary motors have the potential to meet this NASA need and they are developed as actuators for miniature telerobotic applications. The technology that has emerged in commercial products requires rigorous analytical tools for effective design of such motors. A finite element analytical model was developed to examine the excitation of flexural plate wave traveling in a rotary piezoelectrically actuated motor. The model uses annular finite elements that are applied to predict the excitation frequency and modal response of an annular stator. This model is being developed to enable the design of efficient ultrasonic motors (USMs) and it incorporates the details of the stator which include the teeth, piezoelectric crystals, stator geometry, etc. The theoretical predictions were corroborated experimentally for the stator. Parallel to this effect, USMs are made and incorporated into a robotic arm and their capability to operate at the environment of Mars is being studied. Motors with two different actuators layout were tested at cryovac conditions and were shown to operate down to -150 degree(s)C and 16-mTorr when the activation starts at ambient conditions.

  11. Electro thermal analysis of rotary type micro thermal actuator

    NASA Astrophysics Data System (ADS)

    Anwar, M. Arefin; Packirisamy, Muthukumaran; Ahmed, A. K. Waiz

    2005-09-01

    In micro domain, thermal actuators are favored because it provides higher force and deflection than others. This paper presents a new type of micro thermal actuator that provides rotary motion of the circular disc shaped cold arm, which can be used in various optical applications, such as, switching, attenuation, diffraction, etc. The device has been fabricated in MUMPS technology. In this new design, the hot arms are arranged with the cold disc in such a way that thermal expansion of the hot arms due to Joule heating, will make the cold disc to rotate and the rotation is unidirectional on loading. The dominant heat transfer modes in the operating temperature zone are through the anchor and the air between the structure and the substrate because of the very low gap provided by MUMPS. A mathematical model was used for predicting steady state temperature profile along the actuator length and rotational behavior of the cold disc under different applied voltages. A 3-D coupled field finite element analysis (FEM) for the device is also presented. A FEM analysis was done by defining an air volume around the structure and substrate below the structure. Results obtained from the mathematical model, was compared with that of the finite element analysis. The presented results confirm the applicability of this novel rotary type thermal actuator for many optical MEMS applications.

  12. Miniature electrically tunable rotary dual-focus lenses

    NASA Astrophysics Data System (ADS)

    Zou, Yongchao; Zhang, Wei; Lin, Tong; Chau, Fook Siong; Zhou, Guangya

    2016-03-01

    The emerging dual-focus lenses are drawing increasing attention recently due to their wide applications in both academia and industries, including laser cutting systems, microscopy systems, and interferometer-based surface profilers. In this paper, a miniature electrically tunable rotary dual-focus lens is developed. Such a lens consists of two optical elements, each having an optical flat surface and one freeform surface. The two freeform surfaces are initialized with the governing equation Ar2θ (A is the constant to be determined, r and θ denote the radii and angles in the polar coordinate system) and then optimized by ray tracing technique with additional Zernike polynomial terms for aberration correction. The freeform surfaces are achieved by a single-point diamond turning technique and then a PDMS-based replication process is utilized to materialize the final lens elements. To drive the two coaxial elements to rotate independently, two MEMS thermal rotary actuators are developed and fabricated by a standard MUMPs process. The experimental results show that the MEMS thermal actuator provides a maximum rotation angle of about 8.2 degrees with an input DC voltage of 6.5 V, leading to a wide tuning range for both the two focal lengths of the lens. Specifically, one focal length can be tuned from about 30 mm to 20 mm while the other one can be adjusted from about 30 mm to 60 mm.

  13. Minimization of transient emissions from rotary-kiln incinerators, 1990

    SciTech Connect

    Lemieux, P.M.; Linak, W.P.; McSorley, J.A.; Wendt, J.O.L.; Dunn, J.E.

    1990-01-01

    The paper discusses combining experimental results from a pilot-scale rotary kiln incinerator simulator with a theoretical model in order to explore the potential of minimizing transient emissions through changes in kiln rotation speed and temperature, steady state oxygen enrichment, and oxygen enrichment in a dynamic mode. Results indicate that transient organic emissions can indeed be minimized by changes in these kiln operating parameters but, because of the complex interactions of physical and chemical processes controlling emissions, the appropriate abatement procedures must be implemented carefully. Transient emissions of organics occur from rotary kiln incinerators when drums containing liquid wastes bound on sorbents are introduced in batches. Physical processes controlling the release of waste from the sorbent material are greatly affected by the rotation speed and temperature of the kiln. Local partial pressure of oxygen influences the rate of oxidation of the puff formed inside the kiln. These physical and chemical phenomena can be used to control transient emissions by oxygen enrichment, where it is done in either a steady or a dynamic mode.

  14. Percussive Augmenter of Rotary Drills (PARoD)

    NASA Technical Reports Server (NTRS)

    Badescu, Mircea; Bar-Cohen, Yoseph; Sherrit, Stewart; Bao, Xiaoqi; Chang, Zensheu; Donnelly, Chris; Aldrich, Jack

    2012-01-01

    Increasingly, NASA exploration mission objectives include sample acquisition tasks for in-situ analysis or for potential sample return to Earth. To address the requirements for samplers that could be operated at the conditions of the various bodies in the solar system, a piezoelectric actuated percussive sampling device was developed that requires low preload (as low as 10N) which is important for operation at low gravity. This device can be made as light as 400g, can be operated using low average power, and can drill rocks as hard as basalt. Significant improvement of the penetration rate was achieved by augmenting the hammering action by rotation and use of a fluted bit to provide effective cuttings removal. Generally, hammering is effective in fracturing drilled media while rotation of fluted bits is effective in cuttings removal. To benefit from these two actions, a novel configuration of a percussive mechanism was developed to produce an augmenter of rotary drills. The device was called Percussive Augmenter of Rotary Drills (PARoD). A breadboard PARoD was developed with a 6.4 mm (0.25 in) diameter bit and was demonstrated to increase the drilling rate of rotation alone by 1.5 to over 10 times. Further, a large PARoD breadboard with 50.8 mm diameter bit was developed and its tests are currently underway. This paper presents the design, analysis and preliminary test results of the percussive augmenter.

  15. Percussive augmenter of rotary drills (PARoD)

    NASA Astrophysics Data System (ADS)

    Badescu, Mircea; Bar-Cohen, Yoseph; Sherrit, Stewart; Bao, Xiaoqi; Chang, Zensheu; Donnelly, Chris; Aldrich, Jack

    2012-04-01

    Increasingly, NASA exploration mission objectives include sample acquisition tasks for in-situ analysis or for potential sample return to Earth. To address the requirements for samplers that could be operated at the conditions of the various bodies in the solar system, a piezoelectric actuated percussive sampling device was developed that requires low preload (as low as 10N) which is important for operation at low gravity. This device can be made as light as 400g, can be operated using low average power, and can drill rocks as hard as basalt. Significant improvement of the penetration rate was achieved by augmenting the hammering action by rotation and use of a fluted bit to provide effective cuttings removal. Generally, hammering is effective in fracturing drilled media while rotation of fluted bits is effective in cuttings removal. To benefit from these two actions, a novel configuration of a percussive mechanism was developed to produce an augmenter of rotary drills. The device was called Percussive Augmenter of Rotary Drills (PARoD). A breadboard PARoD was developed with a 6.4 mm (0.25 in) diameter bit and was demonstrated to increase the drilling rate of rotation alone by 1.5 to over 10 times. Further, a large PARoD breadboard with 50.8 mm diameter bit was developed and its tests are currently underway. This paper presents the design, analysis and preliminary test results of the percussive augmenter.

  16. UV imprint fabrication of polymeric scales for optical rotary encoders

    NASA Astrophysics Data System (ADS)

    Jucius, D.; Grybas, I.; Grigaliūnas, V.; Mikolajūnas, M.; Lazauskas, A.

    2014-03-01

    Optical encoders are one of the most common displacement sensors. Scale gratings for such sensors are usually made of glass. However, polymers can offer several advantages such as lightweight, low cost fabrication and versatility in structures and grades. In this paper application of UV imprint technique to fabricate polymeric scale gratings for rotary encoders is reported. Experiments are performed by imprinting 3 μm layer of UV sensitive photopolymer coated on the substrate made of 200 μm PET film. Process of UV imprinting caused no problems concerned with mould contamination or sticking to the polymer. Optical microscopy and AFM measurements of replicated polymeric scales have demonstrated the absence of macro-defects and good reproducibility of Si mould features with lateral dimensions down to the order of hundreds of nanometers. Measurements of intensity distribution in transmitted diffraction pattern have showed an effective diffraction with most of the diffracted light intensity concentrated in the zero and first diffraction order as it is required for the application in optical rotary encoders employing interferential scanning principle. Commercialization of UV imprint technology would allow replacement of conventional glass scales at least in those applications where lightweight and low price of encoders are of great importance.

  17. Rotary Motors Actuated by Traveling Ultrasonic Flexural Waves

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph; Bao, Xiaoqi; Grandia, Willem

    1999-01-01

    Efficient miniature actuators that are compact and consume low power are needed to drive space and planetary mechanisms in future NASA missions. Ultrasonic rotary motors have the potential to meet this NASA need and they are developed as actuators for miniature telerobotic applications. These motors have emerged in commercial products but they need to be adapted for operation at the harsh space environments that include cryogenic temperatures and vacuum and also require effective analytical tools for the design of efficient motors. A finite element analytical model was developed to examine the excitation of flexural plate wave traveling in a piezoelectrically actuated rotary motor. The model uses 3D finite element and equivalent circuit models that are applied to predict the excitation frequency and modal response of the stator. This model incorporates the details of the stator including the teeth, piezoelectric ceramic, geometry, bonding layer, etc. The theoretical predictions were corroborated experimentally for the stator. In parallel, efforts have been made to determine the thermal and vacuum performance of these motors. Experiments have shown that the motor can sustain at least 230 temperature cycles from 0 C to -90 C at 7 Torr pressure significant performance change. Also, in an earlier study the motor lasted over 334 hours at -150 C and vacuum. To explore telerobotic applications for USMs a robotic arm was constructed with such motors.

  18. Comparison of residence time models for cascading rotary dryers

    SciTech Connect

    Cao, W.F.; Langrish, T.A.G.

    1999-04-01

    The predictions of the models of Matchett and Baker (1988), Saeman and Mitchell (1954) and Friedman and Marshall (1949) for the solids residence time in rotary dryers have been compared with both pilot-scale and industrial-scale data. A countercurrent pilot-scale dryer of 0.2m diameter and 2m long has been used with air velocities up to 1.5 m to measure the residence times of sorghum grain. The average discrepancy for the solids residence time between the predictions and the experiments that were carried out in the pilot-scale rotary dryer is {minus}10.4%. Compared with the models of Friedman and Marshall (1949) and Saeman and Mitchell (1954) for the pilot-scale data obtained here, the Matchett and Baker model is more satisfactory for predicting the solids residence time in this pilot-scale dryer. It has also been found that the model of Matchett and Baker describes the industrial data of Saeman and Mitchell (1954) than the correlation of Friedman and Marshall (1949).

  19. Wear compensating seal means for rotary piston coal feeder

    DOEpatents

    Gencsoy, Hasan T.; Gardner, John F.

    1979-01-01

    The present invention is directed to a wear compensating seal arrangement for use in a rotary piston feeder utilized for feeding pulverized coal into a gasifier operating at relatively high pressures and elevated temperatures. The rotary piston feeder has a circular casing with a coal loading opening therein diametrically opposed from a coal discharge and contains a rotatable disoidal rotor having a cylinder in which a reciprocatable piston is disposed. The reciprocation of the piston within the cylinder is provided by a stationary conjugate cam whereby pulverized coal from a coal hopper at atmospheric pressure can be introduced into the cylinder and then discharged therefrom into the high pressure gasifier while maintaining minimal losses of producer gas and the expenditure of minimal energy which would detract from the efficiency of the gasification. The seal arrangement of the present invention is disposed between the rotor and the casing about the coal discharge and prevents the high pressure gases from within the gasifier from escaping between these relatively movable parts during operation of the coal feeder. The seal utilizes a primary seal in contact with the rotor and a secondary seal supporting the primary seal. The primary seal is continuously urged towards the rotor by springs and the high pressure producer gas.

  20. Development of a Low-Cost Rotary Steerable Drilling System

    SciTech Connect

    Roney Nazarian

    2012-01-31

    The project had the goal to develop and commercialize a low-cost rotary steerable system (LCRSS) capable of operating downhole at conventional pressures and temperatures to reduce operating costs by a minimum of 50% and lost-in-hole charges by at least 50% over the currently offered systems. The LCRSS system developed under this project does reduce operating costs by 55% and lost-in-hole charges by at least 50%. The developed product is not commercializable in its current form. The overall objective was to develop and commercialize a low cost rotary steerable system (LCRSS) capable of operating downhole at conventional pressures and temperatures (20,000 psi/150 C) while reducing the operating costs by 50% and the lost-in-hole charges by 50% over the currently available systems. The proposed reduction in costs were to be realized through the significant reduction in tool complexity, a corresponding increase in tool reliability as expressed in the mean-time between failure (MTBF), and a reduction in the time and costs required to service tools after each field operation. Ultimately, the LCRSS system was to be capable of drilling 7 7/8 in. to 9 5/8 in. borehole diameters. The project was divided into three Phases, of which Phases I & II were previously completed and reported on, and are part of the case file. Therefore, the previously reported information is not repeated herein. Phase III included the fabrication of two field ready prototypes that were to be subjected to a series of drilling tests at GTI Catoosa, DOE RMOTC, and at customer partnering wells, if possible, as appropriate in the timing of the field test objectives to fully exercise all elements of the LCRSS. These tests were conducted in an iterative process based on a performance/reliability improvement cycle with the goal of demonstrating the system met all aspects required for commercial viability. These tests were conducted to achieve continuous runs of 100+ hours with well trajectories that fully

  1. Mechanically Induced g-Jitter from Space Station Rotary Joints

    NASA Technical Reports Server (NTRS)

    Boucher, Robert L.

    2000-01-01

    The mission of the International Space Station is to provide a working laboratory in orbit for research in engineering, life sciences, and microgravity. Among the microgravity disciplines that are preparing to utilize this international resource are materials processing, combustion, fluid dynamics, biotechnology, and fundamental physics. The Station promises to enable significant advances in each of these areas by making available a research facility in which gravitational and other accelerations, and their corresponding buoyancy and diffusion effects on various physical processes, are orders of magnitude lower than they are on Earth. In order to fulfill this promise, it is not enough for the Space Station to simply replicate a typical terrestrial scientific laboratory in orbit. Although an orbiting laboratory is free of most of the effects of gravitational acceleration by virtue of its free fall condition, it also produces structural vibration or jitter that can interfere with the processes under study. To ensure the quality of the acceleration environment and enable a successful mission, the Space Station Program has limited potential disturbances in two ways: first, by isolating the most sensitive payloads from the vehicle structure, and second, by quieting major disturbances at their sources. The first area, payload isolation, is implemented inside the pressurized modules at the rack level. Sub-rack level isolators have also been developed. This paper addresses the second area, disturbance source limits, for one of the major sources of mechanical noise on the Space Station: the Solar Alpha Rotary Joints. Due to the potential for large disturbances to the microgravity environment, an initial analytical prediction of rotary joint vibration output was made. Key components were identified and tested to validate the analytical predictions. Based on the component test results, the final vibration output of the joints was verified by a test on each fully assembled

  2. Compressibility of tungsten and molybdenum bars during rotary swaging and rolling

    NASA Astrophysics Data System (ADS)

    Barkov, L. A.; Mymrin, S. A.; Samodurova, M. N.; Dzhigun, N. S.; Latfulina, Yu. S.

    2015-05-01

    The compressibility of bars and hydraulically forged workpieces made of tungsten and molybdenum is studied during rotary swaging and rolling in mills with two-, three-, and four-roll passes. The compressibility of molybdenum MCh bars and hydraulically forged molybdenum M-MP workpieces is investigated during rotary swaging and rolling in three- and four-roll passes. The compressibility of tungsten VA and VL bars and hydraulically forged tungsten V-MP workpieces is investigated during rotary swaging and rolling in three- and four-roll passes. The compressibility of the hydraulically forged tungsten V-MP workpieces is analyzed under two- and four-roll pass rolling conditions.

  3. A ferrofluidic seal specially designed for rotary blood pumps.

    PubMed

    Mitamura, Y; Fujiyoshi, M; Yoshida, T; Yozu, R; Okamoto, E; Tanaka, T; Kawada, S

    1996-06-01

    One of the key technologies required for rotary blood pumps is sealing of the motor shaft. A ferrofluidic seal was developed for an axial flow pump. The seal body was composed of a plastic magnet and two pole pieces. This seal was formed by injecting ferrofluid into the gap between the pole pieces and the motor shaft. To contain the ferrofluid in the seal and to minimize the possibility of ferrofluid making contact with blood, a shield with a small cavity was provided on the pole piece. Sealing pressure of the seal was measured. The sealing pressure was maintained at more than 23.3 kPa (175 mm Hg) for a motor speed up to 11,000 rpm. The specially designed ferrofluidic seal for sealing out liquids is useful for axial flow blood pumps.

  4. Low torque hydrodynamic lip geometry for rotary seals

    SciTech Connect

    Dietle, Lannie L.; Schroeder, John E.

    2015-07-21

    A hydrodynamically lubricating geometry for the generally circular dynamic sealing lip of rotary seals that are employed to partition a lubricant from an environment. The dynamic sealing lip is provided for establishing compressed sealing engagement with a relatively rotatable surface, and for wedging a film of lubricating fluid into the interface between the dynamic sealing lip and the relatively rotatable surface in response to relative rotation that may occur in the clockwise or the counter-clockwise direction. A wave form incorporating an elongated dimple provides the gradual convergence, efficient impingement angle, and gradual interfacial contact pressure rise that are conducive to efficient hydrodynamic wedging. Skewed elevated contact pressure zones produced by compression edge effects provide for controlled lubricant movement within the dynamic sealing interface between the seal and the relatively rotatable surface, producing enhanced lubrication and low running torque.

  5. Adaptive structures for fixed and rotary wing aircraft

    NASA Astrophysics Data System (ADS)

    Martin, Willi; Jänker, Peter; Siemetzki, Markus; Lorkowski, Thomas; Grohmann, Boris; Maier, Rudolf; Maucher, Christoph; Klöppel, Valentin; Enenkl, Bernhard; Roth, Dieter; Hansen, Heinz

    2007-07-01

    Since more than 10 years EADS Innovation Works, which is the corporate research centre of EADS (European Aeronautic Defence and Space Company), is investigating smart materials and adaptive structures for aircraft in cooperation with EADS business units. Focus of research efforts are adaptive systems for shape control, noise reduction and vibration control of both fixed and rotary wing aircraft as well as for lift optimisation of fixed wing aircraft. Two outstanding adaptive systems which have been pushed ahead in cooperation with Airbus Germany and Eurocopter Germany are adaptive servo flaps for helicopter rotor blades and innovative high lift devices for fixed wing aircraft which both were tested in flight for the first time representing world premieres. In this paper various examples of adaptive systems are presented which were developed and realized by EADS in recent years.

  6. Aerodynamic Characteristics of Two Rotary Wing UAV Designs

    NASA Technical Reports Server (NTRS)

    Jones, Henry E.; Wong, Oliver D.; Noonan, Kevin W.; Reis, Deane G.; Malovrh, Brendon D.

    2006-01-01

    This paper presents the results of an experimental investigation of two rotary-wing UAV designs. The primary goal of the investigation was to provide a set of interactional aerodynamic data for an emerging class of rotorcraft. The present paper provides an overview of the test and an introduction to the test articles, and instrumentation. Sample data in the form of a parametric study of fixed system lift and drag coefficient response to changes in configuration and flight condition for both rotor off and on conditions are presented. The presence of the rotor is seen to greatly affect both the character and magnitude of the response. The affect of scaled stores on body drag is observed to be dependent on body shape.

  7. AERODYNAMIC CHARACTERISTICS OF TWO ROTARY WING UAV DESIGNS

    NASA Technical Reports Server (NTRS)

    Jones, Henry E.; Wong, Oliver D.; Noonan, Kevin W.; Reis, Deane G.; Malovrh, Brendon D.

    2006-01-01

    This paper presents the results of an experimental investigation of two rotary-wing UAV designs. The primary goal of the investigation was to provide a set of interactional aerodynamic data for an emerging class of rotorcraft. The present paper provides an overview of the test and an introduction to the test articles, and instrumentation. Sample data in the form of a parametric study of fixed system lift and drag coefficient response to changes in configuration and flight condition for both rotor off and on conditions are presented. The presence of the rotor is seen to greatly affect both the character and magnitude of the response. The affect of scaled stores on body drag is observed to be dependent on body shape.

  8. Tritium test of a ferro-fluidic rotary seal

    SciTech Connect

    Antipenkov, A.; Day, C.; Adami, H. D.

    2008-07-15

    The ferro-fluidic seal is being investigated as an internal rotary seal for tritium compatible mechanical roots type vacuum pumps. After its successful testing with helium and integration into a small (250 m{sup 3}/h) test roots pump, the seal, made as a cartridge, has been integrated into a special test unit and is currently being tested with tritium in order to define the leak rates and the possible degradation of the ferro-fluid under long term exposure to tritium radiation. The tritium pressure from one side of the seal is 0.125 MPa, the nitrogen pressure from the other side is 0.075 MPa, the rotation speed is maintained at 1500 rpm. The tritium leak through the cartridge contributes to the tritium concentration in the nitrogen, which is continuously measured by an ionisation chamber; the pressure in both chambers is continuously registered by precise pressure gauges. The experimental program is discussed. (authors)

  9. Design of a rotary passive viscoelastic joint for wearable robots.

    PubMed

    Carpino, Giorgio; Accoto, Dino; Di Palo, Michelangelo; Tagliamonte, Nevio Luigi; Sergi, Fabrizio; Guglielmelli, Eugenio

    2011-01-01

    In the design of wearable robots that strictly interact with the human body and, in general, in any robotics application that involves the human component, the possibility of having modular joints able to produce a viscoelastic behaviour is very useful to achieve an efficient and safe human-robot interaction and to give rise to emergent dynamical behaviors. In this paper we propose the design of a compact, passive, rotary viscoelastic joint for assistive wearable robotics applications. The system integrates two functionally distinct sub-modules: one to render a desired torsional stiffness profile and the other to provide a desired torsional damping. Concepts and design choices regarding the overall architecture and the single components are presented and discussed. A viscoelastic model of the system has been developed and the design of the joint is presented.

  10. Classification of Implantable Rotary Blood Pump States With Class Noise.

    PubMed

    Ooi, Hui-Lee; Seera, Manjeevan; Ng, Siew-Cheok; Lim, Chee Peng; Loo, Chu Kiong; Lovell, Nigel H; Redmond, Stephen J; Lim, Einly

    2016-05-01

    A medical case study related to implantable rotary blood pumps is examined. Five classifiers and two ensemble classifiers are applied to process the signals collected from the pumps for the identification of the aortic valve nonopening pump state. In addition to the noise-free datasets, up to 40% class noise has been added to the signals to evaluate the classification performance when mislabeling is present in the classifier training set. In order to ensure a reliable diagnostic model for the identification of the pump states, classifications performed with and without class noise are evaluated. The multilayer perceptron emerged as the best performing classifier for pump state detection due to its high accuracy as well as robustness against class noise.

  11. A dynamic analysis of rotary combustion engine seals

    NASA Technical Reports Server (NTRS)

    Knoll, J.; Vilmann, C. R.; Schock, H. J.; Stumpf, R. P.

    1984-01-01

    Real time work cell pressures are incorporated into a dynamic analysis of the gas sealing grid in Rotary Combustion Engines. The analysis which utilizes only first principal concepts accounts for apex seal separation from the crochoidal bore, apex seal shifting between the sides of its restraining channel, and apex seal rotation within the restraining channel. The results predict that apex seals do separate from the trochoidal bore and shift between the sides of their channels. The results also show that these two motions are regularly initiated by a seal rotation. The predicted motion of the apex seals compares favorably with experimental results. Frictional losses associated with the sealing grid are also calculated and compare well with measurements obtained in a similar engine. A comparison of frictional losses when using steel and carbon apex seals has also been made as well as friction losses for single and dual side sealing.

  12. Application of the Finite Element Method to Rotary Wing Aeroelasticity

    NASA Technical Reports Server (NTRS)

    Straub, F. K.; Friedmann, P. P.

    1982-01-01

    A finite element method for the spatial discretization of the dynamic equations of equilibrium governing rotary-wing aeroelastic problems is presented. Formulation of the finite element equations is based on weighted Galerkin residuals. This Galerkin finite element method reduces algebraic manipulative labor significantly, when compared to the application of the global Galerkin method in similar problems. The coupled flap-lag aeroelastic stability boundaries of hingeless helicopter rotor blades in hover are calculated. The linearized dynamic equations are reduced to the standard eigenvalue problem from which the aeroelastic stability boundaries are obtained. The convergence properties of the Galerkin finite element method are studied numerically by refining the discretization process. Results indicate that four or five elements suffice to capture the dynamics of the blade with the same accuracy as the global Galerkin method.

  13. Synthetic aggregates from combustion ashes using an innovative rotary kiln.

    PubMed

    Wainwright, P J; Cresswell, D J

    2001-01-01

    This paper describes the use of a number of different combustion ashes to manufacture synthetic aggregates using an innovative rotary 'Trefoil' kiln. Three types of combustion ash were used, namely: incinerated sewage sludge ash (ISSA); municipal solid waste incinerator bottom ash (MSWIBA-- referred to here as BA); and pulverised fuel ash (Pfa). The fine waste ash fractions listed above were combined with a binder to create a plastic mix that was capable of being formed into 'green pellets'. These pellets were then fired in a Trefoil kiln to sinter the ashes into hard fused aggregates that were then tested for use as a replacement for the natural coarse aggregate in concrete. Results up to 28 days showed that these synthetic aggregates were capable of producing concretes with compressive strengths ranging from 33 to 51 MPa, equivalent to between 73 and 112% of that of the control concrete made with natural aggregates.

  14. Real-Time Prognostics of a Rotary Valve Actuator

    NASA Technical Reports Server (NTRS)

    Daigle, Matthew

    2015-01-01

    Valves are used in many domains and often have system-critical functions. As such, it is important to monitor the health of valves and their actuators and predict remaining useful life. In this work, we develop a model-based prognostics approach for a rotary valve actuator. Due to limited observability of the component with multiple failure modes, a lumped damage approach is proposed for estimation and prediction of damage progression. In order to support the goal of real-time prognostics, an approach to prediction is developed that does not require online simulation to compute remaining life, rather, a function mapping the damage state to remaining useful life is found offline so that predictions can be made quickly online with a single function evaluation. Simulation results demonstrate the overall methodology, validating the lumped damage approach and demonstrating real-time prognostics.

  15. Solid state lighting devices and methods with rotary cooling structures

    DOEpatents

    Koplow, Jeffrey P.

    2017-03-21

    Solid state lighting devices and methods for heat dissipation with rotary cooling structures are described. An example solid state lighting device includes a solid state light source, a rotating heat transfer structure in thermal contact with the solid state light source, and a mounting assembly having a stationary portion. The mounting assembly may be rotatably coupled to the heat transfer structure such that at least a portion of the mounting assembly remains stationary while the heat transfer structure is rotating. Examples of methods for dissipating heat from electrical devices, such as solid state lighting sources are also described. Heat dissipation methods may include providing electrical power to a solid state light source mounted to and in thermal contact with a heat transfer structure, and rotating the heat transfer structure through a surrounding medium.

  16. Maintenance cost study of rotary wing aircraft, phase 2

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The Navy's maintenance and materials management data base was used in a study to determine the feasibility of predicting unscheduled maintenance costs for the dynamic systems of military rotary wing aircraft. The major operational and design variables were identified and the direct maintenance man hours per flight hour were obtained by step-wise multiple regression analysis. Five nonmilitary helicopter users were contacted to supply data on which variables were important factors in civil applications. These uses included offshore oil exploration and support, police and fire department rescue and enforcement, logging and heavy equipment movement, and U.S. Army military operations. The equations developed were highly effective in predicting unscheduled direct maintenance man hours per flying hours for military aircraft, but less effective for commercial or public service helicopters, probably because of the longer mission durations and the much higher utilization of civil users.

  17. Design and experiment performances of an inchworm type rotary actuator.

    PubMed

    Li, Jianping; Zhao, Hongwei; Shao, Mingkun; Zhou, Xiaoqin; Huang, Hu; Fan, Zunqiang

    2014-08-01

    A piezo-driven rotary actuator by means of inchworm principle is proposed in this paper. Six piezo-stacks and flexure hinges are used to realize large rotation ranges with high accuracy both in the forward and backward motions. Four right-angle flexure hinges and two right-circular flexure hinges are applied in the stator. The motion principle and theoretical analysis of the designed actuator are discussed. In order to investigate the working characteristics, a prototype actuator was manufactured and a series of experiment tests were carried out. The test results indicate that the maximum rotation velocity is 71,300 μrad/s; the maximum output torque is 19.6 N mm. The experiment results confirm that the designed actuator can obtain large rotation motion ranges with relatively high output torques and different rotation speeds on the condition of different driving voltages and frequencies.

  18. History, a projection of the future: A rotary wing perspective

    NASA Technical Reports Server (NTRS)

    Huston, Robert J.

