Science.gov

Sample records for 252cf brachytherapy source

  1. GAMMA DOSE RATE NEAR A NEW (252)Cf BRACHYTHERAPY SOURCE

    SciTech Connect

    Fortune, Eugene C; Gauld, Ian C; Wang, C

    2011-01-01

    A new generation of medical grade (252)Cf sources was developed in 2002 at the Oak Ridge National Laboratory. The combination of small size and large activity of (252)Cf makes the new source suitable to be used with the conventional high-dose-rate remote afterloading system for interstitial brachytherapy. A recent in-water calibration experiment showed that the measured gamma dose rates near the new source are slightly greater than the neutron dose rates, contradicting the well established neutron-to-gamma dose ratio of approximately 2:1 at locations near a (252)Cf brachytherapy source. Specifically, the MCNP-predicted gamma dose rate is a factor of two lower than the measured gamma dose rate at the distance of I cm, and the differences between the two results gradually diminish at distances farther away from the source. To resolve this discrepancy, we updated the source gamma spectrum by including in the ORIGEN-S data library the experimentally measured (252)Cf prompt gamma spectrum as well as the true (252)Cf spontaneous fission yield data to explicitly model delayed gamma emissions from fission products. We also investigated the bremsstrahlung X-rays produced by the beta particles emitted from fission product decays. The results show that the discrepancy of gamma dose rates is mainly caused by the omission of the bremsstrahlung X-rays in the MCNP runs. By including the bremsstrahlung X-rays, the MCNP results show that the gamma dose rates near a new (252)Cf source agree well with the measured results and that the gamma dose rates are indeed greater than the neutron dose rates.

  2. Development of high-activity {sup 252}Cf sources for neutron brachytherapy

    SciTech Connect

    Martin, R.C.; Laxson, R.R.; Miller, J.H.; Wierzbicki, J.G.; Rivard, M.J.; Marsh, D.L.

    1996-10-01

    The Gershenson Radiation Oncology Center of Wayne State University (WSU), Detroit, Michigan, is using {sup 252}Cf medical sources for neutron brachytherapy. These sources are based on a 20-year-old design containing {le} 30 {micro}g {sup 252}Cf in the form of a cermet wire of Cf{sub 2}O{sub 3} in a palladium matrix. The Radiochemical Engineering Development Center (REDC) of Oak Ridge National Laboratory has been asked to develop tiny high-activity {sup 252}Cf neutron sources for use with remote afterloading equipment to reduce treatment times and dose to clinical personnel and to expedite treatment of brain and other tumors. To date, the REDC has demonstrated that {sup 252}Cf loadings can be greatly increased in cermet wires much smaller than before. Equipment designed for hot cell fabrication of these wires is being tested. A parallel program is under way to relicense the existing source design for fabrication at the REDC.

  3. Graphite moderated (252)Cf source.

    PubMed

    Sajo-Bohus, Laszlo; Barros, Haydn; Greaves, Eduardo D; Vega-Carrillo, Hector Rene

    2015-06-01

    The Thorium molten-salt reactor is an attractive and affordable nuclear power option for developing countries with insufficient infrastructure and limited technological capability. In the aim of personnel training and experience gathering at the Universidad Simon Bolivar there is in progress a project of developing a subcritical thorium liquid-fuel reactor. The neutron source to run this subcritical reactor is a (252)Cf source and the reactor will use high-purity graphite as moderator. Using the MCNP5 code the neutron spectra of the (252)Cf in the center of the graphite moderator has been estimated along the channel where the liquid thorium salt will be inserted; also the ambient dose equivalent due to the source has been determined around the moderator.

  4. A comparison of the expected costs of high dose rate brachytherapy using 252Cf versus 192Ir.

    PubMed

    Rivard, Mark J; Kirk, Bernadette L; Stapleford, Liza J; Wazer, David E

    2004-12-01

    A cost analysis to compare high dose rate (HDR) brachytherapy using either californium-252 (252Cf) or 192Ir was performed to determine the prospects of widespread clinical implementation of HDR 252Cf. Interest in the neutron-emitting 252Cf radioisotope as a radiotherapy nuclide has undergone a resurgence given recent efforts to fabricate HDR remotely afterloaded sources, and other efforts to create a miniature source for improved accessibility to a variety of anatomic sites. Therefore, HDR 252Cf brachytherapy may prove to be a potential rival to the use of HDR 192Ir remotely afterloaded brachytherapy--the current standard-of-care treatment modality using HDR brachytherapy. Considering the possible improvements in clinical efficacy using HDR 252Cf brachytherapy and the enormous costs of other high-LET radiation sources, the cost differences between 252Cf and 192Ir may be well-justified.

  5. Compound dual radiation action theory for 252Cf brachytherapy.

    PubMed

    Wang, C K; Zhang, X

    2004-01-01

    The existing dosimetry protocol that uses the concept of RBE for 252Cf brachytherapy contains large uncertainties. A new formula has been developed to correlate the biological effect (i.e. cell survival fraction) resulting from a mixed n + gamma radiation field with two physical quantities and two biological quantities. The formula is based on a pathway model evolved from that of the compound-dual-radiation-action (CDRA) theory, previously proposed by Rossi and Zaider. The new model employs the recently published data on radiation-induced DNA lesions. The new formula is capable of predicting quantitatively the synergistic effect caused by the interactions between neutron events and gamma ray events, and it is intended to be included into a new dosimetry protocol for future 252Cf brachytherapy.

  6. ANISOTROPY FACTORS FOR A 252Cf SOURCE

    SciTech Connect

    Veinot, K. G.; Bogard, James S

    2009-01-01

    A new 252Cf source has been procured for use at the Dosimetry Applications and Research (DOSAR) facility at the Oak Ridge National Laboratory (ORNL). This source was encapsulated by the Californium Facility at ORNL, however, the encapsulation differs from previous designs designated as SR-Cf-100. The new encapsulation, designated SR-Cf-3000, has a similar cylindrical radius to the previous generation, but is 1.6 cm longer. Since the encapsulation geometries differ the amount of internal scattering of neutrons will also differ leading to changes in anisotropy factors between the two designs. Additionally, the different encapsulations will affect the absorbed dose and dose equivalent delivered per neutron emitted by the source since both the quantity and energy distribution of the emitted neutrons will vary with irradiation angle. This work presents the fluence anisotropy factors for the SR-Cf-3000 series encapsulation as well as absorbed dose and dose equivalent values calculated for various angles of irradiation. The fluence anisotropy factors vary from a maximum of 1.037 to a minimum of 0.641 for irradiation angles perpendicular and parallel to the source axis, respectively. Anisotropy in absorbed dose varied from a maximum of 1.033 to a minimum of 0.676 while anisotropy of dose equivalent varied from 1.035 to 0.657.

  7. Measured microdosimetric spectra and therapeutic potential of boron neutron capture enhancement of 252Cf brachytherapy.

    PubMed

    Burmeister, J; Kota, C; Maughan, R L

    2005-09-01

    Californium-252 is a neutron-emitting radioisotope used as a brachytherapy source for radioresistant tumors. Presented here are microdosimetric spectra measured as a function of simulated site diameter and distance from applicator tube 252Cf sources. These spectra were measured using miniature tissue-equivalent proportional counters (TEPCs). An investigation of the clinical potential of boron neutron capture (BNC) enhancement of 252Cf brachytherapy is also provided. The absorbed dose from the BNC reaction was measured using a boron-loaded miniature TEPC. Measured neutron, photon and BNC absorbed dose components are provided as a function of distance from the source. In general, the absorbed dose results show good agreement with results from other measurement techniques. A concomitant boost to 252Cf brachytherapy may be provided through the use of the BNC reaction. The potential magnitude of this BNC enhancement increases with increasing distance from the source and is capable of providing a therapeutic gain greater than 30% at a distance of 5 cm from the source, assuming currently achievable boron concentrations.

  8. A radiobiological model for the relative biological effectiveness of high-dose-rate 252Cf brachytherapy.

    PubMed

    Rivard, Mark J; Melhus, Christopher S; Zinkin, Heather D; Stapleford, Liza J; Evans, Krista E; Wazer, David E; Odlozilíková, Anna

    2005-09-01

    While there is significant clinical experience using both low- and high-dose-rate 252Cf brachytherapy, there are minimal data regarding values for the neutron relative biological effectiveness (RBE) with both modalities. The aim of this research was to derive a radiobiological model for 252Cf neutron RBE and to compare these results with neutron RBE values used clinically in Russia. The linear-quadratic (LQ) model was used as the basis to characterize cell survival after irradiation, with identical cell killing rates (S(N) = S(gamma)) between 252Cf neutrons and photons used for derivation of RBE. Using this equality, a relationship among neutron dose and LQ radiobiological parameter (i.e., alpha(N), beta(N), alpha(gamma), beta(gamma)) was obtained without the need to specify the photon dose. These results were used to derive the 252Cf neutron RBE, which was then compared with Russian neutron RBE values. The 252Cf neutron RBE was determined after incorporating the LQ radiobiological parameters obtained from cell survival studies with fast neutrons and teletherapy photons. For single-fraction high-dose-rate neutron doses of 0.5, 1.0, 1.5 and 2.0 Gy, the total biologically equivalent doses were 1.8, 3.4, 4.7 and 6.0 RBE Gy with 252Cf neutron RBE values of 3.2, 2.9, 2.7 and 2.5, respectively. Using clinical data for late-responding reactions from 252Cf, Russian investigators created an empirical model that predicted high-dose-rate 252Cf neutron RBE values ranging from 3.6 to 2.9 for similar doses and fractionation schemes and observed that 252Cf neutron RBE increases with the number of treatment fractions. Using these relationships, our results were in general concordance with high-dose-rate 252Cf RBE values obtained from Russian clinical experience.

  9. Neutron activation analysis detection limits using {sup 252}Cf sources

    SciTech Connect

    DiPrete, D.P.; Sigg, R.A.

    2000-07-01

    The Savannah River Technology Center (SRTC) developed a neutron activation analysis (NAA) facility several decades ago using low-flux {sup 252}Cf neutron sources. Through this time, the facility has addressed areas of applied interest in managing the Savannah River Site (SRS). Some applications are unique because of the site's operating history and its chemical-processing facilities. Because sensitivity needs for many applications are not severe, they can be accomplished using an {approximately}6-mg {sup 252}Cf NAA facility. The SRTC {sup 252}Cf facility continues to support applied research programs at SRTC as well as other SRS programs for environmental and waste management customers. Samples analyzed by NAA include organic compounds, metal alloys, sediments, site process solutions, and many other materials. Numerous radiochemical analyses also rely on the facility for production of short-lived tracers, yielding by activation of carriers and small-scale isotope production for separation methods testing. These applications are more fully reviewed in Ref. 1. Although the flux [{approximately}2 x 10{sup 7} n/cm{sup 2}{center_dot}s] is low relative to reactor facilities, more than 40 elements can be detected at low and sub-part-per-million levels. Detection limits provided by the facility are adequate for many analytical projects. Other multielement analysis methods, particularly inductively coupled plasma atomic emission and inductively coupled plasma mass spectrometry, can now provide sensitivities on dissolved samples that are often better than those available by NAA using low-flux isotopic sources. Because NAA allows analysis of bulk samples, (a) it is a more cost-effective choice when its sensitivity is adequate than methods that require digestion and (b) it eliminates uncertainties that can be introduced by digestion processes.

  10. Intracavitary moderator balloon combined with 252Cf brachytherapy and boron neutron capture therapy, improving dosimetry in brain tumour and infiltrations

    PubMed Central

    Brandão, S F

    2015-01-01

    Objective: This article proposes a combination of californium-252 (252Cf) brachytherapy, boron neutron capture therapy (BNCT) and an intracavitary moderator balloon catheter applied to brain tumour and infiltrations. Methods: Dosimetric evaluations were performed on three protocol set-ups: 252Cf brachytherapy combined with BNCT (Cf-BNCT); Cf-BNCT with a balloon catheter filled with light water (LWB) and the same set-up with heavy water (HWB). Results: Cf-BNCT-HWB has presented dosimetric advantages to Cf-BNCT-LWB and Cf-BNCT in infiltrations at 2.0–5.0 cm from the balloon surface. However, Cf-BNCT-LWB has shown superior dosimetry up to 2.0 cm from the balloon surface. Conclusion: Cf-BNCT-HWB and Cf-BNCT-LWB protocols provide a selective dose distribution for brain tumour and infiltrations, mainly further from the 252Cf source, sparing the normal brain tissue. Advances in knowledge: Malignant brain tumours grow rapidly and often spread to adjacent brain tissues, leading to death. Improvements in brain radiation protocols have been continuously achieved; however, brain tumour recurrence is observed in most cases. Cf-BNCT-LWB and Cf-BNCT-HWB represent new modalities for selectively combating brain tumour infiltrations and metastasis. PMID:25927876

  11. Measurement of the 250Cf component in a 252Cf neutron source at KRISS.

    PubMed

    Kim, Jungho; Park, Hyeonseo; Choi, Kil-Oung

    2014-10-01

    Neutron emission rate measurements have been carried out at the Korea Research Institute of Standards and Science using a manganese sulphate bath system for (252)Cf and (241)Am-Be sources since 2004. The relative measurement method was chosen in 2012, and the neutron emission rates agreed with those by the absolute measurement method within uncertainties. The neutron emission rate of an old (252)Cf source has been measured three times: in 2004, 2009 and 2012. The (250)Cf component was fitted to a double-exponential function of (252)Cf+(250)Cf, and the ratio of the (250)Cf component to the (252)Cf component was estimated to be 7.8 % in 2004 and 46.8 % in 2012. Underestimation of the neutron emission rates of old (252)Cf sources can be corrected if the neutron emission rate of the (250)Cf component is taken into account.

  12. /sup 252/Cf-source-driven neutron noise analysis method

    SciTech Connect

    Mihalczo, J.T.; King, W.T.; Blakeman, E.D.

    1985-01-01

    The /sup 252/Cf-source-driven neutron noise analysis method has been tested in a wide variety of experiments that have indicated the broad range of applicability of the method. The neutron multiplication factor k/sub eff/ has been satisfactorily detemined for a variety of materials including uranium metal, light water reactor fuel pins, fissile solutions, fuel plates in water, and interacting cylinders. For a uranyl nitrate solution tank which is typical of a fuel processing or reprocessing plant, the k/sub eff/ values were satisfactorily determined for values between 0.92 and 0.5 using a simple point kinetics interpretation of the experimental data. The short measurement times, in several cases as low as 1 min, have shown that the development of this method can lead to a practical subcriticality monitor for many in-plant applications. The further development of the method will require experiments oriented toward particular applications including dynamic experiments and the development of theoretical methods to predict the experimental observables.

  13. Brain tumour and infiltrations dosimetry of boron neutron capture therapy combined with 252Cf brachytherapy.

    PubMed

    Brandão, Sâmia F; Campos, Tarcísio P R

    2012-04-01

    This article presents a dosimetric investigation of boron neutron capture therapy (BNCT) combined with (252)Cf brachytherapy for brain tumour control. The study was conducted through computational simulation in MCNP5 code, using a precise and discrete voxel model of a human head, in which a hypothetical brain tumour was incorporated. A boron concentration ratio of 1:5 for healthy-tissue: tumour was considered. Absorbed and biologically weighted dose rates and neutron fluency in the voxel model were evaluated. The absorbed dose rate results were exported to SISCODES software, which generates the isodose surfaces on the brain. Analyses were performed to clarify the relevance of boron concentrations in occult infiltrations far from the target tumour, with boron concentration ratios of 1:1 up to 1:50 for healthy-tissue:infiltrations and healthy-tissue:tumour. The average biologically weighted dose rates at tumour area exceed up to 40 times the surrounding healthy tissue dose rates. In addition, the biologically weighted dose rates from boron have the main contribution at the infiltrations, especially far from primary tumour. In conclusion, BNCT combined with (252)Cf brachytherapy is an alternative technique for brain tumour treatment because it intensifies dose deposition at the tumour and at infiltrations, sparing healthy brain tissue.

  14. Shielding design studies for a neutron irradiator system based on a 252Cf source.

    PubMed

    da Silva, A X; Crispim, V R

    2001-01-01

    This study aims to investigate a shielding design against neutrons and gamma rays from a source of 252Cf, using Monte Carlo simulation. The shielding materials studied were borated polyethylene, borated-lead polyethylene and stainless steel. The Monte Carlo code MCNP4B was used to design shielding for 252Cf based neutron irradiator systems. By normalising the dose equivalent rate values presented to the neutron production rate of the source, the resulting calculations are independent of the intensity of the actual 252Cf source. The results show that the total dose equivalent rates were reduced significantly by the shielding system optimisation.

  15. Design of a setup for 252Cf neutron source for storage and analysis purpose

    NASA Astrophysics Data System (ADS)

    Hei, Daqian; Zhuang, Haocheng; Jia, Wenbao; Cheng, Can; Jiang, Zhou; Wang, Hongtao; Chen, Da

    2016-11-01

    252Cf is a reliable isotopic neutron source and widely used in the prompt gamma ray neutron activation analysis (PGNAA) technique. A cylindrical barrel made by polymethyl methacrylate contained with the boric acid solution was designed for storage and application of a 5 μg 252Cf neutron source. The size of the setup was optimized with Monte Carlo code. The experiments were performed and the results showed the doses were reduced with the setup and less than the allowable limit. The intensity and collimating radius of the neutron beam could also be adjusted through different collimator.

  16. Water-extended polyester neutron shield for a 252Cf neutron source.

    PubMed

    Vega-Carrillo, H R; Manzanares-Acuña, E; Hernández-Dávila, V M; Gallego, E; Lorente, A; Donaire, I

    2007-01-01

    A Monte Carlo study to determine the shielding features to neutrons of water-extended polyester was carried out. During calculations, (252)Cf and shielding were modelled and the neutron spectra as well as the H(10) were calculated in four sites. The calculation was extended to include a water shielding, the source in vacuum and in air. Besides neutron shielding characteristics, the Kerma in air due to gammas emitted by (252)Cf and due to capture gamma rays in the shielding were included.

  17. Brazilian gamma-neutron dosemeter: response to 241AmBe and 252Cf neutron sources.

    PubMed

    Souto, E B; Campos, L L

    2011-03-01

    With the aim of improving the monitoring of workers potentially exposed to neutron radiation in Brazil, the IPEN/CNEN-SP in association with PRO-RAD designed and developed a passive individual gamma-neutron mixed-field dosemeter calibrated to be used to (241)AmBe sources. To verify the dosimetry system response to different neutron spectra, prototypes were irradiated with a (252)Cf source and evaluated using the dose-calculation algorithm developed for (241)AmBe sources.

  18. Moderated 252Cf neutron energy spectra in brain tissue and calculated boron neutron capture dose.

    PubMed

    Rivard, Mark J; Zamenhof, Robert G

    2004-11-01

    While there is significant clinical experience using both low- and high-dose (252)Cf brachytherapy, combination therapy using (10)B for neutron capture therapy-enhanced (252)Cf brachytherapy has not been performed. Monte Carlo calculations were performed in a brain phantom (ICRU 44 brain tissue) to evaluate the dose enhancement predicted for a range of (10)B concentrations over a range of distances from a clinical (252)Cf source. These results were compared to experimental measurements and calculations published in the literature. For (10)B concentrations 252)Cf fast neutron dose.

  19. Subcritical measurements using the /sup 252/Cf source-driven neutron noise analysis method

    SciTech Connect

    Mihalczo, J.T.; Blakeman, E.D.; Ragan, G.E.; Kryter, R.C.

    1985-01-01

    This paper describes recent measurements of the subcritical neutron multiplication factor using the /sup 252/Cf source-driven neutron noise analysis method. This work was supported by a program of collaboration between the United States Department of Energy and the Power Reactor and Nuclear Fuel Development Corporation of Japan related to the development of fast breeder technology. The experiment reported consists of a configuration of two interacting tanks of uranyl nitrate aqueous solution with different uranium concentrations in each tank. The /sup 252/Cf-source-driven neutron noise analysis method obtains the subcriticality from the signals of three detectors: the first, a parallel plate ionization chamber with /sup 252/Cf electroplated on one of its plates that is located in or near the system containing the fissile material, and produces an electrical pulse for every spontaneous fission that occurs and thereby serves as a timed source of fission neutrons; and the second and third detectors that are placed in or near the system containing fissile material and serve to detect particles from the fission chain multiplication process. 9 refs.

  20. Second malignancies following conventional or combined 252Cf neutron brachytherapy with external beam radiotherapy for breast cancer

    PubMed Central

    Valuckas, Konstantinas Povilas; Atkocius, Vydmantas; Kuzmickiene, Irena; Aleknavicius, Eduardas; Liukpetryte, Sarune; Ostapenko, Valerijus

    2013-01-01

    We retrospectively evaluated the risk of second malignancies among 832 patients with inner or central breast cancer treated with conventional external beam schedule (CRT group), or neutron brachytherapy using Californium-252 (252Cf) sources and hypofractionated external beam radiotherapy (HRTC group), between 1987 and 1996 at the Institute of Oncology, Vilnius University. Patients were observed until the occurrences of death or development of a second malignancy, or until 31 December 2009, whichever was earlier. Median follow-up time was 10.4 years (range, 1.2–24.1 years). Risk of second primary cancers was quantified using standardized incidence ratios (SIRs). Cox proportional hazards regression models were used to estimate hazard ratios (HRs). There was a significant increase in the risk of second primary cancers compared with the general population (SIR 1.3, 95% CI 1.1–1.5). The observed number of second primary cancers was also higher than expected for breast (SIR 1.8, 95% CI 1.3–2.4) and lung cancer (SIR 3.8, 95% CI 2.0–6.7). For second breast cancer, no raised relative risk was observed during the period ≥10 or more years after radiotherapy. Compared with the CRT group, HRTC patients had a not statistically significant higher risk of breast cancer. Increased relative risks were observed specifically for age at initial diagnosis of <50 years (HR 2.9, 95% CI 1.6–5.2) and for obesity (HR 2.8, 95% CI 1.1–7.2). PMID:23397075

  1. The content of 250Cf and 248Cm in 252Cf neutron sources and the effect on the neutron emission rate.

    PubMed

    Roberts, N J; Jones, L N

    2007-01-01

    One of the most common radionuclide neutron sources used for the calibration of detectors is (252)Cf. However, these sources also contain (250)Cf, which is present in the material from which the sources are made, and (248)Cm, which is formed as the daughter of (252)Cf via alpha-decay. Both decay by spontaneous fission with longer half-lives than (252)Cf. Consequently, as the source becomes older, the emission rate does not follow the decay curve of (252)Cf. Fits have been made to emission rate measurements of (252)Cf sources at NPL spanning over 30 y to deduce their (250)Cf and (248)Cm content. The emission rate of a source can be significantly underestimated if the presence of (250)Cf and (248)Cm is not taken into account, and this has been investigated for a typical (252)Cf source. The importance of this problem to other calibration laboratories and users of (252)Cf sources is emphasised.

  2. Measurement and calculation of the emission anisotropy of an X1 252Cf neutron source.

    PubMed

    Hawkes, N P; Freedman, R; Tagziria, H; Thomas, D J

    2007-01-01

    The authors have measured the emission anisotropy from a (252)Cf spontaneous fission neutron source in an X1 encapsulation. The measurements were made in a large low-scatter laboratory using a long counter, and data were taken at angles varying in 10 degrees steps from 0 degrees to 180 degrees relative to the cylindrical axis of the source. Corrections were made for room scatter, loss of neutrons due to air scatter and detector dead time. Calculations corresponding to these measurements were subsequently carried out using the two Monte Carlo codes MCNP and MCBEND, and the results are compared with the measurements and with each other.

  3. Characteristics of the simulated workplace neutron fields using a 252Cf source surrounded with cylindrical moderators.

    PubMed

    Tsujimura, N; Yoshida, T

    2004-01-01

    The authors established the simulated workplace neutron fields using a 252Cf source surrounded with cylindrical moderators at the Japan Nuclear Cycle Development Institute (JNC), Tokai Works. The moderators are annular cylinders made of polymethyl methacrylate and steel. The neutron energy spectrum at the reference calibration point was evaluated from the calculations by MCNP-4B and the measurements by the Bonner multisphere spectrometer and the hydrogen-filled proportional counters. The calculated neutron spectra were in good agreements with the measured ones. These fields can provide the realistic neutron spectra similar to those encountered around the glove-boxes of the fabrication process of MOX (PuO2-UO2 mixed oxide) fuel.

  4. A new facility for Non-Destructive Assay with a time-tagged {sup 252}Cf source

    SciTech Connect

    Stevanato, L.; Caldogno, M.; Hao Xin; Dima, R.; Fabris, D.; Nebbia, G.; Lunardon, M.; Moretto, S.; Pesente, S.; Viesti, G.; Sajo-Bohus, L.

    2010-08-04

    A new facility for non-destructive assay using a time-tagged {sup 252}Cf source is presented. The system is designed to analyze samples having maximum size of about 15x20 cm{sup 2}, the material recognition being obtained by measuring simultaneously transmission of neutrons and gamma rays.

  5. Measurements of gamma-ray dose from a moderated /sup 252/Cf source

    SciTech Connect

    McDonald, J.C.; Griffith, R.V.; Plato, P.; Miklos, J.

    1983-06-01

    The gamma-ray dose fraction from a moderated /sup 252/Cf source was determined by using three types of dosimetry systems. Measurements were carried out in air at a distance of 35 cm from the surface of the moderating sphere (50 cm from the source which is at the center of the sphere) to the geometrical center of each detector. The moderating sphere is 0.8-mm-thick stainless steel shell filled with D/sub 2/O and covered with 0.5 mm of cadmium. Measurements were also carried out with instruments and dosimeters positioned at the surface of a 40 cm x 40 cm x 15 cm plexiglass irradiation phantom whose front surface was also 35 cm from the surface of the moderating sphere. A-150 tissue-equivalent (TE) plastic ionization chambers and a TE proportional counter (TEPC) were used to measure tissue dose, from which the neutron dose equivalent was computed. The ratio of gamma-ray dose to the neutron dose equivalent was determined by using a relatively neutron-insensitive Geiger-Mueller (GM) counter and thermoluminescent dosimeters (TLD). In addition, the event-size spectrum measured by the TEPC was also used to compute the gamma-ray dose fraction. The average value for the ratio of gamma-ray dose to neutron dose equivalent was found to be 0.18 with an uncertainty of about +-18%.

  6. The sup 252 Cf-source-driven noise measurements of unreflected uranium hydride cylinder subcriticality

    SciTech Connect

    Mihalczo, J.T.; Pare, V.K.; Blakeman, E.D. )

    1991-01-01

    Subcritical neutron multiplication factors have been measured by the {sup 252}Cf-source-driven noise analysis method for unreflected, 15.0-cm-diam uranium hydride cylinders of varying heights. Because of the difficulty and cost of controlling the H/U ratio in damp uranium (93.2 wt% {sup 235}U) oxide power and fabricating sufficient material for experiments, few experiments have been performed with materials of low H/U ratios. These measurements may provide alternate information that can be used for verifying calculational methods since the H/U ratio for this material is 3.00. These measurements, which are the first application of this method to uranium hydride, were performed at the Los Alamos National Laboratory Critical Experiments Facility in 1989. These measurements were used to demonstrate the capability of this measurement method for this type of material and to provide a benchmark experiment for calculational methods with slightly moderated systems. Previous experiments by this method were for a wide variety of well-moderated systems or unmoderated uranium metal cylinders.

  7. Evaluation of the characteristics of the neutron reference field using D2O-moderated 252Cf source.

    PubMed

    Kowatari, M; Fujii, K; Takahashi, M; Yoshizawa, M; Shimizu, S; Kawasaki, K; Yamaguchi, Y

    2007-01-01

    The ambient/personal dose equivalent per fluence for D(2)O moderated (252)Cf neutron source was determined by measurement. An appropriate subtraction of the scattered neutrons is required for the accurate measurement of direct neutrons. A cubic shadow object was used for the subtraction of the scattered neutrons from the surroundings. The scattered neutrons to be subtracted vary with the position of the shadow object due to the large volume of the source. Using the Monte Carlo code MCNP-4C, the optimum positions of the shadow object were surveyed for subtracting the scattered neutrons. The energy spectra of direct neutrons were measured in the optimum position. The dosimetric parameters for the D(2)O moderated (252)Cf neutron source were reasonable, taking into account the uncertainties of the parameters.

  8. Fabrication of 50-mg /sup 252/Cf neutron sources for the FDA (Food and Drug Administration) activation analysis facility

    SciTech Connect

    Bigelow, J.E.; Cagle, E.B.; Knauer, J.B.

    1987-01-01

    The Transuranium Processing Plant (TPP) at ORNL has been requested by the Food and Drug Administration (FDA) to furnish 200 mg of /sup 252/Cf for use in their new activation analysis facility. This paper discusses the procedure to be employed in fabricating the californium into four neutron sources, each containing a nominal 50-mg of /sup 252/Cf. The ORNL Model LSD (Large, Stainless steel, Doubly encapsulated) neutron source consists of a 6.33-mm-diam aluminum pellet doubly encapsulated in Type 304L stainless steel. The pellet is comprised of an aluminum tube holding Cf/sub 2/O/sub 2/SO/sub 4/ microspheres confined by pressed aluminum powder. The microspheres are prepared in a separate vessel and then transferred into the specially designed aluminum tube prior to pressing.

  9. A New Facility For Non-Destructive Assay With A Time-Tagged {sup 252}Cf Source

    SciTech Connect

    Stevanato, L.; Caldogno, M.; Hao, Xin; Dima, R.; Fabris, D.; Nebbia, G.; Lunardon, M.; Moretto, S.; Pesente, S.; Viesti, G.; Sajo-Bohus, L.

    2011-06-01

    A new facility for Non-Destructive Assay based on a time-tagged {sup 252}Cf spontaneous fission source is now in operation at the Padova University. The system is designed to analyze samples with dimensions on the order of 20x20 cm{sup 2}, the material recognition being obtained by measuring simultaneously transmission of neutrons and gamma rays as a function of energy.

  10. Status of the electron cyclotron resonance charge breeder for the {sup 252}Cf fission source project at ATLAS

    SciTech Connect

    Vondrasek, R. C.; Scott, R.; Carr, J.; Pardo, R. C.

    2008-02-15

    The construction of the Californium Rare Ion Breeder Upgrade, a new radioactive beam facility for the Argonne tandem linac accelerator system (ATLAS), is in progress. The facility will use fission fragments from a 1 Ci {sup 252}Cf source, thermalized and collected into a low-energy particle beam by a helium gas catcher. In order to reaccelerate these beams, the existing ATLAS ECR1 ion source has been redesigned to function as a charge breeder source. The design features, initial results, and status of this charge breeder configuration are presented.

  11. Replacing a 252Cf source with a neutron generator in a shuffler - a conceptual design performed with MCNPX

    SciTech Connect

    Schear, Melissa A; Tobin, Stephen J

    2009-01-01

    The {sup 252}Cf shuffler has been widely used in nuclear safeguards and radioactive waste management to assay fissile isotopes, such as {sup 235}U or {sup 239}Pu, present in a variety of samples, ranging from small cans of uranium waste to metal samples weighing several kilograms. Like other non-destructive assay instruments, the shuffler uses an interrogating neutron source to induce fissions in the sample. Although shufflers with {sup 252}Cf sources have been reliably used for several decades, replacing this isotopic source with a neutron generator presents some distinct advantages. Neutron generators can be run in a continuous or pulsed mode, and may be turned off, eliminating the need for shielding and a shuffling mechanism in the shuffler. There is also essentially no dose to personnel during installation, and no reliance on the availability of {sup 252}Cf. Despite these advantages, the more energetic neutrons emitted from the neutron generator (141 MeV for D-T generators) present some challenges for certain material types. For example when the enrichment of a uranium sample is unknown, the fission of {sup 238}U is generally undesirable. Since measuring uranium is one of the main uses of a shuffler, reducing the delayed neutron contribution from {sup 238}U is desirable. Hence, the shuffler hardware must be modified to accommodate a moderator configuration near the source to tailor the interrogating spectrum in a manner which promotes sub-threshold fissions (below 1 MeV) but avoids the over-moderation of the interrogating neutrons so as to avoid self-shielding. In this study, where there are many material and geometry combinations, the Monte Carlo N-Particle eXtended (MCNPX) transport code was used to model, design, and optimize the moderator configuration within the shuffler geometry. The code is then used to evaluate and compare the assay performances of both the modified shuffler and the current {sup 252}Cf shuffler designs for different test samples. The

  12. Monte Carlo simulation optimisation of zinc sulphide based fast-neutron detector for radiography using a 252Cf source

    NASA Astrophysics Data System (ADS)

    Meshkian, Mohsen

    2016-02-01

    Neutron radiography is rapidly extending as one of the methods for non-destructive screening of materials. There are various parameters to be studied for optimising imaging screens and image quality for different fast-neutron radiography systems. Herein, a Geant4 Monte Carlo simulation is employed to evaluate the response of a fast-neutron radiography system using a 252Cf neutron source. The neutron radiography system is comprised of a moderator as the neutron-to-proton converter with suspended silver-activated zinc sulphide (ZnS(Ag)) as the phosphor material. The neutron-induced protons deposit energy in the phosphor which consequently emits scintillation light. Further, radiographs are obtained by simulating the overall radiography system including source and sample. Two different standard samples are used to evaluate the quality of the radiographs.

  13. {sup 252}Cf-source-correlated transmission measurements for uranyl fluoride deposit in a 24-in.-OD process pipe

    SciTech Connect

    Uckan, T.; Mihalczo, J.T.; Valentine, T.E.; Mullens, J.A.; Wyatt, M.S.; Hannon, T.F.

    1998-06-01

    Characterization of a hydrated uranyl fluoride (UO{sub 2}F{sub 2}{center_dot}nH{sub 2}O) deposit in a 17-ft-long, 24-in.-OD process pipe at the former Oak Ridge Gaseous Diffusion Plant was successfully performed by using {sup 252}Cf-source-correlated time-of-flight (TOF) transmission measurements. These measurements of neutrons and gamma rays through the pipe from an external {sup 2521}Cf fission source were used to measure the deposit profile and its distribution along the pipe, the hydration (or H/U), and the total uranium mass. The measurements were performed with a source in an ionization chamber on one side of the pipe and detectors on the other. Scanning the pipe vertically and horizontally produced a spatial and time-dependent radiograph of the deposit in which transmitted gamma rays and neutrons were separated in time. The cross-correlation function between the source and the detector was measured with the Nuclear Weapons Identification System. After correcting for pipe effects, the deposit thickness was determined from the transmitted neutrons and H/U from the gamma rays. Results were consistent with a later intrusive observation of the shape and the color of the deposit; i.e., the deposit was annular and was on the top of the pipe at some locations, demonstrating the usefulness of this method for deposit characterization.

  14. Evaluation of the /sup 252/Cf-source-driven neutron noise analysis method for measuring the subcriticality of LWR fuel storage casks

    SciTech Connect

    Mihalczo, J.T.

    1987-01-01

    The /sup 252/Cf-source-driven neutron noise analysis method was evaluated to determine if it could be used to measure the subcriticality of storage casks of burnt light water reactor (LWR) fuel submerged in fuel storage pools, fully loaded and as they are being loaded. Measurements of k/sub eff/ would provide the parameter most directly related to the criticality safety of storage cask configurations of LWR fuel and could allow proper credit for fuel burnup without reliance on calculations. This, in turn, could lead to more cost-effective cask designs. Evaluation of the method for this application was based on experiments already completed at a critical experiments facility using arrays of pressurized water reactor (PWR) fuel pins typical of the size of storage cask configurations, the existence of neutron detectors that can function in shipping cask environments, and the ability to construct ionization chambers containing /sup 252/Cf of adequate intensity for these measurements.

  15. Results with the electron cyclotron resonance charge breeder for the 252Cf fission source project (Californium Rare Ion Breeder Upgrade) at Argonne Tandem Linac Accelerator System.

    PubMed

    Vondrasek, R; Kondrashev, S; Pardo, R; Scott, R; Zinkann, G P

    2010-02-01

    The construction of the Californium Rare Ion Breeder Upgrade, a new radioactive beam facility for the Argonne Tandem Linac Accelerator System (ATLAS), is nearing completion. The facility will use fission fragments from a 1 Ci (252)Cf source; thermalized and collected into a low-energy particle beam by a helium gas catcher. In order to reaccelerate these beams, an existing ATLAS electron cyclotron resonance (ECR) ion source was redesigned to function as an ECR charge breeder. Thus far, the charge breeder has been tested with stable beams of rubidium and cesium achieving charge breeding efficiencies of 9.7% into (85)Rb(17+) and 2.9% into (133)Cs(20+).

  16. Correlation Measurements with {sup 252}Cf to Characterize Fissile Material

    SciTech Connect

    Mattingly, J.K.

    2000-01-04

    Measurements using {sup 252}Cf as a timed source of neutrons and gammas have in recent years undergone significant maturation. These methods use {sup 252}Cf as an observable source of spontaneous fission neutrons and gammas in conjunction with one or more neutron- and/or gamma-sensitive detectors to measure the time-distribution of correlated detector counts following (a) an observed {sup 252}Cf-fission event and/or (b) a counting event in another detector. Detection of {sup 252}Cf spontaneous fission is frequently achieved via use of a small ionization chamber in which the {sup 252}Cf is contained--in this case the timing of source emission events is random. However, one application subsequently described uses a neutron-absorbent ''shutter'' to modulate {sup 252}Cf emissions to produce a neutron source with deterministic timing. Other applications, frequently termed noise-analysis measurements, transform the time-distributions to the frequency domain. Collectively, these correlation methods use {sup 252}Cf to ''excite'' the fissile material and the response of the material is measured by an array of detectors and analyzed using standard time-correlation and/or frequency-analysis techniques. In recent years numerous advances have been made in the application of these methods to in-situ, or field measurements directed at characterizing various configurations of fissile material in operational facilities.

  17. Evaluation of the /sup 252/Cf-source-driven neutron noise analysis method for measuring the subcriticality of LWR fuel storage casks

    SciTech Connect

    Mihalczo, J.T.

    1987-11-15

    The /sup 252/Cf-source-driven neutron noise analysis method was evaluated to determine if it could be used to measure the subcriticality of storage casks of burnt LWR fuel submerged in fuel storage pools, fully loaded and as they are being loaded. The motivation for this evaluation was that measurements of k/sub eff/ would provide the parameter most directly related to the criticality safety of storage cask configurations of LWR fuel and could allow proper credit for fuel burnup without reliance on calculations. This in turn could lead to more cost-effective cask designs. Evaluation of the method for this application was based on (1) experiments already completed at a critical experiments facility using arrays of PWR fuel pins typical of the size of storage cask configurations, (2) the existence of neutron detectors that can function in shipping cask environments, and (3) the ability to construct ionization chambers containing /sup 252/Cf of adequate intensity for these measurements. These three considerations are discussed.

  18. Results with the electron cyclotron resonance charge breeder for the {sup 252}Cf fission source project (Californium Rare Ion Breeder Upgrade) at Argonne Tandem Linac Accelerator System

    SciTech Connect

    Vondrasek, R.; Kondrashev, S.; Pardo, R.; Scott, R.; Zinkann, G. P.

    2010-02-15

    The construction of the Californium Rare Ion Breeder Upgrade, a new radioactive beam facility for the Argonne Tandem Linac Accelerator System (ATLAS), is nearing completion. The facility will use fission fragments from a 1 Ci {sup 252}Cf source; thermalized and collected into a low-energy particle beam by a helium gas catcher. In order to reaccelerate these beams, an existing ATLAS electron cyclotron resonance (ECR) ion source was redesigned to function as an ECR charge breeder. Thus far, the charge breeder has been tested with stable beams of rubidium and cesium achieving charge breeding efficiencies of 9.7% into {sup 85}Rb{sup 17+} and 2.9% into {sup 133}Cs{sup 20+}.

  19. Thermal neutron imaging with rare-earth-ion-doped LiCaAlF 6 scintillators and a sealed 252Cf source

    NASA Astrophysics Data System (ADS)

    Kawaguchi, Noriaki; Yanagida, Takayuki; Fujimoto, Yutaka; Yokota, Yuui; Kamada, Kei; Fukuda, Kentaro; Suyama, Toshihisa; Watanabe, Kenichi; Yamazaki, Atsushi; Chani, Valery; Yoshikawa, Akira

    2011-10-01

    Thermal neutron imaging with Ce-doped LiCaAlF 6 crystals has been performed. The prototype of the neutron imager using a Ce-doped LiCaAlF 6 scintillating crystal and a position sensitive photomultiplier tube (PSPMT) which had 64 multi-channel anode was developed. The Ce-doped LiCaAlF 6 single crystal was grown by the Czochralski method. A plate with dimensions of a diameter of 50×2 mm 2 was cut from the grown crystal, polished, and optically coupled to PSPMT by silicone grease. The 252Cf source (<1 MBq) was sealed with 43 mm of polyethylene for neutron thermalization. Alphabet-shaped Cd pieces with a thickness of 2 mm were used as a mask for the thermal neutrons. After corrections for the pedestals and gain of each pixel, we successfully obtained two-dimensional neutron images using Ce-doped LiCaAlF 6.

  20. Selective perturbation of in vivo linear energy transfer using high- Z vaginal applicators for Cf-252 brachytherapy

    NASA Astrophysics Data System (ADS)

    Rivard, M. J.; Evans, K. E.; Leal, L. C.; Kirk, B. L.

    2004-01-01

    Californium-252 ( 252Cf) brachytherapy sources emit both neutrons and photons, and have the potential to vastly improve the current standard-of-practice for brachytherapy. While hydrogenous materials readily attenuate the 252Cf fission energy neutrons, high- Z materials are utilized to attenuate the 252Cf gamma-rays. These differences in shielding materials may be exploited when treating with a vaginal applicator to possibly improve patient survival through perturbation of the in vivo linear energy transfer radiation.

  1. Fissible Deposit Characterization at the Former Oak Ridge K-25 Gaseous Diffusion Plant by {sup 252}CF-Source-Driven Measurements

    SciTech Connect

    Hannon, T.F.; Mihalczo, J.T.; Mullens, J.A.; Uckan, T.; Valentine, T.E.; Wyatt, M.S.

    1998-05-01

    largest deposits with the {sup 252}Cf-source-driven transmission (CFSDT) technique, an active neutron interrogation method developed for use at the Oak Ridge Y-12 Plant to identify nuclear weapons components in containers. The active CFSDT measurement technique uses CFSDT time-of-flight measurements of prompt neutrons and gamma rays from an externally introduced {sup 252}Cf source.

  2. Relative biological efficiency for the induction of various gene mutations in normal and enriched with 10B Tradescantia cells by neutrons from 252Cf source.

    PubMed

    Cebulska-Wasilewska, A; Schneider, K; Kim, J K

    2001-03-01

    The effectiveness of neutrons from a Californium-252 source in the induction of various abnormalities in the Tradescantia clone 4430 stamen hair cells (Trad-SH assay) were studied. A special attention was paid to check whether any enhancement in effects is visible in the cells enriched with boron ions. Inflorescences, normal or pretreated with chemicals containing boron, were irradiated in the air with neutrons from a 252Cf source at KAERI, Taejon, Korea. To estimate the relative biological effectiveness (RBE) of the beam under the study, numbers of Tradescantia inflorescence without chemical pretreatment were irradiated with various doses of X-rays. The ranges of radiation doses used for neutrons were 0-1.0Gy and for X-rays 0-0.5Gy. Following the culturing according to standard procedures screening of gene and lethal mutations in somatic cells of stamen hairs was done in the extended period, between days 7 and 19 after exposures. Maximal RBE values for the induction of pink, colorless and lethal mutations were evaluated from comparison of the slopes in linear parts of the dose response curves obtained after irradiation with X-rays and californium source. The RBE(max) value or the induction of gene mutation was estimated as 7.2 comparing the value 5.6 in the studies reported earlier. The comparison of dose-response curves and its alteration, due to changes in the cells and plants environment during and after irradiation, explains the observed differences. Inflorescence pretreated with borax responded to neutrons differently depending on the biological end points. Although, for the induction of pink mutations no significant difference was observed, though, in the case of cell lethality, pretreated with boron ion plants have shoved a statistically significant increase of the RBE value from 5.5 to 34.7, and in the case of colorless mutations from 1.6 to 5.6.

  3. Calculation of Ambient (H*(10)) and Personal (Hp(10)) Dose Equivalent from a 252Cf Neutron Source

    SciTech Connect

    Traub, Richard J.

    2010-03-26

    The purpose of this calculation is to calculate the neutron dose factors for the Sr-Cf-3000 neutron source that is located in the 318 low scatter room (LSR). The dose factors were based on the dose conversion factors published in ICRP-21 Appendix 6, and the Ambient dose equivalent (H*(10)) and Personal dose equivalent (Hp(10)) dose factors published in ICRP Publication 74.

  4. 1987 Neutron and gamma personnel dosimeter intercomparison study using a D/sub 2/O-moderated /sup 252/Cf source

    SciTech Connect

    Swaja, R.E.; West, L.E.; Sims, C.S.; Welty, T.J.

    1989-05-01

    The thirteenth Personnel Dosimetry Intercomparison Study (i.e., PDIS 13) was conducted during April 1987 as a joint effort by Oak Ridge National Laboratory's (ORNL) Dosimetry Applications Research Group and the Southwest Radiation Calibration Center at the University of Arkansas. A total of 48 organizations (34 from the US and 14 from abroad) participated in PDIS 13. Participants submitted a total of 1,113 neutron and gamma dosimeters for this mixed field study. The dosimeters were transferred by mail and were handled by experimental personnel at ORNL and the University of Arkansas. The type of neutron dosimeter and the percentage of participants submitting that type are as follows: TLD-albedo (49%), direct interaction TLD (31%), CR-39 (17%), film (3%). The type of gamma dosimeter and the percentage of participants submitting that type are as follows: Li/sub 2/B/sub 4/O/sub 7/, alone or in combination with CaSO/sub 4/, (69%), /sup 7/LiF (28%), natural LiF (3%). Radiation exposures in PDIS 13 were limited to 0.5 and 1.5 mSv from /sup 252/Cf moderated by 15-cm of D/sub 2/O. Traditional exposures using the Health Physics Research Reactor (HPRR) were not possible due to the fact that all reactors at ORNL, including the HPRR, were shutdown by order of the Department of Energy at the time the intercomparison was performed. Planned exposures using a /sup 238/PuBe source were negated by a faulty timing mechanism. Based on accuracy and precision, direct interaction TLD dosimeters exhibited the best performance in PDIS 13 neutron measurements. They were followed, in order of best performance, by CR-39, TLD albedo, and film. The Li/sub 2/B/sub 4/O/sub 7/ type TLD dosimeters exhibited the best performance in PDIS 13 gamma measurements. They were followed by natural LiF, /sup 7/LiF, and film. 12 refs., 1 fig., 5 tabs.

  5. A pneumatic transfer system for special form {sup 252}Cf

    SciTech Connect

    Gehrke, R.J.; Berry, S.M.; Grafwallner, E.G.; Hoggan, J.M.

    1996-09-01

    A pneumatic transfer system has been developed for use with series 100 Special Form {sup 252}Cf. It was developed to reduce the exposure to personnel handling sources of {sup 252}Cf with masses up to 150 {micro}g by permitting remotely activated two-way transfer between the storage container and the irradiation position. The pneumatic transfer system also permits transfers for reproducible repetitive irradiation periods. In addition to the storage container equipped with quick-release fittings, the transfer system consists of an irradiation station, a control box with momentary contact switches to activate the air-pressure control valves and indicators to identify the location of the source, and connecting air hose and electrical wire. A source of 20 psig air and 110 volt electrical power are required for operation of the transfer system which can be easily moved and set up by one individual in 5 to 10 minutes. Tests have shown that rarely does a source become lodged in the transfer tubing, but two methods have been developed to handle incomplete transfers of the {sup 252}Cf source. The first method consists of closing one air vent to allow a pressure impulse to propel the source to the opposite side. The second method applies to those {sup 252}Cf capsules with a threaded or tapped end to which a small ferromagnetic piece can be attached; an incompletely transferred source in the transfer tube can then be guided to a position of safety by surrounding the transfer tubing containing the capsule with a horseshoe magnet attached to the end of a long pole.

  6. Detailed dose distribution prediction of Cf-252 brachytherapy source with boron loading dose enhancement.

    PubMed

    Ghassoun, J; Mostacci, D; Molinari, V; Jehouani, A

    2010-02-01

    The purpose of this work is to evaluate the dose rate distribution and to determine the boron effect on dose rate distribution for (252)Cf brachytherapy source. This study was carried out using a Monte Carlo simulation. To validate the Monte Carlo computer code, the dosimetric parameters were determined following the updated TG-43 formalism and compared with current literature data. The validated computer code was then applied to evaluate the neutron and photon dose distribution and to illustrate the boron loading effect.

  7. Shielding evaluation of a medical linear accelerator vault in preparation for installing a high-dose rate 252Cf remote afterloader.

    PubMed

    Melhus, C S; Rivard, M J; Kurkomelis, J; Liddle, C B; Massé, F X

    2005-01-01

    In support of the effort to begin high-dose rate 252Cf brachytherapy treatments at Tufts-New England Medical Center, the shielding capabilities of a clinical accelerator vault against the neutron and photon emissions from a 1.124 mg 252Cf source were examined. Outside the clinical accelerator vault, the fast neutron dose equivalent rate was below the lower limit of detection of a CR-39 etched track detector and below 0.14 +/- 0.02 muSv h(-1) with a proportional counter, which is consistent, within the uncertainties, with natural background. The photon dose equivalent rate was also measured to be below background levels (0.1 muSv h(-1)) using an ionisation chamber and an optically stimulated luminescence dosemeter. A Monte Carlo simulation of neutron transport through the accelerator vault was performed to validate measured values and determine the thermal-energy to low-energy neutron component. Monte Carlo results showed that the dose equivalent rate from fast neutrons was reduced by a factor of 100,000 after attenuation through the vault wall, and the thermal-energy neutron dose equivalent rate would be an additional factor of 1000 below that of the fast neutrons. Based on these findings, the shielding installed in this facility is sufficient for the use of at least 5.0 mg of 252Cf.

  8. On the use of a (252Cf-3He) assembly for landmine detection by the neutron back-scattering method.

    PubMed

    Elsheikh, N; Viesti, G; ElAgib, I; Habbani, F

    2012-04-01

    Experiments were carried out to optimize the performance of the neutron back-scattering (NBS) technique in landmine detection using an assembly consisting of three different layers placed above a (252)Cf neuron source, producing about 10(4)s(-1), in conjunction with a (3)He detector. The assembly was optimized experimentally. The selected assembly configuration was then examined against different (252)Cf stand-off distances and mine burial depths using dummy landmines. Furthermore, Monte Carlo simulations were performed to study the effect of the shield when a (252)Cf source in the range 10(4)-10(7)s(-1) was employed, and to optimize the geometry for future prototypes.

  9. Results with the electron cyclotron resonance charge breeder for the 252Cf fission source project (Californium Rare Ion Breeder Upgrade) at Argonne Tandem Linac Accelerator System

    NASA Astrophysics Data System (ADS)

    Vondrasek, R.; Kondrashev, S.; Pardo, R.; Scott, R.; Zinkann, G. P.

    2010-02-01

    The construction of the Californium Rare Ion Breeder Upgrade, a new radioactive beam facility for the Argonne Tandem Linac Accelerator System (ATLAS), is nearing completion. The facility will use fission fragments from a 1 Ci C252f source; thermalized and collected into a low-energy particle beam by a helium gas catcher. In order to reaccelerate these beams, an existing ATLAS electron cyclotron resonance (ECR) ion source was redesigned to function as an ECR charge breeder. Thus far, the charge breeder has been tested with stable beams of rubidium and cesium achieving charge breeding efficiencies of 9.7% into R85b17+ and 2.9% into C133s20+.

  10. Shielding of radiation fields generated by {sup 252}Cf in a concrete maze. Part 1: Experiment

    SciTech Connect

    Ipe, N.E.; McCall, R.C.; Jenkins, T.M.; Benson, E.

    1998-02-01

    A concrete room with a single-legged maze was constructed in order to simulate a medical accelerator room. Gamma and neutron measurements were performed along the maze with (a) a {sup 252}Cf source and (b) a tungsten-moderated {sup 252}Cf source placed inside the room. The measurements were repeated after placing an inner borated polyethylene door of varying thickness (2.54--10.16 cm) at 2 different locations. Measurements were also performed after lining the inside of the maze with different neutron moderating materials. The following results are reported: (1) the variation and contributions of individual components of the radiation fields as a function of distance along the maze, (2) the attenuation of neutron dose equivalent and reduction of capture gamma rays as a function of borated polyethylene (BPE) inner door thickness and location of the inner door; and (3) the effect of lining the maze corner with different neutron moderating materials.

  11. Validation of IRDFF in 252Cf standard and IRDF-2002 reference neutron fields

    SciTech Connect

    Simakov, Stanislav; Capote Noy, Roberto; Greenwood, Lawrence R.; Griffin, Patrick J.; Kahler, Albert; Pronyaev, Vladimir; Trkov, A.; Zolotarev, K. I.

    2016-05-02

    The results of validation of the latest release of International Reactor Dosimetry and Fusion File, IRDFF-1.03, in the standard 252Cf(s.f.) and reference 235U(nth,f) neutron benchmark fields are presented. The spectrum-averaged cross sections were shown to confirm the recommended spectrum for 252Cf spontaneous fission source; that was not the case for the current recommended spectra for 235U(nth,f). IRDFF was also validated in the spectra of the research reactor facilities ISNF, Sigma-Sigma and YAYOI, which are available in the IRDF- 2002 collection. Before this analysis, the ISFN spectrum was resimulated to remove unphysical oscillations in spectrum. IRDFF-1.03 was shown to reasonably reproduce the spectrum-averaged data measured in these fields except for the case of YAYOI.

  12. Attributes and templates from active measurements with {sup 252}Cf

    SciTech Connect

    Mihalczo, J.T.; Mattingly, J.K.

    2000-02-01

    Active neutron interrogation is useful for the detection of shielded HEU and could also be used for Pu. In an active technique, fissile material is stimulated by an external neutron source to produce fission with the emanation of neutrons and gamma rays. The time distribution of particles leaving the fissile material is measured with respect to the source emission in a variety of ways. A variety of accelerator and radioactive sources can be used. Active interrogation of nuclear weapons/components can be used in two ways: template matching or attribute estimation. Template matching compares radiation signatures with known reference signatures and for treaty applications has the problem of authentication of the reference signatures along with storage and retrieval of templates. Attribute estimation determines, for example, the fissile mass from various features of the radiation signatures and does not require storage of radiation signatures but does require calibration, which can be repeated as necessary. A nuclear materials identification system (NMIS) has been in use at the Oak Ridge Y-12 Plant for verification of weapons components being received and in storage by template matching and has been used with calibrations for attribute (fissile mass) estimation for HEU metal. NMIS employs a {sup 252}Cf source of low intensity (< 2 x 10{sup 6} n/sec) such that the dose at 1 m is approximately twice that on a commercial airline at altitude. The use of such a source presents no significant safety concerns either for personnel or nuclear explosive safety, and has been approved for use at the Pantex Plant on fully assembled weapons systems.

  13. On the Effect of an Error in a Standard D2O-Moderated 252Cf Energy Spectrum

    SciTech Connect

    Frederick Cummings

    2009-12-01

    There appears to be an error in the neutron fluence for neutrons with energies between 9 and 10 MeV for the tabulated D2O-moderated 252Cf source in ISO 8529-1. The error contributes a total error to neutron dose values from this source of approximately 3%.

  14. Reactor production of sup 252 Cf and transcurium isotopes

    SciTech Connect

    Alexander, C.W.; Halperin, J.; Walker, R.L.; Bigelow, J.E.

    1990-01-01

    Berkelium, californium, einsteinium, and fermium are currently produced in the High Flux Isotope Reactor (HFIR) and recovered in the Radiochemical Engineering Development Center (REDC) at the Oak Ridge National Laboratory (ORNL). All the isotopes are used for research. In addition, {sup 252}Cf, {sup 253}Es, and {sup 255}Fm have been considered or are used for industrial or medical applications. ORNL is the sole producer of these transcurium isotopes in the western world. A wide range of actinide samples were irradiated in special test assemblies at the Fast Flux Test Facility (FFTF) at Hanford, Washington. The purpose of the experiments was to evaluate the usefulness of the two-group flux model for transmutations in the special assemblies with an eventual goal of determining the feasibility of producing macro amounts of transcurium isotopes in the FFTF. Preliminary results from the production of {sup 254g}Es from {sup 252}Cf will be discussed. 14 refs., 5 tabs.

  15. Application of 252Cf-PDMS to characterize airborne particles deposited in an Antarctic glacier.

    PubMed

    da Cunha, K Dias; Evangelista, H; Dalia, K C; Simões, J C; Barros Leite, C V

    2004-05-05

    The aim of this study is to apply the (252)Cf-PDMS (plasma desorption mass spectrometry) technique to characterize particles deposited in ice samples. This technique allows identification of molecular ions, even large molecules, desorbed from the sample surface, in contrast with PIXE (particle induced X-ray emission) or EDS (energy dispersive spectrometry). Two shallow snow cores obtained from different glacial drainage basins on King George Island ice cap, South Shetland Islands (Antarctica), were analyzed by PDMS. The chemical compounds identified in the ice mass spectra show that the particle contents of both samples were statistically different, indicating a non-homogeneous spatial deposition distribution for the deposited particles. The analysis of the ice mass spectra suggests some possible sources for the airborne particles. The mass spectra of ice samples collected at a site exposed directly to air masses coming from the Drake Passage show a significant contribution of particles from crustal and anthropogenic sources. However, the mass spectra of ice samples taken from a site on a slope towards a local inlet point out a high influence of marine aerosol. Therefore, it was concluded that particles deposited onto the ice cap were attributable to different aerosol sources, besides long-range atmospheric transport. The (252)Cf-PDMS technique can be considered a powerful tool for studies of snow and ice samples, providing important information for understanding the global atmospheric transport and deposition of airborne particles.

  16. Half-lives of several states in isotopes produced in the SF of ^252Cf

    NASA Astrophysics Data System (ADS)

    Hwang, J. K.; Ramayya, A. V.; Hamilton, J. H.; Fong, D.; Beyer, C. J.; Gore, P. M.; Jones, E. F.; Teran, E.; Oberacker, V. E.; Umar, A. S.; Luo, Y. X.; Rasmussen, J. O.; Zhu, S. J.; Wu, S. C.; Lee, I. Y.; Fallon, P.; Stoyer, M. A.; Asztalos, S. J.; Ginter, T. N.; Cole, J. D.; Ter-Akopian, G. M.; Donangelo, R.

    2003-10-01

    Half-lives (T_1/2) of 15 states in isotopes produced in the SF of ^252Cf have been determined using a new technique. The ^252Cf source was placed inside the Gammasphere, and triple and higher fold coincidence events were recorded. The half-lives and quadrupole deformations of ^104Zr, ^152Ce, and ^158Sm are determined for the first time. Except for ^102Sr, ^104Zr(β_2=0.45(4)) and ^158Sm(β_2=0.46(5)) are the most deformed among medium and heavy nuclei. Large deformation could have its origin in the high spin down-sloping orbitals near Z=38,40,62 and N=40,64,96. These large prolate deformations at ^104Zr and ^158Sm are confirmed by Hartree-Fock-Bogoliubov calculations carried out in the present work. Further, an excited rotational band including seven new γ transitions in ^97Sr was also identified. The band head energy of the 829.8 keV state in ^97Sr has an half-life of 265(27) nsec.

  17. Test and evaluation results of the /sup 252/Cf shuffler at the Savannah River Plant

    SciTech Connect

    Crane, T.W.

    1981-03-01

    The /sup 252/Cf Shuffler, a nondestructive assay instrument employing californium neutron source irradiation and delayed-neutron counting, was developed for measuring /sup 235/U content of scrap and waste items generated at the Savannah River Plant (SRP) reactor fuel fabrication facility. The scrap and waste items include high-purity uranium-aluminum alloy ingots as well as pieces of castings, saw and lathe chips from machining operations, low-purity items such as oxides of uranium or uranium intermixed with flux materials found in recovery operations, and materials not recoverable at SRP such as floor sweepings or residues from the uranium scrap recovery operation. The uranium contains about 60% /sup 235/U with the remaining isotopes being /sup 236/U, /sup 238/U, and /sup 234/U in descending order. The test and evaluation at SRP concluded that the accuracy, safety, reliability, and ease of use made the /sup 252/Cf Shuffler a suitable instrument for routine use in an industrial, production-oriented plant.

  18. Absolute measurement of anti. nu. /sub p/ for /sup 252/Cf using the ORNL large liquid scintillator neutron detector

    SciTech Connect

    Spencer, R.R.; Gwin, R.; Ingle, R.

    1981-08-01

    The ORNL large liquid scintillator detector was used in a precise determination of anti ..nu../sub p/, the number of neutrons emitted promptly, for spontaneous fission of /sup 252/Cf. Measurements of the detector efficiency over a broad energy region were made by means of a proton-recoil technique employing the ORELA white neutron source. Monte Carlo calculation of the detector efficiency for a spectrum representative of /sup 252/Cf fission neutrons was calibrated with these elaborate measurements. The unusually flat response of the neutron detector resulted in elimination of several known sources of error. Experimental measurement was coupled with calculational methods to correct for other known errors. These measurements lead to an unusually small estimated uncertainty of 0.2% in the value obtained, anti ..nu../sub p/ = 3.773 +- 0.007.

  19. PIXE, 252Cf-PDMS and radiochemistry applied for soil and vegetable analysis

    NASA Astrophysics Data System (ADS)

    Dias da Cunha, K.; Cazicava, J.; Coelho, M. J.; Barros Leite, C. V.

    2006-01-01

    The aim of this work is to identify the elements present in vegetables and soils using PIXE (particle induced X-rays emission) and 252Cf-PDMS (252Cf plasma desorption mass spectrometry) techniques in order to estimate the possible influence of soil and agricultural techniques in the metal absorption by the vegetables. In this work, metal concentrations were evaluated in soil and vegetable samples from several regions, where different agricultural techniques were employed. Si, Zr, Ce, Th, Sc and Pb identified in the soil samples were not biologically available. Ga, Ge, As and Br identified in the tubercles indicate that spray pesticide used on the vegetable leaves was absorbed by them. 232Th and 238U present in the soil were not absorbed by the vegetables. The airborne particles from anthropogenic sources (as CFn, VCn) were absorbed by the vegetables. Compounds from mineral sources present in soil as V+, VCO3, HPO4, Cr+, CrOH+, Mn+, FeH+, Fe(OH)n and in the bioorganic compounds as N+, Ca (CN)n+and CnH+ were identified in vegetables. The metal absorption by the vegetables is not dependent of the metal concentration in soil. Different tubercles cultivated in the same soil show similar metal absorption. The exogenous contributions such as the elements present in water irrigation, pesticides, fertilizers and airborne particles deposited on leaves can be absorbed by vegetables. The absorption by the roots depends on the chemical compound of the elements. The use of pesticide sprays and air pollution can cause more contamination in the vegetables than in soil. The use of this methodology allows the identification of possible sources of metals in soils and in vegetables and the metal speciation.

  20. Microscopic cold fission yields of {sup 252}Cf

    SciTech Connect

    Mirea, M.; Delion, D. S.; Sandulescu, A.

    2010-04-15

    We show that the sharp maximum corresponding to {sup 107}Mo in the fragment distribution of the {sup 252}Cf cold fission is actually a Sn-like radioactivity, similar to other decay processes in which magic nuclei are involved, namely alpha decay and heavy cluster emission, also called Pb-like radioactivity. It turns out that the mass asymmetry degree of freedom has a key role in connecting initial Sn with the final Mo isotopes along the fission path. We investigate the cold rearrangement of nucleons within the framework of the two-center shell model in order to compute the cold valleys in the charge equilibrated fragmentation potential. The fission yields are estimated by using the semiclassical penetration approach. We consider 5 degrees of freedom, namely the interfragment distance, the shapes of fragments, the neck parameter, and mass asymmetry. We found an isomeric minimum between the internal and external barriers. It turns out that the inner cold valley of the total potential energy is connected to the doubly magic isotope {sup 132}Sn.

  1. 252Cf fission-neutron spectrum using a simplified time-of-flight setup: An advanced teaching laboratory experiment

    NASA Astrophysics Data System (ADS)

    Becchetti, F. D.; Febbraro, M.; Torres-Isea, R.; Ojaruega, M.; Baum, L.

    2013-02-01

    The removal of PuBe and AmBe neutron sources from many university teaching laboratories (due to heightened security issues) has often left a void in teaching various aspects of neutron physics. We have recently replaced such sources with sealed 252Cf oil-well logging sources (nominal 10-100 μCi), and developed several experiments using them as neutron sources. This includes a fission-neutron time-of-flight experiment using plastic scintillators, which utilizes the prompt γ rays emitted in 252Cf spontaneous fission as a fast timing start signal. The experiment can be performed with conventional nuclear instrumentation and a 1-D multi-channel pulse-height analyzer, available in most advanced teaching laboratories. Alternatively, a more sophisticated experiment using liquid scintillators and n/γ pulse-shape discrimination can be performed. Several other experiments using these neutron sources are also feasible. The experiments can introduce students to the problem of detecting the dark matter thought to dominate the universe and to the techniques used to detect contraband fissionable nuclear materials.

  2. A comparison of {sup 252}Cf and 14-MeV neutron excitation to identify chemical warfare agents by PGNAA

    SciTech Connect

    Caffrey, A.J.; Harlow, B.D.; Edwards, A.J.; Krebs, K.M.; Jones, J.L.; Yoon, W.; Zabriskie, J.M.; Dougan, A.D.

    2000-07-01

    Since 1992, Idaho National Engineering and Environmental Laboratory's portable isotopic neutron spectrometry (PINS) system has been widely used for the nondestructive assessment of munitions suspected to contain chemical warfare agents, such as the nerve agent sarin. PINS is a {sup 252}Cf-based prompt gamma-ray neutron activation analysis (PGNAA) system. The standard PINS system employs a partially moderated 5-{micro}g {sup 252}Cf source emitting 10{sup 7} n/s to excite the atomic nuclei inside the item under test. The chemical elements inside the item are revealed by their characteristic gamma-ray spectrum, measured by a high-resolution high-purity germanium gamma-ray spectrometer. The system computer then infers the fill compound or mixture from the elemental data extracted from the gamma-ray spectrum. Reliable PINS assessments can be completed in as little as 100 s for favorable cases such as white phosphorus smoke munitions, but normally, a 1000 to 3000 live-second counting interval is required. To improve PINS throughput when hundreds or more munitions must be assessed, they are evaluating the possible advantages of 14-MeV neutron excitation over their current radioisotopic source.

  3. AN INTERLABORATORY COMPARISON ON THE DETERMINATION OF 241Am, 244Cm AND 252Cf IN URINE.

    PubMed

    Gerstmann, Udo C; Taubner, Kerstin; Hartmann, Martina

    2016-09-01

    An intercomparison exercise on the determination of (241)Am, (244)Cm and (252)Cf in urine was performed. Since it was designed with regard to emergency preparedness, the detection limit for each nuclide was set to 0.1 Bq per 24-h urine sample. Most of the participating laboratories were established bioassay laboratories. However, some laboratories that routinely determine (241)Am only in environmental samples were also invited in order to explore their potential for emergency bioassay analysis. Another aspect of the intercomparison was to investigate the performance of all laboratories concerning the chemical yields of the (243)Am tracer in comparison with (244)Cm and (252)Cf. In summary, both types of laboratories showed good results. There was a negative bias for the results of (244)Cm and (252)Cf, which can be explained by slightly different radiochemical behaviours of americium, curium and californium and which is in agreement with results reported in the literature.

  4. Dynamics of the tri-nuclear system at spontaneous fission of 252Cf

    NASA Astrophysics Data System (ADS)

    Tashkhodjaev, R. B.; Nasirov, A. K.; Alpomeshev, E. Kh.

    2016-11-01

    To describe the dynamics of ternary fission of 252Cf an equation of motion of the tri-nuclear system was obtained and it was solved numerically. The fission of the 70Ni+50Ca+132Sn channel was chosen as one of the more probable channels of true ternary fission of 252Cf. The collinearity of ternary fission was checked by analyzing the results of the equation of motion. The results show that if initially all nuclei are placed collinearly (potential energy of this position is the smallest) and the component of the middle fragment's initial velocity which is perpendicular to this line is zero, then ternary fission is collinear, otherwise noncollinear ternary fission takes place.

  5. Validation of IRDFF in 252Cf Standard and IRDF-2002 Reference Neutron Fields

    NASA Astrophysics Data System (ADS)

    Simakov, Stanislav; Capote, Roberto; Greenwood, Lawrence; Griffin, Patrick; Kahler, Albert; Pronyaev, Vladimir; Trkov, Andrej; Zolotarev, Konstantin

    2016-02-01

    The results of validation of the latest release of International Reactor Dosimetry and Fusion File, IRDFF-1.03, in the standard 252Cf(s.f.) and reference 235U(nth,f) neutron benchmark fields are presented. The spectrum-averaged cross sections were shown to confirm IRDFF-1.03 in the 252Cf standard spontaneous fission spectrum; that was not the case for the current recommended spectra for 235U(nth,f). IRDFF was also validated in the spectra of the research reactor facilities ISNF, Sigma-Sigma and YAYOI, which are available in the IRDF-2002 collection. The ISNF facility was re-simulated to remove unphysical oscillations in the spectrum. IRDFF-1.03 was shown to reproduce reasonably well the spectrum-averaged data measured in these fields except for the case of YAYOI.

  6. Cluster description of cold (neutronless) α ternary fission of 252Cf

    NASA Astrophysics Data System (ADS)

    Săndulescu, A.; Carstoiu, F.; Bulboacă, I.; Greiner, W.

    1999-10-01

    A coplanar three body cluster model (two deformed fragments and an α particle) similar to the model used for the description of cold binary fission was employed for the description of cold (neutronless) α accompanied fission of 252Cf. No preformation factors were considered. The three body potential was computed with the help of a double folding potential generated by the M3Y-NN effective interaction and realistic fragment ground state deformations. From the minimum action principle, the α particle trajectory equations, the corresponding ternary barriers, and an approximate WKB expression for the barrier penetrability are obtained. The relative cold ternary yields were calculated as the ratio of the penetrability of a given ternary fragmentation and the sum of the penetrabilities of all possible cold ternary fragmentations. Different scenarios were considered depending on the trajectories of the fragments. It was shown that two regions of cold fragmentation exist, a deformed one corresponding to large fragment deformations and a spherical one around 132Sn, similarly to the case of the cold binary fission of 252Cf. We have shown that for the scenario corresponding to the Lagrange point, where all forces acting on the α particle are in equilibrium, the cold α ternary yields of 252Cf are strongly correlated with the cold binary yields of the daughter nucleus 248Cm into the same heavy fragments. For all other scenarios only the spherical splittings are favored. We concluded that due to the present available experimental data on cold α ternary yields only the Lagrange scenario could describe the cold α ternary fission of 252Cf.

  7. 10 CFR 35.406 - Brachytherapy sources accountability.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Brachytherapy sources accountability. 35.406 Section 35.406 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Manual Brachytherapy § 35... for all brachytherapy sources in storage or use. (b) As soon as possible after removing sources from...

  8. 10 CFR 35.406 - Brachytherapy sources accountability.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Brachytherapy sources accountability. 35.406 Section 35.406 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Manual Brachytherapy § 35... for all brachytherapy sources in storage or use. (b) As soon as possible after removing sources from...

  9. 10 CFR 35.406 - Brachytherapy sources accountability.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Brachytherapy sources accountability. 35.406 Section 35.406 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Manual Brachytherapy § 35... for all brachytherapy sources in storage or use. (b) As soon as possible after removing sources from...

  10. 10 CFR 35.406 - Brachytherapy sources accountability.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Brachytherapy sources accountability. 35.406 Section 35.406 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Manual Brachytherapy § 35... for all brachytherapy sources in storage or use. (b) As soon as possible after removing sources from...

  11. 10 CFR 35.406 - Brachytherapy sources accountability.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Brachytherapy sources accountability. 35.406 Section 35.406 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Manual Brachytherapy § 35... for all brachytherapy sources in storage or use. (b) As soon as possible after removing sources from...

  12. Comparison of fission modes in 252Cf, 257Fm, and 260Md

    NASA Astrophysics Data System (ADS)

    van Aarle, J.; Siemon, K.; Wild, J. F.; Lougheed, R. W.; Westmeier, W.; Patzelt, P.

    1998-10-01

    Although the spontaneous-fission properties of heavy actinides have been studied for well over 35 years, many interesting and informative details continue to come into light. During the last decade, the spontaneous fission of 252Cf, 257Fm and 260Md has been extensively investigated at the Philipps University of Marburg (1-4), by means of a gadolinium-doped liquid scintillation tank for neutron counting and surface barrier detectors for fission fragment detection. The three nuclides represent the transition from the well-known asymmetric fission yield distribution, as it is characteristic for 252Cf, to a much more symmetrical one, found in the fission of 260Md. Therefore, trends in the dynamical changes of fission properties have been derived from these studies. For the spontaneous fission of 252Cf and 260Md, it was already shown that different fission modes, as proposed by theoretical calculations of Brosa et al. (5), could be separated, using the correlation between the neutrons emitted in a fission event and both the observed fission-fragment mass and the total kinetic energy (1, 2). In the case of 257Fm, no theoretical calculations for fission modes exist. However, from the fission properties of the two surrounding actinides, one can expect at least three different fission modes, namely two "standard" and the "supershort" mode. In this paper, results from the recent 257Fm experiment will be presented and compared to systematics extracted from the fission properties of other heavy actinides.

  13. Comparison of fission modes in {sup 252}Cf, {sup 257}Fm, and {sup 260}Md

    SciTech Connect

    Aarle, J. van; Siemon, K.; Patzelt, P.; Wild, J. F.; Lougheed, R. W.; Westmeier, W.

    1998-10-26

    Although the spontaneous-fission properties of heavy actinides have been studied for well over 35 years, many interesting and informative details continue to come into light. During the last decade, the spontaneous fission of {sup 252}Cf, {sup 257}Fm and {sup 260}Md has been extensively investigated at the Philipps University of Marburg, by means of a gadolinium-doped liquid scintillation tank for neutron counting and surface barrier detectors for fission fragment detection. The three nuclides represent the transition from the well-known asymmetric fission yield distribution, as it is characteristic for {sup 252}Cf, to a much more symmetrical one, found in the fission of {sup 260}Md. Therefore, trends in the dynamical changes of fission properties have been derived from these studies. For the spontaneous fission of {sup 252}Cf and {sup 260}Md, it was already shown that different fission modes, as proposed by theoretical calculations of Brosa et al. (5), could be separated, using the correlation between the neutrons emitted in a fission event and both the observed fission-fragment mass and the total kinetic energy (1, 2). In the case of {sup 257}Fm, no theoretical calculations for fission modes exist. However, from the fission properties of the two surrounding actinides, one can expect at least three different fission modes, namely two 'standard' and the 'supershort' mode. In this paper, results from the recent {sup 257}Fm experiment will be presented and compared to systematics extracted from the fission properties of other heavy actinides.

