Science.gov

Sample records for 25-ft space simulator

  1. Space robot simulator vehicle

    NASA Technical Reports Server (NTRS)

    Cannon, R. H., Jr.; Alexander, H.

    1985-01-01

    A Space Robot Simulator Vehicle (SRSV) was constructed to model a free-flying robot capable of doing construction, manipulation and repair work in space. The SRSV is intended as a test bed for development of dynamic and static control methods for space robots. The vehicle is built around a two-foot-diameter air-cushion vehicle that carries batteries, power supplies, gas tanks, computer, reaction jets and radio equipment. It is fitted with one or two two-link manipulators, which may be of many possible designs, including flexible-link versions. Both the vehicle body and its first arm are nearly complete. Inverse dynamic control of the robot's manipulator has been successfully simulated using equations generated by the dynamic simulation package SDEXACT. In this mode, the position of the manipulator tip is controlled not by fixing the vehicle base through thruster operation, but by controlling the manipulator joint torques to achieve the desired tip motion, while allowing for the free motion of the vehicle base. One of the primary goals is to minimize use of the thrusters in favor of intelligent control of the manipulator. Ways to reduce the computational burden of control are described.

  2. Simulations of space VLBI

    NASA Technical Reports Server (NTRS)

    Murphy, D. W.; Wilkinson, P. N.

    1991-01-01

    The paper concentrates on the results from space VLBI simulations undertaken during the past four years, beginning with a study of the imaging potential of the proposed medium-term mission QUASAT, and continuing with the Japanese VSOP and Soviet Radioastron missions. The purpose of the study is to determine what quality of images can be expected from space VLBI, given realistic data errors and spacecraft orbits yielding incomplete UV coverage. Much of the paper is devoted to the problem of spurious symmetrization, and a method of overcoming this problem by using a set of UV-constraints is presented. Constraints limiting the imaging ability of the VSOP and Radioastron projects are discussed, and it is concluded that the application of constraints in either sky- or UV-plane will make it possible to overcome spurious symmetrization.

  3. Simulations of space VLBI

    NASA Astrophysics Data System (ADS)

    Murphy, D. W.; Wilkinson, P. N.

    The paper concentrates on the results from space VLBI simulations undertaken during the past four years, beginning with a study of the imaging potential of the proposed medium-term mission QUASAT, and continuing with the Japanese VSOP and Soviet Radioastron missions. The purpose of the study is to determine what quality of images can be expected from space VLBI, given realistic data errors and spacecraft orbits yielding incomplete UV coverage. Much of the paper is devoted to the problem of spurious symmetrization, and a method of overcoming this problem by using a set of UV-constraints is presented. Constraints limiting the imaging ability of the VSOP and Radioastron projects are discussed, and it is concluded that the application of constraints in either sky- or UV-plane will make it possible to overcome spurious symmetrization.

  4. Space flight visual simulation.

    PubMed

    Xu, L

    1985-01-01

    In this paper, based on the scenes of stars seen by astronauts in their orbital flights, we have studied the mathematical model which must be constructed for CGI system to realize the space flight visual simulation. Considering such factors as the revolution and rotation of the Earth, exact date, time and site of orbital injection of the spacecraft, as well as its orbital flight and attitude motion, etc., we first defined all the instantaneous lines of sight and visual fields of astronauts in space. Then, through a series of coordinate transforms, the pictures of the scenes of stars changing with time-space were photographed one by one mathematically. In the procedure, we have designed a method of three-times "mathematical cutting." Finally, we obtained each instantaneous picture of the scenes of stars observed by astronauts through the window of the cockpit. Also, the dynamic conditions shaded by the Earth in the varying pictures of scenes of stars could be displayed. PMID:11542842

  5. Simulating Space Weather at Pluto

    NASA Video Gallery

    This video shows a simulation of the space environment all the way out to Pluto in the months surrounding New Horizons’ July 2015 flyby. At the time, scientists at NASA’s Goddard Space Flight Cente...

  6. Space simulators for laser optics

    NASA Technical Reports Server (NTRS)

    Gardner, Frank H.

    1988-01-01

    Different approaches that are being utilized to test laser optical systems are described. One of the most crucial areas in the testing phase is the stability of the laser optics mounted inside the space simulator. The thermal vacuum system, the refrigeration system, and the space simulator are discussed.

  7. Ninth Conference on Space Simulation

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The papers presented in this conference provided an international dialogue and a meaningful exchange in the simulation of space environments as well as the evolution of these technological advances into other fields. The papers represent a significant contribution to the understanding of space simulation problems and the utilization of this knowledge. The topics of the papers include; spacecraft testing; facilities and test equipment; system and subsystem test; life sciences, medicine and space; physical environmental factors; chemical environmental factors; contamination; space physics; and thermal protection.

  8. Computer Simulations of Space Plasmas

    NASA Astrophysics Data System (ADS)

    Goertz, C. K.

    Even a superficial scanning of the latest issues of the Journal of Geophysical Research reveals that numerical simulation of space plasma processes is an active and growing field. The complexity and sophistication of numerically produced “data” rivals that of the real stuff. Sometimes numerical results need interpretation in terms of a simple “theory,” very much as the results of real experiments and observations do. Numerical simulation has indeed become a third independent tool of space physics, somewhere between observations and analytic theory. There is thus a strong need for textbooks and monographs that report the latest techniques and results in an easily accessible form. This book is an attempt to satisfy this need. The editors want it not only to be “proceedings of selected lectures (given) at the first ISSS (International School of Space Simulations in Kyoto, Japan, November 1-2, 1982) but rather…a form of textbook of computer simulations of space plasmas.” This is, of course, a difficult task when many authors are involved. Unavoidable redundancies and differences in notation may confuse the beginner. Some important questions, like numerical stability, are not discussed in sufficient detail. The recent book by C.K. Birdsall and A.B. Langdon (Plasma Physics via Computer Simulations, McGraw-Hill, New York, 1985) is more complete and detailed and seems more suitable as a textbook for simulations. Nevertheless, this book is useful to the beginner and the specialist because it contains not only descriptions of various numerical techniques but also many applications of simulations to space physics phenomena.

  9. Simulator of Space Communication Networks

    NASA Technical Reports Server (NTRS)

    Clare, Loren; Jennings, Esther; Gao, Jay; Segui, John; Kwong, Winston

    2005-01-01

    Multimission Advanced Communications Hybrid Environment for Test and Evaluation (MACHETE) is a suite of software tools that simulates the behaviors of communication networks to be used in space exploration, and predict the performance of established and emerging space communication protocols and services. MACHETE consists of four general software systems: (1) a system for kinematic modeling of planetary and spacecraft motions; (2) a system for characterizing the engineering impact on the bandwidth and reliability of deep-space and in-situ communication links; (3) a system for generating traffic loads and modeling of protocol behaviors and state machines; and (4) a system of user-interface for performance metric visualizations. The kinematic-modeling system makes it possible to characterize space link connectivity effects, including occultations and signal losses arising from dynamic slant-range changes and antenna radiation patterns. The link-engineering system also accounts for antenna radiation patterns and other phenomena, including modulations, data rates, coding, noise, and multipath fading. The protocol system utilizes information from the kinematic-modeling and link-engineering systems to simulate operational scenarios of space missions and evaluate overall network performance. In addition, a Communications Effect Server (CES) interface for MACHETE has been developed to facilitate hybrid simulation of space communication networks with actual flight/ground software/hardware embedded in the overall system.

  10. Neutral Buoyancy Simulator - Space Station

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Skylab's success proved that scientific experimentation in a low gravity environment was essential to scientific progress. A more permanent structure was needed to provide this space laboratory. President Ronald Reagan, on January 25, 1984, during his State of the Union address, claimed that the United States should exploit the new frontier of space, and directed NASA to build a permanent marned space station within a decade. The idea was that the space station would not only be used as a laboratory for the advancement of science and medicine, but would also provide a staging area for building a lunar base and manned expeditions to Mars and elsewhere in the solar system. President Reagan invited the international community to join with the United States in this endeavour. NASA and several countries moved forward with this concept. By December 1985, the first phase of the space station was well underway with the design concept for the crew compartments and laboratories. Pictured are two NASA astronauts, at Marshall Space Flight Center's (MSFC) Neutral Buoyancy Simulator (NBS), practicing construction techniques they later used to construct the space station after it was deployed.

  11. The Seventeenth Space Simulation Conference. Terrestrial Test for Space Success

    NASA Technical Reports Server (NTRS)

    Stecher, Joseph L., III (Compiler)

    1992-01-01

    The Institute of Environmental Sciences' Seventeenth Space Simulation Conference, 'Terrestrial Test for Space Success' provided participants with a forum to acquire and exchange information on the state of the art in space simulation, test technology, atomic oxygen, dynamics testing, contamination, and materials. The papers presented at this conference and the resulting discussions carried out the conference theme of 'terrestrial test for space success.'

  12. Flight simulator with spaced visuals

    NASA Technical Reports Server (NTRS)

    Gilson, Richard D. (Inventor); Thurston, Marlin O. (Inventor); Olson, Karl W. (Inventor); Ventola, Ronald W. (Inventor)

    1980-01-01

    A flight simulator arrangement wherein a conventional, movable base flight trainer is combined with a visual cue display surface spaced a predetermined distance from an eye position within the trainer. Thus, three degrees of motive freedom (roll, pitch and crab) are provided for a visual proprioceptive, and vestibular cue system by the trainer while the remaining geometric visual cue image alterations are developed by a video system. A geometric approach to computing runway image eliminates a need to electronically compute trigonometric functions, while utilization of a line generator and designated vanishing point at the video system raster permits facile development of the images of the longitudinal edges of the runway.

  13. Performance of the Satellite Test Assistant Robot in JPL's Space Simulation Facility

    NASA Technical Reports Server (NTRS)

    Mcaffee, Douglas; Long, Mark; Johnson, Ken; Siebes, Georg

    1995-01-01

    An innovative new telerobotic inspection system called STAR (the Satellite Test Assistant Robot) has been developed to assist engineers as they test new spacecraft designs in simulated space environments. STAR operates inside the ultra-cold, high-vacuum, test chambers and provides engineers seated at a remote Operator Control Station (OCS) with high resolution video and infrared (IR) images of the flight articles under test. STAR was successfully proof tested in JPL's 25-ft (7.6-m) Space Simulation Chamber where temperatures ranged from +85 C to -190 C and vacuum levels reached 5.1 x 10(exp -6) torr. STAR's IR Camera was used to thermally map the entire interior of the chamber for the first time. STAR also made several unexpected and important discoveries about the thermal processes occurring within the chamber. Using a calibrated test fixture arrayed with ten sample spacecraft materials, the IR camera was shown to produce highly accurate surface temperature data. This paper outlines STAR's design and reports on significant results from the thermal vacuum chamber test.

  14. The evolution of space simulation

    NASA Technical Reports Server (NTRS)

    Edwards, Arthur A.

    1992-01-01

    Thirty years have passed since the first large (more than 15 ft diameter) thermal vacuum space simulation chambers were built in this country. Many changes have been made since then, and the industry has learned a great deal as the designs have evolved in that time. I was fortunate to have been part of that beginning, and have participated in many of the changes that have occurred since. While talking with vacuum friends recently, I realized that many of the engineers working in the industry today may not be aware of the evolution of space simulation because they did not experience the changes that brought us today's technology. With that in mind, it seems to be appropriate to take a moment and review some of the events that were a big part of the past thirty years in the thermal vacuum business. Perhaps this review will help to understand a little of the 'why' as well as the 'how' of building and operating large thermal vacuum chambers.

  15. Swift Observatory Space Simulation Testing

    NASA Technical Reports Server (NTRS)

    Espiritu, Mellina; Choi, Michael K.; Scocik, Christopher S.

    2004-01-01

    The Swift Observatory is a Middle-Class Explorer (MIDEX) mission that is a rapidly re-pointing spacecraft with immediate data distribution capability to the astronomical community. Its primary objectives are to characterize and determine the origin of Gamma Ray Bursts (GRBs) and to use the collected data on GRB phenomena in order to probe the universe and gain insight into the physics of black hole formation and early universe. The main components of the spacecraft are the Burst Alert Telescope (BAT), Ultraviolet and Optical Telescope (UVOT), X-Ray Telescope (XRT), and Optical Bench (OB) instruments coupled with the Swift spacecraft (S/C) bus. The Swift Observatory will be tested at the Space Environment Simulation (SES) chamber at the Goddard Space Flight Center from May to June 2004 in order to characterize its thermal behavior in a vacuum environment. In order to simulate the independent thermal zones required by the BAT, XRT, UVOT, and OB instruments, the spacecraft is mounted on a chariot structure capable of maintaining adiabatic interfaces and enclosed in a modified, four section MSX fixture in order to accommodate the strategic placement of seven cryopanels (on four circuits), four heater panels, and a radiation source burst simulator mechanism. There are additionally 55 heater circuits on the spacecraft. To mitigate possible migration of silicone contaminants from BAT to the XRT and UVOT instruments, a contamination enclosure is to be fabricated around the BAT at the uppermost section of the MSX fixture. This paper discuses the test requirements and implemented thermal vacuum test configuration for the Swift Observatory.

  16. Eighteenth Space Simulation Conference: Space Mission Success Through Testing

    NASA Technical Reports Server (NTRS)

    Stecher, Joseph L., III (Compiler)

    1994-01-01

    The Institute of Environmental Sciences' Eighteenth Space Simulation Conference, 'Space Mission Success Through Testing' provided participants with a forum to acquire and exchange information on the state-of-the-art in space simulation, test technology, atomic oxygen, program/system testing, dynamics testing, contamination, and materials. The papers presented at this conference and the resulting discussions carried out the conference theme 'Space Mission Success Through Testing.'

  17. The space simulation facilities at IAL SPACE

    NASA Technical Reports Server (NTRS)

    Henrist, M.; Cucchiaro, A.; Domken, I.; Macau, J. P.

    1990-01-01

    The thermal vacuum facilities of IAL SPACE were tailored for testing of the ESA payloads. They were progressively upgraded for cryogenic payloads including 4 K (liquid helium temperature) experiments. A detailed review of the three vacuum chambers, ranging from 1.5 to 5 m diameter, is presented including the corresponding capabilities in the vacuum, thermal, and optical fields. The various aspects of cleanliness, product assurance, and quality control are also presented.

  18. Space station models, mockups and simulators

    NASA Technical Reports Server (NTRS)

    Miller, K. H.; Osgood, A.

    1985-01-01

    Schematic outlines for space station models, mockups, and simulators are presented. The types of Boeing models, mockups, and simulators are given along with the classes and characteristics. The use of models in the 767 program is briefly given. Computerized human factors tools are outlined. The use of computer aided design and computer aided manufacturing in the approach for the space station is advocated.

  19. SpaceNet: Modeling and Simulating Space Logistics

    NASA Technical Reports Server (NTRS)

    Lee, Gene; Jordan, Elizabeth; Shishko, Robert; de Weck, Olivier; Armar, Nii; Siddiqi, Afreen

    2008-01-01

    This paper summarizes the current state of the art in interplanetary supply chain modeling and discusses SpaceNet as one particular method and tool to address space logistics modeling and simulation challenges. Fundamental upgrades to the interplanetary supply chain framework such as process groups, nested elements, and cargo sharing, enabled SpaceNet to model an integrated set of missions as a campaign. The capabilities and uses of SpaceNet are demonstrated by a step-by-step modeling and simulation of a lunar campaign.

  20. Simulating Scenes In Outer Space

    NASA Technical Reports Server (NTRS)

    Callahan, John D.

    1989-01-01

    Multimission Interactive Picture Planner, MIP, computer program for scientifically accurate and fast, three-dimensional animation of scenes in deep space. Versatile, reasonably comprehensive, and portable, and runs on microcomputers. New techniques developed to perform rapidly calculations and transformations necessary to animate scenes in scientifically accurate three-dimensional space. Written in FORTRAN 77 code. Primarily designed to handle Voyager, Galileo, and Space Telescope. Adapted to handle other missions.

  1. Advanced Space Shuttle simulation model

    NASA Technical Reports Server (NTRS)

    Tatom, F. B.; Smith, S. R.

    1982-01-01

    A non-recursive model (based on von Karman spectra) for atmospheric turbulence along the flight path of the shuttle orbiter was developed. It provides for simulation of instantaneous vertical and horizontal gusts at the vehicle center-of-gravity, and also for simulation of instantaneous gusts gradients. Based on this model the time series for both gusts and gust gradients were generated and stored on a series of magnetic tapes, entitled Shuttle Simulation Turbulence Tapes (SSTT). The time series are designed to represent atmospheric turbulence from ground level to an altitude of 120,000 meters. A description of the turbulence generation procedure is provided. The results of validating the simulated turbulence are described. Conclusions and recommendations are presented. One-dimensional von Karman spectra are tabulated, while a discussion of the minimum frequency simulated is provided. The results of spectral and statistical analyses of the SSTT are presented.

  2. Computer simulation of space charge

    NASA Astrophysics Data System (ADS)

    Yu, K. W.; Chung, W. K.; Mak, S. S.

    1991-05-01

    Using the particle-mesh (PM) method, a one-dimensional simulation of the well-known Langmuir-Child's law is performed on an INTEL 80386-based personal computer system. The program is coded in turbo basic (trademark of Borland International, Inc.). The numerical results obtained were in excellent agreement with theoretical predictions and the computational time required is quite modest. This simulation exercise demonstrates that some simple computer simulation using particles may be implemented successfully on PC's that are available today, and hopefully this will provide the necessary incentives for newcomers to the field who wish to acquire a flavor of the elementary aspects of the practice.

  3. Simulating Avionics Upgrades to the Space Shuttles

    NASA Technical Reports Server (NTRS)

    Deger, Daniel; Hill, Kenneth; Braaten, Karsten E.

    2008-01-01

    Cockpit Avionics Prototyping Environment (CAPE) is a computer program that simulates the functions of proposed upgraded avionics for a space shuttle. In CAPE, pre-existing space-shuttle-simulation programs are merged with a commercial-off-the-shelf (COTS) display-development program, yielding a package of software that enables high-fi46 NASA Tech Briefs, September 2008 delity simulation while making it possible to rapidly change avionic displays and the underlying model algorithms. The pre-existing simulation programs are Shuttle Engineering Simulation, Shuttle Engineering Simulation II, Interactive Control and Docking Simulation, and Shuttle Mission Simulator playback. The COTS program Virtual Application Prototyping System (VAPS) not only enables the development of displays but also makes it possible to move data about, capture and process events, and connect to a simulation. VAPS also enables the user to write code in the C or C++ programming language and compile that code into the end-product simulation software. As many as ten different avionic-upgrade ideas can be incorporated in a single compilation and, thus, tested in a single simulation run. CAPE can be run in conjunction with any or all of four simulations, each representing a different phase of a space-shuttle flight.

  4. Space Simulation Chamber Rescues Water Damaged Books.

    ERIC Educational Resources Information Center

    American School and University, 1981

    1981-01-01

    More than 4,000 valuable water-damaged books were restored by using a space-simulation chamber at the Lockheed Missile and Space Company. It was the fifth time that the chamber has been used for the restoration of valuable books and documents. (Author/MLF)

  5. Space shuttle visual simulation system design study

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A recommendation and a specification for the visual simulation system design for the space shuttle mission simulator are presented. A recommended visual system is described which most nearly meets the visual design requirements. The cost analysis of the recommended system covering design, development, manufacturing, and installation is reported. Four alternate systems are analyzed.

  6. Space Ultrareliable Modular Computer (SUMC) instruction simulator

    NASA Technical Reports Server (NTRS)

    Curran, R. T.

    1972-01-01

    The design principles, description, functional operation, and recommended expansion and enhancements are presented for the Space Ultrareliable Modular Computer interpretive simulator. Included as appendices are the user's manual, program module descriptions, target instruction descriptions, simulator source program listing, and a sample program printout. In discussing the design and operation of the simulator, the key problems involving host computer independence and target computer architectural scope are brought into focus.

  7. GSFC Space Simulation Laboratory Contamination Philosophy: Efficient Space Simulation Chamber Cleaning Techniques

    NASA Technical Reports Server (NTRS)

    Roman, Juan A.; Stitt, George F.; Roman, Felix R.

    1997-01-01

    This paper will provide a general overview of the molecular contamination philosophy of the Space Simulation Test Engineering Section and how the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC) space simulation laboratory controls and maintains the cleanliness of all its facilities, thereby, minimizing down time between tests. It will also briefly cover the proper selection and safety precautions needed when using some chemical solvents for wiping, washing, or spraying thermal shrouds when molecular contaminants increase to unacceptable background levels.

  8. The Distributed Space Exploration Simulation (DSES)

    NASA Technical Reports Server (NTRS)

    Crues, Edwin Z.; Chung, Victoria I.; Blum, Mike G.; Bowman, James D.

    2007-01-01

    The paper describes the Distributed Space Exploration Simulation (DSES) Project, a research and development collaboration between NASA centers which focuses on the investigation and development of technologies, processes and integrated simulations related to the collaborative distributed simulation of complex space systems in support of NASA's Exploration Initiative. This paper describes the three major components of DSES: network infrastructure, software infrastructure and simulation development. In the network work area, DSES is developing a Distributed Simulation Network that will provide agency wide support for distributed simulation between all NASA centers. In the software work area, DSES is developing a collection of software models, tool and procedures that ease the burden of developing distributed simulations and provides a consistent interoperability infrastructure for agency wide participation in integrated simulation. Finally, for simulation development, DSES is developing an integrated end-to-end simulation capability to support NASA development of new exploration spacecraft and missions. This paper will present current status and plans for each of these work areas with specific examples of simulations that support NASA's exploration initiatives.

  9. Neutral Buoyancy Simulator - Hubble Space Telescope Training

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This photograph shows STS-61 crewmemmbers training for the Hubble Space Telescope (HST) servicing mission in the Marshall Space Flight Center's (MSFC's) Neutral Buoyancy Simulator (NBS). Two months after its deployment in space, scientists detected a 2-micron spherical aberration in the primary mirror of the HST that affected the telescope's ability to focus faint light sources into a precise point. This imperfection was very slight, one-fiftieth of the width of a human hair. A scheduled Space Service servicing mission (STS-61) in 1993 permitted scientists to correct the problem. The MSFC NBS provided an excellent environment for testing hardware to examine how it would operate in space and for evaluating techniques for space construction and spacecraft servicing.

  10. Indian LSSC (Large Space Simulation Chamber) facility

    NASA Technical Reports Server (NTRS)

    Brar, A. S.; Prasadarao, V. S.; Gambhir, R. D.; Chandramouli, M.

    1988-01-01

    The Indian Space Agency has undertaken a major project to acquire in-house capability for thermal and vacuum testing of large satellites. This Large Space Simulation Chamber (LSSC) facility will be located in Bangalore and is to be operational in 1989. The facility is capable of providing 4 meter diameter solar simulation with provision to expand to 4.5 meter diameter at a later date. With such provisions as controlled variations of shroud temperatures and availability of infrared equipment as alternative sources of thermal radiation, this facility will be amongst the finest anywhere. The major design concept and major aspects of the LSSC facility are presented here.

  11. GALILEO Signal In Space Triple Carrier four Space Vehicle Simulator

    NASA Astrophysics Data System (ADS)

    Tabacco, P.; Vernucci, A.; Cornacchini, C.; Richichi, F.; Botticchio, T.; Meta, F.

    2008-08-01

    The state of art of GALILEO Signal In Space specifications has been implemented by Space Engineering GALILEO Simulator. The design and quality test results of this Professional Instrument, aimed to support GALILEO receiver development, will be described in this Paper. The current version is compatible with SIS ICD vers. 12.0, but would allow easy migration to MBOC for L1 carrier, when this specification will be formalized by a new SIS ICD release. For what concern the E5 signal the Simulator is a truly Alt-BOC coherent generator allowing a 120MHz analog Bandwidth being generated digitally and not as two separate E5a and E5b analog signals. The current version of Space Engineering Signal In Space Simulator allow to generate up to four Satellites for all the three carriers L1, E5 and E6 simultaneously and it is a self contained unit, complete of AC power supplying adapter and fan cooling system, arranged in a single Compact-PCI (C-PCI)19" Rack.

  12. Space Simulation, 7th. [facilities and testing techniques

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Space simulation facilities and techniques are outlined that encompass thermal scale modeling, computerized simulations, reentry materials, spacecraft contamination, solar simulation, vacuum tests, and heat transfer studies.

  13. Space shuttle visual simulation system design study

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The current and near-future state-of-the-art in visual simulation equipment technology is related to the requirements of the space shuttle visual system. Image source, image sensing, and displays are analyzed on a subsystem basis, and the principal conclusions are used in the formulation of a recommended baseline visual system. Perceptibility and visibility are also analyzed.

  14. Navigation simulator for the Space Tug vehicle

    NASA Technical Reports Server (NTRS)

    Colburn, B. K.; Boland, J. S., III; Peters, E. G.

    1977-01-01

    A general simulation program (GSP) for state estimation of a nonlinear space vehicle flight navigation system is developed and used as a basis for evaluating the performance of a Space Tug navigation system. An explanation of the iterative guidance mode (IGM) guidance law, derivation of the dynamics, coordinate frames and state estimation routines are given in order to clarify the assumptions and approximations made. A number of simulation and analytical studies are used to demonstrate the operation of the Tug system. Included in the simulation studies are (1) initial offset vector parameter study; (2) propagation time vs accuracy; (3) measurement noise parametric study and (4) reduction in computational burden of an on-board implementable scheme. From the results of these studies, conclusions and recommendations concerning future areas of practical and theoretical work are presented.

  15. Neutral Buoyancy Simulator- NB38 -Space Telescope

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The Hubble Space Telescope (HST) is a cooperative program of the European Space Agency (ESA) and the National Aeronautical and Space Administration (NASA) to operate a long-lived space-based observatory. It was the flagship mission of NASA's Great Observatories program. The HST program began as an astronomical dream in the 1940s. During the 1970s and 1980s, the HST was finally designed and built becoming operational in the 1990s. The HST was deployed into a low-Earth orbit on April 25, 1990 from the cargo bay of the Space Shuttle Discovery (STS-31). The design of the HST took into consideration its length of service and the necessity of repairs and equipment replacement by making the body modular. In doing so, subsequent shuttle missions could recover the HST, replace faulty or obsolete parts and be re-released. Pictured is MSFC's Neutral Buoyancy Simulator (NBS) that served as the test center for shuttle astronauts training for Hubble related missions. Shown are astronauts Bruce McCandless and Sharnon Lucid being fitted for their space suits prior to entering the NBS to begin training on the space telescope axial scientific instrument changeout.

  16. UCLA IGPP Space Plasma Simulation Group

    NASA Technical Reports Server (NTRS)

    1998-01-01

    During the past 10 years the UCLA IGPP Space Plasma Simulation Group has pursued its theoretical effort to develop a Mission Oriented Theory (MOT) for the International Solar Terrestrial Physics (ISTP) program. This effort has been based on a combination of approaches: analytical theory, large scale kinetic (LSK) calculations, global magnetohydrodynamic (MHD) simulations and self-consistent plasma kinetic (SCK) simulations. These models have been used to formulate a global interpretation of local measurements made by the ISTP spacecraft. The regions of applications of the MOT cover most of the magnetosphere: the solar wind, the low- and high-latitude magnetospheric boundary, the near-Earth and distant magnetotail, and the auroral region. Most recent investigations include: plasma processes in the electron foreshock, response of the magnetospheric cusp, particle entry in the magnetosphere, sources of observed distribution functions in the magnetotail, transport of oxygen ions, self-consistent evolution of the magnetotail, substorm studies, effects of explosive reconnection, and auroral acceleration simulations.

  17. Space shuttle main engine hardware simulation

    NASA Technical Reports Server (NTRS)

    Vick, H. G.; Hampton, P. W.

    1985-01-01

    The Huntsville Simulation Laboratory (HSL) provides a simulation facility to test and verify the space shuttle main engine (SSME) avionics and software system using a maximum complement of flight type hardware. The HSL permits evaluations and analyses of the SSME avionics hardware, software, control system, and mathematical models. The laboratory has performed a wide spectrum of tests and verified operational procedures to ensure system component compatibility under all operating conditions. It is a test bed for integration of hardware/software/hydraulics. The HSL is and has been an invaluable tool in the design and development of the SSME.

  18. Concurrent processing simulation of the space station

    NASA Technical Reports Server (NTRS)

    Gluck, R.; Hale, A. L.; Sunkel, John W.

    1989-01-01

    The development of a new capability for the time-domain simulation of multibody dynamic systems and its application to the study of a large angle rotational maneuvers of the Space Station is described. The effort was divided into three sequential tasks, which required significant advancements of the state-of-the art to accomplish. These were: (1) the development of an explicit mathematical model via symbol manipulation of a flexible, multibody dynamic system; (2) the development of a methodology for balancing the computational load of an explicit mathematical model for concurrent processing; and (3) the implementation and successful simulation of the above on a prototype Custom Architectured Parallel Processing System (CAPPS) containing eight processors. The throughput rate achieved by the CAPPS operating at only 70 percent efficiency, was 3.9 times greater than that obtained sequentially by the IBM 3090 supercomputer simulating the same problem. More significantly, analysis of the results leads to the conclusion that the relative cost effectiveness of concurrent vs. sequential digital computation will grow substantially as the computational load is increased. This is a welcomed development in an era when very complex and cumbersome mathematical models of large space vehicles must be used as substitutes for full scale testing which has become impractical.

  19. The space transformation in the simulation of multidimensional random fields

    USGS Publications Warehouse

    Christakos, G.

    1987-01-01

    Space transformations are proposed as a mathematically meaningful and practically comprehensive approach to simulate multidimensional random fields. Within this context the turning bands method of simulation is reconsidered and improved in both the space and frequency domains. ?? 1987.

  20. Simulating Autonomous Telecommunication Networks for Space Exploration

    NASA Technical Reports Server (NTRS)

    Segui, John S.; Jennings, Esther H.

    2008-01-01

    Currently, most interplanetary telecommunication systems require human intervention for command and control. However, considering the range from near Earth to deep space missions, combined with the increase in the number of nodes and advancements in processing capabilities, the benefits from communication autonomy will be immense. Likewise, greater mission science autonomy brings the need for unscheduled, unpredictable communication and network routing. While the terrestrial Internet protocols are highly developed their suitability for space exploration has been questioned. JPL has developed the Multi-mission Advanced Communications Hybrid Environment for Test and Evaluation (MACHETE) tool to help characterize network designs and protocols. The results will allow future mission planners to better understand the trade offs of communication protocols. This paper discusses various issues with interplanetary network and simulation results of interplanetary networking protocols.

  1. The 11th Space Simulation Conference

    NASA Technical Reports Server (NTRS)

    Bond, A. C. (Editor)

    1980-01-01

    Subject areas range from specialized issues dealing with the space and entry environments to the environmental testing of systems and complete spacecraft of present-day vintage. Various papers consider: the test and development of several key systems of the orbiter vehicle; integrated tests of complete satellites; new and unique test facilities developed to meet the demanding requirements of high fidelity simulation of test environments; and contamination species, including the instrumentation for detection and measurement of such. Special topics include improved thermal protection methodologies and approaches, sophisticated sensor developments, and other related testing and development areas.

  2. Dynamic Deployment Simulations of Inflatable Space Structures

    NASA Technical Reports Server (NTRS)

    Wang, John T.

    2005-01-01

    The feasibility of using Control Volume (CV) method and the Arbitrary Lagrangian Eulerian (ALE) method in LSDYNA to simulate the dynamic deployment of inflatable space structures is investigated. The CV and ALE methods were used to predict the inflation deployments of three folded tube configurations. The CV method was found to be a simple and computationally efficient method that may be adequate for modeling slow inflation deployment sine the inertia of the inflation gas can be neglected. The ALE method was found to be very computationally intensive since it involves the solving of three conservative equations of fluid as well as dealing with complex fluid structure interactions.

  3. A space simulation chamber for space power insulation

    NASA Astrophysics Data System (ADS)

    Banford, H. M.; Given, M. J.; Tedford, D. J.

    1995-01-01

    An account is given of an experimental facility which has been designed specifically for the study of electrical insulation in a simulated space environment. Insulation in space can experience a very wide range of environmental stimuli and it is very difficult if not impossible to stimulate them all. Those that are considered in the present work are vacuum, temperature, nuclear radiation and atomic oxygen. The facility consists of a stainless steel high-vacuum chamber with a sample mounting arrangement which allows sample temperatures to be varied between 80 and 470 K. Test specimens can also be exposed to electromagnetic radiation within the chamber. Atomic oxygen treatment of materials takes place before they are introduced to the chamber. The materials being considered are Kapton and an epoxy resin formulation. Various electrical measurements are being undertaken and comprise primarily dielectric loss by frequency domain spectroscopy and pre-breakdown current pulse activity under direct stress, while the provision exists for conductivity and breakdown measurements as well. These are made in real time under vacuum, temperature and low dose rate electromagnetic radiation following an ageing procedure which involves combinations of these three foregoing environmental stimuli and atomic oxygen.

  4. Space radiator simulation manual for computer code

    NASA Technical Reports Server (NTRS)

    Black, W. Z.; Wulff, W.

    1972-01-01

    A computer program that simulates the performance of a space radiator is presented. The program basically consists of a rigorous analysis which analyzes a symmetrical fin panel and an approximate analysis that predicts system characteristics for cases of non-symmetrical operation. The rigorous analysis accounts for both transient and steady state performance including aerodynamic and radiant heating of the radiator system. The approximate analysis considers only steady state operation with no aerodynamic heating. A description of the radiator system and instructions to the user for program operation is included. The input required for the execution of all program options is described. Several examples of program output are contained in this section. Sample output includes the radiator performance during ascent, reentry and orbit.

  5. Fifteenth Space Simulation Conference: Support the Highway to Space Through Testing

    NASA Technical Reports Server (NTRS)

    Stecher, Joseph (Editor)

    1988-01-01

    The Institute of Environmental Sciences Fifteenth Space Simulation Conference, Support the Highway to Space Through Testing, provided participants a forum to acquire and exchange information on the state-of-the-art in space simulation, test technology, thermal simulation and protection, contamination, and techniques of test measurements.

  6. Fourteenth Space Simulation Conference: Testing for a Permanent Presence in Space

    NASA Technical Reports Server (NTRS)

    Stecher, Joseph L., III (Editor)

    1986-01-01

    The Institute of Environmental Sciences Fourteenth Space Simulation Conference, Testing for a Permanent Presence in Space, provided participants a forum to acquire and exchange information on the state-of-the-art in space simulation, test technology, thermal simulation, and protection, contamination, and techniques of test measurements.

  7. The NASA Space Environment Simulation Laboratory

    NASA Technical Reports Server (NTRS)

    Jost, R. J.

    1982-01-01

    The NASA Space Environment Simulation Laboratory (SESL) features a chamber for studying specific space plasma physics phenomena. The test chamber, an upright domed cylinder having a 17 m diam and a 27 m height for an inner working volume, is lined with magnetic field generator coils. The chamber pressure is nominally 1/1,000,000th torr. Equipment positioning is carried out by remote control from outside guided by a closed circuit television system. Plasma is generated in the chamber by means of a 30 cm Kaufman thruster which produces ion densities of 100,000-1,000,000/cu cm. The ion bulk flow energy is in the range of 20-50 eV and a charge exchange with the ambient gas produces a cold isotropic ion component. Langmuir probes provide measurements of the electron temperature and density, and the composition and pressure are monitored by mass spectrometry and ion gages. Experiments have been performed on electron beam-plasma interactions, VLF antenna impedance measurements, and high voltage plasma sheaths which may be encountered by spacecraft.

  8. An HLA based design of space system simulation environment

    NASA Astrophysics Data System (ADS)

    Li, Yinghua; Li, Yong; Liu, Jie

    2007-06-01

    Space system simulation is involved in many application fields, such as space remote sensing and space communication, etc. A simulation environment which can be shared by different space system simulation is needed. Two rules, called object template towing and hierarchical reusability, are proposed. Based on these two rules, the architecture, the network structure and the function structure of the simulation environment are designed. Then, the mechanism of utilizing data resources, inheriting object models and running simulation systems are also constructed. These mechanisms make the simulation objects defined in advance be easily inherited by different HLA federates, the fundamental simulation models be shared by different simulation systems. Therefore, the simulation environment is highly universal and reusable.

  9. Deep Space Storm Shelter Simulation Study

    NASA Technical Reports Server (NTRS)

    Dugan, Kathryn; Phojanamongkolkij, Nipa; Cerro, Jeffrey; Simon, Matthew

    2015-01-01

    Missions outside of Earth's magnetic field are impeded by the presence of radiation from galactic cosmic rays and solar particle events. To overcome this issue, NASA's Advanced Exploration Systems Radiation Works Storm Shelter (RadWorks) has been studying different radiation protective habitats to shield against the onset of solar particle event radiation. These habitats have the capability of protecting occupants by utilizing available materials such as food, water, brine, human waste, trash, and non-consumables to build short-term shelters. Protection comes from building a barrier with the materials that dampens the impact of the radiation on astronauts. The goal of this study is to develop a discrete event simulation, modeling a solar particle event and the building of a protective shelter. The main hallway location within a larger habitat similar to the International Space Station (ISS) is analyzed. The outputs from this model are: 1) the total area covered on the shelter by the different materials, 2) the amount of radiation the crew members receive, and 3) the amount of time for setting up the habitat during specific points in a mission given an event occurs.

  10. Sixteenth Space Simulation Conference Confirming Spaceworthiness Into the Next Millennium

    NASA Technical Reports Server (NTRS)

    Stecher, Joseph L., III (Editor)

    1990-01-01

    The conference provided participants with a forum to acquire and exchange information on the state of the art in space simulation, test technology, thermal simulation and protection, contamination, and techniques of test measurements.

  11. Laser Scanning and Simulation at Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Kickbusch, Tracey E.

    2012-01-01

    We perform simulations of ground operations leading up launch at Kennedy Space Center and Vandenberg Air Force Base in CA. We use Laser Scanning, Modeling and Simulations to make sure operations are feasible, efficient, and safe.

  12. A Process for Comparing Dynamics of Distributed Space Systems Simulations

    NASA Technical Reports Server (NTRS)

    Cures, Edwin Z.; Jackson, Albert A.; Morris, Jeffery C.

    2009-01-01

    The paper describes a process that was developed for comparing the primary orbital dynamics behavior between space systems distributed simulations. This process is used to characterize and understand the fundamental fidelities and compatibilities of the modeling of orbital dynamics between spacecraft simulations. This is required for high-latency distributed simulations such as NASA s Integrated Mission Simulation and must be understood when reporting results from simulation executions. This paper presents 10 principal comparison tests along with their rationale and examples of the results. The Integrated Mission Simulation (IMSim) (formerly know as the Distributed Space Exploration Simulation (DSES)) is a NASA research and development project focusing on the technologies and processes that are related to the collaborative simulation of complex space systems involved in the exploration of our solar system. Currently, the NASA centers that are actively participating in the IMSim project are the Ames Research Center, the Jet Propulsion Laboratory (JPL), the Johnson Space Center (JSC), the Kennedy Space Center, the Langley Research Center and the Marshall Space Flight Center. In concept, each center participating in IMSim has its own set of simulation models and environment(s). These simulation tools are used to build the various simulation products that are used for scientific investigation, engineering analysis, system design, training, planning, operations and more. Working individually, these production simulations provide important data to various NASA projects.

  13. Galactic cosmic ray simulation at the NASA Space Radiation Laboratory.

    PubMed

    Norbury, John W; Schimmerling, Walter; Slaba, Tony C; Azzam, Edouard I; Badavi, Francis F; Baiocco, Giorgio; Benton, Eric; Bindi, Veronica; Blakely, Eleanor A; Blattnig, Steve R; Boothman, David A; Borak, Thomas B; Britten, Richard A; Curtis, Stan; Dingfelder, Michael; Durante, Marco; Dynan, William S; Eisch, Amelia J; Robin Elgart, S; Goodhead, Dudley T; Guida, Peter M; Heilbronn, Lawrence H; Hellweg, Christine E; Huff, Janice L; Kronenberg, Amy; La Tessa, Chiara; Lowenstein, Derek I; Miller, Jack; Morita, Takashi; Narici, Livio; Nelson, Gregory A; Norman, Ryan B; Ottolenghi, Andrea; Patel, Zarana S; Reitz, Guenther; Rusek, Adam; Schreurs, Ann-Sofie; Scott-Carnell, Lisa A; Semones, Edward; Shay, Jerry W; Shurshakov, Vyacheslav A; Sihver, Lembit; Simonsen, Lisa C; Story, Michael D; Turker, Mitchell S; Uchihori, Yukio; Williams, Jacqueline; Zeitlin, Cary J

    2016-02-01

    Most accelerator-based space radiation experiments have been performed with single ion beams at fixed energies. However, the space radiation environment consists of a wide variety of ion species with a continuous range of energies. Due to recent developments in beam switching technology implemented at the NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory (BNL), it is now possible to rapidly switch ion species and energies, allowing for the possibility to more realistically simulate the actual radiation environment found in space. The present paper discusses a variety of issues related to implementation of galactic cosmic ray (GCR) simulation at NSRL, especially for experiments in radiobiology. Advantages and disadvantages of different approaches to developing a GCR simulator are presented. In addition, issues common to both GCR simulation and single beam experiments are compared to issues unique to GCR simulation studies. A set of conclusions is presented as well as a discussion of the technical implementation of GCR simulation. PMID:26948012

  14. An Overview of the Distributed Space Exploration Simulation (DSES) Project

    NASA Technical Reports Server (NTRS)

    Crues, Edwin Z.; Chung, Victoria I.; Blum, Michael G.; Bowman, James D.

    2007-01-01

    This paper describes the Distributed Space Exploration Simulation (DSES) Project, a research and development collaboration between NASA centers which investigates technologies, and processes related to integrated, distributed simulation of complex space systems in support of NASA's Exploration Initiative. In particular, it describes the three major components of DSES: network infrastructure, software infrastructure and simulation development. With regard to network infrastructure, DSES is developing a Distributed Simulation Network for use by all NASA centers. With regard to software, DSES is developing software models, tools and procedures that streamline distributed simulation development and provide an interoperable infrastructure for agency-wide integrated simulation. Finally, with regard to simulation development, DSES is developing an integrated end-to-end simulation capability to support NASA development of new exploration spacecraft and missions. This paper presents the current status and plans for these three areas, including examples of specific simulations.

  15. Thirteenth Space Simulation Conference. The Payload: Testing for Success

    NASA Technical Reports Server (NTRS)

    Stecher, J. (Editor)

    1984-01-01

    Information on the state of the art in space simulation, test technology, thermal simulation and protection, contamination, and test measurements and techniques are presented. Simulation of upper atmosphere oxygen was discussed. Problems and successes of retrieving and repairing orbiting spacecrafts by utilizing the shuttle are outlined.

  16. Modeling and simulation for space medicine operations: preliminary requirements considered

    NASA Technical Reports Server (NTRS)

    Dawson, D. L.; Billica, R. D.; McDonald, P. V.

    2001-01-01

    The NASA Space Medicine program is now developing plans for more extensive use of high-fidelity medical simulation systems. The use of simulation is seen as means to more effectively use the limited time available for astronaut medical training. Training systems should be adaptable for use in a variety of training environments, including classrooms or laboratories, space vehicle mockups, analog environments, and in microgravity. Modeling and simulation can also provide the space medicine development program a mechanism for evaluation of other medical technologies under operationally realistic conditions. Systems and procedures need preflight verification with ground-based testing. Traditionally, component testing has been accomplished, but practical means for "human in the loop" verification of patient care systems have been lacking. Medical modeling and simulation technology offer potential means to accomplish such validation work. Initial considerations in the development of functional requirements and design standards for simulation systems for space medicine are discussed.

  17. Modeling and simulation for space medicine operations: preliminary requirements considered.

    PubMed

    Dawson, D L; Billica, R D; McDonald, P V

    2001-01-01

    The NASA Space Medicine program is now developing plans for more extensive use of high-fidelity medical simulation systems. The use of simulation is seen as means to more effectively use the limited time available for astronaut medical training. Training systems should be adaptable for use in a variety of training environments, including classrooms or laboratories, space vehicle mockups, analog environments, and in microgravity. Modeling and simulation can also provide the space medicine development program a mechanism for evaluation of other medical technologies under operationally realistic conditions. Systems and procedures need preflight verification with ground-based testing. Traditionally, component testing has been accomplished, but practical means for "human in the loop" verification of patient care systems have been lacking. Medical modeling and simulation technology offer potential means to accomplish such validation work. Initial considerations in the development of functional requirements and design standards for simulation systems for space medicine are discussed. PMID:11317721

  18. Education and training of personnel in space simulation

    NASA Technical Reports Server (NTRS)

    Rempt, R. D.

    1982-01-01

    The training program and procedures developed and implemented at the space simulation laboratory at Martin Marietta Aerospace in Denver are discussed. The training of technicians and professionals as well as preparation for instructors is covered. Training manuals and their compilation are reported as applicable to the specific needs of the laboratory. The development of a space simulation course as part of the Martin Marietta Continuing Education Night School approaching space simulation from an academic viewpoint is presented. Finally, public relations tours of the facility as an informational/educational tool are discussed.

  19. Destination state screening of active spaces in spin dynamics simulations

    NASA Astrophysics Data System (ADS)

    Krzystyniak, M.; Edwards, Luke J.; Kuprov, Ilya

    2011-06-01

    We propose a novel avenue for state space reduction in time domain Liouville space spin dynamics simulations, using detectability as a selection criterion - only those states that evolve into or affect other detectable states are kept in the simulation. This basis reduction procedure (referred to as destination state screening) is formally exact and can be applied on top of the existing state space restriction techniques. As demonstrated below, in many cases this results in further reduction of matrix dimension, leading to considerable acceleration of many spin dynamics simulation types. Destination state screening is implemented in the latest version of the Spinach library (http://spindynamics.org).

  20. Secondary metabolism in simulated microgravity and space flight.

    PubMed

    Gao, Hong; Liu, Zhiheng; Zhang, Lixin

    2011-11-01

    Space flight experiments have suggested that microgravity can affect cellular processes in microorganisms. To simulate the microgravity environment on earth, several models have been developed and applied to examine the effect of microgravity on secondary metabolism. In this paper, studies of effects of space flight on secondary metabolism are exemplified and reviewed along with the advantages and disadvantages of the current models used for simulating microgravity. This discussion is both significant and timely to researchers considering the use of simulated microgravity or space flight to explore effects of weightlessness on secondary metabolism. PMID:22180084

  1. The Use of Microgravity Simulators for Space Research

    NASA Technical Reports Server (NTRS)

    Zhang, Ye; Richards, Stephanie E.; Wade, Randall I.; Richards, Jeffrey T.; Fritsche, Ralph F.; Levine, Howard G.

    2016-01-01

    The spaceflight environment is known to influence biological processes ranging from stimulation of cellular metabolism to possible impacts on cellular damage repair, suppression of immune functions, and bone loss in astronauts. Microgravity is one of the most significant stress factors experienced by living organisms during spaceflight, and therefore, understanding cellular responses to altered gravity at the physiological and molecular level is critical for expanding our knowledge of life in space. Since opportunities to conduct experiments in space are scarce, various microgravity simulators and analogues have been widely used in space biology ground studies. Even though simulated microgravity conditions have produced some, but not all of the biological effects observed in the true microgravity environment, they provide test beds that are effective, affordable, and readily available to facilitate microgravity research. A Micro-g Simulator Center is being developed at Kennedy Space Center (KSC) to offer a variety of microgravity simulators and platforms for Space Biology investigators. Assistance will be provided by both KSC and external experts in molecular biology, microgravity simulation, and engineering. Comparisons between the physical differences in microgravity simulators, examples of experiments using the simulators, and scientific questions regarding the use of microgravity simulators will be discussed.

  2. Development of space simulation / net-laboratory system

    NASA Astrophysics Data System (ADS)

    Usui, H.; Matsumoto, H.; Ogino, T.; Fujimoto, M.; Omura, Y.; Okada, M.; Ueda, H. O.; Murata, T.; Kamide, Y.; Shinagawa, H.; Watanabe, S.; Machida, S.; Hada, T.

    A research project for the development of space simulation / net-laboratory system was approved by Japan Science and Technology Corporation (JST) in the category of Research and Development for Applying Advanced Computational Science and Technology(ACT-JST) in 2000. This research project, which continues for three years, is a collaboration with an astrophysical simulation group as well as other space simulation groups which use MHD and hybrid models. In this project, we develop a proto type of unique simulation system which enables us to perform simulation runs by providing or selecting plasma parameters through Web-based interface on the internet. We are also developing an on-line database system for space simulation from which we will be able to search and extract various information such as simulation method and program, manuals, and typical simulation results in graphic or ascii format. This unique system will help the simulation beginners to start simulation study without much difficulty or effort, and contribute to the promotion of simulation studies in the STP field. In this presentation, we will report the overview and the current status of the project.

  3. Galactic Cosmic Ray Simulator at the NASA Space Radiation Laboratory

    NASA Technical Reports Server (NTRS)

    Norbury, John W.; Slaba, Tony C.; Rusek, Adam

    2015-01-01

    The external Galactic Cosmic Ray (GCR) spectrum is significantly modified when it passes through spacecraft shielding and astronauts. One approach for simulating the GCR space radiation environment is to attempt to reproduce the unmodified, external GCR spectrum at a ground based accelerator. A possibly better approach would use the modified, shielded tissue spectrum, to select accelerator beams impinging on biological targets. NASA plans for implementation of a GCR simulator at the NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory will be discussed.

  4. 20th Space Simulation Conference: The Changing Testing Paradigm

    NASA Technical Reports Server (NTRS)

    Stecher, Joseph L., III (Compiler)

    1999-01-01

    The Institute of Environmental Sciences and Technology's Twentieth Space Simulation Conference, "The Changing Testing Paradigm" provided participants with a forum to acquire and exchange information on the state-of-the-art in space simulation, test technology, atomic oxygen, program/system testing, dynamics testing, contamination, and materials. The papers presented at this conference and the resulting discussions carried out the conference theme "The Changing Testing Paradigm."

  5. 20th Space Simulation Conference: The Changing Testing Paradigm

    NASA Technical Reports Server (NTRS)

    Stecher, Joseph L., III (Compiler)

    1998-01-01

    The Institute of Environmental Sciences' Twentieth Space Simulation Conference, "The Changing Testing Paradigm" provided participants with a forum to acquire and exchange information on the state-of-the-art in space simulation, test technology, atomic oxygen, program/system testing, dynamics testing, contamination, and materials. The papers presented at this conference and the resulting discussions carried out the conference theme "The Changing Testing Paradigm."

  6. Ssioux - Space Simulation for Investigating Organics, Evolution and Exobiology

    NASA Astrophysics Data System (ADS)

    Rabbow, E.; Rettberg, P.; Panitz, C.; Drescher, J.; Horneck, G.

    Ground based experiments, conducted in controlled space environment simulation facilities, complement the exo/astrobiological experiments in LEO on the ISS, for example in the ESA-EXPOSE facility. These in-orbit exposure facilities can only accommodate a limited number of experiments for exposure to the space parameters high vacuum, intense radiation of galactic and solar origin and microgravity. Ground based experiments in carefully equipped and monitored simulation facilities allow the additional investigation of a much wider variety of samples. In the ESA supported experiment SSIOUX, an international consortium of 14 prime investigators will expose organic compounds and a wide range of microorganisms, reaching from bacterial spores to complex microbial communities, to simulated space environment parameters in pursuit of exobiological questions on their resistance to space environment and the origin and distribution of life. The experiments will be conducted in the Space Simulation Facilities of the Institute of Aerospace Medicine at DLR in Köln, Germany, where the simulated space parameters of high or ultrahigh vacuum of controlled residual composition, ionizing radiation of a X-ray tube, polychromatic UV radiation in the range of 170-400 nm, VIS and IR or individual monochromatic UV wavelengths, and temperature regulation from -20C to +80C at the sample size are provided individually or in selected combinations in 9 facilities of varying sizes. All parameters are controlled and monitored online. Experiments in these facilities discriminate the effects of individual space parameters and investigate their selected combination. In addition, they serve as ground control experiments defining biological samples interesting and suitable for future space experiments and compliment the data of executed space experiments and those in progress. As 1g controls, they also enable the identification of microgravity effects. Here, the SSIOUX consortium and their experiments

  7. Specimen mass measurement. [during space environment simulation

    NASA Technical Reports Server (NTRS)

    Thornton, W. E.; Ord, J.

    1973-01-01

    The Skylab specimen mass measurement device was operated throughout the altitude test in close simulation of the 56-day Skylab mission. It performed operational specimen measurements well until it was passed out of the chamber for replacement of the specimen hold-down and was autoclaved prior to return. Fecal measurements were typically made with less than one percent error.

  8. GCR Simulator Development Status at the NASA Space Radiation Laboratory

    NASA Technical Reports Server (NTRS)

    Slaba, T. C.; Norbury, J. W.; Blattnig, S. R.

    2015-01-01

    There are large uncertainties connected to the biological response for exposure to galactic cosmic rays (GCR) on long duration deep space missions. In order to reduce the uncertainties and gain understanding about the basic mechanisms through which space radiation initiates cancer and other endpoints, radiobiology experiments are performed with mono-energetic ions beams. Some of the accelerator facilities supporting such experiments have matured to a point where simulating the broad range of particles and energies characteristic of the GCR environment in a single experiment is feasible from a technology, usage, and cost perspective. In this work, several aspects of simulating the GCR environment at the NASA Space Radiation Laboratory (NSRL) are discussed. First, comparisons are made between direct simulation of the external, free space GCR field, and simulation of the induced tissue field behind shielding. It is found that upper energy constraints at NSRL limit the ability to simulate the external, free space field directly (i.e. shielding placed in the beam line in front of a biological target and exposed to a free space spectrum). Second, a reference environment for the GCR simulator and suitable for deep space missions is identified and described in terms of fluence and integrated dosimetric quantities. Analysis results are given to justify the use of a single reference field over a range of shielding conditions and solar activities. Third, an approach for simulating the reference field at NSRL is presented. The approach directly considers the hydrogen and helium energy spectra, and the heavier ions are collectively represented by considering the linear energy transfer (LET) spectrum. While many more aspects of the experimental setup need to be considered before final implementation of the GCR simulator, this preliminary study provides useful information that should aid the final design. Possible drawbacks of the proposed methodology are discussed and weighed

  9. A simulation facility for testing Space Station assembly procedures

    NASA Technical Reports Server (NTRS)

    Hajare, Ankur R.; Wick, Daniel T.; Shehad, Nagy M.

    1994-01-01

    NASA plans to construct the Space Station Freedom (SSF) in one of the most hazardous environments known to mankind - space. It is of the utmost importance that the procedures to assemble and operate the SSF in orbit are both safe and effective. This paper describes a facility designed to test the integration of the telerobotic systems and to test assembly procedures using a real-world robotic arm grappling space hardware in a simulated microgravity environment.

  10. Simulating the operations of the reusable shuttle space vehicle.

    NASA Technical Reports Server (NTRS)

    Schlagheck, R. A.; Byers, J. K.

    1971-01-01

    A stochastic simulation model has been developed using the General Purpose Simulation System (GPSS) II language to analyze the operations of a fleet of Shuttle space vehicles. This paper presents the approach used in developing the model, results obtained from some of the analyses performed to date, and an interpretation of the results as they were presented to management personnel.

  11. Simulated space environmental effects on some experimental high performance polymers

    NASA Technical Reports Server (NTRS)

    Connell, John W.

    1993-01-01

    High performance polymers for potential space applications were evaluated under simulated space environmental conditions. Experimental resins from blends of acetylene terminated materials, poly(arylene ether)s and low color polyimides were exposed to high energy electron and ultraviolet radiation in an attempt to simulate space environmental effects. Thin films, neat resin moldings, and carbon fiber reinforced composites were exposed, and the effect on certain polymer properties were determined. Recent research involving the effects of various radiation exposures on the physical, optical, and mechanical properties of several experimental polymer systems is reviewed.

  12. Simulated Space Environmental Testing on Thin Films

    NASA Technical Reports Server (NTRS)

    Russell, Dennis A.; Fogdall, Larry B.; Bohnhoff-Hlavacek, Gail; Connell, John W. (Technical Monitor)

    2000-01-01

    An exploratory program has been conducted, to irradiate some mature commercial and some experimental polymer films with radiation simulating certain Earth orbits, and to obtain data about the response of each test film's reflective and tensile properties. Protocols to conduct optimized tests were considered and developed to a "prototype" level during this program. Fifteen polymer film specimens were arranged on a specially designed test fixture. The fixture featured controlled exposure areas, and protected the ends of the samples for later gripping in tensile tests. The fixture featured controlled exposure areas, and protected the ends of the samples for later gripping in tensile tests. The fixture containing the films was installed in a clean vacuum chamber where protons, electrons and solar ultraviolet (UV) radiation could simultaneously irradiate the specimens. Near realtime UV rates were used, whereas proton and electron rates were accelerated appreciably to simulate 5 years in orbit during a two month test. Periodically, the spectral reflectance of each film was measured in situ. After the end of the irradiation, final reflectance measurements were made in situ, and solar absorptance values were derived for each specimen. These samples were then measured in air for thermal emittance and for tensile strength. Most specimens withstood the irradiation intact, but with reduced reflectance (increased solar absorptance). Thermal emittance changed slightly in several materials, as did their tensile strength and elongation at break. Conclusions are drawn about the performance of the films. Simulated testing to an expected 5 year dose of electrons and protons consistent with those expected at L2 and 0.98 AU orbits and 100 equivalent solar hours exposure.

  13. Real-time graphic simulation for space telerobotics applications

    NASA Technical Reports Server (NTRS)

    Baumann, E. W.

    1987-01-01

    Designing space-based telerobotic systems presents many problems unique to telerobotics and the space environment, but it also shares many common hardware and software design problems with Earth-based industrial robot applications. Such problems include manipulator design and placement, grapple-fixture design, and of course the development of effective and reliable control algorithms. Since first being applied to industrial robotics just a few years ago, interactive graphic simulation has proven to be a powerful tool for anticipating and solving problems in the design of Earth-based robotic systems and processes. Where similar problems are encountered in the design of space-based robotic mechanisms, the same graphic simulation tools may also be of assistance. The capabilities of PLACE, a commercially available interactive graphic system for the design and simulation of robotic systems and processes is described. A space-telerobotics application of the system is presented and discussed. Potential future enhancements are described.

  14. Manufacture of Cryoshroud Surfaces for Space Simulation Chambers

    NASA Technical Reports Server (NTRS)

    Ash, Gary S.

    2008-01-01

    Environmental test chambers for space applications use internal shrouds to simulate temperature conditions encountered in space. Shroud temperatures may range from +150 C to -253 C (20 K), and internal surfaces are coated with special high emissivity/absorptivity paints. To obtain temperature uniformity over large areas, detailed thermal design is required for placement of tubing for gaseous or liquid nitrogen and helium and other exotic heat exchange fluids. The recent increase in space simulation activity related to the James Webb Space Telescope has led to the design of new cryogenic shrouds to meet critical needs in instrument package testing. This paper will review the design and manufacturing of shroud surfaces for several of these programs, including fabrication methods and the selection and application of paints for simulation chambers.

  15. A simulation system for Space Station extravehicular activity

    NASA Technical Reports Server (NTRS)

    Marmolejo, Jose A.; Shepherd, Chip

    1993-01-01

    America's next major step into space will be the construction of a permanently manned Space Station which is currently under development and scheduled for full operation in the mid-1990's. Most of the construction of the Space Station will be performed over several flights by suited crew members during an extravehicular activity (EVA) from the Space Shuttle. Once fully operational, EVA's will be performed from the Space Station on a routine basis to provide, among other services, maintenance and repair operations of satellites currently in Earth orbit. Both voice recognition and helmet-mounted display technologies can improve the productivity of workers in space by potentially reducing the time, risk, and cost involved in performing EVA. NASA has recognized this potential and is currently developing a voice-controlled information system for Space Station EVA. Two bench-model helmet-mounted displays and an EVA simulation program have been developed to demonstrate the functionality and practicality of the system.

  16. Space Shuttle Plume Simulation Effect on Aerodynamics

    NASA Technical Reports Server (NTRS)

    Hair, L. M.

    1978-01-01

    Technology for simulating plumes in wind tunnel tests was not adequate to provide the required confidence in test data where plume induced aerodynamic effects might be significant. A broad research program was undertaken to correct the deficiency. Four tasks within the program are reported. Three of these tasks involve conducting experiments, related to three different aspects of the plume simulation problem: (1) base pressures; (2) lateral jet pressures; and (3) plume parameters. The fourth task involves collecting all of the base pressure test data generated during the program. Base pressures were measured on a classic cone ogive cylinder body as affected by the coaxial, high temperature exhaust plumes of a variety of solid propellant rockets. Valid data were obtained at supersonic freestream conditions but not at transonic. Pressure data related to lateral (separation) jets at M infinity = 4.5, for multiple clustered nozzles canted to the freestream and operating at high dynamic pressure ratios. All program goals were met although the model hardware was found to be large relative to the wind tunnel size so that operation was limited for some nozzle configurations.

  17. A Simulation and Modeling Framework for Space Situational Awareness

    SciTech Connect

    Olivier, S S

    2008-09-15

    This paper describes the development and initial demonstration of a new, integrated modeling and simulation framework, encompassing the space situational awareness enterprise, for quantitatively assessing the benefit of specific sensor systems, technologies and data analysis techniques. The framework is based on a flexible, scalable architecture to enable efficient, physics-based simulation of the current SSA enterprise, and to accommodate future advancements in SSA systems. In particular, the code is designed to take advantage of massively parallel computer systems available, for example, at Lawrence Livermore National Laboratory. The details of the modeling and simulation framework are described, including hydrodynamic models of satellite intercept and debris generation, orbital propagation algorithms, radar cross section calculations, optical brightness calculations, generic radar system models, generic optical system models, specific Space Surveillance Network models, object detection algorithms, orbit determination algorithms, and visualization tools. The use of this integrated simulation and modeling framework on a specific scenario involving space debris is demonstrated.

  18. Development and testing of a mouse simulated space flight model

    NASA Technical Reports Server (NTRS)

    Sonnenfeld, Gerald

    1987-01-01

    The development and testing of a mouse model for simulating some aspects of weightlessness that occurs during space flight, and the carrying out of immunological experiments on animals undergoing space flight is examined. The mouse model developed was an antiorthostatic, hypokinetic, hypodynamic suspension model similar to one used with rats. The study was divided into two parts. The first involved determination of which immunological parameters should be observed on animals flown during space flight or studied in the suspension model. The second involved suspending mice and determining which of those immunological parameters were altered by the suspension. Rats that were actually flown in Space Shuttle SL-3 were used to test the hypotheses.

  19. Classifying unresolved objects from simulated space data.

    NASA Technical Reports Server (NTRS)

    Nalepka, R. F.; Hyde, P. D.

    1973-01-01

    A multispectral scanner data set gathered at a flight altitude of 10,000 ft. over an agricultural area was modified to simulate the spatial resolution of the spacecraft scanners. Signatures were obtained for several major crops and their proportions were estimated over a large area. For each crop, a map was generated to show its approximate proportion in each resolution element, and hence its distribution over the area of interest. A statistical criterion was developed to identify data points that may not represent a mixture of the specified crops. This allows for great reduction in the effect of unknown or alien objects on the estimated proportions. This criterion can be used to locate special features, such as roads or farm houses. Preliminary analysis indicates a high level of consistency between estimated proportions and available ground truth. Large concentrations of major crops show up especially well on the maps.

  20. Next Generation Simulation Framework for Robotic and Human Space Missions

    NASA Technical Reports Server (NTRS)

    Cameron, Jonathan M.; Balaram, J.; Jain, Abhinandan; Kuo, Calvin; Lim, Christopher; Myint, Steven

    2012-01-01

    The Dartslab team at NASA's Jet Propulsion Laboratory (JPL) has a long history of developing physics-based simulations based on the Darts/Dshell simulation framework that have been used to simulate many planetary robotic missions, such as the Cassini spacecraft and the rovers that are currently driving on Mars. Recent collaboration efforts between the Dartslab team at JPL and the Mission Operations Directorate (MOD) at NASA Johnson Space Center (JSC) have led to significant enhancements to the Dartslab DSENDS (Dynamics Simulator for Entry, Descent and Surface landing) software framework. The new version of DSENDS is now being used for new planetary mission simulations at JPL. JSC is using DSENDS as the foundation for a suite of software known as COMPASS (Core Operations, Mission Planning, and Analysis Spacecraft Simulation) that is the basis for their new human space mission simulations and analysis. In this paper, we will describe the collaborative process with the JPL Dartslab and the JSC MOD team that resulted in the redesign and enhancement of the DSENDS software. We will outline the improvements in DSENDS that simplify creation of new high-fidelity robotic/spacecraft simulations. We will illustrate how DSENDS simulations are assembled and show results from several mission simulations.

  1. SSIOUX - Space simulation for investigating organics, evolution and exobiology

    NASA Astrophysics Data System (ADS)

    Rabbow, E.; Rettberg, P.; Panitz, C.; Drescher, J.; Horneck, G.; Reitz, G.