    1996-01-01

    The success and failure of past vehicle concepts is reviewed in an attempt to highlight some of the advanced vehicle concepts attempted in the past failed because of a lack of appreciation, by both the sponsors and the developer, for the technical and societal requirements critical to their success. This paper will review the history of some attempts to provide both good hover and forward flight efficiency and will point out some of the technical and societal obstacles encountered. Two examples, that of the tiltrotor and tiltwing vehicles. will be highlighted show the different paths followed by a successful and an unsuccessful concept. The outlook for future VTOL/rotary wing concepts will be evaluated.

  19. Advanced stratified charge rotary aircraft engine design study

    NASA Technical Reports Server (NTRS)

    Badgley, P.; Berkowitz, M.; Jones, C.; Myers, D.; Norwood, E.; Pratt, W. B.; Ellis, D. R.; Huggins, G.; Mueller, A.; Hembrey, J. H.

    1982-01-01

    A technology base of new developments which offered potential benefits to a general aviation engine was compiled and ranked. Using design approaches selected from the ranked list, conceptual design studies were performed of an advanced and a highly advanced engine sized to provide 186/250 shaft Kw/HP under cruise conditions at 7620/25,000 m/ft altitude. These are turbocharged, direct-injected stratified charge engines intended for commercial introduction in the early 1990's. The engine descriptive data includes tables, curves, and drawings depicting configuration, performance, weights and sizes, heat rejection, ignition and fuel injection system descriptions, maintenance requirements, and scaling data for varying power. An engine-airframe integration study of the resulting engines in advanced airframes was performed on a comparative basis with current production type engines. The results show airplane performance, costs, noise & installation factors. The rotary-engined airplanes display substantial improvements over the baseline, including 30 to 35% lower fuel usage.

  20. Rim for rotary inertial energy storage device and method

    DOEpatents

    Knight, Jr., Charles E.; Pollard, Roy E.

    1980-01-01

    The present invention is directed to an improved rim or a high-performance rotary inertial energy storage device (flywheel). The improved rim is fabricated from resin impregnated filamentary material which is circumferentially wound in a side-by-side relationship to form a plurality of discretely and sequentially formed concentric layers of filamentary material that are bound together in a resin matrix. The improved rim is provided by prestressing the filamentary material in each successive layer to a prescribed tension loading in accordance with a predetermined schedule during the winding thereof and then curing the resin in each layer prior to forming the next layer for providing a prestress distribution within the rim to effect a self-equilibrating compressive prestress within the windings which counterbalances the transverse or radial tensile stresses generated during rotation of the rim for inhibiting deleterious delamination problems.

  1. Estimation of Rotary Stability Derivatives at Subsonic and Transonic Speeds

    NASA Technical Reports Server (NTRS)

    Tobak, Murray; Lessing, Henry C.

    1961-01-01

    The first part of this paper pertains to the estimation of subsonic rotary stability derivatives of wings. The unsteady potential flow problem is solved by a superposition of steady flow solutions. Numerical results for the damping coefficients of triangular wings are presented as functions of aspect ratio and Mach number, and are compared with experimental results over the Mach number range 0 to 1. In the second part, experimental results are used. to point out a close correlation between the nonlinear variations with angle of attack of the static pitching-moment curve slope and the damping-in-pitch coefficient. The underlying basis for the correlation is found as a result of an analysis in which the indicial function concept and. the principle of super-position are adapted to apply to the nonlinear problem. The form of the result suggests a method of estimating nonlinear damping coefficients from results of static wind-tunnel measurements.

  2. Connecting apparatus for limited rotary or rectilinear motion

    DOEpatents

    Hardin, Jr., Roy T.

    1981-11-10

    Apparatus for providing connection between two members movable in a horizontal plane with respect to each other in a rotary or linear fashion. The apparatus includes a set of horizontal shelves affixed to each of the two members, vertically aligned across a selected gap. A number of cables or hoses, for electrical, hydraulic or pneumatic connection are arranged on the aligned shelves in a U-shaped loop, connected through their extremities to the two members, so that through a sliding motion portions of the cable are transferred from one shelf to the other, across the gap, upon relative motion of the members. The apparatus is particularly adaptable to the rotating plugs of the reactor vessel head of a nuclear reactor.

  3. Rotary Percussive Sample Acquisition Tool (SAT): Hardware Development and Testing

    NASA Technical Reports Server (NTRS)

    Klein, Kerry; Badescu, Mircea; Haddad, Nicolas; Shiraishi, Lori; Walkemeyer, Phillip

    2012-01-01

    In support of a potential Mars Sample Return (MSR) mission an Integrated Mars Sample Acquisition and Handling (IMSAH) architecture has been proposed to provide a means for Rover-based end-to-end sample capture and caching. A key enabling feature of the architecture is the use of a low mass sample Acquisition Tool (SAT) that is capable of drilling and capturing rock cores directly within a sample tube in order to maintain sample integrity and prevent contamination across the sample chain. As such, this paper will describe the development and testing of a low mass rotary percussive SAT that has been shown to provide a means for core generation, fracture, and capture.

  4. Rotary forcespun styrofoam fibers as a soilless growing medium

    NASA Astrophysics Data System (ADS)

    Fauzi, Ahmad; Edikresnha, Dhewa; Munir, Muhammad Miftahul; Khairurrijal

    2016-04-01

    To make styrofoam fibers from used styrofoam, rotary forcespinning technique was used because it offers high production rate and affordable production cost. The used styrofoam was dissolved in acetone to obtain styrofoam solution as a precursor of syrofoam fibers. Since the technique utilizes centrifugal force, the precursor was thrown out and its phase changed to be solid following acetone solvent evaporation. Long, clean and light styrofoam fibers were then produced. To determine if the styrofoam fibers is a good soilless growing medium, physico-chemical properties including pH and electrical conductivity, bulk density, water retention and wettability were measured. Rockwool, which is the most popular soilless growing medium and easily obtained from local farm suppliers, was selected as a benchmark to evaluate the styrofoam fibers.

  5. High pressure rotary piston coal feeder for coal gasification applications

    DOEpatents

    Gencsoy, Hasan T.

    1977-05-24

    The subject development is directed to an apparatus for feeding pulverized coal into a coal gasifier operating at relatively high pressures and elevated temperatures. This apparatus is a rotary piston feeder which comprises a circular casing having a coal loading opening therein diametrically opposed from a coal discharge and contains a rotatable discoid rotor having a cylinder in which a reciprocateable piston is disposed. The reciprocation of the piston within the cylinder is provided by a stationary conjugate cam arrangement whereby the pulverized coal from a coal hopper at atmospheric pressure can be introduced into the cylinder cavity and then discharged therefrom into the high-pressure gasifier without the loss of high pressure gases from within the latter.

  6. Experimental Study on Doubly-fed Rotary Frequency Converter

    NASA Astrophysics Data System (ADS)

    Takemoto, Yasutoshi; Fujita, Goro; Yokoyama, Ryuichi; Koyanagi, Kaoru; Funabashi, Toshihisa

    Wind power generation using an unlimited, natural energy is getting an attention regarding environment issues in recent years, and the installed capacity of wind power generation system is increasing at a rapid pace, resulting in deterioration of power quality especially in frequency and voltage. This fact will be a big problem to restrict large capacity of wind farm. This paper proposes a new frequency converter: rotary frequency converter (RFC) to moderate the electric output from wind generation, which is to be installed between a set of wind generators and a grid, providing a smoothed electric output, promoting the wind power generation introduction. This mainly consists of a synchronous machine and the adjustable-speed machine. Independent controls of input/output voltage, active power, and reactive power offer electrical separation between the two networks. Experimental study of prototype model and its characteristics, especially dynamic control is discussed in this paper.

  7. Theoretical and experimental study on regenerative rotary displacer Stirling engine

    SciTech Connect

    Raggi, L.; Katsuta, Masafumi; Isshiki, Naotsugu; Isshiki, Seita

    1997-12-31

    Recently a quite new type of hot air engine called rotary displacer engine, in which the displacer is a rotating disk enclosed in a cylinder, has been conceived and developed. The working gas, contained in a notch excavated in the disk, is heated and cooled alternately, on account of the heat transferred through the enclosing cylinder that is heated at one side and cooled at the opposite one. The gas temperature oscillations cause the pressure fluctuations that get out mechanical power acting on a power piston. In order to attempt to increase the performances for this kind of engine, the authors propose three different regeneration methods. The first one comprises two coaxial disks that, revolving in opposite ways, cause a temperature gradient on the cylinder wall and a regenerative axial heat conduction through fins shaped on the cylinder inner wall. The other two methods are based on the heat transferred by a proper closed circuit that in one case has a circulating liquid inside and in the other one is formed by several heat pipes working each one for different temperatures. An engine based on the first principle, the Regenerative Tandem Contra-Rotary Displacer Stirling Engine, has been realized and experimented. In this paper experimental results with and without regeneration are reported comparatively with a detailed description of the unity. A basic explanation of the working principle of this engine and a theoretical analysis investigating the main influential parameters for the regenerative effect are done. This new rotating displacer Stirling engines, for their simplicity, are expected to attain high rotational speed especially for applications as demonstration and hobby unities.

  8. Rotary Steerable Horizontal Directional Drilling: Red River Formation

    NASA Astrophysics Data System (ADS)

    Cherukupally, A.; Bergevin, M.; Jones, J.

    2011-12-01

    Sperry-Sun Drilling, a Halliburton company provides engineering solutions and sets new records for Horizontal and Vertical Displacement Drilling (HVDD). Halliburton Sperry Drilling, Casper, WY, allowed one student to participate in 12-week experiential learning program this summer as HVDD engineer. HVDD is the science of drilling non-vertical wells and can be differentiated into three main groups; Oilfield Directional Drilling (ODD), Utility Installation Directional Drilling (UIDD) and in-seam directional Drilling. Sperry-Sun prior experience with rotary drilling established a number of principles for the configuration of Bottom Hole Assembly (BHA) that would be prone to drilling crooked hole [1]. Combining Measurement While Drilling survey tools (MWD tools) and BHA designs made HVDD possible. Geologists use the MWD survey data to determine the well placement in the stratigraphic sequence. Through the analysis of this data, an apparent dip of the formation can be calculated, and the bit is directed to stay in the target zone of production. Geological modeling assists in directing the well by creating a map of the target zone surface, an Isopach map. The Isopach map provides contour intervals and changes in formation dip. When the inclination of the formation changes the geologist informs the directional drillers to adjust the drill bits. HVDD provides Halliburton the opportunity to reach more production intervals in a given formation sequence [1]. The Down hole motors powered by fluid flow through the drill string create horsepower and rotation of the bit which enables the use of a bend element in the BHA to create the tilt necessary to deviate the wellbore from vertical displacement drilling path. The rotation of Down hole motors is influenced by temperature and aromatics found in water, oil and diesel based mud. The development of HVDD Rotary Steerable tools hold promise to have almost a complete automated process for drilling highly deviated production well

  9. Development of rotary blood pump technology: past, present, and future.

    PubMed

    Nosé, Y; Yoshikawa, M; Murabayashi, S; Takano, T

    2000-06-01

    Even though clinical acceptance of a nonpulsatile blood flow was demonstrated almost 45 years ago, the development of a nonpulsatile blood pump was completely ignored until 20 years ago. In 1979, the first author's group demonstrated that completely pulseless animals did not exhibit any abnormal physiology if 20% higher blood flows were provided to them. However, during the next 10 years (1979-1988), minimum efforts were provided for the development of a nonpulsatile, permanently implantable cardiac prosthesis. In 1989, the first author and his team at Baylor College of Medicine initiated a developmental strategy of various types of nonpulsatile rotary blood pumps, including a 2-day rotary blood pump for cardiopulmonary bypass application, a 2 week pump for ECMO and short-term circulatory assistance, a 2 year pump as a bridge to transplantation, and a permanently implantable cardiac prosthesis. Following the design and developmental strategy established in 1989, successful development of a 2-day pump (the Nikkiso-Fairway cardiopulmonary bypass pump) in 4 years (1989-1993), a 2 week pump (Kyocera gyro G1E3 pump) in 6 years (1992-1998), and a bridge to transplant pump (DeBakey LVAD-an axial flow blood pump) in 10 years (1988-1998) was made. Currently, a permanently implantable centrifugal blood pump development program is successfully completing its initial Phase 1 program of 5 years (1995-2000). Implantation exceeded 9 months without any negative findings. An additional 5 year Phase II program (2000-2005) is expected to complete such a device that will be clinically available.

  10. Percussive Augmenter of Rotary Drills (PARoD)

    NASA Technical Reports Server (NTRS)

    Badescu, Mircea; Hasenoehrl, Jennifer; Bar-Cohen, Yoseph; Sherrit, Stewart; Bao, Xiaoqi; Chang, Zensheu; Ostlund, Patrick; Aldrich, Jack

    2013-01-01

    Increasingly, NASA exploration mission objectives include sample acquisition tasks for in-situ analysis or for potential sample return to Earth. To address the requirements for samplers that could be operated at the conditions of the various bodies in the solar system, a piezoelectric actuated percussive sampling device was developed that requires low preload (as low as 10 N) which is important for operation at low gravity. This device can be made as light as 400 g, can be operated using low average power, and can drill rocks as hard as basalt. Significant improvement of the penetration rate was achieved by augmenting the hammering action by rotation and use of a fluted bit to provide effective cuttings removal. Generally, hammering is effective in fracturing drilled media while rotation of fluted bits is effective in cuttings removal. To benefit from these two actions, a novel configuration of a percussive mechanism was developed to produce an augmenter of rotary drills. The device was called Percussive Augmenter of Rotary Drills (PARoD). A breadboard PARoD was developed with a 6.4 mm (0.25 in) diameter bit and was demonstrated to increase the drilling rate of rotation alone by 1.5 to over 10 times. The test results of this configuration were published in a previous publication. Further, a larger PARoD breadboard with a 50.8 mm (2.0 in) diameter bit was developed and tested. This paper presents the design, analysis and test results of the large diameter bit percussive augmenter.

  11. Percussive augmenter of rotary drills (PARoD)

    NASA Astrophysics Data System (ADS)

    Badescu, Mircea; Hasenoehrl, Jennifer; Bar-Cohen, Yoseph; Sherrit, Stewart; Bao, Xiaoqi; Chang, Zensheu; Ostlund, Patrick; Aldrich, Jack

    2013-04-01

    Increasingly, NASA exploration mission objectives include sample acquisition tasks for in-situ analysis or for potential sample return to Earth. To address the requirements for samplers that could be operated at the conditions of the various bodies in the solar system, a piezoelectric actuated percussive sampling device was developed that requires low preload (as low as 10N) which is important for operation at low gravity. This device can be made as light as 400g, can be operated using low average power, and can drill rocks as hard as basalt. Significant improvement of the penetration rate was achieved by augmenting the hammering action by rotation and use of a fluted bit to provide effective cuttings removal. Generally, hammering is effective in fracturing drilled media while rotation of fluted bits is effective in cuttings removal. To benefit from these two actions, a novel configuration of a percussive mechanism was developed to produce an augmenter of rotary drills. The device was called Percussive Augmenter of Rotary Drills (PARoD). A breadboard PARoD was developed with a 6.4 mm (0.25 in) diameter bit and was demonstrated to increase the drilling rate of rotation alone by 1.5 to over 10 times. The test results of this configuration were published in a previous publication. Further, a larger PARoD breadboard with a 50.8 mm (2.0 in) diameter bit was developed and tested. This paper presents the design, analysis and test results of the large diameter bit percussive augmenter.

  12. Evaluation of single-use rotary nickel-titanium instruments.

    PubMed

    Arens, F Charles; Hoen, Michael M; Steiman, H Robert; Dietz, Gerald C

    2003-10-01

    The purpose of this study was to analyze the number and types of defects observed in single-use, rotary nickel-titanium instruments. Every ProFile Series 29.04 taper nickel-titanium instrument used during a 4-week period in an endodontic specialty practice was collected. All instruments were new and were used by experienced clinicians during a single patient visit. The instruments were routinely used in a crown-down manner with RC Prep lubrication and copious irrigation. The instruments were used in a MicroMega 324 air motor in a 6:1 gear reduction contra-angle at 333 rpm. The instruments were collected, ultrasonically cleaned, sterilized, and inspected at x16 magnification. Torsional, flexural, and fracture defects were recorded and statistical analysis was performed using the Kruskal-Wallis one-way analysis of variance. A total of 786 ProFile Series 29 nickel-titanium rotary instruments were evaluated; 115 (14.63%) showed some type of defect after one clinical use. Size 3 instruments had the highest defect rate (22.66%) followed by size 5 (17.30%), size 2 (17.24%), and size 4 instruments (16.10%). However, there was no statistically significant difference. The size 6 and size 7 instruments showed minimal defects (2.38% and 4.76%, respectfully). Seven of 786 files had fractured (0.891%). There was no statistically significant difference in the type of failure seen within each file size. This study does show that defects can occur even with new files in the hands of experienced endodontists, and for absolute safety a single-use approach should be followed.

  13. Determination of three-dimensional movement for rotary blades using digital image correlation

    NASA Astrophysics Data System (ADS)

    Wu, Rong; Chen, Yue; Pan, Yanting; Wang, Qiang; Zhang, Dongsheng

    2015-02-01

    Non-contact and accurate motion measurement of the rotary objects is crucial in engineering applications. A modified Newton-Raphson algorithm, which is capable of positioning marks with large rotation, has been proposed. A stereo imaging system with a pair of synchronized digital high-speed cameras was developed and achieved full-field displacement measurement based on 3D image correlation photogrammetry for rotary objects. This system has been applied to measuring the 3D motion of a wind turbine blade model. The displacement components of the rotary blade were presented, and the corresponding frequency spectra were investigated. The experimental results demonstrated that the proposed system could measure the 3D motion of rotary blades precisely, and it also provided an alternative potential non-contact diagnosis means for large wind turbine blades.

  14. A chemically powered unidirectional rotary molecular motor based on a palladium redox cycle

    NASA Astrophysics Data System (ADS)

    Collins, Beatrice S. L.; Kistemaker, Jos C. M.; Otten, Edwin; Feringa, Ben L.

    2016-09-01

    The conversion of chemical energy to drive directional motion at the molecular level allows biological systems, ranging from subcellular components to whole organisms, to perform a myriad of dynamic functions and respond to changes in the environment. Directional movement has been demonstrated in artificial molecular systems, but the fundamental motif of unidirectional rotary motion along a single-bond rotary axle induced by metal-catalysed transformation of chemical fuels has not been realized, and the challenge is to couple the metal-centred redox processes to stepwise changes in conformation to arrive at a full unidirectional rotary cycle. Here, we present the design of an organopalladium-based motor and the experimental demonstration of a 360° unidirectional rotary cycle using simple chemical fuels. Exploiting fundamental reactivity principles in organometallic chemistry enables control of directional rotation and offers the potential of harnessing the wealth of opportunities offered by transition-metal-based catalytic conversions to drive motion and dynamic functions.

  15. A COMPARISON OF IN-SITU VITRIFICATION AND ROTARY KILN INCINERATION FOR SOILS TREATMENT

    EPA Science Inventory

    In the hazardous waste community, the term "thermal destruction" is a catch-all phrase that broadly refers to high temperature destruction of hazardous contaminants. ncluded in the thermal destruction category are treatment technologies such as rotary kiln incineration, fluidized...

  16. Design and simulation of a novel impact piezoelectric linear-rotary motor

    NASA Astrophysics Data System (ADS)

    Han, Liling; Zhao, Yahui; Pan, Chengliang; Yu, Liandong

    2016-01-01

    This paper presents a novel impact piezoelectric linear-rotary motor which is driven by a single piezoceramic tube with two parts of electrodes. From the inner and outer electrodes, longitudinal displacement of the tube is generated and used to actuate the shaft with linear motion ability. From the grooved helical interdigitated electrodes, torsional displacement is generated and used to actuate the shaft with rotary motion ability. Working principle and structural design of the motor are introduced and quasi-static longitudinal and torsional displacements of the tube are estimated. With established kinematics model of the motor, the working behaviors of the motor are investigated numerically with MATLAB/Simulink software. The stepping characteristics of the linear and rotary motions are analyzed, compared, and discussed. With optimized material selection, structural design, and driving parameters, the proposed linear-rotary motor will provide remarkable performances as a miniaturized multi-degree driving device for complex positioning and manipulation applications.

  17. Micro-optical rotary joint for multichannel communication via a rotating surface

    NASA Astrophysics Data System (ADS)

    Stark, Markus; Rank, Matthias; Schmidt, Michael; Popp, Gregor; Poisel, Hans

    2005-04-01

    Data transmission between rotating and stationary systems, e.g. required for radar antennas or for undersea cable installation ships can be realized with so called rotary joints. For the transmission of several high bit rate optical data channels a micro optical rotary joint is now available which guarantees a dead reliable, low loss transmission for up to 21 parallel single mode channels. The free space transmission in the rotary joint implicates a highly precise collimation of the parallel channels. For this purpose compact two dimensional fiber collimator arrays based on micro lens arrays have been developed. These arrays and the complete opto-mechanical system are designed with the help of tolerance analysis using Monte Carlo simulations. Besides these results also some more information on the behavior and the characteristics of the micro optical rotary joint under real conditions which demonstrate the excellent characteristics of this novel system will be given.

  18. Structure of the vacuolar H+-ATPase rotary motor reveals new mechanistic insights.

    PubMed

    Rawson, Shaun; Phillips, Clair; Huss, Markus; Tiburcy, Felix; Wieczorek, Helmut; Trinick, John; Harrison, Michael A; Muench, Stephen P

    2015-03-03

    Vacuolar H(+)-ATPases are multisubunit complexes that operate with rotary mechanics and are essential for membrane proton transport throughout eukaryotes. Here we report a ∼ 1 nm resolution reconstruction of a V-ATPase in a different conformational state from that previously reported for a lower-resolution yeast model. The stator network of the V-ATPase (and by implication that of other rotary ATPases) does not change conformation in different catalytic states, and hence must be relatively rigid. We also demonstrate that a conserved bearing in the catalytic domain is electrostatic, contributing to the extraordinarily high efficiency of rotary ATPases. Analysis of the rotor axle/membrane pump interface suggests how rotary ATPases accommodate different c ring stoichiometries while maintaining high efficiency. The model provides evidence for a half channel in the proton pump, supporting theoretical models of ion translocation. Our refined model therefore provides new insights into the structure and mechanics of the V-ATPases.

  19. Oscillating Electric Field Measures the Rotation Rate in a Native Rotary Enzyme

    PubMed Central

    Ferencz, Csilla-Maria; Petrovszki, Pál; Dér, András; Sebők-Nagy, Krisztina; Kóta, Zoltán; Páli, Tibor

    2017-01-01

    Rotary enzymes are complex, highly challenging biomolecular machines whose biochemical working mechanism involves intersubunit rotation. The true intrinsic rate of rotation of any rotary enzyme is not known in a native, unmodified state. Here we use the effect of an oscillating electric (AC) field on the biochemical activity of a rotary enzyme, the vacuolar proton-ATPase (V-ATPase), to directly measure its mean rate of rotation in its native membrane environment, without any genetic, chemical or mechanical modification of the enzyme, for the first time. The results suggest that a transmembrane AC field is able to synchronise the steps of ion-pumping in individual enzymes via a hold-and-release mechanism, which opens up the possibility of biotechnological exploitation. Our approach is likely to work for other transmembrane ion-transporting assemblies, not only rotary enzymes, to determine intrinsic in situ rates of ion pumping. PMID:28345665

  20. 33 CFR 100.914 - Trenton Rotary Roar on the River, Trenton, MI.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... SECURITY REGATTAS AND MARINE PARADES SAFETY OF LIFE ON NAVIGABLE WATERS § 100.914 Trenton Rotary Roar on... the Detroit River, Trenton, Michigan, bounded by an east/west line beginning at a point of land at...

  1. A Rotary Microactuator Supported on Encapsulated Microball Bearings using an Electro-Pneumatic Thrust Balance

    DTIC Science & Technology

    2009-01-01

    c) Figure 1. Application examples of bottom-drive variable-capacitance microactuators: (a) rotary micropumps , (b) directional transceivers and (c...Figure 1(a) shows an electrically actuated micropump based on a spiral groove viscous pumping principle, while figure 1(b) shows a rotary stage capable...without thrust balances [11]. For applications requiring continuous rotation (micromotors and micropumps ) this hydrostatic balancing force can be

  2. Advanced liquid-cooled, turbocharged and intercooled stratified charge rotary engines for aircraft

    NASA Technical Reports Server (NTRS)

    Mount, Robert E.; Bartel, John; Hady, William F.

    1987-01-01

    Developments concerning stratified-charge rotary (SCR) engines over the past 10 years are reviewed. Aircraft engines being developed using SCR technology are shown and described, and the ability of such technology to meet general aviation engine needs is considered. Production timing and availability of SCR technology for the development of aviation rotary engines are discussed, and continuing efforts toward improving this technology, including NASA efforts, are described.

  3. Mechanical design of a rotary balance system for NASA. Langley Research Center's vertical spin tunnel

    NASA Technical Reports Server (NTRS)

    Allred, J. W.; Fleck, V. J.

    1992-01-01

    A new lightweight Rotary Balance System is presently being fabricated and installed as part of a major upgrade to the existing 20 Foot Vertical Spin Tunnel. This upgrade to improve model testing productivity of the only free spinning vertical wind tunnel includes a modern fan/drive and tunnel control system, an updated video recording system, and the new rotary balance system. The rotary balance is a mechanical apparatus which enables the measurement of aerodynamic force and moment data under spinning conditions (100 rpm). This data is used in spin analysis and is vital to the implementation of large amplitude maneuvering simulations required for all new high performance aircraft. The new rotary balance system described in this report will permit greater test efficiency and improved data accuracy. Rotary Balance testing with the model enclosed in a tare bag can also be performed to obtain resulting model forces from the spinning operation. The rotary balance system will be stored against the tunnel sidewall during free flight model testing.

  4. Rotary drum composting of different organic waste mixtures.

    PubMed

    Kalamdhad, Ajay S; Kazmi, Absar A

    2009-03-01

    The effects of three different mixtures of organic waste on composting in a rotary drum were examined by measuring changes in physico-chemical and biological parameters. It was observed that the time courses of the three mixtures: run A (grass cuttings, vegetable waste and food waste), run B (cattle manure, vegetable waste and sawdust) and run C (cattle manure, food waste, vegetable waste, paper waste and sawdust) were quite diverse. Run B, with initial C/N ratio 22 and containing a large proportion of cattle manure produced high quality and mature compost within 20 days. It showed a final total nitrogen (2.1%), final total phosphorus 3.52 g kg(-1), final total organic carbon (TOC) (24.8%) and final moisture content (44%). At the end of 20 days, higher degradation led to final chemical oxygen demand (COD) (454 mg L(- 1)), biochemical oxygen demand (BOD) (107 mg L(- 1)), fecal coliform (1.2 x 10(2) bacteria g(- 1)), fecal streptococci (85 bacteria g(-1)) and low electrical conductivity (1.658 dS m(-1)), respectively. Furthermore, run C with initial C/N ratio of 30 and containing a larger amount of food and vegetable waste produced good quality compost and resulted in 4.34% total nitrogen and 2.42% total phosphorus after 20 days, but, it had higher final fecal coliform 2.5 x 10(4) bacteria g( -1), fecal streptococci 2.1 x 10(4) bacteria g(-1), high TOC and NH(4)-N and a BOD/COD ratio of 0.63, which rendered it hygienically unsafe and immature. Finally, run A with initial C/N ratio of 15 showed a higher amount of EC (4.84 dS m(-1)), NH(4)-N, BOD/COD ratio of 0.4 with 15% nitrogen loss, which indicated an unstable product even after 20 days of composting. Therefore, it was found that rotary drum composting of a combination of cattle manure, vegetable waste and sawdust resulted in a primary stabilized compost within 20 days of composting.

  5. Straight-Pore Microfilter with Efficient Regeneration

    NASA Technical Reports Server (NTRS)

    Liu, Han; LaConti, Anthony B.; McCallum. Thomas J.; Schmitt, Edwin W.

    2010-01-01

    A novel, high-efficiency gas particulate filter has precise particle size screening, low pressure drop, and a simple and fast regeneration process. The regeneration process, which requires minimal material and energy consumption, can be completely automated, and the filtration performance can be restored within a very short period of time. This filter is of a novel material composite that contains the support structure and a novel coating.

  6. Rotary ultrasonic machining of CFRP: A comparison with grinding.

    PubMed

    Ning, F D; Cong, W L; Pei, Z J; Treadwell, C

    2016-03-01

    Carbon fiber reinforced plastic (CFRP) composites have been intensively used in various industries due to their superior properties. In aircraft and aerospace industry, a large number of holes are required to be drilled into CFRP components at final stage for aircraft assembling. There are two major types of methods for hole making of CFRP composites in industry, twist drilling and its derived multi-points machining methods, and grinding and its related methods. The first type of methods are commonly used in hole making of CFRP composites. However, in recent years, rotary ultrasonic machining (RUM), a hybrid machining process combining ultrasonic machining and grinding, has also been successfully used in drilling of CFRP composites. It has been shown that RUM is superior to twist drilling in many aspects. However, there are no reported investigations on comparisons between RUM and grinding in drilling of CFRP. In this paper, these two drilling methods are compared in five aspects, including cutting force, torque, surface roughness, hole diameter, and material removal rate.

