Science.gov

Sample records for 252cf fission fragments

  1. True ternary fission, the collinear decay into fragments of similar size in the 252Cf(sf) and 235U(nth, f) reactions

    NASA Astrophysics Data System (ADS)

    von Oertzen, W.; Nasirov, A. K.

    2014-06-01

    The collinear cluster decay in 252Cf(sf, fff), with three cluster fragments of different masses (e.g. 132Sn, 52-48Ca, 68-72Ni), which has been observed by the FOBOS group in JINR, has established a new decay mode of heavy nuclei, the collinear cluster tripartition (CCT). The same type of ternary fission decay has been observed in the reaction 235U(nth, fff). This kind of “true ternary fission” of heavy nuclei has been predicted many times in theoretical works during the last decades. In the present note we discuss true ternary fission (TFFF) into three nuclei of almost equal size (e.g. Z=98→Zi=32, 34, 32) in the same systems. The possible fission channels are predicted from potential-energy (PES) calculations. These PES's show pronounced minima for several ternary fragmentation decays, e.g. for 252Cf(sf) and for 235U(nth, f). They suggest the existence of a variety of collinear ternary fission modes. The TFFF-decays chosen in this letter have very similar dynamical features as the previously observed collinear CCT-decays. The data obtained in the above mentioned experiments allow us to extract the yield for these TFFF-decays in both systems by using specific gates on the measured parameters. These yields are a few 1.0ṡ10-6/(binary fission).

  2. Microscopic cold fission yields of {sup 252}Cf

    SciTech Connect

    Mirea, M.; Delion, D. S.; Sandulescu, A.

    2010-04-15

    We show that the sharp maximum corresponding to {sup 107}Mo in the fragment distribution of the {sup 252}Cf cold fission is actually a Sn-like radioactivity, similar to other decay processes in which magic nuclei are involved, namely alpha decay and heavy cluster emission, also called Pb-like radioactivity. It turns out that the mass asymmetry degree of freedom has a key role in connecting initial Sn with the final Mo isotopes along the fission path. We investigate the cold rearrangement of nucleons within the framework of the two-center shell model in order to compute the cold valleys in the charge equilibrated fragmentation potential. The fission yields are estimated by using the semiclassical penetration approach. We consider 5 degrees of freedom, namely the interfragment distance, the shapes of fragments, the neck parameter, and mass asymmetry. We found an isomeric minimum between the internal and external barriers. It turns out that the inner cold valley of the total potential energy is connected to the doubly magic isotope {sup 132}Sn.

  3. Comparison of fission modes in {sup 252}Cf, {sup 257}Fm, and {sup 260}Md

    SciTech Connect

    Aarle, J. van; Siemon, K.; Patzelt, P.; Wild, J. F.; Lougheed, R. W.; Westmeier, W.

    1998-10-26

    Although the spontaneous-fission properties of heavy actinides have been studied for well over 35 years, many interesting and informative details continue to come into light. During the last decade, the spontaneous fission of {sup 252}Cf, {sup 257}Fm and {sup 260}Md has been extensively investigated at the Philipps University of Marburg, by means of a gadolinium-doped liquid scintillation tank for neutron counting and surface barrier detectors for fission fragment detection. The three nuclides represent the transition from the well-known asymmetric fission yield distribution, as it is characteristic for {sup 252}Cf, to a much more symmetrical one, found in the fission of {sup 260}Md. Therefore, trends in the dynamical changes of fission properties have been derived from these studies. For the spontaneous fission of {sup 252}Cf and {sup 260}Md, it was already shown that different fission modes, as proposed by theoretical calculations of Brosa et al. (5), could be separated, using the correlation between the neutrons emitted in a fission event and both the observed fission-fragment mass and the total kinetic energy (1, 2). In the case of {sup 257}Fm, no theoretical calculations for fission modes exist. However, from the fission properties of the two surrounding actinides, one can expect at least three different fission modes, namely two 'standard' and the 'supershort' mode. In this paper, results from the recent {sup 257}Fm experiment will be presented and compared to systematics extracted from the fission properties of other heavy actinides.

  4. Comparison of fission modes in {sup 252}Cf, {sup 257}Fm, and {sup 260}Md

    SciTech Connect

    van Aarle, J.; Siemon, K.; Patzelt, P.; Wild, J.F.; Lougheed, R.W.; Westmeier, W.

    1998-10-01

    Although the spontaneous-fission properties of heavy actinides have been studied for well over 35 years, many interesting and informative details continue to come into light. During the last decade, the spontaneous fission of {sup 252}Cf, {sup 257}Fm and {sup 260}Md has been extensively investigated at the Philipps University of Marburg (1{endash}4), by means of a gadolinium-doped liquid scintillation tank for neutron counting and surface barrier detectors for fission fragment detection. The three nuclides represent the transition from the well-known asymmetric fission yield distribution, as it is characteristic for {sup 252}Cf, to a much more symmetrical one, found in the fission of {sup 260}Md. Therefore, trends in the dynamical changes of fission properties have been derived from these studies. For the spontaneous fission of {sup 252}Cf and {sup 260}Md, it was already shown that different fission modes, as proposed by theoretical calculations of Brosa et al. (5), could be separated, using the correlation between the neutrons emitted in a fission event and both the observed fission-fragment mass and the total kinetic energy (1, 2). In the case of {sup 257}Fm, no theoretical calculations for fission modes exist. However, from the fission properties of the two surrounding actinides, one can expect at least three different fission modes, namely two {open_quotes}standard{close_quotes} and the {open_quotes}supershort{close_quotes} mode. In this paper, results from the recent {sup 257}Fm experiment will be presented and compared to systematics extracted from the fission properties of other heavy actinides. {copyright} {ital 1998 American Institute of Physics.}

  5. Bremsstrahlung emission of high energy accompanying spontaneous fission of {sup 252}Cf

    SciTech Connect

    Maydanyuk, S. P.; Olkhovsky, V. S.; Mandaglio, G.; Manganaro, M.; Fazio, G.; Giardina, G.

    2010-07-15

    The study of the bremsstrahlung photon emission accompanying fragments produced in the spontaneous fission of heavy nuclei by a fully quantum approach is presented for the first time. This kind of problem requires the knowledge of wave functions of the fissioning system leading to a wide distribution of couples of fragments that are the products of fission. With the aim of obtaining these wave functions, the interaction potential between the emitted fragment and residual nucleus is calculated by a standard approach. A new procedure was performed that allows an increase in the accuracy of calculations of radial integrals in the far asymptotic region and the achievement of the convenient convergence in calculations of the spectra. The total probability of the emitted photons in the spontaneous fission of {sup 252}Cf was calculated in such a way. We obtained good agreement between theory and experimental data up to 38 MeV for the bremsstrahlung spectrum of photons while the calculation of the total probability of photon emission accompanying fragments was performed up to an energy of 60 MeV. The analysis of contributions in the bremsstrahlung spectrum accompanying the emission of light, medium, and heavy fragments in the fission of {sup 252}Cf is presented.

  6. Identification of high spin states in {sup 134}I from {sup 252}Cf fission

    SciTech Connect

    Liu, S. H.; Hamilton, J. H.; Ramayya, A. V.; Hwang, J. K.; Daniel, A. V.; Ter-Akopian, G. M.; Luo, Y. X.; Rasmussen, J. O.; Zhu, S. J.; Ma, W. C.

    2009-06-15

    High spin states in {sup 134}I were identified for the first time based on measurements of prompt {gamma} rays from the spontaneous fission of {sup 252}Cf at Gammasphere. Five excited levels with five deexciting transitions were observed. The mass number was assigned based on the intensity of transitions in the complementary Rh fragments. Angular correlations for the first two transitions in {sup 134}I and for high spin states in {sup 133,135,136}I were performed, but were not sufficient to firmly assign the spins and parities in {sup 134}I.

  7. Radioactive Beams from 252Cf Fission Using a Gas Catcher and an ECR Charge Breeder at ATLAS

    SciTech Connect

    Savard, Guy; Pardo, Richard C.; Moore, E. Frank; Hecht, Adam A.; Baker, Sam

    2005-03-15

    A proposed upgrade to the radioactive beam capability of the ATLAS facility has been proposed using 252Cf fission fragments thermalized and collected into a low-energy particle beam using a helium gas catcher. In order to reaccelerate these beams the ATLAS ECR-I will be reconfigured as a charge breeder source. A 1Ci 252Cf source is expected to provide sufficient yield to deliver beams of up to {approx}103 far from stability ions per second on target. A brief facility description and the expected performance information are provided in this report.

  8. True ternary fission, the collinear cluster tripartition (CCT) of {sup 252}Cf

    SciTech Connect

    Oertzen, W. von; Pyatkov, Y. V.; Kamanin, D.

    2012-10-20

    In systematic work over the last decade (see Pyatkov et al. [12] and refs therein), the ternary fission decay of heavy nuclei, in {sup 235}U(n,fff) and {sup 252}Cf(sf) has been studied in a collinear geometry. The name used for this process is (CCT), with three fragments of similar size in a collinear decay, it is the true ternary fission. This decay has been observed in spontaneous fission as well as in a neutron induced reaction. The measurements are based on different experimental set-ups, with binary coincidences containing TOF and energy determinations. With two detector telescopes placed at 180 Degree-Sign , the measurements of masses and energies of each of the registered two fragments, give complete kinematic solutions. Thus the missing mass events in binary coincidences can be determined, these events are obtained by blocking one of the lighter fragments on a structure in front of the detectors. The relatively high yield of CCT (more than 10{sup -3} per binary fission) is explained. It is due to the favourable Q-values (more positive than for binary) and the large phase space of the ternary CCT-decay, dominated by three (magic) clusters: e.g. isotopes of Sn, Ca and Ni, {sup 132}Sn+{sup 50}Ca+{sup 70}Ni. It is shown that the collinear (prolate) geometry has the favoured potential energy relative to the oblate shapes. The ternary fission is considered to be a sequential process. With this assumption the kinetic energies of the fragments have been calculated by Vijay et al.. The third fragments have very low kinetic energies (below 20 MeV) and have thus escaped their detection in previous work on 'ternary fission', where in addition an oblate shape and a triangle for the momentum vectors have been assumed.

  9. True ternary fission, the collinear cluster tripartition (CCT) of 252Cf

    NASA Astrophysics Data System (ADS)

    von Oertzen, W.; Pyatkov, Y. V.; Kamanin, D.

    2012-10-01

    In systematic work over the last decade (see Pyatkov et al. [12] and refs therein), the ternary fission decay of heavy nuclei, in 235U(n,fff) and 252Cf(sf) has been studied in a collinear geometry. The name used for this process is (CCT), with three fragments of similar size in a collinear decay, it is the true ternary fission. This decay has been observed in spontaneous fission as well as in a neutron induced reaction. The measurements are based on different experimental set-ups, with binary coincidences containing TOF and energy determinations. With two detector telescopes placed at 180°, the measurements of masses and energies of each of the registered two fragments, give complete kinematic solutions. Thus the missing mass events in binary coincidences can be determined, these events are obtained by blocking one of the lighter fragments on a structure in front of the detectors. The relatively high yield of CCT (more than 10-3 per binary fission) is explained. It is due to the favourable Q-values (more positive than for binary) and the large phase space of the ternary CCT-decay, dominated by three (magic) clusters: e.g. isotopes of Sn, Ca and Ni, 132Sn+50Ca+70Ni. It is shown that the collinear (prolate) geometry has the favoured potential energy relative to the oblate shapes. The ternary fission is considered to be a sequential process. With this assumption the kinetic energies of the fragments have been calculated by Vijay et al. [1]. The third fragments have very low kinetic energies (below 20 MeV) and have thus escaped their detection in previous work on "ternary fission", where in addition an oblate shape and a triangle for the momentum vectors have been assumed.

  10. Detailed Study of the Angular Correlations in the Prompt Neutron Emission in Spontaneous Fission of 252Cf

    NASA Astrophysics Data System (ADS)

    Kopatch, Yu.; Chietera, A.; Stuttgé, L.; Gönnenwein, F.; Mutterer, M.; Gagarski, A.; Guseva, I.; Chernysheva, E.; Dorvaux, O.; Hambsch, F.-J.; Hanappe, F.; Mezentseva, Z.; Telezhnikov, S.

    An experiment has been performed at IPHC Strasbourg, aimed at the detailed investigation of angular correlations in the neutron emission from spontaneous fission of 252Cf. Fission fragments were measured by the angle-sensitive double ionization chamber CODIS while neutrons were detected by a set of 60 DEMON scintillator counters. The main aim of the experiment is the observation of the correlation between the fragment spins and neutron emission anisotropy. Preliminary results, based on the Monte-Carlo simulations, as well as the preliminary analysis of the experimental data are shown.

  11. All possible ternary fragmentations of {sup 252}Cf in collinear configuration

    SciTech Connect

    Manimaran, K.; Balasubramaniam, M.

    2011-03-15

    All possible ternary fragmentations in fission of {sup 252}Cf are studied in collinear configuration within a spherical approximation using the recently proposed ''three cluster model.'' The potential energy surface of collinear configuration exhibits a strong valley around {sup 48}Ca and its neighboring nuclei {sup 50}Ca, {sup 54}Ti, and {sup 60}Cr. Such strong minima are not seen in the potential energy surface of an equatorial configuration. As a consequence of strong minima in the potential, the overall relative yield is higher for the ternary fragmentation with {sup 48}Ca, {sup 50}Ca, {sup 54}Ti, {sup 60}Cr, and {sup 82}Ge as the third fragment. The results of potential energy and relative yield calculations reveal that collinear configuration increases the probability of emission of heavy fragments like {sup 48}Ca (doubly magic nucleus) and its neighboring nuclei as the third fragment. The obtained results indicate that the collinear configuration is the preferred configuration for intermediate nuclei ({sup 48}Ca, {sup 50}Ca, {sup 54}Ti, and {sup 60}Cr) as the third fragment in particle accompanied fission while the equatorial configuration may be a preferred configuration for light nuclei ({sup 4}He, {sup 10}Be) as the third fragment.

  12. Status of the electron cyclotron resonance charge breeder for the {sup 252}Cf fission source project at ATLAS

    SciTech Connect

    Vondrasek, R. C.; Scott, R.; Carr, J.; Pardo, R. C.

    2008-02-15

    The construction of the Californium Rare Ion Breeder Upgrade, a new radioactive beam facility for the Argonne tandem linac accelerator system (ATLAS), is in progress. The facility will use fission fragments from a 1 Ci {sup 252}Cf source, thermalized and collected into a low-energy particle beam by a helium gas catcher. In order to reaccelerate these beams, the existing ATLAS ECR1 ion source has been redesigned to function as a charge breeder source. The design features, initial results, and status of this charge breeder configuration are presented.

  13. Relative Yields of 149-153Pr in Spontaneous Fission of 252Cf

    NASA Astrophysics Data System (ADS)

    Eldridge, Jonathan; Wang, Enhong; Hwang, J. K.; Hamilton, Joe; Ramayya, A. V.; Luo, Y. X.; Rasmussen, J. O.; Zhu, S. J.; Liu, S. H.; Ter-Akopian, G. M.; Oganessian, Yu. Ts.

    2013-10-01

    The relative yields of the fission partners of 149-153Pr, resulting from the spontaneous fission of 252Cf, were studied. This study was done by means of γ - γ - γ , and γ - γ - γ - γ coincidence data taken in 2000 by the multi-HPGe, Compton-suppressed, gamma detector array, Gammasphere, at Lawrence Berkeley National Lab. The coincidence data were analyzed by double- and triple-gating on transitions in 149-153Pr and obtaining the intensities of the 93-101Y transitions. For 150 , 151 , 152 , 153Pr the 3n channel was found to be the strongest. The 149Pr, however, was found to peak at the 4n channel. These results were used to verify the assignments of the level schemes of 151 , 152 , 153Pr. The data are found to be in agreement with Wahl's independent yield tables.

  14. Structures of the neutron-rich nuclei observed in fission of {sup 252}Cf

    SciTech Connect

    Ramayya, A. V.; Hamilton, J. H.; Goodin, C. J.; Brewer, N. T.; Hwang, J. K.; Luo, Y. X.; Liu, S. H.; Stone, N. J.; Daniel, A. V.; Zhu, S. J.

    2014-08-14

    Analysis of high statistics triple coincidence fission γ data from {sup 252}Cf at Gammasphere including angular correlations yielded well-expanded high-spin level schemes with more complete and reliable spin/parity assignments for {sup 82}Ge, {sup 118,120,122}Cd and {sup 114,115}Rh. Both the quasi-particle/hole couplings and quasi-rotational degrees of freedom are implied to play roles in these Cd isotopes. Evidence for triaxial shapes and octupole components in the Cd isotopes is presented. These Cd isotopes may have triaxial deformations. High-spin level schemes of {sup 114,115}Rh have been established for the first time. The existence of a relatively large signature splitting and an yrare band shows typical features of a triaxially deformed nucleus. Possible excited deformed rotational bands are observed, for the first time, in {sup 82}Ge. From the multipole mixing ratio measurement, the ground state configurations of {sup 109,111}Ru, as well as excited states in {sup 103,107}Mo and {sup 111}Ru were determined.

  15. Results with the electron cyclotron resonance charge breeder for the 252Cf fission source project (Californium Rare Ion Breeder Upgrade) at Argonne Tandem Linac Accelerator System.

    PubMed

    Vondrasek, R; Kondrashev, S; Pardo, R; Scott, R; Zinkann, G P

    2010-02-01

    The construction of the Californium Rare Ion Breeder Upgrade, a new radioactive beam facility for the Argonne Tandem Linac Accelerator System (ATLAS), is nearing completion. The facility will use fission fragments from a 1 Ci (252)Cf source; thermalized and collected into a low-energy particle beam by a helium gas catcher. In order to reaccelerate these beams, an existing ATLAS electron cyclotron resonance (ECR) ion source was redesigned to function as an ECR charge breeder. Thus far, the charge breeder has been tested with stable beams of rubidium and cesium achieving charge breeding efficiencies of 9.7% into (85)Rb(17+) and 2.9% into (133)Cs(20+).

  16. 252Cf fission-neutron spectrum using a simplified time-of-flight setup: An advanced teaching laboratory experiment

    NASA Astrophysics Data System (ADS)

    Becchetti, F. D.; Febbraro, M.; Torres-Isea, R.; Ojaruega, M.; Baum, L.

    2013-02-01

    The removal of PuBe and AmBe neutron sources from many university teaching laboratories (due to heightened security issues) has often left a void in teaching various aspects of neutron physics. We have recently replaced such sources with sealed 252Cf oil-well logging sources (nominal 10-100 μCi), and developed several experiments using them as neutron sources. This includes a fission-neutron time-of-flight experiment using plastic scintillators, which utilizes the prompt γ rays emitted in 252Cf spontaneous fission as a fast timing start signal. The experiment can be performed with conventional nuclear instrumentation and a 1-D multi-channel pulse-height analyzer, available in most advanced teaching laboratories. Alternatively, a more sophisticated experiment using liquid scintillators and n/γ pulse-shape discrimination can be performed. Several other experiments using these neutron sources are also feasible. The experiments can introduce students to the problem of detecting the dark matter thought to dominate the universe and to the techniques used to detect contraband fissionable nuclear materials.

  17. Results with the electron cyclotron resonance charge breeder for the {sup 252}Cf fission source project (Californium Rare Ion Breeder Upgrade) at Argonne Tandem Linac Accelerator System

    SciTech Connect

    Vondrasek, R.; Kondrashev, S.; Pardo, R.; Scott, R.; Zinkann, G. P.

    2010-02-15

    The construction of the Californium Rare Ion Breeder Upgrade, a new radioactive beam facility for the Argonne Tandem Linac Accelerator System (ATLAS), is nearing completion. The facility will use fission fragments from a 1 Ci {sup 252}Cf source; thermalized and collected into a low-energy particle beam by a helium gas catcher. In order to reaccelerate these beams, an existing ATLAS electron cyclotron resonance (ECR) ion source was redesigned to function as an ECR charge breeder. Thus far, the charge breeder has been tested with stable beams of rubidium and cesium achieving charge breeding efficiencies of 9.7% into {sup 85}Rb{sup 17+} and 2.9% into {sup 133}Cs{sup 20+}.

  18. Characterization of neutron fields from bare and heavy water moderated (252)Cf spontaneous fission source using Bonner Sphere Spectrometer.

    PubMed

    Atanackovic, Jovica; Yonkeu, Andre; Dubeau, Jacques; Witharana, Sampath Hakmana; Priest, Nicholas

    2015-05-01

    In this work a calibrated Bonner Sphere Spectrometer (BSS), together with ISO shadow cones, was used to quantify the total and scattered components of bare and heavy water moderated (252)Cf neutron fields. All measurements were performed with a BSS that was calibrated at the National Physical Laboratory (NPL), Teddington, UK, which is a global primary standard laboratory and world-leading facility for neutron metrology and neutron instruments calibration. The fields were characterized for source-spectrometer distances of 80, 100, 150 and 200cm; and at heights of 103 and 200cm from the facility floor. As expected, the scattered contribution was greatest at the farthest distance from the source and closer to the floor. Hence, at a distance of 200cm and a height of 103cm, the scatter added to the direct field up to 162% of the total neutron fluence and up to 61% of the ambient dose equivalent, while at the same distance and height of 200cm above the floor, these values were up to 146% and 52%, respectively. In the case of heavy water moderated (252)Cf neutron fields, a shadow cone subtraction technique could not be implemented, however Monte Carlo simulations were utilized in order to differentiate between the direct and scatter components of the neutron fields. In this case, at a source-detector distance of 200cm and a height of 103cm, the scatter added to the direct field up to 148% of the total neutron fluence and up to 45% of the ambient dose equivalent, while at the same distance and a height of 200cm above the floor, these values were up to 134% and 42%, respectively.

  19. Analysis of linear energy transfers and quality factors of charged particles produced by spontaneous fission neutrons from 252Cf and 244Pu in the human body.

    PubMed

    Endo, Akira; Sato, Tatsuhiko

    2013-04-01

    Absorbed doses, linear energy transfers (LETs) and quality factors of secondary charged particles in organs and tissues, generated via the interactions of the spontaneous fission neutrons from (252)Cf and (244)Pu within the human body, were studied using the Particle and Heavy Ion Transport Code System (PHITS) coupled with the ICRP Reference Phantom. Both the absorbed doses and the quality factors in target organs generally decrease with increasing distance from the source organ. The analysis of LET distributions of secondary charged particles led to the identification of the relationship between LET spectra and target-source organ locations. A comparison between human body-averaged mean quality factors and fluence-averaged radiation weighting factors showed that the current numerical conventions for the radiation weighting factors of neutrons, updated in ICRP103, and the quality factors for internal exposure are valid.

  20. Orientation of fission fragments and anisotropy of {gamma}-Quanta emission

    SciTech Connect

    Barabanov, A.L.

    1994-07-01

    Experimental data on angular distributions of {gamma}-quanta emitted by fragments of binary and ternary spontaneous fission of {sup 252}Cf are analyzed. Their difference indicates that the fragment alignment is higher in ternary fission than that in binary fission. Consequences of a possible relation between the ternary fission mechanism and the excitation of collective modes at the stage of descent from the barrier to the scission point are discussed. 19 refs., 5 figs.

  1. Graphite moderated (252)Cf source.

    PubMed

    Sajo-Bohus, Laszlo; Barros, Haydn; Greaves, Eduardo D; Vega-Carrillo, Hector Rene

    2015-06-01

    The Thorium molten-salt reactor is an attractive and affordable nuclear power option for developing countries with insufficient infrastructure and limited technological capability. In the aim of personnel training and experience gathering at the Universidad Simon Bolivar there is in progress a project of developing a subcritical thorium liquid-fuel reactor. The neutron source to run this subcritical reactor is a (252)Cf source and the reactor will use high-purity graphite as moderator. Using the MCNP5 code the neutron spectra of the (252)Cf in the center of the graphite moderator has been estimated along the channel where the liquid thorium salt will be inserted; also the ambient dose equivalent due to the source has been determined around the moderator.

  2. Results with the electron cyclotron resonance charge breeder for the 252Cf fission source project (Californium Rare Ion Breeder Upgrade) at Argonne Tandem Linac Accelerator System

    NASA Astrophysics Data System (ADS)

    Vondrasek, R.; Kondrashev, S.; Pardo, R.; Scott, R.; Zinkann, G. P.

    2010-02-01

    The construction of the Californium Rare Ion Breeder Upgrade, a new radioactive beam facility for the Argonne Tandem Linac Accelerator System (ATLAS), is nearing completion. The facility will use fission fragments from a 1 Ci C252f source; thermalized and collected into a low-energy particle beam by a helium gas catcher. In order to reaccelerate these beams, an existing ATLAS electron cyclotron resonance (ECR) ion source was redesigned to function as an ECR charge breeder. Thus far, the charge breeder has been tested with stable beams of rubidium and cesium achieving charge breeding efficiencies of 9.7% into R85b17+ and 2.9% into C133s20+.

  3. Lifetimes in neutron-rich fission fragments using the differential recoil distance method

    SciTech Connect

    Kruecken, R.; Chou, W.-T.; Cooper, J. R.; Beausang, C. W.; Barton, C. J.; Caprio, M. A.; Casten, R. F.; Hecht, A. A.; Novak, J. R.; Pietralla, N.

    2001-07-01

    Lifetimes in the neutron-rich nuclei {sup 104}Mo, {sup 110}Ru, and {sup 144}Ba were measured using the differential recoil distance method. The experiment was performed with a {sup 252}Cf fission source inside the New Yale Plunger Device. {gamma} rays were detected by the SPEctrometer for Experiments with Doppler shifts at Yale (SPEEDY) while fission fragments with the appropriate kinematics were detected by an array of photocells.

  4. A multiple parallel-plate avalanche counter for fission-fragment detection

    NASA Astrophysics Data System (ADS)

    Wu, C. Y.; Henderson, R. A.; Haight, R. C.; Lee, H. Y.; Taddeucci, T. N.; Bucher, B.; Chyzh, A.; Devlin, M.; Fotiades, N.; Kwan, E.; O'Donnell, J. M.; Perdue, B. A.; Ullmann, J. L.

    2015-09-01

    A new low-mass multiple gas-filled parallel-plate avalanche counter for the fission-fragment detection has been developed to mark the fission occurrence in measurements of the prompt fission neutron energy spectrum as a function of incident neutron energy. It was used successfully for the neutron-induced fission of 235U and 239Pu with a total mass near 100 mg each and the spontaneous fission of 252Cf. Both the incident neutron energy and the prompt fission neutron energy are measured by using the time-of-flight method. The design and performance of this avalanche counter are described.

  5. The collinear cluster tri-partition (CCT) of 252Cf (sf): New aspects from neutron gated data

    NASA Astrophysics Data System (ADS)

    Pyatkov, Yu. V.; Kamanin, D. V.; von Oertzen, W.; Alexandrov, A. A.; Alexandrova, I. A.; Falomkina, O. V.; Jacobs, N.; Kondratjev, N. A.; Kuznetsova, E. A.; Lavrova, Yu. E.; Malaza, V.; Ryabov, Yu. V.; Strekalovsky, O. V.; Tyukavkin, A. N.; Zhuchko, V. E.

    2012-07-01

    Results of two different experiments for the study of fission of 252Cf (sf) events in coincidence with neutrons are reported. Two time-of-flight-energy (TOF- E detectors systems have been used. The fission fragment masses were obtained in a double arm coincidence set-up, where the missing mass in the binary decay is used to characterise ternary fission as a collinear cluster tri-partition (CCT). The 3He filled neutron counters have been arranged so as to detect principally neutrons emitted from an isotropic source in the laboratory frame. The fission events connected to the larger experimental neutron multiplicities show a wide range in the missing-mass spectrum, down to α -particles, carbon and oxygen isotopes. These are linked with magic nuclei in the binary mass-mass correlations of the fission fragments. These neutron gated data are virtually free from background events from scattered binary fission fragments. The ungated spectra are compared to those of the previous data from our previous article (Eur. Phys. J. A. 45, 29 (2010)), the observed structures agree well with the manifestations of the collinear cluster tri-partition of 252Cf (sf) observed earlier. Several new families of the CCT modes are observed.

  6. The content of 250Cf and 248Cm in 252Cf neutron sources and the effect on the neutron emission rate.

    PubMed

    Roberts, N J; Jones, L N

    2007-01-01

    One of the most common radionuclide neutron sources used for the calibration of detectors is (252)Cf. However, these sources also contain (250)Cf, which is present in the material from which the sources are made, and (248)Cm, which is formed as the daughter of (252)Cf via alpha-decay. Both decay by spontaneous fission with longer half-lives than (252)Cf. Consequently, as the source becomes older, the emission rate does not follow the decay curve of (252)Cf. Fits have been made to emission rate measurements of (252)Cf sources at NPL spanning over 30 y to deduce their (250)Cf and (248)Cm content. The emission rate of a source can be significantly underestimated if the presence of (250)Cf and (248)Cm is not taken into account, and this has been investigated for a typical (252)Cf source. The importance of this problem to other calibration laboratories and users of (252)Cf sources is emphasised.

  7. Sputtering yield of Pu bombarded by fission Fragments from Cf

    SciTech Connect

    Danagoulian, Areg; Klein, Andreas; Mcneil, Wendy V; Yuan, Vincent W

    2008-01-01

    We present results on the yield of sputtering of Pu atoms from a Pu foil, bombarded by fission fragments from a {sup 252}Cf source in transmission geometry. We have found the number of Pu atoms/incoming fission fragments ejected to be 63 {+-} 1. In addition, we show measurements of the sputtering yield as a function of distance from the central axis, which can be understood as an angular distribution of the yield. The results are quite surprising in light of the fact that the Pu foil is several times the thickness of the range of fission fragment particles in Pu. This indicates that models like the binary collision model are not sufficient to explain this behavior.

  8. The SPIDER fission fragment spectrometer for fission product yield measurements

    DOE PAGES

    Meierbachtol, K.; Tovesson, F.; Shields, D.; Arnold, C.; Blakeley, R.; Bredeweg, T.; Devlin, M.; Hecht, A. A.; Heffern, L. E.; Jorgenson, J.; et al

    2015-04-01

    The SPectrometer for Ion DEtermination in fission Research (SPIDER) developed for measuring mass yield distributions of fission products from spontaneous and neutron-induced fission. The 2E–2v method of measuring the kinetic energy (E) and velocity (v) of both outgoing fission products utilized, with the goal of measuring the mass of the fission products with an average resolution of 1 atomic mass unit (amu). The SPIDER instrument, consisting of detector components for time-of-flight, trajectory, and energy measurements, assembled and tested using 229Th and 252Cf radioactive decay sources. For commissioning, the fully assembled system measured fission products from spontaneous fission of 252Cf. Finally,more » individual measurement resolutions were met for time-of-flight (250 ps FWHM), spacial resolution (2 mm FHWM), and energy (92 keV FWHM for 8.376 MeV). These mass yield results measured from 252Cf spontaneous fission products are reported from an E–v measurement.« less

  9. 252Cf spectrum-averaged cross section for the 63Cu(n, p)63Ni reaction

    NASA Astrophysics Data System (ADS)

    Imamura, M.; Shibata, T.; Shibata, S.; Ohkubo, T.; Satoh, S.; Nogawa, N.

    1999-01-01

    The 63Ni produced by the 63Cu(n, p)63Ni reaction provides a unique measure to estimate the fast-neutron fluence of the Hiroshima/Nagasaki atomic bomb. In the similarity of the fission neutron spectrum of 252Cf to that of 235U, we have measured activation cross sections of the 63Cu(n, p)63Ni reaction averaged for the 252Cf fission spectrum.

  10. Coincident measurements of prompt fission γ rays and fission fragments at DANCE

    NASA Astrophysics Data System (ADS)

    Walker, C. L.; Baramsai, B.; Jandel, M.; Rusev, G.; Couture, A.; Mosby, S.; Ullmann, J.; Kawano, T.; Stetcu, I.; Talou, P.

    2015-10-01

    Modern statistical approaches to modeling fission involve the calculation of not only average quantities but also fully correlated distributions of all fission products. Applications such as those involving the detection of special nuclear materials also rely on fully correlated data of fission products. Experimental measurements of correlated data are thus critical to the validation of theory and the development of important applications. The goal of this experiment was to measure properties of prompt fission gamma-ray emission as a function of fission fragments' total kinetic energy in the spontaneous fission of 252Cf. The measurement was carried out at the Detector for Advanced Neutron Capture Experiments (DANCE), a 4 π γ-ray calorimeter. A prototype design consisting of two silicon detectors was installed in the center of DANCE, allowing simultaneous measurement of fission fragments and γ rays. Effort has been taken to simulate fragment kinetic energy losses as well as γ-ray attenuation in DANCE using such tools as GEANT4 and SRIM. Theoretical predictions generated by the code CGMF were also incorporated as input for these simulations. Results from the experiment and simulations will be presented, along with plans for future measurements.

  11. Comparative toxicity of /sup 226/Ra, /sup 239/Pu, /sup 241/Am, /sup 249/Cf, and /sup 252/Cf in C57BL/Do black and albino mice

    SciTech Connect

    Taylor, G.N.; Mays, C.W.; Lloyd, R.D.; Gardner, P.A.; TAlbot, L.R.; McFarland, S.S.; Pollard, T.A.; Atherton, D.R.; vanMoorhem, D.; Brammer, D.

    1983-09-01

    Groups of C57BL/Do (black and albino) mice were injected with graded activities of /sup 226/Ra, /sup 239/Pu, /sup 241/Am, /sup 249/Cf, or /sup 252/Cf and were followed throughout life. Bone sarcoma was the principal radiation-induced end point, and the risks associated with average skeletal doses of the four transuranium radionuclides, relative to radium, were determined. The relative biological effectiveness (RBE) was calculated for each emitter by dividing its risk coefficient (bone sarcomas per 10/sup 6/ mouse-rad) by the risk coefficient for /sup 226/Ra. Combined data for males and females in both black and albino mice gave the following values +- SD for the RBE relative to /sup 226/Ra = 1.0: /sup 239/Pu = 15.3 +- 3.9, /sup 241/Am = 4.9 +- 1.4, /sup 249/Cf = 5.0 +- 1.4, and /sup 252/Cf = 2.6 +- 0.8. About 70% of the tumors occurred in the axial skeleton, and the risk coefficient for females averaged about four times higher than for males when all five nuclides were included. The RBE of fission fragment irradiation from /sup 252/Cf for cancer induction, relative to ..cap alpha.. irradiation, for the combined data in all of the animals given /sup 252/Cf and /sup 249/Cf, was 0.02 +- 0.28, in agreement with the calculated theoretical value of 0.03, based on the ratio of summed track lengths in tissue.

  12. Comparative toxicity of /sup 226/Ra, /sup 239/Pu, /sup 241/Am, /sup 249/Cf, and /sup 252/Cf in C57BL/Do black and albino mice

    SciTech Connect

    Taylor, G.N.; Mays, C.W.; Lloyd, R.D.; Gardner, P.A.; Talbot, L.R.; McFarland, S.S.; Pollard, I.A.; Atherton, D.R.; VanMoorhem, D.; Brammer, D.

    1983-09-01

    Groups of C57BL/Do (black and albino) mice were injected with graded activities of /sup 226/Ra, /sup 239/Pu, /sup 241/Am, /sup 249/Cf, or /sup 252/Cf and were followed throughout life. Bone sarcoma was the principal radiation-induced end point, and the risks associated with average skeletal doses of the four transuranium radionuclides, relative to radium, were determined. The relative biological effectiveness (RBE) was calculated for each emitter by dividing its risk coefficient (bone sarcomas per 10(/sup 6/) mouse-rad) by the risk coefficient for /sup 226/Ra. Combined data for males and females in both black and albino mice gave the following values +/- SD for the RBE relative to /sup 226/Ra . 1.0: /sup 239/Pu . 15.3 +/- 3.9, /sup 241/Am . 4.9 +/- 1.4, /sup 249/Cf . 5.0 +/- 1.4, and /sup 252/Cf . 2.6 +/- 0.8. About 70% of the tumors occurred in the axial skeleton, and the risk coefficient for females averaged about four times higher than for males when all five nuclides were included. The RBE of fission fragment irradiation from /sup 252/Cf for cancer induction, relative to alpha irradiation, for the combined data in all of the animals given /sup 252/Cf and /sup 249/Cf, was 0.02 +/- 0.28, in agreement with the calculated theoretical value of 0.03, based on the ratio of summed track lengths in tissue.

  13. Description of the /sup 252/Cf(sf) neutron spectrum in the framework of a generalized Madland-Nix model

    SciTech Connect

    Marten, H.; Seeliger, D.

    1986-08-01

    The Madland-Nix model (MNM) for the calculation of fission neutron spectra is modified considering the dependence on fragment mass number A. Further, an approximation of this generalized Madland-Nix model (GMNM) that takes into account the different center-of-mass system spectra for the light and heavy fragment groups is discussed. These new calculations are compared with two versions of the original MNM. In particular, the level density parameter, which was adjusted by fitting the calculated spectra to a Maxwellian distribution deduced from experimental data, becomes more reasonable in the framework of the GMNM. The results of the different model calculations are compared with experimental data on the /sup 252/Cf(sf) neutron spectrum in the 0.1- to 20-MeV energy range.

  14. Radioluminescence of solid neodymium-doped laser materials excited by {alpha}-particles and fission fragments

    SciTech Connect

    Seregina, E A; Seregin, A A

    2013-02-28

    The characteristics of radioluminescence of Nd{sup 3+} : Y{sub 3}Al{sub 5}O{sub 12} crystals and laser glasses under excitation by plutonium-239 ({sup 239}Pu) {alpha}-particles, as well as by {alpha}-particles and spontaneous fission fragments of californium-252 ({sup 252}Cf), are studied. The radioluminescence branching ratios {beta}{sub ij} for the transition from the {sup 2}F2{sub 5/2} level to the {sup 2S+1}L{sub J} levels in Nd{sup 3+} : Y{sub 3}Al{sub 5}O{sub 12} crystals are measured. Radioluminescence from the {sup 2}P{sub 3/2} level to low-lying levels is observed. The {beta}{sub ij} ratios for transitions from the high-lying {sup 2}F2{sub 5/2}, {sup 4}D{sub 3/2}, and {sup 2}P{sub 3/2} levels are theoretically calculated. The lifetimes of metastable levels of Nd{sup 3+} excited by {sup 252}Cf fission fragments are measured. The efficiency of the conversion of energy of {alpha}-particles and fission fragments to the energy of optical radiation of Nd{sup 3+} : Y{sub 3}Al{sub 5}O{sub 12} crystals and laser glasses is determined. (active media)

  15. Radioluminescence of solid neodymium-doped laser materials excited by α-particles and fission fragments

    NASA Astrophysics Data System (ADS)

    Seregina, E. A.; Seregin, A. A.

    2013-02-01

    The characteristics of radioluminescence of Nd3+ : Y3Al5O12 crystals and laser glasses under excitation by plutonium-239 (239Pu) α-particles, as well as by α-particles and spontaneous fission fragments of californium-252 (252Cf), are studied. The radioluminescence branching ratios βij for the transition from the 2F25/2 level to the 2S+1LJ levels in Nd3+ : Y3Al5O12 crystals are measured. Radioluminescence from the 2P3/2 level to low-lying levels is observed. The βij ratios for transitions from the high-lying 2F25/2, 4D3/2, and 2P3/2 levels are theoretically calculated. The lifetimes of metastable levels of Nd3+ excited by 252Cf fission fragments are measured. The efficiency of the conversion of energy of α-particles and fission fragments to the energy of optical radiation of Nd3+ : Y3Al5O12 crystals and laser glasses is determined.

  16. Dynamics and energetics of a /sup 251/Cf-/sup 252/Cf power system

    SciTech Connect

    Harms, A.A. ); Cripps, G. )

    1988-06-01

    A combination fission-radioisotope compact power system involving the synergistic interaction of /sup 251/Cf and /sup 252/Cf is considered. Based on a nonlinear point kinetics formulation of the coupled reactions combined with the parametric incorporation of design and operational variables, it is shown that a stable autonomous power mode is readily attainable. This system appears particularly suitable for very long-life unattended operation for space and terrestrial applications.

  17. ANISOTROPY FACTORS FOR A 252Cf SOURCE

    SciTech Connect

    Veinot, K. G.; Bogard, James S

    2009-01-01

    A new 252Cf source has been procured for use at the Dosimetry Applications and Research (DOSAR) facility at the Oak Ridge National Laboratory (ORNL). This source was encapsulated by the Californium Facility at ORNL, however, the encapsulation differs from previous designs designated as SR-Cf-100. The new encapsulation, designated SR-Cf-3000, has a similar cylindrical radius to the previous generation, but is 1.6 cm longer. Since the encapsulation geometries differ the amount of internal scattering of neutrons will also differ leading to changes in anisotropy factors between the two designs. Additionally, the different encapsulations will affect the absorbed dose and dose equivalent delivered per neutron emitted by the source since both the quantity and energy distribution of the emitted neutrons will vary with irradiation angle. This work presents the fluence anisotropy factors for the SR-Cf-3000 series encapsulation as well as absorbed dose and dose equivalent values calculated for various angles of irradiation. The fluence anisotropy factors vary from a maximum of 1.037 to a minimum of 0.641 for irradiation angles perpendicular and parallel to the source axis, respectively. Anisotropy in absorbed dose varied from a maximum of 1.033 to a minimum of 0.676 while anisotropy of dose equivalent varied from 1.035 to 0.657.

  18. True ternary fission

    NASA Astrophysics Data System (ADS)

    Vijayaraghavan, K. R.; Balasubramaniam, M.; von Oertzen, W.

    2015-04-01

    The study of the ternary fission of nuclei has received new interest recently. It is of general interest for nuclear dynamics, although the process is very rare. In the present work, we discuss the possibilities of true ternary fission (fragment masses A >30 ) in 252Cf for different mass splits. These mass splits are strongly favored in a collinear geometry. Based on the three cluster model (TCM), it is shown that the true ternary fission into fragments with almost equal masses is one of the possible fission modes in 252Cf . For general decays it is shown that the formation of the lightest fragment at the center has the highest probability. Further the formation of tin isotopes and/or other closed shell fragments are favored. For the decay products the presence of closed shell nuclei among the three fragments enhances the decay probabilities.

  19. Attributes and templates from active measurements with {sup 252}Cf

    SciTech Connect

    Mihalczo, J.T.; Mattingly, J.K.

    2000-02-01

    Active neutron interrogation is useful for the detection of shielded HEU and could also be used for Pu. In an active technique, fissile material is stimulated by an external neutron source to produce fission with the emanation of neutrons and gamma rays. The time distribution of particles leaving the fissile material is measured with respect to the source emission in a variety of ways. A variety of accelerator and radioactive sources can be used. Active interrogation of nuclear weapons/components can be used in two ways: template matching or attribute estimation. Template matching compares radiation signatures with known reference signatures and for treaty applications has the problem of authentication of the reference signatures along with storage and retrieval of templates. Attribute estimation determines, for example, the fissile mass from various features of the radiation signatures and does not require storage of radiation signatures but does require calibration, which can be repeated as necessary. A nuclear materials identification system (NMIS) has been in use at the Oak Ridge Y-12 Plant for verification of weapons components being received and in storage by template matching and has been used with calibrations for attribute (fissile mass) estimation for HEU metal. NMIS employs a {sup 252}Cf source of low intensity (< 2 x 10{sup 6} n/sec) such that the dose at 1 m is approximately twice that on a commercial airline at altitude. The use of such a source presents no significant safety concerns either for personnel or nuclear explosive safety, and has been approved for use at the Pantex Plant on fully assembled weapons systems.

  20. Measurement and calculation of the emission anisotropy of an X1 252Cf neutron source.

    PubMed

    Hawkes, N P; Freedman, R; Tagziria, H; Thomas, D J

    2007-01-01

    The authors have measured the emission anisotropy from a (252)Cf spontaneous fission neutron source in an X1 encapsulation. The measurements were made in a large low-scatter laboratory using a long counter, and data were taken at angles varying in 10 degrees steps from 0 degrees to 180 degrees relative to the cylindrical axis of the source. Corrections were made for room scatter, loss of neutrons due to air scatter and detector dead time. Calculations corresponding to these measurements were subsequently carried out using the two Monte Carlo codes MCNP and MCBEND, and the results are compared with the measurements and with each other.

  1. Fission Fragment Yield, Cross Section and Prompt Neutron and Gamma Emission Data from Actinide Isotopes

    NASA Astrophysics Data System (ADS)

    Hambsch, F.-J.; Oberstedt, S.; Al-Adili, A.; Brys, T.; Billnert, R.; Matei, C.; Oberstedt, A.; Salvador-Castiñeira, P.; Tudora, A.; Vidali, M.

    2014-05-01

    Recent experimental investigations on major and minor actinides at the JRC-IRMM are presented. Fission-fragment distributions of isotopes with vibrational resonances in the sub-threshold fission cross section, i. e. 234,238U, have been measured. For 234U, the impact of an increased neutron multiplicity for the heavy fragments with higher incident neutron energies has been studied as observed in experiment and also recently theoretically predicted. The impact is found to be noticeable on post-neutron mass yields, which are the relevant quantities for a-priori waste assessments. The fission cross sections for 240,242Pu at threshold and in the plateau region are being investigated within the ANDES project. The results show some discrepancies to the ENDF/B-VII.1 evaluation mainly for 242Pu around 1 MeV, where the evaluation exhibits a resonance-like structure not observed so clearly in the present work. The requested target accuracy in design studies of innovative reactor concepts like Gen-IV is in the range of a few percent. In order to be able to respond to requests for measurements of prompt neutron and γ-ray emission in fission JRC-IRMM has also invested in setting up a neutron and γ-ray detector array. The neutron array is called SCINTIA and has so far been tested with 252Cf(SF). For γ-ray multiplicity and spectrum measurements of 252Cf(SF) and 235U(nth, f) lanthanum- and cerium-halide detectors were successfully used.

  2. Development of a thin scintillation films fission-fragment detector and a novel neutron source

    NASA Astrophysics Data System (ADS)

    Rusev, G.; Jandel, M.; Baramsai, B.; Bond, E. M.; Bredeweg, T. A.; Couture, A.; Daum, J. K.; Favalli, A.; Ianakiev, K. D.; Iliev, M. L.; Mosby, S.; Roman, A. R.; Springs, R. K.; Ullmann, J. L.; Walker, C. L.

    2015-08-01

    Investigation of prompt fission and neutron-capture Υ rays from fissile actinide samples at the Detector for Advanced Neutron Capture Experiments (DANCE) requires use of a fission-fragment detector to provide a trigger or a veto signal. A fission-fragment detector based on thin scintillating films and silicon photomultipliers has been built to serve as a trigger/veto detector in neutron-induced fission measurements at DANCE. The fissile material is surrounded by scintillating films providing a 4π detection of the fission fragments. The scintillations were registered with silicon photomultipliers. A measurement of the 235U(n,f) reaction with this detector at DANCE revealed a correct time-of-flight spectrum and provided an estimate for the efficiency of the prototype detector of 11.6(7)%. Design and test measurements with the detector are described. A neutron source with fast timing has been built to help with detector-response measurements. The source is based on the neutron emission from the spontaneous fission of 252Cf and the same type of scintillating films and silicon photomultipliers. Overall time resolution of the source is 0.3 ns. Design of the source and test measurements with it are described. An example application of the source for determining the neutron/gamma pulse-shape discrimination by a stilbene crystal is given.

  3. Development of a thin scintillation films fission-fragment detector and a novel neutron source

    DOE PAGES

    Rusev, Gencho Yordanov; Jandel, Marian; Baramsai, Bayarbadrakh; Bond, Evelyn M.; Bredeweg, Todd Allen; Couture, Aaron Joseph; Daum, Jaimie Kay; Favalli, Andrea; Ianakiev, Kiril Dimitrov; Iliev, Metodi L.; et al

    2015-08-26

    Here, investigation of prompt fission and neutron-capture Υ rays from fissile actinide samples at the Detector for Advanced Neutron Capture Experiments (DANCE) requires use of a fission-fragment detector to provide a trigger or a veto signal. A fission-fragment detector based on thin scintillating films and silicon photomultipliers has been built to serve as a trigger/veto detector in neutron-induced fission measurements at DANCE. The fissile material is surrounded by scintillating films providing a 4π detection of the fission fragments. The scintillations were registered with silicon photomultipliers. A measurement of the 235U(n,f) reaction with this detector at DANCE revealed a correct time-of-flightmore » spectrum and provided an estimate for the efficiency of the prototype detector of 11.6(7)%. Design and test measurements with the detector are described. A neutron source with fast timing has been built to help with detector-response measurements. The source is based on the neutron emission from the spontaneous fission of 252Cf and the same type of scintillating films and silicon photomultipliers. Overall time resolution of the source is 0.3 ns. Design of the source and test measurements with it are described. An example application of the source for determining the neutron/gamma pulse-shape discrimination by a stilbene crystal is given.« less

  4. Fission fragment driven neutron source

    DOEpatents

    Miller, Lowell G.; Young, Robert C.; Brugger, Robert M.

    1976-01-01

    Fissionable uranium formed into a foil is bombarded with thermal neutrons in the presence of deuterium-tritium gas. The resulting fission fragments impart energy to accelerate deuterium and tritium particles which in turn provide approximately 14 MeV neutrons by the reactions t(d,n).sup.4 He and d(t,n).sup.4 He.

  5. Development of position-sensitive time-of-flight spectrometer for fission fragment research

    SciTech Connect

    Arnold, C. W.; Tovesson, F.; Meierbachtol, K.; Bredeweg, T.; Jandel, M.; Jorgenson, H. J.; Laptev, A.; Rusev, G.; Shields, D. W.; White, M.; Blakeley, R. E.; Mader, D. M.; Hecht, A. A.

    2014-07-09

    A position-sensitive, high-resolution time-of-flight detector for fission fragments has been developed. The SPectrometer for Ion DEtermination in fission Research (SPIDER) is a 2E–2v spectrometer designed to measure the mass of light fission fragments to a single mass unit. The time pick-off detector pairs to be used in SPIDER have been tested with α-particles from 229Th and its decay chain and α-particles and spontaneous fission fragments from 252Cf. Each detector module is comprised of thin electron conversion foil, electrostatic mirror, microchannel plates, and delay-line anodes. Particle trajectories on the order of 700 mm are determined accurately to within 0.7 mm. Flight times were measured with 250 ps resolution FWHM. Computed particle velocities are accurate to within 0.06 mm/ns corresponding to a precision of 0.5%. As a result, an ionization chamber capable of 400 keV energy resolution coupled with the velocity measurements described here will pave the way for modestly efficient measurements of light fission fragments with unit mass resolution.

  6. Development of position-sensitive time-of-flight spectrometer for fission fragment research

    DOE PAGES

    Arnold, C. W.; Tovesson, F.; Meierbachtol, K.; Bredeweg, T.; Jandel, M.; Jorgenson, H. J.; Laptev, A.; Rusev, G.; Shields, D. W.; White, M.; et al

    2014-07-09

    A position-sensitive, high-resolution time-of-flight detector for fission fragments has been developed. The SPectrometer for Ion DEtermination in fission Research (SPIDER) is a 2E–2v spectrometer designed to measure the mass of light fission fragments to a single mass unit. The time pick-off detector pairs to be used in SPIDER have been tested with α-particles from 229Th and its decay chain and α-particles and spontaneous fission fragments from 252Cf. Each detector module is comprised of thin electron conversion foil, electrostatic mirror, microchannel plates, and delay-line anodes. Particle trajectories on the order of 700 mm are determined accurately to within 0.7 mm. Flightmore » times were measured with 250 ps resolution FWHM. Computed particle velocities are accurate to within 0.06 mm/ns corresponding to a precision of 0.5%. As a result, an ionization chamber capable of 400 keV energy resolution coupled with the velocity measurements described here will pave the way for modestly efficient measurements of light fission fragments with unit mass resolution.« less

  7. Absolute measurement of anti. nu. /sub p/ for /sup 252/Cf using the ORNL large liquid scintillator neutron detector

    SciTech Connect

    Spencer, R.R.; Gwin, R.; Ingle, R.

    1981-08-01

    The ORNL large liquid scintillator detector was used in a precise determination of anti ..nu../sub p/, the number of neutrons emitted promptly, for spontaneous fission of /sup 252/Cf. Measurements of the detector efficiency over a broad energy region were made by means of a proton-recoil technique employing the ORELA white neutron source. Monte Carlo calculation of the detector efficiency for a spectrum representative of /sup 252/Cf fission neutrons was calibrated with these elaborate measurements. The unusually flat response of the neutron detector resulted in elimination of several known sources of error. Experimental measurement was coupled with calculational methods to correct for other known errors. These measurements lead to an unusually small estimated uncertainty of 0.2% in the value obtained, anti ..nu../sub p/ = 3.773 +- 0.007.

  8. A New Facility For Non-Destructive Assay With A Time-Tagged {sup 252}Cf Source

    SciTech Connect

    Stevanato, L.; Caldogno, M.; Hao, Xin; Dima, R.; Fabris, D.; Nebbia, G.; Lunardon, M.; Moretto, S.; Pesente, S.; Viesti, G.; Sajo-Bohus, L.

    2011-06-01

    A new facility for Non-Destructive Assay based on a time-tagged {sup 252}Cf spontaneous fission source is now in operation at the Padova University. The system is designed to analyze samples with dimensions on the order of 20x20 cm{sup 2}, the material recognition being obtained by measuring simultaneously transmission of neutrons and gamma rays as a function of energy.

  9. Velocity fluctuations of fission fragments

    NASA Astrophysics Data System (ADS)

    Llanes-Estrada, Felipe J.; Carmona, Belén Martínez; Martínez, Jose L. Muñoz

    2016-02-01

    We propose event by event velocity fluctuations of nuclear fission fragments as an additional interesting observable that gives access to the nuclear temperature in an independent way from spectral measurements and relates the diffusion and friction coefficients for the relative fragment coordinate in Kramers-like models (in which some aspects of fission can be understood as the diffusion of a collective variable through a potential barrier). We point out that neutron emission by the heavy fragments can be treated in effective theory if corrections to the velocity distribution are needed.

  10. FY04&05 LDRD Final Report Fission Fragment Sputtering

    SciTech Connect

    Ebbinghaus, B; Trelenberg, T; Meier, T; Felter, T; Sturgeon, J; Kuboda, A; Wolfer, B

    2006-02-22

    Fission fragments born within the first 7 {micro}m of the surface of U metal can eject a thousand or more atoms per fission event. Existing data in the literature show that the sputtering yield ranges from 10 to 10,000 atoms per fission event near the surface, but nothing definitive is known about the energy of the sputtered clusters. Experimental packages were constructed allowing the neutron irradiation of natural uranium foils to investigate the amount of material removed per fission event and the kinetic energy distribution of the sputtered atoms. Samples were irradiated but were never analyzed after irradiation. Similar experiments were attempted in a non-radioactive environment using accelerator driven ions in place of fission induced fragments. These experiments showed that tracks produced parallel to the surface (and not perpendicular to the surface) are the primary source of the resulting particulate ejecta. Modeling studies were conducted in parallel with the experimental work. Because the reactor irradiation experiments were not analyzed, data on the energy of the resulting particulate ejecta was not obtained. However, some data was found in the literature on self sputtering of {sup 252}Cf that was used to estimate the velocity and hence the energy of the ejected particulates. Modeling of the data in the literature showed that the energy of the ejecta was much lower than had been anticipated. A mechanism to understand the nature of the ejecta was pursued. Initially it was proposed that the fission fragment imparts its momenta on the electrons which then impart their momenta on the nuclei. Once the nuclei are in motion, the particulate ejecta would result. This initial model was wrong. The error was in the assumption that the secondary electrons impart their momenta directly on the nuclei. Modeling and theoretical considerations showed that the secondary electrons scatter many times before imparting all their momenta. As a result, their energy transfer is

  11. Ternary fission of nuclei into comparable fragments

    SciTech Connect

    Karpeshin, F. F.