  14. Evaluation of time-dose and fractionation for sup 252 Cf neutrons in preoperative bulky/barrel-cervix carcinoma radiotherapy

    SciTech Connect

    Maruyama, Y.; Wierzbicki, J. )

    1990-12-01

    Time-dose fractionation factors (TDF) were calculated for 252Cf (Cf) neutron therapy versus 137Cs for intracavitary use in the preoperative treatment of bulky/barrel-shaped Stage IB cervix cancers. The endpoint assessed was gross and microscopic tumor eradication from the hysterectomy specimen. We reviewed the data obtained in clinical trials between 1976-1987 at the University of Kentucky Medical Center. Preoperative photon therapy was approximately 45 Gy of whole pelvis irradiation in 5 weeks for both 137Cs and Cf treated patients. 137Cs implant was done after pelvic irradiation x1 to a mean dose of 2104 +/- 36 cGy at point A at a dose rate of 50.5 cGy/h. There were 37.5% positive specimens. Using Cf intracavitary implants, dose varied from 109 to 459 neutron cGy in 1-2 sessions. Specimens were more frequently cleared of tumor (up to 100% at appropriate dose) and showed a dose-response relationship, both by nominal dose and by TDF adjusted analysis of dose, dose-rate, number of sessions, and overall time. Limited understanding of relative biological effectiveness, schedule, effect of implants, and dose rate all made it difficult to use TDF to study neutron effects. Relative biological effectiveness (RBE) was estimated and showed that for Cf, RBE was a complex function of treatment variables. In the pilot clinical studies, a value of 6.0 had been assumed. The present findings of RBE for tumor destruction are larger than those assumed. Cf was effective for cervix tumor therapy and produced control without significant side effects due to the brachytherapy method used. The TDF model was of limited value in the present analysis and more information is still needed for RBE, dose-rate, and fractionation effects for Cf neutrons to develop a more sophisticated and relevant model.

  15. Comparison of fission modes in {sup 252}Cf, {sup 257}Fm, and {sup 260}Md

    SciTech Connect

    van Aarle, J.; Siemon, K.; Patzelt, P.; Wild, J.F.; Lougheed, R.W.; Westmeier, W.

    1998-10-01

    Although the spontaneous-fission properties of heavy actinides have been studied for well over 35 years, many interesting and informative details continue to come into light. During the last decade, the spontaneous fission of {sup 252}Cf, {sup 257}Fm and {sup 260}Md has been extensively investigated at the Philipps University of Marburg (1{endash}4), by means of a gadolinium-doped liquid scintillation tank for neutron counting and surface barrier detectors for fission fragment detection. The three nuclides represent the transition from the well-known asymmetric fission yield distribution, as it is characteristic for {sup 252}Cf, to a much more symmetrical one, found in the fission of {sup 260}Md. Therefore, trends in the dynamical changes of fission properties have been derived from these studies. For the spontaneous fission of {sup 252}Cf and {sup 260}Md, it was already shown that different fission modes, as proposed by theoretical calculations of Brosa et al. (5), could be separated, using the correlation between the neutrons emitted in a fission event and both the observed fission-fragment mass and the total kinetic energy (1, 2). In the case of {sup 257}Fm, no theoretical calculations for fission modes exist. However, from the fission properties of the two surrounding actinides, one can expect at least three different fission modes, namely two {open_quotes}standard{close_quotes} and the {open_quotes}supershort{close_quotes} mode. In this paper, results from the recent {sup 257}Fm experiment will be presented and compared to systematics extracted from the fission properties of other heavy actinides. {copyright} {ital 1998 American Institute of Physics.}

  16. Prompt neutron fission spectrum mean energies for the fissile nuclides and /sup 252/Cf

    SciTech Connect

    Holden, N.E.

    1985-01-01

    The international standard for a neutron spectrum is that produced from the spontaneous fission of /sup 252/Cf, while the thermal neutron induced fission neutron spectra for the four fissile nuclides, /sup 233/U, /sup 235/U, /sup 239/Pu, and /sup 241/Pu are of interest from the standpoint of nuclear reactors. The average neutron energies of these spectra are tabulated. The individual measurements are recorded with the neutron energy range measured, the method of detection as well as the average neutron energy for each author. Also tabulated are the measurements of the ratio of mean energies for pairs of fission neutron spectra. 75 refs., 9 tabs. (LEW)

  17. Bremsstrahlung emission of high energy accompanying spontaneous fission of {sup 252}Cf

    SciTech Connect

    Maydanyuk, S. P.; Olkhovsky, V. S.; Mandaglio, G.; Manganaro, M.; Fazio, G.; Giardina, G.

    2010-07-15

    The study of the bremsstrahlung photon emission accompanying fragments produced in the spontaneous fission of heavy nuclei by a fully quantum approach is presented for the first time. This kind of problem requires the knowledge of wave functions of the fissioning system leading to a wide distribution of couples of fragments that are the products of fission. With the aim of obtaining these wave functions, the interaction potential between the emitted fragment and residual nucleus is calculated by a standard approach. A new procedure was performed that allows an increase in the accuracy of calculations of radial integrals in the far asymptotic region and the achievement of the convenient convergence in calculations of the spectra. The total probability of the emitted photons in the spontaneous fission of {sup 252}Cf was calculated in such a way. We obtained good agreement between theory and experimental data up to 38 MeV for the bremsstrahlung spectrum of photons while the calculation of the total probability of photon emission accompanying fragments was performed up to an energy of 60 MeV. The analysis of contributions in the bremsstrahlung spectrum accompanying the emission of light, medium, and heavy fragments in the fission of {sup 252}Cf is presented.

  18. Beta spectroscopy of some neutron-rich cerium isotopes in252Cf fission products

    NASA Astrophysics Data System (ADS)

    Ebong, I. D. U.; Roy, R. R.

    1981-09-01

    The method of cyclic-time optimization has been used, in conjunction with a beta-Kx-ray coincidence technique, to obtain the beta spectrum of some decaying cerium isotopes in the fission products of252Cf. A Kurie plot of the beta spectrum revealed at least four beta groups. From the relative isotopic yields of Kx-ray the isotopic origin of each group has been determined. The coincidence method used in this study allows the measurement of beta groups feeding excited levels of daughter products with high internal conversion coefficients. The end-point energies and isotopic origin of the measured beta groups were as follows: 2.349(±0.100)MeV,145Ce; 1.715(±0.103)MeV,145Ce and148Ce; 1.267 (±0.103)MeV,145Ce; 0.748(±0.109) MeV,146Ce and148Ce.

  19. Application of 252Cf plasma desorption mass spectrometry in dental research

    NASA Astrophysics Data System (ADS)

    Fritsch, Hans-Walter; Schmidt, Lothar; Köhl, Peter; Jungclas, Hartmut; Duschner, Heins

    1993-07-01

    Topically applied fluorides introduced in dental hygiene products elevate the concentration levels of fluoride in oral fluids and thus also affect chemical reactions of enamel de- and remineralisation. The chemical reactions on the surface of tooth enamel still are a subject of controversy. Here 252Cf-plasma desorption mass spectrometry and argon ion etching are used to analyse the molecular structure of the upper layes of enamel. The mass spectrum of untreated enamel is characterised by a series of cluster ions containing phosphate. It is evident that under certain conditions the molecular structure of the surface enamel is completely transformed by treatment with fluorides. The result of the degradation and precipitation processes is reflected by a total replacement of the phosphate by fluoride in the measured cluster ion distribution. Stepwise etching of the upper layers by Ar+ ions reveals the transition from a nearly pure CaF2 structure to the unchanged composition of the enamel mineral.

  20. Calibration of Photon Sources for Brachytherapy

    NASA Astrophysics Data System (ADS)

    Rijnders, Alex

    Source calibration has to be considered an essential part of the quality assurance program in a brachytherapy department. Not only it will ensure that the source strength value used for dose calculation agrees within some predetermined limits to the value stated on the source certificate, but also it will ensure traceability to international standards. At present calibration is most often still given in terms of reference air kerma rate, although calibration in terms of absorbed dose to water would be closer to the users interest. It can be expected that in a near future several standard laboratories will be able to offer this latter service, and dosimetry protocols will have to be adapted in this way. In-air measurement using ionization chambers (e.g. a Baldwin—Farmer ionization chamber for 192Ir high dose rate HDR or pulsed dose rate PDR sources) is still considered the method of choice for high energy source calibration, but because of their ease of use and reliability well type chambers are becoming more popular and are nowadays often recommended as the standard equipment. For low energy sources well type chambers are in practice the only equipment available for calibration. Care should be taken that the chamber is calibrated at the standard laboratory for the same source type and model as used in the clinic, and using the same measurement conditions and setup. Several standard laboratories have difficulties to provide these calibration facilities, especially for the low energy seed sources (125I and 103Pd). Should a user not be able to obtain properly calibrated equipment to verify the brachytherapy sources used in his department, then at least for sources that are replaced on a regular basis, a consistency check program should be set up to ensure a minimal level of quality control before these sources are used for patient treatment.

  1. 10 CFR 35.432 - Calibration measurements of brachytherapy sources.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Calibration measurements of brachytherapy sources. 35.432 Section 35.432 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Manual Brachytherapy... Association of Physicists in Medicine that are made in accordance with paragraph (a) of this section. (c)...

  2. 10 CFR 35.432 - Calibration measurements of brachytherapy sources.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Calibration measurements of brachytherapy sources. 35.432 Section 35.432 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Manual Brachytherapy... Association of Physicists in Medicine that are made in accordance with paragraph (a) of this section. (c)...

  3. 10 CFR 35.432 - Calibration measurements of brachytherapy sources.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Calibration measurements of brachytherapy sources. 35.432 Section 35.432 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Manual Brachytherapy... Association of Physicists in Medicine that are made in accordance with paragraph (a) of this section. (c)...

  4. 10 CFR 35.432 - Calibration measurements of brachytherapy sources.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Calibration measurements of brachytherapy sources. 35.432 Section 35.432 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Manual Brachytherapy... Association of Physicists in Medicine that are made in accordance with paragraph (a) of this section. (c)...

  5. 10 CFR 35.432 - Calibration measurements of brachytherapy sources.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Calibration measurements of brachytherapy sources. 35.432 Section 35.432 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Manual Brachytherapy... Association of Physicists in Medicine that are made in accordance with paragraph (a) of this section. (c)...

  6. Analysis of linear energy transfers and quality factors of charged particles produced by spontaneous fission neutrons from 252Cf and 244Pu in the human body.

    PubMed

    Endo, Akira; Sato, Tatsuhiko

    2013-04-01

    Absorbed doses, linear energy transfers (LETs) and quality factors of secondary charged particles in organs and tissues, generated via the interactions of the spontaneous fission neutrons from (252)Cf and (244)Pu within the human body, were studied using the Particle and Heavy Ion Transport Code System (PHITS) coupled with the ICRP Reference Phantom. Both the absorbed doses and the quality factors in target organs generally decrease with increasing distance from the source organ. The analysis of LET distributions of secondary charged particles led to the identification of the relationship between LET spectra and target-source organ locations. A comparison between human body-averaged mean quality factors and fluence-averaged radiation weighting factors showed that the current numerical conventions for the radiation weighting factors of neutrons, updated in ICRP103, and the quality factors for internal exposure are valid.

  7. 10 CFR 35.400 - Use of sources for manual brachytherapy.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Use of sources for manual brachytherapy. 35.400 Section 35.400 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Manual Brachytherapy § 35.400 Use of sources for manual brachytherapy. A licensee shall use only brachytherapy sources...

  8. 10 CFR 35.400 - Use of sources for manual brachytherapy.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Use of sources for manual brachytherapy. 35.400 Section 35.400 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Manual Brachytherapy § 35.400 Use of sources for manual brachytherapy. A licensee shall use only brachytherapy sources...

  9. 10 CFR 35.400 - Use of sources for manual brachytherapy.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Use of sources for manual brachytherapy. 35.400 Section 35.400 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Manual Brachytherapy § 35.400 Use of sources for manual brachytherapy. A licensee shall use only brachytherapy sources...

  10. 10 CFR 35.400 - Use of sources for manual brachytherapy.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Use of sources for manual brachytherapy. 35.400 Section 35.400 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Manual Brachytherapy § 35.400 Use of sources for manual brachytherapy. A licensee shall use only brachytherapy sources...

  11. A cyclic time optimization approach to the study of 252Cf fission products

    NASA Astrophysics Data System (ADS)

    Price, R. I.; Ebong, I. D. U.; Adams, John A.; Roy, R. R.

    1980-05-01

    A K X-ray-beta particle coincidence technique has been investigated for the study of the beta decay of fission products from 252Cf. A fission-fragments transport system has been developed and its optimization curve used for the identification of the half-life associated with the K X-ray peak originating from the Mo → Tc decay high-resolution lithium-drifted silicon spectrometer and a plastic scintillation spectrometer were used in the analysis of the K X-rays and beta particles respectively. A half-life of (0.98 ± 0.03) min was associated with the K X-rays from technetium. A Kurie plot of the coincidence beta spectrum revealed at least three beta groups with end-point energies of (2.19 ± 0.19) MeV, (1.64 ± 0.14) MeV and (1.04 ± 0.10) MeV.

  12. Sensitivity of 252Cf(sf) Neutron Observables to FREYA Inputs

    NASA Astrophysics Data System (ADS)

    Vogt, Ramona; Randrup, Jorgen; Talou, Patrick

    2016-09-01

    Within the framework of the fission event generator FREYA , (Fission Reaction Event Yield Algorithm) we have studied the sensitivity of various neutron observables to the yield distribution Y (A , Z , TKE) used as input to the code. Concentrating on the spontaneous fission of 252Cf, we generate a large number of different input yield distributions by performing simultaneous variations in the mass and charge yields as well as the kinetic energy distribution, governed by yield covariance matrices established from experimental data sets. For each of these input yield distributions, we then use FREYA to generate a large sample of complete fission events from which we extract various neutron observables, in particular the neutron multiplicity distribution, and the neutron spectrum associated with each multiplicity. On this basis, we are able to determine the sensitivity of those observables to the uncertainties in the input yield distribution obtained experimentally. This kind of study can be applied to any other case of interest and the information obtained can help to establish any needs and target accuracies required for further measurements to ensure reliable data validation. The work of J.R. was performed under the auspices of the U.S. Dept. of Energy by Lawrence Berkeley National Laboratory under Contract DE-AC02-05CH11231. The work of P.T. was performed under the auspices of the National Nuclear Security Administration.

  13. Structures of the neutron-rich nuclei observed in fission of {sup 252}Cf

    SciTech Connect

    Ramayya, A. V.; Hamilton, J. H.; Goodin, C. J.; Brewer, N. T.; Hwang, J. K.; Luo, Y. X.; Liu, S. H.; Stone, N. J.; Daniel, A. V.; Zhu, S. J.

    2014-08-14

    Analysis of high statistics triple coincidence fission γ data from {sup 252}Cf at Gammasphere including angular correlations yielded well-expanded high-spin level schemes with more complete and reliable spin/parity assignments for {sup 82}Ge, {sup 118,120,122}Cd and {sup 114,115}Rh. Both the quasi-particle/hole couplings and quasi-rotational degrees of freedom are implied to play roles in these Cd isotopes. Evidence for triaxial shapes and octupole components in the Cd isotopes is presented. These Cd isotopes may have triaxial deformations. High-spin level schemes of {sup 114,115}Rh have been established for the first time. The existence of a relatively large signature splitting and an yrare band shows typical features of a triaxially deformed nucleus. Possible excited deformed rotational bands are observed, for the first time, in {sup 82}Ge. From the multipole mixing ratio measurement, the ground state configurations of {sup 109,111}Ru, as well as excited states in {sup 103,107}Mo and {sup 111}Ru were determined.

  14. All possible ternary fragmentations of {sup 252}Cf in collinear configuration

    SciTech Connect

    Manimaran, K.; Balasubramaniam, M.

    2011-03-15

    All possible ternary fragmentations in fission of {sup 252}Cf are studied in collinear configuration within a spherical approximation using the recently proposed ''three cluster model.'' The potential energy surface of collinear configuration exhibits a strong valley around {sup 48}Ca and its neighboring nuclei {sup 50}Ca, {sup 54}Ti, and {sup 60}Cr. Such strong minima are not seen in the potential energy surface of an equatorial configuration. As a consequence of strong minima in the potential, the overall relative yield is higher for the ternary fragmentation with {sup 48}Ca, {sup 50}Ca, {sup 54}Ti, {sup 60}Cr, and {sup 82}Ge as the third fragment. The results of potential energy and relative yield calculations reveal that collinear configuration increases the probability of emission of heavy fragments like {sup 48}Ca (doubly magic nucleus) and its neighboring nuclei as the third fragment. The obtained results indicate that the collinear configuration is the preferred configuration for intermediate nuclei ({sup 48}Ca, {sup 50}Ca, {sup 54}Ti, and {sup 60}Cr) as the third fragment in particle accompanied fission while the equatorial configuration may be a preferred configuration for light nuclei ({sup 4}He, {sup 10}Be) as the third fragment.

  15. Dosimetry of two new interstitial brachytherapy sources

    NASA Astrophysics Data System (ADS)

    Saidi, Pooneh; Sadeghi, Mahdi

    2011-01-01

    With increased demand for low 103Pd (palladium) seed sources, to treat prostate and eye cancers, new sources have been designed and introduced. This article presents the two new palladium brachytherapy sources, IR03-103Pd and IR04-103Pd that have been developed at Nuclear Science and Technology Research Institute. The dosimetry parameters such as the dose rate constant Λ, the radial dose function g(r), and the anisotropy function F(r,θ), around the sources have been characterized using Version 5 Monte Carlo radiation transport code in accordance with the update AAPM Task Group No. 43 report (TG-43U1). The results indicated the dose rate constant of 0.689±0.02 and 0.667±0.02 cGy h-1 U-1 for the IR03-103Pd and IR04-103Pd sources respectively, which are in acceptable agreement with other commercial seeds. The calculated results were compared with published results for those of other source manufacturers. However, they show an acceptable dose distribution, using for clinical applications is pending experimental dosimetry.

  16. The sup 252 Cf(sf) neutron spectrum in the 5- to 20-MeV energy range

    SciTech Connect

    Marten, H.; Richter, D.; Seeliger, D. ); Fromm, W.D. ); Bottger, R.; Klein, H. )

    1990-11-01

    This paper reports on the {sup 252}Cf neutron spectrum measured at high energies with a miniature ionization chamber and two different NE-213 neutron detectors. The gamma-ray background and the main cosmic background caused by muons were suppressed by applying efficient pulse-shape discrimination. On the basis of two-dimensional spectroscopy of the neutron time-of-flight and scintillation pulse height, the sliding bias method is used to minimize experimental uncertainties. The experimental data, corrected for several systematic influences, confirm earlier results that show negative deviations from a reference Maxwellian distribution with a 1.42-MeV spectrum temperature for neutron energies above 6 MeV. Experimental results of this work are compared with various statistical model approaches to the {sup 252}Cf(sf) neutron spectrum.

  17. True ternary fission, the collinear cluster tripartition (CCT) of 252Cf

    NASA Astrophysics Data System (ADS)

    von Oertzen, W.; Pyatkov, Y. V.; Kamanin, D.

    2012-10-01

    In systematic work over the last decade (see Pyatkov et al. [12] and refs therein), the ternary fission decay of heavy nuclei, in 235U(n,fff) and 252Cf(sf) has been studied in a collinear geometry. The name used for this process is (CCT), with three fragments of similar size in a collinear decay, it is the true ternary fission. This decay has been observed in spontaneous fission as well as in a neutron induced reaction. The measurements are based on different experimental set-ups, with binary coincidences containing TOF and energy determinations. With two detector telescopes placed at 180°, the measurements of masses and energies of each of the registered two fragments, give complete kinematic solutions. Thus the missing mass events in binary coincidences can be determined, these events are obtained by blocking one of the lighter fragments on a structure in front of the detectors. The relatively high yield of CCT (more than 10-3 per binary fission) is explained. It is due to the favourable Q-values (more positive than for binary) and the large phase space of the ternary CCT-decay, dominated by three (magic) clusters: e.g. isotopes of Sn, Ca and Ni, 132Sn+50Ca+70Ni. It is shown that the collinear (prolate) geometry has the favoured potential energy relative to the oblate shapes. The ternary fission is considered to be a sequential process. With this assumption the kinetic energies of the fragments have been calculated by Vijay et al. [1]. The third fragments have very low kinetic energies (below 20 MeV) and have thus escaped their detection in previous work on "ternary fission", where in addition an oblate shape and a triangle for the momentum vectors have been assumed.

  18. True ternary fission, the collinear cluster tripartition (CCT) of {sup 252}Cf

    SciTech Connect

    Oertzen, W. von; Pyatkov, Y. V.; Kamanin, D.

    2012-10-20

    In systematic work over the last decade (see Pyatkov et al. [12] and refs therein), the ternary fission decay of heavy nuclei, in {sup 235}U(n,fff) and {sup 252}Cf(sf) has been studied in a collinear geometry. The name used for this process is (CCT), with three fragments of similar size in a collinear decay, it is the true ternary fission. This decay has been observed in spontaneous fission as well as in a neutron induced reaction. The measurements are based on different experimental set-ups, with binary coincidences containing TOF and energy determinations. With two detector telescopes placed at 180 Degree-Sign , the measurements of masses and energies of each of the registered two fragments, give complete kinematic solutions. Thus the missing mass events in binary coincidences can be determined, these events are obtained by blocking one of the lighter fragments on a structure in front of the detectors. The relatively high yield of CCT (more than 10{sup -3} per binary fission) is explained. It is due to the favourable Q-values (more positive than for binary) and the large phase space of the ternary CCT-decay, dominated by three (magic) clusters: e.g. isotopes of Sn, Ca and Ni, {sup 132}Sn+{sup 50}Ca+{sup 70}Ni. It is shown that the collinear (prolate) geometry has the favoured potential energy relative to the oblate shapes. The ternary fission is considered to be a sequential process. With this assumption the kinetic energies of the fragments have been calculated by Vijay et al.. The third fragments have very low kinetic energies (below 20 MeV) and have thus escaped their detection in previous work on 'ternary fission', where in addition an oblate shape and a triangle for the momentum vectors have been assumed.

  19. Coal liquefaction process streams characterization and evaluation: The application of [sup 252]Cf-plasma desorption mass spectrometry to analysis of direct coal liquefaction heavy products

    SciTech Connect

    Larsen, J.W.; Lapucha, A.R.

    1992-10-01

    This study demonstrated the feasibility of using [sup 252]Cf PDMS, GPC, and MPLC for the examination of the tetrahydrofuran (THF)-soluble portion of distillation resid materials derived from direct coal liquefaction. The [sup 252]Cf-PDMS technique was used to determine molecular weight distributions of twenty-five THF-soluble resids. In order to detemine if [sup 252]Cf-PDMS responds differently to different chemical classes of compounds, Lehigh separated five of the samples into chemically distinct fractions by MPLC, then analyzed the parent samples, their fractions, and the re-mixed fractions by [sup 252]Cf-PDMS and GPC. Irreversible alteration of the samples upon separation was noted by Lehigh. This was confirmed by use of gas chromatographic (GC) analyses. The noted irreversible alterations prevented a direct comparison of the remixed materials and the original samples. Thus, the selective response of [sup 252]Cf-PDMS to different chemical classes of compounds could not be confirmed or ruled out. The number average molecular weights (M[sub n]) obtained by [sup 252]Cf-PDMS and GPC agreed well. However, the weight average molecular weights (M[sub w]) obtained by GPC are always higher than the corresponding [sup 252]Cf-PDMS results. Number average molecular weights and weight average molecular weights obtained with [sup 252]Cf-PDMS and GPC were compared with those obtained by field ionization mass spectrometry (FIMS), previously reported by SRI International for the parent resid samples from which the Lehigh THF-soluble samples were derived.

  20. Coal liquefaction process streams characterization and evaluation: The application of {sup 252}Cf-plasma desorption mass spectrometry to analysis of direct coal liquefaction heavy products

    SciTech Connect

    Larsen, J.W.; Lapucha, A.R.

    1992-10-01

    This study demonstrated the feasibility of using {sup 252}Cf PDMS, GPC, and MPLC for the examination of the tetrahydrofuran (THF)-soluble portion of distillation resid materials derived from direct coal liquefaction. The {sup 252}Cf-PDMS technique was used to determine molecular weight distributions of twenty-five THF-soluble resids. In order to detemine if {sup 252}Cf-PDMS responds differently to different chemical classes of compounds, Lehigh separated five of the samples into chemically distinct fractions by MPLC, then analyzed the parent samples, their fractions, and the re-mixed fractions by {sup 252}Cf-PDMS and GPC. Irreversible alteration of the samples upon separation was noted by Lehigh. This was confirmed by use of gas chromatographic (GC) analyses. The noted irreversible alterations prevented a direct comparison of the remixed materials and the original samples. Thus, the selective response of {sup 252}Cf-PDMS to different chemical classes of compounds could not be confirmed or ruled out. The number average molecular weights (M{sub n}) obtained by {sup 252}Cf-PDMS and GPC agreed well. However, the weight average molecular weights (M{sub w}) obtained by GPC are always higher than the corresponding {sup 252}Cf-PDMS results. Number average molecular weights and weight average molecular weights obtained with {sup 252}Cf-PDMS and GPC were compared with those obtained by field ionization mass spectrometry (FIMS), previously reported by SRI International for the parent resid samples from which the Lehigh THF-soluble samples were derived.

  1. Detailed Study of the Angular Correlations in the Prompt Neutron Emission in Spontaneous Fission of 252Cf

    NASA Astrophysics Data System (ADS)

    Kopatch, Yu.; Chietera, A.; Stuttgé, L.; Gönnenwein, F.; Mutterer, M.; Gagarski, A.; Guseva, I.; Chernysheva, E.; Dorvaux, O.; Hambsch, F.-J.; Hanappe, F.; Mezentseva, Z.; Telezhnikov, S.

    An experiment has been performed at IPHC Strasbourg, aimed at the detailed investigation of angular correlations in the neutron emission from spontaneous fission of 252Cf. Fission fragments were measured by the angle-sensitive double ionization chamber CODIS while neutrons were detected by a set of 60 DEMON scintillator counters. The main aim of the experiment is the observation of the correlation between the fragment spins and neutron emission anisotropy. Preliminary results, based on the Monte-Carlo simulations, as well as the preliminary analysis of the experimental data are shown.

  2. Dosimetric characterization and output verification for conical brachytherapy surface applicators. Part I. Electronic brachytherapy source

    PubMed Central

    Fulkerson, Regina K.; Micka, John A.; DeWerd, Larry A.

    2014-01-01

    Purpose: Historically, treatment of malignant surface lesions has been achieved with linear accelerator based electron beams or superficial x-ray beams. Recent developments in the field of brachytherapy now allow for the treatment of surface lesions with specialized conical applicators placed directly on the lesion. Applicators are available for use with high dose rate (HDR) 192Ir sources, as well as electronic brachytherapy sources. Part I of this paper will discuss the applicators used with electronic brachytherapy sources; Part II will discuss those used with HDR 192Ir sources. Although the use of these applicators has gained in popularity, the dosimetric characteristics including depth dose and surface dose distributions have not been independently verified. Additionally, there is no recognized method of output verification for quality assurance procedures with applicators like these. Existing dosimetry protocols available from the AAPM bookend the cross-over characteristics of a traditional brachytherapy source (as described by Task Group 43) being implemented as a low-energy superficial x-ray beam (as described by Task Group 61) as observed with the surface applicators of interest. Methods: This work aims to create a cohesive method of output verification that can be used to determine the dose at the treatment surface as part of a quality assurance/commissioning process for surface applicators used with HDR electronic brachytherapy sources (Part I) and 192Ir sources (Part II). Air-kerma rate measurements for the electronic brachytherapy sources were completed with an Attix Free-Air Chamber, as well as several models of small-volume ionization chambers to obtain an air-kerma rate at the treatment surface for each applicator. Correction factors were calculated using MCNP5 and EGSnrc Monte Carlo codes in order to determine an applicator-specific absorbed dose to water at the treatment surface from the measured air-kerma rate. Additionally, relative dose

  3. [Brachytherapy].

    PubMed

    Itami, Jun

    2014-12-01

    Brachytherapy do require a minimal expansion of CTV to obtain PTV and it is called as ultimate high precision radiation therapy. In high-dose rate brachytherapy, applicators will be placed around or into the tumor and CT or MRI will be performed with the applicators in situ. With such image-guided brachytherapy (IGBT) 3-dimensional treatment planning becomes possible and DVH of the tumor and organs at risk can be obtained. It is now even possible to make forward planning satisfying dose constraints. Traditional subjective evaluation of brachytherapy can be improved to the objective one by IGBT. Brachytherapy of the prostate cancer, cervical cancer, and breast cancer with IGBT technique was described.

  4. Efficacy of brachytherapy with californium-252 neutrons versus cesium-137 photons for eradication of bulky localized cervical cancer: single-institution study

    SciTech Connect

    Maruyama, Y.; van Nagell, J.R.; Yoneda, J.; Donaldson, E.; Gallion, H.; Higgins, R.; Powell, D.; Turner, C.; Kryscio, R.

    1988-06-01

    A fast-neutron-emitting radioisotope, /sup 252/Cf, is being tested in clinical trials of neutron brachytherapy for cervical cancer. The efficacy for histological eradication of bulky stage IB cervical tumors (mean diameter, approximately 6 cm) using combined radiation and surgery was studied in 65 patients treated with /sup 137/Cs or /sup 252/Cf before surgery during 1983-1986. Forty-four patients were treated with /sup 137/Cs and 21 were treated with /sup 252/Cf at equivalent doses of radiation. Fifteen of the 44 specimens (34%) were positive after 137Cs therapy. Only one of the 21 specimens was positive after /sup 252/Cf therapy (P = .025), and that patient was treated in a delayed schedule 21 days after the start of external-beam irradiation rather than early in the course. /sup 252/Cf therapy required a much lower radiation dose and shorter treatment time. The study compared tumor destruction of an identically staged human cervical tumor in situ by direct histological means, using /sup 252/Cf neutron therapy or conventional photon therapy at an identical and equivalent dose adjusted by a relative biological effectiveness of 6.0 for /sup 252/Cf.

  5. Calculated and measured brachytherapy dosimetry parameters in water for the Xoft Axxent X-Ray Source: an electronic brachytherapy source.

    PubMed

    Rivard, Mark J; Davis, Stephen D; DeWerd, Larry A; Rusch, Thomas W; Axelrod, Steve

    2006-11-01

    A new x-ray source, the model S700 Axxent X-Ray Source (Source), has been developed by Xoft Inc. for electronic brachytherapy. Unlike brachytherapy sources containing radionuclides, this Source may be turned on and off at will and may be operated at variable currents and voltages to change the dose rate and penetration properties. The in-water dosimetry parameters for this electronic brachytherapy source have been determined from measurements and calculations at 40, 45, and 50 kV settings. Monte Carlo simulations of radiation transport utilized the MCNP5 code and the EPDL97-based mcplib04 cross-section library. Inter-tube consistency was assessed for 20 different Sources, measured with a PTW 34013 ionization chamber. As the Source is intended to be used for a maximum of ten treatment fractions, tube stability was also assessed. Photon spectra were measured using a high-purity germanium (HPGe) detector, and calculated using MCNP. Parameters used in the two-dimensional (2D) brachytherapy dosimetry formalism were determined. While the Source was characterized as a point due to the small anode size, < 1 mm, use of the one-dimensional (1D) brachytherapy dosimetry formalism is not recommended due to polar anisotropy. Consequently, 1D brachytherapy dosimetry parameters were not sought. Calculated point-source model radial dose functions at gP(5) were 0.20, 0.24, and 0.29 for the 40, 45, and 50 kV voltage settings, respectively. For 1source model radial dose functions were typically within 4% of calculated results. Calculated values for F(r, theta) for all operating voltages were within 15% of unity along the distal end (theta=0 degree), and ranged from F(1 cm, 160 degrees) = 0.2 to F(15 cm, 175 degrees) = 0.4 towards the catheter proximal end. For all three operating voltages using the PTW chamber, measured dependence of output as a function of azimuthal angle, psi, was typically on average +/-3% for 0 degree < or = psi < or = 360 degrees

  6. 10 CFR 35.2406 - Records of brachytherapy source accountability.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Records of brachytherapy source accountability. 35.2406 Section 35.2406 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Records § 35.2406... from storage, the name of the individual who removed them from storage, and the location of use; and...

  7. 21 CFR 892.5730 - Radionuclide brachytherapy source.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Radionuclide brachytherapy source. 892.5730 Section 892.5730 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5730 Radionuclide...

  8. 21 CFR 892.5730 - Radionuclide brachytherapy source.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Radionuclide brachytherapy source. 892.5730 Section 892.5730 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5730 Radionuclide...

  9. 21 CFR 892.5730 - Radionuclide brachytherapy source.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Radionuclide brachytherapy source. 892.5730 Section 892.5730 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5730 Radionuclide...

  10. 21 CFR 892.5730 - Radionuclide brachytherapy source.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Radionuclide brachytherapy source. 892.5730 Section 892.5730 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5730 Radionuclide...

  11. 21 CFR 892.5730 - Radionuclide brachytherapy source.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Radionuclide brachytherapy source. 892.5730 Section 892.5730 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5730 Radionuclide...

  12. In-beam gamma-ray spectroscopy of {sup 248,250,252}Cf by neutron-transfer reactions using a Cf target

    SciTech Connect

    Takahashi, R.; Ishii, T.; Asai, M.; Nagae, D.; Makii, H.; Tsukada, K.; Toyoshima, A.; Ishii, Y.; Matsuda, M.; Makishima, A.; Shizuma, T.; Kohno, T.; Ogawa, M.

    2010-05-15

    The ground-state bands of {sup 248,250,252}Cf have been established up to the 10{sup +}, 12{sup +}, and 10{sup +} states, respectively, by in-beam gamma-ray spectroscopy using neutron-transfer reactions with a 153-MeV {sup 18}O beam and a highly radioactive Cf target. The deexcitation gamma rays in {sup 248,250,252}Cf were identified by taking coincidences with outgoing particles of {sup 16-19}O measured with Si DELTAE-E detectors, and by selecting their kinetic energies. Moments of inertia of {sup 248,250,252}Cf were discussed in terms of the N=152 deformed shell gap.

  13. Primary calibration of coiled {sup 103}Pd brachytherapy sources

    SciTech Connect

    Paxton, Adam B.; Culberson, Wesley S.; DeWerd, Larry A.; Micka, John A.

    2008-01-15

    Coiled {sup 103}Pd brachytherapy sources have been developed by RadioMed Corporation for use as low-dose-rate (LDR) interstitial implants. The coiled sources are provided in integer lengths from 1 to 6 cm and address many common issues seen with traditional LDR brachytherapy sources. The current standard for determining the air-kerma strength (S{sub K}) of low-energy LDR brachytherapy sources is the National Institute of Standards and Technology's Wide-Angle Free-Air Chamber (NIST WAFAC). Due to geometric limitations, however, the NIST WAFAC is unable to determine the S{sub K} of sources longer than 1 cm. This project utilized the University of Wisconsin's Variable-Aperture Free-Air Chamber (UW VAFAC) to determine the S{sub K} of the longer coiled sources. The UW VAFAC has shown agreement in S{sub K} values of 1 cm length coils to within 1% of those determined with the NIST WAFAC, but the UW VAFAC does not share the same geometric limitations as the NIST WAFAC. A new source holder was constructed to hold the coiled sources in place during measurements with the UW VAFAC. Correction factors for the increased length of the sources have been determined and applied to the measurements. Using the new source holder and corrections, the S{sub K} of 3 and 6 cm coiled sources has been determined. Corrected UW VAFAC data and ionization current measurements from well chambers have been used to determine calibration coefficients for use in the measurement of 3 and 6 cm coiled sources in well chambers. Thus, the UW VAFAC has provided the first transferable, primary measurement of low-energy LDR brachytherapy sources with lengths greater than 1 cm.

  14. A probe for neutron activation analysis in a drill hole using 252Cf, and a Ge(Li) detector cooled by a melting cryogen

    USGS Publications Warehouse

    Tanner, A.B.; Moxham, R.M.; Senftle, F.E.; Baicker, J.A.

    1972-01-01

    A sonde has been built for high-resolution measurement of natural or neutron-induced gamma rays in boreholes. The sonde is 7.3 cm in diameter and about 2.2 m in length and weighs about 16 kg. The lithium-compensated germanium semiconductor detector is stabilized at -185 to -188??C for as much as ten hours by a cryostatic reservoir containing melting propane. During periods when the sonde is not in use the propane is kept frozen by a gravity-fed trickle of liquid nitrogen from a reservoir temporarily attached to the cryostat section. A 252Cf source, shielded from the detector, may be placed in the bottom section of the sonde for anlysis by measurement of neutron-activation or neutron-capture gamma rays. Stability of the cryostat with changing hydrostatic pressure, absence of vibration, lack of need for power to the cryostat during operation, and freedom of orientation make the method desirable for borehole, undersea, space, and some laboratory applications. ?? 1972.

  15. Brachytherapy

    MedlinePlus

    ... Who will be involved in this procedure? The delivery of brachytherapy requires a treatment team, including a ... are specially trained technologists who may assist in delivery of the treatments. The radiation therapy nurse provides ...

  16. Brachytherapy

    MedlinePlus

    ... care for brachytherapy catheters. top of page What equipment is used? For permanent implants, radioactive material (which ... the tumor. top of page Who operates the equipment? The equipment is operated by a medical physicist, ...

  17. Fabrication of cesium-137 brachytherapy sources using vitrification technology.

    PubMed

    Dash, Ashutosh; Varma, R N; Ram, Ramu; Saxena, S K; Mathakar, A R; Avhad, B G; Sastry, K V S; Sangurdekar, P R; Venkatesh, Meera

    2009-08-01

    137Cs source in solid matrix encapsulated in stainless-steel at MBq (mCi) levels are widely used as brachytherapy sources for the treatment of carcinoma of cervix uteri. This article describes the large-scale preparation of such sources. The process of fabrication includes vitrification of 137Cs-sodium borosilicate glass, its transformation into spheres of 5-6 mm diameter, casting of glass spheres into a cylinder of 1.5 mm (varphi) x 80 mm (l) in a platinum mould, cutting of the moulds into 5-mm-long pieces, silver coating on the sources, and finally, encapsulation in stainless steel capsules. Development of safety precautions used to trap 137Cs escaping during borosilicate glass preparation is also described. The leach rates of the radioactive sources prepared by the above technology were within permissible limits, and the sources could be used for encapsulation in stainless steel capsules and supplied for brachytherapy applications. This development was aimed at promoting the potential utility of 137Cs-brachytherapy sources in the country and reducing the user's reliance on imported sources. Since its development, more than 1000 such sources have been made by using 4.66 TBq(126 Ci) of 137Cs.

  18. Utilization of a /sup 252/Cf-/sup 235/U fueled subcritical multiplier for neutron activation analysis. Rev

    SciTech Connect

    Wogman, N.A.; Lepel, E.A.

    1984-02-01

    A /sup 252/Cf neutron activation analysis facility developed in 1975 has been used for the routine multielement analysis of a wide variety of solid and liquid samples. The present neutron flux is on the order of 10/sup 9/ thermal neutrons per cm/sup 2/ per second. Following activation, the radioisotopes are analyzed through their photon emissions with lithium drifted germanium detectors, anticoincidence shielded germanium detectors and NaI(T1) coincidence spectrometers. Although over 65 elements have been measured in environmental materials with this system, typical analyses include the elements Na, Al, Cl, K, Ca, Ti, V, Mn, Br, Sr, Rb, Ba, and Dy. Detection limits range from the sub parts per million upward. Over 8000 samples have been analyzed at an amortized neutron cost per sample of $31.

  19. Description of the /sup 252/Cf(sf) neutron spectrum in the framework of a generalized Madland-Nix model

    SciTech Connect

    Marten, H.; Seeliger, D.

    1986-08-01

    The Madland-Nix model (MNM) for the calculation of fission neutron spectra is modified considering the dependence on fragment mass number A. Further, an approximation of this generalized Madland-Nix model (GMNM) that takes into account the different center-of-mass system spectra for the light and heavy fragment groups is discussed. These new calculations are compared with two versions of the original MNM. In particular, the level density parameter, which was adjusted by fitting the calculated spectra to a Maxwellian distribution deduced from experimental data, becomes more reasonable in the framework of the GMNM. The results of the different model calculations are compared with experimental data on the /sup 252/Cf(sf) neutron spectrum in the 0.1- to 20-MeV energy range.

  20. Dosimetric characteristic of a new 125I brachytherapy source.

    PubMed

    Sadeghi, Mahdi; Khanmohammadi, Zahra

    2011-11-01

    A new brachytherapy (125)I source has been investigated at Iranian Agricultural, Medical and Industrial Research School. Dosimetric characteristics [dose-rate constant Λ, radial dose function g(l)(r) and anisotropy function F(r,)] of IRA-(125)I were theoretically determined in terms of the updated AAPM task group 43 (TG-43U1) recommendations. Versions 5 and 4C of the Monte Carlo radiation transport code were used to calculate the dosimetry parameters around the source. The Monte Carlo calculated dose-rate constant of the (125)I source in water was found to be 92×10(-4) Gy h(-1) U(-1) with an approximate uncertainty of ±3 %. Brachytherapy seed model, 6711-(125)I, carrying (125)I radionuclides, was modelled and benchmarked against previously published values. Finally, the calculated results were compared with the published results of those of other source manufacturers.

  1. Study of two different radioactive sources for prostate brachytherapy treatment

    SciTech Connect

    Pereira Neves, Lucio; Perini, Ana Paula; Souza Santos, William de; Caldas, Linda V.E.

    2015-07-01

    In this study we evaluated two radioactive sources for brachytherapy treatments. Our main goal was to quantify the absorbed doses on organs and tissues of an adult male patient, submitted to a brachytherapy treatment with two radioactive sources. We evaluated a {sup 192}Ir and a {sup 125}I radioactive sources. The {sup 192}Ir radioactive source is a cylinder with 0.09 cm in diameter and 0.415 cm long. The {sup 125}I radioactive source is also a cylinder, with 0.08 cm in diameter and 0.45 cm long. To evaluate the absorbed dose distribution on the prostate, and other organs and tissues of an adult man, a male virtual anthropomorphic phantom MASH, coupled in the radiation transport code MCNPX 2.7.0, was employed.We simulated 75, 90 and 102 radioactive sources of {sup 125}I and one of {sup 192}Ir, inside the prostate, as normally used in these treatments, and each treatment was simulated separately. As this phantom was developed in a supine position, the displacement of the internal organs of the chest, compression of the lungs and reduction of the sagittal diameter were all taken into account. For the {sup 192}Ir, the higher doses values were obtained for the prostate and surrounding organs, as the colon, gonads and bladder. Considering the {sup 125}I sources, with photons with lower energies, the doses to organs that are far from the prostate were lower. All values for the dose rates are in agreement with those recommended for brachytherapy treatments. Besides that, the new seeds evaluated in this work present usefulness as a new tool in prostate brachytherapy treatments, and the methodology employed in this work may be applied for other radiation sources, or treatments. (authors)

  2. Cable attachment for a radioactive brachytherapy source capsule

    DOEpatents

    Gross, Ian G; Pierce, Larry A

    2006-07-18

    In cancer brachytherapy treatment, a small californium-252 neutron source capsule is attached to a guide cable using a modified crimping technique. The guide cable has a solid cylindrical end, and the attachment employs circumferential grooves micromachined in the solid cable end. The attachment was designed and tested, and hardware fabricated for use inside a radioactive hot cell. A welding step typically required in other cable attachments is avoided.

  3. Californium versus cobalt brachytherapy combined with external-beam radiotherapy for IIB stage cervical cancer: long-term experience of a single institute

    PubMed Central

    Janulionis, Ernestas; Valuckas, Konstantinas Povilas; Samerdokiene, Vitalija; Atkocius, Vydmantas

    2015-01-01

    Purpose The purpose of this paper was to observe and compare long-term curative effects and complications of FIGO stage IIB cervical cancer patients (n = 232) treated with high-dose-rate (HDR) californium (252Cf) neutron or cobalt (60Co) photon intracavitary brachytherapy (ICBT) combined with external-beam radiotherapy (EBRT). Material and methods The EBRT dose to the small pelvis was 50 Gy in both groups. The brachytherapy component of 252Cf or 60Co was added in the 3rd week of EBRT, 5 fractions were performed once per week resulting in a total ICBT dose of 40 Gy/Gyeq (point A). Results Overall survival (OS) at 5, 10 and 15 years was 63.6%, 50.4% and 38.8% in the 252Cf group and 62.2%, 50.5%, 39.9%, in the 60Co group, respectively (p = 0.74). The percentage of tumour recurrence was statistically significantly lower in the 252Cf group with 7.4% versus 17.1% in the 60Co group (p = 0.02). Second primary cancers have developed similarly 9.1% and 8.1% cases for 252Cf and 60Co groups, respectively. Conclusions Our long-term retrospective study comparing 252Cf and 60Co isotopes with brachytherapy in combined treatment of FIGO IIB stage cervix carcinoma patients shows, that overall survival in the both groups are similar. However, the recurrence of tumour was significantly lower in the 252Cf group. The incidence of second primary cancers was similar in both groups. PMID:26622239

  4. 10 CFR 35.67 - Requirements for possession of sealed sources and brachytherapy sources.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Requirements for possession of sealed sources and brachytherapy sources. 35.67 Section 35.67 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT... possession of a sealed source shall— (1) Test the source for leakage before its first use unless the...

  5. 10 CFR 35.67 - Requirements for possession of sealed sources and brachytherapy sources.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Requirements for possession of sealed sources and brachytherapy sources. 35.67 Section 35.67 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT... possession of a sealed source shall— (1) Test the source for leakage before its first use unless the...

  6. 10 CFR 35.67 - Requirements for possession of sealed sources and brachytherapy sources.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Requirements for possession of sealed sources and brachytherapy sources. 35.67 Section 35.67 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT... possession of a sealed source shall— (1) Test the source for leakage before its first use unless the...

  7. 10 CFR 35.67 - Requirements for possession of sealed sources and brachytherapy sources.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Requirements for possession of sealed sources and brachytherapy sources. 35.67 Section 35.67 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT... possession of a sealed source shall— (1) Test the source for leakage before its first use unless the...

  8. 10 CFR 35.67 - Requirements for possession of sealed sources and brachytherapy sources.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Requirements for possession of sealed sources and brachytherapy sources. 35.67 Section 35.67 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT... possession of a sealed source shall— (1) Test the source for leakage before its first use unless the...

  9. Benchmark Experiments of Thermal Neutron and Capture Gamma-Ray Distributions in Concrete Using {sup 252}Cf

    SciTech Connect

    Asano, Yoshihiro; Sugita, Takeshi; Hirose, Hideyuki; Suzaki, Takenori

    2005-10-15

    The distributions of thermal neutrons and capture gamma rays in ordinary concrete were investigated by using {sup 252}Cf. Two subjects are considered. One is the benchmark experiments for the thermal neutron and the capture gamma-ray distributions in ordinary concrete. The thermal neutron and the capture gamma-ray distributions were measured by using gold-foil activation detectors and thermoluminescence detectors. These were compared with the simulations by using the discrete ordinates code ANISN with two different group structure types of cross-section library of a new Japanese version, JENDL-3.3, showing reasonable agreement with both fine and rough structure groups of thermal neutron energy. The other is a comparison of the simulations with two different cross-section libraries, JENDL-3.3 and ENDF/B-VI, for the deep penetration of neutrons in the concrete, showing close agreement in 0- to 100-cm-thick concrete. However, the differences in flux grow with an increase in concrete thickness, reaching up to approximately eight times near 4-m thickness.

  10. 10 CFR 35.400 - Use of sources for manual brachytherapy.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... therapeutic medical uses: (a) As approved in the Sealed Source and Device Registry; or (b) In research in... 10 Energy 1 2012-01-01 2012-01-01 false Use of sources for manual brachytherapy. 35.400 Section 35.400 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Manual Brachytherapy §...

  11. 10 CFR 35.2067 - Records of leaks tests and inventory of sealed sources and brachytherapy sources.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Records of leaks tests and inventory of sealed sources and brachytherapy sources. 35.2067 Section 35.2067 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Records § 35.2067 Records of leaks tests and inventory of sealed sources and brachytherapy...

  12. 10 CFR 35.2067 - Records of leaks tests and inventory of sealed sources and brachytherapy sources.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Records of leaks tests and inventory of sealed sources and brachytherapy sources. 35.2067 Section 35.2067 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Records § 35.2067 Records of leaks tests and inventory of sealed sources and brachytherapy...

  13. Dosimetric Study of a Low-Dose-Rate Brachytherapy Source

    NASA Astrophysics Data System (ADS)

    Rodríguez-Villafuerte, M.; Arzamendi, S.; Díaz-Perches, R.

    Carcinoma of the cervix is the most common malignancy - in terms of both incidence and mortality - in Mexican women. Low dose rate (LDR) intracavitary brachytherapy is normally prescribed for the treatment of this disease to the vast majority of patients attending public hospitals in our country. However, most treatment planning systems being used in these hospitals still rely on Sievert integral dose calculations. Moreover, experimental verification of dose distributions are hardly ever done. In this work we present a dosimetric characterisation of the Amersham CDCS-J 137Cs source, an LDR brachytherapy source commonly used in Mexican hospitals. To this end a Monte Carlo simulation was developed, that includes a realistic description of the internal structure of the source embedded in a scattering medium. The Monte Carlo results were compared to experimental measurements of dose distributions. A lucite phantom with the same geometric characteristics as the one used in the simulation was built. Dose measurements were performed using thermoluminescent dosimeters together with commercial RadioChromic dye film. A comparison between our Monte Carlo simulation, the experimental data, and results reported in the literature is presented.

  14. Thermoluminescence dosimetry measurements of brachytherapy sources in liquid water

    SciTech Connect

    Tailor, Ramesh; Tolani, Naresh; Ibbott, Geoffrey S.

    2008-09-15

    Radiation therapy dose measurements are customarily performed in liquid water. The characterization of brachytherapy sources is, however, generally based on measurements made with thermoluminescence dosimeters (TLDs), for which contact with water may lead to erroneous readings. Consequently, most dosimetry parameters reported in the literature have been based on measurements in water-equivalent plastics, such as Solid Water. These previous reports employed a correction factor to transfer the dose measurements from a plastic phantom to liquid water. The correction factor most often was based on Monte Carlo calculations. The process of measuring in a water-equivalent plastic phantom whose exact composition may be different from published specifications, then correcting the results to a water medium leads to increased uncertainty in the results. A system has been designed to enable measurements with TLDs in liquid water. This system, which includes jigs to support water-tight capsules of lithium fluoride in configurations suitable for measuring several dosimetric parameters, was used to determine the correction factor from water-equivalent plastic to water. Measurements of several {sup 125}I and {sup 131}Cs prostate brachytherapy sources in liquid water and in a Solid Water phantom demonstrated a correction factor of 1.039{+-}0.005 at 1 cm distance. These measurements are in good agreement with a published value of this correction factor for an {sup 125}I source.

  15. High dose rate brachytherapy source measurement intercomparison.

    PubMed

    Poder, Joel; Smith, Ryan L; Shelton, Nikki; Whitaker, May; Butler, Duncan; Haworth, Annette

    2017-03-24

    This work presents a comparison of air kerma rate (AKR) measurements performed by multiple radiotherapy centres for a single HDR (192)Ir source. Two separate groups (consisting of 15 centres) performed AKR measurements at one of two host centres in Australia. Each group travelled to one of the host centres and measured the AKR of a single (192)Ir source using their own equipment and local protocols. Results were compared to the (192)Ir source calibration certificate provided by the manufacturer by means of a ratio of measured to certified AKR. The comparisons showed remarkably consistent results with the maximum deviation in measurement from the decay-corrected source certificate value being 1.1%. The maximum percentage difference between any two measurements was less than 2%. The comparisons demonstrated the consistency of well-chambers used for (192)Ir AKR measurements in Australia, despite the lack of a local calibration service, and served as a valuable focal point for the exchange of ideas and dosimetry methods.

  16. Monte Carlo dosimetry of a new 90Y brachytherapy source

    PubMed Central

    Junxiang, Wu; Shihu, You; Jing, Huang; Fengxiang, Long; Chengkai, Wang; Zhangwen, Wu; Qing, Hou

    2015-01-01

    Purpose In this study, we attempted to obtain full dosimetric data for a new 90Y brachytherapy source developed by the College of Chemistry (Sichuan University) for use in high-dose-rate after-loading systems. Material and methods The dosimetric data for this new source were used as required by the dose calculation formalisms proposed by the AAPM Task Group 60 and Task Group 149. The active core length of the new 90Y source was increased to 4.7 mm compared to the value of 2.5 mm for the old 90Sr/90Y source. The Monte Carlo simulation toolkit Geant4 was used to calculate these parameters. The source was located in a 30-cm-radius theoretical sphere water phantom. Results The dosimetric data included the reference absorbed dose rate, the radial dose function in the range of 1.0 to 8.0 mm in the longitudinal axis, and the anisotropy function with a θ in the range of 0° to 90° at 5° intervals and an r in the range of 1.0 to 8.0 mm in 0.2-mm intervals. The reference absorbed dose rate for the new 90Y source was determined to be equal to 1.6608 ± 0.0008 cGy s–1 mCi–1, compared to the values of 0.9063 ± 0.0005 cGy s–1 mCi–1 that were calculated for the old 90Sr/90Y source. A polynomial function was also obtained for the radial dose function by curve fitting. Conclusions Dosimetric data are provided for the new 90Y brachytherapy source. These data are meant to be used commercially in after-loading system. PMID:26622247

  17. Brachytherapy dosimetry parameters calculated for a 131Cs source.

    PubMed

    Rivard, Mark J

    2007-02-01

    A comprehensive analysis of the IsoRay Medical model CS-1 Rev2 131Cs brachytherapy source was performed. Dose distributions were simulated using Monte Carlo methods (MCNP5) in liquid water, Solid Water, and Virtual Water spherical phantoms. From these results, the in-water brachytherapy dosimetry parameters have been determined, and were compared with those of Murphy et al. [Med. Phys. 31, 1529-1538 (2004)] using measurements and simulations. Our results suggest that calculations obtained using erroneous cross-section libraries should be discarded as recommended by the 2004 AAPM TG-43U1 report. Our Mclambda value of 1.046+/-0.019 cGy h(-1) U(-1) is within 1.3% of that measured by Chen et al. [Med. Phys. 32, 3279-3285 (2005)] using TLDs and the calculated results of Wittman and Fisher [Med. Phys. 34, 49-54 (2007)] using MCNP5. Using the discretized energy approach of Rivard [Appl. Radiat. Isot. 55, 775-782 (2001)] to ascertain the impact of individual 131Cs photons on radial dose function and anisotropy functions, there was virtual equivalence of results for 29.461< or =Egamma< or = 34.419 keV and for a mono-energetic 30.384 keV photon source. Comparisons of radial dose function and 2D anisotropy function data are also included, and an analysis of material composition and cross-section libraries was performed.

  18. Evaluation of 101Rh as a brachytherapy source

    PubMed Central

    Ghorbani, Mahdi; Meigooni, Ali Soleimani

    2015-01-01

    Purpose Recently a number of hypothetical sources have been proposed and evaluated for use in brachytherapy. In the present study, a hypothetical 101Rh source with mean photon energy of 121.5 keV and half-life of 3.3 years, has been evaluated as an alternative to the existing high-dose-rate (HDR) sources. Dosimetric characteristics of this source model have been determined following the recommendation of the Task Group 43 (TG-43) of the American Association of the Physicist in Medicine (AAPM), and the results are compared with the published data for 57Co source and Flexisource 192Ir sources with similar geometries. Material and methods MCNPX Monte Carlo code was used for simulation of the 101Rh hypothetical HDR source design. Geometric design of this hypothetical source was considered to be similar to that of Flexisource 192Ir source. Task group No. 43 dosimetric parameters, including air kerma strength per mCi, dose rate constant, radial dose function, and two dimensional (2D) anisotropy functions were calculated for the 101Rh source through simulations. Results Air kerma strength per activity and dose rate constant for the hypothetical 101Rh source were 1.09 ± 0.01 U/mCi and 1.18 ± 0.08 cGy/(h.U), respectively. At distances beyond 1.0 cm in phantom, radial dose function for the hypothetical 101Rh source is higher than that of 192Ir. It has also similar 2D anisotropy functions to the Flexisource 192Ir source. Conclusions 101Rh is proposed as an alternative to the existing HDR sources for use in brachytherapy. This source provides medium energy photons, relatively long half-life, higher dose rate constant and radial dose function, and similar 2D anisotropy function to the Flexisource 192Ir HDR source design. The longer half-life of the source reduces the frequency of the source exchange for the clinical environment. PMID:26034499

  19. Feasibility of calibrating elongated brachytherapy sources using a well-type ionization chamber

    SciTech Connect

    Meigooni, Ali S.; Awan, Shahid B.; Dou, Kai

    2006-11-15

    Recently, elongated brachytherapy sources (active length >1 cm) have become commercially available for interstitial prostate implants. These sources were introduced to improve the quality of brachytherapy procedures by eliminating the migration and seed bunching associated with loose seed-type implants. However, the inability to calibrate elongated brachytherapy sources with the Wide-Angle Free-Air Chamber (WAFAC) used by the National Institute of Standards and Technology (NIST) hinders the experimental determination of dosimetric parameters of these source types. In order to resolve this shortcoming, an interim solution has been introduced for calibration of elongated brachytherapy sources using a commercially available well-type ionization chamber. The feasibility of this procedure was examined by calibrating RadioCoil{sup Tm} {sup 103}Pd sources with active lengths ranging from 1 to 7 cm.

  20. On the Development of a Miniature Neutron Generator for the Brachytherapy Treatment of Cancer

    SciTech Connect

    Forman, L.

    2009-03-10

    Brachytherapy refers to application of an irradiation source within a tumor. {sup 252}Cf needles used in brachytherapy have been successfully applied to treatment of some of the most virulent cancers but it is doubtful that it will be widely used because of difficulty in dealing with unwanted dose (source cannot be turned off) and in adhering to stringent NRC regulations that have been exacerbated in our post 911 environment. We have been working on the development of a miniature neutron generator with the reaction target placed at the end of a needle (tube) for brachytherapy applications. Orifice geometries are most amenable, e.g. rectum and cervix, but interstitial use is possible with microsurgery. This paper dicusses the results of a 30 watt DD neutron generator SBU project that demonstrates that sufficient hydrogen isotope current can be delivered down a small diameter needle required for a DT neutron treatment device, and, will summarize the progress of building a commercial device pursued by the All Russian Institute for Automatics (VNIIA) supported by the DOE's Industrial Proliferation Prevention Program (IPP). It is known that most of the fast neutron (FN) beam cancer treatment facilities have been closed down. It appears that the major limitation in the use of FN beams has been damage to healthy tissue, which is relatively insensitive to photons, but this problem is alleviated by brachytherapy. Moreover, recent clinical results indicate that fast neutrons in the boost mode are most highly effective in treating large, hypoxic, and rapidly repopulating diseases. It appears that early boost application of FN may halt angiogenesis (development and repair of tumor vascular system) and shrink the tumor resulting in lower hypoxia. The boost brachytherapy application of a small, low cost neutron generator holds promise of significant contribution to the treatment of cancer.

  1. A comparison study on various low energy sources in interstitial prostate brachytherapy

    PubMed Central

    Bakhshabadi, Mahdi; Ghorbani, Mahdi; Knaup, Courtney; Meigooni, Ali S.

    2016-01-01

    Purpose Low energy sources are routinely used in prostate brachytherapy. 125I is one of the most commonly used sources. Low energy 131Cs source was introduced recently as a brachytherapy source. The aim of this study is to compare dose distributions of 125I, 103Pd, and 131Cs sources in interstitial brachytherapy of prostate. Material and methods ProstaSeed 125I brachytherapy source was simulated using MCNPX Monte Carlo code. Additionally, two hypothetical sources of 103Pd and 131Cs were simulated with the same geometry as the ProstaSeed 125I source, while having their specific emitted gamma spectra. These brachytherapy sources were simulated with distribution of forty-eight seeds in a phantom including prostate. The prostate was considered as a sphere with radius of 1.5 cm. Absolute and relative dose rates were obtained in various distances from the source along the transverse and longitudinal axes inside and outside the tumor. Furthermore, isodose curves were plotted around the sources. Results Analyzing the initial dose profiles for various sources indicated that with the same time duration and air kerma strength, 131Cs delivers higher dose to tumor. However, relative dose rate inside the tumor is higher and outside the tumor is lower for the 103Pd source. Conclusions The higher initial absolute dose in cGy/(h.U) of 131Cs brachytherapy source is an advantage of this source over the others. The higher relative dose inside the tumor and lower relative dose outside the tumor for the 103Pd source are advantages of this later brachytherapy source. Based on the total dose the 125I source has advantage over the others due to its longer half-life. PMID:26985200

  2. Dosimetry of the 198Au Source used in Interstitial Brachytherapy

    SciTech Connect

    Dauffy, L; Braby, L; Berner, B

    2004-05-18

    The American Association of Physicists in Medicine Task Group 43 report, AAPM TG-43, provides an analytical model and a dosimetry protocol for brachytherapy dose calculations, as well as documentation and results for some sealed sources. The radionuclide {sup 198}Au (T{sub 1/2} = 2.70 days, E{gamma} = 412 keV) has been used in the form of seeds for brachytherapy treatments including brain, eye, and prostate tumors. However, the TG-43 report has no data for {sup 198}Au seeds, and none have previously been obtained. For that reason, and because of the conversion of most treatment planning systems to TG-43 based methods, both Monte Carlo calculations (MCNP 4C) and thermoluminescent dosimeters (TLDs) are used in this work to determine these data. The geometric variation in dose is measured using an array of TLDs in a solid water phantom, and the seed activity is determined using both a well ion chamber and a High Purity Germanium detector (HPGe). The results for air kerma strength, S{sub k}, per unit apparent activity, are 2.06 (MCNP) and 2.09 (measured) U mCi{sup -1}. The former is identical to what was published in 1991 in the AAPM Task Group 32 report. The dose rate constant results, {Lambda}, are 1.12 (MCNP) and 1.10 (measured), cGy h{sup -1} U{sup -1}. The radial dose function, g(r), anisotropy function, F(r,{theta}), and anisotropy factor, {psi}{sub an}(r), are given. The anisotropy constant values are 0.973 (MCNP) and 0.994 (measured) and are consistent with both source geometry and the emitted photon energy.

  3. Microarray analysis of DNA damage repair gene expression profiles in cervical cancer cells radioresistant to 252Cf neutron and X-rays

    PubMed Central

    2010-01-01

    Background The aim of the study was to obtain stable radioresistant sub-lines from the human cervical cancer cell line HeLa by prolonged exposure to 252Cf neutron and X-rays. Radioresistance mechanisms were investigated in the resulting cells using microarray analysis of DNA damage repair genes. Methods HeLa cells were treated with fractionated 252Cf neutron and X-rays, with a cumulative dose of 75 Gy each, over 8 months, yielding the sub-lines HeLaNR and HeLaXR. Radioresistant characteristics were detected by clone formation assay, ultrastructural observations, cell doubling time, cell cycle distribution, and apoptosis assay. Gene expression patterns of the radioresistant sub-lines were studied through microarray analysis and verified by Western blotting and real-time PCR. Results The radioresistant sub-lines HeLaNR and HeLaXR were more radioresisitant to 252Cf neutron and X-rays than parental HeLa cells by detecting their radioresistant characteristics, respectively. Compared to HeLa cells, the expression of 24 genes was significantly altered by at least 2-fold in HeLaNR cells. Of these, 19 genes were up-regulated and 5 down-regulated. In HeLaXR cells, 41 genes were significantly altered by at least 2-fold; 38 genes were up-regulated and 3 down-regulated. Conclusions Chronic exposure of cells to ionizing radiation induces adaptive responses that enhance tolerance of ionizing radiation and allow investigations of cellular radioresistance mechanisms. The insights gained into the molecular mechanisms activated by these "radioresistance" genes will lead to new therapeutic targets for cervical cancer. PMID:20184742

  4. Monte Carlo Hauser-Feshbach predictions of prompt fission γ rays: Application to nth+235U, nth+239Pu, and 252Cf (sf)

    NASA Astrophysics Data System (ADS)

    Becker, B.; Talou, P.; Kawano, T.; Danon, Y.; Stetcu, I.

    2013-01-01

    The prompt neutron and γ emission from primary fission fragments are calculated for thermal neutron induced fission of 235U and 239Pu and for spontaneous fission of 252Cf using a Monte Carlo Hauser-Feshbach approach for the evaporation of the excited fission fragments. Remaining free model parameters, such as excitation energy sharing and initial spin distribution, are determined by comparison of the neutron emission characteristics with experimental data. Using the obtained parameters the γ-ray characteristics, e.g., γ spectrum, multiplicity distribution, average multiplicity and energy, and multiplicity distribution, are calculated and compared with available experimental data.

  5. True ternary fission, the collinear decay into fragments of similar size in the 252Cf(sf) and 235U(nth, f) reactions

    NASA Astrophysics Data System (ADS)

    von Oertzen, W.; Nasirov, A. K.

    2014-06-01

    The collinear cluster decay in 252Cf(sf, fff), with three cluster fragments of different masses (e.g. 132Sn, 52-48Ca, 68-72Ni), which has been observed by the FOBOS group in JINR, has established a new decay mode of heavy nuclei, the collinear cluster tripartition (CCT). The same type of ternary fission decay has been observed in the reaction 235U(nth, fff). This kind of “true ternary fission” of heavy nuclei has been predicted many times in theoretical works during the last decades. In the present note we discuss true ternary fission (TFFF) into three nuclei of almost equal size (e.g. Z=98→Zi=32, 34, 32) in the same systems. The possible fission channels are predicted from potential-energy (PES) calculations. These PES's show pronounced minima for several ternary fragmentation decays, e.g. for 252Cf(sf) and for 235U(nth, f). They suggest the existence of a variety of collinear ternary fission modes. The TFFF-decays chosen in this letter have very similar dynamical features as the previously observed collinear CCT-decays. The data obtained in the above mentioned experiments allow us to extract the yield for these TFFF-decays in both systems by using specific gates on the measured parameters. These yields are a few 1.0ṡ10-6/(binary fission).

  6. QUALIFICATION OF THE SAVANNAH RIVER SITE 252CF SHUFFLER FOR RECEIPT VERIFICATION MEASUREMENTS OF MIXED U-PU OXIDES STORED IN 9975 SHIPPING CONTAINERS

    SciTech Connect

    Dubose, F.

    2011-05-26

    To extend their ability to perform accountability and verification measurements of {sup 235}U in a U-Pu oxide matrix, the K-Area Material Storage facility commissioned the development and construction of a Passive/Active {sup 252}Cf Shuffler. A series of {sup 252}Cf, PuO{sub 2}, and U-Pu oxide standards, in addition to a single U{sub 3}O{sub 8} standard, were measured to characterize and calibrate the shuffler. Accompanying these measurements were simulations using MCNP5/MCNPX, aimed at isolating the neutron countrate contributions for each of the isotopes present. Two calibration methods for determining the {sup 235}U content in mixed UPu oxide were then developed, yielding comparable results. The first determines the {sup 235}U mass by estimating the {sup 239}Pu/{sup 235}U ratio-dependent contributions from the primary delayed neutron contributors. The second defines an average linear response based on the {sup 235}U and {sup 239}Pu mass contents. In each case, it was observed that self-shielding due to {sup 235}U mass has a large influence on the observed rates, requiring bounds on the applicable limits of each calibration method.

  7. Modeling a Hypothetical {sup 170}Tm Source for Brachytherapy Applications

    SciTech Connect

    Enger, Shirin A.; D'Amours, Michel; Beaulieu, Luc

    2011-10-15

    Purpose: To perform absorbed dose calculations based on Monte Carlo simulations for a hypothetical {sup 170}Tm source and to investigate the influence of encapsulating material on the energy spectrum of the emitted electrons and photons. Methods: GEANT4 Monte Carlo code version 9.2 patch 2 was used to simulate the decay process of {sup 170}Tm and to calculate the absorbed dose distribution using the GEANT4 Penelope physics models. A hypothetical {sup 170}Tm source based on the Flexisource brachytherapy design with the active core set as a pure thulium cylinder (length 3.5 mm and diameter 0.6 mm) and different cylindrical source encapsulations (length 5 mm and thickness 0.125 mm) constructed of titanium, stainless-steel, gold, or platinum were simulated. The radial dose function for the line source approximation was calculated following the TG-43U1 formalism for the stainless-steel encapsulation. Results: For the titanium and stainless-steel encapsulation, 94% of the total bremsstrahlung is produced inside the core, 4.8 and 5.5% in titanium and stainless-steel capsules, respectively, and less than 1% in water. For the gold capsule, 85% is produced inside the core, 14.2% inside the gold capsule, and a negligible amount (<1%) in water. Platinum encapsulation resulted in bremsstrahlung effects similar to those with the gold encapsulation. The range of the beta particles decreases by 1.1 mm with the stainless-steel encapsulation compared to the bare source but the tissue will still receive dose from the beta particles several millimeters from the source capsule. The gold and platinum capsules not only absorb most of the electrons but also attenuate low energy photons. The mean energy of the photons escaping the core and the stainless-steel capsule is 113 keV while for the gold and platinum the mean energy is 160 keV and 165 keV, respectively. Conclusions: A {sup 170}Tm source is primarily a bremsstrahlung source, with the majority of bremsstrahlung photons being

  8. Tissue composition effect on dose distribution in neutron brachytherapy/neutron capture therapy

    PubMed Central

    Khosroabadi, Mohsen; Farhood, Bagher; Ghorbani, Mahdi; Hamzian, Nima; Moghaddam, Homa Rezaei; Davenport, David

    2016-01-01

    Aim The aim of this study is to assess the effect of the compositions of various soft tissues and tissue-equivalent materials on dose distribution in neutron brachytherapy/neutron capture therapy. Background Neutron brachytherapy and neutron capture therapy are two common radiotherapy modalities. Materials and methods Dose distributions were calculated around a low dose rate 252Cf source located in a spherical phantom with radius of 20.0 cm using the MCNPX code for seven soft tissues and three tissue-equivalent materials. Relative total dose rate, relative neutron dose rate, total dose rate, and neutron dose rate were calculated for each material. These values were determined at various radial distances ranging from 0.3 to 15.0 cm from the source. Results Among the soft tissues and tissue-equivalent materials studied, adipose tissue and plexiglass demonstrated the greatest differences for total dose rate compared to 9-component soft tissue. The difference in dose rate with respect to 9-component soft tissue varied with compositions of the materials and the radial distance from the source. Furthermore, the total dose rate in water was different from that in 9-component soft tissue. Conclusion Taking the same composition for various soft tissues and tissue-equivalent media can lead to error in treatment planning in neutron brachytherapy/neutron capture therapy. Since the International Commission on Radiation Units and Measurements (ICRU) recommends that the total dosimetric uncertainty in dose delivery in radiotherapy should be within ±5%, the compositions of various soft tissues and tissue-equivalent materials should be considered in dose calculation and treatment planning in neutron brachytherapy/neutron capture therapy. PMID:26900352

  9. The Response of an Albedo Neutron Dosimeter to Moderated AmBe and 252(Cf) Neutron Sources.

    DTIC Science & Technology

    2014-09-26

    thermoluminescence detectors (TLD) are situated on each side of a cad- mium disc as illustrated in Fig. 1 (a). Since the Navy uses detectors held in dental...exposure, or loss or gain of stored thermoluminescence signal after exposure, were necessary. RESULTS AND DISCUSSION ii The results of the experiments to...Falk, "A Personnel Neutron Dosimeter Using Lithium Fluoride Thermoluminescent Dosim- eters," Report No. RFP-1581, Dow Chemical Co., Golden CO (1971

  10. Absolute calorimetric calibration of low energy brachytherapy sources

    NASA Astrophysics Data System (ADS)

    Stump, Kurt E.

    In the past decade there has been a dramatic increase in the use of permanent radioactive source implants in the treatment of prostate cancer. A small radioactive source encapsulated in a titanium shell is used in this type of treatment. The radioisotopes used are generally 125I or 103Pd. Both of these isotopes have relatively short half-lives, 59.4 days and 16.99 days, respectively, and have low-energy emissions and a low dose rate. These factors make these sources well suited for this application, but the calibration of these sources poses significant metrological challenges. The current standard calibration technique involves the measurement of ionization in air to determine the source air-kerma strength. While this has proved to be an improvement over previous techniques, the method has been shown to be metrologically impure and may not be the ideal means of calbrating these sources. Calorimetric methods have long been viewed to be the most fundamental means of determining source strength for a radiation source. This is because calorimetry provides a direct measurement of source energy. However, due to the low energy and low power of the sources described above, current calorimetric methods are inadequate. This thesis presents work oriented toward developing novel methods to provide direct and absolute measurements of source power for low-energy low dose rate brachytherapy sources. The method is the first use of an actively temperature-controlled radiation absorber using the electrical substitution method to determine total contained source power of these sources. The instrument described operates at cryogenic temperatures. The method employed provides a direct measurement of source power. The work presented here is focused upon building a metrological foundation upon which to establish power-based calibrations of clinical-strength sources. To that end instrument performance has been assessed for these source strengths. The intent is to establish the limits of

  11. Simulation of dose distribution for iridium-192 brachytherapy source type-H01 using MCNPX

    SciTech Connect

    Purwaningsih, Anik

    2014-09-30

    Dosimetric data for a brachytherapy source should be known before it used for clinical treatment. Iridium-192 source type H01 was manufactured by PRR-BATAN aimed to brachytherapy is not yet known its dosimetric data. Radial dose function and anisotropic dose distribution are some primary keys in brachytherapy source. Dose distribution for Iridium-192 source type H01 was obtained from the dose calculation formalism recommended in the AAPM TG-43U1 report using MCNPX 2.6.0 Monte Carlo simulation code. To know the effect of cavity on Iridium-192 type H01 caused by manufacturing process, also calculated on Iridium-192 type H01 if without cavity. The result of calculation of radial dose function and anisotropic dose distribution for Iridium-192 source type H01 were compared with another model of Iridium-192 source.

  12. Simulation of dose distribution for iridium-192 brachytherapy source type-H01 using MCNPX

    NASA Astrophysics Data System (ADS)

    Purwaningsih, Anik

    2014-09-01

    Dosimetric data for a brachytherapy source should be known before it used for clinical treatment. Iridium-192 source type H01 was manufactured by PRR-BATAN aimed to brachytherapy is not yet known its dosimetric data. Radial dose function and anisotropic dose distribution are some primary keys in brachytherapy source. Dose distribution for Iridium-192 source type H01 was obtained from the dose calculation formalism recommended in the AAPM TG-43U1 report using MCNPX 2.6.0 Monte Carlo simulation code. To know the effect of cavity on Iridium-192 type H01 caused by manufacturing process, also calculated on Iridium-192 type H01 if without cavity. The result of calculation of radial dose function and anisotropic dose distribution for Iridium-192 source type H01 were compared with another model of Iridium-192 source.