  7. Development of a novel centrifugal pump: magnetic rotary pump.

    PubMed

    Naganuma, S; Yambe, T; Sonobe, T; Kobayashi, S; Nitta, S

    1997-07-01

    The rotational axis of the centrifugal pump has some associated problems such as blood destruction and sealing between the axis and pump housing. To improve upon these deficits we have developed a new type of blood pump, the magnetic rotary pump (MRP). The MRP has an original design with no rotational axis and no impellers. We made a prototype MRP and examined its hemodynamics in mock circulation. The prototype MRP flow rate is only 1.0 L/min with an afterload of 30 mm Hg, and we have made some modifications in the size and drive mechanisms from these results. The modified MRP can achieve high flow rates and rotational speeds (6.0 L/min with an afterload of 100 mm Hg, 2,000 rpm) in a mock circuit, and the modified MRP was used for left heart assistance in an acute animal experiment. The MRP could maintain the hemodynamics of an anesthetized adult goat. These results suggest that the MRP needs to be improved in several areas, but the MRP may be useful as a blood pump.

  8. Design of a new type of rotary Stirling engine

    SciTech Connect

    Abenavoli, R.I.; Dong, W.; Fedele, L.; Sciaboni, A.

    1996-12-31

    The Stirling machine has had wide diffusion only in cold or cryogenic applications (Philips) while the engine, despite big efforts of large Companies (Philips, Westinghouse, General Motors, etc.), never definitively reached the market; today new interest is raised correlated with environmental and energy related considerations. Thus, researchers efforts are addressed towards the design of innovative and more competitive Stirling engine configurations, like the one here proposed. This paper describes the configuration of a new, rotary Stirling engine. In the cold part of the engine, the working fluid is compressed by a rotating element, then it passes through the regenerator from the cold to the hot end, where it absorbs the heat and expands in the high pressure and temperature area. The high pressure working fluid pushes on the rotating element (the so called rotator) and the engine outputs power. In the design, compression and expansion volumes change with the rotation. Two rotators are connected with a set of gears: therefore, the engine transmission system is simplified and dimensions are reduced.

  9. Noninvasive pulsatile flow estimation for an implantable rotary blood pump.

    PubMed

    Karantonis, Dean M; Cloherty, Shaun L; Mason, David G; Ayre, Peter J; Lovell, Nigel H

    2007-01-01

    A noninvasive approach to the task of pulsatile flow estimation in an implantable rotary blood pump (iRBP) has been proposed. Employing six fluid solutions representing a range of viscosities equivalent to 20-50% blood hematocrit (HCT), pulsatile flow data was acquired from an in vitro mock circulatory loop. The entire operating range of the pump was examined, including flows from -2 to 12 L/min. Taking the pump feedback signals of speed and power, together with the HCT level, as input parameters, several flow estimate models were developed via system identification methods. Three autoregressive with exogenous input (ARX) model structures were evaluated: structures I and II used the input parameters directly; structure II incorporated additional terms for HCT; and the third structure employed as input a non-pulsatile flow estimate equation. Optimal model orders were determined, and the associated models yielded minimum mean flow errors of 5.49% and 0.258 L/min for structure II, and 5.77% and 0.270 L/min for structure III, when validated on unseen data. The models developed in this study present a practical method of accurately estimating iRBP flow in a pulsatile environment.

  10. Rotary ultrasonic bone drilling: Improved pullout strength and reduced damage.

    PubMed

    Gupta, Vishal; Pandey, Pulak M; Silberschmidt, Vadim V

    2017-03-01

    Bone drilling is one of the most common operations used to repair fractured parts of bones. During a bone drilling process, microcracks are generated on the inner surface of the drilled holes that can detrimentally affect osteosynthesis and healing. This study focuses on the investigation of microcracks and pullout strength of cortical-bone screws in drilled holes. It compares conventional surgical bone drilling (CSBD) with rotary ultrasonic bone drilling (RUBD), a novel approach employing ultrasonic vibration with a diamond-coated hollow tool. Both techniques were used to drill holes in porcine bones in an in-vitro study. Scanning electron microscopy was used to observe microcracks and surface morphology. The results obtained showed a significant decrease in the number and dimensions of microcracks generated on the inner surface of drilled holes with the RUBD process in comparison to CSBD. It was also observed that a higher rotational speed and a lower feed rate resulted in lower damage, i.e. fewer microcracks. Biomechanical axial pullout strength of a cortical bone screw inserted into a hole drilled with RUBD was found to be much higher (55-385%) than that for CSBD.

  11. Stratified charge rotary engine critical technology enablement. Volume 2: Appendixes

    NASA Technical Reports Server (NTRS)

    Irion, C. E.; Mount, R. E.

    1992-01-01

    This second volume of appendixes is a companion to Volume 1 of this report which summarizes results of a critical technology enablement effort with the stratified charge rotary engine (SCRE) focusing on a power section of 0.67 liters (40 cu. in.) per rotor in single and two rotor versions. The work is a continuation of prior NASA Contracts NAS3-23056 and NAS3-24628. Technical objectives are multi-fuel capability, including civil and military jet fuel and DF-2, fuel efficiency of 0.355 Lbs/BHP-Hr. at best cruise condition above 50 percent power, altitude capability of up to 10Km (33,000 ft.) cruise, 2000 hour TBO and reduced coolant heat rejection. Critical technologies for SCRE's that have the potential for competitive performance and cost in a representative light-aircraft environment were examined. Objectives were: the development and utilization of advanced analytical tools, i.e. higher speed and enhanced three dimensional combustion modeling; identification of critical technologies; development of improved instrumentation; and to isolate and quantitatively identify the contribution to performance and efficiency of critical components or subsystems. A family of four-stage third-order explicit Runge-Kutta schemes is derived that required only two locations and has desirable stability characteristics. Error control is achieved by embedding a second-order scheme within the four-stage procedure. Certain schemes are identified that are as efficient and accurate as conventional embedded schemes of comparable order and require fewer storage locations.

  12. PEDCO rotary cascading bed boiler may have synfuels applications

    SciTech Connect

    Not Available

    1987-03-01

    A PEDCO Rotary Cascading Bed Boiler (RCBB) has been installed at Hudepohl Brewing Company in Cincinnati, Ohio. The PEDCO RCBB is designed to burn high-sulfur coal in an economical and environmentally acceptable manner in the industrial-size range. Tests to date have realistically demonstrated the capability of the RCBB to effectively and adequately remove the sulfur emissions resulting from the combustion of Ohio high-sulfur coal. No significant difficulty is expected in meeting the EPA Best Available Technology limit of 0.83 pounds of SO/sub 2/ per one million BTU of actual heat input. The limit has also demonstrated its ability to burn very low-grade coal. The ash content of the coal used in the test protocols has ranged up to 30%, with sulfur content up to 6%. Earlier patents on the PEDCO apparatus describe it as a method for retorting hydrocarbon-containing materials such as oil shale, oil sands, tar sands, coal shale, coal tailings, and the like, for the recovery of a volatile constituent such as oil or gas. 2 figures.

  13. Rotary drum composting of vegetable waste and tree leaves.

    PubMed

    Kalamdhad, Ajay S; Singh, Yatish K; Ali, Muntjeer; Khwairakpam, Meena; Kazmi, A A

    2009-12-01

    High rate composting studies on institutional waste, i.e. vegetable wastes, tree leaves, etc., were conducted on a demonstration-scale (3.5 m(3)) rotary drum composter by evaluating changes in some physico-chemical and biological parameters. During composting, higher temperature (60-70 degrees C) at inlet zone and (50-60 degrees C) at middle zone were achieved which resulted in high degradation in the drum. As a result, all parameters including TOC, C/N ratio, CO(2) evolution and coliforms were decreased significantly within few days of composting. Within a week period, quality compost with total nitrogen (2.6%) and final total phosphorus (6 g/kg) was achieved; but relatively higher final values of fecal coliforms and CO(2) evolution, suggested further maturation. Thus, two conventional composting methods namely windrow (M1) and vermicomposting (M2) tried for maturation of primary stabilized compost. By examining these methods, it was suggested that M2 was found suitable in delivering fine grained, better quality matured compost within 20 days of maturation period.

  14. Development of the pulsation device for rotary blood pumps.

    PubMed

    Yambe, Tomoyuki; Shiraishi, Yasuyuki; Sekine, Kazumitsu; Shibata, Mune-ichi; Yamaguchi, Tasuku; Jian, Liu Hong; Yoshizawa, Makoto; Tanaka, Akira; Matsuki, Hidetoshi; Sato, Fumihiro; Haga, You-ichi; Esashi, Masayoshi; Tabayashi, Kouichi; Mitamura, Yoshinori; Sasada, Hiroshi; Nitta, Shin-ichi

    2005-11-01

    A rotary blood pump (RP) is desirable as a small ventricular assist device (VAD). However, an RP is nonpulsatile. We tried to develop a device that attaches a pulse to the RP. We also tried to develop a pulse-generating equipment that was not air-pressure driven. The ball screw motor was considered a candidate. The application of a small-sized shape memory alloy was also attempted. An electrohydraulic system was adopted, and actuator power was connected to the diaphragm. The diaphragm was placed on the outer side of the ventricle. Most RPs that have been developed all over the world drain blood from the ventricle. The wave of a pulse should be generated if a pulse is added by the drawn part. The output assistance from the outer side of the ventricle was attempted in animal experiments, and the device operated effectively. This device can be used during implantable operation of RP. This may serve as an effective device in patients experiencing problems in peripheral circulation and in the function of internal organs.

  15. Rotary bistable and Parametrically Excited Vibration Energy Harvesting

    NASA Astrophysics Data System (ADS)

    Kurmann, L.; Jia, Y.; Hoffmann, D.; Manoli, Y.; Woias, P.

    2016-11-01

    Parametric resonance is a type of nonlinear vibration phenomenon [1], [2] induced from the periodic modulation of at least one of the system parameters and has the potential to exhibit interesting higher order nonlinear behaviour [3]. Parametrically excited vibration energy harvesters have been previously shown to enhance both the power amplitude [4] and the frequency bandwidth [5] when compared to the conventional direct resonant approach. However, to practically activate the more profitable regions of parametric resonance, additional design mechanisms [6], [7] are required to overcome a critical initiation threshold amplitude. One route is to establish an autoparametric system where external direct excitation is internally coupled to parametric excitation [8]. For a coupled two degrees of freedom (DoF) oscillatory system, principal autoparametric resonance can be achieved when the natural frequency of the first DoF f1 is twice that of the second DoF f2 and the external excitation is in the vicinity of f1. This paper looks at combining rotary and translatory motion and use autoparametric resonance phenomena.

  16. A Novel Rotary Pulsatile Flow Pump for Cardiopulmonary Bypass

    PubMed Central

    Teman, Nicholas R.; Mazur, Daniel E.; Toomasian, John; Jahangir, Emilia; Alghanem, Fares; Goudie, Marcus; Rojas-Peña, Alvaro; Haft, Jonathan W.

    2014-01-01

    It has been suggested that pulsatile blood flow is superior to continuous flow in cardiopulmonary bypass (CPB). However, adoption of pulsatile flow (PF) technology has been limited due to practically and complexity of creating a consistent physiologic pulse. A pediatric pulsatile rotary ventricular pump (PRVP) was designed to address this problem. We evaluated the PRVP in an animal model, and determined its ability to generate PF during CPB. The PRVP (modified peristaltic pump, with tapering of the outlet of the pump chamber) was tested in 4 piglets (10-12kg). Cannulation was performed with right atrial and aortic cannulae, and pressure sensors were inserted into the femoral arteries. Pressure curves were obtained at different levels of flow and compared with both the animal's baseline physiologic function and a continuous flow (CF) roller pump. Pressure and flow waveforms demonstrated significant pulsatility in the PRVP setup compared to CF at all tested conditions. Measurement of hemodynamic energy data, including the percent pulsatile energy and the surplus hydraulic energy, also revealed a significant increase in pulsatility with the PRVP (p <0.001). PRVP creates physiologically significant PF, similar to the pulsatility of a native heart, and has the potential to be easily implemented in pediatric CPB. PMID:24625536

  17. Bi-flow rotary kiln coal gasification process

    SciTech Connect

    Garside, P.G.

    1983-02-22

    A process is disclosed for gasifying solid coal particles in a rotary kiln that produces simultaneously and continuously two distinctly different fuel gas streams from the opposite ends of a single kiln. A relatively low temperature gas is discharged from the solids inlet end of the kiln, which contains substantially all tars produced by the process. A second of the gas streams is discharged from the solids discharge end of the kiln at approximately 1,900* F. And substantially tar-free. Heat is recovered from this tar-free gas after only a simple cleaning of particulate matter, as may be provided by a cyclone separator. The discharge of gas out the solids inlet end of the kiln and the gas discharged out the solids discharge end of the kiln, is adjustably proportioned relative to each other so that at least some high temperature tar-free gas will mix inside the kiln with the lower temperature tar-containing gas, in an amount sufficient to keep such mixed gases at a temperature high enough to avoid the tars condensing on equipment surfaces. Several process parameters are disclosed for adjusting the proportion of the gas flows out each end of the kiln to maintain the aforesaid condition of both gas streams.

  18. Device for charging combustible solids to rotary kilns

    SciTech Connect

    Tutt, J.R.; Benoit, M.R.

    1993-07-13

    An apparatus is described for controlling the entry of combustible solids through a port formed in a wall of a rotary kiln cylinder of an operating cement kiln at a location between an upper end and a lower fired end thereof, the kiln containing hot mineral material for combustion of said solids in contact with said mineral material, the apparatus comprising a port closure assembly comprising a closure movable between a port-opened and port-closed position and means for moving the closure between the port-opened and port-closed positions at predetermined times during rotation of the kiln cylinder; a staging assembly including a support projecting therefrom in alignment with the port for supporting combustible solids; and, a transfer assembly mounted on the kiln wall at a point in alignment with the port for transferring combustible solids from the staging assembly to the port, said transfer assembly being formed to include at least one slot sized to allow said support to pass there through so that combustible solids on the support are lifted from said support by the kiln wall mounted transfer assembly as it sweeps past the staging assembly during kiln cylinder rotation.

  19. Cutting efficiency of four different rotary nickel: Titanium instruments

    PubMed Central

    Cecchin, Doglas; de Sousa-Neto, Manoel Damião; Pécora, Jesus Djalma; Gariba-Silva, Ricardo

    2011-01-01

    Aim: The aim of this study was to evaluate the cutting efficiency of rotary nickel-titanium (NiTi) instruments K3, NiTi Tee, Profile, and Quantec with taper size 04/25. Materials and Methods: The number of samples was 10 for each group (n = 10). The cutting efficiency was measured by the mass loss from each acrylic resin block after instrumentation of a simulated canal using the Crown-down technique. Results: The analysis of variance (ANOVA) showed that there was a statistically significant difference among the studied groups. The Tukey's test showed that the acrylic resin blocks prepared with instruments K3 (0.00369 ± 0.00022), NiTi Tee (0.00368 ± 0.00023), and Profile (0.00351 ± 0.00026) presented the greatest mass loss, showing no statistically significant difference among them (P < 0.05). The lowest mass loss was found in the blocks prepared with Quantec instruments (0.00311 ± 0.0003) (P < 0.05). Conclusions: It could be concluded that the K3, NiTi Tee, and Profile instruments presented a greater cutting efficiency than the Quantec instruments. PMID:21814349

  20. Spherical rotary piston machine as an artificial heart.

    PubMed

    Wipf, S L

    1991-01-01

    A positive displacement pump with six rotary pistons was proposed as an artificial heart. The pump's design was characterized by high symmetry and compactness. Thus, a spherical volume of 4 1/4 inch diameter sufficed for a pump delivering 10 L/min at 120 pulses/min with the pistons turning at 30 rpm. The pistons and four connecting gears were the only moving parts. The pump functions in two separate halves as left and right ventricles, with two of the six pistons each having inlet and outlet passages, and one of them replacing mitral and pulmonary valves with the other, tricuspid and aortic valves. The function of the intraventricular septum was provided by the other four pistons whose interiors also accommodated driving motors each capable of 0.4 Nm torque for a combined power of 5 watts. There were no stagnant regions in the pumping volume, and at all internal surfaces in contact with blood, there was periodic shear stress not exceeding approximately 300 Pa.

  1. Lightweight Low Force Rotary Percussive Coring Tool for Planetary Applications

    NASA Technical Reports Server (NTRS)

    Hironaka, Ross; Stanley, Scott

    2010-01-01

    A prototype low-force rotary-percussive rock coring tool for use in acquiring samples for geological surveys in future planetary missions was developed. The coring tool could eventually enable a lightweight robotic system to operate from a relatively small (less than 200 kg) mobile or fixed platform to acquire and cache Mars or other planetary rock samples for eventual return to Earth for analysis. To gain insight needed to design an integrated coring tool, the coring ability of commercially available coring bits was evaluated for effectiveness of varying key parameters: weight-on-bit, rotation speed, percussive rate and force. Trade studies were performed for different methods of breaking a core at its base and for retaining the core in a sleeve to facilitate sample transfer. This led to a custom coring tool design which incorporated coring, core breakage, core retention, and core extraction functions. The coring tool was tested on several types of rock and demonstrated the overall feasibility of this approach for robotic rock sample acquisition.

  2. Resolving Two Dimensional Angular Velocity within a Rotary Tumbler

    NASA Astrophysics Data System (ADS)

    Helminiak, Nathaniel; Helminiak, David; Cariapa, Vikram; Borg, John

    2015-11-01

    In this study, a horizontally oriented cylindrical tumbler, filled at variable depth with cylindrical media, was rotated at various constant speeds. A monoplane layer of media was photographed with a high-speed camera and images were post processed with Particle Tracking Velocimetry (PTV) algorithms in order to resolve both the translational and rotational flow fields. Although the translational velocity fields have been well characterized, contemporary resources enabled the ability to expand upon and refine data regarding rotational characteristics of particles within a rotary tumbler. The results indicate that particles rotate according to intermittent no-slip interactions between the particles and solid body rotation. Particles within the bed, not confined to solid body rotation, exhibited behavior indicative of gearing between particles; each reacting to the tangential component of contact forming rotation chains. Furthermore, it was observed that solid body interactions corresponded to areas of confined motion, as areas of high interaction dissuaded no-slip rotation, while areas of developing flow tended towards no-slip rotation. Special thanks to: NASA Wisconsin Space Grant Consortium Program as well as Marquette University OPUS College of Engineering.

  3. Roadside IED detection using subsurface imaging radar and rotary UAV

    NASA Astrophysics Data System (ADS)

    Qin, Yexian; Twumasi, Jones O.; Le, Viet Q.; Ren, Yu-Jiun; Lai, C. P.; Yu, Tzuyang

    2016-05-01

    Modern improvised explosive device (IED) and mine detection sensors using microwave technology are based on ground penetrating radar operated by a ground vehicle. Vehicle size, road conditions, and obstacles along the troop marching direction limit operation of such sensors. This paper presents a new conceptual design using a rotary unmanned aerial vehicle (UAV) to carry subsurface imaging radar for roadside IED detection. We have built a UAV flight simulator with the subsurface imaging radar running in a laboratory environment and tested it with non-metallic and metallic IED-like targets. From the initial lab results, we can detect the IED-like target 10-cm below road surface while carried by a UAV platform. One of the challenges is to design the radar and antenna system for a very small payload (less than 3 lb). The motion compensation algorithm is also critical to the imaging quality. In this paper, we also demonstrated the algorithm simulation and experimental imaging results with different IED target materials, sizes, and clutters.

  4. Design of a rotary stepped auger for a lunar environment

    NASA Technical Reports Server (NTRS)

    Dardet, Eduardo; Hart, Derek; Herod, Chris; Homiller, Stephen; Meeks, Mickey; Platt, Kirsten

    1988-01-01

    A lunar outpost will have need for deep drilling operations for both explorative and practical purposes. As in any drilling operation, the cuttings must be cleared from the hole. The hard vacuum of the lunar environment renders conventional flushing methods of cutting removal unfeasible, and requires a new system of removal. A rotary stepped auger (RSA) is a simple mechanical method of removing dry cuttings from a deep hole, and is ideally suited to the lunar environment. The RSA consists of a helical auger with stepped ramps which allow cuttings to slide up the helix, but will prevent them from sliding back down. The auger is driven in a pulsed manner by applying a periodic function of acceleration to the auger shaft. These pulses will compel the cuttings to slide up the auger's helix while the stepped ramps prevent the cuttings from backsliding while the auger accelerates. A mathematical model of the RSA was developed and experimentally evaluated. The math model produced a good baseline design, but the experimental model required some tuning to account for the approximations made in the math model. This design is suited for lunar drilling because it is mechanically simple, integral to the drill string, requires no fluids, is suited to the dry soil, and has relatively low weight and power requirements.

  5. A dielectric elastomer actuator thin membrane rotary motor

    NASA Astrophysics Data System (ADS)

    Anderson, Iain A.; Calius, Emilio P.; Gisby, Todd; Hale, Thom; McKay, Thomas; O'Brien, Benjamin; Walbran, Scott

    2009-03-01

    We describe a low profile and lightweight membrane rotary motor based on the dielectric elastomer actuator (DEA). In this motor phased actuation of electroded sectors of the motor membrane imparts orbital motion to a central gear that meshes with the rotor. Two motors were fabricated: a three phase and four phase with three electroded sectors (120°/sector) and four sectors (90°/sector) respectively. Square segments of 3M VHB4905 tape were stretched equibiaxially to 16 times their original area and each was attached to a rigid circular frame. Electroded sectors were actuated with square wave voltages up to 2.5kV. Torque/power characteristics were measured. Contactless orbiter displacements, measured with the rotor removed, were compared with simulation data calculated using a finite element model. A measured specific power of approximately 8mW/g (based on the DEA membrane weight), on one motor compares well with another motor technology. When the mass of the frame was included a peak specific power of 0.022mW/g was calculated. We expect that motor performance can be substantially improved by using a multilayer DEA configuration, enabling the delivery of direct drive high torques at low speeds for a range of applications. The motor is inherently scalable, flexible, flat, silent in operation, amenable to deposition-based manufacturing approaches, and uses relatively inexpensive materials.

  6. Performance Estimation for Two-Dimensional Brownian Rotary Ratchet Systems

    NASA Astrophysics Data System (ADS)

    Tutu, Hiroki; Horita, Takehiko; Ouchi, Katsuya

    2015-04-01

    Within the context of the Brownian ratchet model, a molecular rotary system that can perform unidirectional rotations induced by linearly polarized ac fields and produce positive work under loads was studied. The model is based on the Langevin equation for a particle in a two-dimensional (2D) three-tooth ratchet potential of threefold symmetry. The performance of the system is characterized by the coercive torque, i.e., the strength of the load competing with the torque induced by the ac driving field, and the energy efficiency in force conversion from the driving field to the torque. We propose a master equation for coarse-grained states, which takes into account the boundary motion between states, and develop a kinetic description to estimate the mean angular momentum (MAM) and powers relevant to the energy balance equation. The framework of analysis incorporates several 2D characteristics and is applicable to a wide class of models of smooth 2D ratchet potential. We confirm that the obtained expressions for MAM, power, and efficiency of the model can enable us to predict qualitative behaviors. We also discuss the usefulness of the torque/power relationship for experimental analyses, and propose a characteristic for 2D ratchet systems.

  7. Treatment of oily wastes using high-shear rotary ultrafiltration

    SciTech Connect

    Reed, B.E.; Viadero, R. Jr.; Young, J.; Lin, W.

    1997-12-01

    The high-shear rotary ultrafiltration (UF) system uses membrane rotation to provide the turbulence required to minimize concentration polarization and flux decline. The high-shear UF system was effective in concentrating oily wastes from about 5% to as high as 65%. The decoupling of turbulence promotion from feed pressurization/recirculation by rotating the membrane was the primary reason for the improvement in performance over that observed with conventional UF systems. Transitional and gel layer oil concentrations (20% and 50--59%, respectively) were higher than values reported in the literature. Permeate flux was dependent on the temperature and rotational speed. Flux increased by about 45% when the temperature was increased from 43 to 60 C. A larger decrease in waste viscosity, over that predicted for water alone, and increased oil droplet diffusivity were hypothesized as reasons for the stronger than expected flux-temperature relationship. The flux-rotational speed ({omega}) relationship was described by J = f({omega}){sup 0.90}; however, the gel layer exhibited stability with increasing {omega}. The ceramic membrane was superior to the polymeric membrane in regards to permeate flux and quality as well as cleaning and durability.

  8. Hydrodynamically Lubricated Rotary Shaft Having Twist Resistant Geometry

    DOEpatents

    Dietle, Lannie; Gobeli, Jeffrey D.

    1993-07-27

    A hydrodynamically lubricated squeeze packing type rotary shaft with a cross-sectional geometry suitable for pressurized lubricant retention is provided which, in the preferred embodiment, incorporates a protuberant static sealing interface that, compared to prior art, dramatically improves the exclusionary action of the dynamic sealing interface in low pressure and unpressurized applications by achieving symmetrical deformation of the seal at the static and dynamic sealing interfaces. In abrasive environments, the improved exclusionary action results in a dramatic reduction of seal and shaft wear, compared to prior art, and provides a significant increase in seal life. The invention also increases seal life by making higher levels of initial compression possible, compared to prior art, without compromising hydrodynamic lubrication; this added compression makes the seal more tolerant of compression set, abrasive wear, mechanical misalignment, dynamic runout, and manufacturing tolerances, and also makes hydrodynamic seals with smaller cross-sections more practical. In alternate embodiments, the benefits enumerated above are achieved by cooperative configurations of the seal and the gland which achieve symmetrical deformation of the seal at the static and dynamic sealing interfaces. The seal may also be configured such that predetermined radial compression deforms it to a desired operative configuration, even through symmetrical deformation is lacking.

  9. Connecting apparatus for limited rotary of rectilinear motion (II)

    DOEpatents

    Hardin, Jr., Roy T.; Kurinko, Carl D.

    1981-01-01

    Apparatus for providing connection between two members having relative movement in a horizontal plane in a rotary or linear fashion. The apparatus includes a set of vertical surfaces affixed to each of the members, laterally aligned across a selected vertical gap. A number of cables or hoses, for electrical, hydraulic, or pneumatic connection are arranged between consecutive surfaces in a C-shaped traveling loop, connected through their end portions to the two respective members, so that through a sliding motion portions of the cable are transferred from between one set of surfaces to the other aligned set, across the gap, upon relative motion of the members. A number of flexible devices are affixed to the upper set of surfaces for supporting the upper portion of each looped cable. The apparatus is particularly adaptable to an area having limited lateral clearances and requiring signal level separation between electrical cables, such as found in the rotating plugs and associated equipment of the reactor vessel head of a nuclear reactor.

  10. Stratified Charge Rotary Engine Critical Technology Enablement, Volume 1

    NASA Technical Reports Server (NTRS)

    Irion, C. E.; Mount, R. E.

    1992-01-01

    This report summarizes results of a critical technology enablement effort with the stratified charge rotary engine (SCRE) focusing on a power section of 0.67 liters (40 cu. in.) per rotor in single and two rotor versions. The work is a continuation of prior NASA Contracts NAS3-23056 and NAS3-24628. Technical objectives are multi-fuel capability, including civil and military jet fuel and DF-2, fuel efficiency of 0.355 Lbs/BHP-Hr. at best cruise condition above 50 percent power, altitude capability of up to 10Km (33,000 ft.) cruise, 2000 hour TBO and reduced coolant heat rejection. Critical technologies for SCRE's that have the potential for competitive performance and cost in a representative light-aircraft environment were examined. Objectives were: the development and utilization of advanced analytical tools, i.e. higher speed and enhanced three dimensional combustion modeling; identification of critical technologies; development of improved instrumentation, and to isolate and quantitatively identify the contribution to performance and efficiency of critical components or subsystems.

  11. Sway control method and system for rotary cranes

    DOEpatents

    Robinett, Rush D.; Parker, Gordon G.; Feddema, John T.; Dohrmann, Clark R.; Petterson, Ben J.

    1999-01-01

    Methods and apparatuses for reducing the oscillatory motion of rotary crane payloads during operator-commanded or computer-controlled maneuvers. An Input-shaping filter receives input signals from multiple operator input devices and converts them into output signals readable by the crane controller to dampen the payload tangential and radial sway associated with rotation of the jib. The input signals are characterized by a hub rotation trajectory .gamma.(t), which includes a jib angular acceleration .gamma., a trolley acceleration x, and a load-line length velocity L. The system state variables are characterized by a tangential rotation angle .theta.(t) and a radial rotation angle .phi.(t) of the load-line. The coupled equations of motion governing the filter are non-linear and configuration-dependent. In one embodiment, a filter is provided between the operator and the crane for filtering undesired frequencies from the angular .gamma. and trolley x velocities to suppress payload oscillation. In another embodiment, crane commands are computer generated and controlled to suppress vibration of the payload using a postulated asymmetrical shape for the acceleration profiles of the jib, which profiles are uniquely determined by a set of parameters (including the acceleration pulse amplitude and the duration and coast time between pulses), or a dynamic programming approach.

  12. Sway control method and system for rotary cranes

    DOEpatents

    Robinett, R.D.; Parker, G.G.; Feddema, J.T.; Dohrmann, C.R.; Petterson, B.J.