    2015-07-15

    The problem of nuclear fission into three comparable fragments is considered. A mechanism of true ternary fission is proposed. In contrast to sequential fission, where the three fragments arise upon two sequential events of binary fission, the mechanism in question relies on a scenario that originally involves fission into three fragments. This mechanism is driven by a hexadecapole deformation of the fissioning nucleus, in contrast to binary fission associated with quadrupole vibrations of the nuclear surface. The fragment-mass ratios are estimated. The dynamics of formation of collinear fragments and their subsequent motion in opposite directions is traced. The calculated probability of true ternary fission complies with observed values.

  12. Ternary fission of nuclei into comparable fragments

    NASA Astrophysics Data System (ADS)

    Karpeshin, F. F.

    2015-07-01

    The problem of nuclear fission into three comparable fragments is considered. A mechanism of true ternary fission is proposed. In contrast to sequential fission, where the three fragments arise upon two sequential events of binary fission, the mechanism in question relies on a scenario that originally involves fission into three fragments. This mechanism is driven by a hexadecapole deformation of the fissioning nucleus, in contrast to binary fission associated with quadrupole vibrations of the nuclear surface. The fragment-mass ratios are estimated. The dynamics of formation of collinear fragments and their subsequent motion in opposite directions is traced. The calculated probability of true ternary fission complies with observed values.

  13. Microstructure damage of thin aluminum films by irradiation with alpha particles and fission fragments

    SciTech Connect

    Sadi, S.; Paulenova, A.; Loveland, W.D.; Watson, P.R.

    2007-07-01

    The atomic force microscopy (AFM) has been used to study the microstructure damage of thin aluminum film surfaces induced by bombardment of alpha particles and fission fragments from {sup 252}Cf source. Different types of defects (dislocations lines, loops, voids, and blisters) and their complex morphologies appeared under both the beam of alpha particles and a mix of alpha particles and fission fragments. The first surface damage became clearly visible only after 250 hr irradiation of a mix of alpha particles and fission fragments (8.65 x 10{sup 8} ff/cm{sup 2} and 1.36 x 10{sup 10} {alpha}/cm{sup 2}). The number of voids and dislocation lines created on the aluminum surface were (3.8 {+-} 0.8) x 10{sup 7} cm{sup -2} and (2.1 {+-} 0.8) x 10{sup 6} cm{sup -2}, respectively. Single blisters were observed with the mean diameter of (933 {+-} 22) nm and the mean height of (102 {+-} 15) nm. The first ellipsoidal dislocation loops appeared at the fluence of (1.03 x 10{sup 9} ff/cm{sup 2} and 1.62 x 10{sup 10} {alpha}/cm{sup 2}). However, these ellipsoidal loops were not seen with low energetic alpha particles at the same fluence. Our results suggest that the fission fragments might maximize large voids and dislocations and increase the degradation in depth resolution. (authors)

  14. Reactor production of sup 252 Cf and transcurium isotopes

    SciTech Connect

    Alexander, C.W.; Halperin, J.; Walker, R.L.; Bigelow, J.E.

    1990-01-01

    Berkelium, californium, einsteinium, and fermium are currently produced in the High Flux Isotope Reactor (HFIR) and recovered in the Radiochemical Engineering Development Center (REDC) at the Oak Ridge National Laboratory (ORNL). All the isotopes are used for research. In addition, {sup 252}Cf, {sup 253}Es, and {sup 255}Fm have been considered or are used for industrial or medical applications. ORNL is the sole producer of these transcurium isotopes in the western world. A wide range of actinide samples were irradiated in special test assemblies at the Fast Flux Test Facility (FFTF) at Hanford, Washington. The purpose of the experiments was to evaluate the usefulness of the two-group flux model for transmutations in the special assemblies with an eventual goal of determining the feasibility of producing macro amounts of transcurium isotopes in the FFTF. Preliminary results from the production of {sup 254g}Es from {sup 252}Cf will be discussed. 14 refs., 5 tabs.

  15. Compound dual radiation action theory for 252Cf brachytherapy.

    PubMed

    Wang, C K; Zhang, X

    2004-01-01

    The existing dosimetry protocol that uses the concept of RBE for 252Cf brachytherapy contains large uncertainties. A new formula has been developed to correlate the biological effect (i.e. cell survival fraction) resulting from a mixed n + gamma radiation field with two physical quantities and two biological quantities. The formula is based on a pathway model evolved from that of the compound-dual-radiation-action (CDRA) theory, previously proposed by Rossi and Zaider. The new model employs the recently published data on radiation-induced DNA lesions. The new formula is capable of predicting quantitatively the synergistic effect caused by the interactions between neutron events and gamma ray events, and it is intended to be included into a new dosimetry protocol for future 252Cf brachytherapy.

  16. A pneumatic transfer system for special form {sup 252}Cf

    SciTech Connect

    Gehrke, R.J.; Berry, S.M.; Grafwallner, E.G.; Hoggan, J.M.

    1996-09-01

    A pneumatic transfer system has been developed for use with series 100 Special Form {sup 252}Cf. It was developed to reduce the exposure to personnel handling sources of {sup 252}Cf with masses up to 150 {micro}g by permitting remotely activated two-way transfer between the storage container and the irradiation position. The pneumatic transfer system also permits transfers for reproducible repetitive irradiation periods. In addition to the storage container equipped with quick-release fittings, the transfer system consists of an irradiation station, a control box with momentary contact switches to activate the air-pressure control valves and indicators to identify the location of the source, and connecting air hose and electrical wire. A source of 20 psig air and 110 volt electrical power are required for operation of the transfer system which can be easily moved and set up by one individual in 5 to 10 minutes. Tests have shown that rarely does a source become lodged in the transfer tubing, but two methods have been developed to handle incomplete transfers of the {sup 252}Cf source. The first method consists of closing one air vent to allow a pressure impulse to propel the source to the opposite side. The second method applies to those {sup 252}Cf capsules with a threaded or tapped end to which a small ferromagnetic piece can be attached; an incompletely transferred source in the transfer tube can then be guided to a position of safety by surrounding the transfer tubing containing the capsule with a horseshoe magnet attached to the end of a long pole.

  17. Interstitial /sup 252/Cf neutron therapy for glioblastoma multiforme

    SciTech Connect

    Maruyama, Y.; Chin, H.W.; Young, A.B.; Bean, J.; Tibbs, P.; Beach, J.L.

    1982-12-01

    /sup 252/Cf brachytherapy has been combined with whole brain photon beam therapy to 6000 rads in 5-7 weeks. In early phase I studies, all patients selected for study tolerated the procedure and the subsequent photon beam therapy. All showed improvement in performance status and decreased tumor size by CT scan evaluation, but it became clear that these tumors are of large size and bulk, produce marked adjacent brain edema, and require individualized implant therapy as well as high-dose external beam irradiation if response is to occur.

  18. Moderated 252Cf neutron energy spectra in brain tissue and calculated boron neutron capture dose.

    PubMed

    Rivard, Mark J; Zamenhof, Robert G

    2004-11-01

    While there is significant clinical experience using both low- and high-dose (252)Cf brachytherapy, combination therapy using (10)B for neutron capture therapy-enhanced (252)Cf brachytherapy has not been performed. Monte Carlo calculations were performed in a brain phantom (ICRU 44 brain tissue) to evaluate the dose enhancement predicted for a range of (10)B concentrations over a range of distances from a clinical (252)Cf source. These results were compared to experimental measurements and calculations published in the literature. For (10)B concentrations 252)Cf fast neutron dose.

  19. Prompt Fission Gamma-ray Studies at DANCE

    NASA Astrophysics Data System (ADS)

    Jandel, M.; Rusev, G.; Bond, E. M.; Bredeweg, T. A.; Chadwick, M. B.; Couture, A.; Fowler, M. M.; Haight, R. C.; Kawano, T.; Keksis, A. L.; Mosby, S. M.; O'Donnell, J. M.; Rundberg, R. S.; Stetcu, I.; Talou, P.; Ullmann, J. L.; Vieira, D. J.; Wilhelmy, J. B.; Stoyer, M. A.; Haslett, R. J.; Henderson, R. A.; Becker, J. A.; Wu, C. Y.

    Measurements of correlated data on prompt-fission γ-rays (PFG) have been carried out for various actinide isotopes in recent years using the Detector for Advanced Neutron Capture Experiments (DANCE) at Los Alamos National Laboratory (LANL). We have developed a model that conveniently parametrizes the correlated data of γ-ray multiplicity and energy. New results on two- dimensional prompt-fission γ-ray multiplicity versus energy distributions from spontaneous fission on 252Cf and neutron-induced fission on 242mAm are presented together with previously obtained results on 233,235U and 239Pu. Correlated PFG data from 252Cf are also compared to results of the detailed theoretical model developed at LANL, for different thresholds of PFG energies. Future plans to measure correlated data on fission fragments, prompt fission neutrons and γ-rays at DANCE are presented.

  20. Potential Energy Calculations for Collinear Cluster Tripartition Fission Events

    NASA Astrophysics Data System (ADS)

    Unzhakova, A. V.; Pashkevich, V. V.; Pyatkov, Y. V.

    2014-09-01

    Strutinsky shell correction calculations were performed to describe the recent experimental results on collinear ternary fission. Collinear Cluster Tripartion fission events were studied experimentally in neutron induced fission of 235U, where the missing mass in the detected binary decay was suggested to characterize fission event as a collinear tripartition; and in spontaneous fission of 252Cf, where the direct detection of the three fission fragments has been used to confirm the existence of the Collinear Cluster Tripartition channel with a probability of 4.7×10-3 relative to the binary fission events.

  1. Fission fragment excited laser system

    DOEpatents

    McArthur, David A.; Tollefsrud, Philip B.

    1976-01-01

    A laser system and method for exciting lasing action in a molecular gas lasing medium which includes cooling the lasing medium to a temperature below about 150 K and injecting fission fragments through the lasing medium so as to preferentially excite low lying vibrational levels of the medium and to cause population inversions therein. The cooled gas lasing medium should have a mass areal density of about 5 .times. 10.sup.-.sup.3 grams/square centimeter, relaxation times of greater than 50 microseconds, and a broad range of excitable vibrational levels which are excitable by molecular collisions.

  2. Measurement of the 250Cf component in a 252Cf neutron source at KRISS.

    PubMed

    Kim, Jungho; Park, Hyeonseo; Choi, Kil-Oung

    2014-10-01

    Neutron emission rate measurements have been carried out at the Korea Research Institute of Standards and Science using a manganese sulphate bath system for (252)Cf and (241)Am-Be sources since 2004. The relative measurement method was chosen in 2012, and the neutron emission rates agreed with those by the absolute measurement method within uncertainties. The neutron emission rate of an old (252)Cf source has been measured three times: in 2004, 2009 and 2012. The (250)Cf component was fitted to a double-exponential function of (252)Cf+(250)Cf, and the ratio of the (250)Cf component to the (252)Cf component was estimated to be 7.8 % in 2004 and 46.8 % in 2012. Underestimation of the neutron emission rates of old (252)Cf sources can be corrected if the neutron emission rate of the (250)Cf component is taken into account.

  3. A radiobiological model for the relative biological effectiveness of high-dose-rate 252Cf brachytherapy.

    PubMed

    Rivard, Mark J; Melhus, Christopher S; Zinkin, Heather D; Stapleford, Liza J; Evans, Krista E; Wazer, David E; Odlozilíková, Anna

    2005-09-01

    While there is significant clinical experience using both low- and high-dose-rate 252Cf brachytherapy, there are minimal data regarding values for the neutron relative biological effectiveness (RBE) with both modalities. The aim of this research was to derive a radiobiological model for 252Cf neutron RBE and to compare these results with neutron RBE values used clinically in Russia. The linear-quadratic (LQ) model was used as the basis to characterize cell survival after irradiation, with identical cell killing rates (S(N) = S(gamma)) between 252Cf neutrons and photons used for derivation of RBE. Using this equality, a relationship among neutron dose and LQ radiobiological parameter (i.e., alpha(N), beta(N), alpha(gamma), beta(gamma)) was obtained without the need to specify the photon dose. These results were used to derive the 252Cf neutron RBE, which was then compared with Russian neutron RBE values. The 252Cf neutron RBE was determined after incorporating the LQ radiobiological parameters obtained from cell survival studies with fast neutrons and teletherapy photons. For single-fraction high-dose-rate neutron doses of 0.5, 1.0, 1.5 and 2.0 Gy, the total biologically equivalent doses were 1.8, 3.4, 4.7 and 6.0 RBE Gy with 252Cf neutron RBE values of 3.2, 2.9, 2.7 and 2.5, respectively. Using clinical data for late-responding reactions from 252Cf, Russian investigators created an empirical model that predicted high-dose-rate 252Cf neutron RBE values ranging from 3.6 to 2.9 for similar doses and fractionation schemes and observed that 252Cf neutron RBE increases with the number of treatment fractions. Using these relationships, our results were in general concordance with high-dose-rate 252Cf RBE values obtained from Russian clinical experience.

  4. Replacing a 252Cf source with a neutron generator in a shuffler - a conceptual design performed with MCNPX

    SciTech Connect

    Schear, Melissa A; Tobin, Stephen J

    2009-01-01

    The {sup 252}Cf shuffler has been widely used in nuclear safeguards and radioactive waste management to assay fissile isotopes, such as {sup 235}U or {sup 239}Pu, present in a variety of samples, ranging from small cans of uranium waste to metal samples weighing several kilograms. Like other non-destructive assay instruments, the shuffler uses an interrogating neutron source to induce fissions in the sample. Although shufflers with {sup 252}Cf sources have been reliably used for several decades, replacing this isotopic source with a neutron generator presents some distinct advantages. Neutron generators can be run in a continuous or pulsed mode, and may be turned off, eliminating the need for shielding and a shuffling mechanism in the shuffler. There is also essentially no dose to personnel during installation, and no reliance on the availability of {sup 252}Cf. Despite these advantages, the more energetic neutrons emitted from the neutron generator (141 MeV for D-T generators) present some challenges for certain material types. For example when the enrichment of a uranium sample is unknown, the fission of {sup 238}U is generally undesirable. Since measuring uranium is one of the main uses of a shuffler, reducing the delayed neutron contribution from {sup 238}U is desirable. Hence, the shuffler hardware must be modified to accommodate a moderator configuration near the source to tailor the interrogating spectrum in a manner which promotes sub-threshold fissions (below 1 MeV) but avoids the over-moderation of the interrogating neutrons so as to avoid self-shielding. In this study, where there are many material and geometry combinations, the Monte Carlo N-Particle eXtended (MCNPX) transport code was used to model, design, and optimize the moderator configuration within the shuffler geometry. The code is then used to evaluate and compare the assay performances of both the modified shuffler and the current {sup 252}Cf shuffler designs for different test samples. The

  5. Fission fragment mass and energy distributions as a function of incident neutron energy measured in a lead slowing-down spectrometer

    SciTech Connect

    Romano, C.; Danon, Y.; Block, R.; Thompson, J.; Blain, E.; Bond, E.

    2010-01-15

    A new method of measuring fission fragment mass and energy distributions as a function of incident neutron energy in the range from below 0.1 eV to 1 keV has been developed. The method involves placing a double-sided Frisch-gridded fission chamber in Rensselaer Polytechnic Institute's lead slowing-down spectrometer (LSDS). The high neutron flux of the LSDS allows for the measurement of the energy-dependent, neutron-induced fission cross sections simultaneously with the mass and kinetic energy of the fission fragments of various small samples. The samples may be isotopes that are not available in large quantities (submicrograms) or with small fission cross sections (microbarns). The fission chamber consists of two anodes shielded by Frisch grids on either side of a single cathode. The sample is located in the center of the cathode and is made by depositing small amounts of actinides on very thin films. The chamber was successfully tested and calibrated using 0.41+-0.04 ng of {sup 252}Cf and the resulting mass distributions were compared to those of previous work. As a proof of concept, the chamber was placed in the LSDS to measure the neutron-induced fission cross section and fragment mass and energy distributions of 25.3+-0.5 mug of {sup 235}U. Changes in the mass distributions as a function of incident neutron energy are evident and are examined using the multimodal fission mode model.

  6. /sup 252/Cf-source-driven neutron noise analysis method

    SciTech Connect

    Mihalczo, J.T.; King, W.T.; Blakeman, E.D.

    1985-01-01

    The /sup 252/Cf-source-driven neutron noise analysis method has been tested in a wide variety of experiments that have indicated the broad range of applicability of the method. The neutron multiplication factor k/sub eff/ has been satisfactorily detemined for a variety of materials including uranium metal, light water reactor fuel pins, fissile solutions, fuel plates in water, and interacting cylinders. For a uranyl nitrate solution tank which is typical of a fuel processing or reprocessing plant, the k/sub eff/ values were satisfactorily determined for values between 0.92 and 0.5 using a simple point kinetics interpretation of the experimental data. The short measurement times, in several cases as low as 1 min, have shown that the development of this method can lead to a practical subcriticality monitor for many in-plant applications. The further development of the method will require experiments oriented toward particular applications including dynamic experiments and the development of theoretical methods to predict the experimental observables.

  7. Multimodal fission and neutron evaporation

    SciTech Connect

    Brosa, U.

    1988-10-01

    The average multiplicities nu-bar(A) of prompt neutrons emitted in the spontaneous fission of /sup 252/Cf and /sup 258/Fm are derived. Two new features are predicted: A simple sawtooth for /sup 258/Fm and a triple one for /sup 252/Cf. Experiments to check these predictions should be feasible now.

  8. A comparison of the expected costs of high dose rate brachytherapy using 252Cf versus 192Ir.

    PubMed

    Rivard, Mark J; Kirk, Bernadette L; Stapleford, Liza J; Wazer, David E

    2004-12-01

    A cost analysis to compare high dose rate (HDR) brachytherapy using either californium-252 (252Cf) or 192Ir was performed to determine the prospects of widespread clinical implementation of HDR 252Cf. Interest in the neutron-emitting 252Cf radioisotope as a radiotherapy nuclide has undergone a resurgence given recent efforts to fabricate HDR remotely afterloaded sources, and other efforts to create a miniature source for improved accessibility to a variety of anatomic sites. Therefore, HDR 252Cf brachytherapy may prove to be a potential rival to the use of HDR 192Ir remotely afterloaded brachytherapy--the current standard-of-care treatment modality using HDR brachytherapy. Considering the possible improvements in clinical efficacy using HDR 252Cf brachytherapy and the enormous costs of other high-LET radiation sources, the cost differences between 252Cf and 192Ir may be well-justified.

  9. AN INTERLABORATORY COMPARISON ON THE DETERMINATION OF 241Am, 244Cm AND 252Cf IN URINE.

    PubMed

    Gerstmann, Udo C; Taubner, Kerstin; Hartmann, Martina

    2016-09-01

    An intercomparison exercise on the determination of (241)Am, (244)Cm and (252)Cf in urine was performed. Since it was designed with regard to emergency preparedness, the detection limit for each nuclide was set to 0.1 Bq per 24-h urine sample. Most of the participating laboratories were established bioassay laboratories. However, some laboratories that routinely determine (241)Am only in environmental samples were also invited in order to explore their potential for emergency bioassay analysis. Another aspect of the intercomparison was to investigate the performance of all laboratories concerning the chemical yields of the (243)Am tracer in comparison with (244)Cm and (252)Cf. In summary, both types of laboratories showed good results. There was a negative bias for the results of (244)Cm and (252)Cf, which can be explained by slightly different radiochemical behaviours of americium, curium and californium and which is in agreement with results reported in the literature. PMID:26535001

  10. Fluence-to-dose equivalent conversion factors for polyethylene-moderated {sup 252}Cf

    SciTech Connect

    Tanner, J.E.; Soldat, K.L.; Stewart, R.D.; Casson, W.H.

    1994-04-01

    Neutron measurements and calculations were conducted to characterize the polyethylene-moderated {sup 252}Cf source at Oak Ridge National Laboratory`s Radiation Calibration Laboratory (RADCAL). The 12-inch-diameter polyethylene sphere produces a highly scattered neutron spectrum which is more representative of most radiation fields found in the workplace than the D{sub 2}O-moderated {sup 252}Cf neutron spectrum typically used for dosimeter calibration. However, the energy-dependent fluence and dose equivalent must be well known before using such a source for radiation protection purposes. The measurements and calculations were performed as independent checks of the desired quantities which were the flux, the absorbed dose rate, the dose equivalent rate, and the average energy. These quantities were determined for the polyethylene sphere with and without an outer cadmium shell and compared with a D{sub 2}O-moderated {sup 252}Cf source.

  11. Design of a setup for 252Cf neutron source for storage and analysis purpose

    NASA Astrophysics Data System (ADS)

    Hei, Daqian; Zhuang, Haocheng; Jia, Wenbao; Cheng, Can; Jiang, Zhou; Wang, Hongtao; Chen, Da

    2016-11-01

    252Cf is a reliable isotopic neutron source and widely used in the prompt gamma ray neutron activation analysis (PGNAA) technique. A cylindrical barrel made by polymethyl methacrylate contained with the boric acid solution was designed for storage and application of a 5 μg 252Cf neutron source. The size of the setup was optimized with Monte Carlo code. The experiments were performed and the results showed the doses were reduced with the setup and less than the allowable limit. The intensity and collimating radius of the neutron beam could also be adjusted through different collimator.

  12. Water-extended polyester neutron shield for a 252Cf neutron source.

    PubMed

    Vega-Carrillo, H R; Manzanares-Acuña, E; Hernández-Dávila, V M; Gallego, E; Lorente, A; Donaire, I

    2007-01-01

    A Monte Carlo study to determine the shielding features to neutrons of water-extended polyester was carried out. During calculations, (252)Cf and shielding were modelled and the neutron spectra as well as the H(10) were calculated in four sites. The calculation was extended to include a water shielding, the source in vacuum and in air. Besides neutron shielding characteristics, the Kerma in air due to gammas emitted by (252)Cf and due to capture gamma rays in the shielding were included.

  13. Fusion, fragmentation, and fission of mitochondria.

    PubMed

    Polyakov, V Yu; Soukhomlinova, M Yu; Fais, D

    2003-08-01

    Individual mitochondria which form the chondriom of eucaryotic cells are highly dynamic systems capable of fusion and fragmentation. These two processes do not exclude one another and can occur concurrently. However, fragmentation and fusion of mitochondria regularly alternate in the cell cycle of some unicellular and multicellular organisms. Mitochondrial shapes are also described which are interpreted as intermediates of their "equational" division, or fission. Unlike the fragmentation, the division of mitochondria, especially synchronous division, is also accompanied by segregation of mitochondrial genomes and production of specific "dumbbell-shaped" intermediates. This review considers molecular components and possible mechanisms of fusion, fragmentation, and fission of mitochondria, and the biological significance of these processes is discussed. PMID:12948383

  14. The Munich Accelerator for Fission Fragments MAFF

    SciTech Connect

    Habs, D.; Gross, M.; Assmann, W.; Beck, L.; Grossmann, R.; Maier, H.-J.; Schumann, M.; Sewtz, M.; Szerypo, J.; Thirolf, P.G.; Kruecken, R.; Faestermann, T.; Maier-Komor, P.; Nebel, F.; Zech, E.; Hartung, P.; Stoepler, R.; Juettner, Ph.; Tralmer, F.L.

    2005-11-21

    The layout and status of MAFF at the Munich high flux reactor FRM-II is described. At MAFF 1014 fissions/s will be induced by thermal neutrons in a target with approx. 1 g of 235U. The situation is compared to the SPIRAL2 facility where 1014 fissions/s are expected by fast neutron fission in a target containing 5100 g of 238U. A comparison of the yields of SPIRAL2 and MAFF is performed to show the complementarity of the two ISOL-facilities for fission fragments. MAFF has approximately five times the beam intensities of SPIRAL2 for short-lived fission isotopes with lifetimes shorter than 5 s and thus will focus on the most neutron-rich nuclei, while SPIRAL2 has better perspectives for the more intense, less neutron-rich post-accelerated beams.A problem that also deserves attention is the production of {alpha} emitters, in particular plutonium. Here MAFF has the advantage to contain the Pu-producing 238U only as impurity not as the main fissile system. If SPIRAL2 would use 235U instead of 238U this problematic issue could be avoided at the cost of a further reduction in intensity of very neutron-rich fission fragments by a factor of 10. Finally new physics close to the classically doubly-magic nuclei 78Ni and 132Sn is described.

  15. A New Method of Prompt Fission Neutron Energy Spectrum Unfolding

    SciTech Connect

    Zeynalova, O. V.; Zeynalov, Sh.; Hambsch, F.-J.; Oberstedt, S.

    2010-11-25

    The prompt neutron emission in spontaneous fission of {sup 252}Cf has been investigated applying digital signal electronics along with associated digital signal processing algorithms. The goal was to find out the reasons of a long time existing discrepancy between theoretical calculations and the measurements of prompt fission neutron (PFN) emission dependence on the total kinetic energy (TKE) of fission fragments (FF). On the one hand the {sup 252}Cf(sf) reaction is one of the main references for nuclear data, on the other hand the understanding of PFN emission mechanism is very important for nuclear fission theory. Using a twin Frisch-grid ionization chamber for fission fragment (FF) detection and a NE213-equivalent neutron detector in total about 10{sup 7} fission fragment-neutron coincidences have been registered. Fission fragment kinetic energy, mass and angular distribution, neutron time-of-flight and pulse shape have been investigated using a 12 bit waveform digitizer. The signal waveforms have been analyzed using digital signal processing algorithms. For the first time the dependence of the number of emitted neutrons as a function of total kinetic energy (TKE) of the fragments is in very good agreement with theoretical calculations in the range of TKE from 140-220 MeV.

  16. Fission Fragment Properties from a Microscopic Approach

    SciTech Connect

    Dubray, N.; Goutte, H.; Delaroche, J.-P.

    2008-04-17

    We calculate potential energy surfaces in the elongation-asymmetry plane, up to very large deformations, with the Hartree-Fock-Bogoliubov method and the Gogny nucleon-nucleon effective interaction DIS, for the {sup 226}Th and {sup 256,258,260}Fm fissioning systems. We then define a criterion based on the nuclear density, in order to discriminate between pre- and post-scission configurations. Using this criterion, many scission configurations are identified, and are used for the calculation of several fragment properties, like fragment deformations, deformation energies, energy partitioning, neutron binding energies at scission, charge polarization, total fragment kinetic energies and neutron multiplicities.

  17. A Fission Time Projection Chamber for High Precision Cross Section Measurements

    NASA Astrophysics Data System (ADS)

    Snyder, Lucas; Greife, Uwe

    2010-11-01

    The design of next generation nuclear reactors and other nuclear applications are increasingly dependent on advanced simulations. Sensitivity studies have shown a need for high precision nuclear data to improve the predictive capabilities of these simulations. The Neutron Induced Fission Fragment Tracking Experiment (NIFFTE) collaboration has constructed and is currently testing a prototype Time Projection Chamber (TPC) designed to measure fission cross sections to a higher accuracy than is capable with existing technology. In this talk, I will discuss the status of the fission TPC and progress on collecting the first set of data from ^252Cf spontaneous fission.

  18. On the use of a (252Cf-3He) assembly for landmine detection by the neutron back-scattering method.

    PubMed

    Elsheikh, N; Viesti, G; ElAgib, I; Habbani, F

    2012-04-01

    Experiments were carried out to optimize the performance of the neutron back-scattering (NBS) technique in landmine detection using an assembly consisting of three different layers placed above a (252)Cf neuron source, producing about 10(4)s(-1), in conjunction with a (3)He detector. The assembly was optimized experimentally. The selected assembly configuration was then examined against different (252)Cf stand-off distances and mine burial depths using dummy landmines. Furthermore, Monte Carlo simulations were performed to study the effect of the shield when a (252)Cf source in the range 10(4)-10(7)s(-1) was employed, and to optimize the geometry for future prototypes.

  19. Brazilian gamma-neutron dosemeter: response to 241AmBe and 252Cf neutron sources.

    PubMed

    Souto, E B; Campos, L L

    2011-03-01

    With the aim of improving the monitoring of workers potentially exposed to neutron radiation in Brazil, the IPEN/CNEN-SP in association with PRO-RAD designed and developed a passive individual gamma-neutron mixed-field dosemeter calibrated to be used to (241)AmBe sources. To verify the dosimetry system response to different neutron spectra, prototypes were irradiated with a (252)Cf source and evaluated using the dose-calculation algorithm developed for (241)AmBe sources.

  20. Measured microdosimetric spectra and therapeutic potential of boron neutron capture enhancement of 252Cf brachytherapy.

    PubMed

    Burmeister, J; Kota, C; Maughan, R L

    2005-09-01

    Californium-252 is a neutron-emitting radioisotope used as a brachytherapy source for radioresistant tumors. Presented here are microdosimetric spectra measured as a function of simulated site diameter and distance from applicator tube 252Cf sources. These spectra were measured using miniature tissue-equivalent proportional counters (TEPCs). An investigation of the clinical potential of boron neutron capture (BNC) enhancement of 252Cf brachytherapy is also provided. The absorbed dose from the BNC reaction was measured using a boron-loaded miniature TEPC. Measured neutron, photon and BNC absorbed dose components are provided as a function of distance from the source. In general, the absorbed dose results show good agreement with results from other measurement techniques. A concomitant boost to 252Cf brachytherapy may be provided through the use of the BNC reaction. The potential magnitude of this BNC enhancement increases with increasing distance from the source and is capable of providing a therapeutic gain greater than 30% at a distance of 5 cm from the source, assuming currently achievable boron concentrations.

  1. Fission fragment rockets: A potential breakthrough

    SciTech Connect

    Chapline, G.F.; Dickson, P.W.; Schnitzler, B.G.

    1988-01-01

    A new reactor concept which has the potential of enabling extremely energetic and ambitious space propulsion missions is described. Fission fragments are directly utilized as the propellant by guiding them out of a very low density core using magnetic fields. The very high fission fragment exhaust velocities yield specific impulses of approximately a million seconds while maintaining respectable thrust levels. Specific impulses of this magnitude allow acceleration of significant payload masses to several percent of the velocity of light and enable a variety of interesting missions, e.g., payloads to the nearest star, Alpha Centauri, in about a hundred years for very rapid solar system transport. The parameters reported in this paper are based on a very preliminary analysis. Considerable trade-off studies will be required to find the optimum system. We hope the optimum system proves to be as attractive as our preliminary analysis indicates, although we must admit that our limited effort is insufficient to guarantee any specific level of performance.

  2. Conservation of Isospin in Neutron-rich Fission Fragments

    SciTech Connect

    Jain, A.K.; Choudhury, D.; Maheshwari, B.

    2014-06-15

    On the occasion of the 75{sup th} anniversary of the fission phenomenon, we present a surprisingly simple result which highlights the important role of isospin and its conservation in neutron rich fission fragments. We have analysed the fission fragment mass distribution from two recent heavyion reactions {sup 238}U({sup 18}O,f) and {sup 208}Pb({sup 18}O,f) as well as a thermal neutron fission reaction {sup 245}Cm(n{sup th},f). We find that the conservation of the total isospin explains the overall trend in the observed relative yields of fragment masses in each fission pair partition. The isospin values involved are very large making the effect dramatic. The findings open the way for more precise calculations of fission fragment distributions in heavy nuclei and may have far reaching consequences for the drip line nuclei, HI fusion reactions, and calculation of decay heat in the fission phenomenon.

  3. Conservation of Isospin in Neutron-rich Fission Fragments

    NASA Astrophysics Data System (ADS)

    Jain, A. K.; Choudhury, D.; Maheshwari, B.

    2014-06-01

    On the occasion of the 75th anniversary of the fission phenomenon, we present a surprisingly simple result which highlights the important role of isospin and its conservation in neutron rich fission fragments. We have analysed the fission fragment mass distribution from two recent heavyion reactions 238U(18O,f) and 208Pb(18O,f) as well as a thermal neutron fission reaction 245Cm(nth,f). We find that the conservation of the total isospin explains the overall trend in the observed relative yields of fragment masses in each fission pair partition. The isospin values involved are very large making the effect dramatic. The findings open the way for more precise calculations of fission fragment distributions in heavy nuclei and may have far reaching consequences for the drip line nuclei, HI fusion reactions, and calculation of decay heat in the fission phenomenon.

  4. Isotopic yield in cold binary fission of even-even 244-258Cf isotopes

    NASA Astrophysics Data System (ADS)

    Santhosh, K. P.; Cyriac, Annu; Krishnan, Sreejith

    2016-05-01

    The cold binary fission of even-even 244-258Cf isotopes has been studied by taking the interacting barrier as the sum of Coulomb and proximity potential. The favorable fragment combinations are obtained from the cold valley plot (plot of driving potential vs. mass number of fragments) and by calculating the yield for charge minimized fragments. It is found that for 244,246,248Cf isotopes highest yield is for the fragments with isotope of Pb (Z = 82) as one fragment, whereas for 250Cf and 252Cf isotopes the highest yield is for the fragments with isotope of Hg (Z = 80) as one fragment. In the case of 254,256,258Cf isotopes the highest yield is for the fragments with Sn (Z = 50) as one fragment. Thus, the fragment combinations with maximum yield reveal the role of doubly magic and near doubly magic nuclei in binary fission. It is found that asymmetric splitting is favored for Cf isotopes with mass number A ≤ 250 and symmetric splitting is favored for Cf isotopes with A > 252. In the case of Cf isotope with A = 252, there is an equal probability for asymmetric and symmetric splitting. The individual yields obtained for the cold fission of 252Cf isotope are compared with the experimental data taken from the γ- γ- γ coincidences technique using Gammasphere.

  5. A new facility for non-destructive assay using a 252Cf source.

    PubMed

    Stevanato, L; Caldogno, M; Dima, R; Fabris, D; Hao, Xin; Lunardon, M; Moretto, S; Nebbia, G; Pesente, S; Pino, F; Sajo-Bohus, L; Viesti, G

    2013-03-01

    A new laboratory facility for non-destructive analysis (NDA) using a time-tagged (252)Cf source is presented. The system is designed to analyze samples having maximum size of about 20 × 25 cm(2), the material recognition being obtained by measuring simultaneously total and energy dependent transmission of neutrons and gamma rays. The equipment technical characteristics and performances of the NDA system are presented, exploring also limits due to the sample thickness. Some recent applications in the field of cultural heritage are presented. PMID:23276691

  6. New fission-fragment detector for experiments at DANCE

    NASA Astrophysics Data System (ADS)

    Rusev, G.; Roman, A. R.; Daum, J. K.; Springs, R. K.; Bond, E. M.; Jandel, M.; Baramsai, B.; Bredeweg, T. A.; Couture, A.; Favalli, A.; Ianakiev, K. D.; Iliev, M. L.; Mosby, S.; Ullmann, J. L.; Walker, C. L.

    2015-10-01

    A fission-fragment detector based on thin scintillating films has been built to serve as a veto/trigger detector in neutron-induced fission measurements at DANCE. The fissile material is surrounded by scintillating films providing a 4 π detection of the fission fragments. The scintillation events caused by the fission fragment interactions in the films are registered with silicon photomultipliers. Design of the detector and test measurements are described. Work supported by the U.S. Department of Energy through the LANL/LDRD Program and the U.S. Department of Energy, Office of Science, Nuclear Physics under the Early Career Award No. LANL20135009.

  7. Study of Shape Isomeric States in Fission Fragments

    NASA Astrophysics Data System (ADS)

    Pyatkov, Yu. V.; Kamanin, D. V.; Alexandrov, A. A.; Alexandrova, I. A.; Kondtatyev, N. A.; Kuznetsova, , E. A.; Strekalovsky, A. O.; Strekalovsky, O. V.; Zhuchko, V. E.; Mkaza, N.

    2015-06-01

    For the first time the brake-up of the fission fragments crossing metal foil was observed. The effect takes place predominantly in front impacts. To treat the data we suppose the bulk of the fragments from the conventional binary fission to be borne in shape-isomer states which look like di-nuclear systems with magic cores.

  8. Neutron emission from fission fragments during acceleration p

    SciTech Connect

    Hinde, D.J.; Charity, R.J.; Foote, G.S.; Leigh, J.R.; Newton, J.O.; Ogaza, S.; Chatterjee, A.

    1984-03-19

    Fission-neutron angular correlations following fusion of /sup 19/F and /sup 232/Th have been measured. Conventional analysis, based on the approximation that post-fission neutrons originate only from fully accelerated fission fragments, gives unexpectedly large numbers of ''prefission'' neutrons. Comparison with the considerably less fissile system /sup 200/Pb gives the first convincing evidence that this approach is inadequate. Consideration of neutron emission from the accelerating fragments gives results consistent with expectations.

  9. Test and evaluation results of the /sup 252/Cf shuffler at the Savannah River Plant

    SciTech Connect

    Crane, T.W.

    1981-03-01

    The /sup 252/Cf Shuffler, a nondestructive assay instrument employing californium neutron source irradiation and delayed-neutron counting, was developed for measuring /sup 235/U content of scrap and waste items generated at the Savannah River Plant (SRP) reactor fuel fabrication facility. The scrap and waste items include high-purity uranium-aluminum alloy ingots as well as pieces of castings, saw and lathe chips from machining operations, low-purity items such as oxides of uranium or uranium intermixed with flux materials found in recovery operations, and materials not recoverable at SRP such as floor sweepings or residues from the uranium scrap recovery operation. The uranium contains about 60% /sup 235/U with the remaining isotopes being /sup 236/U, /sup 238/U, and /sup 234/U in descending order. The test and evaluation at SRP concluded that the accuracy, safety, reliability, and ease of use made the /sup 252/Cf Shuffler a suitable instrument for routine use in an industrial, production-oriented plant.

  10. Brain tumour and infiltrations dosimetry of boron neutron capture therapy combined with 252Cf brachytherapy.

    PubMed

    Brandão, Sâmia F; Campos, Tarcísio P R

    2012-04-01

    This article presents a dosimetric investigation of boron neutron capture therapy (BNCT) combined with (252)Cf brachytherapy for brain tumour control. The study was conducted through computational simulation in MCNP5 code, using a precise and discrete voxel model of a human head, in which a hypothetical brain tumour was incorporated. A boron concentration ratio of 1:5 for healthy-tissue: tumour was considered. Absorbed and biologically weighted dose rates and neutron fluency in the voxel model were evaluated. The absorbed dose rate results were exported to SISCODES software, which generates the isodose surfaces on the brain. Analyses were performed to clarify the relevance of boron concentrations in occult infiltrations far from the target tumour, with boron concentration ratios of 1:1 up to 1:50 for healthy-tissue:infiltrations and healthy-tissue:tumour. The average biologically weighted dose rates at tumour area exceed up to 40 times the surrounding healthy tissue dose rates. In addition, the biologically weighted dose rates from boron have the main contribution at the infiltrations, especially far from primary tumour. In conclusion, BNCT combined with (252)Cf brachytherapy is an alternative technique for brain tumour treatment because it intensifies dose deposition at the tumour and at infiltrations, sparing healthy brain tissue.

  11. Advanced modeling of prompt fission neutrons

    SciTech Connect

    Talou, Patrick

    2009-01-01

    Theoretical and numerical studies of prompt fission neutrons are presented. The main results of the Los Alamos model often used in nuclear data evaluation work are reviewed briefly, and a preliminary assessment of uncertainties associated with the evaluated prompt fission neutron spectrum for n (0.5 MeV)+{sup 239}Pu is discussed. Advanced modeling of prompt fission neutrons is done by Monte Carlo simulations of the evaporation process of the excited primary fission fragments. The successive emissions of neutrons are followed in the statistical formalism framework, and detailed information, beyond average quantities, can be inferred. This approach is applied to the following reactions: {sup 252}Cf (sf), n{sub th} + {sup 239}Pu, n (0.5 MeV)+{sup 235}U, and {sup 236}Pu (sf). A discussion on the merits and present limitations of this approach concludes this presentation.

  12. The SPIDER fission fragment spectrometer for fission product yield measurements

    SciTech Connect

    Meierbachtol, K.; Tovesson, F.; Shields, D.; Arnold, C.; Blakeley, R.; Bredeweg, T.; Devlin, M.; Hecht, A. A.; Heffern, L. E.; Jorgenson, J.; Laptev, A.; Mader, D.; O׳Donnell, J. M.; Sierk, A.; White, M.

    2015-04-01

    The SPectrometer for Ion DEtermination in fission Research (SPIDER) developed for measuring mass yield distributions of fission products from spontaneous and neutron-induced fission. The 2E–2v method of measuring the kinetic energy (E) and velocity (v) of both outgoing fission products utilized, with the goal of measuring the mass of the fission products with an average resolution of 1 atomic mass unit (amu). The SPIDER instrument, consisting of detector components for time-of-flight, trajectory, and energy measurements, assembled and tested using 229Th and 252Cf radioactive decay sources. For commissioning, the fully assembled system measured fission products from spontaneous fission of 252Cf. Finally, individual measurement resolutions were met for time-of-flight (250 ps FWHM), spacial resolution (2 mm FHWM), and energy (92 keV FWHM for 8.376 MeV). These mass yield results measured from 252Cf spontaneous fission products are reported from an E–v measurement.

  13. Neutron-induced fission: properties of prompt neutron and γ rays as a function of incident energy

    NASA Astrophysics Data System (ADS)

    Stetcu, I.; Talou, P.; Kawano, T.

    2016-06-01

    We have applied the Hauser-Feshbach statistical theory, in a Monte-Carlo implementation, to the de-excitation of fission fragments, obtaining a reasonable description of the characteristics of neutrons and gamma rays emitted before beta decays toward stability. Originally implemented for the spontaneous fission of 252Cf and the neutroninduced fission of 235U and 239Pu at thermal neutron energy, in this contribution we discuss the extension of the formalism to incident neutron energies up to 20 MeV. For the emission of pre-fission neutrons, at incident energies beyond second-chance fission, we take into account both the pre-equilibrium and statistical pre-fission components. Phenomenological parameterizations of mass, charge and TKE yields are used to obtain the initial conditions for the fission fragments that subsequently decay via neutron and emissions. We illustrate this approach for 239Pu(n,f).

  14. Application of 252Cf plasma desorption mass spectrometry in dental research

    NASA Astrophysics Data System (ADS)

    Fritsch, Hans-Walter; Schmidt, Lothar; Köhl, Peter; Jungclas, Hartmut; Duschner, Heins

    1993-07-01

    Topically applied fluorides introduced in dental hygiene products elevate the concentration levels of fluoride in oral fluids and thus also affect chemical reactions of enamel de- and remineralisation. The chemical reactions on the surface of tooth enamel still are a subject of controversy. Here 252Cf-plasma desorption mass spectrometry and argon ion etching are used to analyse the molecular structure of the upper layes of enamel. The mass spectrum of untreated enamel is characterised by a series of cluster ions containing phosphate. It is evident that under certain conditions the molecular structure of the surface enamel is completely transformed by treatment with fluorides. The result of the degradation and precipitation processes is reflected by a total replacement of the phosphate by fluoride in the measured cluster ion distribution. Stepwise etching of the upper layers by Ar+ ions reveals the transition from a nearly pure CaF2 structure to the unchanged composition of the enamel mineral.

  15. Characteristics of the simulated workplace neutron fields using a 252Cf source surrounded with cylindrical moderators.

    PubMed

    Tsujimura, N; Yoshida, T

    2004-01-01

    The authors established the simulated workplace neutron fields using a 252Cf source surrounded with cylindrical moderators at the Japan Nuclear Cycle Development Institute (JNC), Tokai Works. The moderators are annular cylinders made of polymethyl methacrylate and steel. The neutron energy spectrum at the reference calibration point was evaluated from the calculations by MCNP-4B and the measurements by the Bonner multisphere spectrometer and the hydrogen-filled proportional counters. The calculated neutron spectra were in good agreements with the measured ones. These fields can provide the realistic neutron spectra similar to those encountered around the glove-boxes of the fabrication process of MOX (PuO2-UO2 mixed oxide) fuel.

  16. Applications of Event-by-Event Fission Modeling with FREYA

    SciTech Connect

    Vogt, R; Randrup, J

    2011-09-16

    The recently developed code FREYA (Fission Reaction Event Yield Algorithm) generates large samples of complete fission events, consisting of two receding product nuclei as well as a number of neutrons and photons, all with complete kinematic information. Thus it is possible to calculate arbitrary correlation observables whose behavior may provide unique insight into the fission process. We first discuss the present status of FREYA, which has now been extended to include spontaneous fission. Concentrating on {sup 239}Pu(n{sub th},f), {sup 240}Pu(sf) and {sup 252}Cf(sf), we discuss the neutron multiplicity correlations, the dependence of the neutron energy spectrum on the neutron multiplicity, and the relationship between the fragment kinetic energy and the number of neutrons and their energies. We also suggest novel fission observables that could be measured with modern detectors.

  17. Feasibility of an antiproton catalyzed fission fragment rocket

    SciTech Connect

    Hdinger, D.S.

    1992-03-01

    The purpose of this project was to investigate the feasibility of an antiproton catalyzed fission fragment rocket (FFR). The FFR is characterized by the extraction of fission fragments from the fissile fuel, and the utilization of their kinetic energy for thrust generation. A significant drawback to previous FFR designs was the requirement to maintain a critical nuclear pile as the fission fragment source. The author examined the possibility of replacing the critical pile with a sub-critical pile driven by antiprotons. Recent experiments have revealed that antiprotons stimulate highly energetic fissions in {sup 238}U, with a neutron multiplicity of 13.7 neutrons per fission. This interaction was used as a throttled neutron source. The pile consisted of layers of fissile coated fibers which are designed to allow fission fragments to escape them, where the fragments collide with a fluid. The heated fluid is then ejected from the rocket to provide thrust. The calculations performed indicate that each antiproton injected into the pile can stimulate 8 or more fissions while maintaining a neutron multiplication of less than 0.4. Based on the results seen, the engine design presented is inadequate. Limitations introduced by the reaction fluid far outweigh the simplicity-of-design gained. Despite this, the basic idea of using the antiproton-U interaction as a source of spacecraft propulsion warrants further study.

  18. Calibration of a Manganese Bath Relative to 252Cf Nu-Bar

    NASA Astrophysics Data System (ADS)

    Gilliam, David M.; Yue, Andrew T.; Scott Dewey, M.

    2009-08-01

    A large manganese sulfate bath is employed at the National Institute of Standards and Technology (NIST) to calibrate isotopic neutron sources relative to the national standard neutron source NBS-I. In the past few years many low-emission Cf-252 neutron sources have been calibrated for testing of neutron detectors for the U.S. Department of Homeland Security (DHS). The low-emission DHS sources are about a factor of 100 lower in emission rate than NBS-I, so that background fluctuations become more significant in making accurate calibrations. To verify and improve the calibrations relative to NBS-I, a new calibration for sealed Cf-252 neutron sources has been made by measuring the fission rate of a bare Cf-252 deposit and inferring its neutron emission rate from Cf-252 nu-bar, the well-established neutron multiplicity of spontaneous fission in Cf-252. The fission rate of the bare deposit was measured by counting fission fragments in vacuum with a surface barrier detector behind an aperture and spacer, which provided a well-defined solid angle for detection. A thin polyimide film was placed just above the Cf deposit to prevent contamination of the detector by self-sputtering of the Cf material in vacuum. Tests with additional layers of polyimide were performed to observe any perturbation in the detection efficiency due to scattering or absorption of alpha particles or fission fragments in the polyimide film. The increase in the background count rate due to accumulation of Cf on the polyimide film was less than 0.02% of the fission fragment count rate from the sample, at the end of all runs. It is estimated that this increase in background would have been about 150 times higher without the polyimide film. The sealed Cf source NIST-DHSA was compared to the bare source by relative neutron counting in an assembly of polyethylene moderator and He-3 detectors. The calibration via Cf-252 nu-bar gave a result that was 1.7% higher than the previous calibration relative to NBS

  19. On the Effect of an Error in a Standard D2O-Moderated 252Cf Energy Spectrum

    SciTech Connect

    Frederick Cummings

    2009-12-01

    There appears to be an error in the neutron fluence for neutrons with energies between 9 and 10 MeV for the tabulated D2O-moderated 252Cf source in ISO 8529-1. The error contributes a total error to neutron dose values from this source of approximately 3%.

  20. A new facility for Non-Destructive Assay with a time-tagged {sup 252}Cf source

    SciTech Connect

    Stevanato, L.; Caldogno, M.; Hao Xin; Dima, R.; Fabris, D.; Nebbia, G.; Lunardon, M.; Moretto, S.; Pesente, S.; Viesti, G.; Sajo-Bohus, L.

    2010-08-04

    A new facility for non-destructive assay using a time-tagged {sup 252}Cf source is presented. The system is designed to analyze samples having maximum size of about 15x20 cm{sup 2}, the material recognition being obtained by measuring simultaneously transmission of neutrons and gamma rays.

  1. Fabrication of 50-mg /sup 252/Cf neutron sources for the FDA (Food and Drug Administration) activation analysis facility

    SciTech Connect

    Bigelow, J.E.; Cagle, E.B.; Knauer, J.B.

    1987-01-01

    The Transuranium Processing Plant (TPP) at ORNL has been requested by the Food and Drug Administration (FDA) to furnish 200 mg of /sup 252/Cf for use in their new activation analysis facility. This paper discusses the procedure to be employed in fabricating the californium into four neutron sources, each containing a nominal 50-mg of /sup 252/Cf. The ORNL Model LSD (Large, Stainless steel, Doubly encapsulated) neutron source consists of a 6.33-mm-diam aluminum pellet doubly encapsulated in Type 304L stainless steel. The pellet is comprised of an aluminum tube holding Cf/sub 2/O/sub 2/SO/sub 4/ microspheres confined by pressed aluminum powder. The microspheres are prepared in a separate vessel and then transferred into the specially designed aluminum tube prior to pressing.

  2. The sup 252 Cf(sf) neutron spectrum in the 5- to 20-MeV energy range

    SciTech Connect

    Marten, H.; Richter, D.; Seeliger, D. ); Fromm, W.D. ); Bottger, R.; Klein, H. )

    1990-11-01

    This paper reports on the {sup 252}Cf neutron spectrum measured at high energies with a miniature ionization chamber and two different NE-213 neutron detectors. The gamma-ray background and the main cosmic background caused by muons were suppressed by applying efficient pulse-shape discrimination. On the basis of two-dimensional spectroscopy of the neutron time-of-flight and scintillation pulse height, the sliding bias method is used to minimize experimental uncertainties. The experimental data, corrected for several systematic influences, confirm earlier results that show negative deviations from a reference Maxwellian distribution with a 1.42-MeV spectrum temperature for neutron energies above 6 MeV. Experimental results of this work are compared with various statistical model approaches to the {sup 252}Cf(sf) neutron spectrum.

  3. Evaluation of the characteristics of the neutron reference field using D2O-moderated 252Cf source.

    PubMed

    Kowatari, M; Fujii, K; Takahashi, M; Yoshizawa, M; Shimizu, S; Kawasaki, K; Yamaguchi, Y

    2007-01-01

    The ambient/personal dose equivalent per fluence for D(2)O moderated (252)Cf neutron source was determined by measurement. An appropriate subtraction of the scattered neutrons is required for the accurate measurement of direct neutrons. A cubic shadow object was used for the subtraction of the scattered neutrons from the surroundings. The scattered neutrons to be subtracted vary with the position of the shadow object due to the large volume of the source. Using the Monte Carlo code MCNP-4C, the optimum positions of the shadow object were surveyed for subtracting the scattered neutrons. The energy spectra of direct neutrons were measured in the optimum position. The dosimetric parameters for the D(2)O moderated (252)Cf neutron source were reasonable, taking into account the uncertainties of the parameters.

  4. Intracavitary moderator balloon combined with 252Cf brachytherapy and boron neutron capture therapy, improving dosimetry in brain tumour and infiltrations

    PubMed Central

    Brandão, S F

    2015-01-01

    Objective: This article proposes a combination of californium-252 (252Cf) brachytherapy, boron neutron capture therapy (BNCT) and an intracavitary moderator balloon catheter applied to brain tumour and infiltrations. Methods: Dosimetric evaluations were performed on three protocol set-ups: 252Cf brachytherapy combined with BNCT (Cf-BNCT); Cf-BNCT with a balloon catheter filled with light water (LWB) and the same set-up with heavy water (HWB). Results: Cf-BNCT-HWB has presented dosimetric advantages to Cf-BNCT-LWB and Cf-BNCT in infiltrations at 2.0–5.0 cm from the balloon surface. However, Cf-BNCT-LWB has shown superior dosimetry up to 2.0 cm from the balloon surface. Conclusion: Cf-BNCT-HWB and Cf-BNCT-LWB protocols provide a selective dose distribution for brain tumour and infiltrations, mainly further from the 252Cf source, sparing the normal brain tissue. Advances in knowledge: Malignant brain tumours grow rapidly and often spread to adjacent brain tissues, leading to death. Improvements in brain radiation protocols have been continuously achieved; however, brain tumour recurrence is observed in most cases. Cf-BNCT-LWB and Cf-BNCT-HWB represent new modalities for selectively combating brain tumour infiltrations and metastasis. PMID:25927876

  5. Neutron emission and fragment yield in high-energy fission

    SciTech Connect

    Grudzevich, O. T. Klinov, D. A.

    2013-07-15

    The KRIS special library of spectra and emission probabilities in the decays of 1500 nuclei excited up to energies between 150 and 250 MeV was developed for correctly taking into account the decay of highly excited nuclei appearing as fission fragments. The emission of neutrons, protons, and photons was taken into account. Neutron emission fromprimary fragments was found to have a substantial effect on the formation of yields of postneutron nuclei. The library was tested by comparing the calculated and measured yields of products originating from the fission of nuclei that was induced by high-energy protons. The method for calculating these yields was tested on the basis of experimental data on the thermal-neutroninduced fission of {sup 235}U nuclei.

  6. Coal liquefaction process streams characterization and evaluation: The application of {sup 252}Cf-plasma desorption mass spectrometry to analysis of direct coal liquefaction heavy products

    SciTech Connect

    Larsen, J.W.; Lapucha, A.R.

    1992-10-01

    This study demonstrated the feasibility of using {sup 252}Cf PDMS, GPC, and MPLC for the examination of the tetrahydrofuran (THF)-soluble portion of distillation resid materials derived from direct coal liquefaction. The {sup 252}Cf-PDMS technique was used to determine molecular weight distributions of twenty-five THF-soluble resids. In order to detemine if {sup 252}Cf-PDMS responds differently to different chemical classes of compounds, Lehigh separated five of the samples into chemically distinct fractions by MPLC, then analyzed the parent samples, their fractions, and the re-mixed fractions by {sup 252}Cf-PDMS and GPC. Irreversible alteration of the samples upon separation was noted by Lehigh. This was confirmed by use of gas chromatographic (GC) analyses. The noted irreversible alterations prevented a direct comparison of the remixed materials and the original samples. Thus, the selective response of {sup 252}Cf-PDMS to different chemical classes of compounds could not be confirmed or ruled out. The number average molecular weights (M{sub n}) obtained by {sup 252}Cf-PDMS and GPC agreed well. However, the weight average molecular weights (M{sub w}) obtained by GPC are always higher than the corresponding {sup 252}Cf-PDMS results. Number average molecular weights and weight average molecular weights obtained with {sup 252}Cf-PDMS and GPC were compared with those obtained by field ionization mass spectrometry (FIMS), previously reported by SRI International for the parent resid samples from which the Lehigh THF-soluble samples were derived.

  7. Coal liquefaction process streams characterization and evaluation: The application of [sup 252]Cf-plasma desorption mass spectrometry to analysis of direct coal liquefaction heavy products

    SciTech Connect

    Larsen, J.W.; Lapucha, A.R.