  13. 10 CFR 35.2067 - Records of leaks tests and inventory of sealed sources and brachytherapy sources.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... must include the model number, and serial number if one has been assigned, of each source tested; the... of the semi-annual physical inventory of sealed sources and brachytherapy sources required by § 35.67(g) for 3 years. The inventory records must contain the model number of each source, and...

  14. Comparison of the hypothetical 57Co brachytherapy source with the 192Ir source

    PubMed Central

    Toossi, Mohammad Taghi Bahreyni; Rostami, Atefeh; Khosroabadi, Mohsen; Khademi, Sara; Knaup, Courtney

    2016-01-01

    Aim of the study The 57Co radioisotope has recently been proposed as a hypothetical brachytherapy source due to its high specific activity, appropriate half-life (272 days) and medium energy photons (114.17 keV on average). In this study, Task Group No. 43 dosimetric parameters were calculated and reported for a hypothetical 57Co source. Material and methods A hypothetical 57Co source was simulated in MCNPX, consisting of an active cylinder with 3.5 mm length and 0.6 mm radius encapsulated in a stainless steel capsule. Three photon energies were utilized (136 keV [10.68%], 122 keV [85.60%], 14 keV [9.16%]) for the 57Co source. Air kerma strength, dose rate constant, radial dose function, anisotropy function, and isodose curves for the source were calculated and compared to the corresponding data for a 192Ir source. Results The results are presented as tables and figures. Air kerma strength per 1 mCi activity for the 57Co source was 0.46 cGyh–1 cm 2 mCi–1. The dose rate constant for the 57Co source was determined to be 1.215 cGyh–1U–1. The radial dose function for the 57Co source has an increasing trend due to multiple scattering of low energy photons. The anisotropy function for the 57Co source at various distances from the source is more isotropic than the 192Ir source. Conclusions The 57Co source has advantages over 192Ir due to its lower energy photons, longer half-life, higher dose rate constant and more isotropic anisotropic function. However, the 192Ir source has a higher initial air kerma strength and more uniform radial dose function. These properties make 57Co a suitable source for use in brachytherapy applications. PMID:27688731

  15. 10 CFR 35.2432 - Records of calibration measurements of brachytherapy sources.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Records of calibration measurements of brachytherapy sources. 35.2432 Section 35.2432 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL... manufacturer's name, model number, and serial number for the source and the instruments used to calibrate...

  16. 10 CFR 35.2432 - Records of calibration measurements of brachytherapy sources.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Records of calibration measurements of brachytherapy sources. 35.2432 Section 35.2432 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL... last use of the source. (b) The record must include— (1) The date of the calibration; (2)...

  17. Comparative toxicity of /sup 226/Ra, /sup 239/Pu, /sup 241/Am, /sup 249/Cf, and /sup 252/Cf in C57BL/Do black and albino mice

    SciTech Connect

    Taylor, G.N.; Mays, C.W.; Lloyd, R.D.; Gardner, P.A.; Talbot, L.R.; McFarland, S.S.; Pollard, I.A.; Atherton, D.R.; VanMoorhem, D.; Brammer, D.

    1983-09-01

    Groups of C57BL/Do (black and albino) mice were injected with graded activities of /sup 226/Ra, /sup 239/Pu, /sup 241/Am, /sup 249/Cf, or /sup 252/Cf and were followed throughout life. Bone sarcoma was the principal radiation-induced end point, and the risks associated with average skeletal doses of the four transuranium radionuclides, relative to radium, were determined. The relative biological effectiveness (RBE) was calculated for each emitter by dividing its risk coefficient (bone sarcomas per 10(/sup 6/) mouse-rad) by the risk coefficient for /sup 226/Ra. Combined data for males and females in both black and albino mice gave the following values +/- SD for the RBE relative to /sup 226/Ra . 1.0: /sup 239/Pu . 15.3 +/- 3.9, /sup 241/Am . 4.9 +/- 1.4, /sup 249/Cf . 5.0 +/- 1.4, and /sup 252/Cf . 2.6 +/- 0.8. About 70% of the tumors occurred in the axial skeleton, and the risk coefficient for females averaged about four times higher than for males when all five nuclides were included. The RBE of fission fragment irradiation from /sup 252/Cf for cancer induction, relative to alpha irradiation, for the combined data in all of the animals given /sup 252/Cf and /sup 249/Cf, was 0.02 +/- 0.28, in agreement with the calculated theoretical value of 0.03, based on the ratio of summed track lengths in tissue.

  18. Comparative toxicity of /sup 226/Ra, /sup 239/Pu, /sup 241/Am, /sup 249/Cf, and /sup 252/Cf in C57BL/Do black and albino mice

    SciTech Connect

    Taylor, G.N.; Mays, C.W.; Lloyd, R.D.; Gardner, P.A.; TAlbot, L.R.; McFarland, S.S.; Pollard, T.A.; Atherton, D.R.; vanMoorhem, D.; Brammer, D.

    1983-09-01

    Groups of C57BL/Do (black and albino) mice were injected with graded activities of /sup 226/Ra, /sup 239/Pu, /sup 241/Am, /sup 249/Cf, or /sup 252/Cf and were followed throughout life. Bone sarcoma was the principal radiation-induced end point, and the risks associated with average skeletal doses of the four transuranium radionuclides, relative to radium, were determined. The relative biological effectiveness (RBE) was calculated for each emitter by dividing its risk coefficient (bone sarcomas per 10/sup 6/ mouse-rad) by the risk coefficient for /sup 226/Ra. Combined data for males and females in both black and albino mice gave the following values +- SD for the RBE relative to /sup 226/Ra = 1.0: /sup 239/Pu = 15.3 +- 3.9, /sup 241/Am = 4.9 +- 1.4, /sup 249/Cf = 5.0 +- 1.4, and /sup 252/Cf = 2.6 +- 0.8. About 70% of the tumors occurred in the axial skeleton, and the risk coefficient for females averaged about four times higher than for males when all five nuclides were included. The RBE of fission fragment irradiation from /sup 252/Cf for cancer induction, relative to ..cap alpha.. irradiation, for the combined data in all of the animals given /sup 252/Cf and /sup 249/Cf, was 0.02 +- 0.28, in agreement with the calculated theoretical value of 0.03, based on the ratio of summed track lengths in tissue.

  19. Comparison of radiation shielding requirements for HDR brachytherapy using 169Yb and 192Ir sources.

    PubMed

    Lymperopoulou, G; Papagiannis, P; Sakelliou, L; Georgiou, E; Hourdakis, C J; Baltas, D

    2006-07-01

    169Yb has received a renewed focus lately as an alternative to 192Ir sources for high dose rate (HDR) brachytherapy. Following the results of a recent work by our group which proved 169Yb to be a good candidate for HDR prostate brachytherapy, this work seeks to quantify the radiation shielding requirements for 169Yb HDR brachytherapy applications in comparison to the corresponding requirements for the current 192Ir HDR brachytherapy standard. Monte Carlo simulation (MC) is used to obtain 169Yb and 192Ir broad beam transmission data through lead and concrete. Results are fitted to an analytical equation which can be used to readily calculate the barrier thickness required to achieve a given dose rate reduction. Shielding requirements for a HDR brachytherapy treatment room facility are presented as a function of distance, occupancy, dose limit, and facility workload, using analytical calculations for both 169Yb and 192Ir HDR sources. The barrier thickness required for 169Yb is lower than that for 192Ir by a factor of 4-5 for lead and 1.5-2 for concrete. Regarding 169Yb HDR brachytherapy applications, the lead shielding requirements do not exceed 15 mm, even in highly conservative case scenarios. This allows for the construction of a lead door in most cases, thus avoiding the construction of a space consuming, specially designed maze. The effects of source structure, attenuation by the patient, and scatter conditions within an actual treatment room on the above-noted findings are also discussed using corresponding MC simulation results.

  20. Effect of photon energy spectrum on dosimetric parameters of brachytherapy sources

    PubMed Central

    Ghorbani, Mahdi; Davenport, David

    2016-01-01

    Abstract Aim The aim of this study is to quantify the influence of the photon energy spectrum of brachytherapy sources on task group No. 43 (TG-43) dosimetric parameters. Background Different photon spectra are used for a specific radionuclide in Monte Carlo simulations of brachytherapy sources. Materials and methods MCNPX code was used to simulate 125I, 103Pd, 169Yb, and 192Ir brachytherapy sources. Air kerma strength per activity, dose rate constant, radial dose function, and two dimensional (2D) anisotropy functions were calculated and isodose curves were plotted for three different photon energy spectra. The references for photon energy spectra were: published papers, Lawrence Berkeley National Laboratory (LBNL), and National Nuclear Data Center (NNDC). The data calculated by these photon energy spectra were compared. Results Dose rate constant values showed a maximum difference of 24.07% for 103Pd source with different photon energy spectra. Radial dose function values based on different spectra were relatively the same. 2D anisotropy function values showed minor differences in most of distances and angles. There was not any detectable difference between the isodose contours. Conclusions Dosimetric parameters obtained with different photon spectra were relatively the same, however it is suggested that more accurate and updated photon energy spectra be used in Monte Carlo simulations. This would allow for calculation of reliable dosimetric data for source modeling and calculation in brachytherapy treatment planning systems. PMID:27247558

  1. Clinical practice and quality assurance challenges in modern brachytherapy sources and dosimetry.

    PubMed

    Butler, Wayne M; Merrick, Gregory S

    2008-01-01

    Modern brachytherapy has led to effective treatments through the establishment of broadly applicable dosimetric thresholds for maximizing survival with minimal morbidity. Proper implementation of recent dosimetric consensus statements and quality assurance procedures is necessary to maintain the established level of safety and efficacy. This review classifies issues as either "systematic" or "stochastic" in terms of their impact on large groups or individual patients, respectively. Systematic changes affecting large numbers of patients occur infrequently and include changes in source dosimetric parameters, prescribing practice, dose calculation formalism, and improvements in calculation algorithms. The physicist must be aware of how incipient changes accord with previous experience. Stochastic issues involve procedures that are applied to each patient individually. Although ample guidance for quality assurance of brachytherapy sources exists, some ambiguities remain. The latest American Association of Physicists in Medicine guidance clarifies what is meant by independent assay, changes source sampling recommendations, particularly for sources in sterile strands and sterile preassembled needles, and modifies action level thresholds. The changing environment of brachytherapy has not changed the fact that the prime responsibility for quality assurance in brachytherapy lies with the institutional medical physicist.

  2. Differential dose contributions on total dose distribution of 125I brachytherapy source

    PubMed Central

    Camgöz, B.; Yeğin, G.; Kumru, M.N.

    2010-01-01

    This work provides an improvement of the approach using Monte Carlo simulation for the Amersham Model 6711 125I brachytherapy seed source, which is well known by many theoretical and experimental studies. The source which has simple geometry was researched with respect to criteria of AAPM Tg-43 Report. The approach offered by this study involves determination of differential dose contributions that come from virtual partitions of a massive radioactive element of the studied source to a total dose at analytical calculation point. Some brachytherapy seeds contain multi-radioactive elements so the dose at any point is a total of separate doses from each element. It is momentous to know well the angular and radial dose distributions around the source that is located in cancerous tissue for clinical treatments. Interior geometry of a source is effective on dose characteristics of a distribution. Dose information of inner geometrical structure of a brachytherapy source cannot be acquired by experimental methods because of limits of physical material and geometry in the healthy tissue, so Monte Carlo simulation is a required approach of the study. EGSnrc Monte Carlo simulation software was used. In the design of a simulation, the radioactive source was divided into 10 rings, partitioned but not separate from each other. All differential sources were simulated for dose calculation, and the shape of dose distribution was determined comparatively distribution of a single-complete source. In this work anisotropy function was examined also mathematically. PMID:24376927

  3. 78 FR 21567 - Installation of Radiation Alarms for Rooms Housing Neutron Sources

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-11

    ... californium-252 (Cf-252). A licensee's decision to use a specific type of source may depend upon cost, availability, and the dependence upon historical data with which to compare current measurement results. The...

  4. On the effect of an error in a standard D2O-moderated 252Cf energy spectrum.

    PubMed

    Cummings, F M

    2009-12-01

    There appears to be an error in the neutron fluence for neutrons with energies between 9 and 10 MeV for the tabulated D2O-moderated Cf source in ISO 8529-1. If the referenced spectrum is used as tabulated, the error contributes a total error to neutron dose values from this source of approximately 3%.

  5. Effect of tissue composition on dose distribution in brachytherapy with various photon emitting sources

    PubMed Central

    Ghorbani, Mahdi; Salahshour, Fateme; Haghparast, Abbas; Knaup, Courtney

    2014-01-01

    Purpose The aim of this study is to compare the dose in various soft tissues in brachytherapy with photon emitting sources. Material and methods 103Pd, 125I, 169Yb, 192Ir brachytherapy sources were simulated with MCNPX Monte Carlo code, and their dose rate constant and radial dose function were compared with the published data. A spherical phantom with 50 cm radius was simulated and the dose at various radial distances in adipose tissue, breast tissue, 4-component soft tissue, brain (grey/white matter), muscle (skeletal), lung tissue, blood (whole), 9-component soft tissue, and water were calculated. The absolute dose and relative dose difference with respect to 9-component soft tissue was obtained for various materials, sources, and distances. Results There was good agreement between the dosimetric parameters of the sources and the published data. Adipose tissue, breast tissue, 4-component soft tissue, and water showed the greatest difference in dose relative to the dose to the 9-component soft tissue. The other soft tissues showed lower dose differences. The dose difference was also higher for 103Pd source than for 125I, 169Yb, and 192Ir sources. Furthermore, greater distances from the source had higher relative dose differences and the effect can be justified due to the change in photon spectrum (softening or hardening) as photons traverse the phantom material. Conclusions The ignorance of soft tissue characteristics (density, composition, etc.) by treatment planning systems incorporates a significant error in dose delivery to the patient in brachytherapy with photon sources. The error depends on the type of soft tissue, brachytherapy source, as well as the distance from the source. PMID:24790623

  6. Dosimetric characterization of a {sup 131}Cs brachytherapy source by thermoluminescence dosimetry in liquid water

    SciTech Connect

    Tailor, Ramesh; Ibbott, Geoffrey; Lampe, Stephanie; Bivens Warren, Whitney; Tolani, Naresh

    2008-12-15

    Dosimetry measurements of a {sup 131}Cs brachytherapy source have been performed in liquid water employing thermoluminescence dosimeters. A search of the literature reveals that this is the first time a complete set of dosimetric parameters for a brachytherapy ''seed'' source has been measured in liquid water. This method avoids the medium correction uncertainties introduced by the use of water-equivalent plastic phantoms. To assure confidence in the results, four different sources were employed for each parameter measured, and measurements were performed multiple times. The measured dosimetric parameters presented here are based on the AAPM Task Group 43 formalism. The dose-rate constant measured in liquid water was (1.063{+-}0.023) cGy h{sup -1} U{sup -1} and was based on the air-kerma strength standard for this source established by the National Institute of Standards and Technology. Measured values for the 2D anisotropy function and the radial dose function are presented.

  7. Neutron dosimetry, moderated energy spectrum, and neutron capture therapy for californium-252 medical sources

    NASA Astrophysics Data System (ADS)

    Rivard, Mark Joseph

    Examination of neutron dosimetry for 252Cf has been conducted using calculative and experimental means. Monte Carlo N-Particle (MCNP) transport code was used in a distributed computing environment as a parallel virtual machine (PVM) to determine the absorbed neutron dose and neutron energy spectrum from 252Cf in a variety of clinically relevant materials. Herein, a Maxwellian spectrum was used to model the 252Cf neutron emissions within these materials. 252Cf mixed-field dosimetry of Applicator Tube (AT) type sources was measured using 1.0 and 0.05 cm3 tissue-equivalent ion chambers and a miniature GM counter. A dosimetry protocol was formulated similar that of ICRU 45. The 252Cf AT neutron dosimetry was determined in the cylindrical coordinate system formalism recommended by the AAPM Task Group 43. These results demonstrated the overwhelming dependence of dosimetry on the source geometry factor as there was no significant neutron attenuation within the source or encapsulation. Gold foils and TLDs were used to measure the thermal flux in the vicinity of 252Cf AT sources to compare with the results calculated using MCNP. As the fast neutron energy spectrum did not markedly changed at increasing distances from the AT source, neutron dosimetry results obtained with paired ion chambers using fixed sensitivity factors agreed well with MCNP results and those in the literature. Calculations of moderated 252Cf neutron energy spectrum with various loadings of 10B and 157Gd were performed, in addition to analysis of neutron capture therapy dosimetry with these isotopes. Radiological concerns such as personnel exposure and shielding of 252Cf emissions were examined. Feasibility of a high specific-activity 252Cf HDR source was investigated through radiochemical and metallurgical studies using stand-ins such as Tb, Gd and 249Cf. Issues such as capsule burst strength due to helium production for a variety of proposed HDR sources were addressed. A recommended 252Cf source

  8. Measurement of the average number of prompt neutrons emitted per fission of /sup 233/U relative to /sup 252/Cf for the energy region 500 eV to 10 MeV and below 0. 3 eV

    SciTech Connect

    Gwin, R.; Spencer, R.R.; Ingle, R.W.

    1981-11-01

    The energy dependence of the average number of prompt fission neutrons emitted per fission, anti ..nu../sub p/(E), has been measured for /sup 233/U relative to anti ..nu../sub p/ for /sup 252/Cf over the neutron energy ranges 500 eV to 10 MeV and below 0.3 eV. A large Gd-loaded liquid scintillator was used to detect neutrons and the samples of /sup 233/U and /sup 252/Cf were contained in fission chambers. The present results for anti ..nu../sub p/(E) for /sup 233/U are in accord with the experimental results of Boldeman and the evaluated results of Lemmel in the thermal energy range, but in the neutron energy region between 100 keV and 1 MeV the present data are 1% or more larger than other experimental values.

  9. Radiation Therapy Photon Beams Dose Conformation According to Dose Distribution Around Intracavitary-Applied Brachytherapy Sources

    SciTech Connect

    Jurkovic, Slaven Zauhar, Gordana; Faj, Dario; Radojcic, Deni Smilovic; Svabic, Manda

    2010-04-01

    Intracavitary application of brachytherapy sources followed by external beam radiation is essential for the local treatment of carcinoma of the cervix. Due to very high doses to the central portion of the target volume delivered by brachytherapy sources, this part of the target volume must be shielded while being irradiated by photon beams. Several shielding techniques are available, from rectangular block and standard cervix wedge to more precise, customized step wedge filters. Because the calculation of a step wedge filter's shape was usually based on effective attenuation coefficient, an approach that accounts, in a more precise way, for the scattered radiation, is suggested. The method was verified under simulated clinical conditions using film dosimetry. Measured data for various compensators were compared to the numerically determined sum of the dose distribution around brachytherapy sources and one of compensated beam. Improvements in total dose distribution are demonstrated, using our method. Agreement between calculation and measurements were within 3%. Sensitivity of the method on sources displacement during treatment has also been investigated.

  10. Developing A Directional High-Dose Rate (d-HDR) Brachytherapy Source

    NASA Astrophysics Data System (ADS)

    Heredia, Athena Yvonne

    Conventional sources used in brachytherapy provide nearly isotropic or radially symmetric dose distributions. Optimizations of dose distributions have been limited to varied dwell times at specified locations within a given treatment volume, or manipulations in source position for seed implantation techniques. In years past, intensity modulated brachytherapy (IMBT) has been used to reduce the amount of radiation to surrounding sensitive structures in select intracavitary cases by adding space or partial shields. Previous work done by Lin et al., at the University of Wisconsin-Madison, has shown potential improvements in conformality for brachytherapy treatments using a directionally shielded low dose rate (LDR) source for treatments in breast and prostate. Directional brachytherapy sources irradiate approximately half of the radial angles around the source, and adequately shield a quarter of the radial angles on the opposite side, with sharp gradient zones between the treated half and shielded quarter. With internally shielded sources, the radiation can be preferentially emitted in such a way as to reduce toxicities in surrounding critical organs. The objective of this work is to present findings obtained in the development of a new directional high dose rate (d-HDR) source. To this goal, 103Pd (Z = 46) is reintroduced as a potential radionuclide for use in HDR brachytherapy. 103Pd has a low average photon energy (21 keV) and relatively short half -life (17 days), which is why it has historically been used in low dose rate applications and implantation techniques. Pd-103 has a carrier-free specific activity of 75000 Ci/g. Using cyclotron produced 103Pd, near carrier-free specific activities can be achieved, providing suitability for high dose rate applications. The evolution of the d-HDR source using Monte Carlo simulations is presented, along with dosimetric parameters used to fully characterize the source. In addition, a discussion on how to obtain elemental

  11. Characterization of Low-Energy Photon-Emitting Brachytherapy Sources with Modified Strengths for Applications in Focal Therapy

    NASA Astrophysics Data System (ADS)

    Reed, Joshua L.

    Permanent implants of low-energy photon-emitting brachytherapy sources are used to treat a variety of cancers. Individual source models must be separately characterized due to their unique geometry, materials, and radionuclides, which all influence their dose distributions. Thermoluminescent dosimeters (TLDs) are often used for dose measurements around low-energy photon-emitting brachytherapy sources. TLDs are typically calibrated with higher energy sources such as 60Co, which requires a correction for the change in the response of the TLDs as a function of photon energy. These corrections have historically been based on TLD response to x ray bremsstrahlung spectra instead of to brachytherapy sources themselves. This work determined the TLD intrinsic energy dependence for 125I and 103Pd sources relative to 60Co, which allows for correction of TLD measurements of brachytherapy sources with factors specific to their energy spectra. Traditional brachytherapy sources contain mobile internal components and large amounts of high-Z material such as radio-opaque markers and titanium encapsulations. These all contribute to perturbations and uncertainties in the dose distribution around the source. The CivaString is a new elongated 103Pd brachytherapy source with a fixed internal geometry, polymer encapsulation, and lengths ranging from 1 to 6 cm, which offers advantages over traditional source designs. This work characterized the CivaString source and the results facilitated the formal approval of this source for use in clinical treatments. Additionally, the accuracy of a superposition technique for dose calculation around the sources with lengths >1 cm was verified. Advances in diagnostic techniques are paving the way for focal brachytherapy in which the dose is intentionally modulated throughout the target volume to focus on subvolumes that contain cancer cells. Brachytherapy sources with variable longitudinal strength (VLS) are a promising candidate for use in focal

  12. New National Air-Kerma Standard for Low-Energy Electronic Brachytherapy Sources.

    PubMed

    Seltzer, Stephen M; O'Brien, Michelle; Mitch, Michael G

    2014-01-01

    The new primary standard for low-energy electronic brachytherapy sources for the United States is described. These miniature x-ray tubes are inserted in catheters for interstitial radiation therapy and operate at tube potentials of up to about 50 kV. The standard is based on the realization of the air kerma produced by the x-ray beam at a reference distance in air of 50 cm.

  13. New National Air-Kerma Standard for Low-Energy Electronic Brachytherapy Sources

    PubMed Central

    Seltzer, Stephen M; O’Brien, Michelle; Mitch, Michael G

    2014-01-01

    The new primary standard for low-energy electronic brachytherapy sources for the United States is described. These miniature x-ray tubes are inserted in catheters for interstitial radiation therapy and operate at tube potentials of up to about 50 kV. The standard is based on the realization of the air kerma produced by the x-ray beam at a reference distance in air of 50 cm. PMID:26601044

  14. Brachytherapy source characterization for improved dose calculations using primary and scatter dose separation.

    PubMed

    Russell, Kellie R; Tedgren, Asa K Carlsson; Ahnesjö, Anders

    2005-09-01

    In brachytherapy, tissue heterogeneities, source shielding, and finite patient/phantom extensions affect both the primary and scatter dose distributions. The primary dose is, due to the short range of secondary electrons, dependent only on the distribution of material located on the ray line between the source and dose deposition site. The scatter dose depends on both the direct irradiation pattern and the distribution of material in a large volume surrounding the point of interest, i.e., a much larger volume must be included in calculations to integrate many small dose contributions. It is therefore of interest to consider different methods for the primary and the scatter dose calculation to improve calculation accuracy with limited computer resources. The algorithms in present clinical use ignore these effects causing systematic dose errors in brachytherapy treatment planning. In this work we review a primary and scatter dose separation formalism (PSS) for brachytherapy source characterization to support separate calculation of the primary and scatter dose contributions. We show how the resulting source characterization data can be used to drive more accurate dose calculations using collapsed cone superposition for scatter dose calculations. Two types of source characterization data paths are used: a direct Monte Carlo simulation in water phantoms with subsequent parameterization of the results, and an alternative data path built on processing of AAPM TG43 formatted data to provide similar parameter sets. The latter path is motivated of the large amounts of data already existing in the TG43 format. We demonstrate the PSS methods using both data paths for a clinical 192Ir source. Results are shown for two geometries: a finite but homogeneous water phantom, and a half-slab consisting of water and air. The dose distributions are compared to results from full Monte Carlo simulations and we show significant improvement in scatter dose calculations when the collapsed

  15. Source position verification and dosimetry in HDR brachytherapy using an EPID

    SciTech Connect

    Smith, R. L.; Taylor, M. L.; McDermott, L. N.; Franich, R. D.; Haworth, A.; Millar, J. L.

    2013-11-15

    Purpose: Accurate treatment delivery in high dose rate (HDR) brachytherapy requires correct source dwell positions and dwell times to be administered relative to each other and to the surrounding anatomy. Treatment delivery inaccuracies predominantly occur for two reasons: (i) anatomical movement or (ii) as a result of human errors that are usually related to incorrect implementation of the planned treatment. Electronic portal imaging devices (EPIDs) were originally developed for patient position verification in external beam radiotherapy and their application has been extended to provide dosimetric information. The authors have characterized the response of an EPID for use with an {sup 192}Ir brachytherapy source to demonstrate its use as a verification device, providing both source position and dosimetric information.Methods: Characterization of the EPID response using an {sup 192}Ir brachytherapy source included investigations of reproducibility, linearity with dose rate, photon energy dependence, and charge build-up effects associated with exposure time and image acquisition time. Source position resolution in three dimensions was determined. To illustrate treatment verification, a simple treatment plan was delivered to a phantom and the measured EPID dose distribution compared with the planned dose.Results: The mean absolute source position error in the plane parallel to the EPID, for dwells measured at 50, 100, and 150 mm source to detector distances (SDD), was determined to be 0.26 mm. The resolution of the z coordinate (perpendicular distance from detector plane) is SDD dependent with 95% confidence intervals of ±0.1, ±0.5, and ±2.0 mm at SDDs of 50, 100, and 150 mm, respectively. The response of the EPID is highly linear to dose rate. The EPID exhibits an over-response to low energy incident photons and this nonlinearity is incorporated into the dose calibration procedure. A distance (spectral) dependent dose rate calibration procedure has been

  16. Measurement of anisotropic angular distributions of photon energy spectra for I-125 brachytherapy sources.

    PubMed

    Unno, Yasuhiro; Yunoki, Akira; Kurosawa, Tadahiro; Yamada, Takahiro; Sato, Yasushi; Hino, Yoshio

    2012-09-01

    The angular distribution of photon energy spectra emitted from an I-125 brachytherapy source was measured using a specially designed jig in the range of ±70° in the plane of the long axis of the source. It is important to investigate the angular dependence of photon emissions from these sources for the calibration of the air kerma rate. The results show that the influence of the distributions between 0° and ±8° is small enough to allow a calibration using current primary instruments which have a large entrance window.

  17. Prospects for quantitative two-dimensional radiochromic film dosimetry for low dose-rate brachytherapy sources

    SciTech Connect

    Le Yi; Ali, Imad; Dempsey, James F.; Williamson, Jeffrey F.

    2006-12-15

    Radiochromic film (RCF) has been shown to be a precise and accurate two-dimensional dosimeter for acute exposure radiation fields. However, ''temporal history'' mismatch between calibration and brachytherapy films due to RCF dose-rate effects could introduce potentially large uncertainties in low dose-rate (LDR) brachytherapy absolute dose measurement. This article presents a quantitative evaluation of the precision and accuracy of a laser scanner-based RCF-dosimetry system and the effect of the temporal history mismatch in LDR absolute dose measurement. MD-55-2 RCF was used to measure absolute dose for a low dose-rate {sup 137}Cs brachytherapy source using both single- and double-exposure techniques. Dose-measurement accuracy was evaluated by comparing RCF to Monte Carlo photon-transport simulation. The temporal history mismatch effect was investigated by examining dependence of RCF accuracy on irradiation-to-densitometry time interval. The predictions of the empirical cumulative dose superposition model (CDSM) were compared with measurements. For the double-exposure technique, the agreement between measurement and Monte Carlo simulation was better than 4% in the 3-60 Gy dose range with measurement precisions (coverage factor k=1) of <2% and <6% for the doses greater or less than 3 Gy, respectively. The overall uncertainty (k=1) of dose rate/air-kerma strength measurements achievable by this dosimetry system for a spatial resolution of 0.1 mm is less than 4% for doses greater than 5 Gy. The measured temporal history mismatch systematic error is about 1.8% for a 48 h postexposure time when using the double exposure technique and agrees with CDSM's prediction qualitatively. This work demonstrates that the model MD-55-2 RCF detector has the potential to support quantitative dose measurements about LDR brachytherapy sources with precision and accuracy better than that of previously described dosimeters. The impacts of this work on the future use of new type of RCF

  18. Dosimetric comparison of brachytherapy sources for high-dose-rate treatment of endometrial cancer: 192Ir, 60Co and an electronic brachytherapy source

    PubMed Central

    Nguyen, Alex; Packianathan, Satyaseelan; He, Rui; Yang, Claus C

    2016-01-01

    Objective: To compare high-dose-rate (HDR) brachytherapy systems with 192Ir, 60Co and electronic brachytherapy source (EBS) for treatment of endometrial cancers. Methods: Two additional plans were generated per patient fraction using a 60Co source and Xoft-EBS on 10 selected patients, previously treated with a vaginal cylinder applicator using a 192Ir source. Dose coverage of “PTV_CYLD”, a 5-mm shell surrounding the cylinder, was evaluated. Doses to the following organs at risk (OARs) the rectum, bladder and sigmoid were evaluated in terms of V35% and V50%, the percentage volume receiving 35% and 50% of the prescription dose, respectively, and D2cm3, the highest dose to a 2-cm3 volume of an OAR. Results: Xoft-EBS reduces doses to all OARs in the lower dose range, but it does not always provide better sparing of the rectum in higher dose range as does evaluation using D2cm3. V150% and V200% for PTV_CYLD was up to four times greater for Xoft-EBS plans than for plans generated with 192Ir or 60Co. Surface mucosal (vaginal cylinder surface) doses were also 23% higher for Xoft-EBS than for 192Ir or 60Co plans. Conclusion: Xoft-EBS is a suitable HDR source for vaginal applicator treatment with advantages of reducing radiation exposure to OARs in the lower dose range, while simultaneously increasing the vaginal mucosal dose. Advances in knowledge: This work presents newer knowledge in dosimetric comparison between 192Ir or 60Co and Xoft-EBS sources for endometrial vaginal cylinder HDR planning. PMID:26743941

  19. Development of an open source software module for enhanced visualization during MR-guided interstitial gynecologic brachytherapy.

    PubMed

    Chen, Xiaojun; Egger, Jan

    2014-01-01

    In 2010, gynecologic malignancies were the 4th leading cause of death in U.S. women and for patients with extensive primary or recurrent disease, treatment with interstitial brachytherapy may be an option. However, brachytherapy requires precise insertion of hollow catheters with introducers into the tumor in order to eradicate the cancer. In this study, a software solution to assist interstitial gynecologic brachytherapy has been investigated and the software has been realized as an own module under (3D) Slicer, which is a free open source software platform for (translational) biomedical research. The developed research module allows on-time processing of intra-operative magnetic resonance imaging (iMRI) data over a direct DICOM connection to a MR scanner. Afterwards follows a multi-stage registration of CAD models of the medical brachytherapy devices (template, obturator) to the patient's MR images, enabling the virtual placement of interstitial needles to assist the physician during the intervention.

  20. Evaluation of TG-43 recommended 2D-anisotropy function for elongated brachytherapy sources

    SciTech Connect

    Awan, Shahid B.; Meigooni, Ali S.; Mokhberiosgouei, Ramin; Hussain, Manzoor

    2006-11-15

    The original and updated protocols recommended by Task Group 43 from the American Association of Physicists in Medicine (i.e., TG-43 and TG-43U1, respectively), have been introduced to unify brachytherapy source dosimetry around the world. Both of these protocols are based on experiences with sources less than 1.0 cm in length. TG-43U1 recommends that for {sup 103}Pd sources, 2D anisotropy function F(r,{theta}), should be tabulated at a minimum for radial distances of 0.5, 1.0, 2.0, 3.0, and 5.0 cm. Anisotropy functions defined in these protocols are only valid when the point of calculation does not fall on the active length of the source. However, for elongated brachytherapy sources (active length >1 cm), some of the calculation points with r<(1/2) active length and small {theta} may fall on the source itself and there is no clear recommendation to handle this situation. In addition, the linear interpolation technique recommended by TG-43U1 is found to be valid for seed types of sources as the difference between F(r,{theta}) for two consecutive radii is <10%. However, in the present investigations it has been found that values of F(r,5 deg. ) for a 5 cm long RadioCoil trade mark sign {sup 103}Pd source at radial distances of 2.5, 3.0, and 4.0 cm were 2.95, 1.74, and 1.19, respectively, with differences up to about a factor of 3. Therefore, the validity of the linear interpolation technique for an elongated brachytherapy source with such a large variation in F(r,{theta}) needs to be investigated. In this project, application of the TG-43U1 formalism for dose calculation around an elongated RadioCoil trade mark sign {sup 103}Pd brachytherapy source has been investigated. In addition, the linear interpolation techniques as described in TG-43U1 for seed type sources have been evaluated for a 5.0 cm long RadioCoil trade mark sign {sup 103}Pd brachytherapy source. Application of a polynomial fit to F(r,{theta}) has also been investigated as an alternate approach to the

  1. Spectroscopic output of {sup 125}I and {sup 103}Pd low dose rate brachytherapy sources

    SciTech Connect

    Usher-Moga, Jacqueline; Beach, Stephen M.; DeWerd, Larry A.

    2009-01-15

    The spectroscopic output of low dose rate (LDR) brachytherapy sources is dependent on the physical design and construction of the source. Characterization of the emitted photons from 12 {sup 125}I and 3 {sup 103}Pd LDR brachytherapy source models is presented. Photon spectra, both along the transverse bisector and at several polar angles, were measured in air with a high-purity reverse electrode germanium (REGe) detector. Measured spectra were corrected to in vacuo conditions via Monte Carlo and analytical methods. The tabulated and plotted spectroscopic data provide a more complete understanding of each source model's output characteristics than can be obtained with other measurement techniques. The variation in fluorescence yield of the {sup 125}I sources containing silver caused greater differences in the emitted spectra and average energies among these seed models than was observed for the {sup 103}Pd sources or the {sup 125}I sources that do not contain silver. Angular spectroscopic data further highlighted the effects of source construction unique to each model, as well as the asymmetric output of many seeds. These data demonstrate the need for the incorporation of such physically measured output characteristics in the Monte Carlo modeling process.

  2. Radiochromic film measurement of anisotropy function for high-dose-rate Ir-192 brachytherapy source.

    PubMed

    Sharma, S D; Bianchi, C; Conte, L; Novario, R; Bhatt, B C

    2004-09-07

    The dose distribution produced by the high-dose-rate (HDR) 192Ir source is inherently anisotropic due to self-absorption by the high-density source core, oblique filtration by the source capsule and the asymmetric geometry of the source capsule. To account for the dose distribution anisotropy of brachytherapy sources, AAPM Task Group No 43 has included a two-dimensional anisotropy function, F(r, theta), in the recommended dose calculation formalism. Gafchromic HS radiochromic film (RCF) was used to measure anisotropy function for microSelectron HDR 192Ir source (classic/old design). Measurements were carried out in a water phantom using specially fabricated PMMA cylinders at radial distances 1, 2, 3, 4 and 5 cm. The data so generated are comparable to both experimental and Monte Carlo calculated values for this source reported earlier by other authors. The RCF method described in this paper is comparatively high resolution, simple to use and is a general method, which can be applied for other brachytherapy sources as well.

  3. Evaluation of brachytherapy lung implant dose distributions from photon-emitting sources due to tissue heterogeneities

    SciTech Connect

    Yang Yun; Rivard, Mark J.

    2011-11-15

    Purpose: Photon-emitting brachytherapy sources are used for permanent implantation to treat lung cancer. However, the current brachytherapy dose calculation formalism assumes a homogeneous water medium without considering the influence of radiation scatter or tissue heterogeneities. The purpose of this study was to determine the dosimetric effects of tissue heterogeneities for permanent lung brachytherapy. Methods: The MCNP5 v1.40 radiation transport code was used for Monte Carlo (MC) simulations. Point sources with energies of 0.02, 0.03, 0.05, 0.1, 0.2, and 0.4 MeV were simulated to cover the range of pertinent brachytherapy energies and to glean dosimetric trends independent of specific radionuclide emissions. Source positions from postimplant CT scans of five patient implants were used for source coordinates, with dose normalized to 200 Gy at the center of each implant. With the presence of fibrosis (around the implant), cortical bone, lung, and healthy tissues, dose distributions and {sub PTV}DVH were calculated using the MCNP *FMESH4 tally and the NIST mass-energy absorption coefficients. This process was repeated upon replacing all tissues with water. For all photon energies, 10{sup 9} histories were simulated to achieve statistical errors (k = 1) typically of 1%. Results: The mean PTV doses calculated using tissue heterogeneities for all five patients changed (compared to dose to water) by only a few percent over the examined photon energy range, as did PTV dose at the implant center. The {sub PTV}V{sub 100} values were 81.2%, 90.0% (as normalized), 94.3%, 93.9%, 92.7%, and 92.2% for 0.02, 0.03, 0.05, 0.1, 0.2, and 0.4 MeV source photons, respectively. Relative to water, the maximum bone doses were higher by factors of 3.7, 5.1, 5.2, 2.4, 1.2, and 1.0 The maximum lung doses were about 0.98, 0.94, 0.91, 0.94, 0.97, and 0.99. Relative to water, the maximum healthy tissue doses at the mediastinal position were higher by factors of 9.8, 2.2, 1.3, 1.1, 1.1, and

  4. The Application of Elliptic Cylindrical Phantom in Brachytherapy Dosimetric Study of HDR 192Ir Source

    NASA Astrophysics Data System (ADS)

    Ahn, Woo Sang; Park, Sung Ho; Jung, Sang Hoon; Choi, Wonsik; Do Ahn, Seung; Shin, Seong Soo

    2014-06-01

    The purpose of this study is to determine the radial dose function of HDR 192Ir source based on Monte Carlo simulation using elliptic cylindrical phantom, similar to realistic shape of pelvis, in brachytherapy dosimetric study. The elliptic phantom size and shape was determined by analysis of dimensions of pelvis on CT images of 20 patients treated with brachytherapy for cervical cancer. The radial dose function obtained using the elliptic cylindrical water phantom was compared with radial dose functions for different spherical phantom sizes, including the Williamsion's data loaded into conventional planning system. The differences in the radial dose function for the different spherical water phantoms increase with radial distance, r, and the largest differences in the radial dose function appear for the smallest phantom size. The radial dose function of the elliptic cylindrical phantom significantly decreased with radial distance in the vertical direction due to different scatter condition in comparison with the Williamson's data. Considering doses to ICRU rectum and bladder points, doses to reference points can be underestimated up to 1-2% at the distance from 3 to 6 cm. The radial dose function in this study could be used as realistic data for calculating the brachytherapy dosimetry for cervical cancer.

  5. Internal radiotherapy techniques using radiolanthanide praseodymium-142: a review of production routes, brachytherapy, unsealed source therapy.

    PubMed

    Bakht, Mohamadreza K; Sadeghi, Mahdi

    2011-10-01

    Radionuclides of rare earth elements are gaining importance as emerging therapeutic agents in nuclear medicine. β(-)-particle emitter 142Pr [T (1/2) = 19.12 h, E(-)β = 2.162 MeV (96.3%), Eγ = 1575 keV (3.7%)] is one of the praseodymium-141 (100% abundant) radioisotopes. Production routes and therapy aspects of 142Pr will be reviewed in this paper. However, 142Pr produces via 141Pr(n, γ) 142Pr reaction by irradiation in a low-fluence reactor; 142Pr cyclotron produced, could be achievable. 142Pr due to its high β(-)-emission and low specific gamma γ-emission could not only be a therapeutic radionuclide, but also a suitable radionuclide in order for biodistribution studies. Internal radiotherapy using 142Pr can be classified into two sub-categories: (1) unsealed source therapy (UST), (2) brachytherapy. UST via 142Pr-HA and 142Pr-DTPA in order for radiosynovectomy have been proposed. In addition, 142Pr Glass seeds and 142Pr microspheres have been utilized for interstitial brachytherapy of prostate cancer and intraarterial brachytherapy of arteriovenous malformation, respectively.

  6. 10 CFR 35.2406 - Records of brachytherapy source accountability.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... source accountability required by § 35.406 for 3 years. (b) For temporary implants, the record must... storage, and the name of the individual who returned them to storage. (c) For permanent implants, the... activity of sources not implanted, the date they were returned to storage, and the name of the...

  7. Novel tools for stepping source brachytherapy treatment planning: Enhanced geometrical optimization and interactive inverse planning

    SciTech Connect

    Dinkla, Anna M. Laarse, Rob van der; Koedooder, Kees; Petra Kok, H.; Wieringen, Niek van; Pieters, Bradley R.; Bel, Arjan

    2015-01-15

    Purpose: Dose optimization for stepping source brachytherapy can nowadays be performed using automated inverse algorithms. Although much quicker than graphical optimization, an experienced treatment planner is required for both methods. With automated inverse algorithms, the procedure to achieve the desired dose distribution is often based on trial-and-error. Methods: A new approach for stepping source prostate brachytherapy treatment planning was developed as a quick and user-friendly alternative. This approach consists of the combined use of two novel tools: Enhanced geometrical optimization (EGO) and interactive inverse planning (IIP). EGO is an extended version of the common geometrical optimization method and is applied to create a dose distribution as homogeneous as possible. With the second tool, IIP, this dose distribution is tailored to a specific patient anatomy by interactively changing the highest and lowest dose on the contours. Results: The combined use of EGO–IIP was evaluated on 24 prostate cancer patients, by having an inexperienced user create treatment plans, compliant to clinical dose objectives. This user was able to create dose plans of 24 patients in an average time of 4.4 min/patient. An experienced treatment planner without extensive training in EGO–IIP also created 24 plans. The resulting dose-volume histogram parameters were comparable to the clinical plans and showed high conformance to clinical standards. Conclusions: Even for an inexperienced user, treatment planning with EGO–IIP for stepping source prostate brachytherapy is feasible as an alternative to current optimization algorithms, offering speed, simplicity for the user, and local control of the dose levels.

  8. A simplified analytical dose calculation algorithm accounting for tissue heterogeneity for low-energy brachytherapy sources

    NASA Astrophysics Data System (ADS)

    Mashouf, Shahram; Lechtman, Eli; Beaulieu, Luc; Verhaegen, Frank; Keller, Brian M.; Ravi, Ananth; Pignol, Jean-Philippe

    2013-09-01

    The American Association of Physicists in Medicine Task Group No. 43 (AAPM TG-43) formalism is the standard for seeds brachytherapy dose calculation. But for breast seed implants, Monte Carlo simulations reveal large errors due to tissue heterogeneity. Since TG-43 includes several factors to account for source geometry, anisotropy and strength, we propose an additional correction factor, called the inhomogeneity correction factor (ICF), accounting for tissue heterogeneity for Pd-103 brachytherapy. This correction factor is calculated as a function of the media linear attenuation coefficient and mass energy absorption coefficient, and it is independent of the source internal structure. Ultimately the dose in heterogeneous media can be calculated as a product of dose in water as calculated by TG-43 protocol times the ICF. To validate the ICF methodology, dose absorbed in spherical phantoms with large tissue heterogeneities was compared using the TG-43 formalism corrected for heterogeneity versus Monte Carlo simulations. The agreement between Monte Carlo simulations and the ICF method remained within 5% in soft tissues up to several centimeters from a Pd-103 source. Compared to Monte Carlo, the ICF methods can easily be integrated into a clinical treatment planning system and it does not require the detailed internal structure of the source or the photon phase-space.

  9. Dosimetric parameters of the new design (103)Pd brachytherapy source based on Monte Carlo study.

    PubMed

    Saidi, Pooneh; Sadeghi, Mahdi; Shirazi, Alireza; Tenreiro, Claudio

    2012-01-01

    In this study version 5 of the MCNP photon transport simulation was used to calculate the dosimetric parameters for new palladium brachytherapy source design following AAPM Task Group No. 43U1 report. The internal source components include four resin beads of 0.6 mm diameters with (103)Pd uniformly absorbed inside and one cylindrical copper marker with 1.5 mm length. The resin beads and marker are then encapsulated within 0.8 mm in diameter and 4.5 mm long cylindrical capsule of titanium. The dose rate constant, Λ, line and point-source radial dose function, g(L)(r) and g(P)(r), and the anisotropy function, F(r,θ) of the IR01-(103)Pd seed have been calculated at distances from 0.25 to 5 cm. All the results are in good agreement with previously published thermoluminescence-dosimeter measured values [3] for the source. The dosimetric parameters calculated in this work showed that in dosimetry point of view, the IR01-(103)Pd seed is suitable for use in brachytherapy of prostate cancer.

  10. A simplified analytical dose calculation algorithm accounting for tissue heterogeneity for low-energy brachytherapy sources.

    PubMed

    Mashouf, Shahram; Lechtman, Eli; Beaulieu, Luc; Verhaegen, Frank; Keller, Brian M; Ravi, Ananth; Pignol, Jean-Philippe

    2013-09-21

    The American Association of Physicists in Medicine Task Group No. 43 (AAPM TG-43) formalism is the standard for seeds brachytherapy dose calculation. But for breast seed implants, Monte Carlo simulations reveal large errors due to tissue heterogeneity. Since TG-43 includes several factors to account for source geometry, anisotropy and strength, we propose an additional correction factor, called the inhomogeneity correction factor (ICF), accounting for tissue heterogeneity for Pd-103 brachytherapy. This correction factor is calculated as a function of the media linear attenuation coefficient and mass energy absorption coefficient, and it is independent of the source internal structure. Ultimately the dose in heterogeneous media can be calculated as a product of dose in water as calculated by TG-43 protocol times the ICF. To validate the ICF methodology, dose absorbed in spherical phantoms with large tissue heterogeneities was compared using the TG-43 formalism corrected for heterogeneity versus Monte Carlo simulations. The agreement between Monte Carlo simulations and the ICF method remained within 5% in soft tissues up to several centimeters from a Pd-103 source. Compared to Monte Carlo, the ICF methods can easily be integrated into a clinical treatment planning system and it does not require the detailed internal structure of the source or the photon phase-space.

  11. Effect of tissue inhomogeneities on dose distributions from Cf-252 brachytherapy source.

    PubMed

    Ghassoun, J

    2013-01-01

    The Monte Carlo method was used to determine the effect of tissue inhomogeneities on dose distribution from a Cf-252 brachytherapy source. Neutron and gamma-ray fluences, energy spectra and dose rate distributions were determined in both homogenous and inhomogeneous phantoms. Simulations were performed using the MCNP5 code. Obtained results were compared with experimentally measured values published in literature. Results showed a significant change in neutron dose rate distributions in presence of heterogeneities. However, their effect on gamma rays dose distribution is minimal.

  12. Dosimetry studies on prototype 241Am sources for brachytherapy.

    PubMed

    Nath, R; Gray, L

    1987-06-01

    Sealed sources of 241Am emit primarily 60 keV photons which, because of multiple Compton scattering, produce dose distributions in water that are comparable to those from 226Ra or 137Cs. However, americium gamma rays can be shielded by thin layers of high atomic number materials since the half value layer thickness is only 1/8th of a mm of lead for americium gamma rays as compared to a value of 12 mm for 226Ra gamma rays. This may allow effective in vivo shielding of critical organs, for example; the bladder can be partially shielded by hypaque solution, and the rectum and sigmoid colon by barium sulfate. In addition, the exposure to medical personnel involved in intracavitary application and patient care may be reduced substantially by the use of relatively thin lead aprons and light weight, portable shields. To investigate the feasibility of 241Am sources for intracavitary irradiation, dosimetry studies on prototype 241Am sources have been performed and a computer model for the determination of dose distributions around encapsulated cylindrical sources of 241Am has been developed and tested. Results of dosimetry measurements using ionization chambers, lithium fluoride thermoluminescent dosimeters, a scanning scintillation probe, and film dosimetry, confirm theoretical predictions that these sources can deliver dose rates adequate for intracavitary irradiation. Further dosimetry measurements in simulated clinical situations using lead foils and test tubes filled with hypaque or barium sulfate, confirm the predicted effectiveness of in vivo shielding which can be readily achieved with 241Am sources.

  13. TG-43 U1 based dosimetric characterization of model 67-6520 Cs-137 brachytherapy source

    SciTech Connect

    Meigooni, Ali S.; Wright, Clarissa; Koona, Rafiq A.; Awan, Shahid B.; Granero, Domingo; Perez-Calatayud, Jose; Ballester, Facundo

    2009-10-15

    Purpose: Brachytherapy treatment has been a cornerstone for management of various cancer sites, particularly for the treatment of gynecological malignancies. In low dose rate brachytherapy treatments, {sup 137}Cs sources have been used for several decades. A new {sup 137}Cs source design has been introduced (model 67-6520, source B3-561) by Isotope Products Laboratories (IPL) for clinical application. The goal of the present work is to implement the TG-43 U1 protocol in the characterization of the aforementioned {sup 137}Cs source. Methods: The dosimetric characteristics of the IPL {sup 137}Cs source are measured using LiF thermoluminescent dosimeters in a Solid Water phantom material and calculated using Monte Carlo simulations with the GEANT4 code in Solid Water and liquid water. The dose rate constant, radial dose function, and two-dimensional anisotropy function of this source model were obtained following the TG-43 U1 recommendations. In addition, the primary and scatter dose separation (PSS) formalism that could be used in convolution/superposition methods to calculate dose distributions around brachytherapy sources in heterogeneous media was studied. Results: The measured and calculated dose rate constants of the IPL {sup 137}Cs source in Solid Water were found to be 0.930({+-}7.3%) and 0.928({+-}2.6%) cGy h{sup -1} U{sup -1}, respectively. The agreement between these two methods was within our experimental uncertainties. The Monte Carlo calculated value in liquid water of the dose rate constant was {Lambda}=0.948({+-}2.6%) cGy h{sup -1} U{sup -1}. Similarly, the agreement between measured and calculated radial dose functions and the anisotropy functions was found to be within {+-}5%. In addition, the tabulated data that are required to characterize the source using the PSS formalism were derived. Conclusions: In this article the complete dosimetry of the newly designed {sup 137}Cs IPL source following the AAPM TG-43 U1 dosimetric protocol and the PSS

  14. Design and dosimetric characteristics of a new endocavitary contact radiotherapy system using an electronic brachytherapy source

    SciTech Connect

    Richardson, Susan; Garcia-Ramirez, Jose; Lu Wei; Myerson, Robert J.; Parikh, Parag

    2012-11-15

    Purpose: To present design aspects and acceptance tests performed for clinical implementation of electronic brachytherapy treatment of early stage rectal adenocarcinoma. A dosimetric comparison is made between the historically used Philips RT-50 unit and the newly developed Axxent{sup Registered-Sign} Model S700 electronic brachytherapy source manufactured by Xoft (iCad, Inc.). Methods: Two proctoscope cones were manufactured by ElectroSurgical Instruments (ESI). Two custom surface applicators were manufactured by Xoft and were designed to fit and interlock with the proctoscope cones from ESI. Dose rates, half value layers (HVL), and percentage depth dose (PDD) measurements were made with the Xoft system and compared to historical RT-50 data. A description of the patient treatment approach and exposure rates during the procedure is also provided. Results: The electronic brachytherapy system has a lower surface dose rate than the RT-50. The dose rate to water on the surface from the Xoft system is approximately 2.1 Gy/min while the RT-50 is 10-12 Gy/min. However, treatment times with Xoft are still reasonable. The HVLs and PDDs between the two systems were comparable resulting in similar doses to the target and to regions beyond the target. The exposure rate levels around a patient treatment were acceptable. The standard uncertainty in the dose rate to water on the surface is approximately {+-}5.2%. Conclusions: The Philips RT-50 unit is an out-of-date radiotherapy machine that is no longer manufactured with limited replacement parts. The use of a custom-designed proctoscope and Xoft surface applicators allows delivery of a well-established treatment with the ease of a modern radiotherapy device. While the dose rate is lower with the use of Xoft, the treatment times are still reasonable. Additionally, personnel may stand farther away from the Xoft radiation source, thus potentially reducing radiation exposure to the operator and other personnel.

  15. Evaluation of scatter contribution and distance error by iterative methods for strength determination of HDR 192Ir brachytherapy source.

    PubMed

    Kumar, Sudhir; Srinivasan, Panchapakesan; Sharma, Sunil D; Subbaiah, Kamatam V; Mayya, Yelia S

    2010-01-01

    High-dose rate (HDR) 192Ir brachytherapy sources are commonly used for management of malignancies by brachytherapy applications. Measurement of source strength at the hospital is an important dosimetry requirement. The use of 0.6-cm(3) cylindrical ionization chamber is one of the methods of measuring the source strength at the hospitals because this chamber is readily available for beam calibration and dosimetry. While using the cylindrical chamber for this purpose, it is also required to determine the positioning error of the ionization chamber, with respect to the source, commonly called a distance error (c). The contribution of scatter radiation (M(s)) from floor, walls, ceiling, and other materials available in the treatment room also need to be determined accurately so that appropriate correction can be applied while calculating the source strength from the meter reading. Iterative methods of Newton-Raphson and least-squares were used in this work to determine scatter contribution in the experimentally observed meter reading (pC/s) of a cylindrical ionization chamber. Monte Carlo simulation was also used to cross verify the results of the least-squares method. The experimentally observed, least-squares calculated and Monte Carlo estimated values of meter readings from HDR 192Ir brachytherapy source were in good agreement. Considering procedural simplicity, the method of least-squares is recommended for use at the hospitals to estimate values of f (constant of proportionality), c, and M(s) required to determine the strength of HDR 192Ir brachytherapy sources.

  16. Dose Distributions of an 192Ir Brachytherapy Source in Different Media

    PubMed Central

    Wu, C. H.; Liao, Y. J.; Liu, Y. W. Hsueh; Hung, S. K.; Lee, M. S.; Hsu, S. M.

    2014-01-01

    This study used MCNPX code to investigate the brachytherapy 192Ir dose distributions in water, bone, and lung tissue and performed radiophotoluminescent glass dosimeter measurements to verify the obtained MCNPX results. The results showed that the dose-rate constant, radial dose function, and anisotropy function in water were highly consistent with data in the literature. However, the lung dose near the source would be overestimated by up to 12%, if the lung tissue is assumed to be water, and, hence, if a tumor is located in the lung, the tumor dose will be overestimated, if the material density is not taken into consideration. In contrast, the lung dose far from the source would be underestimated by up to 30%. Radial dose functions were found to depend not only on the phantom size but also on the material density. The phantom size affects the radial dose function in bone more than those in the other tissues. On the other hand, the anisotropy function in lung tissue was not dependent on the radial distance. Our simulation results could represent valid clinical reference data and be used to improve the accuracy of the doses delivered during brachytherapy applied to patients with lung cancer. PMID:24804263

  17. Possibilities for intensity-modulated brachytherapy: technical limitations on the use of non-isotropic sources

    NASA Astrophysics Data System (ADS)

    Ebert, M. A.

    2002-07-01

    An investigation was undertaken into possible dose conformity advantages and technical limitations of utilizing radially asymmetric internally applied radiation sources for intensity-modulated brachytherapy (IMBT). A feasible form of a source for IMBT would be a linear source with a high-intensity angular region, with some fractional transmission through the remainder of the source, which inhibits the resolution achievable in intensity modulation. Indexed rotation of the source about its axis would provide radial intensity modulation, which could compensate for variations in the spatial relationship between the source position and location of the target edge. Two treatment situations were simulated - one two-dimensional and one three-dimensional - both utilizing a single source (single catheter). The optimal intensity distribution of the source was determined by simulated annealing optimization using a conformality-based objective. The parameters in the optimization included the angular size of the source high-intensity region, and the fractional transmission through the low-intensity part of the source. Results indicate that limitations in source design suggest an optimal high-intensity resolution of approximately π/4 to π/8. The advantages of IMBT are rapidly reduced when fractional transmission through the low-intensity side of the source is increased.

  18. SU-E-T-155: Calibration of Variable Longitudinal Strength 103Pd Brachytherapy Sources

    SciTech Connect

    Reed, J; Radtke, J; Micka, J; Culberson, W; DeWerd, L

    2015-06-15

    Purpose: Brachytherapy sources with variable longitudinal strength (VLS) allow for a customized intensity along the length of the source. These have applications in focal brachytherapy treatments of prostate cancer where dose boosting can be achieved through modulation of intra-source strengths. This work focused on development of a calibration methodology for VLS sources based on measurements and Monte Carlo (MC) simulations of five 1 cm {sup 10} {sup 3}Pd sources each containing four regions of variable {sup 103}Pd strength. Methods: The air-kerma strengths of the sources were measured with a variable-aperture free-air chamber (VAFAC). Source strengths were also measured using a well chamber. The in-air azimuthal and polar anisotropy of the sources were measured by rotating them in front of a NaI scintillation detector and were calculated with MC simulations. Azimuthal anisotropy results were normalized to their mean intensity values. Polar anisotropy results were normalized to their average transverse axis intensity values. The relative longitudinal strengths of the sources were measured via on-contact irradiations with radiochromic film, and were calculated with MC simulations. Results: The variable {sup 103}Pd loading of the sources was validated by VAFAC and well chamber measurements. Ratios of VAFAC air-kerma strengths and well chamber responses were within ±1.3% for all sources. Azimuthal anisotropy results indicated that ≥95% of the normalized values for all sources were within ±1.7% of the mean values. Polar anisotropy results indicated variations within ±0.3% for a ±7.6° angular region with respect to the source transverse axis. Locations and intensities of the {sup 103}Pd regions were validated by radiochromic film measurements and MC simulations. Conclusion: The calibration methodology developed in this work confirms that the VLS sources investigated have a high level of polar uniformity, and that the strength and longitudinal intensity can be

  19. Basic treatment planning parameters for a 90Sr / 90Y source train used in endovascular brachytherapy.

    PubMed

    Kirisits, Christian; Berger, Daniel; Schmid, Rainer; Syeda, Bonni; Pokrajac, Boris; Glogar, Dietmar; Pötter, Richard; Georg, Dietmar

    2004-01-01

    Working groups of the AAPM, DGMP, and ESTRO have published recommendations for endovascular brachytherapy, introducing concepts of relevant parameters for dose specification and treatment planning. However, the procedures for this treatment remain often mainly based on trial protocols and manufacturer instructions. Treatment planning requires the essential knowledge of the radial and longitudinal dose distribution, as well as information about geometrical uncertainties. The present study includes a whole data set for daily clinical practice using a commercially available device for endovascular brachytherapy (Novoste Betacath). The dose distribution around the 90Sr seed train was calculated with Monte-Carlo algorithms and verified by film dosimetry. The radial dose profile was determined starting from the surface of the delivery catheter Calculated dose profiles were in good agreement to measured values. The geometrical uncertainties were estimated with a retrospective analysis of 51 patient treatments. This shows the importance of using a safety margin of at least 10 mm between Intervention Length and Reference Isodose Length. Based on the longitudinal dose profile and the necessary safety margins, the maximum treatable intervention length is 25 mm and 45 mm for a 40 mm and 60 mm source train, respectively.

  20. Dose heterogeneity correction for low-energy brachytherapy sources using dual-energy CT images

    NASA Astrophysics Data System (ADS)

    Mashouf, S.; Lechtman, E.; Lai, P.; Keller, B. M.; Karotki, A.; Beachey, D. J.; Pignol, J. P.

    2014-09-01

    Permanent seed implant brachytherapy is currently used for adjuvant radiotherapy of early stage prostate and breast cancer patients. The current standard for calculation of dose around brachytherapy sources is based on the AAPM TG-43 formalism, which generates the dose in a homogeneous water medium. Recently, AAPM TG-186 emphasized the importance of accounting for tissue heterogeneities. We have previously reported on a methodology where the absorbed dose in tissue can be obtained by multiplying the dose, calculated by the TG-43 formalism, by an inhomogeneity correction factor (ICF). In this work we make use of dual energy CT (DECT) images to extract ICF parameters. The advantage of DECT over conventional CT is that it eliminates the need for tissue segmentation as well as assignment of population based atomic compositions. DECT images of a heterogeneous phantom were acquired and the dose was calculated using both TG-43 and TG-43 × \\text{ICF} formalisms. The results were compared to experimental measurements using Gafchromic films in the mid-plane of the phantom. For a seed implant configuration of 8 seeds spaced 1.5 cm apart in a cubic structure, the gamma passing score for 2%/2 mm criteria improved from 40.8% to 90.5% when ICF was applied to TG-43 dose distributions.

  1. Dose heterogeneity correction for low-energy brachytherapy sources using dual-energy CT images.

    PubMed

    Mashouf, S; Lechtman, E; Lai, P; Keller, B M; Karotki, A; Beachey, D J; Pignol, J P

    2014-09-21

    Permanent seed implant brachytherapy is currently used for adjuvant radiotherapy of early stage prostate and breast cancer patients. The current standard for calculation of dose around brachytherapy sources is based on the AAPM TG-43 formalism, which generates the dose in a homogeneous water medium. Recently, AAPM TG-186 emphasized the importance of accounting for tissue heterogeneities. We have previously reported on a methodology where the absorbed dose in tissue can be obtained by multiplying the dose, calculated by the TG-43 formalism, by an inhomogeneity correction factor (ICF). In this work we make use of dual energy CT (DECT) images to extract ICF parameters. The advantage of DECT over conventional CT is that it eliminates the need for tissue segmentation as well as assignment of population based atomic compositions. DECT images of a heterogeneous phantom were acquired and the dose was calculated using both TG-43 and TG-43 [Formula: see text] formalisms. The results were compared to experimental measurements using Gafchromic films in the mid-plane of the phantom. For a seed implant configuration of 8 seeds spaced 1.5 cm apart in a cubic structure, the gamma passing score for 2%/2 mm criteria improved from 40.8% to 90.5% when ICF was applied to TG-43 dose distributions.

  2. Determination of dosimetric characteristics of OptiSeed(TM) a plastic brachytherapy (103)Pd source.

    PubMed

    Wang, Zhonglu; Hertel, Nolan E

    2005-09-01

    A new (103)Pd plastic brachytherapy source, OptiSeed(TM) Model 1032P, is being introduced by International Brachytherapy sa (IBt). Measurements of the dose distributions about the source were performed using LiF thermoluminescent dosimeters (TLD-100) in Virtual Water(TM). MCNP5 calculations were performed to determine the dose distributions in Virtual Water(TM) and liquid water. The source dose rate constant, radial dose function, anisotropy function and anisotropy factor have been determined following the updated AAPM TG-43 recommendations. The measured dose rate constant in the Virtual Water(TM) phantom was determined to be 0.727+/-6.9% cGyh(-1)U(-1), and the computed value is 0.716+/-2.1% cGyh(-1)U(-1). The Monte-Carlo simulation yielded a dose rate constant of 0.665+/-2.1% cGyh(-1)U(-1) in water. The measured dose rate constant in water is 0.675+/-7.5% cGyh(-1)U(-1). It is determined by multiplying the dose rate constant measured in the Virtual Water(TM) phantom with the ratio of the value calculated in water to that in Virtual Water(TM). The average of the measured and calculated dose rate constant is 0.670+/-5.5% cGyh(-1)U(-1). The radial dose functions of the new source were measured for distances ranging from 1 to 7 cm in a Virtual Water(TM) phantom. The anisotropy functions in Virtual Water(TM) phantom were measured for distances of 2, 3, 5, and 7 cm. The Monte-Carlo computed radial dose functions, anisotropy functions, and anisotropy factors in both Virtual Water(TM) phantom and water are reported.

  3. Inverse planning optimization for hybrid prostate permanent-seed implant brachytherapy plans using two source strengths.

    PubMed

    Cunha, J Adam M; Pickett, Barby; Pouliot, Jean

    2010-06-03

    The purpose is to demonstrate the ability to generate clinically acceptable prostate permanent seed implant plans using two seed types which are identical except for their activity. The IPSA inverse planning algorithms were modified to include multiple dose matrices for the calculation of dose from different sources, and a selection algorithm was implemented to allow for the swapping of source type at any given source position. Five previously treated patients with a range of prostate volumes from 20-48 cm3 were re-optimized under two hybrid scenarios: (1) using 0.32 and 0.51 mGy m2 / h 125I, and (2) using 0.64 and 0.76 mGy m2 / h 125I. Isodose lines were generated and dosimetric indices , V150Prostate, D90Prostate, V150Urethra, V125Urethra, V120Urethra,V100Urethra, and D10Urethra were calculated. The algorithm allows for the generation of single-isotope, multi-activity hybrid brachytherapy plans. By dealing with only one radionuclide, but of different activity, the biology is unchanged from a standard plan. All V100Prostate were within 2.3 percentage points for every plan and always above the clinically desirable 95%. All V150Urethra were identically zero, and V120Urethra is always below the clinically acceptable value of 1.0 cm3. Clinical optimization times for the hybrid plans are still under one minute, for most cases. It is possible to generate clinically advantageous brachytherapy plans (i.e. obtain the same quality dose distribution as a standard single-activity plan) while incorporating leftover seeds from a previous patient treatment. This method will allow a clinic to continue to provide excellent patient care, but at a reduced cost. Multi-activity hybrid plans were equal in quality (as measured by the standard dosimetric indices) to plans with seeds of a single activity. Despite the expanded search space, optimization times for these studies were still under two minutes on a modern day laptop and can be reduced to below one minute in a clinical setting

  4. Thermoluminescent and Monte Carlo dosimetry of a new 170Tm brachytherapy source.

    PubMed

    Nazari, Sona; Sadeghi, Mahdi; Shirvani-Arani, Simindokht; Bahrami-Samani, Ali; Saidi, Pooneh

    2014-03-01

    In this Study characteristics of a new 170Tm brachytherapy seed using thermoluminescent dosimeter and also the Monte Carlo simulations to evaluate between calculated and measured values was determined. Titanium tube contained Tm(NO3)3 powders bombardment at the Tehran Research Reactor (TRR) for a period of 7 days at a flux of 2-3 × 10(13) neutrons/cm2 s. To obtain the radial dose function, g(r), and the anisotropy function, F(r, θ), according to the AAPM TG-43U1 recommendations, 30 cm × 30 cm × 15 cm phantoms of Perspex slabs were used. Brachytherapy dose distributions were simulated with the MCNP5 Monte Carlo (MC) radiation transport code. The MCPLIB04 photon cross-section library was applied using data from ENDF/B-VI. Cell-heating tally, F6 was employed to calculate absorbed dose in two separate runs for both beta and gamma particles. The calculated dose rate constant for the HDR source was found to be 1.113 ± 0.021 cGyU(-1) h(-1). Nominal uncertainty in the measured and calculated radial dose functions, g(r), for the IR-(170)Tm source in Perspex is tabulated is approximately 6% (ranging from 2% to 9%). The anisotropy function, F(r, θ), of the IR-(170)Tm source was measured at radial distances of r = 1.5, 2, 3, 5 cm relative to the seed center, and polar angles θ ranging from 0° to 330° in 30° increments.

  5. Verification of high dose rate 192Ir source position during brachytherapy treatment

    NASA Astrophysics Data System (ADS)

    Batič, M.; Burger, J.; Cindro, V.; Kramberger, G.; Mandič, I.; Mikuž, M.; Studen, A.; Zavrtanik, M.

    2010-05-01

    A system for in vivo tracking of 1 Ci 192Ir source during brachytherapy treatment has been built using high resistivity silicon pad detectors as image sensors and knife-edge lead pinholes as collimators. The sensors consist of 256 pads arranged in 32 ×8 grid with pad size 1.4×1.4 mm2 and 1 mm thickness. The sensors have two metal layers, enabling connection of readout electronics (VATAGP3_1 chips) at the edge of the detector. With source self-images obtained from a dual-pinhole system, location of the source can be reconstructed in three dimensions in real time, allowing on-line detection of deviations from planned treatment. The system was tested with 1 Ci 192Ir clinical source in air and plexi-glass phantom. The movements of the source could be tracked in a field of view of approximately 20×20×20 cm3 with absolute precision of about 5 mm. Positions of the source, relative to the first measured source position, could be mapped with precision of around 3 mm.

  6. Monte Carlo calculations and experimental measurements of dosimetric parameters of the IRA-103Pd brachytherapy source.

    PubMed

    Sadeghi, Mahdi; Raisali, Gholamreza; Hosseini, S Hamed; Shavar, Arzhang

    2008-04-01

    This article presents a brachytherapy source having 103Pd adsorbed onto a cylindrical silver rod that has been developed by the Agricultural, Medical, and Industrial Research School for permanent implant applications. Dosimetric characteristics (radial dose function, anisotropy function, and anisotropy factor) of this source were experimentally and theoretically determined in terms of the updated AAPM Task group 43 (TG-43U1) recommendations. Monte Carlo simulations were used to calculate the dose rate constant. Measurements were performed using TLD-GR200A circular chip dosimeters using standard methods employing thermoluminescent dosimeters in a Perspex phantom. Precision machined bores in the phantom located the dosimeters and the source in a reproducible fixed geometry, providing for transverse-axis and angular dose profiles over a range of distances from 0.5 to 5 cm. The Monte Carlo N-particle (MCNP) code, version 4C simulation techniques have been used to evaluate the dose-rate distributions around this model 103Pd source in water and Perspex phantoms. The Monte Carlo calculated dose rate constant of the IRA-103Pd source in water was found to be 0.678 cGy h(-1) U(-1) with an approximate uncertainty of +/-0.1%. The anisotropy function, F(r, theta), and the radial dose function, g(r), of the IRA- 103Pd source were also measured in a Perspex phantom and calculated in both Perspex and liquid water phantoms.

  7. Air-kerma strength determination of a miniature x-ray source for brachytherapy applications

    NASA Astrophysics Data System (ADS)

    Davis, Stephen D.

    A miniature x-ray source has been developed by Xoft Inc. for high dose-rate brachytherapy treatments. The source is contained in a 5.4 mm diameter water-cooling catheter. The source voltage can be adjusted from 40 kV to 50 kV and the beam current is adjustable up to 300 muA. Electrons are accelerated toward a tungsten-coated anode to produce a lightly-filtered bremsstrahlung photon spectrum. The sources were initially used for early-stage breast cancer treatment using a balloon applicator. More recently, Xoft Inc. has developed vaginal and surface applicators. The miniature x-ray sources have been characterized using a modification of the American Association of Physicists in Medicine Task Group No. 43 formalism normally used for radioactive brachytherapy sources. Primary measurements of air kerma were performed using free-air ionization chambers at the University of Wisconsin (UW) and the National Institute of Standards and Technology (NIST). The measurements at UW were used to calibrate a well-type ionization chamber for clinical verification of source strength. Accurate knowledge of the emitted photon spectrum was necessary to calculate the corrections required to determine air-kerma strength, defined in vacuo. Theoretical predictions of the photon spectrum were calculated using three separate Monte Carlo codes: MCNP5, EGSnrc, and PENELOPE. Each code used different implementations of the underlying radiological physics. Benchmark studies were performed to investigate these differences in detail. The most important variation among the codes was found to be the calculation of fluorescence photon production following electron-induced vacancies in the L shell of tungsten atoms. The low-energy tungsten L-shell fluorescence photons have little clinical significance at the treatment distance, but could have a large impact on air-kerma measurements. Calculated photon spectra were compared to spectra measured with high-purity germanium spectroscopy systems at both UW and

  8. Performance assessment of the BEBIG MultiSource high dose rate brachytherapy treatment unit.

    PubMed

    Palmer, Antony; Mzenda, Bongile

    2009-12-21

    A comprehensive system characterisation was performed of the Eckert & Ziegler BEBIG GmbH MultiSource High Dose Rate (HDR) brachytherapy treatment unit with an (192)Ir source. The unit is relatively new to the UK market, with the first installation in the country having been made in the summer of 2009. A detailed commissioning programme was devised and is reported including checks of the fundamental parameters of source positioning, dwell timing, transit doses and absolute dosimetry of the source. Well chamber measurements, autoradiography and video camera analysis techniques were all employed. The absolute dosimetry was verified by the National Physical Laboratory, UK, and compared to a measurement based on a calibration from PTB, Germany, and the supplied source certificate, as well as an independent assessment by a visiting UK centre. The use of the 'Krieger' dosimetry phantom has also been evaluated. Users of the BEBIG HDR system should take care to avoid any significant bend in the transfer tube, as this will lead to positioning errors of the source, of up to 1.0 mm for slight bends, 2.0 mm for moderate bends and 5.0 mm for extreme curvature (depending on applicators and transfer tube used) for the situations reported in this study. The reason for these errors and the potential clinical impact are discussed. Users should also note the methodology employed by the system for correction of transit doses, and that no correction is made for the initial and final transit doses. The results of this investigation found that the uncorrected transit doses lead to small errors in the delivered dose at the first dwell position, of up to 2.5 cGy at 2 cm (5.6 cGy at 1 cm) from a 10 Ci source, but the transit dose correction for other dwells was accurate within 0.2 cGy. The unit has been mechanically reliable, and source positioning accuracy and dwell timing have been reproducible, with overall performance similar to other existing HDR equipment. The unit is capable of high

  9. Determination of air-kerma strength for the {sup 192}Ir GammaMedplus iX pulsed-dose-rate brachytherapy source

    SciTech Connect

    Riley, A. D.; Pike, T. L.; Micka, J. A.; Fulkerson, R. K.; DeWerd, L. A.