    Ground based experiments, conducted in advanced space environment simulation facilities, complement the exo/astrobiological experiments in Low Earth Orbit (LEO). For example, the in-orbit ESA-facility EXPOSE on the International Space Station ISS can only accommodate a limited number of experiments for exposure to the space parameters high vacuum, intense radiation of galactic and solar origin and microgravity. Ground based experiments in carefully equipped and monitored simulation facilities allow necessary experiment preparation and additional investigation of a much wider variety of samples. In the ESA accepted experiment SSIOUX, ESA-RA-LS-01-PREP, an international consortium of 14 prime investigators will expose organic compounds and a wide range of microorganisms, from bacterial spores to complex microbial communities, to simulated space environment parameters in pursuit of exobiological questions on their resistance to space environment and the origin and distribution of life. The experiments will be conducted in the Planetary and Space Simulation Facilities of the Institute of Aerospace Medicine at DLR in Köln, Germany, where the simulated space parameters vacuum with controlled residual composition, ionizing radiation, polychromatic UV radiation and selected UV ranges from vacuum-UV to UVA, VIS and IR or individual monochromatic UV wavelengths, and temperature control at the sample site are provided individually or in selected combinations in 9 facilities of varying sizes. Parameters are constantly measured and data are available in real time online during the exposure. Experiments in these facilities discriminate between the effects of individual space parameters and selected combinations. In addition, they serve as ground experiments defining interesting and suitable biological samples for future space experiments and compliment the data of executed space experiments and those in progress. As 1 × g controls, they also enable the identification of

  2. A Simulation Testbed for Airborne Merging and Spacing

    NASA Technical Reports Server (NTRS)

    Santos, Michel; Manikonda, Vikram; Feinberg, Art; Lohr, Gary

    2008-01-01

    The key innovation in this effort is the development of a simulation testbed for airborne merging and spacing (AM&S). We focus on concepts related to airports with Super Dense Operations where new airport runway configurations (e.g. parallel runways), sequencing, merging, and spacing are some of the concepts considered. We focus on modeling and simulating a complementary airborne and ground system for AM&S to increase efficiency and capacity of these high density terminal areas. From a ground systems perspective, a scheduling decision support tool generates arrival sequences and spacing requirements that are fed to the AM&S system operating on the flight deck. We enhanced NASA's Airspace Concept Evaluation Systems (ACES) software to model and simulate AM&S concepts and algorithms.

  3. Survival rates of some terrestrial microorganisms under simulated space conditions

    NASA Astrophysics Data System (ADS)

    Koike, J.; Oshima, T.; Koike, K. A.; Taguchi, H.; Tanaka, R.; Nishimura, K.; Miyaji, M.

    1992-10-01

    In connection with planetary quarantine, we have been studying the survival rates of nine species of terrestrial microorganisms (viruses, bacteria, yeasts, fungi, etc.) under simulated interstellar conditions. If common terrestrial microorganisms cannot survive in space even for short periods, we can greatly reduce expenditure for sterilizing space probes. The interstellar environment in the solar system has been simulated by low temperature, high vacuum (77 k, 4 × 10-6 torr), and protons irradiation from a Van de Graaff generator. After exposure to a barrage of protons corresponding to about 250 years of irradiation in solar space, Tobacco mosaic virus. Bacillus subtilis spores, Aspergillus niger spores, and Clostridium mangenoti spores showed survival rates of 82%, 45%, 28%, and 25%, respectively. Furthermore, pathogenic Candida albicans showed 7% survival after irradiation corresponding to about 60 years in space.

  4. Planetary and Space Simulation Facilities PSI at DLR for Astrobiology

    NASA Astrophysics Data System (ADS)

    Rabbow, E.; Rettberg, P.; Panitz, C.; Reitz, G.

    2008-09-01

    Ground based experiments, conducted in the controlled planetary and space environment simulation facilities PSI at DLR, are used to investigate astrobiological questions and to complement the corresponding experiments in LEO, for example on free flying satellites or on space exposure platforms on the ISS. In-orbit exposure facilities can only accommodate a limited number of experiments for exposure to space parameters like high vacuum, intense radiation of galactic and solar origin and microgravity, sometimes also technically adapted to simulate extraterrestrial planetary conditions like those on Mars. Ground based experiments in carefully equipped and monitored simulation facilities allow the investigation of the effects of simulated single environmental parameters and selected combinations on a much wider variety of samples. In PSI at DLR, international science consortia performed astrobiological investigations and space experiment preparations, exposing organic compounds and a wide range of microorganisms, reaching from bacterial spores to complex microbial communities, lichens and even animals like tardigrades to simulated planetary or space environment parameters in pursuit of exobiological questions on the resistance to extreme environments and the origin and distribution of life. The Planetary and Space Simulation Facilities PSI of the Institute of Aerospace Medicine at DLR in Köln, Germany, providing high vacuum of controlled residual composition, ionizing radiation of a X-ray tube, polychromatic UV radiation in the range of 170-400 nm, VIS and IR or individual monochromatic UV wavelengths, and temperature regulation from -20°C to +80°C at the sample size individually or in selected combinations in 9 modular facilities of varying sizes are presented with selected experiments performed within.

  5. Space Motion Sickness and Stress Training Simulator using Electrophysiological Biofeedback

    NASA Astrophysics Data System (ADS)

    Gaudeau, C.; Golding, J. F.; Thevot, F.; Lucas, Y.; Bobola, P.; Thouvenot, J.

    2005-06-01

    An important problem in manned spaceflight is the nausea that typically appears during the first 3 days and then disappears after 5 days. Methods of detecting changes in electrophysiological signals are being studied in order to reduce susceptibility to space motion sickness through biofeedback training, and for the early detection of nausea during EVA. A simulator would allow subjects to control their body functions and to use biofeedback to control space motion sickness and stress.

  6. Radiation effects control: Eyes, skin. [space environment simulation

    NASA Technical Reports Server (NTRS)

    Hightower, D.; Smathers, J. B.

    1974-01-01

    Adverse effects on the lens of the eye and the skin due to exposure to proton radiation during manned space flight were evaluated. Actual proton irradiation which might be encountered in space was simulated. Irradiation regimes included single acute exposures, daily fractionated exposures, and weekly fractionated exposures. Animals were exposed and then maintained and examined periodically until data sufficient to meet the objective were obtained. No significant skin effects were noted and no serious sight impairment was exhibited.

  7. Space telescope neutral buoyancy simulations: The first two years

    NASA Technical Reports Server (NTRS)

    Sanders, F. G.

    1982-01-01

    Neutral Buoyancy simulations which were conducted to validate the crew systems interface as it relates to space telescope on-orbit maintenance and contingency operations is discussed. The initial concept validation tests using low fidelity mockups is described. The entire spectrum of proposed space telescope refurbishment and selected contingencies using upgraded mockups which reflect flight hardware are reported. Findings which may be applicable to future efforts of a similar nature are presented.

  8. Galactic Cosmic Ray Simulation at the NASA Space Radiation Laboratory

    NASA Technical Reports Server (NTRS)

    Norbury, John W.; Slaba, Tony C.; Rusek, Adam

    2015-01-01

    The external Galactic Cosmic Ray (GCR) spectrum is significantly modified when it passes through spacecraft shielding and astronauts. One approach for simulating the GCR space radiation environment at ground based accelerators would use the modified spectrum, rather than the external spectrum, in the accelerator beams impinging on biological targets. Two recent workshops have studied such GCR simulation. The first workshop was held at NASA Langley Research Center in October 2014. The second workshop was held at the NASA Space Radiation Investigators' workshop in Galveston, Texas in January 2015. The results of these workshops will be discussed in this paper.

  9. Refurbishment of the Jet Propulsion Laboratory's Large Space Simulator

    NASA Technical Reports Server (NTRS)

    Harrell, J.; Johnson, K.

    1993-01-01

    The JPL large space simulator has recently undergone a major refurbishment to restore and enhance its capabilities to provide high fidelity space simulation. The nearly completed refurbishment has included upgrading the vacuum pumping system by replacing old oil diffusion pumps with new cryogenic and turbomolecular pumps; modernizing the entire control system to utilize computerized, distributed control technology; replacing the Xenon arc lamp power supplies with new upgraded units; refinishing the primary collimating mirror; and replacing the existing integrating lens unit and the fused quartz penetration window.

  10. Space simulation in the Neutral Buoyancy Test Facility

    NASA Technical Reports Server (NTRS)

    Luna, Bernadette; Lomax, W. Curtis; Smith, Douglas D.

    1993-01-01

    Various methods have been to simulate reduced gravity environments for space systems research and development. Neutral buoyancy has been the most universally used simulation of zero-g. This paper describes the facilities, personnel and experimental work that are associated with the Neutral Buoyancy Test Facility (NBTF) at NASA Ames Research Center (ARC). This facility provides a unique underwater environment for the researcher to simulate reduced gravity activities and evaluate the performances of space-related equipment. The NBTF's small size gives it several advantages over larger water facilities. Second, the facility is used for research purposes only, eliminating any scheduling conflicts with astronaut training. Lastly, the small volume of water allows the researcher to more easily vary the water temperature. This feature is ideal for investigations of astronaut thermal comfort and regulation. Recent investigations have used the NBTF for reduced gravity simulation of locomotion and load-carrying, among other interesting research endeavors.

  11. Space shuttle afterbody aerodynamics/plume simulation data summary

    NASA Technical Reports Server (NTRS)

    Blackwell, K. L.; Hair, L. M.

    1978-01-01

    A series of parametric wind tunnel tests was conducted to provide a base for developing a simulation of afterbody/base aerodynamics for multibody/multibase rocket-powered vehicles (such as Space Shuttle) which use unheated air as the simulant gas in development wind tunnel tests. The tests described were parameterized on external configuration, nozzle internal configuration, base geometry, propulsion gas type, and freestream Mach number (0.5 to 3.5). The tests were conducted over a 4-year period. Presented in this report are the data and pertinent reference information necessary to perform an analysis which would lead to a simulation procedure. The type of data obtained during the tests described herein include model base afterbody, and nozzle internal surface static pressure distributions, model chamber pressure and temperature, and freestream conditions. Also included is a brief description of simulation procedures that were used by the Space Shuttle program.

  12. Planetary and Space Simulation Facilities (PSI) at DLR

    NASA Astrophysics Data System (ADS)

    Panitz, Corinna; Rabbow, E.; Rettberg, P.; Kloss, M.; Reitz, G.; Horneck, G.

    2010-05-01

    The Planetary and Space Simulation facilities at DLR offer the possibility to expose biological and physical samples individually or integrated into space hardware to defined and controlled space conditions like ultra high vacuum, low temperature and extraterrestrial UV radiation. An x-ray facility stands for the simulation of the ionizing component at the disposal. All of the simulation facilities are required for the preparation of space experiments: - for testing of the newly developed space hardware - for investigating the effect of different space parameters on biological systems as a preparation for the flight experiment - for performing the 'Experiment Verification Tests' (EVT) for the specification of the test parameters - and 'Experiment Sequence Tests' (EST) by simulating sample assemblies, exposure to selected space parameters, and sample disassembly. To test the compatibility of the different biological and chemical systems and their adaptation to the opportunities and constraints of space conditions a profound ground support program has been developed among many others for the ESA facilities of the ongoing missions EXPOSE-R and EXPOSE-E on board of the International Space Station ISS . Several experiment verification tests EVTs and an experiment sequence test EST have been conducted in the carefully equipped and monitored planetary and space simulation facilities PSI of the Institute of Aerospace Medicine at DLR in Cologne, Germany. These ground based pre-flight studies allowed the investigation of a much wider variety of samples and the selection of the most promising organisms for the flight experiment. EXPOSE-E had been attached to the outer balcony of the European Columbus module of the ISS in February 2008 and stayed for 1,5 years in space; EXPOSE-R has been attached to the Russian Svezda module of the ISS in spring 2009 and mission duration will be approx. 1,5 years. The missions will give new insights into the survivability of terrestrial

  13. Controlled multibody dynamics simulation for large space structures

    NASA Technical Reports Server (NTRS)

    Housner, J. M.; Wu, S. C.; Chang, C. W.

    1989-01-01

    Multibody dynamics discipline, and dynamic simulation in control structure interaction (CSI) design are discussed. The use, capabilities, and architecture of the Large Angle Transient Dynamics (LATDYN) code as a simulation tool are explained. A generic joint body with various types of hinge connections; finite element and element coordinate systems; results of a flexible beam spin-up on a plane; mini-mast deployment; space crane and robotic slewing manipulations; a potential CSI test article; and multibody benchmark experiments are also described.

  14. International Neutral Buoyancy Simulation of Space Station Hardware

    NASA Technical Reports Server (NTRS)

    King, Lisa C.; Shields, Nicholas Jr.

    1994-01-01

    The International Standard Payload Rack (ISPR) Neutral Buoyancy Simulation was conducted at the Marshall Space Flight Center (MSFC) Neutral Buoyancy Simulator facility during April and May 1992. The purpose of this simulation was to evaluate hardware design and operations for the ISPR and U.S. Lab system racks under simulated conditions of microgravity. The ISPR NBS was conducted by an international simulation team including representatives from Boeing, NASA, NASDA, and ESA. Hardware for the ISPR NBS was provided by Boeing, Alenia, ESA, and MSFC. NASDA and its contractors MEH and IHI provided experienced in-tank participants and technical observers who were present for the duration of the simulation. The ISPR NBS was the first Space Station simulation involving NASA, NASDA and ESA. In addition to bringing together technical representatives from around the world, the ISPR NBS included test subjects who are some of the most experienced U.S. and European astronauts. Eight general areas of investigation were addressed during the ISPR NBS, including: utility panel interfaces, rack tilt down, standoff access, wall access behind the rack, rack removal and installation, rack translation, multiple rack operations, and restraints and mobility aids. This paper focuses on aspects of simulation planning, conduct, and reporting that pertain to specifically to the international involvement of the activity.

  15. Space environment simulation at radiation test of nonmetallic materials

    NASA Astrophysics Data System (ADS)

    Briskman, B. A.; Klinshpont, E. R.; Tupikov, V. I.

    1999-05-01

    Russia [1] (B.A. Briskman, V.I. Toupikov, E.N. Lesnovsky, Proceedings of the Seventh International Symposium on Materials in Space Environment, Toulouse, France, 16-20 June 1997, ESA, SP-399, p. 537) has proposed new international standard for the testing of materials to simulated space radiation. The proposal was submitted to ISO (The International Organization for Standards) Technical Committee 20 (Aircraft and Space Vehicles), Subcommittee 14 (Space Systems and Operations) and was approved as Working Draft 15856 at the Los-Angeles meeting (1997). The second version of the draft was approved at the Beijing meeting (1998). The standard extends to space ionizing radiation: protons, electrons, solar ultraviolet, soft X-radiation, bremsstrahlung, that effect the polymeric materials of space engineering. The special feature of interaction of the space ionizing radiation with materials is the localization of the main part of absorbed energy in thin near-surface layers. Numerous problems appear in simulating the ionizing radiation impact, which require a solution for correct conduction of the on-ground tests.

  16. High Level Architecture Distributed Space System Simulation for Simulation Interoperability Standards Organization Simulation Smackdown

    NASA Technical Reports Server (NTRS)

    Li, Zuqun

    2011-01-01

    Modeling and Simulation plays a very important role in mission design. It not only reduces design cost, but also prepares astronauts for their mission tasks. The SISO Smackdown is a simulation event that facilitates modeling and simulation in academia. The scenario of this year s Smackdown was to simulate a lunar base supply mission. The mission objective was to transfer Earth supply cargo to a lunar base supply depot and retrieve He-3 to take back to Earth. Federates for this scenario include the environment federate, Earth-Moon transfer vehicle, lunar shuttle, lunar rover, supply depot, mobile ISRU plant, exploratory hopper, and communication satellite. These federates were built by teams from all around the world, including teams from MIT, JSC, University of Alabama in Huntsville, University of Bordeaux from France, and University of Genoa from Italy. This paper focuses on the lunar shuttle federate, which was programmed by the USRP intern team from NASA JSC. The shuttle was responsible for provide transportation between lunar orbit and the lunar surface. The lunar shuttle federate was built using the NASA standard simulation package called Trick, and it was extended with HLA functions using TrickHLA. HLA functions of the lunar shuttle federate include sending and receiving interaction, publishing and subscribing attributes, and packing and unpacking fixed record data. The dynamics model of the lunar shuttle was modeled with three degrees of freedom, and the state propagation was obeying the law of two body dynamics. The descending trajectory of the lunar shuttle was designed by first defining a unique descending orbit in 2D space, and then defining a unique orbit in 3D space with the assumption of a non-rotating moon. Finally this assumption was taken away to define the initial position of the lunar shuttle so that it will start descending a second after it joins the execution. VPN software from SonicWall was used to connect federates with RTI during testing

  17. Simulation of Martian surface-atmosphere interaction in a space-simulator: Technical considerations and feasibility

    NASA Technical Reports Server (NTRS)

    Moehlmann, D.; Kochan, H.

    1992-01-01

    The Space Simulator of the German Aerospace Research Establishment at Cologne, formerly used for testing satellites, is now, since 1987, the central unit within the research sub-program 'Comet-Simulation' (KOSI). The KOSI team has investigated physical processes relevant to comets and their surfaces. As a byproduct we gained experience in sample-handling under simulated space conditions. In broadening the scope of the research activities of the DLR Institute of Space Simulation an extension to 'Laboratory-Planetology' is planned. Following the KOSI-experiments a Mars Surface-Simulation with realistic minerals and surface soil in a suited environment (temperature, pressure, and CO2-atmosphere) is foreseen as the next step. Here, our main interest is centered on thermophysical properties of the Martian surface and energy transport (and related gas transport) through the surface. These laboratory simulation activities can be related to space missions as typical pre-mission and during-the-mission support of the experiments design and operations (simulation in parallel). Post mission experiments for confirmation and interpretation of results are of great value. The physical dimensions of the Space Simulator (cylinder of about 2.5 m diameter and 5 m length) allows for testing and qualification of experimental hardware under realistic Martian conditions.

  18. Simulation test beds for the Space Station electrical power system

    NASA Technical Reports Server (NTRS)

    Sadler, Gerald G.

    1988-01-01

    NASA Lewis Research Center and its prime contractor are respnsible for developing the electrical power system on the Space Station. The power system will be controlled by a network of distributed processors. Control software will be verified, validated, and tested in hardware and software test beds. Current plans for the software test bed involve using real time and nonreal time simulations of the power system. This paper will discuss the general simulation objectives and configurations, control architecture, interfaces between simulator and controls, types of tests, and facility configurations.

  19. Simulation test beds for the space station electrical power system

    NASA Technical Reports Server (NTRS)

    Sadler, Gerald G.

    1988-01-01

    NASA Lewis Research Center and its prime contractor are responsible for developing the electrical power system on the space station. The power system will be controlled by a network of distributed processors. Control software will be verified, validated, and tested in hardware and software test beds. Current plans for the software test bed involve using real time and nonreal time simulations of the power system. This paper will discuss the general simulation objectives and configurations, control architecture, interfaces between simulator and controls, types of tests, and facility configurations.

  20. The development of a combined effects space simulation facility

    SciTech Connect

    Maldonado, Carlos A.; Lilly, Taylor C.; Ketsdever, Andrew D.

    2012-11-27

    An overview of the development of a facility to study the combined effects of the space environment on spacecraft is presented. The characterization of a magnetic filter plasma source and a low energy electron flood source for the simulation of the low Earth orbit plasma environment is discussed. Plasma diagnostics show that the magnetic filter plasma source provides streaming ion energies of approximately 5eV and can supply the appropriate density for LEO simulation. Additionally the low energy flood gun is shown to provide the appropriate density for LEO simulation as a function of altitude and solar activity.

  1. Simulation of Range Safety for the NASA Space Shuttle

    NASA Technical Reports Server (NTRS)

    Rabelo, Luis; Sepulveda, Jose; Compton, Jeppie; Turner, Robert

    2005-01-01

    This paper describes a simulation environment that seamlessly combines a number of safety and environmental models for the launch phase of a NASA Space Shuttle mission. The components of this simulation environment represent the different systems that must interact in order to determine the Expectation of casualties (E(sub c)) resulting from the toxic effects of the gas dispersion that occurs after a disaster affecting a Space Shuttle within 120 seconds of lift-off. The utilization of the Space Shuttle reliability models, trajectory models, weather dissemination systems, population models, amount and type of toxicants, gas dispersion models, human response functions to toxicants, and a geographical information system are all integrated to create this environment. This simulation environment can help safety managers estimate the population at risk in order to plan evacuation, make sheltering decisions, determine the resources required to provide aid and comfort, and mitigate damages in case of a disaster. This simulation environment may also be modified and used for the landing phase of a space vehicle but will not be discussed in this paper.

  2. Simulation of the space station information system in Ada

    NASA Technical Reports Server (NTRS)

    Spiegel, James R.

    1986-01-01

    The Flexible Ada Simulation Tool (FAST) is a discrete event simulation language which is written in Ada. FAST has been used to simulate a number of options for ground data distribution of Space Station payload data. The fact that Ada language is used for implementation has allowed a number of useful interactive features to be built into FAST and has facilitated quick enhancement of its capabilities to support new modeling requirements. General simulation concepts are discussed, and how these concepts are implemented in FAST. The FAST design is discussed, and it is pointed out how the used of the Ada language enabled the development of some significant advantages over classical FORTRAN based simulation languages. The advantages discussed are in the areas of efficiency, ease of debugging, and ease of integrating user code. The specific Ada language features which enable these advances are discussed.

  3. Simulation Results for Airborne Precision Spacing along Continuous Descent Arrivals

    NASA Technical Reports Server (NTRS)

    Barmore, Bryan E.; Abbott, Terence S.; Capron, William R.; Baxley, Brian T.

    2008-01-01

    This paper describes the results of a fast-time simulation experiment and a high-fidelity simulator validation with merging streams of aircraft flying Continuous Descent Arrivals through generic airspace to a runway at Dallas-Ft Worth. Aircraft made small speed adjustments based on an airborne-based spacing algorithm, so as to arrive at the threshold exactly at the assigned time interval behind their Traffic-To-Follow. The 40 aircraft were initialized at different altitudes and speeds on one of four different routes, and then merged at different points and altitudes while flying Continuous Descent Arrivals. This merging and spacing using flight deck equipment and procedures to augment or implement Air Traffic Management directives is called Flight Deck-based Merging and Spacing, an important subset of a larger Airborne Precision Spacing functionality. This research indicates that Flight Deck-based Merging and Spacing initiated while at cruise altitude and well prior to the Terminal Radar Approach Control entry can significantly contribute to the delivery of aircraft at a specified interval to the runway threshold with a high degree of accuracy and at a reduced pilot workload. Furthermore, previously documented work has shown that using a Continuous Descent Arrival instead of a traditional step-down descent can save fuel, reduce noise, and reduce emissions. Research into Flight Deck-based Merging and Spacing is a cooperative effort between government and industry partners.

  4. Extremophiles Survival to Simulated Space Conditions: An Astrobiology Model Study

    NASA Astrophysics Data System (ADS)

    Mastascusa, V.; Romano, I.; Di Donato, P.; Poli, A.; Della Corte, V.; Rotundi, A.; Bussoletti, E.; Quarto, M.; Pugliese, M.; Nicolaus, B.

    2014-09-01

    In this work we investigated the ability of four extremophilic bacteria from Archaea and Bacteria domains to resist to space environment by exposing them to extreme conditions of temperature, UV radiation, desiccation coupled to low pressure generated in a Mars' conditions simulator. All the investigated extremophilic strains (namely Sulfolobus solfataricus, Haloterrigena hispanica, Thermotoga neapolitana and Geobacillus thermantarcticus) showed a good resistance to the simulation of the temperature variation in the space; on the other hand irradiation with UV at 254 nm affected only slightly the growth of H. hispanica, G. thermantarcticus and S. solfataricus; finally exposition to Mars simulated condition showed that H. hispanica and G. thermantarcticus were resistant to desiccation and low pressure.

  5. Extremophiles survival to simulated space conditions: an astrobiology model study.

    PubMed

    Mastascusa, V; Romano, I; Di Donato, P; Poli, A; Della Corte, V; Rotundi, A; Bussoletti, E; Quarto, M; Pugliese, M; Nicolaus, B

    2014-09-01

    In this work we investigated the ability of four extremophilic bacteria from Archaea and Bacteria domains to resist to space environment by exposing them to extreme conditions of temperature, UV radiation, desiccation coupled to low pressure generated in a Mars' conditions simulator. All the investigated extremophilic strains (namely Sulfolobus solfataricus, Haloterrigena hispanica, Thermotoga neapolitana and Geobacillus thermantarcticus) showed a good resistance to the simulation of the temperature variation in the space; on the other hand irradiation with UV at 254 nm affected only slightly the growth of H. hispanica, G. thermantarcticus and S. solfataricus; finally exposition to Mars simulated condition showed that H. hispanica and G. thermantarcticus were resistant to desiccation and low pressure. PMID:25573749

  6. A Simulation Base Investigation of High Latency Space Systems Operations

    NASA Technical Reports Server (NTRS)

    Li, Zu Qun; Crues, Edwin Z.; Bielski, Paul; Moore, Michael

    2017-01-01

    NASA's human space program has developed considerable experience with near Earth space operations. Although NASA has experience with deep space robotic missions, NASA has little substantive experience with human deep space operations. Even in the Apollo program, the missions lasted only a few weeks and the communication latencies were on the order of seconds. Human missions beyond the relatively close confines of the Earth-Moon system will involve missions with durations measured in months and communications latencies measured in minutes. To minimize crew risk and to maximize mission success, NASA needs to develop a better understanding of the implications of these types of mission durations and communication latencies on vehicle design, mission design and flight controller interaction with the crew. To begin to address these needs, NASA performed a study using a physics-based subsystem simulation to investigate the interactions between spacecraft crew and a ground-based mission control center for vehicle subsystem operations across long communication delays. The simulation, built with a subsystem modeling tool developed at NASA's Johnson Space Center, models the life support system of a Mars transit vehicle. The simulation contains models of the cabin atmosphere and pressure control system, electrical power system, drinking and waste water systems, internal and external thermal control systems, and crew metabolic functions. The simulation has three interfaces: 1) a real-time crew interface that can be use to monitor and control the vehicle subsystems; 2) a mission control center interface with data transport delays up to 15 minutes each way; 3) a real-time simulation test conductor interface that can be use to insert subsystem malfunctions and observe the interactions between the crew, ground, and simulated vehicle. The study was conducted at the 21st NASA Extreme Environment Mission Operations (NEEMO) mission between July 18th and Aug 3rd of year 2016. The NEEMO

  7. Interplanetary Transit Simulations Using the International Space Station

    NASA Technical Reports Server (NTRS)

    Charles, John B.; Arya, M.; Kundrot, C. E.

    2010-01-01

    We evaluated the space life sciences utility of the International Space Station (ISS) to simulate the outbound transit portion of missions to Mars and Near Earth Asteroids (NEA) to investigate biomedical and psychological aspects of such transits, to develop and test space operation procedures compatible with communication delays and outages, and to demonstrate and validate technologies and countermeasures. Two major categories of space life sciences activities can capitalize on ISS capabilities. The first includes studies that require ISS (or a comparable facility), typically for access to prolonged weightlessness. The second includes studies that do not strictly require ISS but can exploit it to maximize their scientific return more efficiently and productively than in ground-based simulations. For these studies, ISS offers a high fidelity analog for fundamental factors on future missions, such as crew composition, mission control personnel, operational tasks and workload, real-world risk, and isolation, and can mimic the effects of distance and limited accessibility. In addition to conducting Mars- and NEA-transit simulations on 6-month ISS increments, extending the current ISS increment duration from 6 months to 9 or even 12 months will provide opportunities for enhanced and focused research relevant to long duration Mars and NEA missions. Increasing the crew duration may pose little additional risk to crewmembers beyond that currently accepted on 6-month increments, but additional medical monitoring capabilities will be required beyond those currently used for ISS operations. Finally, while presenting major logistical challenges, such a simulation followed by a post-landing simulation of Mars exploration could provide quantitative evidence of capabilities in an actual mission. Thus, the use of ISS to simulate aspects of Mars and NEA missions seems practical. If it were to be implemented without major disruption of on-going ISS activities, then planning should

  8. AMOBA - ARINC 653 Simulator for Modular Based Space Applications

    NASA Astrophysics Data System (ADS)

    Pascoal, E.; Rufino, J.; Schoofs, T.; Windsor, J.

    2008-08-01

    The ARINC 653 standard has taken a leading role within the aeronautical industry in the development of safety-critical systems based upon the Integrated Modular Avionics (IMA) concept. The related cost savings in reduced integration, verification and validation effort has raised interest in the European space industry for developing a spacecraft IMA approach and for the definition of an ARINC 653-for-space software framework. As part of this process, it is necessary to establish an effective way to test and develop space applications without having access to the final IMA target platform. This paper describes the design and the architecture of a multi-platform and modular ARINC 653 simulator that emulates an execution environment for ARINC 653 space applications.

  9. Solar simulator for solar dynamic space power system testing

    NASA Technical Reports Server (NTRS)

    Jefferies, Kent S.

    1993-01-01

    Planned vacuum tank testing of a solar dynamic space power system requires a solar simulator. Several solar simulators were previously built and used for vacuum tank testing of various space systems. However, the apparent solar subtense angle, i.e., the angular size of the apparent sun as viewed from the experiment, of these solar simulators is too large to enable testing of solar dynamic systems. A new design was developed to satisfy the requirements of the solar dynamic testing. This design provides 1.8 kW/m(sup 2) onto a 4.5M diameter test area from a source that subtends only 1 deg, full cone angle. Key features that enable this improved performance are (1) elimination of the collimating mirror commonly used in solar simulators to transform the diverging beam into a parallel beam; (2) a redesigned lamp module that has increased efficiency; and (3) the use of a segmented reflective surface to combine beams from several individual lamp modules at the pseudosun. Each segment of this reflective surface has complex curvature to control the distribution of light. By developing a new solar simulator design for testing of the solar dynamic system instead of modifying current designs, the initial cost was cut in half, the efficiency was increased by 50 percent reducing the operating costs by one-third, and the volume occupied by the solar simulator was reduced by a factor of 10.

  10. Magnetic Testing, and Modeling, Simulation and Analysis for Space Applications

    NASA Technical Reports Server (NTRS)

    Boghosian, Mary; Narvaez, Pablo; Herman, Ray

    2012-01-01

    The Aerospace Corporation (Aerospace) and Lockheed Martin Space Systems (LMSS) participated with Jet Propulsion Laboratory (JPL) in the implementation of a magnetic cleanliness program of the NASA/JPL JUNO mission. The magnetic cleanliness program was applied from early flight system development up through system level environmental testing. The JUNO magnetic cleanliness program required setting-up a specialized magnetic test facility at Lockheed Martin Space Systems for testing the flight system and a testing program with facility for testing system parts and subsystems at JPL. The magnetic modeling, simulation and analysis capability was set up and performed by Aerospace to provide qualitative and quantitative magnetic assessments of the magnetic parts, components, and subsystems prior to or in lieu of magnetic tests. Because of the sensitive nature of the fields and particles scientific measurements being conducted by the JUNO space mission to Jupiter, the imposition of stringent magnetic control specifications required a magnetic control program to ensure that the spacecraft's science magnetometers and plasma wave search coil were not magnetically contaminated by flight system magnetic interferences. With Aerospace's magnetic modeling, simulation and analysis and JPL's system modeling and testing approach, and LMSS's test support, the project achieved a cost effective approach to achieving a magnetically clean spacecraft. This paper presents lessons learned from the JUNO magnetic testing approach and Aerospace's modeling, simulation and analysis activities used to solve problems such as remnant magnetization, performance of hard and soft magnetic materials within the targeted space system in applied external magnetic fields.

  11. Using Numerical Modeling to Simulate Space Capsule Ground Landings

    NASA Technical Reports Server (NTRS)

    Heymsfield, Ernie; Fasanella, Edwin L.

    2009-01-01

    Experimental work is being conducted at the National Aeronautics and Space Administration s (NASA) Langley Research Center (LaRC) to investigate ground landing capabilities of the Orion crew exploration vehicle (CEV). The Orion capsule is NASA s replacement for the Space Shuttle. The Orion capsule will service the International Space Station and be used for future space missions to the Moon and to Mars. To evaluate the feasibility of Orion ground landings, a series of capsule impact tests are being performed at the NASA Langley Landing and Impact Research Facility (LandIR). The experimental results derived at LandIR provide means to validate and calibrate nonlinear dynamic finite element models, which are also being developed during this study. Because of the high cost and time involvement intrinsic to full-scale testing, numerical simulations are favored over experimental work. Subsequent to a numerical model validated by actual test responses, impact simulations will be conducted to study multiple impact scenarios not practical to test. Twenty-one swing tests using the LandIR gantry were conducted during the June 07 through October 07 time period to evaluate the Orion s impact response. Results for two capsule initial pitch angles, 0deg and -15deg , along with their computer simulations using LS-DYNA are presented in this article. A soil-vehicle friction coefficient of 0.45 was determined by comparing the test stopping distance with computer simulations. In addition, soil modeling accuracy is presented by comparing vertical penetrometer impact tests with computer simulations for the soil model used during the swing tests.

  12. Psychosocial value of space simulation for extended spaceflight

    NASA Technical Reports Server (NTRS)

    Kanas, N.

    1997-01-01

    There have been over 60 studies of Earth-bound activities that can be viewed as simulations of manned spaceflight. These analogs have involved Antarctic and Arctic expeditions, submarines and submersible simulators, land-based simulators, and hypodynamia environments. None of these analogs has accounted for all the variables related to extended spaceflight (e.g., microgravity, long-duration, heterogeneous crews), and some of the stimulation conditions have been found to be more representative of space conditions than others. A number of psychosocial factors have emerged from the simulation literature that correspond to important issues that have been reported from space. Psychological factors include sleep disorders, alterations in time sense, transcendent experiences, demographic issues, career motivation, homesickness, and increased perceptual sensitivities. Psychiatric factors include anxiety, depression, psychosis, psychosomatic symptoms, emotional reactions related to mission stage, asthenia, and postflight personality, and marital problems. Finally, interpersonal factors include tension resulting from crew heterogeneity, decreased cohesion over time, need for privacy, and issues involving leadership roles and lines of authority. Since future space missions will usually involve heterogeneous crews working on complicated objectives over long periods of time, these features require further study. Socio-cultural factors affecting confined crews (e.g., language and dialect, cultural differences, gender biases) should be explored in order to minimize tension and sustain performance. Career motivation also needs to be examined for the purpose of improving crew cohesion and preventing subgrouping, scapegoating, and territorial behavior. Periods of monotony and reduced activity should be addressed in order to maintain morale, provide meaningful use of leisure time, and prevent negative consequences of low stimulation, such as asthenia and crew member withdrawal

  13. Interplanetary Transit Simulations Using the International Space Station

    NASA Technical Reports Server (NTRS)

    Charles, J. B.; Arya, Maneesh

    2010-01-01

    It has been suggested that the International Space Station (ISS) be utilized to simulate the transit portion of long-duration missions to Mars and near-Earth asteroids (NEA). The ISS offers a unique environment for such simulations, providing researchers with a high-fidelity platform to study, enhance, and validate technologies and countermeasures for these long-duration missions. From a space life sciences perspective, two major categories of human research activities have been identified that will harness the various capabilities of the ISS during the proposed simulations. The first category includes studies that require the use of the ISS, typically because of the need for prolonged weightlessness. The ISS is currently the only available platform capable of providing researchers with access to a weightless environment over an extended duration. In addition, the ISS offers high fidelity for other fundamental space environmental factors, such as isolation, distance, and accessibility. The second category includes studies that do not require use of the ISS in the strictest sense, but can exploit its use to maximize their scientific return more efficiently and productively than in ground-based simulations. In addition to conducting Mars and NEA simulations on the ISS, increasing the current increment duration on the ISS from 6 months to a longer duration will provide opportunities for enhanced and focused research relevant to long-duration Mars and NEA missions. Although it is currently believed that increasing the ISS crew increment duration to 9 or even 12 months will pose little additional risk to crewmembers, additional medical monitoring capabilities may be required beyond those currently used for the ISS operations. The use of the ISS to simulate aspects of Mars and NEA missions seems practical, and it is recommended that planning begin soon, in close consultation with all international partners.

  14. Analysis of the Space Shuttle main engine simulation

    NASA Technical Reports Server (NTRS)

    Deabreu-Garcia, J. Alex; Welch, John T.

    1993-01-01

    This is a final report on an analysis of the Space Shuttle Main Engine Program, a digital simulator code written in Fortran. The research was undertaken in ultimate support of future design studies of a shuttle life-extending Intelligent Control System (ICS). These studies are to be conducted by NASA Lewis Space Research Center. The primary purpose of the analysis was to define the means to achieve a faster running simulation, and to determine if additional hardware would be necessary for speeding up simulations for the ICS project. In particular, the analysis was to consider the use of custom integrators based on the Matrix Stability Region Placement (MSRP) method. In addition to speed of execution, other qualities of the software were to be examined. Among these are the accuracy of computations, the useability of the simulation system, and the maintainability of the program and data files. Accuracy involves control of truncation error of the methods, and roundoff error induced by floating point operations. It also involves the requirement that the user be fully aware of the model that the simulator is implementing.

  15. Space Station gas-grain simulation facility - Application to exobiology

    NASA Technical Reports Server (NTRS)

    Mckay, C. P.; Stoker, C. R.; Morris, J.; Conley, G.; Schwartz, D.

    1986-01-01

    The technical issues involved in performing experiments on the behavior and properties of aerosols in a microgravity environment provided by the Space Station are reviewed. The displacement of a particle resulting from g-jitter for ballistic, Knudsen, and Stokes flow regimes is examined in detail, and the radiation, acoustic, electrostatic, and electromagnetic mechanisms for the control of this motion are described. The simulation of organic haze production on Titan has been selected as an example experiment for detailed study. The purpose of this experiment was to simulate the photolysis of methane and the subsequent formation of the organic haze particles in the Titan upper atmosphere.

  16. Simulated Shuttle Egress: Comparison of Two Space Shuttle Protective Garments

    NASA Technical Reports Server (NTRS)

    Lee, Stuart M.C.; Bishop, Phillip A.; Schneider, Suzanne M.; Greenisen, Michael C.; Paloski, William H. (Technical Monitor)

    2000-01-01

    In a previous study from our laboratory, we observed carbon dioxide (CO2) accumulation in the helmet of the NASA Launch and Entry Suit (LES) during a simulated emergency egress from the Space Shuttle. Eight of 12 subjects were unable to complete the egress simulation with a G-suit inflation pressure of 1.5 psi. The purpose of this report was to compare CO2 accumulation and egress walking time in the new Advanced Crew Escape Suit (ACES) with that in the LES.

  17. A Coordinated Initialization Process for the Distributed Space Exploration Simulation

    NASA Technical Reports Server (NTRS)

    Crues, Edwin Z.; Phillips, Robert G.; Dexter, Dan; Hasan, David

    2007-01-01

    A viewgraph presentation on the federate initialization process for the Distributed Space Exploration Simulation (DSES) is described. The topics include: 1) Background: DSES; 2) Simulation requirements; 3) Nine Step Initialization; 4) Step 1: Create the Federation; 5) Step 2: Publish and Subscribe; 6) Step 3: Create Object Instances; 7) Step 4: Confirm All Federates Have Joined; 8) Step 5: Achieve initialize Synchronization Point; 9) Step 6: Update Object Instances With Initial Data; 10) Step 7: Wait for Object Reflections; 11) Step 8: Set Up Time Management; 12) Step 9: Achieve startup Synchronization Point; and 13) Conclusions

  18. RF systems in space. Volume 1: Space antennas frequency (SARF) simulation

    NASA Astrophysics Data System (ADS)

    Ludwig, A. C.; Freeman, J. R.; Capp, J. D.

    1983-04-01

    The main objective of this effort was to develop a computer based analytical capability for simulating the RF performance of large space-based radar (SBR) systems. The model is capable of simulating corporate and space fed aperture. The model also can simulate multibeam feeds, cluster/point feeds, corporate feed and various aperture distributions. The simulation is capable of accepting Draper Labs structural data and antenna current data from Atlantic Research Corporation's (ARC) First Approximation Methods (FAM) and Higher Approximation Methods (HAM) models. In addition there is a routine to input various apertures surface distortions which causes the elements in the array to be displaced from the ideal location on a planar lattice. These were analyses looking at calibration/compensation techniques for large aperture space radars. Passive, space fed lens SBR designs were investigated. The survivability of an SBR system was analyzed. The design of ground based SBR validation experiments for large aperture SBR concepts were investigated. SBR designs were investigated for ground target detection.

  19. Simulator evaluation of the Final Approach Spacing Tool

    NASA Technical Reports Server (NTRS)

    Davis, Thomas J.; Erzberger, Heinz; Green, Steven M.

    1990-01-01

    The design and simulator evaluation of an automation tool for assisting terminal radar approach controllers in sequencing and spacing traffic onto the final approach course is described. The automation tool, referred to as the Final Approach Spacing Tool (FAST), displays speed and heading advisories for arrivals and sequencing information on the controller's radar display. The main functional elements of FAST are a scheduler that schedules and sequences the traffic, a four-dimensional trajectory synthesizer that generates the advisories, and a graphical interface that displays the information to the controller. FAST has been implemented on a high-performance workstation. It can be operated stand-alone in the terminal radar approach control (TRACON) facility or as an element of a system integrated with automation tools in the Air Route Traffic Control Center). Simulation results show that FAST significantly reduced controller workload and demonstrated a potential for an increase in landing rate.

  20. An Overview of Space Exploration Simulation (Basis of Confidence) Documentation

    NASA Technical Reports Server (NTRS)

    Bray, Alleen; Hale, Joseph P.

    2006-01-01

    Models and simulations (M&S) are critical resources in the exploration of space. They support program management, systems engineering, integration, analysis, test, and operations by providing critical information that supports key analyses and decisions (technical, cost and schedule). Consequently, there is a clear need to establish a solid understanding of M&S strengths and weaknesses, and the bounds within which they can credibly support decision making. In this presentation we will describe how development of simulation capability documentation will be used to form a Basis of Confidence (Basis of Confidence) for National Aeronautics and Space Administration (NASA) M&S. The process by which BOC documentation is developed will be addressed, as well as the structure and critical concepts that are essential for establishing credibility of NASA's Exploration Systems Mission Directorate (ESMD) legacy M&S. We will illustrate the significance of BOC documentation in supporting decision makers and Accreditation Authorities in M&S risk management.

  1. Development and testing of a mouse simulated space flight model

    NASA Technical Reports Server (NTRS)

    Sonnenfeld, G.

    1985-01-01

    The development and testing of a mouse model for simulating some aspects of weightlessness that occur during space flight, and the carrying out of immunological flight experiments on animals was discussed. The mouse model is an antiorthostatic, hypokinetic, hypodynamic suspension model similar to the one used with rats. It is shown that this murine model yield similar results to the rat model of antiorthostatic suspension for simulating some aspects of weightlessness. It is also shown that mice suspended in this model have decreased interferon-alpha/beta production as compared to control, nonsuspended mice or to orthostatically suspended mice. It is suggested that the conditions occuring during space flight could possibly affect interferon production. The regulatory role of interferon in nonviral diseases is demonstrated including several bacterial and protozoan infections indicating the great significance of interferon in resistance to many types of infectious diseases.

  2. Neutral Buoyancy Simulator - NB32 - Large Space Structure

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The Hubble Space Telescope (HST) is a cooperative program of the European Space Agency (ESA) and the National Aeronautical and Space Administration (NASA) to operate a long-lived space-based observatory; it was the flagship mission of NASA's Great Observatories program. The HST program began as an astronomical dream in the 1940s. During the 1970s and 1980s, HST was finally designed and built; and it finally became operational in the 1990s. HST was deployed into a low-Earth orbit on April 25, 1990 from the cargo bay of the Space Shuttle Discovery (STS-31). The design of the HST took into consideration its length of service and the necessity of repairs and equipment replacement by making the body modular. In doing so, subsequent shuttle missions could recover the HST, replace faulty or obsolete parts and be re-released. MSFC's Neutral Buoyancy Simulator served as the training facility for shuttle astronauts for Hubble related missions. Shown is astronaut Sharnon Lucid having her life support system being checked prior to entering the NBS to begin training on the space telescope axial scientific instrument changeout.

  3. Computer simulation of hypersonic flow over the Space Shuttle Orbiter

    NASA Technical Reports Server (NTRS)

    Inouye, M.

    1977-01-01

    Computer simulations of the flow field around the Space Shuttle Orbiter are described. Results of inviscid calculations are presented for the shock wave pattern and bottom centerline pressure distribution at 30 deg angle of attack. Results of viscous calculations are presented for wall pressure and heat transfer distributions for simple configurations representative of regions where shock wave-boundary layer interactions occur. The computer codes are verified by comparisons with wind-tunnel data and can be applied to flight conditions.

  4. Computer simulation of space station computer steered high gain antenna

    NASA Technical Reports Server (NTRS)

    Beach, S. W.

    1973-01-01

    The mathematical modeling and programming of a complete simulation program for a space station computer-steered high gain antenna are described. The program provides for reading input data cards, numerically integrating up to 50 first order differential equations, and monitoring up to 48 variables on printed output and on plots. The program system consists of a high gain antenna, an antenna gimbal control system, an on board computer, and the environment in which all are to operate.

  5. Simulations of collisionless shocks. [in space and astrophysics

    NASA Technical Reports Server (NTRS)

    Quest, K. B.

    1986-01-01

    A problem of critical importance to space and astrophysics is the existence and properties of high-Mach-number shocks. In this letter the results of simulations of perpendicular shocks with Alfven Mach number 22 are presented. It is shown that the shock structure is a sensitive function of resistivity, becoming turbulent when the resistivity is too low. The problem of electron heating, and the extension of the results to higher Mach numbers are discussed.

  6. To Create Space on Earth: The Space Environment Simulation Laboratory and Project Apollo

    NASA Technical Reports Server (NTRS)

    Walters, Lori C.

    2003-01-01

    Few undertakings in the history of humanity can compare to the great technological achievement known as Project Apollo. Among those who witnessed Armstrong#s flickering television image were thousands of people who had directly contributed to this historic moment. Amongst those in this vast anonymous cadre were the personnel of the Space Environment Simulation Laboratory (SESL) at the Manned Spacecraft Center (MSC) in Houston, Texas. SESL houses two large thermal-vacuum chambers with solar simulation capabilities. At a time when NASA engineers had a limited understanding of the effects of extremes of space on hardware and crews, SESL was designed to literally create the conditions of space on Earth. With interior dimensions of 90 feet in height and a 55-foot diameter, Chamber A dwarfed the Apollo command/service module (CSM) it was constructed to test. The chamber#s vacuum pumping capacity of 1 x 10(exp -6) torr can simulate an altitude greater than 130 miles above the Earth. A "lunar plane" capable of rotating a 150,000-pound test vehicle 180 deg replicates the revolution of a craft in space. To reproduce the temperature extremes of space, interior chamber walls cool to -280F as two banks of carbon arc modules simulate the unfiltered solar light/heat of the Sun. With capabilities similar to that of Chamber A, early Chamber B tests included the Gemini modular maneuvering unit, Apollo EVA mobility unit and the lunar module. Since Gemini astronaut Charles Bassett first ventured into the chamber in 1966, Chamber B has assisted astronauts in testing hardware and preparing them for work in the harsh extremes of space.

  7. A space systems perspective of graphics simulation integration

    NASA Technical Reports Server (NTRS)

    Brown, R.; Gott, C.; Sabionski, G.; Bochsler, D.

    1987-01-01

    Creation of an interactive display environment can expose issues in system design and operation not apparent from nongraphics development approaches. Large amounts of information can be presented in a short period of time. Processes can be simulated and observed before committing resources. In addition, changes in the economics of computing have enabled broader graphics usage beyond traditional engineering and design into integrated telerobotics and Artificial Intelligence (AI) applications. The highly integrated nature of space operations often tend to rely upon visually intensive man-machine communication to ensure success. Graphics simulation activities at the Mission Planning and Analysis Division (MPAD) of NASA's Johnson Space Center are focusing on the evaluation of a wide variety of graphical analysis within the context of present and future space operations. Several telerobotics and AI applications studies utilizing graphical simulation are described. The presentation includes portions of videotape illustrating technology developments involving: (1) coordinated manned maneuvering unit and remote manipulator system operations, (2) a helmet mounted display system, and (3) an automated rendezous application utilizing expert system and voice input/output technology.

  8. High Performance Parallel Methods for Space Weather Simulations

    NASA Technical Reports Server (NTRS)

    Hunter, Paul (Technical Monitor); Gombosi, Tamas I.

    2003-01-01

    This is the final report of our NASA AISRP grant entitled 'High Performance Parallel Methods for Space Weather Simulations'. The main thrust of the proposal was to achieve significant progress towards new high-performance methods which would greatly accelerate global MHD simulations and eventually make it possible to develop first-principles based space weather simulations which run much faster than real time. We are pleased to report that with the help of this award we made major progress in this direction and developed the first parallel implicit global MHD code with adaptive mesh refinement. The main limitation of all earlier global space physics MHD codes was the explicit time stepping algorithm. Explicit time steps are limited by the Courant-Friedrichs-Lewy (CFL) condition, which essentially ensures that no information travels more than a cell size during a time step. This condition represents a non-linear penalty for highly resolved calculations, since finer grid resolution (and consequently smaller computational cells) not only results in more computational cells, but also in smaller time steps.

  9. Simulating Space Capsule Water Landing with Explicit Finite Element Method

    NASA Technical Reports Server (NTRS)

    Wang, John T.; Lyle, Karen H.

    2007-01-01

    A study of using an explicit nonlinear dynamic finite element code for simulating the water landing of a space capsule was performed. The finite element model contains Lagrangian shell elements for the space capsule and Eulerian solid elements for the water and air. An Arbitrary Lagrangian Eulerian (ALE) solver and a penalty coupling method were used for predicting the fluid and structure interaction forces. The space capsule was first assumed to be rigid, so the numerical results could be correlated with closed form solutions. The water and air meshes were continuously refined until the solution was converged. The converged maximum deceleration predicted is bounded by the classical von Karman and Wagner solutions and is considered to be an adequate solution. The refined water and air meshes were then used in the models for simulating the water landing of a capsule model that has a flexible bottom. For small pitch angle cases, the maximum deceleration from the flexible capsule model was found to be significantly greater than the maximum deceleration obtained from the corresponding rigid model. For large pitch angle cases, the difference between the maximum deceleration of the flexible model and that of its corresponding rigid model is smaller. Test data of Apollo space capsules with a flexible heat shield qualitatively support the findings presented in this paper.

  10. Simulated space environmental effects on some experimental high performance polymers

    NASA Technical Reports Server (NTRS)

    Connell, John W.

    1991-01-01

    Organic polymeric materials are currently being considered for long term use (more than 10 years) in structural (adhesives and composite matrices) and functional (films and coatings) applications on spacecraft. Although organic polymers have been utilized successfully in short term missions, the long term durability of these materials in space is of concern. As part of a NASA effort on high performance polymers for potential space applications, various experimental polymeric materials recently synthesized at NASA Langley Research Center were evaluated under simulated space environmental conditions. Experimental resins from blends of acetylene terminated materials, poly(arylene ether)s and low color polyimides were exposed to high energy electron and ultraviolet radiation in an attempt to simulate space environmental effects. Thin films, neat resin moldings and carbon fiber reinforced composites were exposed and the effect on certain polymer properties were determined. This paper reviews recent research involving the effects of various radiation exposures on the physical, optical and mechanical properties of several experimental polymer systems.

  11. Simulation of Space Shuttle neutron measurements with FLUKA.

    PubMed

    Pinsky, L; Carminati, F; Ferrari, A

    2001-06-01

    FLUKA is an integrated particle transport code that has enhanced multigroup low-energy neutron transport capability similar to the well-known MORSE transport code. Gammas are produced in groups but many important individual lines are specifically included, and subsequently transported by the main FLUKA routines which use a modified version of EGS4 for electromagnetic (EM) transport. Recoil protons are also transported by the primary FLUKA transport simulation. The neutron cross-section libraries employed within FLUKA were supplied by Giancarlo Panini (ENEA, Italy) based upon the most recent data from JEF-1, JEF-2.2, ENDF/B-VI, JENDL-3, etc. More than 60 different materials are included in the FLUKA databases with temperature ranges including down to cryogenic temperatures. This code has been used extensively to model the neutron environments near high-energy physics experiment shielding. A simulation of the Space Shuttle based upon a spherical aluminum equivalent shielding distribution has been performed with reasonable results. There are good prospects for extending this calculation to a more realistic 3-D geometrical representation of the Shuttle including an accurate representation of its composition, which is an essential ingredient for the improvement of the predictions. A proposed project to develop a combined analysis and simulation package based upon FLUKA and the analysis infrastructure provided by the ROOT software is under active consideration. The code to be developed for this project will be of direct application to the problem of simulating the neutron environment in space, including the albedo effects. PMID:11855415

  12. 25th Space Simulation Conference. Environmental Testing: The Earth-Space Connection

    NASA Technical Reports Server (NTRS)

    Packard, Edward

    2008-01-01

    Topics covered include: Methods of Helium Injection and Removal for Heat Transfer Augmentation; The ESA Large Space Simulator Mechanical Ground Support Equipment for Spacecraft Testing; Temperature Stability and Control Requirements for Thermal Vacuum/Thermal Balance Testing of the Aquarius Radiometer; The Liquid Nitrogen System for Chamber A: A Change from Original Forced Flow Design to a Natural Flow (Thermo Siphon) System; Return to Mercury: A Comparison of Solar Simulation and Flight Data for the MESSENGER Spacecraft; Floating Pressure Conversion and Equipment Upgrades of Two 3.5kw, 20k, Helium Refrigerators; Affect of Air Leakage into a Thermal-Vacuum Chamber on Helium Refrigeration Heat Load; Special ISO Class 6 Cleanroom for the Lunar Reconnaissance Orbiter (LRO) Project; A State-of-the-Art Contamination Effects Research and Test Facility Martian Dust Simulator; Cleanroom Design Practices and Their Influence on Particle Counts; Extra Terrestrial Environmental Chamber Design; Contamination Sources Effects Analysis (CSEA) - A Tool to Balance Cost/Schedule While Managing Facility Availability; SES and Acoustics at GSFC; HST Super Lightweight Interchangeable Carrier (SLIC) Static Test; Virtual Shaker Testing: Simulation Technology Improves Vibration Test Performance; Estimating Shock Spectra: Extensions beyond GEVS; Structural Dynamic Analysis of a Spacecraft Multi-DOF Shaker Table; Direct Field Acoustic Testing; Manufacture of Cryoshroud Surfaces for Space Simulation Chambers; The New LOTIS Test Facility; Thermal Vacuum Control Systems Options for Test Facilities; Extremely High Vacuum Chamber for Low Outgassing Processing at NASA Goddard; Precision Cleaning - Path to Premier; The New Anechoic Shielded Chambers Designed for Space and Commercial Applications at LIT; Extraction of Thermal Performance Values from Samples in the Lunar Dust Adhesion Bell Jar; Thermal (Silicon Diode) Data Acquisition System; Aquarius's Instrument Science Data System (ISDS) Automated

  13. Robotic space simulation integration of vision algorithms into an orbital operations simulation

    NASA Technical Reports Server (NTRS)

    Bochsler, Daniel C.

    1987-01-01

    In order to successfully plan and analyze future space activities, computer-based simulations of activities in low earth orbit will be required to model and integrate vision and robotic operations with vehicle dynamics and proximity operations procedures. The orbital operations simulation (OOS) is configured and enhanced as a testbed for robotic space operations. Vision integration algorithms are being developed in three areas: preprocessing, recognition, and attitude/attitude rates. The vision program (Rice University) was modified for use in the OOS. Systems integration testing is now in progress.

  14. Advanced manned space flight simulation and training: An investigation of simulation host computer system concepts

    NASA Technical Reports Server (NTRS)

    Montag, Bruce C.; Bishop, Alfred M.; Redfield, Joe B.

    1989-01-01

    The findings of a preliminary investigation by Southwest Research Institute (SwRI) in simulation host computer concepts is presented. It is designed to aid NASA in evaluating simulation technologies for use in spaceflight training. The focus of the investigation is on the next generation of space simulation systems that will be utilized in training personnel for Space Station Freedom operations. SwRI concludes that NASA should pursue a distributed simulation host computer system architecture for the Space Station Training Facility (SSTF) rather than a centralized mainframe based arrangement. A distributed system offers many advantages and is seen by SwRI as the only architecture that will allow NASA to achieve established functional goals and operational objectives over the life of the Space Station Freedom program. Several distributed, parallel computing systems are available today that offer real-time capabilities for time critical, man-in-the-loop simulation. These systems are flexible in terms of connectivity and configurability, and are easily scaled to meet increasing demands for more computing power.

  15. Neutral Buoyancy Simulator-NB32-Large Space Structure Assembly

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Once the United States' space program had progressed from Earth's orbit into outerspace, the prospect of building and maintaining a permanent presence in space was realized. To accomplish this feat, NASA launched a temporary workstation, Skylab, to discover the effects of low gravity and weightlessness on the human body, and also to develop tools and equipment that would be needed in the future to build and maintain a more permanent space station. The structures, techniques, and work schedules had to be carefully designed to fit this unique construction site. The components had to be lightweight for transport into orbit, yet durable. The station also had to be made with removable parts for easy servicing and repairs by astronauts. All of the tools necessary for service and repairs had to be designed for easy manipulation by a suited astronaut. Construction methods had to be efficient due to the limited time the astronauts could remain outside their controlled environment. In lieu of all the specific needs for this project, an environment on Earth had to be developed that could simulate a low gravity atmosphere. A Neutral Buoyancy Simulator (NBS) was constructed by NASA Marshall Space Flight Center (MSFC) in 1968. Since then, NASA scientists have used this facility to understand how humans work best in low gravity and also provide information about the different kinds of structures that can be built. As part of this experimentation, the Experimental Assembly of Structures in Extravehicular Activity (EASE) project was developed as a joint effort between MFSC and the Massachusetts Institute of Technology (MIT). The EASE experiment required that crew members assemble small components to form larger components, working from the payload bay of the space shuttle. Pictured is an entire unit that has been constructed and is sitting in the bottom of a mock-up shuttle cargo bay pallet.

  16. The simulated space proton environment for radiation effects on Space Telescope Imaging Spectrograph (STIS)

    NASA Technical Reports Server (NTRS)

    Becher, Jacob; Fowler, Walter

    1992-01-01

    The space telescope imaging spectrograph (STIS) is a second generation instrument planned for the Hubble Space Telescope (HST) which is currently in orbit. Candidate glasses and other transmitting materials are being considered for order sorters, in-flight calibration filters, detector windows, and calibration lamps. The glasses for in-flight calibration filters showed significant drop in UV transmission, but can probably still be used on STIS. The addressed topics include the Hubble radiation environment, simulation of orbital exposure at Harvard Cyclotron Laboratory, measurement of spectral transmission, and comments on individual samples.

  17. Aeroacoustic Simulations of Tandem Cylinders with Subcritical Spacing

    NASA Technical Reports Server (NTRS)

    Lockard, David P.; Choudhari, Meelan M.; Khorrami, Mehdi R.; Neuhart, Dan H.; Hutcheson, Florence V.; Brooks, Thomas F.; Stead, Daniel J.

    2008-01-01

    Tandem cylinders are being studied because they model a variety of component level interactions of landing gear. The present effort is directed at the case of two identical cylinders with their centroids separated in the streamwise direction by 1.435 diameters. Experiments in the Basic Aerodynamic Research Tunnel and Quiet Flow Facility at NASA Langley Research Center have provided an extensive experimental database of the nearfield flow and radiated noise. The measurements were conducted at a Mach number of 0.1285 and Reynolds number of 1.66x10(exp 5) based on the cylinder diameter. A trip was used on the upstream cylinder to insure a fully turbulent flow separation and, hence, to simulate a major aspect of high Reynolds number flow. The parallel computational effort uses the three-dimensional Navier-Stokes solver CFL3D with a hybrid, zonal turbulence model that turns off the turbulence production term everywhere except in a narrow ring surrounding solid surfaces. The experiments exhibited an asymmetry in the surface pressure that was persistent despite attempts to eliminate it through small changes in the configuration. To model the asymmetry, the simulations were run with the cylinder configuration at a nonzero but small angle of attack. The computed results and experiments are in general agreement that vortex shedding for the spacing studied herein is weak relative to that observed at supercritical spacings. Although the shedding was subdued in the simulations, it was still more prominent than in the experiments. Overall, the simulation comparisons with measured near-field data and the radiated acoustics are reasonable, especially if one is concerned with capturing the trends relative to larger cylinder spacings. However, the flow details of the 1.435 diameter spacing have not been captured in full even though very fine grid computations have been performed. Some of the discrepancy may be associated with the simulation s inexact representation of the

  18. The modeling and simulation of the artifical space object

    NASA Astrophysics Data System (ADS)

    Gao, Sili; Tang, Xinyi; Yu, Yang; Xue, Fengting

    2009-07-01

    With a certain space-based low earth orbit satellite as its detecting target, after the author did a lot of research work and by experiential speculation, the paper initially gives simplified framework, shape and size of the satellite. Based on the different kinds of heat-control materials adopted by the satellite, the concerned material parameters were given out, such as emissivity, heat capacity, density and thermal conductivity etc. Based on the satellite's geometrical features, its 3D model was established via 3DS Max and was translated to customized-format model file which can be easily read-out by vc-program. The orbit of the satellite is a sun-synchronous orbit, its attitude control system was carried out by means of inertial directionality. According to the temperature of the surface given by a certain institute, the temperature of the satellite surface in the whole orbit period was gained by linear interpolation method. The infrared radiation model of the satellite was established based on the temperature and features of the proper materials. The motion model was established by two-body orbit motion formula which was based on the six orbital elements. At last, the infrared simulating images are provided under the system parameters such as detecting positions and detecting wavebands etc. The infrared scene simulation of space object can be achieved by this method and the base for the infrared detection of the space object is established.

  19. Realistic simulation of the Space-borne Compton Polarimeter POLAR

    NASA Astrophysics Data System (ADS)

    Xiao, Hualin

    2016-07-01

    POLAR is a compact wide field space-borne detector dedicated for precise measurements of the linear polarization of hard x-rays emitted by transient sources. Its energy range sensitivity is optimized for the detection of the prompt emission of Gamma-ray bursts (GRBs). POLAR is developed by an international collaboration of China, Switzerland and Poland. It is planned to be launched into space in 2016 onboard the Chinese space laboratory TG2. The energy range of POLAR spans between 50 keV and 500 keV. POLAR detects gamma rays with an array of 1600 plastic scintillator bars read out by 25 muti-anode PMTs (MAPMTs). Polarization measurements use Compton scattering process and are based on detection of energy depositions in the scintillator bars. Reconstruction of the polarization degree and polarization angle of GRBs requires comparison of experimental modulation curves with realistic simulations of the full instrument response. In this paper we present a method to model and parameterize the detector response including efficiency of the light collection, contributions from crosstalk and non-uniformity of MAPMTs as well as dependency on low energy detection thresholds and noise from readout electronics. The performance of POLAR for determination of polarization is predicted with such realistic simulations and carefully cross-checked with dedicated laboratory tests.

  20. Time-dependent radiation dose simulations during interplanetary space flights

    NASA Astrophysics Data System (ADS)

    Dobynde, Mikhail; Shprits, Yuri; Drozdov, Alexander; Hoffman, Jeffrey; Li, Ju

    2016-07-01

    Space radiation is one of the main concerns in planning long-term interplanetary human space missions. There are two main types of hazardous radiation - Solar Energetic Particles (SEP) and Galactic Cosmic Rays (GCR). Their intensities and evolution depend on the solar activity. GCR activity is most enhanced during solar minimum, while the most intense SEPs usually occur during the solar maximum. SEPs are better shielded with thick shields, while GCR dose is less behind think shields. Time and thickness dependences of the intensity of these two components encourage looking for a time window of flight, when radiation intensity and dose of SEP and GCR would be minimized. In this study we combine state-of-the-art space environment models with GEANT4 simulations to determine the optimal shielding, geometry of the spacecraft, and launch time with respect to the phase of the solar cycle. The radiation environment was described by the time-dependent GCR model, and the SEP spectra that were measured during the period from 1990 to 2010. We included gamma rays, electrons, neutrons and 27 fully ionized elements from hydrogen to nickel. We calculated the astronaut's radiation doses during interplanetary flights using the Monte-Carlo code that accounts for the primary and the secondary radiation. We also performed sensitivity simulations for the assumed spacecraft size and thickness to find an optimal shielding. In conclusion, we present the dependences of the radiation dose as a function of launch date from 1990 to 2010, for flight durations of up to 3 years.

  1. Modelling and simulation of the space mission MICROSCOPE

    NASA Astrophysics Data System (ADS)

    Bremer, Stefanie; List, Meike; Selig, Hanns; Rath, Hans; Dittus, Hansjörg

    2011-01-01

    MICROSCOPE is a French space mission for testing the weak equivalence principle (WEP). The mission goal is the determination of the Eötvös parameter η with an accuracy of 10 -15. The French space agency CNES is responsible for the satellite which is developed and produced within the Myriade series. The satellite's payload T-SAGE (Twin Space Accelerometer for Gravitation Experimentation) is developed and built by the French institute ONERA. It consists of two high-precision capacitive differential accelerometers. One accelerometer is used as reference sensor with two test masses of platinum, the science sensor contains a platinum and a titanium proof mass. The detection of the test mass movement and their control is done via a complex electrode system. As a member of the MICROSCOPE performance team, the German department ZARM will be involved in the data analysis of the MICROSCOPE mission. For this purpose, mission simulations and the preparation of the mission data evaluation in close cooperation with the French partners CNES, ONERA and OCA are realised. The development status of the simulation tool which will represent the complex spacecraft dynamics and all error sources in order to design and test data reduction procedures is presented and some features are discussed in detail.

  2. Simulator evaluation of the final approach spacing tool

    NASA Technical Reports Server (NTRS)

    Davis, Thomas J.; Erzberger, Heinz; Green, Steven M.