    1992-10-01

    This study demonstrated the feasibility of using [sup 252]Cf PDMS, GPC, and MPLC for the examination of the tetrahydrofuran (THF)-soluble portion of distillation resid materials derived from direct coal liquefaction. The [sup 252]Cf-PDMS technique was used to determine molecular weight distributions of twenty-five THF-soluble resids. In order to detemine if [sup 252]Cf-PDMS responds differently to different chemical classes of compounds, Lehigh separated five of the samples into chemically distinct fractions by MPLC, then analyzed the parent samples, their fractions, and the re-mixed fractions by [sup 252]Cf-PDMS and GPC. Irreversible alteration of the samples upon separation was noted by Lehigh. This was confirmed by use of gas chromatographic (GC) analyses. The noted irreversible alterations prevented a direct comparison of the remixed materials and the original samples. Thus, the selective response of [sup 252]Cf-PDMS to different chemical classes of compounds could not be confirmed or ruled out. The number average molecular weights (M[sub n]) obtained by [sup 252]Cf-PDMS and GPC agreed well. However, the weight average molecular weights (M[sub w]) obtained by GPC are always higher than the corresponding [sup 252]Cf-PDMS results. Number average molecular weights and weight average molecular weights obtained with [sup 252]Cf-PDMS and GPC were compared with those obtained by field ionization mass spectrometry (FIMS), previously reported by SRI International for the parent resid samples from which the Lehigh THF-soluble samples were derived.

  8. The SOFIA experiment: Measurement of 236U fission fragment yields in inverse kinematics

    NASA Astrophysics Data System (ADS)

    Grente, L.; Taïeb, J.; Chatillon, A.; Martin, J.-F.; Pellereau, É.; Boutoux, G.; Gorbinet, T.; Bélier, G.; Laurent, B.; Alvarez-Pol, H.; Ayyad, Y.; Benlliure, J.; Caamaño, M.; Audouin, L.; Casarejos, E.; Cortina-Gil, D.; Farget, F.; Fernández-Domínguez, B.; Heinz, A.; Jurado, B.; Kelić-Heil, A.; Kurz, N.; Lindberg, S.; Löher, B.; Nociforo, C.; Paradela, C.; Pietri, S.; Ramos, D.; Rodriguez-Sanchez, J.-L.; Rodríguez-Tajes, C.; Rossi, D.; Schmidt, K.-H.; Simon, H.; Tassan-Got, L.; Törnqvist, H.; Vargas, J.; Voss, B.; Weick, H.; Yan, Y.

    2016-06-01

    The SOFIA (Studies On FIssion with Aladin) experiment aims at measuring fission-fragments isotopic yields with high accuracy using inverse kinematics at relativistic energies. This experimental technique allows to fully identify the fission fragments in nuclear charge and mass number, thus providing very accurate isotopic yields for low energy fission of a large variety of fissioning systems. This report focuses on the latest results obtained with this set-up concerning electromagnetic-induced fission of 236U.

  9. Using Ultracold Neutrons to Characterize Fission Fragment Induced Sputtering

    NASA Astrophysics Data System (ADS)

    Broussard, Leah; Makela, Mark; Morris, Chris

    2015-10-01

    One of the modern challenges in nuclear science and technology is the understanding of the nature of fission fragment damage to material and the resulting ejection of matter as the fragments pass through the surface, with implications to stockpile stewardship and nuclear energy. We have demonstrated a new technique that can be used to characterize the sputtered material with knowledge of the location of the originating fission event. Due to their very high fission cross sections, ultracold neutrons (~100 neV energy) can be used to control the depth at which fission takes place using their energy or the material enrichment. This effort represents one of the first practical applications of ultracold neutrons, which to date have been primarily used to explore questions in fundamental particle physics. We will present results of demonstration measurements including first limits on the total and fission cross sections for 100 neV scale neutrons and the status of the development of this new capability. We gratefully acknowledge the support of the U.S. Department of Energy through the LANL/LDRD Program, the G. T. Seaborg Institute, and LANL Science Campaign C1 for this work.

  10. Fission fragment mass distributions in reactions populating 200Pb

    NASA Astrophysics Data System (ADS)

    Chaudhuri, A.; Sen, A.; Ghosh, T. K.; Banerjee, K.; Sadhukhan, Jhilam; Bhattacharya, S.; Roy, P.; Roy, T.; Bhattacharya, C.; Asgar, Md. A.; Dey, A.; Kundu, S.; Manna, S.; Meena, J. K.; Mukherjee, G.; Pandey, R.; Rana, T. K.; Srivastava, V.; Dubey, R.; Kaur, Gurpreet; Saneesh, N.; Sugathan, P.; Bhattacharya, P.

    2016-08-01

    The fission fragment mass distributions have been measured in the reactions 16O+184W and 19F+181Ta populating the same compound nucleus 200Pb* at similar excitation energies. It is found that the widths of the mass distributions increase monotonically with excitation energy, indicating the absence of quasifission for both reactions. This is contrary to two recent claims of the presence of quasifission in the above-mentioned reactions.

  11. Fission studies of secondary beams from relativistic uranium projectiles: The proton even-odd effect in fission fragment charge yields

    SciTech Connect

    Junghans, A. R.; Benlliure, J.; Schmidt, K.-H.; Voss, B.; Boeckstiegel, C.; Clerc, H.-G.; Grewe, A.; Heinz, A.; Jong, M. de; Mueller, J.; Steinhaeuser, S.; Pfuetzner, M.

    1999-09-02

    Nuclear-charge yields of fragments produced by fission of neutron-deficient isotopes of uranium, protactinium, actinium, and radium have been measured. These radioactive isotopes were produced as secondary beams, and electromagnetic fission was induced in a lead target with an average excitation energy around 11 MeV. The local even-odd effect in symmetric and in asymmetric fission of thorium isotopes is found to be independent of Z{sup 2}/A. The charge yields of the fission fragments of the odd-Z fissioning protactinium and actinium show a pronounced even-odd effect. In asymmetric fission the unpaired proton predominantly sticks to the heavy fragment. A statistical model based on the single-particle level density at the Fermi energy is able to reproduce the overall trend of the local even-odd effects both in even-Z and odd-Z fissioning systems.

  12. In-beam gamma-ray spectroscopy of {sup 248,250,252}Cf by neutron-transfer reactions using a Cf target

    SciTech Connect

    Takahashi, R.; Ishii, T.; Asai, M.; Nagae, D.; Makii, H.; Tsukada, K.; Toyoshima, A.; Ishii, Y.; Matsuda, M.; Makishima, A.; Shizuma, T.; Kohno, T.; Ogawa, M.

    2010-05-15

    The ground-state bands of {sup 248,250,252}Cf have been established up to the 10{sup +}, 12{sup +}, and 10{sup +} states, respectively, by in-beam gamma-ray spectroscopy using neutron-transfer reactions with a 153-MeV {sup 18}O beam and a highly radioactive Cf target. The deexcitation gamma rays in {sup 248,250,252}Cf were identified by taking coincidences with outgoing particles of {sup 16-19}O measured with Si DELTAE-E detectors, and by selecting their kinetic energies. Moments of inertia of {sup 248,250,252}Cf were discussed in terms of the N=152 deformed shell gap.

  13. Sensitivity studies of spin cut-off models on fission fragment observables

    NASA Astrophysics Data System (ADS)

    Thulliez, L.; Litaize, O.; Serot, O.

    2016-03-01

    A fission fragment de-excitation code, FIFRELIN, is being developed at CEA Cadarache. It allows probing the characteristics of the prompt emitted particles, neutrons and gammas, during the de-excitation process of fully accelerated fission fragments. The knowledge of the initial states of the fragments is important to accurately reproduce the fission fragment observables. In this paper a sensitivity study of various spin cut-off models, completely defining the initial fission fragment angular momentum distribution has been performed. This study shows that the choice of the model has a significant impact on gamma observables such as spectrum and multiplicity and almost none on the neutron observables.

  14. Measurement techniques for analysis of fission fragment excited gases

    NASA Technical Reports Server (NTRS)

    Schneider, R. T.; Carroll, E. E.; Davis, J. F.; Davie, R. N.; Maguire, T. C.; Shipman, R. G.

    1976-01-01

    Spectroscopic analysis of fission fragment excited He, Ar, Xe, N2, Ne, Ar-N2, and Ne-N2 have been conducted. Boltzmann plot analysis of He, Ar and Xe have indicated a nonequilibrium, recombining plasma, and population inversions have been found in these gases. The observed radiating species in helium have been adequately described by a simple kinetic model. A more extensive model for argon, nitrogen and Ar-N2 mixtures was developed which adequately describes the energy flow in the system and compares favorably with experimental measurements. The kinetic processes involved in these systems are discussed.

  15. Spontaneous fission of the heaviest elements

    SciTech Connect

    Hoffman, D.C.

    1989-04-01

    Although spontaneous fission was discovered in /sup 238/U in 1940, detailed studies of the process were first made possible in the 1960's with the availability of milligram quantities of /sup 252/Cf. The advent of solid-state detectors made it possible to perform measurements of coincident fission fragments from even very short-lived spontaneous fission activities or those available in only very small quantities. Until 1971 it was believed that the main features of the mass and kinetic-energy distributions were essentially the same as those for thermal neutron-induced fission and that all low-energy fission proceeded via asymmetric mass division with total kinetic energies which could be derived by linear extrapolation from those of lighter elements. In 1971, measurements of /sup 257/Fm showed an increase in symmetric mass division with anomalously high TKE's. Subsequent experiments showed that in /sup 258/Fm and /sup 259/Fm, the most probable mass split was symmetric with very high total kinetic energy. Measurements for the heavier elements have shown symmetric mass distributions with both high and low total kinetic energies. Recent results for spontaneous fission properties of the heaviest elements are reviewed and compared with theory. 31 refs., 8 figs., 1 tab.

  16. Studies of Fission Fragment Rocket Engine Propelled Spacecraft

    NASA Technical Reports Server (NTRS)

    Werka, Robert O.; Clark, Rodney; Sheldon, Rob; Percy, Thomas K.

    2014-01-01

    The NASA Office of Chief Technologist has funded from FY11 through FY14 successive studies of the physics, design, and spacecraft integration of a Fission Fragment Rocket Engine (FFRE) that directly converts the momentum of fission fragments continuously into spacecraft momentum at a theoretical specific impulse above one million seconds. While others have promised future propulsion advances if only you have the patience, the FFRE requires no waiting, no advances in physics and no advances in manufacturing processes. Such an engine unequivocally can create a new era of space exploration that can change spacecraft operation. The NIAC (NASA Institute for Advanced Concepts) Program Phase 1 study of FY11 first investigated how the revolutionary FFRE technology could be integrated into an advanced spacecraft. The FFRE combines existent technologies of low density fissioning dust trapped electrostatically and high field strength superconducting magnets for beam management. By organizing the nuclear core material to permit sufficient mean free path for escape of the fission fragments and by collimating the beam, this study showed the FFRE could convert nuclear power to thrust directly and efficiently at a delivered specific impulse of 527,000 seconds. The FY13 study showed that, without increasing the reactor power, adding a neutral gas to the fission fragment beam significantly increased the FFRE thrust through in a manner analogous to a jet engine afterburner. This frictional interaction of gas and beam resulted in an engine that continuously produced 1000 pound force of thrust at a delivered impulse of 32,000 seconds, thereby reducing the currently studied DRM 5 round trip mission to Mars from 3 years to 260 days. By decreasing the gas addition, this same engine can be tailored for much lower thrust at much higher impulse to match missions to more distant destinations. These studies created host spacecraft concepts configured for manned round trip journeys. While the

  17. Compact multiwire proportional counters for the detection of fission fragments

    NASA Astrophysics Data System (ADS)

    Jhingan, Akhil; Sugathan, P.; Golda, K. S.; Singh, R. P.; Varughese, T.; Singh, Hardev; Behera, B. R.; Mandal, S. K.

    2009-12-01

    Two large area multistep position sensitive (two dimensional) multiwire proportional counters have been developed for experiments involving study of fission dynamics using general purpose scattering chamber facility at IUAC. Both detectors have an active area of 20×10 cm2 and provide position signals in horizontal (X) and vertical (Y) planes, timing signal for time of flight measurements and energy signal giving the differential energy loss in the active volume. The design features are optimized for the detection of low energy heavy ions at very low gas pressures. Special care was taken in setting up the readout electronics, constant fraction discriminators for position signals in particular, to get optimum position and timing resolutions along with high count rate handling capability of low energy heavy ions. A custom made charge sensitive preamplifier, having lower gain and shorter decay time, has been developed for extracting the differential energy loss signal. The position and time resolutions of the detectors were determined to be 1.1 mm full width at half maximum (FWHM) and 1.7 ns FWHM, respectively. The detector could handle heavy ion count rates exceeding 20 kHz without any breakdown. Time of flight signal in combination with differential energy loss signal gives a clean separation of fission fragments from projectile and target like particles. The timing and position signals of the detectors are used for fission coincidence measurements and subsequent extraction of their mass, angular, and total kinetic energy distributions. This article describes systematic study of these fission counters in terms of efficiency, time resolution, count rate handling capability, position resolution, and the readout electronics. The detector has been operated with both five electrode geometry and four electrode geometry, and a comparison has been made in their performances.

  18. Compact multiwire proportional counters for the detection of fission fragments.

    PubMed

    Jhingan, Akhil; Sugathan, P; Golda, K S; Singh, R P; Varughese, T; Singh, Hardev; Behera, B R; Mandal, S K

    2009-12-01

    Two large area multistep position sensitive (two dimensional) multiwire proportional counters have been developed for experiments involving study of fission dynamics using general purpose scattering chamber facility at IUAC. Both detectors have an active area of 20x10 cm(2) and provide position signals in horizontal (X) and vertical (Y) planes, timing signal for time of flight measurements and energy signal giving the differential energy loss in the active volume. The design features are optimized for the detection of low energy heavy ions at very low gas pressures. Special care was taken in setting up the readout electronics, constant fraction discriminators for position signals in particular, to get optimum position and timing resolutions along with high count rate handling capability of low energy heavy ions. A custom made charge sensitive preamplifier, having lower gain and shorter decay time, has been developed for extracting the differential energy loss signal. The position and time resolutions of the detectors were determined to be 1.1 mm full width at half maximum (FWHM) and 1.7 ns FWHM, respectively. The detector could handle heavy ion count rates exceeding 20 kHz without any breakdown. Time of flight signal in combination with differential energy loss signal gives a clean separation of fission fragments from projectile and target like particles. The timing and position signals of the detectors are used for fission coincidence measurements and subsequent extraction of their mass, angular, and total kinetic energy distributions. This article describes systematic study of these fission counters in terms of efficiency, time resolution, count rate handling capability, position resolution, and the readout electronics. The detector has been operated with both five electrode geometry and four electrode geometry, and a comparison has been made in their performances.

  19. Search for instantaneous radiation near the instant of break momentum of various fissioning nuclear systems at low excitation energies

    SciTech Connect

    Vorobyev, A. S. Val'ski, G. V.; Gagarskii, A. M.; Guseva, I. S.; Petrov, G. A.; Petrova, V. I.; Serebrin, A. Yu.; Sokolov, V. E.; Shcherbakov, O. A.

    2011-12-15

    The main results of studying the properties of 'instantaneous' neutrons and {gamma} photons during the fission of {sup 233,235}U(n{sub th}, f) and {sup 239}Pu(n{sub th}, f) nuclei and spontaneous fission of {sup 252}Cf, which were performed on the WWR-M reactor at the St. Petersburg Nuclear Physics Institute, Russian Academy of Sciences, are presented. Along with obtaining the main characteristics of the instantaneous radiation from fission fragments, these studies were also aimed at gaining deeper insight into such exotic processes as the emission of break neutrons and {gamma} photons from a fissioning nucleus near the break point. These investigations were performed on different experimental setups using different analytical methods. This approach allowed us not only to find but also to reduce to minimum possible systematic effects. The yields of break neutrons were found to be about (5-7) Multiplication-Sign 10{sup -2} of the total number of neutrons per {sup 233,235}U(n, f) fission event and approximately twice as much for {sup 239}Pu(n, f) and {sup 252}Cf. The coefficient of T-odd asymmetry for {gamma} photons is in agreement with the estimate obtained on the assumption that the observed effect is mainly related to the {gamma} photons emitted by excited fragments with highly oriented angular momenta. This fact gave grounds to conclude that the desired break {gamma} photons cannot be reliably selected (within the obtained experimental accuracy) against the much larger background of {gamma} photons from fission fragments.

  20. Dependence of Fission-Fragment Properties On Excitation Energy For Neutron-Rich Actinides

    NASA Astrophysics Data System (ADS)

    Ramos, D.; Rodríguez-Tajes, C.; Caamaño, M.; Farget, F.; Audouin, L.; Benlliure, J.; Casarejos, E.; Clement, E.; Cortina, D.; Delaune, O.; Derkx, X.; Dijon, A.; Doré, D.; Fernández-Domínguez, B.; de France, G.; Heinz, A.; Jacquot, B.; Navin, A.; Paradela, C.; Rejmund, M.; Roger, T.; Salsac, M. D.; Schmitt, C.

    2016-03-01

    Experimental access to full isotopic fragment distributions is very important to determine the features of the fission process. However, the isotopic identification of fission fragments has been, in the past, partial and scarce. A solution based on the use of inverse kinematics to study transfer-induced fission of exotic actinides was carried out at GANIL, resulting in the first experiment accessing the full identification of a collection of fissioning systems and their corresponding fission fragment distribution. In these experiments, a 238U beam at 6.14 AMeV impinged on a carbon target to produce fissioning systems from U to Am by transfer reactions, and Cf by fusion reactions. Isotopic fission yields of 250Cf, 244Cm, 240Pu, 239Np and 238U are presented in this work. With this information, the average number of neutrons as a function of the atomic number of the fragments is calculated, which reflects the impact of nuclear structure around Z=50, N=80 on the production of fission fragments. The characteristics of the Super Long, Standard I, Standard II, and Standard III fission channels were extracted from fits of the fragment yields for different ranges of excitation energy. The position and contribution of the fission channels as function of excitation energy are presented.

  1. Neutron angular distribution in plutonium-240 spontaneous fission

    NASA Astrophysics Data System (ADS)

    Marcath, Matthew J.; Shin, Tony H.; Clarke, Shaun D.; Peerani, Paolo; Pozzi, Sara A.

    2016-09-01

    Nuclear safeguards applications require accurate fission models that exhibit prompt neutron anisotropy. In the laboratory reference frame, an anisotropic neutron angular distribution is observed because prompt fission neutrons carry momentum from fully accelerated fission fragments. A liquid organic scintillation detector array was used with pulse shape discrimination techniques to produce neutron-neutron cross-correlation time distributions and angular distributions from spontaneous fission in a 252Cf, a 0.84 g 240Pueff metal, and a 1.63 g 240Pueff metal sample. The effect of cross-talk, estimated with MCNPX-PoliMi simulations, is removed from neutron-neutron coincidences as a function of the angle between detector pairs. Fewer coincidences were observed at detector angles near 90°, relative to higher and lower detector angles. As light output threshold increases, the observed anisotropy increases due to spectral effects arising from fission fragment momentum transfer to emitted neutrons. Stronger anisotropy was observed in Cf-252 spontaneous fission prompt neutrons than in Pu-240 neutrons.

  2. A feasibility study of [sup 252]Cf neutron brachytherapy, cisplatin + 5-FU chemo-adjuvant and accelerated hyperfractionated radiotherapy for advanced cervical cancer

    SciTech Connect

    Murayama, Y.; Wierzbicki, J. Univ. of Kentucky Medical Center, Lexington, KY ); Bowen, M.G.; Van Nagell, J.R.; Gallion, H.H.; DePriest, P. )

    1994-06-15

    The purpose was to evaluate the feasibility and toxicity of [sup 252]Cf neutron brachytherapy combined with hyperaccelerated chemoradiotherapy for Stage III and IV cervical cancers. Eleven patients with advanced Stage IIIB-IVA cervical cancers were treated with [sup 252]Cf neutron brachytherapy in an up-front schedule followed by cisplatin (CDDP; 50 mg/m[sup 2]) chemotherapy and hyperfractionated accelerated (1.2 Gy bid) radiotherapy given concurrently with intravenous infusion of 5-Fluorouracil (5-FU) (1000 mg/m[sup 2]/day [times] 4 days) in weeks 1 and 4 with conventional radiation (weeks 2, 3, 5, and 6). Total dose at a paracervical point A isodose surface was 80-85 Gy-eq by external and intracavitary therapy and 60 Gy at the pelvic sidewalls. Patients tolerated the protocol well. There was 91% compliance with the chemotherapy and full compliance with the [sup 252]Cf brachytherapy and the external beam radiotherapy. There were no problems with acute chemo or radiation toxicity. One patient developed a rectovaginal fistula (Grade 3-4 RTOG criteria) but no other patients developed significant late cystitis, proctitis or enteritis. There was complete response (CR) observed in all cases. With mean follow-up to 26 months, local control has been achieved with 90% actuarial 3-year survival with no evidence of disease (NED). [sup 252]Cf neutrons can be combined with cisplatin and 5-FU infusion chemotherapy plus hyperaccelerated chemoradiotherapy without unusual side effects or toxicity and with a high local response and tumor control rate. Further study of [sup 252]Cf neutron-chemoradiotherapy for advanced and bulky cervical cancer are indicated. The authors found chemotherapy was more effective with the improved local tumor control. 18 refs., 2 tabs.

  3. The vacuum system for the Munich fission fragment accelerator

    NASA Astrophysics Data System (ADS)

    Maier-Komor, P.; Faestermann, T.; Krücken, R.; Nebel, F.; Winkler, S.; Groß, M.; Habs, D.; Kester, O.; Szerypo, J.; Thirolf, P. G.

    2006-05-01

    The Munich Accelerator for Fission Fragments (MAFF) is a radioactive ion beam facility which will be installed at the new research reactor FRM-II. This new reactor became critical in Spring 2004. The heart of MAFF, the target-ion source unit will be placed in the through-going beam tube of the FRM-II. This beam tube has been installed, tested and filled with helium in 2001. The cogent authorization procedures and safety levels developed for nuclear power plants are applied for this research reactor also. Therefore, MAFF also has to obey these very strict rules, because the typical 1 g load of 235U in the MAFF source creates a fission product activity of several 10 14 Bq after one reactor cycle of 52 days. All vacuum components must withstand a pressure of 6×10 5 Pa in addition to their UHV acceptability. Even dynamic gaskets must be strictly metallic, because organic compounds would not withstand the radioactive irradiation during the design lifetime of 30 years. Only dry vacuum pumps are suitable: refrigerator cryopumps for the high-vacuum part and five stages of roots pumps for roughing and regeneration.

  4. Fission-fragment mass distributions from strongly damped shape evolution

    SciTech Connect

    Randrup, J.; Moeller, P.; Sierk, A. J.

    2011-09-15

    Random walks on five-dimensional potential-energy surfaces were recently found to yield fission-fragment mass distributions that are in remarkable agreement with experimental data. Within the framework of the Smoluchowski equation of motion, which is appropriate for highly dissipative evolutions, we discuss the physical justification for that treatment and investigate the sensitivity of the resulting mass yields to a variety of model ingredients, including in particular the dimensionality and discretization of the shape space and the structure of the dissipation tensor. The mass yields are found to be relatively robust, suggesting that the simple random walk presents a useful calculational tool. Quantitatively refined results can be obtained by including physically plausible forms of the dissipation, which amounts to simulating the Brownian shape motion in an anisotropic medium.

  5. Theoretical study of the almost sequential mechanism of true ternary fission

    NASA Astrophysics Data System (ADS)

    Tashkhodjaev, R. B.; Muminov, A. I.; Nasirov, A. K.; von Oertzen, W.; Oh, Yongseok

    2015-05-01

    We consider the collinear ternary fission which is a sequential ternary decay with a very short time between the ruptures of two necks connecting the middle cluster of the ternary nuclear system and outer fragments. In particular, we consider the case where the Coulomb field of the first massive fragment separated during the first step of the fission produces a lower pre-scission barrier in the second step of the residual part of the ternary system. In this case, we obtain a probability of about 10-3 per binary fission for the yield of massive clusters such as 70Ni,Ge-8280,86Se, and 94Kr in the ternary fission of 252Cf. These products appear together with the clusters having mass numbers of A =132 -140 . The results show that the yield of a heavy cluster such as Ni-7068 would be followed by a product of A =138 -148 with a large probability as observed in the experimental data obtained with the FOBOS spectrometer at the Joint Institute for Nuclear Research. The third product is not observed. The landscape of the potential-energy surface shows that the configuration of the Ni +Ca +Sn decay channel is lower by about 12 MeV than that of the Ca +Ni +Sn channel. This leads to the fact that the yield of Ni and Sn is large. The analysis on the dependence of the velocity of the middle fragment on mass numbers of the outer products leads to the conclusion that, in the collinear tripartition channel of 252Cf, the middle cluster has a very small velocity, which does not allow it to be found in experiments.

  6. Absence of entrance channel effects in fission fragment anisotropies of the {sup 215}Fr compound nucleus

    SciTech Connect

    Appannababu, S.; Mukherjee, S.; Singh, N. L.; Rath, P. K.; Kumar, G. Kiran; Thomas, R. G.; Santra, S.; Nayak, B. K.; Saxena, A.; Choudhury, R. K.; Golda, K. S.; Jhingan, A.; Kumar, R.; Sugathan, P.; Singh, Hardev

    2009-08-15

    Fission fragment angular distributions have been measured for the reactions {sup 11}B+{sup 204}Pb and {sup 18}O+{sup 197}Au, both leading to the same compound nucleus {sup 215}Fr at near barrier energies. The measured fission fragment anisotropies as a function of E{sub c.m.}/V{sub B} are found to be consistent with the predictions of the standard saddle point statistical model (SSPM) for both the systems, suggesting the absence of entrance channel effects on fission fragment anisotropies even though the entrance channel mass asymmetries for both these systems fall on either side of the Bussinaro-Gallone critical mass asymmetry. The consistency of the present results with SSPM predictions can be understood within the framework of the pre-equilibrium fission model where fission before K equilibration is severely inhibited by the high values of ratios of fission barrier height to nuclear temperature.

  7. Properties of fission fragments for Z =112 -116 superheavy nuclei

    NASA Astrophysics Data System (ADS)

    Kaur, Gurjit; Sandhu, Kirandeep; Sharma, Manoj K.

    2016-07-01

    The dynamical cluster decay model (DCM) is applied to understand the dynamics of 48Ca+238U,244Pu,248Cm reactions at comparable excitation energies across the barrier. To understand the capture stage of *286112 ,*292114 , and *296116 nuclei, the compound nucleus formation probability is calculated. The indication of PC N<1 in the DCM framework demonstrates the fact that some competing process such as quasifission may occur at the capture stage of the 48Ca induced reactions. To understand this further, the comparative decay analysis of *286112 ,*292114 and *296116 , nuclei is carried out using β2 i deformations within hot optimum orientation criteria, and the calculated fission cross sections find nice agreement with available data. The fission mass distribution shows a double humped structure where a symmetric peak observed around the Sn region appears to find its genesis in a symmetric quasifission component. On the other hand, the emergence of peaks around Pb in the decay of Z =112 , 114, and 116 nuclei signify the possible presence of asymmetric quasifission. Higher and broader asymmetric quasifission peaks are observed for *296116 and *292114 nuclei as compared to *286112 nucleus. Beside this, the total kinetic energy (TKE) distribution of the decay fragments is also explored by using different proximity potentials, such as Prox-77, Prox-88, and Prox-00. Prox-88 seems to perform better and the calculated TKE values find relatively better comparison at lower angular momentum states. The possible role of different radii of the decaying nuclei is also exercised to understand the TKE ¯ dynamics of 48Ca+238U,244Pu,248Cm reactions.

  8. SPY: A new scission point model based on microscopic ingredients to predict fission fragments properties

    NASA Astrophysics Data System (ADS)

    Lemaître, J.-F.; Dubray, N.; Hilaire, S.; Panebianco, S.; Sida, J.-L.

    2013-12-01

    Our purpose is to determine fission fragments characteristics in a framework of a scission point model named SPY for Scission Point Yields. This approach can be considered as a theoretical laboratory to study fission mechanism since it gives access to the correlation between the fragments properties and their nuclear structure, such as shell correction, pairing, collective degrees of freedom, odd-even effects. Which ones are dominant in final state? What is the impact of compound nucleus structure? The SPY model consists in a statistical description of the fission process at the scission point where fragments are completely formed and well separated with fixed properties. The most important property of the model relies on the nuclear structure of the fragments which is derived from full quantum microscopic calculations. This approach allows computing the fission final state of extremely exotic nuclei which are inaccessible by most of the fission model available on the market.

  9. A double-Bragg detector with digital signal processing for the event-by-event study of fission in actinide nuclei

    NASA Astrophysics Data System (ADS)

    Frost, R. J. W.; Smith, A. G.

    2016-09-01

    In the current paper, a windowless double-Bragg chamber incorporating full signal digitisation has been developed for the purpose of studying the energy (E), mass (A), charge (Z) and angular distributions (θ, Φ) of nuclei generated by fission. This device measures E for each fission fragment by collection of the charge produced during ionisation of the fill gas. Subsequent digitisation of the signals from each of two anodes yields information on dE/dx, as well as electron collection time, which can be further used for polar angle (θ) determination. Frisch-grid and cathode signals are also digitised and are used both for anode signal correction and to produce further information on θ. To verify the operation of this detector, three angular determination techniques from the literature were implemented, and the results were found to be consistent with the referenced paper. Current results from the spontaneous fission of 252Cf are presented.

  10. Benchmark Experiments of Thermal Neutron and Capture Gamma-Ray Distributions in Concrete Using {sup 252}Cf

    SciTech Connect

    Asano, Yoshihiro; Sugita, Takeshi; Hirose, Hideyuki; Suzaki, Takenori

    2005-10-15

    The distributions of thermal neutrons and capture gamma rays in ordinary concrete were investigated by using {sup 252}Cf. Two subjects are considered. One is the benchmark experiments for the thermal neutron and the capture gamma-ray distributions in ordinary concrete. The thermal neutron and the capture gamma-ray distributions were measured by using gold-foil activation detectors and thermoluminescence detectors. These were compared with the simulations by using the discrete ordinates code ANISN with two different group structure types of cross-section library of a new Japanese version, JENDL-3.3, showing reasonable agreement with both fine and rough structure groups of thermal neutron energy. The other is a comparison of the simulations with two different cross-section libraries, JENDL-3.3 and ENDF/B-VI, for the deep penetration of neutrons in the concrete, showing close agreement in 0- to 100-cm-thick concrete. However, the differences in flux grow with an increase in concrete thickness, reaching up to approximately eight times near 4-m thickness.

  11. Shielding evaluation of a medical linear accelerator vault in preparation for installing a high-dose rate 252Cf remote afterloader.

    PubMed

    Melhus, C S; Rivard, M J; Kurkomelis, J; Liddle, C B; Massé, F X

    2005-01-01

    In support of the effort to begin high-dose rate 252Cf brachytherapy treatments at Tufts-New England Medical Center, the shielding capabilities of a clinical accelerator vault against the neutron and photon emissions from a 1.124 mg 252Cf source were examined. Outside the clinical accelerator vault, the fast neutron dose equivalent rate was below the lower limit of detection of a CR-39 etched track detector and below 0.14 +/- 0.02 muSv h(-1) with a proportional counter, which is consistent, within the uncertainties, with natural background. The photon dose equivalent rate was also measured to be below background levels (0.1 muSv h(-1)) using an ionisation chamber and an optically stimulated luminescence dosemeter. A Monte Carlo simulation of neutron transport through the accelerator vault was performed to validate measured values and determine the thermal-energy to low-energy neutron component. Monte Carlo results showed that the dose equivalent rate from fast neutrons was reduced by a factor of 100,000 after attenuation through the vault wall, and the thermal-energy neutron dose equivalent rate would be an additional factor of 1000 below that of the fast neutrons. Based on these findings, the shielding installed in this facility is sufficient for the use of at least 5.0 mg of 252Cf.

  12. Properties of true quaternary fission of nuclei with allowance for its multistep and sequential character

    SciTech Connect

    Kadmensky, S. G. Titova, L. V.; Bulychev, A. O.

    2015-07-15

    An analysis of basicmechanisms of binary and ternary fission of nuclei led to the conclusion that true ternary and quaternary fission of nuclei has a sequential two-step (three-step) character, where, at the first step, a fissile nucleus emits a third light particle (third and fourth light particles) under shakeup effects associated with a nonadiabatic character of its collective deformation motion, whereupon the residual nucleus undergoes fission to two fission fragments. Owing to this, the formulas derived earlier for the widths with respect to sequential two- and three-step decays of nuclei in constructing the theory of two-step twoproton decays and multistep decays in chains of genetically related nuclei could be used to describe the relative yields and angular and energy distributions of third and fourth light particles emitted in (α, α), (t, t), and (α, t) pairs upon the true quaternary spontaneous fission of {sup 252}Cf and thermal-neutron-induced fission of {sup 235}U and {sup 233}U target nuclei. Mechanisms that explain a sharp decrease in the yield of particles appearing second in time and entering into the composition of light-particle pairs that originate from true quaternary fission of nuclei in relation to the yields of analogous particles in true ternary fission of nuclei are proposed.

  13. Properties of true quaternary fission of nuclei with allowance for its multistep and sequential character

    NASA Astrophysics Data System (ADS)

    Kadmensky, S. G.; Titova, L. V.; Bulychev, A. O.

    2015-07-01

    An analysis of basicmechanisms of binary and ternary fission of nuclei led to the conclusion that true ternary and quaternary fission of nuclei has a sequential two-step (three-step) character, where, at the first step, a fissile nucleus emits a third light particle (third and fourth light particles) under shakeup effects associated with a nonadiabatic character of its collective deformation motion, whereupon the residual nucleus undergoes fission to two fission fragments. Owing to this, the formulas derived earlier for the widths with respect to sequential two- and three-step decays of nuclei in constructing the theory of two-step twoproton decays and multistep decays in chains of genetically related nuclei could be used to describe the relative yields and angular and energy distributions of third and fourth light particles emitted in ( α, α), ( t, t), and ( α, t) pairs upon the true quaternary spontaneous fission of 252Cf and thermal-neutron-induced fission of 235U and 233U target nuclei. Mechanisms that explain a sharp decrease in the yield of particles appearing second in time and entering into the composition of light-particle pairs that originate from true quaternary fission of nuclei in relation to the yields of analogous particles in true ternary fission of nuclei are proposed.

  14. Fission fragment mass distributions in reactions forming the {sup 213}Fr compound nucleus

    SciTech Connect

    Appannababu, S.; Mukherjee, S.; Deshmukh, N. N.; Rath, P. K.; Singh, N. L.; Nayak, B. K.; Thomas, R. G.; Choudhury, R. K.; Sugathan, P.; Jhingan, A.; Negi, D.; Prasad, E.

    2011-03-15

    The fission fragment mass angle correlations and mass ratio distributions have been investigated for the two systems {sup 16}O+{sup 197}Au and {sup 27}Al+{sup 186}W, leading to the same compound nucleus {sup 213}Fr around the Coulomb barrier energies. Systematic analysis of the variance of the mass distributions as a function of temperature and angular momentum suggests true compound nuclear fission for both the reactions, indicating the absence of nonequilibrium fission processes.

  15. Second malignancies following conventional or combined 252Cf neutron brachytherapy with external beam radiotherapy for breast cancer

    PubMed Central

    Valuckas, Konstantinas Povilas; Atkocius, Vydmantas; Kuzmickiene, Irena; Aleknavicius, Eduardas; Liukpetryte, Sarune; Ostapenko, Valerijus

    2013-01-01

    We retrospectively evaluated the risk of second malignancies among 832 patients with inner or central breast cancer treated with conventional external beam schedule (CRT group), or neutron brachytherapy using Californium-252 (252Cf) sources and hypofractionated external beam radiotherapy (HRTC group), between 1987 and 1996 at the Institute of Oncology, Vilnius University. Patients were observed until the occurrences of death or development of a second malignancy, or until 31 December 2009, whichever was earlier. Median follow-up time was 10.4 years (range, 1.2–24.1 years). Risk of second primary cancers was quantified using standardized incidence ratios (SIRs). Cox proportional hazards regression models were used to estimate hazard ratios (HRs). There was a significant increase in the risk of second primary cancers compared with the general population (SIR 1.3, 95% CI 1.1–1.5). The observed number of second primary cancers was also higher than expected for breast (SIR 1.8, 95% CI 1.3–2.4) and lung cancer (SIR 3.8, 95% CI 2.0–6.7). For second breast cancer, no raised relative risk was observed during the period ≥10 or more years after radiotherapy. Compared with the CRT group, HRTC patients had a not statistically significant higher risk of breast cancer. Increased relative risks were observed specifically for age at initial diagnosis of <50 years (HR 2.9, 95% CI 1.6–5.2) and for obesity (HR 2.8, 95% CI 1.1–7.2). PMID:23397075

  16. Super-heavy nuclei with Z = 118 and their mass and charge spectrum of fission fragments

    NASA Astrophysics Data System (ADS)

    Maslyuk, V. T.; Smolyanyuk, A. V.

    2015-12-01

    The first results of the calculation of the mass and charge yields of fission fragments for over 60 isotopes which have Z = 118 are presented. The results were obtained from the condition of thermodynamic ordering of the ensemble of fission fragments. The role of neutrons shells with N = 82 or N = 126 and protons shells with Z = 50 in the realization of symmetric (or one-humped) and asymmetric (2- or 3-humped) shapes of the fission-fragment yields with the transition from neutron-proficient to neutron-deficient isotopes was investigated. The data of fragments yields had been analyzed under the conditions of a “cold” and “hot” fission. The calculations show the possibility to identify super-heavy nuclei with Z ≥ 118 produced synthetically by heavy-ion reaction on their mass/charge spectrum division.

  17. Research on fission fragment excitation of gases and nuclear pumping of lasers

    NASA Technical Reports Server (NTRS)

    Schneider, R. T.; Davie, R. N.; Davis, J. F.; Fuller, J. L.; Paternoster, R. R.; Shipman, G. R.; Sterritt, D. E.; Helmick, H. H.

    1974-01-01

    Experimental investigations of fission fragment excited gases are reported along with a theoretical analysis of population inversions in fission fragment excited helium. Other studies reported include: nuclear augmentation of gas lasers, direct nuclear pumping of a helium-xenon laser, measurements of a repetitively pulsed high-power CO2 laser, thermodynamic properties of UF6 and UF6/He mixtures, and nuclear waste disposal utilizing a gaseous core reactor.

  18. Analysis of prompt fission neutrons in 235U(nth,f) and fission fragment distributions for the thermal neutron induced fission of 234U

    NASA Astrophysics Data System (ADS)

    Al-Adili, A.; Tarrío, D.; Hambsch, F.-J.; Göök, A.; Jansson, K.; Solders, A.; Rakopoulos, V.; Gustafsson, C.; Lantz, M.; Mattera, A.; Oberstedt, S.; Prokofiev, A. V.; Vidali, M.; Österlund, M.; Pomp, S.

    2016-06-01

    This paper presents the ongoing analysis of two fission experiments. Both projects are part of the collaboration between the nuclear reactions group at Uppsala and the JRC-IRMM. The first experiment deals with the prompt fission neutron multiplicity in the thermal neutron induced fission of 235U(n,f). The second, on the fission fragment properties in the thermal fission of 234U(n,f). The prompt fission neutron multiplicity has been measured at the JRC-IRMM using two liquid scintillators in coincidence with an ionization chamber. The first experimental campaign focused on 235U(nth,f) whereas a second experimental campaign is foreseen later for the same reaction at 5.5 MeV. The goal is to investigate how the so-called sawtooth shape changes as a function of fragment mass and excitation energy. Some harsh experimental conditions were experienced due to the large radiation background. The solution to this will be discussed along with preliminary results. In addition, the analysis of thermal neutron induced fission of 234U(n,f) will be discussed. Currently analysis of data is ongoing, originally taken at the ILL reactor. The experiment is of particular interest since no measurement exist of the mass and energy distributions for this system at thermal energies. One main problem encountered during analysis was the huge background of 235U(nth,f). Despite the negligible isotopic traces in the sample, the cross section difference is enormous. Solution to this parasitic background will be highlighted.

  19. Monte-Carlo Hauser-Feshbach simulations of prompt fission gamma-ray properties

    NASA Astrophysics Data System (ADS)

    Stetcu, Ionel; Talou, Patrick; Kawano, Toshihiko; Jandel, Marian

    2014-09-01

    Properties of prompt fission neutrons and γ rays, emitted before the weak decays of the fission fragments toward stability, are important for both nuclear technologies and a better understanding of the fission process. In the present work, we use the Hauser-Feshbach model to simulate the de-excitation of the fully accelerated fission fragments treated as compound nuclei. Our Monte-Carlo implementation of the Hauser-Feshbach statistical model, which takes into account the competition between the neutron and γ emissions, allows the description of both average quantities, like in the Los Alamos model, and correlations between the emitted particles. Our simulations will be compared against available experimental data and current evaluations. In particular, we will compare our average γ-ray spectrum with recent measurements at the research reactor KFKI in Budapest for the 235U(nth , f) and 252Cf(sf) reactions, as well as multiplicity-dependent distributions obtained at the DANCE facility at LANSCE. Properties of prompt fission neutrons and γ rays, emitted before the weak decays of the fission fragments toward stability, are important for both nuclear technologies and a better understanding of the fission process. In the present work, we use the Hauser-Feshbach model to simulate the de-excitation of the fully accelerated fission fragments treated as compound nuclei. Our Monte-Carlo implementation of the Hauser-Feshbach statistical model, which takes into account the competition between the neutron and γ emissions, allows the description of both average quantities, like in the Los Alamos model, and correlations between the emitted particles. Our simulations will be compared against available experimental data and current evaluations. In particular, we will compare our average γ-ray spectrum with recent measurements at the research reactor KFKI in Budapest for the 235U(nth , f) and 252Cf(sf) reactions, as well as multiplicity-dependent distributions obtained at the

  20. Neutron multiplicities in spontaneous fission and nuclear structure studies

    SciTech Connect

    Hamilton, J.H.; Kormicki, J.; Lu, Q.

    1993-12-31

    New insights into the fission process can be gained by better quantitative knowledge of how the energy released in fission is distributed between the kinetic energy of the two fragments, the excitation energy of the two fragments and the number of neutrons emitted. Studies of prompt gamma-rays emitted in spontaneous fission (SF) with large arrays of Compton suppressed Ge detector arrays are providing new quantitative answers to longstanding questions concerning fission as well as new insights into the structure of neutron-rich nuclei. For the first time the triple gamma coincidence technique was employed in spontaneous fission studies. Studies of SF of {sup 252}Cf and {sup 242}Pu have been carried out. These {gamma}-{gamma}-{gamma} data provide powerful ways to identify uniquely gamma rays from a particular nucleus in the very complex gamma-ray spectra given off by the over 100 different nuclei produced. The emphasis of this paper is on the first quantitative measurements of the multiplicities of the neutrons emitted in SF and the energy levels populated in the fragments. Indeed, in the break up into Mo-Ba pairs, we have identified for the first time fragments associated with from zero up to ten neutrons emitted and observed the excited energy states populated in these nuclei. The zero neutron emission pairs like {sup 104}Mo- {sup 148}Ba, {sup 106}Mo- {sup 146}Ba and {sup 104}Zr- {sup 148}Ce observed in this work are particularly interesting because they represent a type of cold fission or a new mode of cluster radioactivity as proposed by Greiner, Sandulescu and co-workers. These data provide new insights into the processes of cluster radioactivity and cold fission.

  1. Fission-fragment detector for DANCE based on thin scintillating films

    NASA Astrophysics Data System (ADS)

    Rusev, G.; Roman, A. R.; Daum, J. K.; Springs, R. K.; Bond, E. M.; Jandel, M.; Baramsai, B.; Bredeweg, T. A.; Couture, A.; Favalli, A.; Ianakiev, K. D.; Iliev, M. L.; Mosby, S.; Ullmann, J. L.; Walker, C. L.

    2015-12-01

    A fission-fragment detector based on thin scintillating films has been built to serve as a trigger/veto detector in neutron-induced fission measurements at DANCE. The fissile material is surrounded by scintillating films providing 4 π detection of the fission fragments. The scintillation photons were registered with silicon photomultipliers. A measurement of the 235U (n , f) reaction with this detector at DANCE revealed a correct time-of-flight spectrum and provided an estimate for the efficiency of the prototype detector of 11.6(7)%. Design and test measurements with the detector are described.

  2. Neutron emission as a function of fragment energy in the spontaneous fission of /sup 260/Md

    SciTech Connect

    Wild, J.F.; van Aarle, J.; Westmeiser, W.; Lougheed, R.W.; Hulet, E.K.; Moody, K.J.; Dougan, R.J.; Brandt, R.; Patzelt, P.

    1989-04-19

    We have made the first measurement of the number of neutrons emitted in the spontaneous fission of a nuclide in which very high fragment energies dominate the fission process. In bombardments of /sup 254/Es, we produced 28-d /sup 260/Md, which was neutron-counted in a 1-m-diam spherical tank containing a Gd-doped scintillator solution. The average number of neutrons emitted per fission is only 2.58 +- 0.11, substantially less than for other actinides. A direct correlation of neutron multiplicity with fragment excitation energy is clearly demonstrated. 3 refs., 5 figs.

  3. Fission-Fragment Charge Yields in a Brownian Shape-Motion Model

    NASA Astrophysics Data System (ADS)

    Möller, P.; Randrup, J.

    2014-09-01

    We use a recent model for fission-fragment yield distributions based on Brownian shape motion on 5D potential-energy surfaces to calculate fission-fragment charge yields for the complete U and Th isotope chains observed in the seminal GSI experiment by K.H. Schmidt et al. Previously it was shown that this model describes the transition between symmetric and asymmetric fission in the light Th region; however in these studies the damping of shell corrections with energy was not taken into account. Here we use a generalized Brownian shape-motion model that includes damping of shell corrections with energy.

  4. Dynamical approach to isotopic-distribution of fission fragments from actinide nuclei

    NASA Astrophysics Data System (ADS)

    Ishizuka, Chikako; Chiba, Satoshi; Karpov, Alexander V.; Aritomo, Yoshihiro

    2016-06-01

    Measurements of the isotope distribution of fission fragments, often denoted as the primary fission yield (pre-neutron yield) or independent fission yield (post-neutron yield) are still challenging at low excitation energies, so that it is important to investigate it within a theory. Such quantities are vital for applications as well. In this study, fragment distributions from the fission of U isotopes at low excitation energies are studied using a dynamical model. The potential energy surface is derived from the two center shell model including the shell and pairing corrections. In order to calculate the charge distribution of fission fragments, we introduce a new parameter ηZ as the charge asymmetry, in addition to three parameters describing a nuclear shape, z as the distance between two centers of mass, δ as fragment deformation, and ηA as the mass asymmetry. Using this model, we calculated the isotopic distribution of 236U for the n-induced process 235U + n → 236U at low excitation energies. As a result, we found that the current model can well reproduce isotopic fission-fragment distribution which can be compared favorably with major libraries.

  5. A position-sensitive twin ionization chamber for fission fragment and prompt neutron correlation experiments

    NASA Astrophysics Data System (ADS)

    Göök, A.; Geerts, W.; Hambsch, F.-J.; Oberstedt, S.; Vidali, M.; Zeynalov, Sh.

    2016-09-01

    A twin position-sensitive Frisch grid ionization chamber, intended as a fission fragment detector in experiments to study prompt fission neutron correlations with fission fragment properties, is presented. Fission fragment mass and energies are determined by means of the double kinetic energy technique, based on conservation of mass and linear momentum. The position sensitivity is achieved by replacing each anode plate in the standard twin ionization chamber by a wire plane and a strip anode, both readout by means of resistive charge division. This provides information about the fission axis orientation, which is necessary to reconstruct the neutron emission process in the fully accelerated fragment rest-frame. The energy resolution compared to the standard twin ionization chamber is found not to be affected by the modification. The angular resolution of the detector relative to an arbitrarily oriented axis is better than 7° FWHM. Results on prompt fission neutron angular distributions in 235U(n,f) obtained with the detector in combination with an array of neutron scintillation detectors is presented as a proof of principle.

  6. Microarray analysis of DNA damage repair gene expression profiles in cervical cancer cells radioresistant to 252Cf neutron and X-rays

    PubMed Central

    2010-01-01

    Background The aim of the study was to obtain stable radioresistant sub-lines from the human cervical cancer cell line HeLa by prolonged exposure to 252Cf neutron and X-rays. Radioresistance mechanisms were investigated in the resulting cells using microarray analysis of DNA damage repair genes. Methods HeLa cells were treated with fractionated 252Cf neutron and X-rays, with a cumulative dose of 75 Gy each, over 8 months, yielding the sub-lines HeLaNR and HeLaXR. Radioresistant characteristics were detected by clone formation assay, ultrastructural observations, cell doubling time, cell cycle distribution, and apoptosis assay. Gene expression patterns of the radioresistant sub-lines were studied through microarray analysis and verified by Western blotting and real-time PCR. Results The radioresistant sub-lines HeLaNR and HeLaXR were more radioresisitant to 252Cf neutron and X-rays than parental HeLa cells by detecting their radioresistant characteristics, respectively. Compared to HeLa cells, the expression of 24 genes was significantly altered by at least 2-fold in HeLaNR cells. Of these, 19 genes were up-regulated and 5 down-regulated. In HeLaXR cells, 41 genes were significantly altered by at least 2-fold; 38 genes were up-regulated and 3 down-regulated. Conclusions Chronic exposure of cells to ionizing radiation induces adaptive responses that enhance tolerance of ionizing radiation and allow investigations of cellular radioresistance mechanisms. The insights gained into the molecular mechanisms activated by these "radioresistance" genes will lead to new therapeutic targets for cervical cancer. PMID:20184742

  7. Dynamic approach to description of entrance channel effects in angular distributions of fission fragments

    NASA Astrophysics Data System (ADS)

    Eremenko, D. O.; Drozdov, V. A.; Fotina, O. V.; Platonov, S. Yu.; Yuminov, O. A.

    2016-07-01

    Background: It is well known that the anomalous behavior of angular anisotropies of fission fragments at sub- and near-barrier energies is associated with a memory of conditions in the entrance channel of the heavy-ion reactions, particularly, deformations and spins of colliding nuclei that determine the initial distributions for the components of the total angular momentum over the symmetry axis of the fissioning system and the beam axis. Purpose: We develop a new dynamic approach, which allows the description of the memory effects in the fission fragment angular distributions and provides new information on fusion and fission dynamics. Methods: The approach is based on the dynamic model of the fission fragment angular distributions which takes into account stochastic aspects of nuclear fission and thermal fluctuations for the tilting mode that is characterized by the projection of the total angular momentum onto the symmetry axis of the fissioning system. Another base of our approach is the quantum mechanical method to calculate the initial distributions over the components of the total angular momentum of the nuclear system immediately following complete fusion. Results: A method is suggested for calculating the initial distributions of the total angular momentum projection onto the symmetry axis for the nuclear systems formed in the reactions of complete fusion of deformed nuclei with spins. The angular distributions of fission fragments for the 16O+232Th,12C+235,236,238, and 13C+235U reactions have been analyzed within the dynamic approach over a range of sub- and above-barrier energies. The analysis allowed us to determine the relaxation time for the tilting mode and the fraction of fission events occurring in times not larger than the relaxation time for the tilting mode. Conclusions: It is shown that the memory effects play an important role in the formation of the angular distributions of fission fragments for the reactions induced by heavy ions. The

  8. Investigation of phenomenological models for the Monte Carlo simulation of the prompt fission neutron and {gamma} emission

    SciTech Connect

    Litaize, O.; Serot, O.

    2010-11-15

    A Monte Carlo simulation of the fission fragment deexcitation process was developed in order to analyze and predict postfission-related nuclear data which are of crucial importance for basic and applied nuclear physics. The basic ideas of such a simulation were already developed in the past. In the present work, a refined model is proposed in order to make a reliable description of the distributions related to fission fragments as well as to prompt neutron and {gamma} energies and multiplicities. This refined model is mainly based on a mass-dependent temperature ratio law used for the initial excitation energy partition of the fission fragments and a spin-dependent excitation energy limit for neutron emission. These phenomenological improvements allow us to reproduce with a good agreement the {sup 252}Cf(sf) experimental data on prompt fission neutron multiplicity {nu}(A), {nu}(TKE), the neutron multiplicity distribution P({nu}), as well as their energy spectra N(E), and lastly the energy release in fission.

  9. Development of a thin scintillation films fission-fragment detector and a novel neutron source

    SciTech Connect

    Rusev, Gencho Yordanov; Jandel, Marian; Baramsai, Bayarbadrakh; Bond, Evelyn M.; Bredeweg, Todd Allen; Couture, Aaron Joseph; Daum, Jaimie Kay; Favalli, Andrea; Ianakiev, Kiril Dimitrov; Iliev, Metodi L.; Mosby, Shea Morgan; Roman, Audrey Rae; Springs, Rebecca Kristien; Ullmann, John Leonard; Walker, Carrie Lynn

    2015-08-26

    Here, investigation of prompt fission and neutron-capture Υ rays from fissile actinide samples at the Detector for Advanced Neutron Capture Experiments (DANCE) requires use of a fission-fragment detector to provide a trigger or a veto signal. A fission-fragment detector based on thin scintillating films and silicon photomultipliers has been built to serve as a trigger/veto detector in neutron-induced fission measurements at DANCE. The fissile material is surrounded by scintillating films providing a 4π detection of the fission fragments. The scintillations were registered with silicon photomultipliers. A measurement of the 235U(n,f) reaction with this detector at DANCE revealed a correct time-of-flight spectrum and provided an estimate for the efficiency of the prototype detector of 11.6(7)%. Design and test measurements with the detector are described. A neutron source with fast timing has been built to help with detector-response measurements. The source is based on the neutron emission from the spontaneous fission of 252Cf and the same type of scintillating films and silicon photomultipliers. Overall time resolution of the source is 0.3 ns. Design of the source and test measurements with it are described. An example application of the source for determining the neutron/gamma pulse-shape discrimination by a stilbene crystal is given.

  10. Mass dependence of fragment angular distributions in the fission of 232Th and 236U induced by polarized photons

    NASA Astrophysics Data System (ADS)

    Steiper, F.; Frommhold, Th.; Henkel, W.; Jung, A.; Kneissl, U.; Stock, R.

    1993-10-01

    Near-barrier fission of 232Th and 236U induced by linearly polarized photons has been investigated. The experiments have been carried out at the "off-axis" bremsstrahlung facility of the Giessen 65 MeV electron linac. Fragment angular, mass and energy distributions have been measured simultaneously allowing the investigation of correlations between these fragment characteristics. A consistent assignment of the quantum numbers Jπ and K for the fussion channels involved in the fission process is proposed. For the first time, the polar anisotropies and azimuthal asymmetries of the fission fragment angular distributions W( θ, φ) have been investigated as a function of the fragment masses. The results are discussed in the framework of the double-humped fission barrier concept and the so-called "multi-exit fission channel" model. Additionally, angular distributions of heavy and light fission fragments from photofission of 236U have been analyzed for a possible asymmetry with respect to θ = 90°.

  11. Unusually low fragment energies in the symmetric fission of /sup 259/Md

    SciTech Connect

    Wild, J.F.; Hulet, E.K.; Lougheed, R.W.; Baisden, P.A.; Landrum, J.H.; Dougan, R.J.; Mustafa, M.G.

    1982-10-01

    The 103-min isotope /sup 259/Md has been identified as the daughter of an electron-capture decay branch of /sup 259/No produced via the /sup 248/Cm(/sup 18/O,..cap alpha..3n) reaction. Chemical separations were used to confirm the identity of /sup 259/Md, which decays by spontaneous fission. The kinetic energies of coincident fission fragments were measured, corresponding to a fragment mass which is highly symmetric, similar to those of /sup 258/Fm and /sup 259/Fm. However, the total kinetic energy distribution for /sup 259/Md is considerably broader (FWHM approx.60 MeV) than those of /sup 258/Fm and /sup 259/Fm, and peaks at 201 MeV, about 35--40 MeV lower in energy. Furthermore, the maximum total Kinetic energy of 215 MeV for mass-symmetric events is about 30 MeV lower than for similar events from the spontaneous fission of /sup 258/Fm and /sup 259/Fm. A hypothesis that this energy difference resulted from the emission of light, hydrogen-like particles at scission in a large fraction of /sup 259/Md spontaneous fission decays was shown to be unfounded. From experiments to observe such particles with counter telescopes, an upper limit of 5% was determined for the fraction of fission events accompanied by light-particle emission. The total kinetic energy deficit at mass symmetry must, therefore, be distributed between internal excitation energy and fragment deformation energy at scission. Although the presence of a large amount of fragment deformation energy seems incompatible with symmetric fission into spherical Sn-like fragments, we prefer this explanation because the low total kinetic energy suggests a lowered Coulomb energy resulting from greater separation of the charge centers of deformed fragments at scission.