    2013-07-15

    Purpose: Pulsed-dose-rate (PDR) brachytherapy was originally proposed to combine the therapeutic advantages of high-dose-rate (HDR) and low-dose-rate brachytherapy. Though uncommon in the United States, several facilities employ pulsed-dose-rate brachytherapy in Europe and Canada. Currently, there is no air-kerma strength standard for PDR brachytherapy {sup 192}Ir sources traceable to the National Institute of Standards and Technology. Discrepancies in clinical measurements of the air-kerma strength of the PDR brachytherapy sources using HDR source-calibrated well chambers warrant further investigation.Methods: In this research, the air-kerma strength for an {sup 192}Ir PDR brachytherapy source was compared with the University of Wisconsin Accredited Dosimetry Calibration Laboratory transfer standard well chambers, the seven-distance technique [B. E. Rasmussen et al., 'The air-kerma strength standard for 192Ir HDR sources,' Med. Phys. 38, 6721-6729 (2011)], and the manufacturer's stated value. Radiochromic film and Monte Carlo techniques were also employed for comparison to the results of the measurements.Results: While the measurements using the seven-distance technique were within + 0.44% from the manufacturer's determination, there was a + 3.10% difference between the transfer standard well chamber measurements and the manufacturer's stated value. Results showed that the PDR brachytherapy source has geometric and thus radiological qualities that exhibit behaviors similar to a point source model in contrast to a conventional line source model.Conclusions: The resulting effect of the pointlike characteristics of the PDR brachytherapy source likely account for the differences observed between well chamber and in-air measurements.

  10. A standard dosimetry procedure for 192Ir sources used for endovascular brachytherapy.

    PubMed

    Piermattei, A; Fidanzio, A; Azario, L; Russo, A; Perrone, F; Capote, R; Toni, M P

    2002-12-07

    The experimental dosimetry of a high dose rate (HDR) 192Ir source used for the brachytherapy of peripheral vessels is reported. The direct determination of the reference air kerma rate Kr agrees, within the experimental uncertainty, with the results obtained by a well ionization chamber calibrated at the NIST and the manufacturer's certification. A highly sensitive (HS) radiochromic film (RCF), that presents only one active layer, was used for the source dosimetry in a water phantom. The adopted experimental set-up, with the source in its catheter positioned on the RCF plane, seems to have given better accuracy of the RCF optical density measurements. The agreement between the measurement of the dose rate constant DKr (10 mm, pi/2) and the literature data confirmed the coherence of the HS RCF calibration obtained by the kerma in air measurements. The RCF measurements supplied dosimetric information about the dose to water per reference air kerma rate D(r, theta)/Kr along the source transverse bisector axis, the radial dose function g(r) and the anisotropy function F(r, theta). The value D(2 mm, pi/2)/Kr = 22.4 +/- 1.2 cGy h(-1)/(microGy h(-1)) is supplied with a dose uncertainty that is essentially due to the indeterminacy of the source position in the catheter. The data of the radial and anisotropy functions have been compared with Monte Carlo determinations reported in the literature.

  11. Determination of dosimetric parameters for shielded 153Gd source in prostate cancer brachytherapy

    PubMed Central

    Ghorbani, Mahdi; Ghatei, Najmeh; Mehrpouyan, Mohammad; Meigooni, Ali S.; Shahraini, Ramin

    2017-01-01

    Abstract Background Interstitial rotating shield brachytherapy (I-RSBT) is a recently developed method for treatment of prostate cancer. In the present study TG-43 dosimetric parameters of a 153Gd source were obtained for use in I-RSBT. Materials and methods A 153Gd source located inside a needle including a Pt shield and an aluminum window was simulated using MCNPX Monte Carlo code. Dosimetric parameters of this source model, including air kerma strength, dose rate constant, radial dose function and 2D anisotropy function, with and without the shields were calculated according to the TG-43 report. Results The air kerma strength was found to be 6.71 U for the non-shielded source with 1 GBq activity. This value was found to be 0.04 U and 6.19 U for the Pt shield and Al window cases, respectively. Dose rate constant for the non-shielded source was found to be 1.20 cGy/(hU). However, for a shielded source with Pt and aluminum window, dose rate constants were found to be 0.07 cGy/(hU) and 0.96 cGy/(hU), on the shielded and window sides, respectively. The values of radial dose function and anisotropy function were tabulated for these sources. Additionally, isodose curves were drawn for sources with and without shield, in order to evaluate the effect of shield on dose distribution. Conclusions Existence of the Pt shield may greatly reduce the dose to organs at risk and normal tissues which are located toward the shielded side. The calculated air kerma strength, dose rate constant, radial dose function and 2D anisotropy function data for the 153Gd source for the non-shielded and the shielded sources can be used in the treatment planning system (TPS). PMID:28265239

  12. Dosimetric study of a brachytherapy treatment of esophagus with Brazilian 192Ir sources using an anthropomorphic phantom

    NASA Astrophysics Data System (ADS)

    Neves, Lucio P.; Santos, William S.; Gorski, Ronan; Perini, Ana P.; Maia, Ana F.; Caldas, Linda V. E.; Orengo, Gilberto

    2014-11-01

    Several radioisotopes are produced at Instituto de Pesquisas Energéticas e Nucleares for the use in medical treatments, including the activation of 192Ir sources. These sources are suitable for brachytherapy treatments, due to their low or high activity, depending on the concentration of 192Ir, easiness to manufacture, small size, stable daughter products and the possibility of re-utilization. They may be used for the treatment of prostate, cervix, head and neck, skin, breast, gallbladder, uterus, vagina, lung, rectum, and eye cancer treatment. In this work, the use of some 192Ir sources was studied for the treatment of esophagus cancer, especially the dose determination of important structures, such as those on the mediastinum. This was carried out utilizing a FASH anthropomorphic phantom and the MCNP5 Monte Carlo code to transport the radiation through matter. It was possible to observe that the doses at lungs, breast, esophagus, thyroid and heart were the highest, which was expected due to their proximity to the source. Therefore, the data are useful to assess the representative dose specific to brachytherapy treatments on the esophagus for radiation protection purposes. The use of brachytherapy sources was studied for the treatment of esophagus cancer. FASH anthropomorphic phantom and MCNP5 Monte Carlo code were employed. The doses at lungs, breast, esophagus, thyroid and heart were the highest. The data is useful to assess the representative doses of treatments on the esophagus.

  13. Comparative dosimetry of GammaMed Plus high-dose rate 192Ir brachytherapy source

    PubMed Central

    Patel, N. P.; Majumdar, B.; Vijayan, V.

    2010-01-01

    The comparative dosimetry of GammaMed (GM) Plus high-dose rate brachytherapy source was performed by an experiment using 0.1-cc thimble ionization chamber and simulation-based study using EGSnrc code. In-water dose measurements were performed with 0.1-cc chamber to derive the radial dose function (r = 0.8 to 20.0 cm) and anisotropy function (r = 5.0 cm with polar angle from 10° to 170°). The nonuniformity correction factor for 0.1-cc chamber was applied for in-water measurements at shorter distances from the source. The EGSnrc code was used to derive the dose rate constant (Λ), radial dose function gL(r) and anisotropy function F(r, θ) of GM Plus source. The dosimetric data derived using EGSnrc code in our study were in very good agreement relative to published data for GM Plus source. The radial dose function up to 12 cm derived from measured dose using 0.1-cc chamber was in agreement within ±3% of data derived by the simulation study. PMID:20927220

  14. Effectiveness Evaluation of Skin Covers against Intravascular Brachytherapy Sources Using VARSKIN3 Code

    PubMed Central

    Baghani, H R; Nazempour, A R; Aghamiri, S M R; Hosseini Daghigh, S M; Mowlavi, A A

    2013-01-01

    Background and Objective: The most common intravascular brachytherapy sources include 32P, 188Re, 106Rh and 90Sr/90Y. In this research, skin absorbed dose for different covering materials in dealing with these sources were evaluated and the best covering material for skin protection and reduction of absorbed dose by radiation staff was recognized and recommended. Method: Four materials including polyethylene, cotton and two different kinds of plastic were proposed as skin covers and skin absorbed dose at different depths for each kind of the materials was calculated separately using the VARSKIN3 code. Results: The results suggested that for all sources, skin absorbed dose was minimized when using polyethylene. Considering this material as skin cover, maximum and minimum doses at skin surface were related to 90Sr/90Y and 106Rh, respectively. Conclusion: polyethylene was found the most effective cover in reducing skin dose and protecting the skin. Furthermore, proper agreement between the results of VARSKIN3 and other experimental measurements indicated that VRASKIN3 is a powerful tool for skin dose calculations when working with beta emitter sources. Therefore, it can be utilized in dealing with the issue of radiation protection. PMID:25505758

  15. A Monte Carlo study on dose distribution evaluation of Flexisource 192Ir brachytherapy source

    PubMed Central

    Alizadeh, Majid; Ghorbani, Mahdi; Haghparast, Abbas; Zare, Naser; Ahmadi Moghaddas, Toktam

    2015-01-01

    Aim The aim of this study is to evaluate the dose distribution of the Flexisource 192Ir source. Background Dosimetric evaluation of brachytherapy sources is recommended by task group number 43 (TG. 43) of American Association of Physicists in Medicine (AAPM). Materials and methods MCNPX code was used to simulate Flexisource 192Ir source. Dose rate constant and radial dose function were obtained for water and soft tissue phantoms and compared with previous data on this source. Furthermore, dose rate along the transverse axis was obtained by simulation of the Flexisource and a point source and the obtained data were compared with those from Flexiplan treatment planning system (TPS). Results The values of dose rate constant obtained for water and soft tissue phantoms were equal to 1.108 and 1.106, respectively. The values of the radial dose function are listed in the form of tabulated data. The values of dose rate (cGy/s) obtained are shown in the form of tabulated data and figures. The maximum difference between TPS and Monte Carlo (MC) dose rate values was 11% in a water phantom at 6.0 cm from the source. Conclusion Based on dosimetric parameter comparisons with values previously published, the accuracy of our simulation of Flexisource 192Ir was verified. The results of dose rate constant and radial dose function in water and soft tissue phantoms were the same for Flexisource and point sources. For Flexisource 192Ir source, the results of TPS calculations in a water phantom were in agreement with the simulations within the calculation uncertainties. Furthermore, the results from the TPS calculation for Flexisource and MC calculation for a point source were practically equal within the calculation uncertainties. PMID:25949224

  16. Film dosimetry calibration method for pulsed-dose-rate brachytherapy with an 192Ir source.

    PubMed

    Schwob, Nathan; Orion, Itzhak

    2007-05-01

    192Ir sources have been widely used in clinical brachytherapy. An important challenge is to perform dosimetric measurements close to the source despite the steep dose gradient. The common, inexpensive silver halide film is a classic two-dimensional integrator dosimeter and would be an attractive solution for these dose measurements. The main disadvantage of film dosimetry is the film response to the low-energy photon. Since the photon energy spectrum is known to vary with depth, the sensitometric curves are expected to be dependent on depth. The purpose of this study is to suggest a correction method for silver halide film dosimetry that overcomes the response changes at different depths. Sensitometric curves have been obtained at different depths with verification film near a 1 Ci 192Ir pulsed-dose-rate source. The depth dependence of the film response was observed and a correction function was established. The suitability of the method was tested through measurement of the radial dose profile and radial dose function. The results were compared to Monte Carlo-simulated values according to the TG43 formalism. Monte Carlo simulations were performed separately for the beta and gamma source emissions, using the EGS4 code system, including the low-energy photon and electron transport optimization procedures. The beta source emission simulation showed that the beta dose contribution could be neglected and therefore the film-depth dependence could not be attributed to this part of the source radioactivity. The gamma source emission simulations included photon-spectra collection at several depths. The results showed a depth-dependent softening of the photon spectrum that can explain the film-energy dependence.

  17. Overview on the dosimetric uncertainty analysis for photon-emitting brachytherapy sources, in the light of the AAPM Task Group No 138 and GEC-ESTRO report

    NASA Astrophysics Data System (ADS)

    DeWerd, Larry A.; Venselaar, Jack L. M.; Ibbott, Geoffrey S.; Meigooni, Ali S.; Stump, Kurt E.; Thomadsen, Bruce R.; Rivard, Mark J.

    2012-10-01

    In 2011, the American Association of Physicists in Medicine (AAPM) and the Groupe Européen de Curiethérapie-European Society for Radiotherapy and Oncology (GEC-ESTRO) published a report pertaining to uncertainties in brachytherapy single-source dosimetry preceding clinical use. The International Organization for Standardization's Guide to the Expression of Uncertainty in Measurement and Technical Note 1297 by the National Institute of Standards and Technology are taken as reference standards for uncertainty formalism. Uncertainties involved in measurements or Monte Carlo methods to estimate brachytherapy dose distributions are provided with discussion of the components intrinsic to the overall dosimetric assessment. The uncertainty propagation from the primary calibration standard through transfer to the clinic for air-kerma strength is given with uncertainties in each of the brachytherapy dosimetry parameters of the AAPM TG-43 dose-calculation formalism. For low-energy and high-energy brachytherapy sources of low dose-rate and high dose-rate, a combined dosimetric uncertainty <5% (k = 1) is estimated, which is consistent with prior literature estimates. Recommendations are provided for clinical medical physicists, dosimetry investigators, and manufacturers of brachytherapy sources and treatment planning systems. These recommendations reflect the guidance of the AAPM and GEC-ESTRO for their members, and may also be used as guidance to manufacturers and regulatory agencies in developing good manufacturing practices for conventional brachytherapy sources used in routine clinical treatments.

  18. Dosimetric characterization of an 192Ir brachytherapy source with the Monte Carlo code PENELOPE.

    PubMed

    Casado, Francisco Javier; García-Pareja, Salvador; Cenizo, Elena; Mateo, Beatriz; Bodineau, Coral; Galán, Pedro

    2010-01-01

    Monte Carlo calculations are highly spread and settled practice to calculate brachytherapy sources dosimetric parameters. In this study, recommendations of the AAPM TG-43U1 report have been followed to characterize the Varisource VS2000 (192)Ir high dose rate source, provided by Varian Oncology Systems. In order to obtain dosimetric parameters for this source, Monte Carlo calculations with PENELOPE code have been carried out. TG-43 formalism parameters have been presented, i.e., air kerma strength, dose rate constant, radial dose function and anisotropy function. Besides, a 2D Cartesian coordinates dose rate in water table has been calculated. These quantities are compared to this source reference data, finding results in good agreement with them. The data in the present study complement published data in the next aspects: (i) TG-43U1 recommendations are followed regarding to phantom ambient conditions and to uncertainty analysis, including statistical (type A) and systematic (type B) contributions; (ii) PENELOPE code is benchmarked for this source; (iii) Monte Carlo calculation methodology differs from that usually published in the way to estimate absorbed dose, leaving out the track-length estimator; (iv) the results of the present work comply with the most recent AAPM and ESTRO physics committee recommendations about Monte Carlo techniques, in regards to dose rate uncertainty values and established differences between our results and reference data. The results stated in this paper provide a complete parameter collection, which can be used for dosimetric calculations as well as a means of comparison with other datasets from this source.

  19. DETECTORS AND EXPERIMENTAL METHODS: Equivalent properties of single event burnout induced by different sources

    NASA Astrophysics Data System (ADS)

    Yang, Shi-Yu; Cao, Zhou; Da, Dao-An; Xue, Yu-Xiong

    2009-05-01

    The experimental results of single event burnout induced by heavy ions and 252Cf fission fragments in power MOSFET devices have been investigated. It is concluded that the characteristics of single event burnout induced by 252Cf fission fragments is consistent to that in heavy ions. The power MOSFET in the “turn-off" state is more susceptible to single event burnout than it is in the “turn-on" state. The thresholds of the drain-source voltage for single event burnout induced by 173 MeV bromine ions and 252Cf fission fragments are close to each other, and the burnout cross section is sensitive to variation of the drain-source voltage above the threshold of single event burnout. In addition, the current waveforms of single event burnouts induced by different sources are similar. Different power MOSFET devices may have different probabilities for the occurrence of single event burnout.

  20. The difference of scoring dose to water or tissues in Monte Carlo dose calculations for low energy brachytherapy photon sources

    SciTech Connect

    Landry, Guillaume; Reniers, Brigitte; Pignol, Jean-Philippe; Beaulieu, Luc; Verhaegen, Frank

    2011-03-15

    Purpose: The goal of this work is to compare D{sub m,m} (radiation transported in medium; dose scored in medium) and D{sub w,m} (radiation transported in medium; dose scored in water) obtained from Monte Carlo (MC) simulations for a subset of human tissues of interest in low energy photon brachytherapy. Using low dose rate seeds and an electronic brachytherapy source (EBS), the authors quantify the large cavity theory conversion factors required. The authors also assess whether applying large cavity theory utilizing the sources' initial photon spectra and average photon energy induces errors related to spatial spectral variations. First, ideal spherical geometries were investigated, followed by clinical brachytherapy LDR seed implants for breast and prostate cancer patients. Methods: Two types of dose calculations are performed with the GEANT4 MC code. (1) For several human tissues, dose profiles are obtained in spherical geometries centered on four types of low energy brachytherapy sources: {sup 125}I, {sup 103}Pd, and {sup 131}Cs seeds, as well as an EBS operating at 50 kV. Ratios of D{sub w,m} over D{sub m,m} are evaluated in the 0-6 cm range. In addition to mean tissue composition, compositions corresponding to one standard deviation from the mean are also studied. (2) Four clinical breast (using {sup 103}Pd) and prostate (using {sup 125}I) brachytherapy seed implants are considered. MC dose calculations are performed based on postimplant CT scans using prostate and breast tissue compositions. PTV D{sub 90} values are compared for D{sub w,m} and D{sub m,m}. Results: (1) Differences (D{sub w,m}/D{sub m,m}-1) of -3% to 70% are observed for the investigated tissues. For a given tissue, D{sub w,m}/D{sub m,m} is similar for all sources within 4% and does not vary more than 2% with distance due to very moderate spectral shifts. Variations of tissue composition about the assumed mean composition influence the conversion factors up to 38%. (2) The ratio of D{sub 90(w

  1. Theoretical and experimental determination of dosimetric characteristics for ADVANTAGE Pd-103 brachytherapy source.

    PubMed

    Meigooni, Ali S; Dini, Sharifeh A; Awan, Shahid B; Dou, Kai; Koona, Rafiq A

    2006-08-01

    ADVANTAGE Pd-103 brachytherapy source has been recently introduced by IsoAid for prostate permanent implants. Dosimetric characteristics (Dose rate constant, radial dose function, 2D-, and 1D-anisotropy functions) of this source model have been determined using both theoretical and experimental methods, following the updated TG-43U1 protocol. Derivation of the dose rate constant was based on recent NIST WAFAC calibration performed in accordance with the 1999 Standards. Measurements were performed in Solid Water using LiF TLD chips and the theoretical calculations were performed in Solid Water and liquid water phantom materials using PTRAN Monte Carlo code. The results of the Monte Carlo simulation have shown a dose rate constant of 0.69 cGyh(-1) U(-1) in liquid water and 0.67 cGyh(-1) U(-1) in Solid Water medium. The measured dose rate constant in Solid Water was found to be 0.68+/-8% cGyh(-1) U(-1), which is in a good agreement (within +/-5%) to the Monte Carlo simulated data. The 2D- and 1D-anisotropy functions of the ADVANTAGE Pd-103 source were calculated for radial distances ranging from 0.5 to 5.0 cm. Radial dose function was determined for radial distances ranging from 0.2 to 8.0 cm using line source approximation. All these calculations are based on L(eff) equal to 3.61 cm, calculated following TG-43U1 recommendations. The tabulated data for 2D-anisotropy function, 1D-anisotropy function, dose rate constant and radial dose function have been produced for clinical application of this source model.

  2. Improved source path localisation in ring applicators and the clinical impact for gynecological brachytherapy

    PubMed Central

    Humer, Irene; Kirisits, Christian; Berger, Daniel; Trnková, Petra; Pötter, Richard

    2015-01-01

    Purpose The path of subsequent dwell positions of an afterloader source being moved through a ring applicator for cervix cancer brachytherapy deviates from an ideal circle and the position of marker wires. This can lead to deviations of several millimetres between real and assumed dwell positions for treatment planning with simplified source path models. The aim of this study was to test video- and autoradiography-based methods for source path determination, and to study the influence of dwell position accuracy on dose-volume histogram (DVH)-parameters. Material and methods Videos of the exact motion of the source wire through three different (r = 26, 30, 34 mm) computed tomography/magnetic resonance (CT/MR) compatible plastic ring applicators were recorded. Observed dwell positions covering the whole length of each applicators channel were used to adjust the circular source path model. The agreement of the true source positions derived from video analysis with those of the corrected circular source path was verified using autoradiography. The impact of an accurate source path definition on dose planning was analysed by simulating clinically relevant uncertainties in 10 clinical treatment plans. Results Depending on the ring size, source path diameters had to be increased by 0.5-1.0 mm in order to achieve acceptable maximum differences between observed and corrected dwell positions (1.3-2.0 mm). Autoradiography analysis showed a positional accuracy within ± 3 mm (extended standard deviation k = 2). For shifts of ± 2.5 mm for even all dwell positions, the systematic and random variation of the D2cm3 for bladder, rectum, and sigmoid was within 3%, while the impact on DVH uncertainties was much smaller for clinical target volume (CTV)HR and gross tumour volume (GTV). Conclusions It is strongly advised to verify the real source path for ring applicators during acceptance testing in order to assure accurate source path definition and dose planning. Autoradiography can

  3. A novel optical calorimetry dosimetry approach applied to an HDR Brachytherapy source

    NASA Astrophysics Data System (ADS)

    Cavan, A.; Meyer, J.

    2013-06-01

    The technique of Digital Holographic Interferometry (DHI) is applied to the measurement of radiation absorbed dose distribution in water. An optical interferometer has been developed that captures the small variations in the refractive index of water due to the radiation induced temperature increase ΔT. The absorbed dose D is then determined with high temporal and spatial resolution using the calorimetric relation D=cΔT (where c is the specific heat capacity of water). The method is capable of time resolving 3D spatial calorimetry. As a proof-of-principle of the approach, a prototype DHI dosimeter was applied to the measurement of absorbed dose from a High Dose Rate (HDR) Brachytherapy source. Initial results are in agreement with modelled doses from the Brachyvision treatment planning system, demonstrating the viability of the system for high dose rate applications. Future work will focus on applying corrections for heat diffusion and geometric effects. The method has potential to contribute to the dosimetry of diverse high dose rate applications which require high spatial resolution such as microbeam radiotherapy (MRT) or small field proton beam dosimetry but may potentially also be useful for interface dosimetry.

  4. Evaluation of a Proposed Biodegradable 188Re Source for Brachytherapy Application

    PubMed Central

    Khorshidi, Abdollah; Ahmadinejad, Marjan; Hamed Hosseini, S.

    2015-01-01

    Abstract This study aimed to evaluate dosimetric characteristics based on Monte Carlo (MC) simulations for a proposed beta emitter bioglass 188Re seed for internal radiotherapy applications. The bioactive glass seed has been developed using the sol-gel technique. The simulations were performed for the seed using MC radiation transport code to investigate the dosimetric factors recommended by the AAPM Task Group 60 (TG-60). Dose distributions due to the beta and photon radiation were predicted at different radial distances surrounding the source. The dose rate in water at the reference point was calculated to be 7.43 ± 0.5 cGy/h/μCi. The dosimetric factors consisting of the reference point dose rate, D(r0,θ0), the radial dose function, g(r), the 2-dimensional anisotropy function, F(r,θ), the 1-dimensional anisotropy function, φan(r), and the R90 quantity were estimated and compared with several available beta-emitting sources. The element 188Re incorporated in bioactive glasses produced by the sol-gel technique provides a suitable solution for producing new materials for seed implants applied to brachytherapy applications in prostate and liver cancers treatment. Dose distribution of 188Re seed was greater isotropic than other commercially attainable encapsulated seeds, since it has no end weld to attenuate radiation. The beta radiation-emitting 188Re source provides high doses of local radiation to the tumor tissue and the short range of the beta particles limit damage to the adjacent normal tissue. PMID:26181543

  5. Production, distribution and applications of californium-252 neutron sources.

    PubMed

    Martin, R C; Knauer, J B; Balo, P A

    2000-01-01

    The radioisotope 252Cf is routinely encapsulated into compact, portable, intense neutron sources with a 2.6-yr half-life. A source the size of a person's little finger can emit up to 10(11) neutrons s(-1). Californium-252 is used commercially as a reliable, cost-effective neutron source for prompt gamma neutron activation analysis (PGNAA) of coal, cement and minerals, as well as for detection and identification of explosives, land mines and unexploded military ordinance. Other uses are neutron radiography, nuclear waste assays, reactor start-up sources, calibration standards and cancer therapy. The inherent safety of source encapsulations is demonstrated by 30 yr of experience and by US Bureau of Mines tests of source survivability during explosions. The production and distribution center for the US Department of Energy (DOE) Californium Program is the Radiochemical Engineering Development Center (REDC) at Oak Ridge National Laboratory (ORNL). DOE sells 252Cf to commercial reencapsulators domestically and internationally. Sealed 252Cf sources are also available for loan to agencies and subcontractors of the US government and to universities for educational, research and medical applications. The REDC has established the Californium User Facility (CUF) for Neutron Science to make its large inventory of 252Cf sources available to researchers for irradiations inside uncontaminated hot cells. Experiments at the CUF include a land mine detection system, neutron damage testing of solid-state detectors, irradiation of human cancer cells for boron neutron capture therapy experiments and irradiation of rice to induce genetic mutations.

  6. Dependence with air density of the response of the PTW SourceCheck ionization chamber for low energy brachytherapy sources

    SciTech Connect

    Tornero-López, Ana M.; Guirado, Damián; Ruiz-Arrebola, Samuel; Perez-Calatayud, Jose; Simancas, Fernando; Lallena, Antonio M.; Gazdic-Santic, Maja

    2013-12-15

    Purpose: Air-communicating well ionization chambers are commonly used to assess air kerma strength of sources used in brachytherapy. The signal produced is supposed to be proportional to the air density within the chamber and, therefore, a density-independent air kerma strength is obtained when the measurement is corrected to standard atmospheric conditions using the usual temperature and pressure correction factor. Nevertheless, when assessing low energy sources, the ionization chambers may not fulfill that condition and a residual density dependence still remains after correction. In this work, the authors examined the behavior of the PTW 34051 SourceCheck ionization chamber when measuring the air kerma strength of {sup 125}I seeds.Methods: Four different SourceCheck chambers were analyzed. With each one of them, two series of measurements of the air kerma strength for {sup 125}I selectSeed{sup TM} brachytherapy sources were performed inside a pressure chamber and varying the pressure in a range from 747 to 1040 hPa (560 to 780 mm Hg). The temperature and relative humidity were kept basically constant. An analogous experiment was performed by taking measurements at different altitudes above sea level.Results: Contrary to other well-known ionization chambers, like the HDR1000 PLUS, in which the temperature-pressure correction factor overcorrects the measurements, in the SourceCheck ionization chamber they are undercorrected. At a typical atmospheric situation of 933 hPa (700 mm Hg) and 20 °C, this undercorrection turns out to be 1.5%. Corrected measurements show a residual linear dependence on the density and, as a consequence, an additional density dependent correction must be applied. The slope of this residual linear density dependence is different for each SourceCheck chamber investigated. The results obtained by taking measurements at different altitudes are compatible with those obtained with the pressure chamber.Conclusions: Variations of the altitude and

  7. Dose distribution for endovascular brachytherapy using Ir-192 sources: comparison of Monte Carlo calculations with radiochromic film measurements

    NASA Astrophysics Data System (ADS)

    Sureka, C. S.; Sunny, C. Sunil; Subbaiah, K. V.; Aruna, P.; Ganesan, S.

    2007-01-01

    An analysis of Ir-192 source distribution using the Monte Carlo method and radiochromic film experiments for endovascular brachytherapy is presented. Three different source possibilities, namely, mHDR Ir-192 sources with 5 mm and 2.5 mm step sizes and Ir-192 seed sources with 1 mm air gap are investigated to obtain uniform radial dose distribution throughout the treatment area. From this study, it is inferred that mHDR Ir-192 sources with 2.5 mm step size are effective for getting dose uniformity. Hence, different restenosis geometries, namely, linear, dumb bell and hairpin, are simulated with 2.5 mm step size, 15 mHDR Ir-192 sources using the Monte Carlo technique and the results are compared experimentally by using radiochromic films. The results from both methods agreed to within 7%. Further, it is also inferred that for the dosimetry of endovascular brachytherapy, the film dosimetry may be considered adequate, even if the film calibration is time consuming and requires adequate dosimetric procedures.

  8. Brachytherapy of recurrent malignant brain tumors with removable high-activity iodine-125 sources

    SciTech Connect

    Gutin, P.H.; Phillips, T.L.; Wara, W.M.; Leibel, S.A.; Hosobuchi, Y.; Levin, V.A.; Weaver, K.A.; Lamb, S.

    1984-01-01

    Thirty-seven patients harboring recurrent malignant primary or metastatic brain tumors were treated by 40 implantations of high-activity iodine-125 (/sup 125/I) sources. All patients had been treated with irradiation and most had been treated with chemotherapeutic agents, primarily nitrosoureas. Implantations were performed using computerized tomography (CT)-directed stereotaxy; /sup 125/I sources were held in one or more afterloaded catheters that were removed after the desired dose (minimum tumor dose of 3000 to 12,000 rads) had been delivered. Patients were followed with sequential neurological examinations and CT scans. Results of 34 implantation procedures were evaluable: 18 produced documented tumor regression (response) for 4 to 13+ months; five, performed in deteriorating patients, resulted in disease stability for 4 to 12 months. The overall response rate was 68%. In 11 patients, implantation did not halt clinical deterioration. At exploratory craniotomy 5 to 12 months after implantation, focal radiation necrosis was documented in two patients whose tumor had responded initially and then progressed, and in three patients whose disease had progressed initially (four glioblastomas, one anaplastic astrocytoma); histologically identifiable tumor was documented in two of these patients. All improved after resection of the focal necrotic mass and are still alive 10, 15, 19, 24, and 25 months after the initial implantation procedure; only one patient has evidence of tumor regrowth. The median follow-up period after implantation for the malignant glioma (anaplastic astrocytoma and glioblastoma multiforme) group is 9 months, with 48% of patients still surviving. While direct comparison with the results of chemotherapy is difficult, results obtained in this patient group with interstitial brachytherapy are probably superior to results obtained with chemotherapy.

  9. Comparison of tumor and normal tissue dose for accelerated partial breast irradiation using an electronic brachytherapy eBx source and an Iridium-192 source.

    PubMed

    Ahmad, Salahuddin; Johnson, Daniel; Hiatt, Jessica R; Still, D Timothy; Furhang, Eli E; Marsden, David; Kearly, Frank; Bernard, Damian A; Holt, Randall W

    2010-09-14

    The objective of this study has been to compare treatment plans for patients treated with electronic brachytherapy (eBx) using the Axxent System as adjuvant therapy for early stage breast cancer with treatment plans prepared from the same CT image sets using an Ir-192 source. Patients were implanted with an appropriately sized Axxent balloon applicator based on tumor cavity size and shape. A CT image of the implanted balloon was utilized for developing both eBx and Ir-192 brachytherapy treatment plans. The prescription dose was 3.4 Gy per fraction for 10 fractions to be delivered to 1 cm beyond the balloon surface. Iridium plans were provided by the sites on 35 of the 44 patients enrolled in the study. The planning target volume coverage was very similar when comparing sources for each patient as well as between patients. There were no statistical differences in mean %V100. The percent of the planning target volume in the high dose region was increased with eBx as compared with Iridium (p < 0.001). The mean maximum calculated skin and rib doses did not vary greatly between eBx and Iridium. By contrast, the doses to the ipsilateral lung and the heart were significantly lower with eBx as compared with Iridium (p < 0.0001). The total nominal dwell times required for treatment can be predicted by using a combination of the balloon fill volume and planned treatment volume (PTV). This dosimetric comparison of eBx and Iridium sources demonstrates that both forms of balloon-based brachytherapy provide comparable dose to the planning target volume. Electronic brachytherapy is significantly associated with increased dose at the surface of the balloon and decreased dose outside the PTV, resulting in significantly increased tissue sparing in the heart and ipsilateral lung.

  10. SU-F-BRA-08: An Investigation of Well-Chamber Responses for An Electronic Brachytherapy Source

    SciTech Connect

    Culberson, W; Micka, J

    2015-06-15

    Purpose: The aim of this study was to investigate the variation of well-type ionization chamber response between a Xoft Axxent™ electronic brachytherapy (EBT) source and a GE Oncoseed™ 6711 I-125 seed. Methods: A new EBT air-kerma standard has recently been introduced by the National Institute of Standards and Technology (NIST). Historically, the Axxent source strength has been based on a well chamber calibration from an I-125 brachytherapy source due to the lack of a primary standard. Xoft utilizes a calibration procedure that employs a GE 6711 seed calibration as a surrogate standard to represent the air-kerma strength of an Axxent source. This method is based on the premise that the energies of the two sources are similar and thus, a conversion factor would be a suitable interim solution until a NIST standard was established. For this investigation, a number of well chambers of the same model type and three different EBT sources were used to determine NIST-traceable calibration coefficients for both the GE 6711 seed and the Axxent source. The ratio of the two coefficients was analyzed for consistency and also to identify any possible correlations with chamber vintage or the sources themselves. Results: For all well chambers studied, the relative standard deviation of the ratio of calibration coefficients between the two standards is less than 1%. No specific trends were found with the well chamber vintage or between the three different EBT sources used. Conclusion: The variation of well chamber calibration coefficients between a Xoft Axxent™ EBT source versus a GE 6711 Oncoseed™ are consistent across well chamber vintage and between sources. The results of this investigation confirm the underlying assumptions and stability of the surrogate standard currently in use by Xoft, and establishes a migration path for future implementation of the new NIST air kerma standard. This research is supported in part by Xoft, a subsidiary of iCAD.

  11. Comparison of TG-43 and TG-186 in breast irradiation using a low energy electronic brachytherapy source

    SciTech Connect

    White, Shane A.; Landry, Guillaume; Reniers, Brigitte; Fonseca, Gabriel Paiva; Beaulieu, Luc; Verhaegen, Frank

    2014-06-15

    Purpose: The recently updated guidelines for dosimetry in brachytherapy in TG-186 have recommended the use of model-based dosimetry calculations as a replacement for TG-43. TG-186 highlights shortcomings in the water-based approach in TG-43, particularly for low energy brachytherapy sources. The Xoft Axxent is a low energy (<50 kV) brachytherapy system used in accelerated partial breast irradiation (APBI). Breast tissue is a heterogeneous tissue in terms of density and composition. Dosimetric calculations of seven APBI patients treated with Axxent were made using a model-based Monte Carlo platform for a number of tissue models and dose reporting methods and compared to TG-43 based plans. Methods: A model of the Axxent source, the S700, was created and validated against experimental data. CT scans of the patients were used to create realistic multi-tissue/heterogeneous models with breast tissue segmented using a published technique. Alternative water models were used to isolate the influence of tissue heterogeneity and backscatter on the dose distribution. Dose calculations were performed using Geant4 according to the original treatment parameters. The effect of the Axxent balloon applicator used in APBI which could not be modeled in the CT-based model, was modeled using a novel technique that utilizes CAD-based geometries. These techniques were validated experimentally. Results were calculated using two dose reporting methods, dose to water (D{sub w,m}) and dose to medium (D{sub m,m}), for the heterogeneous simulations. All results were compared against TG-43-based dose distributions and evaluated using dose ratio maps and DVH metrics. Changes in skin and PTV dose were highlighted. Results: All simulated heterogeneous models showed a reduced dose to the DVH metrics that is dependent on the method of dose reporting and patient geometry. Based on a prescription dose of 34 Gy, the average D{sub 90} to PTV was reduced by between ∼4% and ∼40%, depending on the

  12. Monte Carlo aided design of an improved well-type ionization chamber for low energy brachytherapy sources

    SciTech Connect

    Bohm, Tim D.; Micka, John A.; De Werd, Larry A.

    2007-04-15

    The determination of the air kerma strength of a brachytherapy seed is necessary for effective treatment planning. Well-type ionization chambers are used on site at therapy clinics to determine the air kerma strength of seeds. In this work, an improved well-type ionization chamber for low energy, low dose rate brachytherapy sources is designed using Monte Carlo transport calculations to aid in the design process. The design improvements are the elimination of the air density induced over-response effect seen in other air-communicating chambers for low energy photon sources, and a larger signal strength (response or current) for {sup 103}Pd and {sup 125}I based seeds. A prototype well chamber based on the Monte Carlo aided design but using graphite coated acrylic walls rather than the design basis air equivalent plastic (C-552) walls was constructed and experimentally evaluated. The prototype chamber produced an 85% stronger signal when measuring a commonly used {sup 103}Pd seed and a 26% stronger signal when measuring a commonly used {sup 125}I seed when compared to another commonly used well chamber. The normalized P{sub TP} corrected chamber response is, at most, 1.3% and 2.4% over unity for air densities/pressures corresponding to an elevation of 3048 m (10 000 feet) above sea level for the commonly used {sup 103}Pd and {sup 125}I based seeds respectively. Comparing calculated and measured chamber responses for common {sup 103}Pd and {sup 125}I based brachytherapy seeds show agreement within 0.6% and 0.2%, respectively. We conclude that Monte Carlo transport calculations accurately model the response of this new well chamber and in general can be used to predict the response of well chambers. The prototype chamber built in this work responds as predicted by the Monte Carlo calculations.

  13. Energy spectrum based calculation of the half and the tenth value layers for brachytherapy sources using a semiempirical parametrized mass attenuation coefficient formulism

    SciTech Connect

    Yue, Ning J.

    2008-06-15

    As different types of radionuclides (e.g., {sup 131}Cs source) are introduced for clinical use in brachytherapy, the question is raised regarding whether a relatively simple method exists for the derivation of values of the half value layer (HVL) or the tenth value layer (TVL). For the radionuclide that has been clinically used for years, such as {sup 125}I and {sup 103}Pd, the sources have been manufactured and marketed by several vendors with different designs and structures. Because of the nature of emission of low energy photons for these radionuclides, energy spectra of the sources are very dependent on their individual designs. Though values of the HVL or the TVL in certain commonly used shielding materials are relatively small for these low energy photon emitting sources, the question remains how the variations in energy spectra affect the HVL (or TVL) values and whether these values can be calculated with a relatively simple method. A more fundamental question is whether a method can be established to derive the HVL (TVL) values for any brachytherapy sources and for different materials in a relatively straightforward fashion. This study was undertaken to answer these questions. Based on energy spectra, a well established semiempirical mass attenuation coefficient computing scheme was utilized to derive the HVL (TVL) values of different materials for different types of brachytherapy sources. The method presented in this study may be useful to estimate HVL (TVL) values of different materials for brachytherapy sources of different designs and containing different radionuclides.

  14. Energy spectrum based calculation of the half and the tenth value layers for brachytherapy sources using a semiempirical parametrized mass attenuation coefficient formulism.

    PubMed

    Yue, Ning J

    2008-06-01

    As different types of radionuclides (e.g., 131Cs source) are introduced for clinical use in brachytherapy, the question is raised regarding whether a relatively simple method exists for the derivation of values of the half value layer (HVL) or the tenth value layer (TVL). For the radionuclide that has been clinically used for years, such as 125I and 103Pd, the sources have been manufactured and marketed by several vendors with different designs and structures. Because of the nature of emission of low energy photons for these radionuclides, energy spectra of the sources are very dependent on their individual designs. Though values of the HVL or the TVL in certain commonly used shielding materials are relatively small for these low energy photon emitting sources, the question remains how the variations in energy spectra affect the HVL (or TVL) values and whether these values can be calculated with a relatively simple method. A more fundamental question is whether a method can be established to derive the HVL (TVL) values for any brachytherapy sources and for different materials in a relatively straightforward fashion. This study was undertaken to answer these questions. Based on energy spectra, a well established semiempirical mass attenuation coefficient computing scheme was utilized to derive the HVL (TVL) values of different materials for different types of brachytherapy sources. The method presented in this study may be useful to estimate HVL (TVL) values of different materials for brachytherapy sources of different designs and containing different radionuclides.

  15. Dosimetric characterization of the (60)Co BEBIG Co0.A86 high dose rate brachytherapy source using PENELOPE.

    PubMed

    Guerrero, Rafael; Almansa, Julio F; Torres, Javier; Lallena, Antonio M

    2014-12-01

    (60)Co sources are being used as an alternative to (192)Ir sources in high dose rate brachytherapy treatments. In a recent document from AAPM and ESTRO, a consensus dataset for the (60)Co BEBIG (model Co0.A86) high dose rate source was prepared by using results taken from different publications due to discrepancies observed among them. The aim of the present work is to provide a new calculation of the dosimetric characteristics of that (60)Co source according to the recommendations of the AAPM and ESTRO report. Radial dose function, anisotropy function, air-kerma strength, dose rate constant and absorbed dose rate in water have been calculated and compared to the results of previous works. Simulations using the two different geometries considered by other authors have been carried out and the effect of the cable density and length has been studied.

  16. Californium-252 Brachytherapy Combined With External-Beam Radiotherapy for Cervical Cancer: Long-Term Treatment Results

    SciTech Connect

    Lei Xin; Qian Chengyuan; Qing Yi; Zhao Kewei; Yang Zhengzhou; Dai Nan; Zhong Zhaoyang; Tang Cheng; Li Zheng; Gu Xianqing; Zhou Qian; Feng Yan; Xiong Yanli; Shan Jinlu; Wang Dong

    2011-12-01

    Purpose: To observe, by retrospective analysis, the curative effects and complications due to californium-252 ({sup 252}Cf) neutron intracavitary brachytherapy (ICBT) combined with external-beam radiotherapy (EBRT) in the treatment of cervical cancer. Methods and Materials: From February 1999 to December 2007, 696 patients with cervical cancer (Stages IB to IIIB) were treated with {sup 252}Cf-ICBT in combination of EBRT. Of all, 31 patients were at Stage IB, 104 at IIA, 363 at IIB, 64 at IIIA, and 134 at IIIB. Californium-252 ICBT was delivered at 7-12 Gy per insertion per week, with a total dose of 29-45 Gy to reference point A in three to five insertions. The whole pelvic cavity was treated with 8-MV X-ray external irradiation at 2 Gy per fraction, four times per week. After 16-38 Gy of external irradiation, the center of the whole pelvic field was blocked with a 4-cm-wide lead shield, with a total external irradiation dose of 44-56 Gy. The total treatment course was 5 to 6 weeks. Results: Overall survival rate at 3 and 5 years for all patients was 76.0% and 64.9%, respectively. Disease-free 3- and 5-year survival rates of patients were 71.2% and 58.4%, respectively. Late complications included vaginal contracture and adhesion, radiation proctitis, radiation cystitis, and inflammatory bowel, which accounted for 5.8%, 7.1%, 6.2%, and 4.9%, respectively. Univariate analysis results showed significant correlation of stage, age, histopathologic grade, and lymph node status with overall survival. Cox multiple regression analysis showed that the independent variables were stage, histopathologic grade, tumor size, and lymphatic metastasis in all patients. Conclusion: Results of this series suggest that the combined use of {sup 252}Cf-ICBT with EBRT is an effective method for treatment of cervical cancer.

  17. Applications of tissue heterogeneity corrections and biologically effective dose volume histograms in assessing the doses for accelerated partial breast irradiation using an electronic brachytherapy source.

    PubMed

    Shi, Chengyu; Guo, Bingqi; Cheng, Chih-Yao; Eng, Tony; Papanikolaou, Nikos

    2010-09-21

    A low-energy electronic brachytherapy source (EBS), the model S700 Axxent x-ray device developed by Xoft Inc., has been used in high dose rate (HDR) intracavitary accelerated partial breast irradiation (APBI) as an alternative to an Ir-192 source. The prescription dose and delivery schema of the electronic brachytherapy APBI plan are the same as the Ir-192 plan. However, due to its lower mean energy than the Ir-192 source, an EBS plan has dosimetric and biological features different from an Ir-192 source plan. Current brachytherapy treatment planning methods may have large errors in treatment outcome prediction for an EBS plan. Two main factors contribute to the errors: the dosimetric influence of tissue heterogeneities and the enhancement of relative biological effectiveness (RBE) of electronic brachytherapy. This study quantified the effects of these two factors and revisited the plan quality of electronic brachytherapy APBI. The influence of tissue heterogeneities is studied by a Monte Carlo method and heterogeneous 'virtual patient' phantoms created from CT images and structure contours; the effect of RBE enhancement in the treatment outcome was estimated by biologically effective dose (BED) distribution. Ten electronic brachytherapy APBI cases were studied. The results showed that, for electronic brachytherapy cases, tissue heterogeneities and patient boundary effect decreased dose to the target and skin but increased dose to the bones. On average, the target dose coverage PTV V(100) reduced from 95.0% in water phantoms (planned) to only 66.7% in virtual patient phantoms (actual). The actual maximum dose to the ribs is 3.3 times higher than the planned dose; the actual mean dose to the ipsilateral breast and maximum dose to the skin were reduced by 22% and 17%, respectively. Combining the effect of tissue heterogeneities and RBE enhancement, BED coverage of the target was 89.9% in virtual patient phantoms with RBE enhancement (actual BED) as compared to 95

  18. Dosimetric characterization of the M-15 high-dose-rate Iridium-192 brachytherapy source using the AAPM and ESTRO formalism.

    PubMed

    Ho Than, Minh-Tri; Munro Iii, John J; Medich, David C

    2015-05-08

    The Source Production & Equipment Co. (SPEC) model M-15 is a new Iridium-192 brachytherapy source model intended for use as a temporary high-dose-rate (HDR) brachytherapy source for the Nucletron microSelectron Classic afterloading system. The purpose of this study is to characterize this HDR source for clinical application by obtaining a complete set of Monte Carlo calculated dosimetric parameters for the M-15, as recommended by AAPM and ESTRO, for isotopes with average energies greater than 50 keV. This was accomplished by using the MCNP6 Monte Carlo code to simulate the resulting source dosimetry at various points within a pseudoinfinite water phantom. These dosimetric values next were converted into the AAPM and ESTRO dosimetry parameters and the respective statistical uncertainty in each parameter also calculated and presented. The M-15 source was modeled in an MCNP6 Monte Carlo environment using the physical source specifications provided by the manufacturer. Iridium-192 photons were uniformly generated inside the iridium core of the model M-15 with photon and secondary electron transport replicated using photoatomic cross-sectional tables supplied with MCNP6. Simulations were performed for both water and air/vacuum computer models with a total of 4 × 109 sources photon history for each simulation and the in-air photon spectrum filtered to remove low-energy photons belowδ = 10 keV. Dosimetric data, including D·(r,θ), gL(r), F(r,θ), φan(r), and φ-an, and their statistical uncertainty were calculated from the output of an MCNP model consisting of an M-15 source placed at the center of a spherical water phantom of 100 cm diameter. The air kerma strength in free space, SK, and dose rate constant, Λ, also was computed from a MCNP model with M-15 Iridium-192 source, was centered at the origin of an evacuated phantom in which a critical volume containing air at STP was added 100 cm from the source center. The reference dose rate, D·(r0,θ0) ≡ D· (1cm

  19. Updated Solid Water trade mark sign to water conversion factors for {sup 125}I and {sup 103}Pd brachytherapy sources

    SciTech Connect

    Meigooni, Ali S.; Awan, Shahid B.; Thompson, Nathan S.; Dini, Sharifeh A.

    2006-11-15

    Dosimetric characteristics of brachytherapy sources are normally determined in water using a Monte Carlo simulation technique and in water equivalent phantom material using both experimental and Monte Carlo simulation techniques. The consensuses of these results are then calculated for clinical applications by converting experimental data obtained in water equivalent material to water using a conversion factor. These conversion factors are normally determined as a ratio of the Monte Carlo-simulated dose rate constant in liquid water to the dose rate constant in a water-equivalent phantom material. However, it has been noted that conversion factors utilized by some investigators have been derived using incorrect phantom material composition and incorrect cross-sectional data information. The impact of errors associated with the cross-sectional data and chemical composition of the phantom material used in dosimetric evaluation of brachytherapy sources has been investigated in this project. Results of these investigations have shown that the use of Solid Water trade mark sign with 1.7% calcium content, as compared to the 2.3% value stated by the manufacturer, may lead to 5% and 9% differences in conversion factors for {sup 125}I and {sup 103}Pd, respectively.

  20. Comparison of TG-43 dosimetric parameters of brachytherapy sources obtained by three different versions of MCNP codes.

    PubMed

    Zaker, Neda; Zehtabian, Mehdi; Sina, Sedigheh; Koontz, Craig; Meigooni, Ali S

    2016-03-01

    Monte Carlo simulations are widely used for calculation of the dosimetric parameters of brachytherapy sources. MCNP4C2, MCNP5, MCNPX, EGS4, EGSnrc, PTRAN, and GEANT4 are among the most commonly used codes in this field. Each of these codes utilizes a cross-sectional library for the purpose of simulating different elements and materials with complex chemical compositions. The accuracies of the final outcomes of these simulations are very sensitive to the accuracies of the cross-sectional libraries. Several investigators have shown that inaccuracies of some of the cross section files have led to errors in  125I and  103Pd parameters. The purpose of this study is to compare the dosimetric parameters of sample brachytherapy sources, calculated with three different versions of the MCNP code - MCNP4C, MCNP5, and MCNPX. In these simulations for each source type, the source and phantom geometries, as well as the number of the photons, were kept identical, thus eliminating the possible uncertainties. The results of these investigations indicate that for low-energy sources such as  125I and  103Pd there are discrepancies in gL(r) values. Discrepancies up to 21.7% and 28% are observed between MCNP4C and other codes at a distance of 6 cm for  103Pd and 10 cm for  125I from the source, respectively. However, for higher energy sources, the discrepancies in gL(r) values are less than 1.1% for  192Ir and less than 1.2% for  137Cs between the three codes. PACS number(s): 87.56.bg.

  1. Comparison of TG-43 dosimetric parameters of brachytherapy sources obtained by three different versions of MCNP codes.

    PubMed

    Zaker, Neda; Zehtabian, Mehdi; Sina, Sedigheh; Koontz, Craig; Meigooni, Ali S

    2016-03-08

    Monte Carlo simulations are widely used for calculation of the dosimetric parameters of brachytherapy sources. MCNP4C2, MCNP5, MCNPX, EGS4, EGSnrc, PTRAN, and GEANT4 are among the most commonly used codes in this field. Each of these codes utilizes a cross-sectional library for the purpose of simulating different elements and materials with complex chemical compositions. The accuracies of the final outcomes of these simulations are very sensitive to the accuracies of the cross-sectional libraries. Several investigators have shown that inaccuracies of some of the cross section files have led to errors in 125I and 103Pd parameters. The purpose of this study is to compare the dosimetric parameters of sample brachytherapy sources, calculated with three different versions of the MCNP code - MCNP4C, MCNP5, and MCNPX. In these simulations for each source type, the source and phantom geometries, as well as the number of the photons, were kept identical, thus eliminating the possible uncertainties. The results of these investigations indicate that for low-energy sources such as 125I and 103Pd there are discrepancies in gL(r) values. Discrepancies up to 21.7% and 28% are observed between MCNP4C and other codes at a distance of 6 cm for 103Pd and 10 cm for 125I from the source, respectively. However, for higher energy sources, the discrepancies in gL(r) values are less than 1.1% for 192Ir and less than 1.2% for 137Cs between the three codes.

  2. Monte Carlo calculated TG-60 dosimetry parameters for the {beta}{sup -} emitter {sup 153}Sm brachytherapy source

    SciTech Connect

    Sadeghi, Mahdi; Taghdiri, Fatemeh; Hamed Hosseini, S.; Tenreiro, Claudio

    2010-10-15

    Purpose: The formalism recommended by Task Group 60 (TG-60) of the American Association of Physicists in Medicine (AAPM) is applicable for {beta} sources. Radioactive biocompatible and biodegradable {sup 153}Sm glass seed without encapsulation is a {beta}{sup -} emitter radionuclide with a short half-life and delivers a high dose rate to the tumor in the millimeter range. This study presents the results of Monte Carlo calculations of the dosimetric parameters for the {sup 153}Sm brachytherapy source. Methods: Version 5 of the (MCNP) Monte Carlo radiation transport code was used to calculate two-dimensional dose distributions around the source. The dosimetric parameters of AAPM TG-60 recommendations including the reference dose rate, the radial dose function, the anisotropy function, and the one-dimensional anisotropy function were obtained. Results: The dose rate value at the reference point was estimated to be 9.21{+-}0.6 cGy h{sup -1} {mu}Ci{sup -1}. Due to the low energy beta emitted from {sup 153}Sm sources, the dose fall-off profile is sharper than the other beta emitter sources. The calculated dosimetric parameters in this study are compared to several beta and photon emitting seeds. Conclusions: The results show the advantage of the {sup 153}Sm source in comparison with the other sources because of the rapid dose fall-off of beta ray and high dose rate at the short distances of the seed. The results would be helpful in the development of the radioactive implants using {sup 153}Sm seeds for the brachytherapy treatment.

  3. A comparison of the relative biological effectiveness of low energy electronic brachytherapy sources in breast tissue: a Monte Carlo study

    NASA Astrophysics Data System (ADS)

    White, Shane A.; Reniers, Brigitte; de Jong, Evelyn E. C.; Rusch, Thomas; Verhaegen, Frank

    2016-01-01

    Electronic brachytherapy sources use low energy photons to treat the tumor bed during or after breast-conserving surgery. The relative biological effectiveness of two electronic brachytherapy sources was explored to determine if spectral differences due to source design influenced radiation quality and if radiation quality decreased with distance in the breast. The RBE was calculated through the number of DNA double strand breaks (RBEDSB) using the Monte Carlo damage simulator (MCDS) in combination with other Monte Carlo electron/photon spectrum calculations. 50kVp photons from the Intrabeam (Carl Zeiss Surgical) and Axxent (Xoft) through 40-mm spherical applicators were simulated to account for applicator and tissue attenuation in a variety of breast tissue compositions. 40kVp Axxent photons were also simulated. Secondary electrons (known to be responsible for most DNA damage) spectra at different distance were inputted into MCDS to calculate the RBEDSB. All RBEDSB used a cobalt-60 reference. RBEDSB data was combined with corresponding average photon spectrum energy for the Axxent and applied to model-based average photon energy distributions to produce an RBEDSB map of an accelerated partial breast irradiation (APBI) patient. Both Axxent and Intrabeam 50kVp spectra were shown to have a comparable RBEDSB of between 1.4 and 1.6 at all distances in spite of progressive beam hardening. The Axxent 40kVp also demonstrated a similar RBEDSB at distances. Most RBEDSB variability was dependent on the tissue type as was seen in rib (RBEDSB  ≈  1.4), gland (≈1.55), adipose (≈1.59), skin (≈1.52) and lung (≈1.50). RBEDSB variability between both sources was within 2%. A correlation was shown between RBEDSB and average photon energy and used to produce an RBEDSB map of a dose distribution in an APBI patient dataset. Radiation quality is very similar between electronic brachytherapy sources studied. No significant reductions in RBEDSB were observed with

  4. A comparison of the relative biological effectiveness of low energy electronic brachytherapy sources in breast tissue: a Monte Carlo study.

    PubMed

    White, Shane A; Reniers, Brigitte; de Jong, Evelyn E C; Rusch, Thomas; Verhaegen, Frank

    2016-01-07

    Electronic brachytherapy sources use low energy photons to treat the tumor bed during or after breast-conserving surgery. The relative biological effectiveness of two electronic brachytherapy sources was explored to determine if spectral differences due to source design influenced radiation quality and if radiation quality decreased with distance in the breast. The RBE was calculated through the number of DNA double strand breaks (RBEDSB) using the Monte Carlo damage simulator (MCDS) in combination with other Monte Carlo electron/photon spectrum calculations. 50kVp photons from the Intrabeam (Carl Zeiss Surgical) and Axxent (Xoft) through 40-mm spherical applicators were simulated to account for applicator and tissue attenuation in a variety of breast tissue compositions. 40kVp Axxent photons were also simulated. Secondary electrons (known to be responsible for most DNA damage) spectra at different distance were inputted into MCDS to calculate the RBEDSB. All RBEDSB used a cobalt-60 reference. RBEDSB data was combined with corresponding average photon spectrum energy for the Axxent and applied to model-based average photon energy distributions to produce an RBEDSB map of an accelerated partial breast irradiation (APBI) patient. Both Axxent and Intrabeam 50kVp spectra were shown to have a comparable RBEDSB of between 1.4 and 1.6 at all distances in spite of progressive beam hardening. The Axxent 40kVp also demonstrated a similar RBEDSB at distances. Most RBEDSB variability was dependent on the tissue type as was seen in rib (RBEDSB  ≈  1.4), gland (≈1.55), adipose (≈1.59), skin (≈1.52) and lung (≈1.50). RBEDSB variability between both sources was within 2%. A correlation was shown between RBEDSB and average photon energy and used to produce an RBEDSB map of a dose distribution in an APBI patient dataset. Radiation quality is very similar between electronic brachytherapy sources studied. No significant reductions in RBEDSB were observed with

  5. A fibre optic scintillator dosemeter for absorbed dose measurements of low-energy X-ray-emitting brachytherapy sources.

    PubMed

    Sliski, Alan; Soares, Christopher; Mitch, Michael G

    2006-01-01

    A newly developed dosemeter using a 0.5 mm diameter x 0.5 mm thick cylindrical plastic scintillator coupled to the end of a fibre optic cable is capable of measuring the absorbed dose rate in water around low-activity, low-energy X-ray emitters typically used in prostate brachytherapy. Recent tests of this dosemeter showed that it is possible to measure the dose rate as a function of distance in water from 2 to 30 mm of a (103)Pd source of air-kerma strength 3.4 U (1 U = 1 microGy m(2) h(-1)), or 97 MBq (2.6 mCi) apparent activity, with good signal-to-noise ratio. The signal-to-noise ratio is only dependent on the integration time and background subtraction. The detector volume is enclosed in optically opaque, nearly water-equivalent materials so that there is no polar response other than that due to the shape of the scintillator volume chosen, in this case cylindrical. The absorbed dose rate very close to commercial brachytherapy sources can be mapped in an automated water phantom, providing a 3-D dose distribution with sub-millimeter spatial resolution. The sensitive volume of the detector is 0.5 mm from the end of the optically opaque waterproof housing, enabling measurements at very close distances to sources. The sensitive detector electronics allow the measurement of very low dose rates, as exist at centimeter distances from these sources. The detector is also applicable to mapping dose distributions from more complex source geometries such as eye applicators for treating macular degeneration.

  6. Verification and uniformity control of doses for 90Sr/90Y intravascular brachytherapy sources using radiochromic film dosimetry

    PubMed Central

    Demir, Bayram; Ahmed, Asm Sabbir; Babalik, Erhan; Demir, Mustafa; Gürmen, Tevfik

    2008-01-01

    Intravascular brachytherapy (IVBT) is a useful treatment modality for the recurrence of in-stent restenosis following drug-eluting stents (DES) or IVBT failure. The objective of this study was to measure the dose rate of 90Sr/90Y IVBT sources for comparison with that given by the manufacturer and to control the dose uniformities of these sources along the source axis. The dose rates of 90Sr/90Y beta sources were measured with a radiochromic film in a custom-made phantom. The films for calibration were irradiated using 60Co photon beams. The results for the three sources were 4.5%, 2.3%, and 3.5% higher than the corresponding certificate values. Maximum and minimum of the dose rates varied within ±10% of those at source center; and maximum dose discrepancy for the first 90Sr/90Y source train was 8.2%; for the second source train, 7.1%; and for the third source train, 5.1%. Our study showed that the dose rates given by the manufacturer for the three 90Sr/90Y IVBT sources were reliable and dose uniformities were within ±10% along two thirds of the treatment length. PMID:19893691

  7. Absolute depth-dose-rate measurements for an 192Ir HDR brachytherapy source in water using MOSFET detectors.

    PubMed

    Zilio, Valéry Olivier; Joneja, Om Parkash; Popowski, Youri; Rosenfeld, Anatoly; Chawla, Rakesh

    2006-06-01

    Reported MOSFET measurements concern mostly external radiotherapy and in vivo dosimetry. In this paper, we apply the technique for absolute dosimetry in the context of HDR brachytherapy using an 192Ir source. Measured radial dose rate distributions in water for different planes perpendicular to the source axis are presented and special attention is paid to the calibration of the R and K type detectors, and to the determination of appropriate correction factors for the sensitivity variation with the increase of the threshold voltage and the energy dependence. The experimental results are compared with Monte Carlo simulated dose rate distributions. The experimental results show a good agreement with the Monte Carlo simulations: the discrepancy between experimental and Monte Carlo results being within 5% for 82% of the points and within 10% for 95% of the points. Moreover, all points except two are found to lie within the experimental uncertainties, confirming thereby the quality of the results obtained.

  8. Dosimetric comparison of four new design {sup 103}Pd brachytherapy sources: Optimal design using silver and copper rod cores

    SciTech Connect

    Hosseini, S. Hamed; Sadeghi, Mahdi; Ataeinia, Vahideh

    2009-07-15

    Four new brachytherapy sources, IRA1-{sup 103}Pd, IRA2-{sup 103}Pd, IRA3-{sup 103}Pd, and IRA4-{sup 103}Pd, have been developed at Agricultural, Medical, and Industrial Research School and are designed for permanent implant application. With the goal of determining an optimal design for a {sup 103}Pd source, this article compares the dosimetric properties of these sources with reference to the authors' earlier IRA-{sup 103}Pd source. The four new sources differ in end cap configuration and thickness and in the core material, silver or copper, that carries the adsorbed {sup 103}Pd. Dosimetric data derived from the authors' Monte Carlo simulation results are reported in accordance with the updated AAPM Task Group No. 43 report (TG-43U1). For each source, the authors obtained detailed results for the dose rate constant {Lambda}, the radial dose function g(r), the anisotropy function F(r,{theta}), and the anisotropy factor {phi}{sub an}(r). In this study, the optimal source IRA3-{sup 103}Pd provides the most isotropic dose distribution in water with the dose rate constant of 0.678({+-}0.1%) cGy h{sup -1} U{sup -1}. The IRA3-{sup 103}Pd design has a silver rod core combined with thin-wall, concave end caps. Finally, the authors compared the results for their optimal source with published results for those of other source manufacturers.

  9. Photon spectrometry for the determination of the dose-rate constant of low-energy photon-emitting brachytherapy sources.

    PubMed

    Chen, Zhe Jay; Nath, Ravinder

    2007-04-01

    Accurate determination of dose-rate constant (lambda) for interstitial brachytherapy sources emitting low-energy photons (< 50 keV) has remained a challenge in radiation dosimetry because of the lack of a suitable absolute dosimeter for accurate measurement of the dose rates near these sources. Indeed, a consensus value of lambda taken as the arithmetic mean of the dose-rate constants determined by different research groups and dosimetry techniques has to be used at present for each source model in order to minimize the uncertainties associated with individual determinations of lambda. Because the dosimetric properties of a source are fundamentally determined by the characteristics of the photons emitted by the source, a new technique based on photon spectrometry was developed in this work for the determination of dose-rate constant. The photon spectrometry technique utilized a high-resolution gamma-ray spectrometer to measure source-specific photon characteristics emitted by the low-energy sources and determine their dose-rate constants based on the measured photon-energy spectra and known dose-deposition properties of mono-energetic photons in water. This technique eliminates many of the difficulties arising from detector size, the energy dependence of detector sensitivity, and the use of non-water-equivalent solid phantoms in absolute dose rate measurements. It also circumvents the uncertainties that might be associated with the source modeling in Monte Carlo simulation techniques. It was shown that the estimated overall uncertainty of the photon spectrometry technique was less than 4%, which is significantly smaller than the reported 8-10% uncertainty associated with the current thermo-luminescent dosimetry technique. In addition, the photon spectrometry technique was found to be stable and quick in lambda determination after initial setup and calibration. A dose-rate constant can be determined in less than two hours for each source. These features make it

  10. Unconventional neutron sources for oil well logging

    NASA Astrophysics Data System (ADS)

    Frankle, C. M.; Dale, G. E.

    2013-09-01

    Americium-Beryllium (AmBe) radiological neutron sources have been widely used in the petroleum industry for well logging purposes. There is strong desire on the part of various governmental and regulatory bodies to find alternate sources due to the high activity and small size of AmBe sources. Other neutron sources are available, both radiological (252Cf) and electronic accelerator driven (D-D and D-T). All of these, however, have substantially different neutron energy spectra from AmBe and thus cause significantly different responses in well logging tools. We report on simulations performed using unconventional sources and techniques to attempt to better replicate the porosity and carbon/oxygen ratio responses a well logging tool would see from AmBe neutrons. The AmBe response of these two types of tools is compared to the response from 252Cf, D-D, D-T, filtered D-T, and T-T sources.

  11. AAPM TG-43U1 formalism adaptation and Monte Carlo dosimetry simulations of multiple-radionuclide brachytherapy sources

    SciTech Connect

    Nuttens, V.E.; Lucas, S.

    2006-04-15

    This paper presents a preliminary study on multiple-radionuclide sources for brachytherapy. An adaptation of the AAPM TG-43U1 formalism is proposed in order to derive the dosimetry parameters of multiple-radionuclide sources from mono-radionuclides. The adapted formalism is applied to a bi-radionuclide case with the help of Monte Carlo calculations (MCNPX 2.5.0). InterSource{sup TM} seed loaded with {sup 103}Pd and {sup 125}I was chosen. This combination promotes a higher dose rate than InterSource{sup 125} (loaded with {sup 125}I) and deeper tissue penetration than InterSource{sup 103} (loaded with {sup 103}Pd) while reducing the dose at long distance (beyond 2.5 cm) relative to InterSource{sup 125}. In conclusion, this work shows the benefits of combining different radionuclides inside the same seed and proposes an adaptation of the AAPM TG-43U1 formalism for the implementation of multiple-radionuclide sources in current treatment planning systems.

  12. Physics-aspects of dose accuracy in high dose rate (HDR) brachytherapy: source dosimetry, treatment planning, equipment performance and in vivo verification techniques.

    PubMed

    Palmer, Antony; Bradley, David; Nisbet, Andrew

    2012-06-01

    This study provides a review of recent publications on the physics-aspects of dosimetric accuracy in high dose rate (HDR) brachytherapy. The discussion of accuracy is primarily concerned with uncertainties, but methods to improve dose conformation to the prescribed intended dose distribution are also noted. The main aim of the paper is to review current practical techniques and methods employed for HDR brachytherapy dosimetry. This includes work on the determination of dose rate fields around brachytherapy sources, the capability of treatment planning systems, the performance of treatment units and methods to verify dose delivery. This work highlights the determinants of accuracy in HDR dosimetry and treatment delivery and presents a selection of papers, focusing on articles from the last five years, to reflect active areas of research and development. Apart from Monte Carlo modelling of source dosimetry, there is no clear consensus on the optimum techniques to be used to assure dosimetric accuracy through all the processes involved in HDR brachytherapy treatment. With the exception of the ESTRO mailed dosimetry service, there is little dosimetric audit activity reported in the literature, when compared with external beam radiotherapy verification.

  13. Evaluation of wall correction factor of INER's air-kerma primary standard chamber and dose variation by source displacement for HDR ¹⁹²Ir brachytherapy.

    PubMed

    Lee, J H; Wang, J N; Huang, T T; Su, S H; Chang, B J; Su, C H; Hsu, S M

    2013-01-01

    The aim of the present study was to estimate the wall effect of the self-made spherical graphite-walled cavity chamber with the Monte Carlo method for establishing the air-kerma primary standard of high-dose-rate (HDR) ¹⁹²Ir brachytherapy sources at the Institute of Nuclear Energy Research (INER, Taiwan). The Monte Carlo method established in this paper was also employed to respectively simulate wall correction factors of the ¹⁹²Ir air-kerma standard chambers used at the National Institute of Standards and Technology (NIST, USA) and the National Physical Laboratory (NPL, UK) for comparisons and verification. The chamber wall correction calculation results will be incorporated into INER's HDR ¹⁹²Ir primary standard in the future. For the brachytherapy treatment in the esophagus or in the bronchi, the position of the isotope may have displacement in the cavity. Thus the delivered dose would differ from the prescribed dose in the treatment plan. We also tried assessing dose distribution due to the position displacement of HDR ¹⁹²Ir brachytherapy source in a phantom with a central cavity by the Monte Carlo method. The calculated results could offer a clinical reference for the brachytherapy within the human organs with cavity.

  14. Separation of fission produced (106)Ru from simulated high level nuclear wastes for production of brachytherapy sources.

    PubMed

    Blicharska, Magdalena; Bartoś, Barbara; Krajewski, Seweryn; Bilewicz, Aleksander

    An effective and simple process for the isolation of (106)Ru from high-level liquid wastes was developed. Radioactive ruthenium was oxidized by H5IO6 in HNO3 solution and was extracted to CCl4 phase in the form of RuO4. In order to obtain ruthenium in the suitable form for production of brachytherapy sources, RuO4 in organic phase was reduced and re-extracted to aqueous phase. The efficiency of extraction of (103)Ru to organic phase was 86 %, re-extraction to aqueous solution was near 100 %, so the overall recovery of (103)Ru is estimated at more than 80 %.

  15. Measurement of uranium and plutonium in solid waste by passive photon or neutron counting and isotopic neutron source interrogation

    SciTech Connect

    Crane, T.W.

    1980-03-01

    A summary of the status and applicability of nondestructive assay (NDA) techniques for the measurement of uranium and plutonium in 55-gal barrels of solid waste is reported. The NDA techniques reviewed include passive gamma-ray and x-ray counting with scintillator, solid state, and proportional gas photon detectors, passive neutron counting, and active neutron interrogation with neutron and gamma-ray counting. The active neutron interrogation methods are limited to those employing isotopic neutron sources. Three generic neutron sources (alpha-n, photoneutron, and /sup 252/Cf) are considered. The neutron detectors reviewed for both prompt and delayed fission neutron detection with the above sources include thermal (/sup 3/He, /sup 10/BF/sub 3/) and recoil (/sup 4/He, CH/sub 4/) proportional gas detectors and liquid and plastic scintillator detectors. The instrument found to be best suited for low-level measurements (< 10 nCi/g) is the /sup 252/Cf Shuffler. The measurement technique consists of passive neutron counting followed by cyclic activation using a /sup 252/Cf source and delayed neutron counting with the source withdrawn. It is recommended that a waste assay station composed of a /sup 252/Cf Shuffler, a gamma-ray scanner, and a screening station be tested and evaluated at a nuclear waste site. 34 figures, 15 tables.

  16. Monte Carlo calculations and experimental measurements of dosimetric parameters of the IRA-{sup 103}Pd brachytherapy source

    SciTech Connect

    Sadeghi, Mahdi; Raisali, Gholamreza; Hosseini, S. Hamed; Shavar, Arzhang

    2008-04-15

    This article presents a brachytherapy source having {sup 103}Pd adsorbed onto a cylindrical silver rod that has been developed by the Agricultural, Medical, and Industrial Research School for permanent implant applications. Dosimetric characteristics (radial dose function, anisotropy function, and anisotropy factor) of this source were experimentally and theoretically determined in terms of the updated AAPM Task group 43 (TG-43U1) recommendations. Monte Carlo simulations were used to calculate the dose rate constant. Measurements were performed using TLD-GR200A circular chip dosimeters using standard methods employing thermoluminescent dosimeters in a Perspex phantom. Precision machined bores in the phantom located the dosimeters and the source in a reproducible fixed geometry, providing for transverse-axis and angular dose profiles over a range of distances from 0.5 to 5 cm. The Monte Carlo N-particle (MCNP) code, version 4C simulation techniques have been used to evaluate the dose-rate distributions around this model {sup 103}Pd source in water and Perspex phantoms. The Monte Carlo calculated dose rate constant of the IRA-{sup 103}Pd source in water was found to be 0.678 cGy h{sup -1} U{sup -1} with an approximate uncertainty of {+-}0.1%. The anisotropy function, F(r,{theta}), and the radial dose function, g(r), of the IRA-{sup 103}Pd source were also measured in a Perspex phantom and calculated in both Perspex and liquid water phantoms.

  17. Limitations of current dosimetry for intracavitary accelerated partial breast irradiation with high dose rate iridium-192 and electronic brachytherapy sources

    NASA Astrophysics Data System (ADS)

    Raffi, Julie A.

    Intracavitary accelerated partial breast irradiation (APBI) is a method of treating early stage breast cancer using a high dose rate (HDR) brachytherapy source positioned within the lumpectomy cavity. An expandable applicator stretches the surrounding tissue into a roughly spherical or elliptical shape and the dose is prescribed to 1 cm beyond the edge of the cavity. Currently, dosimetry for these treatments is most often performed using the American Association of Physicists in Medicine Task Group No. 43 (TG-43) formalism. The TG-43 dose-rate equation determines the dose delivered to a homogeneous water medium by scaling the measured source strength with standardized parameters that describe the radial and angular features of the dose distribution. Since TG-43 parameters for each source model are measured or calculated in a homogeneous water medium, the dosimetric effects of the patient's dimensions and composition are not accounted for. Therefore, the accuracy of TG-43 calculations for intracavitary APBI is limited by the presence of inhomogeneities in and around the target volume. Specifically, the breast is smaller than the phantoms used to determine TG-43 parameters and is surrounded by air, ribs, and lung tissue. Also, the composition of the breast tissue itself can affect the dose distribution. This dissertation is focused on investigating the limitations of TG-43 dosimetry for intracavitary APBI for two HDR brachytherapy sources: the VariSource TM VS2000 192Ir source and the AxxentRTM miniature x-ray source. The dose for various conditions was determined using thermoluminescent dosimeters (TLDs) and Monte Carlo (MC) calculations. Accurate measurements and calculations were achieved through the implementation of new measurement and simulation techniques and a novel breast phantom was developed to enable anthropomorphic phantom measurements. Measured and calculated doses for phantom and patient geometries were compared with TG-43 calculated doses to

  18. A portable measurement system for subcriticality measurements by the Cf-source-driven neutron noise analysis method

    SciTech Connect

    Mihalczo, J.T.; Ragan, G.E.; Blakeman, E.D.

    1987-01-01

    A portable measurement system consisting of a personal computer used as a Fourier analyzer and three detection channels (with associated electronics that provide the signals to analog-to-digital (A/D) convertors) has been assembled to measure subcriticality by the /sup 252/Cf-source-driven neutron noise analysis method. 8 refs.

  19. Dosimetric audit in brachytherapy

    PubMed Central

    Bradley, D A; Nisbet, A

    2014-01-01

    Dosimetric audit is required for the improvement of patient safety in radiotherapy and to aid optimization of treatment. The reassurance that treatment is being delivered in line with accepted standards, that delivered doses are as prescribed and that quality improvement is enabled is as essential for brachytherapy as it is for the more commonly audited external beam radiotherapy. Dose measurement in brachytherapy is challenging owing to steep dose gradients and small scales, especially in the context of an audit. Several different approaches have been taken for audit measurement to date: thimble and well-type ionization chambers, thermoluminescent detectors, optically stimulated luminescence detectors, radiochromic film and alanine. In this work, we review all of the dosimetric brachytherapy audits that have been conducted in recent years, look at current audits in progress and propose required directions for brachytherapy dosimetric audit in the future. The concern over accurate source strength measurement may be essentially resolved with modern equipment and calibration methods, but brachytherapy is a rapidly developing field and dosimetric audit must keep pace. PMID:24807068

  20. The IPEM code of practice for determination of the reference air kerma rate for HDR (192)Ir brachytherapy sources based on the NPL air kerma standard.