    1999-06-01

    Methods and apparatuses are disclosed for reducing the oscillatory motion of rotary crane payloads during operator-commanded or computer-controlled maneuvers. An Input-shaping filter receives input signals from multiple operator input devices and converts them into output signals readable by the crane controller to dampen the payload tangential and radial sway associated with rotation of the jib. The input signals are characterized by a hub rotation trajectory [gamma](t), which includes a jib angular acceleration [gamma], a trolley acceleration x, and a load-line length velocity L. The system state variables are characterized by a tangential rotation angle [theta](t) and a radial rotation angle [phi](t) of the load-line. The coupled equations of motion governing the filter are non-linear and configuration-dependent. In one embodiment, a filter is provided between the operator and the crane for filtering undesired frequencies from the angular [gamma] and trolley x velocities to suppress payload oscillation. In another embodiment, crane commands are computer generated and controlled to suppress vibration of the payload using a postulated asymmetrical shape for the acceleration profiles of the jib, which profiles are uniquely determined by a set of parameters (including the acceleration pulse amplitude and the duration and coast time between pulses), or a dynamic programming approach. 25 figs.

  13. The International Space Station Solar Alpha Rotary Joint Anomaly Investigation

    NASA Technical Reports Server (NTRS)

    Harik, Elliot P.; McFatter, Justin; Sweeney, Daniel J.; Enriquez, Carlos F.; Taylor, Deneen M.; McCann, David S.

    2010-01-01

    The Solar Alpha Rotary Joint (SARJ) is a single-axis pointing mechanism used to orient the solar power generating arrays relative to the sun for the International Space Station (ISS). Approximately 83 days after its on-orbit installation, one of the two SARJ mechanisms aboard the ISS began to exhibit high drive motor current draw. Increased structural vibrations near the joint were also observed. Subsequent inspections via Extravehicular Activity (EVA) discovered that the nitrided case-hardened steel bearing race on the outboard side of the joint had extensive damage to one of its three rolling surfaces. A farreaching investigation of the anomaly was undertaken. The investigation included metallurgical inspections, coupon tests, traction kinematics tests, detailed bearing measurements, and thermal and structural analyses. The results of the investigation showed that the anomaly had most probably been caused by high bearing edge stresses that resulted from inadequate lubrication of the rolling contact. The profile of the roller bearings and the metallurgical properties of the race ring were also found to be significant contributing factors. To mitigate the impact of the damage, astronauts cleaned and lubricated the race ring surface with grease. This corrective action led to significantly improved performance of the mechanism both in terms of drive motor current and induced structural vibration.

  14. The International Space Station Solar Alpha Rotary Joint Anomaly Investigation

    NASA Technical Reports Server (NTRS)

    Harik, Elliot P.; McFatter, Justin; Sweeney, Daniel J.; Enriquez, Carlos F.; Taylor, Deneen M.; McCann, David S.

    2010-01-01

    The Solar Alpha Rotary Joint (SARJ) is a single-axis pointing mechanism used to orient the solar power generating arrays relative to the sun for the International Space Station (ISS). Approximately 83 days after its on-orbit installation, one of the two SARJ mechanisms aboard the ISS began to exhibit high drive motor current draw. Increased structural vibrations near the joint were also observed. Subsequent inspections via Extravehicular Activity (EVA) discovered that the nitrided case hardened steel bearing race on the outboard side of the joint had extensive damage to one of its three rolling surfaces. A far-reaching investigation of the anomaly was undertaken. The investigation included metallurgical inspections, coupon tests, traction kinematics tests, detailed bearing measurements, and thermal and structural analyses. The results of the investigation showed that anomaly had most probably been caused by high bearing edge stresses that resulted from inadequate lubrication of the rolling contact. The profile of the roller bearings and the metallurgical properties of the race ring were also found to be significant contributing factors. To mitigate the impact of the damage astronauts cleaned and lubricated the race ring surface with grease. This corrective action led to significantly improved performance of the mechanism both in terms of drive motor current and induced structural vibration.

  15. Resurrection of the flagellar rotary motor near zero load

    PubMed Central

    Yuan, Junhua; Berg, Howard C.

    2008-01-01

    Flagellated bacteria, such as Escherichia coli, are propelled by helical flagellar filaments, each driven at its base by a reversible rotary motor, powered by a transmembrane proton flux. Torque is generated by the interaction of stator proteins, MotA and MotB, with a rotor protein FliG. The physiology of the motor has been studied extensively in the regime of relatively high load and low speed, where it appears to operate close to thermodynamic equilibrium. Here, we describe an assay that allows systematic study of the motor near zero load, where proton translocation and movement of mechanical components are rate limiting. Sixty-nanometer-diameter gold spheres were attached to hooks of cells lacking flagellar filaments, and light scattered from a sphere was monitored at the image plane of a microscope through a small pinhole. Paralyzed motors of cells carrying a motA point mutation were resurrected at 23°C by expression of wild-type MotA, and speeds jumped from zero to a maximum value (≈300 Hz) in one step. Thus, near zero load, the speed of the motor is independent of the number of torque-generating units. Evidently, the units act independently (they do not interfere with one another), and there are no intervals during which a second unit can add to the speed generated by the first (the duty ratio is close to 1). PMID:18202173

  16. “Dentinal Microcracks After Root Canal Preparation” A Comparative Evaluation with Hand, Rotary and Reciprocating Instrumentation

    PubMed Central

    Chandrasekhar, Veeramachaneni; Anita, S.; Tummala, Muralidhar; Raj, T.B. Phanindhar; Badami, Vijetha; Kumar, Pradeep; Soujanya, E.

    2014-01-01

    Introduction: The purpose of this study was to compare the incidence of dentinal micro cracks after instrumentation with various types of NiTi files in rotary and reciprocating motion. Materials and Methods: One hundred human extracted mandibular central incisors were taken and divided into 10 groups (n=10 teeth per group). Group 1- No preparation, Group 2 – Hand instrumentation, Groups 3,4 - ProTaper files in rotary and reciprocating motion, Groups 5,6 - ProTaper Next files in rotary and reciprocating motion, Groups 7,8 – Oneshape files in rotary and reciprocating motion, Groups 9,10 – Reciproc files in rotary and reciprocating motion. Specimens were sectioned horizontally at 3,6 and 9 mm from the apex and dentinal micro cracks were observed under a stereomicroscope. Results: There was a statistically significant difference between the groups (p<0.05). There were no significant differences in crack formation between the groups (Protaper Next - Rot, Protaper Next - Rec, Reciproc – Rec); (ProTaper - Rot, ProTaper - Rec, Oneshape – Rot), (Oneshape – Rot, Reciproc – Rot), (One shape Reciproc, Reciproc – Rec); (p >.05). Conclusion: Least cracks were seen in canals instrumented with Pro Taper Next files both in rotary and reciprocating motion. Full sequence rotary systems showed less cracks than single file systems and full sequence rotary systems showed less cracks in reciprocating motion than in rotary motion. PMID:25654036

  17. Rotary Balance Wind Tunnel Testing for the FASER Flight Research Aircraft

    NASA Technical Reports Server (NTRS)

    Denham, Casey; Owens, D. Bruce

    2016-01-01

    Flight dynamics research was conducted to collect and analyze rotary balance wind tunnel test data in order to improve the aerodynamic simulation and modeling of a low-cost small unmanned aircraft called FASER (Free-flying Aircraft for Sub-scale Experimental Research). The impetus for using FASER was to provide risk and cost reduction for flight testing of more expensive aircraft and assist in the improvement of wind tunnel and flight test techniques, and control laws. The FASER research aircraft has the benefit of allowing wind tunnel and flight tests to be conducted on the same model, improving correlation between wind tunnel, flight, and simulation data. Prior wind tunnel tests include a static force and moment test, including power effects, and a roll and yaw damping forced oscillation test. Rotary balance testing allows for the calculation of aircraft rotary derivatives and the prediction of steady-state spins. The rotary balance wind tunnel test was conducted in the NASA Langley Research Center (LaRC) 20-Foot Vertical Spin Tunnel (VST). Rotary balance testing includes runs for a set of given angular rotation rates at a range of angles of attack and sideslip angles in order to fully characterize the aircraft rotary dynamics. Tests were performed at angles of attack from 0 to 50 degrees, sideslip angles of -5 to 10 degrees, and non-dimensional spin rates from -0.5 to 0.5. The effects of pro-spin elevator and rudder deflection and pro- and anti-spin elevator, rudder, and aileron deflection were examined. The data are presented to illustrate the functional dependence of the forces and moments on angle of attack, sideslip angle, and angular rate for the rotary contributions to the forces and moments. Further investigation is necessary to fully characterize the control effectors. The data were also used with a steady state spin prediction tool that did not predict an equilibrium spin mode.

  18. Coal desulfurization in a rotary kiln combustor. Final report, March 15, 1990--July 31, 1991

    SciTech Connect

    Cobb, J.T. Jr.

    1992-09-11

    The purpose of this project was to demonstrate the combustion of coal and coal wastes in a rotary kiln reactor with limestone addition for sulfur control. The rationale for the project was the perception that rotary systems could bring several advantages to combustion of these fuels, and may thus offer an alternative to fluid-bed boilers. Towards this end, an existing wood pyrolysis kiln (the Humphrey Charcoal kiln) was to be suitably refurbished and retrofitted with a specially designed version of a patented air distributor provided by Universal Energy, Inc. (UEI). As the project progressed beyond the initial stages, a number of issues were raised regarding the feasibility and the possible advantages of burning coals in a rotary kiln combustor and, in particular, the suitability of the Humphrey Charcoal kiln as a combustor. Instead, an opportunity arose to conduct combustion tests in the PEDCO Rotary Cascading-Bed Boiler (RCBB) commercial demonstration unit at the North American Rayon CO. (NARCO) in Elizabethton, TN. The tests focused on anthracite culm and had two objectives: (a) determine the feasibility of burning anthracite culms in a rotary kiln boiler and (b) obtain input for any further work involving the Humphrey Charcoal kiln combustor. A number of tests were conducted at the PEDCO unit. The last one was conducted on anthracite culm procured directly from the feed bin of a commercial circulating fluid-bed boiler. The results were disappointing; it was difficult to maintain sustained combustion even when large quantities of supplemental fuel were used. Combustion efficiency was poor, around 60 percent. The results suggest that the rotary kiln boiler, as designed, is ill-suited with respect to low-grade, hard to burn solid fuels, such as anthracite culm. Indeed, data from combustion of bituminous coal in the PEDCO unit suggest that with respect to coal in general, the rotary kiln boiler appears inferior to the circulating fluid bed boiler.

  19. Cleaning efficiency of nickel-titanium GT and .04 rotary files when used in a torque-controlled rotary handpiece.

    PubMed

    Suffridge, Calvin B; Hartwell, Gary R; Walker, Thomas L

    2003-05-01

    This study determined if the cleaning efficiency of nickel-titanium rotary files in an endodontic electric handpiece using a no-torque control setting was superior to that obtained when using the torque-control feature. Fifty extracted human anterior teeth with straight canals were divided into two groups of 20 and two control groups of 5. Canals were instrumented with GT and .04 ProFile nickel-titanium files until a size 35 advanced to working length. Samples were sectioned and the apical 6 mm of the canal was photographed (x20) and projected onto a 3- x 4-foot grid with squares measuring 0.5 inches each. Total debris was the percentage of the number of squares containing debris versus the total number of squares. The teeth in the torque-controlled group showed an average of 24.99% debris versus 15.55% for the teeth in the no-torque group. The difference was not statistically significant; therefore, no difference can be said to exist between the two torque settings in terms of cleaning efficiency.

  20. Kinematic control model for light weighting mechanism of excavator attached to rotary working device

    NASA Astrophysics Data System (ADS)

    Lee, Choongho; Lee, Sangsik; Cho, Youngtae; Im, Kwanghee

    2007-07-01

    An excavator attached to a rotary working device is used principally in industrial work. In particular, they are used in the building industry and public works. This research concerns the rotary automatic control of an excavator attached to a rotary working device. The drilling excavator is used in the crushed stone industry and the dragline excavation system is employed in the construction industry. Cases of the excavator's use in agriculture have been the subject of a relatively few studies. However, several modified excavator designs have been released in recent years. Applied excavator products are primarily utilized under relatively severe environmental conditions. In this study, we focus on the uses of an excavator in agricultural work. The readjustment of arable land and the reduction of weeds in agricultural applications both require skilled hand-operation of the machines. As such workers have been shown to develop problems with regard to working posture and proper positioning while laboring, a more appropriate excavator design may prove useful in such applications. Therefore, this pilot study is focused primarily on the rotary automatic control of an excavator attached to a rotary working device, and will adapt smart materials to the excavator applications for developing redesigned excavator having a light weight. The excavator is attached to a rotary working device on a normal excavator's platform, and the position and orientation of the mechanism between the joints and the rotary working device was determined. Simulations were also conducted of the excavator attached to the rotary working device. With an eye toward the use of this mechanism in agricultural work, we also conducted a set of kinematic analyses. The rotary working device was assumed to have 3 DOF, and was comprised of 5 links. Computer simulations were also conducted using the developed excavator model. In order to adequately evaluate the possible performance of such a system, kinetic

  1. CONTINUED DEVELOPMENT OF THE ROTARY COMBUSTOR FOR REFIRING PULVERIZED COAL BOILERS

    SciTech Connect

    Murray F. Abbott; Jamal B. Mereb; Simon P. Hanson; Michael J. Virr

    2000-11-01

    The Rotary Combustor is a novel concept for burning coal with low SO{sub 2} and NO{sub x} emissions. It burns crushed coal in a fluid bed where the bed is maintained in a rotating drum by centripetal force. Since this force may be varied, the combustor may be very compact, and thus be a direct replacement for a p.c. burner on existing boilers. The primary objective of this project is to demonstrate that a typical industrial boiler can be refired with the modified prototype Rotary Combustor to burn Ohio high-sulfur coal with low emissions of SO{sub 2} and NO{sub x}. The primary problem that must be resolved to demonstrate sustained operations with coal is temperature control in the rotating fluid bed. The prototype Rotary Combustor was assembled and installed on the T-850P CNB boiler at the CONSOL Energy site in South Park, Pennsylvania. Several design improvements were investigated and implemented during the assembly to improve the prototype Rotary Combustor operations compared to prior tests at Detroit Stoker in Monroe, Michigan. An Operating Manual and Safety Review were completed. The shakedown test phase was initiated. Two major problems were initially encountered: binding of the rotating drum at operating temperatures, and reduced fluid-bed pressure drop after short periods of operation. Plating the brush seal rotary land ring with a chrome carbide plasma spray and lubricating the seal prior to each test sufficiently resolved these problems to permit a limited number of operations tests. Unlike previous tests at Detroit Stoker, sustained operation of the prototype Rotary Combustor was accomplished burning a high-Btu fuel, metallurgical coke. The prototype Rotary Combustor was operated with coke in gasifier mode on two occasions. Fluid-bed temperature spiking was minimized with manual control of the feeds (coke, air and steam), and no clinker formation problems were encountered in either test. Emission levels of NO{sub x} were measured at about 270 ppmv which

  2. A Magnetic Rotary Optical Fiber Connector for Optogenetic Experiments in Freely Moving Animals

    PubMed Central

    Klorig, David C; Godwin, Dwayne W

    2014-01-01

    Background Performing optogenetic experiments in a behaving animal presents a unique technical challenge. In order to provide an optical path between a fixed light source and a chronically implanted fiber in a freely moving animal, a typical experimental set-up includes a detachable connection between the light source and the head of the animal, as well as a rotary joint to relieve torsional stress during movement. New Method We have combined the functionality of the head mounted connector and the rotary joint into a single integrated device that is inexpensive, simple to build and easy to use. Results A typical rotary connector has a transmission efficiency of 80% with a rotational variability of 4%, but can be configured to have a rotational variability of 2% at the expense of lower transmission efficiency. Depending on configuration, rotational torque ranges from 14 - 180 μN*m, making the rotary connector suitable for use with small animals such as mice. Comparison with Existing Methods Benchmark tests demonstrate that our connectors perform similarly to commercially available solutions in terms of transmission efficiency, rotational variability, and torque but at a fraction of the cost. Unlike currently available solutions, our unique design requires a single optical junction which significantly reduces overall light loss. In addition, magnets allow the connectors and caps to “snap into place” for quick yet reliable connection and disconnection. Conclusions Our rotary connector system offers superior performance, reduced cost, and is easily incorporated into existing optogenetic set-ups. PMID:24613796

  3. Microstructure Modeling of a Ni-Fe-Based Superalloy During the Rotary Forging Process

    NASA Astrophysics Data System (ADS)

    Loyda, A.; Hernández-Muñoz, G. M.; Reyes, L. A.; Zambrano-Robledo, P.

    2016-06-01

    The microstructure evolution of Ni-Fe superalloys has a great influence on the mechanical behavior during service conditions. The rotary forging process offers an alternative to conventional bulk forming processes where the parts can be rotary forged with a fraction of the force commonly needed by conventional forging techniques. In this investigation, a numerical modeling of microstructure evolution for design and optimization of the hot forging operations has been used to manufacture a heat-resistant nickel-based superalloy. An Avrami model was implemented into finite element commercial platform DEFORM 3D to evaluate the average grain size and recrystallization during the rotary forging process. The simulations were carried out considering three initial temperatures, 980, 1000, and 1050 °C, to obtain the microstructure behavior after rotary forging. The final average grain size of one case was validated by comparing with results of previous experimental work of disk forging operation. This investigation was aimed to explore the influence of the rotary forging process on microstructure evolution in order to obtain a homogenous and refined grain size in the final component.

  4. A Thermoelectric Waste-Heat-Recovery System for Portland Cement Rotary Kilns

    NASA Astrophysics Data System (ADS)

    Luo, Qi; Li, Peng; Cai, Lanlan; Zhou, Pingwang; Tang, Di; Zhai, Pengcheng; Zhang, Qingjie

    2015-06-01

    Portland cement is produced by one of the most energy-intensive industrial processes. Energy consumption in the manufacture of Portland cement is approximately 110-120 kWh ton-1. The cement rotary kiln is the crucial equipment used for cement production. Approximately 10-15% of the energy consumed in production of the cement clinker is directly dissipated into the atmosphere through the external surface of the rotary kiln. Innovative technology for energy conservation is urgently needed by the cement industry. In this paper we propose a novel thermoelectric waste-heat-recovery system to reduce heat losses from cement rotary kilns. This system is configured as an array of thermoelectric generation units arranged longitudinally on a secondary shell coaxial with the rotary kiln. A mathematical model was developed for estimation of the performance of waste heat recovery. Discussions mainly focus on electricity generation and energy saving, taking a Φ4.8 × 72 m cement rotary kiln as an example. Results show that the Bi2Te3-PbTe hybrid thermoelectric waste-heat-recovery system can generate approximately 211 kW electrical power while saving 3283 kW energy. Compared with the kiln without the thermoelectric recovery system, the kiln with the system can recover more than 32.85% of the energy that used to be lost as waste heat through the kiln surface.

  5. A seat suspension with a rotary magnetorheological damper for heavy duty vehicles

    NASA Astrophysics Data System (ADS)

    Sun, S. S.; Ning, D. H.; Yang, J.; Du, H.; Zhang, S. W.; Li, W. H.

    2016-10-01

    This paper presents the development of an innovative seat suspension working with a rotary magnetorheological (MR) fluid damper. Compared with a conventional linear MR damper, the well-designed rotary MR damper possesses several advantages such as usage reduction of magnetorheological fluid, low sealing requirements and lower costs. This research starts with the introduction of the seat suspension structure and the damper design, followed by the property test of the seat suspension using an MTS machine. The field-dependent property, amplitude-dependent performance, and the frequency-dependent performance of the new seat suspension are measured and evaluated. This research puts emphasis on the evaluation of the vibration reduction capability of the rotary MR damper by using both simulation and experimental methods. Fuzzy logic is chosen to control the rotary MR damper in real time and two different input signals are considered as vibration excitations. The experimental results show that the rotary MR damper under fuzzy logic control is effective in reducing the vibrations.

  6. An experimental study of the putative mechanism of a synthetic autonomous rotary DNA nanomotor

    PubMed Central

    Leake, M. C.; Wollman, A. J. M.; Trefzer, M. A.; Johnson, S.; Tyrrell, A. M.

    2017-01-01

    DNA has been used to construct a wide variety of nanoscale molecular devices. Inspiration for such synthetic molecular machines is frequently drawn from protein motors, which are naturally occurring and ubiquitous. However, despite the fact that rotary motors such as ATP synthase and the bacterial flagellar motor play extremely important roles in nature, very few rotary devices have been constructed using DNA. This paper describes an experimental study of the putative mechanism of a rotary DNA nanomotor, which is based on strand displacement, the phenomenon that powers many synthetic linear DNA motors. Unlike other examples of rotary DNA machines, the device described here is designed to be capable of autonomous operation after it is triggered. The experimental results are consistent with operation of the motor as expected, and future work on an enhanced motor design may allow rotation to be observed at the single-molecule level. The rotary motor concept presented here has potential applications in molecular processing, DNA computing, biosensing and photonics.

  7. Biobased High-Performance Rotary Micromotors for Individually Reconfigurable Micromachine Arrays and Microfluidic Applications.

    PubMed

    Kim, Kwanoh; Liang, Zexi; Liu, Minliang; Fan, Donglei Emma

    2017-02-22

    In this work, we report an innovative type of rotary biomicromachines by using diatom frustules as integrated active components, including the assembling, operation, and performance characterization. We further investigate and demonstrate unique applications of the biomicromachines in achieving individually reconfigurable micromachine arrays and microfluidic mixing. Diatom frustules are porous cell walls of diatoms made of silica. We assembled rotary micromachines consisting of diatom frustules serving as rotors and patterned magnets serving as bearings in electric fields. Ordered arrays of micromotors can be integrated and rotated with controlled orientation and a speed up to ∼3000 rpm, one of the highest rotational speeds in biomaterial-based rotary micromachines. Moreover, by exploiting the distinct electromechanical properties of diatom frustules and metallic nanowires, we realized the first reconfigurable rotary micro/nanomachine arrays with controllability in individual motors. Finally, the diatom micromachines are successfully integrated in microfluidic channels and operated as mixers. This work demonstrated the high-performance rotary micromachines by using bioinspired diatom frustules and their applications, which are essential for low-cost bio-microelectromechanical system/nanoelectromechanical system (bio-MEMS/NEMS) devices and relevant to microfluidics.

  8. Design and reliability of a MEMS thermal rotary actuator.

    SciTech Connect

    Baker, Michael Sean; Corwin, Alex David

    2007-09-01

    A new rotary MEMS actuator has been developed and tested at Sandia National Laboratories that utilizes a linear thermal actuator as the drive mechanism. This actuator was designed to be a low-voltage, high-force alternative to the existing electrostatic torsional ratcheting actuator (TRA) [1]. The new actuator, called the Thermal Rotary Actuator (ThRA), is conceptually much simpler than the TRA and consists of a gear on a hub that is turned by a linear thermal actuator [2] positioned outside of the gear. As seen in Figure 1, the gear is turned through a ratcheting pawl, with anti-reverse pawls positioned around the gear for unidirectional motion (see Figure 1). A primary consideration in the design of the ThRA was the device reliability and in particular, the required one-to-one relationship between the ratcheting output motion and the electrical input signal. The electrostatic TRA design has been shown to both over-drive and under-drive relative to the number of input pulses [3]. Two different ThRA designs were cycle tested to measure the skip rate. This was done in an automated test setup by using pattern matching to measure the angle of rotation of the output gear after a defined number of actuation pulses. By measuring this gear angle over time, the number of skips can be determined. Figure 2 shows a picture of the ThRA during testing, with the pattern-matching features highlighted. In the first design tested, it was found that creep in the thermal actuator limited the number of skip-free cycles, as the rest position of the actuator would creep forward enough to prevent the counter-rotation pawls from fully engaging (Figure 3). Even with this limitation, devices were measured with up to 100 million cycles with no skipping. A design modification was made to reduce the operating temperature of the thermal actuator which has been shown in a previous study [2] to reduce the creep rate. In addition, changes were made to the drive ratchet design and actuation

  9. Chemically optimizing operational efficiency of molecular rotary motors.

    PubMed

    Conyard, Jamie; Cnossen, Arjen; Browne, Wesley R; Feringa, Ben L; Meech, Stephen R

    2014-07-09

    Unidirectional molecular rotary motors that harness photoinduced cis-trans (E-Z) isomerization are promising tools for the conversion of light energy to mechanical motion in nanoscale molecular machines. Considerable progress has been made in optimizing the frequency of ground-state rotation, but less attention has been focused on excited-state processes. Here the excited-state dynamics of a molecular motor with electron donor and acceptor substituents located to modify the excited-state reaction coordinate, without altering its stereochemistry, are studied. The substituents are shown to modify the photochemical yield of the isomerization without altering the motor frequency. By combining 50 fs resolution time-resolved fluorescence with ultrafast transient absorption spectroscopy the underlying excited-state dynamics are characterized. The Franck-Condon excited state relaxes in a few hundred femtoseconds to populate a lower energy dark state by a pathway that utilizes a volume conserving structural change. This is assigned to pyramidalization at a carbon atom of the isomerizing bridging double bond. The structure and energy of the dark state thus reached are a function of the substituent, with electron-withdrawing groups yielding a lower energy longer lived dark state. The dark state is coupled to the Franck-Condon state and decays on a picosecond time scale via a coordinate that is sensitive to solvent friction, such as rotation about the bridging bond. Neither subpicosecond nor picosecond dynamics are sensitive to solvent polarity, suggesting that intramolecular charge transfer and solvation are not key driving forces for the rate of the reaction. Instead steric factors and medium friction determine the reaction pathway, with the sterically remote substitution primarily influencing the energetics. Thus, these data indicate a chemical method of optimizing the efficiency of operation of these molecular motors without modifying their overall rotational frequency.

  10. A Comparative Study of Shaping Ability of four Rotary Systems

    PubMed Central

    Zarzosa, José Ignacio; Pallarés, Antonio

    2015-01-01

    Purpose This study compared the cutting area, instrumentation time, root canal anatomy preservation and non-instrumented areas obtained by F360®, Mtwo®, RaCe® and Hyflex® files with ISO size 35. Material and Methods 120 teeth with a single straight root and root canal were divided into 4 groups. Working length was calculated by using X-rays. The teeth were sectioned with a handpiece and a diamond disc, and the sections were observed with Nikon SMZ-2T stereoscopic microscope and an Intralux 4000-1 light source. The groups were adjusted with a preoperative analysis with AutoCAD. The teeth were reconstructed by a #10 K-File and epoxy glue. Each group was instrumented with one of the four file systems. The instrumentation time was calculated with a 1/100 second chronometer. The area of the thirds and root canal anatomy preservation were analyzed with AutoCAD 2013 and the non-instrumented areas with AutoCAD 2013 and SMZ-2T stereoscopic microscope. The statistical analysis was made with Levene’s Test, ANOVA, Bonferroni Test and Pearson´s Chi-square. Results Equal variances were shown by Levene’s Test (P > 0.05). ANOVA (P > 0.05) showed the absence of significant differences. There were significant differences in the instrumentation time (P < 0.05). For root canal anatomy preservation and non-instrumented areas, there were no significant differences between all systems (P > 0.05). Conclusions The 4 different rotary systems produced similar cutting area, root canal anatomy preservation and non-instrumented areas. Regarding instrumentation time, F360® was the fastest system statistically. PMID:27688412

  11. A novel permanent maglev rotary LVAD with passive magnetic bearings.

    PubMed

    Qian, K X; Yuan, H Y; Zeng, P; Ru, W M

    2005-01-01

    It has been widely acknowledged that permanent maglev cannot achieve stability; however, the authors have discovered that stable permanent maglev is possible under the effect of a combination of passive magnetic and nonmagnetic forces. In addition, a rotary left ventricular assist device (LVAD) with passive magnetic bearings has been developed. It is a radially driven impeller pump, having a rotor and a stator. The rotor consists of driven magnets and impeller; the motor coil and pump housing form the stator. Two passive magnetic bearings counteract the attractive force between motor coil iron core and rotor magnets; the rotor thereafter can be disaffiliated from the stator and become levitated under the action of passive magnetic and haemodynamic forces. Because of the pressure difference between the outlet and the inlet of the pump, there is a small flow passing through the gap of rotor and stator, and then entering the lower pressure area along the central hole of the rotor. This small flow comes to a full washout of all blood contacting surfaces in the motor. Moreover, a decreased Bernoulli force in the larger gap with faster flow produces a centring force that leads to stable levitation of the rotor. Resultantly, neither mechanical wear nor thrombosis will occur in the pump. The rotor position detection reveals that the precondition of levitation is a high rotating speed (over 3250 rpm) and a high flow rate (over 1 l min(-1)). Haemodynamic tests with porcine blood indicate that the device as a LVAD requires a rotating speed between 3500 and 4000 rpm for producing a blood flow of 4 - 6 l min(-1) against 100 mmHg mean pressure head. The egg-sized device has a weight of 200 g and an O.D. of 40 mm at its largest point.

  12. Rotary seal with enhanced lubrication and contaminant flushing

    DOEpatents

    Dietle, Lannie L.