  12. Fission Fragment Angular Distributions measured with a Time Projection Chamber

    SciTech Connect

    Kleinrath, Verena

    2015-04-28

    The subject is presented in a series of slides with the following organization: Introduction (What is anisotropy? Relevance (Theory and ratio cross section), Previous measurements); Experiment (Particle tracking in the fissionTPC, Neutron time of flight, Data analysis & uncertainty calculation, Preliminary result for 235U); and Future Work (Refine 235U result, Process 239Pu data).

  13. QUALIFICATION OF THE SAVANNAH RIVER SITE 252CF SHUFFLER FOR RECEIPT VERIFICATION MEASUREMENTS OF MIXED U-PU OXIDES STORED IN 9975 SHIPPING CONTAINERS

    SciTech Connect

    Dubose, F.

    2011-05-26

    To extend their ability to perform accountability and verification measurements of {sup 235}U in a U-Pu oxide matrix, the K-Area Material Storage facility commissioned the development and construction of a Passive/Active {sup 252}Cf Shuffler. A series of {sup 252}Cf, PuO{sub 2}, and U-Pu oxide standards, in addition to a single U{sub 3}O{sub 8} standard, were measured to characterize and calibrate the shuffler. Accompanying these measurements were simulations using MCNP5/MCNPX, aimed at isolating the neutron countrate contributions for each of the isotopes present. Two calibration methods for determining the {sup 235}U content in mixed UPu oxide were then developed, yielding comparable results. The first determines the {sup 235}U mass by estimating the {sup 239}Pu/{sup 235}U ratio-dependent contributions from the primary delayed neutron contributors. The second defines an average linear response based on the {sup 235}U and {sup 239}Pu mass contents. In each case, it was observed that self-shielding due to {sup 235}U mass has a large influence on the observed rates, requiring bounds on the applicable limits of each calibration method.

  14. Fission Measurements with Dance

    NASA Astrophysics Data System (ADS)

    Jandel, M.; Bredeweg, T. A.; Fowler, M. M.; Bond, E. M.; Chadwick, M. B.; Clement, R. R.; Couture, A.; O'Donnell, J. M.; Haight, R. C.; Keksis, A. L.; Reifarth, R.; Rundberg, R. S.; Ullmann, J. L.; Vieira, D. J.; Wilhelmy, J. B.; Wouters, J. M.; Agvaanluvsan, U.; Dashdorj, D.; Macri, R. A.; Parker, W. E.; Wilk, P. A.; Wu, C. Y.; Becker, J. A.; Angell, C. T.; Tonchev, A. P.; Baker, J. D.

    2008-08-01

    Neutron capture cross section measurements on actinides are complicated by the presence of neutron-induced fission. An efficient fission tagging detector used in coincidence with the Detector for Advanced Neutron Capture Experiments (DANCE) provides a powerful tool in undertaking simultaneous measurements of (n,γ) and (n,f) cross sections. Preliminary results on 235U(n,γ) and (n,f) and 242mAm(n,f) cross sections measured with DANCE and a custom fission-tagging parallel plate avalanche counter (PPAC) are presented. Additional measurements of γ-ray cluster multiplicity distributions for neutron-induced fission of 235U and 242mAm and spontaneous fission of 252Cf are shown, as well as γ-ray energy and average γ-ray energy distributions.

  15. Interplay between compound and fragments aspects of nuclear fission and heavy-ion reaction

    SciTech Connect

    Moller, Peter; Iwamoto, A; Ichikawa, I

    2010-09-10

    The scission point in nuclear fission plays a special role where one-body system changes to two-body system. Inverse of this situation is realized in heavy-ion fusion reaction where two-body system changes to one body system. Among several peculiar phenomena expected to occur during this change, we focus our attention to the behavior of compound and fragments shell effects. Some aspects of the interplay between compound and fragments shell effect are discussed related to the topics of the fission valleys in the potential energy surface of actinide nuclei and the fusion-like trajectory found in the cold fusion reaction leading to superheavy nuclei.

  16. The carcinogenic effect of localized fission fragment irradiation of rat lung.

    PubMed

    Batchelor, A L; Buckley, P; Gore, D J; Jenner, T J; Major, I R; Bailey, M R

    1980-03-01

    In a preliminary investigation of 'hot particle' carcinogenesis uranium oxide particles were introduced into the lungs of rats either by intubation of a liquid suspension of the particles or by inhalation of an aerosol. Subsequently the animals were briefly exposed to slow neutrons in a nuclear reactor, resulting in localized irradiation of the lung by fission fragments emitted from 235U atoms in the oxide particles. The uranium used in the intubation experiments was either enriched or depleted in 235U. Squamous cell carcinomas developed at the site of deposition of the enriched uranium oxide in many cases but no lung tumours occurred in the rats with the depleted uranium oxide, in which the lung tissue was exposed to very few fission fragments. Only enriched uranium oxide was used in the inhalation experiments. Pulmonary squamous cell carcinomas occurred after the fission fragment irradiation but were fewer than in the intubation experiments. Adenocarcinomas of the lung were seen in rats exposed to uranium oxide without subsequent irradiation by neutrons in the reactor and in rats irradiated with neutrons but not previously exposed to uranium oxide. It is concluded that (i) fission fragments were possibly implicated in the genesis of the squamous cell carcinomas, which only developed in those animals exposed to enriched uranium oxide and neutrons and (ii) the adenocarcinomas in the rats inhaling enriched uranium oxide only were likely to have been caused by protracted irradiation of the lung with alpha-rays emitted from the enriched uranium.

  17. Total prompt γ-ray emission in fission

    NASA Astrophysics Data System (ADS)

    Wu, C. Y.; Chyzh, A.; Kwan, E.; Henserson, R. A.; Bredeweg, T. A.; Haight, R. C.; Hayes-Sterbenz, A. C.; Lee, H. Y.; O'Donnell, J. M.; Ullmann, J. L.

    2016-06-01

    The total prompt γ-ray energy distributions for the neutron-induced fission of 235U, 239,241Pu at incident neutron energy of 0.025 eV ‒ 100 keV, and the spontaneous fission of 252Cf were measured using the Detector for Advanced Neutron Capture Experiments (DANCE) array in coincidence with the detection of fission fragments by a parallel-plate avalanche counter. DANCE is a highly segmented, highly efficient 4π γ-ray calorimeter. Corrections were made to the measured distribution by unfolding the two-dimension spectrum of total γ-ray energy vs multiplicity using a simulated DANCE response matrix. The mean values of the total prompt γ-ray energy, determined from the unfolded distributions, are ~ 20% higher than those derived from measurements using single γ-ray detector for all the fissile nuclei studied. This raises serious concern on the validity of the mean total prompt γ-ray energy obtained from the product of mean values for both prompt γ-ray energy and multiplicity.

  18. Feasibility of Traveling Wave Direct Energy Conversion of Fission Reaction Fragments

    NASA Technical Reports Server (NTRS)

    Tarditi, A. G.; George, J. A.; Miley, G. H.; Scott, J. H.

    2013-01-01

    Fission fragment direct energy conversion has been considered in the past for the purpose of increasing nuclear power plant efficiency and for advanced space propulsion. Since the fragments carry electric charge (typically in the order of 20 e) and have 100 MeV-range kinetic energy, techniques utilizing very high-voltage DC electrodes have been considered. This study is focused on a different approach: the kinetic energy of the charged fission fragments is converted into alternating current by means of a traveling wave coupling scheme (Traveling Wave Direct Energy Converter, TWDEC), thereby not requiring the utilization of high voltage technology. A preliminary feasibility analysis of the concept is introduced based on a conceptual level study and on a particle simulation model of the beam dynamics.

  19. Calculated fission-fragment yield systematics in the region 74 <=Z <= 94 and 90 <=N <= 150

    DOE PAGES

    Möller, Peter; Randrup, Jørgen

    2015-04-01

    Background: In the seminal experiment by Schmidt et al. [Nucl. Phys. A 665, 221 (2000)] in which fission-fragment charge distributions were obtained for 70 nuclides, asymmetric distributions were seen above nucleon number A ≈ 226 and symmetric ones below. Because asymmetric fission had often loosely been explained as a preference for the nucleus to always exploit the extra binding of fragments near ¹³²Sn it was assumed that all systems below A ≈ 226 would fission symmetrically because available isotopes do not have a proton-to-neutron Z/N ratio that allows division into fragments near ¹³²Sn. But the finding by Andreyev et al.more » [Phys. Rev. Lett. 105, 252502 (2010)] did not conform to this expectation because the compound system ¹⁸⁰Hg was shown to fission asymmetrically. It was suggested that this was a new type of asymmetric fission, because no strong shell effects occur for any possible fragment division. Purpose: We calculate a reference database for fission-fragment mass yields for a large region of the nuclear chart comprising 987 nuclides. A particular aim is to establish whether ¹⁸⁰Hg is part of a contiguous region of asymmetric fission, and if so, its extent, or if not, in contrast to the actinides, there are scattered smaller groups of nuclei that fission asymmetrically in this area of the nuclear chart. Methods: We use the by now well benchmarked Brownian shape-motion method and perform random walks on the previously calculated five-dimensional potential-energy surfaces. The calculated shell corrections are damped out with energy according to a prescription developed earlier. Results: We have obtained a theoretical reference database of fission-fragment mass yields for 987 nuclides. These results show an extended region of asymmetric fission with approximate extension 74 ≤ Z ≤ 85 and 100 ≤ N ≤ 120. The calculated yields are highly variable. We show 20 representative plots of these variable features and summarize the main

  20. Calculated fission-fragment yield systematics in the region 74 <=Z <= 94 and 90 <=N <= 150

    SciTech Connect

    Möller, Peter; Randrup, Jørgen

    2015-04-01

    Background: In the seminal experiment by Schmidt et al. [Nucl. Phys. A 665, 221 (2000)] in which fission-fragment charge distributions were obtained for 70 nuclides, asymmetric distributions were seen above nucleon number A ≈ 226 and symmetric ones below. Because asymmetric fission had often loosely been explained as a preference for the nucleus to always exploit the extra binding of fragments near ¹³²Sn it was assumed that all systems below A ≈ 226 would fission symmetrically because available isotopes do not have a proton-to-neutron Z/N ratio that allows division into fragments near ¹³²Sn. But the finding by Andreyev et al. [Phys. Rev. Lett. 105, 252502 (2010)] did not conform to this expectation because the compound system ¹⁸⁰Hg was shown to fission asymmetrically. It was suggested that this was a new type of asymmetric fission, because no strong shell effects occur for any possible fragment division. Purpose: We calculate a reference database for fission-fragment mass yields for a large region of the nuclear chart comprising 987 nuclides. A particular aim is to establish whether ¹⁸⁰Hg is part of a contiguous region of asymmetric fission, and if so, its extent, or if not, in contrast to the actinides, there are scattered smaller groups of nuclei that fission asymmetrically in this area of the nuclear chart. Methods: We use the by now well benchmarked Brownian shape-motion method and perform random walks on the previously calculated five-dimensional potential-energy surfaces. The calculated shell corrections are damped out with energy according to a prescription developed earlier. Results: We have obtained a theoretical reference database of fission-fragment mass yields for 987 nuclides. These results show an extended region of asymmetric fission with approximate extension 74 ≤ Z ≤ 85 and 100 ≤ N ≤ 120. The calculated yields are highly variable. We show 20 representative plots of these variable features and summarize the

  1. New fission fragment distributions and r-process origin of the rare-earth elements.

    PubMed

    Goriely, S; Sida, J-L; Lemaître, J-F; Panebianco, S; Dubray, N; Hilaire, S; Bauswein, A; Janka, H-T

    2013-12-13

    Neutron star (NS) merger ejecta offer a viable site for the production of heavy r-process elements with nuclear mass numbers A≳140. The crucial role of fission recycling is responsible for the robustness of this site against many astrophysical uncertainties, but calculations sensitively depend on nuclear physics. In particular, the fission fragment yields determine the creation of 110≲A≲170 nuclei. Here, we apply a new scission-point model, called SPY, to derive the fission fragment distribution (FFD) of all relevant neutron-rich, fissioning nuclei. The model predicts a doubly asymmetric FFD in the abundant A≃278 mass region that is responsible for the final recycling of the fissioning material. Using ejecta conditions based on relativistic NS merger calculations, we show that this specific FFD leads to a production of the A≃165 rare-earth peak that is nicely compatible with the abundance patterns in the Sun and metal-poor stars. This new finding further strengthens the case of NS mergers as possible dominant origin of r nuclei with A≳140.

  2. New Fission Fragment Distributions and r-Process Origin of the Rare-Earth Elements

    NASA Astrophysics Data System (ADS)

    Goriely, S.; Sida, J.-L.; Lemaître, J.-F.; Panebianco, S.; Dubray, N.; Hilaire, S.; Bauswein, A.; Janka, H.-T.

    2013-12-01

    Neutron star (NS) merger ejecta offer a viable site for the production of heavy r-process elements with nuclear mass numbers A≳140. The crucial role of fission recycling is responsible for the robustness of this site against many astrophysical uncertainties, but calculations sensitively depend on nuclear physics. In particular, the fission fragment yields determine the creation of 110≲A≲170 nuclei. Here, we apply a new scission-point model, called SPY, to derive the fission fragment distribution (FFD) of all relevant neutron-rich, fissioning nuclei. The model predicts a doubly asymmetric FFD in the abundant A≃278 mass region that is responsible for the final recycling of the fissioning material. Using ejecta conditions based on relativistic NS merger calculations, we show that this specific FFD leads to a production of the A≃165 rare-earth peak that is nicely compatible with the abundance patterns in the Sun and metal-poor stars. This new finding further strengthens the case of NS mergers as possible dominant origin of r nuclei with A≳140.

  3. Basic results of investigations of scission neutrons in nuclear fission at low excitation energies

    SciTech Connect

    Petrov, G. A. Gagarski, A. M.; Guseva, I. S.; Sokolov, V. E.; Val'ski, G. V.; Vorobiev, A. S.; Krinitcin, D. O.; Shcherbakov, O. A.; Nikolaev, D. V.; Pleva, Yu. S.; Petrova, V. I.; Zavarukhina, T. A.

    2008-07-15

    To estimate the main characteristics of neutrons emitted shortly before the scission of a fissioning nucleus, various experiments sensitive to the presence of these scission neutrons in thermal-neutron-induced fission of {sup 235}U and spontaneous fission of {sup 252}Cf were performed. The results of the experiments were analyzed within theoretical calculations allowing for various possible neutron-emission mechanisms, including the possibility of the emergence of neutrons from the scission of a nucleus.

  4. Planetary Surface Power and Interstellar Propulsion Using Fission Fragment Magnetic Collimator Reactor

    SciTech Connect

    Tsvetkov, Pavel V.; Hart, Ron R.; King, Don B.; Rochau, Gary E.

    2006-01-20

    Fission energy can be used directly if the kinetic energy of fission fragments is converted to electricity and/or thrust before turning into heat. The completed US DOE NERI Direct Energy Conversion (DEC) Power Production project indicates that viable DEC systems are possible. The US DOE NERI DEC Proof of Principle project began in October of 2002 with the goal to demonstrate performance principles of DEC systems. One of the emerging DEC concepts is represented by fission fragment magnetic collimator reactors (FFMCR). Safety, simplicity, and high conversion efficiency are the unique advantages offered by these systems. In the FFMCR, the basic energy source is the kinetic energy of fission fragments. Following escape from thin fuel layers, they are captured on magnetic field lines and are directed out of the core and through magnetic collimators to produce electricity and thrust. The exiting flow of energetic fission fragments has a very high specific impulse that allows efficient planetary surface power and interstellar propulsion without carrying any conventional propellant onboard. The objective of this work was to determine technological feasibility of the concept. This objective was accomplished by producing the FFMCR design and by analysis of its performance characteristics. The paper presents the FFMCR concept, describes its development to a technologically feasible level and discusses obtained results. Performed studies offer efficiencies up to 90% and velocities approaching speed of light as potentially achievable. The unmanned 10-tons probe with 1000 MW FFMCR propulsion unit would attain mission velocity of about 2% of the speed of light. If the unit is designed for 4000 MW, then in 10 years the unmanned 10-tons probe would attain mission velocity of about 10% of the speed of light.

  5. Three-cluster model for the {alpha}-accompanied fission of californium nuclei

    SciTech Connect

    Manimaran, K.; Balasubramaniam, M.

    2009-02-15

    A three-cluster model is proposed to explain the particle-accompanied binary fission of radioactive nuclei. The model is developed as an extension of the preformed cluster model of Gupta and collaborators. The advantage of this model is that, for a fixed third fragment, we can calculate the fragmentation potential minimized in charge coordinate. For our study we chose the various neutron-deficient to neutron-rich californium nuclei, whose analysis reveals that the closed-shell effect of any one of the fragments in ternary fragmentation presents itself as the most favorable configuration to be observed. As one goes from a neutron-deficient to a neutron-rich californium isotope, the role of the neutron closed shell associated with any one of the preferred fragments changes to that of the proton closed shell, and for very neutron rich isotopes of californium the presence of a double closed shell nucleus enhances the decay probability. The quadrupole deformation of the light fragment (A{sub 2}) associated with the preferred configuration in the symmetric mass region also has a transition from positive to negative deformation as one goes from neutron-deficient to neutron-rich californium isotopes. The calculated relative yields of different fragmentation channels are compared with the available experimental yields for {sup 252}Cf.

  6. Impact of low-energy photons on the characteristics of prompt fission γ -ray spectra

    NASA Astrophysics Data System (ADS)

    Oberstedt, A.; Billnert, R.; Hambsch, F.-J.; Oberstedt, S.

    2015-07-01

    In this paper we report on a new study of prompt γ -rays from the spontaneous fission of 252Cf . Photons were measured in coincidence with fission fragments by employing four different lanthanide halide scintillation detectors. Together with results from a previous work of ours, we determined characteristic parameters with high precision, such as the average γ -ray multiplicity ν¯γ=(8.29 ±0.13 ), the average energy per photon ɛγ=(0.80 ±0.02 ) MeV, and the total γ -ray energy release per fission Eγ ,tot=(6.65 ±0.10 ) MeV. The excellent agreement between the individual results obtained in all six measurements proves the good repeatability of the applied experimental technique. The impact of low-energy photons, i.e., below 500 keV, on prompt fission γ -ray spectra characteristics has been investigated as well by comparing our results with those taken with the DANCE detector system, which appears to suffer from absorption effects in the low-energy region. Correction factors for this effect were estimated, giving results comparable to ours as well as to historical ones. From this we demonstrate that the different techniques of determining the average γ -ray multiplicity, either from a properly measured and normalized spectrum or a measured multiplicity distribution, give equivalent and consistent results.

  7. a High Resolution Ionization Chamber for the SPIDER Fission Fragment Detector

    NASA Astrophysics Data System (ADS)

    Meierbachtol, K.; Tovesson, F.; Arnold, C. W.; Laptev, A. B.; Bredeweg, T. A.; Jandel, M.; Nelson, R. O.; White, M. C.; Hecht, A. A.; Mader, D.

    2014-09-01

    An ionization chamber for measuring the energy loss and kinetic energy of fragments produced through neutron-induced fission at the Los Alamos Neutron Science Center (LANSCE) has been designed as a component of the the new SPIDER detector. Design criteria included energy resolutions of <1% for high energy resolution and increased charge resolution. The ionization chamber will be combined with a high resolution time-of-flight detector to achieve fragment yield measurements with mass and nuclear charge resolutions of 1 amu and Z=1. The present status of the ionization chamber will be presented.

  8. Statistical and evaporation models for the neutron emission energy spectrum in the center-of-mass system from fission fragments

    NASA Astrophysics Data System (ADS)

    Kawano, T.; Talou, P.; Stetcu, I.; Chadwick, M. B.

    2013-09-01

    The neutron emission energy spectra in the CMS (center-of-mass) frame from two compound nuclei produced by fission are studied. The neutron spectra calculated with the Hauser-Feshbach statistical model are compared with the evaporation theory, and the definition of the temperature is revisited. Using the Monte Carlo technique we average the CMS neutron spectra from many fission fragments to construct the representative CMS spectrum from both the light and heavy fragments. The CMS spectra for each fission fragment pair are also converted into the laboratory frame to calculate the total prompt fission neutron spectrum that can be observed experimentally. This is compared to measured laboratory data for thermal neutron induced fission on 235U. We show that the Hauser-Feshbach calculation gives a different spectrum shape than the Madland-Nix model calculation.

  9. Origin of the narrow, single peak in the fission-fragment mass distribution for 258Fm

    SciTech Connect

    Moller, Peter; Ickhikawa, Takatoshi; Iwamoto, Akira

    2008-01-01

    We discuss the origin of the narrowness of the single peak at mass-symmetric division in the fragment mass-yield curve for spontaneous fission of {sup 258}Fm. For this purpose, we employ the macroscopic-microscopic model and calculate a potential-energy curve at the mass-symmetric compact scission configuration, as a function of the fragment mass number, which is obtained from the single-particle wave-function densities. In the calculations, we minimize total energies by varying the deformations of the two fragments, with constraints on the mass quadrupole moment, and by keeping the neck radius zero. The energies thus become functions of mass asymmetry. Using the obtained potential, we solve the one-dimensional Schroedinger equation with a microscopic coordinate-dependent inertial mass to calculate the fragment mass-yield curve. The calculated mass yield, expressed in terms of the microscopic mass density, is consistent with the extremely narrow experimental mass distribution.

  10. Fission fragment charge and mass distributions in 239Pu(n, f ) in the adiabatic nuclear energy density functional theory

    DOE PAGES

    Regnier, D.; Dubray, N.; Schunck, N.; Verriere, M.

    2016-05-13

    Here, accurate knowledge of fission fragment yields is an essential ingredient of numerous applications ranging from the formation of elements in the r process to fuel cycle optimization for nuclear energy. The need for a predictive theory applicable where no data are available, together with the variety of potential applications, is an incentive to develop a fully microscopic approach to fission dynamics.

  11. Radioactive beams from Californium fission at the CARIBU facility

    NASA Astrophysics Data System (ADS)

    Savard, Guy; Pardo, Richard; Baker, Sam; Davids, Cary; Peterson, Don; Phillips, Don; Vondrasek, Rick; Zabransky, Bruce; Zinkann, Gary

    2009-10-01

    The Californium Rare Ion Breeder Upgrade (CARIBU) of the ATLAS superconducting linac facility aims at providing low energy and reaccelerated neutron-rich radioactive beams to address key nuclear physics and astrophysics questions. These beams are obtained from fission fragments of a 1 Ci ^252Cf source, thermalized and collected into a low-energy particle beam by a helium gas catcher, mass analyzed by an isobar separator, and charge breed to higher charge states for acceleration in ATLAS. The method described is fast and universal and short-lived isotope yield scale essentially with Californium fission yields. Expected intensities of reaccelerated beams are up to ˜5x10^5 (10^7 at low energy) far-from-stability ions per second on target. Initial commissioning is being performed with weaker 2.5 and 80 mCi sources. Commissioning results, together with the nuclear physics and astrophysics program that will be pursued with the neutron-rich beams made available, will be presented. Plans for installation of the 1 Ci source will be discussed.

  12. Fissible Deposit Characterization at the Former Oak Ridge K-25 Gaseous Diffusion Plant by {sup 252}CF-Source-Driven Measurements

    SciTech Connect

    Hannon, T.F.; Mihalczo, J.T.; Mullens, J.A.; Uckan, T.; Valentine, T.E.; Wyatt, M.S.

    1998-05-01

    largest deposits with the {sup 252}Cf-source-driven transmission (CFSDT) technique, an active neutron interrogation method developed for use at the Oak Ridge Y-12 Plant to identify nuclear weapons components in containers. The active CFSDT measurement technique uses CFSDT time-of-flight measurements of prompt neutrons and gamma rays from an externally introduced {sup 252}Cf source.

  13. Isomer production ratios and the angular momentum distribution of fission fragments

    NASA Astrophysics Data System (ADS)

    Stetcu, I.; Talou, P.; Kawano, T.; Jandel, M.

    2013-10-01

    Latest generation fission experiments provide an excellent testing ground for theoretical models. In this contribution we compare the measurements for 235U(nth,f), obtained with the Detector for Advanced Neutron Capture Experiments (DANCE) calorimeter at Los Alamos Neutron Science Center (LANSCE), with our full-scale simulation of the primary fragment de-excitation, using the recently developed cgmf code, based on a Monte Carlo implementation of the Hauser-Feshbach theoretical model. We compute the isomer ratios as a function of the initial angular momentum of the fission fragments, for which no direct information exists. Comparison with the available experimental data allows us to determine the initial spin distribution. We also study the dependence of the isomer ratio on the knowledge of the low-lying discrete spectrum input for nuclear fission reactions, finding a high degree of sensitivity. Finally, in the same Hauser-Feshbach approach, we calculate the isomer production ratio for thermal neutron capture on stable isotopes, where the initial conditions (spin, excitation energy, etc.) are well understood. We find that with the current parameters involved in Hauser-Feshbach calculations, we obtain up to a factor of 2 deviation from the measured isomer ratios.

  14. Analysis of Fragment Mass Distribution in Asymmetric Area at Fission of {sup 235}U Induced by Thermal Neutrons

    SciTech Connect

    Pikul, V.P.; Koblik, Yu.N.; Khugaev, A.V.; Yuldashev, B.S.; Jovliev, U.Yu.; Muminov, A.I.; Pavliy, K.V.; Nasirov, A.K.

    2005-02-01

    The fragment mass yields in fission of {sup 235}U induced by thermal neutrons for A=145 - 160 and E{sub K}=50 - 75 MeV were measured using a mass spectrometer. The fine structure is observed at A=153, 154 and E{sub K}=50 - 60 MeV. The obtained results were described in the framework of a model based on the dinuclear system concept. The analyzed correlation between the total kinetic energy and mass distribution of fission fragments is connected with the shell structure of the formed fragments of fission. From this correlation and the time dependence of the calculated mass distribution of the binary reaction products, one can conclude that the descent time from a saddle point to a scission point for the more deformed fragments is longer than that for fragments of more compact shape.

  15. From ground state to fission fragments: A complex, multi-dimensional multi-path problem

    SciTech Connect

    Moeller, P.; Nix, J.R.; Swiatecki, W.J.

    1992-03-01

    Experimental results on the fission properties of nuclei close to {sup 264}Fm show sudden and large changes with a change of only one or two neutrons or protons. The nucleus {sup 258}Fm, for instance, undergoes symmetric fission with a half-life of about 0.4 ms and a kinetic-energy distribution peaked at about 235 MeV whereas {sup 256}Fm undergoes asymmetric fission with a half-life of about 3 h and a kinetic-energy distribution peaked at about 200 MeV. Qualitatively, these sudden changes have been postulated to be due to the emergence of fragment shells in symmetric-fission products close to {sup 132}Sn. Here we present a quantitative calculation that shows where high-kinetic-energy symmetric fusion occurs and why it is associated with a sudden and large decrease in fission half-lives. We base our study on calculations of potential-energy surfaces in the macroscopic-microscopic model and a semi-empirical model for the nuclear inertia. We use the three-quadratic-surface parameterization to generate the shapes for which the potential-energy surfaces are calculated. The use of this parameterization and the use of the finite-range macroscopic model allows for the study of two touching spheres and similar shapes. Since these shapes are thought to correspond to the scission shapes for the high-kinetic-energy events it is of crucial importance that a continuous sequence of shapes leading from the nuclear ground state to these configurations can be studied within the framework of the model. We present the results of the calculations in terms of potential-energy surfaces and fission half-lives for heavy even nuclei. The surfaces are displayed in the form of contour diagrams as functions of two moments of the shape. They clearly show the appearance of a second fission valley, which leads to scission configurations close to tow touching spheres, for fissioning systems in the vicinity of {sup 264}Fm.

  16. From ground state to fission fragments: A complex, multi-dimensional multi-path problem

    SciTech Connect

    Moeller, P. ); Nix, J.R. ); Swiatecki, W.J. )

    1992-01-01

    Experimental results on the fission properties of nuclei close to {sup 264}Fm show sudden and large changes with a change of only one or two neutrons or protons. The nucleus {sup 258}Fm, for instance, undergoes symmetric fission with a half-life of about 0.4 ms and a kinetic-energy distribution peaked at about 235 MeV whereas {sup 256}Fm undergoes asymmetric fission with a half-life of about 3 h and a kinetic-energy distribution peaked at about 200 MeV. Qualitatively, these sudden changes have been postulated to be due to the emergence of fragment shells in symmetric-fission products close to {sup 132}Sn. Here we present a quantitative calculation that shows where high-kinetic-energy symmetric fusion occurs and why it is associated with a sudden and large decrease in fission half-lives. We base our study on calculations of potential-energy surfaces in the macroscopic-microscopic model and a semi-empirical model for the nuclear inertia. We use the three-quadratic-surface parameterization to generate the shapes for which the potential-energy surfaces are calculated. The use of this parameterization and the use of the finite-range macroscopic model allows for the study of two touching spheres and similar shapes. Since these shapes are thought to correspond to the scission shapes for the high-kinetic-energy events it is of crucial importance that a continuous sequence of shapes leading from the nuclear ground state to these configurations can be studied within the framework of the model. We present the results of the calculations in terms of potential-energy surfaces and fission half-lives for heavy even nuclei. The surfaces are displayed in the form of contour diagrams as functions of two moments of the shape. They clearly show the appearance of a second fission valley, which leads to scission configurations close to tow touching spheres, for fissioning systems in the vicinity of {sup 264}Fm.

  17. Fission Fragment Mass Distributions and Total Kinetic Energy Release of 235-Uranium and 238-Uranium in Neutron-Induced Fission at Intermediate and Fast Neutron Energies

    SciTech Connect

    Duke, Dana Lynn

    2015-11-12

    This Ph.D. dissertation describes a measurement of the change in mass distributions and average total kinetic energy (TKE) release with increasing incident neutron energy for fission of 235U and 238U. Although fission was discovered over seventy-five years ago, open questions remain about the physics of the fission process. The energy of the incident neutron, En, changes the division of energy release in the resulting fission fragments, however, the details of energy partitioning remain ambiguous because the nucleus is a many-body quantum system. Creating a full theoretical model is difficult and experimental data to validate existing models are lacking. Additional fission measurements will lead to higher-quality models of the fission process, therefore improving applications such as the development of next-generation nuclear reactors and defense. This work also paves the way for precision experiments such as the Time Projection Chamber (TPC) for fission cross section measurements and the Spectrometer for Ion Determination in Fission (SPIDER) for precision mass yields.

  18. A probe for neutron activation analysis in a drill hole using 252Cf, and a Ge(Li) detector cooled by a melting cryogen

    USGS Publications Warehouse

    Tanner, A.B.; Moxham, R.M.; Senftle, F.E.; Baicker, J.A.

    1972-01-01

    A sonde has been built for high-resolution measurement of natural or neutron-induced gamma rays in boreholes. The sonde is 7.3 cm in diameter and about 2.2 m in length and weighs about 16 kg. The lithium-compensated germanium semiconductor detector is stabilized at -185 to -188??C for as much as ten hours by a cryostatic reservoir containing melting propane. During periods when the sonde is not in use the propane is kept frozen by a gravity-fed trickle of liquid nitrogen from a reservoir temporarily attached to the cryostat section. A 252Cf source, shielded from the detector, may be placed in the bottom section of the sonde for anlysis by measurement of neutron-activation or neutron-capture gamma rays. Stability of the cryostat with changing hydrostatic pressure, absence of vibration, lack of need for power to the cryostat during operation, and freedom of orientation make the method desirable for borehole, undersea, space, and some laboratory applications. ?? 1972.

  19. Simultaneous measurement of (n,γ) and (n,fission) cross sections with the DANCE array

    NASA Astrophysics Data System (ADS)

    Bredeweg, T. A.; Jandel, M.; Fowler, M. M.; Bond, E. M.; O'Donnell, J. M.; Reifarth, R.; Rundberg, R. S.; Ullmann, J. L.; Vieira, D. J.; Wilhelmy, J. B.; Wouters, J. M.; Macri, R. A.; Wu, C. Y.; Becker, J. A.

    2006-10-01

    We have recently begun a program of high precision measurements of the key production and destruction reactions of important radiochemical diagnostic isotopes, including several isotopes of uranium, plutonium and americium. The Detector for Advanced Neutron Capture Experiments (DANCE), a 4π BaF2 array located at the Los Alamos Neutron Science Center, will be used to measure the neutron capture cross sections for most of the isotopes of interest. Since neutron capture measurements on many of the actinides are complicated by the presence of γ-rays arising from low-energy neutron-induced fission, we are currently using a dual parallel-plate avalanche counter with the target material electro-deposited directly on the center cathode foil. This design provides a high efficiency for detecting fission fragments and allows loading of pre-assembled target/detector assemblies into the neutron beam line at DANCE. An outline of the current experimental program will be presented as well as results from measurements on ^235U and ^252Cf that utilized the fission-tag detector.

  20. Angular distributions and anisotropy of the fission fragments from neutron-induced fission of 233U and 209Bi in intermediate energy range 1-200 MeV

    NASA Astrophysics Data System (ADS)

    Vorobyev, A. S.; Gagarski, A. M.; Shcherbakov, O. A.; Vaishnene, L. A.; Barabanov, A. L.

    2016-09-01

    New results of the neutron-induced fission experiments carried out at the neutron time-of-flight spectrometer GNEIS of the PNPI are given. Angular distributions of fission fragments from the neutron-induced fission of 233U and 209Bi nuclei have been measured in the energy range 1-200 MeV using position sensitive multiwire proportional counters as fission fragment detector. The recent improvements of the measurement and data processing procedures are described. The data on anisotropy of fission fragments deduced from the measured angular distributions are presented in comparison with the experimental data of other authors.

  1. Dynamical interpretation of average fission-fragment kinetic energy systematics and nuclear scission

    SciTech Connect

    Nadtochy, P.N.; Adeev, G.D.

    2005-11-01

    A dynamical interpretation of the well-known systematics for average total kinetic energy of fission fragments over a wide range of the Coulomb parameter (600fission theory--at zero neck radius and at finite neck radius--have been applied in dynamical calculations. Both have resulted in a fairly good description of the dependence of on the Coulomb parameter. The results of dynamical calculations of within three-dimensional Langevin dynamics show that the mean distance between the centers of mass of nascent fragments at the scission configuration increases linearly with the parameter Z{sup 2}/A{sup 1/3}. This distance changes approximately from 2.35R{sub 0} for {sup 119}Xe to 2.6R{sub 0} for {sup 256}Fm. In spite of this increase in mean distance between future fragments at scission, the linear dependence of on the parameter Z{sup 2}/A{sup 1/3} remains approximately valid over a wide range of the Coulomb parameter Z{sup 2}/A{sup 1/3}.

  2. Mass-energy distribution of fragments within Langevin dynamics of fission induced by heavy ions

    SciTech Connect

    Anischenko, Yu. A. Adeev, G. D.

    2012-08-15

    A stochastic approach based on four-dimensional Langevin fission dynamics is applied to calculating mass-energy distributions of fragments originating from the fission of excited compound nuclei. In the model under investigation, the coordinate K representing the projection of the total angular momentum onto the symmetry axis of the nucleus is taken into account in addition to three collective shape coordinates introduced on the basis of the {l_brace}c, h, {alpha}{r_brace} parametrization. The evolution of the orientation degree of freedom (K mode) is described by means of the Langevin equation in the overdamped regime. The tensor of friction is calculated under the assumption of the reducedmechanismof one-body dissipation in the wall-plus-window model. The calculations are performed for two values of the coefficient that takes into account the reduction of the contribution from the wall formula: k{sub s} 0.25 and k{sub s} = 1.0. Calculations with a modified wall-plus-window formula are also performed, and the quantity measuring the degree to which the single-particle motion of nucleons within the nuclear system being considered is chaotic is used for k{sub s} in this calculation. Fusion-fission reactions leading to the production of compound nuclei are considered for values of the parameter Z{sup 2}/A in the range between 21 and 44. So wide a range is chosen in order to perform a comparative analysis not only for heavy but also for light compound nuclei in the vicinity of the Businaro-Gallone point. For all of the reactions considered in the present study, the calculations performed within four-dimensional Langevin dynamics faithfully reproduce mass-energy and mass distributions obtained experimentally. The inclusion of the K mode in the Langevin equation leads to an increase in the variances of mass and energy distributions in relation to what one obtains from three-dimensional Langevin calculations. The results of the calculations where one associates k{sub s

  3. Fission fragment mass distribution studies in 30Si +180Hf reaction

    NASA Astrophysics Data System (ADS)

    Shamlath, A.; Shareef, M.; Prasad, E.; Sugathan, P.; Thomas, R. G.; Jhingan, A.; Appannababu, S.; Nasirov, A. K.; Vinodkumar, A. M.; Varier, K. M.; Yadav, C.; Babu, B. R. S.; Nath, S.; Mohanto, G.; Mukul, Ish; Singh, D.; Kailas, S.

    2016-01-01

    Fission fragment mass-angle and mass ratio distributions have been measured for the 30Si + 180Hf reaction in the beam energy range 128-148 MeV. Quasifission signature is observed in this reaction, forming the compound system 210Rn. The results are compared with a very asymmetric reaction 16O + 194Pt, forming the same compound nucleus. Calculations assuming saddle point, scission point and DNS models have been performed to interpret the experimental results. The results strongly suggest the entrance channel dependence of quasifission in heavy ion collisions.

  4. Determination of Nuclear Charge Distributions of Fission Fragments from ^{235}U (n_th, f) with Calorimetric Low Temperature Detectors

    NASA Astrophysics Data System (ADS)

    Grabitz, P.; Andrianov, V.; Bishop, S.; Blanc, A.; Dubey, S.; Echler, A.; Egelhof, P.; Faust, H.; Gönnenwein, F.; Gomez-Guzman, J. M.; Köster, U.; Kraft-Bermuth, S.; Mutterer, M.; Scholz, P.; Stolte, S.

    2016-08-01

    Calorimetric low temperature detectors (CLTD's) for heavy-ion detection have been combined with the LOHENGRIN recoil separator at the ILL Grenoble for the determination of nuclear charge distributions of fission fragments produced by thermal neutron-induced fission of ^{235}U. The LOHENGRIN spectrometer separates fission fragments according to their mass-to-ionic-charge ratio and their kinetic energy, but has no selectivity with respect to nuclear charges Z. For the separation of the nuclear charges, one can exploit the nuclear charge-dependent energy loss of the fragments passing through an energy degrader foil (absorber method). This separation requires detector systems with high energy resolution and negligible pulse height defect, as well as degrader foils which are optimized with respect to thickness, homogeneity, and energy loss straggling. In the present, contribution results of test measurements at the Maier Leibnitz tandem accelerator facility in Munich with ^{109}Ag and ^{127}I beams with the aim to determine the most suitable degrader material, as well as measurements at the Institut Laue-Langevin will be presented. These include a systematic study of the quality of Z-separation of fission fragments in the mass range 82le A le 132 and a systematic measurement of ^{92}Rb fission yields, as well as investigations of fission yields toward the symmetry region.

  5. Development of an Ionization Chamber for the SPIDER Fission Fragment Detector

    NASA Astrophysics Data System (ADS)

    Meierbachtol, K.; Tovesson, F.; Arnold, C. W.; Laptev, A. B.; Bredeweg, T. A.; Jandel, M.; Nelson, R. O.; White, M. C.

    2014-05-01

    The ionization chamber component of the SPIDER detector has been designed to measure energy loss and kinetic energy of fragments produced through neutron-induced fission with energy resolutions of <1% and a time-dependent signal collection. Important design elements implemented are an axial configuration of the electrodes for improved energy loss and measurement and a thin silicon nitride entrance window to minimize both energy loss and energy straggling of the incoming fragments. High energy resolution and improved charge resolution from the ionization chamber are combined with the high precision of the upstream time-of-flight component of SPIDER to achieve resolutions in mass and nuclear charge of 1 AMU and Z=1. A discussion of the present resolution capabilities of the ionization chamber will be presented.

  6. Stochastic model of angular distributions of fragments originating from the fission of excited compound nuclei

    SciTech Connect

    Hiryanov, R. M.; Karpov, A. V.; Adeev, G. D.

    2008-08-15

    The anisotropy of angular distributions of fission fragments and the average multiplicity of prescission neutrons were calculated within a stochastic approach to fission dynamics on the basis of three-dimensional Langevin equations. This approach was combined with a Monte Carlo algorithm for the degree of freedom K (projection of the total angular momentum I onto the fission axis). The relaxation time {tau}{sub K} in the coordinate K was considered as a free parameter of the model; it was estimated on the basis of a fit to experimental data on the anisotropy of angular distributions. Specifically, the relaxation time {tau}{sub K} was estimated at 2 x 10{sup -21} s for the compound nuclei {sup 224}Th and {sup 225}Pa and at 4 x 10{sup -21} s for the heavier nuclei {sup 248}Cf, {sup 254}Fm, and {sup 264}Rf. The potential energy was calculated on the basis of the liquid-drop model with allowance for finiteness of the range of nuclear forces and for the diffuseness of the nuclear surface. A modified one-body viscosity mechanism featuring a coefficient k{sub s} that takes into account the reduction of the contribution from the wall formula was used to describe collective-energy dissipation. The coefficient k{sub s} was also treated as a free parameter and was estimated at 0.5 on the basis of a fit to experimental data on the average prescission multiplicity of neutrons.

  7. Anomalous anisotropies of fission fragments in near- and sub-barrier fusion-fussion reactions

    NASA Astrophysics Data System (ADS)

    Huanqiao, Zhang; Zuhua, Liu; Jincheng, Xu; Jun, Lu; Ming, Ruan; Kan, Xu

    1992-03-01

    Fission cross sections and angular distributions have been measured for the reactions of 16O + 232Th and238U, and19F + 208Pb and232Th at near- and sub-barrier energies. The fission excitation functions are rather well reproduced on the basis of Wong model or coupled channels theory. However, the models which reproduce the sub-barrier fusion cross sections fail to account for the experimental anisotropies of fission fragments. It is found that the observed anisotropies are much larger than expected. For the first time it has been observed that the anisotropies as a function of the center-of-mass energy show a peak centered near 4.5 MeV below the fusion barrier for several reaction systems. The present approaches fail to explain these anomalies. For 19F + 208Pb systems, our results confirm the prediction of an approximately constant value for the mean square spin of the compound nucleus produced in far sub-barrier fusion reaction.

  8. SPY: a new scission-point model based on microscopic inputs to predict fission fragment properties

    NASA Astrophysics Data System (ADS)

    Panebianco, Stefano; Dubray, Nöel; Goriely, Stéphane; Hilaire, Stéphane; Lemaître, Jean-François; Sida, Jean-Luc

    2014-04-01

    Despite the difficulty in describing the whole fission dynamics, the main fragment characteristics can be determined in a static approach based on a so-called scission-point model. Within this framework, a new Scission-Point model for the calculations of fission fragment Yields (SPY) has been developed. This model, initially based on the approach developed by Wilkins in the late seventies, consists in performing a static energy balance at scission, where the two fragments are supposed to be completely separated so that their macroscopic properties (mass and charge) can be considered as fixed. Given the knowledge of the system state density, averaged quantities such as mass and charge yields, mean kinetic and excitation energy can then be extracted in the framework of a microcanonical statistical description. The main advantage of the SPY model is the introduction of one of the most up-to-date microscopic descriptions of the nucleus for the individual energy of each fragment and, in the future, for their state density. These quantities are obtained in the framework of HFB calculations using the Gogny nucleon-nucleon interaction, ensuring an overall coherence of the model. Starting from a description of the SPY model and its main features, a comparison between the SPY predictions and experimental data will be discussed for some specific cases, from light nuclei around mercury to major actinides. Moreover, extensive predictions over the whole chart of nuclides will be discussed, with particular attention to their implication in stellar nucleosynthesis. Finally, future developments, mainly concerning the introduction of microscopic state densities, will be briefly discussed.

  9. Simultaneous measurement of (n, γ) and (n, fission) cross sections with the DANCE 4π BaF 2 array

    NASA Astrophysics Data System (ADS)

    Bredeweg, T. A.; Fowler, M. M.; Becker, J. A.; Bond, E. M.; Chadwick, M. B.; Clement, R. R. C.; Esch, E.-I.; Ethvignot, T.; Granier, T.; Jandel, M.; Macri, R. A.; O'Donnell, J. M.; Reifarth, R.; Rundberg, R. S.; Ullmann, J. L.; Vieira, D. J.; Wilhelmy, J. B.; Wouters, J. M.; Wu, C. Y.

    2007-08-01

    We have recently begun a program of high precision measurements of the key production and destruction reactions of important radiochemical diagnostic isotopes, including several isotopes of uranium, plutonium and americium. The detector for advanced neutron capture experiments (DANCE), a 4π BaF2 array located at the Los Alamos Neutron Science Center, will be used to measure the neutron capture cross sections for most of the isotopes of interest. However, neutron capture measurements on many of the actinides are complicated by the presence of prompt γ-rays arising from low energy neutron-induced fission, which competes with neutron capture to varying degrees. Previous measurements of 235U using the DANCE array have shown that we can partially resolve capture from fission events based on total γ-ray calorimetry (i.e. total γ-ray energy versus γ-ray multiplicity). The addition of a dedicated fission-tagging detector to the DANCE array has greatly improved our ability to separate these two competing processes. In addition to higher quality neutron capture data, the addition of a fission-tagging detector offers a means to determine the capture-to-fission ratio (σγ/σf) in a single measurement, which should reduce the effect of systematic uncertainties. We are currently using a dual parallel-plate avalanche counter (PPAC) with the target material electro-deposited directly on the center cathode foil. This design provides a high efficiency for detecting fission fragments and allows loading of pre-assembled target/detector assemblies into the neutron beam line at DANCE. Results from tests of the fission-tag detector, as well as preliminary results from measurements on 235U and 252Cf that utilized the fission-tag detector will be presented.

  10. Relative biological efficiency for the induction of various gene mutations in normal and enriched with 10B Tradescantia cells by neutrons from 252Cf source.

    PubMed

    Cebulska-Wasilewska, A; Schneider, K; Kim, J K

    2001-03-01

    The effectiveness of neutrons from a Californium-252 source in the induction of various abnormalities in the Tradescantia clone 4430 stamen hair cells (Trad-SH assay) were studied. A special attention was paid to check whether any enhancement in effects is visible in the cells enriched with boron ions. Inflorescences, normal or pretreated with chemicals containing boron, were irradiated in the air with neutrons from a 252Cf source at KAERI, Taejon, Korea. To estimate the relative biological effectiveness (RBE) of the beam under the study, numbers of Tradescantia inflorescence without chemical pretreatment were irradiated with various doses of X-rays. The ranges of radiation doses used for neutrons were 0-1.0Gy and for X-rays 0-0.5Gy. Following the culturing according to standard procedures screening of gene and lethal mutations in somatic cells of stamen hairs was done in the extended period, between days 7 and 19 after exposures. Maximal RBE values for the induction of pink, colorless and lethal mutations were evaluated from comparison of the slopes in linear parts of the dose response curves obtained after irradiation with X-rays and californium source. The RBE(max) value or the induction of gene mutation was estimated as 7.2 comparing the value 5.6 in the studies reported earlier. The comparison of dose-response curves and its alteration, due to changes in the cells and plants environment during and after irradiation, explains the observed differences. Inflorescence pretreated with borax responded to neutrons differently depending on the biological end points. Although, for the induction of pink mutations no significant difference was observed, though, in the case of cell lethality, pretreated with boron ion plants have shoved a statistically significant increase of the RBE value from 5.5 to 34.7, and in the case of colorless mutations from 1.6 to 5.6.

  11. Concept Assessment of a Fission Fragment Rocket Engine (FFRE) Propelled Spacecraft

    NASA Technical Reports Server (NTRS)

    Werka, Robert; Clark, Rod; Sheldon, Rob; Percy, Tom

    2012-01-01

    The March, 2012 issue of Aerospace America stated that ?the near-to-medium prospects for applying advanced propulsion to create a new era of space exploration are not very good. In the current world, we operate to the Moon by climbing aboard a Carnival Cruise Lines vessel (Saturn 5), sail from the harbor (liftoff) shedding whole decks of the ship (staging) along the way and, having reached the return leg of the journey, sink the ship (burnout) and return home in a lifeboat (Apollo capsule). Clearly this is an illogical way to travel, but forced on Explorers by today's propulsion technology. However, the article neglected to consider the one propulsion technology, using today's physical principles that offer continuous, substantial thrust at a theoretical specific impulse of 1,000,000 sec. This engine unequivocally can create a new era of space exploration that changes the way spacecraft operate. Today's space Explorers could travel in Cruise Liner fashion using the technology not considered by Aerospace America, the novel Dusty Plasma Fission Fragment Rocket Engine (FFRE). This NIAC study addresses the FFRE as well as its impact on Exploration Spacecraft design and operation. It uses common physics of the relativistic speed of fission fragments to produce thrust. It radiatively cools the fissioning dusty core and magnetically controls the fragments direction to practically implement previously patented, but unworkable designs. The spacecraft hosting this engine is no more complex nor more massive than the International Space Station (ISS) and would employ the successful ISS technology for assembly and check-out. The elements can be lifted in "chunks" by a Heavy Lift Launcher. This Exploration Spacecraft would require the resupply of small amounts of nuclear fuel for each journey and would be an in-space asset for decades just as any Cruise Liner on Earth. This study has synthesized versions of the FFRE, integrated one concept onto a host spacecraft designed for

  12. Investigation of the maximum accessible kinetic energy of fragments in the neutron-induced fission of {sup 238}U nuclei

    SciTech Connect

    Khryachkov, V. A. Bondarenko, I. P.; Ivanova, T. A.; Kuzminov, B. D.; Semenova, N. N.; Sergachev, A. I.

    2013-03-15

    The masses, total kinetic energies (TKE), and emission angles of fragments originating from the fission of {sup 238}U nuclei that was induced by 5- and 6.5-MeV neutrons were measured by using digital methods for processing signals. A detailed analysis of the shape of digital signals made it possible to reduce substantially the contribution of fragments whose TKE values were distorted because of a superimposition of signals from recoil protons and from alpha particles produced in the spontaneous decay of uranium. The total statistics exceeded two million events for either neutron energy, and this permitted performing a detailed analysis of fission-fragment yields in the region of the highest attainable TKE values. An analysis of fragment yields made it possible to draw specific conclusions on the structure of the potential surface of fissile nuclei.

  13. Study of near-stability nuclei populated as fission fragments in heavy-ion fusion reactions

    SciTech Connect

    Fotiadis, Nikolaos; Nelson, Ronald O; Devlin, Matthew; Cizewski, Jolie A; Krucken, Reiner; Clark, R M; Fallon, Paul; Lee, I Yang; Macchiavelli, Agusto O; Becker, John A; Younes, Walid

    2010-01-01

    Examples are presented to illustrate the power of prompt {gamma}-ray spectroscopy of fission fragments from compound nuclei with A {approx} 200 formed in fusion-evaporation reactions in experiments using the Gammasphere Ge-detector array. Complementary methods, such as Coulomb excitation and deep-inelastic processes, are also discussed. In other cases (n, xn{gamma}) reactions on stable isotopes have been used to establish neutron excitation functions for {gamma}-rays using a pulsed 'white'-neutron source, coupled to a high-energy-resolution germanium-detector array. The excitation functions can unambiguously assign {gamma}-rays to a specific reaction product. Results from all these methods bridge the gaps in the systematics of high-spin states between the neutron-deficient and neutron-rich nuclei. Results near shell closures should motivate new shell model calculations.

  14. Fission fragments mass distributions of nuclei populated by the multinucleon transfer channels of the 18O + 232Th reaction

    NASA Astrophysics Data System (ADS)

    Léguillon, R.; Nishio, K.; Hirose, K.; Makii, H.; Nishinaka, I.; Orlandi, R.; Tsukada, K.; Smallcombe, J.; Chiba, S.; Aritomo, Y.; Ohtsuki, T.; Tatsuzawa, R.; Takaki, N.; Tamura, N.; Goto, S.; Tsekhanovich, I.; Petrache, C. M.; Andreyev, A. N.

    2016-10-01

    It is shown that the multinucleon transfer reactions is a powerful tool to study fission of exotic neutron-rich actinide nuclei, which cannot be accessed by particle-capture or heavy-ion fusion reactions. In this work, multinucleon transfer channels of the 18O + 232Th reaction are used to study fission of fourteen nuclei 231,232,233,234Th, 232,233,234,235,236Pa, and 234,235,236,237,238U. Identification of fissioning nuclei and of their excitation energy is performed on an event-by-event basis, through the measurement of outgoing ejectile particle in coincidence with fission fragments. Fission fragment mass distributions are measured for each transfer channel, in selected bins of excitation energy. In particular, the mass distributions of 231,234Th and 234,235,236Pa are measured for the first time. Predominantly asymmetric fission is observed at low excitation energies for all studied cases, with a gradual increase of the symmetric mode towards higher excitation energy. The experimental distributions are found to be in general agreement with predictions of the fluctuation-dissipation model.

  15. Super-asymmetric fission in the 245Cm(n th, f) reaction at the Lohengrin fission-fragment mass separator

    NASA Astrophysics Data System (ADS)

    Rochman, D.; Tsekhanovich, I.; Gönnenwein, F.; Sokolov, V.; Storrer, F.; Simpson, G.; Serot, O.

    2004-04-01

    Mass, isotopic yields and single-fragment kinetic energy measurements for thermal-neutron induced fission of 245Cm at the Lohengrin fission-product mass separator are described. Using an ionization chamber coupled to the mass separator, we have measured the mass and isotopic yields from fragment mass A=67 up to A=77 over three yield decades. This considerably extends the data set previously known for the light peak. A full set of data is now available for this actinide in the super-asymmetric mass region. The results of mass and isotopic yields are compared with those of other compound nuclei to highlight the shell effect at mass 70 for the 246Cm ★ compound-nucleus system. Also, the present results are compared to the data from the European library JEF2 and the evaluation from Wahl's Zp model.

  16. 1987 Neutron and gamma personnel dosimeter intercomparison study using a D/sub 2/O-moderated /sup 252/Cf source

    SciTech Connect

    Swaja, R.E.; West, L.E.; Sims, C.S.; Welty, T.J.

    1989-05-01

    The thirteenth Personnel Dosimetry Intercomparison Study (i.e., PDIS 13) was conducted during April 1987 as a joint effort by Oak Ridge National Laboratory's (ORNL) Dosimetry Applications Research Group and the Southwest Radiation Calibration Center at the University of Arkansas. A total of 48 organizations (34 from the US and 14 from abroad) participated in PDIS 13. Participants submitted a total of 1,113 neutron and gamma dosimeters for this mixed field study. The dosimeters were transferred by mail and were handled by experimental personnel at ORNL and the University of Arkansas. The type of neutron dosimeter and the percentage of participants submitting that type are as follows: TLD-albedo (49%), direct interaction TLD (31%), CR-39 (17%), film (3%). The type of gamma dosimeter and the percentage of participants submitting that type are as follows: Li/sub 2/B/sub 4/O/sub 7/, alone or in combination with CaSO/sub 4/, (69%), /sup 7/LiF (28%), natural LiF (3%). Radiation exposures in PDIS 13 were limited to 0.5 and 1.5 mSv from /sup 252/Cf moderated by 15-cm of D/sub 2/O. Traditional exposures using the Health Physics Research Reactor (HPRR) were not possible due to the fact that all reactors at ORNL, including the HPRR, were shutdown by order of the Department of Energy at the time the intercomparison was performed. Planned exposures using a /sup 238/PuBe source were negated by a faulty timing mechanism. Based on accuracy and precision, direct interaction TLD dosimeters exhibited the best performance in PDIS 13 neutron measurements. They were followed, in order of best performance, by CR-39, TLD albedo, and film. The Li/sub 2/B/sub 4/O/sub 7/ type TLD dosimeters exhibited the best performance in PDIS 13 gamma measurements. They were followed by natural LiF, /sup 7/LiF, and film. 12 refs., 1 fig., 5 tabs.