    PubMed

    Bidmead, A M; Sander, T; Locks, S M; Lee, C D; Aird, E G A; Nutbrown, R F; Flynn, A

    2010-06-07

    This paper contains the recommendations of the high dose rate (HDR) brachytherapy working party of the UK Institute of Physics and Engineering in Medicine (IPEM). The recommendations consist of a Code of Practice (COP) for the UK for measuring the reference air kerma rate (RAKR) of HDR (192)Ir brachytherapy sources. In 2004, the National Physical Laboratory (NPL) commissioned a primary standard for the realization of RAKR of HDR (192)Ir brachytherapy sources. This has meant that it is now possible to calibrate ionization chambers directly traceable to an air kerma standard using an (192)Ir source (Sander and Nutbrown 2006 NPL Report DQL-RD 004 (Teddington: NPL) http://publications.npl.co.uk). In order to use the source specification in terms of either RAKR, Κ(R) (ICRU 1985 ICRU Report No 38 (Washington, DC: ICRU); ICRU 1997 ICRU Report No 58 (Bethesda, MD: ICRU)), or air kerma strength, S(K) (Nath et al 1995 Med. Phys. 22 209-34), it has been necessary to develop algorithms that can calculate the dose at any point around brachytherapy sources within the patient tissues. The AAPM TG-43 protocol (Nath et al 1995 Med. Phys. 22 209-34) and the 2004 update TG-43U1 (Rivard et al 2004 Med. Phys. 31 633-74) have been developed more fully than any other protocol and are widely used in commercial treatment planning systems. Since the TG-43 formalism uses the quantity air kerma strength, whereas this COP uses RAKR, a unit conversion from RAKR to air kerma strength was included in the appendix to this COP. It is recommended that the measured RAKR determined with a calibrated well chamber traceable to the NPL (192)Ir primary standard is used in the treatment planning system. The measurement uncertainty in the source calibration based on the system described in this COP has been reduced considerably compared to other methods based on interpolation techniques.

  1. Time dependence of energy spectra of brachytherapy sources and its impact on the half and the tenth value layers

    SciTech Connect

    Yue, Ning J.; Chen Zhe; Hearn, Robert A.; Rodgers, Joseph J.; Nath, Ravinder

    2009-11-15

    Purpose: Several factors including radionuclide purity influence the photon energy spectra from sealed brachytherapy sources. The existence of impurities and trace elements in radioactive materials as well as the substrate and encapsulation may not only alter the spectrum at a given time but also cause change in the spectra as a function of time. The purpose of this study is to utilize a semiempirical formalism, which quantitatively incorporates this time dependence, to calculate and evaluate the shielding requirement impacts introduced by this time dependence for a {sup 103}Pd source. Methods: The formalism was used to calculate the NthVL thicknesses in lead for a {sup 103}Pd model 200 seed. Prior to 2005, the {sup 103}Pd in this source was purified to a level better than 0.006% of the total {sup 103}Pd activity, the key trace impurity consisting of {sup 65}Zn. Because {sup 65}Zn emits higher energy photons and has a much longer half-life of 244 days compared to {sup 103}Pd, its presence in {sup 103}Pd seeds led to a time dependence of the photon spectrum and other related physical quantities. This study focuses on the time dependence of the NthVL and the analysis of the corresponding shielding requirements. Results: The results indicate that the first HVL and the first TVL in lead steadily increased with time for about 200 days and then reached a plateau. The increases at plateau were more than 1000 times compared to the corresponding values on the zeroth day. The second and third TVLs in lead reached their plateaus in about 100 and 60 days, respectively, and the increases were about 19 and 2.33 times the corresponding values on the zeroth day, respectively. All the TVLs demonstrated a similar time dependence pattern, with substantial increases and eventual approach to a plateau. Conclusions: The authors conclude that the time dependence of the emitted photon spectra from brachytherapy sources can introduce substantial variations in the values of the NthVL with

  2. Near-field dosimetry of {sup 125}I sources for interstitial brachytherapy implants measured using thermoluminescent sheets

    SciTech Connect

    Iwata, Kazuro; Yue, Ning J.; Nath, Ravinder

    2004-12-01

    The dosimetric characteristics were measured for two types of {sup 125}I low-energy photon-emitting sources by using a wide and highly sensitive thermoluminescent (TL) sheet film, which was developed for two-dimensional dose distribution measurements. The TL film is made of Teflon homogeneously mixed with small powders of thermoluminescence (BaSO{sub 4}:Eu doped). Various dosimetric parameters (i.e., radial dose function, 2D and 1D anisotropy functions) of model 6711 and 6702 {sup 125}I sources were obtained at various distances from the source surfaces to 15 mm. These parameters obtained with TL sheet were compared with the data recommended in the updated AAPM TG-43 report. The radial dose functions measured with TL sheet are in agreement with those established data of model 6711 {sup 125}I seed and model 6702 {sup 125}I seed at most of the distances within 5% and 7%, respectively. All the measured anisotropy functions showed symmetry about the longitudinal source axis. The anisotropy of dose distributions was clearly present in the immediate vicinity of the source edges. The measured 2D anisotropy function values at 1 cm are in reasonably good agreement with the recommended values. The differences at two points in the 1D anisotropy functions measured with TL sheet and the established data at 1 cm from source center were 0.7% and 1.9% for model 6711 and 6702 {sup 125}I sources, respectively; the differences at 0.5 cm were 1.5% and 1.7% for model 6711 and 6702 {sup 125}I sources, respectively. The relative dosimetric characteristics in the vicinity of actual interstitial brachytherapy sources containing {sup 125}I have been experimentally determined by using the TL sheet as a 2D dosimeter.

  3. Treatment of stage IIIB cervical cancer with Californium-252 fast-neutron brachytherapy and external photon therapy

    SciTech Connect

    Gallion, H.H.; Maruyama, Y.; van Nagell, J.R. Jr.; Donaldson, E.S.; Rowley, K.C.; Yoneda, J.; Beach, J.L.; Powell, D.E.; Kryscio, R.J.

    1987-05-15

    From January 1977 to July 1984, 32 patients with Stage IIIB cervical cancer were treated at the University of Kentucky Medical Center by a combination of outpatient neutron brachytherapy and external pelvic radiation. These patients received 4500 to 5000 rad external photon therapy and two or three outpatient Californium-252 (252Cf) implants, plus sidewall boost irradiation. Treatment results were compared retrospectively to those obtained in a historical control group of patients with Stage IIIB cervical cancer treated with external radiation and conventional photon brachytherapy from 1972 to 1976. Local or regional tumor recurrence developed in 53% of patients treated with neutron therapy and an additional 9% experienced distant metastases. Thirty-eight percent of patients remain free of disease 12 to 96 months (mean, 51 months) after therapy. The 2-year and 5-year survival rates of patients treated with neutron therapy were 53% and 36%, which were not significantly different than those obtained with photon brachytherapy (2-year survival, 61%; 5-year survival, 34%). Complications of neutron therapy were minimal and included proctitis (19%) and vaginal stenosis (9%). There were no cases of enteric fistulae. Outpatient neutron brachytherapy was cost effective and was well tolerated by patients.

  4. Treatment of stage IIIB cervical cancer with Californium-252 fast-neutron brachytherapy and external photon therapy.

    PubMed

    Gallion, H H; Maruyama, Y; van Nagell, J R; Donaldson, E S; Rowley, K C; Yoneda, J; Beach, J L; Powell, D E; Kryscio, R J

    1987-05-15

    From January 1977 to July 1984, 32 patients with Stage IIIB cervical cancer were treated at the University of Kentucky Medical Center by a combination of outpatient neutron brachytherapy and external pelvic radiation. These patients received 4500 to 5000 rad external photon therapy and two or three outpatient Californium-252 (252Cf) implants, plus sidewall boost irradiation. Treatment results were compared retrospectively to those obtained in a historical control group of patients with Stage IIIB cervical cancer treated with external radiation and conventional photon brachytherapy from 1972 to 1976. Local or regional tumor recurrence developed in 53% of patients treated with neutron therapy and an additional 9% experienced distant metastases. Thirty-eight percent of patients remain free of disease 12 to 96 months (mean, 51 months) after therapy. The 2-year and 5-year survival rates of patients treated with neutron therapy were 53% and 36%, which were not significantly different than those obtained with photon brachytherapy (2-year survival, 61%; 5-year survival, 34%). Complications of neutron therapy were minimal and included proctitis (19%) and vaginal stenosis (9%). There were no cases of enteric fistulae. Outpatient neutron brachytherapy was cost effective and was well tolerated by patients.

  5. A dosimetric uncertainty analysis for photon-emitting brachytherapy sources: report of AAPM Task Group No. 138 and GEC-ESTRO.

    PubMed

    DeWerd, Larry A; Ibbott, Geoffrey S; Meigooni, Ali S; Mitch, Michael G; Rivard, Mark J; Stump, Kurt E; Thomadsen, Bruce R; Venselaar, Jack L M

    2011-02-01

    This report addresses uncertainties pertaining to brachytherapy single-source dosimetry preceding clinical use. The International Organization for Standardization (ISO) Guide to the Expression of Uncertainty in Measurement (GUM) and the National Institute of Standards and Technology (NIST) Technical Note 1297 are taken as reference standards for uncertainty formalism. Uncertainties in using detectors to measure or utilizing Monte Carlo methods to estimate brachytherapy dose distributions are provided with discussion of the components intrinsic to the overall dosimetric assessment. Uncertainties provided are based on published observations and cited when available. The uncertainty propagation from the primary calibration standard through transfer to the clinic for air-kerma strength is covered first. Uncertainties in each of the brachytherapy dosimetry parameters of the TG-43 formalism are then explored, ending with transfer to the clinic and recommended approaches. Dosimetric uncertainties during treatment delivery are considered briefly but are not included in the detailed analysis. For low- and high-energy brachytherapy sources of low dose rate and high dose rate, a combined dosimetric uncertainty <5% (k=1) is estimated, which is consistent with prior literature estimates. Recommendations are provided for clinical medical physicists, dosimetry investigators, and source and treatment planning system manufacturers. These recommendations include the use of the GUM and NIST reports, a requirement of constancy of manufacturer source design, dosimetry investigator guidelines, provision of the lowest uncertainty for patient treatment dosimetry, and the establishment of an action level based on dosimetric uncertainty. These recommendations reflect the guidance of the American Association of Physicists in Medicine (AAPM) and the Groupe Européen de Curiethérapie-European Society for Therapeutic Radiology and Oncology (GEC-ESTRO) for their members and may also be used as

  6. A dosimetric uncertainty analysis for photon-emitting brachytherapy sources: Report of AAPM Task Group No. 138 and GEC-ESTRO

    SciTech Connect

    DeWerd, Larry A.; Ibbott, Geoffrey S.; Meigooni, Ali S.; Mitch, Michael G.; Rivard, Mark J.; Stump, Kurt E.; Thomadsen, Bruce R.; Venselaar, Jack L. M.

    2011-02-15

    This report addresses uncertainties pertaining to brachytherapy single-source dosimetry preceding clinical use. The International Organization for Standardization (ISO) Guide to the Expression of Uncertainty in Measurement (GUM) and the National Institute of Standards and Technology (NIST) Technical Note 1297 are taken as reference standards for uncertainty formalism. Uncertainties in using detectors to measure or utilizing Monte Carlo methods to estimate brachytherapy dose distributions are provided with discussion of the components intrinsic to the overall dosimetric assessment. Uncertainties provided are based on published observations and cited when available. The uncertainty propagation from the primary calibration standard through transfer to the clinic for air-kerma strength is covered first. Uncertainties in each of the brachytherapy dosimetry parameters of the TG-43 formalism are then explored, ending with transfer to the clinic and recommended approaches. Dosimetric uncertainties during treatment delivery are considered briefly but are not included in the detailed analysis. For low- and high-energy brachytherapy sources of low dose rate and high dose rate, a combined dosimetric uncertainty <5% (k=1) is estimated, which is consistent with prior literature estimates. Recommendations are provided for clinical medical physicists, dosimetry investigators, and source and treatment planning system manufacturers. These recommendations include the use of the GUM and NIST reports, a requirement of constancy of manufacturer source design, dosimetry investigator guidelines, provision of the lowest uncertainty for patient treatment dosimetry, and the establishment of an action level based on dosimetric uncertainty. These recommendations reflect the guidance of the American Association of Physicists in Medicine (AAPM) and the Groupe Europeen de Curietherapie-European Society for Therapeutic Radiology and Oncology (GEC-ESTRO) for their members and may also be used as

  7. A dosimetric uncertainty analysis for photon-emitting brachytherapy sources: Report of AAPM Task Group No. 138 and GEC-ESTRO

    PubMed Central

    DeWerd, Larry A.; Ibbott, Geoffrey S.; Meigooni, Ali S.; Mitch, Michael G.; Rivard, Mark J.; Stump, Kurt E.; Thomadsen, Bruce R.; Venselaar, Jack L. M.

    2011-01-01

    This report addresses uncertainties pertaining to brachytherapy single-source dosimetry preceding clinical use. The International Organization for Standardization (ISO) Guide to the Expression of Uncertainty in Measurement (GUM) and the National Institute of Standards and Technology (NIST) Technical Note 1297 are taken as reference standards for uncertainty formalism. Uncertainties in using detectors to measure or utilizing Monte Carlo methods to estimate brachytherapy dose distributions are provided with discussion of the components intrinsic to the overall dosimetric assessment. Uncertainties provided are based on published observations and cited when available. The uncertainty propagation from the primary calibration standard through transfer to the clinic for air-kerma strength is covered first. Uncertainties in each of the brachytherapy dosimetry parameters of the TG-43 formalism are then explored, ending with transfer to the clinic and recommended approaches. Dosimetric uncertainties during treatment delivery are considered briefly but are not included in the detailed analysis. For low- and high-energy brachytherapy sources of low dose rate and high dose rate, a combined dosimetric uncertainty <5% (k=1) is estimated, which is consistent with prior literature estimates. Recommendations are provided for clinical medical physicists, dosimetry investigators, and source and treatment planning system manufacturers. These recommendations include the use of the GUM and NIST reports, a requirement of constancy of manufacturer source design, dosimetry investigator guidelines, provision of the lowest uncertainty for patient treatment dosimetry, and the establishment of an action level based on dosimetric uncertainty. These recommendations reflect the guidance of the American Association of Physicists in Medicine (AAPM) and the Groupe Européen de Curiethérapie–European Society for Therapeutic Radiology and Oncology (GEC-ESTRO) for their members and may also be used

  8. Absorbed dose assessment of cardiac and other tissues around the cardiovascular system in brachytherapy with 90Sr/90Y source by Monte Carlo simulation.

    PubMed

    Saghamanesh, S; Karimian, A; Abdi, M

    2011-09-01

    Cardiac disease is one of the most important causes of death in the world. Coronary artery stenosis is a very common cardiac disease. Intravascular brachytherapy (IVBT) is one of the radiotherapy methods which have been used recently in coronary artery radiation therapy for the treatment of restenosis. (90)Sr/(90)Y, a beta-emitting source, is a proper option for cardiovascular brachytherapy. In this research, a Monte Carlo simulation was done to calculate dosimetry parameters and effective equivalent doses to the heart and its surrounding tissues during IVBT. The results of this study were compared with the published experimental data and other simulations performed by different programs but with the same source of radiation. A very good agreement was found between results of this work and the published data. An assessment of the risk for cardiac and other sensitive soft tissues surrounding the treated vessel during (90)Sr/(90)Y IVBT was also performed in the study.

  9. A systematic evaluation of the dose-rate constant determined by photon spectrometry for 21 different models of low-energy photon-emitting brachytherapy sources

    NASA Astrophysics Data System (ADS)

    (Jay Chen, Zhe; Nath, Ravinder

    2010-10-01

    The aim of this study was to perform a systematic comparison of the dose-rate constant (Λ) determined by the photon spectrometry technique (PST) with the consensus value (CONΛ) recommended by the American Association of Physicists in Medicine (AAPM) for 21 low-energy photon-emitting interstitial brachytherapy sources. A total of 63 interstitial brachytherapy sources (21 different models with 3 sources per model) containing either 125I (14 models), 103Pd (6 models) or 131Cs (1 model) were included in this study. A PST described by Chen and Nath (2007 Med. Phys. 34 1412-30) was used to determine the dose-rate constant (PSTΛ) for each source model. Source-dependent variations in PSTΛ were analyzed systematically against the spectral characteristics of the emitted photons and the consensus values recommended by the AAPM brachytherapy subcommittee. The values of PSTΛ for the encapsulated sources of 103Pd, 125I and 131Cs varied from 0.661 to 0.678 cGyh-1 U-1, 0.959 to 1.024 cGyh-1U-1 and 1.066 to 1.073 cGyh-1U-1, respectively. The relative variation in PSTΛ among the six 103Pd source models, caused by variations in photon attenuation and in spatial distributions of radioactivity among the source models, was less than 3%. Greater variations in PSTΛ were observed among the 14 125I source models; the maximum relative difference was over 6%. These variations were caused primarily by the presence of silver in some 125I source models and, to a lesser degree, by the variations in photon attenuation and in spatial distribution of radioactivity among the source models. The presence of silver generates additional fluorescent x-rays with lower photon energies which caused the PSTΛ value to vary from 0.959 to 1.019 cGyh-1U-1 depending on the amount of silver used by a given source model. For those 125I sources that contain no silver, their PSTΛ was less variable and had values within 1% of 1.024 cGyh-1U-1. For the 16 source models that currently have an AAPM recommended

  10. Absorbed dose simulations in near-surface regions using high dose rate Iridium-192 sources applied for brachytherapy

    NASA Astrophysics Data System (ADS)

    Moura, E. S.; Zeituni, C. A.; Sakuraba, R. K.; Gonçalves, V. D.; Cruz, J. C.; Júnior, D. K.; Souza, C. D.; Rostelato, M. E. C. M.

    2014-02-01

    Brachytherapy treatment with Iridium-192 high dose rate (HDR) sources is widely used for various tumours and it could be developed in many anatomic regions. Iridium-192 sources are inserted inside or close to the region that will be treated. Usually, the treatment is performed in prostate, gynaecological, lung, breast and oral cavity regions for a better clinical dose coverage compared with other techniques, such as, high energy photons and Cobalt-60 machines. This work will evaluate absorbed dose distributions in near-surface regions around Ir-192 HDR sources. Near-surface dose measurements are a complex task, due to the contribution of beta particles in the near-surface regions. These dose distributions should be useful for non-tumour treatments, such as keloids, and other non-intracavitary technique. For the absorbed dose distribution simulations the Monte Carlo code PENELOPE with the general code penEasy was used. Ir-192 source geometry and a Polymethylmethacrylate (PMMA) tube, for beta particles shield were modelled to yield the percentage depth dose (PDD) on a cubic water phantom. Absorbed dose simulations were realized at the central axis to yield the Ir-192 dose fall-off along central axis. The results showed that more than 99.2% of the absorbed doses (relative to the surface) are deposited in 5 cm depth but with slower rate at higher distances. Near-surface treatments with Ir-192 HDR sources yields achievable measurements and with proper clinical technique and accessories should apply as an alternative for treatment of lesions where only beta sources were used.

  11. Determination of surface dose rate of indigenous (32)P patch brachytherapy source by experimental and Monte Carlo methods.

    PubMed

    Kumar, Sudhir; Srinivasan, P; Sharma, S D; Saxena, Sanjay Kumar; Bakshi, A K; Dash, Ashutosh; Babu, D A R; Sharma, D N

    2015-09-01

    Isotope production and Application Division of Bhabha Atomic Research Center developed (32)P patch sources for treatment of superficial tumors. Surface dose rate of a newly developed (32)P patch source of nominal diameter 25 mm was measured experimentally using standard extrapolation ionization chamber and Gafchromic EBT film. Monte Carlo model of the (32)P patch source along with the extrapolation chamber was also developed to estimate the surface dose rates from these sources. The surface dose rates to tissue (cGy/min) measured using extrapolation chamber and radiochromic films are 82.03±4.18 (k=2) and 79.13±2.53 (k=2) respectively. The two values of the surface dose rates measured using the two independent experimental methods are in good agreement to each other within a variation of 3.5%. The surface dose rate to tissue (cGy/min) estimated using the MCNP Monte Carlo code works out to be 77.78±1.16 (k=2). The maximum deviation between the surface dose rates to tissue obtained by Monte Carlo and the extrapolation chamber method is 5.2% whereas the difference between the surface dose rates obtained by radiochromic film measurement and the Monte Carlo simulation is 1.7%. The three values of the surface dose rates of the (32)P patch source obtained by three independent methods are in good agreement to one another within the uncertainties associated with their measurements and calculation. This work has demonstrated that MCNP based electron transport simulations are accurate enough for determining the dosimetry parameters of the indigenously developed (32)P patch sources for contact brachytherapy applications.

  12. A study on the dose distributions in various materials from an Ir-192 HDR brachytherapy source.

    PubMed

    Hsu, Shih-Ming; Wu, Chin-Hui; Lee, Jeng-Hung; Hsieh, Ya-Ju; Yu, Chun-Yen; Liao, Yi-Jen; Kuo, Li-Cheng; Liang, Ji-An; Huang, David Y C

    2012-01-01

    Dose distributions of (192)Ir HDR brachytherapy in phantoms simulating water, bone, lung tissue, water-lung and bone-lung interfaces using the Monte Carlo codes EGS4, FLUKA and MCNP4C are reported. Experiments were designed to gather point dose measurements to verify the Monte Carlo results using Gafchromic film, radiophotoluminescent glass dosimeter, solid water, bone, and lung phantom. The results for radial dose functions and anisotropy functions in solid water phantom were consistent with previously reported data (Williamson and Li). The radial dose functions in bone were affected more by depth than those in water. Dose differences between homogeneous solid water phantoms and solid water-lung interfaces ranged from 0.6% to 14.4%. The range between homogeneous bone phantoms and bone-lung interfaces was 4.1% to 15.7%. These results support the understanding in dose distribution differences in water, bone, lung, and their interfaces. Our conclusion is that clinical parameters did not provide dose calculation accuracy for different materials, thus suggesting that dose calculation of HDR treatment planning systems should take into account material density to improve overall treatment quality.

  13. Phase II clinical trial using californium 252 fast neutron brachytherapy, external pelvic radiation, and extrafascial hysterectomy in the treatment of bulky, barrel-shaped stage IB cervical cancer.

    PubMed

    van Nagell, J R; Maruyama, Y; Donaldson, E S; Hanson, M B; Gallion, H H; Yoneda, J; Powell, D E; Kryscio, R J; Beach, J L

    1986-05-15

    From June 1977 to June 1983, 32 patients with bulky (greater than 4 cm diameter), barrel-shaped Stage IB cervical cancer were treated at the University of Kentucky Medical Center by a combination of outpatient neutron brachytherapy using californium 252 (252Cf) and external pelvic radiation followed by extrafascial hysterectomy. Nineteen patients had cervical tumors 4 to 6 cm in diameter, and 13 patients had lesions in excess of 6 cm in diameter. A dose of 4500 rad external photon therapy was given from a linear accelerator, and one or two 6-hour 252Cf implants were given during or immediately after external radiation. Extrafascial hysterectomy with bilateral salpingo-oophorectomy was performed 6 weeks after completion of radiation therapy. Complications during and after radiation were minimal and included vaginal stenosis (three) and proctitis (two). Tumor clearance in the hysterectomy specimen was complete in 23 patients (72%) and residual cervical tumor was present in 9 patients (28%). Two patients developed tumor recurrence and died of disease 15 and 27 months after therapy, respectively. Thirty patients remain free of disease 26 to 96 months (median, 52 months) after treatment, and none have been lost to follow-up. The actuarial survival of these patients is 97% at 2 years and 94% at 5 years. Intracavitary neutron therapy is well tolerated and is effective when combined with external radiation and hysterectomy in the treatment of bulky, barrel-shaped Stage IB cervical cancer.

  14. SU-E-T-171: Characterization of the New Xoft Axxent Electronic Brachytherapy Source Using PRESAGE Dosimeters

    SciTech Connect

    Steinmann, A; Followill, D; Ibbott, G; Adamovics, J

    2015-06-15

    Purpose: To characterize the Xoft Axxent electronic brachytherapy source using PRESAGE™ dosimeters to obtain independent confirmation of TG-43U1 dosimetry values from previous studies and ascertain its reproducibility in HDR brachytherapy. Methods: PRESAGE™ dosimeters are solid, polyurethane-based dosimeters doped with radiochromic leucodyes that produce a linear optical-density response when exposed to radiation. Eight 1-kg dosimeters were scanned prior to irradiation on an optical-CT scanner to eliminate background signal and any optical imperfections from each dosimeter. To quantify potential imaging artifacts due to oversaturated responses in the immediate range of the source, half of the eight dosimeters were cast with a smaller channel diameter of 5.4 mm, and the other half were cast with a larger channel diameter of 15mm. During irradiation, the catheters were placed in the center of each channel. Catheters fit the 5.4mm diameters channels whereas polyurethane plugs were inserted into the larger channels to create a sturdy, immobile catheter which allowed uniform dose distributions. Two dosimeters of each 5.4mm and 15mm were irradiated at either 1517.3 cGy or 2017.5 cGy. Post-irradiation scans were performed within 48 hours of irradiation. A 3D reconstruction based on subtraction of these two images and the relative dose measurements were made using in-house software. Results: Comparing measured radial dose rates with previous results revealed smaller percent errors when PRESAGE™ irradiations were at lower maximum dose. The dosimeters showed small deviations in radial dose function, g{sub p} (r), from previous studies. Among the dosimeters irradiated at 1517.3 cGy, the g{sub p}(r) compared to previous studies fluctuated from 0.0043 to 0.3922. This suggests small fluctuations can drastically change radial dose calculations. Conclusion: The subtraction of pre-irradiation and post-irradiation scans of PRESAGE™ dosimeters using an optical-CT scanner

  15. WE-A-17A-02: BEST IN PHYSICS (THERAPY) - Development of a Calorimeter for the Measurement of the Power Emitted From LDR Brachytherapy Sources

    SciTech Connect

    Malin, M; Palmer, B; DeWerd, L

    2014-06-15

    Purpose: Model-based dose calculation algorithms for brachytherapy sources are designed to compute dose per particle or dose per unit energy leaving the encapsulation of a brachytherapy source. As such, the power leaving the encapsulation of a source, called emitted power (EP), would be a natural source strength metric for these new algorithms. However, no instrument is currently capable of an absolute measurement of EP. A calorimeter operating with a liquid helium thermal sink was designed and constructed to measure the EP of low-dose rate (LDR) I-125 and Pd-103 brachytherapy sources. Methods: Calorimeter design was optimized through thermal and Monte Carlo (MC) modeling. Thermal modeling showed that specific thermal conditions would be necessary for accurate calorimeter measurements. These conditions were experimentally verified. The EP of two LDR I-125 source models was measured. An air-kermastrength (AKS)-to-EP conversion coefficient was determined through MC simulations and applied to well-type ionization chamber measurements of AKS to enable comparison with EP measurements. Results: MCdetermined EP per unit AKS conversion coefficients were source model dependent and are on the order of 0.1 μW/U. The signal-to-noise ratio was a function of source strength, and was 294 for a 0.5 μW source. Measurements were repeatable to within 3.6% for a 0.5 μW source. Initial EP measurements were made with two I-125 source models, a 5.7 U Oncura 6711 and a 2.9 U Best Medical 2301. Model 2301 results agreed with the MC-converted AKS value to within the measurement uncertainty of 4.3% at k=1. The Model 6711 results were systematically high and are under investigation. Conclusion: A calorimeter was designed to provide an absolute measurement of the EP for LDR brachytherapy sources and preliminary EP measurements have been made. This new calorimeter design shows promise of providing a more fundamentally useful source strength standard.

  16. Cluster pattern analysis of energy deposition sites for the brachytherapy sources 103Pd, 125I, 192Ir, 137Cs, and 60Co

    NASA Astrophysics Data System (ADS)

    Villegas, Fernanda; Tilly, Nina; Bäckström, Gloria; Ahnesjö, Anders

    2014-09-01

    Analysing the pattern of energy depositions may help elucidate differences in the severity of radiation-induced DNA strand breakage for different radiation qualities. It is often claimed that energy deposition (ED) sites from photon radiation form a uniform random pattern, but there is indication of differences in RBE values among different photon sources used in brachytherapy. The aim of this work is to analyse the spatial patterns of EDs from 103Pd, 125I, 192Ir, 137Cs sources commonly used in brachytherapy and a 60Co source as a reference radiation. The results suggest that there is both a non-uniform and a uniform random component to the frequency distribution of distances to the nearest neighbour ED. The closest neighbouring EDs show high spatial correlation for all investigated radiation qualities, whilst the uniform random component dominates for neighbours with longer distances for the three higher mean photon energy sources (192Ir, 137Cs, and 60Co). The two lower energy photon emitters (103Pd and 125I) present a very small uniform random component. The ratio of frequencies of clusters with respect to 60Co differs up to 15% for the lower energy sources and less than 2% for the higher energy sources when the maximum distance between each pair of EDs is 2 nm. At distances relevant to DNA damage, cluster patterns can be differentiated between the lower and higher energy sources. This may be part of the explanation to the reported difference in RBE values with initial DSB yields as an endpoint for these brachytherapy sources.

  17. Cluster pattern analysis of energy deposition sites for the brachytherapy sources 103Pd, 125I, 192Ir, 137Cs, and 60Co.

    PubMed

    Villegas, Fernanda; Tilly, Nina; Bäckström, Gloria; Ahnesjö, Anders

    2014-09-21

    Analysing the pattern of energy depositions may help elucidate differences in the severity of radiation-induced DNA strand breakage for different radiation qualities. It is often claimed that energy deposition (ED) sites from photon radiation form a uniform random pattern, but there is indication of differences in RBE values among different photon sources used in brachytherapy. The aim of this work is to analyse the spatial patterns of EDs from 103Pd, 125I, 192Ir, 137Cs sources commonly used in brachytherapy and a 60Co source as a reference radiation. The results suggest that there is both a non-uniform and a uniform random component to the frequency distribution of distances to the nearest neighbour ED. The closest neighbouring EDs show high spatial correlation for all investigated radiation qualities, whilst the uniform random component dominates for neighbours with longer distances for the three higher mean photon energy sources (192Ir, 137Cs, and 60Co). The two lower energy photon emitters (103Pd and 125I) present a very small uniform random component. The ratio of frequencies of clusters with respect to 60Co differs up to 15% for the lower energy sources and less than 2% for the higher energy sources when the maximum distance between each pair of EDs is 2 nm. At distances relevant to DNA damage, cluster patterns can be differentiated between the lower and higher energy sources. This may be part of the explanation to the reported difference in RBE values with initial DSB yields as an endpoint for these brachytherapy sources.

  18. Dose calculation for photon-emitting brachytherapy sources with average energy higher than 50 keV: Report of the AAPM and ESTRO

    SciTech Connect

    Perez-Calatayud, Jose; Ballester, Facundo; Das, Rupak K.; DeWerd, Larry A.; Ibbott, Geoffrey S.; Meigooni, Ali S.; Ouhib, Zoubir; Rivard, Mark J.; Sloboda, Ron S.; Williamson, Jeffrey F.

    2012-05-15

    Purpose: Recommendations of the American Association of Physicists in Medicine (AAPM) and the European Society for Radiotherapy and Oncology (ESTRO) on dose calculations for high-energy (average energy higher than 50 keV) photon-emitting brachytherapy sources are presented, including the physical characteristics of specific {sup 192}Ir, {sup 137}Cs, and {sup 60}Co source models. Methods: This report has been prepared by the High Energy Brachytherapy Source Dosimetry (HEBD) Working Group. This report includes considerations in the application of the TG-43U1 formalism to high-energy photon-emitting sources with particular attention to phantom size effects, interpolation accuracy dependence on dose calculation grid size, and dosimetry parameter dependence on source active length. Results: Consensus datasets for commercially available high-energy photon sources are provided, along with recommended methods for evaluating these datasets. Recommendations on dosimetry characterization methods, mainly using experimental procedures and Monte Carlo, are established and discussed. Also included are methodological recommendations on detector choice, detector energy response characterization and phantom materials, and measurement specification methodology. Uncertainty analyses are discussed and recommendations for high-energy sources without consensus datasets are given. Conclusions: Recommended consensus datasets for high-energy sources have been derived for sources that were commercially available as of January 2010. Data are presented according to the AAPM TG-43U1 formalism, with modified interpolation and extrapolation techniques of the AAPM TG-43U1S1 report for the 2D anisotropy function and radial dose function.

  19. Dosimetric characteristics, air-kerma strength calibration and verification of Monte Carlo simulation for a new ytterbium-169 brachytherapy source

    SciTech Connect

    Perera, H.; Williamson, J.F.; Li, Zuofeng; Mishra, V.; Meigooni, A.S. )

    1994-03-01

    Ytterbium-169 ([sup 169]Yb) is a promising new isotope for brachytherapy with a half life of 32 days and an average photon energy of 93 KeV. It has an Ir-192-equivalent dose distribution in water but a much smaller half-value layer in lead (0.2 mm), affording improved radiation protection and customized shielding of dose-limiting anatomic structures. The goals of this study are to: (a) experimentally validate Monte Carlo photon transport dose-rate calculations for this energy range, (b) to develop a secondary air-kerma strength standard for [sup 169]Yb, and (c) to present essential treatment planning data including the transverse-axis dose-rate distribution and dose correction factors for a number of local shielding materials. Several interstitial [sup 169]Yb sources (type 6) and an experimental high dose-rate source were made available for this study. Monte Carlo photon-transport (MCPT) simulations, based upon validated geometric models of source structure, were used to calculate dose rates in water. To verify MCPT predictions, the transverse-axis dose distribution in homogeneous water medium was measured using a silicon-diode detector. For use in designing shielded applicators, heterogeneity correction factors (HCF) arising from small cylindrical heterogeneities of lead, aluminum, titanium, steel and air were measured in a water medium. Finally, to provide a sound experimental basis for comparing experimental and theoretical dose-rate distributions, the air-kerma strength of the sources was measured using a calibrated ion chamber. To eliminate the influence of measurement artifacts on the comparison of theory and measurement, simulated detector readings were compared directly to measured diode readings. The final data are presented in the format endorsed by the Interstitial Collaborative Working Group. 33 refs., 8 figs., 3 tabs.

  20. SU-E-T-232: Custom High-Dose-Rate Brachytherapy Surface Mold Applicators: The Importance Source to Skin Distance

    SciTech Connect

    Park, S; Demanes, J; Kamrava, M

    2015-06-15

    Purpose: Surface mold applicators can be customized to fit irregular skin surfaces that are difficult to treat with other radiation therapy techniques. Optimal design of customized HDR skin brachytherapy is not well-established. We evaluated the impact of applicator thickness (source to skin distance) on target dosimetry. Methods: 27 patients had 34 treated sites: scalp 4, face 13, extremity 13, and torso 4. Custom applicators were constructed from 5–15 mm thick thermoplastic bolus molded over the skin lesion. A planar array of plastic brachytherapy catheters spaced 5–10 mm apart was affixed to the bolus. CT simulation was used to contour the target volume and to determine the prescription depth. Inverse planning simulated annealing followed by graphical optimization was used to plan and deliver 40–56 Gy in 8–16 fractions. Target coverage parameters (D90, Dmean, and V100) and dose uniformity (V110–200, D0.1cc, D1cc, and D2cc) were studied according to target depth (<5mm vs. ≥5mm) and applicator thickness (5–10mm vs. ≥10mm). Results: The average prescription depth was 4.2±1.5mm. The average bolus thickness was 9.2±2.4mm. The median CTV volume was 10.0 cc (0.2–212.4 cc). Similar target coverage was achieved with prescription depths of <5mm and ≥5mm (Dmean = 113.8% vs. 112.4% and D90 = 100.2% vs. 98.3%). The <5mm prescription depth plans were more uniform (D0.1cc = 131.8% vs. 151.8%). Bolus thickness <10mm vs. ≥10mm plans also had similar target coverage (Dmean = 118.2% vs. 110.7% and D90 = 100.1% vs. 99.0%). Applicators ≥10mm thick, however, provide more uniform target dosimetry (D0.1cc = 146.9% vs. 139.5%). Conclusion: Prescription depth is based upon the thickness of the lesion and upon the clinical needs of the patient. Applicators ≥10mm thick provide more dose uniformity than 5–10mm thick applicators. Applicator thickness is an important variable that should be considered during treatment planning to achieve optimal dose uniformity.

  1. A dual-plane co-RASOR technique for accurate and rapid tracking and position verification of an Ir-192 source for single fraction HDR brachytherapy

    NASA Astrophysics Data System (ADS)

    de Leeuw, Hendrik; Moerland, Marinus A.; van Vulpen, Marco; Seevinck, Peter R.; Bakker, Chris J. G.

    2013-11-01

    Effective high-dose-rate (HDR) treatment requires accurate and independent treatment verification to ensure that the treatment proceeds as prescribed, in particular if a high dose is given, as in single fraction therapy. Contrary to CT imaging and fluoroscopy, MR imaging provides high soft tissue contrast. Conventional MR techniques, however, do not offer the temporal resolution in combination with the 3D spatial resolution required for accurate brachytherapy source localization. We have developed an MR imaging method (center-out RAdial Sampling with Off-Resonance (co-RASOR)) that generates high positive contrast in the geometrical center of field perturbing objects, such as HDR brachytherapy sources. co-RASOR generates high positive contrast in the geometric center of an Ir-192 source by applying a frequency offset to center-out encoded data. To obtain high spatial accuracy in 3D with adequate temporal resolution, two orthogonal center-out encoded 2D images are applied instead of a full 3D acquisition. Its accuracy in 3D is demonstrated by 3D MRI and CT. The 2D images show high positive contrast in the geometric center of non-radioactive Ir-192 sources, with signal intensities up to 160% of the average signal intensity in the surrounding medium. The accuracy with which the center of the Ir-192 source is located by the dual-plane MRI acquisition corresponds closely to the accuracy obtained by 3D MRI and CT imaging. The positive contrast is shown to be obtained in homogeneous and in heterogeneous tissue. The dual-plane MRI technique allows the brachytherapy source to be tracked in 3D with millimeter accuracy with a temporal resolution of approximately 4 s.

  2. On source models for (192)Ir HDR brachytherapy dosimetry using model based algorithms.

    PubMed

    Pantelis, Evaggelos; Zourari, Kyveli; Zoros, Emmanouil; Lahanas, Vasileios; Karaiskos, Pantelis; Papagiannis, Panagiotis

    2016-06-07

    A source model is a prerequisite of all model based dose calculation algorithms. Besides direct simulation, the use of pre-calculated phase space files (phsp source models) and parameterized phsp source models has been proposed for Monte Carlo (MC) to promote efficiency and ease of implementation in obtaining photon energy, position and direction. In this work, a phsp file for a generic (192)Ir source design (Ballester et al 2015) is obtained from MC simulation. This is used to configure a parameterized phsp source model comprising appropriate probability density functions (PDFs) and a sampling procedure. According to phsp data analysis 15.6% of the generated photons are absorbed within the source, and 90.4% of the emergent photons are primary. The PDFs for sampling photon energy and direction relative to the source long axis, depend on the position of photon emergence. Photons emerge mainly from the cylindrical source surface with a constant probability over  ±0.1 cm from the center of the 0.35 cm long source core, and only 1.7% and 0.2% emerge from the source tip and drive wire, respectively. Based on these findings, an analytical parameterized source model is prepared for the calculation of the PDFs from data of source geometry and materials, without the need for a phsp file. The PDFs from the analytical parameterized source model are in close agreement with those employed in the parameterized phsp source model. This agreement prompted the proposal of a purely analytical source model based on isotropic emission of photons generated homogeneously within the source core with energy sampled from the (192)Ir spectrum, and the assignment of a weight according to attenuation within the source. Comparison of single source dosimetry data obtained from detailed MC simulation and the proposed analytical source model show agreement better than 2% except for points lying close to the source longitudinal axis.

  3. Stem effect of a Ce3+ doped SiO2 optical dosimeter irradiated with a 192Ir HDR brachytherapy source

    NASA Astrophysics Data System (ADS)

    Carrara, Mauro; Tenconi, Chiara; Guilizzoni, Roberta; Borroni, Marta; Cavatorta, Claudia; Cerrotta, Annamaria; Fallai, Carlo; Gambarini, Grazia; Vedda, Anna; Pignoli, Emanuele

    2014-11-01

    Fiber-optic-coupled scintillation dosimeters are characterized by their small active volume if compared to other existing systems. However, they potentially show a greater stem effect, especially in external beam radiotherapy where the Cerenkov effect is not negligible. In brachytherapy, due to the lower energies and the shorter high dose range of the employed sources, the impact of the stem effect to the detector accuracy might be low. In this work, the stem effect of a Ce3+ doped SiO2 scintillation detector coupled to a SiO2 optical fiber was studied for high dose rate brachytherapy applications. Measurements were performed in a water phantom at changing source-detector mutual positions. The same irradiations were performed with a passive optical fiber, which doesn't have the dosimeter at its end. The relative contribution of the passive fiber with respect to the uncorrected readings of the detector in each one of the investigated source dwell positions was evaluated. Furthermore, the dosimeter was calibrated both neglecting and correcting its response for the passive fiber readings. The obtained absolute dose measurements were then compared to the dose calculations resulting from the treatment planning system. Dosimeter uncertainties with and without taking into account the passive fiber readings were generally below 2.8% and 4.3%, respectively. However, a particular exception results when the source is positioned near to the optical fiber, where the detector underestimates the dose (-8%) or at source-detector longitudinal distances higher than 3 cm. The obtained results show that the proposed dosimeter might be adopted in high dose rate prostate brachytherapy with satisfactory accuracy, without the need for any stem effect correction. However, accuracy further improves by subtraction of the noise signal produced by the passive optical fiber.

  4. SU-E-T-284: Revisiting Reference Dosimetry for the Model S700 Axxent 50 KV{sub p} Electronic Brachytherapy Source

    SciTech Connect

    Hiatt, JR; Rivard, MJ

    2014-06-01

    Purpose: The model S700 Axxent electronic brachytherapy source by Xoft was characterized in 2006 by Rivard et al. The source design was modified in 2006 to include a plastic centering insert at the source tip to more accurately position the anode. The objectives of the current study were to establish an accurate Monte Carlo source model for simulation purposes, to dosimetrically characterize the new source and obtain its TG-43 brachytherapy dosimetry parameters, and to determine dose differences between the source with and without the centering insert. Methods: Design information from dissected sources and vendor-supplied CAD drawings were used to devise the source model for radiation transport simulations of dose distributions in a water phantom. Collision kerma was estimated as a function of radial distance, r, and polar angle, θ, for determination of reference TG-43 dosimetry parameters. Simulations were run for 10{sup 10} histories, resulting in statistical uncertainties on the transverse plane of 0.03% at r=1 cm and 0.08% at r=10 cm. Results: The dose rate distribution the transverse plane did not change beyond 2% between the 2006 model and the current study. While differences exceeding 15% were observed near the source distal tip, these diminished to within 2% for r>1.5 cm. Differences exceeding a factor of two were observed near θ=150° and in contact with the source, but diminished to within 20% at r=10 cm. Conclusions: Changes in source design influenced the overall dose rate and distribution by more than 2% over a third of the available solid angle external from the source. For clinical applications using balloons or applicators with tissue located within 5 cm from the source, dose differences exceeding 2% were observed only for θ>110°. This study carefully examined the current source geometry and presents a modern reference TG-43 dosimetry dataset for the model S700 source.

  5. Determination of the intrinsic energy dependence of LiF:Mg,Ti thermoluminescent dosimeters for {sup 125}I and {sup 103}Pd brachytherapy sources relative to {sup 60}Co

    SciTech Connect

    Reed, J. L. Micka, J. A.; Culberson, W. S.; DeWerd, L. A.; Rasmussen, B. E.; Davis, S. D.

    2014-12-15

    Purpose: To determine the intrinsic energy dependence of LiF:Mg,Ti thermoluminescent dosimeters (TLD-100) for {sup 125}I and {sup 103}Pd brachytherapy sources relative to {sup 60}Co. Methods: LiF:Mg,Ti TLDs were irradiated with low-energy brachytherapy sources and with a {sup 60}Co teletherapy source. The brachytherapy sources measured were the Best 2301 {sup 125}I seed, the OncoSeed 6711 {sup 125}I seed, and the Best 2335 {sup 103}Pd seed. The TLD light output per measured air-kerma strength was determined for the brachytherapy source irradiations, and the TLD light output per air kerma was determined for the {sup 60}Co irradiations. Monte Carlo (MC) simulations were used to calculate the dose-to-TLD rate per air-kerma strength for the brachytherapy source irradiations and the dose to TLD per air kerma for the {sup 60}Co irradiations. The measured and MC-calculated results for all irradiations were used to determine the TLD intrinsic energy dependence for {sup 125}I and {sup 103}Pd relative to {sup 60}Co. Results: The relative TLD intrinsic energy dependences (relative to {sup 60}Co) and associated uncertainties (k = 1) were determined to be 0.883 ± 1.3%, 0.870 ± 1.4%, and 0.871 ± 1.5% for the Best 2301 seed, OncoSeed 6711 seed, and Best 2335 seed, respectively. Conclusions: The intrinsic energy dependence of TLD-100 is dependent on photon energy, exhibiting changes of 13%–15% for {sup 125}I and {sup 103}Pd sources relative to {sup 60}Co. TLD measurements of absolute dose around {sup 125}I and {sup 103}Pd brachytherapy sources should explicitly account for the relative TLD intrinsic energy dependence in order to improve dosimetric accuracy.

  6. Influence of photon energy spectra from brachytherapy sources on Monte Carlo simulations of kerma and dose rates in water and air

    SciTech Connect

    Rivard, Mark J.; Granero, Domingo; Perez-Calatayud, Jose; Ballester, Facundo

    2010-02-15

    Purpose: For a given radionuclide, there are several photon spectrum choices available to dosimetry investigators for simulating the radiation emissions from brachytherapy sources. This study examines the dosimetric influence of selecting the spectra for {sup 192}Ir, {sup 125}I, and {sup 103}Pd on the final estimations of kerma and dose. Methods: For {sup 192}Ir, {sup 125}I, and {sup 103}Pd, the authors considered from two to five published spectra. Spherical sources approximating common brachytherapy sources were assessed. Kerma and dose results from GEANT4, MCNP5, and PENELOPE-2008 were compared for water and air. The dosimetric influence of {sup 192}Ir, {sup 125}I, and {sup 103}Pd spectral choice was determined. Results: For the spectra considered, there were no statistically significant differences between kerma or dose results based on Monte Carlo code choice when using the same spectrum. Water-kerma differences of about 2%, 2%, and 0.7% were observed due to spectrum choice for {sup 192}Ir, {sup 125}I, and {sup 103}Pd, respectively (independent of radial distance), when accounting for photon yield per Bq. Similar differences were observed for air-kerma rate. However, their ratio (as used in the dose-rate constant) did not significantly change when the various photon spectra were selected because the differences compensated each other when dividing dose rate by air-kerma strength. Conclusions: Given the standardization of radionuclide data available from the National Nuclear Data Center (NNDC) and the rigorous infrastructure for performing and maintaining the data set evaluations, NNDC spectra are suggested for brachytherapy simulations in medical physics applications.

  7. {sup 103}Pd strings: Monte Carlo assessment of a new approach to brachytherapy source design

    SciTech Connect

    Rivard, Mark J.; Reed, Joshua L.; DeWerd, Larry A.

    2014-01-15

    Purpose: A new type of{sup 103}Pd source (CivaString and CivaThin by CivaTech Oncology, Inc.) is examined. The source contains {sup 103}Pd and Au radio-opaque marker(s), all contained within low-Z{sub eff} organic polymers that permit source flexibility. The CivaString source is available in lengths L of 10, 20, 30, 40, 50, and 60 mm, and referred to in the current study as CS10–CS60, respectively. A thinner design, CivaThin, has sources designated as CT10–CT60, respectively. The CivaString and CivaThin sources are 0.85 and 0.60 mm in diameter, respectively. The source design is novel and offers an opportunity to examine its interesting dosimetric properties in comparison to conventional {sup 103}Pd seeds. Methods: The MCNP5 radiation transport code was used to estimate air-kerma rate and dose rate distributions with polar and cylindrical coordinate systems. Doses in water and prostate tissue phantoms were compared to determine differences between the TG-43 formalism and realistic clinical circumstances. The influence of Ti encapsulation and 2.7 keV photons was examined. The accuracy of superposition of dose distributions from shorter sources to create longer source dose distributions was also assessed. Results: The normalized air-kerma rate was not highly dependent onL or the polar angle θ, with results being nearly identical between the CivaString and CivaThin sources for common L. The air-kerma strength was also weakly dependent on L. The uncertainty analysis established a standard uncertainty of 1.3% for the dose-rate constant Λ, where the largest contributors were μ{sub en}/ρ and μ/ρ. The Λ values decreased with increasing L, which was largely explained by differences in solid angle. The radial dose function did not substantially vary among the CivaString and CivaThin sources for r ≥ 1 cm. However, behavior for r < 1 cm indicated that the Au marker(s) shielded radiation for the sources having L = 10, 30, and 50 mm. The 2D anisotropy function

  8. The theoretical basis and clinical methodology for stereotactic interstitial brain tumor irradiation using iododeoxyuridine as a radiation sensitizer and samarium-145 as a brachytherapy source

    SciTech Connect

    Goodman, J.H.; Gahbauer, R.A.; Kanellitsas, C.; Clendenon, N.R. ); Laster, B.H.; Fairchild, R.G. )

    1989-01-01

    High grade astrocytomas have proven resistant to all conventional therapy. A technique to produce radiation enhancement during interstitial brain tumor irradiation by using a radiation sensitizer (IdUrd) and by stimulation of Auger electron cascades through absorption of low energy photons in iodine (Photon activation) is described. Clinical studies using IdUrd, {sup 192}Ir as a brachytherapy source, and external radiation have produced promising results. Substituting samarium-145 for {sup 192}Ir in this protocol is expected to produce enhanced results. 15 refs.

  9. Production, Distribution, and Applications of Californium-252 Neutron Sources

    SciTech Connect

    Balo, P.A.; Knauer, J.B.; Martin, R.C.

    1999-10-03

    The radioisotope {sup 252}Cf is routinely encapsulated into compact, portable, intense neutron sources with a 2.6-year half-life. A source the size of a person's little finger can emit up to 10{sup 11} neutrons/s. Californium-252 is used commercially as a reliable, cost-effective neutron source for prompt gamma neutron activation analysis (PGNAA) of coal, cement, and minerals, as well as for detection and identification of explosives, laud mines, and unexploded military ordnance. Other uses are neutron radiography, nuclear waste assays, reactor start-up sources, calibration standards, and cancer therapy. The inherent safety of source encapsulations is demonstrated by 30 years of experience and by U.S. Bureau of Mines tests of source survivability during explosions. The production and distribution center for the U. S Department of Energy (DOE) Californium Program is the Radiochemical Engineering Development Center (REDC) at Oak Ridge National Laboratory (ORNL). DOE sells The radioisotope {sup 252}Cf is routinely encapsulated into compact, portable, intense neutron sources with a 2.6- year half-life. A source the size of a person's little finger can emit up to 10 neutrons/s. Californium-252 is used commercially as a reliable, cost-effective neutron source for prompt gamma neutron activation analysis (PGNAA) of coal, cement, and minerals, as well as for detection and identification of explosives, laud mines, and unexploded military ordnance. Other uses are neutron radiography, nuclear waste assays, reactor start-up sources, calibration standards, and cancer therapy. The inherent safety of source encapsulations is demonstrated by 30 years of experience and by U.S. Bureau of Mines tests of source survivability during explosions. The production and distribution center for the U. S Department of Energy (DOE) Californium Program is the Radiochemical Engineering Development Center (REDC) at Oak Ridge National Laboratory(ORNL). DOE sells {sup 252}Cf to commercial

  10. Evaluation of Dosimetric Parameters for Various {sup 192}Ir Brachytherapy Sources Under Unbounded Phantom Geometry by Monte Carlo Simulation

    SciTech Connect

    Devan, Krishnamurthy; Aruna, Prakasarao; Manigandan, Durai; Bharanidharan, Ganesan; Subbaiah, Kamatam Venkata; Sunny, Chiravath Sunil; Ganesan, Singaravelu

    2007-01-01

    As per TG-43 dose calculation formalism, it is essential to obtain various dosimetric parameters such as the air-kerma strength, dose rate constant, radial dose function, and anisotropy function, as they account for accurate determination of dose rate distribution around brachytherapy sources. Most of the available reported Monte Carlo simulations were performed in liquid water phantoms with a bounded region of 30-cm diameter. In this context, an attempt was made to report the dosimetric parameters for various commercially available pulsed-dose rate (PDR) and high-dose rate (HDR) sources under unbounded phantom conditions, as the data may be used as input to treatment planning systems (TPSs) for quality control assistance. The air-kerma strength per unit activity, S{sub k}/A, was computed for various Iridium-192 ({sup 192}Ir) sources in dry air medium. The air-kerma strength and dose rate constant for old PDR is (9.77 {+-} 0.03) 10{sup -8} U/Bq and 1.124 {+-} 0.001 cGyh{sup -1}U{sup -1}; for new PDR, the values are (9.96 {+-} 0.03) 10{sup -8} U/Bq and 1.124 {+-} 0.001 cGyh{sup -1}U{sup -1}; for old MHDR, the values are (9.80 {+-} 0.01) 10{sup -8} U/Bq and 1.115 {+-} 0.001 cGyh{sup -1}U{sup -1}; for new MHDR, (9.80 {+-} 0.01) 10{sup -8} U/Bq and 1.112 {+-} 0.001cGyh{sup -1}U{sup -1}; for old VHDR, the values are (10.32 {+-} 0.01) 10{sup -8} U/Bq and 1.035 {+-} 0.002 cGyh{sup -1}U{sup -1}; for new VHDR, the values are (10.34 {+-} 0.02) 10{sup -8} U/Bq and 1.096 {+-} 0.001 cGyh{sup -1}U{sup -1}. The computed radial dose function values and anisotropy function values are also in good agreement with available data.

  11. A photon spectrometric dose-rate constant determination for the Advantage Pd-103 brachytherapy source

    SciTech Connect

    Chen, Zhe Jay; Bongiorni, Paul; Nath, Ravinder

    2010-02-15

    Purpose: Although several dosimetric characterizations using Monte Carlo simulation and thermoluminescent dosimetry (TLD) have been reported for the new Advantage Pd-103 source (IsoAid, LLC, Port Richey, FL), no AAPM consensus value has been established for the dosimetric parameters of the source. The aim of this work was to perform an additional dose-rate constant ({Lambda}) determination using a recently established photon spectrometry technique (PST) that is independent of the published TLD and Monte Carlo techniques. Methods: Three Model IAPD-103A Advantage Pd-103 sources were used in this study. The relative photon energy spectrum emitted by each source along the transverse axis was measured using a high-resolution germanium spectrometer designed for low-energy photons. For each source, the dose-rate constant was determined from its emitted energy spectrum. The PST-determined dose-rate constant ({sub PST}{Lambda}) was then compared to those determined by TLD ({sub TLD}{Lambda}) and Monte Carlo ({sub MC}{Lambda}) techniques. A likely consensus {Lambda} value was estimated as the arithmetic mean of the average {Lambda} values determined by each of three different techniques. Results: The average {sub PST}{Lambda} value for the three Advantage sources was found to be (0.676{+-}0.026) cGyh{sup -1} U{sup -1}. Intersource variation in {sub PST}{Lambda} was less than 0.01%. The {sub PST}{Lambda} was within 2% of the reported {sub MC}{Lambda} values determined by PTRAN, EGSnrc, and MCNP5 codes. It was 3.4% lower than the reported {sub TLD}{Lambda}. A likely consensus {Lambda} value was estimated to be (0.688{+-}0.026) cGyh{sup -1} U{sup -1}, similar to the AAPM consensus values recommended currently for the Theragenics (Buford, GA) Model 200 (0.686{+-}0.033) cGyh{sup -1} U{sup -1}, the NASI (Chatsworth, CA) Model MED3633 (0.688{+-}0.033) cGyh{sup -1} U{sup -1}, and the Best Medical (Springfield, VA) Model 2335 (0.685{+-}0.033) cGyh{sup -1} U{sup -1} {sup 103}Pd

  12. A systematic evaluation of the dose-rate constant determined by photon spectrometry for 21 different models of low-energy photon-emitting brachytherapy sources.

    PubMed

    Chen, Zhe Jay; Nath, Ravinder

    2010-10-21

    The aim of this study was to perform a systematic comparison of the dose-rate constant (Λ) determined by the photon spectrometry technique (PST) with the consensus value ((CON)Λ) recommended by the American Association of Physicists in Medicine (AAPM) for 21 low-energy photon-emitting interstitial brachytherapy sources. A total of 63 interstitial brachytherapy sources (21 different models with 3 sources per model) containing either (125)I (14 models), (103)Pd (6 models) or (131)Cs (1 model) were included in this study. A PST described by Chen and Nath (2007 Med. Phys. 34 1412-30) was used to determine the dose-rate constant ((PST)Λ) for each source model. Source-dependent variations in (PST)Λ were analyzed systematically against the spectral characteristics of the emitted photons and the consensus values recommended by the AAPM brachytherapy subcommittee. The values of (PST)Λ for the encapsulated sources of (103)Pd, (125)I and (131)Cs varied from 0.661 to 0.678 cGyh(-1) U(-1), 0.959 to 1.024 cGyh(-1)U(-1) and 1.066 to 1.073 cGyh(-1)U(-1), respectively. The relative variation in (PST)Λ among the six (103)Pd source models, caused by variations in photon attenuation and in spatial distributions of radioactivity among the source models, was less than 3%. Greater variations in (PST)Λ were observed among the 14 (125)I source models; the maximum relative difference was over 6%. These variations were caused primarily by the presence of silver in some (125)I source models and, to a lesser degree, by the variations in photon attenuation and in spatial distribution of radioactivity among the source models. The presence of silver generates additional fluorescent x-rays with lower photon energies which caused the (PST)Λ value to vary from 0.959 to 1.019 cGyh(-1)U(-1) depending on the amount of silver used by a given source model. For those (125)I sources that contain no silver, their (PST)Λ was less variable and had values within 1% of 1.024 cGyh(-1)U(-1). For the 16

  13. Dosimetric impact of source-positioning uncertainty in high-dose-rate balloon brachytherapy of breast cancer

    PubMed Central

    2015-01-01

    Purpose To evaluate the dosimetric impact of source-positioning uncertainty in high-dose-rate (HDR) balloon brachytherapy of breast cancer. Material and methods For 49 HDR balloon patients, each dwell position of catheter(s) was manually shifted distally (+) and proximally (–) with a magnitude from 1 to 4 mm. Total 392 plans were retrospectively generated and compared to corresponding clinical plans using 7 dosimetric parameters: dose (D95) to 95% of planning target volume for evaluation (PTV_EVAL), and volume covered by 100% and 90% of the prescribed dose (PD) (V100 and V90); skin and rib maximum point dose (Dmax); normal breast tissue volume receiving 150% and 200% of PD (V150 and V200). Results PTV_EVAL dosimetry deteriorated with larger average/maximum reduction (from ± 1 mm to ± 4 mm) for larger source position uncertainty (p value < 0.0001): from 1.0%/2.5%, 3.3%/5.9%, 6.3%/10.0% to 9.8%/14.5% for D95; from 1.0%/2.6%, 3.1%/5.7%, 5.8%/8.9% to 8.7%/12.3% for V100; from 0.2%/1.5%, 1.0%/4.0%, 2.7%/6.8% to 5.1%/10.3% for V90. ≥ ± 3 mm shift reduced average D95 to < 95% and average V100 to < 90%. While skin and rib Dmax change was case-specific, its absolute change (∣Δ(Value)∣) showed that larger shift and high dose group had larger variation compared to smaller and lower dose group (p value < 0.0001), respectively. Normal breast tissue V150 variation was case-specific and small. Average ∣Δ(V150)∣ was 0.2 cc for the largest shift (± 4 mm) with maximum < 1.7 cc. V200 was increased with higher elevation for larger shift: from 6.4 cc/9.8 cc, 7.0 cc/10.1 cc, 8.0 cc/11.3 cc to 9.2 cc/ 13.0 cc. Conclusions The tolerance of ± 2 mm recommended by AAPM TG 56 is clinically acceptable in most clinical cases. However, special attention should be paid to a case where both skin and rib are located proximally to balloon, and the orientation of balloon catheter(s) is vertical to these critical structures. In this case, sufficient dosimetric planning margins are

  14. Impact of the differential fluence distribution of brachytherapy sources on the spectroscopic dose-rate constant

    SciTech Connect

    Malin, Martha J.; Bartol, Laura J.; DeWerd, Larry A. E-mail: ladewerd@wisc.edu

    2015-05-15

    Purpose: To investigate why dose-rate constants for {sup 125}I and {sup 103}Pd seeds computed using the spectroscopic technique, Λ{sub spec}, differ from those computed with standard Monte Carlo (MC) techniques. A potential cause of these discrepancies is the spectroscopic technique’s use of approximations of the true fluence distribution leaving the source, φ{sub full}. In particular, the fluence distribution used in the spectroscopic technique, φ{sub spec}, approximates the spatial, angular, and energy distributions of φ{sub full}. This work quantified the extent to which each of these approximations affects the accuracy of Λ{sub spec}. Additionally, this study investigated how the simplified water-only model used in the spectroscopic technique impacts the accuracy of Λ{sub spec}. Methods: Dose-rate constants as described in the AAPM TG-43U1 report, Λ{sub full}, were computed with MC simulations using the full source geometry for each of 14 different {sup 125}I and 6 different {sup 103}Pd source models. In addition, the spectrum emitted along the perpendicular bisector of each source was simulated in vacuum using the full source model and used to compute Λ{sub spec}. Λ{sub spec} was compared to Λ{sub full} to verify the discrepancy reported by Rodriguez and Rogers. Using MC simulations, a phase space of the fluence leaving the encapsulation of each full source model was created. The spatial and angular distributions of φ{sub full} were extracted from the phase spaces and were qualitatively compared to those used by φ{sub spec}. Additionally, each phase space was modified to reflect one of the approximated distributions (spatial, angular, or energy) used by φ{sub spec}. The dose-rate constant resulting from using approximated distribution i, Λ{sub approx,i}, was computed using the modified phase space and compared to Λ{sub full}. For each source, this process was repeated for each approximation in order to determine which approximations used in

  15. Response of the alanine/ESR dosimeter to radiation from an Ir-192 HDR brachytherapy source.

    PubMed

    Anton, M; Hackel, T; Zink, K; von Voigts-Rhetz, P; Selbach, H-J

    2015-01-07

    The response of the alanine dosimeter to radiation from an Ir-192 source with respect to the absorbed dose to water, relative to Co-60 radiation, was determined experimentally as well as by Monte Carlo simulations. The experimental and Monte Carlo results for the response agree well within the limits of uncertainty. The relative response decreases with an increasing distance between the measurement volume and the source from approximately 98% at a 1 cm distance to 96% at 5 cm. The present data are more accurate, but agree well with data published by Schaeken et al (2011 Phys. Med. Biol. 56 6625-34). The decrease of the relative response with an increasing distance that had already been observed by these authors is confirmed. In the appendix, the properties of the alanine dosimeter with respect to volume and sensitivity corrections are investigated. The inhomogeneous distribution of the detection probability that was taken into account for the analysis was determined experimentally.

  16. SU-F-BRA-05: Utility of the Combined Use of Two Types of HDR Sources with the Direction Modulation Brachytherapy (DMBT) Tandem Applicator for Cervical Cancer Treatment

    SciTech Connect

    Safigholi, H; Soliman, A; Song, W; Han, D; Meigooni, A Soleimani; Scanderbeg, D

    2015-06-15

    Purpose: To maximize the dose to HRCTV while minimizing dose to the OARs, the combination of two HDR brachytherapy sources, 192-Ir and 169-Yb, used in combination with the recently-proposed novel direction modulated brachytherapy (DMBT) tandem applicator were examined. Methods: The DMBT tandem, made from nonmagnetic tungsten-alloy rod, with diameter of 5.4mm, has 6 symmetric peripheral holes of 1.3mm diameter. The 0.3mm thick bio-compatible plastic tubing wraps the tandem. MCNPX v.2.6 was used to simulate the mHDR 192-Ir V2 and 4140 HDR 169-Yb sources inside the DMBT applicator. Thought was by combining the higher energy 192-Ir (380keV) and lower energy 169-Yb (92.7keV) sources could create unprecedented level of dose conformality when combined with the high-degree intensity modulation capable DMBT tandem applicator. 3D dose matrices, with 1 mm3 resolution, were imported into an in-house-coded inverse optimization planning system to evaluate plan quality of 19 clinical patient cases. Prescription dose was 15Gy. All plans were normalized to receive the same HRCTV D90. Results: Generally, the use of dual sources produced better plans than using either of the sources alone, with significantly better performance in some patients. The mean D2cc for bladder, rectum, and sigmoid were 11.65±2.30Gy, 7.47±3.05Gy, and 9.84±2.48Gy for 192-Ir-only, respectively. For 169 -Yb-only, they were 11.67±2.26Gy, 7.44±3.02Gy, and 9.83±2.38Gy, respectively. The corresponding data for the dual sources were 11.51±2.24Gy, 7.30±3.00Gy, and 9.68 ±2.39Gy, respectively. The HRCTV D98 and V100 were 16.37±1.86Gy and 97.37±1.92Gy for Ir-192-only, respectively. For 169-Yb-only, they were 16.43±1.86Gy, and 97.51±1.91Gy, respectively. For the dual source, they were 16.42±1.87Gy and 97.47±1.93Gy, respectively. Conclusion: The plan quality improves, in some cases quite significantly, for when dual 192-Ir and 169-Yb sources are used in combination with highly intensity modulation capable

  17. Application of a pelvic phantom in brachytherapy dosimetry for high-dose-rate (HDR) 192Ir source based on Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Ahn, Woo Sang; Choi, Wonsik; Shin, Seong Soo; Jung, Jinhong

    2014-08-01

    In this study, we evaluate how the radial dose function is influenced by the source position as well as the phantom size and shape. A pelvic water phantom similar to the pelvic shape of a human body was designed by averaging dimensions obtained from computed tomography (CT) images of patients treated with brachytherapy for cervical cancer. Furthermore, for the study of the effects of source position on the dose distribution, the position of the source in the water phantom was determined by using the center of mass of the gross target volume (GTV) in the CT images. To obtain the dosimetric parameter of a high-dose-rate (HDR) 192Ir source, we performed Monte Carlo simulations by using the Monte Carlo n-particle extended code (MCNPX). The radial dose functions obtained using the pelvic water phantom were compared with those of spherical phantom with different sizes, including the Monte Carlo (MC) results of Williamson and Li. Differences between the radial dose functions from this study and the data in the literature increased with the radial distances. The largest differences appeared for spherical phantom with the smallest size. In contrast to the published MC results, the radial dose function of the pelvic water phantom significantly decreased with radial distance in the vertical direction because full scattering was not possible. When the source was located in posterior position 2 cm from the center in the pelvic water phantom, the differences between the radial dose functions rapidly decreased with the radial distance in the lower vertical direction. If the International Commission on Radiation Units and Measurements bladder and rectum points are considered, doses to these reference points could be underestimated by up to 1%-2% at a distance of 3 to 6 cm. Our simulation results provide a valid clinical reference data and can used to improve the accuracy of the doses delivered during brachytherapy applied to patients with cervical cancer.

  18. Using LiF:Mg,Cu,P TLDs to estimate the absorbed dose to water in liquid water around an {sup 192}Ir brachytherapy source

    SciTech Connect

    Lucas, P. Avilés Aubineau-Lanièce, I.; Lourenço, V.; Vermesse, D.; Cutarella, D.

    2014-01-15

    Purpose: The absorbed dose to water is the fundamental reference quantity for brachytherapy treatment planning systems and thermoluminescence dosimeters (TLDs) have been recognized as the most validated detectors for measurement of such a dosimetric descriptor. The detector response in a wide energy spectrum as that of an{sup 192}Ir brachytherapy source as well as the specific measurement medium which surrounds the TLD need to be accounted for when estimating the absorbed dose. This paper develops a methodology based on highly sensitive LiF:Mg,Cu,P TLDs to directly estimate the absorbed dose to water in liquid water around a high dose rate {sup 192}Ir brachytherapy source. Methods: Different experimental designs in liquid water and air were constructed to study the response of LiF:Mg,Cu,P TLDs when irradiated in several standard photon beams of the LNE-LNHB (French national metrology laboratory for ionizing radiation). Measurement strategies and Monte Carlo techniques were developed to calibrate the LiF:Mg,Cu,P detectors in the energy interval characteristic of that found when TLDs are immersed in water around an{sup 192}Ir source. Finally, an experimental system was designed to irradiate TLDs at different angles between 1 and 11 cm away from an {sup 192}Ir source in liquid water. Monte Carlo simulations were performed to correct measured results to provide estimates of the absorbed dose to water in water around the {sup 192}Ir source. Results: The dose response dependence of LiF:Mg,Cu,P TLDs with the linear energy transfer of secondary electrons followed the same variations as those of published results. The calibration strategy which used TLDs in air exposed to a standard N-250 ISO x-ray beam and TLDs in water irradiated with a standard{sup 137}Cs beam provided an estimated mean uncertainty of 2.8% (k = 1) in the TLD calibration coefficient for irradiations by the {sup 192}Ir source in water. The 3D TLD measurements performed in liquid water were obtained with a

  19. The comparison of four neutron sources for Prompt Gamma Neutron Activation Analysis (PGNAA) in vivo detections of boron.

    PubMed

    Fantidis, J G; Nicolaou, G E; Potolias, C; Vordos, N; Bandekas, D V

    A Prompt Gamma Ray Neutron Activation Analysis (PGNAA) system, incorporating an isotopic neutron source has been simulated using the MCNPX Monte Carlo code. In order to improve the signal to noise ratio different collimators and a filter were placed between the neutron source and the object. The effect of the positioning of the neutron beam and the detector relative to the object has been studied. In this work the optimisation procedure is demonstrated for boron. Monte Carlo calculations were carried out to compare the performance of the proposed PGNAA system using four different neutron sources ((241)Am/Be, (252)Cf, (241)Am/B, and DT neutron generator). Among the different systems the (252)Cf neutron based PGNAA system has the best performance.

  20. Dosimetric characterization of model Cs-1 Rev2 cesium-131 brachytherapy source in water phantoms and human tissues with MCNP5 Monte Carlo simulation.

    PubMed

    Wang, Jianhua; Zhang, Hualin

    2008-04-01

    A recently developed alternative brachytherapy seed, Cs-1 Rev2 cesium-131, has begun to be used in clinical practice. The dosimetric characteristics of this source in various media, particularly in human tissues, have not been fully evaluated. The aim of this study was to calculate the dosimetric parameters for the Cs-1 Rev2 cesium-131 seed following the recommendations of the AAPM TG-43U1 report [Rivard et al., Med. Phys. 31, 633-674 (2004)] for new sources in brachytherapy applications. Dose rate constants, radial dose functions, and anisotropy functions of the source in water, Virtual Water, and relevant human soft tissues were calculated using MCNP5 Monte Carlo simulations following the TG-43U1 formalism. The results yielded dose rate constants of 1.048, 1.024, 1.041, and 1.044 cGy h(-1) U(-1) in water, Virtual Water, muscle, and prostate tissue, respectively. The conversion factor for this new source between water and Virtual Water was 1.02, between muscle and water was 1.006, and between prostate and water was 1.004. The authors' calculation of anisotropy functions in a Virtual Water phantom agreed closely with Murphy's measurements [Murphy et al., Med. Phys. 31, 1529-1538 (2004)]. Our calculations of the radial dose function in water and Virtual Water have good agreement with those in previous experimental and Monte Carlo studies. The TG-43U1 parameters for clinical applications in water, muscle, and prostate tissue are presented in this work.

  1. Approaches to calculating AAPM TG-43 brachytherapy dosimetry parameters for {sup 137}Cs, {sup 125}I, {sup 192}Ir, {sup 103}Pd, and {sup 169}Yb sources

    SciTech Connect

    Melhus, Christopher S.; Rivard, Mark J.

    2006-06-15

    Underlying characteristics in brachytherapy dosimetry parameters for medical radionuclides {sup 137}Cs, {sup 125}I, {sup 192}Ir, {sup 103}Pd, and {sup 169}Yb were examined using Monte Carlo methods. Sources were modeled as unencapsulated point or line sources in liquid water to negate variations due to materials and construction. Importance of phantom size, mode of radiation transport physics--i.e., photon transport only or coupled photon:electron transport, phantom material, volume averaging, and Monte Carlo tally type were studied. For noninfinite media, g(r) was found to degrade as r approached R, the phantom radius. MCNP5 results were in agreement with those published using GEANT4. Brachytherapy dosimetry parameters calculated using coupled photon:electron radiation transport simulations did not differ significantly from those using photon transport only. Dose distributions from low-energy photon-emitting radionuclides {sup 125}I and {sup 103}Pd were sensitive to phantom material by upto a factor of 1.4 and 2.0, respectively, between tissue-equivalent materials and water at r=9 cm. In comparison, high-energy photons from {sup 137}Cs, {sup 192}Ir, and {sup 169}Yb demonstrated {+-}5% differences in dose distributions between water and tissue substitutes at r=20 cm. Similarly, volume-averaging effects were found to be more significant for low-energy radionuclides. When modeling line sources with L{<=}0.5 cm, the two-dimensional anisotropy function was largely within {+-}0.5% of unity for {sup 137}Cs, {sup 125}I, and {sup 192}Ir. However, an energy and geometry effect was noted for {sup 103}Pd and {sup 169}Yb, with {sub Pd-103}F(0.5,0 deg.)=1.05 and {sub Yb-169}F(0.5,0 deg.)=0.98 for L=0.5 cm. Simulations of monoenergetic photons for L=0.5 cm produced energy-dependent variations in F(r,{theta}) having a maximum value at 10 keV, minimum at 50 keV, and {approx}1.0 for higher-energy photons up to 750 keV. Both the F6 cell heating and track-length estimators were

  2. Possibility of using Curium-248 for the development of the reference neutron sources

    SciTech Connect

    Alexandrov, B.M.; Batenkov, O.I.; Blinov, M.V.

    1993-12-31

    Neutron sources on the base of {sup 252}Cf spontaneous fission are widely used. They have great specific neutron yields and comparative low gamma-ray background. But their half-lifes are rather short. The spectrum of {sup 252}Cf spontaneous fission neutrons was recommended by IAEA as an international standard spectrum. {sup 248}Cm is of special interest for a preparation on its base long-lived reference neutron sources. On the one hand its half-life (3.5 10{sup 5} years) is essentially greater than that of {sup 252}Cf (2.7 years), and on the other hand the intensity of {sup 248}Cm spontaneous fission is high enough (10{sup 4} fiss/mg s) which enables to use it in various scientific and practical purposes. For {sup 248}Cm there is practically information only about the middle energy of the spectrum. In this report the {sup 248}Cm spontaneous fission neutron spectrum measurement results are presented for the determination of the possibility of the use of this isotope as international standard and for purposes of a development of reference long-lived neutron sources on {sup 248}Cm base.