    1990-01-01

    The design and simulator evaluation of an automation tool for assisting terminal radar approach controllers in sequencing and spacing traffic onto the final approach course is described. The automation tool, referred to as the Final Approach Spacing Tool (FAST), displays speed and heading advisories for arrivals as well as sequencing information on the controller's radar display. The main functional elements of FAST are a scheduler that schedules and sequences the traffic, a 4-D trajectory synthesizer that generates the advisories, and a graphical interface that displays the information to the controller. FAST was implemented on a high performance workstation. It can be operated as a stand-alone in the Terminal Radar Approach Control (TRACON) Facility or as an element of a system integrated with automation tools in the Air Route Traffic Control Center (ARTCC). FAST was evaluated by experienced TRACON controllers in a real-time air traffic control simulation. Simulation results show that FAST significantly reduced controller workload and demonstrated a potential for an increase in landing rate.

  3. Modeling and Simulation for Multi-Missions Space Exploration Vehicle

    NASA Technical Reports Server (NTRS)

    Chang, Max

    2011-01-01

    Asteroids and Near-Earth Objects [NEOs] are of great interest for future space missions. The Multi-Mission Space Exploration Vehicle [MMSEV] is being considered for future Near Earth Object missions and requires detailed planning and study of its Guidance, Navigation, and Control [GNC]. A possible mission of the MMSEV to a NEO would be to navigate the spacecraft to a stationary orbit with respect to the rotating asteroid and proceed to anchor into the surface of the asteroid with robotic arms. The Dynamics and Real-Time Simulation [DARTS] laboratory develops reusable models and simulations for the design and analysis of missions. In this paper, the development of guidance and anchoring models are presented together with their role in achieving mission objectives and relationships to other parts of the simulation. One important aspect of guidance is in developing methods to represent the evolution of kinematic frames related to the tasks to be achieved by the spacecraft and its robot arms. In this paper, we compare various types of mathematical interpolation methods for position and quaternion frames. Subsequent work will be on analyzing the spacecraft guidance system with different movements of the arms. With the analyzed data, the guidance system can be adjusted to minimize the errors in performing precision maneuvers.

  4. Fast-Time Analysis Support for the Terminal Area Precision Scheduling and Spacing (TAPSS) Simulation

    NASA Technical Reports Server (NTRS)

    Mulfinger, Daniel

    2011-01-01

    This poster describes research conducted using the Stochastic Terminal Area Simulation Software to determine spacing buffers for the Terminal Area Precision Scheduling and Spacing human-in-the-loop simulation.

  5. Space physics games and simulations for informal education

    NASA Astrophysics Data System (ADS)

    Harold, J.; Dusenbery, P.

    2008-12-01

    We will demonstrate and discuss several game and simulation based plasma physics education products. Developed using NSF education supplements and the long running Space Weather Outreach Program at the Space Science Institute, these activities range from a "mini-golf" game that uses research grade particle pushing algorithms, to a "whack the Earth" coronal mass ejection activity. These games have their roots in "informal" education settings: as a result they assume a short interaction time by the visitor (as compared to traditional classroom experiences), and they cannot assume a particular level of prior knowledge. On the other hand, as web based activities they have a tremendous reach, and are easily available for any instructor interested in using them in classroom environments. Several of the activities have also been programmed to collect data on the visitors' interactions, giving us a window in to both visitor engagement and the degree to which the activities accomplish their learning goals. In addition to exploring these results, we will discuss the next stage in the Space Weather Outreach Program, where we will explore the ability of a series of short games to build the necessary prior knowledge base for acquiring a firm grasp on basic space physics concepts.

  6. Simulated Space Vacuum Ultraviolet (VUV) Exposure Testing for Polymer Films

    NASA Technical Reports Server (NTRS)

    Dever, Joyce A.; Pietromica, Anthony J.; Stueber, Thomas J.; Sechkar, Edward A.; Messer, Russell K.

    2002-01-01

    Vacuum ultraviolet (VUV) radiation of wavelengths between 115 and 200 nm produced by the sun in the space environment can cause degradation to polymer films producing changes in optical, mechanical, and chemical properties. These effects are particularly important for thin polymer films being considered for ultra-lightweight space structures, because, for most polymers, VUV radiation is absorbed in a thin surface layer. NASA Glenn Research Center has developed facilities and methods for long-term ground testing of polymer films to evaluate space environmental VUV radiation effects. VUV exposure can also be used as part of sequential simulated space environmental exposures to determine combined damaging effects. This paper will describe the effects of VUV on polymer films and the necessity for ground testing. Testing practices used at Glenn Research Center for VUV exposure testing will be described including characterization of the VUV radiation source used, calibration procedures traceable to the National Institute of Standards and Technology (NIST), and testing techniques for VUV exposure of polymer surfaces.

  7. Requirements for Simulating Space Radiation With Particle Accelerators

    NASA Technical Reports Server (NTRS)

    Schimmerling, W.; Wilson, J. W.; Cucinotta, F.; Kim, M-H Y.

    2004-01-01

    Interplanetary space radiation consists of fully ionized nuclei of atomic elements with high energy for which only the few lowest energy ions can be stopped in shielding materials. The health risk from exposure to these ions and their secondary radiations generated in the materials of spacecraft and planetary surface enclosures is a major limiting factor in the management of space radiation risk. Accurate risk prediction depends on a knowledge of basic radiobiological mechanisms and how they are modified in the living tissues of a whole organism. To a large extent, this knowledge is not currently available. It is best developed at ground-based laboratories, using particle accelerator beams to simulate the components of space radiation. Different particles, in different energy regions, are required to study different biological effects, including beams of argon and iron nuclei in the energy range 600 to several thousand MeV/nucleon and carbon beams in the energy range of approximately 100 MeV/nucleon to approximately 1000 MeV/nucleon. Three facilities, one each in the United States, in Germany and in Japan, currently have the partial capability to satisfy these constraints. A facility has been proposed using the Brookhaven National Laboratory Booster Synchrotron in the United States; in conjunction with other on-site accelerators, it will be able to provide the full range of heavy ion beams and energies required. International cooperation in the use of these facilities is essential to the development of a safe international space program.

  8. Simulations of space charge in the Fermilab Main Injector

    SciTech Connect

    Stern, E.; Amundson, J.; Spentzouris, P.; Qiang, J.; Ryne, R.; /LBL, Berkeley

    2011-03-01

    The Fermilab Project X plan for future high intensity operation relies on the Main Injector as the engine for delivering protons in the 60-120 GeV energy range. Project X plans call for increasing the number of protons per Main Injector bunch from the current value of 1.0 x 10{sup 11} to 3.0 x 10{sup 11}. Space charge effects at the injection energy of 8 GeV have the potential to seriously disrupt operations. We report on ongoing simulation efforts with Synergia, MARYLIE/Impact, and IMPACT, which provide comprehensive capabilities for parallel, multi-physics modeling of beam dynamics in the Main Injector including 3D space-charge effects.

  9. Simulation of MEMS for the Next Generation Space Telescope

    NASA Technical Reports Server (NTRS)

    Mott, Brent; Kuhn, Jonathan; Broduer, Steve (Technical Monitor)

    2001-01-01

    The NASA Goddard Space Flight Center (GSFC) is developing optical micro-electromechanical system (MEMS) components for potential application in Next Generation Space Telescope (NGST) science instruments. In this work, we present an overview of the electro-mechanical simulation of three MEMS components for NGST, which include a reflective micro-mirror array and transmissive microshutter array for aperture control for a near infrared (NIR) multi-object spectrometer and a large aperture MEMS Fabry-Perot tunable filter for a NIR wide field camera. In all cases the device must operate at cryogenic temperatures with low power consumption and low, complementary metal oxide semiconductor (CMOS) compatible, voltages. The goal of our simulation efforts is to adequately predict both the performance and the reliability of the devices during ground handling, launch, and operation to prevent failures late in the development process and during flight. This goal requires detailed modeling and validation of complex electro-thermal-mechanical interactions and very large non-linear deformations, often involving surface contact. Various parameters such as spatial dimensions and device response are often difficult to measure reliably at these small scales. In addition, these devices are fabricated from a wide variety of materials including surface micro-machined aluminum, reactive ion etched (RIE) silicon nitride, and deep reactive ion etched (DRIE) bulk single crystal silicon. The above broad set of conditions combine to be a formidable challenge for space flight qualification analysis. These simulations represent NASA/GSFC's first attempts at implementing a comprehensive strategy to address complex MEMS structures.

  10. Simulation Modeling and Performance Evaluation of Space Networks

    NASA Technical Reports Server (NTRS)

    Jennings, Esther H.; Segui, John

    2006-01-01

    In space exploration missions, the coordinated use of spacecraft as communication relays increases the efficiency of the endeavors. To conduct trade-off studies of the performance and resource usage of different communication protocols and network designs, JPL designed a comprehensive extendable tool, the Multi-mission Advanced Communications Hybrid Environment for Test and Evaluation (MACHETE). The design and development of MACHETE began in 2000 and is constantly evolving. Currently, MACHETE contains Consultative Committee for Space Data Systems (CCSDS) protocol standards such as Proximity-1, Advanced Orbiting Systems (AOS), Packet Telemetry/Telecommand, Space Communications Protocol Specification (SCPS), and the CCSDS File Delivery Protocol (CFDP). MACHETE uses the Aerospace Corporation s Satellite Orbital Analysis Program (SOAP) to generate the orbital geometry information and contact opportunities. Matlab scripts provide the link characteristics. At the core of MACHETE is a discrete event simulator, QualNet. Delay Tolerant Networking (DTN) is an end-to-end architecture providing communication in and/or through highly stressed networking environments. Stressed networking environments include those with intermittent connectivity, large and/or variable delays, and high bit error rates. To provide its services, the DTN protocols reside at the application layer of the constituent internets, forming a store-and-forward overlay network. The key capabilities of the bundling protocols include custody-based reliability, ability to cope with intermittent connectivity, ability to take advantage of scheduled and opportunistic connectivity, and late binding of names to addresses. In this presentation, we report on the addition of MACHETE models needed to support DTN, namely: the Bundle Protocol (BP) model. To illustrate the use of MACHETE with the additional DTN model, we provide an example simulation to benchmark its performance. We demonstrate the use of the DTN protocol

  11. On-ground Simulation of the Proton Spectrum in Space

    NASA Astrophysics Data System (ADS)

    Liu, Hai; Guan, Minchao; He, Shiyu; Yang, Dezhuang; Wang, Huaiyi; Abraimov, V. V.

    2009-01-01

    The distribution of proton energy losses in optical parts including optical lenses and mirrors was calculated using SRIM program, based on Mont Carlo method. The effect of proton energy on the optical spectrum of lenses and mirrors was also investigated through irradiation experiments, with the proton energy varying from 0.03 to 1 MeV. An approach of on-ground simulation of the proton spectrum in space was proposed taking into account the different characteristics of proton spectra in the radiation belt, solar cosmic ray, and galactic cosmic rays in GEO as well as the corresponding distribution of energy loss in optical parts.

  12. Human habitat positioning system for NASA's space flight environmental simulator

    NASA Technical Reports Server (NTRS)

    Caldwell, W. F.; Tucker, J.; Keas, P.

    1998-01-01

    Artificial gravity by centrifugation offers an effective countermeasure to the physiologic deconditioning of chronic exposure to microgravity; however, the system requirements of rotational velocity, radius of rotation, and resultant centrifugal acceleration require thorough investigation to ascertain the ideal human-use centrifuge configuration. NASA's Space Flight Environmental Simulator (SFES), a 16-meter (52-foot) diameter, animal-use centrifuge, was recently modified to accommodate human occupancy. This paper describes the SFES Human Habitat Positioning System, the mechanism that facilitates radius of rotation variability and alignment of the centrifuge occupants with the artificial gravity vector.

  13. Prevention of decompression sickness during a simulated space docking mission

    NASA Technical Reports Server (NTRS)

    Cooke, J. P.; Bollinger, R. R.; Richardson, B.

    1975-01-01

    This study has shown that repetitive exchanges between the Apollo space vehicle atmosphere of 100% oxygen at 5 psia (258 torr) and the Soyuz spacecraft atmosphere of 30% oxygen-70% nitrogen at 10 psia (533 torr), as simulated in altitude chambers, will not likely result in any form of decompression sickness. This conclusion is based upon the absence of any form of bends in seven crewmen who participated in 11 tests distributed over three 24-h periods. During each period, three transfers from the 5 to the 10 psia environments were performed by simulating passage through a docking module which served as an airlock where astronauts and cosmonauts first adapted to each other's cabin gases and pressures before transfer. Biochemical tests, subjective fatigue scores, and the complete absence of any form of pain were also indicative that decompression sickness should not be expected if this spacecraft transfer schedule is followed.

  14. Space simulation experiments on reaction control system thruster plumes

    NASA Technical Reports Server (NTRS)

    Cassidy, J. F.

    1972-01-01

    A space simulation procedure was developed for studying rocket plume contamination effects using a 5-pound bipropellant reaction control system thruster. Vacuum chamber pressures of 3 x 10 to the minus 5 torr (70 miles altitude) were achieved with the thruster firing in pulse trains consisting of eight pulses (50 msec on, 100 msec off, and seven minutes between pulse trains). The final vacuum was achieved by cooling all vacuum chamber surfaces to liquid helium temperature and by introducing a continuous argon leak of 48 std. cc/sec into the test chamber. An effort was made to simulate propellant system flow dynamics corresponding to actual spacecraft mission use. Fast time response liquid flow rate measurements showed that large variations occurred in the ratio of oxidizer to fuel flow for pulse-on times up to 120 msec. These variations could lead to poor combustion efficiency and the production of contamination.

  15. NUMERICAL SIMULATION OF EVACUATION MOVEMENT IN COMPOUND UNDERGROUND SPACE

    NASA Astrophysics Data System (ADS)

    Sekine, Masato; Ohno, Ryoma

    Evacuation movement of persons from an inundated underground space was investigated in this study. Numerical simulation was conducted under the two conditions; (1) the persons were guided to evacuate in a recommended manner or (2) they escaped through the nearest stairs without guide. Simulation was also conducted in order to make clear the effect of evacuation announcement. It was confirmed that the guide was effective to make an orderly and safe evacuation movement. And the announcement was also effective to make persons escape more rapidly to a ground level in case that it was made at just the right time. This kind of computation must be needed before we make a plan of the announcement.

  16. Coalescent simulation in continuous space: algorithms for large neighbourhood size.

    PubMed

    Kelleher, J; Etheridge, A M; Barton, N H

    2014-08-01

    Many species have an essentially continuous distribution in space, in which there are no natural divisions between randomly mating subpopulations. Yet, the standard approach to modelling these populations is to impose an arbitrary grid of demes, adjusting deme sizes and migration rates in an attempt to capture the important features of the population. Such indirect methods are required because of the failure of the classical models of isolation by distance, which have been shown to have major technical flaws. A recently introduced model of extinction and recolonisation in two dimensions solves these technical problems, and provides a rigorous technical foundation for the study of populations evolving in a spatial continuum. The coalescent process for this model is simply stated, but direct simulation is very inefficient for large neighbourhood sizes. We present efficient and exact algorithms to simulate this coalescent process for arbitrary sample sizes and numbers of loci, and analyse these algorithms in detail. PMID:24910324

  17. Processing of Lunar Soil Simulant for Space Exploration Applications

    NASA Technical Reports Server (NTRS)

    Sen, Subhayu; Ray, Chandra S.; Reddy, Ramana

    2005-01-01

    NASA's long-term vision for space exploration includes developing human habitats and conducting scientific investigations on planetary bodies, especially on Moon and Mars. To reduce the level of up-mass processing and utilization of planetary in-situ resources is recognized as an important element of this vision. Within this scope and context, we have undertaken a general effort aimed primarily at extracting and refining metals, developing glass, glass-ceramic, or traditional ceramic type materials using lunar soil simulants. In this paper we will present preliminary results on our effort on carbothermal reduction of oxides for elemental extraction and zone refining for obtaining high purity metals. In additions we will demonstrate the possibility of developing glasses from lunar soil simulant for fixing nuclear waste from potential nuclear power generators on planetary bodies. Compositional analysis, x-ray diffraction patterns and differential thermal analysis of processed samples will be presented.

  18. Development of a Space Radiation Monte Carlo Computer Simulation

    NASA Technical Reports Server (NTRS)

    Pinsky, Lawrence S.

    1997-01-01

    The ultimate purpose of this effort is to undertake the development of a computer simulation of the radiation environment encountered in spacecraft which is based upon the Monte Carlo technique. The current plan is to adapt and modify a Monte Carlo calculation code known as FLUKA, which is presently used in high energy and heavy ion physics, to simulate the radiation environment present in spacecraft during missions. The initial effort would be directed towards modeling the MIR and Space Shuttle environments, but the long range goal is to develop a program for the accurate prediction of the radiation environment likely to be encountered on future planned endeavors such as the Space Station, a Lunar Return Mission, or a Mars Mission. The longer the mission, especially those which will not have the shielding protection of the earth's magnetic field, the more critical the radiation threat will be. The ultimate goal of this research is to produce a code that will be useful to mission planners and engineers who need to have detailed projections of radiation exposures at specified locations within the spacecraft and for either specific times during the mission or integrated over the entire mission. In concert with the development of the simulation, it is desired to integrate it with a state-of-the-art interactive 3-D graphics-capable analysis package known as ROOT, to allow easy investigation and visualization of the results. The efforts reported on here include the initial development of the program and the demonstration of the efficacy of the technique through a model simulation of the MIR environment. This information was used to write a proposal to obtain follow-on permanent funding for this project.

  19. Physical layer simulator for undersea free-space laser communications

    NASA Astrophysics Data System (ADS)

    Dalgleish, Fraser R.; Shirron, Joseph J.; Rashkin, David; Giddings, Thomas E.; Vuorenkoski Dalgleish, Anni K.; Cardei, Ionut; Ouyang, Bing; Caimi, Frank M.; Cardei, Mihaela

    2014-05-01

    High bandwidth (10 to 100 Mbps), real-time data networking in the subsea environment using free-space lasers has a potentially high impact as an enabling technology for a variety of future subsea operations in the areas of distributed sensing, real-time wireless data transfer, control of unmanned undersea vehicles, and other submerged assets. However, the development and testing of laser networking equipment in the undersea environment are expensive and time consuming, and there is a clear need for a network simulation framework that will allow researchers to evaluate the performance of alternate optical and electronic configurations under realistic operational and environmental constraints. The overall objective of the work reported in this paper was to develop and validate such a simulation framework, which consists of (1) a time-dependent radiative transfer model to accurately predict the channel impulse characteristics for alternate system designs over a range of geometries and optical properties and (2) digital modulation and demodulation blocks which accurately simulate both laser source and receiver noise characteristics in order to generate time domain bit stream samples that can be digitally demodulated to predict the resulting bit error rate of the simulated link.

  20. Magnetic Null Points in Kinetic Simulations of Space Plasmas

    NASA Astrophysics Data System (ADS)

    Olshevsky, Vyacheslav; Deca, Jan; Divin, Andrey; Peng, Ivy Bo; Markidis, Stefano; Innocenti, Maria Elena; Cazzola, Emanuele; Lapenta, Giovanni

    2016-03-01

    We present a systematic attempt to study magnetic null points and the associated magnetic energy conversion in kinetic particle-in-cell simulations of various plasma configurations. We address three-dimensional simulations performed with the semi-implicit kinetic electromagnetic code iPic3D in different setups: variations of a Harris current sheet, dipolar and quadrupolar magnetospheres interacting with the solar wind, and a relaxing turbulent configuration with multiple null points. Spiral nulls are more likely created in space plasmas: in all our simulations except lunar magnetic anomaly (LMA) and quadrupolar mini-magnetosphere the number of spiral nulls prevails over the number of radial nulls by a factor of 3-9. We show that often magnetic nulls do not indicate the regions of intensive energy dissipation. Energy dissipation events caused by topological bifurcations at radial nulls are rather rare and short-lived. The so-called X-lines formed by the radial nulls in the Harris current sheet and LMA simulations are rather stable and do not exhibit any energy dissipation. Energy dissipation is more powerful in the vicinity of spiral nulls enclosed by magnetic flux ropes with strong currents at their axes (their cross sections resemble 2D magnetic islands). These null lines reminiscent of Z-pinches efficiently dissipate magnetic energy due to secondary instabilities such as the two-stream or kinking instability, accompanied by changes in magnetic topology. Current enhancements accompanied by spiral nulls may signal magnetic energy conversion sites in the observational data.

  1. The two axis motion simulator for the large space simulator at ESTEC (European Space Research and Technology Center)

    NASA Technical Reports Server (NTRS)

    Beckel, Kurt A.; Hutchison, Joop

    1988-01-01

    The Large Space Simulator at the European Space Research and Technology Center (ESTEC) has been recently equipped with a motion simulator capable of handling test items of 5 tons mass and having a volume of 7m in diameter and a length of 7m. The motion simulator has a modular set-up. It consists of a spinbox as a basic unit on which the test article is mounted and which allows continuous rotation (spin) . This spinbox can be used in two operational configurations; the spin axis is vertical to 30 degrees when mounted on a gimbalstand; and the spin axis is horizontal when mounted on a turntable-yoke combination. The turntable provides rotation within plus or minus 90 degrees. This configuration allows one to bring a test article to all possible relative positions viv-a-vis the sun vector (which is horizontal in this case). The spinbox allows fast rotation between 1 to 6 rpm or slow rotation between 1 to 25 rotations per day as well as positioning within plus or minus 0.4 degrees accuracy.

  2. Simulator Evaluation of Airborne Information for Lateral Spacing (AILS) Concept

    NASA Technical Reports Server (NTRS)

    Abbott, Terence S.; Elliott, Dawn M.

    2001-01-01

    The Airborne Information for Lateral Spacing (AILS) concept is designed to support independent parallel approach operations to runways spaced as close as 2500 ft. This report describes the AILS operational concept and the results of a ground-based flight simulation experiment of one implementation of this concept. The focus of this simulation experiment was to evaluate pilot performance, pilot acceptability, and minimum miss-distances for the rare situation in which all aircraft oil one approach intrudes into the path of an aircraft oil the other approach. Results from this study showed that the design-goal mean miss-distance of 1200 ft to potential collision situations was surpassed with an actual mean miss-distance of 2236 ft. Pilot reaction times to the alerting system, which was an operational concern, averaged 1.11 sec, well below the design-goal reaction time 2.0 sec.These quantitative results and pilot subjective data showed that the AILS concept is reasonable from an operational standpoint.

  3. Unified Simulation and Analysis Framework for Deep Space Navigation Design

    NASA Technical Reports Server (NTRS)

    Anzalone, Evan; Chuang, Jason; Olsen, Carrie

    2013-01-01

    As the technology that enables advanced deep space autonomous navigation continues to develop and the requirements for such capability continues to grow, there is a clear need for a modular expandable simulation framework. This tool's purpose is to address multiple measurement and information sources in order to capture system capability. This is needed to analyze the capability of competing navigation systems as well as to develop system requirements, in order to determine its effect on the sizing of the integrated vehicle. The development for such a framework is built upon Model-Based Systems Engineering techniques to capture the architecture of the navigation system and possible state measurements and observations to feed into the simulation implementation structure. These models also allow a common environment for the capture of an increasingly complex operational architecture, involving multiple spacecraft, ground stations, and communication networks. In order to address these architectural developments, a framework of agent-based modules is implemented to capture the independent operations of individual spacecraft as well as the network interactions amongst spacecraft. This paper describes the development of this framework, and the modeling processes used to capture a deep space navigation system. Additionally, a sample implementation describing a concept of network-based navigation utilizing digitally transmitted data packets is described in detail. This developed package shows the capability of the modeling framework, including its modularity, analysis capabilities, and its unification back to the overall system requirements and definition.

  4. An FPGA computing demo core for space charge simulation

    SciTech Connect

    Wu, Jinyuan; Huang, Yifei; /Fermilab

    2009-01-01

    In accelerator physics, space charge simulation requires large amount of computing power. In a particle system, each calculation requires time/resource consuming operations such as multiplications, divisions, and square roots. Because of the flexibility of field programmable gate arrays (FPGAs), we implemented this task with efficient use of the available computing resources and completely eliminated non-calculating operations that are indispensable in regular micro-processors (e.g. instruction fetch, instruction decoding, etc.). We designed and tested a 16-bit demo core for computing Coulomb's force in an Altera Cyclone II FPGA device. To save resources, the inverse square-root cube operation in our design is computed using a memory look-up table addressed with nine to ten most significant non-zero bits. At 200 MHz internal clock, our demo core reaches a throughput of 200 M pairs/s/core, faster than a typical 2 GHz micro-processor by about a factor of 10. Temperature and power consumption of FPGAs were also lower than those of micro-processors. Fast and convenient, FPGAs can serve as alternatives to time-consuming micro-processors for space charge simulation.

  5. Space Debris Attitude Simulation - IOTA (In-Orbit Tumbling Analysis)

    NASA Astrophysics Data System (ADS)

    Kanzler, R.; Schildknecht, T.; Lips, T.; Fritsche, B.; Silha, J.; Krag, H.

    Today, there is little knowledge on the attitude state of decommissioned intact objects in Earth orbit. Observational means have advanced in the past years, but are still limited with respect to an accurate estimate of motion vector orientations and magnitude. Especially for the preparation of Active Debris Removal (ADR) missions as planned by ESA's Clean Space initiative or contingency scenarios for ESA spacecraft like ENVISAT, such knowledge is needed. The In-Orbit Tumbling Analysis tool (IOTA) is a prototype software, currently in development within the framework of ESA's “Debris Attitude Motion Measurements and Modelling” project (ESA Contract No. 40000112447), which is led by the Astronomical Institute of the University of Bern (AIUB). The project goal is to achieve a good understanding of the attitude evolution and the considerable internal and external effects which occur. To characterize the attitude state of selected targets in LEO and GTO, multiple observation methods are combined. Optical observations are carried out by AIUB, Satellite Laser Ranging (SLR) is performed by the Space Research Institute of the Austrian Academy of Sciences (IWF) and radar measurements and signal level determination are provided by the Fraunhofer Institute for High Frequency Physics and Radar Techniques (FHR). Developed by Hyperschall Technologie Göttingen GmbH (HTG), IOTA will be a highly modular software tool to perform short- (days), medium- (months) and long-term (years) propagation of the orbit and attitude motion (six degrees-of-freedom) of spacecraft in Earth orbit. The simulation takes into account all relevant acting forces and torques, including aerodynamic drag, solar radiation pressure, gravitational influences of Earth, Sun and Moon, eddy current damping, impulse and momentum transfer from space debris or micro meteoroid impact, as well as the optional definition of particular spacecraft specific influences like tank sloshing, reaction wheel behaviour

  6. Simulation and control for telerobots in space medicine

    NASA Astrophysics Data System (ADS)

    Haidegger, Tamás; Kovács, Levente; Precup, Radu-Emil; Benyó, Balázs; Benyó, Zoltán; Preitl, Stefan

    2012-12-01

    Human space exploration is continuously advancing despite the current financial difficulties, and the new missions are targeting the Moon and the Mars with more effective human-robot collaborative systems. The continuous development of robotic technology should lead to the advancement of automated technology, including space medicine. Telesurgery has already proved its effectiveness through various telemedicine procedures on Earth, and it has the potential to provide medical assistance in space as well. Aeronautical agencies have already conducted numerous experiments and developed various setups to push the boundaries of teleoperation under extreme conditions. Different control schemes have been proposed and tested to facilitate and enhance telepresence and to ensure transparency, sufficient bandwidth and latency-tolerance. This paper focuses on the modeling of a generic telesurgery setup, supported by a cascade control approach. The minimalistic models were tested with linear and PID-fuzzy control options to provide a simple, universal and scalable solution for the challenges of telesurgery over large distances. In our simulations, the control structures were capable of providing good dynamic performance indices and robustness with respect to the gain in the human operator model. This is a promising result towards the support of future teleoperational missions.

  7. Virtual Reality Simulation of the International Space Welding Experiment

    NASA Technical Reports Server (NTRS)

    Phillips, James A.

    1996-01-01

    Virtual Reality (VR) is a set of breakthrough technologies that allow a human being to enter and fully experience a 3-dimensional, computer simulated environment. A true virtual reality experience meets three criteria: (1) It involves 3-dimensional computer graphics; (2) It includes real-time feedback and response to user actions; and (3) It must provide a sense of immersion. Good examples of a virtual reality simulator are the flight simulators used by all branches of the military to train pilots for combat in high performance jet fighters. The fidelity of such simulators is extremely high -- but so is the price tag, typically millions of dollars. Virtual reality teaching and training methods are manifestly effective, and we have therefore implemented a VR trainer for the International Space Welding Experiment. My role in the development of the ISWE trainer consisted of the following: (1) created texture-mapped models of the ISWE's rotating sample drum, technology block, tool stowage assembly, sliding foot restraint, and control panel; (2) developed C code for control panel button selection and rotation of the sample drum; (3) In collaboration with Tim Clark (Antares Virtual Reality Systems), developed a serial interface box for the PC and the SGI Indigo so that external control devices, similar to ones actually used on the ISWE, could be used to control virtual objects in the ISWE simulation; (4) In collaboration with Peter Wang (SFFP) and Mark Blasingame (Boeing), established the interference characteristics of the VIM 1000 head-mounted-display and tested software filters to correct the problem; (5) In collaboration with Peter Wang and Mark Blasingame, established software and procedures for interfacing the VPL DataGlove and the Polhemus 6DOF position sensors to the SGI Indigo serial ports. The majority of the ISWE modeling effort was conducted on a PC-based VR Workstation, described below.

  8. A Data Management System for International Space Station Simulation Tools

    NASA Technical Reports Server (NTRS)

    Betts, Bradley J.; DelMundo, Rommel; Elcott, Sharif; McIntosh, Dawn; Niehaus, Brian; Papasin, Richard; Mah, Robert W.; Clancy, Daniel (Technical Monitor)

    2002-01-01

    Groups associated with the design, operational, and training aspects of the International Space Station make extensive use of modeling and simulation tools. Users of these tools often need to access and manipulate large quantities of data associated with the station, ranging from design documents to wiring diagrams. Retrieving and manipulating this data directly within the simulation and modeling environment can provide substantial benefit to users. An approach for providing these kinds of data management services, including a database schema and class structure, is presented. Implementation details are also provided as a data management system is integrated into the Intelligent Virtual Station, a modeling and simulation tool developed by the NASA Ames Smart Systems Research Laboratory. One use of the Intelligent Virtual Station is generating station-related training procedures in a virtual environment, The data management component allows users to quickly and easily retrieve information related to objects on the station, enhancing their ability to generate accurate procedures. Users can associate new information with objects and have that information stored in a database.

  9. James Webb Space Telescope (JWST) Stationkeeping Monte Carlo Simulations

    NASA Technical Reports Server (NTRS)

    Dichmann, Donald J.; Alberding, Cassandra; Yu, Wayne

    2014-01-01

    The James Webb Space Telescope (JWST) will launch in 2018 into a Libration Point Orbit (LPO) around the Sun-EarthMoon (SEM) L2 point, with a planned mission lifetime of 11 years. This paper discusses our approach to Stationkeeping (SK) maneuver planning to determine an adequate SK delta-V budget. The SK maneuver planning for JWST is made challenging by two factors: JWST has a large Sunshield, and JWST will be repointed regularly producing significant changes in Solar Radiation Pressure (SRP). To accurately model SRP we employ the Solar Pressure and Drag (SPAD) tool, which uses ray tracing to accurately compute SRP force as a function of attitude. As an additional challenge, the future JWST observation schedule will not be known at the time of SK maneuver planning. Thus there will be significant variation in SRP between SK maneuvers, and the future variation in SRP is unknown. We have enhanced an earlier SK simulation to create a Monte Carlo simulation that incorporates random draws for uncertainties that affect the budget, including random draws of the observation schedule. Each SK maneuver is planned to optimize delta-V magnitude, subject to constraints on spacecraft pointing. We report the results of the Monte Carlo simulations and discuss possible improvements during flight operations to reduce the SK delta-V budget.

  10. Distributed interactive communication in simulated space-dwelling groups.

    PubMed

    Brady, Joseph V; Hienz, Robert D; Hursh, Steven R; Ragusa, Leonard C; Rouse, Charles O; Gasior, Eric D

    2004-03-01

    This report describes the development and preliminary application of an experimental test bed for modeling human behavior in the context of a computer generated environment to analyze the effects of variations in communication modalities, incentives and stressful conditions. In addition to detailing the methodological development of a simulated task environment that provides for electronic monitoring and recording of individual and group behavior, the initial substantive findings from an experimental analysis of distributed interactive communication in simulated space dwelling groups are described. Crews of three members each (male and female) participated in simulated "planetary missions" based upon a synthetic scenario task that required identification, collection, and analysis of geologic specimens with a range of grade values. The results of these preliminary studies showed clearly that cooperative and productive interactions were maintained between individually isolated and distributed individuals communicating and problem-solving effectively in a computer-generated "planetary" environment over extended time intervals without benefit of one another's physical presence. Studies on communication channel constraints confirmed the functional interchangeability between available modalities with the highest degree of interchangeability occurring between Audio and Text modes of communication. The effects of task-related incentives were determined by the conditions under which they were available with Positive Incentives effectively attenuating decrements in performance under stressful time pressure. PMID:14983895

  11. Stationkeeping Monte Carlo Simulation for the James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Dichmann, Donald J.; Alberding, Cassandra M.; Yu, Wayne H.

    2014-01-01

    The James Webb Space Telescope (JWST) is scheduled to launch in 2018 into a Libration Point Orbit (LPO) around the Sun-Earth/Moon (SEM) L2 point, with a planned mission lifetime of 10.5 years after a six-month transfer to the mission orbit. This paper discusses our approach to Stationkeeping (SK) maneuver planning to determine an adequate SK delta-V budget. The SK maneuver planning for JWST is made challenging by two factors: JWST has a large Sunshield, and JWST will be repointed regularly producing significant changes in Solar Radiation Pressure (SRP). To accurately model SRP we employ the Solar Pressure and Drag (SPAD) tool, which uses ray tracing to accurately compute SRP force as a function of attitude. As an additional challenge, the future JWST observation schedule will not be known at the time of SK maneuver planning. Thus there will be significant variation in SRP between SK maneuvers, and the future variation in SRP is unknown. We have enhanced an earlier SK simulation to create a Monte Carlo simulation that incorporates random draws for uncertainties that affect the budget, including random draws of the observation schedule. Each SK maneuver is planned to optimize delta-V magnitude, subject to constraints on spacecraft pointing. We report the results of the Monte Carlo simulations and discuss possible improvements during flight operations to reduce the SK delta-V budget.

  12. High versus low crewmember autonomy in space simulation environments

    NASA Astrophysics Data System (ADS)

    Kanas, Nick; Saylor, Stephanie; Harris, Matthew; Neylan, Thomas; Boyd, Jennifer; Weiss, Daniel S.; Baskin, Pamela; Cook, Colleen; Marmar, Charles

    2010-10-01

    Given the long distances involved and the kinds of activities planned, crewmembers participating in long-duration exploratory space missions such as an expedition to Mars will have more autonomy than in previous space missions. In order to study the impact of high versus low crew autonomy on crewmembers and the crew-mission control interaction, we conducted a series of pilot studies involving three space simulation settings: NEEMO missions, the Haughton-Mars Project, and the pilot phase of the Mars 500 Program. As in our previous on-orbit studies on the Mir and International Space Station, crew and mission control subjects working in missions involving these three settings completed a weekly study questionnaire that assessed mood and interpersonal interactions using the Profile of Mood States, the Group Environment Scale, and the Work Environment Scale. The Mars 500 pilot study also directly assessed individual and group autonomy. In these studies, high autonomy periods were those where crewmembers planned much of their work schedule, whereas low autonomy periods were those where mission control personnel developed the schedule, much as happens now during actual space flight conditions. Our results suggested that high work autonomy was well-received by the crews, mission goals were accomplished, and there were no adverse effects. During high autonomy periods, crewmember mood was generally reported as being better and creativity was higher, but mission control personnel reported some confusion about their work role. The crewmember group environment in the Mars 500 pilot study was dependent on the nationality mix. Despite scoring lower in work pressure overall, the four Russian crewmembers reported a greater rise in work pressure from low to high autonomy than the two Europeans. In contrast, the European crewmembers reported a greater rise in dysphoric mood in going from low to high autonomy, whereas the Russians' emotional state remained the same or slightly

  13. Development of a Matheatical Dynamic Simulation Model for the New Motion Simulator Used for the Large Space Simulator at ESTEC

    NASA Astrophysics Data System (ADS)

    Messing, Rene

    2012-07-01

    To simulate environmental space conditions for space- craft qualification testing the European Space Agency ESA uses a Large Space Simulator (LSS) in its Test Centre in Noordwijk, the Netherlands. In the LSS a motion system is used, to provide the orientation of an up to five tons heavy spacecraft with respect to an artificial solar beam. The existing motion simulation will be replaced by a new motion system. The new motion system shall be able to orient a spacecraft, defined by its elevation and azimuth angle and provide an eclipse simulation (continuous spinning) around the spacecraft rotation axis. The development of the new motion system has been contracted to APCO Technologies in Switzerland. In addition to the design development done by the con- tractor the Engineering section of the ESTEC Test Centre is in parallel developing a mathematical model simulating the dynamic behaviour of the system. The model shall to serve, during the preliminary design, to verify the selection of the drive units and define the specimen trajectory speed and acceleration profiles. In the further design phase it shall verify the dynamic response, at the spacecraft mounting interface of the unloaded system, against the requirements. In the future it shall predict the dynamic responses of the implemented system for different spacecraft being mounted and operated onto the system. The paper shall give a brief description of the investment history and design developments of the new motion system for the LSS and then give a brief description the different developments steps which are foreseen and which have been already implemented in the mathematical simulation model.

  14. Space weathering on Mercury: Simulation of plagioclase weathering

    NASA Astrophysics Data System (ADS)

    Sasaki, Sho; Hiroi, Takahiro; Helbert, Jorn; Arai, Tomoko

    ions may also increase the size of nanophase iron. The other possibility for attenuating space weathering on Mercury would be deeper mixing depth. The surface mixing by impacts on Mercury is greater than that on the Moon, because of higher impact flux and velocity of incoming meteoroid bodies. The difference of space weathering between the Moon and Mercury might be also due to the compositional effect. Mercury surface is considered to be plagioclase-rich like the highland of the Moon. We started experimental simulation of space weathering on Mercury (and the Moon) using anorthite samples. Although pure anorthite is in lack of iron, addition of iron-bearing material could alter the anorthite reflectance. Our experiments show that laser irradiation on pure anorthite should not alter its spectrum largely. The addition of small amount of pyroxene can change the anorthite reflectance upon laser irradiation (darkening/reddening of visible spectrum). Addition of 5 References: [1] Keller, L. P. and McKay, D. S. (1993), Science 261, 1305. [2] Sasaki, S. et al. (2001) Nature 410, 555. [3] Sasaki, S. and Kurahashi, E. (2004) Adv. Space Res. 33, 2152. [4] McClintock, W. E. et al. (2008) Science 321, 62. [5] Noble, S. K. and Pieters, C. M. (2001) Mercury: Space Environ. Surface Interior,8012.

  15. Pedestrian simulation and distribution in urban space based on visibility analysis and agent simulation

    NASA Astrophysics Data System (ADS)

    Ying, Shen; Li, Lin; Gao, Yurong

    2009-10-01

    Spatial visibility analysis is the important direction of pedestrian behaviors because our visual conception in space is the straight method to get environment information and navigate your actions. Based on the agent modeling and up-tobottom method, the paper develop the framework about the analysis of the pedestrian flow depended on visibility. We use viewshed in visibility analysis and impose the parameters on agent simulation to direct their motion in urban space. We analyze the pedestrian behaviors in micro-scale and macro-scale of urban open space. The individual agent use visual affordance to determine his direction of motion in micro-scale urban street on district. And we compare the distribution of pedestrian flow with configuration in macro-scale urban environment, and mine the relationship between the pedestrian flow and distribution of urban facilities and urban function. The paper first computes the visibility situations at the vantage point in urban open space, such as street network, quantify the visibility parameters. The multiple agents use visibility parameters to decide their direction of motion, and finally pedestrian flow reach to a stable state in urban environment through the simulation of multiple agent system. The paper compare the morphology of visibility parameters and pedestrian distribution with urban function and facilities layout to confirm the consistence between them, which can be used to make decision support in urban design.

  16. Decompression sickness in simulated Apollo-Soyuz space missions

    NASA Technical Reports Server (NTRS)

    Cooke, J. P.; Robertson, W. G.

    1974-01-01

    Apollo-Soyuz docking module atmospheres were evaluated for incidence of decompression sickness in men simulating passage from the Russian spacecraft atmosphere, to the U.S. spacecraft atmosphere, and then to the American space suit pressure. Following 8 hr of 'shirtsleeve' exposure to 31:69::O2:N2 gas breathing mixture, at 10 psia, subjects were 'denitrogenated' for either 30 or 60 min with 100% O2 prior to decompression directly to 3.7 psia suit equivalent while performing exercise at fixed intervals. Five of 21 subjects experienced symptoms of decompression sickness after 60 min of denitrogenation compared to 6 among 20 subjects after 30 min of denitrogenation. A condition of Grade I bends was reported after 60 min of denitrogenation, and 3 of these 5 subjects noted the disappearance of all symptoms of bends at 3.7 psia. After 30 min of denitrogenation, 2 out of 6 subjects developed Grade II bends at 3.7 psia.

  17. Software system for simulation IPDA lidar sensing from space platform

    NASA Astrophysics Data System (ADS)

    Matvienko, G. G.; Sukhanov, A. Ya.

    2014-11-01

    High measurement sensitivity of troposphere CO2 and CH4 is expected from using of integrated path differential absorption (IPDA) lidar, where the strong lidar echoes on two wavelengths from cloud tops or the Earth's take place. We consider a software system for the radiation transport simulation in the atmosphere by Monte-Carlo method that applied in the greenhouse gas (CH4 and CO2) sensing space-based IPDA-lidar. This software is used to evaluate the accuracy of measurement of the green house gas concentration. The paper investigates the impact of multiple scattering in presence of clouds. So multiple scattering can influence on signal power, but differential absorption method eliminates this drawback.

  18. TID Simulation of Advanced CMOS Devices for Space Applications

    NASA Astrophysics Data System (ADS)

    Sajid, Muhammad

    2016-07-01

    This paper focuses on Total Ionizing Dose (TID) effects caused by accumulation of charges at silicon dioxide, substrate/silicon dioxide interface, Shallow Trench Isolation (STI) for scaled CMOS bulk devices as well as at Buried Oxide (BOX) layer in devices based on Silicon-On-Insulator (SOI) technology to be operated in space radiation environment. The radiation induced leakage current and corresponding density/concentration electrons in leakage current path was presented/depicted for 180nm, 130nm and 65nm NMOS, PMOS transistors based on CMOS bulk as well as SOI process technologies on-board LEO and GEO satellites. On the basis of simulation results, the TID robustness analysis for advanced deep sub-micron technologies was accomplished up to 500 Krad. The correlation between the impact of technology scaling and magnitude of leakage current with corresponding total dose was established utilizing Visual TCAD Genius program.

  19. Simulation capability for dynamics of rotating counterweight space stations.

    NASA Technical Reports Server (NTRS)

    Austin, F.; Zetkov, G.

    1973-01-01

    An analysis and computer program were prepared to realistically simulate the dynamic behavior of a class of space stations consisting of two end bodies separated by a connecting structure. The shape and mass distribution of the flexible end bodies are arbitrary; the connecting structure is flexible but massless and is capable of deployment and retraction. Fluid flowing in a piping system and rigid moving masses, representing a cargo elevator or crew members, have been modeled. Connecting structure characteristics, control systems, and externally applied loads are modeled in easily replaced subroutines. Subroutines currently available include a telescopic beam-type connecting structure as well as attitude, deployment, spin, and wobble control. In addition, a unique mass balance control system was developed to sense and balance mass shifts due to the motion of a cargo elevator. The mass of the cargo may vary through a large range. Numerical results are discussed for various types of runs.

  20. Simulating strongly correlated multiparticle systems in a truncated Hilbert space

    SciTech Connect

    Ernst, Thomas; Hallwood, David W.; Gulliksen, Jake; Brand, Joachim; Meyer, Hans-Dieter

    2011-08-15

    Representing a strongly interacting multiparticle wave function in a finite product basis leads to errors. Simple rescaling of the contact interaction can preserve the low-lying energy spectrum and long-wavelength structure of wave functions in one-dimensional systems and thus correct for the basis set truncation error. The analytic form of the rescaling is found for a two-particle system where the rescaling is exact. A detailed comparison between finite Hilbert space calculations and exact results for up to five particles show that rescaling can significantly improve the accuracy of numerical calculations in various external potentials. In addition to ground-state energies, the low-lying excitation spectrum, density profile, and correlation functions are studied. The results give a promising outlook for numerical simulations of trapped ultracold atoms.

  1. Analysis of the Thermo-Elastic Response of Space Reflectors to Simulated Space Environment

    NASA Astrophysics Data System (ADS)

    Allegri, G.; Ivagnes, M. M.; Marchetti, M.; Poscente, F.

    2002-01-01

    The evaluation of space environment effects on materials and structures is a key matter to develop a proper design of long duration missions: since a large part of satellites operating in the earth orbital environment are employed for telecommunications, the development of space antennas and reflectors featured by high dimensional stability versus space environment interactions represents a major challenge for designers. The structural layout of state of the art space antennas and reflectors is very complex, since several different sensible elements and materials are employed: particular care must be placed in evaluating the actual geometrical configuration of the reflectors operating in the space environment, since very limited distortions of the designed layout can produce severe effects on the quality of the signal both received and transmitted, especially for antennas operating at high frequencies. The effects of thermal loads due to direct sunlight exposition and to earth and moon albedo can be easily taken into account employing the standard methods of structural analysis: on the other hand the thermal cycling and the exposition to the vacuum environment produce a long term damage accumulation which affects the whole structure. The typical effects of the just mentioned exposition are the outgassing of polymeric materials and the contamination of the exposed surface, which can affect sensibly the thermo-mechanical properties of the materials themselves and, therefore, the structural global response. The main aim of the present paper is to evaluate the synergistic effects of thermal cycling and of the exposition to high vacuum environment on an innovative antenna developed by Alenia Spazio S.p.a.: to this purpose, both an experimental and numerical research activity has been developed. A complete prototype of the antenna has been exposed to the space environment simulated by the SAS facility: this latter is constituted by an high vacuum chamber, equipped by

  2. SPAce Readiness Coherent Lidar Experiment: validation of observing system simulations

    NASA Astrophysics Data System (ADS)

    Emmitt, George D.; Miller, Timothy; Kavaya, Michael J.

    1998-12-01

    NASA recently approved a mission to fly a Doppler Wind Lidar on a US Space Shuttle. SPARCLE, managed by Marshall Space Flight Center in Huntsville, AL, is targeted for launch in March 2001. This mission is viewed as a necessary demonstration of a solid state lidar using coherent detection before committing resources to a 3-5 year research or operational mission. While, to many, this shuttle mission is seen as the first step in a series leading to a fully operational wind observing system, to others, it is a chance to validate predictions of performance based upon theoretical models, analyses of airborne and ground-based data and sophisticated observing system simulation experiments. The SPARCLE instrument is a 100 mJ, 6 Hz, diode pumped 2 micron laser with a .25 m telescope using heterodyne mixing in a fiber and an InGaAs detector. A 25 cm silicon wedge scanner will be used in step-stare modes with dwells ranging from 60 seconds to .5 seconds. Pointing knowledge is achieved with a dedicated GPS/INS mounted close to the lidar. NASA's hitchhiker program is providing the instrument enclosures and mission logistics support. An on- board data system in sized to record 80 Gbytes of raw signal from two 400 MHz A/D converters. On-board signal processing will be used to control the frequency of the Master Oscillator. SPARCLE is predicted to have a singleshot backscatter sensitivity near 5 by 10-6 m-1 sr-1. To achieve higher sensitivity, shot accumulation will be employed. Ground-based, 2 micron DWLs have been used to assess the benefits of shot accumulation. Airborne programs like MACAWS have provided good data st for evaluating various sampling strategies and signal processing algorithms. Using these real data to calibrate out simulation models, we can describe when and how well SPARCLE is expected to perform.

  3. Thermal System Upgrade of the Space Environment Simulation Test Chamber

    NASA Technical Reports Server (NTRS)

    Desai, Ashok B.

    1997-01-01

    The paper deals with the refurbishing and upgrade of the thermal system for the existing thermal vacuum test facility, the Space Environment Simulator, at NASA's Goddard Space Flight Center. The chamber is the largest such facility at the center. This upgrade is the third phase of the long range upgrade of the chamber that has been underway for last few years. The first phase dealt with its vacuum system, the second phase involved the GHe subsystem. The paper describes the considerations of design philosophy options for the thermal system; approaches taken and methodology applied, in the evaluation of the remaining "life" in the chamber shrouds and related equipment by conducting special tests and studies; feasibility and extent of automation, using computer interfaces and Programmable Logic Controllers in the control system and finally, matching the old components to the new ones into an integrated, highly reliable and cost effective thermal system for the facility. This is a multi-year project just started and the paper deals mainly with the plans and approaches to implement the project successfully within schedule and costs.

  4. CFD simulation of boundary effects on closely spaced jets

    NASA Astrophysics Data System (ADS)

    Shrivastava, Ishita; Adams, Eric

    2015-11-01

    In coastal areas characterized by shallow water depth, industrial effluents are often diluted using multiple closely spaced jets. Examples of such effluents include brine from desalination plants, treated wastewater from sewage treatment plants and heated water from thermal power plants. These jets are arranged in various orientations, such as unidirectional diffusers and rosette groups, to maximize mixing with ambient water. Due to effects of dynamic pressure, the jets interact with each other leading to mixing characteristics which are quite different from those of individual jets. The effect of mutual interaction is exaggerated under confinement, when a large number of closely spaced jets discharge into shallow depth. Dilution through an outfall, consisting of multiple jets, depends on various outfall and ambient parameters. Here we observe the effects of shoreline proximity, in relation to diffuser length and water depth, on the performance of unidirectional diffusers discharging to quiescent water. For diffusers located closer to shore, less dilution is observed due to the limited availability of ambient water for dilution. We report on the results of Computational Fluid Dynamics (CFD) simulations and compare the results with experimental observations.

  5. The effect of simulated hypervelocity space debris on polymers

    SciTech Connect

    Verker, R. . E-mail: rverker@soreq.gov.il; Eliaz, N.; Gouzman, I.; Eliezer, S.; Fraenkel, M.; Maman, S.; Beckmann, F.; Pranzas, K.; Grossman, E.

    2004-11-08

    Space debris population in low Earth orbit has been increasing constantly with the increase in spacecraft missions. Hypervelocity space debris impacts limit the functionality of polymeric outer surfaces and, in extreme cases, might cause a total loss of a spacecraft. In this work, the fracture of Kapton films by ultrahigh velocity impacts was studied. A laser-driven flyer ground simulation system was used to accelerate aluminum flyers to impact velocities as high as 2.9 km/s against polymer films with different thicknesses. Scanning electron microscopy was used to characterize the fracture morphology. Impact effects on the internal structure of the polymer were studied by means of X-ray microtomography. It was found that with an increase in debris velocity, a ductile-to-brittle transition occurred. However, fractures created by impacts at velocities above 1.7 km/s showed central impacts regions, which experienced the highest strain rate and were of ductile-type fracture, while the outer regions, which experienced a lower strain rate, failed through brittle cracking. A model explaining this phenomenon, based on the temperature gradient developed within the impacted region during collision, is presented.

  6. Durability of Solar Selective Coatings in a Simulated Space Environment

    NASA Technical Reports Server (NTRS)

    Jaworske, Donald A.; Lyons, Valerie (Technical Monitor)

    2002-01-01

    Solar selective coatings are being considered for heat engine and thermal switching applications on minisatellites. Such coatings must have the combined properties of high solar absorptance and low infrared emittance. High solar absorptance is needed to collect solar energy as efficiently as possible while low infrared emittance is needed to minimize radiant energy loss at operating temperature. These properties are achieved in sputter deposited thin films through the use of molecular mixtures of metal and dielectric. Solar selective coatings having a solar absorptance to infrared emittance ratio of 9 have been successfully deposited using a mixture of nickel and aluminum oxide. The space environment, however, presents some challenges for the use of materials on the exterior of spacecraft, including durability to atomic oxygen and vacuum ultraviolet radiation. To address these concerns, several candidate solar selective coatings were exposed to atomic oxygen in a plasma asher and to ultraviolet radiation in a vacuum facility equipped with calibrated deuterium lamps. The optical properties of the coatings were monitored as a function of time to evaluate their performance over long term exposure to the simulated space environment. Several coatings were found to be durable to both the atomic oxygen and the vacuum ultraviolet environments.

  7. Mutagenesis of Bacillus subtilis spores exposed to simulated space environment

    NASA Astrophysics Data System (ADS)

    Munakata, N.; Natsume, T.; Takahashi, K.; Hieda, K.; Panitz, C.; Horneck, G.

    Bacterial spores can endure in a variety of extreme earthly environments. However, some conditions encountered during the space flight could be detrimental to DNA in the spore, delimiting the possibility of transpermia. We investigate the genetic consequences of the exposure to space environments in a series of preflight simulation project of EXPOSE. Using Bacillus subtilis spores of repair-proficient HA101 and repair-deficient TKJ6312 strains, the mutations conferring resistance to rifampicin were detected, isolated and sequenced. Most of the mutations were located in a N-terminal region of the rpoB gene encoding RNA polymerase beta-subunit. Among several potentially mutagenic factors, high vacuum, UV radiation, heat, and accelerated heavy ions induced mutations with varying efficiencies. A majority of mutations induced by vacuum exposure carried a tandem double-base change (CA to TT) at a unique sequence context of TCAGC. Results indicate that the vacuum and high temperature may act synergistically for the induction of mutations.

  8. An Orion/Ares I Launch and Ascent Simulation: One Segment of the Distributed Space Exploration Simulation (DSES)

    NASA Technical Reports Server (NTRS)

    Chung, Victoria I.; Crues, Edwin Z.; Blum, Mike G.; Alofs, Cathy; Busto, Juan

    2007-01-01

    This paper describes the architecture and implementation of a distributed launch and ascent simulation of NASA's Orion spacecraft and Ares I launch vehicle. This simulation is one segment of the Distributed Space Exploration Simulation (DSES) Project. The DSES project is a research and development collaboration between NASA centers which investigates technologies and processes for distributed simulation of complex space systems in support of NASA's Exploration Initiative. DSES is developing an integrated end-to-end simulation capability to support NASA development and deployment of new exploration spacecraft and missions. This paper describes the first in a collection of simulation capabilities that DSES will support.

  9. Simulation of solar wind space weathering in orthopyroxene

    NASA Astrophysics Data System (ADS)

    Kuhlman, Kimberly R.; Sridharan, Kumar; Kvit, Alexander

    2015-09-01

    We have simulated solar wind-based space weathering on airless bodies in our Solar System by implanting hydrogen and helium into orthopyroxene at solar wind energies (~1 keV/amu). Here we present the results of the first scanning transmission electron microscope (STEM) study of one of these simulants. It has been demonstrated that the visible/near infrared (VNIR) reflectance spectra of airless bodies are dependent on the size and abundance of nanophase iron (npFe0) particles in the outer rims of regolith grains. However, the mechanism of formation of npFe0 in the patina on lunar regolith grains and in lunar agglutinates remains debated. As the lattice is disrupted by hydrogen and helium implantation, broken bonds are created. These dangling bonds are free to react with hydrogen, creating OH and/or H2O molecules within the grain. These molecules may diffuse out through the damaged lattice and migrate toward the cold traps identified at the lunar poles. This mechanism would leave the iron in a reduced state and able to form npFe0. This work illustrates that npFe0 can be nucleated in orthopyroxene under implantation of solar wind hydrogen and helium. Our data suggest that the solar wind provides a mechanism by which iron is reduced in the grain and npFe0 is nucleated in the outer surfaces of regolith grains. This formation mechanism should also operate on other airless bodies in the Solar System.

  10. Processing of Lunar Soil Simulant for Space Exploration Applications

    NASA Technical Reports Server (NTRS)

    Sen, Subhayu; Ray, C. S.; Ramachandran, N.

    2005-01-01

    NASA's long-term vision for space exploration includes developing human habitats and conducting scientific investigations on planetary bodies, especially on Moon and Mars. Processing and utilization of planetary in-situ resources is recognized as an important element of this vision since it can minimize the level of up-mass that will have to be transported from earth to the planetary bodies. Within this scope and context, we have undertaken a general effort aimed primarily at extracting and refining metals, developing glass, glass-ceramic, or traditional ceramic type materials using lunar soil simulants. In this paper we will present preliminary results on our effort on simultaneous carbothermal reduction of oxides for elemental extraction and zone refining for obtaining high purity metals. In additions we will demonstrate the possibility of developing glass fibers as reinforcement agents for planetary habitat construction, glasses for fixing nuclear waste from potential nuclear power generators, and glasses for magnetic applications. The paper will also include initial thermal characterization of the glasses produced from lunar simulant. Compositional analysis of processed samples will be presented.

  11. Modelling and Simulation of the Space Mission MICROSCOPE

    NASA Astrophysics Data System (ADS)

    Bremer, Stefanie; List, M.; Selig, H.; Lämmerzahl, C.

    2009-05-01

    The French space mission MICROSCOPE aims at testing the Equivalence Principle (EP) with an accuracy of 10e-15. The payload, which is developed and built by the French institute ONERA consists of two high-precision capacitive differential accelerometers. The detection of the test mass movement and their control is done via a complex electrode system. The German department ZARM is member of the MICROSCOPE performance team. In addition to drop tower tests, mission simulations and the preperation of the mission data evaluation are realised in close cooperation with the French partners CNES, ONERA and OCA. Therefore a comprehensive simulation of the real system including the science signal and all error sources is built for the development and testing of data reduction and data analysis algorithms to extract the EP violation signal. In this context the focus lays on the correct modelling of the environmental disturbances. Currently new effort to study the influence of the solar radiation and the Earth albedo to the MICROSCOPE mission scenario is underway. The actual status of the mission modelling will be presented.

  12. Modelling and simulation of the space mission MICROSCOPE

    NASA Astrophysics Data System (ADS)

    Bremer, Stefanie; List, Meike; Selig, Hanns; Lämmerzahl, Claus

    2010-01-01

    The French space mission MICROSCOPE aims at testing the weak Equivalence Principle (EP) with an accuracy of 10-15. The payload, which is developed and built by the French institute ONERA consists of two high-precision capacitive differential accelerometers. The detection of the test mass movement and their control is done via a complex electrode system. The German department ZARM is member of the MICROSCOPE performance team. In addition to drop tower tests, mission simulations and the preparation of the mission data evaluation are realized in close cooperation with the French partners CNES, ONERA and OCA. Therefore a comprehensive simulation of the real system including the science signal and all error sources is built for the development and testing of data reduction and data analysis algorithms to extract the EP violation signal. In this context the focus lays on the correct modeling of the environmental disturbances. Currently new effort to study the influence of the solar radiation and the Earth albedo to the MICROSCOPE mission scenario is underway.

  13. A simulation program for the analysis of on-orbit Space Station maintenance and logistics operations

    NASA Technical Reports Server (NTRS)

    Furlong, Kelly L.; Dejulio, Edmund T.

    1988-01-01

    This paper describes the analysis approach adopted by NASA's Space Station Maintenance Planning and Analysis (MPA) Study and focuses on the development and use of a simulation program called Simulation of Manned Space System Logistics Support (SIMSYLS) for modeling the Space Station operations environment. The basic assumptions and groundrules used in the development of SIMSYLS are presented, including its capabilities, limitations and samples of analyses performed. Finally, a proposed simulation outgrowth entitled Space Applications System Simulation (SASS) is described. SIMSYLS will constitute the foundation for SASS which will provide a full system operational RAM analysis tool for Space Station and its logistics support environment.

  14. Space Geodetic Technique Co-location in Space: Simulation Results for the GRASP Mission

    NASA Astrophysics Data System (ADS)

    Kuzmicz-Cieslak, M.; Pavlis, E. C.

    2011-12-01

    The Global Geodetic Observing System-GGOS, places very stringent requirements in the accuracy and stability of future realizations of the International Terrestrial Reference Frame (ITRF): an origin definition at 1 mm or better at epoch and a temporal stability on the order of 0.1 mm/y, with similar numbers for the scale (0.1 ppb) and orientation components. These goals were derived from the requirements of Earth science problems that are currently the international community's highest priority. None of the geodetic positioning techniques can achieve this goal alone. This is due in part to the non-observability of certain attributes from a single technique. Another limitation is imposed from the extent and uniformity of the tracking network and the schedule of observational availability and number of suitable targets. The final limitation derives from the difficulty to "tie" the reference points of each technique at the same site, to an accuracy that will support the GGOS goals. The future GGOS network will address decisively the ground segment and to certain extent the space segment requirements. The JPL-proposed multi-technique mission GRASP (Geodetic Reference Antenna in Space) attempts to resolve the accurate tie between techniques, using their co-location in space, onboard a well-designed spacecraft equipped with GNSS receivers, a SLR retroreflector array, a VLBI beacon and a DORIS system. Using the anticipated system performance for all four techniques at the time the GGOS network is completed (ca 2020), we generated a number of simulated data sets for the development of a TRF. Our simulation studies examine the degree to which GRASP can improve the inter-technique "tie" issue compared to the classical approach, and the likely modus operandi for such a mission. The success of the examined scenarios is judged by the quality of the origin and scale definition of the resulting TRF.

  15. Thermally Induced Vibrations of the Hubble Space Telescope's Solar Array 3 in a Test Simulated Space Environment

    NASA Technical Reports Server (NTRS)

    Early, Derrick A.; Haile, William B.; Turczyn, Mark T.; Griffin, Thomas J. (Technical Monitor)

    2001-01-01

    NASA Goddard Space Flight Center and the European Space Agency (ESA) conducted a disturbance verification test on a flight Solar Array 3 (SA3) for the Hubble Space Telescope using the ESA Large Space Simulator (LSS) in Noordwijk, the Netherlands. The LSS cyclically illuminated the SA3 to simulate orbital temperature changes in a vacuum environment. Data acquisition systems measured signals from force transducers and accelerometers resulting from thermally induced vibrations of the SAI The LSS with its seismic mass boundary provided an excellent background environment for this test. This paper discusses the analysis performed on the measured transient SA3 responses and provides a summary of the results.

  16. Simulations of Ground and Space-Based Oxygen Atom Experiments

    NASA Technical Reports Server (NTRS)

    Minton, T. K.; Cline, J. A.; Braunstein, M.

    2002-01-01

    obtained from separate measurements. These computations use basic engineering models for the gas-gas and gas-surface scattering and focus on the influence of multi-collision effects. These simulations characterize many important quantities of interest including the actual flux of atoms that reach the surface, the energy distribution of this flux, as well as the direction of the velocity of the flux that strikes the surface. These quantities are important in characterizing the conditions which give rise to measured surface erosion. The calculations also yield time- snapshots of the pulse as it impacts and flows around the surface. These snapshots reveal the local environment of gas near the surface for the duration of the pulse. We are also able to compute the flux of molecules that travel downstream and reach the spectrometer, and we characterize their velocity distribution. The number of atoms that reach the spectrometer can in fact be influenced by the presence of the surface due to gas-gas collisions from atoms scattered h m the surface, and it will generally be less than that with the surface absent. This amounts to an overall normalization factor in computing erosion yields. We discuss these quantities and their relationship to the gas-surf$ce interaction parameters. We have also performed similar calculations corresponding to conditions (number densities, temperatures, and velocities) of low-earth orbit. The steady-state nature and lower overall flux of the actual space environment give rise to differences in the nature of the gas-impacts on the surface from those of the ground-based measurements using a pulsed source.

  17. System simulation of a multicell thermionic space power reactor

    NASA Astrophysics Data System (ADS)

    von Arx, Alan Vincent

    For many years, thermionic power has been considered for space application. The prominent feature of the power conversion system is that there are no moving parts. Although designs have been developed by various organizations, no comprehensive system models are known to exist which can simulate transient behavior of a multicell design nor is there a method to directly couple these models to other codes that can calculate variations in reactivity. Thus, a procedure has been developed to couple the performance calculations of a space nuclear reactor thermal/hydraulics code with a neutron diffusion code to analyze temperature feedback. Thermionic power is based on the thermionic emissions principle where free electrons in a conductor have sufficient energy to escape the surface. Kinetic energy is given to the electrons by heating the conductor. Specifically, a 48 kWe thermionic power converter system model has been developed and used to model startup and other transients. Less than 10% of the fuel heat is converted to electricity, and the rest is rejected to space via a heat pipe radiator. An electromagnetic pump circulates the liquid metal coolant. First, a startup transient model was developed which showed stable operation through ignition of the Thermionic Fuel Elements (TFEs) and thawing of the radiator heat pipes. Also, the model's capability was expanded to include two-phase heat transfer to model boiling using coupled mass and thermal energy conservation equations. The next step incorporated effects of reactivity feedback---showing that various mechanisms will prevent power and temperature run-up for a flow reduction scenario where the reactor control systems fail to respond. In particular, the Doppler effect was shown to counter a positive worth due to partial core voiding although steps must be taken to preclude film boiling in that high superheats will result in TFE failures. Finally, analysis of the core grid spacer location suggests it should be located at

  18. LISP based simulation generators for modeling complex space processes

    NASA Technical Reports Server (NTRS)

    Tseng, Fan T.; Schroer, Bernard J.; Dwan, Wen-Shing

    1987-01-01

    The development of a simulation assistant for modeling discrete event processes is presented. Included are an overview of the system, a description of the simulation generators, and a sample process generated using the simulation assistant.

  19. Promoting A-Priori Interoperability of HLA-Based Simulations in the Space Domain: The SISO Space Reference FOM Initiative

    NASA Technical Reports Server (NTRS)

    Moller, Bjorn; Garro, Alfredo; Falcone, Alberto; Crues, Edwin Z.; Dexter, Daniel E.