    2000-01-01

    A resilient, ring shaped interference-type hydrodynamic rotary seal having waves on the lubricant side which provide increased film thickness and flushing action by creating contact pressure induced angulated restrictions formed by abrupt restrictive diverters. The angulated restrictions are defined by projecting ridges, corners at the trailing edge of the waves, or simply by use of a converging shape at the trailing edge of the waves which is more abrupt than the gently converging hydrodynamic inlet shape at the leading edge of the waves. The abrupt restrictive diverter performs two functions; a restricting function and a diverting function. The angulated restrictions cause a local film thickness restriction which produces a damming effect preventing a portion of the lubricant from leaking out of the dynamic sealing interface at the trailing edge of the wave, and results in a much thicker lubricant film thickness under the waves. This contributes to more film thickness in the remainder of the dynamic sealing interface toward the environment because film thickness tends to decay gradually rather than abruptly due to the relative stiffness of the seal material. Because of the angle of the abrupt restrictive diverter relative to the relative rotation direction, in conjunction with the restriction or damming effect, a strong diverting action is produced which pumps lubricant across the dynamic sealing interface toward the environment. The lubricant diversion is caused by the component of the rotational velocity tangent to the abrupt restrictive diverter. The component of rotational velocity normal to the abrupt restrictive diverter causes a portion of the lubricant film to be pumped past the abrupt restrictive diverter, thereby assuring adequate lubrication thereof.

  13. Flight parameters monitoring system for tracking structural integrity of rotary-wing aircraft

    NASA Technical Reports Server (NTRS)

    Mohammadi, Jamshid; Olkiewicz, Craig

    1994-01-01

    Recent developments in advanced monitoring systems used in conjunction with tracking structural integrity of rotary-wing aircraft are explained. The paper describes: (1) an overview of rotary-wing aircraft flight parameters that are critical to the aircraft loading conditions and each parameter's specific requirements in terms of data collection and processing; (2) description of the monitoring system and its functions used in a survey of rotary-wing aircraft; and (3) description of the method of analysis used for the data. The paper presents a newly-developed method in compiling flight data. The method utilizes the maneuver sequence of events in several pre-identified flight conditions to describe various flight parameters at three specific weight ranges.

  14. Light-driven rotary molecular motors without point chirality: a minimal design.

    PubMed

    Wang, Jun; Oruganti, Baswanth; Durbeej, Bo

    2017-03-08

    A fundamental requirement for achieving photoinduced unidirectional rotary motion about an olefinic bond in a molecular motor is that the potential energy surface of the excited state is asymmetric with respect to clockwise and counterclockwise rotations. In most available light-driven rotary molecular motors, such asymmetry is guaranteed by the presence of a stereocenter. Here, we present non-adiabatic molecular dynamics simulations based on multiconfigurational quantum chemistry to demonstrate that this chiral feature is not essential for inducing unidirectional rotary motion in molecules that incorporate a cyclohexenylidene moiety into a protonated Schiff-base framework. Rather, the simulations show that it is possible to exploit the intrinsic asymmetry of the puckered cyclohexenylidene to control the direction of photoinduced rotation.

  15. Nanoscale rotary apparatus formed from tight-fitting 3D DNA components

    PubMed Central

    Ketterer, Philip; Willner, Elena M.; Dietz, Hendrik

    2016-01-01

    We report a nanoscale rotary mechanism that reproduces some of the dynamic properties of biological rotary motors in the absence of an energy source, such as random walks on a circle with dwells at docking sites. Our mechanism is built modularly from tight-fitting components that were self-assembled using multilayer DNA origami. The apparatus has greater structural complexity than previous mechanically interlocked objects and features a well-defined angular degree of freedom without restricting the range of rotation. We studied the dynamics of our mechanism using single-particle experiments analogous to those performed previously with actin-labeled adenosine triphosphate synthases. In our mechanism, rotor mobility, the number of docking sites, and the dwell times at these sites may be controlled through rational design. Our prototype thus realizes a working platform toward creating synthetic nanoscale rotary motors. Our methods will support creating other complex nanoscale mechanisms based on tightly fitting, sterically constrained, but mobile, DNA components. PMID:26989778

  16. Research on application of polynomial fitting technique in rotary kiln infrared temperature measurement system

    NASA Astrophysics Data System (ADS)

    Guo, Zhongyuan; Dai, Shaosheng; Liu, Jinsong; You, Changhui; Cheng, Yajun; Yu, Liangbing

    2016-11-01

    Aiming at the linear temperature compensation algorithm's disadvantage of temperature measurement error in rotary kiln infrared scanning temperature measurement process, this paper proposes a precise nonlinear cubic polynomial fitting temperature compensation algorithm. The proposed algorithm compensates the temperature values of scanning points on rotary kiln surface by following steps: Calculating temperature difference between the real temperature value of rotary kiln and temperature value measured by infrared scanning temperature measurement system; Fitting the temperature difference data with cubic polynomial; Using the obtained function to compensate temperature. Experimental result shows that compared with the usual linear temperature compensation algorithm, the accuracy of proposed algorithm has raised about 2.25 times when cubic polynomial is used.

  17. Modeling shear-induced CHO cell damage in a rotary positive displacement pump.

    PubMed

    Kamaraju, Hari; Wetzel, Kenneth; Kelly, William J

    2010-01-01

    Rotary lobe pumps are commonly used in the biotechnology industry for a variety of purposes. Shear damage to animal cells within the rotary lobe pump can adversely affect the product yield or purity during, for example, cell concentration via cross-flow filtration. In this research, CHO cells grown in 20-L bioreactors were fed to a rotary lobe pump in both single pass and recycle experiments were conducted at different RPMs and "slip" conditions. The results indicate that the slip flow rate more severely impacts the viability of the CHO cells than the pump RPM. A novel mathematical modeling approach is presented that predicts shear rates in all of the positive displacement pump's slip regions, and then predicts cell death vs. operating conditions. This model accounts for the complex flow situation that results from changes to RPM, backpressure and pump geometry (i.e., clearances).

  18. Effect of solution flow produced by rotary shaker on protein crystallization

    NASA Astrophysics Data System (ADS)

    Murai, Ryota; Yoshikawa, Hiroshi Y.; Kawahara, Hisato; Maki, Syou; Sugiyama, Shigeru; Kitatani, Tomoya; Adachi, Hiroaki; Takano, Kazufumi; Matsumura, Hiroyoshi; Murakami, Satoshi; Inoue, Tsuyoshi; Sasaki, Takatomo; Mori, Yusuke

    2008-04-01

    We investigated the relationship between the flow produced by a rotary shaker and protein crystallization. Lysozyme was crystallized in a solution stirred by a rotary shaker at 50 rpm. The number of crystals grown in the stirring environment was less than that of the quiescent environment. We confirmed the improvement of resolution and mosaicity of crystals grown in the stirring by X-ray diffraction measurement. We estimated that mean speed of the flow by a rotary shaker at 50 rpm was about 2×10 -6 m/s, and the Reynolds number of this flow was 4×10 -4. The magnitude of the Reynolds number was only twice as large as that of the quiescent environment. These results indicate that such a slight flow can influence protein crystallization.

  19. Influence of sodium hypochlorite on mechanical properties of K3 nickel-titanium rotary instruments.

    PubMed

    Ormiga Galvão Barbosa, Fabiola; Antônio da Cunha Ponciano Gomes, José; Pimenta de Araújo, Marcos Cesar

    2007-08-01

    Several studies have evaluated the influence of various factors on the fracture of nickel-titanium endodontic rotary instruments. The present study analyzed the influence of sodium hypochlorite on flexural fatigue and torsional properties of nickel-titanium endodontic rotary instruments. New files and files previously exposed to sodium hypochlorite were tested for flexural fatigue and for resistance to fracture by twisting. The t test was used to compare the groups for number of cycles, angle of rotation, and maximum torque required to fracture. No statistical difference existed between these groups. Scanning electron microscopy analysis showed no evidence of localized corrosion in files exposed to sodium hypochlorite solution. These results suggest that the exposure to sodium hypochlorite has no influence on resistance to fracture of K3 rotary instruments.

  20. Design, development and performance of a disk plow combined with rotary blades

    NASA Astrophysics Data System (ADS)

    Hashemi, A.; Ahmad, D.; Othman, J.; Sulaiman, S.

    2012-09-01

    Disk plow combined with rotary blades, defined as comboplow, is used for soil preparation for planting. The comboplow includes four units: Chassis, concave disk, transmission system and rotary blades. A multiple tillage operation is reduced in a single pass resulting in a potential reduction of soil compaction, labor, fuel cost and saving in time. The comboplow was tested at University Putra Malaysia Research Park, Serdang, Selangor, Malaysia, on three different plots of 675 m2 in the year 2010/2011. The treatments were three types of blade [(straight (S),curved (c) and L-shaped)] and three rotary speeds (130,147and 165 rpm). The parameters were Mean Weight Diameter Dry Basis (MWDd), Mean weight Diameter Wet Basis (MWDW), Aggregate Stability Index (SI) and Instability Index (II).

  1. Processing of Spent Ion Exchange Resins in a Rotary Calciner - 12212

    SciTech Connect

    Kascheev, Vladimir; Musatov, Nikolay

    2012-07-01

    Processing Russian nuclear ion exchange resin KU-2 using a 'Rotary' calciner was conducted. The resulting product is a dry free flowing powder (moisture content 3 wt.%, Angle of repose of ≅ 20 deg.). Compared with the original exchange resin the volume of the final product is about 3 times less.. Rotary calciner product can be stored in metal drums or in special reinforced concrete cubicles. After thermal treatment in a rotary calciner, the spent resin product can be solidified in cement yielding the following attributes: - The cemented waste is only a 35% increase over the volume of powder product; - The volume of cement calciner product is almost 9 times less (8.7) than the volume of cement solidified resin; - The mechanical strength of cemented calciner product meets the radioactive waste regulations in Russia. (authors)

  2. Sealing performance of a magnetic fluid seal for rotary blood pumps.

    PubMed

    Mitamura, Yoshinori; Takahashi, Sayaka; Kano, Kentaro; Okamoto, Eiji; Murabayashi, Shun; Nishimura, Ikuya; Higuchi, Taka-Aki

    2009-09-01

    A magnetic fluid (MF) for a rotary blood pump seal enables mechanical contact-free rotation of the shaft and, hence, has excellent durability. The performance of a MF seal, however, has been reported to decrease in liquids. We have developed a MF seal that has a "shield" mechanism and a new MF with a higher magnetization of 47.9 kA/m. The sealing performance of the MF seal installed in a rotary blood pump was studied. Under the condition of continuous flow, the MF seal remained in perfect condition against a pressure of 298 mm Hg (pump flow rate: 3.96 L/min). The seal was also perfect against a pressure of 170 mm Hg in a continuous flow of 3.9 L/min for 275 days. We have developed a MF seal that works in liquid against clinically used pressures. The MF seal is promising as a shaft seal for rotary blood pumps.

  3. Suppression of vortex-induced vibration using the rotary oscillation of a cylinder

    NASA Astrophysics Data System (ADS)

    Du, Lin; Sun, Xiaofeng

    2015-02-01

    An active control method for suppressing the response of an elastically mounted cylinder by forcing rotary oscillation is presented. Vortex-induced vibration (VIV) of structures is related to the interaction between body and shedding vortex. In the synchronization/lock-in regime, when the vortex shedding frequency fs matches the natural frequency fN of the spring-mass system, large displacement amplitude in the transverse direction is observed. The effect of rotary oscillation on unsteady laminar flow past a freely vibrating cylinder has been investigated. In this study, the cylinder has two degrees of freedom: forced rotary oscillation and vortex induced vibration. The investigation is based on the solutions of flow equations by using the immersed boundary method at moderate Reynolds number. The present computational results indicate the rotary oscillation control can be implemented to suppress the response amplitude of VIV by locking the vortex shedding frequency fs at the forcing frequency fr in the "lock-on" region. The "lock-on" phenomenon occurs in the wake of a rotationally oscillating cylinder, which is free to vibrate in the transverse direction. The essence of the present active control method is to change the frequency of the vortex shedding, rather than suppress it. The response of an elastically mounted cylinder is drastically suppressed to less than 1% of the cylinder diameter, when proper frequency ratio fr/fN and rotational velocity are imposed. Detailed analyses of aerodynamic performance are given to interpret the mechanism of the suppression of response caused by forced rotary oscillation. The effects of mass ratio and velocity rate of rotary oscillation are also found to play an important role in the spring-mass system. The efficiency of the present method increases with Reynolds number.

  4. Broadband rotary joint for high speed ultrahigh resolution endoscopic OCT imaging (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Alemohammad, Milad; Yuan, Wu; Mavadia-Shukla, Jessica; Liang, Wenxuan; Yu, Xiaoyun; Yu, Shaoyong; Li, Xingde

    2016-03-01

    Endoscopic OCT is a promising technology enabling noninvasive in vivo imaging of internal organs, such as the gastrointestinal tract and airways. The past few years have witnessed continued efforts to achieve ultrahigh resolution and speed. It is well-known that the axial resolution in OCT imaging has a quadratic dependence on the central wavelength. While conventional OCT endoscopes operate in 1300 nm wavelength, the second-generation endoscopes are designed for operation around 800 nm where turn-key, broadband sources are becoming readily available. Traditionally 1300 nm OCT endoscopes are scanned at the proximal end, and a broadband fiber-optic rotary joint as a key component in scanning endoscopic OCT is commercially available. Bandwidths in commercial 800 nm rotary joints are unfortunately compromised due to severe chromatic aberration, which limits the resolution afforded by the broadband light source. In the past we remedied this limitation by using a home-made capillary-tube-based rotary joint where the maximum reliable speed is ~10 revolutions/second. In this submission we report our second-generation, home-built high-speed and broadband rotary joint for 800 nm wavelength, which uses achromatic doublets in order achieve broadband achromatic operation. The measured one-way throughput of the rotary joint is >67 % while the fluctuation of the double-pass coupling efficiency during 360° rotation is less than +/-5 % at a speed of 70 revolutions/second. We demonstrate the operation of this rotary joint in conjunction with our ultrahigh-resolution (2.4 µm in air) diffractive catheter by three-dimensional full-circumferential endoscopic imaging of guinea pig esophagus at 70 frames per second in vivo.

  5. A new methodology for sizing and performance predictions of a rotary wing ejector

    NASA Astrophysics Data System (ADS)

    Moodie, Alex Montfort

    The application of an ejector nozzle integrated with a reaction drive rotor configuration for a vertical takeoff and landing rotorcraft is considered in this research. The ejector nozzle is a device that imparts energy from a high speed airflow source to a lower speed secondary airflow inside a duct. The overall nozzle exhaust mass flow rate is increased through fluid entrainment, while the exhaust gas velocity is simultaneously decreased. The exhaust gas velocity is strongly correlated to the jet noise produced by the nozzle, making the ejector a good candidate for propulsion system noise reduction. Ejector nozzles are mechanically simple in that there are no moving parts. However, coupled fluid dynamic processes are involved, complicating analysis and design. Geometric definitions of the ejector nozzle are determined through a reduced fidelity, multi-disciplinary, representation of the rotary wing ejector. The resulting rotary wing ejector geometric sizing procedure relates standard vehicle and rotor design parameters to the ejector. Additionally, a rotary wing ejector performance procedure is developed to compare this rotor configuration to a conventional rotor. Performance characteristics and aerodynamic effects of the rotor and ejector nozzle are analytically studied. Ejector nozzle performance, in terms of exit velocities, is compared to the primary reaction drive nozzle; giving an indication of the potential for noise reduction. Computational fluid dynamics are paramount in predicting the aerodynamic effects of the ejector nozzle located at the rotor blade tip. Two-dimensional, steady-state, Reynolds-averaged Navier-Stokes (RANS) models are implemented for sectional lift and drag predictions required for the rotor aerodynamic model associated with both the rotary wing ejector sizing and performance procedures. A three-dimensional, unsteady, RANS simulation of the rotary wing ejector is performed to study the aerodynamic interactions between the ejector

  6. Carbon Fiber Reinforced Carbon Composites Rotary Valves for Internal Combustion Engines

    NASA Technical Reports Server (NTRS)

    Northam, G. Burton (Inventor); Ransone, Philip O. (Inventor); Rivers, H. Kevin (Inventor)

    1999-01-01

    Carbon fiber reinforced carbon composite rotary, sleeve, and disc valves for internal combustion engines and the like are disclosed. The valves are formed from knitted or braided or warp-locked carbon fiber shapes. Also disclosed are valves fabricated from woven carbon fibers and from molded carbon matrix material. The valves of the present invention with their very low coefficient of thermal expansion and excellent thermal and self-lubrication properties, do not present the sealing and lubrication problems that have prevented rotary, sleeve, and disc valves from operating efficiently and reliably in the past. Also disclosed are a sealing tang to further improve sealing capabilities and anti-oxidation treatments.

  7. Carbon Fiber Reinforced Carbon Composite Rotary Valve for an Internal Combustion Engine

    NASA Technical Reports Server (NTRS)

    Northam, G.Burton (Inventor); Ransone, Philip O. (Inventor); Rivers, H. Kevin (Inventor)

    2000-01-01

    Carbon fiber reinforced carbon composite rotary sleeve, and disc valves for internal combustion engines and the like are disclosed. The valves are formed from knitted or braided or wrap-locked carbon fiber shapes. Also disclosed are valves fabricated from woven carbon fibers and from molded carbon matrix material. The valves of the present invention with their very low coefficient of thermal expansion and excellent thermal and self-lubrication properties do not present the sealing and lubrication problems that have prevented rotary sleeve and disc valves from operating efficiently and reliably in the past. Also disclosed are a sealing tang to further improve sealing capabilities and anti-oxidation treatments.

  8. Research on high precision equal-angle scanning method in rotary kiln temperature measurement system

    NASA Astrophysics Data System (ADS)

    Dai, Shaosheng; Guo, Zhongyuan; You, Changhui; Liu, Jinsong; Cheng, Yang; Tang, Huaming

    2016-05-01

    Aiming at traditional horizontal equal-angle scanning method's disadvantage of measurement error, a high precision equal-angle scanning method is proposed, the proposed method establishes a tilt scanning model by the following steps: introducing height variable, precisely calculating the viewing angle, building scanning model. The model is used to calculate scanning position on rotary kiln's surface, which helps to locate and track temperature variation. The experiment shows that the proposed method can effectively improve the precision of temperature spots' location on the rotary kiln surface.

  9. Machine imparting complex rotary motion for lapping a spherical inner diameter

    DOEpatents

    Carroll, Thomas A.; Yetter, Harold H.

    1986-01-01

    An apparatus for imparting complex rotary motion is used to lap an inner spherical diameter surface of a workpiece. A lapping tool consists of a dome and rod mounted along the dome's vertical axis. The workpiece containing the lapping tool is held in a gimbal which uses power derived from a secondary takeoff means to impart rotary motion about a horizontal axis. The gimbal is rotated about a vertical axis by a take means while mounted at a radially outward position on a rotating arm.

  10. Machine imparting complex rotary motion for lapping a spherical inner diameter

    DOEpatents

    Carroll, T.A.; Yetter, H.H.

    1985-01-30

    An apparatus for imparting complex rotary motion is used to lap an inner spherical diameter surface of a workpiece. A lapping tool consists of a dome and rod mounted along the dome's vertical axis. The workpiece containing the lapping tool is held in a gimbal which uses power derived from a secondary takeoff means to impart rotary motion about a horizontal axis. The gimbal is rotated about a vertical axis by a take means while mounted at a radially outward position on a rotating arm.

  11. Choice-reaction time to visual motion with varied levels of simultaneous rotary motion

    NASA Technical Reports Server (NTRS)

    Clark, B.; Stewart, J. D.

    1974-01-01

    Twelve airline pilots were studied to determine the effects of whole-body rotation on choice-reaction time to the horizontal motion of a line on a cathode-ray tube. On each trial, one of five levels of visual acceleration and five corresponding proportions of rotary acceleration were presented simultaneously. Reaction time to the visual motion decreased with increasing levels of visual motion and increased with increasing proportions of rotary acceleration. The results conflict with general theories of facilitation during double stimulation but are consistent with neural-clock model of sensory interaction in choice-reaction time.

  12. The Lighthouse Literacy Project: The Rotary Campaign to Assist Literacy Development across the Globe.

    ERIC Educational Resources Information Center

    Walker, Richard

    2000-01-01

    This article is based on Rotary literacy projects aimed at doing something substantial about the billion people in developing countries who are locked into an endless cycle of poverty, because they are illiterate. Two projects are highlighted--one in Turkey and one in Egypt--for illustration.(Adjunct ERIC Clearinghouse for ESL Literacy Education)…

  13. Modeling of rotary cement kilns: Applications to reduction in energy consumption

    SciTech Connect

    Mujumdar, K.S.; Arora, A.; Ranade, V.V.

    2006-03-29

    We discuss and evaluate possible ways of reducing energy consumption in rotary cement kilns. A comprehensive one-dimensional model was developed to simulate complex processes occurring in rotary cement kilns. A modeling strategy comprising three submodels, viz. a model for simulating the variation of bed height in the kiln, a model for simulating reactions and heat transfer in the bed region, and a model for simulating coal combustion and heat transfer in the freeboard region, was developed. Melting and formation of coating within the kiln were accounted for. Combustion of coal in the freeboard region was modeled by accounting for devolatilization, finite-rate gas-phase combustion, and char reaction. The simulated results were validated with the available data from three industrial kilns. The model was then used to understand the influence of various design and operating parameters on kiln performance. Several ways of reducing energy consumption in kilns were then computationally investigated. The model was also used to propose and to evaluate a practical solution of using a secondary shell to reduce energy consumption in rotary cement kilns. Simulation results indicate that varying kiln operating variables, viz. solid flow rate or RPM, can result only in small changes in kiln energetics. Use of a secondary shell over the kiln and energy recovery by passing air through the annular gap between the two appears to be a promising way to achieve significant energy savings. The developed model and the presented results will be useful for enhancing the performance of rotary cement kilns.

  14. Pyrolysis of Uinta Basin Oil Sands in fluidized bed and rotary kiln reactors

    SciTech Connect

    Nagpal, S.; Fletcher, J.V.; Hanson, F.V.

    1995-12-31

    A pilot-scale fluidized bed reactor (FBR) was used to pyrolyze the mined and crushed ore from the PR Spring oil sands deposit which is located in the Uinta Basin of Utah. Liquid yields of approximately 80 wt% of the bitumen fed to the reactor were obtained. This compares to 55-70 wt% obtained from smaller laboratory scale fluidized bed reactors and a pilot-scale rotary kiln. The product yields and distributions exhibited no discernable trends with reactor temperature or solids retention time. The liquid products obtained from the pilot-scale fluidized bed reactor were upgraded compared to the bitumen in terms of volatility, viscosity, molecular weight, and metals (Ni and V) content. The nitrogen and sulphur contents of the total liquid products were also reduced relative to the bitumen. A comparison of oil sands pyrolysis yields from a pilot scale FBR and a rotary kiln of the same diameter (15.2 cm) was made. Under similar pyrolysis conditions, the rotary kiln produced a slightly more upgraded product but at lower total liquid yields. Kinetic modeling of the various reactors indicates that the pilot-scale FBR product distributions may be explained using a simplified two-reaction scheme. It is proposed that secondary cracking is suppressed in the large diameter FBR due to elimination of slugging and the superior quality of fluidization in the reactor. More experimental studies with the rotary kiln and an economic evaluation will be required before concluding which reactor is preferred for the thermal recovery process.

  15. Failure Analysis in Space: International Space Station (ISS) Starboard Solar Alpha Rotary Joint (SARJ) Debris Analysis

    NASA Technical Reports Server (NTRS)

    Long, V. S.; Wright, M. C.; McDanels, S. J.; Lubas, D.; Tucker, B.; Marciniak, P. J.

    2010-01-01

    This slide presentation reviews the debris analysis of the Starboard Solar Alpha Rotary Joint (SARJ), a mechanism that is designed to keep the solar arrays facing the sun. The goal of this was to identify the failure mechanism based on surface morphology and to determine the source of debris through elemental and particle analysis.

  16. MECHANISMS GOVERNING TRANSIENTS FROM THE BATCH INCINERATION OF LIQUID WASTES IN ROTARY KILNS

    EPA Science Inventory

    When "containerized" liquid wastes, bound on sorbents. are introduced into a rotary kiln in a batch mode, transient phenomena in-volving heat transfer into, and waste mass transfer out of, the sorbent can oromote the raoid release of waste vaoor into the kiln environment. This ra...

  17. A Tribute to Professor Rene H. Miller - A Pioneer in Aeromechanics and Rotary Wing Flight Transportation

    NASA Technical Reports Server (NTRS)

    Friedmann, Peretz P.; Johnson, Wayne; Scully, Michael P.

    2011-01-01

    Rene H. Miller (May 19, 1916 January 28, 2003), Emeritus H. N. Slater Professor of Flight Transportation, was one of the most influential pioneers in rotary wing aeromechanics as well as a visionary whose dream was the development of a tilt-rotor based short haul air transportation system. This paper pays a long overdue tribute to his memory and to his extraordinary contributions.

  18. 40 CFR 63.2263 - Initial compliance demonstration for a dry rotary dryer.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Initial compliance demonstration for a dry rotary dryer. 63.2263 Section 63.2263 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... CATEGORIES National Emission Standards for Hazardous Air Pollutants: Plywood and Composite Wood...

  19. 40 CFR 63.2263 - Initial compliance demonstration for a dry rotary dryer.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 13 2014-07-01 2014-07-01 false Initial compliance demonstration for a dry rotary dryer. 63.2263 Section 63.2263 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants: Plywood and Composite...

  20. 40 CFR 63.2263 - Initial compliance demonstration for a dry rotary dryer.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 13 2012-07-01 2012-07-01 false Initial compliance demonstration for a dry rotary dryer. 63.2263 Section 63.2263 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants: Plywood and Composite...

  1. 40 CFR 63.2263 - Initial compliance demonstration for a dry rotary dryer.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... inlet moisture content of less than or equal to 30 percent (by weight, dry basis) and operates with a... dry rotary dryer. You must record the inlet furnish moisture content (dry basis) and inlet dryer... days. You must submit the highest recorded 24-hour average inlet furnish moisture content and...

  2. 40 CFR 63.2263 - Initial compliance demonstration for a dry rotary dryer.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... operate a dry rotary dryer, you must demonstrate that your dryer processes furnish with an inlet moisture.... You must record the inlet furnish moisture content (dry basis) and inlet dryer operating temperature... highest recorded 24-hour average inlet furnish moisture content and the highest recorded 24-hour...

  3. 33 CFR 100.914 - Trenton Rotary Roar on the River, Trenton, MI.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... SECURITY REGATTAS AND MARINE PARADES SAFETY OF LIFE ON NAVIGABLE WATERS § 100.914 Trenton Rotary Roar on... on land located at position 42°7.7′ N; 083°10.7′ W, and along the shoreline to the point of...

  4. 33 CFR 100.914 - Trenton Rotary Roar on the River, Trenton, MI.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... SECURITY REGATTAS AND MARINE PARADES SAFETY OF LIFE ON NAVIGABLE WATERS § 100.914 Trenton Rotary Roar on... on land located at position 42°7.7′ N; 083°10.7′ W, and along the shoreline to the point of...

  5. 33 CFR 100.914 - Trenton Rotary Roar on the River, Trenton, MI.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... SECURITY REGATTAS AND MARINE PARADES SAFETY OF LIFE ON NAVIGABLE WATERS § 100.914 Trenton Rotary Roar on... on land located at position 42°7.7′ N; 083°10.7′ W, and along the shoreline to the point of...

  6. 33 CFR 100.914 - Trenton Rotary Roar on the River, Trenton, MI.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... SECURITY REGATTAS AND MARINE PARADES SAFETY OF LIFE ON NAVIGABLE WATERS § 100.914 Trenton Rotary Roar on... on land located at position 42°7.7′ N; 083°10.7′ W, and along the shoreline to the point of...

  7. Root canal centering ability of rotary cutting nickel titanium instruments: A meta-analysis

    PubMed Central

    Gundappa, Mohan; Bansal, Rashmi; Khoriya, Sarvesh; Mohan, Ranjana

    2014-01-01

    Aim: To systematically review articles on canal centering ability of endodontic rotary cutting Nickel-Titanium (Ni-Ti) instruments and subject results to meta-analysis. Materials and Methods: A comprehensive search was initiated on canal centering ability of different rotary cutting Ni-Ti files such as Protaper, Hero Shaper, K3, Mtwo, Race, Wave One by selecting articles published in peer reviewed journals during 1991-2013 using “Pub Med” database. Inclusion and exclusion criteria were established. A data was created by tabulating: Author name, publication year, sample size, number of experimental groups, methods to evaluate canal centering ability, instrument cross section, taper, tip design, rake angle, mean and standard deviation. The data generated was subjected to meta-analysis. Results: Maximum studies were found to be conducted on mesiobuccal canal of mandibular 1st molar with curvature ranging from 15-60°. The difference in canal centering ability of different rotary cutting Ni-Ti instruments was not statistically significant. Conclusion: All endodontic rotary cutting Ni-Ti instruments are capable of producing centered preparations. Protaper depicted the best centering ability. Computed tomography is an effective method of evaluating canal centering ability. PMID:25506134

  8. Design and implementation of a novel rotary micropositioning system driven by linear voice coil motor.

    PubMed

    Xu, Qingsong

    2013-05-01

    Limited-angle rotary micropositioning stages are required in precision engineering applications where an ultrahigh-precision rotational motion within a restricted range is needed. This paper presents the design, fabrication, and control of a compliant rotary micropositioning stage dedicated to the said applications. To tackle the challenge of achieving both a large rotational range and a compact size, a new idea of multi-stage compound radial flexure is proposed. A compact rotary stage is devised to deliver an over 10° rotational range while possessing a negligible magnitude of center shift. The stage is driven by a linear voice coil motor and its output motion is measured by laser displacement sensors. Analytical models are derived to facilitate the parametric design, which is validated by conducting finite element analysis. The actuation and sensing issues are addressed to guarantee the stage performance. A prototype is fabricated and a proportional-integral-derivative control is implemented to achieve a precise positioning. Experimental results demonstrate a resolution of 2 μrad over 10° rotational range as well as a low level of center shift of the rotary micropositioning system.