  17. Fission fragment charge and mass distributions in 239Pu(n ,f ) in the adiabatic nuclear energy density functional theory

    NASA Astrophysics Data System (ADS)

    Regnier, D.; Dubray, N.; Schunck, N.; Verrière, M.

    2016-05-01

    Background: Accurate knowledge of fission fragment yields is an essential ingredient of numerous applications ranging from the formation of elements in the r process to fuel cycle optimization for nuclear energy. The need for a predictive theory applicable where no data are available, together with the variety of potential applications, is an incentive to develop a fully microscopic approach to fission dynamics. Purpose: In this work, we calculate the pre-neutron emission charge and mass distributions of the fission fragments formed in the neutron-induced fission of 239Pu using a microscopic method based on nuclear density functional theory (DFT). Methods: Our theoretical framework is the nuclear energy density functional (EDF) method, where large-amplitude collective motion is treated adiabatically by using the time-dependent generator coordinate method (TDGCM) under the Gaussian overlap approximation (GOA). In practice, the TDGCM is implemented in two steps. First, a series of constrained EDF calculations map the configuration and potential-energy landscape of the fissioning system for a small set of collective variables (in this work, the axial quadrupole and octupole moments of the nucleus). Then, nuclear dynamics is modeled by propagating a collective wave packet on the potential-energy surface. Fission fragment distributions are extracted from the flux of the collective wave packet through the scission line. Results: We find that the main characteristics of the fission charge and mass distributions can be well reproduced by existing energy functionals even in two-dimensional collective spaces. Theory and experiment agree typically within two mass units for the position of the asymmetric peak. As expected, calculations are sensitive to the structure of the initial state and the prescription for the collective inertia. We emphasize that results are also sensitive to the continuity of the collective landscape near scission. Conclusions: Our analysis confirms

  18. Germanium-gated γ-γ fast timing of excited states in fission fragments using the EXILL&FATIMA spectrometer

    NASA Astrophysics Data System (ADS)

    Régis, J.-M.; Simpson, G. S.; Blanc, A.; de France, G.; Jentschel, M.; Köster, U.; Mutti, P.; Paziy, V.; Saed-Samii, N.; Soldner, T.; Ur, C. A.; Urban, W.; Bruce, A. M.; Drouet, F.; Fraile, L. M.; Ilieva, S.; Jolie, J.; Korten, W.; Kröll, T.; Lalkovski, S.; Mach, H.; Mărginean, N.; Pascovici, G.; Podolyak, Zs.; Regan, P. H.; Roberts, O. J.; Smith, J. F.; Townsley, C.; Vancraeyenest, A.; Warr, N.

    2014-11-01

    A high-granularity mixed spectrometer consisting of high-resolution Ge and very fast LaBr3(Ce)-scintillator detectors has been installed around a fission target at the cold-neutron guide PF1B of the high-flux reactor of the Institut Laue-Langevin. Lifetimes of excited states in the range of 10 ps to 10 ns can be measured in around 100 exotic neutron-rich fission fragments using Ge-gated LaBr3(Ce)-LaBr3(Ce) or Ge-Ge-LaBr3(Ce)-LaBr3(Ce) coincidences. We report on various characteristics of the EXILL&FATIMA spectrometer for the energy range of 40 keV up to 6.8 MeV and present results of ps-lifetime test measurements in a fission fragment. The results are discussed with respect to possible systematic errors induced by background contributions.

  19. Effect of transverse vibrations of fissile nuclei on the angular and spin distributions of low-energy fission fragments

    NASA Astrophysics Data System (ADS)

    Bunakov, V. E.; Kadmensky, S. G.; Lyubashevsky, D. E.

    2016-05-01

    It is shown that A. Bohr's classic theory of angular distributions of fragments originating from low-energy fission should be supplemented with quantum corrections based on the involvement of a superposition of a very large number of angular momenta L m in the description of the relative motion of fragments flying apart along the straight line coincidentwith the symmetry axis. It is revealed that quantum zero-point wriggling-type vibrations of the fissile system in the vicinity of its scission point are a source of these angular momenta and of high fragment spins observed experimentally.

  20. Fission Fragment Angular Distribution measurements of 235U and 238U at CERN n_TOF facility

    NASA Astrophysics Data System (ADS)

    Leal-Cidoncha, E.; Durán, I.; Paradela, C.; Tarrío, D.; Leong, L. S.; Tassan-Got, L.; Audouin, L.; Altstadt, S.; Andrzejewski, J.; Barbagallo, M.; Bécares, V.; Bečvář, F.; Belloni, F.; Berthoumieux, E.; Billowes, J.; Boccone, V.; Bosnar, D.; Brugger, M.; Calviani, M.; Calviño, F.; Cano-Ott, D.; Carrapiço, C.; Cerutti, F.; Chiaveri, E.; Chin, M.; Colonna, N.; Cortés, G.; Cortés-Giraldo, M. A.; Diakaki, M.; Domingo-Pardo, C.; Dressler, R.; Dzysiuk, N.; Eleftheriadis, C.; Ferrari, A.; Fraval, K.; Ganesan, S.; García, A. R.; Giubrone, G.; Gómez-Hornillos, M. B.; Gonçalves, I. F.; González-Romero, E.; Griesmayer, E.; Guerrero, C.; Gunsing, F.; Gurusamy, P.; Hernández-Prieto, A.; Jenkins, D. G.; Jericha, E.; Kadi, Y.; Käppeler, F.; Karadimos, D.; Kivel, N.; Koehler, P.; Kokkoris, M.; Krtička, M.; Kroll, J.; Lampoudis, C.; Langer, C.; Lederer, C.; Leeb, H.; Lo Meo, S.; Losito, R.; Mallick, A.; Manousos, A.; Marganiec, J.; Martínez, T.; Massimi, C.; Mastinu, P. F.; Mastromarco, M.; Meaze, M.; Mendoza, E.; Mengoni, A.; Milazzo, P. M.; Mingrone, F.; Mirea, M.; Mondelaers, W.; Pavlik, A.; Perkowski, J.; Plompen, A.; Praena, J.; Quesada, J. M.; Rauscher, T.; Reifarth, R.; Riego, A.; Robles, M. S.; Roman, F.; Rubbia, C.; Sabaté-Gilarte, M.; Sarmento, R.; Saxena, A.; Schillebeeckx, P.; Schmidt, S.; Schumann, D.; Tagliente, G.; Tain, J. L.; Tsinganis, A.; Valenta, S.; Vannini, G.; Variale, V.; Vaz, P.; Ventura, A.; Versaci, R.; Vermeulen, M. J.; Vlachoudis, V.; Vlastou, R.; Wallner, A.; Ware, T.; Weigand, M.; Weiß, C.; Wright, T.; Žugec, P.

    2016-03-01

    Neutron-induced fission cross sections of 238U and 235U are used as standards in the fast neutron region up to 200 MeV. A high accuracy of the standards is relevant to experimentally determine other neutron reaction cross sections. Therefore, the detection effciency should be corrected by using the angular distribution of the fission fragments (FFAD), which are barely known above 20 MeV. In addition, the angular distribution of the fragments produced in the fission of highly excited and deformed nuclei is an important observable to investigate the nuclear fission process. In order to measure the FFAD of neutron-induced reactions, a fission detection setup based on parallel-plate avalanche counters (PPACs) has been developed and successfully used at the CERN-n_TOF facility. In this work, we present the preliminary results on the analysis of new 235U(n,f) and 238U(n,f) data in the extended energy range up to 200 MeV compared to the existing experimental data.

  1. Position reconstruction in fission fragment detection using the low pressure MWPC technique for the JLab experiment E02-017

    SciTech Connect

    Xi-Yu, Qiu; Tang, Liguang; Margaryan, Amur T.; Jin-Zhang, Xu; Bi-Tao, Hu; Xi-Meng, Chen

    2014-07-01

    When a lambda hyperon was embedded in a nucleus, it can form a hypernucleus. The lifetime and its mass dependence of stable hypernuclei provide information about the weak decay of lambda hyperon inside nuclear medium. This work will introduce the Jefferson Lab experiment (E02-017) which aims to study the lifetime of the heavy hypernuclei using a specially developed fission fragment detection technique, a multi-wire proportional chamber operated under low gas pressure (LPMWPC). Presented here are the method and performance of the reconstruction of fission position on the target foil, the separation of target materials at different regions and the comparison and verification with the Mote Carlo simulation.

  2. Quantum mechanical method of fragment's angular and energy distribution calculation for binary and ternary fission

    SciTech Connect

    Kadmensky, S. G. Titova, L. V.; Pen'kov, N. V.

    2006-08-15

    In the framework of quantum-mechanical fission theory, the method of calculation for partial fission width amplitudes and asymptotic behavior of the fissile nucleus wave function with strong channel coupling taken into account has been suggested. The method allows one to solve the calculation problem of angular and energy distribution countation for binary and ternary fission.

  3. Brownian shape motion on five-dimensional potential-energy surfaces:nuclear fission-fragment mass distributions.

    PubMed

    Randrup, Jørgen; Möller, Peter

    2011-04-01

    Although nuclear fission can be understood qualitatively as an evolution of the nuclear shape, a quantitative description has proven to be very elusive. In particular, until now, there existed no model with demonstrated predictive power for the fission-fragment mass yields. Exploiting the expected strongly damped character of nuclear dynamics, we treat the nuclear shape evolution in analogy with Brownian motion and perform random walks on five-dimensional fission potential-energy surfaces which were calculated previously and are the most comprehensive available. Test applications give good reproduction of highly variable experimental mass yields. This novel general approach requires only a single new global parameter, namely, the critical neck size at which the mass split is frozen in, and the results are remarkably insensitive to its specific value.

  4. Brownian Shape Motion on Five-Dimensional Potential-Energy Surfaces:Nuclear Fission-Fragment Mass Distributions

    SciTech Connect

    Randrup, Joergen; Moeller, Peter

    2011-04-01

    Although nuclear fission can be understood qualitatively as an evolution of the nuclear shape, a quantitative description has proven to be very elusive. In particular, until now, there existed no model with demonstrated predictive power for the fission-fragment mass yields. Exploiting the expected strongly damped character of nuclear dynamics, we treat the nuclear shape evolution in analogy with Brownian motion and perform random walks on five-dimensional fission potential-energy surfaces which were calculated previously and are the most comprehensive available. Test applications give good reproduction of highly variable experimental mass yields. This novel general approach requires only a single new global parameter, namely, the critical neck size at which the mass split is frozen in, and the results are remarkably insensitive to its specific value.

  5. Calculation of the fission-fragment yields of the pre-actinide nuclei by the example of the natPb isotopes

    NASA Astrophysics Data System (ADS)

    Maslyuk, V. T.; Parlag, O. A.; Lendyel, O. I.; Marynets, T. I.; Romanyuk, M. I.; Shevchenko, O. S.; Ranyuk, Ju. Ju.; Dovbnya, A. M.

    2016-11-01

    The calculations of the fission-fragment yields (mass and charge spectra) carried out within the frameworks of the proposed statistical method for the pre-actinide nuclei by the example of natPb (20 isotopes) are presented. The role of neutron shells with N = 50 and N = 82 in realizing the single- and double-humped shape of the fission-fragment yields, respectively, for the neutron-deficit and neutron-excess Pb isotopes has been investigated. An explanation of the experimental results on the natPb fission was performed taking into account transformations to the ensemble of the long- and short-lived nuclear fragments.

  6. A new fission-fragment detector to complement the CACTUS-SiRi setup at the Oslo Cyclotron Laboratory

    NASA Astrophysics Data System (ADS)

    Tornyi, T. G.; Görgen, A.; Guttormsen, M.; Larsen, A. C.; Siem, S.; Krasznahorkay, A.; Csige, L.

    2014-02-01

    An array of Parallel Plate Avalanche Counters (PPAC) for the detection of heavy ions has been developed. The new device, NIFF (Nuclear Instrument for Fission Fragments), consists of four individual detectors and covers 60% of 2π. It was designed to be used in conjunction with the SiRi array of ΔE-E silicon telescopes for light charged particles and fits into the CACTUS array of 28 large-volume NaI scintillation detectors at the Oslo Cyclotron Laboratory. The low-pressure gas-filled PPACs are sensitive for the detection of fission fragments, but are insensitive to scattered beam particles of light ions or light-ion ejectiles. The PPAC detectors of NIFF have good time resolution and can be used either to select or to veto fission events in in-beam experiments with light-ion beams and actinide targets. The powerful combination of SiRi, CACTUS, and NIFF provides new research opportunities for the study of nuclear structure and nuclear reactions in the actinide region. The new setup is particularly well suited to study the competition of fission and γ decay as a function of excitation energy.

  7. Calculations of the anisotropy of the fission fragment angular distribution and neutron emission multiplicities prescission from Langevin dynamics

    SciTech Connect

    Jia Ying; Bao Jingdong

    2007-03-15

    The anisotropy of the fission fragment angular distribution defined at the saddle point and the neutron multiplicities emitted prior to scission for fissioning nuclei {sup 224}Th, {sup 229}Np, {sup 248}Cf, and {sup 254}Fm are calculated simultaneously by using a set of realistic coupled two-dimensional Langevin equations, where the (c,h,{alpha}=0) nuclear parametrization is employed. In comparison with the one-dimensional stochastic model without neck variation, our two-dimensional model produces results that are in better agreement with the experimental data, and the one-dimensional model is available only for low excitation energies. Indeed, to determine the temperature of the nucleus at the saddle point, we investigate the neutron emission during nucleus oscillation around the saddle point for different friction mechanisms. It is shown that the neutrons emitted during the saddle oscillation cause the temperature of a fissioning nuclear system at the saddle point to decrease and influence the fission fragment angular distribution.

  8. Origin of the narrow, single peak in the fission-fragment mass distribution for {sup 258}Fm

    SciTech Connect

    Ichikawa, Takatoshi; Iwamoto, Akira; Moeller, Peter

    2009-01-15

    We discuss the origin of the narrowness of the single peak at mass-symmetric division in the fragment mass-yield curve for spontaneous fission of {sup 258}Fm. For this purpose, we employ the macroscopic-microscopic model and calculate a potential-energy curve at the mass-symmetric compact scission configuration, as a function of the fragment mass number, which is obtained from the single-particle wave-function densities. In the calculations, we minimize total energies by varying the deformations of the two fragments, with constraints on the mass quadrupole moment, and by keeping the neck radius zero. The energies thus become functions of mass asymmetry. Using the obtained potential, we solve the one-dimensional Schroedinger equation with a microscopic coordinate-dependent inertial mass to calculate the fragment mass-yield curve. The calculated mass yield, expressed in terms of the microscopic mass density, is consistent with the extremely narrow experimental mass distribution.

  9. Local even-odd effect based on the number of configurations of pre-formed and formed fragmentations in a fissioning nucleus

    NASA Astrophysics Data System (ADS)

    Tudora, A.; Hambsch, F.-J.; Giubega, G.

    2016-09-01

    The present paper proposes a modeling of the local even-odd effect based on the number of configurations in a nucleus undergoing fission at two stages along its fission path. One is the fissioning nucleus stage just after passing through the outer saddle point when the fragments are considered as pre-formed and the intrinsic energy is not yet shared. The other stage is at the end of the fission path when the scission is imminent. Then the intrinsic energy is already partitioned and the fragments are completely formed. The probability that a pre-formed fragmentation arrives at the end of the fission path (i.e. at scission) when the fragmentation is completely formed is expressed by the ratio of the number of configurations of the formed fragmentation to the one of pre-formed fragmentation. The local even-odd effect is defined as half of the difference between these normalized ratios corresponding to even-Z and odd-Z fragmentations. Both numbers of configurations in the fissioning nucleus, in which the fragments are pre-formed and completely formed, are calculated using level densities described by the constant temperature function (justified by the small values of the intrinsic energy before scission). The obtained local even-odd effect results describe well the experimental data, including the increase at asymmetry values corresponding to fragmentations in which one of the fragments is magic or double magic (i.e. fragmentations in which ZH = 50 and/or NH = 82 and very asymmetric fragmentations in which ZL = 28).

  10. Hybrid molecular ions emitted from CO-NH3 ice bombarded by fission fragments

    NASA Astrophysics Data System (ADS)

    Martinez, R.; Ponciano, C. R.; Farenzena, L. S.; Iza, P.; Homem, M. G. Pe; Naves de Brito, A.; da Silveira, E. F.; Wien, K.

    2007-05-01

    CO-NH3 ice at 25 K is bombarded by 65 MeV fission fragments and the emitted secondary ions are analyzed by time-of-flight mass spectrometry. The yields of the specific ion species (those formed only from CO or from NH3 molecules) and of the hybrid ion species (formed from both CO and NH3 molecules) are determined as a function of the ice temperature. The time-temperature dependence of desorption yields has been used for secondary ion identification because its behavior characterizes the ion's origin around the sublimation temperature of CO ice (~30 K). The mass spectrum of positive ions measured before CO sublimation is decomposed into three spectra corresponding to CO specific ions, NH3 specific ions and hybrid molecular ions, respectively. The observed spectrum after CO sublimation is very similar to that of a pure NH3 specific spectrum. The total yield of all positive hybrid molecular ions over 600 u mass range is found to be about 2 ions/impact: 20% of this is attributed to N and NH3 containing ions and 80% are ions having the CnOmHl+ structure. The ions Cn

  11. Experimental study of the three-component structure of mass-energy distributions of fission fragments of nuclei in the vicinity of Pb

    SciTech Connect

    Gruzintsev, E.N.; Itkis, M.G.; Kotlov, Y.V.; Okolovich, V.N.; Rusanov, A.Y.; Smirenkin, G.N.

    1988-05-01

    Measurements and a regression analysis of mass-energy distributions of fission fragments of the nuclei /sup 213/At, /sup 210/Po, and /sup 205/Bi were carried out, demonstrating a three-component structure in the kinetic energy spectra of fragments. The nature of this phenomenon is discussed, as well as its similarity to the recently observed bimodal spontaneous fission of nuclei in the vicinity of Fm.

  12. Neutron emission effects on fragment mass and kinetic energy distribution from fission of 239{sup Pu} induced by thermal neutrons

    SciTech Connect

    Montoya, M.; Rojas, J.; Lobato, I.

    2010-08-04

    The average of fragment kinetic energy (E-bar sign*) and the multiplicity of prompt neutrons ({nu}(bar sign)) as a function of fragment mass (m*), as well as the fragment mass yield (Y(m*)) from thermal neutron-induced fission of {sup 239}Pu have been measured by Tsuchiya et al.. In that work the mass and kinetic energy are calculated from the measured kinetic energy of one fragment and the difference of time of flight of the two complementary fragments. However they do not present their results about the standard deviation {sigma}{sub E}*(m*). In this work we have made a numerical simulation of that experiment which reproduces its results, assuming an initial distribution of the primary fragment kinetic energy (E(A)) with a constant value of the standard deviation as function of fragment mass ({sigma}{sub E}(A)). As a result of the simulation we obtain the dependence {sigma}{sub E}*(m*) which presents an enhancement between m* = 92 and m* = 110, and a peak at m* = 121.

  13. TYPE A PACKAGE LIMITS OF SPONTANEOUS FISSION RADIONUCLIDES

    SciTech Connect

    Rawl, R.R.

    2001-09-17

    The maxima value of the depth dose coefficient for fission neutrons in ICRP Publication 21 was a reasonable estimator of the effective dose coefficient recently tabulated in ICRP Publication 74. Thus the inflation of the coefficient in the 1996 Q-System analysis (IAEA 2000b) for the purpose of being consistent with respect to ICRP guidance on the neutron weighting factor was unnecessary from the standpoint of the effective dose. The consequence resulted in an unnecessarily restrictive value of A{sub 1} for {sup 248}Cm, {sup 252}Cf, and {sup 254}Cf. The calculations presented here support a relaxation of the A{sub 1} limits for these radionuclides.

  14. An experimental measurement of the energy loss of californium fission fragments in air — a comparison with calculations

    NASA Astrophysics Data System (ADS)

    Reier, Melvin

    1988-04-01

    Precision measurements were made of the energy of the light and heavy fission fragments of 25298Cf in air at thicknesses from zero to 1.235 mgcm 2. A least square fit was made to each set of data. The derivative of each analytical expression yields the linear energy transfer (LET) vs air thickness. Results indicate that over the range of data in these measurements, better agreement is obtained with the calculations of Northcliffe and Schilling (ref. [1]: Nucl. Data Tab. A7 (1970) 233) than with those of Ziegler (ref. [2]: Stopping and Ranges of Ions in Matter, Vol 5 (Pergamon, New York 1980)

  15. Fission barriers for the emission of odd-numbered fragments from multicharged C{sub 60} prepared in Ar{sup 8+}-C{sub 60} collisions

    SciTech Connect

    Martin, S.; Chen, L.; Bernard, J.; Buchet-Poulizac, M. C.; Wei, B.; Bredy, R.

    2006-01-15

    We report on measurements of the branching ratios of emission of small C{sub n}{sup +} fragments in asymmetrical fission of highly charged C{sub 60}{sup r+} ions (r=4-6). For the channels corresponding to the emission of one fragment, only small fragments with an even number of carbon atoms are observed. For the channels with the emission of two fragments, successive emission of small fragments with an odd number of carbon atoms has been observed with a surprisingly high branching ratio (30%). In order to reproduce the experimental branching ratios in the framework of a statistical evaporation model, the height of fission barriers for the emission of one odd numbered fragment has to be reduced at higher temperature in order to allow the opening of these channels that are forbidden at lower temperature.

  16. Decay heat and anti-neutrino energy spectra in fission fragments from total absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Rykaczewski, Krzysztof

    2015-10-01

    Decay studies of over forty 238U fission products have been studied using ORNL's Modular Total Absorption Spectrometer. The results are showing increased decay heat values, by 10% to 50%, and the energy spectra of anti-neutrinos shifted towards lower energies. The latter effect is resulting in a reduced number of anti-neutrinos interacting with matter, often by tens of percent per fission product. The results for several studied nuclei will be presented and their impact on decay heat pattern in power reactors and reactor anti-neutrino physics will be discussed.

  17. The FRS Ion Catcher - A facility for high-precision experiments with stopped projectile and fission fragments

    NASA Astrophysics Data System (ADS)

    Plaß, W. R.; Dickel, T.; Purushothaman, S.; Dendooven, P.; Geissel, H.; Ebert, J.; Haettner, E.; Jesch, C.; Ranjan, M.; Reiter, M. P.; Weick, H.; Amjad, F.; Ayet, S.; Diwisch, M.; Estrade, A.; Farinon, F.; Greiner, F.; Kalantar-Nayestanaki, N.; Knöbel, R.; Kurcewicz, J.; Lang, J.; Moore, I.; Mukha, I.; Nociforo, C.; Petrick, M.; Pfützner, M.; Pietri, S.; Prochazka, A.; Rink, A.-K.; Rinta-Antila, S.; Schäfer, D.; Scheidenberger, C.; Takechi, M.; Tanaka, Y. K.; Winfield, J. S.; Yavor, M. I.

    2013-12-01

    At the FRS Ion Catcher at GSI, projectile and fission fragments are produced at relativistic energies, separated in-flight, range-focused, slowed down and thermalized in a cryogenic stopping cell. A multiple-reflection time-of-flight mass spectrometer (MR-TOF-MS) is used to perform direct mass measurements and to provide an isobarically clean beam for further experiments, such as mass-selected decay spectroscopy. A versatile RF quadrupole transport and diagnostics unit guides the ions from the stopping cell to the MR-TOF-MS, provides differential pumping, ion identification and includes reference ion sources. The FRS Ion Catcher serves as a test facility for the Low-Energy Branch of the Super-FRS at the Facility for Antiproton and Ion Research (FAIR), where the cryogenic stopping cell and the MR-TOF-MS will be key devices for the research with stopped projectile and fission fragments that will be performed with the experiments MATS and LaSpec. Off-line tests of the stopping cell yield a combined ion survival and extraction efficiency for 219Rn ions of about 30% and an extraction time of about 25 ms. The stopping cell and the MR-TOF-MS were commissioned on-line as part of the FRS Ion Catcher. For the first time, a stopping cell for exotic nuclei was operated on-line at cryogenic temperatures. Using a gas density almost two times higher than ever reached before for a stopping cell with RF ion repelling structures, various 238U projectile fragments were thermalized and extracted with very high efficiency. Direct mass measurements of projectile fragments were performed with the MR-TOF-MS, among them the nuclide 213Rn with a half-life of 19.5 ms only.

  18. Combining random gene fission and rational gene fusion to discover near-infrared fluorescent protein fragments that report on protein-protein interactions.

    PubMed

    Pandey, Naresh; Nobles, Christopher L; Zechiedrich, Lynn; Maresso, Anthony W; Silberg, Jonathan J

    2015-05-15

    Gene fission can convert monomeric proteins into two-piece catalysts, reporters, and transcription factors for systems and synthetic biology. However, some proteins can be challenging to fragment without disrupting function, such as near-infrared fluorescent protein (IFP). We describe a directed evolution strategy that can overcome this challenge by randomly fragmenting proteins and concomitantly fusing the protein fragments to pairs of proteins or peptides that associate. We used this method to create libraries that express fragmented IFP as fusions to a pair of associating peptides (IAAL-E3 and IAAL-K3) and proteins (CheA and CheY) and screened for fragmented IFP with detectable near-infrared fluorescence. Thirteen novel fragmented IFPs were identified, all of which arose from backbone fission proximal to the interdomain linker. Either the IAAL-E3 and IAAL-K3 peptides or CheA and CheY proteins could assist with IFP fragment complementation, although the IAAL-E3 and IAAL-K3 peptides consistently yielded higher fluorescence. These results demonstrate how random gene fission can be coupled to rational gene fusion to create libraries enriched in fragmented proteins with AND gate logic that is dependent upon a protein-protein interaction, and they suggest that these near-infrared fluorescent protein fragments will be suitable as reporters for pairs of promoters and protein-protein interactions within whole animals.

  19. Structure properties of {sup 226}Th and {sup 256,258,260}Fm fission fragments: Mean-field analysis with the Gogny force

    SciTech Connect

    Dubray, N.; Goutte, H.; Delaroche, J.-P.

    2008-01-15

    The constrained Hartree-Fock-Bogoliubov method is used with the Gogny interaction D1S to calculate potential energy surfaces of fissioning nuclei {sup 226}Th and {sup 256,258,260}Fm up to very large deformations. The constraints employed are the mass quadrupole and octupole moments. In this subspace of collective coordinates, many scission configurations are identified ranging from symmetric to highly asymmetric fragmentations. Corresponding fragment properties at scission are derived yielding fragment deformations, deformation energies, energy partitioning, neutron binding energies at scission, neutron multiplicities, charge polarization, and total fragment kinetic energies.

  20. Prompt Fission γ-ray Spectra Characteristics - A First Summary

    NASA Astrophysics Data System (ADS)

    Oberstedt, S.; Billnert, R.; Gatera, A.; Geerts, W.; Halipré, P.; Hambsch, F.-J.; Lebois, M.; Oberstedt, A.; Marini, P.; Vidali, M.; Wilson, J. N.

    In this work we give an overview of our investigations of prompt γ-ray emission in nuclear fission. This work was conducted during the last five years in response to a high priority nuclear data request formulated by the OECD/NEA. The aim was to reveal data deficiencies responsible for a severe under-prediction of the prompt γ heating in nuclear reactor cores. We obtained new prompt fission γ-ray spectral (PFGS) data for 252Cf(SF) as well as for thermal-neutron induced fission on 235U(nth,f) and 241Pu(nth,f). In addition, first PFGS measurements with a fast-neutron beam were accomplished, too. The impact of the new data and future data needs are discussed.

  1. Neutron Capture and Fission Measurements on Actinides at DANCE

    NASA Astrophysics Data System (ADS)

    Chyzh, Andrii; Wu, Ching-Yen; Kwan, Elaine; Henderson, Rodger; Gostic, Julie; Ullmann, John; Jandel, Marian; Bredeweg, Todd; Couture, Aaron; Lee, Hye Young; Haight, Robert; O'Donnell, John

    2011-10-01

    Neutron capture and fission measurements on actinides are important in nuclear engineering and physics. DANCE (Detector for Advanced Neutron Capture Measurement build at LANL) together with PPAC (avalanche technique based fission tagging detector designed and fabricated at LLNL) were used to measure the prompt γ-ray energy and multiplicity distributions in the spontaneous fission of 252Cf. These measured spectra together with the unfolded ones will be presented. The unfolding technique will be described. In addition the 238Pu(n , γ) cross section will be presented, which was measured using DANCE alone and also is the first such measurement in a laboratory environment. This work was performed under the auspices of the US Department of Energy by Los Alamos National Laboratory under Contract DE-AC52-06NA25396 and Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  2. Total Absorption Spectroscopy of Fission Fragments Relevant for Reactor Antineutrino Spectra and Decay Heat Calculations

    NASA Astrophysics Data System (ADS)

    Porta, A.; Zakari-Issoufou, A.-A.; Fallot, M.; Algora, A.; Tain, J. L.; Valencia, E.; Rice, S.; Bui, V. M.; Cormon, S.; Estienne, M.; Agramunt, J.; Äystö, J.; Bowry, M.; Briz, J. A.; Caballero-Folch, R.; Cano-Ott, D.; Cucouanes, A.; Elomaa, V.-V.; Eronen, T.; Estévez, E.; Farrelly, G. F.; Garcia, A. R.; Gelletly, W.; Gomez-Hornillos, M. B.; Gorlychev, V.; Hakala, J.; Jokinen, A.; Jordan, M. D.; Kankainen, A.; Karvonen, P.; Kolhinen, V. S.; Kondev, F. G.; Martinez, T.; Mendoza, E.; Molina, F.; Moore, I.; Perez-Cerdán, A. B.; Podolyák, Zs.; Penttilä, H.; Regan, P. H.; Reponen, M.; Rissanen, J.; Rubio, B.; Shiba, T.; Sonzogni, A. A.; Weber, C.

    2016-03-01

    Beta decay of fission products is at the origin of decay heat and antineutrino emission in nuclear reactors. Decay heat represents about 7% of the reactor power during operation and strongly impacts reactor safety. Reactor antineutrino detection is used in several fundamental neutrino physics experiments and it can also be used for reactor monitoring and non-proliferation purposes. 92,93Rb are two fission products of importance in reactor antineutrino spectra and decay heat, but their β-decay properties are not well known. New measurements of 92,93Rb β-decay properties have been performed at the IGISOL facility (Jyväskylä, Finland) using Total Absorption Spectroscopy (TAS). TAS is complementary to techniques based on Germanium detectors. It implies the use of a calorimeter to measure the total gamma intensity de-exciting each level in the daughter nucleus providing a direct measurement of the beta feeding. In these proceedings we present preliminary results for 93Rb, our measured beta feedings for 92Rb and we show the impact of these results on reactor antineutrino spectra and decay heat calculations.

  3. Fission fragment angular distributions in the reactions {sup 16}O+{sup 188}Os and {sup 28}Si+{sup 176}Yb

    SciTech Connect

    Tripathi, R.; Sudarshan, K.; Sharma, S. K.; Reddy, A. V. R.; Pujari, P. K.; Goswami, A.; Ramachandran, K.

    2009-06-15

    Fission fragment angular distributions have been measured in the reactions {sup 16}O+{sup 188}Os and {sup 28}Si+{sup 176}Yb to investigate the contribution from noncompound nucleus fission. Parameters for statistical model calculations were fixed using fission cross section data in the {sup 16}O+{sup 188}Os reaction. Experimental anisotropies were in reasonable agreement with those calculated using the statistical saddle point model for both reactions. The present results are also consistent with those of mass distribution studies in the fission of {sup 202}Po, formed in the reactions with varying entrance channel mass asymmetry. However, the present studies do not show a large fusion hindrance as reported in the pre-actinide region based on the measurement of evaporation residue cross section.

  4. Final report: Accelerated beta decay for disposal of fission fragment wastes

    SciTech Connect

    Reiss, Howard R.

    2000-03-06

    The fundamental theory of the interaction of intense, low-frequency electromagnetic fields with certain radioactive nuclei has been fully formulated. The nuclei are of the type that exists in high-level radioactive wastes that are end products of the production of energy from nuclear fission. The basic physical mechanisms that underlie the coupling of the applied field to the nucleus have been identified. Both the basic theory and numerical predictions that stem from it support the conclusion that high-level radioactive wastes can be disposed of by substantially accelerating the rate of radioactive decay. Some old experiments on the acceleration of this type of radioactivity, with results that were not understood at the time, have been re-examined. Their interpretation is now clear, and the experiments are found to be in agreement with the theory.

  5. New statistical scission-point model to predict fission fragment observables

    NASA Astrophysics Data System (ADS)

    Lemaître, Jean-François; Panebianco, Stefano; Sida, Jean-Luc; Hilaire, Stéphane; Heinrich, Sophie

    2015-09-01

    The development of high performance computing facilities makes possible a massive production of nuclear data in a full microscopic framework. Taking advantage of the individual potential calculations of more than 7000 nuclei, a new statistical scission-point model, called SPY, has been developed. It gives access to the absolute available energy at the scission point, which allows the use of a parameter-free microcanonical statistical description to calculate the distributions and the mean values of all fission observables. SPY uses the richness of microscopy in a rather simple theoretical framework, without any parameter except the scission-point definition, to draw clear answers based on perfect knowledge of the ingredients involved in the model, with very limited computing cost.

  6. Calculated fission-fragment yield systematics in the region 74 ≤Z ≤94 and 90 ≤N ≤150

    NASA Astrophysics Data System (ADS)

    Möller, Peter; Randrup, Jørgen

    2015-04-01

    Background: In the seminal experiment by Schmidt et al. [Nucl. Phys. A 665, 221 (2000), 10.1016/S0375-9474(99)00384-X] in which fission-fragment charge distributions were obtained for 70 nuclides, asymmetric distributions were seen above nucleon number A ≈226 and symmetric ones below. Because asymmetric fission had often loosely been explained as a preference for the nucleus to always exploit the extra binding of fragments near 132Sn it was assumed that all systems below A ≈226 would fission symmetrically because available isotopes do not have a proton-to-neutron Z /N ratio that allows division into fragments near 132Sn . But the finding by Andreyev et al. [Phys. Rev. Lett. 105, 252502 (2010), 10.1103/PhysRevLett.105.252502] did not conform to this expectation because the compound system 180Hg was shown to fission asymmetrically. It was suggested that this was a new type of asymmetric fission, because no strong shell effects occur for any possible fragment division. Purpose: We calculate a reference database for fission-fragment mass yields for a large region of the nuclear chart comprising 987 nuclides. A particular aim is to establish whether 180Hg is part of a contiguous region of asymmetric fission, and if so, its extent, or if not, in contrast to the actinides, there are scattered smaller groups of nuclei that fission asymmetrically in this area of the nuclear chart. Methods: We use the by now well benchmarked Brownian shape-motion method and perform random walks on the previously calculated five-dimensional potential-energy surfaces. The calculated shell corrections are damped out with energy according to a prescription developed earlier. Results: We have obtained a theoretical reference database of fission-fragment mass yields for 987 nuclides. These results show an extended region of asymmetric fission with approximate extension 74 ≤Z ≤85 and 100 ≤N ≤120 . The calculated yields are highly variable. We show 20 representative plots of these

  7. Fragment mass and kinetic-energy distributions from spontaneous fission of the neutron-deficient isotopes, 1. 2-s /sup 246/Fm and 38-s /sup 248/Fm

    SciTech Connect

    Hoffman, D.; Lee, D.; Ghiorso, A.; Nurmia, M.; Aleklett, K.

    1980-10-01

    We have measured the mass and kinetic-energy distributions for fragments from the spontaneous fission of 1.2-s /sup 246/Fm and 38-s /sup 248/Fm. The mass distributions are highly asymmetric and the average total kinetic energies of 199 +- 4 MeV and 198 +- 4 MeV, respectively, are consistent with systematics for lower Z actinides. Their properties are in contrast to those of /sup 258/Fm and /sup 259/Fm, whose spontaneous fission results in narrowly symmetric mass distributions accompanied by unusually high total kinetic energies.

  8. Novel Scintillation Detectors for Prompt Fission γ-Ray Measurements

    NASA Astrophysics Data System (ADS)

    Billnert, R.; Andreotti, E.; Hambsch, F.-J.; Hult, M.; Karlsson, J.; Marissens, G.; Oberstedt, A.; Oberstedt, S.

    In this work we present first results from measurements of prompt fission γ-rays from the spontaneous fission in 252Cf. New and accurate data on corresponding γ-rays from the reactions 235U(nth,f) and 239Pu(nth,f) are highly demanded for the modeling of new Generation-IV nuclear reactor systems. For these experiments we employed scintillation detectors made out of new materials (LaBr3, LaCl3 and CeBr3), whose properties were necessary to know in order to obtain reliable results. Hence, we have characterized these detectors. In all the important properties these detectors outshine sodium-iodine detectors that where used in the 1970s, when the existing data had been acquired. Our finding is that the new generation of scintillation detectors is indeed promising, as far as an improved precision of the demanded data is concerned.

  9. Calculation of Beta Decay Half-Lives and Delayed Neutron Branching Ratio of Fission Fragments with Skyrme-QRPA

    NASA Astrophysics Data System (ADS)

    Minato, Futoshi

    2016-06-01

    Nuclear β-decay and delayed neutron (DN) emission is important for the r-process nucleosynthesis after the freeze-out, and stable and safe operation of nuclear reactors. Even though radioactive beam facilities have enabled us to measure β-decay and branching ratio of neutron-rich nuclei apart from the stability line in the nuclear chart, there are still a lot of nuclei which one cannot investigate experimentally. In particular, information on DN is rather scarce than that of T1/2. To predict T1/2 and the branching ratios of DN for next JENDL decay data, we have developed a method which comprises the quasiparticle-random-phase-approximation (QRPA) and the Hauser-Feshbach statistical model (HFSM). In this work, we calculate fission fragments with T1/2 ≤ 50 sec. We obtain the rms deviation from experimental half-life of 3:71. Although the result is still worse than GT2 which has been adopted in JENDL decay data, DN spectra are newly calculated. We also discuss further subjects to be done in future for improving the present approach and making next generation of JENDL decay data.

  10. Effects of Neutron Emission on Fragment Mass and Kinetic Energy Distribution from Thermal Neutron-Induced Fission of {sup 235}U

    SciTech Connect

    Montoya, M.; Rojas, J.; Saetone, E.

    2007-10-26

    The mass and kinetic energy distribution of nuclear fragments from thermal neutron-induced fission of {sup 235}U(n{sub th},f) have been studied using a Monte-Carlo simulation. Besides reproducing the pronounced broadening in the standard deviation of the kinetic energy at the final fragment mass number around m = 109, our simulation also produces a second broadening around m = 125. These results are in good agreement with the experimental data obtained by Belhafaf et al. and other results on yield of mass. We conclude that the obtained results are a consequence of the characteristics of the neutron emission, the sharp variation in the primary fragment kinetic energy and mass yield curves. We show that because neutron emission is hazardous to make any conclusion on primary quantities distribution of fragments from experimental results on final quantities distributions.

  11. New results from isochronous mass measurements of neutron-rich uranium fission fragments with the FRS-ESR-facility at GSI

    NASA Astrophysics Data System (ADS)

    Knöbel, R.; Diwisch, M.; Geissel, H.; Litvinov, Yu. A.; Patyk, Z.; Plaß, W. R.; Scheidenberger, C.; Sun, B.; Weick, H.; Bosch, F.; Boutin, D.; Chen, L.; Dimopoulou, C.; Dolinskii, A.; Franczak, B.; Franzke, B.; Hausmann, M.; Kozhuharov, C.; Kurcewicz, J.; Litvinov, S. A.; Matoš, M.; Mazzocco, M.; Münzenberg, G.; Nakajima, S.; Nociforo, C.; Nolden, F.; Ohtsubo, T.; Ozawa, A.; Stadlmann, J.; Steck, M.; Suzuki, T.; Walker, P. M.; Winkler, M.; Yamaguchi, T.

    2016-05-01

    Masses of uranium fission fragments have been measured with the FRagment Separator (FRS) combined with the Experimental Storage Ring (ESR) at GSI. A 410-415 MeV/u 238U projectile beam was fast extracted from the synchrotron SIS-18 with an average intensity of 109/spill. The projectiles were focused on a 1g/cm2 beryllium target at the entrance of the FRS to create neutron-rich isotopes via abrasion-fission. The fission fragments were spatially separated with the FRS and injected into the isochronous storage ring ESR for fast mass measurements without applying cooling. The Isochronous Mass Spectrometry (IMS) was performed under two different experimental conditions, with and without B ρ-tagging at the high-resolution dispersive central focal plane of the FRS. The evaluation has been done for the combined data sets from both experiments with a new method of data analysis. The use of a correlation matrix has provided experimental mass values for 23 different neutron-rich isotopes for the first time and 6 masses with improved values. The new masses were obtained for nuclides in the element range from Se to Ce. The applied analysis has given access even to rare isotopes detected with an intensity of a few atoms per week. The novel data analysis and systematic error determination are described and the results are compared with extrapolations of experimental values and theoretical models.

  12. Fission and binary fragmentation reactions in {sup 80}Se+{sup 208}Pb and {sup 80}Se+{sup 232}Th systems

    SciTech Connect

    Thomas, R. G.; Saxena, A.; Sahu, P. K.; Kailas, S.; Kapoor, S. S.; Choudhury, R. K.; Govil, I. M.; Barbui, M.; Cinausero, M.; Prete, G.; Rizzi, V.; Fabris, D.; Lunardon, M.; Moretto, S.; Viesti, G.; Nebbia, G.; Pesente, S.; Dalena, B.; D'Erasmo, G.; Fiore, E. M.

    2007-02-15

    Fission and binary fragmentation of the excited nuclear systems of Z=116 and 124 were investigated using the reactions induced by {sup 80}Se beams on {sup 208}Pb and {sup 232}Th targets at bombarding energies ranging from 470 to 630 MeV. The mass and kinetic energy of the binary reaction products were reconstructed by measuring their velocities by the time-of-flight method and the angles of emission using multiwire proportional chambers. Total neutron multiplicities were measured in coincidence with the fragments, using an array of neutron detectors. The fragment mass-energy correlation was studied for the two systems. The average total kinetic energy (TKE) of fragments for the {sup 80}Se+{sup 208}Pb system agrees with earlier measurements and with Viola's systematics in the mass symmetric region for compound nucleus fission, whereas for the {sup 80}Se+{sup 232}Th system, the TKE values are significantly lower. This is also consistent with higher values of total neutron multiplicities observed for the case of {sup 80}Se+{sup 232}Th at comparable available energies. From an extrapolation of the measured total neutron multiplicities for the mass symmetric region to zero compound nucleus excitation energy, the average number of prompt neutrons expected to be emitted in the spontaneous fission of the superheavy Z=116 has been estimated to be {nu}{sub tot}{sup sf}=10{+-}2, which is consistent with the value derived for the same compound nucleus populated in the {sup 56}Fe+{sup 232}Th reaction in an earlier work. In the case of the {sup 80}Se+{sup 232}Th system, similar analysis was carried out by taking the average TKE from Viola's systematics for estimating the available energy for particle emission corresponding to compound nucleus fission. In this way, by extrapolating the observed neutron multiplicities to zero compound nucleus excitation energy, a value of {nu}{sub tot}{sup sf}=15{+-}2 was obtained for the spontaneous fission of the superheavy Z=124 nucleus. The

  13. Future research program on prompt γ-ray emission in nuclear fission

    NASA Astrophysics Data System (ADS)

    Oberstedt, S.; Billnert, R.; Hambsch, F.-J.; Lebois, M.; Oberstedt, A.; Wilson, J. N.

    2015-12-01

    In recent years the measurement of prompt fission γ-ray spectra (PFGS) has gained renewed interest, after about forty years since the first comprehensive studies of the reactions 235U(n th , f), 239Pu(n th ,f) and 252Cf(sf). The renaissance was initiated by requests for new values especially for γ-ray multiplicity and average total energy release per fission in neutron-induced fission of 235U and 239Pu. Both isotopes are considered the most important ones with respect to the modeling of innovative cores required for the Generation-IV reactors, the majority working with fast neutrons. During the last 5 years we have conducted a systematic study of spectral data for thermal-neutron-induced fission on 235U and 241Pu as well as for the spontaneous fission of 252Cf with unprecedented accuracy. From the new data we conclude that those reactions do not considerably contribute to the observed heat excess and suspect other reactions playing a significant role. Possible contributions may originate from fast-neutron-induced reactions on 238U, which is largely present in the fuel, or from γ-induced fission from neutron capture in the construction material. A first experiment campaign on prompt γ-ray emission from fast-neutron-induced fission on 235,238U was successfully performed in order to test our assumptions. In the following we attempt to summarize, what has been done in the field to date, and to motivate future measurement campaigns exploiting dedicated neutron and photon beams as well as upcoming highly efficient detector assemblies.

  14. Seminar on Fission VI

    NASA Astrophysics Data System (ADS)

    Wagemans, Cyriel; Wagemans, Jan; D'Hondt, Pierre

    2008-04-01

    Topical reviews. Angular momentum in fission / F. Gönnenwein ... [et al.]. The processes of fusion-fission and quasi-fission of heavy and super-heavy nuclei / M. G. Itkis ... [et al.] -- Fission cross sections and fragment properties. Minor-actinides fission cross sections and fission fragment mass yields via the surrogate reaction technique / B. Jurado ... [et al.]. Proton-induced fission on actinide nuclei at medium energy / S. Isaev ... [et al.]. Fission cross sections of minor actinides and application in transmutation studies / A. Letourneau ... [et al.]. Systematics on even-odd effects in fission fragments yields: comparison between symmetric and asymmetric splits / F. Rejmund, M Caamano. Measurement of kinetic energy distributions, mass and isotopic yields in the heavy fission products region at Lohengrin / A. Bail ... [et al.] -- Ternary fission. On the Ternary [symbol] spectrum in [symbol]Cf(sf) / M. Mutterer ... [et al.]. Energy degrader technique for light-charged particle spectroscopy at LOHENGRIN / A. Oberstedt, S. Oberstedt, D. Rochman. Ternary fission of Cf isotopes / S. Vermote ... [et al.]. Systematics of the triton and alpha particle emission in ternary fission / C. Wagemans, S. Vermote, O. Serot -- Neutron emission in fission. Scission neutron emission in fission / F.-J. Hambsch ... [et al.]. At and beyond the Scission point: what can we learn from Scission and prompt neutrons? / P. Talou. Fission prompt neutron and gamma multiplicity by statistical decay of fragments / S. Perez-Martin, S. Hilaire, E. Bauge -- Fission theory. Structure and fission properties of actinides with the Gogny force / H. Goutte ... [et al.]. Fission fragment properties from a microscopic approach / N. Dubray, H. Goutte, J.-P. Delaroche. Smoker and non-smoker neutron-induced fission rates / I. Korneev ... [et al.] -- Facilities and detectors. A novel 2v2E spectrometer in Manchester: new development in identification of fission fragments / I. Tsekhanovich ... [et al

  15. Coulomb and even-odd effects in cold and super-asymmetric fragmentation for thermal neutron induced fission of 235U

    NASA Astrophysics Data System (ADS)

    Montoya, M.

    2016-07-01

    Even-odd effects of the maximal total kinetic energy (Kmax) as a function of charge (Z) and mass (A) of fragments from thermal neutron induced fission of actinides are questioned by other authors. In this work, visiting old results on thermal neutron induced fission of 235U, those even-odd effects are reconfirmed. The cases seeming to contradict even-odd effects are interpreted with the Coulomb effect hypothesis. According to Coulomb effect hypothesis, Kmax is equal to the Coulomb interaction energy of the most compact scission configuration. As a consequence, between two isobaric charge splits with similar Q-values, the more asymmetrical one will get the more compact scission configuration and then it will reach the higher Kmax-value. In some cases, the more asymmetrical charge split corresponds, by coincidence, to an odd charge split; consequently its higher Kmax-value may be misinterpreted as anti-even-odd effect. Another experimental result reported in the literature is the increasing of even-odd effects on charge distribution on the more asymmetrical fragmentations region. In this region, the difference between Kmax and Q-values increases with asymmetry, which means that the corresponding scission configuration needs higher total deformation energy to occur. Higher deformation energy of the fragments implies lower free energy to break nucleon pairs. Consequently, in the asymmetric fragmentation region, the even-odd effects of the distribution of proton number and neutron number must increase with asymmetry.

  16. New Results on Helium and Tritium Gas Production From Ternary Fission

    NASA Astrophysics Data System (ADS)

    Serot, O.; Wagemans, C.; Heyse, J.

    2005-05-01

    Ternary fission constitutes an important source of helium and tritium gas production in nuclear reactors and in used fuel elements. Data related to this production are therefore requested by nuclear industry. In the present paper, we report results from measurements of the 4He and 3H emission probabilities (denoted LRA/B and t/B, respectively). These measurements concern both thermal neutron-induced fission reactions as well as spontaneous fission decays. For spontaneous fission, data are reported for nuclides ranging from 238Pu up to 252Cf. For thermal neutron-induced fission, results cover target nuclei between 229Th and 251Cf. Based on these and other results, semi-empirical relations are proposed. These correlations are only valid if spontaneous fission data and neutron-induced fission data are considered separately, which shows the impact of the fissioning nucleus-excitation energy on the ternary particle-emission process. In this way, t/B and LRA/B values could be evaluated for fissioning systems not investigated so far. These results could be used for the ternary fission-yield evaluation of the JEFF3.1 library.

  17. A method to calculate fission-fragment yields Y(Z,N) versus proton and neutron number in the Brownian shape-motion model

    SciTech Connect

    Moller, Peter; Ichikawa, Takatoshi

    2015-12-23

    In this study, we propose a method to calculate the two-dimensional (2D) fission-fragment yield Y(Z,N) versus both proton and neutron number, with inclusion of odd-even staggering effects in both variables. The approach is to use the Brownian shape-motion on a macroscopic-microscopic potential-energy surface which, for a particular compound system is calculated versus four shape variables: elongation (quadrupole moment Q2), neck d, left nascent fragment spheroidal deformation ϵf1, right nascent fragment deformation ϵf2 and two asymmetry variables, namely proton and neutron numbers in each of the two fragments. The extension of previous models 1) introduces a method to calculate this generalized potential-energy function and 2) allows the correlated transfer of nucleon pairs in one step, in addition to sequential transfer. In the previous version the potential energy was calculated as a function of Z and N of the compound system and its shape, including the asymmetry of the shape. We outline here how to generalize the model from the “compound-system” model to a model where the emerging fragment proton and neutron numbers also enter, over and above the compound system composition.

  18. A method to calculate fission-fragment yields Y(Z,N) versus proton and neutron number in the Brownian shape-motion model

    DOE PAGES

    Moller, Peter; Ichikawa, Takatoshi

    2015-12-23

    In this study, we propose a method to calculate the two-dimensional (2D) fission-fragment yield Y(Z,N) versus both proton and neutron number, with inclusion of odd-even staggering effects in both variables. The approach is to use the Brownian shape-motion on a macroscopic-microscopic potential-energy surface which, for a particular compound system is calculated versus four shape variables: elongation (quadrupole moment Q2), neck d, left nascent fragment spheroidal deformation ϵf1, right nascent fragment deformation ϵf2 and two asymmetry variables, namely proton and neutron numbers in each of the two fragments. The extension of previous models 1) introduces a method to calculate this generalizedmore » potential-energy function and 2) allows the correlated transfer of nucleon pairs in one step, in addition to sequential transfer. In the previous version the potential energy was calculated as a function of Z and N of the compound system and its shape, including the asymmetry of the shape. We outline here how to generalize the model from the “compound-system” model to a model where the emerging fragment proton and neutron numbers also enter, over and above the compound system composition.« less

  19. Reassessment of fission fragment angular distributions from continuum states in the context of transition-state theory

    NASA Astrophysics Data System (ADS)

    Vaz, Louis C.; Alexander, John M.

    1983-07-01

    Fission angular distributions have been studied for years and have been treated as classic examples of trasitions-state theory. Early work involving composite nuclei of relatively low excitation energy E ∗ (⪅35 MeV) and spin I (⪅25ħ) gave support to theory and delimited interesting properties of the transitions-state nuclei. More recent research on fusion fission and sequential fission after deeply inelastic reactions involves composite nuclei of much higher energies (⪅200 MeV) and spins (⪅100ħ). Extension of the basic ideas developed for low-spin nuclei requires detailed consideration of the role of these high spins and, in particular, the “spin window” for fussion. We have made empirical correlations of cross sections for evaporation residues and fission in order to get a description of this spin window. A systematic reanalysis has been made for fusion fission induced by H, He and heavier ions. Empirical correlations of K 20 (K 20 = {IeffT }/{h̷2}) are presented along with comparisons of Ieff to moments of inertia for saddle-point nuclei from the rotating liquid drop model. This model gives an excellent guide for the intermidiate spin zone (30⪅ I ⪅65), while strong shell and/or pairing effects are evident for excitations less than ⪅35 MeV. Observations of strong anisotropies for very high-spin systems signal the demise of certain approximation commonly made in the theory, and suggestions are made toward this end.

  20. Fission-fragment angular distributions and total kinetic energies for /sup 235/U(n,f) from. 18 to 8. 83 MeV

    SciTech Connect

    Meadows, J.W.; Budtz-Joergensen, C.

    1982-01-01

    A gridded ion chamber was used to measure the fission fragment angular distribution and total kinetic energy for the /sup 235/U(n,f) reaction from 0.18 to 8.81 MeV neutron energy. The anisotropies are in generally good agreement with earlier measurements. The average total kinetic energy is approx. 0.2 MeV greater than the thermal value at neutron energies < 2 MeV and shows a sudden decrease of approx. 0.8 MeV between 4 and 5 MeV neutron energy, well below the (n, n'f) threshold. Possible causes of this decrease are a change in the mass distribution or decreased shell effects in the heavy fragment.

  1. Spontaneous fission

    SciTech Connect

    Hoffman, D.C.

    1993-09-01

    The spontaneous fission (SF) of the heaviest actinides and the transactinides is of particular interest because of the dramatic changes in properties observed in the region of the heavy fermion isotopes and for still heavier elements. The existing experimental information on SF properties including half-life systematics, fragment kinetic-energy and mass-yield distributions, prompt neutron emission, and gamma emission will be reviewed. Possibility for extending studies of SF properties to other regions are considered and the potential for obtaining additional information about low-energy fission properties is discussed.

  2. Characteristic features of first and second moments of fission-fragment energy distribution as functions of nucleon composition

    SciTech Connect

    Gruzintsev, E.N.; Itkis, M.G.; Mul'gin, S.I.; Okolovich, V.N.; Rusanov, A.Y.; Serdyuk, O.I.; Smirenkin, G.N.; Subbotin, M.I.

    1988-08-01

    We discuss the totality of experimental data obtained at the Alma-Ata isochronous cyclotron for the mean kinetic energy /similar to/(E/sub k/) and energy dispersion sigma/sub E//sup 2/ for nuclei with Z = 68--85, A = 165--213. The dependences of these first two moments of the E/sub k/ distribution as functions of the nucleon composition of the fissioning nucleus are found to have a new feature: a ''break'' in the curve in the vicinity of (Z/sup 2//A/sup 1//sup ///sup 3/)/sub 0/approx. =1000. This effect is due to the fact that the descent-to-scission stage is absent for fissioning nuclei with Z/sup 2//A/sup 1//sup ///sup 3/<(Z/sup 2//A/sup 1//sup ///sup 3/)/sub 0/.

  3. Progress towards the production of the 236gNp standard sources and competing fission fragment production

    NASA Astrophysics Data System (ADS)

    Larijani, C.; Pickford, O. L.; Collins, S. M.; Ivanov, P.; Jerome, S. M.; Keightley, J. D.; Pearce, A. K.; Regan, P. H.