    2016-01-01

    Distributed and Real-Time Simulation plays a key-role in the Space domain being exploited for missions and systems analysis and engineering as well as for crew training and operational support. One of the most popular standards is the 1516-2010 IEEE Standard for Modeling and Simulation (M&S) High Level Architecture (HLA). HLA supports the implementation of distributed simulations (called Federations) in which a set of simulation entities (called Federates) can interact using a Run-Time Infrastructure (RTI). In a given Federation, a Federate can publish and/or subscribes objects and interactions on the RTI only in accordance with their structures as defined in a FOM (Federation Object Model). Currently, the Space domain is characterized by a set of incompatible FOMs that, although meet the specific needs of different organizations and projects, increases the long-term cost for interoperability. In this context, the availability of a reference FOM for the Space domain will enable the development of interoperable HLA-based simulators for related joint projects and collaborations among worldwide organizations involved in the Space domain (e.g. NASA, ESA, Roscosmos, and JAXA). The paper presents a first set of results achieved by a SISO standardization effort that aims at providing a Space Reference FOM for international collaboration on Space systems simulations.

  20. Evaluation of the effects of solar radiation on glass. [space environment simulation

    NASA Technical Reports Server (NTRS)

    Firestone, R. F.; Harada, Y.

    1979-01-01

    The degradation of glass used on space structures due to electromagnetic and particulate radiation in a space environment was evaluated. The space environment was defined and a simulated space exposure apparatus was constructed. Four optical materials were exposed to simulated solar and particulate radiation in a space environment. Sapphire and fused silica experienced little change in transmittance, while optical crown glass and ultra low expansion glass darkened appreciably. Specimen selection and preparation, exposure conditions, and the effect of simulated exposure are discussed. A selective bibliography of the effect of radiation on glass is included.

  1. Simulated lightning test shuttle .03 scale model. [(space shuttle orbiter)

    NASA Technical Reports Server (NTRS)

    Clifford, D. W.

    1974-01-01

    Lightning Attach Point tests were conducted for the space shuttle launch configuration (Orbiter, External Tank and Solid Rocket Boosters). A series of 250 long spark tests (15 to 20 foot sparks) determined that the orbiter may be struck on the nose, windshield brow, tail and wingtips during launch but not on the main engine nozzles which have been shown to be vulnerable to lightning damage. The orbiter main engine and SRB exhaust plumes were simulated electrically with physical models coated with graded resistance paints. The tests showed that the exhaust plumes from the SRB provide additional protection for the main engine nozzles. However, the tests showed that the Orbiter Thermal Protection System (TPS), which has also been shown to be vulnerable to lightning damage, may be struck during launch. Therefore further work is indicated in the areas of swept stroke studies on the model and on TPS panels. Further attach point testing is also indicated on the free-flying orbiter. Photographs of the test setup are shown.

  2. Simulated Space Environment Effects on Tether Materials with Protective Coatings

    NASA Technical Reports Server (NTRS)

    Finckenor, Miria M.; Watts, Ed

    2005-01-01

    Atomic oxygen (AO) erodes most organic materials. and ultraviolet radiation embrittles polymers. A previous study indicated untreated polymers such as ultra-high molecular weight polyethylene (UHMWPE) are severely degraded when exposed to AO. This test series was performed to determine the effect of AO and UV on the mechanical integrity of tether materials that were treated with AO-protective coatings. Three coating systems were evaluated for their ability to protect the underlying material from AO erosion. The first coating system is the Photosil surface modification process which incorporates silicon-containing functional groups into the top micron of an organic material. The Photosil process has had favorable results with polyurethane- and epoxy-based thermal control coatings . The second coating system is metallization, in this case nickel. The third coating system is silsesquioxane. The Marshall Space Flight Center Atomic Oxygen Beam Facility (AOBF) was used to simulate low Earth orbit AO of 5 eV energy. In addition, some tether samples were exposed to ultraviolet radiation then evaluated for any changes in mechanical strength. Tether missions, such as a momentum-exchange/electrodynamic reboost (MXER) tether, may benefit from this research.

  3. Space simulation facilities providing a stable thermal vacuum facility

    NASA Technical Reports Server (NTRS)

    Tellalian, Martin L.

    1990-01-01

    CBI has recently constructed the Intermediate Thermal Vacuum Facility. Built as a corporate facility, the installation will first be used on the Boost Surveillance and Tracking System (BSTS) program. It will also be used to develop and test other sensor systems. The horizontal chamber has a horseshoe shaped cross section and is supported on pneumatic isolators for vibration isolation. The chamber structure was designed to meet stability and stiffness requirements. The design process included measurement of the ambient ground vibrations, analysis of various foundation test article support configurations, design and analysis of the chamber shell and modal testing of the chamber shell. A detailed 3-D finite element analysis was made in the design stage to predict the lowest three natural frequencies and mode shapes and to identify local vibrating components. The design process is described and the results are compared of the finite element analysis to the results of the field modal testing and analysis for the 3 lowest natural frequencies and mode shapes. Concepts are also presented for stiffening large steel structures along with methods to improve test article stability in large space simulation facilities.

  4. Optical Properties of Thermal Control Coatings After Weathering, Simulated Ascent Heating, and Simulated Space Radiation Exposure

    NASA Technical Reports Server (NTRS)

    Jaworske, Donald A.; Tuan, George C.; Westheimer, David T.; Peters, Wanda C.; Kauder, Lonny R.

    2008-01-01

    Spacecraft radiators reject heat to their surroundings and coatings play an important role in this heat rejection. The coatings provide the combined optical properties of low solar absorptance and high infrared emittance. The coatings are applied to the radiator panel in a number of ways, including conventional spraying, plasma spraying, or as an applique. Not designed for a terrestrial weathering environment, the durability of spacecraft paints, coatings, and appliques upon exposure to weathering and subsequent exposure to ascent heating, solar wind, and ultraviolet radiation was studied. In addition to traditional aluminum panels, new isocyanate ester composite panels were exposed for a total of 90 days at the Atmospheric Exposure Site of Kennedy Space Center's (KSC) Beach Corrosion Facility for the purpose of identifying their durability to weathering. Selected panel coupons were subsequently exposed to simulated ascent heating, solar wind, and vacuum ultraviolet (UV) radiation to identify the effect of a simulated space environment on as-weathered surfaces. Optical properties and adhesion testing were used to document the durability of the paints, coatings, and appliques.

  5. Functional requirements for design of the Space Ultrareliable Modular Computer (SUMC) system simulator

    NASA Technical Reports Server (NTRS)

    Curran, R. T.; Hornfeck, W. A.

    1972-01-01

    The functional requirements for the design of an interpretive simulator for the space ultrareliable modular computer (SUMC) are presented. A review of applicable existing computer simulations is included along with constraints on the SUMC simulator functional design. Input requirements, output requirements, and language requirements for the simulator are discussed in terms of a SUMC configuration which may vary according to the application.

  6. Behavior of stem cells under outer-space microgravity and ground-based microgravity simulation.

    PubMed

    Zhang, Cui; Li, Liang; Chen, Jianling; Wang, Jinfu

    2015-06-01

    With rapid development of space engineering, research on life sciences in space is being conducted extensively, especially cellular and molecular studies on space medicine. Stem cells, undifferentiated cells that can differentiate into specialized cells, are considered a key resource for regenerative medicine. Research on stem cells under conditions of microgravity during a space flight or a ground-based simulation has generated several excellent findings. To help readers understand the effects of outer space and ground-based simulation conditions on stem cells, we reviewed recent studies on the effects of microgravity (as an obvious environmental factor in space) on morphology, proliferation, migration, and differentiation of stem cells. PMID:25712570

  7. Space-based laser active imaging simulation system based on HLA

    NASA Astrophysics Data System (ADS)

    Han, Yi; Sun, Huayan; Li, Yingchun

    2013-09-01

    This paper adopts the High Level Architecture to develop the space-based laser active imaging distribution simulation software system, and designs the system framework which contains three-step workflow including modeling, experimental and analysis. The paper puts forward the general needs of the simulation system first, then builds the simulation system architecture based on HLA and constructs 7 simulation federal members. The simulation system has the primary functions of space target scattering characteristic analysis, imaging simulation, image processing and target recognition, and system performance analysis and so on, and can support the whole simulation process. The results show that the distribution simulation system can meet the technical requirements of the space-based laser imaging simulation.

  8. Analysis of real-time Earth magnetosphere simulation for space weather using space weather cloud computing system

    NASA Astrophysics Data System (ADS)

    Watari, S.; Tsubouchi, K.; Kato, H.; Tanaka, T.; Shinagawa, H.; Murata, K. T.

    2011-12-01

    The Earth magnetosphere simulation is continuously running in real-time for space weather in the National Institute of Information and Communications Technology (NICT). Code of this simulation was originally developed by Tanaka (JGR, 1995) and was implemented as one of the NICT real-time space weather simulations by Den et al. (Space Weather, 2006). The space weather cloud computing system has a distributed large storage system and a data analysis system and has been constructed in the NICT. Using this space weather cloud computing system, it becomes possible to preserve the result of the real-time magnetosphere simulation. It enables to analyze the response of the magnetosphere for various solar wind conditions. There are several works on the real-time simulation using AE index (Kitamura et al., JGR, 2008), the polar cap potential (Kunitake et al, Journal of NICT, 2009), the plasma environment at gestational orbit (Nakamura et al., Journal of NICT, 2009). In this analysis, we focused magnetic variation at gestational orbit and location of magnetopause. At gestational orbit, there are continuous magnetic field observations by the GOES satellites. On magnetopause location, there is an empirical model called the Shue model, which takes account of dynamic pressure and south-ward IMF of solar wind. We compared the result of the real-time simulation with magnetic field variations observed by the GOES satellites and magnetopause location calculated by the Shue model. We will report the result of this study.

  9. New Specimen Access Device for the Large Space Simulator

    NASA Astrophysics Data System (ADS)

    Lazzarini, P.; Ratti, F.

    2004-08-01

    The Large Space Simulator (LSS) is used to simulate in- orbit environmental conditions for spacecraft (S/C) testing. The LSS is intended to be a flexible facility: it can accommodate test articles that can differ significantly in shape and weight and carry various instruments. To improve the accessibility to the S/C inside the LSS chamber a new Specimen Access Device (SAD) has been procured. The SAD provides immediate and easy access to the S/C, thus reducing the amount of time necessary for the installations of set-ups in the LSS. The SAD has been designed as bridge crane carrying a basket to move the operator into the LSS. Such a crane moves on parallel rails on the top floor of the LSS building. The SAD is composed by three subsystems: the main bridge, the trolley that moves along the main bridge and the telescopic mast. A trade off analysis has been carried out for what concerns the telescopic mast design. The choice between friction pads vs rollers, to couple the different sections of the mast, has been evaluated. The resulting design makes use of a four sections square mast, with rollers driven deployment. This design has been chosen for the higher stiffness of the mast, due to the limited number of sections, and because it reduces radically the risk of contamination related to a solution based on sliding bushings. Analyses have been performed to assess the mechanical behaviour both in static and in dynamic conditions. In particular the telescopic mast has been studied in detail to optimise its stiffness and to check the safety margins in the various operational conditions. To increase the safety of the operations an anticollision system has been implemented by positioning on the basket two kind of sensors, ultrasonic and contact ones. All the translations are regulated by inverters with acceleration and deceleration ramps controlled by a Programmable Logic Controller (PLC). An absolute encoder is installed on each motor to provide the actual position of the

  10. Efficient conformational space exploration in ab initio protein folding simulation.

    PubMed

    Ullah, Ahammed; Ahmed, Nasif; Pappu, Subrata Dey; Shatabda, Swakkhar; Ullah, A Z M Dayem; Rahman, M Sohel

    2015-08-01

    Ab initio protein folding simulation largely depends on knowledge-based energy functions that are derived from known protein structures using statistical methods. These knowledge-based energy functions provide us with a good approximation of real protein energetics. However, these energy functions are not very informative for search algorithms and fail to distinguish the types of amino acid interactions that contribute largely to the energy function from those that do not. As a result, search algorithms frequently get trapped into the local minima. On the other hand, the hydrophobic-polar (HP) model considers hydrophobic interactions only. The simplified nature of HP energy function makes it limited only to a low-resolution model. In this paper, we present a strategy to derive a non-uniform scaled version of the real 20×20 pairwise energy function. The non-uniform scaling helps tackle the difficulty faced by a real energy function, whereas the integration of 20×20 pairwise information overcomes the limitations faced by the HP energy function. Here, we have applied a derived energy function with a genetic algorithm on discrete lattices. On a standard set of benchmark protein sequences, our approach significantly outperforms the state-of-the-art methods for similar models. Our approach has been able to explore regions of the conformational space which all the previous methods have failed to explore. Effectiveness of the derived energy function is presented by showing qualitative differences and similarities of the sampled structures to the native structures. Number of objective function evaluation in a single run of the algorithm is used as a comparison metric to demonstrate efficiency. PMID:26361554

  11. Efficient conformational space exploration in ab initio protein folding simulation

    PubMed Central

    Ullah, Ahammed; Ahmed, Nasif; Pappu, Subrata Dey; Shatabda, Swakkhar; Ullah, A. Z. M. Dayem; Rahman, M. Sohel

    2015-01-01

    Ab initio protein folding simulation largely depends on knowledge-based energy functions that are derived from known protein structures using statistical methods. These knowledge-based energy functions provide us with a good approximation of real protein energetics. However, these energy functions are not very informative for search algorithms and fail to distinguish the types of amino acid interactions that contribute largely to the energy function from those that do not. As a result, search algorithms frequently get trapped into the local minima. On the other hand, the hydrophobic–polar (HP) model considers hydrophobic interactions only. The simplified nature of HP energy function makes it limited only to a low-resolution model. In this paper, we present a strategy to derive a non-uniform scaled version of the real 20×20 pairwise energy function. The non-uniform scaling helps tackle the difficulty faced by a real energy function, whereas the integration of 20×20 pairwise information overcomes the limitations faced by the HP energy function. Here, we have applied a derived energy function with a genetic algorithm on discrete lattices. On a standard set of benchmark protein sequences, our approach significantly outperforms the state-of-the-art methods for similar models. Our approach has been able to explore regions of the conformational space which all the previous methods have failed to explore. Effectiveness of the derived energy function is presented by showing qualitative differences and similarities of the sampled structures to the native structures. Number of objective function evaluation in a single run of the algorithm is used as a comparison metric to demonstrate efficiency. PMID:26361554

  12. Dshell++: A Component Based, Reusable Space System Simulation Framework

    NASA Technical Reports Server (NTRS)

    Lim, Christopher S.; Jain, Abhinandan

    2009-01-01

    This paper describes the multi-mission Dshell++ simulation framework for high fidelity, physics-based simulation of spacecraft, robotic manipulation and mobility systems. Dshell++ is a C++/Python library which uses modern script driven object-oriented techniques to allow component reuse and a dynamic run-time interface for complex, high-fidelity simulation of spacecraft and robotic systems. The goal of the Dshell++ architecture is to manage the inherent complexity of physicsbased simulations while supporting component model reuse across missions. The framework provides several features that support a large degree of simulation configurability and usability.

  13. Development of automation and robotics for space via computer graphic simulation methods

    NASA Technical Reports Server (NTRS)

    Fernandez, Ken

    1988-01-01

    A robot simulation system, has been developed to perform automation and robotics system design studies. The system uses a procedure-oriented solid modeling language to produce a model of the robotic mechanism. The simulator generates the kinematics, inverse kinematics, dynamics, control, and real-time graphic simulations needed to evaluate the performance of the model. Simulation examples are presented, including simulation of the Space Station and the design of telerobotics for the Orbital Maneuvering Vehicle.

  14. Space Station communications and tracking systems modeling and RF link simulation

    NASA Technical Reports Server (NTRS)

    Tsang, Chit-Sang; Chie, Chak M.; Lindsey, William C.

    1986-01-01

    In this final report, the effort spent on Space Station Communications and Tracking System Modeling and RF Link Simulation is described in detail. The effort is mainly divided into three parts: frequency division multiple access (FDMA) system simulation modeling and software implementation; a study on design and evaluation of a functional computerized RF link simulation/analysis system for Space Station; and a study on design and evaluation of simulation system architecture. This report documents the results of these studies. In addition, a separate User's Manual on Space Communications Simulation System (SCSS) (Version 1) documents the software developed for the Space Station FDMA communications system simulation. The final report, SCSS user's manual, and the software located in the NASA JSC system analysis division's VAX 750 computer together serve as the deliverables from LinCom for this project effort.

  15. Desert Cyanobacteria under simulated space and Martian conditions

    NASA Astrophysics Data System (ADS)

    Billi, D.; Ghelardini, P.; Onofri, S.; Cockell, C. S.; Rabbow, E.; Horneck, G.

    2008-09-01

    The environment in space and on planets such as Mars, can be lethal to living organisms and high levels of tolerance to desiccation, cold and radiation are needed for survival: rock-inhabiting cyanobacteria belonging to the genus Chroococcidiopsis can fulfil these requirements [1]. These cyanobacteria constantly appear in the most extreme and dry habitats on Earth, including the McMurdo Dry Valleys (Antarctica) and the Atacama Desert (Chile), which are considered the closest terrestrial analogs of two Mars environmental extremes: cold and aridity. In their natural environment, these cyanobacteria occupy the last refuges for life inside porous rocks or at the stone-soil interfaces, where they survive in a dry, dormant state for prolonged periods. How desert strains of Chroococcidiopsis can dry without dying is only partially understood, even though experimental evidences support the existence of an interplay between mechanisms to avoid (or limit) DNA damage and repair it: i) desert strains of Chroococcidiopsis mend genome fragmentation induced by ionizing radiation [2]; ii) desiccation-survivors protect their genome from complete fragmentation; iii) in the dry state they show a survival to an unattenuated Martian UV flux greater than that of Bacillus subtilis spores [3], and even though they die following atmospheric entry after having orbited the Earth for 16 days [4], they survive to simulated shock pressures up to 10 GPa [5]. Recently additional experiments were carried out at the German Aerospace Center (DLR) of Cologne (Germany) in order to identify suitable biomarkers to investigate the survival of Chroococcidiopsis cells present in lichen-dominated communities, in view of their direct and long term space exposition on the International Space Station (ISS) in the framework of the LIchens and Fungi Experiments (LIFE, EXPOSEEuTEF, ESA). Multilayers of dried cells of strains CCMEE 134 (Beacon Valley, Antarctica), and CCMEE 123 (costal desert, Chile ), shielded by

  16. S3DACS - SPACE SIMULATOR SYSTEM DATA ACQUISITION AND CONTROL

    NASA Technical Reports Server (NTRS)

    De, Freitas Bart F.

    1994-01-01

    The S3 Data Acquisition and Control System, S3DACS, was developed for the Environmental Test Laboratory and Space Simulator at NASA's Jet Propulsion Laboratory. The program is used for monitoring, controlling, and recording information acquired during tests and presenting this information in various formats for easy access by a large number of users. All testing is initiated by a setup procedure that defines what will be tested, limits to be checked, formulas to use, etc. Test results (e.g. temperature, resistance) are then automatically stored in a database for real time display and for future reference. Measurements obtained may be used in various computations defined for the test and selectively presented in tabular, graphical, or electronic representation. Reports may show current or historical events. The S3DACS network software is written in FoxPro/LAN 1.02 and 80386 Assembler for IBM PC and compatibles running MS-DOS 3.31 or higher. Machine requirements include: an 80386 33MHz machine with 10Mb RAM set up as a file server; an 80386 33MHz machine with 4Mb RAM connected to a FLUKE 2240B or 2280 data acquisition device; and an 80386 20MHz machine with 5Mb RAM used as a workstation. Also needed is a National Instruments General Purpose Interface Bus-compatible (GP-IB) Board to enable S3DACS to communicate with IEEE-488 control instruments. Software requirements include: Novell Netware 386 for network management; FoxPro/LAN 1.02 for database management; QEMM 386 version 5.0 for memory management; and DGE version 4, Saywhat, Viewlib, and DBSHOW for graphics and screen displays. The previous list of hardware is the minimum configuration which will allow installation of S3DACS. The addition of workstations and data acquisition devices can occur transparently. S3DACS is distributed on one 5.25 inch 1.2Mb MS-DOS format diskette. The extensive documentation includes a Quick Reference Guide, a Software User's Manual, a Computer Systems Operator's Manual, and a Software

  17. Simulating an aerospace multiprocessor. [for space guidance computers

    NASA Technical Reports Server (NTRS)

    Mallach, E. G.

    1976-01-01

    The paper describes a simulator which was used to evaluate the architecture of an aerospace multiprocessor. The simulator models interactions among the processors, memories, the central data bus, and a possible 'job stack'. Special features of the simulator are discussed, including the use of explicitly coded and individually distinguishable 'job models' instead of a statistically defined 'job mix' and a specialized Job Model Definition Language to automate the detailed coding of the models. Some results are presented which show that when the simulator was employed in conjunction with queuing theory and Markov-process analysis, more insight into system behavior was obtained than would have been with any one technique alone.

  18. Simulation of Terminal-Area Flight Management System Arrivals with Airborne Spacing

    NASA Technical Reports Server (NTRS)

    Callantine, Todd J.; Lee, Paul U.; Mercer, Joey S.; Palmer, Everett A.; Prevot, Thomas

    2007-01-01

    A simulation evaluated the feasibility and potential benefits of using decision support tools to support time-based airborne spacing and merging for aircraft arriving in the terminal area on charted Flight Management System (FMS) routes. Sixteen trials were conducted in each treatment combination of a 2X2 repeated-measures design. In trials 'with ground tools' air traffic controller participants managed traffic using sequencing and spacing tools. In trials 'with air tools' approximately seventy-five percent of aircraft assigned to the primary landing runway were equipped for airborne spacing, including flight simulators flown by commercial pilots. The results indicate that airborne spacing improves spacing accuracy and is feasible for FMS operations and mixed spacing equipage. Controllers and pilots can manage spacing clearances that contain two call signs without difficulty. For best effect, both decision support tools and spacing guidance should exhibit consistently predictable performance, and merging traffic flows should be well coordinated.

  19. Microbiological assay of the Marshall Space Flight Center neutral buoyancy simulator

    NASA Technical Reports Server (NTRS)

    Beyerle, F. J.

    1973-01-01

    A neutral buoyancy simulator tank system is described in terms of microbiological and medical safety for astronauts. The system was designed to simulate a gravity-free state for evaluation of orbital operations in a microorganism-free environment. Methods for the identification and elimination of specific microorganisms are dealt with as measures for a pure system of space environment simulation.

  20. Numerical simulations of space processing - The reality, the myth, and the future

    NASA Technical Reports Server (NTRS)

    Chait, A.

    1991-01-01

    The present capabilities offered by the combination of advanced special and general purpose numerical codes and supercomputers are discussed. Emphasis is placed on unique demands placed by the space environment on the computation of realistic space experiments and recommendations for improving the scientific return on the space investment. It is concluded that numerical simulations can provide timely and relevant answers which can guide and improve future space experiments.

  1. Unified Approach to Modeling and Simulation of Space Communication Networks and Systems

    NASA Technical Reports Server (NTRS)

    Barritt, Brian; Bhasin, Kul; Eddy, Wesley; Matthews, Seth

    2010-01-01

    Network simulator software tools are often used to model the behaviors and interactions of applications, protocols, packets, and data links in terrestrial communication networks. Other software tools that model the physics, orbital dynamics, and RF characteristics of space systems have matured to allow for rapid, detailed analysis of space communication links. However, the absence of a unified toolset that integrates the two modeling approaches has encumbered the systems engineers tasked with the design, architecture, and analysis of complex space communication networks and systems. This paper presents the unified approach and describes the motivation, challenges, and our solution - the customization of the network simulator to integrate with astronautical analysis software tools for high-fidelity end-to-end simulation. Keywords space; communication; systems; networking; simulation; modeling; QualNet; STK; integration; space networks

  2. Study made of explosive cutting in simulated space environments

    NASA Technical Reports Server (NTRS)

    Coleman, E. R.; Hamilton, L. O.

    1967-01-01

    Study indicates the feasibility of explosive cutting and establishes techniques applicable to in-space cutting operations. Results show no degradation of the explosive and that work hardening of the target material is limited to the cut edge.

  3. 360 View: Habitat Simulates Deep Space Mission For Astronauts

    NASA Video Gallery

    Johnson Space Center in Houston brings crews to an asteroid without ever leaving the building. HERA – the Human Exploration Research Analog – is one of several analogs used by the Human Research Pr...

  4. Observing system simulation experiments at NASA. Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Atlas, R.; Kalnay, E.; Baker, W. E.; Susskind, J.; Reuter, D.; Halem, M.

    1985-01-01

    A series of realistic simulation studies is being conducted as a cooperative effort between the European Centre for Medium Range Weather Forecasts (ECMWF), the National Meteorological Center (NMC), and the Goddard Laboratory for Atmospheres (GLA), to provide a quantitative assessment of the potential impact of future observing systems on large scale numerical weather prediction. A special objective is to avoid the unrealistic character of earlier simulation studies. Following a brief review of previous simulation studies and real data impact tests, the methodology for the current simulation system will be described. Results from an assessment of the realism of the simulation system and of the potential impact of advanced observing systems on numerical weather prediction and preliminary results utilizing this system will be presented at the conference.

  5. Requirements for Modeling and Simulation for Space Medicine Operations: Preliminary Considerations

    NASA Technical Reports Server (NTRS)

    Dawson, David L.; Billica, Roger D.; Logan, James; McDonald, P. Vernon

    2001-01-01

    The NASA Space Medicine program is now developing plans for more extensive use of high-fidelity medical Simulation systems. The use of simulation is seen as means to more effectively use the limited time available for astronaut medical training. Training systems should be adaptable for use in a variety of training environments, including classrooms or laboratories, space vehicle mockups, analog environments, and in microgravity. Modeling and simulation can also provide the space medicine development program a mechanism for evaluation of other medical technologies under operationally realistic conditions. Systems and procedures need preflight verification with ground-based testing. Traditionally, component testing has been accomplished, but practical means for "human in the loop" verification of patient care systems have been lacking. Medical modeling and simulation technology offer potential means to accomplish such validation work. Initial considerations in the development of functional requirements and design standards for simulation systems for space medicine are discussed.

  6. Simulations and Tests of Prototype Antenna System for Low Frequency Radio Experiment (LORE) Space Payload for Space Weather Observations

    NASA Astrophysics Data System (ADS)

    Pethe, Kaiwalya; Galande, Shridhar; Jamadar, Sachin; Mahajan, S. P.; Patil, R. A.; Joshi, B. C.; Manoharan, P. K.; Roy, Jayashree; Kate, G.

    2016-03-01

    Low frequency Radio Experiment (LORE) is a proposed space payload for space weather observations from space, operating between few kHz to 30 MHz. This paper presents preliminary design and practical implementation of LORE antenna systems, which consist of three mutually orthogonal mono-poles. Detailed computational electromagnetic simulations, carried out to study the performance of the antenna systems, are presented followed up by laboratory tests of the antennas as well as radiation tests with a long range test range, designed for this purpose. These tests form the first phase of the design and implementation of the full LORE prototype later in the year.

  7. Space-based radar representation in the advanced warfighting simulation (AWARS)

    NASA Astrophysics Data System (ADS)

    Phend, Andrew E.; Buckley, Kathryn; Elliott, Steven R.; Stanley, Page B.; Shea, Peter M.; Rutland, Jimmie A.

    2004-09-01

    Space and orbiting systems impact multiple battlefield operating systems (BOS). Space support to current operations is a perfect example of how the United States fights. Satellite-aided munitions, communications, navigation and weather systems combine to achieve military objectives in a relatively short amount of time. Through representation of space capabilities within models and simulations, the military will have the ability to train and educate officers and soldiers to fight from the high ground of space or to conduct analysis and determine the requirements or utility of transformed forces empowered with advanced space-based capabilities. The Army Vice Chief of Staff acknowledged deficiencies in space modeling and simulation during the September 2001 Space Force Management Analsyis Review (FORMAL) and directed that a multi-disciplinary team be established to recommend a service-wide roadmap to address shortcomings. A Focus Area Collaborative Team (FACT), led by the U.S. Army Space & Missile Defense Command with participation across the Army, confirmed the weaknesses in scope, consistency, correctness, completeness, availability, and usability of space model and simulation (M&S) for Army applications. The FACT addressed the need to develop a roadmap to remedy Space M&S deficiencies using a highly parallelized process and schedule designed to support a recommendation during the Sep 02 meeting of the Army Model and Simulation Executive Council (AMSEC).

  8. High-performing simulations of the space radiation environment for the International Space Station and Apollo Missions

    NASA Astrophysics Data System (ADS)

    Lund, Matthew Lawrence

    The space radiation environment is a significant challenge to future manned and unmanned space travels. Future missions will rely more on accurate simulations of radiation transport in space through spacecraft to predict astronaut dose and energy deposition within spacecraft electronics. The International Space Station provides long-term measurements of the radiation environment in Low Earth Orbit (LEO); however, only the Apollo missions provided dosimetry data beyond LEO. Thus dosimetry analysis for deep space missions is poorly supported with currently available data, and there is a need to develop dosimetry-predicting models for extended deep space missions. GEANT4, a Monte Carlo Method, provides a powerful toolkit in C++ for simulation of radiation transport in arbitrary media, thus including the spacecraft and space travels. The newest version of GEANT4 supports multithreading and MPI, resulting in faster distributive processing of simulations in high-performance computing clusters. This thesis introduces a new application based on GEANT4 that greatly reduces computational time using Kingspeak and Ember computational clusters at the Center for High Performance Computing (CHPC) to simulate radiation transport through full spacecraft geometry, reducing simulation time to hours instead of weeks without post simulation processing. Additionally, this thesis introduces a new set of detectors besides the historically used International Commission of Radiation Units (ICRU) spheres for calculating dose distribution, including a Thermoluminescent Detector (TLD), Tissue Equivalent Proportional Counter (TEPC), and human phantom combined with a series of new primitive scorers in GEANT4 to calculate dose equivalence based on the International Commission of Radiation Protection (ICRP) standards. The developed models in this thesis predict dose depositions in the International Space Station and during the Apollo missions showing good agreement with experimental measurements

  9. Space Station Simulation Computer System (SCS) study for NASA/MSFC. Concept document

    NASA Technical Reports Server (NTRS)

    1990-01-01

    NASA's Space Station Freedom Program (SSFP) planning efforts have identified a need for a payload training simulator system to serve as both a training facility and as a demonstrator to validate operational concepts. The envisioned MSFC Payload Training Complex (PTC) required to meet this need will train the Space Station Payload of experiments that will be onboard the Space Station Freedom. The simulation will support the Payload Training Complex at MSFC. The purpose of this SCS Study is to investigate issues related to the SCS, alternative requirements, simulator approaches, and state-of-the-art technologies to develop candidate concepts and designs.

  10. Issues in visual support to real-time space system simulation solved in the Systems Engineering Simulator

    NASA Technical Reports Server (NTRS)

    Yuen, Vincent K.

    1989-01-01

    The Systems Engineering Simulator has addressed the major issues in providing visual data to its real-time man-in-the-loop simulations. Out-the-window views and CCTV views are provided by three scene systems to give the astronauts their real-world views. To expand the window coverage for the Space Station Freedom workstation a rotating optics system is used to provide the widest field of view possible. To provide video signals to as many viewpoints as possible, windows and CCTVs, with a limited amount of hardware, a video distribution system has been developed to time-share the video channels among viewpoints at the selection of the simulation users. These solutions have provided the visual simulation facility for real-time man-in-the-loop simulations for the NASA space program.

  11. International Collaboration for Galactic Cosmic Ray Simulation at the NASA Space Radiation Laboratory

    NASA Technical Reports Server (NTRS)

    Norbury, John W.; Slaba, Tony C.; Rusek, Adam; Durante, Marco; Reitz, Guenther

    2015-01-01

    An international collaboration on Galactic Cosmic Ray (GCR) simulation is being formed to make recommendations on how to best simulate the GCR spectrum at ground based accelerators. The external GCR spectrum is significantly modified when it passes through spacecraft shielding and astronauts. One approach for simulating the GCR space radiation environment at ground based accelerators would use the modified spectrum, rather than the external spectrum, in the accelerator beams impinging on biological targets. Two recent workshops have studied such GCR simulation. The first workshop was held at NASA Langley Research Center in October 2014. The second workshop was held at the NASA Space Radiation Investigators' workshop in Galveston, Texas in January 2015. The anticipated outcome of these and other studies may be a report or journal article, written by an international collaboration, making accelerator beam recommendations for GCR simulation. This poster describes the status of GCR simulation at the NASA Space Radiation Laboratory and encourages others to join the collaboration.

  12. Apollo experience report: Simulation of manned space flight for crew training

    NASA Technical Reports Server (NTRS)

    Woodling, C. H.; Faber, S.; Vanbockel, J. J.; Olasky, C. C.; Williams, W. K.; Mire, J. L. C.; Homer, J. R.

    1973-01-01

    Through space-flight experience and the development of simulators to meet the associated training requirements, several factors have been established as fundamental for providing adequate flight simulators for crew training. The development of flight simulators from Project Mercury through the Apollo 15 mission is described. The functional uses, characteristics, and development problems of the various simulators are discussed for the benefit of future programs.

  13. Applications of formal simulation languages in the control and monitoring subsystems of Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Lacovara, R. C.

    1990-01-01

    The notions, benefits, and drawbacks of numeric simulation are introduced. Two formal simulation languages, Simpscript and Modsim are introduced. The capabilities of each are discussed briefly, and then the two programs are compared. The use of simulation in the process of design engineering for the Control and Monitoring System (CMS) for Space Station Freedom is discussed. The application of the formal simulation language to the CMS design is presented, and recommendations are made as to their use.

  14. Improved Space Charge Modeling for Simulation and Design of Photoinjectors

    SciTech Connect

    Robert H. Jackson, Thuc Bui, John Verboncoeur

    2010-04-19

    Photoinjectors in advanced high-energy accelerators reduce beam energy spreads and enhance undulator photon fluxes. Photoinjector design is difficult because of the substantial differences in time and spatial scales. This Phase I program explored an innovative technique, the local Taylor polynomial (LTP) formulation, for improving finite difference analysis of photoinjectors. This included improved weighting techniques, systematic formula for high order interpolation and electric field computation, and improved handling of space charge. The Phase I program demonstrated that the approach was powerful, accurate, and efficient. It handles space charge gradients better than currently available technology.

  15. Integrated Clinical Training for Space Flight Using a High-Fidelity Patient Simulator in a Simulated Microgravity Environment

    NASA Technical Reports Server (NTRS)

    Hurst, Victor; Doerr, Harold K.; Polk, J. D.; Schmid, Josef; Parazynksi, Scott; Kelly, Scott

    2007-01-01

    This viewgraph presentation reviews the use of telemedicine in a simulated microgravity environment using a patient simulator. For decades, telemedicine techniques have been used in terrestrial environments by many cohorts with varied clinical experience. The success of these techniques has been recently expanded to include microgravity environments aboard the International Space Station (ISS). In order to investigate how an astronaut crew medical officer will execute medical tasks in a microgravity environment, while being remotely guided by a flight surgeon, the Medical Operation Support Team (MOST) used the simulated microgravity environment provided aboard DC-9 aircraft teams of crew medical officers, and remote flight surgeons performed several tasks on a patient simulator.

  16. A TT&C Performance Simulator for Space Exploration and Scientific Satellites - Architecture and Applications

    NASA Astrophysics Data System (ADS)

    Donà, G.; Faletra, M.

    2015-09-01

    This paper presents the TT&C performance simulator toolkit developed internally at Thales Alenia Space Italia (TAS-I) to support the design of TT&C subsystems for space exploration and scientific satellites. The simulator has a modular architecture and has been designed using a model-based approach using standard engineering tools such as MATLAB/SIMULINK and mission analysis tools (e.g. STK). The simulator is easily reconfigurable to fit different types of satellites, different mission requirements and different scenarios parameters. This paper provides a brief description of the simulator architecture together with two examples of applications used to demonstrate some of the simulator’s capabilities.

  17. Wake Encounter Analysis for a Closely Spaced Parallel Runway Paired Approach Simulation

    NASA Technical Reports Server (NTRS)

    Mckissick,Burnell T.; Rico-Cusi, Fernando J.; Murdoch, Jennifer; Oseguera-Lohr, Rosa M.; Stough, Harry P, III; O'Connor, Cornelius J.; Syed, Hazari I.

    2009-01-01

    A Monte Carlo simulation of simultaneous approaches performed by two transport category aircraft from the final approach fix to a pair of closely spaced parallel runways was conducted to explore the aft boundary of the safe zone in which separation assurance and wake avoidance are provided. The simulation included variations in runway centerline separation, initial longitudinal spacing of the aircraft, crosswind speed, and aircraft speed during the approach. The data from the simulation showed that the majority of the wake encounters occurred near or over the runway and the aft boundaries of the safe zones were identified for all simulation conditions.

  18. Postnatal development under conditions of simulated weightlessness and space flight

    NASA Technical Reports Server (NTRS)

    Walton, K.

    1998-01-01

    The adaptability of the developing nervous system to environmental influences and the mechanisms underlying this plasticity has recently become a subject of interest in space neuroscience. Ground studies on neonatal rats using the tail suspension model of weightlessness have shown that the force of gravity clearly influences the events underlying the postnatal development of motor function. These effects depend on the age of the animal, duration of the perturbation and the motor function studied. A nine-day flight study has shown that a dam and neonates can develop under conditions of space flight. The motor function of the flight animals after landing was consistent with that seen in the tail suspension studies, being marked by limb joint extension. However, there were expected differences due to: (1) the unloading of the vestibular system in flight, which did not occur in the ground-based experiments; (2) differences between flight and suspension durations; and (3) the inability to evaluate motor function during the flight. The next step is to conduct experiments in space with the flexibility and rigor that is now limited to ground studies: an opportunity offered by the International Space Station. Copyright 1998 Published by Elsevier Science B.V.

  19. Geant4 electromagnetic physics updates for space radiation effects simulation

    NASA Astrophysics Data System (ADS)

    Ivantchenko, Anton; Nieminen, Petteri; Incerti, Sebastien; Santin, Giovanni; Ivantchenko, Vladimir; Grichine, Vladimir; Allison, John; Karamitos, Mathiew

    The Geant4 toolkit is used in many applications including space science studies. The new Geant4 version 10.0 released in December 2013 includes a major revision of the toolkit and offers multi-threaded mode for event level parallelism. At the same time, Geant4 electromagnetic and hadronic physics sub-libraries have been significantly updated. In order to validate the new and updated models Geant4 verification tests and benchmarks were extended. Part of these developments was sponsored by the European Space Agency in the context of research aimed at modelling radiation biological end effects. In this work, we present an overview of results of several benchmarks for electromagnetic physics models relevant to space science. For electromagnetic physics, recently Compton scattering, photoelectric effect, and Rayleigh scattering models have been improved and extended down to lower energies. Models of ionization and fluctuations have also been improved; special micro-dosimetry models for Silicon and liquid water were introduced; the main multiple scattering model was consolidated; and the atomic de-excitation module has been made available to all models. As a result, Geant4 predictions for space radiation effects obtained with different Physics Lists are in better agreement with the benchmark data than previous Geant4 versions. Here we present results of electromagnetic tests and models comparison in the energy interval 10 eV - 10 MeV.

  20. Private ground infrastructures for space exploration missions simulations

    NASA Astrophysics Data System (ADS)

    Souchier, Alain

    2010-06-01

    The Mars Society, a private non profit organisation devoted to promote the red planet exploration, decided to implement simulated Mars habitat in two locations on Earth: in northern Canada on the rim of a meteoritic crater (2000), in a US Utah desert, location of a past Jurassic sea (2001). These habitats have been built with large similarities to actual planned habitats for first Mars exploration missions. Participation is open to everybody either proposing experimentations or wishing only to participate as a crew member. Participants are from different organizations: Mars Society, Universities, experimenters working with NASA or ESA. The general philosophy of the work conducted is not to do an innovative scientific work on the field but to learn how the scientific work is affected or modified by the simulation conditions. Outside activities are conducted with simulated spacesuits limiting the experimenter abilities. Technology or procedures experimentations are also conducted as well as experimentations on the crew psychology and behaviour.

  1. Simulations of Ground and Space-Based Oxygen Atom Experiments

    NASA Technical Reports Server (NTRS)

    Finchum, A. (Technical Monitor); Cline, J. A.; Minton, T. K.; Braunstein, M.

    2003-01-01

    A low-earth orbit (LEO) materials erosion scenario and the ground-based experiment designed to simulate it are compared using the direct-simulation Monte Carlo (DSMC) method. The DSMC model provides a detailed description of the interactions between the hyperthermal gas flow and a normally oriented flat plate for each case. We find that while the general characteristics of the LEO exposure are represented in the ground-based experiment, multi-collision effects can potentially alter the impact energy and directionality of the impinging molecules in the ground-based experiment. Multi-collision phenomena also affect downstream flux measurements.

  2. A SLAM II simulation model for analyzing space station mission processing requirements

    NASA Technical Reports Server (NTRS)

    Linton, D. G.

    1985-01-01

    Space station mission processing is modeled via the SLAM 2 simulation language on an IBM 4381 mainframe and an IBM PC microcomputer with 620K RAM, two double-sided disk drives and an 8087 coprocessor chip. Using a time phased mission (payload) schedule and parameters associated with the mission, orbiter (space shuttle) and ground facility databases, estimates for ground facility utilization are computed. Simulation output associated with the science and applications database is used to assess alternative mission schedules.

  3. Star/horizon simulator used to test space guidance system

    NASA Technical Reports Server (NTRS)

    Schmidt, W. C.

    1967-01-01

    Star/horizon simulator is used for alignment and optical plus photoelectric tests of the sextant for the Apollo guidance and navigation system optical unit assembly. The unit is basically a refractive collimator with a two inch objective lens system and a twenty-four inch focal length.

  4. Simulation of the Boltzmann Process: An Energy Space Model.

    ERIC Educational Resources Information Center

    Eger, Martin; Kress, Michael

    1982-01-01

    A model is introduced for the simulation of Boltzmann-like binary interactions which may be extended to exhibit the effect of angular dependence in the scattering cross section and other dynamical aspects of two-body interactions. (Author/SK)

  5. Simulation of Trajectories for High Specific Impulse Deep Space Exploration

    NASA Technical Reports Server (NTRS)

    Polsgrove, Tara; Adams, Robert B.; Brady, Hugh J. (Technical Monitor)

    2002-01-01

    Difficulties in approximating flight times and deliverable masses for continuous thrust propulsion systems have complicated comparison and evaluation of proposed propulsion concepts. These continuous thrust propulsion systems are of interest to many groups, not the least of which are the electric propulsion and fusion communities. Several charts plotting the results of well-known trajectory simulation codes were developed and are contained in this paper. These charts illustrate the dependence of time of flight and payload ratio on jet power, initial mass, specific impulse and specific power. These charts are intended to be a tool by which people in the propulsion community can explore the possibilities of their propulsion system concepts. Trajectories were simulated using the tools VARITOP and IPOST. VARITOP is a well known trajectory optimization code that involves numerical integration based on calculus of variations. IPOST has several methods of trajectory simulation; the one used in this paper is Cowell's method for full integration of the equations of motion. The analytical method derived in the companion paper was also used to simulate the trajectory. The accuracy of this method is discussed in the paper.

  6. WebbPSF: James Webb Space Telescope PSF Simulation Tool

    NASA Astrophysics Data System (ADS)

    Perrin, Marshall D.; Long, Joseph; Sivaramakrishnan, Anand; Lajoie, Charles-Phillipe; Elliot, Erin; Pueyo, Laurent; Albert, Loic

    2015-04-01

    WebbPSF provides a PSF simulation tool in a flexible and easy-to-use software package implemented in Python. Functionality includes support for spectroscopic modes of JWST NIRISS, MIRI, and NIRSpec, including modeling of slit losses and diffractive line spread functions.

  7. Language Simulations: The Blending Space for Writing and Critical Thinking

    ERIC Educational Resources Information Center

    Kovalik, Doina L.; Kovalik, Ludovic M.

    2007-01-01

    This article describes a language simulation involving six distinct phases: an in-class quick response, a card game, individual research, a classroom debate, a debriefing session, and an argumentative essay. An analysis of student artifacts--quick-response writings and final essays, respectively, both addressing the definition of liberty in a…

  8. MHD-PIC interlocked simulation model in space plasma

    NASA Astrophysics Data System (ADS)

    Sugiyama, T.; Kuasano, K.

    2008-12-01

    We have developed a new type of simulation technique by directly interlocking a traditional Ion-Particle Hybrid simulation model (Hybrid) and an Energetic-Particle Hybrid simulation (EP-HYB) model. In the traditional Hybrid model, all ions are kinetically treated as particles. In the EP-HYB model, non-thermal energetic ions are kinetically treated, and the thermal component is calculated as a fluid. The interlocked model is applied to a two-dimensional collisionless shock problem. The domain for the Hybrid model is embedded in a part of the system, and the bounded data are exchanged to each other to keep the consistency between both models. It can handle the full ion kinetics to investigate the injection problem at the shock transition region, as well as the wave-particle interactions in even far upstream region. We have carried out the long-term simulation of the shock acceleration process using this interlocked model, and successfully reproduced the power-law distribution function, which is consistent with the diffusive acceleration theory. Since the calculation cost of the EP-HYB model is much smaller than that of the Hybrid model, we can considerably reduce the computational demand.

  9. Simulation of transverse combining of space-charge dominated beams

    SciTech Connect

    Celata, C.M.

    1986-06-01

    Rms emittance growth in the transverse plane due to the transverse combining of four identical elliptical beams of uniform density has been investigated. The emittance growth can be related by conservation of energy to the change in the electrostatic field energy. Its dependence on initial beam positions and radii has been calculated analytically for round beams and by computer simulation for elliptical beams.

  10. The General-Use Nodal Network Solver (GUNNS) Modeling Package for Space Vehicle Flow System Simulation

    NASA Technical Reports Server (NTRS)

    Harvey, Jason; Moore, Michael

    2013-01-01

    The General-Use Nodal Network Solver (GUNNS) is a modeling software package that combines nodal analysis and the hydraulic-electric analogy to simulate fluid, electrical, and thermal flow systems. GUNNS is developed by L-3 Communications under the TS21 (Training Systems for the 21st Century) project for NASA Johnson Space Center (JSC), primarily for use in space vehicle training simulators at JSC. It has sufficient compactness and fidelity to model the fluid, electrical, and thermal aspects of space vehicles in real-time simulations running on commodity workstations, for vehicle crew and flight controller training. It has a reusable and flexible component and system design, and a Graphical User Interface (GUI), providing capability for rapid GUI-based simulator development, ease of maintenance, and associated cost savings. GUNNS is optimized for NASA's Trick simulation environment, but can be run independently of Trick.

  11. Simulation framework for space environment ground test fidelity

    NASA Astrophysics Data System (ADS)

    Cline, Jason A.; Quenneville, Jason; Taylor, Ramona S.; Deschenes, Timothy; Braunstein, Matthew; Legner, Hartmut; Green, B. D.

    2013-09-01

    We present initial work to develop an extensible model for spacecraft environmental interactions. The starting point for model development is a rarefied gas dynamics model for hyperthermal atomic oxygen. The space envi- ronment produces a number of challenging stimuli, including atomic oxygen, but also charged particles, magnetic fields, spacecraft charging, ultraviolet radiation, micrometeoroids, and cryogenic temperatures. Moreover, the responses of spacecraft to combinations or sequences of these stimuli are different from their responses to single stimuli. New multi-stimulus test facilities such as the Space Threat Assessment Testbed at the USAF Arnold Engi- neering Development Complex make understanding the similarities and differences between terrestrial test and on-orbit conditions increasingly relevant. The extensible model framework under development is intended to host the variety of models needed to describe the multiphysics environment, allowing them to interact to produce a consistent unified picture. The model framework will host modules that can be validated individually or in combination.

  12. Experimental Studies of NAK in a Simulated Space Environment

    NASA Astrophysics Data System (ADS)

    Gibson, M. A.; Sanzi, J.; Ljubanovic, D.

    Space fission power systems are being developed at the National Aeronautics and Space Administration (NASA) and Department of Energy (DOE) with a short term goal of building a full scale, non-nuclear, Technology Demonstration Unit (TDU) test at NASA's Glenn Research Center. Due to the geometric constraints, mass restrictions, and fairly high tempera- tures associated with space reactors, liquid metals are typically used as the primary coolant. A eutectic mixture of sodium (22 percent) and potassium (78 percent), or NaK, has been chosen as the coolant for the TDU with a total system capacity of approximately 55L. NaK, like all alkali metals, is very reactive, and warrants certain safety considerations. To adequately examine the risk associated with the personnel, facility, and test hardware during a potential NaK leak in the large scale TDU test, a small scale experiment was performed in which NaK was released in a thermal vacuum chamber under controlled conditions. The study focused on detecting NaK leaks in the vacuum environment as well as the molecular flow of the NaK vapor. This paper reflects the work completed during the NaK experiment and provides results and discussion relative to the findings.

  13. Discontinuity detection in multivariate space for stochastic simulations

    SciTech Connect

    Archibald, Rick Gelb, Anne Saxena, Rishu Xiu Dongbin

    2009-04-20

    Edge detection has traditionally been associated with detecting physical space jump discontinuities in one dimension, e.g. seismic signals, and two dimensions, e.g. digital images. Hence most of the research on edge detection algorithms is restricted to these contexts. High dimension edge detection can be of significant importance, however. For instance, stochastic variants of classical differential equations not only have variables in space/time dimensions, but additional dimensions are often introduced to the problem by the nature of the random inputs. The stochastic solutions to such problems sometimes contain discontinuities in the corresponding random space and a prior knowledge of jump locations can be very helpful in increasing the accuracy of the final solution. Traditional edge detection methods typically require uniform grid point distribution. They also often involve the computation of gradients and/or Laplacians, which can become very complicated to compute as the number of dimensions increases. The polynomial annihilation edge detection method, on the other hand, is more flexible in terms of its geometric specifications and is furthermore relatively easy to apply. This paper discusses the numerical implementation of the polynomial annihilation edge detection method to high dimensional functions that arise when solving stochastic partial differential equations.

  14. Discontinuity Detection in Multivariate Space for Stochastic Simulations

    SciTech Connect

    Archibald, Richard K; Gelb, Anne; Saxena, Rishu; Xiu, Dongbin

    2009-01-01

    Edge detection has traditionally been associated with detecting physical space jump discontinuities in one dimension, e.g. seismic signals, and two dimensions, e.g. digital images. Hence most of the research on edge detection algorithms is restricted to these contexts. High dimension edge detection can be of significant importance, however. For instance, stochastic variants of classical differential equations not only have variables in space/time dimensions, but additional dimensions are often introduced to the problem by the nature of the random inputs. The stochastic solutions to such problems sometimes contain discontinuities in the corresponding random space and a prior knowledge of jump locations can be very helpful in increasing the accuracy of the final solution. Traditional edge detection methods typically require uniform grid point distribution. They also often involve the computation of gradients and/or Laplacians, which can become very complicated to compute as the number of dimensions increases. The polynomial annihilation edge detection method, on the other hand, is more flexible in terms of its geometric specifications and is furthermore relatively easy to apply. This paper discusses the numerical implementation of the polynomial annihilation edge detection method to high dimensional functions that arise when solving stochastic partial differential equations.

  15. Flight Simulator: Use of SpaceGraph Display in an Instructor/Operator Station. Final Report.

    ERIC Educational Resources Information Center

    Sher, Lawrence D.

    This report describes SpaceGraph, a new computer-driven display technology capable of showing space-filling images, i.e., true three dimensional displays, and discusses the advantages of this technology over flat displays for use with the instructor/operator station (IOS) of a flight simulator. Ideas resulting from 17 brainstorming sessions with…

  16. Navigating the Problem Space: The Medium of Simulation Games in the Teaching of History

    ERIC Educational Resources Information Center

    McCall, Jeremiah

    2012-01-01

    Simulation games can play a critical role in enabling students to navigate the problem spaces of the past while simultaneously critiquing the models designers offer to represent those problem spaces. There is much to be gained through their use. This includes rich opportunities for students to engage the past as independent historians; to consider…

  17. A prototype for simulation of the space-to-ground assembly/contingency system of Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Deacetis, Louis A.

    1992-01-01

    This project was a continuation of work started during the Summer of 1991 when techniques and methods were investigated for simulating equipment components of the Communications and Tracking System on Space Station Freedom (SSF). The current work involved developing a design for simulation of the entire Assembly/Contingency Subsystem (ACS), which includes the Baseband Signal Processor, standard TDRSS Transponder and the RF Group antenna assembly. A design prototype of the ACS was developed. Methods to achieving 'high fidelity' real-time simulations of the ACS components on IBM-PC compatible computers were considered. The intention is to have separate component simulations running on separate personal computers (PC's), with the capability of substituting actual equipment units for those being simulated when such equipment becomes available for testing. To this end, a scheme for communication between the various simulated ACS components was developed using the serial ports of the PC's hosting the simulations. In addition, control and monitoring of ACS equipment on SSF will be via a MIL-STD 1553B bus. The proposed simulation includes actual 1553B hardware as part of the test bed.

  18. Distributed communication and psychosocial performance in simulated space dwelling groups.

    PubMed

    Hienz, R D; Brady, J V; Hursh, S R; Ragusa, L C; Rouse, C O; Gasior, E D

    2005-01-01

    The present report describes the development and application of a distributed interactive multi-person simulation in a computer-generated planetary environment as an experimental test bed for modeling the human performance effects of variations in the types of communication modes available, and in the types of stress and incentive conditions underlying the completion of mission goals. The results demonstrated a high degree of interchangeability between communication modes(audio, text) when one mode was not available. Additionally, the addition of time pressure stress to complete tasks resulted in a reduction in performance effectiveness, and these performance reductions were ameliorated via the introduction of positive incentives contingent upon improved performances. The results obtained confirmed that cooperative and productive psychosocial interactions can be maintained between individually isolated and dispersed members of simulated spaceflight crews communicating and problem-solving effectively over extended time intervals without the benefit of one another's physical presence. PMID:15835052

  19. Performance Characterization of Space Communications and Navigation (SCaN) Network by Simulation

    NASA Technical Reports Server (NTRS)

    Jennings, Esther; Heckman, David P.

    2008-01-01

    As future space exploration missions will involve larger number of spacecraft and more complex systems, theoretical analysis alone may have limitations on characterizing system performance and interactions among the systems. Simulation tools can be useful for system performance characterization through detailed modeling and simulation of the systems and its environment.

  20. Simulation of space charge effects and transition crossing in the Fermilab Booster

    SciTech Connect

    Lucas, P.; MacLachlan, J.

    1987-03-01

    The longitudinal phase space program ESME, modified for space charge and wall impedance effects, has been used to simulate transition crossing in the Fermilab Booster. The simulations yield results in reasonable quantitative agreement with measured parameters. They further indicate that a transition jump scheme currently under construction will significantly reduce emittance growth, while attempts to alter machine impedance are less obviously beneficial. In addition to presenting results, this paper points out a serious difficulty, related to statistical fluctuations, in the space charge calculation. False indications of emittance growth can appear if care is not taken to minimize this problem.

  1. An algorithm for generating nonuniformly space correlated samples for simulating a nonselective Rayleigh fading channel

    NASA Astrophysics Data System (ADS)

    Shein, Norman P.

    A nonselective Rayleigh fading channel model using a time-variant complex multiplier z(t) is considered. Performing a Monte Carlo simulation of this channel requires samples of z(t) with appropriate correlation (fading power spectrum). For an important f-4 spectrum, there is a simple digital implementation that generates uniformly spaced samples. However, many communications systems have faded signals which appear only intermittently at the receiver. Nonuniformly spaced samples are better suited to a simulation of this situation. The author presents an algorithm for efficiently generating nonuniformly spaced correlated samples which have a specified f-4 power spectrum.

  2. Simulation verification techniques study: Simulation performance validation techniques document. [for the space shuttle system

    NASA Technical Reports Server (NTRS)

    Duncan, L. M.; Reddell, J. P.; Schoonmaker, P. B.

    1975-01-01

    Techniques and support software for the efficient performance of simulation validation are discussed. Overall validation software structure, the performance of validation at various levels of simulation integration, guidelines for check case formulation, methods for real time acquisition and formatting of data from an all up operational simulator, and methods and criteria for comparison and evaluation of simulation data are included. Vehicle subsystems modules, module integration, special test requirements, and reference data formats are also described.

  3. Simulation study of interactions of Space Shuttle-generated electron beams with ambient plasmas

    NASA Technical Reports Server (NTRS)

    Lin, Chin S.

    1992-01-01

    This report summarizes results obtained through the support of NASA Grant NAGW-1936. The objective of this report is to conduct large scale simulations of electron beams injected into space. The topics covered include the following: (1) simulation of radial expansion of an injected electron beam; (2) simulations of the active injections of electron beams; (3) parameter study of electron beam injection into an ionospheric plasma; and (4) magnetosheath-ionospheric plasma interactions in the cusp.

  4. A low Earth orbit molecular beam space simulation facility

    NASA Technical Reports Server (NTRS)

    Cross, J. B.

    1984-01-01

    A brief synopsis of the low Earth orbit (LEO) satellite environment is presented including neutral and ionic species. Two ground based atomic and molecular beam instruments are described which are capable of simulating the interaction of spacecraft surfaces with the LEO environment and detecting the results of these interactions. The first detects mass spectrometrically low level fluxes of reactively and nonreactively surface scattered species as a function of scattering angle and velocity while the second ultrahigh velocity (UHV) molecular beam, laser induced fluorescence apparatus is capable of measuring chemiluminescence produced by either gas phase or gas-surface interactions. A number of proposed experiments are described.

  5. A TREETOPS simulation of the Hubble Space Telescope-High Gain Antenna interaction

    NASA Technical Reports Server (NTRS)

    Sharkey, John P.

    1987-01-01

    Virtually any project dealing with the control of a Large Space Structure (LSS) will involve some level of verification by digital computer simulation. While the Hubble Space Telescope might not normally be included in a discussion of LSS, it is presented to highlight a recently developed simulation and analysis program named TREETOPS. TREETOPS provides digital simulation, linearization, and control system interaction of flexible, multibody spacecraft which admit to a point-connected tree topology. The HST application of TREETOPS is intended to familiarize the LSS community with TREETOPS by presenting a user perspective of its key features.

  6. General purpose simulation system of the data management system for space shuttle mission 18

    NASA Technical Reports Server (NTRS)

    Bengtson, N. M.; Mellichamp, J. M.; Crenshaw, J.

    1975-01-01

    The simulation program of the science and engineering data management system for the space shuttle is presented. The programming language used was General Purpose Simulation System V (OS). The data flow was modeled from its origin at the experiments or subsystems to transmission from the space shuttle. Mission 18 was the particular flight chosen for simulation. First, the general structure of the program is presented and the trade studies which were performed are identified. Inputs required to make runs are discussed followed by identification of the output statistics. Some areas for model modifications are pointed out. A detailed model configuration, program listing and results are included.

  7. On the accuracy of the state space restriction approximation for spin dynamics simulations

    NASA Astrophysics Data System (ADS)

    Karabanov, Alexander; Kuprov, Ilya; Charnock, G. T. P.; van der Drift, Anniek; Edwards, Luke J.; Köckenberger, Walter

    2011-08-01

    We present an algebraic foundation for the state space restriction approximation in spin dynamics simulations and derive applicability criteria as well as minimal basis set requirements for practically encountered simulation tasks. The results are illustrated with nuclear magnetic resonance (NMR), electron spin resonance (ESR), dynamic nuclear polarization (DNP), and spin chemistry simulations. It is demonstrated that state space restriction yields accurate results in systems where the time scale of spin relaxation processes approximately matches the time scale of the experiment. Rigorous error bounds and basis set requirements are derived.

  8. Improving traffic noise simulations using space syntax: preliminary results from two roadway systems.

    PubMed

    M Dzhambov, Angel; D Dimitrova, Donka; H Turnovska, Tanya

    2014-09-01

    Noise pollution is one of the four major pollutions in the world. In order to implement adequate strategies for noise control, assessment of traffic-generated noise is essential in city planning and management. The aim of this study was to determine whether space syntax could improve the predictive power of noise simulation. This paper reports a record linkage study which combined a documentary method with space syntax analysis. It analyses data about traffic flow as well as field-measured and computer-simulated traffic noise in two Bulgarian agglomerations. Our findings suggest that space syntax might have a potential in predicting traffic noise exposure by improving models for noise simulations using specialised software or actual traffic counts. The scientific attention might need to be directed towards space syntax in order to study its further application in current models and algorithms for noise prediction. PMID:25222575

  9. Space-flight simulations of calcium metabolism using a mathematical model of calcium regulation

    NASA Technical Reports Server (NTRS)

    Brand, S. N.

    1985-01-01

    The results of a series of simulation studies of calcium matabolic changes which have been recorded during human exposure to bed rest and space flight are presented. Space flight and bed rest data demonstrate losses of total body calcium during exposure to hypogravic environments. These losses are evidenced by higher than normal rates of urine calcium excretion and by negative calcium balances. In addition, intestinal absorption rates and bone mineral content are assumed to decrease. The bed rest and space flight simulations were executed on a mathematical model of the calcium metabolic system. The purpose of the simulations is to theoretically test hypotheses and predict system responses which are occurring during given experimental stresses. In this case, hypogravity occurs through the comparison of simulation and experimental data and through the analysis of model structure and system responses. The model reliably simulates the responses of selected bed rest and space flight parameters. When experimental data are available, the simulated skeletal responses and regulatory factors involved in the responses agree with space flight data collected on rodents. In addition, areas within the model that need improvement are identified.

  10. Electrical behaviour of a silicone elastomer under simulated space environment

    NASA Astrophysics Data System (ADS)

    Roggero, A.; Dantras, E.; Paulmier, T.; Tonon, C.; Balcon, N.; Rejsek-Riba, V.; Dagras, S.; Payan, D.

    2015-04-01

    The electrical behavior of a space-used silicone elastomer was characterized using surface potential decay and dynamic dielectric spectroscopy techniques. In both cases, the dielectric manifestation of the glass transition (dipole orientation) and a charge transport phenomenon were observed. An unexpected linear increase of the surface potential with temperature was observed around Tg in thermally-stimulated potential decay experiments, due to molecular mobility limiting dipolar orientation in one hand, and 3D thermal expansion reducing the materials capacitance in the other hand. At higher temperatures, the charge transport process, believed to be thermally activated electron hopping with an activation energy of about 0.4 eV, was studied with and without the silica and iron oxide fillers present in the commercial material. These fillers were found to play a preponderant role in the low-frequency electrical conductivity of this silicone elastomer, probably through a Maxwell-Wagner-Sillars relaxation phenomenon.

  11. Developing a space network interface simulator: The NTS approach

    NASA Technical Reports Server (NTRS)

    Hendrzak, Gary E.

    1993-01-01

    This paper describes the approach used to redevelop the Network Control Center (NCC) Test System (NTS), a hardware and software facility designed to make testing of the NCC Data System (NCCDS) software efficient, effective, and as rigorous as possible prior to operational use. The NTS transmits and receives network message traffic in real-time. Data transfer rates and message content are strictly controlled and are identical to that of the operational systems. NTS minimizes the need for costly and time-consuming testing with the actual external entities (e.g., the Hubble Space Telescope (HST) Payload Operations Control Center (POCC) and the White Sands Ground Terminal). Discussed are activities associated with the development of the NTS, lessons learned throughout the project's lifecycle, and resulting productivity and quality increases.

  12. A General Simulator Using State Estimation for a Space Tug Navigation System. [computerized simulation, orbital position estimation and flight mechanics

    NASA Technical Reports Server (NTRS)

    Boland, J. S., III

    1975-01-01

    A general simulation program is presented (GSP) involving nonlinear state estimation for space vehicle flight navigation systems. A complete explanation of the iterative guidance mode guidance law, derivation of the dynamics, coordinate frames, and state estimation routines are given so as to fully clarify the assumptions and approximations involved so that simulation results can be placed in their proper perspective. A complete set of computer acronyms and their definitions as well as explanations of the subroutines used in the GSP simulator are included. To facilitate input/output, a complete set of compatable numbers, with units, are included to aid in data development. Format specifications, output data phrase meanings and purposes, and computer card data input are clearly spelled out. A large number of simulation and analytical studies were used to determine the validity of the simulator itself as well as various data runs.

  13. Using Virtual Simulations in the Design of 21st Century Space Science Environments

    NASA Technical Reports Server (NTRS)

    Hutchinson, Sonya L.; Alves, Jeffery R.

    1996-01-01

    Space Technology has been rapidly increasing in the past decade. This can be attributed to the future construction of the International Space Station (ISS). New innovations must constantly be engineered to make ISS the safest, quality, research facility in space. Since space science must often be gathered by crew members, more attention must be geared to the human's safety and comfort. Virtual simulations are now being used to design environments that crew members can live in for long periods of time without harmful effects to their bodies. This paper gives a few examples of the ergonomic design problems that arise on manned space flights, and design solutions that follow NASA's strategic commitment to customer satisfaction. The conclusions show that virtual simulations are a great asset to 21st century design.

  14. Molecular dynamics simulation of interparticle spacing and many-body effect in gold supracrystals.

    PubMed

    Liu, X P; Ni, Y; He, L H

    2016-04-01

    Interparticle spacing in supracrystals is a crucial parameter for photoelectric applications as it dominates the transport rates between neighboring nanoparticles (NPs). Based on large-scale molecular dynamics simulations, we calculate interparticle spacing in alkylthiol-stabilized gold supracrystals as a function of the NP size, ligand length and external pressure. The repulsive many-body interactions in the supracrystals are also quantified by comparing the interparticle spacing with that between two individual NPs at equilibrium. Our results are consistent with available experiments, and are expected to help precise control of interparticle spacing in supracrystal devices. PMID:26909856

  15. Spontaneous ion beam formation in the laboratory, space, and simulation

    SciTech Connect

    Carr, J. Jr.; Cassak, P. A.; Galante, M.; Keesee, A. M.; Lusk, G.; Magee, R. M.; McCarren, D.; Scime, E. E.; Sears, S.; Vandervort, R.; Gulbrandsen, N.; Goldman, Martin; Newman, David; Eastwood, J. P.