  9. The application of cast SiC/Al to rotary engine components

    NASA Technical Reports Server (NTRS)

    Stoller, H. M.; Carluccio, J. R.; Norman, J. P.

    1986-01-01

    A silicon carbide reinforced aluminum (SiC/Al) material fabricated by Dural Aluminum Composites Corporation was tested for various components of rotary engines. Properties investigated included hardness, high temperature strength, wear resistance, fatigue resistance, thermal conductivity, and expansion. SiC/Al appears to be a viable candidate for cast rotors, and may be applicable to other components, primarily housings.

  10. DRIFT POTENTIAL OF TILTED SHIELDED ROTARY ATOMISERS BASED ON WIND TUNNEL MEASUREMENTS.

    PubMed

    Salah, S Ouled Taleb; Massinon, M; De Cock, N; Schiffers, B; Lebeau, F

    2015-01-01

    Crop protection is mainly achieved by applying Plant Protection Products (PPP) using hydraulic nozzles, which rely on pressure, to produce a wide droplet size distribution. Because of always increased concerns about drift reduction, a wider range of low drift nozzles, such as air induction nozzles, was adopted in order to reduce the finest part of the spray. While successful for some treatments, the efficiency of coarser sprays is dramatically reduced on small and superhydrophobic target, i.e. at early stage weed control. This may be related to the increased proportion of big bouncing and splashing droplets. On the other hand, Controlled Droplet Application (CDA), using shielded rotary atomizers, stands for an improved control of droplets diameters and trajectories compared to hydraulic nozzles. Unfortunately, these atomizers, because of their horizontal droplet release, are widely recognized to produce more drift than hydraulic nozzles. The present contribution investigates whether the setting of a rotary atomizer 60 degrees forward tilted can reduce drift to acceptable levels in comparison with vertical and 60 degrees forward tilted standard and low drift flat fan nozzles for the same flow rate. In a wind tunnel, the drift potential of a medium spray produced by a tilted shielded rotary atomizer Micromax 120 was benchmarked with that of a flat fan nozzle XR11002 fine spray and that of an anti-drift nozzle Hardi Injet 015 medium spray. Operating parameters were set to apply 0.56 l/min for every spray generator. Vertical drift profiles were measured 2.0 m downward from nozzle axis for a 2 m.s(-1) wind speed. The tilted hydraulic nozzles resulted in a significant drift increase while droplets trajectories are affected by the decrease of the droplet initial vertical speed. Droplets emitted by the shielded rotary atomizer drift due to low entrained air and turbulence. A significant reduction of the cumulative drift was achieved by the rotary atomizer in comparison

  11. Large-amplitude rotary induced-strain (LARIS) actuator proof-of-concept demonstrator

    NASA Astrophysics Data System (ADS)

    Giurgiutiu, Victor; Rogers, Craig A.; McNeil, Shane

    1997-06-01

    Induced-strain materials can produce very large forces and, hence, large energy density, but small actual displacements. A new concept for obtaining large-amplitude rotary displacements from small linear displacements generated by induced-strain material stacks is proposed. The concept utilizes the theory of twist-warping coupling in thin-wall open tubes. The theory of the proposed solid-state axial-to- rotary converter-amplifier, together with the appropriate bibliographical references, is given. A simple formula is generated for estimating the axial-to-rotary conversion- amplification coefficient from the geometrical length, L, and enclosed area, A, of the open tube. A large-displacement induced-strain rotary (LARIS) actuator proof-of-concept demonstrator was built and tested to verify and validate the theoretical developments. The LARIS actuator consisted of a 28 mm diameter, 1.2 m length open tube and a 120 micrometer, -1000 V PZT translator. The experimental set-up and the excitation and measuring equipment are fully described in the paper. A maximum rotary displacement of 8 degrees was measured, and the linear relationship between the rotation coefficient, the tube length, L, and the inverse of the enclosed area, A, was verified. An improved theoretical model, that accounts for the experimentally observed zero off-set, is also given. The theoretical developments and experimental tests presented in this paper show that the proposed LARIS actuator, based on a novel solid-state axial-to-rotary converter-amplifier utilizing the warping-torsion coupling of an open tube, is a viable design option, of great constructive simplicity and very low parts count. This concept can be successfully used in a series of aerospace and mechanical engineering applications, as for example in the actuation of adaptive control surfaces for aircraft wings and helicopter blades. The 8 degree rotary displacement capabilities measured on the proof-of-concept demonstrator can be easily

  12. Caries Removal by Chemomechanical (Carisolv™) vs. Rotary Drill: A Systematic Review

    PubMed Central

    Maru, Viral P.; Shakuntala, B.S.; Nagarathna, C.

    2015-01-01

    Background: Chemomechanical caries removal is an effective alternative to the traditional rotary drilling method. The advantages of chemomechanical techniques in terms of the need for anesthesia, pain perception and patient preference are systematically reviewed and a meta-analysis of the time required for caries removal is reported. Method: Randomized controlled studies of comparison of chemomechanical techniques with conventional rotary drill were selected from a systematic search of standard biomedical databases, including the PubMed and Cochrane clinical trials. Non-repeated search results were screened for relevance and risk of bias assessment, followed by methodology assessment. Statistical models were applied to the outcome parameters - time required, pain perception, need of anesthesia and patient preference - extracted from the studies. Results: Out of the 111 non-repeated search results, 26 studies receiving a low bias score were selected for the review, and 16 randomized clinical trials of rotary and Carisolv techniques were considered for meta-analysis. Meta-analysis by fixed effect as well as random effect models indicate that Carisolv takes more time (3.65 ± 0.05 and 4.09 ± 0.29 min) than rotary drill (8.65 ± 0.09 and 8.97 ± 0.66 min) method. Advantages of reduced pain (14.67 for Carisolv vs. 6.76 for rotary drill), need for anesthesia (1.59% vs. 10.52%) outweigh the longer time requirement and make it the preferred (18.68% vs. 4.69%) method. Conclusion: Chemomechanical techniques stand out as a minimally invasive and preferred method based on the meta-analyses. Evaluation of pain experienced using robust methods is needed to strengthen the evidence for their use. PMID:26962375

  13. Computed Tomographic Evaluation of K3 Rotary and Stainless Steel K File Instrumentation in Primary Teeth

    PubMed Central

    Kavitha, Swaminathan; Thomas, Eapen; Anadhan, Vasanthakumari; Vijayakumar, Rajendran

    2016-01-01

    Introduction The intention of root canal preparation is to reduce infected content and create a root canal shape allowing for a well condensed root filling. Therefore, it is not necessary to remove excessive dentine for successful root canal preparation and concern must be taken not to over instrument as perforations can occur in the thin dentinal walls of primary molars. Aim This study was done to evaluate the time preparation, the risk of lateral perforation and dentine removal of the stainless steel K file and K3 rotary instrumentation in primary teeth. Materials and Methods Seventy-five primary molars were selected and divided into three groups. Using spiral computed tomography the teeth were scanned before instrumentation. Teeth were prepared using a stainless steel K file for manual technique. All the canals were prepared up to file size 35. In K3 rotary files (.02 taper) instrumentation was done up to 35 size file. In K3 rotary files (.04 taper) the instrumentation was done up to 25 size file and simultaneously the instrumentation time was recorded. The instrumented teeth were once again scanned and the images were compared with the images of the uninstrumented canals. Statistical Analysis Data was statistically analysed using Kruskal Wallis One-way ANOVA, Mann-Whitney U-Test and Pearson’s Chi-square Test. Results K3 rotary files (.02 taper) removed a significantly less amount of dentine, required less instrumentation time than a stainless steel K file. Conclusion K3 files (.02 taper) generated less dentine removal than the stainless steel K file and K3 files (.04 taper). K3 rotary files (.02 taper) were more effective for root canal instrumentation in primary teeth. PMID:26894166

  14. Comparison of dentinal damage induced by different nickel-titanium rotary instruments during canal preparation: An in vitro study

    PubMed Central

    Garg, Shiwani; Mahajan, Pardeep; Thaman, Deepa; Monga, Prashant

    2015-01-01

    Aim: To compare dentinal damage caused by hand and rotary nickel-titanium instruments using ProTaper, K3 Endo, and Easy RaCe systems after root canal preparation. Materials and Methods: One hundred and fifty freshly extracted mandibular premolars were randomly divided into five experimental groups of 30 teeth each and biomechanical preparation was done: Group 1 with unprepared teeth; Group 2 were prepared with hand files; Group 3 with ProTaper rotary instruments; Group 4 with K3 rotary; Group 5 with Easy RaCe rotary instruments. Then, roots were cut horizontally at 3, 6, and 9 mm from apex and were viewed under stereomicroscope. The presence of dentinal defects was noted. Statistical analysis: Groups were analyzed with the Chi-square test. Results: Significant difference was seen between groups. No defects were found in unprepared roots and those prepared with hand files. ProTaper, K3 rotary, and Easy RaCe preparations resulted in dentinal defects in 23.3%, 10%, and 16.7% of teeth, respectively. More defects were shown in coronal and middle sections, and no defect was seen in apical third. Conclusion: The present study revealed that use of rotary instruments could result in an increased chance for dentinal defects as compared to hand instrumentation. PMID:26180415

  15. Design, development and evaluation of a precision air bearing rotary table with large diameter through-hole

    SciTech Connect

    Accatino, M.R.

    1991-11-01

    A large diameter precision air bearing rotary table with a 16.0 inch diameter through-hole was designed, fabricated and tested in the course of this research. The rotary table will be used in conjunction with a specialized, computer controlled precision inspection machine being designed for the Department of Energy`s (DOE) Nuclear Weapons Complex (NWC). The design process included a complete engineering analysis to predict the final performance of the rotary table, and to ensure that the rotary table meets the required accuracy of 4.0 microinches of total radial (3.5 microinches average radial) and 4.0 microinches total axial (3.5 microinches average axial) errors. The engineering analysis included structural deformation, thermal sensitivity and dynamic analyses using finite element methods in some cases, as well as other analytic solutions. Comparisons are made between predicted and tested values, which are listed in the rotary table error budget. The rotary table performed as predicted with measured axial and radial stiffnesses of 1.1E06 lbf/inch and 2.9E06 lbf/inch, respectively, as well as average radial, axial and tilt errors of 2.5 microinches, 1.5 microinches, and less than 0.05 arcseconds, respectively.

  16. Rotary moving bed for CO.sub.2 separation and use of same

    DOEpatents

    Elliott, Jeannine Elizabeth; Copeland, Robert James; McCall, Patrick P.

    2017-01-10

    A rotary moving bed and process for separating a carbon dioxide from a gas stream is disclosed. The rotary moving bed can have a rotational assembly rotating on a vertical axis, and a plurality of sorbent cells positioned horizontally to the axis of rotation that fills a vertical space in the moving bed, where the sorbent cells adsorb the carbon dioxide by concentration swing adsorption and adsorptive displacement. The sorbent can be regenerated and the carbon dioxide recaptured by desorbing the carbon dioxide from the sorbent using concentration swing adsorption and desorptive displacement with steam. The gas flows in the system flow in a direction horizontal to the axis of rotation and in a direction opposite the rotational movement of the sorbent cells.

  17. Shaping ability of three ProFile rotary instrumentation techniques in simulated resin root canals.

    PubMed

    Kum, K Y; Spängberg, L; Cha, B Y; Il-Young, J; Msd; Seung-Jong, L; Chan-Young, L

    2000-12-01

    The aim of this study was to compare the shaping ability of three ProFile rotary instrumentation techniques and a conventional step-back method in simulated root canals. Prevalence of canal aberrations, change in working length, and preparation time were measured. A total of 48 composite images were made from pre- and postcanal scanned images using Corel Photopaint 8.0 and then the amount of coronal substance the instruments removed was also calculated two-dimensionally on digitized images with the Brain C software to compare the enlarging efficiency. There were no significant differences between the three rotary groups in preparation time, change in working length, and the incidence of aberrations (p > 0.05). The amount of coronal substance the instruments removed in the ProFile .04 taper group was significantly smaller than the other three groups (p < 0.05).

  18. A QUANTITATIVE ANALYSIS OF ROTARY, ULTRASONIC AND MANUAL TECHNIQUES TO TREAT PROXIMALLY FLATTENED ROOT CANALS

    PubMed Central

    Grecca, Fabiana Soares; Garcia, Roberto Brandão; Bramante, Clóvis Monteiro; de Moraes, Ivaldo Gomes; Bernardineli, Norberti

    2007-01-01

    Objective: The efficiency of rotary, manual and ultrasonic root canal instrumentation techniques was investigated in proximally flattened root canals. Material and Methods: Forty human mandibular left and right central incisors, lateral incisors and premolars were used. The pulp tissue was removed and the root canals were filled with red die. Teeth were instrumented using three techniques: (i) K3 and ProTaper rotary systems; (ii) ultrasonic crown-down technique; and (iii) progressive manual technique. Roots were bisected longitudinally in a buccolingual direction. The instrumented canal walls were digitally captured and the images obtained were analyzed using the Sigma Scan software. Canal walls were evaluated for total canal wall area versus noninstrumented area on which dye remained. Results: No statistically significant difference was found between the instrumentation techniques studied (p<0.05). Conclusion: The findings of this study showed that no instrumentation technique was 100% efficient to remove the dye. PMID:19089108

  19. Influence of rotary swaging and subsequent age hardening on properties of EN AW 6082 aluminium alloy

    NASA Astrophysics Data System (ADS)

    Maleček, L.; Palán, J.; Nacházel, J.; Dlouhý, J.

    2017-02-01

    Mechanical properties and microstructure of EN AW 6082 were investigated. The aluminium alloy was processed by combining the solution annealing, plastic deformation and artificial age hardening, respectively. The initial state of the investigated material was provided in the form of extruded rods with the diameter of 12 mm. For the solution annealing the temperature 530 °C was chosen. The plastic deformation was realized by rotary swaging at ambient temperature and the investigated material was rotary swaged from 12 to 10 mm in diameter. The effect of the age hardening temperature and time was studied at temperatures of 120 and 160 °C and times 1 - 12 hours. The impact of processing parameters on mechanical properties was assessed by tensile testing and hardness measurement. Metallographic examination was carried out by light optical microscopy (LOM) and scanning electron microscopy using electron backscatter diffraction (SEM-EBSD).

  20. Predicting in vivo failure of rotary nickel-titanium endodontic instruments under cyclic fatigue.

    PubMed

    Stojanac, Igor; Drobac, Milan; Petrovic, Ljubomir; Atanackovic, Teodor

    2012-01-01

    The aim of this study was to examine the lifespan or number of cycles to failure of tapered rotary nickel-titanium (Ni-Ti) endodontic instruments. Simulated root canals with different curvatures were used to determine a relation between canal curvature and instrument lifespan. Using a novel mathematical model for the deformation of pseudoelastic Ni-Ti alloy, it was shown that maximum stress need not necessarily occur at the outer layer. On the basis of this observation, the Coffin-Manson relation was modified with parameters determined from this experiment. Results showed that the number of cycles to failure was influenced by the angle and radius of canal curvature and the size of instrument at the beginning of canal curvature. The resulting quantitative mathematical relation could be used to predict the lifespan of rotary Ni-Ti endodontic instruments under clinical conditions and thereby reduce the incidence of instrument failure in vivo.

  1. Computational experience with a three-dimensional rotary engine combustion model

    NASA Technical Reports Server (NTRS)

    Raju, M. S.; Willis, E. A.

    1990-01-01

    A new computer code was developed to analyze the chemically reactive flow and spray combustion processes occurring inside a stratified-charge rotary engine. Mathematical and numerical details of the new code were recently described by the present authors. The results are presented of limited, initial computational trials as a first step in a long-term assessment/validation process. The engine configuration studied was chosen to approximate existing rotary engine flow visualization and hot firing test rigs. Typical results include: (1) pressure and temperature histories, (2) torque generated by the nonuniform pressure distribution within the chamber, (3) energy release rates, and (4) various flow-related phenomena. These are discussed and compared with other predictions reported in the literature. The adequacy or need for improvement in the spray/combustion models and the need for incorporating an appropriate turbulence model are also discussed.

  2. Computational Design of a Family of Light-Driven Rotary Molecular Motors with Improved Quantum Efficiency.

    PubMed

    Nikiforov, Alexander; Gamez, Jose A; Thiel, Walter; Filatov, Michael

    2016-01-07

    Two new light-driven molecular rotary motors based on the N-alkylated indanylidene benzopyrrole frameworks are proposed and studied using quantum chemical calculations and nonadiabatic molecular dynamics simulations. These new motors perform pure axial rotation, and the photochemical steps of the rotary cycle are dominated by the fast bond-length-alternation motion that enables ultrafast access to the S1/S0 intersection. The new motors are predicted to display a quantum efficiency higher than that of the currently available synthetic all-hydrocarbon motors. Remarkably, the quantum efficiency is not governed by the topography (peaked versus sloped) of the minimum-energy conical intersection, whereas the S1 decay time depends on the topography as well as on the energy of the intersection relative to the S1 minimum. It is the axial chirality (helicity), rather than the point chirality, that controls the sense of rotation of the motor.

  3. Computational Design of a Family of Light-Driven Rotary Molecular Motors with Improved Quantum Efficiency

    PubMed Central

    2015-01-01

    Two new light-driven molecular rotary motors based on the N-alkylated indanylidene benzopyrrole frameworks are proposed and studied using quantum chemical calculations and nonadiabatic molecular dynamics simulations. These new motors perform pure axial rotation, and the photochemical steps of the rotary cycle are dominated by the fast bond-length-alternation motion that enables ultrafast access to the S1/S0 intersection. The new motors are predicted to display a quantum efficiency higher than that of the currently available synthetic all-hydrocarbon motors. Remarkably, the quantum efficiency is not governed by the topography (peaked versus sloped) of the minimum-energy conical intersection, whereas the S1 decay time depends on the topography as well as on the energy of the intersection relative to the S1 minimum. It is the axial chirality (helicity), rather than the point chirality, that controls the sense of rotation of the motor. PMID:26670164

  4. Membrane fouling control using a rotary disk in a submerged anaerobic membrane sponge bioreactor.

    PubMed

    Kim, Jungmin; Shin, Jaewon; Kim, Hyemin; Lee, Jung-Yeol; Yoon, Min-Hyuk; Won, Seyeon; Lee, Byung-Chan; Song, Kyung Guen

    2014-11-01

    Despite significant research efforts over the last few decades, membrane fouling in anaerobic membrane bioreactors (AnMBRs) remains an unsolved problem that increases the overall operational costs and obstructs the industrial applications. Herein, we developed a method for effectively controlling the membrane fouling in a sponge-submerged AnMBRs using an anaerobic rotary disk MBR (ARMBR). The disk rotation led the effective collision between the sponge and membrane surface; thus successfully enhanced the membrane permeability in the ARMBR. The effect of the disk rotational speed and sponge volume fraction on the membrane permeability and the relationship between the water flow direction and membrane permeability were investigated. The long-term feasibility was tested over 100days of synthetic wastewater treatment. As a result, stable and economical performance was observed without membrane replacement and washing. The proposed integrated rotary disk-supporting media appears to be a feasible and even beneficial option in the AnMBR technology.

  5. Cyclic fatigue resistance of newly manufactured rotary nickel titanium instruments used in different rotational directions.

    PubMed

    Gambarini, Gianlucca; Gergi, Richard; Grande, Nicola Maria; Osta, Nada; Plotino, Gianluca; Testarelli, Luca

    2013-12-01

    The aim of this study was to investigate whether cyclic fatigue resistance is increased for nickel titanium instruments manufactured with improved heating processes in clockwise or counterclockwise continuous rotation. The instruments compared were produced either using the R-phase heat treatment (K3XF; SybronEndo, Orange, CA, USA) or the M-wire alloy (ProFile Vortex; DENTSPLY Tulsa Dental Specialties, Tulsa, OK, USA). Tests were performed with a specific cyclic fatigue device that evaluated cycles to failure of rotary instruments in curved artificial canals. Results indicated no significant difference in resistance to cyclic fatigue when rotary nickel titanium instruments are used in clockwise or counterclockwise continuous rotation. In both directions of rotation, size 04-25 K3XF showed a significant increase (P < 0.05) in the mean number of cycles to failure when compared with size 04-25 ProFile Vortex.

  6. Impact of hyperthermal rotary blood pump surfaces on blood clotting behavior: an approach.

    PubMed

    Hamilton, Kathrin F; Schlanstein, Peter C; Mager, Ilona; Schmitz-Rode, Thomas; Steinseifer, Ulrich

    2009-09-01

    The influence of heat dissipating systems, such as rotary blood pumps, was investigated. Titanium cylinders as rotary blood pump housing dummies were immersed in porcine blood and constantly tempered at specific temperatures (37-60 degrees C) over a defined period of time. The porcine blood was anticoagulated either by low heparin dosage or citrate. At frequent intervals, samples were taken for blood analysis and the determination of the plasmatic coagulation cascade. Blood parameters do not alter at surface temperatures below 50 degrees C. Hyperthermia-induced hemolysis could be confirmed. The plasmatic coagulation cascade is terminated at surface temperatures exceeding 55 degrees C. The adhesion of blood constituents on surfaces is temperature and time dependent, and structural changes of adhesions and blood itself were detected.

  7. Cryo-EM analysis of a domain antibody bound rotary ATPase complex.

    PubMed

    Davies, Roberta B; Smits, Callum; Wong, Andrew S W; Stock, Daniela; Christie, Mary; Sandin, Sara; Stewart, Alastair G

    2017-03-01

    The bacterial A/V-type ATPase/synthase rotary motor couples ATP hydrolysis/synthesis with proton translocation across biological membranes. The A/V-type ATPase/synthase from Thermus thermophilus has been extensively studied both structurally and functionally for many years. Here we provide an 8.7Å resolution cryo-electron microscopy 3D reconstruction of this complex bound to single-domain antibody fragments, small monomeric antibodies containing just the variable heavy domain. Docking of known structures into the density revealed the molecular orientation of the domain antibodies, suggesting that structure determination of co-domain antibody:protein complexes could be a useful avenue for unstable or smaller proteins. Although previous studies suggested that the presence of fluoroaluminate in this complex could change the rotary state of this enzyme, we observed no gross structural rearrangements under these conditions.

  8. Research on position calibration method in infrared scanning temperature measurement system of rotary kiln

    NASA Astrophysics Data System (ADS)

    Dai, Shao-sheng; You, Chang-hui; Guo, Zhong-yuan; Cheng, Ya-jun; Yu, Liang-bing

    2016-11-01

    Aiming at the large error in the equal-interval locating method, a precise position calibration method is proposed. The proposed method improves the location measurement accuracy by introducing some feature temperature points to divide the rotary kiln into several segments, then the equal-interval locating method was applied to each segment, ultimately, a position calibration data more closing to the actual situation was got. The feature temperature points can be selected from the temperature points of kiln tyres or the highest temperature point and so on. Taking the practical application into consideration, the best result is obtained, when four feature temperature points was introduced to divide the rotary kiln into five segments. The experiment result shows that compared with the equal-interval method, the accuracy of the proposed method has raised about 5.6 times when four feature temperature points is used.

  9. Effect of rotational speed on root canal preparation with Hero 642 rotary Ni-Ti instruments.

    PubMed

    Karagöz-Küçükay, Işil; Ersev, Handan; Engin-Akkoca, Ece; Küçükay, Sedat; Gürsoy, Tankut

    2003-07-01

    The purpose of this study was to evaluate the influence of Hero 642 rotary Ni-Ti instruments driven at 300, 400, or 600 rpm on root canal straightening, loss of working length, and instrument breakage. Sixty mesial root canals from extracted human mandibular molars were divided into 3 groups of 20 each and were instrumented at the aforementioned rotational speeds with a crown-down technique. Using a digital intraoral radiography system directly on the images of pre- and postoperative radiographs, degrees of canal curvatures were measured and recorded. Statistical analysis showed that final canal curvatures and working lengths were significantly reduced compared with those of original values in each group (p < 0.001). However, using Hero 642 rotary Ni-Ti system at different rotational speeds had no effect on canal curvature and working length alterations (p > 0.05). No file breakage was observed in any of the groups.

  10. On the impact of rolling direction and tool orientation angle in Rotary Peen Forming

    NASA Astrophysics Data System (ADS)

    Gottschalk, M.; Hirt, G.

    2016-10-01

    Shot Peen Forming processes are suitable to produce surface curvatures that are commonly required for aircraft fuselage as well as structural components. The so called Rotary Peen Forming is an alternative process for manufacturing sheet metals with slight curvature. The forming tool consists of impactors which are connected flexibly to a rotating hub and thus moving on a circular trajectory. An industrial robot guides the Rotary Peen Forming tools. As a result, the machine design is more compact compared to traditional Shot Peen Forming. In the present work, the impact of both, the tool orientation angle and the rolling direction, on the curvature of aluminum AA5083 samples is examined. By means of a point laser measurement, the set-up enables a distance control to adjust a determined indentation depth. It can be shown, that the highest curvature is achieved when the tool is orientated parallel and when the rolling direction of the sheet metal is transversal to the curvature plane.

  11. Comparison of the halving of tablets prepared with eccentric and rotary tablet presses.

    PubMed

    Sovány, T; Kása, P; Pintye-Hódi, K

    2009-01-01

    The aim of this study was to compare the densification of powder mixtures on eccentric and rotary tablet presses and to establish relationships with the halving properties of the resulting scored tablets. This is an important problem because the recent guidelines of EU require verification of the equal masses of tablet halves. The models of Walker, Heckel, and Kawakita were used to describe the powder densification on the two machines. The calculated parameters revealed that the shorter compression cycle of rotary machines results in poorer densification and lower tablet hardness at a given compression force. This is manifested in poorer halving properties, which are influenced mainly by the hardness. Better densification improves the halving even at lower tablet hardness. This demonstrates that these parameters can be good predictors of tablet halving properties.

  12. Noise Reduction Analysis on Inverter Driven Two-Cylinder Rotary Compressor

    NASA Astrophysics Data System (ADS)

    Nonaka, Ryutaro; Suda, Akihiro; Matumoto, Kenzou

    Two-cylinder rotary compressor is dynamically balanced well because two rollers in each cylinder chamber are located in opposite sides. Thus, it helps to reduce the circumferential vibration based on the tracking torque ripple for gas compression. This concept has been recently applied to room airconditioners (RACs) for the purpose of reducing vibration and noise of the unit. However, it consequently requires the compressor, which is one of the main noise factors, extremely low noise to reduce RAC noise. This paper describes generating mechanisms of the compressor noise established by analysis using signal processing and computer aided engineering. In addition, concrete countermeasures are presented for the noise reduction of the two-cylinder rotary compressor. In conclusion, Countermeasures for resonance in cavities were achieved by reducing 630Hz∼1KHz levels and the effect of muffler in the chamber contributed to the reduction of 3KHz∼6KHz levels.

  13. Design and analysis of a new high frequency double-servo direct drive rotary valve

    NASA Astrophysics Data System (ADS)

    Zhu, Muzhi; Zhao, Shengdun; Li, Jingxiang

    2016-12-01

    Researchers have investigated direct drive valve for many years to solve problems, such as fluid force imbalance and switching frequency. The structure of the rotary valve has received considerable research interest because of its favorable dynamic properties and simple structure. This paper studied the high frequency doubleservo direct drive rotary valve (DDRV), and proposed a novel structure and drive method satisfying high reversing frequency and adequate quantity of flow. Servo motors are integrated into the valve by the innovative structure, which is designed to equilibrate the unbalanced radial fluid force with the symmetric distributed oil ports. Aside from the fast reversing function of the valve, the DDRV presented high performance in linearity of the flow quantity and valve opening as a result of the fan-shaped flow ports. In addition, a computational fluid dynamics (CFD) method based on Fluent was conducted to verify the flux regulation effect of the height change of the adjustable boss.

  14. [Optical Path Difference Analysis and Simulation of Four Typical Rotary Type Interferometer].

    PubMed

    Feng, Ming-chun; Liu, Wen-qing; Xu, Liang; Gao, Min-guang; Wei, Xiu-li; Tong, Jing-jing; Li, Xiang-xian

    2015-11-01

    The four kinds of the structure characteristics of rotary type interferometer are mainly analyzed from the classical Michelson interferometer structure in the paper. The Optical path difference between the interferometer and the rotation angle is also analyzed. By setting parameters, the four kinds of rotary type optical path difference of the interferometer are simulated based on the optical path difference formula. The rotation velcocity of the four kinds of interferometers is also simulated. By simulation and contrast of the optical path difference, the relationship is intuitively reflect by figure between the optical path difference and the rotation angle. The scope of the rotation angle is discussed within 3% of the velocity errors. It is the very good reference significance to study the structure and properties of the interferometer by analyzing and simulating the optical path difference discussed in the paper.