    2015-11-01

    The isobaric distribution of fission residues produced following the bombardment of a natural uranium target with a beam of 25 MeV protons has been evaluated. Decay analysis of thirteen isobarically distinct fission residues were carried out using high-resolution γ-spectrometry at the UK National Physical Laboratory. Stoichiometric abundances were calculated via the determination of absolute activity concentrations associated with the longest-lived members of each isobaric chain. This technique was validated by computational modelling of likely sequential decay processes through an isobaric decay chain. The results were largely in agreement with previously published values for neutron bombardments on 238U at energies of 14 MeV. Higher yields of products with mass numbers A~110-130 were found, consistent with the increasing yield of these radionuclides as the bombarding energy is increased.

  4. Analysis of the GSI A+p and A+A spallation, fission, and fragmentation measurements with the LANL CEMsk and LAQGSM codes

    SciTech Connect

    Mashnik, S. G.; Gudima, K. K.; Prael, R. E.; Sierk, A. J.

    2004-01-01

    The CEM2k and LAQGSM codes have been recently developed at Los Alamos National Laboratory to simulate nuclear reactions induced by particles and nuclei for a number of applications. They have benchmarked our codes against most available measured data at projectile energies from 10 MeV/A to 800 GeV/A and have compared their results with predictions of other current models used by the nuclear community. Here, they present a brief description of their codes and show illustrative results obtained with CEM2k and LAQGSM for A+p and A+A spallation, fission, and fragmentation reactions measured recently at GSI compared with predictions by other models. Further necessary work is outlined.

  5. DETECTORS AND EXPERIMENTAL METHODS: Equivalent properties of single event burnout induced by different sources

    NASA Astrophysics Data System (ADS)

    Yang, Shi-Yu; Cao, Zhou; Da, Dao-An; Xue, Yu-Xiong

    2009-05-01

    The experimental results of single event burnout induced by heavy ions and 252Cf fission fragments in power MOSFET devices have been investigated. It is concluded that the characteristics of single event burnout induced by 252Cf fission fragments is consistent to that in heavy ions. The power MOSFET in the “turn-off" state is more susceptible to single event burnout than it is in the “turn-on" state. The thresholds of the drain-source voltage for single event burnout induced by 173 MeV bromine ions and 252Cf fission fragments are close to each other, and the burnout cross section is sensitive to variation of the drain-source voltage above the threshold of single event burnout. In addition, the current waveforms of single event burnouts induced by different sources are similar. Different power MOSFET devices may have different probabilities for the occurrence of single event burnout.

  6. Fission Spectrum

    DOE R&D Accomplishments Database

    Bloch, F.; Staub, H.

    1943-08-18

    Measurements of the spectrum of the fission neutrons of 25 are described, in which the energy of the neutrons is determined from the ionization produced by individual hydrogen recoils. The slow neutrons producing fission are obtained by slowing down the fast neutrons from the Be-D reaction of the Stanford cyclotron. In order to distinguish between fission neutrons and the remaining fast cyclotron neutrons both the cyclotron current and the pusle amplifier are modulated. A hollow neutron container, in which slow neutrons have a lifetime of about 2 milliseconds, avoids the use of large distances. This method results in much higher intensities than the usual modulation arrangement. The results show a continuous distribution of neutrons with a rather wide maximum at about 0.8 MV falling off to half of its maximum value at 2.0 MV. The total number of netrons is determined by comparison with the number of fission fragments. The result seems to indicate that only about 30% of the neutrons have energies below .8 MV. Various tests are described which were performed in order to rule out modification of the spectrum by inelastic scattering. Decl. May 4, 1951

  7. Bimodal fission

    SciTech Connect

    Hulet, E.K.

    1989-04-19

    In recent years, we have measured the mass and kinetic-energy distributions from the spontaneous fission of /sup 258/Fm, /sup 259/Md, /sup 260/Md, /sup 258/No, /sup 262/No, and /sup 260/(104). All are observed to fission with a symmetrical division of mass, whereas the total-kinetic-energy (TKE) distributions strongly deviated from the Gaussian shape characteristically found in the fission of all other actinides. When the TKE distributions are resolved into two Gaussians the constituent peaks lie near 200 and near 233 MeV. We conclude two modes or bimodal fission is occurring in five of the six nuclides studied. Both modes are possible in the same nuclides, but one generally predominates. We also conclude the low-energy but mass-symmetrical mode is likely to extend to far heavier nuclei; while the high-energy mode will be restricted to a smaller region, a region of nuclei defined by the proximity of the fragments to the strong neutron and proton shells in /sup 132/Sn. 16 refs., 7 figs., 1 tab.

  8. Student Experiments in Spontaneous Fission.

    ERIC Educational Resources Information Center

    Becchetti, F. D.; Ying, J. S.

    1981-01-01

    Advanced undergraduate experiments utilizing a commercially available, thin spontaneous fission source are described, including studies of the energy and mass distribution of the fission fragments and their energy and angular correlation. The experiments provide a useful introduction to fission, nuclear mass equations, heavy-ion physics, and…

  9. Nonuniform character of the population of spin projections K for a fissile nucleus at the scission point and anisotropies in the angular distributions of fragments originating from the induced fission of nuclei

    SciTech Connect

    Kadmensky, S. G.; Bunakov, V. E.; Kadmensky, S. S.

    2012-11-15

    It is shown that the emergence of anisotropies in the angular distributions of fragments originating from the spontaneous and induced fission of oriented actinide nuclei is possible only if nonuniformities in the population of the projectionsM (K) of the fissile-nucleus spin onto the z axis of the laboratory frame (fissile-nucleus symmetry axis) appear simultaneously in the vicinity of the scission point but not in the vicinity of the outer saddle point of the deformation potential. The possibilities for creating the orientation of fissile nuclei for spontaneous and induced fission and the effect of these orientations on the anisotropies under analysis are considered. The role of Coriolis interaction as a unique source of the mixing of different-K fissile-nucleus states at all stages of the fission process is studied with allowance for the dynamical enhancement of this interaction for excited thermalized states of the nucleus involved that is characterized by a high energy density. It is shown that the absence of thermalization of excited states of the fissile nucleus that appear because of the effect of nonadiabaticity of its collective deformation motion in the vicinity of the scission point is a condition of conservation of the influence that transition fission states formed at the inner and outer fission barriers exerts on the distribution of the spin projections K for lowenergy spontaneous nuclear fission. It is confirmed that anisotropies observed in the angular distributions of fragments originating from the fission of nuclei that is induced by fast light particles (multiply charged ions) are due to the appearance of strongly excited equilibrium(nonequilibrium) states of the fissile nucleus in the vicinity of its scission point that have a Gibbs (non-Gibbs) distribution of projections K.

  10. Even-odd effects in prompt emission of spontaneously fissioning even-even Pu isotopes

    NASA Astrophysics Data System (ADS)

    Tudora, A.; Hambsch, F.-J.; Giubega, G.; Visan, I.

    2015-01-01

    The available experimental Y (A , TKE) data for 236,238,240,242,244Pu(SF) together with the Zp model prescription with appropriate parameters allows the investigation of even-odd effects in fragment distributions. The size of the global even-odd effect in Y (Z) is decreasing from 244Pu(SF) to 236Pu(SF) confirming the general observation of a decrease of the even-odd effect with the fissility parameter. Charge polarizations (ΔZ) and root-mean squares (rms) as a function of A of 236-244Pu(SF) were obtained for the first time. In the asymmetric fission region both ΔZ (A) and rms (A) exhibit oscillations with a periodicity of about 5 mass units due to the even-odd effects. The total average charge deviations < ΔZ > (obtained by averaging ΔZ (A) over the experimental Y (A) distribution) are of about |0.5| for all studied Pu(SF) systems. The comparison of the calculated ΔZ (A) and rms (A) of 240Pu(SF) with those of 239Pu (nth , f) reported by Wahl shows an in-phase oscillation with a higher amplitude in the case of 240Pu(SF), confirming the higher even-odd effect in the case of SF. As in the previously studied cases (233,235U (nth , f), 239Pu (nth , f), 252Cf(SF)) the even-odd effects in the prompt emission of 236-244Pu(SF) are mainly due to the Z even-odd effects in fragment distributions and charge polarizations and the N even-odd effects in the average neutron separation energies from fragments < Sn >. The size of the global N even-odd effect in < Sn > is decreasing with the fissility parameter, being higher for the Pu(SF) systems compared to the previously studied systems. The prompt neutron multiplicities as a function of Z, ν (Z), exhibit sawtooth shapes with a visible staggering for asymmetric fragmentations. The size of the global Z even-odd effect in ν (Z) exhibits a decreasing trend with increasing fissility. The average prompt neutron multiplicities as a function of TKE show an increase of the even-odd effect with increasing TKE, with global effect

  11. Development of Two-Dimensional Fitting and Application to Prompt Gamma-Rays of CALIFORNIUM-252 Fission

    NASA Astrophysics Data System (ADS)

    Chemaly, Mike Georges

    We have developed a method for the direct two -dimensional decomposition of complex coincidence matrices in order to extract gamma-gamma coincidence intensities at the statistical limits. The algorithms written to analyze the gamma-gamma coincidence data were developed first while working on unidimensional spectra from the decay of ^ {65}Ni, ^{65} Zn and ^{rm 108m} Ag. They were then extended to work in two dimensions in order to obtain a general method that could be used for extracting information from data sets having different dimensions. We successfully modeled the continuum and the ridges over the entire coincidence matrix. The continuum is described by the simple product of two vectors while the ridges are reproduced from a centroid based on gamma -rays in the total projection and a vector giving the height as a function of position. The peaks found by a two-dimensional zero-area transform are fitted with a Singular Value Decomposition --Levenberg Marquardt code extended to two dimensions. We applied the technique to the analysis of the coincidences involving the prompt gammas from the spontaneous fission of ^{252}Cf. The information from the 20,000 coincidence peaks obtained from the fit was manipulated through a computer program. The built-in database constructed from NNDC nuclear structure data files provided access to literature schemes. A graphical interface allowed the interactive building and extension of level schemes. Newly placed transitions were checked by comparing predicted coincidences to those observed. In the even-even nuclides, models like the Variable-Moment -of-Inertia and the product of valence protons and neutrons (NpNn scheme) are used to guide placements based on systematics. We take advantage of the cross-coincidences between fission partners to determine the atomic number and mass of the nuclide in which a transition occurred. Fifty-eight level schemes from ^{252}Cf fission have been constructed and seventeen of them have been

  12. Benchmark test of neutron transport calculations: indium, nickel, gold, europium, and cobalt activation with and without energy moderated fission neutrons by iron simulating the Hiroshima atomic bomb casing.

    PubMed

    Iwatani, K; Hoshi, M; Shizuma, K; Hiraoka, M; Hayakawa, N; Oka, T; Hasai, H

    1994-10-01

    A benchmark test of the Monte Carlo neutron and photon transport code system (MCNP) was performed using a bare- and energy-moderated 252Cf fission neutron source which was obtained by transmission through 10-cm-thick iron. An iron plate was used to simulate the effect of the Hiroshima atomic bomb casing. This test includes the activation of indium and nickel for fast neutrons and gold, europium, and cobalt for thermal and epithermal neutrons, which were inserted in the moderators. The latter two activations are also to validate 152Eu and 60Co activity data obtained from the atomic bomb-exposed specimens collected at Hiroshima and Nagasaki, Japan. The neutron moderators used were Lucite and Nylon 6 and the total thickness of each moderator was 60 cm or 65 cm. Measured activity data (reaction yield) of the neutron-irradiated detectors in these moderators decreased to about 1/1,000th or 1/10,000th, which corresponds to about 1,500 m ground distance from the hypocenter in Hiroshima. For all of the indium, nickel, and gold activity data, the measured and calculated values agreed within 25%, and the corresponding values for europium and cobalt were within 40%. From this study, the MCNP code was found to be accurate enough for the bare- and energy-moderated 252Cf neutron activation calculations of these elements using moderators containing hydrogen, carbon, nitrogen, and oxygen. PMID:8083048

  13. Benchmark test of neutron transport calculations: Indium, nickel, gold, europium, and cobalt activation with and without energy moderated fission neutrons by iron simulating the Hiroshima atomic bomb casing

    SciTech Connect

    Iwatani, Kazuo; Shizuma, Kiyoshi; Hasai, Hiromi; Hoshi, Masaharu; Hiraoka, Masayuki; Hayakawa, Norihiko; Oka, Takamitsu

    1994-10-01

    A benchmark test of the Monte Carlo neutron and photon transport code system (MCNP) was performed using a bare- and energy-moderated {sup 252}Cf fission neutron source which was obtained by transmission through 10-cm-thick iron. An iron plate was used to simulate the effect of the Hiroshima atomic bomb casing. This test includes the activation of indium and nickel for fast neutrons and gold, europium, and cobalt for thermal and epithermal neutrons, which were inserted in the moderators. The latter two activations are also to validate {sup 152}Eu and {sup 60}Co activity data obtained from the atomic bomb-exposed specimens collected at Hiroshima and Nagasaki, Japan. The neutron moderators used were Lucite and Nylon 6 and the total thickness of each moderator was 60 cm or 65 cm. Measured activity data (reaction yield) of the neutron-irradiated detectors in these moderators decreased to about 1/1,000th or 1/10,000th, which corresponds to about 1,500 m ground distance from the hypocenter in Hiroshima. For all of the indium, nickel, and gold activity data, the measured and calculated values agreed within 25%, and the corresponding values for europium and cobalt were within 40%. From this study, the MCNP code was found to be accurate enough for the bare- and energy-moderated {sup 252}Cf neutron activation calculations of these elements using moderators containing hydrogen, carbon, nitrogen, and oxygen. 18 refs., 10 figs., 4 tabs.

  14. Benchmark test of neutron transport calculations: indium, nickel, gold, europium, and cobalt activation with and without energy moderated fission neutrons by iron simulating the Hiroshima atomic bomb casing.

    PubMed

    Iwatani, K; Hoshi, M; Shizuma, K; Hiraoka, M; Hayakawa, N; Oka, T; Hasai, H

    1994-10-01

    A benchmark test of the Monte Carlo neutron and photon transport code system (MCNP) was performed using a bare- and energy-moderated 252Cf fission neutron source which was obtained by transmission through 10-cm-thick iron. An iron plate was used to simulate the effect of the Hiroshima atomic bomb casing. This test includes the activation of indium and nickel for fast neutrons and gold, europium, and cobalt for thermal and epithermal neutrons, which were inserted in the moderators. The latter two activations are also to validate 152Eu and 60Co activity data obtained from the atomic bomb-exposed specimens collected at Hiroshima and Nagasaki, Japan. The neutron moderators used were Lucite and Nylon 6 and the total thickness of each moderator was 60 cm or 65 cm. Measured activity data (reaction yield) of the neutron-irradiated detectors in these moderators decreased to about 1/1,000th or 1/10,000th, which corresponds to about 1,500 m ground distance from the hypocenter in Hiroshima. For all of the indium, nickel, and gold activity data, the measured and calculated values agreed within 25%, and the corresponding values for europium and cobalt were within 40%. From this study, the MCNP code was found to be accurate enough for the bare- and energy-moderated 252Cf neutron activation calculations of these elements using moderators containing hydrogen, carbon, nitrogen, and oxygen.

  15. Neutron Capture and Fission Measurements on Actinides at Dance

    NASA Astrophysics Data System (ADS)

    Chyzh, A.; Wu, C. Y.; Kwan, E.; Henderson, R. A.; Gostic, J. M.; Ullmann, J. L.; Bredeweg, T. A.; Jandel, M.; Couture, A. J.; O'Donnell, J. M.; Haight, R. C.; Lee, H. Y.

    2013-03-01

    The prompt γ-ray energy and multiplicity distributions in the spontaneous fission of 252Cf have been measured using a highly granular 4π γ-ray calorimeter. Corrections were made for both energy and multiplicity distributions according to the detector response, which is simulated numerically using a model validated with the γ-ray calibration sources. A comparison of the total γray energy distribution was made between the measurement and a simulation by random sampling of the corrected γ-ray energy and multiplicity distributions through the detector response. A reasonable agreement is achieved between the measurement and simulation, indicating weak correlations between γ-ray energy and multiplicity. Moreover, the increasing agreement with increasing multiplicity manifests the stochastic aspect of the prompt γ decay in spontaneous fission. This calorimeter was designed for the study of neutron capture reactions and an example is given, where the238Pu(n, γ) measurement was carried out in the laboratory environment for the first time.

  16. The Microscopic Theory of Fission

    SciTech Connect

    Younes, W; Gogny, D

    2009-06-09

    Fission-fragment properties have been calculated for thermal neutron-induced fission on a {sup 239}Pu target, using constrained Hartree-Fock-Bogoliubov calculations with a finite-range effective interaction. A quantitative criterion based on the interaction energy between the nascent fragments is introduced to define the scission configurations. The validity of this criterion is benchmarked against experimental measurements of the kinetic energies and of multiplicities of neutrons emitted by the fragments.

  17. Fission induced plasmas

    NASA Technical Reports Server (NTRS)

    Harries, W. L.

    1977-01-01

    The possibility of creating a plasma from fission fragments was investigated, as well as the probability of utilizing the energy of these particles to create population inversion leading to laser action. Eventually, it is hoped that the same medium could be used for both fissioning and lasing, thus avoiding inefficiences in converting one form of energy to the other. A central problem in understanding a fission induced plasma is to obtain an accurate model of the electron behavior; some calculations are presented to this end. The calculations are simple, providing a compendium of processes for reference.

  18. A method to calculate fission-fragment yields Y(Z,N) versus proton and neutron number in the Brownian shape-motion model. Application to calculations of U and Pu charge yields

    NASA Astrophysics Data System (ADS)

    Möller, Peter; Ichikawa, Takatoshi

    2015-12-01

    We propose a method to calculate the two-dimensional (2D) fission-fragment yield Y(Z,N) versus both proton and neutron number, with inclusion of odd-even staggering effects in both variables. The approach is to use the Brownian shape-motion on a macroscopic-microscopic potential-energy surface which, for a particular compound system is calculated versus four shape variables: elongation (quadrupole moment Q2), neck d , left nascent fragment spheroidal deformation ɛ_{f1}, right nascent fragment deformation ɛ_{f2} and two asymmetry variables, namely proton and neutron numbers in each of the two fragments. The extension of previous models 1) introduces a method to calculate this generalized potential-energy function and 2) allows the correlated transfer of nucleon pairs in one step, in addition to sequential transfer. In the previous version the potential energy was calculated as a function of Z and N of the compound system and its shape, including the asymmetry of the shape. We outline here how to generalize the model from the "compound-system" model to a model where the emerging fragment proton and neutron numbers also enter, over and above the compound system composition.

  19. Two neutron correlations in photo-fission

    NASA Astrophysics Data System (ADS)

    Dale, D. S.; Kosinov, O.; Forest, T.; Burggraf, J.; Stave, S.; Warren, G.; Starovoitova, V.

    2016-09-01

    A large body of experimental work has established the strong kinematical correlation between fission fragments and fission neutrons. Here, we report on the progress of investigations of the potential for strong two neutron correlations arising from the nearly back-to-back nature of the two fission fragments that emit these neutrons in the photo-fission process. In initial measurements, a pulsed electron linear accelerator was used to generate bremsstrahlung photons that impinged upon an actinide target, and the energy and opening angle distributions of coincident neutrons were measured using a large acceptance neutron detector array. A planned comprehensive set of measurements of two neutron correlations in the photo-fission of actinides is expected to shed light on several fundamental aspects of the fission process including the multiplicity distributions associated with the light and heavy fission fragments, the nuclear temperatures of the fission fragments, and the mass distribution of the fission fragments as a function of energy released. In addition to these measurements providing important nuclear data, the unique kinematics of fission and the resulting two neutron correlations have the potential to be the basis for a new tool to detect fissionable materials. A key technical challenge of this program arises from the need to perform coincidence measurements with a low duty factor, pulsed electron accelerator. This has motivated the construction of a large acceptance neutron detector array, and the development of data analysis techniques to directly measure uncorrelated two neutron backgrounds.

  20. Absorption by XeCl* excimer molecules of their own emission of the B-X transition (λ = 308 nm) in a dense Ar-Xe-CCl4 medium upon pumping by fast electrons and uranium-235 fission fragments

    NASA Astrophysics Data System (ADS)

    Mis'kevich, A. I.; Dyuzhov, Yu. A.; Suvorov, A. A.

    2016-08-01

    Luminescence of dense Ar-Xe-CCl4 gas mixtures with a low CCl4 content upon pumping by fast electrons and uranium-235 fission fragments is studied by spectroscopic methods. It is found that, in a cell with a resonator tuned to the B-X transition of the XeCl* molecule (λ = 308 nm), the D-state population of the XeCl* excimer molecule (the D-X transition, λ = 235 nm) depends on the B-state population and increases by many times with increasing B-state population of the XeCl* molecule. The stimulated absorption coefficient k = 1.2 × 10-16 of B-X transition emission of the XeCl* molecule (λmax = 308 nm), which leads to population of the D-state of this molecule, and the coefficient of amplification μ = 2.5 × 10-4 cm-1 of B-X transition emission of the Xe Cl* molecule (λ = 308 nm) are measured upon pumping by uranium- 235 fission fragments with the specific energy input into the gas medium of ~60 mJ/cm3 and a specific power of energy input of about 240 W/cm3.

  1. Neutron Emission in Fission and Quasi-Fission

    NASA Astrophysics Data System (ADS)

    Itkis, I.; Bogatchev, A. A.; Chizhov, A. Yu.; Itkis, M. G.; Kliman, J.; Knyazheva, G. N.; Kondratiev, N. A.; Kozulin, E. M.; Korzyukov, I. V.; Krupa, L.; Oganessian, Yu. Ts.; Pokrovski, I. V.; Prokhorova, E. V.; Sagaidak, R. N.; Voskressenski, V. M.; Rusanov, A. Ya.; Corradi, L.; Stefanini, A. M.; Trotta, M.; Beghini, S.; Montagnoli, G.; Scarlassara, F.; Chubarian, G.; Hanappe, F.; Materna, T.; Dorvaux, O.; Rowley, N.; Stuttge, L.; Giardina, G.

    2005-09-01

    The work presents the results of the study of characteristics of the neutron emission in fission and quasi-fission of heavy and super-heavy nuclei, produced in the reactions with heavy ions. These experiments have been performed at the U-400 accelerator of the Flerov Laboratory of Nuclear Reactions (JINR), tandem accelerator in Legnaro (LNL) and VIVITRON accelerator in Strasbourg (IReS) with the use of the time-of-flight spectrometer of fission fragments CORSET and neutron multidetector DEMON. Mass-energy distributions (MED) of the 48Ca + 168Er, 208Pb, 238U and 18O + 208Pb reactions products at energies close to and below the Coulomb barrier have been studied. The pre- and post-fission neutron multiplicities as a function of the fragment mass have been obtained. A significant yield of the asymmetric component observed in the fragment mass distributions in the case of 18O + 208Pb reaction denotes the multimodal nature of the fission process. At the same time an increase in the yield of fragment masses ML ≅ 75-85 and MH ≅ 200-210 in the case 48Ca+208Pb, 238U reactions and ML ≅ 75-85 and MH ≅ 130-140 in the case 48Ca+168Er is rather connected with a quasi-fission process. The obtained neutron multiplicities dependences on fragment masses showed the validity of these assumptions.

  2. Fission modelling with FIFRELIN

    NASA Astrophysics Data System (ADS)

    Litaize, Olivier; Serot, Olivier; Berge, Léonie

    2015-12-01

    The nuclear fission process gives rise to the formation of fission fragments and emission of particles (n,γ , e-) . The particle emission from fragments can be prompt and delayed. We present here the methods used in the FIFRELIN code, which simulates the prompt component of the de-excitation process. The methods are based on phenomenological models associated with macroscopic and/or microscopic ingredients. Input data can be provided by experiment as well as by theory. The fission fragment de-excitation can be performed within Weisskopf (uncoupled neutron and gamma emission) or a Hauser-Feshbach (coupled neutron/gamma emission) statistical theory. We usually consider five free parameters that cannot be provided by theory or experiments in order to describe the initial distributions required by the code. In a first step this set of parameters is chosen to reproduce a very limited set of target observables. In a second step we can increase the statistics to predict all other fission observables such as prompt neutron, gamma and conversion electron spectra but also their distributions as a function of any kind of parameters such as, for instance, the neutron, gamma and electron number distributions, the average prompt neutron multiplicity as a function of fission fragment mass, charge or kinetic energy, and so on. Several results related to different fissioning systems are presented in this work. The goal in the next decade will be i) to replace some macroscopic ingredients or phenomenological models by microscopic calculations when available and reliable, ii) to be a support for experimentalists in the design of detection systems or in the prediction of necessary beam time or count rates with associated statistics when measuring fragments and emitted particle in coincidence iii) extend the model to be able to run a calculation when no experimental input data are available, iv) account for multiple chance fission and gamma emission before fission, v) account for the

  3. Prompt Fission Neutron Emission in Resonance Fission of 239Pu

    SciTech Connect

    Hambsch, Franz-Josef; Oberstedt, Stephan; Varapai, Natallia; Serot, Olivier

    2005-05-24

    The prompt neutron emission probability from neutron-induced fission in the resonance region is being investigated at the time-of-flight facility GELINA of the IRMM. A double Frisch-gridded ionization chamber is used as a fission-fragment detector. For the data acquisition of both the fission-fragment signals as well as the neutron detector signals the fast digitization technique has been applied. For the neutron detection, large-volume liquid scintillation detectors from the DEMON collaboration are used. A specialized data analysis program taking advantage of the digital filtering technique has been developed to treat the acquired data.Neutron multiplicity investigations for actinides, especially in resonance neutron-induced fission, are rather scarce. They are, however, important for reactor control and safety issues as well as for understanding the basic physics of the fission process. Fission yield measurements on both 235U and 239Pu without prompt neutron emission coincidence have shown that fluctuation of the fission-fragment mass distribution exists from resonance to resonance, larger in the case of 235U. To possibly explain these observations, the question now is whether the prompt neutron multiplicity shows similar fluctuations with resonance energy.

  4. Neutron Emission in Fission And Quasi-Fission of Hs

    SciTech Connect

    Itkis, I. M.; Itkis, M. G.; Knyazheva, G. N.; Kozulin, E. M.; Krupa, L.; Hanappe, F.; Dorvaux, O.; Stuttge, L.

    2010-04-30

    Mass and energy distributions of fission-like fragments obtained in the reactions {sup 26}Mg+{sup 248}Cm, {sup 36}S+{sup 238}U and {sup 58}Fe+{sup 208}Pb leading to the formation of {sup 266,274}Hs are reported. From the analysis of TKE distributions for symmetric fragment it was found that at energies below the Coulomb barrier the bimodal fission of {sup 274}Hs, formed in the reaction {sup 26}Mg+{sup 248}Cm, is observed, while in the reaction {sup 36}S+{sup 238}U at these energies the main part of the symmetric fragments arises from the quasi-fission process. At energies above the Coulomb barrier the fusion-fission is a main process leading to the formation of symmetric fragment for the both reactions. In the case of {sup 58}Fe+{sup 208}Pb reaction the quasi-fission process is the main reaction mechanism at all measured energies. The pre- and post-scission neutron multiplicities as a function of the fragment mass have been obtained for all studied reactions.

  5. Nuclear Fission Research at IRMM

    SciTech Connect

    Hambsch, Franz-Josef

    2005-05-24

    The Institute for Reference Materials and Measurements (IRMM) will celebrate its 45th anniversary in 2005. With its 150-MeV Geel Electron Linear Accelerator (GELINA) and 7-MV Van de Graaff accelerator as multi-purpose neutron sources, it served the nuclear physics community for this period.The research in the field of nuclear fission was focused in recent years on both the measurement and calculation of fission cross sections, and the measurement of fission fragment properties.Fission cross sections were determined for 233Pa and 234U; the fission process was studied in the resolved resonance region of 239Pu(n,f) and for 251Cf(nth,f). These measurements derive their interest from accelerator driven systems, the thorium fuel cycle, high temperature reactors, safety issues of current reactors, and basic physics. The measurements are supported by several modeling efforts that aim at improving model codes and nuclear data evaluation.

  6. Cluster aspects of binary fission

    NASA Astrophysics Data System (ADS)

    Andreev, A. V.; Adamian, G. G.; Antonenko, N. V.

    2013-04-01

    With the improved scission-point model the mass distributions are calculated for induced fission of different Hg isotopes with even mass numbers A =180, 184, 188, 192, 196, 198. The calculated mass distribution and mean total kinetic energy of fission fragments are in a good agreement with the existing experimental data. The change in the shape of the mass distribution from asymmetric to more symmetric is revealed with increasing A of the fissioning AHg nucleus, and the reactions are proposed to verify this prediction experimentally.

  7. Low energy fission: dynamics and scission configurations

    NASA Astrophysics Data System (ADS)

    Goutte, H.; Berger, J.-F.; Gogny, D.; Younes, W.

    2005-11-01

    In the first part of this paper we recall a recent study concerning low energy fission dynamics. Propagation is made by use of the Time Dependent Generator Coordinate Method, where the basis states are taken from self-consistent Hartree-Fock-Bogoliubov calculations with the Gogny force. Theoretical fragment mass distributions are presented and compared with the evaluation made by Wahl. In the second part of this paper, new results concerning scission configurations are shown. Deviations of the fission fragment proton numbers from the Unchanged Charge Distribution prescription and fission fragment deformations are discussed.

  8. Spontaneous Fission

    DOE R&D Accomplishments Database

    Segre, Emilio

    1950-11-22

    The first attempt to discover spontaneous fission in uranium was made by [Willard] Libby, who, however, failed to detect it on account of the smallness of effect. In 1940, [K. A.] Petrzhak and [G. N.] Flerov, using more sensitive methods, discovered spontaneous fission in uranium and gave some rough estimates of the spontaneous fission decay constant of this substance. Subsequently, extensive experimental work on the subject has been performed by several investigators and will be quoted in the various sections. [N.] Bohr and [A.] Wheeler have given a theory of the effect based on the usual ideas of penetration of potential barriers. On this project spontaneous fission has been studied for the past several years in an effort to obtain a complete picture of the phenomenon. For this purpose the spontaneous fission decay constants {lambda} have been measured for separated isotopes of the heavy elements wherever possible. Moreover, the number {nu} of neutrons emitted per fission has been measured wherever feasible, and other characteristics of the spontaneous fission process have been studied. This report summarizes the spontaneous fission work done at Los Alamos up to January 1, 1945. A chronological record of the work is contained in the Los Alamos monthly reports.

  9. Development of prototype induced-fission-based Pu accountancy instrument for safeguards applications.

    PubMed

    Seo, Hee; Lee, Seung Kyu; An, Su Jung; Park, Se-Hwan; Ku, Jeong-Hoe; Menlove, Howard O; Rael, Carlos D; LaFleur, Adrienne M; Browne, Michael C

    2016-09-01

    Prototype safeguards instrument for nuclear material accountancy (NMA) of uranium/transuranic (U/TRU) products that could be produced in a future advanced PWR fuel processing facility has been developed and characterized. This is a new, hybrid neutron measurement system based on fast neutron energy multiplication (FNEM) and passive neutron albedo reactivity (PNAR) methods. The FNEM method is sensitive to the induced fission rate by fast neutrons, while the PNAR method is sensitive to the induced fission rate by thermal neutrons in the sample to be measured. The induced fission rate is proportional to the total amount of fissile material, especially plutonium (Pu), in the U/TRU product; hence, the Pu amount can be calibrated as a function of the induced fission rate, which can be measured using either the FNEM or PNAR method. In the present study, the prototype system was built using six (3)He tubes, and its performance was evaluated for various detector parameters including high-voltage (HV) plateau, efficiency profiles, dead time, and stability. The system's capability to measure the difference in the average neutron energy for the FNEM signature also was evaluated, using AmLi, PuBe, (252)Cf, as well as four Pu-oxide sources each with a different impurity (Al, F, Mg, and B) and producing (α,n) neutrons with different average energies. Future work will measure the hybrid signature (i.e., FNEM×PNAR) for a Pu source with an external interrogating neutron source after enlarging the cavity size of the prototype system to accommodate a large-size Pu source (~600g Pu).

  10. Development of prototype induced-fission-based Pu accountancy instrument for safeguards applications.

    PubMed

    Seo, Hee; Lee, Seung Kyu; An, Su Jung; Park, Se-Hwan; Ku, Jeong-Hoe; Menlove, Howard O; Rael, Carlos D; LaFleur, Adrienne M; Browne, Michael C

    2016-09-01

    Prototype safeguards instrument for nuclear material accountancy (NMA) of uranium/transuranic (U/TRU) products that could be produced in a future advanced PWR fuel processing facility has been developed and characterized. This is a new, hybrid neutron measurement system based on fast neutron energy multiplication (FNEM) and passive neutron albedo reactivity (PNAR) methods. The FNEM method is sensitive to the induced fission rate by fast neutrons, while the PNAR method is sensitive to the induced fission rate by thermal neutrons in the sample to be measured. The induced fission rate is proportional to the total amount of fissile material, especially plutonium (Pu), in the U/TRU product; hence, the Pu amount can be calibrated as a function of the induced fission rate, which can be measured using either the FNEM or PNAR method. In the present study, the prototype system was built using six (3)He tubes, and its performance was evaluated for various detector parameters including high-voltage (HV) plateau, efficiency profiles, dead time, and stability. The system's capability to measure the difference in the average neutron energy for the FNEM signature also was evaluated, using AmLi, PuBe, (252)Cf, as well as four Pu-oxide sources each with a different impurity (Al, F, Mg, and B) and producing (α,n) neutrons with different average energies. Future work will measure the hybrid signature (i.e., FNEM×PNAR) for a Pu source with an external interrogating neutron source after enlarging the cavity size of the prototype system to accommodate a large-size Pu source (~600g Pu). PMID:27337652

  11. The need for precise and well-documented experimental data on prompt fission neutron spectra from neutron-induced fission of 239Pu

    DOE PAGES

    Neudecker, Denise; Taddeucci, Terry Nicholas; Haight, Robert Cameron; Lee, Hye Young; White, Morgan Curtis; Rising, Michael Evans

    2016-01-06

    The spectrum of neutrons emitted promptly after 239Pu(n,f)—a so-called prompt fission neutron spectrum (PFNS)—is a quantity of high interest, for instance, for reactor physics and global security. However, there are only few experimental data sets available that are suitable for evaluations. In addition, some of those data sets differ by more than their 1-σ uncertainty boundaries. We present the results of MCNP studies indicating that these differences are partly caused by underestimated multiple scattering contributions, over-corrected background, and inconsistent deconvolution methods. A detailed uncertainty quantification for suitable experimental data was undertaken including these effects, and test-evaluations were performed with themore » improved uncertainty information. The test-evaluations illustrate that the inadequately estimated effects and detailed uncertainty quantification have an impact on the evaluated PFNS and associated uncertainties as well as the neutron multiplicity of selected critical assemblies. A summary of data and documentation needs to improve the quality of the experimental database is provided based on the results of simulations and test-evaluations. Furthermore, given the possibly substantial distortion of the PFNS by multiple scattering and background effects, special care should be taken to reduce these effects in future measurements, e.g., by measuring the 239Pu PFNS as a ratio to either the 235U or 252Cf PFNS.« less

  12. Dynamical Aspects of Nuclear Fission

    NASA Astrophysics Data System (ADS)

    Kliman, J.; Itkis, M. G.; Gmuca, Š.

    2008-11-01

    Fission dynamics. Dependence of scission-neutron yield on light-fragment mass for [symbol]=1/2 [et al.]. Dynamics of capture quasifission and fusion-fission competition / L. Stuttgé ... [et al.] -- Fission-fission. The processes of fusion-fission and quasi-fission of superheavy nuclei / M. G. Itkis ... [et al.]. Fission and quasifission in the reactions [symbol]Ca+[symbol]Pb and [symbol]Ni+[symbol]W / G. N. Knyazheva ... [et al.]. Mass-energy characteristics of reactions [symbol]Fe+[symbol][symbol][symbol]266Hs and [symbol]Mg+[symbol]Cm[symbol][symbol]Hs at Coulomb barrier / L. Krupa ... [et al.]. Fusion of heavy ions at extreme sub-barrier energies / Ş. Mişicu and H. Esbensen. Fusion and fission dynamics of heavy nuclear system / V. Zagrebaev and W. Greiner. Time-dependent potential energy for fusion and fission processes / A. V. Karpov ... [et al.] -- Superheavy elements. Advances in the understanding of structure and production mechanisms for superheavy elements / W. Greiner and V. Zagrebaev. Fission barriers of heaviest nuclei / A. Sobiczewski ... [et al.]. Possibility of synthesizing doubly magic superheavy nuclei / Y Aritomo ... [et al.]. Synthesis of superheavy nuclei in [symbol]Ca-induced reactions / V. K. Utyonkov ... [et al.] -- Fragmentation. Production of neutron-rich nuclei in the nucleus-nucleus collisions around the Fermi energy / M. Veselský. Signals of enlarged core in [symbol]Al / Y. G. Ma ... [et al.] -- Exotic modes. New insight into the fission process from experiments with relativistic heavy-ion beams / K.-H. Schmidt ... [et al.]. New results for the intensity of bimodal fission in binary and ternary spontaneous fission of [symbol]Cf / C. Goodin ... [et al.]. Rare fission modes: study of multi-cluster decays of actinide nuclei / D. V. Kamanin ... [et al.]. Energy distribution of ternary [symbol]-particles in [symbol]Cf(sf) / M. Mutterer ... [et al.]. Preliminary results of experiment aimed at searching for collinear cluster tripartition of

  13. Fission Modes of Mercury Isotopes

    SciTech Connect

    Warda, M.; Staszczak, A.; Nazarewicz, Witold

    2012-01-01

    Background: Recent experiments on -delayed fission in the mercury-lead region and the discovery of asymmetric fission in 180Hg [A. N. Andreyev et al., Phys. Rev. Lett. 105, 252502 (2010)] have stimulated theoretical interest in the mechanism of fission in heavy nuclei.

    Purpose: We study fission modes and fusion valleys in 180Hg and 198Hg to reveal the role of shell effects in the prescission region and explain the experimentally observed fragment mass asymmetry and its variation with A.

    Methods: We use the self-consistent nuclear density functional theory employing Skyrme and Gogny energy density functionals.

    Results: The potential energy surfaces in multidimensional space of collective coordinates, including elongation, triaxiality, reflection-asymmetry, and necking, are calculated for 180Hg and 198Hg. The asymmetric fission valleys well separated from fusion valleys associated with nearly spherical fragments are found in both cases. The density distributions at scission configurations are studied and related to the experimentally observed mass splits.

    Conclusions: The energy density functionals SkM and D1S give a very consistent description of the fission process in 180Hg and 198Hg. We predict a transition from asymmetric fission in 180Hg toward a more symmetric distribution of fission fragments in 198Hg. For 180Hg, both models yield 100Ru/80Kr as the most probable split. For 198Hg, the most likely split is 108Ru/90Kr in HFB-D1S and 110Ru/88Kr in HFB-SkM .

  14. Measurement of {sup 235}U content and flow of UF{sub 6} using delayed neutrons or gamma rays following induced fission

    SciTech Connect

    Stromswold, D.C.; Peurrung, A.J.; Reeder, P.L.; Perkins, R.W.

    1996-06-01

    Feasibility experiments conducted at Pacific Northwest National Laboratory demonstrate that either delayed neutrons or energetic gamma rays from short-lived fission products can be used to monitor the blending of UF{sub 6} gas streams. A {sup 252}Cf neutron source was used to induce {sup 235}U fission in a sample, and delayed neutrons and gamma rays were measured after the sample moved {open_quotes}down-stream.{close_quotes} The experiments used a UO{sub 2} powder that was transported down the pipe to simulate the flowing UF{sub 6} gas. Computer modeling and analytic calculation extended the test results to a flowing UF{sub 6} gas system. Neutron or gamma-ray measurements made at two downstream positions can be used to indicate both the {sup 235}U content and UF{sub 6} flow rate. Both the neutron and gamma-ray techniques have the benefits of simplicity and long-term reliability, combined with adequate sensitivity for low-intrusion monitoring of the blending process. Alternatively, measuring the neutron emission rate from (a, n) reactions in the UF{sub 6} provides an approximate measure of the {sup 235}U content without using a neutron source to induce fission.

  15. Reliability of Monte Carlo simulations in modeling neutron yields from a shielded fission source

    NASA Astrophysics Data System (ADS)

    McArthur, Matthew S.; Rees, Lawrence B.; Czirr, J. Bart

    2016-08-01

    Using the combination of a neutron-sensitive 6Li glass scintillator detector with a neutron-insensitive 7Li glass scintillator detector, we are able to make an accurate measurement of the capture rate of fission neutrons on 6Li. We used this detector with a 252Cf neutron source to measure the effects of both non-borated polyethylene and 5% borated polyethylene shielding on detection rates over a range of shielding thicknesses. Both of these measurements were compared with MCNP calculations to determine how well the calculations reproduced the measurements. When the source is highly shielded, the number of interactions experienced by each neutron prior to arriving at the detector is large, so it is important to compare Monte Carlo modeling with actual experimental measurements. MCNP reproduces the data fairly well, but it does generally underestimate detector efficiency both with and without polyethylene shielding. For non-borated polyethylene it underestimates the measured value by an average of 8%. This increases to an average of 11% for borated polyethylene.

  16. Fission measurements with PPAC detectors using a coincidence technique

    SciTech Connect

    Paradela, C.; Duran, I.; Tarrio, D.; Audouin, L.; Tassan-Got, L.; Stephan, C.

    2011-07-01

    A fission detection setup based on Parallel Plate Avalanche Counters (PPAC) has been constructed and used at the CERN n-TOF facility. The setup takes advantage of the coincidence detection of both fission fragments to discriminate the background reactions produced by high energy neutrons and it allows obtaining neutron-induced fission cross section up to 1 GeV. (authors)

  17. SOFIA, a Next-Generation Facility for Fission Yields Measurements and Fission Study. First Results and Perspectives

    NASA Astrophysics Data System (ADS)

    Audouin, L.; Pellereau, E.; Taieb, J.; Boutoux, G.; Béliera, G.; Chatillon, A.; Ebran, A.; Gorbinet, T.; Laurent, B.; Martin, J.-F.; Tassan-Got, L.; Jurado, B.; Alvarez-Pol, H.; Ayyad, Y.; Benlliure, J.; Caamano, M.; Cortina-Gil, D.; Fernandez-Dominguez, B.; Paradela, C.; Rodriguez-Sanchez, J.-L.; Vargas, J.; Casarejos, E.; Heinz, A.; Kelic-Heil, A.; Kurz, N.; Nociforo, C.; Pietri, S.; Prochazka, A.; Rossi, D.; Schmidt, K.-H.; Simon, H.; Voss, B.; Weick, H.; Winfield, J. S.

    2015-10-01

    Fission fragments play an important role in nuclear reactors evolution and safety. However, fragments yields are poorly known : data are essentially limited to mass yields from thermal neutron-induced fissions on a very few nuclei. SOFIA (Study On FIssion with Aladin) is an innovative experimental program on nuclear fission carried out at the GSI facility, which aims at providing isotopic yields on a broad range of fissioning systems. Relativistic secondary beams of actinides and pre-actinides are selected by the Fragment Separator (FRS) and their fission is triggered by electromagnetic interaction. The resulting excitation energy is comparable to the result of an interaction with a low-energy neutron, thus leading to useful data for reactor simulations. For the first time ever, both fission fragments are completely identified in charge and mass in a new recoil spectrometer, allowing for precise yields measurements. The yield of prompt neutrons can then be deduced, and the fission mechanism can be ascribed, providing new constraints for fission models. During the first experiment, all the technical challenges were matched : we have thus set new experimental standards in the measurements of relativistic heavy ions (time of flight, position, energy loss).This communication presents a first series of results obtained on the fission of 238U; many other fissioning systems have also been measured and are being analyzed presently. A second SOFIA experiment is planned in September 2014, and will be focused on the measurement of the fission of 236U, the analog of 235U+n.

  18. Clusterization in Ternary Fission

    NASA Astrophysics Data System (ADS)

    Kamanin, D. V.; Pyatkov, Y. V.

    This lecture notes are devoted to the new kind of ternary decay of low excited heavy nuclei called by us "collinear cluster tri-partition" (CCT) due to the features of the effect observed, namely, decay partners fly away almost collinearly and at least one of them has magic nucleon composition. At the early stage of our work the process of "true ternary fission" (fission of the nucleus into three fragments of comparable masses) was considered to be undiscovered for low excited heavy nuclei. Another possible prototype—three body cluster radioactivity—was also unknown. The most close to the CCT phenomenon, at least cinematically, stands so called "polar emission", but only very light ions (up to isotopes of Be) were observed so far.

  19. Investigations of fission characteristics and correlation effects

    NASA Astrophysics Data System (ADS)

    Gundorin, N. A.; Zeinalov, Sh. S.; Kopach, Yu. N.; Popov, A. B.; Furman, V. I.

    2016-07-01

    We review the experimental results on the P-even and P-odd angular correlations of fission fragments in the fission of the 235U and 239Pu nuclei induced by unpolarized and polarized resonance neutrons, and on the TRI and ROT effects in the ternary and binary fission of actinides induced by polarized thermal neutrons. Also reported are the measured yields of prompt and delayed neutrons per fission event. The experimental data are analyzed within a novel theoretical framework developed by the JINR—RNC KI Collaboration, whereby the reduction of the multidimensional phase space of fission fragments to the JπK-channel space is consistently validated and the role of resonance interference in the observed correlation effects is revealed.

  20. Compact fission counter for DANCE

    SciTech Connect

    Wu, C Y; Chyzh, A; Kwan, E; Henderson, R; Gostic, J; Carter, D; Bredeweg, T; Couture, A; Jandel, M; Ullmann, J

    2010-11-06

    The Detector for Advanced Neutron Capture Experiments (DANCE) consists of 160 BF{sub 2} crystals with equal solid-angle coverage. DANCE is a 4{pi} {gamma}-ray calorimeter and designed to study the neutron-capture reactions on small quantities of radioactive and rare stable nuclei. These reactions are important for the radiochemistry applications and modeling the element production in stars. The recognition of capture event is made by the summed {gamma}-ray energy which is equivalent of the reaction Q-value and unique for a given capture reaction. For a selective group of actinides, where the neutron-induced fission reaction competes favorably with the neutron capture reaction, additional signature is needed to distinguish between fission and capture {gamma} rays for the DANCE measurement. This can be accomplished by introducing a detector system to tag fission fragments and thus establish a unique signature for the fission event. Once this system is implemented, one has the opportunity to study not only the capture but also fission reactions. A parallel-plate avalanche counter (PPAC) has many advantages for the detection of heavy charged particles such as fission fragments. These include fast timing, resistance to radiation damage, and tolerance of high counting rate. A PPAC also can be tuned to be insensitive to {alpha} particles, which is important for experiments with {alpha}-emitting actinides. Therefore, a PPAC is an ideal detector for experiments requiring a fast and clean trigger for fission. A PPAC with an ingenious design was fabricated in 2006 by integrating amplifiers into the target assembly. However, this counter was proved to be unsuitable for this application because of issues related to the stability of amplifiers and the ability to separate fission fragments from {alpha}'s. Therefore, a new design is needed. A LLNL proposal to develop a new PPAC for DANCE was funded by NA22 in FY09. The design goal is to minimize the mass for the proposed counter

  1. Fission of actinide nuclei using multi-nucleon transfer reactions

    NASA Astrophysics Data System (ADS)

    Léguillon, Romain; Nishio, Katsuhisa; Hirose, Kentaro; Orlandi, Riccardo; Makii, Hiroyuki; Nishinaka, Ichiro; Ishii, Tetsuro; Tsukada, Kazuaki; Asai, Masato; Chiba, Satoshi; Ohtsuki, Tsutomu; Araki, Shohei; Watanabe, Yukinobu; Tatsuzawa, Ryotaro; Takaki, Naoyuki

    2014-09-01

    We are promoting a campaign to measure fission-fragment mass distributions for neutron-rich actinide nuclei populated by transfer reactions from their ground state up to an excitation energy of several tens MeV. We thus obtain the excitation energy dependence of the mass distribution. The experiment was carried out at the 20 MV JAEA tandem facility at Tokai. We report on the data obtained in the direct reaction 18 O + 232 Th . Transfer-channels and excitation energies of the fissioning nuclei were identified using silicon dE-E detectors located at forward angle. Two fission fragments were detected in coincidence using multi-wire proportional counters. Fission fragment masses were determined by kinematic consideration. We obtained the fission fragment mass distributions for 13 nuclei from actinium to uranium and some fission barrier heights. We are promoting a campaign to measure fission-fragment mass distributions for neutron-rich actinide nuclei populated by transfer reactions from their ground state up to an excitation energy of several tens MeV. We thus obtain the excitation energy dependence of the mass distribution. The experiment was carried out at the 20 MV JAEA tandem facility at Tokai. We report on the data obtained in the direct reaction 18 O + 232 Th . Transfer-channels and excitation energies of the fissioning nuclei were identified using silicon dE-E detectors located at forward angle. Two fission fragments were detected in coincidence using multi-wire proportional counters. Fission fragment masses were determined by kinematic consideration. We obtained the fission fragment mass distributions for 13 nuclei from actinium to uranium and some fission barrier heights. Present study is supported by the Ministry of Education, Culture, Sports, Science and Technology of Japan.

  2. The scission point configuration of fissioning nuclei

    NASA Astrophysics Data System (ADS)

    Ivanyuk, Fedir

    2016-06-01

    We define the optimal shape which fissioning nuclei attain just before the scission and calculate the deformation energy as function of the mass asymmetry at the scission point. The calculated deformation energy is used in quasi-static approximation for the estimation of mass distribution, total kinetic and excitation energy of fission fragments, and the total number of prompt neutrons. The calculated results reproduce rather well the experimental data on the position of the peaks in the mass distribution of fission fragments, the total kinetic and excitation energy of fission fragments. The calculated value of neutron multiplicity is somewhat larger than experimental results. The saw-tooth structure of neutron multiplicity is qualitatively reproduced.

  3. Description of true and delayed ternary nuclear fission accompanied by the emission of various third particles

    SciTech Connect

    Kadmensky, S. G. Kadmensky, S. S.; Lyubashevsky, D. E.

    2010-08-15

    The mechanisms and the features of the main types of nuclear ternary fission (that is, true ternary fission, in which a third particle is emitted before the rupture of the fissioning nucleus into fragments, and delayed ternary fission, in which a third particle is emitted from fission fragments going apart) are investigated within quantum-mechanical fission theory. The features of T-odd asymmetry in true ternary nuclear fission induced by cold polarized neutrons are investigated for the cases where alpha particles, prescission neutrons, and photons appear as third particles emitted by fissioning nuclei, the Coriolis interaction of the spin of the polarized fissioning nucleus with the spin of the third particle and the interference between the fission amplitudes for neutron resonances excited in the fissioning nucleus in the case of projectile-neutron capture being taken into account. For the cases where third particles emitted by fission fragments are evaporated neutrons or photons, T-odd asymmetries in delayed ternary nuclear fission induced by cold polarized neutrons are analyzed with allowance for the mechanism of pumping of large fission-fragment spins oriented orthogonally to the fragment-emission direction and with allowance for the interference between the fission amplitudes for neutron resonances.

  4. Current Issues in Nuclear Data Evaluation Methodology: {sup 235}U Prompt Fission Neutron Spectra and Multiplicity for Thermal Neutrons

    SciTech Connect

    Trkov, A.; Capote, R.; Pronyaev, V.G.

    2015-01-15

    Issues in evaluation methodology of the prompt fission neutron spectra (PFNS) and neutron multiplicity for the thermal-neutron-induced fission of the {sup 235}U are discussed. The inconsistency between the experimental differential and integral data is addressed. By using differential data as ”shape data” good consistency was achieved between available sets of differential data. Integral dosimetry data have been used to define the PFNS slope at high outgoing neutron energies, where the quality of the differential data is poor. The inclusion into the fit of measured integral (spectrum-averaged) cross sections had a very small impact in the region where differential PFNS data are abundant and accurate, but removed the discrepancy with integral data at higher neutron emission energies. All experimental data are consistently fitted giving a PFNS average energy of 2.008 MeV. The impact on criticality prediction of the newly evaluated PFNS was tested. The highly enriched {sup 235}U solution assemblies with high leakage HEU-SOL-THERM-001 and HEU-SOL-THERM-009 benchmarks are the most sensitive to the PFNS. Criticality calculations for those solutions show a significant increase in reactivity if the average neutron energy of the fission neutrons is reduced from the ENDF/B-VI.5 value of 2.03 MeV. The proposed reduction of the PFNS average energy by 1.1% can be compensated by reducing the average number of neutrons per fission ν{sup ¯} at the thermal energy to the Gwin et al. measured value. The simple least-squares PFNS fit was confirmed by a more sophisticated combined fit of differential PFNS data for {sup 233,235}U, {sup 239}Pu and {sup 252}Cf nuclides with the generalised least-squares method using the GMA and GANDR codes.

  5. Benchmarking nuclear fission theory

    DOE PAGES

    Bertsch, G. F.; Loveland, W.; Nazarewicz, W.; Talou, P.

    2015-05-14

    We suggest a small set of fission observables to be used as test cases for validation of theoretical calculations. Thus, the purpose is to provide common data to facilitate the comparison of different fission theories and models. The proposed observables are chosen from fission barriers, spontaneous fission lifetimes, fission yield characteristics, and fission isomer excitation energies.

  6. Fission-induced plasmas

    NASA Technical Reports Server (NTRS)

    Harries, W. L.; Shiu, Y. J.

    1979-01-01

    The possibility of creating a plasma from fission fragments, and to utilize the energy of the particles to create population inversion that would lead to laser action is investigated. An investigation was made of various laser materials which could be used for nuclear-pumped lasing. The most likely candidate for a fissioning material in the gaseous form is uranium hexafluoride - UF6, and experiments were performed to investigate materials that would be compatible with it. One of the central problems in understanding a fission-induced plasma is to obtain a model of the electron behavior, and some preliminary calculations are presented. In particular, the rates of various processes are discussed. A simple intuitive model of the electron energy distribution function is also shown. The results were useful for considering a mathematical model of a nuclear-pumped laser. Next a theoretical model of a (3)He-Ar nuclear-pumped laser is presented. The theory showed good qualitative agreement with the experimental results.

  7. Heavy fragment radioactivities

    SciTech Connect

    Price, P.B.

    1987-12-10

    This recently discovered mode of radioactive decay, like alpha decay and spontaneous fission, is believed to involve tunneling through the deformation-energy barrier between a very heavy nucleus and two separated fragments the sum of whose masses is less than the mass of the parent nucleus. In all known cases the heavier of the two fragments is close to doubly magic /sup 208/Pb, and the lighter fragment has even Z. Four isotopes of Ra are known to emit /sup 14/C nuclei; several isotopes of U as well as /sup 230/Th and /sup 231/Pa emit Ne nuclei; and /sup 234/U exhibits four hadronic decay modes: alpha decay, spontaneous fission, Ne decay and Mg decay.

  8. Collinear cluster tripartition channel in the reaction {sup 235}U(n{sub th}, f)

    SciTech Connect

    Pyatkov, Yu. V.; Kamanin, D. V.; Kopach, Yu. N.; Alexandrov, A. A.; Alexandrova, I. A.; Borzakov, S. B.; Voronov, Yu. N.; Zhuchko, V. E.; Kuznetsova, E. A. Panteleev, Ts.; Tyukavkin, A. N.

    2010-08-15

    Investigation of the {sup 235}U(n{sub th}, f) reaction using the miniFOBOS double-arm time-of-flight spectrometer of fission fragments confirmed manifestations of the earlier unknown many-body, at least ternary, decay involving almost collinear decay-product escape, which were first observed in the spontaneous fission of {sup 252}Cf(sf). The use of variables sensitive to the nuclear charge of fission fragments allowed the reliability of identification of decay events to be increased and new decay modes to be revealed.

  9. Multimodal Fission in Heavy-Ion Induced Reactions

    SciTech Connect

    Pokrovskiy, I. V.; Bogachev, A. A.; Iitkis, M. G.; Iitkis, J. M.; Kondratiev, N. A.; Kozulin, E. M.; Dorvaux, O.; Rowley, N.; Schmitt, Ch.; Stuttge, L.