    2013-07-15

    We present experimental evidence for the spontaneous formation of multiple double layers within a single divergent magnetic field structure. Downstream of the divergent magnetic field, multiple accelerated ion populations are observed. The similarity of the accelerated ion populations observed in these laboratory experiments to ion populations observed in the magnetosphere and in numerical simulations suggests that the observation of a complex ion velocity distribution alone is insufficient to distinguish between simple plasma expansion and magnetic reconnection. Further, the effective temperature of the aggregate ion population is significantly larger than the temperatures of the individual ion population components, suggesting that insufficiently resolved measurements could misidentify multiple beam creation as ion heating. Ions accelerated in randomly oriented electric fields that mimic heating would have an ion heating rate dependent on the ion charge and mass that is qualitatively consistent with recent experimental observations of ion heating during magnetic reconnection.

  16. Space microbiology--lethality, mutagenicity and cytological effects of terrestrial microorganisms by irradiation of cosmic proton under simulated space condition.

    PubMed

    Koike, J; Taguchi, H

    1993-04-01

    We have been discussing in connection with a space quarantine. The subject is not merely an academic problem, but it contains a fundamental problem which avoid the contamination of other planets by terrestrial microflora. The space environments in the solar system were simulated by using an apparatus of cryostat (low temperature of 110-310K, high vacuum of 1 x 10(-8) torr) and proton irradiation from the Van de Graaff generator. After exposure to a barrage of protons corresponding to about 250 years in solar space, Tobacco mosaic virus, Bacillus subtilis spore, Staphylococcus aureus. Micrococcusflavus, Clostridium mangenoti spore and Aspergillus niger spore showed considerably high survival rates. Furthermore, it was found firstly that an irradiation of proton induced considerable mutation frequency compared to that of spontaneous and caused also the cytological effects based on a damage of chromosome. PMID:7967372

  17. Interfacing Space Communications and Navigation Network Simulation with Distributed System Integration Laboratories (DSIL)

    NASA Technical Reports Server (NTRS)

    Jennings, Esther H.; Nguyen, Sam P.; Wang, Shin-Ywan; Woo, Simon S.

    2008-01-01

    NASA's planned Lunar missions will involve multiple NASA centers where each participating center has a specific role and specialization. In this vision, the Constellation program (CxP)'s Distributed System Integration Laboratories (DSIL) architecture consist of multiple System Integration Labs (SILs), with simulators, emulators, testlabs and control centers interacting with each other over a broadband network to perform test and verification for mission scenarios. To support the end-to-end simulation and emulation effort of NASA' exploration initiatives, different NASA centers are interconnected to participate in distributed simulations. Currently, DSIL has interconnections among the following NASA centers: Johnson Space Center (JSC), Kennedy Space Center (KSC), Marshall Space Flight Center (MSFC) and Jet Propulsion Laboratory (JPL). Through interconnections and interactions among different NASA centers, critical resources and data can be shared, while independent simulations can be performed simultaneously at different NASA locations, to effectively utilize the simulation and emulation capabilities at each center. Furthermore, the development of DSIL can maximally leverage the existing project simulation and testing plans. In this work, we describe the specific role and development activities at JPL for Space Communications and Navigation Network (SCaN) simulator using the Multi-mission Advanced Communications Hybrid Environment for Test and Evaluation (MACHETE) tool to simulate communications effects among mission assets. Using MACHETE, different space network configurations among spacecrafts and ground systems of various parameter sets can be simulated. Data that is necessary for tracking, navigation, and guidance of spacecrafts such as Crew Exploration Vehicle (CEV), Crew Launch Vehicle (CLV), and Lunar Relay Satellite (LRS) and orbit calculation data are disseminated to different NASA centers and updated periodically using the High Level Architecture (HLA). In

  18. Using Jupyter Notebooks for Interactive Space Science Simulations

    NASA Astrophysics Data System (ADS)

    Schmidt, Albrecht

    2016-04-01

    Jupyter Notebooks can be used as an effective means to communicate scientific ideas through Web-based visualisations and, at the same time, give a user more than a pre-defined set of options to manipulate the visualisations. To some degree, even computations can be done without too much knowledge of the underlying data structures and infrastructure to discover novel aspects of the data or tailor view to users' needs. Here, we show how to combine Jupyter Notebooks with other open-source tools to provide rich and interactive views on space data, especially the visualisation of spacecraft operations. Topics covered are orbit visualisation, spacecraft orientation, instrument timelines as well as performance analysis of mission segments. Technically, also the re-use and integration of existing components will be shown, both on the code level as well on the visualisation level so that the effort which was put into the development of new components could be reduced. Another important aspect is the bridging of the gap between operational data and the scientific exploitation of the payload data, for which also a way forward will be shown. A lesson learned from the implementation and use of a prototype is the synergy between the team who provisions the notebooks and the consumers, who both share access to the same code base, if not resources; this often simplifies communication and deployment.

  19. Space simulation techniques and facilities for SAX STM test campaign

    NASA Technical Reports Server (NTRS)

    Giordano, Pietro; Raimondo, Giacomo; Messidoro, Piero

    1994-01-01

    SAX is a satellite for X-Ray astronomy. It is a major element of the overall basic Science Program of the Italian Space Agency (ASI) and is being developed with the contribution of the Netherlands Agency for Aerospace Programs (NIVR). The scientific objectives of SAX are to carry out systematic and comprehensive observations of celestial X-Ray sources over the 0.1 - 300 KeV energy range with special emphasis on spectral and timing measurements. The satellite will also monitor the X-Ray sky to investigate long-term source variability and to permit localization and study of X-Ray transients. Alenia Spazio is developing the satellite that is intended for launch in the second half of 1995 in a low, near-equatorial Earth orbit. At system level a Structural Thermal Model (STM) has been conceived to verify the environmental requirements by validating the mechanical and thermal analytical models and qualifying satellite structure and thermal control. In particular, the following tests have been carried out in Alenia Spazio, CEA/CESTA and ESTEC facilities: Modal Survey, Centrifuge, Acoustic, Sinusoidal/Random Vibration and Thermal Balance. The paper, after a short introduction of the SAX satellite, summarizes the environmental qualification program performed on the SAX STM. It presents test objectives, methodologies and relevant test configurations. Peculiar aspects of the test campaign are highlighted. Problems encountered and solutions adopted in performing the tests are described as well. Furthermore, test results are presented and assessed.

  20. The Jet Propulsion Laboratory 7.62-m space simulator modification

    NASA Technical Reports Server (NTRS)

    Morgan, N. R.

    1973-01-01

    The JPL 7.62-m space simulator was modified to simulate the solar intensities at the planet Mercury. The capability of the simulator was increased to support testing of both the Mariner spacecraft mission to Venus and Mercury (to be launched in 1973) and the Helios spacecraft. The design of the off-axis reflecting system of the JPL simulators allowed attaining increased solar intensity, at the expense of test area, by placing a smaller collimating mirror at a lower elevation in the space simulator. In addition to requiring a new collimating mirror 4.57-m in diameter, the optical integrating system required a new design and there were several other efforts necessary to support these primary alterations.

  1. A simulation model for probabilistic analysis of Space Shuttle abort modes

    NASA Technical Reports Server (NTRS)

    Hage, R. T.

    1993-01-01

    A simulation model which was developed to provide a probabilistic analysis tool to study the various space transportation system abort mode situations is presented. The simulation model is based on Monte Carlo simulation of an event-tree diagram which accounts for events during the space transportation system's ascent and its abort modes. The simulation model considers just the propulsion elements of the shuttle system (i.e., external tank, main engines, and solid boosters). The model was developed to provide a better understanding of the probability of occurrence and successful completion of abort modes during the vehicle's ascent. The results of the simulation runs discussed are for demonstration purposes only, they are not official NASA probability estimates.

  2. Peculiar velocities in redshift space: formalism, N-body simulations and perturbation theory

    SciTech Connect

    Okumura, Teppei; Seljak, Uroš; Vlah, Zvonimir; Desjacques, Vincent E-mail: useljak@berkeley.edu E-mail: Vincent.Desjacques@unige.ch

    2014-05-01

    Direct measurements of peculiar velocities of galaxies and clusters of galaxies can in principle provide explicit information on the three dimensional mass distribution, but this information is modulated by the fact that velocity field is sampled at galaxy positions, and is thus probing galaxy momentum. We derive expressions for the cross power spectrum between the density and momentum field and the auto spectrum of the momentum field in redshift space, by extending the distribution function method to these statistics. The resulting momentum cross and auto power spectra in redshift space are expressed as infinite sums over velocity moment correlators in real space, as is the case for the density power spectrum in redshift space. We compute each correlator using Eulerian perturbation theory (PT) and halo biasing model and compare the resulting redshift-space velocity statistics to those measured from N-body simulations for both dark matter and halos. We find that in redshift space linear theory predictions for the density-momentum cross power spectrum as well as for the momentum auto spectrum fail to predict the N-body results at very large scales. On the other hand, our nonlinear PT prediction for these velocity statistics, together with real-space power spectrum for dark matter from simulations, improves the accuracy for both dark matter and halos. We also present the same analysis in configuration space, computing the redshift-space pairwise mean infall velocities and velocity correlation function and compare to nonlinear PT.

  3. The PLATO Simulator: modelling of high-precision high-cadence space-based imaging

    NASA Astrophysics Data System (ADS)

    Marcos-Arenal, P.; Zima, W.; De Ridder, J.; Aerts, C.; Huygen, R.; Samadi, R.; Green, J.; Piotto, G.; Salmon, S.; Catala, C.; Rauer, H.

    2014-06-01

    Context. Many aspects of the design trade-off of a space-based instrument and its performance can best be tackled through simulations of the expected observations. The complex interplay of various noise sources in the course of the observations make such simulations an indispensable part of the assessment and design study of any space-based mission. Aims: We present a formalism to model and simulate photometric time series of CCD images by including models of the CCD and its electronics, the telescope optics, the stellar field, the jitter movements of the spacecraft, and all of the important natural noise sources. Methods: This formalism has been implemented in a versatile end-to-end simulation software tool, specifically designed for the PLATO (Planetary Transists and Oscillations of Stars) space mission to be operated from L2, but easily adaptable to similar types of missions. We call this tool Plato Simulator. Results: We provide a detailed description of several noise sources and discuss their properties in connection with the optical design, the allowable level of jitter, the quantum efficiency of the detectors, etc. The expected overall noise budget of generated light curves is computed, as a function of the stellar magnitude, for different sets of input parameters describing the instrument properties. The simulator is offered to the scientific community for future use. Software package available at the Plato Simulator web site (http://https://fys.kuleuven.be/ster/Software/PlatoSimulator/).

  4. Space Communications and Navigation (SCaN) Network Simulation Tool Development and Its Use Cases

    NASA Technical Reports Server (NTRS)

    Jennings, Esther; Borgen, Richard; Nguyen, Sam; Segui, John; Stoenescu, Tudor; Wang, Shin-Ywan; Woo, Simon; Barritt, Brian; Chevalier, Christine; Eddy, Wesley

    2009-01-01

    In this work, we focus on the development of a simulation tool to assist in analysis of current and future (proposed) network architectures for NASA. Specifically, the Space Communications and Navigation (SCaN) Network is being architected as an integrated set of new assets and a federation of upgraded legacy systems. The SCaN architecture for the initial missions for returning humans to the moon and beyond will include the Space Network (SN) and the Near-Earth Network (NEN). In addition to SCaN, the initial mission scenario involves a Crew Exploration Vehicle (CEV), the International Space Station (ISS) and NASA Integrated Services Network (NISN). We call the tool being developed the SCaN Network Integration and Engineering (SCaN NI&E) Simulator. The intended uses of such a simulator are: (1) to characterize performance of particular protocols and configurations in mission planning phases; (2) to optimize system configurations by testing a larger parameter space than may be feasible in either production networks or an emulated environment; (3) to test solutions in order to find issues/risks before committing more significant resources needed to produce real hardware or flight software systems. We describe two use cases of the tool: (1) standalone simulation of CEV to ISS baseline scenario to determine network performance, (2) participation in Distributed Simulation Integration Laboratory (DSIL) tests to perform function testing and verify interface and interoperability of geographically dispersed simulations/emulations.

  5. Performance optimization for space-based sensors: simulation and modelling at Fraunhofer IOSB

    NASA Astrophysics Data System (ADS)

    Schweitzer, Caroline; Stein, Karin

    2014-10-01

    The prediction of the effectiveness of a space-based sensor for its designated application in space (e.g. special earth surface observations or missile detection) can help to reduce the expenses, especially during the phases of mission planning and instrumentation. In order to optimize the performance of such systems we simulate and analyse the entire operational scenario, including: - optional waveband - various orbit heights and viewing angles - system design characteristics, e. g. pixel size and filter transmission - atmospheric effects, e. g. different cloud types, climate zones and seasons In the following, an evaluation of the appropriate infrared (IR) waveband for the designated sensor application is given. The simulation environment is also capable of simulating moving objects like aircraft or missiles. Therefore, the spectral signature of the object/missile as well as its track along a flight path is implemented. The resulting video sequence is then analysed by a tracking algorithm and an estimation of the effectiveness of the sensor system can be simulated. This paper summarizes the work carried out at Fraunhofer IOSB in the field of simulation and modelling for the performance optimization of space based sensors. The paper is structured as follows: First, an overview of the applied simulation and modelling software is given. Then, the capability of those tools is illustrated by means of a hypothetical threat scenario for space-based early warning (launch of a long-range ballistic missile (BM)).

  6. Dispersion analysis and linear error analysis capabilities of the space vehicle dynamics simulation program

    NASA Technical Reports Server (NTRS)

    Snow, L. S.; Kuhn, A. E.

    1975-01-01

    Previous error analyses conducted by the Guidance and Dynamics Branch of NASA have used the Guidance Analysis Program (GAP) as the trajectory simulation tool. Plans are made to conduct all future error analyses using the Space Vehicle Dynamics Simulation (SVDS) program. A study was conducted to compare the inertial measurement unit (IMU) error simulations of the two programs. Results of the GAP/SVDS comparison are presented and problem areas encountered while attempting to simulate IMU errors, vehicle performance uncertainties and environmental uncertainties using SVDS are defined. An evaluation of the SVDS linear error analysis capability is also included.

  7. Recent advances in numerical simulation of space-plasma-physics problems

    NASA Technical Reports Server (NTRS)

    Birmingham, T. J.

    1983-01-01

    Computer simulations have become an increasingly popular, important and insightful tool for studying space plasmas. This review describes MHD and particle simulations, both of which treat the plasma and the electromagnetic field in which it moves in a self consistent fashion but on drastically different spatial and temporal scales. The complementary roles of simulation, observations and theory are stressed. Several examples of simulations being carried out in the area of magnetospheric plasma physics are described to illustrate the power, potential and limitations of the approach.

  8. Thunderstorm neutrons in near space: Analyses and numerical simulation

    NASA Astrophysics Data System (ADS)

    Grigoriev, A. V.; Grigoryan, O. R.; Drozdov, A. Y.; Malyshkin, Y. M.; Popov, Y. V.; Mareev, E. A.; Iudin, D. I.

    2010-08-01

    In this paper we perform a theoretical analysis of the direct passage of neutrons in the atmosphere from an altitude of about 5 km up to several hundred kilometers. We consider that these neutrons are generated during thunderstorms in what favor there is some experimental evidence. Two main mechanisms of the neutrons generation in thunderstorms appeared in the literature: the nuclear synthesis directly in the lightning channel and the photonuclear synthesis owing to production of gamma-rays by the runaway electrons. Both of them are discussed in the present work. For the qualitative analysis we considered the process of neutrons propagation in the atmosphere as consisting of three stages: initial neutron deceleration to thermal energies, then diffusion, and further free propagation. Absorption of neutrons was neglected. Also, in modeling the atmospheric matter only nitrogen and oxygen were considered as the main atmospheric components. With these conditions and taking into account the predicted parameters of the neutron generation source, it is shown that the estimated flux well corresponds to the known experimental results. On this basis the preferred mechanism of the neutron generation is indicated. For a more rigorous picture of the neutrons propagation, capable for description of the slowing down, thermalization, and diffusion processes, one has to perform a numerical calculation and for this we propose a computer simulation scheme based on the cellular automation method. The corresponding plain analysis of the neutrons passage confirms the estimation mentioned above. The proposed scheme can be used for modeling the real neutron source. On the basis of our results we discuss some characteristic features of the observed neutron fluxes. The obtained results are to be tested by the “Radioskaf” experiment based on the scientific device called “RAZREZ.” One of the experiment objectives is detection of neutrons with different energies at altitudes of 200

  9. Hyperthermal atomic oxygen source for near-space simulation experiments

    SciTech Connect

    Dodd, James A.; Baker, Paul M.; Hwang, Eunsook S.; Sporleder, David; Stearns, Jaime A.; Chambreau, Steven D.; Braunstein, Matthew; Conforti, Patrick F.

    2009-09-15

    A hyperthermal atomic oxygen (AO) beam facility has been developed to investigate the collisions of high-velocity AO atoms with vapor-phase counterflow. Application of 4.5 kW, 2.4 GHz microwave power in the source chamber creates a continuous discharge in flowing O{sub 2} gas. The O{sub 2} feedstock is introduced into the source chamber in a vortex flow to constrain the plasma to the center region, with the chamber geometry promoting resonant excitation of the TM{sub 011} mode to localize the energy deposition in the vicinity of the aluminum nitride (AlN) expansion nozzle. The approximately 3500 K environment serves to dissociate the O{sub 2}, resulting in an effluent consisting of 40% AO by number density. Downstream of the nozzle, a silicon carbide (SiC) skimmer selects the center portion of the discharge effluent, prior to the expansion reaching the first shock front and rethermalizing, creating a beam with a derived 2.5 km s{sup -1} velocity. Differential pumping of the skimmer chamber, an optional intermediate chamber and reaction chamber maintains a reaction chamber pressure in the mid-10{sup -6} to mid-10{sup -5} Torr range. The beam has been characterized with regard to total AO beam flux, O{sub 2} dissociation fraction, and AO spatial profile using time-of-flight mass spectrometric and Kapton-H erosion measurements. A series of reactions AO+C{sub n}H{sub 2n} (n=2-4) has been studied under single-collision conditions using mass spectrometric product detection, and at higher background pressure detecting dispersed IR emissions from primary and secondary products using a step-scan Michelson interferometer. In a more recent AO crossed-beam experiment, number densities and predicted IR emission intensities have been modeled using the direct simulation Monte Carlo technique. The results have been used to guide the experimental conditions. IR emission intensity predictions are compared to detected signal levels to estimate absolute reaction cross sections.

  10. Hyperthermal atomic oxygen source for near-space simulation experiments.

    PubMed

    Dodd, James A; Baker, Paul M; Hwang, Eunsook S; Sporleder, David; Stearns, Jaime A; Chambreau, Steven D; Braunstein, Matthew; Conforti, Patrick F

    2009-09-01

    A hyperthermal atomic oxygen (AO) beam facility has been developed to investigate the collisions of high-velocity AO atoms with vapor-phase counterflow. Application of 4.5 kW, 2.4 GHz microwave power in the source chamber creates a continuous discharge in flowing O(2) gas. The O(2) feedstock is introduced into the source chamber in a vortex flow to constrain the plasma to the center region, with the chamber geometry promoting resonant excitation of the TM(011) mode to localize the energy deposition in the vicinity of the aluminum nitride (AlN) expansion nozzle. The approximately 3500 K environment serves to dissociate the O(2), resulting in an effluent consisting of 40% AO by number density. Downstream of the nozzle, a silicon carbide (SiC) skimmer selects the center portion of the discharge effluent, prior to the expansion reaching the first shock front and rethermalizing, creating a beam with a derived 2.5 km s(-1) velocity. Differential pumping of the skimmer chamber, an optional intermediate chamber and reaction chamber maintains a reaction chamber pressure in the mid-10(-6) to mid-10(-5) Torr range. The beam has been characterized with regard to total AO beam flux, O(2) dissociation fraction, and AO spatial profile using time-of-flight mass spectrometric and Kapton-H erosion measurements. A series of reactions AO+C(n)H(2n) (n=2-4) has been studied under single-collision conditions using mass spectrometric product detection, and at higher background pressure detecting dispersed IR emissions from primary and secondary products using a step-scan Michelson interferometer. In a more recent AO crossed-beam experiment, number densities and predicted IR emission intensities have been modeled using the direct simulation Monte Carlo technique. The results have been used to guide the experimental conditions. IR emission intensity predictions are compared to detected signal levels to estimate absolute reaction cross sections. PMID:19791929

  11. Space Station Simulation Computer System (SCS) study for NASA/MSFC. Volume 1: Baseline architecture report

    NASA Technical Reports Server (NTRS)

    1990-01-01

    NASA's Space Station Freedom Program (SSFP) planning efforts have identified a need for a payload training simulator system to serve as both a training facility and as a demonstrator to validate operational concepts. The envisioned MSFC Payload Training Complex (PTC) required to meet this need will train the Space Station payload scientists, station scientists, and ground controllers to operate the wide variety of experiments that will be onboard the Space Station Freedom. The Simulation Computer System (SCS) is made up of the computer hardware, software, and workstations that will support the Payload Training Complex at MSFC. The purpose of this SCS Study is to investigate issues related to the SCS, alternative requirements, simulator approaches, and state-of-the-art technologies to develop candidate concepts and designs.

  12. Space Station Simulation Computer System (SCS) study for NASA/MSFC. Volume 2: Baseline architecture report

    NASA Technical Reports Server (NTRS)

    1990-01-01

    NASA's Space Station Freedom Program (SSFP) planning efforts have identified a need for a payload training simulator system to serve as both a training facility and as a demonstrator to validate operational concepts. The envisioned MSFC Payload Training Complex (PTC) required to meet this need will train the Space Station payload scientists, station scientists, and ground controllers to operate the wide variety of experiments that will be onboard the Space Station Freedom. The Simulation Computer System (SCS) is the computer hardware, software, and workstations that will support the Payload Training Complex at MSFC. The purpose of this SCS Study is to investigate issues related to the SCS, alternative requirements, simulator approaches, and state-of-the-art technologies to develop candidate concepts and designs.

  13. Numerical simulations of aerodynamic contribution of flows about a space-plane-type configuration

    NASA Technical Reports Server (NTRS)

    Matsushima, Kisa; Takanashi, Susume; Fujii, Kozo; Obayashi, Shigeru

    1987-01-01

    The slightly supersonic viscous flow about the space-plane under development at the National Aerospace Laboratory (NAL) in Japan was simulated numerically using the LU-ADI algorithm. The wind-tunnel testing for the same plane also was conducted with the computations in parallel. The main purpose of the simulation is to capture the phenomena which have a great deal of influence to the aerodynamic force and efficiency but is difficult to capture by experiments. It includes more accurate representation of vortical flows with high angles of attack of an aircraft. The space-plane shape geometry simulated is the simplified model of the real space-plane, which is a combination of a flat and slender body and a double-delta type wing. The comparison between experimental results and numerical ones will be done in the near future. It could be said that numerical results show the qualitatively reliable phenomena.

  14. Simulated response of top-hat electrostatic analysers - importance of phase-space resolution

    NASA Astrophysics Data System (ADS)

    De Marco, Rossana; Bruno, Roberto; D'Amicis, Raffaella; Federica Marcucci, Maria; Servidio, Sergio; Valentini, Francesco

    2016-04-01

    We use a numerical code able to reproduce the angular/energy response of a typical electrostatic analyzer of top-hat type starting from velocity distribution functions (VDFs) generated by numerical imulations.The simulations are based on the Hybrid Vlasov-Maxwell (HVM) numerical algorithm which integrates the Vlasov equation for the ion distribution function in multi-dimensional geometry in phase space, while the electrons are treated as a fluid. Virtual satellites launched through the simulation box measure the particle VDFs. Such VDFs are interpolated into a spacecraft reference frame and moved from the simulation Cartesian grid to energy-angular coordinates to mimic the response of a real electrostatic sensor in the solar wind and in the magnetosheath for different conditions. We discuss the results of this study with respect to the importance of phase-space resolution for a space plasma experiment meant to investigate kinetic plasma regime.

  15. Modifications to the NASA Ames Space Station Proximity Operations (PROX OPS) Simulator

    NASA Technical Reports Server (NTRS)

    Brody, Adam

    1988-01-01

    As the United States is approaching an operational space station era, flight simulators are required to investigate human design and performance aspects associated with orbital operations. Among these are proximity operations (PROX OPS), those activities occurring within a 1-km sphere of Space Station including rendezvous, docking, rescue, and repair. The Space Station Proximity Operations Simulator at NASA Ames Research Center was modified to provide the capability for investigations into human performance aspects of proximity operations. Accurate flight equations of motion were installed to provide the appropriate visual scene to test subjects performing simulated missions. Also, the flight control system was enhanced by enabling pilot control over thruster acceleration values. Currently, research is under way to examine human performance in a variety of mission scenarios.

  16. Space Station Simulation Computer System (SCS) study for NASA/MSFC. Phased development plan

    NASA Technical Reports Server (NTRS)

    1990-01-01

    NASA's Space Station Freedom Program (SSFP) planning efforts have identified a need for a payload training simulator system to serve as both a training facility and as a demonstrator to validate operational concepts. The envisioned MSFC Payload Training Complex (PTC) required to meet this need will train the Space Station payload scientists, station scientists and ground controllers to operate the wide variety of experiments that will be onboard the Space Station Freedom. The Simulation Computer System (SCS) is made up of computer hardware, software, and workstations that will support the Payload Training Complex at MSFC. The purpose of this SCS Study is to investigate issues related to the SCS, alternative requirements, simulator approaches, and state-of-the-art technologies to develop candidate concepts and designs.

  17. Space Station Simulation Computer System (SCS) study for NASA/MSFC. Operations concept report

    NASA Technical Reports Server (NTRS)

    1990-01-01

    NASA's Space Station Freedom Program (SSFP) planning efforts have identified a need for a payload training simulator system to serve as both a training facility and as a demonstrator to validate operational concepts. The envisioned MSFC Payload Training Complex (PTC) required to meet this need will train the Space Station payload scientists, station scientists, and ground controllers to operate the wide variety of experiments that will be onboard the Space Station Freedom. The Simulation Computer System (SCS) is made up of computer hardware, software, and workstations that will support the Payload Training Complex at MSFC. The purpose of this SCS Study is to investigate issues related to the SCS, alternative requirements, simulator approaches, and state-of-the-art technologies to develop candidate concepts and designs.

  18. Development of a simulation environment to test space missions COTS technologies

    NASA Astrophysics Data System (ADS)

    Saraf, S.; Knoll, A.; Melanson, P.; Tafazoli, M.

    2002-07-01

    The Canadian Space Agency's (CSA) Software and Ground Segment Section (SGS) has the mandate to develop innovative emerging software and on-board satellite and ground segment computer technologies. To that end, there is an ongoing development of a simulation environment to test COTS (Commercial-Of-The-Shelf) technologies. There are severe cost constraints in all aspects of many space missions due to the limited return on investment and scarce commercialization opportunities that come with many science missions. There is an opportunity to explore the innovative implementation of COTS technologies to reduce the mission cost and maximize performance available from COTS components. However, using COTS technologies in the space environment has ist constraints and therefore designing a spacecraft mission has to involve some new techniques that allow implementation of these components and minimize the risk of failure. The goal of our project is to develop a simulation environment, itself using COTS components, and then to allow the seamless integration of various components to test spacecraft mission concepts. For example, one of the aspects of using COTS processors in space is to protect them from the radiation environment. The current state of the simulation tests an innovative software EDAC (Error Detection and Correction) package and a redundant processor configuration to investigate protection against the effects of radiation and other failures on a generic mission. It also includes the capability to test formation-flying concepts that have the potential to revolutionize cost reduction efforts for space missions and to enable new space applications. This paper describes the simulation environment in detail and illustrates some of the technologies being tested for possible future space missions. The paper concludes with a look at the future development of the simulation environment and possible benefits of its use as well as the lessons learned to date.

  19. Mathematical modeling and simulation of the space shuttle imaging radar antennas

    NASA Technical Reports Server (NTRS)

    Campbell, R. W.; Melick, K. E.; Coffey, E. L., III

    1978-01-01

    Simulations of space shuttle synthetic aperture radar antennas under the influence of space environmental conditions were carried out at L, C, and X-band. Mathematical difficulties in modeling large, non-planar array antennas are discussed, and an approximate modeling technique is presented. Results for several antenna error conditions are illustrated in far-field profile patterns, earth surface footprint contours, and summary graphs.

  20. DataSpaces: An Interaction and Coordination Framework for Coupled Simulation Workflows

    SciTech Connect

    Docan, Ciprian; Klasky, Scott A; Parashar, Manish

    2010-01-01

    Emerging high-performance distributed computing environments are enabling new end-to-end formulations in science and engineering that involve multiple interacting processes and data-intensive application workflows. For example, current fusion simulation efforts are exploring coupled models and codes that simultaneously simulate separate application processes, such as the core and the edge turbulence, and run on different high performance computing resources. These components need to interact, at runtime, with each other and with services for data monitoring, data analysis and visualization, and data archiving. As a result, they require efficient support for dynamic and flexible couplings and interactions, which remains a challenge. This paper presents Data-Spaces, a flexible interaction and coordination substrate that addresses this challenge. DataSpaces essentially implements a semantically specialized virtual shared space abstraction that can be associatively accessed by all components and services in the application workflow. It enables live data to be extracted from running simulation components, indexes this data online, and then allows it to be monitored, queried and accessed by other components and services via the space using semantically meaningful operators. The underlying data transport is asynchronous, low-overhead and largely memory-to-memory. The design, implementation, and experimental evaluation of DataSpaces using a coupled fusion simulation workflow is presented.

  1. Design space development for the extraction process of Danhong injection using a Monte Carlo simulation method.

    PubMed

    Gong, Xingchu; Li, Yao; Chen, Huali; Qu, Haibin

    2015-01-01

    A design space approach was applied to optimize the extraction process of Danhong injection. Dry matter yield and the yields of five active ingredients were selected as process critical quality attributes (CQAs). Extraction number, extraction time, and the mass ratio of water and material (W/M ratio) were selected as critical process parameters (CPPs). Quadratic models between CPPs and CQAs were developed with determination coefficients higher than 0.94. Active ingredient yields and dry matter yield increased as the extraction number increased. Monte-Carlo simulation with models established using a stepwise regression method was applied to calculate the probability-based design space. Step length showed little effect on the calculation results. Higher simulation number led to results with lower dispersion. Data generated in a Monte Carlo simulation following a normal distribution led to a design space with a smaller size. An optimized calculation condition was obtained with 10,000 simulation times, 0.01 calculation step length, a significance level value of 0.35 for adding or removing terms in a stepwise regression, and a normal distribution for data generation. The design space with a probability higher than 0.95 to attain the CQA criteria was calculated and verified successfully. Normal operating ranges of 8.2-10 g/g of W/M ratio, 1.25-1.63 h of extraction time, and two extractions were recommended. The optimized calculation conditions can conveniently be used in design space development for other pharmaceutical processes. PMID:26020778

  2. 26th Space Simulation Conference Proceedings. Environmental Testing: The Path Forward

    NASA Technical Reports Server (NTRS)

    Packard, Edward A.

    2010-01-01

    Topics covered include: A Multifunctional Space Environment Simulation Facility for Accelerated Spacecraft Materials Testing; Exposure of Spacecraft Surface Coatings in a Simulated GEO Radiation Environment; Gravity-Offloading System for Large-Displacement Ground Testing of Spacecraft Mechanisms; Microscopic Shutters Controlled by cRIO in Sounding Rocket; Application of a Physics-Based Stabilization Criterion to Flight System Thermal Testing; Upgrade of a Thermal Vacuum Chamber for 20 Kelvin Operations; A New Approach to Improve the Uniformity of Solar Simulator; A Perfect Space Simulation Storm; A Planetary Environmental Simulator/Test Facility; Collimation Mirror Segment Refurbishment inside ESA s Large Space; Space Simulation of the CBERS 3 and 4 Satellite Thermal Model in the New Brazilian 6x8m Thermal Vacuum Chamber; The Certification of Environmental Chambers for Testing Flight Hardware; Space Systems Environmental Test Facility Database (SSETFD), Website Development Status; Wallops Flight Facility: Current and Future Test Capabilities for Suborbital and Orbital Projects; Force Limited Vibration Testing of JWST NIRSpec Instrument Using Strain Gages; Investigation of Acoustic Field Uniformity in Direct Field Acoustic Testing; Recent Developments in Direct Field Acoustic Testing; Assembly, Integration and Test Centre in Malaysia: Integration between Building Construction Works and Equipment Installation; Complex Ground Support Equipment for Satellite Thermal Vacuum Test; Effect of Charging Electron Exposure on 1064nm Transmission through Bare Sapphire Optics and SiO2 over HfO2 AR-Coated Sapphire Optics; Environmental Testing Activities and Capabilities for Turkish Space Industry; Integrated Circuit Reliability Simulation in Space Environments; Micrometeoroid Impacts and Optical Scatter in Space Environment; Overcoming Unintended Consequences of Ambient Pressure Thermal Cycling Environmental Tests; Performance and Functionality Improvements to Next Generation

  3. Designing a Distributed Space Systems Simulation in Accordance with the Simulation Interoperability Standards Organization (SISO)

    NASA Technical Reports Server (NTRS)

    Cowen, Benjamin

    2011-01-01

    Simulations are essential for engineering design. These virtual realities provide characteristic data to scientists and engineers in order to understand the details and complications of the desired mission. A standard development simulation package known as Trick is used in developing a source code to model a component (federate in HLA terms). The runtime executive is integrated into an HLA based distributed simulation. TrickHLA is used to extend a Trick simulation for a federation execution, develop a source code for communication between federates, as well as foster data input and output. The project incorporates international cooperation along with team collaboration. Interactions among federates occur throughout the simulation, thereby relying on simulation interoperability. Communication through the semester went on between participants to figure out how to create this data exchange. The NASA intern team is designing a Lunar Rover federate and a Lunar Shuttle federate. The Lunar Rover federate supports transportation across the lunar surface and is essential for fostering interactions with other federates on the lunar surface (Lunar Shuttle, Lunar Base Supply Depot and Mobile ISRU Plant) as well as transporting materials to the desired locations. The Lunar Shuttle federate transports materials to and from lunar orbit. Materials that it takes to the supply depot include fuel and cargo necessary to continue moon-base operations. This project analyzes modeling and simulation technologies as well as simulation interoperability. Each team from participating universities will work on and engineer their own federate(s) to participate in the SISO Spring 2011 Workshop SIW Smackdown in Boston, Massachusetts. This paper will focus on the Lunar Rover federate.

  4. An IBM PC-based math model for space station solar array simulation

    NASA Technical Reports Server (NTRS)

    Emanuel, E. M.

    1986-01-01

    This report discusses and documents the design, development, and verification of a microcomputer-based solar cell math model for simulating the Space Station's solar array Initial Operational Capability (IOC) reference configuration. The array model is developed utilizing a linear solar cell dc math model requiring only five input parameters: short circuit current, open circuit voltage, maximum power voltage, maximum power current, and orbit inclination. The accuracy of this model is investigated using actual solar array on orbit electrical data derived from the Solar Array Flight Experiment/Dynamic Augmentation Experiment (SAFE/DAE), conducted during the STS-41D mission. This simulator provides real-time simulated performance data during the steady state portion of the Space Station orbit (i.e., array fully exposed to sunlight). Eclipse to sunlight transients and shadowing effects are not included in the analysis, but are discussed briefly. Integrating the Solar Array Simulator (SAS) into the Power Management and Distribution (PMAD) subsystem is also discussed.

  5. Simulation of Phased Array Wide-Field of View Radars for Space Surveillance

    NASA Astrophysics Data System (ADS)

    Gelhause, J.; Flegel, S.; Wiedemann, C.; Vorsmann, P.; Stabroth, S.; Wagner, A.; Klinkrad, H.

    2009-03-01

    Europe intends to develop its own Space Surveillance System as part of a more comprehensive Space Situational Awareness System. In the design process, simulations help to determine appropriate system architectures for given user requirements. In order to provide such a simulation environment, the ESA Program for Radar and Optical Observation Forecasting (PROOF) can be applied. The existing model for phased-array radar simulations only takes into account a simplified antenna pattern. A new simulation approach is envisaged within a current PROOF software upgrade. It considers the complete scanning area as a single field-of-view, with borders of the scanning area defined relative to the line of sight, and with path offsets randomly selected to cover the scanning area.

  6. A Coordinated Initialization Process for the Distributed Space Exploration Simulation (DSES)

    NASA Technical Reports Server (NTRS)

    Phillips, Robert; Dexter, Dan; Hasan, David; Crues, Edwin Z.

    2007-01-01

    This document describes the federate initialization process that was developed at the NASA Johnson Space Center with the HIIA Transfer Vehicle Flight Controller Trainer (HTV FCT) simulations and refined in the Distributed Space Exploration Simulation (DSES). These simulations use the High Level Architecture (HLA) IEEE 1516 to provide the communication and coordination between the distributed parts of the simulation. The purpose of the paper is to describe a generic initialization sequence that can be used to create a federate that can: 1. Properly initialize all HLA objects, object instances, interactions, and time management 2. Check for the presence of all federates 3. Coordinate startup with other federates 4. Robustly initialize and share initial object instance data with other federates.

  7. Concept verification of three dimensional free motion simulator for space robot

    NASA Technical Reports Server (NTRS)

    Okamoto, Osamu; Nakaya, Teruomi; Pokines, Brett

    1994-01-01

    In the development of automatic assembling technologies for space structures, it is an indispensable matter to investigate and simulate the movements of robot satellites concerned with mission operation. The movement investigation and simulation on the ground will be effectively realized by a free motion simulator. Various types of ground systems for simulating free motion have been proposed and utilized. Some of these methods are a neutral buoyancy system, an air or magnetic suspension system, a passive suspension balance system, and a free flying aircraft or drop tower system. In addition, systems can be simulated by computers using an analytical model. Each free motion simulation method has limitations and well known problems, specifically, disturbance by water viscosity, limited number of degrees-of-freedom, complex dynamics induced by the attachment of the simulation system, short experiment time, and the lack of high speed super-computer simulation systems, respectively. The basic idea presented here is to realize 3-dimensional free motion. This is achieved by combining a spherical air bearing, a cylindrical air bearing, and a flat air bearing. A conventional air bearing system has difficulty realizing free vertical motion suspension. The idea of free vertical suspension is that a cylindrical air bearing and counter balance weight realize vertical free motion. This paper presents a design concept, configuration, and basic performance characteristics of an innovative free motion simulator. A prototype simulator verifies the feasibility of 3-dimensional free motion simulation.

  8. Investigation of Techniques for Simulating Communications and Tracking Subsystems on Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Deacetis, Louis A.

    1991-01-01

    The need to reduce the costs of Space Station Freedom has resulted in a major redesign and downsizing of the Station in general, and its Communications and Tracking (C&T) components in particular. Earlier models and simulations of the C&T Space-to-Ground Subsystem (SGS) in particular are no longer valid. There thus exists a general need for updated, high fidelity simulations of C&T subsystems. This project explored simulation techniques and methods that might be used in developing new simulations of C&T subsystems, including the SGS. Three requirements were placed on the simulations to be developed: (1) they run on IBM PC/XT/AT compatible computers; (2) they be written in Ada as much as possible; and (3) since control and monitoring of the C&T subsystems will involve communication via a MIL-STD-1553B serial bus, that the possibility of commanding the simulator and monitoring its sensors via that bus be included in the design of the simulator. The result of the project is a prototype of a simulation of the Assembly/Contingency Transponder of the SGS, written in Ada, which can be controlled from another PC via a MIL-STD-1553B bus.

  9. Apu/hydraulic/actuator Subsystem Computer Simulation. Space Shuttle Engineering and Operation Support, Engineering Systems Analysis. [for the space shuttle

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Major developments are examined which have taken place to date in the analysis of the power and energy demands on the APU/Hydraulic/Actuator Subsystem for space shuttle during the entry-to-touchdown (not including rollout) flight regime. These developments are given in the form of two subroutines which were written for use with the Space Shuttle Functional Simulator. The first subroutine calculates the power and energy demand on each of the three hydraulic systems due to control surface (inboard/outboard elevons, rudder, speedbrake, and body flap) activity. The second subroutine incorporates the R. I. priority rate limiting logic which limits control surface deflection rates as a function of the number of failed hydraulic. Typical results of this analysis are included, and listings of the subroutines are presented in appendicies.

  10. Characterization of a lower-body exoskeleton for simulation of space-suited locomotion

    NASA Astrophysics Data System (ADS)

    Carr, Christopher E.; Newman, Dava J.

    2008-02-01

    In a previous analysis of suited and unsuited locomotion energetics, we found evidence that space suits act as springs during running. Video images from the lunar surface suggest that knee torques create, in large part, this spring effect. We hypothesized that a lower-body exoskeleton, properly constructed, could be used to simulate the knee torques of a range of space suits. Here we report characterization of a lower-body exoskeleton. Equivalent spring stiffness of each exoskeleton leg varies as a function of exoskeleton knee angle and load, and the exoskeleton joint-torque relationship closely matches the current NASA space suit, or Extravehicular Mobility Unit, knee torques in form and magnitude. We have built an exoskeleton with two physical non-linear springs, which achieve space-suit like joint-torques. Therefore space-suit legs act as springs, with this effect most pronounced when locomotion requires large changes in knee flexion such as during running.

  11. Object oriented Simulation of Maintenance and Operations for Space Systems (OSMOSSYS)

    NASA Technical Reports Server (NTRS)

    Doran, Linda; Nguyen, Vien; Nguyen, Judy; Blumentritt, Will

    1993-01-01

    This paper describes the NASA/JSC Research Technology Opportunity Program (RTOP) activity to assess the supportability of space systems throughout their life cycles. Supportability analyses for space systems present unique attributes and problems. The OSMOSSYS (Object oriented Simulation of Maintenance and Operations for Space Systems) was developed using object-oriented design concepts to provide NASA an analysis tool which addresses the question `Will a proposed space facility be able to successfully perform the missions for which it is designed?' This model integrates the complete configuration of the system including the reliability and maintainability characteristics of each component, the logistics support, and the mission operations of the facility to assess the success rate of the planned mission(s). Two parallel design processes are being utilized; developing core modules utilizing C++, and incorporating as much code and ideas as possible from existing NASA models. The space station was used as a test case to demonstrate the applicability of the model.

  12. Longevity of Paramecium Cell Clone under Microgravity in Space: Hypergravity Experiment as a Ground Simulation

    NASA Astrophysics Data System (ADS)

    Kato, Y.; Mogami, Y.; Baba, S. A.

    We proposed a space experiment aboard International Space Station to explore the effects of the stay under microgravity on the longevity of Paramecium cell clone (Mogami et al., 1999, Adv. Space Res., 23/12, 2087-2090). Former space experiments in CYTOS and Space Lab D-1 demonstrated that Paramecium proliferated faster in space. In combination with the fact that aging process in Paramecium is largely related to the fission age, the results of the proliferation experiment in space may predict that the longevity of Paramecium decreases when measured by clock time. As a ground simulation of the space experiment, we made an experiment to assess the aging process under hypergravity, which is known to reduce the proliferation rate. As a result, the length of autogamy immaturity increased when measured by clock time, whereas it remained unchanged by fission age (Kato et al., 2003, Zool. Sci., 1373-1380). It is therefore expected that autogamy immaturity in the measure of the clock time would be shortened under microgravity. Since the length of clonal life span of Paramecium is related to the length of autogamy immaturity, the result of hypergravity experiment may support the prediction above; i.e. a decrease in the clonal longevity of Paramecium under microgravity in space.

  13. High temperature antenna development for space shuttle, volume 2. [space environment simulation effects on antenna radiation patterns

    NASA Technical Reports Server (NTRS)

    Kuhlman, E. A.

    1974-01-01

    An S-band antenna system and a group of off-the-shelf aircraft antenna were exposed to temperatures simulating shuttle orbital cold soak and entry heating. Radiation pattern and impedance measurements before and after exposure to the thermal environments were used to evaluate the electrical performance. The results of the electrical and thermal testing are given. Test data showed minor changes in electrical performance and established the capability of these antenna to withstand both the low temperatures of space flight and the high temperatures of entry.

  14. NASA Virtual Glovebox (VBX): Emerging Simulation Technology for Space Station Experiment Design, Development, Training and Troubleshooting

    NASA Technical Reports Server (NTRS)

    Smith, Jeffrey D.; Twombly, I. Alexander; Maese, A. Christopher; Cagle, Yvonne; Boyle, Richard

    2003-01-01

    The International Space Station demonstrates the greatest capabilities of human ingenuity, international cooperation and technology development. The complexity of this space structure is unprecedented; and training astronaut crews to maintain all its systems, as well as perform a multitude of research experiments, requires the most advanced training tools and techniques. Computer simulation and virtual environments are currently used by astronauts to train for robotic arm manipulations and extravehicular activities; but now, with the latest computer technologies and recent successes in areas of medical simulation, the capability exists to train astronauts for more hands-on research tasks using immersive virtual environments. We have developed a new technology, the Virtual Glovebox (VGX), for simulation of experimental tasks that astronauts will perform aboard the Space Station. The VGX may also be used by crew support teams for design of experiments, testing equipment integration capability and optimizing the procedures astronauts will use. This is done through the 3D, desk-top sized, reach-in virtual environment that can simulate the microgravity environment in space. Additional features of the VGX allow for networking multiple users over the internet and operation of tele-robotic devices through an intuitive user interface. Although the system was developed for astronaut training and assisting support crews, Earth-bound applications, many emphasizing homeland security, have also been identified. Examples include training experts to handle hazardous biological and/or chemical agents in a safe simulation, operation of tele-robotic systems for assessing and diffusing threats such as bombs, and providing remote medical assistance to field personnel through a collaborative virtual environment. Thus, the emerging VGX simulation technology, while developed for space- based applications, can serve a dual use facilitating homeland security here on Earth.

  15. Quasi-steady state microgravity analysis for the Space Station Freedom using multibody dynamic simulator

    NASA Astrophysics Data System (ADS)

    Henry, Alan; Chipman, Richard; Hu, Tsay-Hsin G.

    1993-04-01

    An efficient simulation has been successfully developed to analyze the dynamics and control of spacecraft comprised of multiple rigid/flexible articulating bodies. The implementation employs a typical order-(N) multi-body dynamic approach coupled with a state-of-the-art symbolic equation optimization algorithm. The simulation has been modified to compute the instantaneous acceleration at any arbitrary location on an orbiting body. Gravity gradient, rotational and aerodynamic accelerations contribute to the total quasi-steady state microgravity environment. The simulation is used to evaluate the microgravity levels within Space Station Freedom to demonstrate the excellent microgravity environment which it can provide for scientific experiments.

  16. Better Space Construction Decisions by Instructional Program Simulation Utilizing the Generalized Academic Simulation Programs.

    ERIC Educational Resources Information Center

    Apker, Wesley

    This school district utilized the generalized academic simulation programs (GASP) to assist in making decisions regarding the kinds of facilities that should be constructed at Pilchuck Senior High School. Modular scheduling was one of the basic educational parameters used in determining the number and type of facilities needed. The objectives of…

  17. Integrated dynamic analysis simulation of space stations with controllable solar array

    NASA Technical Reports Server (NTRS)

    Heinrichs, J. A.; Fee, J. J.

    1972-01-01

    A methodology is formulated and presented for the integrated structural dynamic analysis of space stations with controllable solar arrays and non-controllable appendages. The structural system flexibility characteristics are considered in the dynamic analysis by a synthesis technique whereby free-free space station modal coordinates and cantilever appendage coordinates are inertially coupled. A digital simulation of this analysis method is described and verified by comparison of interaction load solutions with other methods of solution. Motion equations are simulated for both the zero gravity and artificial gravity (spinning) orbital conditions. Closed loop controlling dynamics for both orientation control of the arrays and attitude control of the space station are provided in the simulation by various generic types of controlling systems. The capability of the simulation as a design tool is demonstrated by utilizing typical space station and solar array structural representations and a specific structural perturbing force. Response and interaction load solutions are presented for this structural configuration and indicate the importance of using an integrated type analysis for the predictions of structural interactions.

  18. Applying simulation model to uniform field space charge distribution measurements by the PEA method

    SciTech Connect

    Liu, Y.; Salama, M.M.A.

    1996-12-31

    Signals measured under uniform fields by the Pulsed Electroacoustic (PEA) method have been processed by the deconvolution procedure to obtain space charge distributions since 1988. To simplify data processing, a direct method has been proposed recently in which the deconvolution is eliminated. However, the surface charge cannot be represented well by the method because the surface charge has a bandwidth being from zero to infinity. The bandwidth of the charge distribution must be much narrower than the bandwidths of the PEA system transfer function in order to apply the direct method properly. When surface charges can not be distinguished from space charge distributions, the accuracy and the resolution of the obtained space charge distributions decrease. To overcome this difficulty a simulation model is therefore proposed. This paper shows their attempts to apply the simulation model to obtain space charge distributions under plane-plane electrode configurations. Due to the page limitation for the paper, the charge distribution originated by the simulation model is compared to that obtained by the direct method with a set of simulated signals.

  19. Being an "Agent Provocateur": Utilising Online Spaces for Teacher Professional Development in Virtual Simulation Games

    ERIC Educational Resources Information Center

    deNoyelles, Aimee; Raider-Roth, Miriam

    2016-01-01

    This article details the results of an action research study which investigated how teachers used online learning community spaces to develop and support their teaching and learning of the Jewish Court of All Time (JCAT), a web-mediated, character-playing, simulation game that engages participants with social, historical and cultural curricula.…

  20. Computer-Based Space Shuttle Simulation Teaches Children about the Sciences and Themselves.

    ERIC Educational Resources Information Center

    Roche, Barbara J.

    The space shuttle simulation, Totally Enclosed Modular Environment (TEME), was developed as a means for students to study group dynamics and how people adapt to their environment. This paper highlights features of this project. Topics reviewed include: (1) its historical development (tracing its origins as a year-long ecology course to current…

  1. Temperature control simulation for a microwave transmitter cooling system. [deep space network

    NASA Technical Reports Server (NTRS)

    Yung, C. S.

    1980-01-01

    The thermal performance of a temperature control system for the antenna microwave transmitter (klystron tube) of the Deep Space Network antenna tracking system is discussed. In particular the mathematical model is presented along with the details of a computer program which is written for the system simulation and the performance parameterization. Analytical expressions are presented.

  2. Simulation of the Effect of Realistic Space Vehicle Environments on Binary Metal Alloys

    NASA Technical Reports Server (NTRS)

    Westra, Douglas G.; Poirier, D. R.; Heinrich, J. C.; Sung, P. K.; Felicelli, S. D.; Phelps, Lisa (Technical Monitor)

    2001-01-01

    Simulations that assess the effect of space vehicle acceleration environments on the solidification of Pb-Sb alloys are reported. Space microgravity missions are designed to provide a near zero-g acceleration environment for various types of scientific experiments. Realistically. these space missions cannot provide a perfect environment. Vibrations caused by crew activity, on-board experiments, support systems stems (pumps, fans, etc.), periodic orbital maneuvers, and water dumps can all cause perturbations to the microgravity environment. In addition, the drag on the space vehicle is a source of acceleration. Therefore, it is necessary to predict the impact of these vibration-perturbations and the steady-state drag acceleration on the experiments. These predictions can be used to design mission timelines. so that the experiment is run during times that the impact of the acceleration environment is acceptable for the experiment of interest. The simulations reported herein were conducted using a finite element model that includes mass, species, momentum, and energy conservation. This model predicts the existence of "channels" within the processing mushy zone and subsequently "freckles" within the fully processed solid, which are the effects of thermosolutal convection. It is necessary to mitigate thermosolutal convection during space experiments of metal alloys, in order to study and characterize diffusion-controlled transport phenomena (microsegregation) that are normally coupled with macrosegregation. The model allows simulation of steady-state and transient acceleration values ranging from no acceleration (0 g). to microgravity conditions (10(exp -6) to 10(exp -3) g), to terrestrial gravity conditions (1 g). The transient acceleration environments simulated were from the STS-89 SpaceHAB mission and from the STS-94 SpaceLAB mission. with on-orbit accelerometer data during different mission periods used as inputs for the simulation model. Periods of crew exercise

  3. Multiple-body simulation with emphasis on integrated Space Shuttle vehicle

    NASA Astrophysics Data System (ADS)

    Chiu, Ing-Tsau

    1993-02-01

    The program to obtain intergrid communications - Pegasus - was enhanced to make better use of computing resources. Periodic block tridiagonal and penta-diagonal diagonal routines in OVERFLOW were modified to use a better algorithm to speed up the calculation for grids with periodic boundary conditions. Several programs were added to collar grid tools and a user friendly shell script was developed to help users generate collar grids. User interface for HYPGEN was modified to cope with the changes in HYPGEN. ET/SRB attach hardware grids were added to the computational model for the space shuttle and is currently incorporated into the refined shuttle model jointly developed at Johnson Space Center and Ames Research Center. Flow simulation for the integrated space shuttle vehicle at flight Reynolds number was carried out and compared with flight data as well as the earlier simulation for wind tunnel Reynolds number.

  4. A Laboratory Simulation of Solar Wind Space Weathering for Near-Earth Asteroids

    NASA Astrophysics Data System (ADS)

    Hargrove, Kelsey; Smith, C. W.; Campins, H.; Britt, D.

    2009-12-01

    A significant, yet unanswered, question in the area of Near-Earth-Asteroid research is the effect solar wind has on the surface characteristics of these bodies. It would benefit the scientific community to better understand space weathering as it is important for all remote sensing studies of asteroid surfaces (Clark et al. 2002). We propose to replicate the electron component of our sun's solar wind on samples of ordinary chondrite meteorites using a Scanning Electron Microscope (SEM). Simulating the flux of charged particles (electrons) an asteroid at one astronomical unit (1 AU) would receive, we will use a range of time-scales and characterize any effects because rates of space weathering, at this time, are poorly understood. To characterize any changes in optical properties, and chemical or mineralogical structure, the meteorite samples will be tested spectrally and optically before and after the solar wind space weathering simulation.

  5. CFD Simulation of the Space Shuttle Launch Vehicle with Booster Separation Motor and Reaction Control Plumes

    NASA Technical Reports Server (NTRS)

    Gea, L. M.; Vicker, D.

    2006-01-01

    The primary objective of this paper is to demonstrate the capability of computational fluid dynamics (CFD) to simulate a very complicated flow field encountered during the space shuttle ascent. The flow field features nozzle plumes from booster separation motor (BSM) and reaction control system (RCS) jets with a supersonic incoming cross flow at speed of Mach 4. The overset Navier-Stokes code OVERFLOW, was used to simulate the flow field surrounding the entire space shuttle launch vehicle (SSLV) with high geometric fidelity. The variable gamma option was chosen due to the high temperature nature of nozzle flows and different plume species. CFD predicted Mach contours are in good agreement with the schlieren photos from wind tunnel test. Flow fields are discussed in detail and the results are used to support the debris analysis for the space shuttle Return To Flight (RTF) task.

  6. The study on the image quality of varied line spacing plane grating by computer simulation

    NASA Astrophysics Data System (ADS)

    Sun, Shouqiang; Zhang, Weiping; Liu, Lei; Yang, Qingyi

    2014-11-01

    Varied line spacing plane gratings have the features of self-focusing , aberration-reduced and easy manufacturing ,which are widely applied in synchrotron radiation, plasma physics and space astronomy, and other fields. In the study of diffracting imaging , the optical path function is expanded into maclaurin series, aberrations are expressed by the coefficient of series, most of the aberration coefficients are similar and the category is more, can't directly reflects image quality in whole. The paper will study on diffraction imaging of the varied line spacing plane gratings by using computer simulation technology, for a method judging the image quality visibly. In this paper, light beam from some object points on the same object plane are analyzed and simulated by ray trace method , the evaluation function is set up, which can fully scale the image quality. In addition, based on the evaluation function, the best image plane is found by search algorithm .

  7. Multiple-body simulation with emphasis on integrated Space Shuttle vehicle

    NASA Technical Reports Server (NTRS)

    Chiu, Ing-Tsau

    1993-01-01

    The program to obtain intergrid communications - Pegasus - was enhanced to make better use of computing resources. Periodic block tridiagonal and penta-diagonal diagonal routines in OVERFLOW were modified to use a better algorithm to speed up the calculation for grids with periodic boundary conditions. Several programs were added to collar grid tools and a user friendly shell script was developed to help users generate collar grids. User interface for HYPGEN was modified to cope with the changes in HYPGEN. ET/SRB attach hardware grids were added to the computational model for the space shuttle and is currently incorporated into the refined shuttle model jointly developed at Johnson Space Center and Ames Research Center. Flow simulation for the integrated space shuttle vehicle at flight Reynolds number was carried out and compared with flight data as well as the earlier simulation for wind tunnel Reynolds number.

  8. Instrumentation for Ground-Based Testing in Simulated Space and Planetary Conditions

    NASA Astrophysics Data System (ADS)

    Kleiman, Jacob; Horodetsky, Sergey; Issoupov, Vitali

    This paper is an overview of instrumentation developed and created by ITL Inc. for simulated testing and performance evaluation of spacecraft materials, structures, mechanisms, assemblies and components in different space and planetary environments. The LEO Space Environment Simulator allows simulation of the synergistic effect of ultra-high vacuum conditions, 5 eV neutral atomic oxygen beams, Vacuum-Ultraviolet (VUV) and Near-Ultraviolet (NUV) radiation, and temperature conditions. The simulated space environmental conditions can be controlled in-situ using a quadruple mass-spectrometer, Time-of-Flight technique, as well as Quartz Crystal Microbalance sensors. The new NUV System is capable of delivering an NUV power intensity of up to 10 Equivalent Suns. The design of the system uses horizontal orientation of the 5 kW Mercury lamp, focusing of NUV radiation is achieved due to a parabolic reflector. To address the Lunar/Martian surface environments, the Planetary Environmental Simulator/Test Facility has been developed and built to allow for physical evaluation of the effects of the Lunar/Martian dust environments in conjunction with other factors (ultra-high vacuum or planetary atmospheric conditions, VUV/NUV radiation, thermal cycling, and darkness). The ASTM E 595/ASTM E 1559 Outgassing Test Facility provides the means for the outgassing test of materials with the objective to select materials with low outgassing properties for spacecraft use and allows to determine the following outgassing parameters: Total Mass Loss, Collected Volatile Condensable Materials, and Water Vapor Regained.

  9. LABORATORY TESTING TO SIMULATE VAPOR SPACE CORROSION IN RADIOACTIVE WASTE STORAGE TANKS

    SciTech Connect

    Wiersma, B.; Garcia-Diaz, B.; Gray, J.

    2013-08-30

    Radioactive liquid waste has been stored in underground carbon steel tanks for nearly 70 years at the Hanford nuclear facility. Vapor space corrosion of the tank walls has emerged as an ongoing challenge to overcome in maintaining the structural integrity of these tanks. The interaction between corrosive and inhibitor species in condensates/supernates on the tank wall above the liquid level, and their interaction with vapor phase constituents as the liquid evaporates from the tank wall influences the formation of corrosion products and the corrosion of the carbon steel. An effort is underway to gain an understanding of the mechanism of vapor space corrosion. Localized corrosion, in the form of pitting, is of particular interest in the vapor space. CPP testing was utilized to determine the susceptibility of the steel in a simulated vapor space environment. The tests also investigated the impact of ammonia gas in the vapor space area on the corrosion of the steel. Vapor space coupon tests were also performed to investigate the evolution of the corrosion products during longer term exposures. These tests were also conducted at vapor space ammonia levels of 50 and 550 ppm NH{sub 3} (0.005, and 0.055 vol.%) in air. Ammonia was shown to mitigate vapor space corrosion.

  10. A Fast-Time Simulation Environment for Airborne Merging and Spacing Research

    NASA Technical Reports Server (NTRS)

    Bussink, Frank J. L.; Doble, Nathan A.; Barmore, Bryan E.; Singer, Sharon

    2005-01-01

    As part of NASA's Distributed Air/Ground Traffic Management (DAG-TM) effort, NASA Langley Research Center is developing concepts and algorithms for merging multiple aircraft arrival streams and precisely spacing aircraft over the runway threshold. An airborne tool has been created for this purpose, called Airborne Merging and Spacing for Terminal Arrivals (AMSTAR). To evaluate the performance of AMSTAR and complement human-in-the-loop experiments, a simulation environment has been developed that enables fast-time studies of AMSTAR operations. The environment is based on TMX, a multiple aircraft desktop simulation program created by the Netherlands National Aerospace Laboratory (NLR). This paper reviews the AMSTAR concept, discusses the integration of the AMSTAR algorithm into TMX and the enhancements added to TMX to support fast-time AMSTAR studies, and presents initial simulation results.

  11. Precision Analysis Based on Complicated Error Simulation for the Orbit Determination with the Space Tracking Ship

    NASA Astrophysics Data System (ADS)

    Lei, YANG; Caifa, GUO; Zhengxu, DAI; Xiaoyong, LI; Shaolin, WANG

    2016-02-01

    The space tracking ship is a moving platform in the TT&C network. The orbit determination precision of the ship plays a key role in the TT&C mission. Based on the measuring data obtained by the ship-borne equipments, the paper presents the mathematic models of the complicated error from the space tracking ship, which can separate the random error and the correction residual error with secondary low frequency from the complicated error. An error simulation algorithm is proposed to analyze the orbit determination precision based on the two set of the different equipments. With this algorithm, a group of complicated error can be simulated from a measured sample. The simulated error groups can meet the requirements of sufficient complicated error for the equipment tests before the mission execution, which is helpful to the practical application.

  12. General purpose simulation system of the data management system for Space Shuttle mission 18

    NASA Technical Reports Server (NTRS)

    Bengtson, N. M.; Mellichamp, J. M.; Smith, O. C.

    1976-01-01

    A simulation program for the flow of data through the Data Management System of Spacelab and Space Shuttle was presented. The science, engineering, command and guidance, navigation and control data were included. The programming language used was General Purpose Simulation System V (OS). The science and engineering data flow was modeled from its origin at the experiments and subsystems to transmission from Space Shuttle. Command data flow was modeled from the point of reception onboard and from the CDMS Control Panel to the experiments and subsystems. The GN&C data flow model handled data between the General Purpose Computer and the experiments and subsystems. Mission 18 was the particular flight chosen for simulation. The general structure of the program is presented, followed by a user's manual. Input data required to make runs are discussed followed by identification of the output statistics. The appendices contain a detailed model configuration, program listing and results.

  13. Simulations of the MATROSHKA experiment at the international space station using PHITS.

    PubMed

    Sihver, L; Sato, T; Puchalska, M; Reitz, G

    2010-08-01

    Concerns about the biological effects of space radiation are increasing rapidly due to the perspective of long-duration manned missions, both in relation to the International Space Station (ISS) and to manned interplanetary missions to Moon and Mars in the future. As a preparation for these long-duration space missions, it is important to ensure an excellent capability to evaluate the impact of space radiation on human health, in order to secure the safety of the astronauts/cosmonauts and minimize their risks. It is therefore necessary to measure the radiation load on the personnel both inside and outside the space vehicles and certify that organ- and tissue-equivalent doses can be simulated as accurate as possible. In this paper, simulations are presented using the three-dimensional Monte Carlo Particle and Heavy-Ion Transport code System (PHITS) (Iwase et al. in J Nucl Sci Tech 39(11):1142-1151, 2002) of long-term dose measurements performed with the European Space Agency-supported MATROSHKA (MTR) experiment (Reitz and Berger in Radiat Prot Dosim 120:442-445, 2006). MATROSHKA is an anthropomorphic phantom containing over 6,000 radiation detectors, mimicking a human head and torso. The MTR experiment, led by the German Aerospace Center (DLR), was launched in January 2004 and has measured the absorbed doses from space radiation both inside and outside the ISS. Comparisons of simulations with measurements outside the ISS are presented. The results indicate that PHITS is a suitable tool for estimation of doses received from cosmic radiation and for study of the shielding of spacecraft against cosmic radiation. PMID:20496176

  14. Sun-, Earth- and Moon-integrated simulation ray tracing for observation from space using ASAP

    NASA Astrophysics Data System (ADS)

    Breault, Robert P.; Kim, Sug-Whan; Yang, Seul-Ki; Ryu, Dongok

    2014-09-01

    The Space Optics Laboratory at Yonsei University, Korea, in cooperation with Breault Research Organization (BRO) in Tucson, Arizona, have invested significant research and development efforts into creating large scale ray tracing techniques for simulating "reflected" light from the earth with an artificial satellite. This presentation describes a complex model that combines the sun, the earth and an orbiting optical instrument combined into a real scale nonsequential ray tracing computation using BRO's Advanced Systems Analysis Program, ASAP®. The Sun is simulated as a spherically emitting light source of 695,500 km in diameter. The earth also is simulated as a sphere with its characteristics defined as target objects to be observed and defined with appropriate optical properties. They include the atmosphere, land and ocean elements, each having distinctive optical properties expressed by single or combined characteristics of refraction, reflection and scattering. The current embodiment has an atmospheric model consisting of 33 optical layers, a land model with 6 different albedos and the ocean simulated with sun glint characteristics. A space-based optical instrument, with an actual opto-mechanical prescription, is defined in an orbit of several hundreds to thousands of miles in altitude above the earth's surface. The model allows for almost simultaneous evaluations of the imaging and radiometric performances of the instrument. Several real-life application results are reported suggesting that this simulation approach not only provides valuable information that can greatly improve the space optical instrument performance but also provides a simulation tool for scientists to evaluate all phases of a space mission.