  15. New development in flying qualities with application to rotary wing aircraft

    NASA Technical Reports Server (NTRS)

    Hoh, R. H.

    1982-01-01

    Some recent considerations and developments in handling quality criteria are reviewed with emphasis on using fixed wing experience gained in developing MIL-F-8785C and the more recent MiL Standard and Handbook. Particular emphasis is placed on the tasks and environmental conditions used to develop the criterion boundaries, SAS failures, and potential fixed wing criteria that are applicable to rotary wing aircraft.

  16. Assessment of the Centralization of Root Canal Preparation with Rotary Systems

    PubMed Central

    Lopes, Daniela Siqueira; Pessoa, Mariana Albuquerque Veiga

    2016-01-01

    Objective Apical deviations are important factors in endodontic therapy, since they can cause the treatment failure. The aim of the present study was to determine the centering capacity of ProTaper Universal™, Twisted File™ and Revo-S® rotary systems using cone beam computed tomography analysis before and after the instrumentation of root canals. Materials and Methods Thirty mesiobuccal roots from human lower first molars were divided into three groups of ten: Group 1 - ProTaper Universal™ Rotary System; Group 2 - Twisted File™ Rotary System; and Group 3 - Revo-S® Rotary System. All teeth were scanned using computed tomography to determine the condition of the root canal before and after instrumentation (4mm, 3mm and 2mm from the root apex). Images were made using ICAT VISION software for both instrumented and non-instrumented canals. Results The results were analyzed statistically using the Kolmogorov-Smirnov normality test for quantitative variables. Comparisons were made with two groups (Mann-Whitney - abnormal) and with more than two groups (Kruskal Wallis - abnormal). The level of significance was set at p<0.05. A statistically significant difference was found for the measurement of 4 mm between the “ProTaper Universal” and “Twisted File” systems. For the Twisted File system, a statistically significant difference was recorded between the measurements of 4mm and 3 mm. Conclusion None of the assessed instruments was completely effective in terms of the biomechanical preparation of root canals since all created deviation from the original anatomy of the canal. PMID:27847398

  17. Development of a rotary fluid transfer coupling and support mechanism for space station

    NASA Technical Reports Server (NTRS)

    Bradley, O. H., Jr.; Costulis, J. A.; Porter, A. H.

    1988-01-01

    A design was developed for a rotary fluid coupling to transfer coolant fluids (primarily anhydrous ammonia) across rotating joints of the space station. Development testing using three conceptual designs yielded data which were used to establish the design of a multipass fluid coupling capable of handling three fluid circuits. In addition, a mechanism to support the fluid coupling and allow an astronaut to replace the coupling quickly and easily was designed.

  18. Internal combustion engine with rotary valve assembly having variable intake valve timing

    DOEpatents

    Hansen, Craig N.; Cross, Paul C.

    1995-01-01

    An internal combustion engine has rotary valves associated with movable shutters operable to vary the closing of intake air/fuel port sections to obtain peak volumetric efficiency over the entire range of speed of the engine. The shutters are moved automatically by a control mechanism that is responsive to the RPM of the engine. A foot-operated lever associated with the control mechanism is also used to move the shutters between their open and closed positions.

  19. The Application of Unmanned Rotary-Wing Aircraft in Tactical Logistics in Support of Joint Operations

    DTIC Science & Technology

    2013-12-13

    autonomous unmanned rotary- wing aircraft prototype, specifically the K-MAX and another called the A-160 Hummingbird .18 The A-160 Hummingbird is designed...system that can spot, mark, and target human activity through tree canopy.19 Originally, the Army’s interest in the new A-160 Hummingbird was for...cargo lift capabilities, but it has since shifted its interests to tactical ISR capabilities. The Hummingbird still remains one of the top options for

  20. Effect of rotary instrument associated with different irrigation techniques on removing calcium hydroxide dressing.

    PubMed

    Faria, Gisele; Viola, Kennia Scapin; Kuga, Milton Carlos; Garcia, Arturo Javier Aranda; Daher, Vanessa Bossolani; De Pasquali Leonardo, Mário Francisco; Tanomaru-Filho, Mário

    2014-08-01

    Calcium hydroxide [Ca(OH)2 ] residues in root canals may compromise sealing of filling and endodontic treatment success. The aim of this study was to compare the efficacy of using rotary instrument associated with EndoActivator, EndoVac, passive ultrasonic irrigation (PUI), and conventional needle irrigation (CNI), in Ca(OH)2 removal from root canal, by means of scanning electron microscopy (SEM) images. Sixty-six human canines were prepared with the Protaper system up to F5 and filled with Ca(OH)2 . After 7 days, Ca(OH)2 was removed with rotary instrument F5 associated with the irrigation techniques used in each group (n = 15): GI (CNI), GII (EndoVac), GIII (EndoActivator) and GIV (PUI). In all groups 15 mL of 2.5% NaOCl and 3 mL of 17% EDTA were used for Ca(OH)2 removal. The Ca(OH)2 residues was evaluated by SEM in the middle and apical third using a system of scores. The results were analyzed by the Kruskal-Wallis and Dunn tests (α = 0.05). None of the techniques completely removed the Ca(OH)2 from root canals. There was no difference between EndoActivator, EndoVac and PUI (P > 0.05), but the three techniques removed more Ca(OH)2 than the CNI (P < 0,05), in the middle and apical thirds of the root canal. It was concluded that the rotary instrument combined with EndoActivator, EndoVac, and PUI was shown to be more efficient than the rotary instrument combined with the CNI in removing Ca(OH)2 from the root canal.

  1. NASA Subsonic Rotary Wing Project-Multidisciplinary Analysis and Technology Development: Overview

    NASA Technical Reports Server (NTRS)

    Yamauchi, Gloria K.

    2009-01-01

    This slide presentation reviews the objectives of the Multidisciplinary Analysis and Technology Development (MDATD) in the Subsonic Rotary Wing project. The objectives are to integrate technologies and analyses to enable advanced rotorcraft and provide a roadmap to guide Level 1 and 2 research. The MDATD objectives will be met by conducting assessments of advanced technology benefits, developing new or enhanced design tools, and integrating Level 2 discipline technologies to develop and enable system-level analyses and demonstrations.

  2. Millimeter Wave Synthetic Aperture Imaging System with a Unique Rotary Scanning System

    NASA Technical Reports Server (NTRS)

    Ghasr, M. T.; Pommerenke, D.; Case, J. T.; McClanahan, A. D.; Afaki-Beni, A.; Abou-Khousa, M.; Guinn, K.; DePaulis, F.; Kharkovsky, S.; Zoughi, R.

    2008-01-01

    In recent years, millimeter wave imaging techniques, using synthetic aperture focusing and holographical approaches, have shown tremendous potential for nondestructive testing applications, involving materials and structures used in space vehicles, including the space shuttle external fuel tank spray on foam insulation and its acreage heat tiles. The ability of signals at millimeter wave frequencies (30 - 300 GHz) to easily penetrate inside of low loss dielectric materials, their relatively small wavelengths, and the possibility of detecting coherent (magnitude and phase) reflections make them suitable for high resolution synthetic aperture focused imaging the interior of such materials and structures. To accommodate imaging requirements, commonly a scanning system is employed that provides for a raster scan of the desired structure. However, most such scanners, although simple in design and construction, are inherently slow primarily due to the need to stop and start at the beginning and end of each scan line. To this end, a millimeter wave synthetic aperture focusing system including a custom-designed transceiver operating at 35 - 45 GHz (Q-band) and unique and complex rotary scanner was designed and developed. The rotary scanner is capable of scanning an area with approximately 80 cm in diameter in less than 10 minutes at step sizes of 3 mm and smaller. The transceiver is capable of producing accurate magnitude and phase of reflected signal from the structure under test. Finally, a synthetic aperture focusing algorithm was developed that translates this rotary-obtained magnitude and phase into a synthetic aperture focusing image of inspected structures. This paper presents the design of the transceiver and the rotary scanning system along with showing several images obtained with this system from various complicated structures.

  3. F1 rotary motor of ATP synthase is driven by the torsionally-asymmetric drive shaft

    NASA Astrophysics Data System (ADS)

    Kulish, O.; Wright, A. D.; Terentjev, E. M.

    2016-06-01

    F1F0 ATP synthase (ATPase) either facilitates the synthesis of ATP in a process driven by the proton moving force (pmf), or uses the energy from ATP hydrolysis to pump protons against the concentration gradient across the membrane. ATPase is composed of two rotary motors, F0 and F1, which compete for control of their shared γ -shaft. We present a self-consistent physical model of F1 motor as a simplified two-state Brownian ratchet using the asymmetry of torsional elastic energy of the coiled-coil γ -shaft. This stochastic model unifies the physical concepts of linear and rotary motors, and explains the stepped unidirectional rotary motion. Substituting the model parameters, all independently known from recent experiments, our model quantitatively reproduces the ATPase operation, e.g. the ‘no-load’ angular velocity is ca. 400 rad/s anticlockwise at 4 mM ATP. Increasing the pmf torque exerted by F0 can slow, stop and overcome the torque generated by F1, switching from ATP hydrolysis to synthesis at a very low value of ‘stall torque’. We discuss the motor efficiency, which is very low if calculated from the useful mechanical work it produces - but is quite high when the ‘useful outcome’ is measured in the number of H+ pushed against the chemical gradient.

  4. Rotary cyclone will improve oily water treatment and reduce space requirement/weight on offshore platforms

    SciTech Connect

    Gay, J.C.; Triponey, G.; Bezard, C.; Schummer, P.

    1987-01-01

    A rotary hydrocyclone was developed for the treatment of the produced oily water on offshore platforms. The main advantages of this type of equipment consist in: a few second residence time resulting in a dramatic reduction in weight and volume; higher efficiency when comparing with conventional settling tanks or static cyclones; insensitivity to the platform motion; large flexibility in flow rate and oil concentration in the treated water; low pressure drop requirement; easily adaptable to changing field operating conditions; modular conception facilitating the offshore installation; reduced maintenance and power consumption resulting in a low operating cost. This paper outlines the results of laboratory work conducted initially on a static hydrocylcone and on a rotary cyclone scale model, with the reasons for the differences in performance of the both types of equipment. A field test of a 2 x 25 m/sup 3//h industrial rotary cyclone skid is presented and the field performance analyzed. Finally main features of the industrial units are presented and a comparison with a conventional treatment is made.

  5. F1 rotary motor of ATP synthase is driven by the torsionally-asymmetric drive shaft

    PubMed Central

    Kulish, O.; Wright, A. D.; Terentjev, E. M.

    2016-01-01

    F1F0 ATP synthase (ATPase) either facilitates the synthesis of ATP in a process driven by the proton moving force (pmf), or uses the energy from ATP hydrolysis to pump protons against the concentration gradient across the membrane. ATPase is composed of two rotary motors, F0 and F1, which compete for control of their shared γ -shaft. We present a self-consistent physical model of F1 motor as a simplified two-state Brownian ratchet using the asymmetry of torsional elastic energy of the coiled-coil γ -shaft. This stochastic model unifies the physical concepts of linear and rotary motors, and explains the stepped unidirectional rotary motion. Substituting the model parameters, all independently known from recent experiments, our model quantitatively reproduces the ATPase operation, e.g. the ‘no-load’ angular velocity is ca. 400 rad/s anticlockwise at 4 mM ATP. Increasing the pmf torque exerted by F0 can slow, stop and overcome the torque generated by F1, switching from ATP hydrolysis to synthesis at a very low value of ‘stall torque’. We discuss the motor efficiency, which is very low if calculated from the useful mechanical work it produces - but is quite high when the ‘useful outcome’ is measured in the number of H+ pushed against the chemical gradient. PMID:27321713

  6. Movement kinematics and cyclic fatigue of NiTi rotary instruments: a systematic review.

    PubMed

    Ferreira, F; Adeodato, C; Barbosa, I; Aboud, L; Scelza, P; Zaccaro Scelza, M

    2017-02-01

    The aim of this review was to provide a detailed analysis of the literature concerning the correlation between different movement kinematics and the cyclic fatigue resistance of NiTi rotary endodontic instruments. From June 2014 to August 2015, four independent reviewers comprehensively and systematically searched the Medline (PubMed), EMBASE, Web of Science, Scopus and Google Scholar databases for works published since January 2005, using the following search terms: endodontics; nickel-titanium rotary files; continuous rotation; reciprocating motion; cyclic fatigue. In addition to the electronic searches, manual searches were performed to include articles listed in the reference sections of high-impact published articles that were not indexed in the databases. Laboratory studies in English language were considered for this review. The electronic and manual searches resulted in identification of 75 articles. Based on the inclusion criteria, 32 articles were selected for analysis of full-text copies. Specific analysis was then made of 20 articles that described the effects of reciprocating and continuous movements on cyclic fatigue of the instruments. A wide range of testing conditions and methodologies have been used to compare the cyclic fatigue resistance of rotary endodontic instruments. Most studies report that reciprocating motion improves the fatigue resistance of endodontic instruments, compared to continuous rotation, independent of other variables such as the speed of rotation, the angle or radius of curvature of simulated canals, geometry and taper, or the surface characteristics of the NiTi instruments.

  7. Design and Performance Evaluation of a Rotary Magnetorheological Damper for Unmanned Vehicle Suspension Systems

    PubMed Central

    Lee, Jae-Hoon; Han, Changwan; Ahn, Dongsu; Lee, Jin Kyoo; Park, Sang-Hu; Park, Seonghun

    2013-01-01

    We designed and validated a rotary magnetorheological (MR) damper with a specified damping torque capacity, an unsaturated magnetic flux density (MFD), and a high magnetic field intensity (MFI) for unmanned vehicle suspension systems. In this study, for the rotary type MR damper to have these satisfactory performances, the roles of the sealing location and the cover case curvature of the MR damper were investigated by using the detailed 3D finite element model to reflect asymmetrical shapes and sealing components. The current study also optimized the damper cover case curvature based on the MFD, the MFI, and the weight of the MR damper components. The damping torques, which were computed using the characteristic equation of the MR fluid and the MFI of the MR damper, were 239.2, 436.95, and 576.78 N·m at currents of 0.5, 1, and 1.5 A, respectively, at a disk rotating speed of 10 RPM. These predicted damping torques satisfied the specified damping torque of 475 N·m at 1.5 A and showed errors of less than 5% when compared to experimental measurements from the MR damper manufactured by the proposed design. The current study could play an important role in improving the performance of rotary type MR dampers. PMID:23533366

  8. Design and performance evaluation of a rotary magnetorheological damper for unmanned vehicle suspension systems.

    PubMed

    Lee, Jae-Hoon; Han, Changwan; Ahn, Dongsu; Lee, Jin Kyoo; Park, Sang-Hu; Park, Seonghun

    2013-01-01

    We designed and validated a rotary magnetorheological (MR) damper with a specified damping torque capacity, an unsaturated magnetic flux density (MFD), and a high magnetic field intensity (MFI) for unmanned vehicle suspension systems. In this study, for the rotary type MR damper to have these satisfactory performances, the roles of the sealing location and the cover case curvature of the MR damper were investigated by using the detailed 3D finite element model to reflect asymmetrical shapes and sealing components. The current study also optimized the damper cover case curvature based on the MFD, the MFI, and the weight of the MR damper components. The damping torques, which were computed using the characteristic equation of the MR fluid and the MFI of the MR damper, were 239.2, 436.95, and 576.78 N·m at currents of 0.5, 1, and 1.5 A, respectively, at a disk rotating speed of 10 RPM. These predicted damping torques satisfied the specified damping torque of 475 N·m at 1.5 A and showed errors of less than 5% when compared to experimental measurements from the MR damper manufactured by the proposed design. The current study could play an important role in improving the performance of rotary type MR dampers.

  9. Rotary triboelectric nanogenerator based on a hybridized mechanism for harvesting wind energy.

    PubMed

    Xie, Yannan; Wang, Sihong; Lin, Long; Jing, Qingshen; Lin, Zong-Hong; Niu, Simiao; Wu, Zhengyun; Wang, Zhong Lin

    2013-08-27

    Harvesting mechanical energy is becoming increasingly important for its availability and abundance in our living environment. Triboelectric nanogenerator (TENG) is a simple, cost-effective, and highly efficient approach for generating electricity from mechanical energies in a wide range of forms. Here, we developed a TENG designed for harvesting tiny-scale wind energy available in our normal living environment using conventional materials. The energy harvester is based on a rotary driven mechanical deformation of multiple plate-based TENGs. The operation mechanism is a hybridization of the contact-sliding-separation-contact processes by using the triboelectrification and electrostatic induction effects. With the introduction of polymer nanowires on surfaces, the rotary TENG delivers an open-circuit voltage of 250 V and a short-circuit current of 0.25 mA, corresponding to a maximum power density of ~39 W/m(2) at a wind speed of ~15 m/s, which is capable of directly driving hundreds of electronic devices such as commercial light-emitting diodes (LEDs), or rapidly charging capacitors. The rotary TENG was also applied as a self-powered sensor for measuring wind speed. This work represents a significant progress in the practical application of the TENG and its great potential in the future wind power technology. This technology can also be extended for harvesting energy from ocean current, making nanotechnology reaching our daily life a possibility in the near future.

  10. CFD modeling using PDF approach for investigating the flame length in rotary kilns

    NASA Astrophysics Data System (ADS)

    Elattar, H. F.; Specht, E.; Fouda, A.; Bin-Mahfouz, Abdullah S.

    2016-12-01

    Numerical simulations using computational fluid dynamics (CFD) are performed to investigate the flame length characteristics in rotary kilns using probability density function (PDF) approach. A commercial CFD package (ANSYS-Fluent) is employed for this objective. A 2-D axisymmetric model is applied to study the effect of both operating and geometric parameters of rotary kiln on the characteristics of the flame length. Three types of gaseous fuel are used in the present work; methane (CH4), carbon monoxide (CO) and biogas (50 % CH4 + 50 % CO2). Preliminary comparison study of 2-D modeling outputs of free jet flames with available experimental data is carried out to choose and validate the proper turbulence model for the present numerical simulations. The results showed that the excess air number, diameter of kiln air entrance, radiation modeling consideration and fuel type have remarkable effects on the flame length characteristics. Numerical correlations for the rotary kiln flame length are presented in terms of the studied kiln operating and geometric parameters within acceptable error.

  11. Simulation of collective behaviour in micro-scale swimmers: Effects of tumbling and rotary diffusion

    NASA Astrophysics Data System (ADS)

    Krishnamurthy, Deepak; Subramanian, Ganesh

    2013-11-01

    Recent experiments have shown that suspensions of swimming micro-organisms are characterized by complex dynamics involving enhanced swimming speeds, large-scale correlated motions and enhanced tracer diffusion. Understanding this dynamics is of fundamental interest and also has relevance to biological systems. In this work we develop a particle-based computational model to study a suspension of hydrodynamically interacting rod-like swimmers with the relation between the swimming velocity and intrinsic stress being enforced from slender body theory. Such an a priori specification reduces the computational cost since one now has a ``kinematic'' simulation with a fixed interaction law between swimmers; this does not restrict our study of the dynamics since the destabilizing mechanism has been attributed to the intrinsic (rather than the induced) stress field. Importantly, the model will include intrinsic de-correlation mechanisms found in bacteria such as rotary diffusion and tumbling whose effects have so far not been studied via simulations. Using this model we predict a box-size independent stability threshold based on the suspension concentration, tumble-time (duration between subsequent tumble events) and rotary diffusivity. Comparisons are made with the linear stability theory predictions by Subramanian & Koch (JFM 2009). We demonstrate that the effect of tumbling and rotary diffusion is to stabilize the suspension.

  12. Leaching from waste incineration bottom ashes treated in a rotary kiln.

    PubMed

    Hyks, Jiri; Nesterov, Igor; Mogensen, Erhardt; Jensen, Peter A; Astrup, Thomas

    2011-10-01

    Leaching from municipal solid waste incineration bottom ash treated in a rotary kiln was quantified using a combination of lab-scale leaching experiments and geochemical modelling. Thermal treatment in the rotary kiln had no significant effect on the leaching of Al, Ba, Ca, Mg, Si, Sr, Zn, sulfate and inorganic carbon. Leaching of these elements from the treated residues remained unchanged and was, in general, controlled by solubility of the same minerals as in the untreated residues. Leaching of Cd, Co, Ni, Ti, Be, Bi, and Sn from both untreated and treated residues was found to be close to or below their detection limits; no effects of the thermal treatment on leachability of these metals were observed. The leaching of Cl, dissolved organic carbon (DOC), Cu and Pb decreased by at least one order of magnitude after the thermal treatment. This could be explained by evaporation (Cl) and by a better burnout of organic matter which then limited metal-DOC complexation and mobility. At the same time, leaching of Mo and Cr appeared to increase by a factor of 4 and more than two orders of magnitude, respectively. The large changes in Cr leaching may be explained by decreases in Al reduction capacity after the thermal treatment. Overall, rotary kiln thermal treatment of bottom ashes can be recommended to reduce the leaching of Cu, Pb, Cl and DOC; however, increased leaching of Cr and Mo should be expected.

  13. Environmental impact of incineration of calorific industrial waste: rotary kiln vs. cement kiln.

    PubMed

    Vermeulen, Isabel; Van Caneghem, Jo; Block, Chantal; Dewulf, Wim; Vandecasteele, Carlo

    2012-10-01

    Rotary kiln incinerators and cement kilns are two energy intensive processes, requiring high temperatures that can be obtained by the combustion of fossil fuel. In both processes, fossil fuel is often substituted by high or medium calorific waste to avoid resource depletion and to save costs. Two types of industrial calorific waste streams are considered: automotive shredder residue (ASR) and meat and bone meal (MBM). These waste streams are of current high interest: ASR must be diverted from landfill, while MBM can no longer be used for cattle feeding. The environmental impact of the incineration of these waste streams is assessed and compared for both a rotary kiln and a cement kiln. For this purpose, data from an extensive emission inventory is applied for assessing the environmental impact using two different modeling approaches: one focusing on the impact of the relevant flows to and from the process and its subsystems, the other describing the change of environmental impact in response to these physical flows. Both ways of assessing emphasize different aspects of the considered processes. Attention is paid to assumptions in the methodology that can influence the outcome and conclusions of the assessment. It is concluded that for the incineration of calorific wastes, rotary kilns are generally preferred. Nevertheless, cement kilns show opportunities in improving their environmental impact when substituting their currently used fuels by more clean calorific waste streams, if this improvement is not at the expense of the actual environmental impact.

  14. Gutta-percha retreatment: effectiveness of nickel-titanium rotary instruments versus stainless steel hand files.

    PubMed

    Barrieshi-Nusair, Kefah M

    2002-06-01

    This study compared the cleanliness of the root canal walls after retreatment using nickel titanium (NiTi) rotary and stainless steel (SS) files. Also compared were time of retreatment and canal deviation. Forty extracted canines were step-back prepared and obturated with gutta-percha and sealer. Retreatment was performed either by using chloroform and SS hand files or chloroform and NiTi rotary files. Time for retreatment was recorded. Radiographs of the root canal system before and after retreatment were made. Teeth were split longitudinally, photographed, and projected onto a screen. The amount of gutta-percha/sealer remaining on the canal walls was then traced and measured. The amount remaining was analyzed and compared statistically between NiTi and SS groups by t test. Results showed that the mean percentage of wall coverage by remaining obturating material in the SS group was 13.6% and was 15.2% for the NiTi group. There was no statistically significant difference (p = 0.361). No severe canal deviation occurred with either retreatment method. Mean retreatment time for the SS group was 6.3 min and 7.9 min for the NiTi group; the difference was statistically significant (t test p < 0.001). In conclusion, NiTi rotary and SS hand were similar in material remaining after retreatment, but SS hand was a bit faster.

  15. Manipulator having thermally conductive rotary joint for transferring heat from a test specimen

    DOEpatents

    Haney, S.J.; Stulen, R.H.; Toly, N.F.

    1983-05-03

    A manipulator for rotatably moving a test specimen in an ultra-high vacuum chamber includes a translational unit movable in three mutually perpendicular directions. A manipulator frame is rigidly secured to the translational unit for rotatably supporting a rotary shaft. A first copper disc is rigidly secured to an end of the rotary shaft for rotary movement within the vacuum chamber. A second copper disc is supported upon the first disc. The second disc receives a cryogenic cold head and does not rotate with the first disc. The second disc receives a cryogenic cold head and does not rotate with the first disc. A sapphire plate is interposed between the first and second discs to prevent galling of the copper material while maintaining high thermal conductivity between the first and second discs. A spring is disposed on the shaft to urge the second disc toward the first disc and compressingly engage the interposed sapphire plate. A specimen mount is secured to the first disc for rotation within the vacuum chamber. The specimen maintains high thermal conductivity with the second disc receiving the cryogenic transfer line.

  16. Manipulator having thermally conductive rotary joint for transferring heat from a test specimen

    DOEpatents

    Haney, Steven J.; Stulen, Richard H.; Toly, Norman F.

    1985-01-01

    A manipulator for rotatably moving a test specimen in an ultra-high vacuum chamber includes a translational unit movable in three mutually perpendicular directions. A manipulator frame is rigidly secured to the translational unit for rotatably supporting a rotary shaft. A first copper disc is rigidly secured to an end of the rotary shaft for rotary movement within the vacuum chamber. A second copper disc is supported upon the first disc. The second disc receives a cryogenic cold head and does not rotate with the first disc. A sapphire plate is interposed between the first and second discs to prevent galling of the copper material while maintaining high thermal conductivity between the first and second discs. A spring is disposed on the shaft to urge the second disc toward the first disc and compressingly engage the interposed sapphire plate. A specimen mount is secured to the first disc for rotation within the vacuum chamber. The specimen maintains high thermal conductivity with the second disc receiving the cryogenic transfer line.

  17. Comparative analysis of core drilling and rotary drilling in volcanic terrane

    SciTech Connect

    Flynn, T.; Trexler, D.T.; Wallace, R.H. Jr.

    1987-04-01

    Initially, the goal of this report is to compare and contrast penetration rates of rotary-mud drilling and core drilling in young volcanic terranes. It is widely recognized that areas containing an abundance of recent volcanic rocks are excellent targets for geothermal resources. Exploration programs depend heavily upon reliable subsurface information, because surface geophysical methods may be ineffective, inconclusive, or both. Past exploration drilling programs have mainly relied upon rotary-mud rigs for virtually all drilling activity. Core-drilling became popular several years ago, because it could deal effectively with two major problems encountered in young volcanic terranes: very hard, abrasive rock and extreme difficulty in controlling loss of circulation. In addition to overcoming these difficulties, core-drilling produced subsurface samples (core) that defined lithostratigraphy, structure and fractures far better than drill-chips. It seemed that the only negative aspect of core drilling was cost. The cost-per-foot may be two to three times higher than an ''initial quote'' for rotary drilling. In addition, penetration rates for comparable rock-types are often much lower for coring operations. This report also seeks to identify the extent of wireline core drilling (core-drilling using wireline retrieval) as a geothermal exploration tool. 25 refs., 21 figs., 13 tabs.

  18. Rotary motion of a micro-solid particle under a stationary difference of electric potential

    NASA Astrophysics Data System (ADS)

    Kurimura, Tomo; Mori, Seori; Miki, Masako; Yoshikawa, Kenichi

    2016-07-01

    The periodic rotary motion of spherical sub-millimeter-sized plastic objects is generated under a direct-current electric field in an oil phase containing a small amount of anionic or cationic surfactant. Twin-rotary motion is observed between a pair of counter-electrodes; i.e., two vortices are generated simultaneously, where the line between the centers of rotation lies perpendicular to the line between the tips of the electrodes. Interestingly, this twin rotational motion switches to the reverse direction when an anionic surfactant is replaced by a cationic surfactant. We discuss the mechanism of this self-rotary motion in terms of convective motion in the oil phase where nanometer-sized inverted micelles exist. The reversal of the direction of rotation between anionic and cationic surfactants is attributable to the difference in the charge sign of inverted micelles with surfactants. We show that the essential features in the experimental trends can be reproduced through a simple theoretical model, which supports the validity of the above mechanism.

  19. A new rotary blood pump for versatile extracorporeal circulation: the DeltaStream.

    PubMed

    Göbel, C; Arvand, A; Rau, G; Reul, H; Meyns, B; Flameng, W; Eilers, R; Marseille, O

    2002-09-01

    Today, rotary pumps are routinely used for extracorporeal circulation in different clinical settings and applications. A review of these applications and specific limitations in extracorporeal perfusion was performed and served as a basis for the development of the DeltaStream. The DeltaStreams is a miniaturized rotary blood pump of a new and unique design with an integrated drive unit. Despite its small design, the pump maintains a sufficient hydraulic capacity, which makes the DeltaStream very flexible for intra- and perioperative applications. It also opens the field for short-term ventricular assist devices (VAD) applications or use as a component in extracorporeal life support systems (ECLS). The DeltaStream and, specifically, its impeller design have been optimized with respect to haemolysis and nonthrombogenicity. Also, the pump facilitates an effective pulse generation in VAD applications and simulates heart action in a more physiological way than other rotary pumps or roller pumps. Hydraulic and haematological properties have been tested in vitro and in vivo. In a series of seven animal experiments in two different setups, the pump demonstrated its biocompatibility and applicability. Basic aspects of the DeltaStream pump concept as well as important console features are presented. A summary of the final investigation of this pump is given with focus on hydraulic capabilities and results from animal studies.