    2006-08-14

    Mass, energy and folding angle distributions of the fission fragments as well as multiplicities of neutron and gamma-quanta emissions accompanying the fission process were measured for fission of 226Th, 227Pa and 234Pu compound nuclei produced in reactions with 18O and 26Mg projectiles over a wide energy range. Data were analyzed with respect to the presence of fission modes. Asymmetric fission was observed even at very high initial excitation for all the measured systems. The so-called fission mode S1 (caused by the proton shell Z{approx}50 and neutron shell N{approx}82 in heavy fragment) was found to be dominant in asymmetric fission of 234Pu. Reactions with not full linear momentum transfer were observed in the folding spectra for all the measured systems.

  10. Optimizing moderation of He-3 neutron detectors for shielded fission sources

    DOE PAGES

    Rees, Lawrence B.; Czirr, J. Bart

    2012-07-10

    Abstract: The response of 3-He neutron detectors is highly dependent on the amount of moderator incorporated into the detector system. If there is too little moderation, neutrons will not react with the 3-He. If there is too much moderation, neutrons will not reach the 3-He. In applications for portal or border monitors where 3He detectors are used to interdict illicit Importation of plutonium, the fission source is always shielded to some extent. Since the energy distribution of neutrons emitted from the source depends on the amount and type of shielding present, the optimum placement of moderating material around 3-He tubesmore » is a function of shielding. In this paper, we use Monte Carlo techniques to model the response of 3-He tubes placed in polyethylene boxes for moderation. To model the shielded fission neutron source, we use a 252-Cf source placed in the center of spheres of water of varying radius. Detector efficiency as a function of box geometry and shielding are explored. We find that increasing the amount of moderator behind and to the sides of the detector generally improves the detector response, but that benefits are limited if the thickness of the polyethylene moderator is greater than about 5-7 cm. The thickness of the moderator in front of the 3He tubes, however, is very important. For bare sources, about 5-6 cm of moderator is optimum, but as the shielding increases, the optimum thickness of this moderator decreases to 0-1 cm. A two-tube box with a moderator thickness of 5 cm in front of the first tube and a thickness of 1 cm in front of the second tube is proposed to improve the detector's sensitivity to lower-energy neutrons.« less

  11. Fission meter

    DOEpatents

    Rowland, Mark S.; Snyderman, Neal J.

    2012-04-10

    A neutron detector system for discriminating fissile material from non-fissile material wherein a digital data acquisition unit collects data at high rate, and in real-time processes large volumes of data directly into information that a first responder can use to discriminate materials. The system comprises counting neutrons from the unknown source and detecting excess grouped neutrons to identify fission in the unknown source.

  12. Verification of threshold activation detection (TAD) technique in prompt fission neutron detection using scintillators containing 19F

    NASA Astrophysics Data System (ADS)

    Sibczynski, P.; Kownacki, J.; Moszyński, M.; Iwanowska-Hanke, J.; Syntfeld-Każuch, A.; Gójska, A.; Gierlik, M.; Kaźmierczak, Ł.; Jakubowska, E.; Kędzierski, G.; Kujawiński, Ł.; Wojnarowicz, J.; Carrel, F.; Ledieu, M.; Lainé, F.

    2015-09-01

    In the present study ⌀ 5''× 3'' and ⌀ 2''× 2'' EJ-313 liquid fluorocarbon as well as ⌀ 2'' × 3'' BaF2 scintillators were exposed to neutrons from a 252Cf neutron source and a Sodern Genie 16GT deuterium-tritium (D+T) neutron generator. The scintillators responses to β- particles with maximum endpoint energy of 10.4 MeV from the n+19F reactions were studied. Response of a ⌀ 5'' × 3'' BC-408 plastic scintillator was also studied as a reference. The β- particles are the products of interaction of fast neutrons with 19F which is a component of the EJ-313 and BaF2 scintillators. The method of fast neutron detection via fluorine activation is already known as Threshold Activation Detection (TAD) and was proposed for photofission prompt neutron detection from fissionable and Special Nuclear Materials (SNM) in the field of Homeland Security and Border Monitoring. Measurements of the number of counts between 6.0 and 10.5 MeV with a 252Cf source showed that the relative neutron detection efficiency ratio, defined as epsilonBaF2 / epsilonEJ-313-5'', is 32.0% ± 2.3% and 44.6% ± 3.4% for front-on and side-on orientation of the BaF2, respectively. Moreover, the ⌀ 5'' EJ-313 and side-on oriented BaF2 were also exposed to neutrons from the D+T neutron generator, and the relative efficiency epsilonBaF2 / epsilonEJ-313-5'' was estimated to be 39.3%. Measurements of prompt photofission neutrons with the BaF2 detector by means of data acquisition after irradiation (out-of-beam) of nuclear material and between the beam pulses (beam-off) techniques were also conducted on the 9 MeV LINAC of the SAPHIR facility.

  13. Binary stars - Formation by fragmentation

    NASA Technical Reports Server (NTRS)

    Boss, Alan P.

    1988-01-01

    Theories of binary star formation by capture, separate nuclei, fission and fragmentation are compared, assessing the success of theoretical attempts to explain the observed properties of main-sequence binary stars. The theory of formation by fragmentation is examined, discussing the prospects for checking the theory against observations of binary premain-sequence stars. It is concluded that formation by fragmentation is successful at explaining many of the key properties of main-sequence binary stars.

  14. A new design of fission detector for prompt fission neutron investigation

    NASA Astrophysics Data System (ADS)

    Zeynalov, Sh.; Zeynalova, O.; Nazarenko, M. A.; Hambsch, F.-J.; Oberstedt, S.

    2012-10-01

    In this work we report recent achievements in design of twin back-to-back ionization chamber (TIC) for fission fragment (FF) mass and kinetic energy spectroscopy. Correlated FF kinetic energies, their masses and the angle of the fission axes in 3D Cartesian coordinates can be determined from analysis of the heights and shapes of the pulses induced by the fission fragments on the anodes of TIC. Anodes of TIC were designed as consisting of isolated strips each having independent electronic circuitry and special multi-channel pulse processing apparatus. Mathematical algorithms were provided along with formulae derived for fission axis angles determination. It was shown how the point of fission fragments origin on the target plane may be determined using the same measured data. The last feature made the TIC a rather powerful tool for prompt fission neutron (PFN) emission investigation in event by event analysis of individual fission reactions from non point fissile source. Position sensitive neutron induced fission detector for neutron imaging applications with both thermal and low energy neutrons was found as another possible implementation of the designed TIC.

  15. Inhibition of peroxisome fission, but not mitochondrial fission, increases yeast chronological lifespan.

    PubMed

    Lefevre, Sophie D; Kumar, Sanjeev; van der Klei, Ida J

    2015-01-01

    Mitochondria are key players in aging and cell death. It has been suggested that mitochondrial fragmentation, mediated by the Dnm1/Fis1 organelle fission machinery, stimulates aging and cell death. This was based on the observation that Saccharomyces cerevisiae Δdnm1 and Δfis1 mutants show an enhanced lifespan and increased resistance to cell death inducers. However, the Dnm1/Fis1 fission machinery is also required for peroxisome division. Here we analyzed the significance of peroxisome fission in yeast chronological lifespan, using yeast strains in which fission of mitochondria was selectively blocked. Our data indicate that the lifespan extension caused by deletion of FIS1 is mainly due to a defect in peroxisome fission and not caused by a block in mitochondrial fragmentation. These observations are underlined by our observation that deletion of FIS1 does not lead to lifespan extension in yeast peroxisome deficient mutant cells.

  16. Fission-Fusion Neutron Source Progress Report July 31, 2009

    SciTech Connect

    Chapline, G; Daffin, F; Clarke, R

    2010-02-19

    In this report the authors describe progress in evaluating the feasibility of a novel concept for producing intense pulses of 14 MeV neutrons using the DT fusion reaction. In this new scheme the heating of the DT is accomplished using fission fragments rather than ion beams as in conventional magnet fusion schemes or lasers in ICF schemes. This has the great advantage that there is no need for any large auxiliary power source. The scheme does require large magnetic fields, but generating these fields, e.g. with superconducting magnets, requires only a modest power source. As a source of fission fragments they propose using a dusty reactor concept introduced some time ago by one of us (RC). The version of the dusty reactor that they propose using for our neutron source would operate as a thermal neutron reactor and use highly enriched uranium in the form of micron sized pellets of UC. Our scheme for using the fission fragments to produce intense pulses of 14 MeV neutrons is based on the fission fragment rocket idea. In the fission fragment rocket scheme it was contemplated that the fission fragments produced in a low density reactor core would then be guided out of the reactor by large magnetic fields. A simple version of this idea would be to use the fission fragments escaping from one side of a tandem magnet mirror to heat DT gas confined in the adjacent magnetic trap.

  17. Application of the dinuclear system model to fission process

    NASA Astrophysics Data System (ADS)

    Andreev, A. V.; Shneidman, T. M.; Ventura, A.

    2016-01-01

    A theoretical evaluation of the collective excitation spectra of nucleus at large deformations is possible within the framework of the dinuclear system model, which treats the wave function of the fissioning nucleus as a superposition of a mononucleus configuration and two-cluster configurations in a dynamical way, permitting exchange of nucleons between clusters. In this work the method of calculation of the potential energy and the collective spectrum of fissioning nucleus at scission point is presented. Combining the DNS model calculations and the statistical model of fission we calculate the mass, total kinetic energy, and angular distribution of fission fragments for the neutron-induced fission of 239Pu.

  18. Fission dynamics at low excitation energy

    NASA Astrophysics Data System (ADS)

    Aritomo, Y.; Chiba, S.; Ivanyuk, F.

    2014-11-01

    The mass asymmetry in the fission of 236U at low excitation energy is clarified by the analysis of the trajectories obtained by solving the Langevin equations for the shape degrees of freedom. It is demonstrated that the position of the peaks in the mass distribution of fission fragments is determined mainly by the saddle point configuration originating from the shell correction energy. The width of the peaks, on the other hand, results from the shape fluctuations close to the scission point caused by the random force in the Langevin equation. We have found out that the fluctuations between elongated and compact shapes are essential for the fission process. According to our results the fission does not occur with continuous stretching in the prolate direction, similarly to that observed in starch syrup, but is accompanied by the fluctuations between elongated and compact shapes. This picture presents a new viewpoint of fission dynamics and the splitting mechanism.

  19. Comparative study of the fragments' mass and energy characteristics in the spontaneous fussion of 238Pu, 240Pu and 242Pu and in the thermal-neutron-induced fission of 239Pu

    NASA Astrophysics Data System (ADS)

    Schillebeeckx, P.; Wagemans, C.; Deruytter, A. J.; Barthélémy, R.

    1992-08-01

    The energy and mass distribution and their correlations have been studied for the spontaneous fission of 238, 240, 242Pu and for the thermal-neutron-induced fission of 239Pu. A comparison of 240Pu(s.f.) and 239Pu(nth,f) shows that the increase in excitation energy mainly results in an increase of the intrinsic excitation energy. A comparison of the results for 238Pu, 240Pu and 242Pu(s.f.) demonstrates the occurence of different fission modes with varying relative probability. These results are discussed in terms of the scission point model as well as in terms of the fission channel model with random neck-rupture.

  20. Fission dynamics within time-dependent Hartree-Fock. II. Boost-induced fission

    NASA Astrophysics Data System (ADS)

    Goddard, Philip; Stevenson, Paul; Rios, Arnau

    2016-01-01

    Background: Nuclear fission is a complex large-amplitude collective decay mode in heavy nuclei. Microscopic density functional studies of fission have previously concentrated on adiabatic approaches based on constrained static calculations ignoring dynamical excitations of the fissioning nucleus and the daughter products. Purpose: We explore the ability of dynamic mean-field methods to describe induced fission processes, using quadrupole boosts in the nuclide 240Pu as an example. Methods: Following upon the work presented in Goddard et al. [Phys. Rev. C 92, 054610 (2015)], 10.1103/PhysRevC.92.054610, quadrupole-constrained Hartree-Fock calculations are used to create a potential energy surface. An isomeric state and a state beyond the second barrier peak are excited by means of instantaneous as well as temporally extended gauge boosts with quadrupole shapes. The subsequent deexcitation is studied in a time-dependent Hartree-Fock simulation, with emphasis on fissioned final states. The corresponding fission fragment mass numbers are studied. Results: In general, the energy deposited by the quadrupole boost is quickly absorbed by the nucleus. In instantaneous boosts, this leads to fast shape rearrangements and violent dynamics that can ultimately lead to fission. This is a qualitatively different process than the deformation-induced fission. Boosts induced within a finite time window excite the system in a relatively gentler way and do induce fission but with a smaller energy deposition. Conclusions: The fission products obtained using boost-induced fission in time-dependent Hartree-Fock are more asymmetric than the fragments obtained in deformation-induced fission or the corresponding adiabatic approaches.

  1. Ionization Chamber for Prompt Fission Neutron Investigations

    NASA Astrophysics Data System (ADS)

    Zeynalov, Sh.; Zeynalova, O.; Hambsch, F.-J.; Sedyshev, P.; Shvetsov, V.

    In this work we report recent achievements in design of twin back-to-back ionization chamber (TIC) for fission fragment (FF) mass and kinetic energy measurement. Correlated FF kinetic energies, their masses and the angle of FF in respect to the axes in 3D Cartesian coordinates can be determined from analysis of the heights and shapes of the pulses induced by the fission fragments on the anodes of TIC. Anodes of TIC were designed as consisting of isolated strips each having independent electronic circuitry and special multi-channel pulse processing apparatus. Mathematical formulae provided for FF angles measured in respect to the coordinate axes. It was shown how the point of fission fragments origin on the target plane may be determined using the same measured data. The last feature made the TIC a rather powerful tool for prompt fission neutron (PFN) emission investigation in event-by-event analysis of individual fission reactions from non- point fissile source. Position sensitive neutron induced fission detector for neutron-imaging applications with both thermal and low energy neutrons was found as another possible implementation of the designed TIC.

  2. Electron-capture delayed fission properties of 244Es

    SciTech Connect

    Shaughnessy, Dawn A.; Gregorich, Kenneth E.; Adams, Jeb L.; Lane, Michael R.; Laue, Carola A.; Lee, Diana M.; McGrath, Christopher A.; Ninov, Victor; Patin, Joshua B.; Strellis, Dan A.; Sylwester, Eric R.; Wilk, Philip A.; Hoffman, Darleane C.

    2001-03-16

    Electron-capture delayed fission was observed in {sup 244}Es produced via the {sup 237}Np({sup 12}C,5n){sup 244}Es reaction at 81 MeV (on target) with a production cross section of 0.31{+-}0.12 {micro}b. The mass-yield distribution of the fission fragments is highly asymmetric. The average preneutron-emission total kinetic energy of the fragments was measured to be 186{+-}19 MeV. Based on the ratio of the number of fission events to the measured number of {alpha} decays from the electron-capture daughter {sup 244}Cf (100% {alpha} branch), the probability of delayed fission was determined to be (1.2{+-}0.4) x 10{sup -4}. This value for the delayed fission probability fits the experimentally observed trend of increasing delayed fission probability with increasing Q value for electron-capture.

  3. New experimental approaches to investigate the fission dynamics

    NASA Astrophysics Data System (ADS)

    Benlliure, J.; Rodríguez-Sánchez, J. L.; Alvarez-Pol, H.; Audouin, L.; Ayyad, Y.; Bélier, G.; Boutoux, G.; Casarejos, E.; Chatillon, A.; Cortina-Gil, D.; Gorbinet, T.; Heinz, A.; Kelić-Heil, A.; Laurent, B.; Martin, J.-F.; Paradela, C.; Pellereau, E.; Pietras, B.; Ramos, D.; Rodríguez-Tajes, C.; Rossi, D. M.; Simon, H.; Taïeb, J.; Vargas, J.; Voss, B.

    2016-07-01

    The first ever achieved full identification of both fission fragments, in atomic and mass number, made it possible to define new observables sensitive to the fission dynamics along the fission path up to the scission point. Moreover, proton-induced fission of 208Pb at high energies offers optimal conditions for the investigation of dissipative, and transient effects, because of the high-excitation energy of the fissioning nuclei, its low angular momentum, and limited shape distortion by the reaction. In this work we show that the charge distribution of the final fission fragments can constrain the ground-to-saddle dynamics while the mass distribution is sensitive to the dynamics until the scission point.

  4. Fission studies with 140 MeV {alpha} particles

    SciTech Connect

    Buttkewitz, A.; Duhm, H. H.; Strauss, W.; Goldenbaum, F.; Machner, H.

    2009-09-15

    Binary fission induced by 140 MeV {alpha} particles has been measured for {sup nat}Ag, {sup 139}La, {sup 165}Ho, and {sup 197}Au targets. The measured quantities are the total kinetic energies, fragment masses, and fission cross sections. The results are compared with other data and systematics. A minimum of the fission probability in the vicinity Z{sup 2}/A=24 is observed.

  5. Spontaneous fission properties of the heavy elements: Bimodal fission

    SciTech Connect

    Hulet, E.K.

    1988-11-11

    We have measured the mass and kinetic-energy distributions from the spontaneous fission of SVYFm, SVYNo, SVZMd, SWMd, SW(104), and SWSNo. All are observed to fission with a symmetrical division of mass, whereas the total-kinetic-energy (TKE) distributions strongly deviated from the Gaussian shape characteristically found in the fission of all other actinides. When the TKE distributions are resolved into two Gaussian's, the constituent peaks lie near 200 and near 233 MeV. We conclude two modes or bimodal fission is occurring in five of the six nuclides studied. Both modes are possible in the same nuclide, but one generally predominates. We also conclude the low-energy but mass-symmetrical mode is likely to extend to far heavier nuclei; while the high-energy mode will be restricted to a smaller region, a region of nuclei defined by the proximity of the fragments to the strong neutron and proton shells in TSSn. 21 refs., 7 figs., 1 tab.

  6. Advanced development of the spectrum sciences Model 5005-TF, single-event test fixture

    SciTech Connect

    Ackermann, M.R.; Browning, J.S. ); Hughlock, B.W. ); Lum, G.K. ); Tsacoyeanes, W.C. Lab., Inc., Cambridge, MA ); Weeks, M.D. )

    1990-09-01

    This report summarizes the advanced development of the Spectrum Sciences Model 5005-TF, Single-Event Test Fixture. The Model 5005-TF uses a Californium-252 (Cf-252) fission-fragment source to test integrated circuits and other devices for the effects of single-event phenomena. Particle identification methods commonly used in high-energy physics research and nuclear engineering have been incorporated into the Model 5005-TF for estimating the particle charge, mass, and energy parameters. All single-event phenomena observed in a device under test (DUT) are correlated with an identified fission fragment, and its linear energy transfer (LET) and range in the semiconductor material of the DUT.

  7. Spontaneous fission half-lives and their systematics

    SciTech Connect

    Holden, N.E.

    1998-03-01

    Spontaneous fission is a phenomenon exhibited by heavy nuclei, which can be a major mode of decay of nuclei of elements heavier than thorium and can be a determining factor in their stability. For purposes of this paper, spontaneous fission will be considered a process in which a nucleus breaks up into two approximately equal parts. The emission of light nuclei or heavy ions such as {sup 12}C, {sup 16}O, or {sup 32}S will not be considered. This radioactive decay mode is often much smaller than the spontaneous fission decay mode, although this is not true in all cases. Barwick noted that this might indicate that the assumed half-life for spontaneous fission of some older experiments might be partially due to heavy fragment radioactivity. Other than taking note of this potential correction to spontaneous fission half-lives, this decay mode of heavy fragment radioactivity will be ignored. Excited states of some heavy nuclei may decay via spontaneous fission. These so-called fission isomers will not be discussed here. Electron capture (EC) or beta-delayed fission is a process in which prompt fission of a sufficiently excited daughter state occurs following population by EC or beta decay. The fission activity will appear to decay with the half-life of the parent and was earlier confused in some cases with SF. This process has been discussed in detail in a review and will not be considered in this paper.

  8. Enhanced trigger for the NIFFTE fissionTPC in presence of high-rate alpha backgrounds

    NASA Astrophysics Data System (ADS)

    Bundgaard, Jeremy; Niffte Collaboration

    2015-10-01

    Nuclear physics and nuclear energy communities call for new, high precision measurements to improve existing fission models and design next generation reactors. The Neutron Induced Fission Fragment Tracking experiment (NIFFTE) has developed the fission Time Projection Chamber (fissionTPC) to measure neutron induced fission with unrivaled precision. The fissionTPC is annually deployed to the Weapons Neutron Research facility at Los Alamos Neutron Science Center where it operates with a neutron beam passing axially through the drift volume, irradiating heavy actinide targets to induce fission. The fissionTPC was developed at the Lawrence Livermore National Laboratory's TPC lab, where it measures spontaneous fission from radioactive sources to characterize detector response, improve performance, and evolve the design. To measure 244Cm, we've developed a fission trigger to reduce the data rate from alpha tracks while maintaining a high fission detection efficiency. In beam, alphas from 239Pu are a large background when detecting fission fragments; implementing the fission trigger will greatly reduce this background. The implementation of the cathode fission trigger in the fissionTPC will be presented along with a detailed study of its efficiency.

  9. Spontaneous and induced emission of XeCl* excimer molecules under pumping of Xe – CCl{sub 4} and Ar – Xe – CCl{sub 4} gas mixtures with a low CCl{sub 4} content by fast electrons and uranium fission fragments

    SciTech Connect

    Mis'kevich, A I; Guo, J; Dyuzhov, Yu A

    2013-11-30

    The spontaneous and induced emission of XeCl* excimer molecules upon excitation of Xe – CCl{sub 4} and Ar – Xe – CCl{sub 4} gas mixtures with a low CCl{sub 4} content by high-energy charged particles [a pulsed high-energy electron beam and products of neutron nuclear reaction {sup 235}U(n, f)] has been experimentally studied. The electron energy was 150 keV, and the pump current pulse duration and amplitude were 5 ns and 5 A, respectively. The energy of fission fragments did not exceed 100 MeV, the duration of the neutron pump pulse was 200 μs, and the specific power contribution to the gas was about 300 W cm{sup -3}. Electron beam pumping in a cell 4 cm long with a cavity having an output mirror transmittance of 2.7% gives rise to lasing on the B → X transition in the XeCl* molecule (λ = 308 nm) with a gain α = 0.0085 cm{sup -1} and fluorescence efficiency η ≈ 10%. Pumping by fission fragments in a 250-cm-long cell with a cavity formed by a highly reflecting mirror and a quartz window implements amplified spontaneous emission (ASE) with an output power of 40 – 50 kW sr{sup -1} and a base ASE pulse duration of ∼200 ms. .

  10. Non-equilibrium fission processes in intermediate energy nuclear collisions

    SciTech Connect

    Loveland, W.; Casey, C.; Xu, Z.; Seaborg, G.T.; Aleklett, K.; Sihver, L.

    1989-04-01

    We have measured the target fragment yields, angular and energy distributions for the interaction of 12-16 MeV/A/sup 32/S with /sup 165/Ho and /sup 197/Au and for the interaction of 32 and 44 MeV/A /sup 40/Ar with /sup 197/Au. The Au fission fragments associated with the peripheral collision peak in the folding angle distribution originate in a normal, ''slow'' fission process in which statistical equilibrium has been established. At the two lowest projectile energies, the Au fission fragments associated with the central collision peak in the folding angle distribution originate in part from ''fast'' (/tau//approximately//sup /minus/23/s), non-equilibrium processes. Most of the Ho fission fragments originate in non- equilibrium processes. The fast, non-equilibrium process giving rise to these fragments has many of the characteristics of ''fast fission'', but the cross sections associated with these fragments are larger than one would expect from current theories of ''fast fission. '' 14 refs., 8 figs.

  11. Possible origin of transition from symmetric to asymmetric fission

    NASA Astrophysics Data System (ADS)

    Paşca, H.; Andreev, A. V.; Adamian, G. G.; Antonenko, N. V.

    2016-09-01

    The charged distributions of fragments produced in the electromagnetic-induced fission of the even-even isotopes of Rn, Ra, Th, and U are described within an improved scission-point model and compared with the available experimental data. The three-equal-peaked charge distributions are predicted for several fissioning nuclei with neutron number N = 136. The possible explanation of the transition from a symmetric fission mode to an asymmetric one around N ∼ 136 is presented. The excitation energy dependencies of the asymmetric and symmetric fission modes are anticipated.

  12. Fission dynamics study in 243Am and 254Fm

    NASA Astrophysics Data System (ADS)

    Banerjee, K.; Ghosh, T. K.; Roy, P.; Bhattacharya, S.; Chaudhuri, A.; Bhattacharya, C.; Pandey, R.; Kundu, S.; Mukherjee, G.; Rana, T. K.; Meena, J. K.; Mohanto, G.; Dubey, R.; Saneesh, N.; Sugathan, P.; Guin, R.; Das, S.; Bhattacharya, P.

    2016-06-01

    Fission fragment mass distributions in the reactions 11B + 232Th and 11B + 243Am were measured in an energy range around the barrier. No sudden change in the width of the mass distribution as a function of center-of-mass energy was observed at near-barrier energies, indicating no quasifission transition in the near-barrier energies. Interestingly, the previous measurements of fission fragment angular anisotropies for the same systems showed significant departure from the statistical saddle-point model predictions at near-barrier energies, indicating the presence of nonequilibrium fission processes.

  13. Fission foil detector calibrations with high energy protons

    NASA Technical Reports Server (NTRS)

    Benton, E. V.; Frank, A. L.

    1995-01-01

    Fission foil detectors (FFD's) are passive devices composed of heavy metal foils in contact with muscovite mica films. The heavy metal nuclei have significant cross sections for fission when irradiated with neutrons and protons. Each isotope is characterized by threshold energies for the fission reactions and particular energy-dependent cross sections. In the FFD's, fission fragments produced by the reactions are emitted from the foils and create latent particle tracks in the adjacent mica films. When the films are processed surface tracks are formed which can be optically counted. The track densities are indications of the fluences and spectra of neutrons and/or protons. In the past, detection efficiencies have been calculated using the low energy neutron calibrated dosimeters and published fission cross sections for neutrons and protons. The problem is that the addition of a large kinetic energy to the (n,nucleus) or (p,nucleus) reaction could increase the energies and ranges of emitted fission fragments and increase the detector sensitivity as compared with lower energy neutron calibrations. High energy calibrations are the only method of resolving the uncertainties in detector efficiencies. At high energies, either proton or neutron calibrations are sufficient since the cross section data show that the proton and neutron fission cross sections are approximately equal. High energy proton beams have been utilized (1.8 and 4.9 GeV, 80 and 140 MeV) for measuring the tracks of fission fragments emitted backward and forward.

  14. Angular momentum effects in multimodal fission of {sup 226}Th

    SciTech Connect

    Chubarian, G.G.; Hurst, B.J.; OKelly, D.; Schmitt, R.P.; Itkis, M.G.; Kondratiev, N.A.; Kozulin, E.M.; Oganessian, Y.T.; Pashkevich, V.V.; Pokrovsky, I.V.; Salamatin, V.S.; Rusanov, A.Y.; Calabretta, L.; Maiolino, C.; Lukashin, K.; Agodi, C.; Bellia, G.; Hanappe, F.; Liatard, E.; Huck, A.; Stuttge, L.

    1998-12-01

    The {gamma}-rays from the multimodal fission of the {sup 226}Th formed in {sup 18}O+{sup 208}Pb was investigated at the near- and sub-barrier energies. The corresponding excitation energies at the saddle point, E{sub sp}{sup {asterisk}}, ranged from 23 to 26 MeV. The average {gamma}-ray multiplicities and relative {gamma}-ray energies as a function of the mass of the fission fragments exhibits a complex structure and strong variations. Such strong variations have never been previously observed in heavy ion-induced fusion-fission reactions. Obtained results may be explained with the influence of shell effects on the properties of the fission fragments. Present work is the one in series of investigation of the multimodal fission phenomena in At-Th region. {copyright} {ital 1998 American Institute of Physics.}

  15. Energy dependence of the probability for asymmetric fission of /sup 213/At

    SciTech Connect

    Gruzintsev, E.N.; Itkis, M.G.; Okolovich, V.N.; Rusanov, A.Y.; Smirenkin, G.N.; Tolstikov, V.N.

    1982-10-20

    The mass distribution of the fragments of the fission of /sup 213/At in the reaction /sup 209/Bi(..cap alpha.., f) has been measured for ..cap alpha.. energies in the range 34.7--50 MeV. Over the entire energy range studied, the asymmetric mode is an improbable, slightly energy-dependent mode for the /sup 213/At fission. This property of the /sup 213/At fission represents a qualitative distinction from the fission of heavy nuclei.

  16. Geometry of membrane fission.

    PubMed

    Frolov, Vadim A; Escalada, Artur; Akimov, Sergey A; Shnyrova, Anna V

    2015-01-01

    Cellular membranes define the functional geometry of intracellular space. Formation of new membrane compartments and maintenance of complex organelles require division and disconnection of cellular membranes, a process termed membrane fission. Peripheral membrane proteins generally control membrane remodeling during fission. Local membrane stresses, reflecting molecular geometry of membrane-interacting parts of these proteins, sum up to produce the key membrane geometries of fission: the saddle-shaped neck and hour-glass hemifission intermediate. Here, we review the fundamental principles behind the translation of molecular geometry into membrane shape and topology during fission. We emphasize the central role the membrane insertion of specialized protein domains plays in orchestrating fission in vitro and in cells. We further compare individual to synergistic action of the membrane insertion during fission mediated by individual protein species, proteins complexes or membrane domains. Finally, we describe how local geometry of fission intermediates defines the functional design of the protein complexes catalyzing fission of cellular membranes. PMID:25062896

  17. New type of asymmetric fission in proton-rich nuclei.

    PubMed

    Andreyev, A N; Elseviers, J; Huyse, M; Van Duppen, P; Antalic, S; Barzakh, A; Bree, N; Cocolios, T E; Comas, V F; Diriken, J; Fedorov, D; Fedosseev, V; Franchoo, S; Heredia, J A; Ivanov, O; Köster, U; Marsh, B A; Nishio, K; Page, R D; Patronis, N; Seliverstov, M; Tsekhanovich, I; Van den Bergh, P; Van De Walle, J; Venhart, M; Vermote, S; Veselsky, M; Wagemans, C; Ichikawa, T; Iwamoto, A; Möller, P; Sierk, A J

    2010-12-17

    A very exotic process of β-delayed fission of 180Tl is studied in detail by using resonant laser ionization with subsequent mass separation at ISOLDE (CERN). In contrast to common expectations, the fission-fragment mass distribution of the post-β-decay daughter nucleus 180Hg (N/Z=1.25) is asymmetric. This asymmetry is more surprising since a mass-symmetric split of this extremely neutron-deficient nucleus would lead to two 90Zr fragments, with magic N=50 and semimagic Z=40. This is a new type of asymmetric fission, not caused by large shell effects related to fragment magic proton and neutron numbers, as observed in the actinide region. The newly measured branching ratio for β-delayed fission of 180Tl is 3.6(7) × 10(-3)%, approximately 2 orders of magnitude larger than in an earlier study. PMID:21231583

  18. Fission track length distributions in multi-system thermochronology (Invited)

    NASA Astrophysics Data System (ADS)

    Gleadow, A. J.; Seiler, C.

    2013-12-01

    Fission track length distributions contain a unique record of past temperature variations and therefore play a key role in low-temperature thermochronology, for which there is no exact equivalent in any other method. Confined track lengths closely approximate the true etchable ranges of latent fission tracks [1] and are therefore favoured for fission track studies, but they still have a number of practical limitations. These include small numbers of suitable tracks, especially when only horizontal confined tracks are measured. Using only track-in-track events for measurement further limits the sample size. These restrictions become acute for low track-density samples, where length measurements may be impossible. Irradiating the surface with 252Cf tracks [2] can substantially increase the number of confined tracks, but many researchers do not have access to a Cf source. An even more significant issue has emerged from inter-laboratory comparison experiments that demonstrate a disturbingly poor reproducibility of length measurements between observers [3], a problem compounded by a lack of standardisation in measurement techniques. As a result, individual observers may measure different positions for the end of a track, contributing significantly to variability, and consequently blurring the thermal histories obtained. New digital microscopes open up important opportunities for improved track length measurements by reducing restrictions on sample size, and eliminating some sources of inter-observer bias. We have developed a track length measurement system that enables precise determination of vertical as well as horizontal track dimensions, allowing 3D lengths to be obtained. Lengths are measured on captured image stacks that can be analysed easily and may also be shared, for greater standardisation between laboratories. Length measurements are highly reproducible between different observers using this system, suggesting that at least one source of variability can be

  19. Mass-asymmetric fission in the 40ca+142Nd reaction

    NASA Astrophysics Data System (ADS)

    Prasad, E.; Hinde, D. J.; Williams, E.; Dasgupta, M.; Carter, I. P.; Cook, K. J.; Jeung, D. Y.; Luong, D. H.; McNeil, S.; Palshetkar, C. S.; Rafferty, D. C.; Simenel, C.; Wakhle, A.; Ramachandran, K.; Khuyagbaatar, J.; Dullmann, Ch. E.; Lommel, B.; Kindler, B.

    2016-09-01

    Shell effects play a major role in fission. Mass-asymmetric fission observed in the spontaneous and low energy fission of actinide nuclei was explained by incorporating the fragment shell properties in liquid drop model. Asymmetric fission has also been observed in the low energy fission of neutron-deficient 180Hg nuclei in recent β-delayed fission experiments. This low-energy β-delayed fission has been explained in terms of strong shell effects in pre-scission configurations associated with the system after capture. Calculations predicted asymmetric fission for heavier Hg isotopes as well, at compound nuclear excitation energy as high as 40 MeV. To explore the evolution of fission fragment mass distribution as a function of neutron and proton numbers and also with excitation energy, fission fragment mass distributions have been measured for the 40Ca+142Nd reaction forming the compound nucleus 182Hg at energies around the capture barrier, using the Heavy Ion Accelerator Facility and CUBE spectrometer at the Australian National University. Mass-asymmetric fission is observed in this reaction at an excitation energy of 33.6 MeV. The results are consistent with the β-delayed fission measurements and indicate the presence of shell effects even at higher exciation energies.

  20. Prompt fission gamma-ray studies at DANCE

    SciTech Connect

    Jandel, M.; Rusev, G.; Bond, E. M.; Bredeweg, T. A.; Chadwick, M. B.; Couture, A.; Fowler, M.. M; Haight, R. C.; Kawano, T.; Keksis, A. L.; Mosby, S. M.; O’Donnell, J. M.; Rundberg, R. S.; Stetcu, I.; Talou, P.; Ullmann, J. L.; Vieira, D. J.; Wilhelmy, J. B.; Stoyer, M. A.; Haslett, R. J.; Henderson, R. A.; Becker, J. A.; Wu, C. Y.

    2014-11-26

    Measurements of correlated data on prompt-fission γ-rays (PFG) have been carried out for various actinide isotopes in recent years using the Detector for Advanced Neutron Capture Experiments (DANCE) at Los Alamos National Laboratory (LANL). We have developed a model that conveniently parametrizes the correlated data of γ-ray multiplicity and energy. New results on two- dimensional prompt-fission γ-ray multiplicity versus energy distributions from spontaneous fission on ²⁵²Cf and neutron-induced fission on 242mAm are presented together with previously obtained results on 233,235U and ²³⁹Pu. Correlated PFG data from ²⁵²Cf are also compared to results of the detailed theoretical model developed at LANL, for different thresholds of PFG energies. Future plans to measure correlated data on fission fragments, prompt fission neutrons and γ-rays at DANCE are presented.

  1. The quantum and thermodynamical characteristics of fission taking into account adiabatic and nonadiabatic modes of motion

    SciTech Connect

    Kadmensky, S. G.

    2007-09-15

    In the framework of the quantum theory of spontaneous and low-energy induced fission, the nature of quantum and thermodynamical properties of a fissioning system is analyzed taking into account adiabatic and nonadiabatic modes of motion for different fission stages. It is shown that, owing to the influence of the Coriolis interaction, the states of the fissile nucleus and of primary fission products are cold and strongly nonequilibrium. The important role of superfluid and pairing nucleon-nucleon correlations for binary and ternary fission is demonstrated. The mechanism of pumping of high values of relative orbital momenta and spins of fission fragments for binary and ternary fission and the nonevaporation mechanism of formation of third particles for ternary fission are investigated. The anisotropies and P-odd, P-even, and T-odd asymmetries for angular distributions of fission products are analyzed.

  2. Dynamics of fission and heavy ion reactions

    SciTech Connect

    Nix, J.R.; Sierk, A.J.

    1984-05-01

    Recent advances in a unified macroscopic-microscopic description of large-amplitude collective nuclear motion such as occurs in fission and heavy ion reactions are discussed. With the goal of finding observable quantities that depend upon the magnitude and mechanism of nuclear dissipation, one-body dissipation and two-body viscosity within the framework of a generalized Fokker-Planck equation for the time dependence of the distribution function in phase space of collective coordinates and momenta are considered. Proceeding in two separate directions, the generalized Hamilton equations of motion for the first moments of the distribution function with a new shape parametrization and other technical innovations are first solved. This yields the mean translational fission-fragment kinetic energy and mass of a third fragment that sometimes forms between the two end fragments, as well as the energy required for fusion in symmetric heavy-ion reactions and the mass transfer and capture cross section in asymmetric heavy-ion reactions. In a second direction, we specialize to an inverted-oscillator fission barrier and use Kramers' stationary solution to calculate the mean time from the saddle point to scission for a heavy-ion-induced fission reaction for which experimental information is becoming available. 25 references.

  3. Fission-Fusion Neutron Source Progress Report Sept 30, 2009

    SciTech Connect

    Chapline, G F; Daffin, F; Clark, R

    2010-02-19

    In this report the authors describe the progress made in FY09 in evaluating the feasibility of a new concept for using the DT fusion reaction to produce intense pulses of 14 MeV neutrons. In this new scheme the heating of the DT is accomplished using fission fragments rather than ion beams as in conventional magnet confinement fusion schemes or lasers in inertial confinement schemes. As a source of fission fragments they propose using a dust reactor concept introduced some time ago by one of us (RC). An attractive feature of this approach is that there is no need for a large auxiliary power source to heat the DT plasma to the point where self-sustaining fusion become possible. Their scheme does require pulsed magnetic fields, but generating these fields requires only a modest power source. The dust reactor that they propose using for their neutron source would use micron-sized UC pellets suspended in a vacuum as the reactor fuel. Surrounding the fuel with a moderator such as heavy water (D{sub 2}O) would allow the reactor to operate as a thermal reactor and require only modest amounts of HEU. The scheme for using fission fragments to generate intense pulses of 14 MeV neutrons is based on the fission fragment rocket idea. In the fission fragment rocket scheme it was contemplated that the fission fragments produced in a low density reactor core could be guided out of the reactor by large magnetic fields used to form a 'rocket exhaust'. Their adaptation of this idea for the purposes of making a neutron source involves using the fission fragments escaping from one side of a tandem magnet mirror to heat DT gas confined in the adjacent magnetic trap.

  4. In-beam Fission Study at JAEA

    NASA Astrophysics Data System (ADS)

    Nishio, Katsuhisa

    2013-12-01

    Fission fragment mass distributions were measured in heavy-ion induced fissions using 238U target nucleus. The measured mass distributions changed drastically with incident energy. The results are explained by a change of the ratio between fusion and quasifission with nuclear orientation. A calculation based on a fluctuation dissipation model reproduced the mass distributions and their incident energy dependence. Fusion probability was determined in the analysis. Evaporation residue cross sections were calculated with a statistical model in the reactions of 30Si + 238U and 34S + 238U using the obtained fusion probability in the entrance channel. The results agree with the measured cross sections for seaborgium and hassium isotopes.

  5. Uranium arc fission reactor for space propulsion

    NASA Astrophysics Data System (ADS)

    Watanabe, Yoichi; Maya, Isaac; Vitali, Juan; Appelbaum, Jacob; Schneider, Richard T.

    Combining the proven technology of solid core reactors with uranium arc confinement and non-equilibrium ionization by fission fragments can lead to an attractive propulsion system which has a higher specific impulse than a solid core propulsion system and higher thrust than an electric propulsion system. A preliminary study indicates that a system with 300 MW of fission power can achieve a gas exhaust velocity of 18,000 m/sec and a thrust of 10,000 Newtons utilizing a magnetohydrodynamic generator and accelerator. An experimental program is underway to examine the major mass and energy transfer issues.

  6. Uranium arc fission reactor for space propulsion

    NASA Astrophysics Data System (ADS)

    Watanabe, Yoichi; Maya, Isaac; Vitali, Juan; Appelbaum, Jacob; Schneider, Richard T.

    1991-01-01

    Combining the proven technology of solid core reactors with uranium arc confinement and non-equilibrium ionization by fission fragments can lead to an attractive propulsion system which has a higher specific impulse than a solid core propulsion system and higher thrust than an electric propulsion systems. A preliminary study indicates that a system with 300 MW of fission power can achieve a gas exhaust velocity of 18,000 m/sec and a thrust of 10,000 Newtons utilizing a magnetohydrodynamic generator and accelerator. An experimental program is underway to examine the major mass and energy transfer issues.

  7. Low-mass fission detector for the fission neutron spectrum measurement

    SciTech Connect

    Wu, C Y; Henderson, R; Gostic, J; Haight, R C; Lee, H Y

    2010-10-20

    For the fission neutron spectrum measurement, the neutron energy is determined in a time-of-flight experiment by the time difference between the fission event and detection of the neutron. Therefore, the neutron energy resolution is directly determined by the time resolution of both neutron and fission detectors. For the fission detection, the detector needs not only a good timing response but also the tolerance of radiation damage and high {alpha}-decay rate. A parallel-plate avalanche counter (PPAC) has many advantages for the detection of heavy charged particles such as fission fragments. These include fast timing, resistance to radiation damage, and tolerance of high counting rate. A PPAC also can be tuned to be insensitive to particles, which is important for experiments with - emitting actinides. Therefore, a PPAC is an ideal detector for experiments requiring a fast and clean trigger for fission. In the following sections, the description will be given for the design and performance of a new low-mass PPAC for the fission-neutron spectrum measurements at LANL.

  8. Our 50-year odyssey with fission: Summary

    SciTech Connect

    Nix, J.R.

    1989-01-01

    On the occasion of this International Conference on Fifty Years Research in Nuclear Fission, we summarize our present understanding of the fission process and the challenges that lie ahead. The basic properties of fission arise from a delicate competition between disruptive Coulomb forces, cohesive nuclear forces, and fluctuating shell and pairing forces. These static forces are primarily responsible for such experimental phenomena as deformed ground-state nuclear shapes, fission into fragments of unequal size, sawtooth neutron yields, spontaneously fissioning isomers, broad resonances and narrow intermediate structure in fission cross sections, and cluster radioactivity. However, inertial and dissipative forces also play decisive roles in the dynamical evolution of a fissioning nucleus. The energy dissipated between the saddle and scission points is small for low initial excitation energy at the saddle point and increases with increasing excitation energy. At moderate excitation energies, the dissipation of collective energy into internal single-particle excitation energy proceeds largely through the interaction of nucleons with the mean field and with each other in the vicinity of the nuclear surface, as well as through the transfer of nucleons between the two portions of the evolving dumbell-like system. These unique dissipation mechanisms arise from the Pauli exclusion principle for fermions and the details of the nucleon-nucleon interaction, which make the mean free path of a nucleon near the Fermi surface at low excitation energy longer than the nuclear radius. With its inverse process of heavy-ion fusion reactions, fission continues to yield surprises in the study of large-amplitude collective nuclear motion. 87 refs., 12 figs.

  9. The fusion fission and quasi-fission processes in the reaction 48Ca + 208Pb at energies near the Coulomb barrier

    NASA Astrophysics Data System (ADS)

    Prokhorova, E. V.; Bogachev, A. A.; Itkis, M. G.; Itkis, I. M.; Knyazheva, G. N.; Kondratiev, N. A.; Kozulin, E. M.; Krupa, L.; Oganessian, Yu. Ts.; Pokrovsky, I. V.; Pashkevich, V. V.; Rusanov, A. Ya.

    2008-04-01

    Mass-energy distributions (MEDs) and capture-fission cross sections have been measured in the reaction 48Ca + 208Pb → 256No at the energies E=206-242 MeV using a double-arm time-of-flight spectrometer CORSET. It has been observed that MED of the fragments consists of two parts, namely, the classical fusion-fission process corresponding to the symmetric fission of 256No and quasi-fission "shoulders" corresponding to the light fragment masses ˜60-90 u and complimentary heavy fragment masses. The quasi-fission "shoulders" have a higher total kinetic energy (TKE) as compared with that expected for the classical fission. A mathematical formalism was employed for the MEDs fragment decomposition into fusion-fission and quasi-fission components. In the fusion-fission process a high-energy Super-Short mode has been discovered for the masses M=130-135 u and the TKE of ≈233 MeV.

  10. Realistic fission model and the r-process in neutron star mergers

    SciTech Connect

    Shibagaki, S.; Kajino, T.; Chiba, S.; Mathews, G. J.

    2014-05-09

    About half of heavy elements are considered to be produced by the rapid neutron-capture process, r-process. The neutron star merger is one of the viable candidates for the astrophysical site of r-process nucleosynthesis. Nuclear fission reactions play an important role in the r-process of neutron star mergers. However theoretical predictions about fission properties of neutron-rich nuclei have some uncertainties. Especially, their fission fragment distributions are totally unknown and the phenomenologically extrapolated distribution was often applied to nucleosynthesis calculations. In this study, we have carried out r-process nucleosynthesis calculations based upon new theoretical estimates of fission fragment distributions. We discuss the effects on the r-process in neutron star mergers from the nuclear fission of heavy neutron-rich actinide elements. We also discuss how variations in the fission fragment distributions affect the abundance pattern.

  11. Investigating Prompt Fission Neutron Emission from 235U(n,f) in the Resolved Resonance Region

    NASA Astrophysics Data System (ADS)

    Göök, Alf; Hambsch, Franz-Josef; Oberstedt, Stephan

    2016-03-01

    Investigations of prompt emission in fission is of importance in understanding the fission process in general and the sharing of excitation energy among the fission fragments in particular. Experimental activities at IRMM on prompt neutron emission from fission in response to OECD/NEA nuclear data requests is presented in this contribution. Main focus lies on currently on-going investigations of prompt neutron emission from the reaction 235U(n,f) in the region of the resolved resonances. For this reaction strong fluctuations of fission fragment mass distributions and mean total kinetic energy have been observed [Nucl. Phys. A 491, 56 (1989)] as a function of incident neutron energy in the resonance region. In addition fluctuations of prompt neutron multiplicities were also observed [Phys. Rev. C 13, 195 (1976)]. The goal of the present study is to verify the current knowledge of prompt neutron multiplicity fluctuations and to study correlations with fission fragment properties.

  12. Analusis by 252Cf plasma desorption mass spectrometry of Bordetella pertussis endotoxin after nitrous deamination

    NASA Astrophysics Data System (ADS)

    Deprun, C.; Karibian, D.; Caroff, M.

    1993-07-01

    Endotoxic lipopolysaccharides (LPSs) are the major components of Gram-negative bacterial outer membrane. Like many amphipathic molecules, they pose problems of heterogeneity, purity, solubility, and aggregation. Nevertheless, PDMS has recently have been applied to unmodified endotoxins composed of LPS having uip to five sugar units in their saccharide chain. The B. Pertussis LPSs, most of which have a dodecasaccharide domain, ahve been analysed by classical methods and the masses of the separate lipid and saccharide domains determined after rupture of the bond linking them. However, the acid treatment employed for these and most chemical analyses can also modify structures in the vicinity of the bond. In order to investigate this biologically-important region, the endotoxin was treated to nitrous deamination, which shortens the saccharide chain to five sugars, but preserves the acid-labile region of the LPS. The PDM spectrum of this derivative, which required new conditions for its desorption, confirmed the structure analysis and demonstrated the presence of at least four molecular species.

  13. General Description of Fission Observables: GEF Model Code

    NASA Astrophysics Data System (ADS)

    Schmidt, K.-H.; Jurado, B.; Amouroux, C.; Schmitt, C.

    2016-01-01

    The GEF ("GEneral description of Fission observables") model code is documented. It describes the observables for spontaneous fission, neutron-induced fission and, more generally, for fission of a compound nucleus from any other entrance channel, with given excitation energy and angular momentum. The GEF model is applicable for a wide range of isotopes from Z = 80 to Z = 112 and beyond, up to excitation energies of about 100 MeV. The results of the GEF model are compared with fission barriers, fission probabilities, fission-fragment mass- and nuclide distributions, isomeric ratios, total kinetic energies, and prompt-neutron and prompt-gamma yields and energy spectra from neutron-induced and spontaneous fission. Derived properties of delayed neutrons and decay heat are also considered. The GEF model is based on a general approach to nuclear fission that explains a great part of the complex appearance of fission observables on the basis of fundamental laws of physics and general properties of microscopic systems and mathematical objects. The topographic theorem is used to estimate the fission-barrier heights from theoretical macroscopic saddle-point and ground-state masses and experimental ground-state masses. Motivated by the theoretically predicted early localisation of nucleonic wave functions in a necked-in shape, the properties of the relevant fragment shells are extracted. These are used to determine the depths and the widths of the fission valleys corresponding to the different fission channels and to describe the fission-fragment distributions and deformations at scission by a statistical approach. A modified composite nuclear-level-density formula is proposed. It respects some features in the superfluid regime that are in accordance with new experimental findings and with theoretical expectations. These are a constant-temperature behaviour that is consistent with a considerably increased heat capacity and an increased pairing condensation energy that is

  14. Multimode approach to {sup 241}Am and {sup 237}Np fission induced by 660-MeV protons

    SciTech Connect

    Karapetyan, G. S. Balabekyan, A. R.; Demekhina, N. A.; Adam, J.

    2009-06-15

    The results obtained by measuring cross sections for the formation of fragments originating from {sup 241}Am and {sup 237}Np fission induced by 660-MeV protons are presented. The charge and mass distributions of fragments are analyzed within the multimode-fission model, symmetric and asymmetric fission channels being separated. The contributions of various fission components are estimated, and the fission cross sections for the {sup 241}Am and {sup 237}Np nuclei are calculated along with the fissilities of these nuclei.

  15. Toward an Automated Analysis of Slow Ions in Nuclear Track Emulsion

    NASA Astrophysics Data System (ADS)

    Mamatkulov, K. Z.; Kattabekov, R. R.; Ambrozova, I.; Artemenkov, D. A.; Bradnova, V.; Kamanin, D. V.; Majling, L.; Marey, A.; Ploc, O.; Rusakova, V. V.; Stanoeva, R.; Turek, K.; Zaitsev, A. A.; Zarubin, P. I.; Zarubina, I. G.

    Application of the nuclear track emulsion technique (NTE) in radioactivity and nuclear fission studies is discussed. It is suggested to use a HSP-1000 automated microscope for searching for a collinear cluster tri-partition of heavy nuclei implanted in NTE. Calibrations of α-particles and ion ranges in a novel NTE are carried out. Surface exposures of NTE samples to a 252Cf source started. Planar events containing fragments and long-range α-particles as well as fragment triples only are studied. NTE samples are calibrated by ions Kr and Xe of energy of 1.2 and 3 A MeV.

  16. A Time Projection Chamber for High Accuracy and Precision Fission Cross-Section Measurements

    SciTech Connect

    T. Hill; K. Jewell; M. Heffner; D. Carter; M. Cunningham; V. Riot; J. Ruz; S. Sangiorgio; B. Seilhan; L. Snyder; D. M. Asner; S. Stave; G. Tatishvili; L. Wood; R. G. Baker; J. L. Klay; R. Kudo; S. Barrett; J. King; M. Leonard; W. Loveland; L. Yao; C. Brune; S. Grimes; N. Kornilov; T. N. Massey; J. Bundgaard; D. L. Duke; U. Greife; U. Hager; E. Burgett; J. Deaven; V. Kleinrath; C. McGrath; B. Wendt; N. Hertel; D. Isenhower; N. Pickle; H. Qu; S. Sharma; R. T. Thornton; D. Tovwell; R. S. Towell; S.

    2014-09-01

    The fission Time Projection Chamber (fissionTPC) is a compact (15 cm diameter) two-chamber MICROMEGAS TPC designed to make precision cross-section measurements of neutron-induced fission. The actinide targets are placed on the central cathode and irradiated with a neutron beam that passes axially through the TPC inducing fission in the target. The 4p acceptance for fission fragments and complete charged particle track reconstruction are powerful features of the fissionTPC which will be used to measure fission cross-sections and examine the associated systematic errors. This paper provides a detailed description of the design requirements, the design solutions, and the initial performance of the fissionTPC.

  17. Microscopic Calculations of 240Pu Fission

    SciTech Connect

    Younes, W; Gogny, D

    2007-09-11

    Hartree-Fock-Bogoliubov calculations have been performed with the Gogny finite-range effective interaction for {sup 240}Pu out to scission, using a new code developed at LLNL. A first set of calculations was performed with constrained quadrupole moment along the path of most probable fission, assuming axial symmetry but allowing for the spontaneous breaking of reflection symmetry of the nucleus. At a quadrupole moment of 345 b, the nucleus was found to spontaneously scission into two fragments. A second set of calculations, with all nuclear moments up to hexadecapole constrained, was performed to approach the scission configuration in a controlled manner. Calculated energies, moments, and representative plots of the total nuclear density are shown. The present calculations serve as a proof-of-principle, a blueprint, and starting-point solutions for a planned series of more comprehensive calculations to map out a large set of scission configurations, and the associated fission-fragment properties.

  18. Experience with in-pile fission targets at LOHENGRIN

    NASA Astrophysics Data System (ADS)

    Köster, U.; Faust, H.; Materna, T.; Mathieu, L.

    2010-02-01

    The LOHENGRIN fission fragment separator uses actinide targets in a neutron flux of about 5×1014 neutrons/cm2/s in an in-pile position of the high-flux reactor of ILL Grenoble. For fission yield measurements relatively thin targets (tens of μg/cm2) are used, while for nuclear spectroscopy applications targets up to 1 mg/cm2 are employed. This leads to fission rates up to 5×1012/s. The targets are heated by the fission power in vacuum to temperatures of up to 1000C. The radiation damage caused by the fission fragments can reach 50 dpa (displacements per atom) per day, an extremely high value comparable to that caused by irradiation with intense heavy ion beams. Therefore the thick targets that were produced with different methods (painting, spray-painting, electrolysis and molecular plating) all suffer from a burnup that is much quicker than explainable by nuclear transmutation. We discuss physical effects responsible for this additional decrease in fission fragment rate and ways to improve the situation.

  19. Discovery of a new mode of nuclear fission

    SciTech Connect

    Hulet, E.K.; Wild, J.F.; Dougan, R.J.; Lougheed, R.W.; Landrum, J.H.; Dougan, A.D.; Schaedel, M.; Hahn, R.L.; Baisden, P.A.; Henderson, C.M.

    1986-01-01

    We measured the mass and kinetic-energy partitioning in the spontaneous fission of /sup 258/Fm, /sup 259/Md, /sup 260/Md, /sup 258/No, and /sup 260/(104). Surprisingly, these energy distributions were skewed upward or downward from the peak in each case, except for /sup 260/(104), indicating a composite of two energy distributions. We interpret this as a new mode of fission in which there is mixture of liquid-drop-like and fragment-shell-directed symmetric fission.

  20. Bimodal symmetric fission observed in the heaviest elements

    SciTech Connect

    Hulet, E.K.; Wild, J.F.; Dougan, R.J.; Lougheed, R.W.; Landrum, J.H.; Dougan, A.D.; Schadel, M.; Hahn, R.L.; Baisden, P.A.; Henderson, C.M.