  15. Simulating the daylight performance of fenestration systems and spaces of arbitrary complexity: The IDC method

    NASA Astrophysics Data System (ADS)

    Papamichael, K.; Beltran, L.

    1993-04-01

    A new method to simulate the daylight performance of fenestration systems and spaces is presented. This new method, named IDC (Integration of Directional Coefficients), allows the simulation of the daylight performance of fenestration systems and spaces of arbitrary complexity, under any sun, sky, and ground conditions. The IDC method is based on the combination of scale model photometry and computer-based simulation. Physical scale models are used to experimentally determine a comprehensive set of 'directional illuminance coefficients' at reference points of interest, which are then used in analytical, computer-based routines, to determine daylight factors or actual daylight illuminance values under any sun, sky, and ground conditions. The main advantage of the IDC method is its applicability to any optically complex environment. Moreover, the computer-based analytical routines are fast enough to allow for hourly simulation of the daylight performance over the course of an entire year. However, the method requires appropriate experimental facilities for the determination of the Directional Coefficients. The IDC method has been implemented and used successfully in inter-validation procedures with various daylight simulation computer programs. Currently, it is used to simulate the daylight performance of fenestration systems that incorporate optically complex components, such as Venetian blinds, optically treated light shelves and light pipes.

  16. Neutral Buoyancy Simulator: MSFC-Langley joint test of large space structures component assembly:

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Once the United States' space program had progressed from Earth's orbit into outerspace, the prospect of building and maintaining a permanent presence in space was realized. To accomplish this feat, NASA launched a temporary workstation, Skylab, to discover the effects of low gravity and weightlessness on the human body, and also to develop tools and equipment that would be needed in the future to build and maintain a more permanent space station. The structures, techniques, and work schedules had to be carefully designed to fit this unique construction site. The components had to be lightweight for transport into orbit, yet durable. The station also had to be made with removable parts for easy servicing and repairs by astronauts. All of the tools necessary for service and repairs had to be designed for easy manipulation by a suited astronaut. And construction methods had to be efficient due to limited time the astronauts could remain outside their controlled environment. In lieu of all the specific needs for this project, an environment on Earth had to be developed that could simulate a low gravity atmosphere. A Neutral Buoyancy Simulator (NBS) was constructed by NASA Marshall Space Flight Center (MSFC) in 1968. Since then, NASA scientists have used this facility to understand how humans work best in low gravity and also provide information about the different kinds of structures that can be built. With the help of the NBS, building a space station became more of a reality. In a joint venture between NASA/Langley Research Center in Hampton, VA and MSFC, the Assembly Concept for Construction of Erectable Space Structures (ACCESS) was developed and demonstrated at MSFC's NBS. The primary objective of this experiment was to test the ACCESS structural assembly concept for suitability as the framework for larger space structures and to identify ways to improve the productivity of space construction. Pictured is a demonstration of ACCESS.

  17. An expert system for simulating electric loads aboard Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Kukich, George; Dolce, James L.

    1990-01-01

    Space Station Freedom will provide an infrastructure for space experimentation. This environment will feature regulated access to any resources required by an experiment. Automated systems are being developed to manage the electric power so that researchers can have the flexibility to modify their experiment plan for contingencies or for new opportunities. To define these flexible power management characteristics for Space Station Freedom, a simulation is required that captures the dynamic nature of space experimentation; namely, an investigator is allowed to restructure his experiment and to modify its execution. This changes the energy demands for the investigator's range of options. An expert system competent in the domain of cryogenic fluid management experimentation was developed. It will be used to help design and test automated power scheduling software for Freedom's electric power system. The expert system allows experiment planning and experiment simulation. The former evaluates experimental alternatives and offers advice on the details of the experiment's design. The latter provides a real-time simulation of the experiment replete with appropriate resource consumption.

  18. A Large Space Simulator (8M X L10M) in Korea

    NASA Astrophysics Data System (ADS)

    Moon, Guee-Won; Cho, Hyokjin; Lee, Sang-Hoon; Seo, Hee-Jun; Choi, Seok-Weon

    2004-08-01

    According to the national space program in Korea, the power dissipation of the future large satellites will be max. 5kW. This power may either be uniformly distributed over the area of the satellite, or it may be concentrated on some faces with a maximum power of 0.5 kW/m2 . To verify the performance of those future satellites under the space environmental conditions, KARI(Korea Aerospace Research Institute) is designing a large space simulator, in which a vacuum and thermal environment is created to simulate the conditions in space. The working pressure inside the vessel will be less than 10-5 torr with two cryopumps (2x60,000l/s). Especially, cryogenic temperature condtions will be simulated by shrouds covering the inside surface of the facility. These shrouds will be made of stainless steel(SUS 304L) and supported by the vessel. The shroud surfaces will be cooled to 77K by liquid nitrogen(LN2), and heated to 423K for bake-out by halogen lamps, which are uniformly distributed all over the internal surface of the shroud. In this paper, we will discuss about our future large thermal vacuum system.

  19. Space station Simulation Computer System (SCS) study for NASA/MSFC. Volume 1: Overview and summary

    NASA Technical Reports Server (NTRS)

    1989-01-01

    NASA's Space Station Freedom Program (SSFP) planning efforts have identified a need for a payload training simulator system to serve as both a training facility and as a demonstrator to validate operational concepts. The envisioned Marshall Space Flight Center (MSFC) Payload Training Complex (PTC) required to meet this need will train the space station payload scientists, station scientists, and ground controllers to operate the wide variety of experiments that will be onboard the Space Station Freedom. The Simulation Computer System (SCS) is the computer hardware, software, and workstations that will support the Payload Training Complex at MSFC. The purpose of this SCS study is to investigate issues related to the SCS, alternative requirements, simulator approaches, and state-of-the-art technologies to develop candidate concepts and designs. This study was performed August 1988 to October 1989. Thus, the results are based on the SSFP August 1989 baseline, i.e., pre-Langley configuration/budget review (C/BR) baseline. Some terms, e.g., combined trainer, are being redefined. An overview of the study activities and a summary of study results are given here.

  20. Proximity Operations for Space Situational Awareness Spacecraft Rendezvous and Maneuvering using Numerical Simulations and Fuzzy Logic

    NASA Astrophysics Data System (ADS)

    Carrico, T.; Langster, T.; Carrico, J.; Alfano, S.; Loucks, M.; Vallado, D.

    The authors present several spacecraft rendezvous and close proximity maneuvering techniques modeled with a high-precision numerical integrator using full force models and closed loop control with a Fuzzy Logic intelligent controller to command the engines. The authors document and compare the maneuvers, fuel use, and other parameters. This paper presents an innovative application of an existing capability to design, simulate and analyze proximity maneuvers; already in use for operational satellites performing other maneuvers. The system has been extended to demonstrate the capability to develop closed loop control laws to maneuver spacecraft in close proximity to another, including stand-off, docking, lunar landing and other operations applicable to space situational awareness, space based surveillance, and operational satellite modeling. The fully integrated end-to-end trajectory ephemerides are available from the authors in electronic ASCII text by request. The benefits of this system include: A realistic physics-based simulation for the development and validation of control laws A collaborative engineering environment for the design, development and tuning of spacecraft law parameters, sizing actuators (i.e., rocket engines), and sensor suite selection. An accurate simulation and visualization to communicate the complexity, criticality, and risk of spacecraft operations. A precise mathematical environment for research and development of future spacecraft maneuvering engineering tasks, operational planning and forensic analysis. A closed loop, knowledge-based control example for proximity operations. This proximity operations modeling and simulation environment will provide a valuable adjunct to programs in military space control, space situational awareness and civil space exploration engineering and decision making processes.

  1. Standard Lunar Regolith Simulants for Space Resource Utilization Technologies Development: Effects of Materials Choices

    NASA Technical Reports Server (NTRS)

    Sibille, Laurent; Carpenter, Paul K.

    2006-01-01

    As NASA turns its exploration ambitions towards the Moon once again, the research and development of new technologies for lunar operations face the challenge of meeting the milestones of a fastpace schedule, reminiscent of the 1960's Apollo program. While the lunar samples returned by the Apollo and Luna missions have revealed much about the Moon, these priceless materials exist in too scarce quantities to be used for technology development and testing. The need for mineral materials chosen to simulate the characteristics of lunar regoliths is a pressing issue that is being addressed today through the collaboration of scientists, engineers and NASA program managers. The issue of reproducing the properties of lunar regolith for research and technology development purposes was addressed by the recently held 2005 Workshop on Lunar Regolith Simulant Materials at Marshall Space Flight Center. The recommendation of the workshop of establishing standard simulant materials to be used in lunar technology development and testing will be discussed here with an emphasis on space resource utilization. The variety of techniques and the complexity of functional interfaces make these simulant choices critical in space resource utilization.

  2. New Geant4 based simulation tools for space radiation shielding and effects analysis

    NASA Astrophysics Data System (ADS)

    Santina, G.; Nieminen, P.; Evansa, H.; Daly, E.; Lei, F.; Truscott, P. R.; Dyer, C. S.; Quaghebeur, B.; Heynderickx, D.

    2003-09-01

    We present here a set of tools for space applications based on the Geant4 simulation toolkit, developed for radiation shielding analysis as part of the European Space Agency (ESA) activities in the Geant4 collaboration. The Sector Shielding Analysis Tool (SSAT) and the Materials and Geometry Association (MGA) utility will first be described. An overview of the main features of the MUlti-LAyered Shielding SImulation Software tool (MULASSIS) will follow. The tool is specifically addressed to shielding optimization and effects analysis. A Java interface allows the use of MULASSIS by the space community over the World Wide Web, integrated in the widely used SPENVIS package. The analysis of the particle transport output provides automatically radiation fluence, ionising and NIEL dose and effects analysis. ESA is currently funding the porting of this tools to a lowcost parallel processor facility using the GRID technology under the ESA SpaceGRID initiative. Other Geant4 present and future projects will be presented related to the study of space environment effects on spacecrafts.

  3. Monte Carlo simulations for the space radiation superconducting shield project (SR2S)

    NASA Astrophysics Data System (ADS)

    Vuolo, M.; Giraudo, M.; Musenich, R.; Calvelli, V.; Ambroglini, F.; Burger, W. J.; Battiston, R.

    2016-02-01

    Astronauts on deep-space long-duration missions will be exposed for long time to galactic cosmic rays (GCR) and Solar Particle Events (SPE). The exposure to space radiation could lead to both acute and late effects in the crew members and well defined countermeasures do not exist nowadays. The simplest solution given by optimized passive shielding is not able to reduce the dose deposited by GCRs below the actual dose limits, therefore other solutions, such as active shielding employing superconducting magnetic fields, are under study. In the framework of the EU FP7 SR2S Project - Space Radiation Superconducting Shield - a toroidal magnetic system based on MgB2 superconductors has been analyzed through detailed Monte Carlo simulations using Geant4 interface GRAS. Spacecraft and magnets were modeled together with a simplified mechanical structure supporting the coils. Radiation transport through magnetic fields and materials was simulated for a deep-space mission scenario, considering for the first time the effect of secondary particles produced in the passage of space radiation through the active shielding and spacecraft structures. When modeling the structures supporting the active shielding systems and the habitat, the radiation protection efficiency of the magnetic field is severely decreasing compared to the one reported in previous studies, when only the magnetic field was modeled around the crew. This is due to the large production of secondary radiation taking place in the material surrounding the habitat.

  4. Monte Carlo simulations for the space radiation superconducting shield project (SR2S).

    PubMed

    Vuolo, M; Giraudo, M; Musenich, R; Calvelli, V; Ambroglini, F; Burger, W J; Battiston, R

    2016-02-01

    Astronauts on deep-space long-duration missions will be exposed for long time to galactic cosmic rays (GCR) and Solar Particle Events (SPE). The exposure to space radiation could lead to both acute and late effects in the crew members and well defined countermeasures do not exist nowadays. The simplest solution given by optimized passive shielding is not able to reduce the dose deposited by GCRs below the actual dose limits, therefore other solutions, such as active shielding employing superconducting magnetic fields, are under study. In the framework of the EU FP7 SR2S Project - Space Radiation Superconducting Shield--a toroidal magnetic system based on MgB2 superconductors has been analyzed through detailed Monte Carlo simulations using Geant4 interface GRAS. Spacecraft and magnets were modeled together with a simplified mechanical structure supporting the coils. Radiation transport through magnetic fields and materials was simulated for a deep-space mission scenario, considering for the first time the effect of secondary particles produced in the passage of space radiation through the active shielding and spacecraft structures. When modeling the structures supporting the active shielding systems and the habitat, the radiation protection efficiency of the magnetic field is severely decreasing compared to the one reported in previous studies, when only the magnetic field was modeled around the crew. This is due to the large production of secondary radiation taking place in the material surrounding the habitat. PMID:26948010

  5. Nineteenth Space Simulation Conference Cost Effective Testing for the 21st Century

    NASA Technical Reports Server (NTRS)

    Stecher, Joseph L., III (Compiler)

    1997-01-01

    The Nineteenth Space Simulation Conference was hosted by the Institute of Environmental Sciences (IES) and was supported by the American Institute of Aeronautics and Astronautics (AIAA), the American Society for Testing and Materials (ASTM), the National Aeronautics and Space Administration (NASA), and the Canadian Space Agency (CSA). These proceedings attest to the scope of the conference; papers were presented on topics as diverse as shuttle payload contamination effects, simulating Martian environment for testing, to state-of-the-art 6-axis hydraulic shaker testing system. A good cross section of the international aerospace community took advantage of the opportunity to get together, to share their experiences, and to participate in the technical sessions. The two invited keynote speakers were Lieutenant General Malcolm O'Neill (USA, Ret.), past Director of BMDO, and Mr. Thomas Coughlin, Space Programs Manager at the Johns Hopkins University Applied Physics Laboratory. Their most informative and thought provoking talks were on cost effective testing approaches in Defense Department programs for the 21st Century and what part testing plays in the faster, better, cheaper approach for the NEAR and APL programs, respectively. The preceding tutorial and the tour of the Garber Facility of the Air and Space Museum rounded out a comprehensive conference contributing to the knowledge base vital to cost effective testing for successful missions into the 21st Century.

  6. An adaptively refined phase-space element method for cosmological simulations and collisionless dynamics

    NASA Astrophysics Data System (ADS)

    Hahn, Oliver; Angulo, Raul E.

    2016-01-01

    N-body simulations are essential for understanding the formation and evolution of structure in the Universe. However, the discrete nature of these simulations affects their accuracy when modelling collisionless systems. We introduce a new approach to simulate the gravitational evolution of cold collisionless fluids by solving the Vlasov-Poisson equations in terms of adaptively refineable `Lagrangian phase-space elements'. These geometrical elements are piecewise smooth maps between Lagrangian space and Eulerian phase-space and approximate the continuum structure of the distribution function. They allow for dynamical adaptive splitting to accurately follow the evolution even in regions of very strong mixing. We discuss in detail various one-, two- and three-dimensional test problems to demonstrate the performance of our method. Its advantages compared to N-body algorithms are: (i) explicit tracking of the fine-grained distribution function, (ii) natural representation of caustics, (iii) intrinsically smooth gravitational potential fields, thus (iv) eliminating the need for any type of ad hoc force softening. We show the potential of our method by simulating structure formation in a warm dark matter scenario. We discuss how spurious collisionality and large-scale discreteness noise of N-body methods are both strongly suppressed, which eliminates the artificial fragmentation of filaments. Therefore, we argue that our new approach improves on the N-body method when simulating self-gravitating cold and collisionless fluids, and is the first method that allows us to explicitly follow the fine-grained evolution in six-dimensional phase-space.

  7. A Strategy for Autogeneration of Space Shuttle Ground Processing Simulation Models for Project Makespan Estimations

    NASA Technical Reports Server (NTRS)

    Madden, Michael G.; Wyrick, Roberta; O'Neill, Dale E.

    2005-01-01

    Space Shuttle Processing is a complicated and highly variable project. The planning and scheduling problem, categorized as a Resource Constrained - Stochastic Project Scheduling Problem (RC-SPSP), has a great deal of variability in the Orbiter Processing Facility (OPF) process flow from one flight to the next. Simulation Modeling is a useful tool in estimation of the makespan of the overall process. However, simulation requires a model to be developed, which itself is a labor and time consuming effort. With such a dynamic process, often the model would potentially be out of synchronization with the actual process, limiting the applicability of the simulation answers in solving the actual estimation problem. Integration of TEAMS model enabling software with our existing schedule program software is the basis of our solution. This paper explains the approach used to develop an auto-generated simulation model from planning and schedule efforts and available data.

  8. Simulations of space radiation interactions with materials, with application to dose estimates for lunar shelter and aboard the International Space Station

    NASA Astrophysics Data System (ADS)

    Pham, Tai T.

    This research performed simulations using the state-of-art three dimensional computer codes to investigate the interactions of space radiation with materials and quantify the biological dose onboard the International Space Station (ISS) and in a lunar shelter for future manned missions. High-energy space radiation of Trapped Protons, Solar Particle Events, and GCRs particles interactions are simulated using MCNPX and PHITS probabilistic codes. The energy loss and energy deposition within the shielding materials and in a phantom are calculated. The contributions of secondary particles produced by spallation reactions are identified. Recent experimental measurements of absorbed dose in a phantom aboard the International Space Station (ISS) was simulated, and used to determine the most appropriate simulation methodology.

  9. Numerical methods for the simulation of complex multi-body flows with applications for the integrated Space Shuttle vehicle

    NASA Technical Reports Server (NTRS)

    Chan, William M.

    1992-01-01

    The following papers are presented: (1) numerical methods for the simulation of complex multi-body flows with applications for the Integrated Space Shuttle vehicle; (2) a generalized scheme for 3-D hyperbolic grid generation; (3) collar grids for intersecting geometric components within the Chimera overlapped grid scheme; and (4) application of the Chimera overlapped grid scheme to simulation of Space Shuttle ascent flows.

  10. Simulation of Cascaded Longitudinal-Space-Charge Amplifier at the Fermilab Accelerator Science & Technology (Fast) Facility

    SciTech Connect

    Halavanau, A.; Piot, P.

    2015-12-01

    Cascaded Longitudinal Space Charge Amplifiers (LSCA) have been proposed as a mechanism to generate density modulation over a board spectral range. The scheme has been recently demonstrated in the optical regime and has confirmed the production of broadband optical radiation. In this paper we investigate, via numerical simulations, the performance of a cascaded LSCA beamline at the Fermilab Accelerator Science & Technology (FAST) facility to produce broadband ultraviolet radiation. Our studies are carried out using elegant with included tree-based grid-less space charge algorithm.

  11. Energy content of stormtime ring current from phase space mapping simulations

    SciTech Connect

    Chen, M.W.; Schulz, M.; Lyons, L.R.

    1993-08-20

    The authors perform a model study to account for the increase in energy content of the trapped-particle population which occurs during the main phase of major geomagnetic storms. They consider stormtime particle transport in the equatorial region of the magnetosphere. They start with a phase space distribution of the ring current before the storm, created by a steady state transport model. They then use a previously developed guiding center particle simulation to map the stormtime ring current phase space, following Liouville's theorem. This model is able to account for the ten to twenty fold increase in energy content of magnetospheric ions during the storm.

  12. Development of a space radiation Monte Carlo computer simulation based on the FLUKA and ROOT codes.

    PubMed

    Pinsky, L S; Wilson, T L; Ferrari, A; Sala, P; Carminati, F; Brun, R

    2001-01-01

    This NASA funded project is proceeding to develop a Monte Carlo-based computer simulation of the radiation environment in space. With actual funding only initially in place at the end of May 2000, the study is still in the early stage of development. The general tasks have been identified and personnel have been selected. The code to be assembled will be based upon two major existing software packages. The radiation transport simulation will be accomplished by updating the FLUKA Monte Carlo program, and the user interface will employ the ROOT software being developed at CERN. The end-product will be a Monte Carlo-based code which will complement the existing analytic codes such as BRYNTRN/HZETRN presently used by NASA to evaluate the effects of radiation shielding in space. The planned code will possess the ability to evaluate the radiation environment for spacecraft and habitats in Earth orbit, in interplanetary space, on the lunar surface, or on a planetary surface such as Mars. Furthermore, it will be useful in the design and analysis of experiments such as ACCESS (Advanced Cosmic-ray Composition Experiment for Space Station), which is an Office of Space Science payload currently under evaluation for deployment on the International Space Station (ISS). FLUKA will be significantly improved and tailored for use in simulating space radiation in four ways. First, the additional physics not presently within the code that is necessary to simulate the problems of interest, namely the heavy ion inelastic processes, will be incorporated. Second, the internal geometry package will be replaced with one that will substantially increase the calculation speed as well as simplify the data input task. Third, default incident flux packages that include all of the different space radiation sources of interest will be included. Finally, the user interface and internal data structure will be melded together with ROOT, the object-oriented data analysis infrastructure system. Beyond

  13. A generic multi-flex-body dynamics, controls simulation tool for space station

    NASA Technical Reports Server (NTRS)

    London, Ken W.; Lee, John F.; Singh, Ramen P.; Schubele, Buddy

    1991-01-01

    An order (n) multiflex body Space Station simulation tool is introduced. The flex multibody modeling is generic enough to model all phases of Space Station from build up through to Assembly Complete configuration and beyond. Multibody subsystems such as the Mobile Servicing System (MSS) undergoing a prescribed translation and rotation are also allowed. The software includes aerodynamic, gravity gradient, and magnetic field models. User defined controllers can be discrete or continuous. Extensive preprocessing of 'body by body' NASTRAN flex data is built in. A significant aspect, too, is the integrated controls design capability which includes model reduction and analytic linearization.

  14. Application of Parallel Discrete Event Simulation to the Space Surveillance Network

    NASA Astrophysics Data System (ADS)

    Jefferson, D.; Leek, J.

    2010-09-01

    In this paper we describe how and why we chose parallel discrete event simulation (PDES) as the paradigm for modeling the Space Surveillance Network (SSN) in our modeling framework, TESSA (Testbed Environment for Space Situational Awareness). DES is a simulation paradigm appropriate for systems dominated by discontinuous state changes at times that must be calculated dynamically. It is used primarily for complex man-made systems like telecommunications, vehicular traffic, computer networks, economic models etc., although it is also useful for natural systems that are not described by equations, such as particle systems, population dynamics, epidemics, and combat models. It is much less well known than simple time-stepped simulation methods, but has the great advantage of being time scale independent, so that one can freely mix processes that operate at time scales over many orders of magnitude with no runtime performance penalty. In simulating the SSN we model in some detail: (a) the orbital dynamics of up to 105 objects, (b) their reflective properties, (c) the ground- and space-based sensor systems in the SSN, (d) the recognition of orbiting objects and determination of their orbits, (e) the cueing and scheduling of sensor observations, (f) the 3-d structure of satellites, and (g) the generation of collision debris. TESSA is thus a mixed continuous-discrete model. But because many different types of discrete objects are involved with such a wide variation in time scale (milliseconds for collisions, hours for orbital periods) it is suitably described using discrete events. The PDES paradigm is surprising and unusual. In any instantaneous runtime snapshot some parts my be far ahead in simulation time while others lag behind, yet the required causal relationships are always maintained and synchronized correctly, exactly as if the simulation were executed sequentially. The TESSA simulator is custom-built, conservatively synchronized, and designed to scale to

  15. Design of a monitor and simulation terminal (master) for space station telerobotics and telescience

    NASA Technical Reports Server (NTRS)

    Lopez, L.; Konkel, C.; Harmon, P.; King, S.

    1989-01-01

    Based on Space Station and planetary spacecraft communication time delays and bandwidth limitations, it will be necessary to develop an intelligent, general purpose ground monitor terminal capable of sophisticated data display and control of on-orbit facilities and remote spacecraft. The basic elements that make up a Monitor and Simulation Terminal (MASTER) include computer overlay video, data compression, forward simulation, mission resource optimization and high level robotic control. Hardware and software elements of a MASTER are being assembled for testbed use. Applications of Neural Networks (NNs) to some key functions of a MASTER are also discussed. These functions are overlay graphics adjustment, object correlation and kinematic-dynamic characterization of the manipulator.

  16. A Real-time 3D Visualization of Global MHD Simulation for Space Weather Forecasting

    NASA Astrophysics Data System (ADS)

    Murata, K.; Matsuoka, D.; Kubo, T.; Shimazu, H.; Tanaka, T.; Fujita, S.; Watari, S.; Miyachi, H.; Yamamoto, K.; Kimura, E.; Ishikura, S.

    2006-12-01

    Recently, many satellites for communication networks and scientific observation are launched in the vicinity of the Earth (geo-space). The electromagnetic (EM) environments around the spacecraft are always influenced by the solar wind blowing from the Sun and induced electromagnetic fields. They occasionally cause various troubles or damages, such as electrification and interference, to the spacecraft. It is important to forecast the geo-space EM environment as well as the ground weather forecasting. Owing to the recent remarkable progresses of super-computer technologies, numerical simulations have become powerful research methods in the solar-terrestrial physics. For the necessity of space weather forecasting, NICT (National Institute of Information and Communications Technology) has developed a real-time global MHD simulation system of solar wind-magnetosphere-ionosphere couplings, which has been performed on a super-computer SX-6. The real-time solar wind parameters from the ACE spacecraft at every one minute are adopted as boundary conditions for the simulation. Simulation results (2-D plots) are updated every 1 minute on a NICT website. However, 3D visualization of simulation results is indispensable to forecast space weather more accurately. In the present study, we develop a real-time 3D webcite for the global MHD simulations. The 3-D visualization results of simulation results are updated every 20 minutes in the following three formats: (1)Streamlines of magnetic field lines, (2)Isosurface of temperature in the magnetosphere and (3)Isoline of conductivity and orthogonal plane of potential in the ionosphere. For the present study, we developed a 3-D viewer application working on Internet Explorer browser (ActiveX) is implemented, which was developed on the AVS/Express. Numerical data are saved in the HDF5 format data files every 1 minute. Users can easily search, retrieve and plot past simulation results (3D visualization data and numerical data) by using

  17. Characteristics and performance of the ESTEC large space simulator cryogenic system

    NASA Technical Reports Server (NTRS)

    Amlinger, H.; Bosma, S. J.

    1986-01-01

    The final concept and performance characteristics of the Large Space Simulator (LSS) at ESTEC, The Netherlands are discussed. The LSS cryogenics system has proven its operational capabilities under simulated heat load conditions and provides sufficient margin for future elevated requirements. The acceptance test proved that nominal operating pressures can be lower than the design parameters, providing increased system safety and reliability. The ease of access for repair and the incorporated redundancy will limit system downtime. Finally, the system design resulted in a low consumption of LN sub 2, which is an important factor in keeping the operational costs at a low level.

  18. Simulation Evaluation of Controller-Managed Spacing Tools under Realistic Operational Conditions

    NASA Technical Reports Server (NTRS)

    Callantine, Todd J.; Hunt, Sarah M.; Prevot, Thomas

    2014-01-01

    Controller-Managed Spacing (CMS) tools have been developed to aid air traffic controllers in managing high volumes of arriving aircraft according to a schedule while enabling them to fly efficient descent profiles. The CMS tools are undergoing refinement in preparation for field demonstration as part of NASA's Air Traffic Management (ATM) Technology Demonstration-1 (ATD-1). System-level ATD-1 simulations have been conducted to quantify expected efficiency and capacity gains under realistic operational conditions. This paper presents simulation results with a focus on CMS-tool human factors. The results suggest experienced controllers new to the tools find them acceptable and can use them effectively in ATD-1 operations.

  19. Simulation of Foam Impact Effects on Components of the Space Shuttle Thermal Protection System. Chapter 7

    NASA Technical Reports Server (NTRS)

    Fahrenthold, Eric P.; Park, Young-Keun

    2004-01-01

    A series of three dimensional simulations has been performed to investigate analytically the effect of insulating foam impacts on ceramic tile and reinforced carbon-carbon components of the Space Shuttle thermal protection system. The simulations employed a hybrid particle-finite element method and a parallel code developed for use in spacecraft design applications. The conclusions suggested by the numerical study are in general consistent with experiment. The results emphasize the need for additional material testing work on the dynamic mechanical response of thermal protection system materials, and additional impact experiments for use in validating computational models of impact effects.

  20. Development of the reentry flight dynamics simulator for evaluation of space shuttle orbiter entry systems

    NASA Technical Reports Server (NTRS)

    Rowell, L. F.; Powell, R. W.; Stone, H. W., Jr.

    1980-01-01

    A nonlinear, six degree of freedom, digital computer simulation of a vehicle which has constant mass properties and whose attitudes are controlled by both aerodynamic surfaces and reaction control system thrusters was developed. A rotating, oblate Earth model was used to describe the gravitational forces which affect long duration Earth entry trajectories. The program is executed in a nonreal time mode or connected to a simulation cockpit to conduct piloted and autopilot studies. The program guidance and control software used by the space shuttle orbiter for its descent from approximately 121.9 km to touchdown on the runway.

  1. Simulation of space radiation effects on polyimide film materials for high temperature applications

    NASA Technical Reports Server (NTRS)

    Fogdall, L. B.; Cannaday, S. S.

    1977-01-01

    Space environment effects on candidate materials for the solar sail film are determined. Polymers, including metallized polyimides that might be suitable solar radiation receivers, were exposed to combined proton and solar electromagnetic radiation. Each test sample was weighted, to simulate the tension on the polymer when it is stretched into near-planar shape while receiving solar radiation. Exposure rates up to 16 times that expected in Earth orbit were employed, to simulate near-sun solar sailing conditions. Sample appearance, elongation, and shrinkage were monitored, noted, and documented in situ. Thermosetting polyimides showed less degradation or visual change in appearance than thermoplastics.

  2. Thermal control for the ground simulation of a space IR sensor system

    NASA Technical Reports Server (NTRS)

    Lee, E.; Warren, A.; Gasser, G.; Tierney, M.

    1990-01-01

    Active and passive thermal controls for simulations of a space IR sensor system operating in cryogenic temperatures were designed, built, and tested from a component level to a system level. The test results from component tests and integrated system tests have compared very well with theoretical predictions, and thus verify component and integrated thermal math models. These verified models can be modified for use to predict flight systems thermal performance. Thermal vacuum simulations and demonstrations of a space IR system consisted of a target and background scene generator, telescope mirrors supported by a graphite-epoxy metering structure, and an IR sensor. These components are required to operate at cryogenic temperature levels. Each component has its unique thermal control needs. Descriptions are presented of thermal control systems for the test article from component design level to integrated system level along with discussions of component and integrated demonstration tests, and correlation of test data with thermal finite difference models.

  3. PATH: a lumped-element beam-transport simulation program with space charge

    SciTech Connect

    Farrell, J.A.

    1983-01-01

    PATH is a group of computer programs for simulating charged-particle beam-transport systems. It was developed for evaluating the effects of some aberrations without a time-consuming integration of trajectories through the system. The beam-transport portion of PATH is derived from the well-known program, DECAY TURTLE. PATH contains all features available in DECAY TURTLE (including the input format) plus additional features such as a more flexible random-ray generator, longitudinal phase space, some additional beamline elements, and space-charge routines. One of the programs also provides a simulation of an Alvarez linear accelerator. The programs, originally written for a CDC 7600 computer system, also are available on a VAX-VMS system. All of the programs are interactive with input prompting for ease of use.

  4. Simulation of on-orbit modal tests of large space structures

    NASA Technical Reports Server (NTRS)

    Blelloch, Paul; Engelhardt, Charlie; Hunt, David L.

    1990-01-01

    This paper describes a procedure to analytically simulate a modal test of an on-orbit large space structure (LSS), extract the modal properties, and evaluate the success of the modal test. This procedure addresses some of the major challenges to performing an on-orbit modal test of an LSS including high modal density, low frequency modes, and limitations in excitation capabilities. A finite element model of the orbiting structure is used to predict acceleration responses due to thruster excitations, time-domain modal extraction methods are used to estimate the modal properties, and comparison of frequencies and cross-orthogonality values is used to evaluate the success of the modal test. Several alternative excitation patterns and sensor arrangements were evaluated using a space station model as an example. Results of the simulations indicate that the choice of excitation functions is critical to the success of the test.

  5. Thermal Simulator Development: Non-Nuclear Testing of Space Fission Systems

    NASA Technical Reports Server (NTRS)

    Bragg-Sitton, Shannon M.; Dickens, Ricky E.

    2006-01-01

    Non-nuclear testing can be a valuable tool in the development of a space nuclear power system. At the NASA MSFC Early Flight Fission Test Facility (EFF-TF), highly designed electric heaters are used to simulate the heat from nuclear fuel to test space fission power and propulsion systems. To allow early utilization, nuclear system designs must be relatively simple, easy to fabricate, and easy to test using non-nuclear heaters to closely mimic heat from fission. In this test strategy, highly designed electric heaters are used to simulate the heat from nuclear fuel, allowing one to develop a significant understanding of individual components and integrated system operation without the cost, time and safety concerns associated with nuclear testing.

  6. Alterations in calcium homeostasis and bone during actual and simulated space flight.

    PubMed

    Wronski, T J; Morey, E R

    1983-01-01

    The weightlessness experienced in space produces alterations in calcium homeostasis. Gemini, Apollo, and Skylab astronauts exhibited a negative calcium balance due primarily to hypercalciuria. In addition, the bone mineral density of the calcaneus declined by approximately 4% in Skylab crew members after 84 d of orbital flight. The negative calcium balance and loss of calcaneal bone mineral in normal adults subjected to prolonged bed rest was comparable to that observed in space. The pathogenesis of bone loss during space flight and bed rest is not well understood due to the lack of histomorphometric data. It is also uncertain whether osteoporotic changes in astronauts are corrected postflight. The observed bone loss would be reversible and of no long-term consequence if the only abnormality was an increased remodeling rate. However, altered bone cell activity would probably result in irreversible bone loss with the premature development of senile osteoporosis many years after space flight. The main skeletal defect in growing rats placed in orbit aboard Soviet Cosmos biosatellites appears to be diminished bone formation. Bone resorption was not elevated during weightlessness. Although cortical bone returned to normal postflight, the decline in trabecular bone mass was somewhat persistent. These studies established that the modeling of a growing skeleton was altered in a weightless environment, but do not necessarily imply that a remodeling imbalance occurs in adults during space flight. However, various forms of simulated space flight inhibited bone formation during both skeletal modeling and the remodeling of adult bone.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:6645871

  7. Resistance of Antarctic black fungi and cryptoendolithic communities to simulated space and Martian conditions.

    PubMed

    Onofri, S; Barreca, D; Selbmann, L; Isola, D; Rabbow, E; Horneck, G; de Vera, J P P; Hatton, J; Zucconi, L

    2008-01-01

    Dried colonies of the Antarctic rock-inhabiting meristematic fungi Cryomyces antarcticus CCFEE 515, CCFEE 534 and C. minteri CCFEE 5187, as well as fragments of rocks colonized by the Antarctic cryptoendolithic community, were exposed to a set of ground-based experiment verification tests (EVTs) at the German Aerospace Center (DLR, Köln, Germany). These were carried out to test the tolerance of these organisms in view of their possible exposure to space conditions outside of the International Space Station (ISS). Tests included single or combined simulated space and Martian conditions. Responses were analysed both by cultural and microscopic methods. Thereby, colony formation capacities were measured and the cellular viability was assessed using live/dead dyes FUN 1 and SYTOX Green. The results clearly suggest a general good resistance of all the samples investigated. C. minteri CCFEE 5187, C. antarcticus CCFEE 515 and colonized rocks were selected as suitable candidates to withstand space flight and long-term permanence in space on the ISS in the framework of the LIchens and Fungi Experiments (LIFE programme, European Space Agency). PMID:19287532

  8. Resistance of Antarctic black fungi and cryptoendolithic communities to simulated space and Martian conditions

    PubMed Central

    Onofri, S.; Barreca, D.; Selbmann, L.; Isola, D.; Rabbow, E.; Horneck, G.; de Vera, J.P.P.; Hatton, J.; Zucconi, L.

    2008-01-01

    Dried colonies of the Antarctic rock-inhabiting meristematic fungi Cryomyces antarcticus CCFEE 515, CCFEE 534 and C. minteri CCFEE 5187, as well as fragments of rocks colonized by the Antarctic cryptoendolithic community, were exposed to a set of ground-based experiment verification tests (EVTs) at the German Aerospace Center (DLR, Köln, Germany). These were carried out to test the tolerance of these organisms in view of their possible exposure to space conditions outside of the International Space Station (ISS). Tests included single or combined simulated space and Martian conditions. Responses were analysed both by cultural and microscopic methods. Thereby, colony formation capacities were measured and the cellular viability was assessed using live/dead dyes FUN 1 and SYTOX Green. The results clearly suggest a general good resistance of all the samples investigated. C. minteri CCFEE 5187, C. antarcticus CCFEE 515 and colonized rocks were selected as suitable candidates to withstand space flight and long-term permanence in space on the ISS in the framework of the LIchens and Fungi Experiments (LIFE programme, European Space Agency). PMID:19287532

  9. Sensor-scheduling simulation of disparate sensors for Space Situational Awareness

    NASA Astrophysics Data System (ADS)

    Hobson, T.; Clarkson, I.

    2011-09-01

    The art and science of space situational awareness (SSA) has been practised and developed from the time of Sputnik. However, recent developments, such as the accelerating pace of satellite launch, the proliferation of launch capable agencies, both commercial and sovereign, and recent well-publicised collisions involving man-made space objects, has further magnified the importance of timely and accurate SSA. The United States Strategic Command (USSTRATCOM) operates the Space Surveillance Network (SSN), a global network of sensors tasked with maintaining SSA. The rapidly increasing number of resident space objects will require commensurate improvements in the SSN. Sensors are scarce resources that must be scheduled judiciously to obtain measurements of maximum utility. Improvements in sensor scheduling and fusion, can serve to reduce the number of additional sensors that may be required. Recently, Hill et al. [1] have proposed and developed a simulation environment named TASMAN (Tasking Autonomous Sensors in a Multiple Application Network) to enable testing of alternative scheduling strategies within a simulated multi-sensor, multi-target environment. TASMAN simulates a high-fidelity, hardware-in-the-loop system by running multiple machines with different roles in parallel. At present, TASMAN is limited to simulations involving electro-optic sensors. Its high fidelity is at once a feature and a limitation, since supercomputing is required to run simulations of appreciable scale. In this paper, we describe an alternative, modular and scalable SSA simulation system that can extend the work of Hill et al with reduced complexity, albeit also with reduced fidelity. The tool has been developed in MATLAB and therefore can be run on a very wide range of computing platforms. It can also make use of MATLAB’s parallel processing capabilities to obtain considerable speed-up. The speed and flexibility so obtained can be used to quickly test scheduling algorithms even with a

  10. Quantum simulations in phase-space: from quantum optics to ultra-cold physics

    NASA Astrophysics Data System (ADS)

    Drummond, Peter D.; Chaturvedi, Subhash

    2016-07-01

    As a contribution to the international year of light, we give a brief history of quantum optics in phase-space, with new directions including quantum simulations of multipartite Bell violations, opto-mechanics, ultra-cold atomic systems, matter-wave Bell violations, coherent transport and quantum fluctuations in the early Universe. We mostly focus on exact methods using the positive-P representation, and semiclassical truncated Wigner approximations.

  11. Computer graphics testbed to simulate and test vision systems for space applications

    NASA Technical Reports Server (NTRS)

    Cheatham, John B.

    1991-01-01

    Artificial intelligence concepts are applied to robotics. Artificial neural networks, expert systems and laser imaging techniques for autonomous space robots are being studied. A computer graphics laser range finder simulator developed by Wu has been used by Weiland and Norwood to study use of artificial neural networks for path planning and obstacle avoidance. Interest is expressed in applications of CLIPS, NETS, and Fuzzy Control. These applications are applied to robot navigation.

  12. Vacuum-chamber simulation of high-voltage breakdown in space

    NASA Astrophysics Data System (ADS)

    Logue, Andrew C.; Gordon, Lloyd B.

    1994-05-01

    The mockup channel tests for Space Power Experiments Aboard Rocket (SPEAR) I, SPEAR II, and SPEAR III will be examined in this paper. Specifically, high voltage results of mockup chamber tests will be compared with results of the flight hardware chamber tests and flight experiments. The authors will analyze the results obtained through the different phases of each of these programs and determine the effectiveness of the simulations that were performed in the vacuum chambers.

  13. Simulating sulfur loss from asteroid surfaces as a result of space weathering

    NASA Astrophysics Data System (ADS)

    Kracher, A.; Sears, D.

    2003-04-01

    The NEAR Shoemaker spacecraft has found a lower than expected S/Si ratio on the surface of asteroid 433 Eros. Given that other element ratios are approximately chondritic, and that all known chondrite groups have S/Si ratio at least 3-10x higher than the NEAR data, it is unlikely that the low S abundance is a bulk property of Eros. Thus sulfur has apparently been lost from at least the top layer of the regolith. Possible sources for the energy required to either remove sulfur or transport it to deeper levels of the regolith are meteorite impact or solar wind exposure, or both. These phenomena are known to cause physical and chemical changes to lunar surface materials and are thought by some researchers to also occur on asteroids and to be responsible for the changes in asteroid spectra. The process is referred to as "space weathering". The effects of space weathering have been successfully simulated by exposure of regolith simulants to laser irradiation (simulating impacts) and ion beams (for solar wind). These experiments demonstrated the formation of submicroscopic Fe metal due to decomposition of Fe-bearing silicates. However, simulants used to date did not contain sulfide, an important constituent of chondrite meteorites and presumably asteroids. In sulfide-bearing regoliths decomposition of FeS as well as FeO would be expected. Experiments with sulfide-bearing simulants could shed light on the processes responsible for the low S/Si ratio on the surface of Eros. However, simulations of sulfur loss require more than simply performing the same experiments with a different simulant. The conditions of energy deposition have to be carefully adjusted so that they are a realistic proxy for the actual processes on asteroid surfaces. Also, the effects of regolith reworking need to be taken into account, since larger impacts can excavate deeper layers of regolith that were previously shielded from the effects of space weathering. Thus realistic simulations need to be

  14. Portable Simulator for On-Board International Space Station Emergency Training

    NASA Technical Reports Server (NTRS)

    Bolt, Kathy; Root, Michael

    2014-01-01

    The crew on-board the International Space Station (ISS) have to be prepared for any possible emergency. The emergencies of most concern are a fire, depressurization or a toxic atmosphere. The crew members train on the ground before launch but also need to practice their emergency response skills while they are on orbit for 6 months. On-Board Training (OBT) events for emergency response proficiency used to require the crew and ground teams to use paper "scripts" that showed the path through the emergency procedures. This was not very realistic since the participants could read ahead and never deviate from this scripted path. The new OBT emergency simulator allows the crew to view dynamic information on an iPad only when it would become available during an event. The simulator interface allows the crew member to indicate hatch closures, don and doff masks, read pressures, and sample smoke or atmosphere levels. As the crew executes their actions using the on-board simulator, the ground teams are able to monitor those actions via ground display data flowing through the ISS Ku Band communication system which syncs the on-board simulator software with a ground simulator which is accessible in all the control centers. The OBT Working Group (OBT WG), led by the Chief Training Office (CTO) at Johnson Space center is a Multilateral working group with partners in Russia, Japan, Germany and U.S.A. The OBTWG worked together to create a simulator based on these principles: (a) Create a dynamic simulation that gives real-time data feedback; (b) Maintain real-time interface between Mission Control Centers and crew during OBTs; (c) Provide flexibility for decision making during drill execution; (d) Materially reduce Instructor and Flight Control Team man-hour costs involved with developing, updating, and maintaining emergency OBT cases/scenarios; and (e) Introduce an element of surprise to emergency scenarios so the team can't tell the outcome of the case by reading ahead in a

  15. On the simulation of tether-nets for space debris capture with Vortex Dynamics

    NASA Astrophysics Data System (ADS)

    Botta, Eleonora M.; Sharf, Inna; Misra, Arun K.; Teichmann, Marek

    2016-06-01

    Tether-nets are one of the more promising methods for the active removal of space debris. The aim of this paper is to study the dynamics of this type of systems in space, which is still not well-known and the simulation of which has multiple outstanding issues. In particular, the focus is on the deployment and capture phases of a net-based active debris removal mission, and on the effect of including the bending stiffness of the net threads on the dynamical characteristics of the net and on the computational efficiency. Lumped-parameter modeling of the net in Vortex Dynamics, without bending stiffness representation, is introduced first and validated then, against results obtained with an equivalent model in Matlab, using numerical simulations of the deployment phase. A model able to reproduce the bending stiffness of the net in Vortex Dynamics is proposed, and the outcome of a net deployment simulation is compared to the results of simulation without bending stiffness. A simulation of net-based capture of a derelict spacecraft is analyzed from the point of view of evaluating the effect of modeling the bending stiffness. From comparison of simulations with and without bending stiffness representation, it is found that bending stiffness has a significant influence both on the simulation results and on the computation time. When bending stiffness is included, the net is more resistant to the changes in its shape caused both by the motion of the corner masses (during deployment) and by the contact with the debris (during capture).

  16. Shortcomings in ground testing, environment simulations, and performance predictions for space applications

    NASA Technical Reports Server (NTRS)

    Stassinopoulos, E. G.; Brucker, G. J.

    1992-01-01

    This paper addresses the issues involved in radiation testing of devices and subsystems to obtain the data that are required to predict the performance and survivability of satellite systems for extended missions in space. The problems associated with space environmental simulations, or the lack thereof, in experiments intended to produce information to describe the degradation and behavior of parts and systems are discussed. Several types of radiation effects in semiconductor components are presented, as for example: ionization dose effects, heavy ion and proton induced Single Event Upsets (SEUs), and Single Event Transient Upsets (SETUs). Examples and illustrations of data relating to these ground testing issues are provided. The primary objective of this presentation is to alert the reader to the shortcomings, pitfalls, variabilities, and uncertainties in acquiring information to logically design electronic subsystems for use in satellites or space stations with long mission lifetimes, and to point out the weaknesses and deficiencies in the methods and procedures by which that information is obtained.

  17. Erythrocyte orientational and cell volume effects on NMR q-space analysis: simulations of restricted diffusion.

    PubMed

    Larkin, Timothy J; Kuchel, Philip W

    2009-12-01

    Pulsed field-gradient spin echo nuclear magnetic resonance spectroscopy of water diffusing in erythrocytes leads to diffusion interference and diffraction effects, which are visualised in q-space plots of signal intensity versus the magnitude of the spatial wave-number vector q. Interpretation of the features of these q-space plots has been aided by Monte Carlo random walk simulations of diffusion in lattices of virtual erythrocytes. Here, the effect of varying the orientation of the cells with respect to the direction in which diffusion is measured, on the appearance of q-space plots, was investigated, together with the effect of changing the cell volume. We show that these changes are reflected in the appearance of the plots in a way that is diagnostic of the microscopic geometry of the sample. PMID:19399492

  18. A Space-Time Adaptive Method for Simulating Complex Cardiac Dynamics

    NASA Astrophysics Data System (ADS)

    Cherry, E. M.; Greenside, H. S.; Henriquez, C. S.

    2000-03-01

    A new space-time adaptive mesh refinement algorithm (AMRA) is presented and analyzed which, by automatically adding and deleting local patches of higher-resolution Cartesian meshes, can simulate quantitatively accurate models of cardiac electrical dynamics efficiently in large domains. We find in two space dimensions that the AMRA is able to achieve a factor of 5 speedup and a factor of 5 reduction in memory while achieving the same accuracy compared to a code based on a uniform space-time mesh at the highest resolution of the AMRA method. We summarize applications of the code to the Luo-Rudy 1 cardiac model in large two- and three-dimensional domains and discuss the implications of our results for understanding the initiation of arrhythmias.

  19. High data rate modem simulation for the space station multiple-access communications system

    NASA Technical Reports Server (NTRS)

    Horan, Stephen

    1987-01-01

    The communications system for the space station will require a space based multiple access component to provide communications between the space based program elements and the station. A study was undertaken to investigate two of the concerns of this multiple access system, namely, the issues related to the frequency spectrum utilization and the possibilities for higher order (than QPSK) modulation schemes for use in possible modulators and demodulators (modems). As a result of the investigation, many key questions about the frequency spectrum utilization were raised. At this point, frequency spectrum utilization is seen as an area requiring further work. Simulations were conducted using a computer aided communications system design package to provide a straw man modem structure to be used for both QPSK and 8-PSK channels.

  20. Advances in Impedance Probe Applications and Design in the NRL Space Physics Simulation Chamber

    NASA Astrophysics Data System (ADS)

    Blackwell, David; Walker, David; Cothran, Christopher; Gatling, George; Tejero, Erik; Amatucci, William

    2013-10-01

    We will present recent progress in plasma impedance probe experiments and design at NRL's Space Physics Simulation Chamber. These include our network analyzer S-parameter methods as well as more portable self-contained diagnostics with an eye towards space vehicle applications. The experiments are performed under a variety of conditions with magnetized and unmagnetized collisionless, cold (Te ~ 1 - 2 eV) plasmas in density ranges of 105-108 cm-3. Large and small spheres, disks, floating dipoles and monopoles are all in development with various electronic setups, along with traditional emissive and Langmuir probes for measurement redundancy. New computational results provide experimental predictions over a larger parameter space. This work supported by the Naval Research Laboratory Base Program.

  1. Velocity-space resolution, entropy production, and upwind dissipation in Eulerian gyrokinetic simulations

    SciTech Connect

    Candy, J.; Waltz, R.E.

    2006-03-15

    Equations which describe the evolution of volume-averaged gyrokinetic entropy are derived and added to GYRO [J. Candy and R.E. Waltz, J. Comput. Phys. 186, 545 (2003)], a Eulerian gyrokinetic turbulence simulation code. In particular, the creation of entropy through spatial upwind dissipation (there is zero velocity-space dissipation in GYRO) and the reduction of entropy via the production of fluctuations are monitored in detail. This new diagnostic has yielded several key confirmations of the validity of the GYRO simulations. First, fluctuations balance dissipation in the ensemble-averaged sense, thus demonstrating that turbulent GYRO simulations achieve a true statistical steady state. Second, at the standard spatial grid size, neither entropy nor energy flux is significantly changed by a 16-fold increase (from 32 to 512 grid points per cell) in the number of grid points in the two-dimensional velocity space. Third, the measured flux is invariant to an eightfold increase in the upwind dissipation coefficients. A notable conclusion is that the lack of change in entropy with grid refinement refutes the familiar but incorrect notion that Eulerian gyrokinetic codes miss important velocity-space structure. The issues of density and energy conservation and their relation to negligible second-order effects such as the parallel nonlinearity are also discussed.

  2. Thermal design and simulation of an attitude-varied space camera

    NASA Astrophysics Data System (ADS)

    Wang, Chenjie; Yang, Wengang; Feng, Liangjie; Li, XuYang; Wang, Yinghao; Fan, Xuewu; Wen, Desheng

    2015-10-01

    An attitude-varied space camera changes attitude continually when it is working, its attitude changes with large angle in short time leads to the significant change of heat flux; Moreover, the complicated inner heat sources, other payloads and the satellite platform will also bring thermal coupling effects to the space camera. According to a space camera which is located on a two dimensional rotating platform, detailed thermal design is accomplished by means of thermal isolation, thermal transmission and temperature compensation, etc. Then the ultimate simulation cases of both high temperature and low temperature are chosen considering the obscuration of the satellite platform and other payloads, and also the heat flux analysis of light entrance and radiator surface of the camera. NEVEDA and SindaG are used to establish the simulation model of the camera and the analysis is carried out. The results indicate that, under both passive and active thermal control, the temperature of optical components is 20+/-1°C,both their radial and axial temperature gradient are less than 0.3°C, while the temperature of the main structural components is 20+/-2°C, and the temperature fluctuation of the focal plane assemblies is 3.0-9.5°C The simulation shows that the thermal control system can meet the need of the mission, and the thermal design is efficient and reasonable.

  3. The performance of field scientists undertaking observations of early life fossils while in simulated space suit

    NASA Astrophysics Data System (ADS)

    Willson, D.; Rask, J. C.; George, S. C.; de Leon, P.; Bonaccorsi, R.; Blank, J.; Slocombe, J.; Silburn, K.; Steele, H.; Gargarno, M.; McKay, C. P.

    2014-01-01

    We conducted simulated Apollo Extravehicular Activity's (EVA) at the 3.45 Ga Australian 'Pilbara Dawn of life' (Western Australia) trail with field and non-field scientists using the University of North Dakota's NDX-1 pressurizable space suit to overview the effectiveness of scientist astronauts employing their field observation skills while looking for stromatolite fossil evidence. Off-world scientist astronauts will be faced with space suit limitations in vision, human sense perception, mobility, dexterity, the space suit fit, time limitations, and the psychological fear of death from accidents, causing physical fatigue reducing field science performance. Finding evidence of visible biosignatures for past life such as stromatolite fossils, on Mars, is a very significant discovery. Our preliminary overview trials showed that when in simulated EVAs, 25% stromatolite fossil evidence is missed with more incorrect identifications compared to ground truth surveys but providing quality characterization descriptions becomes less affected by simulated EVA limitations as the science importance of the features increases. Field scientists focused more on capturing high value characterization detail from the rock features whereas non-field scientists focused more on finding many features. We identified technologies and training to improve off-world field science performance. The data collected is also useful for NASA's "EVA performance and crew health" research program requirements but further work will be required to confirm the conclusions.

  4. Simulation study for cloud detection with space lidars by use of analog detection photomultiplier tubes.

    PubMed

    Liu, Zhaoyan; Sugimoto, Nobuo

    2002-03-20

    Output signal electrons from photomultiplier tubes (PMTs) have neither a Gaussian nor a Poisson distribution because of changes induced by multiplication when the number of input signal photons and dark electrons is fewer than approximately 100. Therefore the assumption of a Gaussian distribution of signal electrons cannot be used in simulations for space lidar observations with PMTs, for which the number of return signal photons is normally small. A theory is introduced for analog detection with PMTs that have Poisson-distributed secondary-electron emission at each dynode stage. The theory is validated by straightforward numerical simulations. It is shown that the multiplication in PMTs is a multiply stochastic Poisson process and that the distribution of output signal electrons can be interpreted basically as Neyman type A. Analysis by the threshold method of cloud detection with a space lidar shows considerable difference between a Gaussian approximation and the exact distribution. The result indicates that the threshold level must be optimized for the exact distribution. Return signals were simulated for a proposed space lidar, and cloud detection with the threshold method was demonstrated. PMID:11921806

  5. Real-time graphics for the Space Station Freedom cupola, developed in the Systems Engineering Simulator

    NASA Technical Reports Server (NTRS)

    Red, Michael T.; Hess, Philip W.

    1989-01-01

    Among the Lyndon B. Johnson Space Center's responsibilities for Space Station Freedom is the cupola. Attached to the resource node, the cupola is a windowed structure that will serve as the space station's secondary control center. From the cupola, operations involving the mobile service center and orbital maneuvering vehicle will be conducted. The Systems Engineering Simulator (SES), located in building 16, activated a real-time man-in-the-loop cupola simulator in November 1987. The SES cupola is an engineering tool with the flexibility to evolve in both hardware and software as the final cupola design matures. Two workstations are simulated with closed-circuit television monitors, rotational and translational hand controllers, programmable display pushbuttons, and graphics display with trackball and keyboard. The displays and controls of the SES cupola are driven by a Silicon Graphics Integrated Raster Imaging System (IRIS) 4D/70 GT computer. Through the use of an interactive display builder program, SES, cupola display pages consisting of two dimensional and three dimensional graphics are constructed. These display pages interact with the SES via the IRIS real-time graphics interface. The focus is on the real-time graphics interface applications software developed on the IRIS.

  6. Transverse Mode Dynamics of VCSELs Through Space-Time Domain Simulation

    NASA Technical Reports Server (NTRS)

    Goorjian, Peter M.; Ning, Cun-Zheng; Saini, Subhash (Technical Monitor)

    1999-01-01

    Modeling and simulation are important to understand laser operation and to optimize and design device functions. Numerical simulation of VCSEL (Vertical Cavity Surface Emitting Lasers) has been largely based on solving time-independent Helmholtz equation or time dependent coupled mode equations. There are various advantages for choosing these approaches. However, the disadvantages are also apparent. The former cannot handle dynamical mode competition seen in VCSELs, while the latter assumes a given type and number of modes a priori. Furthermore, the microscopic physics of heterstructures and electron-hole plasma is very often represented by a few parameters such as linear gain coefficients and the linewidth enhancement factor. These are over simplification of space and frequency (wavelength) dependent gain and refractive index functions. When the space-time dynamical operation of VCSELs becomes important, these simple approximations become questionable. In this paper, we apply a recently developed model for edge-emitting lasers to a gain guided VCSEL for space-time domain simulation. This model takes into account the actual nonlinear dependence of gain and refractive index on frequency and carrier density within the frame work of the effective Bloch equations. The corresponding partial differential equations are solved directly by finite difference methods. Laser behavior with increasing pumping current is investigated in detail. Special attention is paid to the dynamical competition of the transverse modes.

  7. Accelerated multiscale space-time finite element simulation and application to high cycle fatigue life prediction

    NASA Astrophysics Data System (ADS)

    Zhang, Rui; Wen, Lihua; Naboulsi, Sam; Eason, Thomas; Vasudevan, Vijay K.; Qian, Dong

    2016-05-01

    A multiscale space-time finite element method based on time-discontinuous Galerkin and enrichment approach is presented in this work with a focus on improving the computational efficiencies for high cycle fatigue simulations. While the robustness of the TDG-based space-time method has been extensively demonstrated, a critical barrier for the extensive application is the large computational cost due to the additional temporal dimension and enrichment that are introduced. The present implementation focuses on two aspects: firstly, a preconditioned iterative solver is developed along with techniques for optimizing the matrix storage and operations. Secondly, parallel algorithms based on multi-core graphics processing unit are established to accelerate the progressive damage model implementation. It is shown that the computing time and memory from the accelerated space-time implementation scale with the number of degree of freedom N through {˜ }{O}(N^{1.6}) and {˜ }{O}(N) , respectively. Finally, we demonstrate the accelerated space-time FEM simulation through benchmark problems.

  8. The Study of Simulated Space Radiation Environment Effect on Conductive Properties of ITO Thermal Control Materials

    NASA Astrophysics Data System (ADS)

    Wei-Quan, Feng; Chun-Qing, Zhao; Zi-Cai, Shen; Yi-Gang, Ding; Fan, Zhang; Yu-Ming, Liu; Hui-Qi, Zheng; Xue, Zhao

    In order to prevent detrimental effects of ESD caused by differential surface charging of spacecraft under space environments, an ITO transparent conductive coating is often deposited on the thermal control materials outside spacecraft. Since the ITO coating is exposed in space environment, the environment effects on electrical property of ITO coatings concern designers of spacecraft deeply. This paper introduces ground tests to simulate space radiation environmental effects on conductive property of ITO coating. Samples are made of ITO/OSR, ITO/Kapton/Al and ITO/FEP/Ag thermal control coatings. Simulated space radiation environment conditions are NUV of 500ESH, 40 keV electron of 2 × 1016 е/cm2, 40 keV proton of 2.5 × 1015 p/cm2. Conductive property is surface resistivity measured in-situ in vacuum. Test results proved that the surface resistivity for all ITO coatings have a sudden decrease in the beginning of environment test. The reasons for it may be the oxygen vacancies caused by vacuum and decayed RIC caused by radiation. Degradation in conductive properties caused by irradiation were found. ITO/FEP/Ag exhibits more degradation than other two kinds. The conductive property of ITO/kapton/Al is stable for vacuum irradiation. The analysis of SEM and XPS found more crackers and less Sn and In concentration after irradiation which may be the reason for conductive property degradation.

  9. Accelerated multiscale space-time finite element simulation and application to high cycle fatigue life prediction

    NASA Astrophysics Data System (ADS)

    Zhang, Rui; Wen, Lihua; Naboulsi, Sam; Eason, Thomas; Vasudevan, Vijay K.; Qian, Dong

    2016-08-01

    A multiscale space-time finite element method based on time-discontinuous Galerkin and enrichment approach is presented in this work with a focus on improving the computational efficiencies for high cycle fatigue simulations. While the robustness of the TDG-based space-time method has been extensively demonstrated, a critical barrier for the extensive application is the large computational cost due to the additional temporal dimension and enrichment that are introduced. The present implementation focuses on two aspects: firstly, a preconditioned iterative solver is developed along with techniques for optimizing the matrix storage and operations. Secondly, parallel algorithms based on multi-core graphics processing unit are established to accelerate the progressive damage model implementation. It is shown that the computing time and memory from the accelerated space-time implementation scale with the number of degree of freedom N through ˜ O(N^{1.6}) and ˜ O(N), respectively. Finally, we demonstrate the accelerated space-time FEM simulation through benchmark problems.

  10. Improving Tribological Properties of Multialkylated Cyclopentanes under Simulated Space Environment: Two Feasible Approaches.

    PubMed

    Fan, Xiaoqiang; Wang, Liping; Li, Wen; Wan, Shanhong

    2015-07-01

    Space mechanisms require multialkylated cyclopentanes (MACs) more lubricious, more reliable, more durable, and better adaptive to harsh space environments. In this study, two kinds of additives were added into MACs for improving the tribological properties under simulated space environments: (a) solid nanoparticles (tungsten disulfide (WS2), tungsten trioxide (WO3), lanthanum oxide (La2O3), and lanthanum trifluoride (LaF3)) for steel/steel contacts; (b) liquid additives like zinc dialkyldithiophosphate (ZDDP) and molybdenum dialkyldithiocarbamate (MoDTC) for steel/steel and steel/diamond-like carbon (DLC) contacts. The results show that, under harsh simulated space environments, addition of the solid nanoparticles into MACs allows the wear to be reduced by up to one order magnitude, while liquid additives simultaneously reduce friction and wear by 80% and 93%, respectively. Friction mechanisms were proposed according to surface/interface analysis techniques, such as X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectroscopy (TOF-SIMS). The role of solid nanoparticles in reducing friction and wear mainly depends on their surface enhancement effect, and the liquid additives are attributed to the formation of tribochemical reaction film derived from ZDDP and MoDTC on the sliding surfaces. PMID:26067481

  11. Global approach to simulation: a gateway to long-term human presence in space.

    PubMed

    Collet, J; Novara, M

    1992-01-01

    The establishment of an autonomous European manned space capability is an objective set up by the ESA Council Meeting at the ministerial level, in 1985/1987. ESA's Long-Term Programme Office (LTPO), charged of the preparation of the programme for a European Manned Space Infrastructure (EMSI), started during 1988 to build up an intellectual framework in the domain of long-duration manned space missions. EMSI scope was eventually extended to embrace Moon/Mars missions and bases. Several exploratory studies on problems related to human factors in long-duration space missions were initiated by LTPO. The work of an ad-hoc group of experts (SIMIS Group) has been focused during 1989/1990 on the planning for simulation of such missions with a broad mandate, covering the physiological, psychological and operational aspects of long-duration exposure to microgravity and isolation/confinement. Preliminary results of SIMIS activities are reported. The HYDREMSI experiment, carried out in a terrestrial, analogous environment for 72 days during 1989, is described as an example of the envisaged simulations. PMID:11536971

  12. Time-Accurate Unsteady Pressure Loads Simulated for the Space Launch System at Wind Tunnel Conditions

    NASA Technical Reports Server (NTRS)

    Alter, Stephen J.; Brauckmann, Gregory J.; Kleb, William L.; Glass, Christopher E.; Streett, Craig L.; Schuster, David M.

    2015-01-01

    A transonic flow field about a Space Launch System (SLS) configuration was simulated with the Fully Unstructured Three-Dimensional (FUN3D) computational fluid dynamics (CFD) code at wind tunnel conditions. Unsteady, time-accurate computations were performed using second-order Delayed Detached Eddy Simulation (DDES) for up to 1.5 physical seconds. The surface pressure time history was collected at 619 locations, 169 of which matched locations on a 2.5 percent wind tunnel model that was tested in the 11 ft. x 11 ft. test section of the NASA Ames Research Center's Unitary Plan Wind Tunnel. Comparisons between computation and experiment showed that the peak surface pressure RMS level occurs behind the forward attach hardware, and good agreement for frequency and power was obtained in this region. Computational domain, grid resolution, and time step sensitivity studies were performed. These included an investigation of pseudo-time sub-iteration convergence. Using these sensitivity studies and experimental data comparisons, a set of best practices to date have been established for FUN3D simulations for SLS launch vehicle analysis. To the author's knowledge, this is the first time DDES has been used in a systematic approach and establish simulation time needed, to analyze unsteady pressure loads on a space launch vehicle such as the NASA SLS.

  13. EPIC Radiance Simulator for Deep Space Climate ObserVatoRy (DSCOVR)

    NASA Technical Reports Server (NTRS)

    Lyapustin, Alexei; Marshak, Alexander; Wang, Yujie; Korkin, Sergey; Herman, Jay

    2011-01-01

    The Deep Space Climate ObserVatoRy (DSCOVR) is a planned space weather mission for the Sun and Earth observations from the Lagrangian L1 point. Onboard of DSCOVR is a multispectral imager EPIC designed for unique observations of the full illuminated disk of the Earth with high temporal and 10 km spatial resolution. Depending on latitude, EPIC will observe the same Earth surface area during the course of the day in a wide range of solar and view zenith angles in the backscattering view geometry with the scattering angle of 164-172 . To understand the information content of EPIC data for analysis of the Earth clouds, aerosols and surface properties, an EPIC radiance Simulator was developed covering the UV -VIS-NIR range including the oxygen A and B-bands (A=340, 388, 443, 555, 680, 779.5, 687.7, 763.3 nm). The Simulator uses ancillary data (surface pressure/height, NCEP wind speed) as well as MODIS-based geophysical fields such as spectral surface bidirectional reflectance, column water vapor, and properties of aerosols and clouds including optical depth, effective radius, phase and cloud top height. The original simulations are conducted at 1 km resolution using the look-up table approach and then are averaged to 10 km EPIC radiances. This talk will give an overview of the EPIC Simulator with analysis of results over the continental USA and northern Atlantic.