  3. [Prostate cancer brachytherapy].

    PubMed

    Pommier, P; Guérif, S; Peiffert, D; Créhange, G; Hannoun-Lévi, J-M; de Crevoisier, R

    2016-09-01

    Prostate brachytherapy techniques are described, concerning both Iodine 125 high dose rate brachytherapy. The following parts are presented: brachytherapy indications, technical description, immediate postoperative management and post-treatment evaluation, and 4 to 6 weeks as well as long-term follow-up.

  4. Procedures for establishing and maintaining consistent air-kerma strength standards for low-energy, photon-emitting brachytherapy sources: recommendations of the Calibration Laboratory Accreditation Subcommittee of the American Association of Physicists in Medicine.

    PubMed

    DeWerd, Larry A; Huq, M Saiful; Das, Indra J; Ibbott, Geoffrey S; Hanson, William F; Slowey, Thomas W; Williamson, Jeffrey F; Coursey, Bert M

    2004-03-01

    Low dose rate brachytherapy is being used extensively for the treatment of prostate cancer. As of September 2003, there are a total of thirteen 125I and seven 103Pd sources that have calibrations from the National Institute of Standards and Technology (NIST) and the Accredited Dosimetry Calibration Laboratories (ADCLs) of the American Association of Physicists in Medicine (AAPM). The dosimetry standards for these sources are traceable to the NIST wide-angle free-air chamber. Procedures have been developed by the AAPM Calibration Laboratory Accreditation Subcommittee to standardize quality assurance and calibration, and to maintain the dosimetric traceability of these sources to ensure accurate clinical dosimetry. A description of these procedures is provided to the clinical users for traceability purposes as well as to provide guidance to the manufacturers of brachytherapy sources and ADCLs with regard to these procedures.

  5. SU-E-T-758: To Determine the Source Dwell Positions of HDR Brachytherapy Using 2D 729 Ion Chamber Array

    SciTech Connect

    Kumar, Syam; Sitha

    2015-06-15

    Purpose: Determination of source dwell positions of HDR brachytherapy using 2D 729 ion chamber array Methods: Nucletron microselectron HDR and PTW 2D array were used for the study. Different dwell positions were assigned in the HDR machine. Rigid interstitial needles and vaginal applicator were positioned on the 2D array. The 2D array was exposed for this programmed dwell positions. The positional accuracy of the source was analyzed after the irradiation of the 2D array. This was repeated for different dwell positions. Different test plans were transferred from the Oncentra planning system and irradiated with the same applicator position on the 2D array. The results were analyzed using the in house developed excel program. Results: Assigned dwell positions versus corresponding detector response were analyzed. The results show very good agreement with the film measurements. No significant variation found between the planned and measured dwell positions. Average dose response with 2D array between the planned and nearby dwell positions was found to be 0.0804 Gy for vaginal cylinder applicator and 0.1234 Gy for interstitial rigid needles. Standard deviation between the doses for all the measured dwell positions for interstitial rigid needle for 1 cm spaced positions were found to be 0.33 and 0.37 for 2cm spaced dwell positions. For intracavitory vaginal applicator this was found to be 0.21 for 1 cm spaced dwell positions and 0.06 for 2cm spaced dwell positions. Intracavitory test plans reproduced on the 2D array with the same applicator positions shows the ideal dose distribution with the TPS planned. Conclusion: 2D array is a good tool for determining the dwell position of HDR brachytherapy. With the in-house developed program in excel it is easy and accurate. The traditional way with film analysis can be replaced by this method, as the films will be more costly.

  6. The dosimetric feasibility of gold nanoparticle-aided radiation therapy (GNRT) via brachytherapy using low-energy gamma-/x-ray sources.

    PubMed

    Cho, Sang Hyun; Jones, Bernard L; Krishnan, Sunil

    2009-08-21

    The preferential accumulation of gold nanoparticles within tumors and the increased photoelectric absorption due to the high atomic number of gold cooperatively account for the possibility of significant tumor dose enhancement during gold nanoparticle-aided radiation therapy (GNRT). Among the many conceivable ways to implement GNRT clinically, a brachytherapy approach using low-energy gamma-/x-ray sources (i.e. E(avg) < 100 keV) appears to be highly feasible and promising, because it may easily fulfill some of the technical and clinical requirements for GNRT. Therefore, the current study investigated the dosimetric feasibility of implementing GNRT using the following sources: (125)I, 50 kVp and (169)Yb. Specifically, Monte Carlo (MC) calculations were performed to determine the macroscopic dose enhancement factors (MDEF), defined as the ratio of the average dose in the tumor region with and without the presence of gold nanoparticles during the irradiation of the tumor, and the photo/Auger electron spectra within a tumor loaded with gold nanoparticles. The current study suggests that a significant tumor dose enhancement (e.g. >40%) could be achievable using (125)I, 50 kVp and (169)Yb sources and gold nanoparticles. When calculated at 1.0 cm from the center of the source within a tumor loaded with 18 mg Au g(-1), macroscopic dose enhancement was 116, 92 and 108% for (125)I, 50 kVp and (169)Yb, respectively. For a tumor loaded with 7 mg Au g(-1), it was 68, 57 and 44% at 1 cm from the center of the source for (125)I, 50 kVp and (169)Yb, respectively. The estimated MDEF values for (169)Yb were remarkably larger than those for (192)Ir, on average by up to about 70 and 30%, for 18 mg Au and 7 mg Au cases, respectively. The current MC study also shows a remarkable change in the photoelectron fluence and spectrum (e.g. more than two orders of magnitude) and a significant production (e.g. comparable to the number of photoelectrons) of the Auger electrons within the tumor

  7. The dosimetric feasibility of gold nanoparticle-aided radiation therapy (GNRT) via brachytherapy using low-energy gamma-/x-ray sources

    NASA Astrophysics Data System (ADS)

    Cho, Sang Hyun; Jones, Bernard L.; Krishnan, Sunil

    2009-08-01

    The preferential accumulation of gold nanoparticles within tumors and the increased photoelectric absorption due to the high atomic number of gold cooperatively account for the possibility of significant tumor dose enhancement during gold nanoparticle-aided radiation therapy (GNRT). Among the many conceivable ways to implement GNRT clinically, a brachytherapy approach using low-energy gamma-/x-ray sources (i.e. Eavg < 100 keV) appears to be highly feasible and promising, because it may easily fulfill some of the technical and clinical requirements for GNRT. Therefore, the current study investigated the dosimetric feasibility of implementing GNRT using the following sources: 125I, 50 kVp and 169Yb. Specifically, Monte Carlo (MC) calculations were performed to determine the macroscopic dose enhancement factors (MDEF), defined as the ratio of the average dose in the tumor region with and without the presence of gold nanoparticles during the irradiation of the tumor, and the photo/Auger electron spectra within a tumor loaded with gold nanoparticles. The current study suggests that a significant tumor dose enhancement (e.g. >40%) could be achievable using 125I, 50 kVp and 169Yb sources and gold nanoparticles. When calculated at 1.0 cm from the center of the source within a tumor loaded with 18 mg Au g-1, macroscopic dose enhancement was 116, 92 and 108% for 125I, 50 kVp and 169Yb, respectively. For a tumor loaded with 7 mg Au g-1, it was 68, 57 and 44% at 1 cm from the center of the source for 125I, 50 kVp and 169Yb, respectively. The estimated MDEF values for 169Yb were remarkably larger than those for 192Ir, on average by up to about 70 and 30%, for 18 mg Au and 7 mg Au cases, respectively. The current MC study also shows a remarkable change in the photoelectron fluence and spectrum (e.g. more than two orders of magnitude) and a significant production (e.g. comparable to the number of photoelectrons) of the Auger electrons within the tumor region due to the presence

  8. A practical implementation of the 2010 IPEM high dose rate brachytherapy code of practice for the calibration of 192Ir sources

    NASA Astrophysics Data System (ADS)

    Awunor, O. A.; Lecomber, A. R.; Richmond, N.; Walker, C.

    2011-08-01

    This paper details a practical method for deriving the reference air kerma rate calibration coefficient for Farmer NE2571 chambers using the UK Institute of Physics and Engineering in Medicine (IPEM) code of practice for the determination of the reference air kerma rate for HDR 192Ir brachytherapy sources based on the National Physical Laboratory (NPL) air kerma standard. The reference air kerma rate calibration coefficient was derived using pressure, temperature and source decay corrected ionization chamber response measurements over three successive 192Ir source clinical cycles. A secondary standard instrument (a Standard Imaging 1000 Plus well chamber) and four tertiary standard instruments (one additional Standard Imaging 1000 Plus well chamber and three Farmer NE2571 chambers housed in a perspex phantom) were used to provide traceability to the NPL primary standard and enable comparison of performance between the chambers. Conservative and optimized estimates on the expanded uncertainties (k = 2) associated with chamber response, ion recombination and reference air kerma rate calibration coefficient were determined. This was seen to be 2.3% and 0.4% respectively for chamber response, 0.2% and 0.08% respectively for ion recombination and 2.6% and 1.2% respectively for the calibration coefficient. No significant change in ion recombination with source decay was observed over the duration of clinical use of the respective 192Ir sources.

  9. A practical implementation of the 2010 IPEM high dose rate brachytherapy code of practice for the calibration of 192Ir sources.

    PubMed

    Awunor, O A; Lecomber, A R; Richmond, N; Walker, C

    2011-08-21

    This paper details a practical method for deriving the reference air kerma rate calibration coefficient for Farmer NE2571 chambers using the U.K. Institute of Physics and Engineering in Medicine (IPEM) code of practice for the determination of the reference air kerma rate for HDR (192)Ir brachytherapy sources based on the National Physical Laboratory (NPL) air kerma standard. The reference air kerma rate calibration coefficient was derived using pressure, temperature and source decay corrected ionization chamber response measurements over three successive (192)Ir source clinical cycles. A secondary standard instrument (a Standard Imaging 1000 Plus well chamber) and four tertiary standard instruments (one additional Standard Imaging 1000 Plus well chamber and three Farmer NE2571 chambers housed in a perspex phantom) were used to provide traceability to the NPL primary standard and enable comparison of performance between the chambers. Conservative and optimized estimates on the expanded uncertainties (k = 2) associated with chamber response, ion recombination and reference air kerma rate calibration coefficient were determined. This was seen to be 2.3% and 0.4% respectively for chamber response, 0.2% and 0.08% respectively for ion recombination and 2.6% and 1.2% respectively for the calibration coefficient. No significant change in ion recombination with source decay was observed over the duration of clinical use of the respective 192Ir sources.

  10. SU-E-T-102: Determination of Dose Distributions and Water-Equivalence of MAGIC-F Polymer Gel for 60Co and 192Ir Brachytherapy Sources

    SciTech Connect

    Quevedo, A; Nicolucci, P

    2014-06-01

    Purpose: Analyse the water-equivalence of MAGIC-f polymer gel for {sup 60}Co and {sup 192}Ir clinical brachytherapy sources, through dose distributions simulated with PENELOPE Monte Carlo code. Methods: The real geometry of {sup 60} (BEBIG, modelo Co0.A86) and {sup 192}192Ir (Varian, model GammaMed Plus) clinical brachytherapy sources were modelled on PENELOPE Monte Carlo simulation code. The most probable emission lines of photons were used for both sources: 17 emission lines for {sup 192}Ir and 12 lines for {sup 60}. The dose distributions were obtained in a cubic water or gel homogeneous phantom (30 × 30 × 30 cm{sup 3}), with the source positioned in the middle of the phantom. In all cases the number of simulation showers remained constant at 10{sup 9} particles. A specific material for gel was constructed in PENELOPE using weight fraction components of MAGIC-f: wH = 0,1062, wC = 0,0751, wN = 0,0139, wO = 0,8021, wS = 2,58×10{sup −6} e wCu = 5,08 × 10{sup −6}. The voxel size in the dose distributions was 0.6 mm. Dose distribution maps on the longitudinal and radial direction through the centre of the source were used to analyse the water-equivalence of MAGIC-f. Results: For the {sup 60} source, the maximum diferences in relative doses obtained in the gel and water were 0,65% and 1,90%, for radial and longitudinal direction, respectively. For {sup 192}Ir, the maximum difereces in relative doses were 0,30% and 1,05%, for radial and longitudinal direction, respectively. The materials equivalence can also be verified through the effective atomic number and density of each material: Zef-MAGIC-f = 7,07 e .MAGIC-f = 1,060 g/cm{sup 3} and Zef-water = 7,22. Conclusion: The results showed that MAGIC-f is water equivalent, consequently being suitable to simulate soft tissue, for Cobalt and Iridium energies. Hence, gel can be used as a dosimeter in clinical applications. Further investigation to its use in a clinical protocol is needed.

  11. SU-F-BRA-09: New Efficient Method for Xoft Axxent Electronic Brachytherapy Source Calibration by Pre-Characterizing Surface Applicators

    SciTech Connect

    Pai, S

    2015-06-15

    Purpose: The objective is to improve the efficiency and efficacy of Xoft™ Axxent™ electronic brachytherapy (EBT) calibration of the source & surface applicator using AAPM TG-61 formalism. Methods: Current method of Xoft EBT source calibration involves determination of absolute dose rate of the source in each of the four conical surface applicators using in-air chamber measurements & TG61 formalism. We propose a simplified TG-61 calibration methodology involving initial characterization of surface cone applicators. This is accomplished by calibrating dose rates for all 4 surface applicator sets (for 10 sources) which establishes the “applicator output ratios” with respect to the selected reference applicator (20 mm applicator). After the initial time, Xoft™ Axxent™ source TG61 Calibration is carried out only in the reference applicator. Using the established applicator output ratios, dose rates for other applicators will be calculated. Results: 200 sources & 8 surface applicator sets were calibrated cumulatively using a Standard Imaging A20 ion-chamber in accordance with manufacturer-recommended protocols. Dose rates of 10, 20, 35 & 50mm applicators were normalized to the reference (20mm) applicator. The data in Figure 1 indicates that the normalized dose rate variation for each applicator for all 200 sources is better than ±3%. The average output ratios are 1.11, 1.02 and 0.49 for the 10 mm,35 mm and 50 mm applicators, respectively, which are in good agreement with the manufacturer’s published output ratios of 1.13, 1.02 and 0.49. Conclusion: Our measurements successfully demonstrate the accuracy of a new calibration method using a single surface applicator for Xoft EBT sources and deriving the dose rates of other applicators. The accuracy of the calibration is improved as this method minimizes the source position variation inside the applicator during individual source calibrations. The new method significantly reduces the calibration time to less

  12. Image guided Brachytherapy: The paradigm of Gynecologic and Partial Breast HDR Brachytherapy

    NASA Astrophysics Data System (ADS)

    Diamantopoulos, S.; Kantemiris, I.; Konidari, A.; Zaverdinos, P.

    2015-09-01

    High dose rate (HDR) brachytherapy uses high strength radioactive sources and temporary interstitial implants to conform the dose to target and minimize the treatment time. The advances of imaging technology enable accurate reconstruction of the implant and exact delineation of high-risk CTV and the surrounding critical structures. Furthermore, with sophisticated treatment planning systems, applicator devices and stepping source afterloaders, brachytherapy evolved to a more precise, safe and individualized treatment. At the Radiation Oncology Department of Metropolitan Hospital Athens, MRI guided HDR gynecologic (GYN) brachytherapy and accelerated partial breast irradiation (APBI) with brachytherapy are performed routinely. Contouring and treatment planning are based on the recommendations of the GEC - ESTRO Working group. The task of this presentation is to reveal the advantages of 3D image guided brachytherapy over 2D brachytherapy. Thus, two patients treated at our department (one GYN and one APBI) will be presented. The advantage of having adequate dose coverage of the high risk CTV and simultaneous low doses to the OARs when using 3D image- based brachytherapy will be presented. The treatment techniques, equipment issues, as well as implantation, imaging and treatment planning procedures will be described. Quality assurance checks will be treated separately.

  13. SU-C-16A-01: In Vivo Source Position Verification in High Dose Rate (HDR) Prostate Brachytherapy Using a Flat Panel Imager: Initial Clinical Experience

    SciTech Connect

    Franich, R; Smith, R; Millar, J; Haworth, A; Taylor, M; McDermott, L

    2014-06-15

    Purpose: We report our initial clinical experience with a novel position-sensitive source-tracking system based on a flat panel imager. The system has been trialled with 4 prostate HDR brachytherapy patients (8 treatment fractions) in this initial study. Methods: The flat panel imaging system was mounted under a customised carbon fibre couch top assembly (Figure 1). Three gold fiducial markers were implanted into the prostate of each patient at the time of catheter placement. X-ray dwell position markers were inserted into three catheters and a radiograph acquired to locate the implant relative to the imaging device. During treatment, as the HDR source dwells were delivered, images were acquired and processed to determine the position of the source in the patient. Source positions measured by the imaging device were compared to the treatment plan for verification of treatment delivery. Results: Measured dwell positions provided verification of relative dwell spacing within and between catheters, in the coronal plane. Measurements were typically within 2.0mm (0.2mm – 3.3mm, s.d. 0.8mm) of the planned positions over 60 dwells (Figure 2). Discrimination between larger dwell intervals and catheter differentiation were clear. This confirms important delivery attributes such as correct transfer tube connection, source step size, relative catheter positions and therefore overall correct plan selection and delivery. The fiducial markers, visible on the radiograph, provided verification of treatment delivery to the correct anatomical location. The absolute position of the dwells was determined by comparing the measured dwell positions with the x-ray markers from the radiograph, validating the programmed treatment indexer length. The total impact on procedure time was less than 5 minutes. Conclusion: The novel, noninvasive HDR brachytherapy treatment verification system was used clinically with minor impact on workflow. The system allows verification of correct treatment

  14. Treatment planning study of the 3D dosimetric differences between Co-60 and Ir-192 sources in high dose rate (HDR) brachytherapy for cervix cancer

    PubMed Central

    Hayman, Orla; Muscat, Sarah

    2012-01-01

    Purpose To evaluate whether Co-60 is equivalent to Ir-192 for HDR cervical brachytherapy, through 3D-DVH dose comparisons in standard and optimised plans. Previous studies have only considered 2D dosimetry, point dose comparisons or identical loading. Typical treatment times and economics are considered. Material and methods Plans were produced for eight cervix patients using Co-60 and Ir-192 sources, CT imaging and IU/two-channel-ring applicator (Eckert Ziegler BEBIG). The comparison was made under two conditions: (A) identical dwell positions and loading, prescribed to Point A and (B) optimised source dwells, prescribed to HR-CTV. This provided a direct comparison of inherent differences and residual differences under typical clinical plan optimisation. The DVH (target and OAR), ICRU reference points and isodose distributions were compared. Typical treatment times and source replacement costs were compared. Results Small differences (p < 0.01) in 3D dosimetry exist when using Co-60 compared to Ir-192, prescribed to Point A with identical loading patterns, particularly 3.3% increase in rectum D2cc. No significant difference was observed in this parameter when prescribing to the HR-CTV using dwell-time optimisation. There was no statistically significant difference in D90 between the two isotopes. Co-60 plans delivered consistently higher V150% (mean +4.4%, p = 0.03) and V400% (mean +11.6%, p < 0.01) compared to Ir-192 in optimised plans. Differences in physical source properties were overwhelmed by geometric effects. Conclusions Co-60 may be used as an effective alternative to Ir-192 for HDR cervix brachytherapy, producing similar plans of equivalent D90, but with logistical benefits. There is a small dose increase along the extension of the source axis when using Co-60 compared to Ir-192, leading to small rectal dose increases for identical loading patterns. This can be eliminated by planning optimisation techniques. Such optimisation may also be associated with

  15. A revised dosimetric characterization of the model S700 electronic brachytherapy source containing an anode-centering plastic insert and other components not included in the 2006 model

    SciTech Connect

    Hiatt, Jessica R.; Davis, Stephen D.; Rivard, Mark J.

    2015-06-15

    Purpose: The model S700 Axxent electronic brachytherapy source by Xoft, Inc., was characterized by Rivard et al. in 2006. Since then, the source design was modified to include a new insert at the source tip. Current study objectives were to establish an accurate source model for simulation purposes, dosimetrically characterize the new source and obtain its TG-43 brachytherapy dosimetry parameters, and determine dose differences between the original simulation model and the current model S700 source design. Methods: Design information from measurements of dissected model S700 sources and from vendor-supplied CAD drawings was used to aid establishment of an updated Monte Carlo source model, which included the complex-shaped plastic source-centering insert intended to promote water flow for cooling the source anode. These data were used to create a model for subsequent radiation transport simulations in a water phantom. Compared to the 2006 simulation geometry, the influence of volume averaging close to the source was substantially reduced. A track-length estimator was used to evaluate collision kerma as a function of radial distance and polar angle for determination of TG-43 dosimetry parameters. Results for the 50 kV source were determined every 0.1 cm from 0.3 to 15 cm and every 1° from 0° to 180°. Photon spectra in water with 0.1 keV resolution were also obtained from 0.5 to 15 cm and polar angles from 0° to 165°. Simulations were run for 10{sup 10} histories, resulting in statistical uncertainties on the transverse plane of 0.04% at r = 1 cm and 0.06% at r = 5 cm. Results: The dose-rate distribution ratio for the model S700 source as compared to the 2006 model exceeded unity by more than 5% for roughly one quarter of the solid angle surrounding the source, i.e., θ ≥ 120°. The radial dose function diminished in a similar manner as for an {sup 125}I seed, with values of 1.434, 0.636, 0.283, and 0.0975 at 0.5, 2, 5, and 10 cm, respectively. The radial dose

  16. Dosimetric comparison between the microSelectron HDR 192Ir v2 source and the BEBIG 60Co source for HDR brachytherapy using the EGSnrc Monte Carlo transport code

    PubMed Central

    Islam, M. Anwarul; Akramuzzaman, M. M.; Zakaria, G. A.

    2012-01-01

    Manufacturing of miniaturized high activity 192Ir sources have been made a market preference in modern brachytherapy. The smaller dimensions of the sources are flexible for smaller diameter of the applicators and it is also suitable for interstitial implants. Presently, miniaturized 60Co HDR sources have been made available with identical dimensions to those of 192Ir sources. 60Co sources have an advantage of longer half life while comparing with 192Ir source. High dose rate brachytherapy sources with longer half life are logically pragmatic solution for developing country in economic point of view. This study is aimed to compare the TG-43U1 dosimetric parameters for new BEBIG 60Co HDR and new microSelectron 192Ir HDR sources. Dosimetric parameters are calculated using EGSnrc-based Monte Carlo simulation code accordance with the AAPM TG-43 formalism for microSlectron HDR 192Ir v2 and new BEBIG 60Co HDR sources. Air-kerma strength per unit source activity, calculated in dry air are 9.698×10-8 ± 0.55% U Bq-1 and 3.039×10-7 ± 0.41% U Bq-1 for the above mentioned two sources, respectively. The calculated dose rate constants per unit air-kerma strength in water medium are 1.116±0.12% cGy h-1U-1 and 1.097±0.12% cGy h-1U-1, respectively, for the two sources. The values of radial dose function for distances up to 1 cm and more than 22 cm for BEBIG 60Co HDR source are higher than that of other source. The anisotropic values are sharply increased to the longitudinal sides of the BEBIG 60Co source and the rise is comparatively sharper than that of the other source. Tissue dependence of the absorbed dose has been investigated with vacuum phantom for breast, compact bone, blood, lung, thyroid, soft tissue, testis, and muscle. No significant variation is noted at 5 cm of radial distance in this regard while comparing the two sources except for lung tissues. The true dose rates are calculated with considering photon as well as electron transport using appropriate cut

  17. Verification and source-position error analysis of film reconstruction techniques used in the brachytherapy planning systems.

    PubMed

    Chang, Liyun; Ho, Sheng-Yow; Chui, Chen-Shou; Du, Yi-Chun; Chen, Tainsong

    2009-09-01

    A method was presented that employs standard linac QA tools to verify the accuracy of film reconstruction algorithms used in the brachytherapy planning system. Verification of reconstruction techniques is important as suggested in the ESTRO booklet 8: "The institution should verify the full process of any reconstruction technique employed clinically." Error modeling was also performed to analyze seed-position errors. The "isocentric beam checker" device was used in this work. It has a two-dimensional array of steel balls embedded on its surface. The checker was placed on the simulator couch with its center ball coincident with the simulator isocenter, and one axis of its cross marks parallel to the axis of gantry rotation. The gantry of the simulator was rotated to make the checker behave like a three-dimensional array of balls. Three algorithms used in the ABACUS treatment planning system: orthogonal film, 2-films-with-variable-angle, and 3-films-with-variable-angle were tested. After exposing and digitizing the films, the position of each steel ball on the checker was reconstructed and compared to its true position, which can be accurately calculated. The results showed that the error is dependent on the object-isocenter distance, but not the magnification of the object. The averaged errors were less than 1 mm within the tolerance level defined by Roué et al. ["The EQUAL-ESTRO audit on geometric reconstruction techniques in brachytherapy," Radiother. Oncol. 78, 78-83 (2006)]. However, according to the error modeling, the theoretical error would be greater than 2 mm if the objects were located more than 20 cm away from the isocenter with a 0.5 degrees reading error of the gantry and collimator angles. Thus, in addition to carefully performing the QA of the gantry and collimator angle indicators, it is suggested that the patient, together with the applicators or seeds inside, should be placed close to the isocenter as much as possible. This method could be used to

  18. Verification and source-position error analysis of film reconstruction techniques used in the brachytherapy planning systems

    SciTech Connect

    Chang Liyun; Ho, Sheng-Yow; Chui, Chen-Shou; Du, Yi-Chun; Chen Tainsong

    2009-09-15

    A method was presented that employs standard linac QA tools to verify the accuracy of film reconstruction algorithms used in the brachytherapy planning system. Verification of reconstruction techniques is important as suggested in the ESTRO booklet 8: ''The institution should verify the full process of any reconstruction technique employed clinically.'' Error modeling was also performed to analyze seed-position errors. The ''isocentric beam checker'' device was used in this work. It has a two-dimensional array of steel balls embedded on its surface. The checker was placed on the simulator couch with its center ball coincident with the simulator isocenter, and one axis of its cross marks parallel to the axis of gantry rotation. The gantry of the simulator was rotated to make the checker behave like a three-dimensional array of balls. Three algorithms used in the ABACUS treatment planning system: orthogonal film, 2-films-with-variable-angle, and 3-films-with-variable-angle were tested. After exposing and digitizing the films, the position of each steel ball on the checker was reconstructed and compared to its true position, which can be accurately calculated. The results showed that the error is dependent on the object-isocenter distance, but not the magnification of the object. The averaged errors were less than 1 mm within the tolerance level defined by Roueet al. [''The EQUAL-ESTRO audit on geometric reconstruction techniques in brachytherapy,'' Radiother. Oncol. 78, 78-83 (2006)]. However, according to the error modeling, the theoretical error would be greater than 2 mm if the objects were located more than 20 cm away from the isocenter with a 0.5 deg. reading error of the gantry and collimator angles. Thus, in addition to carefully performing the QA of the gantry and collimator angle indicators, it is suggested that the patient, together with the applicators or seeds inside, should be placed close to the isocenter as much as possible. This method could be used

  19. A generic high-dose rate {sup 192}Ir brachytherapy source for evaluation of model-based dose calculations beyond the TG-43 formalism

    SciTech Connect

    Ballester, Facundo; Carlsson Tedgren, Åsa; Granero, Domingo; Haworth, Annette; Mourtada, Firas; Fonseca, Gabriel Paiva; Rivard, Mark J.; Siebert, Frank-André; Sloboda, Ron S.; and others

    2015-06-15

    Purpose: In order to facilitate a smooth transition for brachytherapy dose calculations from the American Association of Physicists in Medicine (AAPM) Task Group No. 43 (TG-43) formalism to model-based dose calculation algorithms (MBDCAs), treatment planning systems (TPSs) using a MBDCA require a set of well-defined test case plans characterized by Monte Carlo (MC) methods. This also permits direct dose comparison to TG-43 reference data. Such test case plans should be made available for use in the software commissioning process performed by clinical end users. To this end, a hypothetical, generic high-dose rate (HDR) {sup 192}Ir source and a virtual water phantom were designed, which can be imported into a TPS. Methods: A hypothetical, generic HDR {sup 192}Ir source was designed based on commercially available sources as well as a virtual, cubic water phantom that can be imported into any TPS in DICOM format. The dose distribution of the generic {sup 192}Ir source when placed at the center of the cubic phantom, and away from the center under altered scatter conditions, was evaluated using two commercial MBDCAs [Oncentra{sup ®} Brachy with advanced collapsed-cone engine (ACE) and BrachyVision ACUROS{sup TM}]. Dose comparisons were performed using state-of-the-art MC codes for radiation transport, including ALGEBRA, BrachyDose, GEANT4, MCNP5, MCNP6, and PENELOPE2008. The methodologies adhered to recommendations in the AAPM TG-229 report on high-energy brachytherapy source dosimetry. TG-43 dosimetry parameters, an along-away dose-rate table, and primary and scatter separated (PSS) data were obtained. The virtual water phantom of (201){sup 3} voxels (1 mm sides) was used to evaluate the calculated dose distributions. Two test case plans involving a single position of the generic HDR {sup 192}Ir source in this phantom were prepared: (i) source centered in the phantom and (ii) source displaced 7 cm laterally from the center. Datasets were independently produced by

  20. Prostate brachytherapy - discharge

    MedlinePlus

    Implant therapy - prostate cancer - discharge; Radioactive seed placement - discharge ... You had a procedure called brachytherapy to treat prostate cancer. Your treatment lasted 30 minutes or more, depending ...

  1. Comparison of air kerma standards of LNE-LNHB and NPL for 192Ir HDR brachytherapy sources: EUROMET project no 814.

    PubMed

    Douysset, Guilhem; Sander, Thorsten; Gouriou, Jean; Nutbrown, Rebecca

    2008-03-21

    An indirect comparison has been made in the air kerma standards for high dose rate (HDR) 192Ir brachytherapy sources at the Laboratoire National Henri Becquerel (LNHB) and the National Physical Laboratory (NPL). The measurements were carried out at both laboratories between November and December 2004. The comparison was based on measurements using well-type transfer ionization chambers and two different source types, Nucletron microSelectron HDR Classic and version 2. The results show the reported calibration coefficients to agree within 0.47% to 0.63%, which is within the overall standard uncertainty of 0.65% reported by both laboratories at the time of this comparison. Following this comparison, some of the NPL primary standard correction factors were re-evaluated resulting in a change of +0.17% in the overall correction factor. The new factor was implemented in May 2006. Applying the revised chamber factor to the measurements reported in this comparison report will reduce the difference between the two standards by 0.17%.

  2. High dose rate brachytherapy for prevention of restenosis after percutaneous transluminal coronary angioplasty: Preliminary dosimetric tests of a new source presentation

    SciTech Connect

    Popowski, Y.; Rouzaud, M.; Kurtz, J.M.

    1995-08-30

    Balloon dilatation of coronary artery stenosis has become a standard treatment of atherosclerotic heart disease. Restenosis due to excessive intimal cell proliferation, which subsequently occurs in 20-50% of patients, represents one of the major clinical problems in contemporary cardiology, and no satisfactory method for its prevention has thus far been found. Because modest doses of radiation have proved effective in preventing certain types of abnormal cellular proliferation resulting from surgical trauma, and brachytherapy has already been used successfully after dilatation of peripheral arteries, development of a radioactive source suitable for coronary artery applications would be of great interest. Doses obtained at the surface of the balloon, for a 2-min exposure for the 0.26 mm wire (balloon inflated with air) and the 0.15 mm wire (air or contrast), were 56.5 Gy, 17.8 Gy, 5.4 Gy, respectively. As expected for a beta emitter, the fall-off in dose as a function of depth was rapid. External irradiation from the beta source was negligible. Our experiments indicate that the dose rates attainable at the surface of the angioplasty balloon using this technique allow the doses necessary for the inhibition of intimal cell proliferation to be reached within a relatively short period of time. The thin yttrium-90 wires are very easy to handle, and their mechanical and radioactive properties are well suited to the requirements of the catheterization procedure. 16 refs., 4 figs., 1 tab.

  3. Monte Carlo studies on water and LiF cavity properties for dose-reporting quantities when using x-ray and brachytherapy sources

    NASA Astrophysics Data System (ADS)

    Soares Lopes Branco, Isabela; Guimarães Antunes, Paula Cristina; Paiva Fonseca, Gabriel; Yoriyaz, Hélio

    2016-12-01

    Model-based dose calculation algorithms (MBDCAs) are the current tools to estimate dose in brachytherapy, which takes into account heterogeneous medium, therefore, departing from water-based formalism (TG-43). One aspect associated to MBCDA is the choice of dose specification medium since it offers two possibilities to report dose: (a) dose to medium in medium, D m,m; and (b) dose to water in medium, D w,m. The discussion about the preferable quantity to be reported is underway. The dose conversion factors, DCF, between dose to water in medium, D w,m, and dose to medium in medium, D m,m, is based on cavity theory and can be obtained using different approaches. When experimental dose verification is desired using, for example, thermoluminescent LiF dosimeters, as in in vivo dose measurements, a third quantity is obtained, which is the dose to LiF in medium, D LiF,m. In this case, DCF to convert from D LiF,m to D w,m or D m,m is necessary. The objective of this study is to estimate DCFs using different approaches, present in the literature, quantifying the differences between them. Also, dose in water and LiF cavities in different tissue media and respective conversion factors to be able to convert LiF-based dose measured values into dose in water or tissue were obtained. Simple cylindrical phantoms composed by different tissue equivalent materials (bone, lung, water and adipose) are modelled. The phantoms contain a radiation source and a cavity with 0.002 69 cm3 in size, which is a typical volume of a disc type LiF dosimeter. Three x-rays qualities with average energies ranging from 47 to 250 keV, and three brachytherapy sources, 60Co, 192Ir and 137Cs, are considered. Different cavity theory approaches for DCF calculations and different cavity/medium combinations have been considered in this study. DCF values for water/bone and LiF/bone cases have strong dependence with energy increasing as the photon energy increases. DCF values also increase with energy for

  4. Monte Carlo studies on water and LiF cavity properties for dose-reporting quantities when using x-ray and brachytherapy sources.

    PubMed

    Branco, Isabela Soares Lopes; Antunes, Paula Cristina Guimarães; Fonseca, Gabriel Paiva; Yoriyaz, Hélio

    2016-12-21

    Model-based dose calculation algorithms (MBDCAs) are the current tools to estimate dose in brachytherapy, which takes into account heterogeneous medium, therefore, departing from water-based formalism (TG-43). One aspect associated to MBCDA is the choice of dose specification medium since it offers two possibilities to report dose: (a) dose to medium in medium, D m,m; and (b) dose to water in medium, D w,m. The discussion about the preferable quantity to be reported is underway. The dose conversion factors, DCF, between dose to water in medium, D w,m, and dose to medium in medium, D m,m, is based on cavity theory and can be obtained using different approaches. When experimental dose verification is desired using, for example, thermoluminescent LiF dosimeters, as in in vivo dose measurements, a third quantity is obtained, which is the dose to LiF in medium, D LiF,m. In this case, DCF to convert from D LiF,m to D w,m or D m,m is necessary. The objective of this study is to estimate DCFs using different approaches, present in the literature, quantifying the differences between them. Also, dose in water and LiF cavities in different tissue media and respective conversion factors to be able to convert LiF-based dose measured values into dose in water or tissue were obtained. Simple cylindrical phantoms composed by different tissue equivalent materials (bone, lung, water and adipose) are modelled. The phantoms contain a radiation source and a cavity with 0.002 69 cm(3) in size, which is a typical volume of a disc type LiF dosimeter. Three x-rays qualities with average energies ranging from 47 to 250 keV, and three brachytherapy sources, (60)Co, (192)Ir and (137)Cs, are considered. Different cavity theory approaches for DCF calculations and different cavity/medium combinations have been considered in this study. DCF values for water/bone and LiF/bone cases have strong dependence with energy increasing as the photon energy increases. DCF values also increase with

  5. Direct reconstruction and associated uncertainties of 192Ir source dwell positions in ring applicators using gafchromic film in the treatment planning of HDR brachytherapy cervix patients

    NASA Astrophysics Data System (ADS)

    Awunor, O. A.; Dixon, B.; Walker, C.

    2013-05-01

    This paper details a practical method for the direct reconstruction of high dose rate 192Ir source dwell positions in ring applicators using gafchromic film in the treatment planning of brachytherapy cervix patients. It also details the uncertainties associated with such a process. Eight Nucletron interstitial ring applicators—Ø26 mm (×4), Ø30 mm (×3) and Ø34 mm (×1), and one 60 mm intrauterine tube were used in this study. RTQA2 and XRQA2 gafchromic films were irradiated at pre-programmed dwell positions with three successive 192Ir sources and used to derive the coordinates of the source dwell positions. The source was observed to deviate significantly from its expected position by up to 6.1 mm in all ring sizes. Significant inter applicator differences of up to 2.6 mm were observed between a subset of ring applicators. Also, the measured data were observed to differ significantly from commercially available source path models provided by Nucletron with differences of up to 3.7 mm across all ring applicator sizes. The total expanded uncertainty (k = 2) averaged over all measured dwell positions in the rings was observed to be 1.1 ± 0.1 mm (Ø26 mm and Ø30 mm rings) and 1.0 ± 0.3 mm (Ø34 mm ring) respectively, and when transferred to the treatment planning system, equated to maximum %dose changes of 1.9%, 13.2% and 1.5% at regions representative of the parametrium, lateral fornix and organs at risk respectively.

  6. Comparison of organ doses for patients undergoing balloon brachytherapy of the breast with HDR {sup 192}Ir or electronic sources using Monte Carlo simulations in a heterogeneous human phantom

    SciTech Connect

    Mille, Matthew M.; Xu, X. George; Rivard, Mark J.

    2010-02-15

    Purpose: Accelerated partial breast irradiation via interstitial balloon brachytherapy is a fast and effective treatment method for certain early stage breast cancers. The radiation can be delivered using a conventional high-dose rate (HDR) {sup 192}Ir gamma-emitting source or a novel electronic brachytherapy (eBx) source which uses lower energy x rays that do not penetrate as far within the patient. A previous study [A. Dickler, M. C. Kirk, N. Seif, K. Griem, K. Dowlatshahi, D. Francescatti, and R. A. Abrams, ''A dosimetric comparison of MammoSite high-dose-rate brachytherapy and Xoft Axxent electronic brachytherapy,'' Brachytherapy 6, 164-168 (2007)] showed that the target dose is similar for HDR {sup 192}Ir and eBx. This study compares these sources based on the dose received by healthy organs and tissues away from the treatment site. Methods: A virtual patient with left breast cancer was represented by a whole-body, tissue-heterogeneous female voxel phantom. Monte Carlo methods were used to calculate the dose to healthy organs in a virtual patient undergoing balloon brachytherapy of the left breast with HDR {sup 192}Ir or eBx sources. The dose-volume histograms for a few organs which received large doses were also calculated. Additional simulations were performed with all tissues in the phantom defined as water to study the effect of tissue inhomogeneities. Results: For both HDR {sup 192}Ir and eBx, the largest mean organ doses were received by the ribs, thymus gland, left lung, heart, and sternum which were close to the brachytherapy source in the left breast. eBx yielded mean healthy organ doses that were more than a factor of {approx}1.4 smaller than for HDR {sup 192}Ir for all organs considered, except for the three closest ribs. Excluding these ribs, the average and median dose-reduction factors were {approx}28 and {approx}11, respectively. The volume distribution of doses in nearby soft tissue organs that were outside the PTV were also improved with e

  7. On replacing Am-Be neutron sources in compensated porosity logging tools.

    PubMed

    Peeples, Cody R; Mickael, Medhat; Gardner, Robin P

    2010-01-01

    Authors explored the direct replacement of Am-Be neutron sources in neutron porosity logging tools through Monte Carlo simulations using MCNP5. (252)Cf and electronic accelerator neutron sources based on the Deuterium-Tritium fusion reaction were considered. Between the sources, a tradeoff was noted between sensitivity to the presence of hydrogen and uncertainty due to counting statistics. It was concluded that both replacement sources as well as accelerator sources based on the Deuterium-Deuterium fusion reaction warrant further consideration as porosity log sources.

  8. SU-F-19A-05: Experimental and Monte Carlo Characterization of the 1 Cm CivaString 103Pd Brachytherapy Source

    SciTech Connect

    Reed, J; Micka, J; Culberson, W; DeWerd, L; Rivard, M

    2014-06-15

    Purpose: To determine the in-air azimuthal anisotropy and in-water dose distribution for the 1 cm length of the CivaString {sup 103}Pd brachytherapy source through measurements and Monte Carlo (MC) simulations. American Association of Physicists in Medicine Task Group No. 43 (TG-43) dosimetry parameters were also determined for this source. Methods: The in-air azimuthal anisotropy of the source was measured with a NaI scintillation detector and simulated with the MCNP5 radiation transport code. Measured and simulated results were normalized to their respective mean values and compared. The TG-43 dose-rate constant, line-source radial dose function, and 2D anisotropy function for this source were determined from LiF:Mg,Ti thermoluminescent dosimeter (TLD) measurements and MC simulations. The impact of {sup 103}Pd well-loading variability on the in-water dose distribution was investigated using MC simulations by comparing the dose distribution for a source model with four wells of equal strength to that for a source model with strengths increased by 1% for two of the four wells. Results: NaI scintillation detector measurements and MC simulations of the in-air azimuthal anisotropy showed that ≥95% of the normalized data were within 1.2% of the mean value. TLD measurements and MC simulations of the TG-43 dose-rate constant, line-source radial dose function, and 2D anisotropy function agreed to within the experimental TLD uncertainties (k=2). MC simulations showed that a 1% variability in {sup 103}Pd well-loading resulted in changes of <0.1%, <0.1%, and <0.3% in the TG-43 dose-rate constant, radial dose distribution, and polar dose distribution, respectively. Conclusion: The CivaString source has a high degree of azimuthal symmetry as indicated by the NaI scintillation detector measurements and MC simulations of the in-air azimuthal anisotropy. TG-43 dosimetry parameters for this source were determined from TLD measurements and MC simulations. {sup 103}Pd well

  9. Monte Carlo calculated microdosimetric spread for cell nucleus-sized targets exposed to brachytherapy 125I and 192Ir sources and 60Co cell irradiation.

    PubMed

    Villegas, Fernanda; Tilly, Nina; Ahnesjö, Anders

    2013-09-07

    The stochastic nature of ionizing radiation interactions causes a microdosimetric spread in energy depositions for cell or cell nucleus-sized volumes. The magnitude of the spread may be a confounding factor in dose response analysis. The aim of this work is to give values for the microdosimetric spread for a range of doses imparted by (125)I and (192)Ir brachytherapy radionuclides, and for a (60)Co source. An upgraded version of the Monte Carlo code PENELOPE was used to obtain frequency distributions of specific energy for each of these radiation qualities and for four different cell nucleus-sized volumes. The results demonstrate that the magnitude of the microdosimetric spread increases when the target size decreases or when the energy of the radiation quality is reduced. Frequency distributions calculated according to the formalism of Kellerer and Chmelevsky using full convolution of the Monte Carlo calculated single track frequency distributions confirm that at doses exceeding 0.08 Gy for (125)I, 0.1 Gy for (192)Ir, and 0.2 Gy for (60)Co, the resulting distribution can be accurately approximated with a normal distribution. A parameterization of the width of the distribution as a function of dose and target volume of interest is presented as a convenient form for the use in response modelling or similar contexts.

  10. Dosimetric characteristics of the new RadioCoil{sup TM} {sup 103}Pd wire line source for use in permanent brachytherapy implants

    SciTech Connect

    Meigooni, A.S.; Zhang, H.; Clark, J.R.; Rachabatthula, V.; Koona, R.A.

    2004-11-01

    Recently, a novel linear brachytherapy source in the form of a coiled wire has become available for use in interstitial implants of various treatment sites such as prostate gland. This source type employs a design completely different from that of most 'seed' sources currently on the market, one which improves upon or eliminates several common problems with such sources. Dosimetric characteristics of these sources with active lengths 0.5 cm to 5.0 cm were determined for clinical application. For 0.5 cm and 1.0 cm active length sources, the dose rate constant, radial dose function, and two-dimensional (2D) anisotropy function were experimentally and theoretically determined following the updated AAPM Task Group 43 (TG-43U1) recommendations. Radial dose functions and/or 'along-away' matrix functions were also obtained for sources with active lengths 2.0 cm to 5.0 cm. Measurements were performed with LiF thermoluminescent dosimeters in Solid Water{sup TM} phantoms. Measured data was compared to Monte Carlo simulated data in Solid Water{sup TM} utilizing the PTRAN code, version 7.43. After finding the data to be in agreement, Monte Carlo calculations were performed in liquid water to obtain clinically applicable dosimetric data as per TG-43U1 recommendations. The results indicated the dose rate constant of the 0.5 cm long RadioCoil{sup TM103}Pd source in Solid Water{sup TM} to be 0.641 cGy h{sup -1} U{sup -1} when measured, and 0.636 cGy h{sup -1} U{sup -1} when simulated by Monte Carlo. The calculated dose rate constant in liquid water was found to be 0.650 cGy h{sup -1} U{sup -1}. These values are comparable to other commercially available sources. Complete dosimetric data and simulation results are described in this paper. Per TG-43U1, clinical treatment planning systems should utilize the values reported for liquid water.

  11. Advancements in brachytherapy.

    PubMed

    Tanderup, Kari; Ménard, Cynthia; Polgar, Csaba; Lindegaard, Jacob Christian; Kirisits, Christian; Pötter, Richard

    2017-01-15

    Brachytherapy is a radiotherapy modality associated with a highly focal dose distribution. Brachytherapy treats the cancer tissue from the inside, and the radiation does not travel through healthy tissue to reach the target as with external beam radiotherapy techniques. The nature of brachytherapy makes it attractive for boosting limited size target volumes to very high doses while sparing normal tissues. Significant developments over the last decades have increased the use of 3D image guided procedures with the utilization of CT, MRI, US and PET. This has taken brachytherapy to a new level in terms of controlling dose and demonstrating excellent clinical outcome. Interests in focal, hypofractionated and adaptive treatments are increasing, and brachytherapy has significant potential to develop further in these directions with current and new treatment indications.

  12. Optimization of deterministic transport parameters for the calculation of the dose distribution around a high dose-rate 192Ir brachytherapy source.

    PubMed

    Gifford, Kent A; Price, Michael J; Horton, John L; Wareing, Todd A; Mourtada, Firas

    2008-06-01

    The goal of this work was to calculate the dose distribution around a high dose-rate 192Ir brachytherapy source using a multi-group discrete ordinates code and then to compare the results with a Monte Carlo calculated dose distribution. The unstructured tetrahedral mesh discrete ordinates code Attila version 6.1.1 was used to calculate the photon kerma rate distribution in water around the Nucletron microSelectron mHDRv2 source. MCNPX 2.5.c was used to compute the Monte Carlo water photon kerma rate distribution. Two hundred million histories were simulated, resulting in standard errors of the mean of less than 3% overall. The number of energy groups, S(n) (angular order), P(n) (scattering order), and mesh elements were varied in addition to the method of analytic ray tracing to assess their effects on the deterministic solution. Water photon kerma rate matrices were exported from both codes into an in-house data analysis software. This software quantified the percent dose difference distribution, the number of points within +/- 3% and +/- 5%, and the mean percent difference between the two codes. The data demonstrated that a 5 energy-group cross-section set calculated results to within 0.5% of a 15 group cross-section set. S12 was sufficient to resolve the solution in angle. P2 expansion of the scattering cross-section was necessary to compute accurate distributions. A computational mesh with 55 064 tetrahedral elements in a 30 cm diameter phantom resolved the solution spatially. An efficiency factor of 110 with the above parameters was realized in comparison to MC methods. The Attila code provided an accurate and efficient solution of the Boltzmann transport equation for the mHDRv2 source.

  13. Determination of absorbed dose in water at the reference point d(r0, theta0) for an 192Ir HDR brachytherapy source using a Fricke system.

    PubMed

    Austerlitz, C; Mota, H C; Sempau, J; Benhabib, S M; Campos, D; Allison, R; DeAlmeida, C E; Zhu, D; Sibata, C H

    2008-12-01

    A ring-shaped Fricke device was developed to measure the absolute dose on the transverse bisector of a 192Ir high dose rate (HDR) source at 1 cm from its center in water, D(r0, theta0). It consists of a polymethylmethacrylate (PMMA) rod (axial axis) with a cylindrical cavity at its center to insert the 192Ir radioactive source. A ring cavity around the source with 1.5 mm thickness and 5 mm height is centered at 1 cm from the central axis of the source. This ring cavity is etched in a disk shaped base with 2.65 cm diameter and 0.90 cm thickness. The cavity has a wall around it 0.25 cm thick. This ring is filled with Fricke solution, sealed, and the whole assembly is immersed in water during irradiations. The device takes advantage of the cylindrical geometry to measure D(r0, theta0). Irradiations were performed with a Nucletron microselectron HDR unit loaded with an 192Ir Alpha Omega radioactive source. A Spectronic 1001 spectrophotometer was used to measure the optical absorbance using a 1 mL quartz cuvette with 1.00 cm light pathlength. The PENELOPE Monte Carlo code (MC) was utilized to simulate the Fricke device and the 192Ir Alpha Omega source in detail to calculate the perturbation introduced by the PMMA material. A NIST traceable calibrated well type ionization chamber was used to determine the air-kerma strength, and a published dose-rate constant was used to determine the dose rate at the reference point. The time to deliver 30.00 Gy to the reference point was calculated. This absorbed dose was then compared to the absorbed dose measured by the Fricke solution. Based on MC simulation, the PMMA of the Fricke device increases the D(r0, theta0) by 2.0%. Applying the corresponding correction factor, the D(r0, theta0) value assessed with the Fricke device agrees within 2.0% with the expected value with a total combined uncertainty of 3.43% (k=1). The Fricke device provides a promising method towards calibration of brachytherapy radiation sources in terms of D(r0

  14. GEC-ESTRO ACROP recommendations for head & neck brachytherapy in squamous cell carcinomas: 1st update - Improvement by cross sectional imaging based treatment planning and stepping source technology.

    PubMed

    Kovács, György; Martinez-Monge, Rafael; Budrukkar, Ashwini; Guinot, Jose Luis; Johansson, Bengt; Strnad, Vratislav; Skowronek, Janusz; Rovirosa, Angeles; Siebert, Frank-André

    2017-02-01

    The Head and Neck Working Group of the GEC-ESTRO (Groupe Européen de Curiethérapie - European Society for Therapeutic Radiology and Oncology) published in 2009 the consensus recommendations for low-dose rate, pulsed-dose rate and high-dose rate brachytherapy in head & neck cancers. The use of brachytherapy in combination with external beam radiotherapy and/or surgery was also covered as well as the use of brachytherapy in previously irradiated patients. Given the developments in the field, these recommendations needed to be updated to reflect up-to-date knowledge. The present update does not repeat basic knowledge which was published in the first recommendation but covers in a general part developments in (1) dose and fractionation, (2) aspects of treatment selection for brachytherapy alone versus combined BT+EBRT and (3) quality assurance issues. Detailed expert committee opinion intends to help the clinical practice in lip-, oral cavity-, oropharynx-, nasopharynx-, and superficial cancers. Different aspects of adjuvant treatment techniques and their results are discussed, as well the possibilities of salvage brachytherapy applications.

  15. Post-stenting Intravascular Brachytherapy Trials on Hypercholesterolemic Rabbits Using 32P Liquid Sources: Implications for Prevention of In-Stent Restenosis

    SciTech Connect

    Wilczek, Krzysztof; Walichiewicz, Piotr; Petelenz, Barbara; Jachec, Wojciech; Jochem, Jerzy; Tomasik, Andrzej; Bilski, Pawel; Snietura, Miroslaw; Wodniecki, Jan

    2002-08-15

    Purpose: Liquid sources of radiation delivered in angioplasty balloons may be a convenient self-centering device used for prevention of in-stent restenosis. To test the effectiveness of this method an intravascular brachytherapy study was performed using 32P liquid sources in an animal model. Methods: The radial dose distribution around angioplasty balloons filled with solutions of Na2H32PO4 was calibrated by thermoluminescence dosimetry. The animal experiments were performed in rabbits with induced hypercholesterolemia. The balloons containing 32P were introduced into iliac arteries immediately after stent implantation. Estimated 7-49 Gy doses required 30-100 minirradiations. Radiation effects were evaluated by comparing the thickness of various components of the artery wall. Results:Doses of 7, 12, 16 or 49 Gy on the internal artery surface required 30-100 min of irradiation. The dose of 49 Gy at 'zero' distance corresponding to 16 Gy at 1.0 mm from the balloon surface reduced hypertrophy in every layer of the arterial wall: in the intima the cross-sectional areas were 0.13 versus 0.91 mm2, in the media were 0.5 versus 0.46 mm2 and in the adventitia were 0.04 versus 0.3 mm2 (p <0.05). A dose of 7 Gyat the balloon surface produced adverse irradiation effects: the intimal area of the artery was 2.087 versus 0.857 mm2, the medial area was 0.59 versus 0.282 mm2 and the adventitial area was 0.033 versus 0.209 mm2 in treated and control arteries, respectively.Conclusion: Application of a 49 Gy irradiation dose to the internal arterial surface effectively prevented in-stentrestenosis.

  16. SU-E-T-212: Comparison of TG-43 Dosimetric Parameters of Low and High Energy Brachytherapy Sources Obtained by MCNP Code Versions of 4C, X and 5

    SciTech Connect

    Zehtabian, M; Zaker, N; Sina, S; Meigooni, A Soleimani

    2015-06-15

    Purpose: Different versions of MCNP code are widely used for dosimetry purposes. The purpose of this study is to compare different versions of the MCNP codes in dosimetric evaluation of different brachytherapy sources. Methods: The TG-43 parameters such as dose rate constant, radial dose function, and anisotropy function of different brachytherapy sources, i.e. Pd-103, I-125, Ir-192, and Cs-137 were calculated in water phantom. The results obtained by three versions of Monte Carlo codes (MCNP4C, MCNPX, MCNP5) were compared for low and high energy brachytherapy sources. Then the cross section library of MCNP4C code was changed to ENDF/B-VI release 8 which is used in MCNP5 and MCNPX codes. Finally, the TG-43 parameters obtained using the MCNP4C-revised code, were compared with other codes. Results: The results of these investigations indicate that for high energy sources, the differences in TG-43 parameters between the codes are less than 1% for Ir-192 and less than 0.5% for Cs-137. However for low energy sources like I-125 and Pd-103, large discrepancies are observed in the g(r) values obtained by MCNP4C and the two other codes. The differences between g(r) values calculated using MCNP4C and MCNP5 at the distance of 6cm were found to be about 17% and 28% for I-125 and Pd-103 respectively. The results obtained with MCNP4C-revised and MCNPX were similar. However, the maximum difference between the results obtained with the MCNP5 and MCNP4C-revised codes was 2% at 6cm. Conclusion: The results indicate that using MCNP4C code for dosimetry of low energy brachytherapy sources can cause large errors in the results. Therefore it is recommended not to use this code for low energy sources, unless its cross section library is changed. Since the results obtained with MCNP4C-revised and MCNPX were similar, it is concluded that the difference between MCNP4C and MCNPX is their cross section libraries.

  17. Dynamic rotating-shield brachytherapy

    SciTech Connect

    Liu, Yunlong; Flynn, Ryan T.; Kim, Yusung; Yang, Wenjun; Wu, Xiaodong

    2013-12-15

    Purpose: To present dynamic rotating shield brachytherapy (D-RSBT), a novel form of high-dose-rate brachytherapy (HDR-BT) with electronic brachytherapy source, where the radiation shield is capable of changing emission angles during the radiation delivery process.Methods: A D-RSBT system uses two layers of independently rotating tungsten alloy shields, each with a 180° azimuthal emission angle. The D-RSBT planning is separated into two stages: anchor plan optimization and optimal sequencing. In the anchor plan optimization, anchor plans are generated by maximizing the D{sub 90} for the high-risk clinical-tumor-volume (HR-CTV) assuming a fixed azimuthal emission angle of 11.25°. In the optimal sequencing, treatment plans that most closely approximate the anchor plans under the delivery-time constraint will be efficiently computed. Treatment plans for five cervical cancer patients were generated for D-RSBT, single-shield RSBT (S-RSBT), and {sup 192}Ir-based intracavitary brachytherapy with supplementary interstitial brachytherapy (IS + ICBT) assuming five treatment fractions. External beam radiotherapy doses of 45 Gy in 25 fractions of 1.8 Gy each were accounted for. The high-risk clinical target volume (HR-CTV) doses were escalated such that the D{sub 2cc} of the rectum, sigmoid colon, or bladder reached its tolerance equivalent dose in 2 Gy fractions (EQD2 with α/β= 3 Gy) of 75 Gy, 75 Gy, or 90 Gy, respectively.Results: For the patients considered, IS + ICBT had an average total dwell time of 5.7 minutes/fraction (min/fx) assuming a 10 Ci{sup 192}Ir source, and the average HR-CTV D{sub 90} was 78.9 Gy. In order to match the HR-CTV D{sub 90} of IS + ICBT, D-RSBT required an average of 10.1 min/fx more delivery time, and S-RSBT required 6.7 min/fx more. If an additional 20 min/fx of delivery time is allowed beyond that of the IS + ICBT case, D-RSBT and S-RSBT increased the HR-CTV D{sub 90} above IS + ICBT by an average of 16.3 Gy and 9.1 Gy, respectively

  18. Improvement in the practical implementation of neutron source strength calibration using prompt gamma rays.

    PubMed

    Khabaz, Rahim; Rene Vega-Carrillo, Hector

    2013-08-01

    In this study, the neutron emission rate from neutron sources using prompt gamma rays in hydrogen was determined, and several improvements were applied. Using Monte Carlo calculations, the best positions for the source, moderator and detector relative to each other were selected. For (241)Am-Be and (252)Cf sources, the sizes for polyethylene spheres with the highest efficiency were 12- and 10-inch, respectively. In addition, a new shielding cone was designed to account for scattered neutrons and gamma rays. The newly designed shielding cone, which is 45 cm in length, provided suitable attenuation for the source radiation.

  19. MO-D-BRD-00: Electronic Brachytherapy

    SciTech Connect

    2015-06-15

    Electronic brachytherapy (eBT) has seen an insurgence of manufacturers entering the US market for use in radiation therapy. In addition to the established interstitial, intraluminary, and intracavitary applications of eBT, many centers are now using eBT to treat skin lesions. It is important for medical physicists working with electronic brachytherapy sources to understand the basic physics principles of the sources themselves as well as the variety of applications for which they are being used. The calibration of the sources is different from vendor to vendor and the traceability of calibrations has evolved as new sources came to market. In 2014, a new air-kerma based standard was introduced by the National Institute of Standards and Technology (NIST) to measure the output of an eBT source. Eventually commercial treatment planning systems should accommodate this new standard and provide NIST traceability to the end user. The calibration and commissioning of an eBT system is unique to its application and typically entails a list of procedural recommendations by the manufacturer. Commissioning measurements are performed using a variety of methods, some of which are modifications of existing AAPM Task Group protocols. A medical physicist should be familiar with the different AAPM Task Group recommendations for applicability to eBT and how to properly adapt them to their needs. In addition to the physical characteristics of an eBT source, the photon energy is substantially lower than from HDR Ir-192 sources. Consequently, tissue-specific dosimetry and radiobiological considerations are necessary when comparing these brachytherapy modalities and when making clinical decisions as a radiation therapy team. In this session, the physical characteristics and calibration methodologies of eBt sources will be presented as well as radiobiology considerations and other important clinical considerations. Learning Objectives: To understand the basic principles of electronic

  20. Dosimetry of indigenously developed 192Ir high-dose rate brachytherapy source: An EGSnrc Monte Carlo study

    PubMed Central

    Sahoo, Sridhar; Selvam, T. Palani; Sharma, S. D.; Das, Trupti; Dey, A. C.; Patil, B. N.; Sastri, K.V.S.

    2016-01-01

    Clinical application using high-dose rate (HDR) 192Ir sources in remote afterloading technique is a well-established treatment method. In this direction, Board of Radiation and Isotope Technology (BRIT) and Bhabha Atomic Research Centre, India, jointly indigenously developed a remote afterloading machine and 192Ir HDR source. The two-dimensional (2D) dose distribution and dosimetric parameters of the BRIT 192Ir HDR source are generated using EGSnrc Monte Carlo code system in a 40 cm dia × 40 cm height cylindrical water phantom. The values of air-kerma strength and dose rate constant for BRIT 192Ir HDR source are 9.894 × 10−8 ± 0.06% UBq−1 and 1.112 ± 0.11% cGyh−1U−1, respectively. The values of radial dose function (gL(r)) of this source compare well with the corresponding values of BEBIG, Flexisource, and GammaMed 12i source models. This is because of identical active lengths of the sources (3.5 mm) and the comparable phantom dimensions. A comparison of gL(r) values of BRIT source with microSelectron-v1 show differences about 2% at r = 6 cm and up to 13% at r = 12 cm, which is due to differences in phantom dimensions involved in the calculations. The anisotropy function of BRIT 192Ir HDR source is comparable with the corresponding values of microSelectron-v1 (classic) HDR source. PMID:27217623

  1. [Brachytherapy for sarcomas].

    PubMed

    Ducassou, A; Haie-Méder, C; Delannes, M

    2016-10-01

    The standard of care for local treatment for extremities soft tissue sarcomas relies on conservative surgery combined with external beam radiotherapy. Brachytherapy can be realized instead of external beam radiotherapy in selected cases, or more often used as a boost dose on a limited volume on the area at major risk of relapse, especially if a microscopic positive resection is expected. Close interaction and communication between radiation oncologists and surgeons are mandatory at the time of implantation to limit the risk of side effects. Long-term results are available for low-dose rate brachytherapy. Nowadays, pulsed dose rate or high-dose-rate brachytherapy are more often used. Brachytherapy for paediatric sarcomas is rare, and has to be managed in reference centres.

  2. [Pulsed-dose rate brachytherapy in cervical cancers: why, how?].

    PubMed

    Mazeron, R; Dumas, I; Martin, V; Martinetti, F; Benhabib-Boukhelif, W; Gensse, M-C; Chargari, C; Guemnie-Tafo, A; Haie-Méder, C

    2014-10-01

    The end of the production of 192 iridium wires terminates low dose rate brachytherapy and requires to move towards pulsed-dose rate or high-dose rate brachytherapy. In the case of gynecological cancers, technical alternatives exist, and many teams have already taken the step of pulsed-dose rate for scientific reasons. Using a projector source is indeed a prerequisite for 3D brachytherapy, which gradually installs as a standard treatment in the treatment of cervical cancers. For other centers, this change implies beyond investments in equipment and training, organizational consequences to ensure quality.

  3. Delivery systems for brachytherapy.

    PubMed

    de la Puente, Pilar; Azab, Abdel Kareem

    2014-10-28

    Brachytherapy is described as the short distance treatment of cancer with a radioactive isotope placed on, in, or near the lesions or tumor to be treated. The main advantage of brachytherapy compared with external beam radiation (EBR) is the improved localized delivery of dose to the target volume of interest, thus normal tissue irradiation is reduced. The precise and targeted nature of brachytherapy provides a number of key benefits for the effective treatment of cancer such as efficacy, minimized risk of side effects, short treatment times, and cost-effectiveness. Brachytherapy devices have yielded promising results in preclinical and clinical studies. However, brachytherapy can only be used in localized and relatively small tumors. Although the introduction of new delivery devices allows the treatment of more complex tumor sites, with wider range of dose rate for improving treatment efficacy and reduction of side effects, a better understanding about the safety, efficacy, and accuracy of these systems is required, and further development of new techniques is warranted. Therefore, this review focuses on the delivery devices for brachytherapy and their application in prostate, breast, brain, and other tumor sites.

  4. Evaluation of a lithium formate EPR dosimetry system for dose measurements around {sup 192}Ir brachytherapy sources

    SciTech Connect

    Antonovic, Laura; Gustafsson, Haakan; Alm Carlsson, Gudrun; Carlsson Tedgren, Aasa

    2009-06-15

    A dosimetry system using lithium formate monohydrate (HCO{sub 2}Li{center_dot}H{sub 2}O) as detector material and electron paramagnetic resonance (EPR) spectroscopy for readout has been used to measure absorbed dose distributions around clinical {sup 192}Ir sources. Cylindrical tablets with diameter of 4.5 mm, height of 4.8 mm, and density of 1.26 g/cm{sup 3} were manufactured. Homogeneity test and calibration of the dosimeters were performed in a 6 MV photon beam. {sup 192}Ir irradiations were performed in a PMMA phantom using two different source models, the GammaMed Plus HDR and the microSelectron PDR-v1 model. Measured absorbed doses to water in the PMMA phantom were converted to the corresponding absorbed doses to water in water phantoms of dimensions used by the treatment planning systems (TPSs) using correction factors explicitly derived for this experiment. Experimentally determined absorbed doses agreed with the absorbed doses to water calculated by the TPS to within {+-}2.9%. Relative standard uncertainties in the experimentally determined absorbed doses were estimated to be within the range of 1.7%-1.3% depending on the radial distance from the source, the type of source (HDR or PDR), and the particular absorbed doses used. This work shows that a lithium formate dosimetry system is well suited for measurements of absorbed dose to water around clinical HDR and PDR {sup 192}Ir sources. Being less energy dependent than the commonly used thermoluminescent lithium fluoride (LiF) dosimeters, lithium formate monohydrate dosimeters are well suited to measure absorbed doses in situations where the energy dependence cannot easily be accounted for such as in multiple-source irradiations to verify treatment plans. Their wide dynamic range and linear dose response over the dose interval of 0.2-1000 Gy make them suitable for measurements on sources of the strengths used in clinical applications. The dosimeter size needs, however, to be reduced for application to

  5. Patient release criteria for low dose rate brachytherapy implants.

    PubMed

    Boyce, Dale E; Sheetz, Michael A

    2013-04-01

    A lack of consensus regarding a model governing the release of patients following sealed source brachytherapy has led to a set of patient release policies that vary from institution to institution. The U.S. Nuclear Regulatory Commission has issued regulatory guidance on patient release in NUREG 1556, Volume 9, Rev. 2, Appendix U, which allows calculation of release limits following implant brachytherapy. While the formalism presented in NUREG is meaningful for the calculation of release limits in the context of relatively high energy gamma emitters, it does not estimate accurately the effective dose equivalent for the common low dose rate brachytherapy sources Cs, I, and Pd. NUREG 1556 states that patient release may be based on patient-specific calculations as long as the calculation is documented. This work is intended to provide a format for patient-specific calculations to be used for the consideration of patients' release following the implantation of certain low dose rate brachytherapy isotopes.

  6. Evaluation of neutron sources for ISAGE-in-situ-NAA for a future lunar mission.

    PubMed

    Li, X; Breitkreutz, H; Burfeindt, J; Bernhardt, H-G; Trieloff, M; Hopp, J; Jessberger, E K; Schwarz, W H; Hofmann, P; Hiesinger, H

    2011-11-01

    For a future Moon landing, a concept for an in-situ NAA involving age determination using the (40)Ar-(39)Ar method is developed. A neutron source (252)Cf is chosen for sample irradiation on the Moon. A special sample-in-source irradiation geometry is designed to provide a homogeneous distribution of neutron flux at the irradiation position. Using reflector, the neutron flux is likely to increase by almost 200%. Sample age of 1Ga could be determined. Elemental analysis using INAA is discussed.

  7. SU-E-T-548: Modeling of Breast IORT Using the Xoft 50 KV Brachytherapy Source and 316L Steel Rigid Shield

    SciTech Connect

    Burnside, W

    2015-06-15

    Purpose: Xoft provides a set of 316L Stainless Steel Rigid Shields to be used with their 50 kV X-ray source for Breast IORT treatments. Modeling the different shield sizes in MCNP provides information to help make clinical decisions for selecting the appropriate shield size. Methods: The Xoft Axxent 50 kV Electronic Brachytherapy System has several applications in radiation therapy, one of which is treating cancer of the breast intraoperatively by placing the miniaturized X-ray tube inside an applicator balloon that is expanded to fill the lumpectomy bed immediately following tumor removal. The ribs, lung, and muscular chest wall are all regions at risk to receive undesired dose during the treatment. A Xoft 316L Stainless Steel Rigid Shield can be placed between the intracostal muscles of the chest wall and the remaining breast tissue near the balloon to attenuate the beam and protect these organs. These shields are provided in 5 different sizes, and the effects on dose to the surrounding tissues vary with shield size. MCNP was used to model this environment and tally dose rate to certain regions of interest. Results: The average rib dose rate calculated using 0cm (i.e., no shield), 3cm, and 5cm diameter shields were 26.89, 15.43, and 8.91 Gy/hr respectively. The maximum dose rates within the rib reached 94.74 Gy/hr, 53.56 Gy/hr, and 31.44 Gy/hr for the 0cm, 3cm, and 5cm cases respectively. The shadowing effect caused by the steel shields was seen in the 3-D meshes and line profiles. Conclusion: This model predicts a higher dose rate to the underlying rib region with the 3cm shield compared to the 5cm shield; it may be useful to select the largest possible diameter when choosing a shield size for a particular IORT patient. The ability to attenuate the beam to reduce rib dose was also confirmed. Research sponsored by Xoft Inc, a subsidiary of iCAD.

  8. MRI-guided brachytherapy

    PubMed Central

    Tanderup, Kari; Viswanathan, Akila; Kirisits, Christian; Frank, Steven J.

    2014-01-01

    The application of MRI-guided brachytherapy has demonstrated significant growth during the last two decades. Clinical improvements in cervix cancer outcomes have been linked to the application of repeated MRI for identification of residual tumor volumes during radiotherapy. This has changed clinical practice in the direction of individualized dose administration, and mounting evidence of improved clinical outcome with regard to local control, overall survival as well as morbidity. MRI-guided prostate HDR and LDR brachytherapy has improved the accuracy of target and organs-at-risk (OAR) delineation, and the potential exists for improved dose prescription and reporting for the prostate gland and organs at risk. Furthermore, MRI-guided prostate brachytherapy has significant potential to identify prostate subvolumes and dominant lesions to allow for dose administration reflecting the differential risk of recurrence. MRI-guided brachytherapy involves advanced imaging, target concepts, and dose planning. The key issue for safe dissemination and implementation of high quality MRI-guided brachytherapy is establishment of qualified multidisciplinary teams and strategies for training and education. PMID:24931089

  9. [Safety in brachytherapy].

    PubMed

    Marcié, S; Marinello, G; Peiffert, D; Lartigau, É

    2013-04-01

    No technique can now be used without previously considering the safety of patients, staff and public and risk management. This is the case for brachytherapy. The various aspects of brachytherapy are discussed for both the patient and the staff. For all, the risks must be minimized while achieving a treatment of quality. It is therefore necessary to establish a list as comprehensive as possible regardless of the type of brachytherapy (low, high, pulsed dose-rate). Then, their importance must be assessed with the help of their criticality. Radiation protection of personnel and public must take into account the many existing regulation texts. Four axes have been defined for the risk management for patients: organization, preparation, planning and implementation of treatment. For each axis, a review of risks is presented, as well as administrative, technical and medical dispositions for staff and the public.

  10. SU-E-T-46: Application of a Twin-Detector Method for the Determination of the Mean Photon Energy Em at Points of Measurement in a Water Phantom Surrounding a GammaMed HDR 192Ir Brachytherapy Source

    SciTech Connect

    Chofor, N; Poppe, B; Nebah, F; Harder, D

    2014-06-01

    Purpose: In a brachytherapy photon field in water the fluence-averaged mean photon energy Em at the point of measurement correlates with the radiation quality correction factor kQ of a non water-equivalent detector. To support the experimental assessment of Em, we show that the normalized signal ratio NSR of a pair of radiation detectors, an unshielded silicon diode and a diamond detector can serve to measure quantity Em in a water phantom at a Ir-192 unit. Methods: Photon fluence spectra were computed in EGSnrc based on a detailed model of the GammaMed source. Factor kQ was calculated as the ratio of the detector's spectrum-weighted responses under calibration conditions at a 60Co unit and under brachytherapy conditions at various radial distances from the source. The NSR was investigated for a pair of a p-type unshielded silicon diode 60012 and a synthetic single crystal diamond detector 60019 (both PTW Freiburg). Each detector was positioned according to its effective point of measurement, with its axis facing the source. Lateral signal profiles were scanned under complete scatter conditions, and the NSR was determined as the quotient of the signal ratio under application conditions x and that at position r-ref = 1 cm. Results: The radiation quality correction factor kQ shows a close correlation with the mean photon energy Em. The NSR of the diode/diamond pair changes by a factor of two from 0–18 cm from the source, while Em drops from 350 to 150 keV. Theoretical and measured NSR profiles agree by ± 2 % for points within 5 cm from the source. Conclusion: In the presence of the close correlation between radiation quality correction factor kQ and photon mean energy Em, the NSR provides a practical means of assessing Em under clinical conditions. Precise detector positioning is the major challenge.

  11. HDR brachytherapy for anal cancer

    PubMed Central

    Kovács, Gyoergy

    2014-01-01

    The challenge of treating anal cancer is to preserve the anal sphincter function while giving high doses to the tumor and sparing the organ at risk. For that reason there has been a shift from radical surgical treatment with colostomy to conservative treatment. Radiotherapy combined with chemotherapy has an important role in the treatment of anal cancer patients. New techniques as intensity modulated radiotherapy (IMRT) have shown reduced acute toxicity and high rates of local control in combination with chemotherapy compared to conventional 3-D radiotherapy. Not only external beam radio-chemotherapy treatment (EBRT) is an established method for primary treatment of anal cancer, brachytherapy (BT) is also an approved method. BT is well known for boost irradiation in combination with EBRT (+/– chemotherapy). Because of technical developments like modern image based 3D treatment planning and the possibility of intensity modulation in brachytherapy (IMBT), BT today has even more therapeutic potential than it had in the era of linear sources. The combination of external beam radiotherapy (EBRT) and BT allows the clinician to deliver higher doses to the tumor and to reduce dose to the normal issue. Improvements in local control and reductions in toxicity therefore become possible. Various BT techniques and their results are discussed in this work. PMID:24982770

  12. Implementation of the Fissile Mass Flow Monitor Source Verification and Confirmation

    SciTech Connect

    Uckan, Taner; March-Leuba, Jose A; Powell, Danny H; Nelson, Dennis; Radev, Radoslav

    2007-12-01

    This report presents the verification procedure for neutron sources installed in U.S. Department of Energy equipment used to measure fissile material flow. The Fissile Mass Flow Monitor (FMFM) equipment determines the {sup 235}U fissile mass flow of UF{sub 6} gas streams by using {sup 252}Cf neutron sources for fission activation of the UF{sub 6} gas and by measuring the fission products in the flow. The {sup 252}Cf sources in each FMFM are typically replaced every 2 to 3 years due to their relatively short half-life ({approx} 2.65 years). During installation of the new FMFM sources, the source identity and neutronic characteristics provided by the manufacturer are verified with the following equipment: (1) a remote-control video television (RCTV) camera monitoring system is used to confirm the source identity, and (2) a neutron detection system (NDS) is used for source-strength confirmation. Use of the RCTV and NDS permits remote monitoring of the source replacement process and eliminates unnecessary radiation exposure. The RCTV, NDS, and the confirmation process are described in detail in this report.