  20. Dietary adequacy of the rotary diversified diet as a treatment for "Environmental Illness".

    PubMed

    Taylor, Jennifer P; Krondl, Magdalena M; Spidel, Mark; Csima, Adele C

    2002-01-01

    The rotary diversified diet, used in the management of environmental illness, consists of eliminating prohibited foods from the diet and rotating remaining non-prohibited foods and their "food families" within a regular cycle. We assessed the adequacy of nutrient intakes in 22 women prescribed the diet, described the nature of supplement use, and assessed the relationship between adherence and nutrient intake levels. Except for calcium and folacin intakes, mean nutrient intakes met or exceeded recommended levels. No subjects had calcium intakes above the adequate intake for calcium; 72.7% had folate intakes below the estimated average requirement. Intakes of other nutrients, except thiamin and magnesium, were below the estimated average requirement in less than 25% of the sample; 31.8% and 45.5% of subjects, respectively, had thiamin and magnesium intakes at this level. Those who adhered more closely to the rotary diversified diet had higher intakes of vitamin C, vitamin B6, folate, and fibre than did those who followed the diet less closely. Supplements conferred some nutritional benefits; however, supplemental niacin and magnesium intakes exceeded tolerable upper intake levels. Those prescribed the rotary diversified diet require nutrition counselling from dietitians to cope with the complexity and restrictiveness of the diet.

  1. Design and Implementation of an Electromagnetic Energy Harvester for Linear and Rotary Motion Applications

    NASA Astrophysics Data System (ADS)

    Hekmati, Alireza

    This thesis presents a new design for an electromagnetic energy harvester to be used in both linear and rotary motion applications. This electromagnetic energy harvester consists of a moving coil within a fixed magnetic circuit. This magnetic circuit comprises of a permanent magnet (as a magnetic source), a magnetic conductor (such as iron), and an air gap to create a space for coil movement inside energy harvester setup. In the parameter study of this electromagnetic energy harvester, it has been demonstrated that applying design modifications will improve the amount of induced voltage by %50. For linear motion applications, the energy harvester has been mounted on a linear motor and the experimental results indicated that when the coil movements' speed is 70 [mm/s], the maximum harvested power is 5.320 [mW]. For rotary motion applications, first a voice coil speaker has been used as a single degree of freedom system to produce voltage through a rotating beam and hub. Since in lower resonance frequencies, the maximum induced voltage is quite low, thus in next step, the two degrees of freedom energy harvesting system for rotary motion applications has been introduced. This system has been mounted on a car ring and the result illustrated that at the resonance frequency (15 [Hz]), the induced voltage was 0.175 [V] for each coil.

  2. Development and evaluation of a rotary cell for capillary electrophoresis-chemiluminescence detection.

    PubMed

    Wang, Junhua; Li, Linmei; Huang, Weihua; Cheng, Jieke

    2010-06-15

    Many efforts have been made toward the advancement of capillary electrophoresis chemiluminescence (CE-CL) detection and its applications through continuous development and improvement of interfaces. In this study, a novel rotary cell for CE-CL detection was fabricated and evaluated. A ring-shaped narrow channel with a quartz bottom is made in a cell body to hold CL reactants and act as the reaction chamber. The CE capillary is placed closely to the bottom of the reaction chamber where analyte is deposited into the CL reactants for reactions to occur. Detection is achieved with a photomultiplier tube below the reaction channel. An advantage of the rotary reaction cell is that it renews the reactants at the capillary end as it revolves at a preset speed during experiments. The rotary detection cell presents a new concept to the conventional coaxial-flow configuration by solving the problems of bubble formation and flow blockage that often interrupt the electrophoresis. Two standard proteins, horseradish peroxidase (HRP) and hemoglobin (Hb), were used to evaluate the interface's performance with luminol/H(2)O(2) CL system. Satisfactory sensitivities (LOD of 0.91 x 10(-9) M for HRP, and 4.37 x 10(-8) M for Hb at S/N = 3) were obtained in this proof-of-concept experiment. This novel design provides a straightforward and robust interface for CE-CL hyphenation.

  3. Design of a knee and leg muscle exerciser for paraplegics using a shape memory alloy rotary joint actuator

    NASA Astrophysics Data System (ADS)

    Wang, Guoping; Shahinpoor, Mohsen

    1998-07-01

    This paper presents a design of an active knee and leg muscle exerciser using a shape memory alloy (SMA) rotary joint actuator. This active exerciser is designed for a paraplegic to exercise his or her knee and leg muscles. The exerciser is composed of a lower extremity orthosis or a knee brace, an SMA rotary joint actuator, and an electronic control unit. The lower extremity orthosis and knee brace are commercially available. The analysis model of the SMA rotary joint actuator is introduced and the design formulas are derived. A quasi-static analysis of the SMA rotary joint actuator is assumed in this design. The actuating component of the SMA rotary joint actuator is a bundle of lengthy SMA wires which are wrapped on several wrapping pulleys. A constant force spring is incorporated in this actuator to provide the SMA wires with a bias force to maintain a recoverable initial position of the actuator. A prototype of the active knee and leg muscle exerciser is designed, and an electronic control unit in the prototype provides users with a means of adjusting forward rotation speed and cycle time of the exerciser.

  4. [Comparison of fixation effects of heavy metals between cement rotary kiln co-processing and cement solidification/stabilization].

    PubMed

    Zhang, Jun-li; Liu, Jian-guo; Li, Cheng; Jin, Yi-ying; Nie, Yong-feng

    2008-04-01

    Both cement rotary kiln co-processing hazardous wastes and cement solidification/stabilization could dispose heavy metals by fixation. Different fixation mechanisms lead to different fixation effects. The same amount of heavy metal compounds containing As, Cd, Cr, Cu, Pb, Zn were treated by the two kinds of fixation technologies. GB leaching test, TCLP tests and sequential extraction procedures were employed to compare the fixation effects of two fixation technologies. The leached concentration and chemical species distribution of heavy metals in two grounded mortar samples were analyzed and the fixation effects of two kinds of technologies to different heavy metals were compared. The results show the fixation effect of cement rotary kiln co-processing technology is better than cement solidification/stabilization technology to As, Pb, Zn. Calcinations in cement rotary kiln and then hydration help As, Pb, Zn contained in hazardous wastes transform to more steady chemical species and effectively dispose these heavy metals compounds. Cr3+ is liable to be converted to much more toxic and more mobile Cr6+ state in cement rotary kiln. And so Cr wastes are more fit for treatment by cement solidification/stabilization technology. The work could provide a basis when choosing disposal technologies for different heavy metals and be helpful to improve the application and development of cement rotary kiln co-processing hazardous wastes.

  5. Dust emissions created by low-level rotary-winged aircraft flight over desert surfaces

    NASA Astrophysics Data System (ADS)

    Gillies, J. A.; Etyemezian, V.; Kuhns, H.; McAlpine, J. D.; King, J.; Uppapalli, S.; Nikolich, G.; Engelbrecht, J.

    2010-03-01

    There is a dearth of information on dust emissions from sources that are unique to U.S. Department of Defense testing and training activities. Dust emissions of PM 10 and PM 2.5 from low-level rotary-winged aircraft travelling (rotor-blade ≈7 m above ground level) over two types of desert surfaces (i.e., relatively undisturbed desert pavement and disturbed desert soil surface) were characterized at the Yuma Proving Ground (Yuma, AZ) in May 2007. Fugitive emissions are created by the shear stress of the outflow of high speed air created by the rotor-blade. The strength of the emissions was observed to scale primarily as a function of forward travel speed of the aircraft. Speed affects dust emissions in two ways: 1) as speed increases, peak shear stress at the soil surface was observed to decline proportionally, and 2) as the helicopter's forward speed increases its residence time over any location on the surface diminishes, so the time the downward rotor-generated flow is acting upon that surface must also decrease. The state of the surface over which the travel occurs also affects the scale of the emissions. The disturbed desert test surface produced approximately an order of magnitude greater emission than the undisturbed surface. Based on the measured emission rates for the test aircraft and the established scaling relationships, a rotary-winged aircraft similar to the test aircraft traveling 30 km h -1 over the disturbed surface would need to travel 4 km to produce emissions equivalent to one kilometer of travel by a light wheeled military vehicle also traveling at 30 km h -1 on an unpaved road. As rotary-winged aircraft activity is substantially less than that of off-road vehicle military testing and training activities it is likely that this source is small compared to emissions created by ground-based vehicle movements.

  6. Effectiveness of rotary or manual techniques for removing a 6-year-old filling material.

    PubMed

    Duarte, Marco Antônio Hungaro; Só, Marcus Vinícius Reis; Cimadon, Vanessa Buffon; Zucatto, Cristiane; Vier-Pelisser, Fabiana Vieira; Kuga, Milton Carlos

    2010-01-01

    The aim of this study was to evaluate the effectiveness of manual and rotary instrumentation techniques for removing root fillings after different storage times. Twenty-four canals from palatal roots of human maxillary molars were instrumented and filled with gutta-percha and zinc-oxide eugenol-based sealer (Endofill) , and were stored in saline for 6 years. Non-aged control specimens were treated in the same manner and stored for 1 week. All canals were retreated using hand files or ProTaper Universal NiTi rotary system. Radiographs were taken to determine the amount of remaining material in the canals. The roots were vertically split, the halves were examined with a clinical microscope and the obtained images were digitized. The images were evaluated with AutoCAD software and the percentage of residual material was calculated. Data were analyzed with two-way ANOVA and Tukey's test at 5% significance level. There was no statistically significant differences (p>0.05) between the manual and rotary techniques for filling material removal regardless the ageing effect on endodontic sealers. When only the age of the filling material was analyzed microscopically, non-aged fillings that remained on the middle third of the canals presented a higher percentage of material remaining (p<0.05) compared to the aged sealers and to the other thirds of the roots. The apical third showed a higher percentage of residual filling material in both radiographic and microscopic analysis when compared to the other root thirds. In conclusion, all canals presented residual filling material after endodontic retreatment procedures. Microscopic analysis was more effective than radiographs for detection of residual filling material.

  7. Cleaning Effectiveness of Three NiTi Rotary Instruments: A Focus on Biomaterial Properties.

    PubMed

    Poggio, Claudio; Dagna, Alberto; Chiesa, Marco; Beltrami, Riccardo; Bianchi, Stefano

    2015-02-16

    Nickel-titanium (NiTi) instruments are commonly used for shaping the root canal system in endodontic practice. They are more flexible and have better cutting efficiency than conventional stainless steel files. The superelasticity of NiTi rotary files allows the clinicians to produce the desirable tapered root canal form with a reduced tendency to canal transportation and instrument fracture. HyFlex CM instruments are new NiTi rotary instruments with shape memory produced by an innovative methodology (patent pending) that uses a complex heating and cooling treatment that controls the material's memory. The aim of the present study was to compare the cleaning efficacy of two conventional (Mtwo, Revo-S) Ni-Ti rotary instruments with HyFlex CM. 30 single-rooted freshly extracted teeth were divided into three groups. Root canals were shaped with three NiTi instruments (Mtwo, Revo-S and HyFlex CM) using 5.25% NaOCl and 17% EDTA solutions. Specimens were fractured longitudinally and prepared for SEM analysis at standard magnification of 1000×. The presence/absence of debris smear layer and the presence/absence of smear layer at coronal, middle, and apical third of each canal were evaluated using a 5-step scale for scores. Numeric data were analyzed using Kruskall-Wallis and Mann-Whitney U statistical tests and significance was predetermined at P < 0.05. This study revealed significant differences among the various groups. Despite some minor differences, all instruments removed smear layer and debris produced during instrumentation. HyFlex CM seem to be not so effective in promoting cleanliness of root canal walls and in removing smear layer from dentine if compared to Mtwo and Revo-S.

  8. Comparison of Cyclic Fatigue Resistance of Five Nickel Titanium Rotary File Systems with Different Manufacturing Techniques

    PubMed Central

    Aminsobhani, Mohsen; Sadri, Ehsan

    2015-01-01

    Objectives: The purpose of this study was to evaluate the resistance to fatigue failure of five different nickel-titanium rotary files in three different curved trajectories. Materials and Methods: A total of 150 Neoniti A1, RaCe 25.06, Mtwo 25.06, Twisted file 25.06 and ProTaper Next X2 files with the tip size of 25 were tested (n=30 for each group). Three groove types simulating curved canals were used differing in radius, arc length and position of the arc, each measuring 1.5 mm in width, 20 mm in total length and 2.5 in depth. Resistance to cyclic fatigue was determined by counting the numbers of cycles to failure. Furthermore, the fragment length of the fractured tips and angle and radius of curvature formed by each file in each trajectory were evaluated. The data were analyzed by t-test, one way ANOVA and Tukey’s HSD test. Results: Neoniti showed the highest and RaCe showed the lowest number of cycles to fracture (NCF) values (P<0.05), indicating the highest and lowest fatigue resistance, respectively. The highest and lowest curvature angles were seen in RaCe and Neoniti, respectively. Regarding the radius of curvature, Twisted file had the lowest and Neoniti had the highest values. The mean NCF of all rotary files was lower in the more coronally curved trajectory. Conclusion: The fatigue resistance of the evaluated rotary files was lower in more coronally located curvatures. Neoniti exhibited the highest and RaCe exhibited the lowest fatigue resistance compared to other evaluated files. PMID:27148374

  9. Integrated Status and Effectiveness Monitoring Program - Entiat River Snorkel Surveys and Rotary Screw Trap, 2007.

    SciTech Connect

    Nelle, R.D.

    2008-01-01

    The USFWS Mid-Columbia River Fishery Resource Office conducted snorkel surveys at 24 sites during the summer and fall periods of 2006 survey periods as part of the Integrated Status and Effectiveness Monitoring Program in the Entiat River. A total of 37,938 fish from 15 species/genera and an unknown category were enumerated. Chinook salmon were the overall most common fish observed and comprised 15% of fish enumerated followed by rainbow trout (10%) and mountain whitefish (7%). Day surveys were conducted during the summer period 2007 (August), while night surveys were conducted during the fall 2007 (October) surveys. The USFWS Mid-Columbia River Fishery Resource Office (MCFRO) operated two rotary screw traps on the Entiat River as part of the Integrated Status and Effectiveness Monitoring Program (ISEMP) program from August through November of 2007. Along with the smolt traps, juvenile emigrants were also captured at remote locations throughout the Entiat watershed and its major tributary, the Mad River. A total of 999 wild Oncorhynchus mykiss and 5,107 wild run O. tshawytscha were PIT tagged during the study period. Rotary screw trap efficiencies averaged 22.3% for juvenile O. tshawytscha and 9.0% for juvenile O. mykiss. Rotary screw traps operated 7 days a week and remote capture operations were conducted when flow and temperature regimes permitted. This is third annual progress report to Bonneville Power Administration for the snorkel surveys conducted in the Entiat River as related to long-term effectiveness monitoring of restoration programs in this watershed. The objective of this study is to monitor the fish habitat utilization of planned in-stream restoration efforts in the Entiat River by conducting pre- and post-construction snorkel surveys at selected treatment and control sites.

  10. Principle and experimental verification of novel dual driving face rotary ultrasonic motor

    NASA Astrophysics Data System (ADS)

    Lu, Xiaolong; Hu, Junhui; Yang, Lin; Zhao, Chunsheng

    2013-09-01

    Existing rotary ultrasonic motors operating in extreme environments cannot meet the requirements of good environmental adaptability and compact structure at same time, and existing ultrasonic motors with Langevin transducers show better environmental adaptability, but size of these motors are usually big due to the radial arrangement of the Langevin transducers. A novel dual driving face rotary ultrasonic motor is proposed, and its working principle is experimentally verified. The working principle of the novel ultrasonic motor is firstly proposed. The 5th in-plane flexural vibration travelling wave, excited by the Langevin transducers around the stator ring, is used to drive the rotors. Then the finite element method is used in the determination of dimensions of the prototype motor, and the confirmation of its working principle. After that, a laser Doppler vibrometer system is used for measuring the resonance frequency and vibration amplitude of the stator. At last, output characteristics of the prototype motor are measured, environmental adaptability is tested and performance for driving a metal ball is also investigated. At room temperature and 200 V(zero to peak) driving voltage, the motor’s no-load speed is 80 r/min, the stalling torque is 0.35 N·m and the maximum output power is 0.85 W. The response time of this motor is 0.96 ms at the room temperature, and it decreases or increases little in cold environment. A metal ball driven by the motor can rotate at 210 r/min with the driving voltage 300 V(zero to peak). Results indicate that the prototype motor has a large output torque and good environmental adaptability. A rotary ultrasonic motor owning compact structure and good environmental adaptability is proposed, and lays the foundations of ultrasonic motors’ applications in extreme environments.

  11. PREPP (Process Experimental Pilot Plant) rotary kiln seals: Problem and resolution

    SciTech Connect

    Drexler, R.L. )

    1990-01-01

    The Process Experimental Pilot Plant (PREPP) is a facility designed to demonstrate processing of low level chemical and transuranic hazardous waste. The plant includes equipment for handling the incoming waste containers, shredding, incineration and cooling the waste, grouting the residue and scrubbing and filtration of the off gas. The process incinerator is a rotary kiln approximately 8-{1/2} ft diameter and 25 ft long with a rotary seal assembly at each end. Each seal assembly consists of a primary, secondary and tertiary seal, with a positive air pressure between primary and secondary seals to prevent out-leakage from the kiln. The kiln operates at 0.5 inch water negative pressure. From the very outset the kiln seals exhibited excessive drag which taxed the kiln drive capacity and excessive in-leakage which limited kiln temperature. An engineering evaluation concluded that the original seals supplied by the kiln vendor could not accommodate expansion and centerline shift of the kiln resulting from heatup of the kiln and its support system. A totally new concept kiln seal design has been generated to replace the (modified) original seals. This new seal system has been designed to provide a very tight long lasting seal which will accommodate the 1.5 inch axial shift and up to 1 inch radial movement of the kiln shell. Design lifetime of the seal is 10,000 operating hours between major maintenance services while maintaining an acceptable leak rate hot or cold, rotating or stopped. The design appears adaptable to any size kiln and is suitable for retrofit to existing kilns. A one-third scale prototype seal assembly is being built to verify the concept prior to construction of the 10 ft diameter seals for the PREPP rotary kiln. 4 figs.

  12. Efficacy of Electronic Foramen Locators in Controlling Root Canal Working Length during Rotary Instrumentation.

    PubMed

    Parente, Lorena Arruda; Levin, Martin D; Vivan, Rodrigo Ricci; Bernardes, Ricardo Affonso; Duarte, Marco Antonio Hungaro; Vasconcelos, Bruno Carvalho de

    2015-10-01

    The present study evaluated the efficacy of electronic foramen locators (EFLs) to control root canal working length during rotary instrumentation and to assess possible reliability variations of different working lengths. Forty-eight human mandibular bicuspids were randomly divided in 2 groups according to the used device, Root ZX II (RZX) and Propex II (PRO). They were further subdivided in 2 subgroups according to the root canal preparation level (0.0 and -1.0). Preparation was performed with the Protaper rotary system using a crown-down technique. RZX was employed on its automatic auto-reverse mode (AAR) and PRO was used with the MPAS-10R contra-angle to monitor the preparation. The last used file (F3) was fixed, and the apical portion of the teeth was worn buccolingually, allowing to measure the extent between the file tip and the apical foramen (AF). The precision values of 0.0 mm and -1.0 mm were 100% and 0.0% for RZX, and 100% and 66.7% for PRO, respectively, with a range of ±0.5 mm. Statistical analysis showed no differences between the groups at 0.0 mm. However, at -1.0 mm, RZX showed the poorest results (0.96±0.11 mm), followed by PRO (0.43±0.23 mm). The difference between RZX and PRO was statistically significant. The EFLs were precise in maintaining the working length during rotary preparation when reaching the AF, but when their penetration was limited, both devices showed decreased precision; the RZX AAR failed in all instances.

  13. Comparing Rotary Bend Wire Fatigue Test Methods at Different Test Speeds

    NASA Astrophysics Data System (ADS)

    Weaver, Jason D.; Gutierrez, Erick J.

    2015-12-01

    Given its relatively simple setup and ability to produce results quickly, rotary bend fatigue testing is becoming commonplace in the medical device industry and is the subject of a new standard test method ASTM E2948-14. Although some research has been conducted to determine if results differ for different rotary bend fatigue test setups or test speeds, these parameters have not been extensively studied together. In this work, we investigate the effects of these two parameters on the fatigue life of three commonly used medical device alloys (ASTM F2063 nitinol, ASTM F138 stainless steel, and ASTM F1058 cobalt chromium). Results with three different rotary bend fatigue test setups revealed no difference in fatigue life among those setups. Increasing test speed, however, between 100 and 35,000 RPM led to an increased fatigue life for all three alloys studied (average number of cycles to fracture increased between 2.0 and 5.1 times between slowest and fastest test speed). Supplemental uniaxial tension tests of stainless steel wire at varying strain rates showed a strain rate dependence in the mechanical response which could in part explain the increased fatigue life at faster test speeds. How exactly strain rate dependence might affect the fatigue properties of different alloys at different alternating strain values requires further study. Given the difference in loading rates between benchtop fatigue tests and in vivo deformations, the potential for strain rate dependence should be considered when designing durability tests for medical devices and in extrapolating results of those tests to in vivo performance.

  14. Automatic system for noninvasive blood pressure determination in rotary pump recipients.

    PubMed

    Schima, Heinrich; Boehm, Herbert; Huber, Leopold; Schmallegger, Helmut; Vollkron, Michael; Hiesmayr, Michael; Noisser, Robert; Wieselthaler, Georg

    2004-05-01

    In patients with implanted rotary pumps, the arterial pressure pulsatility is usually far lower than in normal individuals. Depending on the remaining degree of pulsatility, cuff-based systems such as the classical Riva-Rocci-determination of arterial blood pressure and correlated sounds or pressure measurements based on cuffpressure oscillations become inaccurate or even impossible. Therefore, a system was developed which evaluates the flow in the radial artery using an ultrasound wristwatch sensor, and this additional information is used for pressure determination. A computerized data acquisition and cuff-control system based on a PC using Matlab software, a wristwatch ultrasound device, and a compressor-driven pressure cuff was set up. The cuff was controlled for automatic inflation and deflation cycles. Cuff pressure and arterial flow was recorded. Several algorithm strategies were developed, which gave data for systolic blood pressure and heart rate together with a reliability index for data quality. Finally, the new algorithms were implemented in a microcontroller system. Comparisons with invasive measurements showed excellent correlation with systolic blood pressure (mean deltaP -0.3 mm Hg, n = 28). During exercise of rotary pump patients and therefore enhanced pulsatility the difference from manual evaluation was -2.1 mm Hg (n = 18). In conclusion, adaptation of the classical cuff-pressure method with ultrasound evaluation of peripheral flow allows reliable determination of blood pressure in patients with low pulsatility resulting from implanted rotary cardiac assist pumps. By development of a wristwatch sensor and an automatic control system a robust method for daily use could be developed.

  15. Rotary Drum Separator and Pump for the Sabatier Carbon Dioxide Reduction System

    NASA Technical Reports Server (NTRS)

    Holder, Don; Fort, James; Barone, Michael; Murdoch, Karen

    2005-01-01

    A trade study conducted in 2001 selected a rotary disk separator as the best candidate to meet the requirements for an International Space Station (ISS) Carbon Dioxide Reduction Assembly (CRA). The selected technology must provide micro-gravity gasfliquid separation and pump the liquid from 10 psia at the gasfliquid interface to 18 psia at the wastewater bus storage tank. The rotary disk concept, which has pedigree in other systems currently being built for installation on the ISS, failed to achieve the required pumping head within the allotted power. The separator discussed in this paper is a new design that was tested to determine compliance with performance requirements in the CRA. The drum separator and pump @SP) design is similar to the Oxygen Generator Assembly (OGA) Rotary Separator Accumulator (RSA) in that it has a rotating assembly inside a stationary housing driven by a integral internal motor. The innovation of the DSP is the drum shaped rotating assembly that acts as the accumulator and also pumps the liquid at much less power than its predecessors. In the CRA application, the separator will rotate at slow speed while accumulating water. Once full, the separator will increase speed to generate sufficient head to pump the water to the wastewater bus. A proof-of- concept (POC) separator has been designed, fabricated and tested to assess the separation efficiency and pumping head of the design. This proof-of-concept item was flown aboard the KC135 to evaluate the effectiveness of the separator in a microgravity environment. This separator design has exceeded all of the performance requirements. The next step in the separator development is to integrate it into the Sabatier Carbon Dioxide Reduction System. This will be done with the Sabatier Engineering Development Unit at the Johnson Space Center.

  16. Computed tomography evaluation of rotary systems on the root canal transportation and centering ability.

    PubMed

    Pagliosa, André; Sousa-Neto, Manoel Damião; Versiani, Marco Aurélio; Raucci-Neto, Walter; Silva-Sousa, Yara Teresinha Corrêa; Alfredo, Edson

    2015-01-01

    The endodontic preparation of curved and narrow root canals is challenging, with a tendency for the prepared canal to deviate away from its natural axis. The aim of this study was to evaluate, by cone-beam computed tomography, the transportation and centering ability of curved mesiobuccal canals in maxillary molars after biomechanical preparation with different nickel-titanium (NiTi) rotary systems. Forty teeth with angles of curvature ranging from 20° to 40° and radii between 5.0 mm and 10.0 mm were selected and assigned into four groups (n = 10), according to the biomechanical preparative system used: Hero 642 (HR), Liberator (LB), ProTaper (PT), and Twisted File (TF). The specimens were inserted into an acrylic device and scanned with computed tomography prior to, and following, instrumentation at 3, 6 and 9 mm from the root apex. The canal degree of transportation and centering ability were calculated and analyzed using one-way ANOVA and Tukey's tests (α = 0.05). The results demonstrated no significant difference (p > 0.05) in shaping ability among the rotary systems. The mean canal transportation was: -0.049 ± 0.083 mm (HR); -0.004 ± 0.044 mm (LB); -0.003 ± 0.064 mm (PT); -0.021 ± 0.064 mm (TF). The mean canal centering ability was: -0.093 ± 0.147 mm (HR); -0.001 ± 0.100 mm (LB); -0.002 ± 0.134 mm (PT); -0.033 ± 0.133 mm (TF). Also, there was no significant difference among the root segments (p > 0.05). It was concluded that the Hero 642, Liberator, ProTaper, and Twisted File rotary systems could be safely used in curved canal instrumentation, resulting in satisfactory preservation of the original canal shape.

  17. A BAPTA employing rotary transformers, stepper motors and ceramic ball bearings

    NASA Technical Reports Server (NTRS)

    Auer, W.

    1981-01-01

    The utilization of rotary transformers as an alternative to slip rings for the power transfer from solar panels to a satellite's main body could be advantageous, especially if an ac bus system is taken into consideration. Different approaches with main emphasis on the electromagnetic design were investigated and showed efficiencies of up to 99% with a 3 kW power capability. A solidly preloaded pair of ball bearings with ceramic balls assures proper transformer air gaps and acceptable torque changes over temperature and temperature gradients. The bearing and power transfer assembly is driven by a direct drive stepper motor with inherent redundancy properties and needs no caging mechanism.

  18. Noninvasive deadbeat control of an implantable rotary blood pump: a simulation study.

    PubMed

    Lim, E; Alomari, A H; Savkin, A V; Lovell, N H

    2009-01-01

    A deadbeat controller has been proposed for the control of pulsatile pump flow in an implantable rotary blood pump (IRBP). A lumped parameter model of the cardiovascular system, in combination with the stable dynamical models of pulsatile flow and differential pressure (head) estimation for the IRBP was used to evaluate the controller. Pump speed and current were used as the only measured variables of the control system. The control algorithm was tested using both constant and sinusoidal reference pump flow input, under healthy and heart failure conditions. Results showed that the controller is able to track the reference input with minimal error in the presence of model uncertainty.

  19. Operating principles of rotary molecular motors: differences between F1 and V1 motors.

    PubMed

    Yamato, Ichiro; Kakinuma, Yoshimi; Murata, Takeshi

    2016-01-01

    Among the many types of bioenergy-transducing machineries, F- and V-ATPases are unique bio- and nano-molecular rotary motors. The rotational catalysis of F1-ATPase has been investigated in detail, and molecular mechanisms have been proposed based on the crystal structures of the complex and on extensive single-molecule rotational observations. Recently, we obtained crystal structures of bacterial V1-ATPase (A3B3 and A3B3DF complexes) in the presence and absence of nucleotides. Based on these new structures, we present a novel model for the rotational catalysis mechanism of V1-ATPase, which is different from that of F1-ATPases.

  20. Residual Stress Examination In Surface Layers Turned By Auto-Rotary Tool

    NASA Astrophysics Data System (ADS)

    Struharňanský, Jozef; Stančeková, Dana; Martikáň, Anton; Varga, Daniel; Kuždál, Viktor; Rákoci, Jozef

    2015-12-01

    In this article, unconventional kinematics of turning is examined with the aim on influence of cutting parameters on surface layers residual stress. The auto-rotary cutting tool prototype for turning was developed, designed and constructed at the University of Zilina. The tool is made of high speed steel. Residual stress examination of material 100Cr6 was performed by non-destructive measuring method of X-ray diffraction. This method is able to determine normal and shear stress conditions without damaging the examined sample.