  14. Launching a dream: A teachers guide to a simulated space shuttle mission

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Two simulated shuttle missions cosponsored by the NASA Lewis Research Center and Cleveland, Ohio, area schools are highlighted in this manual for teachers. A simulated space shuttle mission is an opportunity for students of all ages to plan, train for, and conduct a shuttle mission. Some students are selected to be astronauts, flight planners, and flight controllers. Other students build and test the experiments that the astronauts will conduct. Some set up mission control, while others design the mission patch. Students also serve as security officers or carry out public relations activities. For the simulated shuttle mission, school buses or recreation vehicles are converted to represent shuttle orbiters. All aspects of a shuttle mission are included. During preflight activities the shuttle is prepared, and experiments and a flight plan are made ready for launch day. The flight itself includes lifting off, conducting experiments on orbit, and rendezvousing with the crew from the sister school. After landing back at the home school, the student astronauts are debriefed and hold press conferences. The astronauts celebrate their successful missions with their fellow students at school and with the community at an evening postflight recognition program. To date, approximately 6,000 students have been involved in simulated shuttle missions with the Lewis Research Center. A list of participating schools, along with the names of their space shuttles, is included. Educations outcomes and other positive effects for the students are described.

  15. Wirtanen At 3au An Experimental Program In The Laboratory Under Simulated Space-conditions, Accompanying The Rosetta Space-mission

    NASA Astrophysics Data System (ADS)

    Kochan, H.; Richter, L.; Möhlmann, D.; Drescher, J.; Seidensticker, K. J.; Tokano, T.

    Simulated Space-Conditions in an earth laboratory, e.g. in a specially designed vacuum chamber with an adjusted insolation source cannot only support the development and qualification of space mission experiment hardware, but also an "in situ" investigation of the surface-near planetary phenomena. This was already demonstrated in the comet simulation program KOSI, performed in the DLR Space Simulator from 1986 to 1993 after the successful GIOTTO Space Mission to Comet P´Halley in 1986. The results of the simulation experiments have been helpful in understanding the recorded phenomena. Based on the experiences gathered in KOSI, we are now facing the ROSETTA space mission to Comet P´Wirtanen in 2003 with an extremely long hibernation phase till 2011. At this time the ROSETTA spacecraft will meet the cometary nucleus. Laboratory Experiments with different cometary analogous materials (CAM) and with different insolation periods will be performed in the DLR-PLANETARY SIMULATION FACILITY. This chamber, automatically cooled by liquid nitrogen (77K) has an internal space for experiments of 1.5m in diameter and 1.8m in height. Gas-dust interaction phenomena, and the thermal behaviour can be studied as well as the crustal and mantle formation and the structural change of the CAM by sintering and recondensation. We invite colleagues to join this program with ideas, models and hardware.

  16. Development of a Simulation Capability for the Space Station Active Rack Isolation System

    NASA Technical Reports Server (NTRS)

    Johnson, Terry L.; Tolson, Robert H.

    1998-01-01

    To realize quality microgravity science on the International Space Station, many microgravity facilities will utilize the Active Rack Isolation System (ARIS). Simulation capabilities for ARIS will be needed to predict the microgravity environment. This paper discusses the development of a simulation model for use in predicting the performance of the ARIS in attenuating disturbances with frequency content between 0.01 Hz and 10 Hz. The derivation of the model utilizes an energy-based approach. The complete simulation includes the dynamic model of the ISPR integrated with the model for the ARIS controller so that the entire closed-loop system is simulated. Preliminary performance predictions are made for the ARIS in attenuating both off-board disturbances as well as disturbances from hardware mounted onboard the microgravity facility. These predictions suggest that the ARIS does eliminate resonant behavior detrimental to microgravity experimentation. A limited comparison is made between the simulation predictions of ARIS attenuation of off-board disturbances and results from the ARIS flight test. These comparisons show promise, but further tuning of the simulation is needed.

  17. Simulation of Latex Film Formation Using a Cell Model in Real Space: Vertical Drying.

    PubMed

    Gromer, A; Nassar, M; Thalmann, F; Hébraud, P; Holl, Y

    2015-10-13

    This paper presents a simulation tool applied to latex film formation by drying, a hybrid between a classical numerical resolution method using finite differences and cellular automata, and making use of object-oriented programming. It consists of dividing real space into cells and applying local physical laws to simulate the exchange of matter between neighboring cells. In a first step, the simulation was applied to the simple case of vertical drying of a latex containing only one population of monodisperse particles and water. Our results show how the distribution of latex particles evolves through the different drying stages due to a combination of diffusion, convection, and particle deformation. While repulsive interactions between the particles tend to favor homogeneous distributions in the first drying stage, concentration gradients that develop in opposite ways can be observed depending on the drying regime. The distributions, calculated in various cases, reproduce and extend several theoretical results and are in qualitative agreement with some experimental findings. PMID:26378376

  18. Impact of simulated microgravity on human bone stem cells: New hints for space medicine.

    PubMed

    Cazzaniga, Alessandra; Maier, Jeanette A M; Castiglioni, Sara

    2016-04-22

    Bone loss is a well known early event in astronauts and represents one of the major obstacle to space exploration. While an imbalance between osteoblast and osteoclast activity has been described, less is known about the behavior of bone mesenchymal stem cells in microgravity. We simulated microgravity using the Random Positioning Machine and found that mesenchymal stem cells respond to gravitational unloading by upregulating HSP60, HSP70, cyclooxygenase 2 and superoxyde dismutase 2. Such an adaptive response might be involved in inducing the overexpression of some osteogenic transcripts, even though the threshold to induce the formation of bone crystal is not achieved. Indeed, only the addition of an osteogenic cocktail activates the full differentiation process both in simulated microgravity and under static 1G-conditions. We conclude that simulated microgravity alone reprograms bone mesenchymal stem cells towards an osteogenic phenotype which results in complete differentiation only after exposure to a specific stimulus. PMID:27005819

  19. Information content of simulated space photographs as a function of various levels of image resolution.

    NASA Technical Reports Server (NTRS)

    Lauer, D. T.; Thaman, R. R.

    1971-01-01

    The results of research are reported on the information content in simulated space photographs derivable as a function of various levels of image resolution. Whenever certain resource features could not be consistently identified on simulated low-resolution imagery, attempts were made to define the required level of image resolution that would allow a skilled interpreter to discriminate one feature from another. The results of this research, conducted within a chaparral-hardwood-grassland environment in California, indicate that simulated ERTS data contain sufficient information to allow an interpreter to discriminate between woody vegetation, grassland, and water bodies. However, if more detailed information is desired, the imagery must have a ground resolution of at least 50 ft, showing shape, size, texture, and shadow characteristics within each vegetation type. Spaceborne data, therefore, often will have to be supplemented by higher resolution aircraft imagery, depending on the types of resource information being sought.

  20. Implementation of an Open-Scenario, Long-Term Space Debris Simulation Approach

    NASA Technical Reports Server (NTRS)

    Nelson, Bron; Yang Yang, Fan; Carlino, Roberto; Dono Perez, Andres; Faber, Nicolas; Henze, Chris; Karacalioglu, Arif Goktug; O'Toole, Conor; Swenson, Jason; Stupl, Jan

    2015-01-01

    This paper provides a status update on the implementation of a flexible, long-term space debris simulation approach. The motivation is to build a tool that can assess the long-term impact of various options for debris-remediation, including the LightForce space debris collision avoidance concept that diverts objects using photon pressure [9]. State-of-the-art simulation approaches that assess the long-term development of the debris environment use either completely statistical approaches, or they rely on large time steps on the order of several days if they simulate the positions of single objects over time. They cannot be easily adapted to investigate the impact of specific collision avoidance schemes or de-orbit schemes, because the efficiency of a collision avoidance maneuver can depend on various input parameters, including ground station positions and orbital and physical parameters of the objects involved in close encounters (conjunctions). Furthermore, maneuvers take place on timescales much smaller than days. For example, LightForce only changes the orbit of a certain object (aiming to reduce the probability of collision), but it does not remove entire objects or groups of objects. In the same sense, it is also not straightforward to compare specific de-orbit methods in regard to potential collision risks during a de-orbit maneuver. To gain flexibility in assessing interactions with objects, we implement a simulation that includes every tracked space object in Low Earth Orbit (LEO) and propagates all objects with high precision and variable time-steps as small as one second. It allows the assessment of the (potential) impact of physical or orbital changes to any object. The final goal is to employ a Monte Carlo approach to assess the debris evolution during the simulation time-frame of 100 years and to compare a baseline scenario to debris remediation scenarios or other scenarios of interest. To populate the initial simulation, we use the entire space

  1. RENEW v3.2 user's manual, maintenance estimation simulation for Space Station Freedom Program

    NASA Technical Reports Server (NTRS)

    Bream, Bruce L.

    1993-01-01

    RENEW is a maintenance event estimation simulation program developed in support of the Space Station Freedom Program (SSFP). This simulation uses reliability and maintainability (R&M) and logistics data to estimate both average and time dependent maintenance demands. The simulation uses Monte Carlo techniques to generate failure and repair times as a function of the R&M and logistics parameters. The estimates are generated for a single type of orbital replacement unit (ORU). The simulation has been in use by the SSFP Work Package 4 prime contractor, Rocketdyne, since January 1991. The RENEW simulation gives closer estimates of performance since it uses a time dependent approach and depicts more factors affecting ORU failure and repair than steady state average calculations. RENEW gives both average and time dependent demand values. Graphs of failures over the mission period and yearly failure occurrences are generated. The averages demand rate for the ORU over the mission period is also calculated. While RENEW displays the results in graphs, the results are also available in a data file for further use by spreadsheets or other programs. The process of using RENEW starts with keyboard entry of the R&M and operational data. Once entered, the data may be saved in a data file for later retrieval. The parameters may be viewed and changed after entry using RENEW. The simulation program runs the number of Monte Carlo simulations requested by the operator. Plots and tables of the results can be viewed on the screen or sent to a printer. The results of the simulation are saved along with the input data. Help screens are provided with each menu and data entry screen.

  2. RENEW v3.2 user's manual, maintenance estimation simulation for Space Station Freedom Program

    NASA Astrophysics Data System (ADS)

    Bream, Bruce L.

    1993-04-01

    RENEW is a maintenance event estimation simulation program developed in support of the Space Station Freedom Program (SSFP). This simulation uses reliability and maintainability (R&M) and logistics data to estimate both average and time dependent maintenance demands. The simulation uses Monte Carlo techniques to generate failure and repair times as a function of the R&M and logistics parameters. The estimates are generated for a single type of orbital replacement unit (ORU). The simulation has been in use by the SSFP Work Package 4 prime contractor, Rocketdyne, since January 1991. The RENEW simulation gives closer estimates of performance since it uses a time dependent approach and depicts more factors affecting ORU failure and repair than steady state average calculations. RENEW gives both average and time dependent demand values. Graphs of failures over the mission period and yearly failure occurrences are generated. The averages demand rate for the ORU over the mission period is also calculated. While RENEW displays the results in graphs, the results are also available in a data file for further use by spreadsheets or other programs. The process of using RENEW starts with keyboard entry of the R&M and operational data. Once entered, the data may be saved in a data file for later retrieval. The parameters may be viewed and changed after entry using RENEW. The simulation program runs the number of Monte Carlo simulations requested by the operator. Plots and tables of the results can be viewed on the screen or sent to a printer. The results of the simulation are saved along with the input data. Help screens are provided with each menu and data entry screen.

  3. Neutral Buoyancy Simulator: MSFC-Langley joint test of large space structures component assembly:

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Once the United States' space program had progressed from Earth's orbit into outerspace, the prospect of building and maintaining a permanent presence in space was realized. To accomplish this feat, NASA launched a temporary workstation, Skylab, to discover the effects of low gravity and weightlessness on the human body, and also to develop tools and equipment that would be needed in the future to build and maintain a more permanent space station. The structures, techniques, and work schedules had to be carefully designed to fit this unique construction site. The components had to be lightweight for transport into orbit, yet durable. The station also had to be made with removable parts for easy servicing and repairs by astronauts. All of the tools necessary for service and repairs had to be designed for easy manipulation by a suited astronaut. And construction methods had to be efficient due to limited time the astronauts could remain outside their controlled environment. In lieu of all the specific needs for this project, an environment on Earth had to be developed that could simulate a low gravity atmosphere. A Neutral Buoyancy Simulator (NBS) was constructed by NASA Marshall Space Flight Center (MSFC) in 1968. Since then, NASA scientists have used this facility to understand how humans work best in low gravity and also provide information about the different kinds of structures that can be built. Another facet of the space station would be electrical cornectors which would be used for powering tools the astronauts would need for construction, maintenance and repairs. Shown is an astronaut training during an underwater electrical connector test in the NBS.

  4. Neutral Buoyancy Simulator-NB32-Assembly of Large Space Structure

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Once the United States' space program had progressed from Earth's orbit into outerspace, theprospect of building and maintaining a permanent presence in space was realized. To accomplish this feat, NASA launched a temporary workstation, Skylab, to discover the effects of low gravity and weightlessness on the human body, and also to develop tools and equipment that would be needed in the future to build and maintain a more permanent space station. The structures, techniques, and work schedules had to be carefully designed to fit this unique construction site. The components had to be lightweight for transport into orbit, yet durable. The station also had to be made with removable parts for easy servicing and repairs by astronauts. All of the tools necessary for service and repairs had to be designed for easy manipulation by a suited astronaut. Construction methods had to be efficient due to the limited time the astronauts could remain outside their controlled environment. In lieu of all the specific needs for this project, an environment on Earth had to be developed that could simulate a low gravity atmosphere. A Neutral Buoyancy Simulator (NBS) was constructed by NASA's Marshall Space Flight Center (MSFC) in 1968. Since then, NASA scientists have used this facility to understand how humans work best in low gravity and also provide information about the different kinds of structures that can be built. Pictured is a Massachusetts Institute of Technology (MIT) student working in a spacesuit on the Experimental Assembly of Structures in Extravehicular Activity (EASE) project which was developed as a joint effort between MFSC and MIT. The EASE experiment required that crew members assemble small components to form larger components, working from the payload bay of the space shuttle. The MIT student in this photo is assembling two six-beam tetrahedrons.

  5. Simulating Coupling Complexity in Space Plasmas: First Results from a new code

    NASA Astrophysics Data System (ADS)

    Kryukov, I.; Zank, G. P.; Pogorelov, N. V.; Raeder, J.; Ciardo, G.; Florinski, V. A.; Heerikhuisen, J.; Li, G.; Petrini, F.; Shematovich, V. I.; Winske, D.; Shaikh, D.; Webb, G. M.; Yee, H. M.

    2005-12-01

    The development of codes that embrace 'coupling complexity' via the self-consistent incorporation of multiple physical scales and multiple physical processes in models has been identified by the NRC Decadal Survey in Solar and Space Physics as a crucial necessary development in simulation/modeling technology for the coming decade. The National Science Foundation, through its Information Technology Research (ITR) Program, is supporting our efforts to develop a new class of computational code for plasmas and neutral gases that integrates multiple scales and multiple physical processes and descriptions. We are developing a highly modular, parallelized, scalable code that incorporates multiple scales by synthesizing 3 simulation technologies: 1) Computational fluid dynamics (hydrodynamics or magneto-hydrodynamics-MHD) for the large-scale plasma; 2) direct Monte Carlo simulation of atoms/neutral gas, and 3) transport code solvers to model highly energetic particle distributions. We are constructing the code so that a fourth simulation technology, hybrid simulations for microscale structures and particle distributions, can be incorporated in future work, but for the present, this aspect will be addressed at a test-particle level. This synthesis we will provide a computational tool that will advance our understanding of the physics of neutral and charged gases enormously. Besides making major advances in basic plasma physics and neutral gas problems, this project will address 3 Grand Challenge space physics problems that reflect our research interests: 1) To develop a temporal global heliospheric model which includes the interaction of solar and interstellar plasma with neutral populations (hydrogen, helium, etc., and dust), test-particle kinetic pickup ion acceleration at the termination shock, anomalous cosmic ray production, interaction with galactic cosmic rays, while incorporating the time variability of the solar wind and the solar cycle. 2) To develop a coronal

  6. Analysis of Waves in Space Plasma (WISP) near field simulation and experiment

    NASA Technical Reports Server (NTRS)

    Richie, James E.

    1992-01-01

    The WISP payload scheduler for a 1995 space transportation system (shuttle flight) will include a large power transmitter on board at a wide range of frequencies. The levels of electromagnetic interference/electromagnetic compatibility (EMI/EMC) must be addressed to insure the safety of the shuttle crew. This report is concerned with the simulation and experimental verification of EMI/EMC for the WISP payload in the shuttle cargo bay. The simulations have been carried out using the method of moments for both thin wires and patches to stimulate closed solids. Data obtained from simulation is compared with experimental results. An investigation of the accuracy of the modeling approach is also included. The report begins with a description of the WISP experiment. A description of the model used to simulate the cargo bay follows. The results of the simulation are compared to experimental data on the input impedance of the WISP antenna with the cargo bay present. A discussion of the methods used to verify the accuracy of the model is shown to illustrate appropriate methods for obtaining this information. Finally, suggestions for future work are provided.

  7. Simulation of the assembly dynamics and control of Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Cooper, Paul A.; Garrison, James L., Jr.; Montgomery, Raymond C.; Wu, Shih-Chin; Stockwell, Alan E.; Demeo, Martha E.

    1993-01-01

    A large-angle, flexible, multi-body, dynamic modelling capability has been developed to help validate numerical simulations of the dynamic motion and control forces which occur during berthing of Space Station Freedom to the Shuttle Orbiter in the early assembly flights. This paper outlines the dynamics and control of the Station, the attached Shuttle Remote Manipulator System, and the Orbiter. The simulation tool developed for the analysis is described and the results of two simulations are presented. The first is a simulated maneuver from a gravity-gradient attitude to a torque equilibrium attitude using the Station reaction control jets. The second simulation is the berthing of the Station to the Orbiter with the Station control moment gyros actively maintaining an estimated torque equilibrium attitude. The influence of the elastic dynamic behavior of the Station and of the Remote Manipulator System on the attitude control of the Station/Orbiter system during each maneuver was investigated. The flexibility of the Station and the arm were found to have only a minor influence on the attitude control of the system during the maneuvers.

  8. Time Accurate Unsteady Pressure Loads Simulated for the Space Launch System at a Wind Tunnel Condition

    NASA Technical Reports Server (NTRS)

    Alter, Stephen J.; Brauckmann, Gregory J.; Kleb, Bil; Streett, Craig L; Glass, Christopher E.; Schuster, David M.

    2015-01-01

    Using the Fully Unstructured Three-Dimensional (FUN3D) computational fluid dynamics code, an unsteady, time-accurate flow field about a Space Launch System configuration was simulated at a transonic wind tunnel condition (Mach = 0.9). Delayed detached eddy simulation combined with Reynolds Averaged Naiver-Stokes and a Spallart-Almaras turbulence model were employed for the simulation. Second order accurate time evolution scheme was used to simulate the flow field, with a minimum of 0.2 seconds of simulated time to as much as 1.4 seconds. Data was collected at 480 pressure taps at locations, 139 of which matched a 3% wind tunnel model, tested in the Transonic Dynamic Tunnel (TDT) facility at NASA Langley Research Center. Comparisons between computation and experiment showed agreement within 5% in terms of location for peak RMS levels, and 20% for frequency and magnitude of power spectral densities. Grid resolution and time step sensitivity studies were performed to identify methods for improved accuracy comparisons to wind tunnel data. With limited computational resources, accurate trends for reduced vibratory loads on the vehicle were observed. Exploratory methods such as determining minimized computed errors based on CFL number and sub-iterations, as well as evaluating frequency content of the unsteady pressures and evaluation of oscillatory shock structures were used in this study to enhance computational efficiency and solution accuracy. These techniques enabled development of a set of best practices, for the evaluation of future flight vehicle designs in terms of vibratory loads.

  9. The effect of simulated microgravity on bacteria from the Mir space station

    NASA Technical Reports Server (NTRS)

    Baker, Paul W.; Leff, Laura

    2004-01-01

    The effects of simulated microgravity on two bacterial isolates, Sphingobacterium thalpophilium and Ralstonia pickettii (formerly Burkholderia pickettii), originally recovered from water systems aboard the Mir space station were examined. These bacteria were inoculated into water, high and low concentrations of nutrient broth and subjected to simulated microgravity conditions. S. thalpophilium (which was motile and had flagella) showed no significant differences between simulated microgravity and the normal gravity control regardless of the method of enumeration and medium. In contrast, for R. pickettii (that was non-motile and lacked flagella), there were significantly higher numbers in high nutrient broth under simulated microgravity compared to normal gravity. Conversely, when R. pikkettii was inoculated into water (i.e., starvation conditions) significantly lower numbers were found under simulated microgravity compared to normal gravity. Responses to microgravity depended on the strain used (e.g., the motile strain exhibited no response to microgravity, while the non-motile strain did), the method of enumeration, and the nutrient concentration of the medium. Under oligotrophic conditions, non-motile cells may remain in geostationary orbit and deplete nutrients in their vicinity, while in high nutrient medium, resources surrounding the cell may be sufficient so that high growth is observed until nutrients becoming limiting.

  10. Modelling and simulation of Space Station Freedom berthing dynamics and control

    NASA Technical Reports Server (NTRS)

    Cooper, Paul A.; Garrison, James L., Jr.; Montgomery, Raymond C.; Wu, Shih-Chin; Stockwell, Alan E.; Demeo, Martha E.

    1994-01-01

    A large-angle, flexible, multibody, dynamic modeling capability has been developed to help validate numerical simulations of the dynamic motion and control forces which occur during berthing of Space Station Freedom to the Shuttle Orbiter in the early assembly flights. This paper outlines the dynamics and control of the station, the attached Shuttle Remote Manipulator System, and the orbiter. The simulation tool developed for the analysis is described and the results of two simulations are presented. The first is a simulated maneuver from a gravity-gradient attitude to a torque equilibrium attitude using the station reaction control jets. The second simulation is the berthing of the station to the orbiter with the station control moment gyros actively maintaining an estimated torque equilibrium attitude. The influence of the elastic dynamic behavior of the station and of the Remote Manipulator System on the attitude control of the station/orbiter system during each maneuver was investigated. The flexibility of the station and the arm were found to have only a minor influence on the attitude control of the system during the maneuvers.

  11. Credibility Assessment of Deterministic Computational Models and Simulations for Space Biomedical Research and Operations

    NASA Technical Reports Server (NTRS)

    Mulugeta, Lealem; Walton, Marlei; Nelson, Emily; Myers, Jerry

    2015-01-01

    Human missions beyond low earth orbit to destinations, such as to Mars and asteroids will expose astronauts to novel operational conditions that may pose health risks that are currently not well understood and perhaps unanticipated. In addition, there are limited clinical and research data to inform development and implementation of health risk countermeasures for these missions. Consequently, NASA's Digital Astronaut Project (DAP) is working to develop and implement computational models and simulations (M&S) to help predict and assess spaceflight health and performance risks, and enhance countermeasure development. In order to effectively accomplish these goals, the DAP evaluates its models and simulations via a rigorous verification, validation and credibility assessment process to ensure that the computational tools are sufficiently reliable to both inform research intended to mitigate potential risk as well as guide countermeasure development. In doing so, DAP works closely with end-users, such as space life science researchers, to establish appropriate M&S credibility thresholds. We will present and demonstrate the process the DAP uses to vet computational M&S for space biomedical analysis using real M&S examples. We will also provide recommendations on how the larger space biomedical community can employ these concepts to enhance the credibility of their M&S codes.

  12. Simulation of space charge compensation in a multibeamlet negative ion beam.

    PubMed

    Sartori, E; Maceina, T J; Veltri, P; Cavenago, M; Serianni, G

    2016-02-01

    Ion beam space charge compensation occurs by cumulating in the beam potential well charges having opposite polarity, usually generated by collisional processes. In this paper we investigate the case of a H(-) ion beam drift, in a bi-dimensional approximation of the NIO1 (Negative Ion Optimization phase 1) negative ion source. H(-) beam ion transport and plasma formation are studied via particle-in-cell simulations. Differential cross sections are sampled to determine the velocity distribution of secondary particles generated by ionization of the residual gas (electrons and slow H2 (+) ions) or by stripping of the beam ions (electrons, H, and H(+)). The simulations include three beamlets of a horizontal section, so that multibeamlet space charge and secondary particle diffusion between separate generation regions are considered, and include a repeller grid biased at various potentials. Results show that after the beam space charge is effectively screened by the secondary plasma in about 3 μs (in agreement with theoretical expectations), a plasma grows across the beamlets with a characteristic time three times longer, and a slight overcompensation of the electric potential is verified as expected in the case of negative ions. PMID:26932089

  13. How can laboratory simulations contribute to knowledge of charging processes in space?

    NASA Astrophysics Data System (ADS)

    Pavlů, Jiří; Nemecek, Zdenek; Richterova, Ivana; Safrankova, Jana

    Laboratory simulations allow us to separate particular charging/discharging processes that are running in the space. We can observe a contribution of these processes to the dust grain state, to its inner structure and to the ability to create conglomerates or to split fragments. Our experimental set-up based on the investigation of single grain levitating in the quadrupole trap allows us to influence this grain by several agents. Moreover, we can choose a material of the grain and its dimension to estimate a relative weight of various processes. The residual gas in the experimental chamber can limit our investigation in comparison with a free space, however, because the simulation is running in UHV conditions, the limitation is not principal. Dust grains may be charged negatively or positively and both components can coexist in laboratory and space plasmas. Usually, a combination of several charging processes takes place and the resulting grain charge depends on many factors (including the properties of surrounding environments, the grain material, or the grain charging history) that determine which process dominates. A survey of extensive study of dust grain properties influenced by these processes are presented and discussed. It touches electron and ion attachments, secondary and field emissions from grains of different materials and sizes.

  14. Differential amygdala activation during simulated personal space intrusion by men and women.

    PubMed

    Wabnegger, Albert; Leutgeb, Verena; Schienle, Anne

    2016-08-25

    Responses to personal space (PS) violations are variable and depend (besides many other factors) on the sex of the person who enters this space. The neuronal basis of this effect is still largely unknown. A previous neuroimaging investigation had shown that male participants responded with increased amygdala activation to PS violation, but only when the intruder was male. Gender-specific responses by females have not been studied yet. In the present study we recorded affective as well as hemodynamic responses of 30 women (mean age: M=27.3years; SD=8.1). The participants were exposed to images of neutral facial expressions from men and women. All stimuli were once shown as photos (static), and once were zoomed in (picture enlargement by the factor 2.75) in order to simulate PS intrusion. In both conditions ('static' and 'approaching' faces) the eyes and mouth region of the depicted persons were always completely visible. Approaching faces generally provoked activation of a parietal network (e.g., intraparietal sulcus, superior/inferior parietal cortex). When the approaching person was male additional amygdala activation was detected. Because the amygdala is a central structure for the initiation of defense responses, the heightened activation might reflect that male intrusion was decoded as potential threat. Hence, we observed a similar gender bias to simulated space intrusion in women as previously in men. PMID:27246442

  15. Simulation of space charge compensation in a multibeamlet negative ion beam

    NASA Astrophysics Data System (ADS)

    Sartori, E.; Maceina, T. J.; Veltri, P.; Cavenago, M.; Serianni, G.

    2016-02-01

    Ion beam space charge compensation occurs by cumulating in the beam potential well charges having opposite polarity, usually generated by collisional processes. In this paper we investigate the case of a H- ion beam drift, in a bi-dimensional approximation of the NIO1 (Negative Ion Optimization phase 1) negative ion source. H- beam ion transport and plasma formation are studied via particle-in-cell simulations. Differential cross sections are sampled to determine the velocity distribution of secondary particles generated by ionization of the residual gas (electrons and slow H2+ ions) or by stripping of the beam ions (electrons, H, and H+). The simulations include three beamlets of a horizontal section, so that multibeamlet space charge and secondary particle diffusion between separate generation regions are considered, and include a repeller grid biased at various potentials. Results show that after the beam space charge is effectively screened by the secondary plasma in about 3 μs (in agreement with theoretical expectations), a plasma grows across the beamlets with a characteristic time three times longer, and a slight overcompensation of the electric potential is verified as expected in the case of negative ions.

  16. Space station Simulation Computer System (SCS) study for NASA/MSFC. Volume 6: Study issues report

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The Simulation Computer System (SCS) is the computer hardware, software, and workstations that will support the Payload Training Complex (PTC) at the Marshall Space Flight Center (MSFC). The PTC will train the space station payload specialists and mission specialists to operate the wide variety of experiments that will be on-board the Freedom Space Station. This simulation Computer System (SCS) study issues report summarizes the analysis and study done as task 1-identify and analyze the CSC study issues- of the SCS study contract.This work was performed over the first three months of the SCS study which began in August of 1988. First issues were identified from all sources. These included the NASA SOW, the TRW proposal, and working groups which focused the experience of NASA and the contractor team performing the study-TRW, Essex, and Grumman. The final list is organized into training related issues, and SCS associated development issues. To begin the analysis of the issues, a list of all the functions for which the SCS could be used was created, i.e., when the computer is turned on, what will it be doing. Analysis was continued by creating an operational functions matrix of SCS users vs. SCS functions to insure all the functions considered were valid, and to aid in identification of users as the analysis progressed. The functions will form the basis for the requirements, which are currently being developed under task 3 of the SCS study.

  17. Three dimensional simulations of space charge dominated heavy ion beams with applications to inertial fusion energy

    SciTech Connect

    Grote, D.P.

    1994-11-01

    Heavy ion fusion requires injection, transport and acceleration of high current beams. Detailed simulation of such beams requires fully self-consistent space charge fields and three dimensions. WARP3D, developed for this purpose, is a particle-in-cell plasma simulation code optimized to work within the framework of an accelerator`s lattice of accelerating, focusing, and bending elements. The code has been used to study several test problems and for simulations and design of experiments. Two applications are drift compression experiments on the MBE-4 facility at LBL and design of the electrostatic quadrupole injector for the proposed ILSE facility. With aggressive drift compression on MBE-4, anomalous emittance growth was observed. Simulations carried out to examine possible causes showed that essentially all the emittance growth is result of external forces on the beam and not of internal beam space-charge fields. Dominant external forces are the dodecapole component of focusing fields, the image forces on the surrounding pipe and conductors, and the octopole fields that result from the structure of the quadrupole focusing elements. Goal of the design of the electrostatic quadrupole injector is to produce a beam of as low emittance as possible. The simulations show that the dominant effects that increase the emittance are the nonlinear octopole fields and the energy effect (fields in the axial direction that are off-axis). Injectors were designed that minimized the beam envelope in order to reduce the effect of the nonlinear fields. Alterations to the quadrupole structure that reduce the nonlinear fields further were examined. Comparisons were done with a scaled experiment resulted in very good agreement.

  18. A new approach for data acquisition at the JPL space simulators

    NASA Technical Reports Server (NTRS)

    Fisher, Terry C.

    1992-01-01

    In 1990, a personal computer based data acquisition system was put into service for the Space Simulators and Environmental Test Laboratory at the Jet Propulsion Laboratory (JPL) in Pasadena, California. The new system replaced an outdated minicomputer system which had been in use since 1980. This new data acquisition system was designed and built by JPL for the specific task of acquiring thermal test data in support of space simulation and thermal vacuum testing at JPL. The data acquisition system was designed using powerful personal computers and local-area-network (LAN) technology. Reliability, expandability, and maintainability were some of the most important criteria in the design of the data system and in the selection of hardware and software components. The data acquisition system is used to record both test chamber operational data and thermal data from the unit under test. Tests are conducted in numerous small thermal vacuum chambers and in the large solar simulator and range in size from individual components using only 2 or 3 thermocouples to entire planetary spacecraft requiring in excess of 1200 channels of test data. The system supports several of these tests running concurrently. The previous data system is described along with reasons for its replacement, the types of data acquired, the new data system, and the benefits obtained from the new system including information on tests performed to date.

  19. Virtual Observatories for Space Physics Observations and Simulations: New Routes to Efficient Access and Visualization

    NASA Technical Reports Server (NTRS)

    Roberts, Aaron

    2005-01-01

    New tools for data access and visualization promise to make the analysis of space plasma data both more efficient and more powerful, especially for answering questions about the global structure and dynamics of the Sun-Earth system. We will show how new existing tools (particularly the Virtual Space Physics Observatory-VSPO-and the Visual System for Browsing, Analysis and Retrieval of Data-ViSBARD; look for the acronyms in Google) already provide rapid access to such information as spacecraft orbits, browse plots, and detailed data, as well as visualizations that can quickly unite our view of multispacecraft observations. We will show movies illustrating multispacecraft observations of the solar wind and magnetosphere during a magnetic storm, and of simulations of 3 0-spacecraft observations derived from MHD simulations of the magnetosphere sampled along likely trajectories of the spacecraft for the MagCon mission. An important issue remaining to be solved is how best to integrate simulation data and services into the Virtual Observatory environment, and this talk will hopefully stimulate further discussion along these lines.

  20. Two-Dimensional Distribution of Volatiles in the Lunar Regolith from Space Weathering Simulations

    NASA Technical Reports Server (NTRS)

    Hurley, Dana M.; Lawrence, David J.; Bussey, D. Benjamin J.; Vondrak, Richard R.; Elphic, Richard C.; Gladstone, G. Randall

    2012-01-01

    We present simulations of space weathering effects on ice deposits in regions of permanent shadow on the Moon. These Monte Carlo simulations follow the effects of space weathering processes on the distribution of the volatiles over time. The model output constrains the coherence of volatile deposits with depth, lateral separation, and time. The results suggest that ice sheets become broken and buried with time. As impacts begin to puncture an initially coherent surficial ice sheet, small areas with a deficit of ice compared to surrounding areas are formed first. As time progresses, holes become prevalent and the anomalous regions are local enhancements of ice concentration in a volume. The 3-D distribution is also heterogeneous because the ice is buried to varying depths in different locations. Analysis of the coherence of ice on 10 cm scales predicts that putative ice sheets in anomalous radar craters are < 100 Myr old. Surface frost becomes homogenized within 20 Myr. The simulations show the data from the LCROSS impact and surrounding region are consistent with the ice deposit in Cabeus being >1000 Myr old. For future in situ analysis of cold trap volatiles, a horizontal range of 10 m is sufficient to acquire surface-based measurements of heterogeneously distributed ice. These results also support previous analyses that Mercury's cold traps are young.

  1. Utility of Emulation and Simulation Computer Modeling of Space Station Environmental Control and Life Support Systems

    NASA Technical Reports Server (NTRS)

    Yanosy, James L.

    1988-01-01

    Over the years, computer modeling has been used extensively in many disciplines to solve engineering problems. A set of computer program tools is proposed to assist the engineer in the various phases of the Space Station program from technology selection through flight operations. The development and application of emulation and simulation transient performance modeling tools for life support systems are examined. The results of the development and the demonstration of the utility of three computer models are presented. The first model is a detailed computer model (emulation) of a solid amine water desorbed (SAWD) CO2 removal subsystem combined with much less detailed models (simulations) of a cabin, crew, and heat exchangers. This model was used in parallel with the hardware design and test of this CO2 removal subsystem. The second model is a simulation of an air revitalization system combined with a wastewater processing system to demonstrate the capabilities to study subsystem integration. The third model is that of a Space Station total air revitalization system. The station configuration consists of a habitat module, a lab module, two crews, and four connecting nodes.

  2. [Mathematical simulation support to the dosimetric monitoring on the Russian segment of the International Space Station].

    PubMed

    Mitrikas, V G

    2014-01-01

    To ensure radiation safety of cosmonauts, it is necessary not only to predict, but also to reconstruct absorbed dose dynamics with the knowledge of how long cosmonauts stay in specific space vehicle compartments with different shielding properties and lacking equipment for dosimetric monitoring. In this situation, calculating is one and only way to make a correct estimate of radiation exposure of cosmonaut's organism as a whole (tissue-average dose) and of separate systems and organs. The paper addresses the issues of mathematical simulation of epy radiation environment of standard dosimetric instruments in the Russian segments of the International Space Station (ISS RS). Results of comparing the simulation and experimental data for the complement of dosimeters including ionization chamber-based radiometer R-16, DB8 dosimeters composed of semiconductor detectors, and Pille dosimeters composed of thermoluminescent detectors evidence that the current methods of simulation in support of the ISS RS radiation monitoring provide a sufficiently good agreement between the calculated and experimental data. PMID:25163341

  3. Graphical programming and the use of simulation for space-based manipulators

    NASA Technical Reports Server (NTRS)

    Mcgrath, Debra S.; Reynolds, James C.

    1989-01-01

    Robotic manipulators are difficult to program even without the special requirements of a zero-gravity environment. While attention should be paid to investigating the usefulness of industrial application programming methods to space manipulators, new methods with potential application to both environments need to be invented. These methods should allow various levels of autonomy and human-in-the-loop interaction and simple, rapid switching among them. For all methods simulation must be integrated to provide reliability and safety. Graphical programming of manipulators is a candidate for an effective robot programming method despite current limitations in input devices and displays. A research project in task-level robot programming has built an innovative interface to a state-of-the-art commercial simulation and robot programming platform. The prototype demonstrates simple augmented methods for graphical programming and simulation which may be of particular interest to those concerned with Space Station applications; its development has also raised important issues for the development of more sophisticated robot programming tools. Both aspects of the project are discussed.

  4. Reservoir Modeling by Data Integration via Intermediate Spaces and Artificial Intelligence Tools in MPS Simulation Frameworks

    SciTech Connect

    Ahmadi, Rouhollah; Khamehchi, Ehsan

    2013-12-15

    Conditioning stochastic simulations are very important in many geostatistical applications that call for the introduction of nonlinear and multiple-point data in reservoir modeling. Here, a new methodology is proposed for the incorporation of different data types into multiple-point statistics (MPS) simulation frameworks. Unlike the previous techniques that call for an approximate forward model (filter) for integration of secondary data into geologically constructed models, the proposed approach develops an intermediate space where all the primary and secondary data are easily mapped onto. Definition of the intermediate space, as may be achieved via application of artificial intelligence tools like neural networks and fuzzy inference systems, eliminates the need for using filters as in previous techniques. The applicability of the proposed approach in conditioning MPS simulations to static and geologic data is verified by modeling a real example of discrete fracture networks using conventional well-log data. The training patterns are well reproduced in the realizations, while the model is also consistent with the map of secondary data.

  5. Optical Analysis of Transparent Polymeric Material Exposed to Simulated Space Environment

    NASA Technical Reports Server (NTRS)

    Edwards, David L.; Finckenor, Miria M.

    1999-01-01

    Transparent polymeric materials are being designed and utilized as solar concentrating lenses for spacecraft power and propulsion systems. These polymeric lenses concentrate solar energy onto energy conversion devices such as solar cells and thermal energy systems. The conversion efficiency is directly related to the transmissivity of the polymeric lens. The Environmental Effects Group of the Marshall Space Flight Center's Materials, Processes, and Manufacturing Department exposed a variety of materials to a simulated space environment and evaluated them for an, change in optical transmission. These materials include Lexan(TM), polyethylene terephthalate (PET). several formulations of Tefzel(TM). and Teflon(TM), and silicone DC 93-500. Samples were exposed to a minimum of 1000 Equivalent Sun Hours (ESH) of near-UV radiation (250 - 400 nm wavelength). Data will be presented on materials exposed to charged particle radiation equivalent to a five-year dose in geosynchronous orbit. These exposures were performed in MSFC's Combined Environmental Effects Test Chamber, a unique facility with the capability to expose materials simultaneously or sequentially to protons, low-energy electrons, high-energy electrons, near UV radiation and vacuum UV radiation.Prolonged exposure to the space environment will decrease the polymer film's transmission and thus reduce the conversion efficiency. A method was developed to normalize the transmission loss and thus rank the materials according to their tolerance to space environmental exposure. Spectral results and the material ranking according to transmission loss are presented.

  6. Computer graphics testbed to simulate and test vision systems for space applications

    NASA Technical Reports Server (NTRS)

    Cheatham, John B.; Wu, Chris K.; Lin, Y. H.

    1991-01-01

    A system was developed for displaying computer graphics images of space objects and the use of the system was demonstrated as a testbed for evaluating vision systems for space applications. In order to evaluate vision systems, it is desirable to be able to control all factors involved in creating the images used for processing by the vision system. Considerable time and expense is involved in building accurate physical models of space objects. Also, precise location of the model relative to the viewer and accurate location of the light source require additional effort. As part of this project, graphics models of space objects such as the Solarmax satellite are created that the user can control the light direction and the relative position of the object and the viewer. The work is also aimed at providing control of hue, shading, noise and shadows for use in demonstrating and testing imaging processing techniques. The simulated camera data can provide XYZ coordinates, pitch, yaw, and roll for the models. A physical model is also being used to provide comparison of camera images with the graphics images.

  7. Simulation of Space Charge Dynamic in Polyethylene Under DC Continuous Electrical Stress

    NASA Astrophysics Data System (ADS)

    Hamed, Boukhari; Rogti, Fatiha

    2016-06-01

    The space charge dynamic plays a very important role in the aging and breakdown of polymeric insulation materials under high voltage. This is due to the intensification of the local electric field and the attendant chemical-mechanical effects in the vicinity around the trapped charge. In this paper, we have investigated the space charge dynamic in low-density polyethylene under high direct-current voltage, which is evaluated by experimental conditions. The evaluation is on the basis of simulation using a bipolar charge transport model consisting of charge injection, transports, trapping, detrapping, and recombination phenomena. The theoretical formulation of the physical problem is based on the Poisson, the continuity, and the transport equations. Numerical results provide temporal and local distributions of the electric field, the space charge density for the different kinds of charges (net charge density, mobile and trapped of electron density, mobile hole density), conduction and displacement current densities, and the external current. The result shows the appearance of the negative packet-like space charge with a large amount of the bulk under the dc electric field of 100 kV/mm, and the induced distortion of the electric field is largely near to the anode, about 39% higher than the initial electric field applied.

  8. Contamination Control Assessment of the World's Largest Space Environment Simulation Chamber

    NASA Technical Reports Server (NTRS)

    Snyder, Aaron; Henry, Michael W.; Grisnik, Stanley P.; Sinclair, Stephen M.

    2012-01-01

    The Space Power Facility s thermal vacuum test chamber is the largest chamber in the world capable of providing an environment for space simulation. To improve performance and meet stringent requirements of a wide customer base, significant modifications were made to the vacuum chamber. These include major changes to the vacuum system and numerous enhancements to the chamber s unique polar crane, with a goal of providing high cleanliness levels. The significance of these changes and modifications are discussed in this paper. In addition, the composition and arrangement of the pumping system and its impact on molecular back-streaming are discussed in detail. Molecular contamination measurements obtained with a TQCM and witness wafers during two recent integrated system tests of the chamber are presented and discussed. Finally, a concluding remarks section is presented.

  9. Development of High-Resolution UV-VIS Diagnostics for Space Plasma Simulation

    NASA Astrophysics Data System (ADS)

    Taylor, Andrew; Batishchev, Oleg

    2012-10-01

    Non-invasive far-UV-VIS plasma emission allows remote diagnostics of plasma, which is particularly important for space application. Accurate vacuum tank space plasma simulations require monochromators with high spectral resolution (better than 0.01A) to capture important details of atomic and ionic lines, such as Ly-alpha, etc. We are building a new system based on the previous work [1], and will discuss the development of a spectrometry system that combines a single-pass vacuum far-UV-NIR spectrometer and a tunable Fabry-Perot etalon. [4pt] [1] O. Batishchev and J.L. Cambier, Experimental Study of the Mini-Helicon Thruster, Air Force Research Laboratory Report, AFRL-RZ-ED-TR-2009-0020, 2009.

  10. Physical design and Monte Carlo simulations of a space radiation detector onboard the SJ-10 satellite

    NASA Astrophysics Data System (ADS)

    Liu, Ya-Qing; Wang, Huan-Yu; Cui, Xing-Zhu; Peng, Wen-Xi; Fan, Rui-Rui; Liang, Xiao-Hua; Gao, Ming; Zhang, Yun-Long; Zhang, Cheng-Mo; Zhang, Jia-Yu; Yang, Jia-Wei; Wang, Jin-Zhou; Zhang, Fei; Dong, Yi-Fan; Guo, Dong-Ya; Zhou, Da-Wei

    2015-01-01

    A radiation gene box (RGB) onboard the SJ-10 satellite is a device carrying mice and drosophila cells to determine the biological effects of space radiation environment. The shielded fluxes of different radioactive sources were calculated and the linear energy transfers of γ-rays, electrons, protons and α-particles in the tissue were acquired using A-150 tissue-equivalent plastic. Then, a conceptual model of a space radiation instrument employing three semiconductor sub-detectors for deriving the charged and uncharged radiation environment of the RGB was designed. The energy depositions in the three sub-detectors were classified into 15 channels (bins) in an algorithm derived from the Monte Carlo method. The physical feasibility of the conceptual instrument was also verified by Monte Carlo simulations.

  11. The simulation of radiation effects to astronauts due to solar energetic particles in deep space

    NASA Astrophysics Data System (ADS)

    Gang, Bao

    2012-02-01

    The exposure to interplanetary radiation poses a serious health risk to astronauts, especially for long-term missions. Protecting the astronauts from these particles has been the key issue to the manned space mission. High-energy space particles can penetrate the protective layer of a spacecraft, and probably cause deleterious effects to the astronauts. To estimate the size of these effects, a credible simulation of radioprotection is required. Using the Geant4 software toolkit, we have modeled the interaction processes and predicted the total energy deposit in a phantom (astronaut) as well as the similar information associated with secondary effects, due to Solar Energetic Particles (SEPs) at ∼1 AU caused by the large SEPs events in October 1989 and August 1972. In addition, we compared the characteristics of the energy deposit due to SEPs and Galactic Cosmic Rays (GCRs) and explained the differences between them by physical mechanism analysis.

  12. Space station Simulation Computer System (SCS) study for NASA/MSFC. Volume 2: Concept document

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The Simulation Computer System (SCS) concept document describes and establishes requirements for the functional performance of the SCS system, including interface, logistic, and qualification requirements. The SCS is the computational communications and display segment of the Marshall Space Flight Center (MSFC) Payload Training Complex (PTC). The PTC is the MSFC facility that will train onboard and ground operations personnel to operate the payloads and experiments on board the international Space Station Freedom. The requirements to be satisfied by the system implementation are identified here. The SCS concept document defines the requirements to be satisfied through the implementation of the system capability. The information provides the operational basis for defining the requirements to be allocated to the system components and enables the system organization to assess whether or not the completed system complies with the requirements of the system.

  13. Preliminary Observing System Simulation Experiments for Doppler Wind Lidars Deployed on the International Space Station

    NASA Technical Reports Server (NTRS)

    Kemp, E.; Jacob, J.; Rosenberg, R.; Jusem, J. C.; Emmitt, G. D.; Wood, S.; Greco, L. P.; Riishojgaard, L. P.; Masutani, M.; Ma, Z.; Tucker, S.; Atlas, R.; Bucci, L.; Hardesty, M.

    2013-01-01

    NASA Goddard Space Flight Center's Software Systems Support Office (SSSO) is participating in a multi-agency study of the impact of assimilating Doppler wind lidar observations on numerical weather prediction. Funded by NASA's Earth Science Technology Office, SSSO has worked with Simpson Weather Associates to produce time series of synthetic lidar observations mimicking the OAWL and WISSCR lidar instruments deployed on the International Space Station. In addition, SSSO has worked to assimilate a portion of these observations those drawn from the NASA fvGCM Nature Run into the NASA GEOS-DAS global weather prediction system in a series of Observing System Simulation Experiments (OSSEs). These OSSEs will complement parallel OSSEs prepared by the Joint Center for Satellite Data Assimilation and by NOAA's Atlantic Oceanographic and Meteorological Laboratory. In this talk, we will describe our procedure and provide available OSSE results.

  14. From diffusion pumps to cryopumps: The conversion of GSFC's space environment simulator

    NASA Technical Reports Server (NTRS)

    Cary, Ron

    1992-01-01

    The SES (Space Environmental Simulator), largest of the Thermal Vacuum Facilities at The Goddard Space Flight Center, recently was converted from an oil diffusion pumped chamber to a Cryopumped chamber. This modification was driven by requirements of flight projects. The basic requirement was to retain or enhance the operational parameters of the chamber such as pumping speed, ultimate vacuum, pump down time, and thermal system performance. To accomplish this task, seventeen diffusion pumps were removed and replaced with eight 1.2 meter (48 inch) diameter cryopumps and one 0.5 meter (20 inch) turbomolecular pump. The conversion was accomplished with a combination of subcontracting and in-house efforts to maximize the efficiency of implementation.

  15. Frequency-space domain acoustic wave simulation with the BiCGstab (ℓ) iterative method

    NASA Astrophysics Data System (ADS)

    Du, Zengli; Liu, Jianjun; Liu, Wenge; Li, Chunhong

    2016-02-01

    The vast computational cost and memory requirements of LU decomposition are major obstacles to 3D seismic modelling in the frequency-space domain. BiCGstab (ℓ) is an effective bi-conjugate gradient method to solve the giant sparse linear equations, but the convergence rate is extremely low when the threshold value is set small enough. The BiCGstab (ℓ) iterative method was introduced into 3D numerical simulation to overcome these problems in this paper. Numerical examples have shown that the precision of the BiCGstab (ℓ) iterative method meets the demand of seismic modelling and the result is equivalent to that of LU decomposition. The computational cost and memory resource demands of the BiCGstab (ℓ) iterative method are superior to that of LU decomposition. It is an effective method of 3D seismic modelling in the frequency-space domain.

  16. Space-time conditional disaggregation of precipitation at high resolution via simulation

    NASA Astrophysics Data System (ADS)

    Bárdossy, András.; Pegram, Geoffrey G. S.

    2016-02-01

    Daily rainfall data are more plentiful and reliable than pluviometer data and are the best data set to start data-repair from, worldwide. Clusters of pluviometers (a term used herein for instruments recording at subdaily intervals) record wet and dry periods in close synchrony and larger and smaller catches tend to be recorded in similar groups, but they have many gaps that require infilling. We present a method of disaggregating daily rainfall to subdaily intervals, contemporaneously infilling gaps in the pluviometers. Then the observed data, together with the infilled and disaggregated values, are interpolated over the intervening space. To achieve this disaggregation, we used a Gaussian copula-based model with time-dependent marginal distributions and censored values representing the dry periods. In addition, we generated stochastically meaningful ensembles of missing or disaggregated values, while constraining each realization to the observed daily total where relevant. This applies to the gaps filled in the pluviometers as well as the disaggregation of the daily totals. Using the disaggregated and infilled subdaily ensembles, we then conditionally spatially simulated historical rainfall in the space between the gauges and pluviometers. The mean of these stochastic realizations was compared to interpolated fields using two other procedures: Rescaled Ordinary Kriging and Rescaled Nearest Neighbors, and found our method to be superior. Where there are daily data, the daily sum constrains the simulation. In the intervening space, in a chosen daily subinterval, there will be an ensemble of values simulated from the observations. We present the results of measurements and validation of the applications to an unusually large amount of data (not just a few convenient samples), and are confident that the methodology is sound and applicable in a variety of geographies.

  17. Evaluation of an Electrochromic Device for Variable Emittance in Simulated Space Conditions

    NASA Astrophysics Data System (ADS)

    Puterbaugh, Rebekah L.; Mychkovsky, Alexander G.; Ponnappan, Rengasamy; Kislov, Nikolai

    2005-02-01

    Unprotected skin and external surfaces of a spacecraft in earth orbit may experience temperature variations from -50°C to +100°C during exposure to cold space or sun. As a result, thermal management of spacecraft becomes extremely important. One latest trend is to provide flexibility and control in the thermal design that involves variable emittance surfaces consisting of electrochromic (EC) coatings. For investigational purposes, a sample electrochromic device is evaluated for variable emittance in simulated space conditions. A vacuum chamber with a liquid nitrogen circulated blackbody shroud is employed to simulate space conditions. The 63.5 × 63.5 mm test sample supplied by a small business research firm is mounted on an aluminum plate heated by an electrical resistance heater. The sample is thermally insulated by a heat shield from all surroundings excluding the active front surface facing the shroud. The heat shield is uniformly maintained at the sample temperature using an independent circuit of resistance heaters and temperature controllers. A steady state energy balance is applied to the test sample to determine the emittance as a function of temperature and DC bias voltage applied across the anode and cathode. Tests were performed to verify the switchability from high to low emittance states and vice versa. The difference between the high and low emittance values (Δɛ) obtained in the present calorimetric measurement is compared with the data obtained from FTIR measurements performed by the supplier of the EC sample. Results obtained in the present experiments compare closely with supplier data and prove the effectiveness of the variable emittance sample in space conditions. The validity of the calorimetric experiment is confirmed by testing materials with known emittances, such as black paint and polished metals. Error analysis of the system predicts an emittance accuracy of ±5% at sample temperatures in the range of -50°C to 100°C.

  18. Signature mutations from B. subtilis spores exposed to radiations and simulated space environments

    NASA Astrophysics Data System (ADS)

    Munakata, , Nobuo; Natsume, Toshiyuki; Konishi, Teruaki; Hieda, Kotaro; Panitz, Corinna; Horneck, Gerda

    Rifampicin-resistant mutants were collected from the spores of three B. subtilis strains, HA101 (HA, repair proficient), TKJ6312 (US, UV-repair defective) and TKJ6412 (RF, recombination deficient) grown after exposure to various radiations and simulated space environments. All of 563 mutations analyzed carried sequence changes in the N-terminal region of the rpoB gene cod-ing for the subunit β of RNA polymerase II and belonged to 56 alleles. (1) Most of spontaneous mutants from the three strains belonged to 13 single-base substitution (SBS) alleles, exceptions (<2%) being one 3 bp insertion and one tandem double substitution (TDS). (2) About 6 % and 16 % of the mutations from the HA and RF spores, respectively, exposed to ionizing radiations were complex mutations including multiple-base substitutions, insertions and deletions. Several TDS and non-tandem double substitutions (NTDS), and 3, 6, 9 and one 30 bp deletions seem to provide signatures of the exposure to ionizing radiations. (3) Except one TDS from US and one NTDS from HA spores, UV or solar exposure seemed not to leave unique footprints. (4) In space simulation experiments, the only conditions involving high vacuum consistently increased the mutation frequency, and exhibited high occurrences (>50%) of TDS. In HA spores, the al-lele r201 (CA to TT at 1460) was the most frequent, while in US spores, another allele r210 (TC to AA at 1404) was the most frequent. In conclusion, some of the conditions encountered in space environments, such as space vacuum and ionizing radiations, could produce unique mutational signatures in the rpoB gene of B. subtilis spores.

  19. Space simulation ultimate pressure lowered two decades by removal of diffusion pump oil contaminants during operation

    NASA Technical Reports Server (NTRS)

    Buggele, A. E.

    1973-01-01

    The complex problem why large space simulation chambers do not realize the true ultimate vacuum was investigated. Some contaminating factors affecting diffusion pump performance have been identified and some advances in vacuum/distillation/fractionation technology have been achieved which resulted in a two decade or more lower ultimate pressure. Data are presented to show the overall or individual contaminating effect of commonly used phthalate ester plasticizers of 390 to 530 molecular weight on diffusion pump performance. Methods for removing contaminants from diffusion pump silicone oil during operation and reclaiming contaminated oil by high vacuum molecular distillation are described.

  20. Numerical simulation methods of incompressible flows and an application to the space shuttle main engine

    NASA Technical Reports Server (NTRS)

    Chang, J. L. C.; Kwak, D.; Rogers, S. E.; Yang, R.-J.

    1988-01-01

    Incompressible Navier-Stokes solution methods are discussed with an emphasis on the pseudocompressibility method. A steady-state flow solver based on the pseudocompressibility approach is then described. This flow-solver code was used to analyze the internal flow in the Space Shuttle main engine hot-gas manifold. Salient features associated with this three-dimensional realistic flow simulation are discussed. Numerical solutions relevant to the current engine analysis and the redesign effort are discussed along with experimental results. This example demonstrates the potential of computational fluid dynamics as a design tool for aerospace applications.

  1. A hypervelocity launcher for simulated large fragment space debris impacts at 10 km/s

    NASA Technical Reports Server (NTRS)

    Tullos, R. J.; Gray, W. M.; Mullin, S. A.; Cour-Palais, B. G.

    1989-01-01

    The background, design, and testing of two explosive launchers for simulating large fragment space debris impacts are presented. The objective was to develop a launcher capable of launching one gram aluminum fragments at velocities of 10 km/s. The two launchers developed are based on modified versions of an explosive shaped charge, common in many military weapons. One launcher design has yielded a stable fragment launch of approximately one gram of aluminum at 8.93 km/s velocity. The other design yielded velocities in excess of 10 km/s, but failed to produce a cohesive fragment launch. This work is ongoing, and future plans are given.

  2. OVERFLOW Simulations of Space Shuttle Orbiter Reentry Based on As-Built Geometry

    NASA Technical Reports Server (NTRS)

    Ma, Edward C.; Vicker, Darby J.; Campbell, Charles H.; Wilson, Brad; Pavek, Mike; Berger, Karen

    2012-01-01

    The Space Shuttle Orbiters Discovery and Endeavor have been digitally scanned to obtain outer mold line surfaces. Using these scans, the existing overset computational fluid dynamics (CFD) grid system will be modified by projecting the grid points to the scanned geometry. Simulations will be performed using the OVERFLOW solver and the results compared to previous OVERFLOW results on the theoretical geometry and the aerodynamic databook. The "bent airframe" term will be compared between the aerodynamic databook and the computations over a range of reentry conditions.

  3. MEMS Functional Validation Using the Configuration Space Approach to Simulation and Analysis

    SciTech Connect

    Allen, J.; Sacks, E.

    1999-03-09

    We have developed an interactive computer-aided design program that supports mechanical design of devices fabricated in surface micro-machining processes. The program automates kinematic analysis via a novel configuration space computation code, performs real-time simulation, and supports functional parametric design. Designers can visualize system function under a range of operating conditions, can find and correct design flaws, and can optimize performance. We used the program to detect and correct a design flaw in a micro-mechanical indexing mechanism fabricated at Sandia with the SUMMiT process.

  4. Numerical simulation of thermal effects on a 2m space telescope

    NASA Astrophysics Data System (ADS)

    Gong, Yanjue; Zhao, Fu; Zhang, Li; Xiang, Huiyu; Wang, Ping

    2009-12-01

    The primary mirror is a key component of large-scale space telescope, and its thermal effects analysis is an important guideline to thermal design and control of optical system. Based on Finite Elements Analysis (FEA) method and thermodynamics coupling theory, the heat-induced distortion and the effects of temperature distribution such as edge, axial and radial temperature grads acted on the primary mirror are analyzed in this paper. According to the design requirement and the numerical simulation results, the effective means of thermal control for the primary mirror are suggested.

  5. Simulated space environmental exposure of optical coatings for spacecraft solar rejection.

    PubMed

    Barrie, James D; Meshishnek, Michael J; Fuqua, Peter D; Rostel, W Chris

    2002-06-01

    Dielectric multilayers composed of niobium pentoxide and silicon dioxide, designed for broadband solar rejection, were exposed to a simulated space environment of ultraviolet light and low-energy (10-20-keV) electron radiation. Samples exhibited various degrees of exposure-induced absorption extending from the ultraviolet to the infrared. Processing variations were correlated to damage susceptibility, and methods were identified that produced parts that exhibited no degradation even though the same materials and coating design were used. Coatings prepared under energetic deposition conditions that provided the densest and most moisture-stable coatings exhibited the best stability to the exposure conditions used. PMID:12064394

  6. Evaluation of radioisotope tracer and activation analysis techniques for contamination monitoring in space environment simulation chambers

    NASA Technical Reports Server (NTRS)

    Smathers, J. B.; Kuykendall, W. E., Jr.; Wright, R. E., Jr.; Marshall, J. R.

    1973-01-01

    Radioisotope measurement techniques and neutron activation analysis are evaluated for use in identifying and locating contamination sources in space environment simulation chambers. The alpha range method allows the determination of total contaminant concentration in vapor state and condensate state. A Cf-252 neutron activation analysis system for detecting oils and greases tagged with stable elements is described. While neutron activation analysis of tagged contaminants offers specificity, an on-site system is extremely costly to implement and provides only marginal detection sensitivity under even the most favorable conditions.

  7. Comparison of Orion Vision Navigation Sensor Performance from STS-134 and the Space Operations Simulation Center

    NASA Technical Reports Server (NTRS)

    Christian, John A.; Patangan, Mogi; Hinkel, Heather; Chevray, Keiko; Brazzel, Jack

    2012-01-01

    The Orion Multi-Purpose Crew Vehicle is a new spacecraft being designed by NASA and Lockheed Martin for future crewed exploration missions. The Vision Navigation Sensor is a Flash LIDAR that will be the primary relative navigation sensor for this vehicle. To obtain a better understanding of this sensor's performance, the Orion relative navigation team has performed both flight tests and ground tests. This paper summarizes and compares the performance results from the STS-134 flight test, called the Sensor Test for Orion RelNav Risk Mitigation (STORRM) Development Test Objective, and the ground tests at the Space Operations Simulation Center.

  8. Degradation of learned skills. Effectiveness of practice methods on simulated space flight skill retention

    NASA Technical Reports Server (NTRS)

    Sitterley, T. E.; Berge, W. A.

    1972-01-01

    Manual flight control and emergency procedure task skill degradation was evaluated after time intervals of from 1 to 6 months. The tasks were associated with a simulated launch through the orbit insertion flight phase of a space vehicle. The results showed that acceptable flight control performance was retained for 2 months, rapidly deteriorating thereafter by a factor of 1.7 to 3.1 depending on the performance measure used. Procedural task performance showed unacceptable degradation after only 1 month, and exceeded an order of magnitude after 4 months. The effectiveness of static rehearsal (checklists and briefings) and dynamic warmup (simulator practice) retraining methods were compared for the two tasks. Static rehearsal effectively countered procedural skill degradation, while some combination of dynamic warmup appeared necessary for flight control skill retention. It was apparent that these differences between methods were not solely a function of task type or retraining method, but were a function of the performance measures used for each task.

  9. Start-up simulation of a thermionic space nuclear reactor system

    SciTech Connect

    El-Genk, M.S.; Xue, H.; Paramonov, D. )

    1993-01-15

    The Thermionic Transient Analysis Model (TITAM) is used in this paper to simulate the start-up of the TOPAZ-II space nuclear power system in orbit. The start-up procedures simulated herein are assumed for the purpose of demonstrating the capabilities of the model and may not represent an accurate account of the actual start-up procedures of the TOPAZ-II system. The temperature reactivity feedback effects of the moderator, UO[sub 2] fuel, electrodes, coolant, and other components in the core are calculated and their effects on the thermal and criticality conditions of the reactor are investigated. Also, estimates of the time constants of the temperature reactivity feedback for the UO[sub 2] fuel and the ZrH moderator during start-up, as well as of the total temperature reactivity feedback as a function of the reactor steady-state thermal power, are obtained.

  10. Transient analysis and startup simulation of a thermionic space nuclear reactor system

    SciTech Connect

    El-Genk, M.S.; Xue, Huimin; Paramonov, D. . Dept. of Chemical and Nuclear Engineering)

    1994-01-01

    The thermionic transient analysis model is used to simulate the startup of the TOPAZ-2 space nuclear power system in orbit. The simulated startup procedures are assumed for the purpose of demonstrating the capabilities of the model and may not represent an accurate account of the actual startup procedures of the TOPAZ-2 system. The temperature reactivity feedback effects of the moderator, UO[sub 2] fuel, electrodes, coolant, and other components in the core are calculated, and their effects on the thermal and criticality conditions of the reactor are investigated. Also, estimates of the time constants of the temperature reactivity feedback for the UO[sub 2] fuel and the ZrH moderator during startup, as well as of the total temperature reactivity feedback as a function of the reactor steady-state thermal power, are obtained.

  11. Introducing ``platform''--A new software program to simulate debris and meteoroid impacts on space platforms

    NASA Astrophysics Data System (ADS)

    Stokes, H.; Crowther, R.; Walker, R.; Swinerd, G.; Aish, F.

    1997-05-01

    We describe a new software program called PLATFORM, which is being developed to simulate the risk and potential damage to spacecraft from debris and meteoroid impacts. The program first generates an accurate 3D solid model representation of a space platform. Debris and meteoroid impacts are simulated by sampling directional collision flux data, derived from environment models such as IDES, and firing test particles at the platform. The location of each impacting particle and the resultant damage, including the production of secondary ejecta, are calculated. A versatile query method is used to analyse impact distributions and their effect, thereby enabling potential damage to subsystems to be assessed. Alternative shielding strategies are then considered, leading to an enhancement of the platform's survivability.

  12. Precise thermal control test demonstration on simulated space telescope main ring

    NASA Technical Reports Server (NTRS)

    Bettini, R. G.; Wegrich, R. D.

    1983-01-01

    A simulated section of the main ring of the Space Telescope, (ST) the part that holds the primary mirror, was manufactured and tested for thermal stability characteristics in a complex structural assembly. The other telescope subassemblies are also mounted on the main ring, which is constructed of a titanium alloy. The entire ring is wrapped in heater elements around the outside diameter to reduce the external temperature gradient effects by two orders of magnitude. A thermal vacuum test was performed using a stainless steel alloy tailored to represent the titanium ring's thermal characteristics. The tests examined the thermal performance and controllability of the test ring, the effects of a 24-hr slew manuever that produced worst-case environment changes, hot and cold simulation of predicted ST orbital thermal environments, and the effects of heater failure. Pointing and thermal control features were verified, but a heater failure on the 'on' side was found to quickly lead to exceeding the thermal design limits.