  13. Collinear Cluster Tripartition as a Neutron Source--Evaluation of the Setup Parameters

    SciTech Connect

    Kamanin, D. V.; Kuznetsova, E. A.; Aleksandrov, A. A.; Aleksandrova, I. A.; Borzakov, S. B.; Chelnokov, M. L.; Pham Minh, D.; Kondratyev, N. A.; Kopach, Yu. N.; Panteleev, Ts.; Penionzhkevich, Yu. E.; Svirikhin, A. I.; Sokol, E. A.; Testov, D. A.; Zhuchko, V. E.; Yeremin, A. V.; Pyatkov, Yu. V.; Jacobs, N.; Ryabov, Yu. V.

    2010-04-30

    Forthcoming experiments aimed at studying the mechanism of collinear cluster tripartition are planning to be performed with the new facility. Charged products will be registered with the double arm time-of-flight spectrometer composed of mosaics of PIN -diodes and MCP (micro channel plates) based timing detectors. Several tens of {sup 3}He-filled counters will be gathered round the {sup 252}Cf source. In order to choose an optimal configuration of the neutron detector and other parameters of the experiment special modeling has performed using both 'neutron barrel' and known MCNP code. The first test run of the new facility is in progress also its 'neutron skin' in under construction.

  14. Optimization of source-sample-detector geometries for bulk hydrogen analysis using epithermal neutrons.

    PubMed

    Csikai, J; Dóczi, R

    2009-01-01

    The advantages and limitations of epithermal neutrons in qualification of hydrocarbons via their H contents and C/H atomic ratios have been investigated systematically. Sensitivity of this method and the dimensions of the interrogated regions were determined for various types of hydrogenous samples. Results clearly demonstrate the advantages of direct neutron detection, e.g. by BF(3) counters as compared to the foil activation method in addition to using the hardness of the spectral shape of Pu-Be neutrons to that from a (252)Cf source.

  15. Moderator design studies for a new neutron reference source based on the D-T fusion reaction

    NASA Astrophysics Data System (ADS)

    Mozhayev, Andrey V.; Piper, Roman K.; Rathbone, Bruce A.; McDonald, Joseph C.

    2016-06-01

    The radioactive isotope Californium-252 (252Cf) is relied upon internationally as a neutron calibration source for ionizing radiation dosimetry because of its high specific activity. The source may be placed within a heavy-water (D2O) moderating sphere to produce a softened spectrum representative of neutron fields common to commercial nuclear power plant environments, among others. Due to termination of the U.S. Department of Energy loan/lease program in 2012, the expense of obtaining 252Cf sources has undergone a significant increase, rendering high output sources largely unattainable. On the other hand, the use of neutron generators in research and industry applications has increased dramatically in recent years. Neutron generators based on deuteriumtritium (D-T) fusion reaction provide high neutron fluence rates and, therefore, could possibly be used as a replacement for 252Cf. To be viable, the 14 MeV D-T output spectrum must be significantly moderated to approximate common workplace environments. This paper presents the results of an effort to select appropriate moderating materials and design a configuration to reshape the primary neutron field toward a spectrum approaching that from a nuclear power plant workplace. A series of Monte-Carlo (MCNP) simulations of single layer high- and low-Z materials are used to identify initial candidate moderators. Candidates are refined through a similar series of simulations involving combinations of 2-5 different materials. The simulated energy distribution using these candidate moderators are rated in comparison to a target spectrum. Other properties, such as fluence preservation and/or enhancement, prompt gamma production and other characteristics are also considered.

  16. Moderator design studies for a new neutron reference source based on the D–T fusion reaction

    SciTech Connect

    Mozhayev, Andrey V.; Piper, Roman K.; Rathbone, Bruce A.; McDonald, Joseph C.

    2016-06-01

    The radioactive isotope Californium-252 (252Cf) is relied upon internationally as a neutron calibration source for ionizing radiation dosimetry because of its high specific activity. The source may be placed within a heavy-water (D2O) moderating sphere to produce a softened spectrum representative of neutron fields common to commercial nuclear power plant environments, among others. Due to termination of the U.S. Department of Energy loan/lease program in 2012, the expense of obtaining 252Cf sources has undergone a significant increase, rendering high output sources largely unattainable. On the other hand, the use of neutron generators in research and industry applications has increased dramatically in recent years. Neutron generators based on deuterium-tritium (D-T) fusion reaction provide high neutron fluence rates and, therefore, could possibly be used as a replacement for 252Cf. To be viable, the 14.6 MeV D-T output spectrum must be significantly moderated to approximate common workplace environments. This paper presents the results of an effort to select appropriate moderating materials and design a configuration to reshape the primary neutron field toward a spectrum approaching that from a nuclear power plant workplace. A series of Monte-Carlo (MCNP) simulations of single layer high- and low-Z materials are used to identify initial candidate moderators. Candidates are refined through a similar series of simulations involving combinations of 2 to 5 different materials. The simulated energy distribution using these candidate moderators are rated in comparison to a target spectrum. Other properties, such as fluence preservation and/or enhancement, prompt gamma production and other characteristics are also considered.

  17. Air kerma and absorbed dose standards for reference dosimetry in brachytherapy

    PubMed Central

    2014-01-01

    This article reviews recent developments in primary standards for the calibration of brachytherapy sources, with an emphasis on the currently most common photon-emitting radionuclides. The introduction discusses the need for reference dosimetry in brachytherapy in general. The following section focuses on the three main quantities, i.e. reference air kerma rate, air kerma strength and absorbed dose rate to water, which are currently used for the specification of brachytherapy photon sources and which can be realized with primary standards from first principles. An overview of different air kerma and absorbed dose standards, which have been independently developed by various national metrology institutes over the past two decades, is given in the next two sections. Other dosimetry techniques for brachytherapy will also be discussed. The review closes with an outlook on a possible transition from air kerma to absorbed dose to water-based calibrations for brachytherapy sources in the future. PMID:24814696

  18. [Edge effect and late thrombosis -- inevitable complications of vascular brachytherapy?].

    PubMed

    Schiele, T M; Staber, L; Kantlehner, R; Pöllinger, B; Dühmke, E; Theisen, K; Klauss, V

    2002-11-01

    Restenosis is the limiting entity after percutaneous coronary angioplasty. Vascular brachytherapy for the treatment of in-stent restenosis has been shown to reduce the repeat restenosis rate and the incidence of major adverse events in several randomized trials. Besides the beneficial effects, brachytherapy yielded some unwanted side effects. The development of new stenoses at the edges of the target lesion treated with radiation is termed edge effect. It occurs after afterloading brachytherapy as well as after implantation of radioactive stents. It is characterized by extensive intimal hyperplasia and negative remodeling. As contributing factors the axial dose fall-off, inherent to all radioactive sources, and the application of vessel wall trauma by angioplasty have been identified. The combination of both factors, by insufficient overlap of the radiation length over the injured vessel segment, has been referred to as geographic miss. It has been shown to be associated with a very high incidence of the edge effect. Avoidance of geographic miss is strongly recommended in vascular brachytherapy procedures. Late thrombosis after vascular brachytherapy is of multifactorial origin. It comprises platelet recruitment, fibrin deposition, disturbed vasomotion, non-healing dissection and stent malapposition predisposing to turbulent blood flow. The strongest predictors for late thrombosis are premature discontinuation of antiplatelet therapy and implantation of new stents during the brachytherapy procedure. With a consequent and prolonged antiplatelet therapy, the incidence of late thrombosis has been reduced to placebo levels. Edge effect and late thrombosis represent unwanted side effects of vascular brachytherapy. By means of a thorough treatment planning and prolonged antiplatelet therapy their incidences can be largely reduced. With regard to the very favorable net effect, they do not constitute relevant limitations of vascular brachytherapy.

  19. Imaging method for monitoring delivery of high dose rate brachytherapy

    DOEpatents

    Weisenberger, Andrew G; Majewski, Stanislaw

    2012-10-23

    A method for in-situ monitoring both the balloon/cavity and the radioactive source in brachytherapy treatment utilizing using at least one pair of miniature gamma cameras to acquire separate images of: 1) the radioactive source as it is moved in the tumor volume during brachytherapy; and 2) a relatively low intensity radiation source produced by either an injected radiopharmaceutical rendering cancerous tissue visible or from a radioactive solution filling a balloon surgically implanted into the cavity formed by the surgical resection of a tumor.

  20. Few groups neutron spectra, and dosimetric features, of isotopic neutron sources.

    PubMed

    Vega-Carrillo, Hector Rene; Martinez-Ovalle, Segundo Agustín

    2016-11-01

    Using Monte Carlo methods, the neutron spectra in 31 energy groups of several isotopic neutron sources were estimated. For each source the neutron mean energy; the Ambient dose equivalent, the Personal dose equivalent and the Effective dose per unit fluence rate were calculated. A convenient way to produce neutrons is the isotopic neutron source, where the production is through (α, n), (γ, n), and spontaneous fission reactions. Isotopic neutron sources are small, easy to handle, and have a relative low cost. On the other hand the neutron yield is small and mostly of them produces neutrons with a wide energy distribution. In this work, the main features of (24)NaBe, (24)NaD2O, (116)InBe, (140)LaBe, (238)PuLi, (239)PuBe, (241)AmB, (241)AmBe, (241)AmF, (241)AmLi, (242)CmBe, (210)PoBe, (226)RaBe, (252)Cf and (252)Cf/D2O isotopic neutron source are also compiled.

  1. Determination of the optimum-size californium-252 neutron source for borehole capture gamma-ray analysis

    USGS Publications Warehouse

    Senftle, F.E.; Macy, R.J.; Mikesell, J.L.

    1979-01-01

    The fast- and thermal-neutron fluence rates from a 3.7 ??g 252Cf neutron source in a simulated borehole have been measured as a function of the source-to-detector distance using air, water, coal, iron ore-concrete mix, and dry sand as borehole media. Gamma-ray intensity measurements were made for specific spectral lines at low and high energies for the same range of source-to-detector distances in the iron ore-concrete mix and in coal. Integral gamma-ray counts across the entire spectrum were also made at each source-to-detector distance. From these data, the specific neutron-damage rate, and the critical count-rate criteria, we show that in an iron ore-concrete mix (low hydrogen concentration), 252Cf neutron sources of 2-40 ??g are suitable. The source size required for optimum gamma-ray sensitivity depends on the energy of the gamma ray being measured. In a hydrogeneous medium such as coal, similar measurements were made. The results show that sources from 2 to 20 ??g are suitable to obtain the highest gamma-ray sensitivity, again depending on the energy of the gamma ray being measured. In a hydrogeneous medium, significant improvement in sensitivity can be achieved by using faster electronics; in iron ore, it cannot. ?? 1979 North-Holland Publishing Co.

  2. Prostate brachytherapy in patients with median lobe hyperplasia.

    PubMed

    Wallner, K; Smathers, S; Sutlief, S; Corman, J; Ellis, W

    2000-06-20

    Our aim was to document the technical and clinical course of prostate brachytherapy patients with radiographic evidence of median lobe hyperplasia (MLH). Eight patients with MLH were identified during our routine brachytherapy practice, representing 9% of the 87 brachytherapy patients treated during a 6-month period. No effort was made to avoid brachytherapy in patients noted to have MLH on diagnostic work-up. Cystoscopic evaluation was not routinely performed. Postimplant axial computed tomographic (CT) images of the prostate were obtained at 0.5 cm intervals. Preimplant urinary obstructive symptoms were quantified by the criteria of the American Urologic Association (AUA). Each patient was contacted during the writing of this report to update postimplant morbidity information. There was no apparent association between the degree of MLH and preimplant prostate volume or AUA score. Intraoperatively, we were able to visualize MLH by transrectal ultrasound and did not notice any particular difficulty placing sources in the MLH tissue or migration of sources out of the tissue. The prescription isodose covered from 81% to 99% of the postimplant CT-defined target volume, achieving adequate dose to the median lobe tissue in all patients. Two of the eight patients developed acute, postimplant urinary retention. The first patient required intermittent self-catheterization for 3 months and then resumed spontaneous urination. MLH does not appear to be a strong contraindication to prostate brachytherapy, and prophylactic resection of hypertrophic tissue in such patients is probably not warranted. Int. J. Cancer (Radiat. Oncol. Invest.) 90, 152-156 (2000).

  3. p-type silicon detector for brachytherapy dosimetry.

    PubMed

    Piermattei, A; Azario, L; Monaco, G; Soriani, A; Arcovito, G

    1995-06-01

    The sensitivity of a cylindrical p-type silicon detector was studied by means of air and water measurements using different photon beams. A lead filter cap around the diode was used to minimize the dependence of the detector response as a function of the brachytherapy photon energy. The radial dose distribution of a high-activity 192Ir source in a brachytherapy phantom was measured by means of the shielded diode and the agreement of these data with theoretical evaluations confirms the method used to compensate diode response in the intermediate energy range. The diode sensitivity was constant over a wide range of dose rates of clinical interest; this allowed one to have a small detector calibrated in terms of absorbed dose in a medium. Theoretical evaluations showed that a single shielding filter around the p-type diode is sufficient to obtain accurate dosimetry for 192Ir, 137Cs, and 60Co brachytherapy sources.

  4. Dedicated high dose rate 192Ir brachytherapy radiation fields for in vitro cell exposures at variable source-target cell distances: killing of mammalian cells depends on temporal dose rate fluctuation

    NASA Astrophysics Data System (ADS)

    Veigel, Cornelia; Hartmann, Günther H.; Fritz, Peter; Debus, Jürgen; Weber, Klaus-Josef

    2017-02-01

    Afterloading brachytherapy is conducted by the stepwise movement of a radioactive source through surgically implanted applicator tubes where at predefined dwell positions calculated dwell times optimize spatial dose delivery with respect to a planned dose level. The temporal exposure pattern exhibits drastic fluctuations in dose rate at a given coordinate and within a single treatment session because of the discontinuous and repeated source movement into the target volume. This could potentially affect biological response. Therefore, mammalian cells were exposed as monolayers to a high dose rate 192Ir source by utilizing a dedicated irradiation device where the distance between a planar array of radioactive source positions and the plane of the cell monolayer could be varied from 2.5 mm to 40 mm, thus varying dose rate pattern for any chosen total dose. The Gammamed IIi afterloading system equipped with a nominal 370 GBq (10 Ci) 192-Ir source was used to irradiate V79 Chinese hamster lung fibroblasts from both confluent and from exponential growth phase with dose up to 12 Gy (at room temperature, total exposure not exceeding 1 h). For comparison, V79 cells were also exposed to 6 MV x-rays from a clinical linear accelerator (dose rate of 2.5 Gy min‑1). As biological endpoint, cell survival was determined by standard colony forming assay. Dose measurements were conducted with a diamond detector (sensitive area 7.3 mm2), calibrated by means of 60Co radiation. Additionally, dose delivery was simulated by Monte Carlo calculations using the EGSnrc code system. The calculated secondary electron fluence spectra at the cell location did not indicate a significant change of radiation quality (i.e. higher linear energy transfer) at the lower distances. Clonogenic cell survival curves obtained after brachytherapy exhibited an altered biological response compared to x-rays which was characterized by a significant reduction of the survival curve shoulder when dose rate

  5. Standardisation of water-moderated 241Am-Be neutron source using De Pangher neutron long counter: experimental and Monte Carlo modelling.

    PubMed

    Ghodke, Shobha; Kumari, Sujatha; Singh, Yashoda; Sathian, V; Mahant, A K; Sharma, D N

    2012-02-01

    A convenient neutron source is made for calibration of neutron survey instruments and personal dosimeters that are used in various nuclear installations such as fuel reprocessing, waste management, fuel fabrication and oil and well logging facilities, etc. This source consists of a bare (241)Am-Be neutron source placed at the centre of a 15-cm radius stainless steel spherical shell filled with distilled water. This paper describes the standardisation of the source at Bhabha Atomic Research Centre, using De Pangher neutron long counter both experimentally and using the Monte Carlo simulation. The ratio of neutron yield of water moderated to the bare (241)Am-Be neutron source was found to be 0.573. From the simulation, the neutron-fluence-weighted average energy of water-moderated (241)Am-Be source (fluence-weighted average energy of 2.25 MeV, dose-weighted average energy of 3.55 MeV) was found to be nearly the same as that of a (252)Cf source (fluence-weighted average energy of 2.1 MeV, dose-weighted average energy of 2.3 MeV). This source can be used for calibration in addition to (252)Cf, to study the variation in response of neutron monitoring instruments.

  6. Rotating-shield brachytherapy for cervical cancer

    NASA Astrophysics Data System (ADS)

    Yang, Wenjun; Kim, Yusung; Wu, Xiaodong; Song, Qi; Liu, Yunlong; Bhatia, Sudershan K.; Sun, Wenqing; Flynn, Ryan T.

    2013-06-01

    In this treatment planning study, the potential benefits of a rotating shield brachytherapy (RSBT) technique based on a partially-shielded electronic brachytherapy source were assessed for treating cervical cancer. Conventional intracavitary brachytherapy (ICBT), intracavitary plus supplementary interstitial (IS+ICBT), and RSBT treatment plans for azimuthal emission angles of 180° (RSBT-180) and 45° (RSBT-45) were generated for five patients. For each patient, high-risk clinical target volume (HR-CTV) equivalent dose in 2 Gy fractions (EQD2) (α/β = 10 Gy) was escalated until bladder, rectum, or sigmoid colon tolerance EQD2 values were reached. External beam radiotherapy dose (1.8 Gy × 25) was accounted for, and brachytherapy was assumed to have been delivered in 5 fractions. IS+ICBT provided a greater HR-CTV D90 (minimum EQD2 to the hottest 90%) than ICBT. D90 was greater for RSBT-45 than IS+ICBT for all five patients, and greater for RSBT-180 than IS+ICBT for two patients. When the RSBT-45/180 plan with the lowest HR-CTV D90 that was greater than the D90 the ICBT or IS+ICBT plan was selected, the average (range) of D90 increases for RSBT over ICBT and IS+ICBT were 16.2 (6.3-27.2)and 8.5 (0.03-20.16) Gy, respectively. The average (range) treatment time increase per fraction of RSBT was 34.56 (3.68-70.41) min over ICBT and 34.59 (3.57-70.13) min over IS+ICBT. RSBT can increase D90 over ICBT and IS+ICBT without compromising organ-at-risk sparing. The D90 and treatment time improvements from RSBT depend on the patient and shield emission angle.

  7. SU-D-19A-05: The Dosimetric Impact of Using Xoft Axxent® Electronic Brachytherapy Source TG-43 Dosimetry Parameters for Treatment with the Xoft 30 Mm Diameter Vaginal Applicator

    SciTech Connect

    Simiele, S; Micka, J; Culberson, W; DeWerd, L

    2014-06-01

    Purpose: A full TG-43 dosimetric characterization has not been performed for the Xoft Axxent ® electronic brachytherapy source (Xoft, a subsidiary of iCAD, San Jose, CA) within the Xoft 30 mm diameter vaginal applicator. Currently, dose calculations are performed using the bare-source TG-43 parameters and do not account for the presence of the applicator. This work focuses on determining the difference between the bare-source and sourcein- applicator TG-43 parameters. Both the radial dose function (RDF) and polar anisotropy function (PAF) were computationally determined for the source-in-applicator and bare-source models to determine the impact of using the bare-source dosimetry data. Methods: MCNP5 was used to model the source and the Xoft 30 mm diameter vaginal applicator. All simulations were performed using 0.84p and 0.03e cross section libraries. All models were developed based on specifications provided by Xoft. The applicator is made of a proprietary polymer material and simulations were performed using the most conservative chemical composition. An F6 collision-kerma tally was used to determine the RDF and PAF values in water at various dwell positions. The RDF values were normalized to 2.0 cm from the source to accommodate the applicator radius. Source-in-applicator results were compared with bare-source results from this work as well as published baresource results. Results: For a 0 mm source pullback distance, the updated bare-source model and source-in-applicator RDF values differ by 2% at 3 cm and 4% at 5 cm. The largest PAF disagreements were observed at the distal end of the source and applicator with up to 17% disagreement at 2 cm and 8% at 8 cm. The bare-source model had RDF values within 2.6% of the published TG-43 data and PAF results within 7.2% at 2 cm. Conclusion: Results indicate that notable differences exist between the bare-source and source-in-applicator TG-43 simulated parameters. Xoft Inc. provided partial funding for this work.

  8. SU-E-T-223: Investigation of the Accuracy of Two-Dimensional Dose Distributions Measurement From High-Dose-Rate Brachytherapy Ir-192 Source Using Multiple-Diode-Array Detector (MapCheck2)

    SciTech Connect

    Taguenang, J; De La Fuente, T Herman; Ahmad, S; Ali, I

    2014-06-01

    Purpose: To investigate the dosimetric accuracy of multiple-diode-array detector (Mapcheck2) for high-dose-rate brachytherapy Ir-192 source. The two-dimensional (2D) dose distributions measured with MapCheck2 were validated with EBT2 Gafchromic film measurement and AAPM task-group- 43 (TG-43) modeling. Methods: 2D-dose distributions from Ir-192 source were measured with MapCheck2 and EBT2-films. MapCheck2 response was corrected for effects: directional dependence, diode and phantom heterogeneity. Optical density growth of the film was controlled by synchronized scanning of the film exposed to Ir-192 and calibration films exposed to 6 MV linac beams. Similarly, MapCheck2 response was calibrated to dose using 6 MV beams. An empirical model was developed for the dose distributions measured with Mapcheck2 that considered directional, diode and phantom heterogeneity corrections. The dose deposited in solid-state-detectors was modeled using a cavity theory model for the diode. This model was then validated with measurements using EBT2-films and calculations with TG-43. Results: The response of MapCheck2 has been corrected for different effects including: (a) directional dependence of 0–20% over angular range 0o–90o, (b) phantom heterogeneity (3%) and (c) diode heterogeneity (9%). The corrected dose distributions measured with MapCheck2 agreed well with the measured dose distributions from EBT2-film and with calculations using TG-43 within 5% over a wide range of dose levels and rates. The advantages of MapCheck2 include less noisy, linear and stable response compared with film. The response of MapCheck2 exposed to 192Ir-source showed no energy dependence similar to its response to MV energy beam. Detection spatial-resolution of individual diodes was 0.8×0.8 mm2, however, 2DMapCheck2 resolution is limited by distance between diodes (7.07 mm). Conclusion: The dose distribution measured with MapCheck2 agreed well within 5% with that measured using EBT2-films; and

  9. Six year experience of external beam radiotherapy, brachytherapy boost with a 1Ci {sup 192}Ir source, and neoadjuvant hormonal manipulation for prostate cancer

    SciTech Connect

    Izard, Michael A. . E-mail: michael.izard@i-med.com.au; Haddad, Richard L.; Fogarty, Gerald B.; Rinks, Adrian; Dobbins, Timothy; Katelaris, Philip

    2006-09-01

    Purpose: To present preliminary outcomes of pulsed dose rate brachytherapy (PDR-BT), external beam radiotherapy (EBRT), and hormonal manipulation, for prostate cancer. Patients and Methods: Between December 1999 and January 2005, 165 consecutive patients with Stage T1-T3, N0, M0 prostate cancer were treated. Hormones were used in every patient. Median follow-up was 36 months. Risk groups were low (either Stage {<=}T2a, {+-} Gleason score {<=}6, {+-} Prostate-Specific Antigen [PSA] level {<=}10 ng/mL); intermediate (either Stage T2b,c, {+-} Gleason score 7, {+-} PSA 10-20 ng/mL); and high (either Stage T3, {+-} Gleason score 8-10, {+-} PSA >20 ng/mL). Results: At 3 years, Radiotherapy Oncology Group (RTOG) Grade 3 and 4 genito-urinary toxicity was 4% and 1.4%; RTOG Grade 3 and 4 gastro-intestinal toxicity was 2.6% and 0%, respectively. Erectile preservation was 61%. Overall survival was 93% (154 of 165) and cause-specific survival was 98% (162 of 165). At 3 years, disease free survival (DFS) was 93% (153 of 165). DFS for low-, intermediate-, and high-risk groups was 100%, 97%, and 81%, respectively ({chi}{sup 2} (2) = 16.02, p = 0.0003). The nadir plus 2 ng/mL definition ({chi}{sup 2} (2) = 14.49, p 0.0007) best predicted clinical failure, having the lowest false-positive rate (3 of 165). The nadir plus 2 ng/mL PSA-progression-free survival (PSA-PFS) rate was 100%, 95%, and 87% for the low-, intermediate, and high-risk groups, respectively. Overall ASTRO PSA-PFS rate was 88%. Conclusions: Pulsed dose rate brachytherapy plus EBRT is effective in treating localized prostate cancer, with acceptable toxicity. However, a median 5-year PSA-PFS follow-up is required before providing a solid recommendation. This preliminary information supports continued use.

  10. Multihelix rotating shield brachytherapy for cervical cancer

    SciTech Connect

    Dadkhah, Hossein; Kim, Yusung; Flynn, Ryan T.; Wu, Xiaodong

    2015-11-15

    Purpose: To present a novel brachytherapy technique, called multihelix rotating shield brachytherapy (H-RSBT), for the precise angular and linear positioning of a partial shield in a curved applicator. H-RSBT mechanically enables the dose delivery using only linear translational motion of the radiation source/shield combination. The previously proposed approach of serial rotating shield brachytherapy (S-RSBT), in which the partial shield is rotated to several angular positions at each source dwell position [W. Yang et al., “Rotating-shield brachytherapy for cervical cancer,” Phys. Med. Biol. 58, 3931–3941 (2013)], is mechanically challenging to implement in a curved applicator, and H-RSBT is proposed as a feasible solution. Methods: A Henschke-type applicator, designed for an electronic brachytherapy source (Xoft Axxent™) and a 0.5 mm thick tungsten partial shield with 180° or 45° azimuthal emission angles and 116° asymmetric zenith angle, is proposed. The interior wall of the applicator contains six evenly spaced helical keyways that rigidly define the emission direction of the partial radiation shield as a function of depth in the applicator. The shield contains three uniformly distributed protruding keys on its exterior wall and is attached to the source such that it rotates freely, thus longitudinal translational motion of the source is transferred to rotational motion of the shield. S-RSBT and H-RSBT treatment plans with 180° and 45° azimuthal emission angles were generated for five cervical cancer patients with a diverse range of high-risk target volume (HR-CTV) shapes and applicator positions. For each patient, the total number of emission angles was held nearly constant for S-RSBT and H-RSBT by using dwell positions separated by 5 and 1.7 mm, respectively, and emission directions separated by 22.5° and 60°, respectively. Treatment delivery time and tumor coverage (D{sub 90} of HR-CTV) were the two metrics used as the basis for evaluation and

  11. Multihelix rotating shield brachytherapy for cervical cancer

    PubMed Central

    Dadkhah, Hossein; Kim, Yusung; Wu, Xiaodong; Flynn, Ryan T.

    2015-01-01

    Purpose: To present a novel brachytherapy technique, called multihelix rotating shield brachytherapy (H-RSBT), for the precise angular and linear positioning of a partial shield in a curved applicator. H-RSBT mechanically enables the dose delivery using only linear translational motion of the radiation source/shield combination. The previously proposed approach of serial rotating shield brachytherapy (S-RSBT), in which the partial shield is rotated to several angular positions at each source dwell position [W. Yang et al., “Rotating-shield brachytherapy for cervical cancer,” Phys. Med. Biol. 58, 3931–3941 (2013)], is mechanically challenging to implement in a curved applicator, and H-RSBT is proposed as a feasible solution. Methods: A Henschke-type applicator, designed for an electronic brachytherapy source (Xoft Axxent™) and a 0.5 mm thick tungsten partial shield with 180° or 45° azimuthal emission angles and 116° asymmetric zenith angle, is proposed. The interior wall of the applicator contains six evenly spaced helical keyways that rigidly define the emission direction of the partial radiation shield as a function of depth in the applicator. The shield contains three uniformly distributed protruding keys on its exterior wall and is attached to the source such that it rotates freely, thus longitudinal translational motion of the source is transferred to rotational motion of the shield. S-RSBT and H-RSBT treatment plans with 180° and 45° azimuthal emission angles were generated for five cervical cancer patients with a diverse range of high-risk target volume (HR-CTV) shapes and applicator positions. For each patient, the total number of emission angles was held nearly constant for S-RSBT and H-RSBT by using dwell positions separated by 5 and 1.7 mm, respectively, and emission directions separated by 22.5° and 60°, respectively. Treatment delivery time and tumor coverage (D90 of HR-CTV) were the two metrics used as the basis for evaluation and

  12. Intraoral angiosarcoma: treatment with a brachytherapy prosthesis.

    PubMed

    Rosen, Evan B; Ko, Eugene; Wolden, Suzanne; Huryn, Joseph M; Estilo, Cherry L

    2015-03-01

    Angiosarcomas are rare, malignant neoplasms of vascular origin that account for less than 1% of all soft tissue tumors. Angiosarcomas of the oral cavity are especially rare, and brachytherapy may be prescribed as a localized treatment to manage these malignancies. Intraoral brachytherapy requires collaboration between the radiation oncologist and a dental professional for the fabrication of the brachytherapy delivery prosthesis. This clinical report describes an intraoral angiosarcoma and the fabrication of an intraoral brachytherapy prosthesis to manage this malignancy.

  13. Brachytherapy for clinically localized prostate cancer: optimal patient selection.

    PubMed

    Kollmeier, Marisa A; Zelefsky, Michael J

    2011-10-01

    The objective of this review is to present an overview of each modality and delineate how to best select patients who are optimal candidates for these treatment approaches. Prostate brachytherapy as a curative modality for clinically localized prostate cancer has become increasingly utilized over the past decade; 25% of all early cancers are now treated this way in the United States (1). The popularity of this treatment strategy lies in the highly conformal nature of radiation dose, low morbidity, patient convenience, and high efficacy rates. Prostate brachytherapy can be delivered by either a permanent interstitial radioactive seed implantation (low dose rate [LDR]) or a temporary interstitial insertion of iridium-192 (Ir192) afterloading catheters. The objective of both of these techniques is to deliver a high dose of radiation to the prostate gland while exposing normal surrounding tissues to minimal radiation dose. Brachytherapy techniques are ideal to achieve this goal given the close proximity of the radiation source to tumor and sharp fall off of the radiation dose cloud proximate to the source. Brachytherapy provides a powerful means of delivering dose escalation above and beyond that achievable with intensity-modulated external beam radiotherapy alone. Careful selection of appropriate patients for these therapies, however, is critical for optimizing both disease-related outcomes and treatment-related toxicity.

  14. Preparation of (103)Pd brachytherapy seeds by electroless plating of (103)Pd onto carbon bars.

    PubMed

    Li, Zhong-Yong; Gao, Hui-Bo; Deng, Xue-Song; Zhou, Leng; Zhang, Wen-Hui; Han, Lian-Ge; Jin, Xiao-Hai; Cui, Hai-Ping

    2015-09-01

    A method for preparing (103)Pd brachytherapy seeds is reported. The key of the method was to deposit (103)Pd onto carbon bars by electroless plating so as to prepare source cores. After each carbon bar with (103)Pd was sealed in a titanium capsule, the (103)Pd seeds were fabricated. This paper provides valuable experiences and data for the preparation of (103)Pd brachytherapy seeds.

  15. Californium-252 neutron intracavity brachytherapy alone for T1N0 low-lying rectal adenocarcinoma: A definitive anal sphincter-preserving radiotherapy.

    PubMed

    Xiong, Yanli; Shan, Jinlu; Liu, Jia; Zhao, Kewei; Chen, Shu; Xu, Wenjing; Zhou, Qian; Yang, Mei; Lei, Xin

    2017-01-17

    This study evaluated the 4-year results of 32 patients with T1N0 low-lying rectal adenocarcinoma treated solely with californium-252 (Cf-252) neutron intracavity brachytherapy (ICBT). Patients were solicited into the study from January 2008 to June 2011. All the patients had refused surgery or surgery was contraindicated. The patients were treated with Cf-252 neutron ICBT using a novel 3.5-cm diameter off-axis 4-channel intrarectal applicator designed by the authors. The dose reference point was defined on the mucosa surface, with a total dose of 55-62 Gy-eq/4 f (13-16 Gy-eq/f/wk). All the patients completed the radiotherapy in accordance with our protocol. The rectal lesions regressed completely, and the acute rectal toxicity was mild (≤G2). The 4-year local control, overall survival, disease-free survival, and late complication (≥G2) rates were 96.9%, 90.6%, 87.5% and 15.6%, respectively. No severe late complication (≥G3) occurred. The mean follow-up was 56.1 ± 16.0 months. At the end of last follow-up, 29 patients remained alive. The mean survival time was 82.1 ± 2.7 months. Cf-252 neutron ICBT administered as the sole treatment (without surgery) for patients with T1N0 low-lying rectal adenocarcinoma is effective with acceptable late complications. Our study and method offers a definitive anal sphincter-preserving radiotherapy for T1N0 low-lying rectal adenocarcinoma patients.

  16. Californium-252 neutron intracavity brachytherapy alone for T1N0 low-lying rectal adenocarcinoma: A definitive anal sphincter-preserving radiotherapy

    PubMed Central

    Xiong, Yanli; Shan, Jinlu; Liu, Jia; Zhao, Kewei; Chen, Shu; Xu, Wenjing; Zhou, Qian; Yang, Mei; Lei, Xin

    2017-01-01

    This study evaluated the 4-year results of 32 patients with T1N0 low-lying rectal adenocarcinoma treated solely with californium-252 (Cf-252) neutron intracavity brachytherapy (ICBT). Patients were solicited into the study from January 2008 to June 2011. All the patients had refused surgery or surgery was contraindicated. The patients were treated with Cf-252 neutron ICBT using a novel 3.5-cm diameter off-axis 4-channel intrarectal applicator designed by the authors. The dose reference point was defined on the mucosa surface, with a total dose of 55–62 Gy-eq/4 f (13–16 Gy-eq/f/wk). All the patients completed the radiotherapy in accordance with our protocol. The rectal lesions regressed completely, and the acute rectal toxicity was mild (≤G2). The 4-year local control, overall survival, disease-free survival, and late complication (≥G2) rates were 96.9%, 90.6%, 87.5% and 15.6%, respectively. No severe late complication (≥G3) occurred. The mean follow-up was 56.1 ± 16.0 months. At the end of last follow-up, 29 patients remained alive. The mean survival time was 82.1 ± 2.7 months. Cf-252 neutron ICBT administered as the sole treatment (without surgery) for patients with T1N0 low-lying rectal adenocarcinoma is effective with acceptable late complications. Our study and method offers a definitive anal sphincter-preserving radiotherapy for T1N0 low-lying rectal adenocarcinoma patients. PMID:28094790

  17. Study of dose calculation on breast brachytherapy using prism TPS

    NASA Astrophysics Data System (ADS)

    Fendriani, Yoza; Haryanto, Freddy

    2015-09-01

    PRISM is one of non-commercial Treatment Planning System (TPS) and is developed at the University of Washington. In Indonesia, many cancer hospitals use expensive commercial TPS. This study aims to investigate Prism TPS which been applied to the dose distribution of brachytherapy by taking into account the effect of source position and inhomogeneities. The results will be applicable for clinical Treatment Planning System. Dose calculation has been implemented for water phantom and CT scan images of breast cancer using point source and line source. This study used point source and line source and divided into two cases. On the first case, Ir-192 seed source is located at the center of treatment volume. On the second case, the source position is gradually changed. The dose calculation of every case performed on a homogeneous and inhomogeneous phantom with dimension 20 × 20 × 20 cm3. The inhomogeneous phantom has inhomogeneities volume 2 × 2 × 2 cm3. The results of dose calculations using PRISM TPS were compared to literature data. From the calculation of PRISM TPS, dose rates show good agreement with Plato TPS and other study as published by Ramdhani. No deviations greater than ±4% for all case. Dose calculation in inhomogeneous and homogenous cases show similar result. This results indicate that Prism TPS is good in dose calculation of brachytherapy but not sensitive for inhomogeneities. Thus, the dose calculation parameters developed in this study were found to be applicable for clinical treatment planning of brachytherapy.

  18. SU-E-T-787: Utility of the Two Candidate 192-Ir and 169-Yb HDR Sources for Use with a Novel Direction Modulated Brachytherapy Tandem Applicator for Cervical Cancer Treatment

    SciTech Connect

    Safigholi, H; Soliman, A; Song, W; Han, D; Meigooni, A Soleimani

    2015-06-15

    Purpose: A novel tungsten alloy shielded, MRI-compatible, direction modulated brachytherapy (DMBT) concept tandem applicator, which enables unprecedented intensity modulation, was used to evaluate treatment plan quality improvement over a conventional tandem. The utility of the 192-Ir and 169-Yb HDR sources, for use with the DMBT applicator, was evaluated. Methods: The total diameter of the DMBT tandem applicator is 6.0 mm, which consists of 5.4-mm diameter tungsten alloy and 0.3 mm thick plastic sheath. The tandem has 6 symmetric peripheral 1.3-mm diameter grooves for the source to travel. MCNPX v.2.6 was used to simulate the 192-Ir and 169-Yb sources inside the DMBT applicator. First, TG-43 source parameters were evaluated. Second, 3D dose matrix with 1 mm3 resolution were imported into an in-house-coded inverse optimization treatment planning program to obtain optimal plans for 19 clinical cases. All plans were compared with the standard tandem and ring plans. Prescription dose was 15.0 Gy. All plans were normalized to receive the same HRCTV D90. Results: Generally, the DMBT tandem (and ring) plans were better than the conventional tandem and ring plans for 192-Ir and 169-Yb HDR sources. The mean data of D2cc for bladder, rectum, and sigmoid were 11.65±2.30 Gy, 7.47±3.05 Gy, and 9.84±2.48 Gy for Ir-192 DMBT tandem, respectively. These data for Yb-169 were 11.67±2.26 Gy, 7.44±3.02 Gy, and 9.83±2.38 Gy, respectively. The HR-CTV D98 and V100 were 16.37±1.86 Gy and 97.37 ± 1.92 Gy for Ir-192 DMBT, respectively. The corresponding values for Yb-169 were 16.43±1.86 Gy, and 97.51 ± 1.91 Gy. Plans with the 169-Yb source generally produced more favorable results where V100 increased by 13.65% while D2cc across all OARs reduced by 0.54% compared with the 192-Ir plans. Conclusion: For the DMBT tandem applicator, 169-Yb source seems to produce more directional beams resulting in increased intensity modulation capacity, thus resulting in more conformal plans.

  19. Magnetic resonance image guided brachytherapy.

    PubMed

    Tanderup, Kari; Viswanathan, Akila N; Kirisits, Christian; Frank, Steven J

    2014-07-01

    The application of magnetic resonance image (MRI)-guided brachytherapy has demonstrated significant growth during the past 2 decades. Clinical improvements in cervix cancer outcomes have been linked to the application of repeated MRI for identification of residual tumor volumes during radiotherapy. This has changed clinical practice in the direction of individualized dose administration, and resulted in mounting evidence of improved clinical outcome regarding local control, overall survival as well as morbidity. MRI-guided prostate high-dose-rate and low-dose-rate brachytherapies have improved the accuracy of target and organs-at-risk delineation, and the potential exists for improved dose prescription and reporting for the prostate gland and organs at risk. Furthermore, MRI-guided prostate brachytherapy has significant potential to identify prostate subvolumes and dominant lesions to allow for dose administration reflecting the differential risk of recurrence. MRI-guided brachytherapy involves advanced imaging, target concepts, and dose planning. The key issue for safe dissemination and implementation of high-quality MRI-guided brachytherapy is establishment of qualified multidisciplinary teams and strategies for training and education.

  20. The trail of the development of high-dose-rate brachytherapy for cervical cancer in Japan.

    PubMed

    Inoue, Toshihiko

    2003-07-01

    The differences in radiotherapeutic treatment systems for cervical cancer between the United States and Japan can be attributed either to the tolerance of high-risk organs, or dosimetry itself. High-dose-rate (HDR) brachytherapy is the standard treatment for uterine cervix carcinoma in Japan. In addition, HDR Co-60 afterloading machines have been gradually replaced with Ir-192 micro-source afterloading machines during the past ten years. This implies that it has now become impossible to conduct a prospective comparative study of HDR versus low-dose-rate (LDR) brachytherapy for cervical cancer in Japan. An examination of the history of HDR intracavitary radiotherapy for uterine cervix carcinoma in Japan led us to the conclusion that HDR intracavitary brachytherapy for the treatment of cervical cancer is as effective as LDR intracavitary brachytherapy in terms of both survival and complications. In Japan, studies on the former can be drawn from a long experience of more than 35 years.

  1. Prostate cancer brachytherapy: guidelines overview

    PubMed Central

    Białas, Brygida

    2012-01-01

    Prostate cancer, due to wide availability of PSA tests, is very often diagnosed in early stage, nowadays. This makes management of this disease even harder in every day oncology care. There is a wide range of treatment options including surgery, radiotherapy and active surveillance, but essential question is which treatment patient and oncologist should decide for. Due to recent publication of Prostate Cancer Results Study Group, in which brachytherapy is one of supreme curative options for prostate cancer, we decided to overview most present european and north american recommendations. National Comprehensive Cancer Network, American Society for Radiation Oncology, American Brachytherapy Society, European Association of Urology and Groupe Européen de Curiethérapie of European Society for Therapeutic Radiation Oncology guidelines are overviewed, particularly focusing on HDR and LDR brachytherapy. PMID:23349655

  2. Prostate cancer brachytherapy: guidelines overview.

    PubMed

    Wojcieszek, Piotr; Białas, Brygida

    2012-06-01

    Prostate cancer, due to wide availability of PSA tests, is very often diagnosed in early stage, nowadays. This makes management of this disease even harder in every day oncology care. There is a wide range of treatment options including surgery, radiotherapy and active surveillance, but essential question is which treatment patient and oncologist should decide for. Due to recent publication of Prostate Cancer Results Study Group, in which brachytherapy is one of supreme curative options for prostate cancer, we decided to overview most present european and north american recommendations. National Comprehensive Cancer Network, American Society for Radiation Oncology, American Brachytherapy Society, European Association of Urology and Groupe Européen de Curiethérapie of European Society for Therapeutic Radiation Oncology guidelines are overviewed, particularly focusing on HDR and LDR brachytherapy.

  3. Improving photoacoustic imaging contrast of brachytherapy seeds

    NASA Astrophysics Data System (ADS)

    Pan, Leo; Baghani, Ali; Rohling, Robert; Abolmaesumi, Purang; Salcudean, Septimiu; Tang, Shuo

    2013-03-01

    Prostate brachytherapy is a form of radiotherapy for treating prostate cancer where the radiation sources are seeds inserted into the prostate. Accurate localization of seeds during prostate brachytherapy is essential to the success of intraoperative treatment planning. The current standard modality used in intraoperative seeds localization is transrectal ultrasound. Transrectal ultrasound, however, suffers in image quality due to several factors such speckle, shadowing, and off-axis seed orientation. Photoacoustic imaging, based on the photoacoustic phenomenon, is an emerging imaging modality. The contrast generating mechanism in photoacoustic imaging is optical absorption that is fundamentally different from conventional B-mode ultrasound which depicts changes in acoustic impedance. A photoacoustic imaging system is developed using a commercial ultrasound system. To improve imaging contrast and depth penetration, absorption enhancing coating is applied to the seeds. In comparison to bare seeds, approximately 18.5 dB increase in signal-to-noise ratio as well as a doubling of imaging depth are achieved. Our results demonstrate that the coating of the seeds can further improve the discernibility of the seeds.

  4. Optimization of the steady neutron source technique for absorption cross section measurement by using an 124Sb-Be neutron source

    NASA Astrophysics Data System (ADS)

    Sun, Jing; Gardner, Robin P.

    2004-01-01

    An improved experimental approach has been developed to determine thermal neutron absorption cross sections. It uses an 124Sb-Be neutron source which has an average neutron energy of only about 12 keV. It can be moderated in either a water tank or a paraffin filled box and can be used for aqueous or powder samples. This new design is first optimized by MCNP simulation and then benchmarked and calibrated with experiments to verify the simulations and realize the predicted improved measurement sensitivity and reproducibility. The 124Sb-Be source device is from 1.35 to 1.71 times more sensitive than the previous method based on the use of a 252Cf source.

  5. Charge breeding results and future prospects with electron cyclotron resonance ion source and electron beam ion source (invited)

    SciTech Connect

    Vondrasek, R.; Levand, A.; Pardo, R.; Savard, G.; Scott, R.

    2012-02-15

    The Californium Rare Ion Breeder Upgrade (CARIBU) of the Argonne National Laboratory ATLAS facility will provide low-energy and reaccelerated neutron-rich radioactive beams for the nuclear physics program. A 70 mCi {sup 252}Cf source produces fission fragments which are thermalized and collected by a helium gas catcher into a low-energy particle beam with a charge of 1+ or 2+. An electron cyclotron resonance (ECR) ion source functions as a charge breeder in order to raise the ion charge sufficiently for acceleration in the ATLAS linac. The final CARIBU configuration will utilize a 1 Ci {sup 252}Cf source to produce radioactive beams with intensities up to 10{sup 6} ions/s for use in the ATLAS facility. The ECR charge breeder has been tested with stable beam injection and has achieved charge breeding efficiencies of 3.6% for {sup 23}Na{sup 8+}, 15.6% for {sup 84}Kr{sup 17+}, and 13.7% for {sup 85}Rb{sup 19+} with typical breeding times of 10 ms/charge state. For the first radioactive beams, a charge breeding efficiency of 11.7% has been achieved for {sup 143}Cs{sup 27+} and 14.7% for {sup 143}Ba{sup 27+}. The project has been commissioned with a radioactive beam of {sup 143}Ba{sup 27+} accelerated to 6.1 MeV/u. In order to take advantage of its lower residual contamination, an EBIS charge breeder will replace the ECR charge breeder in the next two years. The advantages and disadvantages of the two techniques are compared taking into account the requirements of the next generation radioactive beam facilities.

  6. Charge breeding results and future prospects with electron cyclotron resonance ion source and electron beam ion source (invited)a)

    NASA Astrophysics Data System (ADS)

    Vondrasek, R.; Levand, A.; Pardo, R.; Savard, G.; Scott, R.

    2012-02-01

    The Californium Rare Ion Breeder Upgrade (CARIBU) of the Argonne National Laboratory ATLAS facility will provide low-energy and reaccelerated neutron-rich radioactive beams for the nuclear physics program. A 70 mCi 252Cf source produces fission fragments which are thermalized and collected by a helium gas catcher into a low-energy particle beam with a charge of 1+ or 2+. An electron cyclotron resonance (ECR) ion source functions as a charge breeder in order to raise the ion charge sufficiently for acceleration in the ATLAS linac. The final CARIBU configuration will utilize a 1 Ci 252Cf source to produce radioactive beams with intensities up to 106 ions/s for use in the ATLAS facility. The ECR charge breeder has been tested with stable beam injection and has achieved charge breeding efficiencies of 3.6% for 23Na8+, 15.6% for 84Kr17+, and 13.7% for 85Rb19+ with typical breeding times of 10 ms/charge state. For the first radioactive beams, a charge breeding efficiency of 11.7% has been achieved for 143Cs27+ and 14.7% for 143Ba27+. The project has been commissioned with a radioactive beam of 143Ba27+ accelerated to 6.1 MeV/u. In order to take advantage of its lower residual contamination, an EBIS charge breeder will replace the ECR charge breeder in the next two years. The advantages and disadvantages of the two techniques are compared taking into account the requirements of the next generation radioactive beam facilities.

  7. Low-dose-rate or high-dose-rate brachytherapy in treatment of prostate cancer – between options

    PubMed Central

    2013-01-01

    Purpose Permanent low-dose-rate (LDR-BT) and temporary high-dose-rate (HDR-BT) brachytherapy are competitive techniques for clinically localized prostate radiotherapy. Although a randomized trial will likely never to be conducted comparing these two forms of brachytherapy, a comparative analysis proves useful in understanding some of their intrinsic differences, several of which could be exploited to improve outcomes. The aim of this paper is to look for possible similarities and differences between both brachytherapy modalities. Indications and contraindications for monotherapy and for brachytherapy as a boost to external beam radiation therapy (EBRT) are presented. It is suggested that each of these techniques has attributes that advocates for one or the other. First, they represent the extreme ends of the spectrum with respect to dose rate and fractionation, and therefore have inherently different radiobiological properties. Low-dose-rate brachytherapy has the great advantage of being practically a one-time procedure, and enjoys a long-term follow-up database supporting its excellent outcomes and low morbidity. Low-dose-rate brachytherapy has been a gold standard for prostate brachytherapy in low risk patients since many years. On the other hand, HDR is a fairly invasive procedure requiring several sessions associated with a brief hospital stay. Although lacking in significant long-term data, it possesses the technical advantage of control over its postimplant dosimetry (by modulating the source dwell time and position), which is absent in LDR brachytherapy. This important difference in dosimetric control allows HDR doses to be escalated safely, a flexibility that does not exist for LDR brachytherapy. Conclusions Radiobiological models support the current clinical evidence for equivalent outcomes in localized prostate cancer with either LDR or HDR brachytherapy, using current dose regimens. At present, all available clinical data regarding these two techniques

  8. Brachytherapy dosimeter with silicon photomultipliers

    NASA Astrophysics Data System (ADS)

    Moutinho, L. M.; Castro, I. F. C.; Peralta, L.; Abreu, M. C.; Veloso, J. F. C. A.

    2015-07-01

    In-vivo and in-situ measurement of the radiation dose administered during brachytherapy faces several technical challenges, requiring a very compact, tissue-equivalent, linear and highly sensitive dosimeter, particularly in low-dose rate brachytherapy procedures, which use radioactive seeds with low energy and low dose deposition rate. In this work we present a scintillating optical fiber dosimeter composed of a flexible sensitive probe and a dedicated electronic readout system based on silicon photomultiplier photodetection, capable of operating both in pulse and current modes. The performance of the scintillating fiber optic dosimeter was evaluated in low energy regimes, using an X-ray tube operating at voltages of 40-50 kV and currents below 1 mA, to assess minimum dose response of the scintillating fiber. The dosimeter shows a linear response with dose and is capable of detecting mGy dose variations like an ionization chamber. Besides fulfilling all the requirements for a dosimeter in brachytherapy, the high sensitivity of this device makes it a suitable candidate for application in low-dose rate brachytherapy. According to Peralta and Rego [1], the BCF-10 and BCF-60 scintillating optical fibers used in dosimetry exhibit high variations in their sensitivity for photon beams in the 25-100 kVp energy range. Energy linearity for energies below 50 keV needs to be further investigated, using monochromatic X-ray photons.

  9. Detection of buried explosives using portable neutron sources with nanosecond timing.

    PubMed

    Kuznetsov, A V; Evsenin, A V; Gorshkov, I Yu; Osetrov, O I; Vakhtin, D N

    2004-07-01

    Significant reduction of time needed to identify hidden explosives and other hazardous materials by the "neutron in, gamma out" method has been achieved by introducing timed (nanosecond) neutron sources-the so-called nanosecond neutron analysis technique. Prototype mobile device for explosives' detection based on a timed (nanosecond) isotopic (252)Cf neutron source has been created. The prototype is capable of identifying 400 g of hidden explosives in 10 min. Tests have been also made with a prototype device using timed (nanosecond) neutron source based on a portable D-T neutron generator with built-in segmented detector of accompanying alpha-particles. The presently achieved intensity of the neutron generator is 5x10(7)n/s into 4pi, with over 10(6) of these neutrons being correlated with alpha-particles detected by the built-in alpha-particle detector. Results of measurements with an anti-personnel landmine imitator are presented.

  10. Final report on Seed Money Project 3210-0346: Feasibility study for californium cold neutron source

    SciTech Connect

    Alsmiller, R.G.; Henderson, D.L.; Montgomery, B.H.

    1988-10-01

    A study has been completed of the feasibility and cost of building a cold neutron source that is not dependent on a reactor or accelerator. The neutron source is provided by up to ten /sup 252/Cf capsules, each containing 50 mg of the isotope produced in the High-Flux Isotope Reactor. The neutrons are moderated by heavy water and liquid deuterium to attain, in practice, a peak cold neutron flux of 1.4 /times/ 10/sup 13/ neutrons/(m/sup 2//center dot/s). The new facility would be located in the TURF Californium Facility. The estimated cost of the Californium Cold Neutron Source Facility is $6.5 million. 6 figs., 1 tab.

  11. GEC-ESTRO recommendations for brachytherapy for head and neck squamous cell carcinomas.

    PubMed

    Mazeron, Jean-Jacques; Ardiet, Jean-Michel; Haie-Méder, Christine; Kovács, György; Levendag, Peter; Peiffert, Didier; Polo, Alfredo; Rovirosa, Angels; Strnad, Vratislav

    2009-05-01

    Both primary and recurrent squamous cell carcinoma of the head and neck are classic indications for brachytherapy. A high rate of local tumor control at the cost of limited morbidity can be achieved with brachytherapy through good patient selection, meticulous source implantation and careful treatment planning. However, no randomized trials have been performed, and there is scant evidence in the literature especially regarding practical clinical recommendations for brachytherapy for head and neck subsites. The Head and Neck Working Group of the European Brachytherapy Group (Groupe Européen de Curiethérapie-European Society for Therapeutic Radiology and Oncology (GEC-ESTRO) therefore decided to formulate the present consensus recommendations for low-dose rate, pulsed-dose rate and high-dose rate brachytherapy. The use of brachytherapy in combination with external beam radiotherapy and/or surgery is also covered as well as the use of brachytherapy in previously irradiated patients. Given the paucity of evidence in the literature, these recommendations are mainly based on clinical experience accumulated by the members of the working group over several decades and the respective publications. The recommendations cover in a general part (1) patient selection, the pre-treatment work up and patient care, (2) treatment strategy, (3) target definition, (4) implant techniques, (5) dose and dose rate prescription, (6) treatment planning and reporting, (7) treatment monitoring (8) catheter removal, and (9) post-treatment patient care and follow-up. The recommendations are then specified for the classical brachytherapy tumor sites following an analogue more focussed structure (patient selection, implant technique, target definition, dose and dose rate prescription, results): lip, oral mucosa, mobile tongue, floor of mouth, oropharynx, nasopharynx, paranasal sinuses.

  12. Intra-Operative Dosimetry in Prostate Brachytherapy

    DTIC Science & Technology

    2006-11-01

    phantoms and pre-recorded patient data. 15. SUBJECT TERMS Prostate Brachytherapy, X-ray reconstruction, C-arm, TRUS 16. SECURITY CLASSIFICATION...prostate brachytherapy system that provides dosimetry analysis (Aim-2), and evaluate the system experimentally on phantoms and pre-recorded patient data...prostate brachytherapy system to enable dosimetry calculation Aim-3: Experimental Validation: Evaluate the performance of the RUF system on phantoms and

  13. Image-based brachytherapy for cervical cancer

    PubMed Central

    Vargo, John A; Beriwal, Sushil

    2014-01-01

    Cervical cancer is the third most common cancer in women worldwide; definitive radiation therapy and concurrent chemotherapy is the accepted standard of care for patients with node positive or locally advanced tumors > 4 cm. Brachytherapy is an important part of definitive radiotherapy shown to improve overall survival. While results for two-dimensional X-ray based brachytherapy have been good in terms of local control especially for early stage disease, unexplained toxicities and treatment failures remain. Improvements in brachytherapy planning have more recently paved the way for three-dimensional image-based brachytherapy with volumetric optimization which increases tumor control, reduces toxicity, and helps predict outcomes. Advantages of image-based brachytherapy include: improved tumor coverage (especially for large volume disease), decreased dose to critical organs (especially for small cervix), confirmation of applicator placement, and accounting for sigmoid colon dose. A number of modalities for image-based brachytherapy have emerged including: magnetic resonance imaging (MRI), computed tomography (CT), CT-MRI hybrid, and ultrasound with respective benefits and outcomes data. For practical application of image-based brachytherapy the Groupe Europeen de Curietherapie-European Society for Therapeutic Radiology and Oncology Working Group and American Brachytherapy Society working group guideline serve as invaluable tools, additionally here-in we outline our institutional clinical integration of these guidelines. While the body of literature supporting image-based brachytherapy continues to evolve a number of uncertainties and challenges remain including: applicator reconstruction, increasing resource/cost demands, mobile four-dimensional targets and organs-at-risk, and accurate contouring of “grey zones” to avoid marginal miss. Ongoing studies, including the prospective EMBRACE (an international study of MRI-guided brachytherapy in locally advanced

  14. Image-based brachytherapy for cervical cancer.

    PubMed

    Vargo, John A; Beriwal, Sushil

    2014-12-10

    Cervical cancer is the third most common cancer in women worldwide; definitive radiation therapy and concurrent chemotherapy is the accepted standard of care for patients with node positive or locally advanced tumors > 4 cm. Brachytherapy is an important part of definitive radiotherapy shown to improve overall survival. While results for two-dimensional X-ray based brachytherapy have been good in terms of local control especially for early stage disease, unexplained toxicities and treatment failures remain. Improvements in brachytherapy planning have more recently paved the way for three-dimensional image-based brachytherapy with volumetric optimization which increases tumor control, reduces toxicity, and helps predict outcomes. Advantages of image-based brachytherapy include: improved tumor coverage (especially for large volume disease), decreased dose to critical organs (especially for small cervix), confirmation of applicator placement, and accounting for sigmoid colon dose. A number of modalities for image-based brachytherapy have emerged including: magnetic resonance imaging (MRI), computed tomography (CT), CT-MRI hybrid, and ultrasound with respective benefits and outcomes data. For practical application of image-based brachytherapy the Groupe Europeen de Curietherapie-European Society for Therapeutic Radiology and Oncology Working Group and American Brachytherapy Society working group guideline serve as invaluable tools, additionally here-in we outline our institutional clinical integration of these guidelines. While the body of literature supporting image-based brachytherapy continues to evolve a number of uncertainties and challenges remain including: applicator reconstruction, increasing resource/cost demands, mobile four-dimensional targets and organs-at-risk, and accurate contouring of "grey zones" to avoid marginal miss. Ongoing studies, including the prospective EMBRACE (an international study of MRI-guided brachytherapy in locally advanced cervical

  15. Safety and outcome of external beam radiation and neutron brachytherapy in elderly patients with esophageal squamous cell cancer

    PubMed Central

    Li, Tao; Zhang, Wei; Lv, Jiahua; Liu, Huiming; Jia, Xitang; Liu, Bo

    2017-01-01

    Purpose The aim of this study was to retrospectively observe and analyze the long-term treatment outcomes of 191 elderly patients with esophageal squamous cell cancer (ESCC) who were treated with californium-252 (252Cf) neutron brachytherapy (NBT) in combination with external beam radiotherapy (EBRT). Material and methods From January 2002 to November 2012, 191 patients with ESCC underwent NBT in combination with EBRT. The total radiation dose to the reference point via NBT was 8-25 Gy-eq in two to five fractions with one fraction per week. The total dose via EBRT was 50-60 Gy, which was delivered over a period of 5 to 6 weeks with normal fractionation. Results The median survival time for the 191 patients was 23.6 months, and the 5-year rates for overall survival (OS) and local-regional control (LRC) were 28.7% and 54.2%, respectively. The patients’ age was a factor that was significantly associated with OS (p = 0.010), according to univariate analysis. The 5-year OS (LRC) was 37.3% (58.6%) for patients aged 70-74 years and 14.5% (47.9%) for patients aged > 74 years (p = 0.010 and p = 0.038). In multivariate analysis, age and clinical N stage were associated with OS and LRC (p = 0.011 [0.041] and p = 0.005 [0.005]). From the time of treatment completion to the development of local-regional recurrence or death, 5 (2.6%) patients experienced fistula and 15 (7.9%) experienced massive bleeding. The incidence of severe late complications was related to older age (p = 0.027), higher NBT dose/fraction (20-25 Gy/5 fractions), and higher total dose (> 66 Gy). Conclusions The clinical data indicated that NBT in combination with EBRT produced favorable local control and long-term survival rates for elderly patients with ESCC, and that the side effects were tolerable. Patient’s age, clinical stage N status, and radiation dose could be used to select the appropriate treatment for elderly patients. PMID:28344602

  16. An overview of interstitial brachytherapy and hyperthermia

    SciTech Connect

    Brandt, B.B.; Harney, J.

    1989-11-01

    Interstitial thermoradiotherapy, an experimental cancer treatment that combines interstitial radiation implants (brachytherapy) and interstitial hyperthermia, is in the early stages of investigation. In accordance with the procedure used in a current national trial protocol, a 60-minute hyperthermia treatment is administered after catheters are placed into the tumor area while the patient is under general anesthesia. This is immediately followed by loading of radioactive Iridium-192 seeds into the catheters for a defined period of time. Once the prescribed radiation dose is delivered, the radioactive sources are removed and a second, 60-minute hyperthermia treatment is administered. Clinical trials with hyperthermia in combination with radiation have increased in recent years. Nurses caring for these patients need to become more knowledgeable about this investigational therapy. This paper provides an overview of the biologic rationale for this therapy, as well as a description of the delivery method and clinical application. Specific related nursing interventions are defined in a nursing protocol.23 references.

  17. SU-E-T-462: Impact of the Radiochromic Film Energy Response On Dose Measurements of Low Energy Electronic Brachytherapy Sources

    SciTech Connect

    Liang, L; Bekerat, H; Tomic, N; DeBlois, F; Devic, S; Morcos, M; Popovic, M; Watson, P; Seuntjens, J

    2015-06-15

    Purpose: We investigated the effect of the EBT3 GafChromicTM film model absorbed dose energy response when used for percent depth dose (PDD) measurements in low-energy photon beams. Methods: We measured PDDs in water from a Xoft 50 kVp source using EBT3 film, and compared them to PDD measurements acquired with a PTW-TN34013 parallel-plate ionization chamber. For the x-ray source, we simulated spectra using the EGSnrc (BEAMnrc) Monte Carlo code, and calculated Half Value Layer (HVL) at different distances from the source in water. Pieces of EBT3 film were irradiated in air and calibration curves were created in terms of air-kerma in air ((Kair)air) for different beam qualities. Pieces of EBT3 film were positioned at distances of 2–6 cm from the Xoft source in a water phantom using a custom-made holder, and irradiated at the same time. As scatter is incorporated in the measured film signal in water, measured (Kair)wat was subsequently converted into absorbed dose to water by the ratio of mass energy absorption coefficients following the AAPM TG-61 dosimetry protocol. Results: Our results show that film calibration curves obtained at beam qualities near the effective energy of the Xoft 50 kVp source in water lead to variation in absorbed dose energy dependence of the response of around 3%. However, if the calibration curve was established at MV beam quality, the error in absorbed dose could be as large as 15%. We observed agreement within 1% between PDD measurements using EBT3 film model (using a calibration curve obtained at 80 kVp, HVL=2.18 mm Al, Eeff=29.5 keV) and the parallel-plate ionization chamber. Conclusion: Accurate dose measurements using radiochromic films at low photon energies require that the radiochromic film dosimetry system be calibrated at corresponding low energies, as large absorbed dose errors are expected for calibrations performed at MV beam qualities.

  18. 2nd FY Khoo Memorial Lecture. Brachytherapy--one man's meat, a personal journey in radiation oncology.

    PubMed

    Khor, T H

    2005-06-01

    The Lecture covers the author's personal experience in brachytherapy in radiation oncology, beginning with low-dose rate (LDR) treatments using 226Ra "hot" sources, in the 1960s and early 1970s, through manual afterloading for treating gynaecological cancers with the same sources in the 1970s and 1980s, to high-dose rate (HDR) remote afterloading on a microSelectron HDR machine, from 1989 on. This progression in brachytherapy is discussed, and specific applications to various tumour sites are presented, including long-term results of a personal series of 106 patients with cancer of the uterine cervix, treated with radiotherapy incorporating HDR brachytherapy. The Lecture rounds off with an unusual case of equine sarcoid, treated with a postoperative implant, using 192Ir LDR brachytherapy.

  19. High-dose-rate and pulsed-dose-rate brachytherapy for oral cavity cancer and oropharynx cancer

    PubMed Central

    2010-01-01

    Interstitial brachytherapy represents the treatment of choice for small tumours, regionally localized in the oral cavity and the oropharynx. In the technical setting, continuous low-dose-rate (LDR) brachytherapy represented for many years the gold standard for administering radiation in head and neck brachytherapy. Large series of head and neck cancer patients treated with LDR brachytherapy have been reported, constituting an invaluable source of clinical data and the gold standard to compare results of new techniques. Nowadays, LDR brachytherapy competes with fractionated HDR and hyperfractionated PDR. In the paper an overview of the different time-dose-fraction alternatives to LDR brachytherapy in head and neck cancer is presented, as well as the radiobiological basis of different dose-rate schedules, the linear-quadratic model, interconversion of fractionation schedules and the repair half-times for early- and late-responding tissues. In subsequent sections essentials of switching from LDR to HDR and from LDR to PDR are discussed. Selected clinical results using HDR and PDR brachytherapy in oral cavity and oropharynx cancer are presented. PMID:28050175

  20. Metal artefacts in MRI-guided brachytherapy of cervical cancer

    PubMed Central

    Owrangi, Amir; Ravi, Ananth; Song, William Y.

    2016-01-01

    The importance of assessing the metal-induced artefacts in magnetic resonance imaging (MRI)-guided brachytherapy is growing along with the increasing interest of integrating MRI into the treatment procedure of cervical cancer. Examples of metal objects in use include intracavitary cervical applicators and interstitial needles. The induced artefacts increase the uncertainties in the clinical workflow and can be a potential obstacle for the accurate delivery of the treatment. Overcoming this problem necessitates a good understanding of its originating sources. Several efforts are recorded in the literature to quantify the extent of such artefacts, in phantoms and in clinical practice. Here, we elaborate on the origin of metal-induced artefacts in the light of brachytherapy applications, while summarizing recent efforts that have been made to assess and overcome the induced distortions. PMID:27648092

  1. [Basic principles and results of brachytherapy in gynecological oncology].

    PubMed

    Kanaev, S V; Turkevich, V G; Baranov, S B; Savel'eva, V V

    2014-01-01

    The fundamental basics of contact radiation therapy (brachytherapy) for gynecological cancer are presented. During brachytherapy the principles of conformal radiotherapy should be implemented, the aim of which is to sum the maximum possible dose of radiation to the tumor and decrease the dose load in adjacent organs and tissues, which allows reducing the frequency of radiation damage at treatment of primary tumors. It is really feasible only on modern technological level, thanks to precision topometry preparation, optimal computer dosimetrical and radiobiological planning of each session and radiotherapy in general. Successful local and long-term results of the contact radiation therapy for cancer of cervix and endometrium are due to optimal anatomical and topometrical ratio of the tumor localization, radioactive sources, and also physical and radiobiological laws of distribution and effects of ionizing radiation, the dose load accounting rules.

  2. Paddle-based rotating-shield brachytherapy

    PubMed Central

    Liu, Yunlong; Flynn, Ryan T.; Kim, Yusung; Dadkhah, Hossein; Bhatia, Sudershan K.; Buatti, John M.; Xu, Weiyu; Wu, Xiaodong

    2015-01-01

    Purpose: The authors present a novel paddle-based rotating-shield brachytherapy (P-RSBT) method, whose radiation-attenuating shields are formed with a multileaf collimator (MLC), consisting of retractable paddles, to achieve intensity modulation in high-dose-rate brachytherapy. Methods: Five cervical cancer patients using an intrauterine tandem applicator were considered to assess the potential benefit of the P-RSBT method. The P-RSBT source used was a 50 kV electronic brachytherapy source (Xoft Axxent™). The paddles can be retracted independently to form multiple emission windows around the source for radiation delivery. The MLC was assumed to be rotatable. P-RSBT treatment plans were generated using the asymmetric dose–volume optimization with smoothness control method [Liu et al., Med. Phys. 41(11), 111709 (11pp.) (2014)] with a delivery time constraint, different paddle sizes, and different rotation strides. The number of treatment fractions (fx) was assumed to be five. As brachytherapy is delivered as a boost for cervical cancer, the dose distribution for each case includes the dose from external beam radiotherapy as well, which is 45 Gy in 25 fx. The high-risk clinical target volume (HR-CTV) doses were escalated until the minimum dose to the hottest 2 cm3 (D2cm3) of either the rectum, sigmoid colon, or bladder reached their tolerance doses of 75, 75, and 90 Gy3, respectively, expressed as equivalent doses in 2 Gy fractions (EQD2 with α/β = 3 Gy). Results: P-RSBT outperformed the two other RSBT delivery techniques, single-shield RSBT (S-RSBT) and dynamic-shield RSBT (D-RSBT), with a properly selected paddle size. If the paddle size was angled at 60°, the average D90 increases for the delivery plans by P-RSBT on the five cases, compared to S-RSBT, were 2.2, 8.3, 12.6, 11.9, and 9.1 Gy10, respectively, with delivery times of 10, 15, 20, 25, and 30 min/fx. The increases in HR-CTV D90, compared to D-RSBT, were 16.6, 12.9, 7.2, 3.7, and 1.7 Gy10

  3. Harmony search optimization for HDR prostate brachytherapy

    NASA Astrophysics Data System (ADS)

    Panchal, Aditya

    In high dose-rate (HDR) prostate brachytherapy, multiple catheters are inserted interstitially into the target volume. The process of treating the prostate involves calculating and determining the best dose distribution to the target and organs-at-risk by means of optimizing the time that the radioactive source dwells at specified positions within the catheters. It is the goal of this work to investigate the use of a new optimization algorithm, known as Harmony Search, in order to optimize dwell times for HDR prostate brachytherapy. The new algorithm was tested on 9 different patients and also compared with the genetic algorithm. Simulations were performed to determine the optimal value of the Harmony Search parameters. Finally, multithreading of the simulation was examined to determine potential benefits. First, a simulation environment was created using the Python programming language and the wxPython graphical interface toolkit, which was necessary to run repeated optimizations. DICOM RT data from Varian BrachyVision was parsed and used to obtain patient anatomy and HDR catheter information. Once the structures were indexed, the volume of each structure was determined and compared to the original volume calculated in BrachyVision for validation. Dose was calculated using the AAPM TG-43 point source model of the GammaMed 192Ir HDR source and was validated against Varian BrachyVision. A DVH-based objective function was created and used for the optimization simulation. Harmony Search and the genetic algorithm were implemented as optimization algorithms for the simulation and were compared against each other. The optimal values for Harmony Search parameters (Harmony Memory Size [HMS], Harmony Memory Considering Rate [HMCR], and Pitch Adjusting Rate [PAR]) were also determined. Lastly, the simulation was modified to use multiple threads of execution in order to achieve faster computational times. Experimental results show that the volume calculation that was

  4. Paddle-based rotating-shield brachytherapy

    SciTech Connect

    Liu, Yunlong; Xu, Weiyu; Flynn, Ryan T.; Kim, Yusung; Bhatia, Sudershan K.; Buatti, John M.; Dadkhah, Hossein; Wu, Xiaodong

    2015-10-15

    Purpose: The authors present a novel paddle-based rotating-shield brachytherapy (P-RSBT) method, whose radiation-attenuating shields are formed with a multileaf collimator (MLC), consisting of retractable paddles, to achieve intensity modulation in high-dose-rate brachytherapy. Methods: Five cervical cancer patients using an intrauterine tandem applicator were considered to assess the potential benefit of the P-RSBT method. The P-RSBT source used was a 50 kV electronic brachytherapy source (Xoft Axxent™). The paddles can be retracted independently to form multiple emission windows around the source for radiation delivery. The MLC was assumed to be rotatable. P-RSBT treatment plans were generated using the asymmetric dose–volume optimization with smoothness control method [Liu et al., Med. Phys. 41(11), 111709 (11pp.) (2014)] with a delivery time constraint, different paddle sizes, and different rotation strides. The number of treatment fractions (fx) was assumed to be five. As brachytherapy is delivered as a boost for cervical cancer, the dose distribution for each case includes the dose from external beam radiotherapy as well, which is 45 Gy in 25 fx. The high-risk clinical target volume (HR-CTV) doses were escalated until the minimum dose to the hottest 2 cm{sup 3} (D{sub 2cm{sup 3}}) of either the rectum, sigmoid colon, or bladder reached their tolerance doses of 75, 75, and 90 Gy{sub 3}, respectively, expressed as equivalent doses in 2 Gy fractions (EQD2 with α/β = 3 Gy). Results: P-RSBT outperformed the two other RSBT delivery techniques, single-shield RSBT (S-RSBT) and dynamic-shield RSBT (D-RSBT), with a properly selected paddle size. If the paddle size was angled at 60°, the average D{sub 90} increases for the delivery plans by P-RSBT on the five cases, compared to S-RSBT, were 2.2, 8.3, 12.6, 11.9, and 9.1 Gy{sub 10}, respectively, with delivery times of 10, 15, 20, 25, and 30 min/fx. The increases in HR-CTV D{sub 90}, compared to D-RSBT, were 16

  5. Development and Evaluation of Rhenium-188-labeled Radioactive Stents for Restenosis Therapy and Development of Strategies for Radiolabeling Brachytherapy Sources with Palladium-103 CRADA FINAL REPORT

    SciTech Connect

    Knapp, F. F.

    1998-06-01

    This project involved collaboration between InnerDyne, Inc., and radiopharmaceutical research programs at ORNL and Brookhaven National Laboratory (BNL) which explored new strategies for the development and animal testing of radioactive rhenium-188-labeled implantable stent sources for the treatment of coronary restenosis after angioplasty and the development of chemical species radiolabeled with the palladium-103 radioisotope for the treatment of cancer. Rhenium-l 88 was made available for these studies from radioactive decay of tungsten-188 produced in the ORNL High Flux Isotope Reactor (HFIR). Stent activation and coating technology was developed and provided by InnerDyne, Inc., and stent radiolabeling technology and animal studies were conducted by InnerDyne staff in conjunction with investigators at BNL. Collaborative studies in animals were supported at sites by InnerDyne, Inc. New chemical methods for attaching the palladium-103 radioisotope to bifunctional chelate technologies were developed by investigators at ORNL.