  13. Space-Charge and Fringe-Field Effects in Simulations of Non-Scaling FFAGs

    NASA Astrophysics Data System (ADS)

    Abell, Dan; Bell, George; Sobol, Andrey; Ruggiero, Alessandro; Trbojevic, Dejan; Forest, Etienne

    2009-05-01

    Recent simulations of non-scaling fixed-field alternating gradient accelerators (FFAGs) suggest that magnet fringe-field effects are of signal importance. In addition, non-scaling FFAGs are sensitive to a slew of resonances during the acceleration ramp. We present simulations of possible non-scaling FFAG designs, focusing especially on the effects fringe-fields and space-charge, using newly developed capabilities in the code PTC. In particular, we study how fringe extent and other parameters affect important measures of machine performance. An important consideration---because it affects the amount of rf power required---will be the speed at which resonances must be crossed. E. Forest, Y. Nogiwa, F. Schmidt, ``The FPP and PTC Libraries'', Proc. ICAP'2006.

  14. An integrative approach to space-flight physiology using systems analysis and mathematical simulation

    NASA Technical Reports Server (NTRS)

    Leonard, J. I.; White, R. J.; Rummel, J. A.

    1980-01-01

    An approach was developed to aid in the integration of many of the biomedical findings of space flight, using systems analysis. The mathematical tools used in accomplishing this task include an automated data base, a biostatistical and data analysis system, and a wide variety of mathematical simulation models of physiological systems. A keystone of this effort was the evaluation of physiological hypotheses using the simulation models and the prediction of the consequences of these hypotheses on many physiological quantities, some of which were not amenable to direct measurement. This approach led to improvements in the model, refinements of the hypotheses, a tentative integrated hypothesis for adaptation to weightlessness, and specific recommendations for new flight experiments.

  15. Tetrahedral-Mesh Simulation of Turbulent Flows with the Space-Time Conservative Schemes

    NASA Technical Reports Server (NTRS)

    Chang, Chau-Lyan; Venkatachari, Balaji; Cheng, Gary C.

    2015-01-01

    Direct numerical simulations of turbulent flows are predominantly carried out using structured, hexahedral meshes despite decades of development in unstructured mesh methods. Tetrahedral meshes offer ease of mesh generation around complex geometries and the potential of an orientation free grid that would provide un-biased small-scale dissipation and more accurate intermediate scale solutions. However, due to the lack of consistent multi-dimensional numerical formulations in conventional schemes for triangular and tetrahedral meshes at the cell interfaces, numerical issues exist when flow discontinuities or stagnation regions are present. The space-time conservative conservation element solution element (CESE) method - due to its Riemann-solver-free shock capturing capabilities, non-dissipative baseline schemes, and flux conservation in time as well as space - has the potential to more accurately simulate turbulent flows using unstructured tetrahedral meshes. To pave the way towards accurate simulation of shock/turbulent boundary-layer interaction, a series of wave and shock interaction benchmark problems that increase in complexity, are computed in this paper with triangular/tetrahedral meshes. Preliminary computations for the normal shock/turbulence interactions are carried out with a relatively coarse mesh, by direct numerical simulations standards, in order to assess other effects such as boundary conditions and the necessity of a buffer domain. The results indicate that qualitative agreement with previous studies can be obtained for flows where, strong shocks co-exist along with unsteady waves that display a broad range of scales, with a relatively compact computational domain and less stringent requirements for grid clustering near the shock. With the space-time conservation properties, stable solutions without any spurious wave reflections can be obtained without a need for buffer domains near the outflow/farfield boundaries. Computational results for the

  16. Simulation studies of alternate longitudinal control systems for the space shuttle orbiter in the landing regime

    NASA Technical Reports Server (NTRS)

    Powers, B. G.; Sarrafian, S. K.

    1986-01-01

    Simulations of the space shuttle orbiter in the landing task were conducted by the NASA Ames-Dryden Flight Research Facility using the Ames Research Center vertical motion simulator (VMS) and the total in-flight simulator (TIFS) variable-stability aircraft. Several new control systems designed to improve the orbiter longitudinal response characteristics were investigated. These systems improved the flightpath response by increasing the amount of pitch-rate overshoot. Reduction in the overall time delay was also investigated. During these evaluations, different preferences were noted for the baseline or the new systems depending on the pilot background. The trained astronauts were quite proficient with the baseline system and found the new systems to be less desirable than the baseline. On the other hand, the pilots without extensive flight training with the orbiter had a strong preference for the new systems. This paper presents the results of the VMS and TIFS simulations. A hypothesis is presented regarding the control strategies of the two pilot groups and how this influenced their control systems preferences. Interpretations of these control strategies are made in terms of open-loop aircraft response characteristics as well as pilot-vehicle closed-loop characteristics.

  17. Results of Small-scale Solid Rocket Combustion Simulator testing at Marshall Space Flight Center

    NASA Astrophysics Data System (ADS)

    Goldberg, Benjamin E.; Cook, Jerry

    1993-06-01

    The Small-scale Solid Rocket Combustion Simulator (SSRCS) program was established at the Marshall Space Flight Center (MSFC), and used a government/industry team consisting of Hercules Aerospace Corporation, Aerotherm Corporation, United Technology Chemical Systems Division, Thiokol Corporation and MSFC personnel to study the feasibility of simulating the combustion species, temperatures and flow fields of a conventional solid rocket motor (SRM) with a versatile simulator system. The SSRCS design is based on hybrid rocket motor principles. The simulator uses a solid fuel and a gaseous oxidizer. Verification of the feasibility of a SSRCS system as a test bed was completed using flow field and system analyses, as well as empirical test data. A total of 27 hot firings of a subscale SSRCS motor were conducted at MSFC. Testing of the Small-scale SSRCS program was completed in October 1992. This paper, a compilation of reports from the above team members and additional analysis of the instrumentation results, will discuss the final results of the analyses and test programs.

  18. Results of Small-scale Solid Rocket Combustion Simulator testing at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Goldberg, Benjamin E.; Cook, Jerry

    1993-01-01

    The Small-scale Solid Rocket Combustion Simulator (SSRCS) program was established at the Marshall Space Flight Center (MSFC), and used a government/industry team consisting of Hercules Aerospace Corporation, Aerotherm Corporation, United Technology Chemical Systems Division, Thiokol Corporation and MSFC personnel to study the feasibility of simulating the combustion species, temperatures and flow fields of a conventional solid rocket motor (SRM) with a versatile simulator system. The SSRCS design is based on hybrid rocket motor principles. The simulator uses a solid fuel and a gaseous oxidizer. Verification of the feasibility of a SSRCS system as a test bed was completed using flow field and system analyses, as well as empirical test data. A total of 27 hot firings of a subscale SSRCS motor were conducted at MSFC. Testing of the Small-scale SSRCS program was completed in October 1992. This paper, a compilation of reports from the above team members and additional analysis of the instrumentation results, will discuss the final results of the analyses and test programs.

  19. Revealing the global map of protein folding space by large-scale simulations

    NASA Astrophysics Data System (ADS)

    Sinner, Claude; Lutz, Benjamin; Verma, Abhinav; Schug, Alexander

    2015-12-01

    The full characterization of protein folding is a remarkable long-standing challenge both for experiment and simulation. Working towards a complete understanding of this process, one needs to cover the full diversity of existing folds and identify the general principles driving the process. Here, we want to understand and quantify the diversity in folding routes for a large and representative set of protein topologies covering the full range from all alpha helical topologies towards beta barrels guided by the key question: Does the majority of the observed routes contribute to the folding process or only a particular route? We identified a set of two-state folders among non-homologous proteins with a sequence length of 40-120 residues. For each of these proteins, we ran native-structure based simulations both with homogeneous and heterogeneous contact potentials. For each protein, we simulated dozens of folding transitions in continuous uninterrupted simulations and constructed a large database of kinetic parameters. We investigate folding routes by tracking the formation of tertiary structure interfaces and discuss whether a single specific route exists for a topology or if all routes are equiprobable. These results permit us to characterize the complete folding space for small proteins in terms of folding barrier ΔG‡, number of routes, and the route specificity RT.

  20. The effects of simulated space environmental parameters on six commercially available composite materials

    NASA Technical Reports Server (NTRS)

    Funk, Joan G.; Sykes, George F., Jr.

    1989-01-01

    The effects of simulated space environmental parameters on microdamage induced by the environment in a series of commercially available graphite-fiber-reinforced composite materials were determined. Composites with both thermoset and thermoplastic resin systems were studied. Low-Earth-Orbit (LEO) exposures were simulated by thermal cycling; geosynchronous-orbit (GEO) exposures were simulated by electron irradiation plus thermal cycling. The thermal cycling temperature range was -250 F to either 200 F or 150 F. The upper limits of the thermal cycles were different to ensure that an individual composite material was not cycled above its glass transition temperature. Material response was characterized through assessment of the induced microcracking and its influence on mechanical property changes at both room temperature and -250 F. Microdamage was induced in both thermoset and thermoplastic advanced composite materials exposed to the simulated LEO environment. However, a 350 F cure single-phase toughened epoxy composite was not damaged during exposure to the LEO environment. The simuated GEO environment produced microdamage in all materials tested.

  1. Simulated Space Radiation and Weightlessness: Vascular-Bone Coupling Mechanisms to Preserve Skeletal Health

    NASA Technical Reports Server (NTRS)

    Alwood, J. S.; Limoli, C. L.; Delp, M. D.; Castillo, A. B.; Globus, R. K.

    2012-01-01

    Weightlessness causes a cephalad fluid shift and reduction in mechanical stimulation, adversely affecting both cortical and trabecular bone tissue in astronauts. In rodent models of weightlessness, the onset of bone loss correlates with reduced skeletal perfusion, reduced and rarified vasculature and lessened vasodilation, which resembles blood-bone symbiotic events that can occur with fracture repair and aging. These are especially serious risks for long term, exploration class missions when astronauts will face the challenge of increased exposure to space radiation and abrupt transitions between different gravity environments upon arrival and return. Previously, we found using the mouse hindlimb unloading model and exposure to heavy ion radiation, both disuse and irradiation cause an acute bone loss that was associated with a reduced capacity to produce bone-forming osteoblasts from the bone marrow. Together, these findings led us to hypothesize that exposure to space radiation exacerbates weightlessness-induced bone loss and impairs recovery upon return, and that treatment with anti-oxidants may mitigate these effects. The specific aims of this recently awarded grant are to: AIM 1 Determine the functional and structural consequences of prolonged weightlessness and space radiation (simulated spaceflight) for bone and skeletal vasculature in the context of bone cell function and oxidative stress. AIM 2 Determine the extent to which an anti-oxidant protects against weightlessness and space radiation-induced bone loss and vascular dysfunction. AIM 3 Determine how space radiation influences later skeletal and vasculature recovery from prolonged weightlessness and the potential of anti-oxidants to preserve adaptive remodeling.

  2. Vapor Space Corrosion Testing Simulating The Environment Of Hanford Double Shell Tanks

    SciTech Connect

    Wiersma, B.; Gray, J. R.; Garcia-Diaz, B. L.; Murphy, T. H.; Hicks, K. R.

    2014-01-30

    As part of an integrated program to better understand corrosion in the high level waste tanks, Hanford has been investigating corrosion at the liquid/air interface (LAI) and at higher areas in the tank vapor space. This current research evaluated localized corrosion in the vapor space over Hanford double shell tank simulants to assess the impact of ammonia and new minimum nitrite concentration limits, which are part of the broader corrosion chemistry limits. The findings from this study showed that the presence of ammonia gas (550 ppm) in the vapor space is sufficient to reduce corrosion over the short-term (i.e. four months) for a Hanford waste chemistry (SY102 High Nitrate). These findings are in agreement with previous studies at both Hanford and SRS which showed ammonia gas in the vapor space to be inhibitive. The presence of ammonia in electrochemical test solution, however, was insufficient to inhibit against pitting corrosion. The effect of the ammonia appears to be a function of the waste chemistry and may have more significant effects in waste with low nitrite concentrations. Since high levels of ammonia were found beneficial in previous studies, additional testing is recommended to assess the necessary minimum concentration for protection of carbon steel. The new minimum R value of 0.15 was found to be insufficient to prevent pitting corrosion in the vapor space. The pitting that occurred, however, did not progress over the four-month test. Pits appeared to stop growing, which would indicate that pitting might not progress through wall.

  3. Simulation of physiological systems in order to evaluate and predict the human condition in a space flight

    NASA Technical Reports Server (NTRS)

    Verigo, V. V.

    1979-01-01

    Simulation models were used to study theoretical problems of space biology and medicine. The reaction and adaptation of the main physiological systems to the complex effects of space flight were investigated. Mathematical models were discussed in terms of their significance in the selection of the structure and design of biological life support systems.

  4. MCNP6 Simulation of Reactions of Interest to FRIB, Medical, and Space Applications

    NASA Astrophysics Data System (ADS)

    Mashnik, Stepan G.

    The latest production-version of the Los Alamos Monte Carlo N-Particle transport code MCNP6 has been used to simulate a variety of particle-nucleus and nucleus-nucleus reactions of academic and applied interest to research subjects at the Facility for Rare Isotope Beams (FRIB), medical isotope production, space-radiation shielding, cosmic-ray propagation, and accelerator applications, including several reactions induced by radioactive isotopes, analyzing production of both stable and radioactive residual nuclei. Here, we discuss examples of validation and verification of MCNP6 by comparing with recent neutron spectra measured at the Heavy Ion Medical Accelerator in Chiba, Japan; spectra of light fragments from several reactions measured recently at GANIL, France; INFN Laboratori Nazionali del Sud, Catania, Italy; COSY of the Jülich Research Center, Germany; and cross sections of products from several reactions measured lately at GSI, Darmstadt, Germany; ITEP, Moscow, Russia; and, LANSCE, LANL, Los Alamos, U.S.A. As a rule, MCNP6 provides quite good predictions for most of the reactions we analyzed so far, allowing us to conclude that it can be used as a reliable and useful simulation tool for various applications for FRIB, medical, and space applications involving stable and radioactive isotopes.

  5. Performance assessment in a flight simulator test—Validation of a space psychology methodology

    NASA Astrophysics Data System (ADS)

    Johannes, B.; Salnitski, Vyacheslav; Soll, Henning; Rauch, Melina; Goeters, Klaus-Martin; Maschke, Peter; Stelling, Dirk; Eißfeldt, Hinnerk

    2007-02-01

    The objective assessment of operator performance in hand controlled docking of a spacecraft on a space station has 30 years of tradition and is well established. In the last years the performance assessment was successfully combined with a psycho-physiological approach for the objective assessment of the levels of physiological arousal and psychological load. These methods are based on statistical reference data. For the enhancement of the statistical power of the evaluation methods, both were actually implemented into a comparable terrestrial task: the flight simulator test of DLR in the selection procedure for ab initio pilot applicants for civil airlines. In the first evaluation study 134 male subjects were analysed. Subjects underwent a flight simulator test including three tasks, which were evaluated by instructors applying well-established and standardised rating scales. The principles of the performance algorithms of the docking training were adapted for the automated flight performance assessment. They are presented here. The increased human errors under instrument flight conditions without visual feedback required a manoeuvre recognition algorithm before calculating the deviation of the flown track from the given task elements. Each manoeuvre had to be evaluated independently of former failures. The expert rated performance showed a highly significant correlation with the automatically calculated performance for each of the three tasks: r=.883, r=.874, r=.872, respectively. An automated algorithm successfully assessed the flight performance. This new method will possibly provide a wide range of other future applications in aviation and space psychology.

  6. Extended Phase-Space Methods for Enhanced Sampling in Molecular Simulations: A Review

    PubMed Central

    Fujisaki, Hiroshi; Moritsugu, Kei; Matsunaga, Yasuhiro; Morishita, Tetsuya; Maragliano, Luca

    2015-01-01

    Molecular Dynamics simulations are a powerful approach to study biomolecular conformational changes or protein–ligand, protein–protein, and protein–DNA/RNA interactions. Straightforward applications, however, are often hampered by incomplete sampling, since in a typical simulated trajectory the system will spend most of its time trapped by high energy barriers in restricted regions of the configuration space. Over the years, several techniques have been designed to overcome this problem and enhance space sampling. Here, we review a class of methods that rely on the idea of extending the set of dynamical variables of the system by adding extra ones associated to functions describing the process under study. In particular, we illustrate the Temperature Accelerated Molecular Dynamics (TAMD), Logarithmic Mean Force Dynamics (LogMFD), and Multiscale Enhanced Sampling (MSES) algorithms. We also discuss combinations with techniques for searching reaction paths. We show the advantages presented by this approach and how it allows to quickly sample important regions of the free-energy landscape via automatic exploration. PMID:26389113

  7. Volume Resistivity Measurement of Insulating Material in Space Environment Simulated Condition

    NASA Astrophysics Data System (ADS)

    Watanabe, Rikio; Miyake, Hiroaki; Tanaka, Yasuhiro; Nitta, Kumi

    Volume resistivities of polyimide film under simulated space environment are measured with “charge storage decay method.” The test material was irradiated by electron beam in a vacuum chamber to simulate space environment. Volume resistivity is calculated from the surface potential decay time constant after stopping electron irradiation. This is called “charge storage decay method” and is shown to be the preferred method to determine resistivities of highly insulating materials. As a result of experiments, we have found that volume resistivity of polyimide film is in order of 1016 Ωm, which is one order higher than the result from the conventional resistivity measurement method prescribed in JIS or ASTM. Higher resistivity requires much longer field relaxation time after injection of electron to dissipate through the material. Thus, charging analysis of spacecraft needs to consider this higher resistivity. The effect of injection energy of electron is also examined and it is found that the higher the energy is, the faster the charge decay become.

  8. Facility and Methods Developed for Simulated Space Vacuum Ultraviolet Exposure Testing of Polymer Films

    NASA Technical Reports Server (NTRS)

    Dever, Joyce A.; Pietromica, Anthony J.; Stueber, Thomas J.; Sechkar, Edward A.; Messer, Russell K.

    2002-01-01

    Vacuum ultraviolet (VUV) radiation of wavelengths between 115 and 200 nm produced by the Sun in the space environment can degrade polymer films, producing changes in their optical, mechanical, and chemical properties. These effects are particularly important for thin polymer films being considered for ultralightweight space structures, because, for most polymers, VUV radiation is absorbed in a thin surface layer. The NASA Glenn Research Center has developed facilities and methods for long-term ground testing of polymer films to evaluate space environmental VUV radiation effects. VUV exposure can also be used as part of combined or sequential simulated space environmental exposures to determine combined damaging effects with other aspects of the space environment, which include solar ultraviolet radiation, solar flare x-rays, electron and proton radiation, atomic oxygen (for low-Earth-orbit missions), and temperature effects. Because the wavelength sensitivity of VUV damage is not well known for most materials, Glenn's VUV facility uses a broad-spectrum deuterium lamp with a magnesium fluoride window that provides output between 115 and 200 nm. Deuterium lamps of this type were characterized by the National Institute of Standards and Technology and through measurements at Glenn. Spectral irradiance measurements show that from approximately 115 to 160 nm, deuterium lamp irradiance can be many times that of air mass zero solar irradiance, and as wavelength increases above approximately 160 nm, deuterium lamp irradiance decreases in comparison to the Sun. The facility is a cryopumped vacuum chamber that achieves a system pressure of approximately 5310(exp -6) torr. It contains four individual VUV-exposure compartments in vacuum, separated by water-cooled copper walls to minimize VUV radiation and any sample contamination cross interactions between compartments. Each VUV-exposure compartment contains a VUV deuterium lamp, a motor-controlled sample stage coupled with a

  9. Space station Simulation Computer System (SCS) study for NASA/MSFC. Volume 5: Study analysis report

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The Simulation Computer System (SCS) is the computer hardware, software, and workstations that will support the Payload Training Complex (PTC) at the Marshall Space Flight Center (MSFC). The PTC will train the space station payload scientists, station scientists, and ground controllers to operate the wide variety of experiments that will be on-board the Freedom Space Station. The further analysis performed on the SCS study as part of task 2-Perform Studies and Parametric Analysis-of the SCS study contract is summarized. These analyses were performed to resolve open issues remaining after the completion of task 1, and the publishing of the SCS study issues report. The results of these studies provide inputs into SCS task 3-Develop and present SCS requirements, and SCS task 4-develop SCS conceptual designs. The purpose of these studies is to resolve the issues into usable requirements given the best available information at the time of the study. A list of all the SCS study issues is given.

  10. Evaluation of reformulated thermal control coatings in a simulated space environment. Part 1: YB-71

    NASA Technical Reports Server (NTRS)

    Cerbus, Clifford A.; Carlin, Patrick S.

    1994-01-01

    The Air Force Space and Missile Systems Center and Wright Laboratory Materials Directorate (WL/ML) have sponsored and effort to effort to reformulate and qualify Illinois Institute of Technology Research Institute (IITRI) spacecraft thermal control coatings. S13G/LO-1, Z93, and YB-71 coatings were reformulated because the potassium silicate binder, Sylvania PS-7, used in the coatings is no longer manufactured. Coatings utilizing the binder's replacement candidate, Kasil 2130, manufactured by The Philadelphia Quartz (PQ) Corporation, Baltimore, Maryland, and undergoing testing at the Materials Directorate's Space Combined Effects Primary Test and Research Equipment (SCEPTRE) Facility operated by the University of Dayton Research Institute (UDRI). The simulated space environment consists of combined ultraviolet (UV) and electron exposure with in site specimen reflectance measurements. A brief description of the effort at IITRI, results and discussion from testing the reformulated YB-71 coating in SCEPTRE, and plans for further testing of reformulated Z93 and S13G/LO-1 are presented.

  11. Space station Simulation Computer System (SCS) study for NASA/MSFC. Volume 4: Conceptual design report

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The Simulation Computer System (SCS) is the computer hardware, software, and workstations that will support the Payload Training Complex (PTC) at Marshall Space Flight Center (MSFC). The PTC will train the space station payload scientists, station scientists, and ground controllers to operate the wide variety of experiments that will be onboard the Space Station Freedom. In the first step of this task, a methodology was developed to ensure that all relevant design dimensions were addressed, and that all feasible designs could be considered. The development effort yielded the following method for generating and comparing designs in task 4: (1) Extract SCS system requirements (functions) from the system specification; (2) Develop design evaluation criteria; (3) Identify system architectural dimensions relevant to SCS system designs; (4) Develop conceptual designs based on the system requirements and architectural dimensions identified in step 1 and step 3 above; (5) Evaluate the designs with respect to the design evaluation criteria developed in step 2 above. The results of the method detailed in the above 5 steps are discussed. The results of the task 4 work provide the set of designs which two or three candidate designs are to be selected by MSFC as input to task 5-refine SCS conceptual designs. The designs selected for refinement will be developed to a lower level of detail, and further analyses will be done to begin to determine the size and speed of the components required to implement these designs.

  12. Low Earth orbital atomic oxygen environmental simulation facility for space materials evaluation

    NASA Technical Reports Server (NTRS)

    Stidham, Curtis R.; Banks, Bruce A.; Stueber, Thomas J.; Dever, Joyce A.; Rutledge, Sharon K.; Bruckner, Eric J.

    1993-01-01

    Simulation of low Earth orbit atomic oxygen for accelerated exposure in ground-based facilities is necessary for the durability evaluation of space power system component materials for Space Station Freedom (SSF) and future missions. A facility developed at the National Aeronautics and Space Administrations's (NASA) Lewis Research Center provides accelerated rates of exposure to a directed or scattered oxygen beam, vacuum ultraviolet (VUV) radiation, and offers in-situ optical characterization. The facility utilizes an electron-cyclotron resonance (ECR) plasma source to generate a low energy oxygen beam. Total hemispherical spectral reflectance of samples can be measured in situ over the wavelength range of 250 to 2500 nm. Deuterium lamps provide VUV radiation intensity levels in the 115 to 200 nm range of three to five equivalent suns. Retarding potential analyses show distributed ion energies below 30 electron volts (eV) for the operating conditions most suited for high flux, low energy testing. Peak ion energies are below the sputter threshold energy (approximately 30 eV) of the protective coatings on polymers that are evaluated in the facility, thus allowing long duration exposure without sputter erosion. Neutral species are expected to be at thermal energies of approximately .04 eV to .1 eV. The maximum effective flux level based on polyimide Kapton mass loss is 4.4 x 10 exp 6 atoms/((sq. cm)*s), thus providing a highly accelerated testing capability.

  13. Adaptive space warping to enhance passive haptics in an arthroscopy surgical simulator.

    PubMed

    Spillmann, Jonas; Tuchschmid, Stefan; Harders, Matthias

    2013-04-01

    Passive haptics, also known as tactile augmentation, denotes the use of a physical counterpart to a virtual environment to provide tactile feedback. Employing passive haptics can result in more realistic touch sensations than those from active force feedback, especially for rigid contacts. However, changes in the virtual environment would necessitate modifications of the physical counterparts. In recent work space warping has been proposed as one solution to overcome this limitation. In this technique virtual space is distorted such that a variety of virtual models can be mapped onto one single physical object. In this paper, we propose as an extension adaptive space warping; we show how this technique can be employed in a mixed-reality surgical training simulator in order to map different virtual patients onto one physical anatomical model. We developed methods to warp different organ geometries onto one physical mock-up, to handle different mechanical behaviors of the virtual patients, and to allow interactive modifications of the virtual structures, while the physical counterparts remain unchanged. Various practical examples underline the wide applicability of our approach. To the best of our knowledge this is the first practical usage of such a technique in the specific context of interactive medical training. PMID:23428447

  14. Modeling and simulations of three-dimensional laser imaging based on space-variant structure

    NASA Astrophysics Data System (ADS)

    Cao, Jie; Hao, Qun; Peng, Yuxin; Cheng, Yang; Mu, Jiaxing; Wang, Peng; Yu, Haoyong

    2016-04-01

    A three-dimensional (3D) laser imaging system based on time of flight is proposed, based on the human retina structure. The system obtains 3D images with space-variant resolution, and we further establish mathematical models of the system and carried out simulative comparison between space-variant structure (SVS) and space-invariant structure (SIS). The system based on SVS produces significant improvements over traditional system based on SIS in the following aspects: (1) The system based on SVS uses less pixels than that based on SIS under the same field of view (FOV) and resolution. Therefore, this property is more suitable for uses in situations that require high speed and large volume data processing. (2) The system based on SVS has higher efficiency of utilization of photodiode array than that based on SIS. (3) 3D image based on SVS has the properties of rotation and scaling invariance. (4) The system based on SVS has higher echo power in outside ring of large photodiode array, which is more effective in detecting targets with low reflectance.

  15. Detection of Macromolecules in Desert Cyanobacteria Mixed with a Lunar Mineral Analogue After Space Simulations

    NASA Astrophysics Data System (ADS)

    Baqué, Mickael; Verseux, Cyprien; Rabbow, Elke; de Vera, Jean-Pierre Paul; Billi, Daniela

    2014-09-01

    In the context of future exposure missions in Low Earth Orbit and possibly on the Moon, two desert strains of the cyanobacterium Chroococcidiopsis, strains CCMEE 029 and 057, mixed or not with a lunar mineral analogue, were exposed to fractionated fluencies of UVC and polychromatic UV (200-400 nm) and to space vacuum. These experiments were carried out within the framework of the BIOMEX (BIOlogy and Mars EXperiment) project, which aims at broadening our knowledge of mineral-microorganism interaction and the stability/degradation of their macromolecules when exposed to space and simulated Martian conditions. The presence of mineral analogues provided a protective effect, preserving survivability and integrity of DNA and photosynthetic pigments, as revealed by testing colony-forming abilities, performing PCR-based assays and using confocal laser scanning microscopy. In particular, DNA and pigments were still detectable after 500 kJ/m2 of polychromatic UV and space vacuum (10-4 Pa), corresponding to conditions expected during one-year exposure in Low Earth Orbit on board the EXPOSE-R2 platform in the presence of 0.1 % Neutral Density (ND) filter. After exposure to high UV fluencies (800 MJ/m2) in the presence of minerals, however, altered fluorescence emission spectrum of the photosynthetic pigments were detected, whereas DNA was still amplified by PCR. The present paper considers the implications of such findings for the detection of biosignatures in extraterrestrial conditions and for putative future lunar missions.

  16. The Value of Biomedical Simulation Environments to Future Human Space Flight Missions

    NASA Technical Reports Server (NTRS)

    Mulugeta, Lealem; Myers, Jerry G.; Skytland, Nicholas G.; Platts, Steven H.

    2010-01-01

    With the ambitious goals to send manned missions to asteroids and onto Mars, substantial work will be required to ensure the well being of the men and women who will undertake these difficult missions. Unlike current International Space Station or Shuttle missions, astronauts will be required to endure long-term exposure to higher levels of radiation, isolation and reduced gravity. These new operation conditions will pose health risks that are currently not well understood and perhaps unanticipated. Therefore, it is essential to develop and apply advanced tools to predict, assess and mitigate potential hazards to astronaut health. NASA s Digital Astronaut Project (DAP) is working to develop and apply computational models of physiologic response to space flight operation conditions over various time periods and environmental circumstances. The collective application and integration of well vetted models assessing the physiology, biomechanics and anatomy is referred to as the Digital Astronaut. The Digital Astronaut simulation environment will serve as a practical working tool for use by NASA in operational activities such as the prediction of biomedical risks and functional capabilities of astronauts. In additional to space flight operation conditions, DAP s work has direct applicability to terrestrial biomedical research by providing virtual environments for hypothesis testing, experiment design, and to reduce animal/human testing. A practical application of the DA to assess pre and post flight responses to exercise is illustrated and the difficulty in matching true physiological responses is discussed.

  17. PIC Simulations of the Effect of Velocity Space Instabilities on Electron Viscosity and Thermal Conduction

    NASA Astrophysics Data System (ADS)

    Riquelme, Mario A.; Quataert, Eliot; Verscharen, Daniel

    2016-06-01

    In low-collisionality plasmas, velocity-space instabilities are a key mechanism providing an effective collisionality for the plasma. We use particle-in-cell (PIC) simulations to study the interplay between electron- and ion-scale velocity-space instabilities and their effect on electron pressure anisotropy, viscous heating, and thermal conduction. The adiabatic invariance of the magnetic moment in low-collisionality plasmas leads to pressure anisotropy, {{Δ }}{p}j\\equiv {p}\\perp ,j-{p}\\parallel ,j\\gt 0, if the magnetic field {\\boldsymbol{B}} is amplified ({p}\\perp ,j and {p}\\parallel ,j denote the pressure of species j (electron, ion) perpendicular and parallel to {\\boldsymbol{B}}). If the resulting anisotropy is large enough, it can in turn trigger small-scale plasma instabilities. Our PIC simulations explore the nonlinear regime of the mirror, IC, and electron whistler instabilities, through continuous amplification of the magnetic field | {\\boldsymbol{B}}| by an imposed shear in the plasma. In the regime 1≲ {β }j≲ 20 ({β }j\\equiv 8π {p}j/| {\\boldsymbol{B}}{| }2), the saturated electron pressure anisotropy, {{Δ }}{p}{{e}}/{p}\\parallel ,{{e}}, is determined mainly by the (electron-lengthscale) whistler marginal stability condition, with a modest factor of ∼1.5–2 decrease due to the trapping of electrons into ion-lengthscale mirrors. We explicitly calculate the mean free path of the electrons and ions along the mean magnetic field and provide a simple physical prescription for the mean free path and thermal conductivity in low-collisionality β j ≳ 1 plasmas. Our results imply that velocity-space instabilities likely decrease the thermal conductivity of plasma in the outer parts of massive, hot, galaxy clusters. We also discuss the implications of our results for electron heating and thermal conduction in low-collisionality accretion flows onto black holes, including Sgr A* in the Galactic Center.

  18. High Fidelity Simulations of Plume Impingement to the International Space Station

    NASA Technical Reports Server (NTRS)

    Lumpkin, Forrest E., III; Marichalar, Jeremiah; Stewart, Benedicte D.

    2012-01-01

    With the retirement of the Space Shuttle, the United States now depends on recently developed commercial spacecraft to supply the International Space Station (ISS) with cargo. These new vehicles supplement ones from international partners including the Russian Progress, the European Autonomous Transfer Vehicle (ATV), and the Japanese H-II Transfer Vehicle (HTV). Furthermore, to carry crew to the ISS and supplement the capability currently provided exclusively by the Russian Soyuz, new designs and a refinement to a cargo vehicle design are in work. Many of these designs include features such as nozzle scarfing or simultaneous firing of multiple thrusters resulting in complex plumes. This results in a wide variety of complex plumes impinging upon the ISS. Therefore, to ensure safe "proximity operations" near the ISS, the need for accurate and efficient high fidelity simulation of plume impingement to the ISS is as high as ever. A capability combining computational fluid dynamics (CFD) and the Direct Simulation Monte Carlo (DSMC) techniques has been developed to properly model the large density variations encountered as the plume expands from the high pressure in the combustion chamber to the near vacuum conditions at the orbiting altitude of the ISS. Details of the computational tools employed by this method, including recent software enhancements and the best practices needed to achieve accurate simulations, are discussed. Several recent examples of the application of this high fidelity capability are presented. These examples highlight many of the real world, complex features of plume impingement that occur when "visiting vehicles" operate in the vicinity of the ISS.

  19. GNSS reflectometry aboard the International Space Station: phase-altimetry simulation to detect ocean topography anomalies

    NASA Astrophysics Data System (ADS)

    Semmling, Maximilian; Leister, Vera; Saynisch, Jan; Zus, Florian; Wickert, Jens

    2016-04-01

    An ocean altimetry experiment using Earth reflected GNSS signals has been proposed to the European Space Agency (ESA). It is part of the GNSS Reflectometry Radio Occultation Scatterometry (GEROS) mission that is planned aboard the International Space Station (ISS). Altimetric simulations are presented that examine the detection of ocean topography anomalies assuming GNSS phase delay observations. Such delay measurements are well established for positioning and are possible due to a sufficient synchronization of GNSS receiver and transmitter. For altimetric purpose delays of Earth reflected GNSS signals can be observed similar to radar altimeter signals. The advantage of GNSS is the synchronized separation of transmitter and receiver that allow a significantly increased number of observation per receiver due to more than 70 GNSS transmitters currently in orbit. The altimetric concept has already been applied successfully to flight data recorded over the Mediterranean Sea. The presented altimetric simulation considers anomalies in the Agulhas current region which are obtained from the Region Ocean Model System (ROMS). Suitable reflection events in an elevation range between 3° and 30° last about 10min with ground track's length >3000km. Typical along-track footprints (1s signal integration time) have a length of about 5km. The reflection's Fresnel zone limits the footprint of coherent observations to a major axis extention between 1 to 6km dependent on the elevation. The altimetric performance depends on the signal-to-noise ratio (SNR) of the reflection. Simulation results show that precision is better than 10cm for SNR of 30dB. Whereas, it is worse than 0.5m if SNR goes down to 10dB. Precision, in general, improves towards higher elevation angles. Critical biases are introduced by atmospheric and ionospheric refraction. Corresponding correction strategies are still under investigation.

  20. Internal Flow Simulation of Enhanced Performance Solid Rocket Booster for the Space Transportation System

    NASA Technical Reports Server (NTRS)

    Ahmad, Rashid A.; McCool, Alex (Technical Monitor)

    2001-01-01

    An enhanced performance solid rocket booster concept for the space shuttle system has been proposed. The concept booster will have strong commonality with the existing, proven, reliable four-segment Space Shuttle Reusable Solid Rocket Motors (RSRM) with individual component design (nozzle, insulator, etc.) optimized for a five-segment configuration. Increased performance is desirable to further enhance safety/reliability and/or increase payload capability. Performance increase will be achieved by adding a fifth propellant segment to the current four-segment booster and opening the throat to accommodate the increased mass flow while maintaining current pressure levels. One development concept under consideration is the static test of a "standard" RSRM with a fifth propellant segment inserted and appropriate minimum motor modifications. Feasibility studies are being conducted to assess the potential for any significant departure in component performance/loading from the well-characterized RSRM. An area of concern is the aft motor (submerged nozzle inlet, aft dome, etc.) where the altered internal flow resulting from the performance enhancing features (25% increase in mass flow rate, higher Mach numbers, modified subsonic nozzle contour) may result in increased component erosion and char. To assess this issue and to define the minimum design changes required to successfully static test a fifth segment RSRM engineering test motor, internal flow studies have been initiated. Internal aero-thermal environments were quantified in terms of conventional convective heating and discrete phase alumina particle impact/concentration and accretion calculations via Computational Fluid Dynamics (CFD) simulation. Two sets of comparative CFD simulations of the RSRM and the five-segment (IBM) concept motor were conducted with CFD commercial code FLUENT. The first simulation involved a two-dimensional axi-symmetric model of the full motor, initial grain RSRM. The second set of analyses

  1. Simulating the Effect of Space Vehicle Environments on Directional Solidification of a Binary Alloy

    NASA Technical Reports Server (NTRS)

    Westra, D. G.; Heinrich, J. C.; Poirier, D. R.

    2003-01-01

    Space microgravity missions are designed to provide a microgravity environment for scientific experiments, but these missions cannot provide a perfect environment, due to vibrations caused by crew activity, on-board experiments, support systems (pumps, fans, etc.), periodic orbital maneuvers, and water dumps. Therefore, it is necessary to predict the impact of these vibrations on space experiments, prior to performing them. Simulations were conducted to study the effect of the vibrations on the directional solidification of a dendritic alloy. Finite element ca!cu!attie?ls were dme with a simd2titcr based on a continuum model of dendritic solidification, using the Fractional Step Method (FSM). The FSM splits the solution of the momentum equation into two steps: the viscous intermediate step, which does not enforce continuity; and the inviscid projection step, which calculates the pressure and enforces continuity. The FSM provides significant computational benefits for predicting flows in a directionally solidified alloy, compared to other methods presently employed, because of the efficiency gains in the uncoupled solution of velocity and pressure. finite differences, arises when the interdendritic liquid reaches the eutectic temperature and concentration. When a node reaches eutectic temperature, it is assumed that the solidification of the eutectic liquid continues at constant temperature until all the eutectic is solidified. With this approach, solidification is not achieved continuously across an element; rather, the element is not considered solidified until the eutectic isotherm overtakes the top nodes. For microgravity simulations, where the convection is driven by shrinkage, it introduces large variations in the fluid velocity. When the eutectic isotherm reaches a node, all the eutectic must be solidified in a short period, causing an abrupt increase in velocity. To overcome this difficulty, we employed a scheme to numerically predict a more accurate value

  2. The Null Space Monte Carlo Uncertainty Analysis of Heterogeneity for Preferential Flow Simulation

    NASA Astrophysics Data System (ADS)

    Ghasemizade, M.; Radny, D.; Schirmer, M.

    2014-12-01

    Preferential flow paths can have a huge impact on the amount and time of runoff generation, particularly in areas where subsurface flow dominates this process. In order to simulate preferential flow mechanisms, many different approaches have been suggested. However, the efficiency of such approaches are rarely investigated in a predictive sense. The main reason is that the models which are used to simulate preferential flows require many parameters. This can lead to a dramatic increase of model run times, especially in the context of highly nonlinear models which themselves are demanding. We attempted in this research to simulate the daily recharge values of a weighing lysimeter, including preferential flows, with the 3-D physically based model HydroGeoSphere. To accomplish that, we used the matrix pore concept with varying hydraulic conductivities within the lysimeter to represent heterogeneity. It was assumed that spatially correlated heterogeneity is the main driver of triggering preferential flow paths. In order to capture the spatial distribution of hydraulic conductivity values we used pilot points and geostatistical model structures. Since hydraulic conductivity values at each pilot point are functioning as parameters, the model is a highly parameterized one. Due to this fact, we used the robust and newly developed method of null space Monte Carlo for analyzing the uncertainty of the model outputs. Results of the uncertainty analysis show that the method of pilot points is reliable in order to represent preferential flow paths.

  3. Alterations in calcium homeostasis and bone during actual and simulated space flight

    NASA Technical Reports Server (NTRS)

    Wronski, T. J.; Morey, E. R.

    1983-01-01

    Skeletal alteration in experimental animals induced by actual and simulated spaceflight are discussed, noting that the main factor contributing to bone loss in growing rats placed in orbit aboard Soviet Cosmos biosatellites appears to be diminished bone formation. Mechanical unloading is seen as the most obvious cause of bone loss in a state of weightlessness. Reference is made to a study by Roberts et al. (1981), which showed that osteoblast differentiation in the periodontal ligament of the maxilla was suppressed in rats flown in space. Since the maxilla lacks a weight-bearing function, this finding indicates that the skeletal alterations associated with orbital flight may be systemic rather than confined to weight-bearing bones. In addition, the skeletal response to simulated weightlessness may also be systemic (wronski and Morey, 1982). In suspended rats, the hindlimbs lost all weight-bearing functions, while the forelimbs maintained contact with the floor of the hypokinetic model. On this basis, it was to be expected that there would be different responses at the two skeletal sites if the observed abnormalities were due to mechanical unloading alone. The changes induced by simulated weightlessness in the proximal tibia and humerus, however, were generally comparable. This evidence for systemic skeletal responses has drawn attention to endocrine factors.

  4. Mission Simulation of Space Lidar Measurements for Seasonal and Regional CO2 Variations

    NASA Technical Reports Server (NTRS)

    Kawa, Stephan; Collatz, G. J.; Mao, J.; Abshire, J. B.; Sun, X.; Weaver, C. J.

    2010-01-01

    Results of mission simulation studies are presented for a laser-based atmospheric [82 sounder. The simulations are based on real-time carbon cycle process modeling and data analysis. The mission concept corresponds to the Active Sensing of [82 over Nights, Days, and Seasons (ASCENDS) recommended by the US National Academy of Sciences Decadal Survey of Earth Science and Applications from Space. One prerequisite for meaningful quantitative sensor evaluation is realistic CO2 process modeling across a wide range of scales, i.e., does the model have representative spatial and temporal gradients? Examples of model comparison with data will be shown. Another requirement is a relatively complete description of the atmospheric and surface state, which we have obtained from meteorological data assimilation and satellite measurements from MODIS and [ALIPS0. We use radiative transfer model calculations, an instrument model with representative errors ' and a simple retrieval approach to complete the cycle from "nature" run to "pseudo-data" CO2, Several mission and instrument configuration options are examined/ and the sensitivity to key design variables is shown. We use the simulation framework to demonstrate that within reasonable technological assumptions for the system performance, relatively high measurement precision can be obtained, but errors depend strongly on environmental conditions as well as instrument specifications. Examples are also shown of how the resulting pseudo - measurements might be used to address key carbon cycle science questions.

  5. The Aouda.X space suit simulator and its applications to astrobiology.

    PubMed

    Groemer, Gernot E; Hauth, Stefan; Luger, Ulrich; Bickert, Klaus; Sattler, Birgit; Hauth, Eva; Föger, Daniel; Schildhammer, Daniel; Agerer, Christian; Ragonig, Christoph; Sams, Sebastian; Kaineder, Felix; Knoflach, Martin

    2012-02-01

    We have developed the space suit simulator Aouda.X, which is capable of reproducing the physical and sensory limitations a flight-worthy suit would have on Mars. Based upon a Hard-Upper-Torso design, it has an advanced human-machine interface and a sensory network connected to an On-Board Data Handling system to increase the situational awareness in the field. Although the suit simulator is not pressurized, the physical forces that lead to a reduced working envelope and physical performance are reproduced with a calibrated exoskeleton. This allows us to simulate various pressure regimes from 0.3-1 bar. Aouda.X has been tested in several laboratory and field settings, including sterile sampling at 2800 m altitude inside a glacial ice cave and a cryochamber at -110°C, and subsurface tests in connection with geophysical instrumentation relevant to astrobiology, including ground-penetrating radar, geoacoustics, and drilling. The communication subsystem allows for a direct interaction with remote science teams via telemetry from a mission control center. Aouda.X as such is a versatile experimental platform for studying Mars exploration activities in a high-fidelity Mars analog environment with a focus on astrobiology and operations research that has been optimized to reduce the amount of biological cross contamination. We report on the performance envelope of the Aouda.X system and its operational limitations. PMID:22300413

  6. Status of the Space Radiation Monte Carlos Simulation Based on FLUKA and ROOT

    NASA Technical Reports Server (NTRS)

    Andersen, Victor; Carminati, Federico; Empl, Anton; Ferrari, Alfredo; Pinsky, Lawrence; Sala, Paola; Wilson, Thomas L.

    2002-01-01

    The NASA-funded project reported on at the first IWSSRR in Arona to develop a Monte-Carlo simulation program for use in simulating the space radiation environment based on the FLUKA and ROOT codes is well into its second year of development, and considerable progress has been made. The general tasks required to achieve the final goals include the addition of heavy-ion interactions into the FLUKA code and the provision of a ROOT-based interface to FLUKA. The most significant progress to date includes the incorporation of the DPMJET event generator code within FLUKA to handle heavy-ion interactions for incident projectile energies greater than 3GeV/A. The ongoing effort intends to extend the treatment of these interactions down to 10 MeV, and at present two alternative approaches are being explored. The ROOT interface is being pursued in conjunction with the CERN LHC ALICE software team through an adaptation of their existing AliROOT software. As a check on the validity of the code, a simulation of the recent data taken by the ATIC experiment is underway.

  7. Hubble Space Telescope six-battery nickel-cadmium mission simulation test

    NASA Technical Reports Server (NTRS)

    Jackson, Lorna G.; Bush, John R., Jr.; Lanier, John R., Jr.

    1989-01-01

    A simulation test of the six-battery nickel-cadmium mission to determine battery life and electrical power system (EPS) performance characteristics for the Hubble Space Telescope (HST) program, is described. The basic HST power system requirements are to provide power generation, energy storage, and EPS control and distribution for 2.5 years with the nickel-cadmium (NiCd) batteries at an end of life solar array of 2 years. Mission simulation life testing begain in April of 1986, and the batteries have completed their 2.5 year mission requirement. Conditions as close as practical to the actual predicted mission profiles were used. These included solar array degradation, load variations, beta angle changes, temperature changes (with excursions to 10 C), battery reconditioning, safemode simulations, and off-normal roll activities. Discounting system cycling interruptions caused by hardware, software, human error, and periodic updates and revisions, the HST EPS breadboard hardware operated continuously for 30 months and demonstrated the power system's ability to meet the HST requirement.

  8. Particle-In-Cell Simulation on the Characteristics of a Receiving Antenna in Space Plasma Environment

    SciTech Connect

    Miyake, Yohei; Usui, Hideyuki; Kojima, Hirotsugu; Omura, Yoshiharu

    2008-12-31

    We applied the electromagnetic Particle-In-Cell simulation to the analysis of receiving antenna characteristics in space plasma environment. In the analysis, we set up external waves in a simulation region and receive them with a numerical antenna model placed in the simulation region. Using this method, we evaluated the effective length of electric field antennas used for plasma wave investigations conducted by scientific spacecraft. We particularly focused on the effective length of an electric field instrument called MEFISTO for a future mission to Mercury: BepiColombo. We first confirmed that the effective length of the MEFISTO-type antenna is basically longer than that of a simple dipole antenna for both electrostatic and electromagnetic plasma waves. By applying the principle of a voltmeter, the effective length of the MEFISTO-type antenna is predicted to become identical to the separation between two sensor-conductor's midpoints. However, the numerical result revealed that the actual effective length becomes shorter than the prediction, which is caused by the shorting-out effect due to the presence of a center boom conductor between the two sensor conductors. Since the above effect is difficult to treat theoretically, the present numerical method is a powerful tool for further quantitative evaluation of the antenna characteristics.

  9. Dynamic Modelling of Aquifer Level Using Space-Time Kriging and Sequential Gaussian Simulation

    NASA Astrophysics Data System (ADS)

    Varouchakis, Emmanouil A.; Hristopulos, Dionisis T.

    2016-04-01

    Geostatistical models are widely used in water resources management projects to represent and predict the spatial variability of aquifer levels. In addition, they can be applied as surrogate to numerical hydrological models if the hydrogeological data needed to calibrate the latter are not available. For space-time data, spatiotemporal geostatistical approaches can model the aquifer level variability by incorporating complex space-time correlations. A major advantage of such models is that they can improve the reliability of predictions compared to purely spatial or temporal models in areas with limited spatial and temporal data availability. The identification and incorporation of a spatiotemporal trend model can further increase the accuracy of groundwater level predictions. Our goal is to derive a geostatistical model of dynamic aquifer level changes in a sparsely gauged basin on the island of Crete (Greece). The available data consist of bi-annual (dry and wet hydrological period) groundwater level measurements at 11 monitoring locations for the time period 1981 to 2010. We identify a spatiotemporal trend function that follows the overall drop of the aquifer level over the study period. The correlation of the residuals is modeled using a non-separable space-time variogram function based on the Spartan covariance family. The space-time Residual Kriging (STRK) method is then applied to combine the estimated trend and the residuals into dynamic predictions of groundwater level. Sequential Gaussian Simulation is also employed to determine the uncertainty of the spatiotemporal model (trend and covariance) parameters. This stochastic modelling approach produces multiple realizations, ranks the prediction results on the basis of specified criteria, and captures the range of the uncertainty. The model projections recommend that in 2032 a part of the basin will be under serious threat as the aquifer level will approximate the sea level boundary.

  10. Meteoroids and space debris hypervelocity impact penetrations in LDEF map foils compared with hydrocode simulations

    NASA Astrophysics Data System (ADS)

    Tanner, W. G.; McDonnell, J. A. M.; Yano, H.; Fitzgerald, H. J.; Gardner, D. J.

    The continued analyses of penetrating impacts on MAP foils of Aluminium and Brass have produced data for several LDEF faces, i.e., Space, West, and East. These data have immediate bearing on the interpretation and design of devices to detect the penetration of a thin metallic film by a dust grain which have been tested both in the laboratory and in space. A crucial component of the analysis has been the theoretical calculation utilizing CTH, a Sandia National Laboratory Hydrodynamic computer code /1/ to assess the parameters of the hypervelocity penetration event. In particular theoretical hydrodynamic calculations have been conducted to simulate the hypervelocity impact event where various cosmic dust grain candidates, e.g., density = 0.998, 2.700, 7.870 (gm/cm^3), and velocities, i.e., 7 - 16 km/s, have been utilized to reproduce the events. Theoretical analyses of hypervelocity impact events will be reported which span an extensive matrix of values for velocity, density and size. Through a comparison between LDEF MAP foil measurements and CTH hydrocode calculations these analyses will provide an interpretation of the most critical parameters measured for space returned materials, i.e., for thin films, the diameter of the penetration hole, D_h, and for semi-infinite targets, the depth-to-diameter ratio of craters, D_c/T_c. An immediate consequence of a comparison of CTH calculations with space exposed materials will be an enhancement of the coherent model developed by UKC-USS researchers to describe penetration dynamics associated with LDEF MAP foils.

  11. Biological space experiments for the simulation of Martian conditions: UV radiation and Martian soil analogues.

    PubMed

    Rettberg, P; Rabbow, E; Panitz, C; Horneck, G

    2004-01-01

    The survivability of resistant terrestrial microbes, bacterial spores of Bacillus subtilis, was investigated in the BIOPAN facility of the European Space Agency onboard of Russian Earth-orbiting FOTON satellites (BIOPAN I -III missions). The spores were exposed to different subsets of the extreme environmental parameters in space (vacuum, extraterrestrial solar UV, shielding by protecting materials like artificial meteorites). The results of the three space experiments confirmed the deleterious effects of extraterrestrial solar UV radiation which, in contrast to the UV radiation reaching the surface of the Earth, also contains the very energy-rich, short wavelength UVB and UVC radiation. Thin layers of clay, rock or meteorite material were shown to be only successful in UV-shielding, if they are in direct contact with the spores. On Mars the UV radiation climate is similar to that of the early Earth before the development of a protective ozone layer in the atmosphere by the appearance of the first aerobic photosynthetic bacteria. The interference of Martian soil components and the intense and nearly unfiltered Martian solar UV radiation with spores of B. subtilis will be tested with a new BIOPAN experiment, MARSTOX. Different types of Mars soil analogues will be used to determine on one hand their potential toxicity alone or in combination with solar UV (phototoxicity) and on the other hand their UV protection capability. Two sets of samples will be placed under different cut-off filters used to simulate the UV radiation climate of Mars and Earth. After exposure in space the survival of and mutation induction in the spores will be analyzed at the DLR, together with parallel samples from the corresponding ground control experiment performed in the laboratory. This experiment will provide new insights into the principal limits of life and its adaptation to environmental extremes on Earth or other planets which and will also have implications for the potential for the

  12. Biological space experiments for the simulation of Martian conditions: UV radiation and Martian soil analogues

    NASA Astrophysics Data System (ADS)

    Rettberg, P.; Rabbow, E.; Panitz, C.; Horneck, G.

    2004-01-01

    The survivability of resistant terrestrial microbes, bacterial spores of Bacillus subtilis, was investigated in the BIOPAN facility of the European Space Agency onboard of Russian Earth-orbiting FOTON satellites (BIOPAN I -III missions). The spores were exposed to different subsets of the extreme environmental parameters in space (vacuum, extraterrestrial solar UV, shielding by protecting materials like artificial meteorites). The results of the three space experiments confirmed the deleterious effects of extraterrestrial solar UV radiation which, in contrast to the UV radiation reaching the surface of the Earth, also contains the very energy-rich, short wavelength UVB and UVC radiation. Thin layers of clay, rock or meteorite material were shown to be only successful in UV-shielding, if they are in direct contact with the spores. On Mars the UV radiation climate is similar to that of the early Earth before the development of a protective ozone layer in the atmosphere by the appearance of the first aerobic photosynthetic bacteria. The interference of Martian soil components and the intense and nearly unfiltered Martian solar UV radiation with spores of B. subtilis will be tested with a new BIOPAN experiment, MARSTOX. Different types of Mars soil analogues will be used to determine on one hand their potential toxicity alone or in combination with solar UV (phototoxicity) and on the other hand their UV protection capability. Two sets of samples will be placed under different cut-off filters used to simulate the UV radiation climate of Mars and Earth. After exposure in space the survival of and mutation induction in the spores will be analyzed at the DLR, together with parallel samples from the corresponding ground control experiment performed in the laboratory. This experiment will provide new insights into the principal limits of life and its adaptation to environmental extremes on Earth or other planets which and will also have implications for the potential for the

  13. Numerical simulation of free evolution in solid-state nuclear magnetic resonance using low-order correlations in Liouville space

    NASA Astrophysics Data System (ADS)

    Dumez, Jean-Nicolas; Butler, Mark C.; Emsley, Lyndon

    2010-12-01

    The design of simulations of free evolution in dipolar-coupled nuclear-spin systems using low-order correlations in Liouville space (LCL) is discussed, and a computational scheme relying on the Suzuki-Trotter algorithm and involving minimal memory requirements is described. The unusual nature of the approximation introduced by Liouville-space reduction in a spinning solid is highlighted by considering the accuracy of LCL simulations at different spinning frequencies, the quasiequilibria achieved by spin systems in LCL simulations, and the growth of high-order coherences in the exact dynamics. In particular, it is shown that accurate LCL simulations of proton spin diffusion occur in a regime where the reduced space excludes the coherences that make the dominant contribution to Vert σ Vert ^2, the norm-squared of the density matrix.

  14. Optical Analysis of Transparent Polymeric Material Exposed to Simulated Space Environment

    NASA Technical Reports Server (NTRS)

    Edwards, David L.; Finckenor, Miria M.

    2000-01-01

    Many innovations in spacecraft power and propulsion have been recently tested at NASA, particularly in non-chemical propulsion. One improvement in solar array technology is solar concentration using thin polymer film Fresnel lenses. Weight and cost savings were proven with the Solar Concentrator Arrays with Refractive Linear Element Technology (SCARLET)-II array on NASA's Deep Space I spacecraft. The Fresnel lens concentrates solar energy onto high-efficiency solar cells, decreasing the area of solar cells needed for power. Continued efficiency of this power system relies on the thin film's durability in the space environment and maintaining transmission in the 300 - 1000 nm bandwidth. Various polymeric materials have been tested for use in solar concentrators, including Lexan(TM), polyethylene terephthalate (PET), several formulations of Tefzel(Tm) and Teflon(TM), and DC 93-500, the material selected for SCARLET-II. Also tested were several innovative materials including Langley Research Center's CPI and CP2 polymers and atomic oxygen- resistant polymers developed by Triton Systems, Inc. The Environmental Effects Group of the Marshall Space Flight Center's Materials, Processes, and Manufacturing Department exposed these materials to simulated space environment and evaluated them for any change in optical transmission. Samples were exposed to a minimum of 1000 equivalent Sun hours of near-UV radiation (250 - 400 nm wavelength). Materials that appeared robust after near-UV exposure were then exposed to charged particle radiation equivalent to a five-year dose in geosynchronous orbit. These exposures were performed in MSFC's Combined Environmental Effects Test Chamber, a unique facility with the capability to expose materials simultaneously or sequentially to protons, low-energy electrons, high-energy electrons, near UV radiation and vacuum UV radiation. Reflectance measurements can be made on the samples in vacuum. Prolonged exposure to the space environment will

  15. In-Vessel Composting of Simulated Long-Term Missions Space-Related Solid Wastes

    NASA Technical Reports Server (NTRS)

    Rodriguez-Carias, Abner A.; Sager, John; Krumins, Valdis; Strayer, Richard; Hummerick, Mary; Roberts, Michael S.

    2002-01-01

    Reduction and stabilization of solid wastes generated during space missions is a major concern for the Advanced Life Support - Resource Recovery program at the NASA, Kennedy Space Center. Solid wastes provide substrates for pathogen proliferation, produce strong odor, and increase storage requirements during space missions. A five periods experiment was conducted to evaluate the Space Operation Bioconverter (SOB), an in vessel composting system, as a biological processing technology to reduce and stabilize simulated long-term missions space related solid-wastes (SRSW). For all periods, SRSW were sorted into components with fast (FBD) and slow (SBD) biodegradability. Uneaten food and plastic were used as a major FBD and SBD components, respectively. Compost temperature (C), CO2 production (%), mass reduction (%), and final pH were utilized as criteria to determine compost quality. In period 1, SOB was loaded with a 55% FBD: 45% SBD mixture and was allowed to compost for 7 days. An eleven day second composting period was conducted loading the SOB with 45% pre-composted SRSW and 55% FBD. Period 3 and 4 evaluated the use of styrofoam as a bulking agent and the substitution of regular by degradable plastic on the composting characteristics of SRSW, respectively. The use of ceramic as a bulking agent and the relationship between initial FBD mass and heat production was investigated in period 5. Composting SRSW resulted in an acidic fermentation with a minor increase in compost temperature, low CO2 production, and slightly mass reduction. Addition of styrofoam as a bulking agent and substitution of regular by biodegradable plastic improved the composting characteristics of SRSW, as evidenced by higher pH, CO2 production, compost temperature and mass reduction. Ceramic as a bulking agent and increase the initial FBD mass (4.4 kg) did not improve the composting process. In summary, the SOB is a potential biological technology for reduction and stabilization of mission space

  16. Tracking colloid transport in porous media using discrete flow fields and sensitivity of simulated colloid deposition to space discretization.

    PubMed

    Li, Zhelong; Zhang, Dongxiao; Li, Xiqing

    2010-02-15

    Advances in pore structure characterization and lattice-Boltzmann (LB) simulations of flow fields in pore spaces are making mechanistic simulations of colloid transport in real porous media a realistic goal. The primary challenge to reach this goal may be the computational demand of LB flow simulations in discretized porous medium domains at an assemblage scale. In this work, flow fields in simple cubic and dense packing systems were simulated at different discretization resolutions using the LB method. The simulated flow fields were incorporated into to a three-dimensional particle tracking model to simulate colloid transport in the two systems. The simulated colloid deposition tended to become asymptotic at a critical discretization resolution (voxel-grain size ratio = 0.01) at groundwater flow regimes for colloids down to submicrometer level under favorable conditions and down to around 1 microm under unfavorable conditions. The average simulated fluid velocities near grain surfaces were extracted to explain the sensitivities of simulated depositions to space discretization under both conditions. At the critical discretization resolution, current computation capacity would allow flow simulations and particle tracking in assemblage porous medium domains. In addition, particle tracking simulations revealed that colloids may be retained in flow vortices under conditions both favorable and unfavorable for deposition. Colloid retention in flow vortices has been proposed only very recently. Here we provide a mechanistic confirmation to this novel retention process. PMID:20088544

  17. Measurement and Simulation of Space Charge Effects in a Multi-Beam Electron Bunch from an RF Photoinjector

    SciTech Connect

    Rihaoui, M.M.; Piot, P.; Power, J.G.; Yusof, Z.; Gai, W.; /Argonne

    2009-05-01

    We report on a new experimental study of the space charge effect in a space-charge-dominated multi-beam electron bunch. A 5 MeV electron bunch, consisting of a variable number of beamlets separated transversely, was generated in a photoinjector and propagated in a drift space. The collective interaction of these beamlets was studied for different experimental conditions. The experiment allowed the exploration of space charge effects and its comparison with three-dimensional particle-in-cell simulations. Our observations also suggest the possible use of a multibeam configuration to tailor the transverse distribution of an electron beam.

  18. ALR - Laser altimeter for the ASTER deep space mission. Simulated operation above a surface with crater

    NASA Astrophysics Data System (ADS)

    de Brum, A. G. V.; da Cruz, F. C.; Hetem, A., Jr.

    2015-10-01

    To assist in the investigation of the triple asteroid system 2001-SN263, the deep space mission ASTER will carry onboard a laser altimeter. The instrument was named ALR and its development is now in progress. In order to help in the instrument design, with a view to the creation of software to control the instrument, a package of computer programs was produced to simulate the operation of a pulsed laser altimeter with operating principle based on the measurement of the time of flight of the travelling pulse. This software Simulator was called ALR_Sim, and the results obtained with its use represent what should be expected as return signal when laser pulses are fired toward a target, reflect on it and return to be detected by the instrument. The program was successfully tested with regard to some of the most common situations expected. It constitutes now the main workbench dedicated to the creation and testing of control software to embark in the ALR. In addition, the Simulator constitutes also an important tool to assist the creation of software to be used on Earth, in the processing and analysis of the data received from the instrument. This work presents the results obtained in the special case which involves the modeling of a surface with crater, along with the simulation of the instrument operation above this type of terrain. This study points out that the comparison of the wave form obtained as return signal after reflection of the laser pulse on the surface of the crater with the expected return signal in the case of a flat and homogeneous surface is a useful method that can be applied for terrain details extraction.

  19. Simulation investigation of multipactor in metal components for space application with an improved secondary emission model

    NASA Astrophysics Data System (ADS)

    Li, Yun; Cui, Wan-Zhao; Wang, Hong-Guang

    2015-05-01

    Effects of the secondary electron emission (SEE) phenomenon of metal surface on the multipactor analysis of microwave components are investigated numerically and experimentally in this paper. Both the secondary electron yield (SEY) and the emitted energy spectrum measurements are performed on silver plated samples for accurate description of the SEE phenomenon. A phenomenological probabilistic model based on SEE physics is utilized and fitted accurately to the measured SEY and emitted energy spectrum of the conditioned surface material of microwave components. Specially, the phenomenological probabilistic model is extended to the low primary energy end lower than 20 eV mathematically, since no accurate measurement data can be obtained. Embedding the phenomenological probabilistic model into the Electromagnetic Particle-In-Cell (EM-PIC) method, the electronic resonant multipacting in microwave components can be tracked and hence the multipactor threshold can be predicted. The threshold prediction error of the transformer and the coaxial filter is 0.12 dB and 1.5 dB, respectively. Simulation results demonstrate that the discharge threshold is strongly dependent on the SEYs and its energy spectrum in the low energy end (lower than 50 eV). Multipacting simulation results agree quite well with experiments in practical components, while the phenomenological probabilistic model fit both the SEY and the emission energy spectrum better than the traditionally used model and distribution. The EM-PIC simulation method with the phenomenological probabilistic model for the surface collision simulation has been demonstrated for predicting the multipactor threshold in metal components for space application.

  20. Simulation investigation of multipactor in metal components for space application with an improved secondary emission model

    SciTech Connect

    Li, Yun E-mail: cuiwanzhao@126.com; Cui, Wan-Zhao E-mail: cuiwanzhao@126.com; Wang, Hong-Guang

    2015-05-15

    Effects of the secondary electron emission (SEE) phenomenon of metal surface on the multipactor analysis of microwave components are investigated numerically and experimentally in this paper. Both the secondary electron yield (SEY) and the emitted energy spectrum measurements are performed on silver plated samples for accurate description of the SEE phenomenon. A phenomenological probabilistic model based on SEE physics is utilized and fitted accurately to the measured SEY and emitted energy spectrum of the conditioned surface material of microwave components. Specially, the phenomenological probabilistic model is extended to the low primary energy end lower than 20 eV mathematically, since no accurate measurement data can be obtained. Embedding the phenomenological probabilistic model into the Electromagnetic Particle-In-Cell (EM-PIC) method, the electronic resonant multipacting in microwave components can be tracked and hence the multipactor threshold can be predicted. The threshold prediction error of the transformer and the coaxial filter is 0.12 dB and 1.5 dB, respectively. Simulation results demonstrate that the discharge threshold is strongly dependent on the SEYs and its energy spectrum in the low energy end (lower than 50 eV). Multipacting simulation results agree quite well with experiments in practical components, while the phenomenological probabilistic model fit both the SEY and the emission energy spectrum better than the traditionally used model and distribution. The EM-PIC simulation method with the phenomenological probabilistic model for the surface collision simulation has been demonstrated for predicting the multipactor threshold in metal components for space application.