  6. Application of a diamond detector to brachytherapy dosimetry.

    PubMed

    Rustgi, S N

    1998-08-01

    The feasibility of using a diamond detector for the dosimetry of brachytherapy sources has been investigated. A high-activity 192Ir source was selected for this purpose. The dosimetric characteristics measured included the photon fluence anisotropy in air, transverse dose profiles in planes parallel to the plane containing the HDR source and isodose distributions. The 'in-air' anisotropy of the photon fluence relative to seed orientation was measured at 5 and 10 cm from the source centre and compared with TLD measurements. Transverse dose distributions in planes parallel to the plane containing the source long axis were measured in a water phantom and compared with calculations performed with a treatment planning system. Isodose distributions were also measured in several planes around the 192Ir source. Measurements on two sources indicate that the 'in-air' photon fluence anisotropy measured by the diamond detector and the TLDs is very similar. Dose profiles measured at several distances from the source are also found to be in good agreement with the calculated dose profiles and isodose distributions. Results of this feasibility study indicate that the diamond detector, with its excellent spatial resolution and nearly tissue equivalent and isotropic radiation response, is an appropriate detector for dose measurements around brachytherapy sources.

  7. Afterloading: The Technique That Rescued Brachytherapy

    SciTech Connect

    Aronowitz, Jesse N.

    2015-07-01

    Although brachytherapy had been established as a highly effective modality for the treatment of cancer, its application was threatened by mid-20th century due to appreciation of the radiation hazard to health care workers. This review examines how the introduction of afterloading eliminated exposure and ushered in a brachytherapy renaissance.

  8. Study of dose calculation on breast brachytherapy using prism TPS

    SciTech Connect

    Fendriani, Yoza; Haryanto, Freddy

    2015-09-30

    PRISM is one of non-commercial Treatment Planning System (TPS) and is developed at the University of Washington. In Indonesia, many cancer hospitals use expensive commercial TPS. This study aims to investigate Prism TPS which been applied to the dose distribution of brachytherapy by taking into account the effect of source position and inhomogeneities. The results will be applicable for clinical Treatment Planning System. Dose calculation has been implemented for water phantom and CT scan images of breast cancer using point source and line source. This study used point source and line source and divided into two cases. On the first case, Ir-192 seed source is located at the center of treatment volume. On the second case, the source position is gradually changed. The dose calculation of every case performed on a homogeneous and inhomogeneous phantom with dimension 20 × 20 × 20 cm{sup 3}. The inhomogeneous phantom has inhomogeneities volume 2 × 2 × 2 cm{sup 3}. The results of dose calculations using PRISM TPS were compared to literature data. From the calculation of PRISM TPS, dose rates show good agreement with Plato TPS and other study as published by Ramdhani. No deviations greater than ±4% for all case. Dose calculation in inhomogeneous and homogenous cases show similar result. This results indicate that Prism TPS is good in dose calculation of brachytherapy but not sensitive for inhomogeneities. Thus, the dose calculation parameters developed in this study were found to be applicable for clinical treatment planning of brachytherapy.

  9. Testicular shielding in penile brachytherapy

    PubMed Central

    Bindal, Arpita; Tambe, Chandrashekhar M.; Ghadi, Yogesh; Murthy, Vedang; Shrivastava, Shyam Kishore

    2015-01-01

    Purpose Penile cancer, although rare, is one of the common genitourinary cancers in India affecting mostly aged uncircumcised males. For patients presenting with small superficial lesions < 3 cm restricted to glans, surgery, radical external radiation or brachytherapy may be offered, the latter being preferred as it allows organ and function preservation. In patients receiving brachytherapy, testicular morbidity is not commonly addressed. With an aim to minimize and document the doses to testis after adequate shielding during radical interstitial brachytherapy for penile cancers, we undertook this study in 2 patients undergoing brachytherapy and forms the basis of this report. Material and methods Two patients with early stage penile cancer limited to the glans were treated with radical high-dose-rate (HDR) brachytherapy using interstitial implant. A total of 7-8 tubes were implanted in two planes, parallel to the penile shaft. A total dose of 44-48 Gy (55-60 Gy EQD2 doses with α/β = 10) was delivered in 11-12 fractions of 4 Gy each delivered twice daily. Lead sheets adding to 11 mm (4-5 half value layer) were interposed between the penile shaft and scrotum. The testicular dose was measured using thermoluminescent dosimeters. For each patient, dosimetry was done for 3 fractions and mean calculated. Results The cumulative testicular dose to left and right testis was 31.68 cGy and 42.79 cGy for patient A, and 21.96 cGy and 23.28 cGy for patient B. For the same patients, the mean cumulative dose measured at the posterior aspect of penile shaft was 722.15 cGy and 807.72 cGy, amounting to 16.4% and 16.8% of the prescribed dose. Hence, the application of lead shield 11 mm thick reduced testicular dose from 722-808 cGy to 21.96-42.57 cGy, an “absolute reduction” of 95.99 ± 1.5%. Conclusions With the use of a simple lead shield as described, we were able to effectively reduce testicular dose from “spermicidal” range to “oligospermic” range with possible

  10. /sup 252/Cf-based direct uranium logging system. Final report

    SciTech Connect

    Steinman, D.K.; Stokes, J.; Adams, J.A.; Pepper, C.S.; Bryan, D.E.; Smith, W.J.; Atwell, T.; Friesenhahn, S.; Dittrich, T.R.; Houston, D.H.

    1980-01-01

    Volume II comprises three appendices: reduced logging data from the field trips; samples of other output formats utilized by the data management software; and cost/benefit summaries for the field trips in 1978.

  11. Utilization of /sup 252/Cf-/sup 235/U fueled subcritical multiplier for neutron activation analysis

    SciTech Connect

    Wogman, N.A.; Lepel, E.A.

    1983-10-05

    Neutron activation analysis is normally performed at thermal fluxes of 10/sup 13/ n/cm/sup 2//s irradiating samples of a few milligrams. When a ten thousand-fold larger sample is available, neutron activation can be performed at proportionately lower fluxes. Thus, a 10 g sample irradiated at 10/sup 9/ n/cm/sup 2//s contains as much activity as a 1 mg sample irradiated at 10/sup 13/ n/cm/sup 2//s. This paper describes the utilization of a subcritical multiplier operating at about 10/sup 9/ n/cm/sup 2//s for the activation of a broad range of sample types and elemental concentrations.

  12. Analusis by 252Cf plasma desorption mass spectrometry of Bordetella pertussis endotoxin after nitrous deamination

    NASA Astrophysics Data System (ADS)

    Deprun, C.; Karibian, D.; Caroff, M.

    1993-07-01

    Endotoxic lipopolysaccharides (LPSs) are the major components of Gram-negative bacterial outer membrane. Like many amphipathic molecules, they pose problems of heterogeneity, purity, solubility, and aggregation. Nevertheless, PDMS has recently have been applied to unmodified endotoxins composed of LPS having uip to five sugar units in their saccharide chain. The B. Pertussis LPSs, most of which have a dodecasaccharide domain, ahve been analysed by classical methods and the masses of the separate lipid and saccharide domains determined after rupture of the bond linking them. However, the acid treatment employed for these and most chemical analyses can also modify structures in the vicinity of the bond. In order to investigate this biologically-important region, the endotoxin was treated to nitrous deamination, which shortens the saccharide chain to five sugars, but preserves the acid-labile region of the LPS. The PDM spectrum of this derivative, which required new conditions for its desorption, confirmed the structure analysis and demonstrated the presence of at least four molecular species.

  13. Source storage and transfer cask: Users Guide

    SciTech Connect

    Eccleston, G.W.; Speir, L.G.; Garcia, D.C.

    1985-04-01

    The storage and shield cask for the dual californium source is designed to shield and transport up to 3.7 mg (2 Ci) of /sup 252/Cf. the cask meets Department of Transportation (DOT) license requirements for Type A materials (DOT-7A). The cask is designed to transfer sources to and from the Flourinel and Fuel Storage (FAST) facility delayed-neutron interrogator. Californium sources placed in the cask must be encapsulated in the SR-CF-100 package and attached to Teleflex cables. The cask contains two source locations. Each location contains a gear box that allows a Teleflex cable to be remotely moved by a hand crank into and out of the cask. This transfer procedure permits sources to be easily removed and inserted into the delayed-neutron interrogator and reduces personnel radiation exposure during transfer. The radiation dose rate with the maximum allowable quantity of californium (3.7 mg) in the cask is 30 mR/h at the surface and less than 2 mR/h 1 m from the cask surface. This manual contains information about the cask, californium sources, describes the method to ship the cask, and how to insert and remove sources from the cask. 28 figs.

  14. Matlab Tools: An Alternative to Planning Systems in Brachytherapy Treatments

    SciTech Connect

    Herrera, Higmar

    2006-09-08

    This work proposes the use of the Matlab environment to obtain the treatment dose based on the reported data by Krishnaswamy and Liu et al. The comparison with reported measurements is showed for the Amersham source model. For the 3M source model, measurements with TLDs and a Monte Carlo simulation are compared to the data obtained by Matlab. The difference for the Amersham model is well under the 15% recommended by the IAEA and for the 3M model, although the difference is greater, the results are consistent. The good agreement to the reported data allows the Matlab calculations to be used in daily brachytherapy treatments.

  15. Technical Note: Contrast solution density and cross section errors in inhomogeneity-corrected dose calculation for breast balloon brachytherapy

    SciTech Connect

    Kim, Leonard H.; Zhang Miao; Howell, Roger W.; Yue, Ning J.; Khan, Atif J.

    2013-01-15

    Purpose: Recent recommendations by the American Association of Physicists in Medicine Task Group 186 emphasize the importance of understanding material properties and their effect on inhomogeneity-corrected dose calculation for brachytherapy. Radiographic contrast is normally injected into breast brachytherapy balloons. In this study, the authors independently estimate properties of contrast solution that were expected to be incorrectly specified in a commercial brachytherapy dose calculation algorithm. Methods: The mass density and atomic weight fractions of a clinical formulation of radiographic contrast solution were determined using manufacturers' data. The mass density was verified through measurement and compared with the density obtained by the treatment planning system's CT calibration. The atomic weight fractions were used to determine the photon interaction cross section of the contrast solution for a commercial high-dose-rate (HDR) brachytherapy source and compared with that of muscle. Results: The density of contrast solution was 10% less than that obtained from the CT calibration. The cross section of the contrast solution for the HDR source was 1.2% greater than that of muscle. Both errors could be addressed by overriding the density of the contrast solution in the treatment planning system. Conclusions: The authors estimate the error in mass density and cross section parameters used by a commercial brachytherapy dose calculation algorithm for radiographic contrast used in a clinical breast brachytherapy practice. This approach is adaptable to other clinics seeking to evaluate dose calculation errors and determine appropriate density override values if desired.

  16. MO-D-BRD-03: Radiobiology and Commissioning of Electronic Brachytherapy for IORT

    SciTech Connect

    Zhang, J.

    2015-06-15

    Electronic brachytherapy (eBT) has seen an insurgence of manufacturers entering the US market for use in radiation therapy. In addition to the established interstitial, intraluminary, and intracavitary applications of eBT, many centers are now using eBT to treat skin lesions. It is important for medical physicists working with electronic brachytherapy sources to understand the basic physics principles of the sources themselves as well as the variety of applications for which they are being used. The calibration of the sources is different from vendor to vendor and the traceability of calibrations has evolved as new sources came to market. In 2014, a new air-kerma based standard was introduced by the National Institute of Standards and Technology (NIST) to measure the output of an eBT source. Eventually commercial treatment planning systems should accommodate this new standard and provide NIST traceability to the end user. The calibration and commissioning of an eBT system is unique to its application and typically entails a list of procedural recommendations by the manufacturer. Commissioning measurements are performed using a variety of methods, some of which are modifications of existing AAPM Task Group protocols. A medical physicist should be familiar with the different AAPM Task Group recommendations for applicability to eBT and how to properly adapt them to their needs. In addition to the physical characteristics of an eBT source, the photon energy is substantially lower than from HDR Ir-192 sources. Consequently, tissue-specific dosimetry and radiobiological considerations are necessary when comparing these brachytherapy modalities and when making clinical decisions as a radiation therapy team. In this session, the physical characteristics and calibration methodologies of eBt sources will be presented as well as radiobiology considerations and other important clinical considerations. Learning Objectives: To understand the basic principles of electronic

  17. MO-D-BRD-02: Radiological Physics and Surface Lesion Treatments with Electronic Brachytherapy

    SciTech Connect

    Fulkerson, R.

    2015-06-15

    Electronic brachytherapy (eBT) has seen an insurgence of manufacturers entering the US market for use in radiation therapy. In addition to the established interstitial, intraluminary, and intracavitary applications of eBT, many centers are now using eBT to treat skin lesions. It is important for medical physicists working with electronic brachytherapy sources to understand the basic physics principles of the sources themselves as well as the variety of applications for which they are being used. The calibration of the sources is different from vendor to vendor and the traceability of calibrations has evolved as new sources came to market. In 2014, a new air-kerma based standard was introduced by the National Institute of Standards and Technology (NIST) to measure the output of an eBT source. Eventually commercial treatment planning systems should accommodate this new standard and provide NIST traceability to the end user. The calibration and commissioning of an eBT system is unique to its application and typically entails a list of procedural recommendations by the manufacturer. Commissioning measurements are performed using a variety of methods, some of which are modifications of existing AAPM Task Group protocols. A medical physicist should be familiar with the different AAPM Task Group recommendations for applicability to eBT and how to properly adapt them to their needs. In addition to the physical characteristics of an eBT source, the photon energy is substantially lower than from HDR Ir-192 sources. Consequently, tissue-specific dosimetry and radiobiological considerations are necessary when comparing these brachytherapy modalities and when making clinical decisions as a radiation therapy team. In this session, the physical characteristics and calibration methodologies of eBt sources will be presented as well as radiobiology considerations and other important clinical considerations. Learning Objectives: To understand the basic principles of electronic

  18. MO-D-BRD-04: NIST Air-Kerma Standard for Electronic Brachytherapy Calibrations

    SciTech Connect

    Mitch, M.

    2015-06-15

    Electronic brachytherapy (eBT) has seen an insurgence of manufacturers entering the US market for use in radiation therapy. In addition to the established interstitial, intraluminary, and intracavitary applications of eBT, many centers are now using eBT to treat skin lesions. It is important for medical physicists working with electronic brachytherapy sources to understand the basic physics principles of the sources themselves as well as the variety of applications for which they are being used. The calibration of the sources is different from vendor to vendor and the traceability of calibrations has evolved as new sources came to market. In 2014, a new air-kerma based standard was introduced by the National Institute of Standards and Technology (NIST) to measure the output of an eBT source. Eventually commercial treatment planning systems should accommodate this new standard and provide NIST traceability to the end user. The calibration and commissioning of an eBT system is unique to its application and typically entails a list of procedural recommendations by the manufacturer. Commissioning measurements are performed using a variety of methods, some of which are modifications of existing AAPM Task Group protocols. A medical physicist should be familiar with the different AAPM Task Group recommendations for applicability to eBT and how to properly adapt them to their needs. In addition to the physical characteristics of an eBT source, the photon energy is substantially lower than from HDR Ir-192 sources. Consequently, tissue-specific dosimetry and radiobiological considerations are necessary when comparing these brachytherapy modalities and when making clinical decisions as a radiation therapy team. In this session, the physical characteristics and calibration methodologies of eBt sources will be presented as well as radiobiology considerations and other important clinical considerations. Learning Objectives: To understand the basic principles of electronic

  19. MO-D-BRD-01: Clinical Implementation of An Electronic Brachytherapy Program for the Skin

    SciTech Connect

    Ouhib, Z.

    2015-06-15

    Electronic brachytherapy (eBT) has seen an insurgence of manufacturers entering the US market for use in radiation therapy. In addition to the established interstitial, intraluminary, and intracavitary applications of eBT, many centers are now using eBT to treat skin lesions. It is important for medical physicists working with electronic brachytherapy sources to understand the basic physics principles of the sources themselves as well as the variety of applications for which they are being used. The calibration of the sources is different from vendor to vendor and the traceability of calibrations has evolved as new sources came to market. In 2014, a new air-kerma based standard was introduced by the National Institute of Standards and Technology (NIST) to measure the output of an eBT source. Eventually commercial treatment planning systems should accommodate this new standard and provide NIST traceability to the end user. The calibration and commissioning of an eBT system is unique to its application and typically entails a list of procedural recommendations by the manufacturer. Commissioning measurements are performed using a variety of methods, some of which are modifications of existing AAPM Task Group protocols. A medical physicist should be familiar with the different AAPM Task Group recommendations for applicability to eBT and how to properly adapt them to their needs. In addition to the physical characteristics of an eBT source, the photon energy is substantially lower than from HDR Ir-192 sources. Consequently, tissue-specific dosimetry and radiobiological considerations are necessary when comparing these brachytherapy modalities and when making clinical decisions as a radiation therapy team. In this session, the physical characteristics and calibration methodologies of eBt sources will be presented as well as radiobiology considerations and other important clinical considerations. Learning Objectives: To understand the basic principles of electronic

  20. Long-Term Results of an RTOG Phase II Trial (00-19) of External-Beam Radiation Therapy Combined With Permanent Source Brachytherapy for Intermediate-Risk Clinically Localized Adenocarcinoma of the Prostate

    SciTech Connect

    Lawton, Colleen A.; Yan, Yan; Lee, W. Robert; Gillin, Michael; Firat, Selim; Baikadi, Madhava; Crook, Juanita; Kuettel, Michael; Morton, Gerald; Sandler, Howard

    2012-04-01

    Purpose: External-beam radiation therapy combined with low-doserate permanent brachytherapy are commonly used to treat men with localized prostate cancer. This Phase II trial was performed to document late gastrointestinal or genitourinary toxicity as well as biochemical control for this treatment in a multi-institutional cooperative group setting. This report defines the long-term results of this trial. Methods and Materials: All eligible patients received external-beam radiation (45 Gy in 25 fractions) followed 2-6 weeks later by a permanent iodine 125 implant of 108 Gy. Late toxicity was defined by the Radiation Therapy Oncology Group/European Organization for Research and Treatment of Cancer late radiation morbidity scoring scheme. Biochemical control was defined by the American Society for Therapeutic Radiology and Oncology (ASTRO) Consensus definition and the ASTRO Phoenix definition. Results: One hundred thirty-eight patients were enrolled from 20 institutions, and 131 were eligible. Median follow-up (living patients) was 8.2 years (range, 2.7-9.3 years). The 8-year estimate of late grade >3 genitourinary and/or gastrointestinal toxicity was 15%. The most common grade >3 toxicities were urinary frequency, dysuria, and proctitis. There were two grade 4 toxicities, both bladder necrosis, and no grade 5 toxicities. In addition, 42% of patients complained of grade 3 impotence (no erections) at 8 years. The 8-year estimate of biochemical failure was 18% and 21% by the Phoenix and ASTRO consensus definitions, respectively. Conclusion: Biochemical control for this treatment seems durable with 8 years of follow-up and is similar to high-dose external beam radiation alone or brachytherapy alone. Late toxicity in this multi-institutional trial is higher than reports from similar cohorts of patients treated with high-dose external-beam radiation alone or permanent low-doserate brachytherapy alone, perhaps suggesting further attention to strategies that limit doses to

  1. Dose rate in brachytherapy using after-loading machine: pulsed or high-dose rate?

    PubMed

    Hannoun-Lévi, J-M; Peiffert, D

    2014-10-01

    Since February 2014, it is no longer possible to use low-dose rate 192 iridium wires due to the end of industrial production of IRF1 and IRF2 sources. The Brachytherapy Group of the French society of radiation oncology (GC-SFRO) has recommended switching from iridium wires to after-loading machines. Two types of after-loading machines are currently available, based on the dose rate used: pulsed-dose rate or high-dose rate. In this article, we propose a comparative analysis between pulsed-dose rate and high-dose rate brachytherapy, based on biological, technological, organizational and financial considerations.

  2. Magnetic resonance imaging-guided brachytherapy for cervical cancer: initiating a program

    PubMed Central

    Prisciandaro, Joann I.; Soliman, Abraam; Ravi, Ananth; Song, William Y.

    2015-01-01

    Over the past decade, the application of magnetic resonance imaging (MRI) has increased, and there is growing evidence to suggest that improvements in accuracy of target delineation in MRI-guided brachytherapy may improve clinical outcomes in cervical cancer. To implement a high quality image guided brachytherapy program, a multidisciplinary team is required with appropriate expertise as well as an adequate patient load to ensure a sustainable program. It is imperative to know that the most important source of uncertainty in the treatment process is related to target delineation and therefore, the necessity of training and expertise as well as quality assurance should be emphasized. A short review of concepts and techniques that have been developed for implementation and/or improvement of workflow of a MRI-guided brachytherapy program are provided in this document, so that institutions can use and optimize some of them based on their resources to minimize their procedure times. PMID:26622249

  3. Impact of Radionuclide Physical Distribution on Brachytherapy Dosimetry Parameters

    SciTech Connect

    Rivard, M.J.; Kirk, B.L.; Leal, L.C.

    2005-01-15

    Radiation dose distributions of brachytherapy sources are generally characterized with the assumption that all internal components are equally radioactive. Autoradiographs and discussions with source manufacturers indicated this assumption of the radionuclide physical distribution may be invalid. Consequently, clinical dose distributions would be in error when not accounting for these internal variations. Many implants use brachytherapy sources with four {sup 125}I resin beads and two radiopaque markers used for imaging. Monte Carlo methods were used to determine dose contributions from each of the resin beads. These contributions were compared with those from an idealized source having a uniform physical distribution. Upon varying the {sup 125}I physical distribution while retaining the same overall radioactivity, the dose distribution along the transverse plane remained constant within 5% for r > 0.5 cm. For r {<=} 0.5 cm, relative positioning of the resin beads dominated the shielding effects, and dose distributions varied up to a factor of 3 at r = 0.05 cm. For points off the transverse plane, comparisons of the uniform and nonuniform dose distributions produced larger variations. Shielding effects within the capsule were virtually constant along the source long axis and demonstrated that anisotropy variations among the four resin beads were dependent on internal component positioning.

  4. Preliminary experience on the implementation of computed tomography (CT)-based image guided brachytherapy (IGBT) of cervical cancer using high-dose-rate (HDR) Cobalt-60 source in University of Malaya Medical Centre (UMMC)

    NASA Astrophysics Data System (ADS)

    Jamalludin, Z.; Min, U. N.; Ishak, W. Z. Wan; Malik, R. Abdul

    2016-03-01

    This study presents our preliminary work of the computed tomography (CT) image guided brachytherapy (IGBT) implementation on cervical cancer patients. We developed a protocol in which patients undergo two Magnetic Resonance Imaging (MRI) examinations; a) prior to external beam radiotherapy (EBRT) and b) prior to intra-cavitary brachytherapy for tumour identification and delineation during IGBT planning and dosimetry. For each fraction, patients were simulated using CT simulator and images were transferred to the treatment planning system. The HR-CTV, IR-CTV, bladder and rectum were delineated on CT-based contouring for cervical cancer. Plans were optimised to achieve HR-CTV and IR-CTV dose (D90) of total EQD2 80Gy and 60Gy respectively, while limiting the minimum dose to the most irradiated 2cm3 volume (D2cc) of bladder and rectum to total EQD2 90Gy and 75Gy respectively. Data from seven insertions were analysed by comparing the volume-based with traditional point- based doses. Based on our data, there were differences between volume and point doses of HR- CTV, bladder and rectum organs. As the number of patients having the CT-based IGBT increases from day to day in our centre, it is expected that the treatment and dosimetry accuracy will be improved with the implementation.

  5. Ruby-based inorganic scintillation detectors for 192Ir brachytherapy

    NASA Astrophysics Data System (ADS)

    Kertzscher, Gustavo; Beddar, Sam

    2016-11-01

    We tested the potential of ruby inorganic scintillation detectors (ISDs) for use in brachytherapy and investigated various unwanted luminescence properties that may compromise their accuracy. The ISDs were composed of a ruby crystal coupled to a poly(methyl methacrylate) fiber-optic cable and a charge-coupled device camera. The ISD also included a long-pass filter that was sandwiched between the ruby crystal and the fiber-optic cable. The long-pass filter prevented the Cerenkov and fluorescence background light (stem signal) induced in the fiber-optic cable from striking the ruby crystal, which generates unwanted photoluminescence rather than the desired radioluminescence. The relative contributions of the radioluminescence signal and the stem signal were quantified by exposing the ruby detectors to a high-dose-rate brachytherapy source. The photoluminescence signal was quantified by irradiating the fiber-optic cable with the detector volume shielded. Other experiments addressed time-dependent luminescence properties and compared the ISDs to commonly used organic scintillator detectors (BCF-12, BCF-60). When the brachytherapy source dwelled 0.5 cm away from the fiber-optic cable, the unwanted photoluminescence was reduced from  >5% to  <1% of the total signal as long as the ISD incorporated the long-pass filter. The stem signal was suppressed with a band-pass filter and was  <3% as long as the source distance from the scintillator was  <7 cm. Some ruby crystals exhibited time-dependent luminescence properties that altered the ruby signal by  >5% within 10 s from the onset of irradiation and after the source had retracted. The ruby-based ISDs generated signals of up to 20 times that of BCF-12-based detectors. The study presents solutions to unwanted luminescence properties of ruby-based ISDs for high-dose-rate brachytherapy. An optic filter should be sandwiched between the ruby crystal and the fiber-optic cable to suppress the

  6. [Endobronchial brachytherapy: state of the art in 2013].

    PubMed

    Derhem, N; Sabila, H; Mornex, F

    2013-04-01

    Endobronchial brachytherapy is an invasive technique, which allows localizing radioactive sources at the tumour contact. Therefore, high doses are administered to tumour while healthy tissues can be spared. Initially dedicated to a palliative setting, improvements helped reaching 60 to 88% symptoms alleviation and 30 to 100% of endoscopic macroscopic response. New diagnostic techniques and early diagnosis extended the indications to a curative intent: endoluminal primitive tumour, post radiation endobronchial recurrence, inoperable patients. CT-based dosimetry is a keypoint to optimize treatment quality and to minimize potential side effects, making this treatment a safe and efficient technique for specific indications.

  7. Patient-Specific Monte Carlo-Based Dose-Kernel Approach for Inverse Planning in Afterloading Brachytherapy

    SciTech Connect

    D'Amours, Michel; Pouliot, Jean; Dagnault, Anne; Verhaegen, Frank; Beaulieu, Luc

    2011-12-01

    Purpose: Brachytherapy planning software relies on the Task Group report 43 dosimetry formalism. This formalism, based on a water approximation, neglects various heterogeneous materials present during treatment. Various studies have suggested that these heterogeneities should be taken into account to improve the treatment quality. The present study sought to demonstrate the feasibility of incorporating Monte Carlo (MC) dosimetry within an inverse planning algorithm to improve the dose conformity and increase the treatment quality. Methods and Materials: The method was based on precalculated dose kernels in full patient geometries, representing the dose distribution of a brachytherapy source at a single dwell position using MC simulations and the Geant4 toolkit. These dose kernels are used by the inverse planning by simulated annealing tool to produce a fast MC-based plan. A test was performed for an interstitial brachytherapy breast treatment using two different high-dose-rate brachytherapy sources: the microSelectron iridium-192 source and the electronic brachytherapy source Axxent operating at 50 kVp. Results: A research version of the inverse planning by simulated annealing algorithm was combined with MC to provide a method to fully account for the heterogeneities in dose optimization, using the MC method. The effect of the water approximation was found to depend on photon energy, with greater dose attenuation for the lower energies of the Axxent source compared with iridium-192. For the latter, an underdosage of 5.1% for the dose received by 90% of the clinical target volume was found. Conclusion: A new method to optimize afterloading brachytherapy plans that uses MC dosimetric information was developed. Including computed tomography-based information in MC dosimetry in the inverse planning process was shown to take into account the full range of scatter and heterogeneity conditions. This led to significant dose differences compared with the Task Group report

  8. Brachytherapy next generation: robotic systems

    PubMed Central

    Popescu, Tiberiu; Kacsó, Alex Cristian; Pisla, Doina

    2015-01-01

    In a field dominated by external beam radiation therapy (EBRT), both the therapeutic and technical possibilities of brachytherapy (BT) are underrated, shadowed by protons and intensity modulated radiotherapy. Decreasing expertise and indications, as well as increasing lack of specific BT training for radiation therapy (RT) residents led to the real need of shortening its learning curve and making it more popular. Developing robotic BT devices can be a way to mitigate the above issues. There are many teams working at custom-made robotic BT platforms to perfect and overcome the limitations of the existing systems. This paper provides a picture of the current state-of-the-art in robotic assisted BT, as it also conveys the author's solution to the problem, a parallel robot that uses CT-guidance. PMID:26816510

  9. In vivo dosimetry in brachytherapy

    SciTech Connect

    Tanderup, Kari; Beddar, Sam; Andersen, Claus E.; Kertzscher, Gustavo; Cygler, Joanna E.

    2013-07-15

    In vivo dosimetry (IVD) has been used in brachytherapy (BT) for decades with a number of different detectors and measurement technologies. However, IVD in BT has been subject to certain difficulties and complexities, in particular due to challenges of the high-gradient BT dose distribution and the large range of dose and dose rate. Due to these challenges, the sensitivity and specificity toward error detection has been limited, and IVD has mainly been restricted to detection of gross errors. Given these factors, routine use of IVD is currently limited in many departments. Although the impact of potential errors may be detrimental since treatments are typically administered in large fractions and with high-gradient-dose-distributions, BT is usually delivered without independent verification of the treatment delivery. This Vision 20/20 paper encourages improvements within BT safety by developments of IVD into an effective method of independent treatment verification.

  10. Efficacy and toxicity of MDR versus HDR brachytherapy for primary vaginal cancer.

    PubMed

    Rutkowski, T; Białas, B; Rembielak, A; Fijałkowski, M; Nowakowski, K

    2002-01-01

    The retrospective analysis includes a group of 50 patients with primary, invasive vaginal cancer treated with brachytherapy in the period of 1982-1993. Over 80% cases were squamous cell carcinoma. There were 14 patients in stage I according to FIGO classification and 20%, 36%, and 16% of patients in stage II, III and IV, respectively. Twenty one patients (42%) received MDR brachytherapy using Cs137 source, the remaining 29 (58%) were treated with HDR using Co60 or Ir192 sources. Among 50 patients 31 (62%) received also external beam irradiation. An overall 5-year actuarial disease-free survival was 40%, and it was 78.6% (11/14), 40% (4/10), 27.8% (5/18), 0% (0/8) for stage I, II, III and IV, respectively. For MDR or HDR5-year disease-free survival was 38% and 41%, respectively. No influence of dose rate on survival has been found (p=0.7). Local failure occurred in 20 patients (40%). Recurrences appeared in 10 patients (20%). Late complications rate was 0% and 17% for MDR and HDR, respectively. Effectiveness of brachytherapy MDR and HDR was similar, whereas serious late complications developed more often after HDR brachytherapy.

  11. {sup 106}Ruthenium Brachytherapy for Retinoblastoma

    SciTech Connect

    Abouzeid, Hana; Moeckli, Raphael; Gaillard, Marie-Claire; Beck-Popovic, Maja; Pica, Alessia; Zografos, Leonidas; Balmer, Aubin; Pampallona, Sandro; Munier, Francis L.

    2008-07-01

    Purpose: To evaluate the efficacy of {sup 106}Ru plaque brachytherapy for the treatment of retinoblastoma. Methods and Materials: We reviewed a retrospective, noncomparative case series of 39 children with retinoblastoma treated with {sup 106}Ru plaques at the Jules-Gonin Eye Hospital between October 1992 and July 2006, with 12 months of follow-up. Results: A total of 63 tumors were treated with {sup 106}Ru brachytherapy in 41 eyes. The median patient age was 27 months. {sup 106}Ru brachytherapy was the first-line treatment for 3 tumors (4.8%), second-line treatment for 13 (20.6%), and salvage treatment for 47 tumors (74.6%) resistant to other treatment modalities. Overall tumor control was achieved in 73% at 1 year. Tumor recurrence at 12 months was observed in 2 (12.5%) of 16 tumors for which {sup 106}Ru brachytherapy was used as the first- or second-line treatment and in 15 (31.9%) of 47 tumors for which {sup 106}Ru brachytherapy was used as salvage treatment. Eye retention was achieved in 76% of cases (31 of 41 eyes). Univariate and multivariate analyses revealed no statistically significant risk factors for tumor recurrence. Radiation complications included retinal detachment in 7 (17.1%), proliferative retinopathy in 1 (2.4%), and subcapsular cataract in 4 (9.7%) of 41 eyes. Conclusion: {sup 106}Ru brachytherapy is an effective treatment for retinoblastoma, with few secondary complications. Local vitreous seeding can be successfully treated with {sup 106}Ru brachytherapy.

  12. Brachytherapy in the Treatment of Cholangiocarcinoma

    SciTech Connect

    Shinohara, Eric T.; Guo Mengye; Mitra, Nandita; Metz, James M.

    2010-11-01

    Purpose: To examine the role of brachytherapy in the treatment of cholangiocarcinomas in a relatively large group of patients. Methods and Materials: Using the Surveillance, Epidemiology and End Results database, a total of 193 patients with cholangiocarcinoma treated with brachytherapy were identified for the period 1988-2003. The primary analysis compared patients treated with brachytherapy (with or without external-beam radiation) with those who did not receive radiation. To try to account for confounding variables, propensity score and sensitivity analyses were used. Results: There was a significant difference between patients who received radiation (n = 193) and those who did not (n = 6859) with regard to surgery (p < 0.0001), race (p < 0.0001), stage (p < 0.0001), and year of diagnosis (p <0.0001). Median survival for patients treated with brachytherapy was 11 months (95% confidence interval [CI] 9-13 months), compared with 4 months for patients who received no radiation (p < 0.0001). On multivariable analysis (hazard ratio [95% CI]) brachytherapy (0.79 [0.66-0.95]), surgery (0.50 [0.46-0.53]), year of diagnosis (1998-2003: 0.66 [0.60-0.73]; 1993-1997: (0.96 [0.89-1.03; NS], baseline 1988-1992), and extrahepatic disease (0.84 [0.79-0.89]) were associated with better overall survival. Conclusions: To the authors' knowledge, this is the largest dataset reported for the treatment of cholangiocarcinomas with brachytherapy. The results of this retrospective analysis suggest that brachytherapy may improve overall survival. However, because of the limitations of the Surveillance, Epidemiology and End Results database, these results should be interpreted cautiously, and future prospective studies are needed.

  13. A portable measurement system for subcriticality measurements by the CF-source-driven neutron noise analysis method

    SciTech Connect

    Mihalczo, J.T.; Ragan, G.E.

    1987-01-01

    A portable system has been assembled that is capable of measuring the subcriticality of fissile materials using the /sup 252/CF-source-driven neutron noise analysis method. The measurement system consists of a parallel-plate ionization chamber containing /sup 252/CF, two /sup 3/He proportional counters with their associated electronics, and a small computer containing anti-aliasing filters and A/D convertors. The system Fourier analyzes the digitized data and forms the appropriate auto and cross-power spectral densities. These spectra are used to form a ratio of spectral densities, G/sub 12/G/sub 13//G/sub 11/G/sub 23/, where 1 refers to the ionization chamber, and 2 and 3 refer to the /sup 3/He counters, from which subcriticality can be determined. The chamber and detectors are located appropriately near the fissile material. The system is capable of sampling signals at rates of up to 80 kHz and processing these data at rates of 2 kHz to form the appropriate spectra. The presently configured system is a two-channel system, hence the measurement of G/sub 12/, G/sub 13/, and G/sub 23/ must be done sequentially before the ratio of spectral densities is obtained. Future improvements of the system will allow simultaneous measurement of all spectra and will further reduce size, thereby enhancing portability. This measurement system can provide reliable, cost effective, and convenient determination of the subcriticality of a wide variety of fissile materials and moderators.

  14. Cervix cancer brachytherapy: high dose rate.

    PubMed

    Miglierini, P; Malhaire, J-P; Goasduff, G; Miranda, O; Pradier, O

    2014-10-01

    Cervical cancer, although less common in industrialized countries, is the fourth most common cancer affecting women worldwide and the fourth leading cause of cancer death. In developing countries, these cancers are often discovered at a later stage in the form of locally advanced tumour with a poor prognosis. Depending on the stage of the disease, treatment is mainly based on a chemoradiotherapy followed by uterovaginal brachytherapy ending by a potential remaining tumour surgery or in principle for some teams. The role of irradiation is crucial to ensure a better local control. It has been shown that the more the delivered dose is important, the better the local results are. In order to preserve the maximum of organs at risk and to allow this dose escalation, brachytherapy (intracavitary and/or interstitial) has been progressively introduced. Its evolution and its progressive improvement have led to the development of high dose rate brachytherapy, the advantages of which are especially based on the possibility of outpatient treatment while maintaining the effectiveness of other brachytherapy forms (i.e., low dose rate or pulsed dose rate). Numerous innovations have also been completed in the field of imaging, leading to a progress in treatment planning systems by switching from two-dimensional form to a three-dimensional one. Image-guided brachytherapy allows more precise target volume delineation as well as an optimized dosimetry permitting a better coverage of target volumes.

  15. Comparison of dose calculation methods for brachytherapy of intraocular tumors

    SciTech Connect

    Rivard, Mark J.; Chiu-Tsao, Sou-Tung; Finger, Paul T.; Meigooni, Ali S.; Melhus, Christopher S.; Mourtada, Firas; Napolitano, Mary E.; Rogers, D. W. O.; Thomson, Rowan M.; Nath, Ravinder

    2011-01-15

    Purpose: To investigate dosimetric differences among several clinical treatment planning systems (TPS) and Monte Carlo (MC) codes for brachytherapy of intraocular tumors using {sup 125}I or {sup 103}Pd plaques, and to evaluate the impact on the prescription dose of the adoption of MC codes and certain versions of a TPS (Plaque Simulator with optional modules). Methods: Three clinical brachytherapy TPS capable of intraocular brachytherapy treatment planning and two MC codes were compared. The TPS investigated were Pinnacle v8.0dp1, BrachyVision v8.1, and Plaque Simulator v5.3.9, all of which use the AAPM TG-43 formalism in water. The Plaque Simulator software can also handle some correction factors from MC simulations. The MC codes used are MCNP5 v1.40 and BrachyDose/EGSnrc. Using these TPS and MC codes, three types of calculations were performed: homogeneous medium with point sources (for the TPS only, using the 1D TG-43 dose calculation formalism); homogeneous medium with line sources (TPS with 2D TG-43 dose calculation formalism and MC codes); and plaque heterogeneity-corrected line sources (Plaque Simulator with modified 2D TG-43 dose calculation formalism and MC codes). Comparisons were made of doses calculated at points-of-interest on the plaque central-axis and at off-axis points of clinical interest within a standardized model of the right eye. Results: For the homogeneous water medium case, agreement was within {approx}2% for the point- and line-source models when comparing between TPS and between TPS and MC codes, respectively. For the heterogeneous medium case, dose differences (as calculated using the MC codes and Plaque Simulator) differ by up to 37% on the central-axis in comparison to the homogeneous water calculations. A prescription dose of 85 Gy at 5 mm depth based on calculations in a homogeneous medium delivers 76 Gy and 67 Gy for specific {sup 125}I and {sup 103}Pd sources, respectively, when accounting for COMS-plaque heterogeneities. For off

  16. Apparatus and method for high dose rate brachytherapy radiation treatment

    DOEpatents

    Macey, Daniel J.; Majewski, Stanislaw; Weisenberger, Andrew G.; Smith, Mark Frederick; Kross, Brian James

    2005-01-25

    A method and apparatus for the in vivo location and tracking of a radioactive seed source during and after brachytherapy treatment. The method comprises obtaining multiple views of the seed source in a living organism using: 1) a single PSPMT detector that is exposed through a multiplicity of pinholes thereby obtaining a plurality of images from a single angle; 2) a single PSPMT detector that may obtain an image through a single pinhole or a plurality of pinholes from a plurality of angles through movement of the detector; or 3) a plurality of PSPMT detectors that obtain a plurality of views from different angles simultaneously or virtually simultaneously. The plurality of images obtained from these various techniques, through angular displacement of the various acquired images, provide the information required to generate the three dimensional images needed to define the location of the radioactive seed source within the body of the living organism.

  17. Comparison of planned and measured rectal dose in-vivo during high dose rate Cobalt-60 brachytherapy of cervical cancer.

    PubMed

    Zaman, Z K; Ung, N M; Malik, R A; Ho, G F; Phua, V C E; Jamalludin, Z; Baharuldin, M T H; Ng, K H

    2014-12-01

    Cobalt-60 (Co-60) is a relatively new source for the application of high-dose rate (HDR) brachytherapy. Radiation dose to the rectum is often a limiting factor in achieving the full prescribed dose to the target during brachytherapy of cervical cancer. The aim of this study was to measure radiation doses to the rectum in-vivo during HDR Co-60 brachytherapy. A total of eleven HDR brachytherapy treatments of cervical cancer were recruited in this study. A series of diodes incorporated in a rectal probe was inserted into the patient's rectum during each brachytherapy procedure. Real-time measured rectal doses were compared to calculated doses by the treatment planning system (TPS). The differences between calculated and measured dose ranged from 8.5% to 41.2%. This corresponds to absolute dose differences ranging from 0.3 Gy to 1.5 Gy. A linear relationship was observed between calculated and measured doses with linear regression R(2) value of 0.88, indicating close association between the measured and calculated doses. In general, absorbed doses for the rectum as calculated by TPS were observed to be higher than the doses measured using the diode probe. In-vivo dosimetry is an important quality assurance method for HDR brachytherapy of cervical cancer. It provides information that can contribute to the reduction of errors and discrepancies in dose delivery. Our study has shown that in-vivo dosimetry is feasible and can be performed to estimate the dose to the rectum during HDR brachytherapy using Co-60.

  18. Tissue modeling schemes in low energy breast brachytherapy

    NASA Astrophysics Data System (ADS)

    Afsharpour, Hossein; Landry, Guillaume; Reniers, Brigitte; Pignol, Jean-Philippe; Beaulieu, Luc; Verhaegen, Frank

    2011-11-01

    Breast tissue is heterogeneous and is mainly composed of glandular (G) and adipose (A) tissues. The proportion of G versus A varies considerably among the population. The absorbed dose distributions in accelerated partial breast irradiation therapy with low energy photon brachytherapy sources are very sensitive to tissue heterogeneities. Current clinical algorithms use the recommendations of the AAPM TG43 report which approximates the human tissues by unit density water. The aim of this study is to investigate various breast tissue modeling schemes for low energy brachytherapy. A special case of breast permanent seed implant is considered here. Six modeling schemes are considered. Uniform and non-uniform water breast (UWB and NUWB) consider the density but neglect the effect of the composition of tissues. The uniform and the non-uniform G/A breast (UGAB and NUGAB) as well the age-dependent breast (ADB) models consider the effect of the composition. The segmented breast tissue (SBT) method uses a density threshold to distinguish between G and A tissues. The PTV D90 metric is used for the analysis and is based on the dose to water (D90(w,m)). D90(m,m) is also reported for comparison to D90(w,m). The two-month post-implant D90(w,m) averaged over 38 patients is smaller in NUWB than in UWB by about 4.6% on average (ranging from 5% to 13%). Large average differences of G/A breast models with TG43 (17% and 26% in UGAB and NUGAB, respectively) show that the effect of the chemical composition dominates the effect of the density on dose distributions. D90(w,m) is 12% larger in SBT than in TG43 when averaged. These differences can be as low as 4% or as high as 20% when the individual patients are considered. The high sensitivity of dosimetry on the modeling scheme argues in favor of an agreement on a standard tissue modeling approach to be used in low energy breast brachytherapy. SBT appears to generate the most geometrically reliable breast tissue models in this report. This

  19. Mathematical modelling of response of polymer gel dosimeters to brachytherapy radiation

    NASA Astrophysics Data System (ADS)

    Nasr, A. T.; Chain, J. N. M.; Schreiner, L. J.; McAuley, K. B.

    2010-11-01

    A dynamic partial differential equation (PDE) model is used to simulate effects of a single Ir192 brachytherapy seed on the amount and composition of polymer formed during polyacrylamide gel (PAG) dosimetry. Simulations are conducted for a point-source brachytherapy seed placed at the center of a 6%T 50% C anoxic PAG phantom. The seed is removed after one minute, but polymerization is simulated up to a final time of 24 hours. Simulation results indicate that changes occur in both the mass of polymer formed per unit dose and in the crosslink density as a function of the radial distance from the brachytherapy seed. For example, at a distance of 5 mm from the seed, 41 mg of polymer form per Gy of radiation absorbed (after 24 hours), whereas at a larger distance of 5 cm from the seed 75 mg of polymer form per Gy. The polymer that forms near the seed is predicted to have a higher level of crosslinking than the polymer that forms further away. These results suggest potential calibration problems that may occur during brachytherapy dosimetry using polymer gels.

  20. Brachytherapy Application With In Situ Dose Painting Administered by Gold Nanoparticle Eluters

    SciTech Connect

    Sinha, Neeharika; Cifter, Gizem; Sajo, Erno; Kumar, Rajiv; Sridhar, Srinivas; Nguyen, Paul L.; Cormack, Robert A.; Makrigiorgos, G. Mike; Ngwa, Wilfred

    2015-02-01

    Purpose: Recent studies show promise that administering gold nanoparticles (GNP) to tumor cells during brachytherapy could significantly enhance radiation damage to the tumor. A new strategy proposed for sustained administration of the GNP in prostate tumors is to load them into routinely used brachytherapy spacers for customizable in situ release after implantation. This in silico study investigated the intratumor biodistribution and corresponding dose enhancement over time due to GNP released from such GNP-loaded brachytherapy spacers (GBS). Method and Materials: An experimentally determined intratumoral diffusion coefficient (D) for 10-nm nanoparticles was used to estimate D for other sizes by using the Stokes-Einstein equation. GNP concentration profiles, obtained using D, were then used to calculate the corresponding dose enhancement factor (DEF) for each tumor voxel, using dose painting-by-numbers approach, for times relevant to the considered brachytherapy sources' lifetimes. The investigation was carried out as a function of GNP size for the clinically applicable low-dose-rate brachytherapy sources iodine-125 (I-125), palladium-103 (Pd-103), and cesium-131 (Cs-131). Results: Results showed that dose enhancement to tumor voxels and subvolumes during brachytherapy can be customized by varying the size of GNP released or eluted from the GBS. For example, using a concentration of 7 mg/g GNP, significant DEF (>20%) could be achieved 5 mm from a GBS after 5, 12, 25, 46, 72, 120, and 195 days, respectively, for GNP sizes of 2, 5, 10, 20, 30, and 50 nm and for 80 nm when treating with I-125. Conclusions: Analyses showed that using Cs-131 provides the highest dose enhancement to tumor voxels. However, given its relatively longer half-life, I-125 presents the most flexibility for customizing the dose enhancement as a function of GNP size. These findings provide a useful reference for further work toward development of potential new brachytherapy application with

  1. Interstitial hyperthermia in combination with brachytherapy.

    PubMed

    Coughlin, C T; Douple, E B; Strohbehn, J W; Eaton, W L; Trembly, B S; Wong, T Z

    1983-07-01

    Flexible coaxial cables were modified to serve as microwave antennas operating at a frequency of 915 MHz. These antennas were inserted into nylon afterloading tubes that had been implanted in tumors using conventional interstitial implantation techniques for iridium-192 seed brachytherapy. The tumor volume was heated to 42-45 degrees C within 15 minutes and heating was continued for a total of 1 hour per treatment. Immediately following a conventional brachytherapy dose and removal of the iridium seeds the tumors were heated again in a second treatment. This interstitial technique for delivering local hyperthermia should be compatible with most brachytherapy methods. The technique has proved so far to be practical and without complications. Temperature distributions obtained in tissue phantoms and a patient are described.

  2. Overview: Five decades of brachytherapy

    SciTech Connect

    Ellis, F.

    1986-01-01

    Brachytherapy started in 1930. Ra-226 was the radioisotope for cancer therapy at that time and much has been learned about its properties since then. One of the major findings at that time was output. When the author started, there was no T factor. People did not know how many R units were produced by 1.0 mg of radium filtered by 0.5 mm of platinum at 1.0 cm. So one was in a bit of chaos from that point of view. Eventually, that was settled in the 1930's. It was very exciting to find out that, although the national laboratories of the U.S., England, France and Germany had had values of this T factor varying from about five to seven (when they're only supposed to have less than 1% error); the value was really 8.3 and it was quite a landmark. This led to an improved knowledge of dose and effects. Developments over the next five decades are discussed in detail.

  3. SU-E-T-447: Electronic Brachytherapy (EBT) Treatment of Cervical Cancer - First Clinical Experience

    SciTech Connect

    Johnson, D; Johnson, M; Thompson, J; Ahmad, S; Chan, L; Hausen, H

    2014-06-01

    Purpose: To study the first trial patient in which an electronic brachytherapy (EBT) x-ray source is utilized for treatment of cervical cancer. Methods: During patient treatment, a miniaturized x-ray source was used in combination with a customized titanium tandem and ovoid applicator set. The semi-specialized source was modeled with formalisms outlined by AAMP Task Group 43. Multiple models were used to compensate for variable attenuation conditions as a function of source positions. Varian Brachyvision treatment planning software was utilized on CT data sets for dose calculations prior to treatment delivery. The dose was prescribed to “point A” as defined by American Brachytherapy society. Additional treatments plans were created from those clinically utilized in patient care and were recalculated for an existing Ir-192 source model. Dose volume histograms (DVH) and point dose calculations were compared between the modalities for the clinical condition present in patients treated with EBT. Results: Clinical treatment times, though longer than those typically experienced by Ir-192 users, were manageable. Instantaneous dose rates at personal positions within the treatment vault were lower than those measured during intra operative radiation therapy and breast EBT treatments. Due to lower average photon energy in EBT, dose gradients within the treatment plans were as expected steeper than those observed in Ir-192 based brachytherapy. DVH comparisons between Ir-192 and EBT treatments showed an expected decrease in the integral dose to normal tissues of interest for EBT. In comparing plans created for EBT delivery with those calculated for Ir-192, average dose values for EBT were more than 4%, 11%, and 9% lower at predefined bladder, rectum and “point B” positions, respectively. Conclusion: For the first time, we have demonstrated that the utilizing electronic brachytherapy system for tandem and ovoid based treatment of cancer of the cervix is feasible, and

  4. SU-E-T-366: Clinical Implementation of MR-Guided Vaginal Cylinder Brachytherapy

    SciTech Connect

    Owrangi, A; Jolly, S; Balter, J; Cao, Y; Young, L; Zhu, T; Prisciandaro, J

    2014-06-01

    Purpose: To evaluate the accuracy of MR-based vaginal brachytherapy source localization using an in-house MR-visible marker versus the alignment of an applicator model to MR images. Methods: Three consecutive patients undergoing vaginal HDR brachytherapy with a plastic cylinder were scanned with both CT and MRI (including T1- and T2- weighted images). An MR-visible source localization marker, consisting of a sealed thin catheter filled with either water (for T2 contrast) or Gd-doped water (for T1 contrast), was assembled shortly before scanning. Clinically, the applicator channel was digitized on CT with an x-ray marker. To evaluate the efficacy of MR-based applicator reconstruction, each MR image volume was aligned locally to the CT images based on the region containing the cylinder. Applicator digitization was performed on the MR images using (1) the MR visible marker and (2) alignment of an applicator surface model from Varian's Brachytherapy Planning software to the MRI images. Resulting source positions were compared with the original CT digitization. Results: Although the source path was visualized by the MR marker, the applicator tip proved difficult to identify due to challenges in achieving a watertight seal. This resulted in observed displacements of the catheter tip, at times >1cm. Deviations between the central source positions identified via aligning the applicator surface model to MR and using the xray marker on CT ranged from 0.07 – 0.19 cm and 0.07 – 0.20 cm on T1- weighted and T2-weighted images, respectively. Conclusion: Based on the current study, aligning the applicator model to MRI provides a practical, current approach to perform MR-based brachytherapy planning. Further study is needed to produce catheters with reliably and reproducibly identifiable tips. Attempts are being made to improve catheter seals, as well as to increase the viscosity of the contrast material to decrease fluid mobility inside the catheter.

  5. EM-navigated catheter placement for gynecologic brachytherapy: an accuracy study

    NASA Astrophysics Data System (ADS)

    Mehrtash, Alireza; Damato, Antonio; Pernelle, Guillaume; Barber, Lauren; Farhat, Nabgha; Viswanathan, Akila; Cormack, Robert; Kapur, Tina

    2014-03-01

    Gynecologic malignancies, including cervical, endometrial, ovarian, vaginal and vulvar cancers, cause significant mortality in women worldwide. The standard care for many primary and recurrent gynecologic cancers consists of chemoradiation followed by brachytherapy. In high dose rate (HDR) brachytherapy, intracavitary applicators and /or interstitial needles are placed directly inside the cancerous tissue so as to provide catheters to deliver high doses of radiation. Although technology for the navigation of catheters and needles is well developed for procedures such as prostate biopsy, brain biopsy, and cardiac ablation, it is notably lacking for gynecologic HDR brachytherapy. Using a benchtop study that closely mimics the clinical interstitial gynecologic brachytherapy procedure, we developed a method for evaluating the accuracy of image-guided catheter placement. Future bedside translation of this technology offers the potential benefit of maximizing tumor coverage during catheter placement while avoiding damage to the adjacent organs, for example bladder, rectum and bowel. In the study, two independent experiments were performed on a phantom model to evaluate the targeting accuracy of an electromagnetic (EM) tracking system. The procedure was carried out using a laptop computer (2.1GHz Intel Core i7 computer, 8GB RAM, Windows 7 64-bit), an EM Aurora tracking system with a 1.3mm diameter 6 DOF sensor, and 6F (2 mm) brachytherapy catheters inserted through a Syed-Neblett applicator. The 3D Slicer and PLUS open source software were used to develop the system. The mean of the targeting error was less than 2.9mm, which is comparable to the targeting errors in commercial clinical navigation systems.

  6. Chemoradiation and brachytherapy in biliary tract carcinoma: Long-term results

    SciTech Connect

    Deodato, Francesco . E-mail: fdeodato@rm.unicatt.it; Clemente, Gennaro; Mattiucci, Gian Carlo; Macchia, Gabriella; Costamagna, Guido; Giuliante, Felice; Smaniotto, Daniela; Luzi, Stefano; Valentini, Vincenzo; Mutignani, Massimiliano; Nuzzo, Gennaro; Cellini, Numa; Morganti, Alessio G.

    2006-02-01

    Purpose: To evaluate long-term effects of chemoradiation and intraluminal brachytherapy in terms of local control, disease-free survival, overall survival, and symptom relief in patients with unresectable or residual extrahepatic biliary carcinoma. Methods and Materials: Twenty-two patients with unresectable (17 patients) or residual (5 patients) nonmetastatic extrahepatic bile tumors received external beam radiation therapy (39.6-50.4 Gy) between 1991 and 1997. In 21 patients, 5-fluorouracil (96-h continuous infusion, Days 1-4, 1,000 mg/m{sup 2}/day) was administered. Twelve patients received a boost of intraluminal brachytherapy with {sup 192}Ir wires (30-50 Gy) 1 cm from the source axis. Results: During external beam radiotherapy, 10 patients (45.4%) developed Grade 1 to 2 gastrointestinal toxicity. In patients with unresectable tumor who could be evaluated, the clinical response was 28.6% (4 of 14). Two patients showed complete response. In all 22 patients, median durations of local control, disease-free survival, and overall survival were 44.5 months, 16.3 months, and 23.0 months, respectively. Two patients who received external beam radiation therapy and intraluminal brachytherapy developed late duodenal ulceration. In patients with unresectable tumors, median survival was 13.0 months and 22.0 months in those treated with and without brachytherapy, with 16.7% and no 5-year survival, respectively (p = 0.607). Overall 5-year survival was 18.0%: 40% and 11.7% in patients treated with partial resection and in those with unresectable tumor, respectively (p = 0.135). Conclusion: This study confirmed the role of concurrent chemoradiation in advanced biliary carcinoma; the role of intraluminal brachytherapy boost remains to be further analyzed in larger clinical trials.

  7. Dosimetric impact of an air passage on intraluminal brachytherapy for bronchus cancer

    PubMed Central

    Okamoto, Hiroyuki; Wakita, Akihisa; Nakamura, Satoshi; Nishioka, Shie; Aikawa, Ako; Kato, Toru; Abe, Yoshihisa; Kobayashi, Kazuma; Inaba, Koji; Murakami, Naoya; Itami, Jun

    2016-01-01

    The brachytherapy dose calculations used in treatment planning systems (TPSs) have conventionally been performed assuming homogeneous water. Using measurements and a Monte Carlo simulation, we evaluated the dosimetric impact of an air passage on brachytherapy for bronchus cancer. To obtain the geometrical characteristics of an air passage, we analyzed the anatomical information from CT images of patients who underwent intraluminal brachytherapy using a high-dose-rate 192Ir source (MicroSelectron V2r®, Nucletron). Using an ionization chamber, we developed a measurement system capable of measuring the peripheral dose with or without an air cavity surrounding the catheter. Air cavities of five different radii (0.3, 0.5, 0.75, 1.25 and 1.5 cm) were modeled by cylindrical tubes surrounding the catheter. A Monte Carlo code (GEANT4) was also used to evaluate the dosimetric impact of the air cavity. Compared with dose calculations in homogeneous water, the measurements and GEANT4 indicated a maximum overdose of 5–8% near the surface of the air cavity (with the maximum radius of 1.5 cm). Conversely, they indicated a minimum overdose of ~1% in the region 3–5 cm from the cavity surface for the smallest radius of 0.3 cm. The dosimetric impact depended on the size and the distance of the air passage, as well as the length of the treatment region. Based on dose calculations in water, the TPS for intraluminal brachytherapy for bronchus cancer had an unexpected overdose of 3–5% for a mean radius of 0.75 cm. This study indicates the need for improvement in dose calculation accuracy with respect to intraluminal brachytherapy for bronchus cancer. PMID:27605630

  8. EM-Navigated Catheter Placement for Gynecologic Brachytherapy: An Accuracy Study.

    PubMed

    Mehrtash, Alireza; Damato, Antonio; Pernelle, Guillaume; Barber, Lauren; Farhat, Nabgha; Viswanathan, Akila; Cormack, Robert; Kapur, Tina

    2014-03-12

    Gynecologic malignancies, including cervical, endometrial, ovarian, vaginal and vulvar cancers, cause significant mortality in women worldwide. The standard care for many primary and recurrent gynecologic cancers consists of chemoradiation followed by brachytherapy. In high dose rate (HDR) brachytherapy, intracavitary applicators and/or interstitial needles are placed directly inside the cancerous tissue so as to provide catheters to deliver high doses of radiation. Although technology for the navigation of catheters and needles is well developed for procedures such as prostate biopsy, brain biopsy, and cardiac ablation, it is notably lacking for gynecologic HDR brachytherapy. Using a benchtop study that closely mimics the clinical interstitial gynecologic brachytherapy procedure, we developed a method for evaluating the accuracy of image-guided catheter placement. Future bedside translation of this technology offers the potential benefit of maximizing tumor coverage during catheter placement while avoiding damage to the adjacent organs, for example bladder, rectum and bowel. In the study, two independent experiments were performed on a phantom model to evaluate the targeting accuracy of an electromagnetic (EM) tracking system. The procedure was carried out using a laptop computer (2.1GHz Intel Core i7 computer, 8GB RAM, Windows 7 64-bit), an EM Aurora tracking system with a 1.3mm diameter 6 DOF sensor, and 6F (2 mm) brachytherapy catheters inserted through a Syed-Neblett applicator. The 3D Slicer and PLUS open source software were used to develop the system. The mean of the targeting error was less than 2.9mm, which is comparable to the targeting errors in commercial clinical navigation systems.

  9. Monte Carlo calculated doses to treatment volumes and organs at risk for permanent implant lung brachytherapy

    NASA Astrophysics Data System (ADS)

    Sutherland, J. G. H.; Furutani, K. M.; Thomson, R. M.

    2013-10-01

    Iodine-125 (125I) and Caesium-131 (131Cs) brachytherapy have been used with sublobar resection to treat stage I non-small cell lung cancer and other radionuclides, 169Yb and 103Pd, are considered for these treatments. This work investigates the dosimetry of permanent implant lung brachytherapy for a range of source energies and various implant sites in the lung. Monte Carlo calculated doses are calculated in a patient CT-derived computational phantom using the EGsnrc user-code BrachyDose. Calculations are performed for 103Pd, 125I, 131Cs seeds and 50 and 100 keV point sources for 17 implant positions. Doses to treatment volumes, ipsilateral lung, aorta, and heart are determined and compared to those determined using the TG-43 approach. Considerable variation with source energy and differences between model-based and TG-43 doses are found for both treatment volumes and organs. Doses to the heart and aorta generally increase with increasing source energy. TG-43 underestimates the dose to the heart and aorta for all implants except those nearest to these organs where the dose is overestimated. Results suggest that model-based dose calculations are crucial for selecting prescription doses, comparing clinical endpoints, and studying radiobiological effects for permanent implant lung brachytherapy.

  10. Ice as a water-equivalent solid medium for brachytherapy dosimetric measurements.

    PubMed

    Song, Haijun; Chen, Zhe; Yue, Ning; Wu, Qingrong; Yin, Fang-Fang

    2009-04-01

    Precise positioning of source and dosimeters is essential in the experimental determination of dosimetric characteristics of brachytherapy sources. Various near-water equivalent solid phantoms have been used to achieve the necessary precision in the positioning. However, the uncertainties in their chemical compositions may lead to non-negligible uncertainties in the determined doses. It is proposed here that ice may be used as an alternative to the conventional solid phantoms, since its chemical composition is identical to water while the positioning advantage associated with solid phantoms is retained. In this work, the feasibility of using ice as a solid phantom for brachytherapy dosimetry is investigated. Ice-to-water conversion factors are calculated at distances of 0.2-10 cm from the source, for six high- and low-energy photon-emitting brachytherapy sources and mono-energetic photons between 10 keV to 2.0 MeV. Practical issues and challenges associated with measuring dose in an ice phantom are discussed.

  11. The American Brachytherapy Society Treatment Recommendations for Locally Advanced Carcinoma of the Cervix Part II: High Dose-Rate Brachytherapy

    PubMed Central

    Viswanathan, Akila N.; Beriwal, Sushil; De Los Santos, Jennifer; Demanes, D. Jeffrey; Gaffney, David; Hansen, Jorgen; Jones, Ellen; Kirisits, Christian; Thomadsen, Bruce; Erickson, Beth

    2012-01-01

    Purpose This report presents the 2011 update to the American Brachytherapy Society (ABS) high-dose-rate (HDR) brachytherapy guidelines for locally advanced cervical cancer. Methods Members of the American Brachytherapy Society (ABS) with expertise in cervical cancer brachytherapy formulated updated guidelines for HDR brachytherapy using tandem and ring, ovoids, cylinder or interstitial applicators for locally advanced cervical cancer were revised based on medical evidence in the literature and input of clinical experts in gynecologic brachytherapy. Results The Cervical Cancer Committee for Guideline Development affirms the essential curative role of tandem-based brachytherapy in the management of locally advanced cervical cancer. Proper applicator selection, insertion, and imaging are fundamental aspects of the procedure. Three-dimensional imaging with magnetic resonance or computed tomography or radiographic imaging may be used for treatment planning. Dosimetry must be performed after each insertion prior to treatment delivery. Applicator placement, dose specification and dose fractionation must be documented, quality assurance measures must be performed, and follow-up information must be obtained. A variety of dose/fractionation schedules and methods for integrating brachytherapy with external-beam radiation exist. The recommended tumor dose in 2 Gray (Gy) per fraction radiobiologic equivalence (EQD2) is 80–90 Gy, depending on tumor size at the time of brachytherapy. Dose limits for normal tissues are discussed. Conclusion These guidelines update those of 2000 and provide a comprehensive description of HDR cervical cancer brachytherapy in 2011. PMID:22265437

  12. Dose reduction in LDR brachytherapy by implanted prostate gold fiducial markers

    SciTech Connect

    Landry, Guillaume; Reniers, Brigitte; Lutgens, Ludy; Murrer, Lars; Afsharpour, Hossein; Haas-Kock, Danielle de; Visser, Peter; Gils, Francis van; Verhaegen, Frank

    2012-03-15

    Purpose: The dosimetric impact of gold fiducial markers (FM) implanted prior to external beam radiotherapy of prostate cancer on low dose rate (LDR) brachytherapy seed implants performed in the context of combined therapy was investigated. Methods: A virtual water phantom was designed containing a single FM. Single and multi source scenarios were investigated by performing Monte Carlo dose calculations, along with the influence of varying orientation and distance of the FM with respect to the sources. Three prostate cancer patients treated with LDR brachytherapy for a recurrence following external beam radiotherapy with implanted FM were studied as surrogate cases to combined therapy. FM and brachytherapy seeds were identified on post implant CT scans and Monte Carlo dose calculations were performed with and without FM. The dosimetric impact of the FM was evaluated by quantifying the amplitude of dose shadows and the volume of cold spots. D{sub 90} was reported based on the post implant CT prostate contour. Results: Large shadows are observed in the single source-FM scenarios. As expected from geometric considerations, the shadows are dependent on source-FM distance and orientation. Large dose reductions are observed at the distal side of FM, while at the proximal side a dose enhancement is observed. In multisource scenarios, the importance of shadows appears mitigated, although FM at the periphery of the seed distribution caused underdosage (brachytherapy seed implant dose distributions. Therefore, reduced tumor control could be expected from FM implanted in tumors, although

  13. Prostate brachytherapy in Ghana: our initial experience

    PubMed Central

    Yarney, Joel; Vanderpuye, Verna; Akpakli, Evans; Tagoe, Samuel; Sasu, Evans

    2016-01-01

    Purpose This study presents the experience of a brachytherapy team in Ghana with a focus on technology transfer and outcome. The team was initially proctored by experienced physicians from Europe and South Africa. Material and methods A total of 90 consecutive patients underwent either brachytherapy alone or brachytherapy in combination with external beam radiotherapy for prostate carcinoma between July 2008 and February 2014 at Korle Bu Teaching Hospital, Accra, Ghana. Patients were classified as low-risk, intermediate, and high-risk according to the National Comprehensive Cancer Network (NCCN) criteria. All low-risk and some intermediate risk group patients were treated with seed implantation alone. Some intermediate and all high-risk group patients received brachytherapy combined with external beam radiotherapy. Results The median patient age was 64.0 years (range 46-78 years). The median follow-up was 58 months (range 18-74 months). Twelve patients experienced biochemical failure including one patient who had evidence of metastatic disease and died of prostate cancer. Freedom from biochemical failure rates for low, intermediate, and high-risk cases were 95.4%, 90.9%, and 70.8%, respectively. Clinical parameters predictive of biochemical outcome included: clinical stage, Gleason score, and risk group. Pre-treatment prostate specific antigen (PSA) was not a statistically significant predictor of biochemical failure. Sixty-nine patients (76.6%) experienced grade 1 urinary symptoms in the form of frequency, urgency, and poor stream. These symptoms were mostly self-limiting. Four patients needed catheterization for urinary retention (grade 2). One patient developed a recto urethral fistula (grade 3) following banding for hemorrhoids. Conclusions Our results compare favorably with those reported by other institutions with more extensive experience. We believe therefore that, interstitial permanent brachytherapy can be safely and effectively performed in a

  14. Automated intraoperative calibration for prostate cancer brachytherapy

    SciTech Connect

    Kuiran Chen, Thomas; Heffter, Tamas; Lasso, Andras; Pinter, Csaba; Abolmaesumi, Purang; Burdette, E. Clif; Fichtinger, Gabor

    2011-11-15

    Purpose: Prostate cancer brachytherapy relies on an accurate spatial registration between the implant needles and the TRUS image, called ''calibration''. The authors propose a new device and a fast, automatic method to calibrate the brachytherapy system in the operating room, with instant error feedback. Methods: A device was CAD-designed and precision-engineered, which mechanically couples a calibration phantom with an exact replica of the standard brachytherapy template. From real-time TRUS images acquired from the calibration device and processed by the calibration system, the coordinate transformation between the brachytherapy template and the TRUS images was computed automatically. The system instantly generated a report of the target reconstruction accuracy based on the current calibration outcome. Results: Four types of validation tests were conducted. First, 50 independent, real-time calibration trials yielded an average of 0.57 {+-} 0.13 mm line reconstruction error (LRE) relative to ground truth. Second, the averaged LRE was 0.37 {+-} 0.25 mm relative to ground truth in tests with six different commercial TRUS scanners operating at similar imaging settings. Furthermore, testing with five different commercial stepper systems yielded an average of 0.29 {+-} 0.16 mm LRE relative to ground truth. Finally, the system achieved an average of 0.56 {+-} 0.27 mm target registration error (TRE) relative to ground truth in needle insertion tests through the template in a water tank. Conclusions: The proposed automatic, intraoperative calibration system for prostate cancer brachytherapy has achieved high accuracy, precision, and robustness.

  15. Endobronchial brachytherapy in the treatment of malignant lung tumours.

    PubMed

    Escobar-Sacristán, J A; Granda-Orive, J I; Gutiérrez Jiménez, T; Delgado, J M; Rodero Baños, A; Saez Valls, R

    2004-09-01

    A prospective study was made to assess the short-term clinical and endoscopic response to high-dose-rate endobronchial brachytherapy (HDREB) in patients with malignant endobronchial tumours. From July 1995 to May 2000, 288 HDREB sessions were carried out on 81 patients. The mean patient age was 61.57 yrs (range 34-82); males were predominant (87.65%). Tumours were primary in 76 patients (93.82%) and metastatic in five patients (6.18%). The inclusion criteria were malignant endobronchial tumour and either palliative treatment for incurable disease or intent-to-cure treatment for residual malignancy on the bronchial resection surface after surgery or an inoperable tumour. The exclusion criteria were as follows: impediments to catheter placement, expected survival <2 months, Karnofsky index <60, or absence of informed consent. The clinical response of a symptom was categorised as complete (disappearance of the symptom), partial (less than complete) or absent. The endoscopic response was considered to be complete if lesions disappeared and biopsy findings remained negative 1 month after the last radiation session; partial if lesions improved to some extent, but the biopsy findings were positive; and absent if there was no change in relation to baseline. The technique consisted of delivering high-dose irradiation from an Ir192 source to a target volume using one or two endobronchial catheters inserted under optical or video bronchoscopic guidance. Four sessions were scheduled at weekly intervals and 500 cGy was applied per session over a length of 1-9 cm, measured 0.5-1 cm from the centre of the source. In total, 85% of the symptoms analysed (haemoptysis, cough, dyspnoea, expectoration, and stridor) disappeared with HDREB, which was categorised as a complete response. The endoscopic response was complete in 56.79% of patients, partial or less than complete in 40.74% and absent in 2.46%. One major complication occurred (bronchial fistula 1.2%), but no lethal haemoptysis

  16. State-of-the-art: prostate LDR brachytherapy.

    PubMed

    Voulgaris, S; Nobes, J P; Laing, R W; Langley, S E M

    2008-01-01

    This article on low dose rate (LDR) prostate brachytherapy reviews long-term results, patient selection and quality of life issues. Mature results from the United States and United Kingdom are reported and issues regarding definitions of biochemical failure are discussed. Latest data comparing brachytherapy with radical prostatectomy or no definitive treatment and also the risk of secondary malignancies after prostate brachytherapy are presented. Urological parameters of patient selection and quality of life issues concerning urinary, sexual and bowel function are reviewed. The position of prostate brachytherapy next to surgery as a first-line treatment modality is demonstrated.

  17. Poster — Thur Eve — 40: Automated Quality Assurance for Remote-Afterloading High Dose Rate Brachytherapy

    SciTech Connect

    Kim, Anthony; Ravi, Ananth

    2014-08-15

    High dose rate (HDR) remote afterloading brachytherapy involves sending a small, high-activity radioactive source attached to a cable to different positions within a hollow applicator implanted in the patient. It is critical that the source position within the applicator and the dwell time of the source are accurate. Daily quality assurance (QA) tests of the positional and dwell time accuracy are essential to ensure that the accuracy of the remote afterloader is not compromised prior to patient treatment. Our centre has developed an automated, video-based QA system for HDR brachytherapy that is dramatically superior to existing diode or film QA solutions in terms of cost, objectivity, positional accuracy, with additional functionalities such as being able to determine source dwell time and transit time of the source. In our system, a video is taken of the brachytherapy source as it is sent out through a position check ruler, with the source visible through a clear window. Using a proprietary image analysis algorithm, the source position is determined with respect to time as it moves to different positions along the check ruler. The total material cost of the video-based system was under $20, consisting of a commercial webcam and adjustable stand. The accuracy of the position measurement is ±0.2 mm, and the time resolution is 30 msec. Additionally, our system is capable of robustly verifying the source transit time and velocity (a test required by the AAPM and CPQR recommendations), which is currently difficult to perform accurately.

  18. BrachyGuide: a brachytherapy-dedicated DICOM RT viewer and interface to Monte Carlo simulation software.

    PubMed

    Pantelis, Evaggelos; Peppa, Vassiliki; Lahanas, Vasileios; Pappas, Eleftherios; Papagiannis, Panagiotis

    2015-01-08

    This work presents BrachyGuide, a brachytherapy-dedicated software tool for the automatic preparation of input files for Monte Carlo simulation from treatment plans exported in DICOM RT format, and results of calculations performed for its benchmarking. Three plans were prepared using two computational models, the image series of a water sphere and a multicatheter breast brachytherapy patient, for each of two commercially available treatment planning systems: BrachyVision and Oncentra Brachy. One plan involved a single source dwell position of an 192Ir HDR source (VS2000 or mHDR-v2) at the center of the water sphere using the TG43 algorithm, and the other two corresponded to the TG43 and advanced dose calculation algorithm for the multicatheter breast brachytherapy patient. Monte Carlo input files were prepared using BrachyGuide and simulations were performed with MCNP v.6.1. For the TG43 patient plans, the Monte Carlo computational model was manually edited in the prepared input files to resemble TG43 dosimetry assumptions. Hence all DICOM RT dose exports were equivalent to corresponding simulation results and their comparison was used for benchmarking the use of BrachyGuide. Monte Carlo simulation results and corresponding DICOM RT dose exports agree within type A uncertainties in the majority of points in the computational models. Treatment planning system, algorithm, and source specific differences greater than type A uncertainties were also observed, but these were explained by treatment planning system-related issues and other sources of type B uncertainty. These differences have to be taken into account in commissioning procedures of brachytherapy dosimetry algorithms. BrachyGuide is accurate and effective for use in the preparation of commissioning tests for new brachytherapy dosimetry algorithms as a user-oriented commissioning tool and the expedition of retrospective patient cohort studies of dosimetry planning.

  19. Verification of the plan dosimetry for high dose rate brachytherapy using metal-oxide-semiconductor field effect transistor detectors

    SciTech Connect

    Qi Zhenyu; Deng Xiaowu; Huang Shaomin; Lu Jie; Lerch, Michael; Cutajar, Dean; Rosenfeld, Anatoly

    2007-06-15

    The feasibility of a recently designed metal-oxide-semiconductor field effect transistor (MOSFET) dosimetry system for dose verification of high dose rate (HDR) brachytherapy treatment planning was investigated. MOSFET detectors were calibrated with a 0.6 cm{sup 3} NE-2571 Farmer-type ionization chamber in water. Key characteristics of the MOSFET detectors, such as the energy dependence,