    1986-01-27

    We measured the mass and kinetic-energy partitioning in the spontaneous fission of /sup 258/Fm, /sup 259/Md, /sup 260/Md, /sup 258/No, and /sup 260/(104). All fissioned with mass distributions that were symmetric. Total-kinetic-energy distributions peaked near either 200 or 235 MeV. Surprisingly, these energy distributions were skewed upward or downward from the peak in each case, except for /sup 260/(104), indicating a composite of two energy distributions. We interpret this as a mixture of liquid-drop-like and fragment-shell directed symmetric fission, although theory had not anticipated this phenomenon.

  1. The discovery and spontaneous fission properties of /sup 262/No

    SciTech Connect

    Lougheed, R.W.; Hulet, E.K.; Wild, J.F.; Moody, K.J.; Dougan, R.J.; Gannett, C.M.; Henderson, R.A.; Hoffman, D.C.; Lee, D.M.

    1989-04-19

    We have discovered /sup 262/No, as the electron capture daughter of /sup 262/Lr(t/sub 1/2/ = 216 m). This new isotope of nobelium decays by spontaneous fission with about a 5-ms half-life which is several orders of magnitude longer than recent theoretical estimates. We measured a sharply symmetric fission-fragment mass division and a bimodal total kinetic energy distribution; the high-energy symmetric-fission path was most abundant. /sup 262/No is the first nuclide with 160 neutrons to be discovered and is the closest to the N = 162 neutron subshell for which enhanced stability is predicted. 14 refs., 3 figs.

  2. Fissioning uranium plasmas and nuclear-pumped lasers

    NASA Technical Reports Server (NTRS)

    Schneider, R. T.; Thom, K.

    1975-01-01

    Current research into uranium plasmas, gaseous-core (cavity) reactors, and nuclear-pumped lasers is discussed. Basic properties of fissioning uranium plasmas are summarized together with potential space and terrestrial applications of gaseous-core reactors and nuclear-pumped lasers. Conditions for criticality of a uranium plasma are outlined, and it is shown that the nonequilibrium state and the optical thinness of a fissioning plasma can be exploited for the direct conversion of fission fragment energy into coherent light (i.e., for nuclear-pumped lasers). Successful demonstrations of nuclear-pumped lasers are described together with gaseous-fuel reactor experiments using uranium hexafluoride.

  3. Insights into nuclear structure and the fission process from spontaneous fission

    SciTech Connect

    Hamilton, J.H.; Butler-Moore, K.; Ramayya, A.V.

    1993-12-31

    The {gamma}-rays emitted following spontaneous and induced fission are rich sources of information about the structure of neutron-rich nuclei and about the fission process itself. The study of spontaneous fissioning isotopes with large Ge detector arrays are providing a wealth of such information as seen, for example, in recent reports. In this paper we present some of our most recent results on nuclear structure studies and conclusions on the fission process itself. In our work, we have employed in spontaneous fission, a triple gamma coincidence study for the first time and a high resolution, X-ray detector-{gamma}-coincidence study. These data provide powerful ways of separating the gamma rays which belong to a particular nucleus. The triple coincidence technique was used to uniquely identify the levels in {sup 136}Te and higher spin states in its N=84 isotones, {sup 138}Xe and {sup 140}Ba{sup 171}. Some other examples of the level structures observed in the low and high mass partners are presented, including a detailed analysis of the backbending of the moment of inertia in {sup 112,114,116}Pd. Finally, we present the first examples of how our analysis allows one to extract a detailed picture of the dependence of the angular momentum on the mass and atomic numbers of the fission fragments and of the long-sought neutron multiplicity distribution from zero-n to ten-n as a function of the charge and mass asymmetry.

  4. Transfer-induced fission in inverse kinematics: Impact on experimental and evaluated nuclear data bases

    NASA Astrophysics Data System (ADS)

    Farget, F.; Caamaño, M.; Ramos, D.; Rodrıguez-Tajes, C.; Schmidt, K.-H.; Audouin, L.; Benlliure, J.; Casarejos, E.; Clément, E.; Cortina, D.; Delaune, O.; Derkx, X.; Dijon, A.; Doré, D.; Fernández-Domınguez, B.; Gaudefroy, L.; Golabek, C.; Heinz, A.; Jurado, B.; Lemasson, A.; Paradela, C.; Roger, T.; Salsac, M. D.; Schmitt, C.

    2015-12-01

    Inverse kinematics is a new tool to study nuclear fission. Its main advantage is the possibility to measure with an unmatched resolution the atomic number of fission fragments, leading to new observables in the properties of fission-fragment distributions. In addition to the resolution improvement, the study of fission based on nuclear collisions in inverse kinematics beneficiates from a larger view with respect to the neutron-induced fission, as in a single experiment the number of fissioning systems and the excitation energy range are widden. With the use of spectrometers, mass and kinetic-energy distributions may now be investigated as a function of the proton and neutron number sharing. The production of fissioning nuclei in transfer reactions allows studying the isotopic yields of fission fragments as a function of the excitation energy. The higher excitation energy resulting in the fusion reaction leading to the compound nucleus 250Cf at an excitation energy of 45MeV is also presented. With the use of inverse kinematics, the charge polarisation of fragments at scission is now revealed with high precision, and it is shown that it cannot be neglected, even at higher excitation energies. In addition, the kinematical properties of the fragments inform on the deformation configuration at scission.

  5. Constraining the level density using fission of lead projectiles

    NASA Astrophysics Data System (ADS)

    Rodríguez-Sánchez, J. L.; Benlliure, J.; Álvarez-Pol, H.; Audouin, L.; Ayyad, Y.; Bélier, G.; Boutoux, G.; Casarejos, E.; Chatillon, A.; Cortina-Gil, D.; Gorbinet, T.; Heinz, A.; Kelić-Heil, A.; Laurent, B.; Martin, J.-F.; Paradela, C.; Pellereau, E.; Pietras, B.; Ramos, D.; Rodríguez-Tajes, C.; Rossi, D. M.; Simon, H.; Taïeb, J.; Vargas, J.; Voss, B.

    2015-10-01

    The nuclear level density is one of the main ingredients for the statistical description of the fission process. In this work, we propose to constrain the description of this parameter by using fission reactions induced by protons and light ions on 208Pb at high kinetic energies. The experiment was performed at GSI (Darmstadt), where the combined use of the inverse kinematics technique with an efficient detection setup allowed us to measure the atomic number of the two fission fragments in coincidence. This measurement permitted us to obtain with high precision the partial fission cross sections and the width of the charge distribution as a function of the atomic number of the fissioning system. These data and others previously measured, covering a large range in fissility, are compared to state-of-the-art calculations. The results reveal that total and partial fission cross sections cannot unambiguously constrain the level density at ground-state and saddle-point deformations and additional observables, such as the width of the charge distribution of the final fission fragments, are required.

  6. The Fission Barrier Landscape

    SciTech Connect

    Phair, L.; Moretto, L. G.

    2008-04-17

    Fission excitation functions have been measured for a chain of neighboring compound nuclei from {sup 207}Po to {sup 212}Po. We present a new analysis which provides a determination of the fission barriers and ground state shell effects with nearly spectroscopic accuracy. The accuracy achieved in this analysis may lead to a future detailed exploration of the saddle mass surface and its spectroscopy.

  7. Fission Spectrum Related Uncertainties

    SciTech Connect

    G. Aliberti; I. Kodeli; G. Palmiotti; M. Salvatores

    2007-10-01

    The paper presents a preliminary uncertainty analysis related to potential uncertainties on the fission spectrum data. Consistent results are shown for a reference fast reactor design configuration and for experimental thermal configurations. However the results obtained indicate the need for further analysis, in particular in terms of fission spectrum uncertainty data assessment.

  8. Fission gas detection system

    DOEpatents

    Colburn, Richard P.

    1985-01-01

    A device for collecting fission gas released by a failed fuel rod which device uses a filter to pass coolant but which filter blocks fission gas bubbles which cannot pass through the filter due to the surface tension of the bubble.

  9. Biomodal spontaneous fission

    SciTech Connect

    Hulet, E.K. )

    1989-09-26

    Investigations of mass and kinetic-energy distributions from spontaneous fission have been extended in recent years to an isotope of element 104 and, for half-lives, to an isotope of element 108. The results have been surprising in that spontaneous fission half-lives have turned out to be much longer than expected and mass and kinetic- energy distributions were found to abruptly shift away from those of the lighter actinides, showing two modes of fission. These new developments have caused a re-evaluation of our understanding of the fission process, bringing an even deeper appreciation of the role played by nuclear shell effects upon spontaneous fission properties. 16 refs., 10 figs.

  10. Feasibility of Colliding-beam fast-fission reactor via 238U80++238 U80+ --> 4 FF + 5n + 430 MeV beam with suppressed plutonium and direct conversion of fission fragment (FF) energy into electricity and/or Rocket propellant with high specific impulse

    NASA Astrophysics Data System (ADS)

    Maglich, Bogdan; Hester, Tim; Calsec Collaboration

    2015-10-01

    Uranium-uranium colliding beam experiment1, used fully ionized 238U92+ at energy 100GeV --> <-- 100 GeV, has measured total σ = 487 b. Reaction rate of colliding beams is proportional to neutron flux-squared. First functional Auto-Collider3-6, a compact Migma IV, 1 m in diameter, had self-colliding deuterons, D+, of 725 KeV --> <-- 725 KeV, resulting in copious production of T and 3He. U +U Autocollider``EXYDER'' will use strong-focusing magnet7, which would increase reaction rate by 104. 80 times ionized U ions accelerated through 3 MV accelerator, will collide beam 240 MeV --> <-- 240 MeV. Reaction is: 238U80+ +238 U80+ --> 4 FF + 5n + 430 MeV. Using a simple model1 fission σf ~ 100 b. Suppression of Pu by a factor of 106 will be achieved because NO thermal neutron fission can take place; only fast, 1-3 MeV, where σabs is negligible. Direct conversion of 95% of 430 MeV produced is carried by electrically charged FFs which are magnetically funneled for direct conversion of energy of FFs via electrostatic decelerators4,11. 90% of 930 MeV is electrically recoverable. Depending on the assumptions, we project electric _ power density production of 20 to 200 MWe m-3, equivalent to Thermal 1.3 - 13 GWthm-3. If one-half of unburned U is used for propulsion while rest powers system, heavy FF ion mass provides specific impulse Isp = 106 sec., 103 times higher than current rocket engines.

  11. Fission yield calculation using toy model based on Monte Carlo simulation

    SciTech Connect

    Jubaidah; Kurniadi, Rizal

    2015-09-30

    Toy model is a new approximation in predicting fission yield distribution. Toy model assumes nucleus as an elastic toy consist of marbles. The number of marbles represents the number of nucleons, A. This toy nucleus is able to imitate the real nucleus properties. In this research, the toy nucleons are only influenced by central force. A heavy toy nucleus induced by a toy nucleon will be split into two fragments. These two fission fragments are called fission yield. In this research, energy entanglement is neglected. Fission process in toy model is illustrated by two Gaussian curves intersecting each other. There are five Gaussian parameters used in this research. They are scission point of the two curves (R{sub c}), mean of left curve (μ{sub L}) and mean of right curve (μ{sub R}), deviation of left curve (σ{sub L}) and deviation of right curve (σ{sub R}). The fission yields distribution is analyses based on Monte Carlo simulation. The result shows that variation in σ or µ can significanly move the average frequency of asymmetry fission yields. This also varies the range of fission yields distribution probability. In addition, variation in iteration coefficient only change the frequency of fission yields. Monte Carlo simulation for fission yield calculation using toy model successfully indicates the same tendency with experiment results, where average of light fission yield is in the range of 90fission yield is in about 135

  12. Mitochondrial fragmentation in excitotoxicity requires ROCK activation.

    PubMed

    Martorell-Riera, Alejandro; Segarra-Mondejar, Marc; Reina, Manuel; Martínez-Estrada, Ofelia M; Soriano, Francesc X

    2015-01-01

    Mitochondria morphology constantly changes through fission and fusion processes that regulate mitochondrial function, and it therefore plays a prominent role in cellular homeostasis. Cell death progression is associated with mitochondrial fission. Fission is mediated by the mainly cytoplasmic Drp1, which is activated by different post-translational modifications and recruited to mitochondria to perform its function. Our research and other studies have shown that in the early moments of excitotoxic insult Drp1 must be nitrosylated to mediate mitochondrial fragmentation in neurons. Nonetheless, mitochondrial fission is a multistep process in which filamentous actin assembly/disassembly and myosin-mediated mitochondrial constriction play prominent roles. Here we establish that in addition to nitric oxide production, excitotoxicity-induced mitochondrial fragmentation also requires activation of the actomyosin regulator ROCK. Although ROCK1 has been shown to phosphorylate and activate Drp1, experiments using phosphor-mutant forms of Drp1 in primary cortical neurons indicate that in excitotoxic conditions, ROCK does not act directly on Drp1 to mediate fission, but may act on the actomyosin complex. Thus, these data indicate that a wider range of signaling pathways than those that target Drp1 are amenable to be inhibited to prevent mitochondrial fragmentation as therapeutic option. PMID:25789413

  13. Mitochondrial fragmentation in excitotoxicity requires ROCK activation.

    PubMed

    Martorell-Riera, Alejandro; Segarra-Mondejar, Marc; Reina, Manuel; Martínez-Estrada, Ofelia M; Soriano, Francesc X

    2015-01-01

    Mitochondria morphology constantly changes through fission and fusion processes that regulate mitochondrial function, and it therefore plays a prominent role in cellular homeostasis. Cell death progression is associated with mitochondrial fission. Fission is mediated by the mainly cytoplasmic Drp1, which is activated by different post-translational modifications and recruited to mitochondria to perform its function. Our research and other studies have shown that in the early moments of excitotoxic insult Drp1 must be nitrosylated to mediate mitochondrial fragmentation in neurons. Nonetheless, mitochondrial fission is a multistep process in which filamentous actin assembly/disassembly and myosin-mediated mitochondrial constriction play prominent roles. Here we establish that in addition to nitric oxide production, excitotoxicity-induced mitochondrial fragmentation also requires activation of the actomyosin regulator ROCK. Although ROCK1 has been shown to phosphorylate and activate Drp1, experiments using phosphor-mutant forms of Drp1 in primary cortical neurons indicate that in excitotoxic conditions, ROCK does not act directly on Drp1 to mediate fission, but may act on the actomyosin complex. Thus, these data indicate that a wider range of signaling pathways than those that target Drp1 are amenable to be inhibited to prevent mitochondrial fragmentation as therapeutic option.

  14. Ternary fission of 260No in collinear configuration

    NASA Astrophysics Data System (ADS)

    Ismail, M.; Seif, W. M.; Hashem, A. S.; Botros, M. M.; Abdul-Magead, I. A. M.

    2016-09-01

    We investigate the collinear ternary fission of the 260No isotope. The calculations are performed in the framework of the three cluster model for all possible accompanied light particles of even mass numbers A = 4 - 52. The folding nuclear and Coulomb interaction potentials are used, based on the M3Y-Reid nucleon-nucleon force for the nuclear part. The deformation of the involved fragments and their relative orientations with respect to each other inside the fissioning nuclei are considered. Among all possible fragmentation channels, the suggested most probable channels are indicated as the ones showing a peak in the Q-value and a local minimum in the fragmentation potential, with respect to the mass and charge asymmetries. The indicated favored fragmentation channels from the approximate spherical calculations and those obtained after considering the deformations of the produced fragments are discussed in detail. In addition to the preferred heavy fragments of closed shells, favored prolate ones of high deformations appear when the nuclear deformations are taken into account. Among indicated fifty six favored channels, a collinear ternary fission of the 260No isotope is indicated to be most favored through the fragmentation channels of 15058Ce+410Be+40100Zr,60152Nd+412Be+3896Sr,58150Ce+614C+3896Sr,58148Ce+616C+3896Sr,54140Xe+822O+4098Zr,42106Mo+1848Ar+42106Mo and 41104Nb+2052Ca+41104Nb.

  15. Nuclear fission of Fm isotopes

    SciTech Connect

    Asano, T.; Wada, T.; Ohta, M.; Chiba, S.

    2010-06-01

    Multi-modal fission has been systematically investigated for the series of isotopes of Fm and Cf. The multi-dimensional Langevin-type stochastic differential equation is used for the dynamical calculation. The primary fission mode changes from mass-asymmetric fission to mass-symmetric fission with the increase of neutron numbers for both Fm and Cf cases.

  16. The fissionTPC

    NASA Astrophysics Data System (ADS)

    Heffner, Mike

    2014-03-01

    A new instument to study fission, called the fission TPC, has been constructed to make high accuracy measurements of neutron induced fission cross-sections of the major actinides. Most of the cross sections have been measured over the last 60 years, although improvements in the accuracy of the data appear unlikely with the current technology. A potential breakthrough is the deployment of the Time Projection Chamber (TPC) which was developed within the particle physics community. The NIFFTE collaboration, a group of 7 universities and 4 national laboratories, has undertaken the task of building the first TPC for this purpose. In this talk I will present the fission TPC design, challenges that had to be addressed, and the performance of the detector.

  17. Fission Systems for Mars Exploration

    NASA Technical Reports Server (NTRS)

    Houts, Michael G.; Kim, T.; Dorney, D. J.; Swint, Marion Shayne

    2012-01-01

    Fission systems are used extensively on earth, and 34 such systems have flown in space. The energy density of fission is over 10 million times that of chemical reactions, giving fission the potential to eliminate energy density constraints for many space missions. Potential safety and operational concerns with fission systems are well understood, and strategies exist for affordably developing such systems. By enabling a power-rich environment and highly efficient propulsion, fission systems could enable affordable, sustainable exploration of Mars.

  18. Vector soliton fission.

    PubMed

    Lu, F; Lin, Q; Knox, W H; Agrawal, Govind P

    2004-10-29

    We investigate the vectorial nature of soliton fission in an isotropic nonlinear medium both theoretically and experimentally. As a specific example, we show that supercontinuum generation in a tapered fiber is extremely sensitive to the input state of polarization. Multiple vector solitons generated through soliton fission exhibit different states of elliptical polarization while emitting nonsolitonic radiation with complicated polarization features. Experiments performed with a tapered fiber agree with our theoretical description.

  19. Reducing Uncertainties in Neutron-Induced Fission Cross Sections Using a Time Projection Chamber

    NASA Astrophysics Data System (ADS)

    Manning, Brett; Niffte Collaboration

    2015-10-01

    Neutron-induced fission cross sections for actinides have long been of great interest for nuclear energy and stockpile stewardship. Traditionally, measurements were performed using fission chambers which provided limited information about the detected fission events. For the case of 239Pu(n,f), sensitivity studies have shown a need for more precise measurements. Recently the Neutron Induced Fission Fragment Tracking Experiment (NIFFTE) has developed the fission Time Projection Chamber (fissionTPC) to measure fission cross sections to better than 1% uncertainty by providing 3D tracking of fission fragments. The fissionTPC collected data to calculate the 239Pu(n,f) cross section at the Weapons Neutron Research facility at the Los Alamos Neutron Science Center during the 2014 run cycle. Preliminary analysis has been focused on studying particle identification and target and beam non-uniformities to reduce the uncertainty on the cross section. Additionally, the collaboration is investigating other systematic errors that could not be well studied with a traditional fission chamber. LA-UR-15-24906.

  20. The fundamental role of fission during r-process nucleosynthesis in neutron star mergers

    NASA Astrophysics Data System (ADS)

    Goriely, S.

    2015-02-01

    The rapid neutron-capture process, or r-process, is known to be of fundamental importance for explaining the origin of approximately half of the A > 60 stable nuclei observed in nature. Despite important efforts, the astrophysical site of the r-process remains unidentified. Here we study r-process nucleosynthesis in a material that is dynamically ejected by tidal and pressure forces during the merging of binary neutron stars. r-process nucleosynthesis during the decompression is known to be largely insensitive to the detailed astrophysical conditions because of efficient fission recycling, producing a composition that closely follows the solar r-abundance distribution for nuclei with mass numbers A > 140. Due to the important role played by fission in such a scenario, the impact of fission is carefully analyzed. We consider different state-of-the-art global models for the determination of the fission paths, nuclear level densities at the fission saddle points and fission fragment distributions. Based on such models, the sensitivity of the calculated r-process abundance distribution is studied. The fission path is found to strongly affect the region of heavy nuclei responsible for the fission recycling, while the fission fragment distribution of nuclei along the A ≃ 278 isobars defines the abundance pattern of nuclei produced in the 110 ≲ A ≲ 170 region. The late capture of prompt fission neutrons is also shown to affect the abundance distribution, and in particular the shape of the third r-process peak around A ≃ 195.

  1. Electron-capture delayed fission properties of {sup 242}Es

    SciTech Connect

    Shaughnessy, D. A.; Adams, J. L.

    2000-04-01

    Electron-capture delayed fission of {sup 242}Es produced via the {sup 233}U({sup 14}N,5n){sup 242}Es reaction at 87 MeV (on target) was observed to decay with a half-life of 11{+-}3 s, consistent with the reported {alpha}-decay half-life of {sup 242}Es of 16{sub -4}{sup +6} s. The mass-yield distribution of the fission fragments is highly asymmetric. The average pre-neutron emission total kinetic energy of the fragments was measured to be 183{+-}18 MeV. Based on the ratio of the measured number of fission events to the measured number of {alpha} decays from the electron-capture daughter {sup 242}Cf (100% {alpha} branch), the probability of delayed fission was determined to be 0.006{+-}0.002. This value for the delayed fission probability fits the experimental trend of increasing delayed fission probability with increasing Q value for electron capture. (c) 2000 The American Physical Society.

  2. Event-by-Event Simulation of Induced Fission

    SciTech Connect

    Vogt, Ramona; Randrup, Joergen

    2008-04-17

    We are developing a novel code that treats induced fission by statistical (or Monte-Carlo) simulation of individual decay chains. After its initial excitation, the fissionable compound nucleus may either de-excite by evaporation or undergo binary fission into a large number of fission channels each with different energetics involving both energy dissipation and deformed scission pre-fragments. After separation and Coulomb acceleration, each fission fragment undergoes a succession of individual (neutron) evaporations, leading to two bound but still excited fission products (that may further decay electromagnetically and, ultimately, weakly), as well as typically several neutrons. (The inclusion of other possible ejectiles is planned.) This kind of approach makes it possible to study more detailed observables than could be addressed with previous treatments which have tended to focus on average quantities. In particular, any type of correlation observable can readily be extracted from a generated set of events. With a view towards making the code practically useful in a variety of applications, emphasis is being put on making it numerically efficient so that large event samples can be generated quickly. In its present form, the code can generate one million full events in about 12 seconds on a MacBook laptop computer. The development of this qualitatively new tool is still at an early stage and quantitative reproduction of existing data should not be expected until a number of detailed refinement have been implemented.

  3. The Impact of Fission on R-Process Calculations

    NASA Astrophysics Data System (ADS)

    Eichler, M.; Arcones, A.; Käppeli, R.; Korobkin, O.; Liebendörfer, M.; Martinez-Pinedo, G.; Panov, I. V.; Rauscher, T.; Rosswog, S.; Thielemann, F.-K.; Winteler, C.

    2016-01-01

    We have performed r-process calculations in neutron star mergers (NSM) and jets of magnetohydrodynamically driven (MHD) supernovae. In these very neutron-rich environments the fission model of heavy nuclei has an impact on the shape of the final abundance distribution and the second r-process peak in particular. We have studied the effect of different fission fragment mass distribution models in calculations of low-Ye ejecta, ranging from a simple parametrization to extensive statistical treatments (ABLA07). The r-process path ends when it reaches an area in the nuclear chart where fission dominates over further neutron captures. The position of this point is determined by the fission barriers and the neutron separation energies of the nuclei involved. As these values both depend on the choice of the nuclear mass model, so does the r-process path. Here we present calculations using the FRDM (Finite Range Droplet Model) and the ETFSI (Extended Thomas Fermi with Strutinsky Integral) mass model with the related TF and ETFSI fission barrier predictions. Utilizing sophisticated fission fragment distribution leads to a highly improved abundance distribution.

  4. Energy Correlation of Prompt Fission Neutrons

    NASA Astrophysics Data System (ADS)

    Elter, Zs.; Pázsit, I.

    2016-03-01

    In all cases where neutron fluctuations in a branching process (such as in multiplicity measurements) are treated in an energy dependent description, the energy correlations of the branching itself (energy correlations of the fission neutrons) need to be known. To date, these are not known from experiments. Such correlations can be theoretically and numerically derived by modelling the details of the fission process. It was suggested earlier that the fact that the prompt neutrons are emitted from the moving fission targets, will influence their energy and angular distributions in the lab system, which possibly induces correlations. In this paper the influence of the neutron emission process from the moving targets on the energy correlations is investigated analytically and via numerical simulations. It is shown that the correlations are generated by the random energy and direction distributions of the fission fragments. Analytical formulas are derived for the two-point energy distributions, and quantitative results are obtained by Monte-Carlo simulations. The results lend insight into the character of the two-point distributions, and give quantitative estimates of the energy correlations, which are generally small.

  5. Studies of fission hindrance in hot nuclei

    SciTech Connect

    Back, B.B.; Blumenthal, D.J.; Davids, C.N.

    1995-06-01

    The study of dissipation in hot nuclear systems is a subject of great current interest. Different experimental techniques and observables have recently been utilized which axe sensitive to the dissipation in large-scale shape rearrangements, such as those encountered in heavy-ion fusion, fission and quasifission reactions. To study the dynamical shape evolution of hot nuclear systems it is necessary to measure properties (or processes) that are sensitive to the time-scale on which these shape changes occur. Several methods, such as the emission of prescission particles (n, p and {alpha}) and {gamma}-rays, have been used to study the fission time-scale in relation to these (well known) decay processes. Recently it has also been pointed out that measurements of the evaporation residue cross section, which are very sensitive to the competition between particle emission and fission, probe the fission time-scale. This paper will present recent studies of the evaporation residue cross section in the {sup 32}S+{sup 184} system carried out at the ATLAS Fragment Mass Analyzer, including the methods for obtaining absolute cross sections.

  6. Singlet exciton fission photovoltaics.

    PubMed

    Lee, Jiye; Jadhav, Priya; Reusswig, Philip D; Yost, Shane R; Thompson, Nicholas J; Congreve, Daniel N; Hontz, Eric; Van Voorhis, Troy; Baldo, Marc A

    2013-06-18

    Singlet exciton fission, a process that generates two excitons from a single photon, is perhaps the most efficient of the various multiexciton-generation processes studied to date, offering the potential to increase the efficiency of solar devices. But its unique characteristic, splitting a photogenerated singlet exciton into two dark triplet states, means that the empty absorption region between the singlet and triplet excitons must be filled by adding another material that captures low-energy photons. This has required the development of specialized device architectures. In this Account, we review work to develop devices that harness the theoretical benefits of singlet exciton fission. First, we discuss singlet fission in the archetypal material, pentacene. Pentacene-based photovoltaic devices typically show high external and internal quantum efficiencies. They have enabled researchers to characterize fission, including yield and the impact of competing loss processes, within functional devices. We review in situ probes of singlet fission that modulate the photocurrent using a magnetic field. We also summarize studies of the dissociation of triplet excitons into charge at the pentacene-buckyball (C60) donor-acceptor interface. Multiple independent measurements confirm that pentacene triplet excitons can dissociate at the C60 interface despite their relatively low energy. Because triplet excitons produced by singlet fission each have no more than half the energy of the original photoexcitation, they limit the potential open circuit voltage within a solar cell. Thus, if singlet fission is to increase the overall efficiency of a solar cell and not just double the photocurrent at the cost of halving the voltage, it is necessary to also harvest photons in the absorption gap between the singlet and triplet energies of the singlet fission material. We review two device architectures that attempt this using long-wavelength materials: a three-layer structure that uses

  7. A compensated fission detector based on photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Petit, M.; Ethvignot, T.; Granier, T.; Haight, R. C.; O'Donnell, J. M.; Rochman, D.; Wender, S. A.; Bond, E. M.; Bredeweg, T. A.; Vieira, D. J.; Wilhelmy, J. B.; Danon, Y.

    2005-12-01

    Standard techniques of event-by-event detection of fission may fail when operated in high γ-ray or particle radiation environments. This is the case within the 800 MeV proton-driven lead slowing-down neutron spectrometer at LANSCE where standard fission detectors are found to be inoperable for microseconds to milliseconds after each proton pulse. To overcome this problem, a simple fission fragment detector based on compensated photovoltaic cells has been developed. The compensated detector has lower susceptibility to the strong γ-flash and can recover much faster than an uncompensated detector. This detector is well adapted to applications involving the detection of fission in regions where high intensity γ-ray and/or particle radiation fields exist.

  8. Dynamical effects in fission investigated at high excitation energy

    NASA Astrophysics Data System (ADS)

    Benlliure, J.

    2016-05-01

    The experimental techniques used for the investigation of nuclear fission have progressed considerably during the last decade. Most of this progress is based on the use of the inverse kinematics technique allowing for the first time the complete isotopic and kinematic characterization of both fission fragments. These measurements make possible to characterize the fissioning system at saddle and at scission, and can be used to benchmark fission model calculations. One of the important ingredients in transport models describing the dynamics of the process is the dissipation parameter, governing the coupling between intrinsic and collective degrees of freedom. Recent experiments got access to the magnitude of this parameter and could also investigate its dependence in temperature and deformation.

  9. Cold fission description with constant and varying mass asymmetries

    NASA Astrophysics Data System (ADS)

    Duarte, S. B.; Rodríguez, O.; Tavares, O. A. P.; Gonçalves, M.; García, F.; Guzmán, F.

    1998-05-01

    Different descriptions for varying the mass asymmetry in the fragmentation process are used to calculate the cold fission barrier penetrability. The relevance of the appropriate choice for both the description of the prescission phase and inertia coefficient to unify alpha decay, cluster radioactivity, and spontaneous cold fission processes in the same theoretical framework is explicitly shown. We calculate the half-life of all possible partition modes of nuclei of A>200 following the most recent Mass Table by Audi and Wapstra. It is shown that if one uses the description in which the mass asymmetry is maintained constant during the fragmentation process, the experimental half-life values and mass yield of 234U cold fission are satisfactorily reproduced.

  10. β -delayed fission and α decay of 196At

    NASA Astrophysics Data System (ADS)

    Truesdale, V. L.; Andreyev, A. N.; Ghys, L.; Huyse, M.; Van Duppen, P.; Sels, S.; Andel, B.; Antalic, S.; Barzakh, A.; Capponi, L.; Cocolios, T. E.; Derkx, X.; De Witte, H.; Elseviers, J.; Fedorov, D. V.; Fedosseev, V. N.; Heßberger, F. P.; Kalaninová, Z.; Köster, U.; Lane, J. F. W.; Liberati, V.; Lynch, K. M.; Marsh, B. A.; Mitsuoka, S.; Nagame, Y.; Nishio, K.; Ota, S.; Pauwels, D.; Popescu, L.; Radulov, D.; Rapisarda, E.; Rothe, S.; Sandhu, K.; Seliverstov, M. D.; Sjödin, A. M.; Van Beveren, C.; Van den Bergh, P.; Wakabayashi, Y.

    2016-09-01

    A nuclear-decay spectroscopy study of the neutron-deficient isotope 196At is reported where an isotopically pure beam was produced using the selective Resonance Ionization Laser Ion Source and On-Line Isotope Mass Separator (CERN). The fine-structure α decay of 196At allowed the low-energy excited states in the daughter nucleus 192Bi to be investigated. A β -delayed fission study of 196At was also performed. A mixture of symmetric and asymmetric fission-fragment mass distributions of the daughter isotope 196Po (populated by β decay of 196At) was deduced based on the measured fission-fragment energies. A β DF probability Pβ DF(196At) =9 (1 ) ×10-5 was determined.

  11. Fission Product Yield Study of 235U, 238U and 239Pu Using Dual-Fission Ionization Chambers

    NASA Astrophysics Data System (ADS)

    Bhatia, C.; Fallin, B.; Howell, C.; Tornow, W.; Gooden, M.; Kelley, J.; Arnold, C.; Bond, E.; Bredeweg, T.; Fowler, M.; Moody, W.; Rundberg, R.; Rusev, G.; Vieira, D.; Wilhelmy, J.; Becker, J.; Macri, R.; Ryan, C.; Sheets, S.; Stoyer, M.; Tonchev, A.

    2014-05-01

    To resolve long-standing differences between LANL and LLNL regarding the correct fission basis for analysis of nuclear test data [M.B. Chadwick et al., Nucl. Data Sheets 111, 2891 (2010); H. Selby et al., Nucl. Data Sheets 111, 2891 (2010)], a collaboration between TUNL/LANL/LLNL has been established to perform high-precision measurements of neutron induced fission product yields. The main goal is to make a definitive statement about the energy dependence of the fission yields to an accuracy better than 2-3% between 1 and 15 MeV, where experimental data are very scarce. At TUNL, we have completed the design, fabrication and testing of three dual-fission chambers dedicated to 235U, 238U, and 239Pu. The dual-fission chambers were used to make measurements of the fission product activity relative to the total fission rate, as well as for high-precision absolute fission yield measurements. The activation method was employed, utilizing the mono-energetic neutron beams available at TUNL. Neutrons of 4.6, 9.0, and 14.5 MeV were produced via the 2H(d,n)3He reaction, and for neutrons at 14.8 MeV, the 3H(d,n)4He reaction was used. After activation, the induced γ-ray activity of the fission products was measured for two months using high-resolution HPGe detectors in a low-background environment. Results for the yield of seven fission fragments of 235U, 238U, and 239Pu and a comparison to available data at other energies are reported. For the first time results are available for neutron energies between 2 and 14 MeV.

  12. Nuclear fission of neutron-deficient protactinium nuclides

    SciTech Connect

    Nishinaka, I.; Nagame, Y.; Tsukada, K.; Ikezoe, H.; Sueki, K.; Nakahara, H.; Tanikawa, M.; Ohtsuki, T.

    1997-08-01

    Fragment velocity, kinetic energy, mass yield, and element yield distributions in the fission of neutron-deficient Pa isotopes produced in the reactions of {sup 16}O and {sup 18}O on {sup 209}Bi have been measured at incident beam energies near and above the Coulomb barriers by the time-of-flight and radiochemical methods. An asymmetric mass-division component has been observed. Measured fission cross sections were compared with the results of statistical model calculations which take into account two fission barrier heights for symmetric and asymmetric yields. The fission barrier height deduced for the asymmetric fission is found slightly lower than that for the symmetric one. The difference between the two barrier heights in the fission of the present protactinium nuclides (N{approximately}135) is considerably smaller than that in the neutron-rich nuclide of {sup 233}Pa (N{approximately}142), indicating that the difference sensitively depends on the neutron number of the fissioning nuclide. {copyright} {ital 1997} {ital The American Physical Society}

  13. New fission valley for /sup 258/Fm and nuclei beyond

    SciTech Connect

    Moeller, P.; Nix, J.R.; Swiatecki, W.J.

    1986-01-01

    Experimental results on the fission properties of nuclei close to /sup 264/Fm show sudden and large changes with a change of only one or two neutrons or protons. The nucleus /sup 258/Fm, for instance, undergoes symmetric fission with a half-life of about 0.4 ms and a kinetic energy peaked at about 235 MeV whereas /sup 256/Fm undergoes asymmetric fission with a half-life of about 3 h and a kinetic energy peaked at about 200 MeV. Qualitatively, these sudden changes hve been postulated to be due to the emergence of fragment shells in symmetric fission products close to /sup 132/Sn. A quantitative calculation that shows where high-kinetic-energy symmetric fission occurs and why it is associated with a sudden and large decrease in fission half-lives. The study is based on calculations of potential-energy surfaces in the macroscopic-microscopic model and a semi-empirical model for the nuclear inertia. The implications of the new fission valley on the stability of the heaviest elements is discussed. 33 refs., 12 figs.

  14. Unified description of fission in fusion and spallation reactions

    SciTech Connect

    Mancusi, Davide; Charity, Robert J.; Cugnon, Joseph

    2010-10-15

    We present a statistical-model description of fission, in the framework of compound-nucleus decay, which is found to simultaneously reproduce data from both heavy-ion-induced fusion reactions and proton-induced spallation reactions at around 1 GeV. For the spallation reactions, the initial compound-nucleus population is predicted by the Liege intranuclear cascade model. We are able to reproduce experimental fission probabilities and fission-fragment mass distributions in both reactions types with the same parameter sets. However, no unique parameter set was obtained for the fission probability. The introduction of fission transients can be offset by an increase of the ratio of level-density parameters for the saddle-point and ground-state configurations. Changes to the finite-range fission barriers could be offset by a scaling of the Bohr-Wheeler decay width as predicted by Kramers. The parameter sets presented allow accurate prediction of fission probabilities for excitation energies up to 300 MeV and spins up to 60 ({h_bar}/2{pi}).

  15. Shape trends and triaxiality in neutron-rich odd-mass Y and Nbisotopes

    SciTech Connect

    Luo, Y.X.; Rasmussen, J.O.; Gelberg, A.; Stefanescu, I.; Hamilton, J.H.; Ramayya, A.V.; Hwang, J.K.; Zhu, S.J.; Gore, P.M.; Fong,D.; Jones, E.F.; Wu, S.C.; Lee, I.Y.; Ginter, T.N.; Ma, W.C.; Ter-Akopian, G.M.; Daniel, A.V.; Stoyer, M.A.; Donangelo, R.

    2004-09-28

    New level schemes of Y and Nb isotopes are proposed based on measurements of prompt gamma rays from 252Cf fission at Gammasphere. Shape trends regarding triaxiality and quadrupole deformations are studied.

  16. Thermal fission rates with temperature dependent fission barriers

    NASA Astrophysics Data System (ADS)

    Zhu, Yi; Pei, J. C.

    2016-08-01

    Background: The fission processes of thermal excited nuclei are conventionally studied by statistical models which rely on inputs of phenomenological level densities and potential barriers. Therefore the microscopic descriptions of spontaneous fission and induced fission are very desirable for a unified understanding of various fission processes. Purpose: We propose to study the fission rates, at both low and high temperatures, with microscopically calculated temperature-dependent fission barriers and collective mass parameters. Methods: The fission barriers are calculated by the finite-temperature Skyrme-Hartree-Fock+BCS method. The mass parameters are calculated by the temperature-dependent cranking approximation. The thermal fission rates can be obtained by the imaginary free energy approach at all temperatures, in which fission barriers are naturally temperature dependent. The fission at low temperatures can be described mainly as a barrier-tunneling process. While the fission at high temperatures has to incorporate the reflection above barriers. Results: Our results of spontaneous fission rates reasonably agree with other studies and experiments. The temperature dependencies of fission barrier heights and curvatures have been discussed. The temperature dependent behaviors of mass parameters have also been discussed. The thermal fission rates from low to high temperatures with a smooth connection have been given by different approaches. Conclusions: Since the temperature dependencies of fission barrier heights and curvatures, and the mass parameters can vary rapidly for different nuclei, the microscopic descriptions of thermal fission rates are very valuable. Our studies without free parameters provide a consistent picture to study various fissions such as that in fast-neutron reactors, astrophysical environments, and fusion reactions for superheavy nuclei.

  17. Magma Fragmentation

    NASA Astrophysics Data System (ADS)

    Gonnermann, Helge M.

    2015-05-01

    Magma fragmentation is the breakup of a continuous volume of molten rock into discrete pieces, called pyroclasts. Because magma contains bubbles of compressible magmatic volatiles, decompression of low-viscosity magma leads to rapid expansion. The magma is torn into fragments, as it is stretched into hydrodynamically unstable sheets and filaments. If the magma is highly viscous, resistance to bubble growth will instead lead to excess gas pressure and the magma will deform viscoelastically by fracturing like a glassy solid, resulting in the formation of a violently expanding gas-pyroclast mixture. In either case, fragmentation represents the conversion of potential energy into the surface energy of the newly created fragments and the kinetic energy of the expanding gas-pyroclast mixture. If magma comes into contact with external water, the conversion of thermal energy will vaporize water and quench magma at the melt-water interface, thus creating dynamic stresses that cause fragmentation and the release of kinetic energy. Lastly, shear deformation of highly viscous magma may cause brittle fractures and release seismic energy.

  18. Fission properties of the 1. 5-s spontaneous fission activity produced in bombardmentof /sup 248/Cm with /sup 18/O

    SciTech Connect

    Hoffman, D.C.; Lee, D.; Ghiorso, A.; Nurmia, M.J.; Aleklett, K.; Leino, M.

    1981-08-01

    We have measured the mass and kinetic-energy distributions of fragments from the spontaneous fission of a 1.5-s activity produced in bombardments of /sup 248/Cm with 95-MeV /sup 18/O ions. Its spontaneous fission decay exhibits a very symmetric, narrow (full width at half maximum = 12 mass units) mass distribution, a very high total kinetic energy of 234 +- 2 MeV, and increasing total kinetic energy with increasingly symmetric mass division. Based on its half-life and the similarity of its fission properties to the unique fission properties so far only observed for /sup 258/Fm and /sup 259/Fm, the most likely assignment of this activity is to the known /sup 259/Fm. However, assignment to some as yet undiscovered neutron-rich heavy element isotope such as /sup 260/Md cannot be unequivocally excluded.

  19. Microscopic theory of nuclear fission: a review

    NASA Astrophysics Data System (ADS)

    Schunck, N.; Robledo, L. M.

    2016-11-01

    This article reviews how nuclear fission is described within nuclear density functional theory. A distinction should be made between spontaneous fission, where half-lives are the main observables and quantum tunnelling the essential concept, and induced fission, where the focus is on fragment properties and explicitly time-dependent approaches are often invoked. Overall, the cornerstone of the density functional theory approach to fission is the energy density functional formalism. The basic tenets of this method, including some well-known tools such as the Hartree–Fock–Bogoliubov (HFB) theory, effective two-body nuclear potentials such as the Skyrme and Gogny force, finite-temperature extensions and beyond mean-field corrections, are presented succinctly. The energy density functional approach is often combined with the hypothesis that the time-scale of the large amplitude collective motion driving the system to fission is slow compared to typical time-scales of nucleons inside the nucleus. In practice, this hypothesis of adiabaticity is implemented by introducing (a few) collective variables and mapping out the many-body Schrödinger equation into a collective Schrödinger-like equation for the nuclear wave-packet. The region of the collective space where the system transitions from one nucleus to two (or more) fragments defines what are called the scission configurations. The inertia tensor that enters the kinetic energy term of the collective Schrödinger-like equation is one of the most essential ingredients of the theory, since it includes the response of the system to small changes in the collective variables. For this reason, the two main approximations used to compute this inertia tensor, the adiabatic time-dependent HFB and the generator coordinate method, are presented in detail, both in their general formulation and in their most common approximations. The collective inertia tensor enters also the Wentzel–Kramers–Brillouin (WKB) formula used to

  20. Kinetic energy deficit in the symmetric fission of /sup 259/Md. [Light particle emission in /sup 256/Fm fission

    SciTech Connect

    Hulet, E.K.; Wild, J.F.; Lougheed, R.W.; Baisden, P.A.; Dougan, R.J.; Mustafa, M.G.

    1980-10-01

    The fragment energies of about 725 coincidence events have now been observed in the spontaneous fission (SF) decay of 105-min /sup 259/Md since its discovery in 1977. The fission of /sup 259/Md is characterized by a symmetric mass distribution, similar to those of /sup 258/Fm and /sup 259/Fm, but with a broad total kinetic energy (anti TKE) distribution which peaks at about 195 MeV, in contrast to those of /sup 258/Fm and /sup 259/Fm, for which the anti TKE is about 240 MeV. This kinetic energy deficit, approx. 40 MeV, has been postulated to be due to the emission of hydrogen-like particles by /sup 259/Md at the scission point in a large fraction of the fissions, leaving the residual fissioning nucleus with 100 protons. The residual nucleus would then be able to divide into two ultrastable tin-like fission fragments, but with less kinetic energy than that observed in the SF of /sup 258/Fm and /sup 259/Fm, because of binding-energy losses and a reduction in the Coulomb repulsion of the major fragments. To test this hypothesis, counter-telescope experiments aimed at detecting and identifying these light particles were performed. In 439 SF events 3 + 3 protons of the appropriate energy were observed, too few to account for the kinetic energy deficit in the fission of /sup 259/Md. There seems to be no explanation for this problem within the framework of current fission theory. These results are discussed along with preliminary measurements of light-particle emission in the SF of /sup 256/Fm. 5 figures.

  1. Fission cross-sections, prompt fission neutron and γ-ray emission in request for nuclear applications

    NASA Astrophysics Data System (ADS)

    Hambsch, F.-J.; Salvador-Castiñeira, P.; Oberstedt, S.; Göök, A.; Billnert, R.

    2016-06-01

    In recent years JRC-IRMM has been investigating fission cross-sections of 240,242Pu in the fast-neutron energy range relevant for innovative reactor systems and requested in the High Priority Request List (HPRL) of the OECD/Nuclear Energy Agency (NEA). In addition to that, prompt neutron multiplicities are being investigated for the major isotopes 235U, 239Pu in the neutron-resonance region using a newly developed scintillation detector array (SCINTIA) and an innovative modification of the Frisch-grid ionisation chamber for fission-fragment detection. These data are highly relevant for improved neutron data evaluation and requested by the OECD/Working Party on Evaluation Cooperation (WPEC). Thirdly, also prompt fission γ-ray emission is investigated using highly efficient lanthanide-halide detectors with superior timing resolution. Again, those data are requested in the HPRL for major actinides to solve open questions on an under-prediction of decay heat in nuclear reactors. The information on prompt fission neutron and γ-ray emission is crucial for benchmarking nuclear models to study the de-excitation process of neutron-rich fission fragments. Information on γ-ray emission probabilities is also useful in decommissioning exercises on damaged nuclear power plants like Fukushima Daiichi to which JRC-IRMM is contributing. The results on the 240,242Pu fission cross section, 235U prompt neutron multiplicity in the resonance region and correlations with fission fragments and prompt γ-ray emission for several isotopes will be presented and put into perspective.

  2. Prompt muon-induced fission: A probe for nuclear friction in large-amplitude collective motion

    SciTech Connect

    Oberacker, V.E.; Umar, A.S.; Wells, J.C.; Strayer, M.R.; Maruhn, J.A.; Reinhard, P.G.

    1998-01-01

    Excited muonic atoms in the actinide region may induce prompt fission by inverse internal conversion, i.e. the excitation energy of the muonic atom is transferred to the nucleus. The authors solve the time dependent Dirac equation for the muonic spinor wave function in the Coulomb field of the fissioning nucleus on a 3-dimensional lattice and demonstrate that the muon attachment probability to the light fission fragment is a measure of the nuclear energy dissipation between the outer fission barrier and the scission point.

  3. FREYA-a new Monte Carlo code for improved modeling of fission chains

    SciTech Connect

    Hagmann, C A; Randrup, J; Vogt, R L

    2012-06-12

    A new simulation capability for modeling of individual fission events and chains and the transport of fission products in materials is presented. FREYA ( Fission Yield Event Yield Algorithm ) is a Monte Carlo code for generating fission events providing correlated kinematic information for prompt neutrons, gammas, and fragments. As a standalone code, FREYA calculates quantities such as multiplicity-energy, angular, and gamma-neutron energy sharing correlations. To study materials with multiplication, shielding effects, and detectors, we have integrated FREYA into the general purpose Monte Carlo code MCNP. This new tool will allow more accurate modeling of detector responses including correlations and the development of SNM detectors with increased sensitivity.

  4. Prompt neutron emission from the spontaneous fission of sup 260 Md

    SciTech Connect

    Wild, J.F.; van Aarle, J.; Westmeier, W.; Lougheed, R.W.; Hulet, E.K.; Moody, K.J.; Dougan, R.J.; Koop, E.; Glaser, R.E.; Brandt, R.; Patzelt, P. Philipps University, D-3550, Marburg an der Lahn, )

    1990-02-01

    We have made the first measurement of the number of neutrons emitted from the spontaneous fission of a nuclide in which very high fragment energies dominate the fission process. In bombardments of {sup 254}Es, we produced a large sample of 28-d {sup 260}Md, which was neutron counted in a 1-m-diameter spherical tank containing a Gd-doped scintillator solution. The average number of neutrons emitted per fission is only 2.58{plus minus}0.11, substantially less than for other actinides. A linear dependence of neutron multiplicity on fragment-excitation energy is observed to the highest values of total kinetic energy.

  5. Transition from Asymmetric to Symmetric Fission in the 235U(n,f) Reaction

    SciTech Connect

    Younes, W; Becker, J A; Bernstein, L A; Garrett, P E; McGrath, C A; McNabb, D P; Nelson, R O; Johns, G D; Wilburn, W S; Drake, D M

    2001-07-19

    Prompt {gamma} rays from the neutron-induced fission of {sup 235}U have been studied using the GEANIE spectrometer situated at the LANSCE/WNR ''white'' neutron facility. Gamma-ray production cross sections for 29 ground-state-band transitions in 18 even-even fission fragments were obtained as a function of incident neutron energy, using the time-of-flight technique. Independent yields were deduced from these cross sections and fitted with standard formulations of the fragment charge and mass distributions to study the transition from asymmetric to symmetric fission. The results are interpreted in the context of the disappearance of shell structure at high excitation energies.

  6. Shell effects in fission, quasifission and multinucleon transfer reaction

    NASA Astrophysics Data System (ADS)

    Kozulin, E. M.; Knyazheva, G. N.; Itkis, I. M.; Kozulina, N. I.; Loktev, T. A.; Novikov, K. V.; Harca, I.

    2014-05-01

    Results of the study of mass-energy distributions of binary fragments for a wide range of nuclei with Z= 82-122 produced in reactions of ions located between 22Ne and 136Xe at energies close and below the Coulomb barrier are reported. The role of the shell effects, the influence of the entrance channel asymmetry and the deformations of colliding nuclei on the mechanism of the fusion-fission, quasifission and multinucleon transfer reactions are discussed. The observed peculiarities of the mass and energy distributions of reaction fragments are determined by the shell structure of the formed fragments. Special attention is paid on the symmetric fragment features in order to clarify the origin of these fragments (fission or quasifission). The influence of shell effects on the fragment yield in quasifission and multinucleon transfer reactions is considered. It is noted that the major part of the asymmetric quasifission fragments peaks around the region of the Z=82 and N=126 (double magic lead) and Z=28 and N=50 shells; moreover the maximum of the yield of the quasifission component is a mixing between all these shells. Hence, shell effects are everywhere present and determine the basic characteristics of fragment mass distributions.

  7. Fission track dating of kimberlitic zircons

    USGS Publications Warehouse

    Haggerty, S.E.; Raber, E.; Naeser, C.W.

    1983-01-01

    The only reliable method for dating kimberlites at present is the lengthy and specialized hydrothermal procedure that extracts 206Pb and 238U from low-uranium zircons. This paper describes a second successful method by fission track dating of large single-crystal zircons, 1.0-1.5 cm in dimension. The use of large crystals overcomes the limitations imposed in conventional fission track analysis which utilizes crushed fragments. Low track densities, optical track dispersion, and the random orientation of polished surfaces in the etch and irradiation cycle are effectively overcome. Fission track ages of zircons from five African kimberlites are reported, from the Kimberley Pool (90.3 ?? 6.5 m.y.), Orapa (87.4 ?? 5.7 and 92.4 ?? 6.1 m.y.), Nzega (51.1 ?? 3.8 m.y.), Koffiefontein (90.0 ?? 8.2 m.y.), and Val do Queve (133.4 ?? 11.5 m.y.). In addition we report the first radiometric ages (707.9 ?? 59.6 and 705.5 ?? 61.0 m.y.) of crustal zircons from kimberlites in northwest Liberia. The fission track ages agree well with earlier age estimates. Most of the zircons examined in this study are zoned with respect to uranium but linear correlations are established (by regression analysis) between zones of variable uranium content, and within zones of constant uranium content (by analysis of variance). Concordance between the fission track method and the U/Pb technique is established and we concluded that track fading from thermal annealing has not taken place. Kimberlitic zircons dated in this study, therefore, record the time of eruption. ?? 1983.

  8. Quantum and Thermodynamic Properties of Spontaneous and Low-Energy Induced Fission of Nuclei

    SciTech Connect

    Kadmensky, S.G.

    2005-12-01

    It is shown that A. Bohr's concept of transition fission states can be matched with the properties of Coriolis interaction if an axisymmetric fissile nucleus near the scission point remains cold despite a nonadiabatic character of nuclear collective deformation motion. The quantum and thermodynamic properties of various stages of binary and ternary fission after the descent of a fissile nucleus from the outer saddle point are studied within quantum-mechanical fission theory. It is shown that two-particle nucleon-nucleon correlations--in particular, superfluid correlations--play an important role in the formation of fission products and in the classification of fission transitions. The distributions of thermalized primary fission fragments with respect to spins and their projections onto the symmetry axis of the fissile nucleus and fission fragments are constructed, these distributions determining the properties of prompt neutrons and gamma rays emitted by these fragments. A new nonevaporation mechanism of third-particle production in ternary fission is proposed. This mechanism involves transitions of third particles from the cluster states of the fissile-nucleus neck to high-energy states under effects of the shake-off type that are due to the nonadiabatic character of nuclear collective deformation motion.

  9. Light charged particles emitted in fission reactions induced by protons on 208Pb

    NASA Astrophysics Data System (ADS)

    Rodríguez-Sánchez, J. L.; Benlliure, J.; Paradela, C.; Ayyad, Y.; Casarejos, E.; Alvarez-Pol, H.; Audouin, L.; Bélier, G.; Boutoux, G.; Chatillon, A.; Cortina-Gil, D.; Gorbinet, T.; Heinz, A.; Kelić-Heil, A.; Laurent, B.; Martin, J.-F.; Pellereau, E.; Pietras, B.; Ramos, D.; Rodríguez-Tajes, C.; Rossi, D. M.; Simon, H.; Taïeb, J.; Vargas, J.; Voss, B.

    2016-09-01

    Light charged particles emitted in proton-induced fission reactions on 208Pb have been measured at different kinetic energies: 370 A ,500 A , and 650 A MeV. The experiment was performed by the SOFIA Collaboration at the GSI facilities in Darmstadt (Germany). The inverse kinematics technique was combined with a setup especially designed to measure light charged particles in coincidence with fission fragments. This measurement allowed us, for the first time, to obtain correlations between the light charged particles emitted during the fission process and the charge distributions of the fission fragments. These correlations were compared with different model calculations to assess the ground-to-saddle dynamics. The results confirm that transient and dissipative effects are required for an accurate description of the fission observables.

  10. Shell Effects in Fusion-Fission of Heavy and Superheavy Nuclei

    NASA Astrophysics Data System (ADS)

    Itkis, M. G.; Bogatchev, A. A.; Itkis, I. M.; Jandel, M.; Kliman, J.; Kniajeva, G. N.; Kondratiev, N. A.; Korzyukov, I. V.; Kozulin, E. M.; Krupa, L.; Oganessian, Yu. Ts.; Pokrovsky, I. V.; Prokhorova, E. V.; Voskresenski, V. M.; Zagrebaev, V. I.; Rusanov, A. Ya.; Corradi, L.; Gadea, A.; Latina, L.; Stefanini, A. M.; Szilner, S.; Trotta, M.; Vinodkumar, A. M.; Beghini, S.; Montagnoli, G.; Scarlassara, F.; Äystö, J.; Khlebnikov, S. V.; Rubchenya, V. A.; Trzaska, W. H.; Vakhtin, D. N.; Goverdovski, A. A.; Hanappe, F.; Materna, T.; Dorvaux, O.; Rowley, N.; Stuttge, L.; Giardina, G.

    2003-07-01

    The process of fusion-fission of heavy and superheavy nuclei with Z=82-122 formed in the reactions with 48Ca, 58Fe and 64Ni ions at energies near and below the Coulomb barrier has been studied. The experiments were carried out at the U-400 accelerator of the Flerov Laboratory of Nuclear Reactions (JINR, Russia), the XTU Tandem accelerator of the National Laboratory of Legnaro (LNL, Italy ) and the Accelerator of the Laboratory of University of Jyväskylä (JYFL, Finland) using the time-of-flight spectrometer of fission fragments CORSET[1] and the neutron multi-detector DEMON[2,3]. As a result of the experiments, mass and energy distributions (MED) of fission fragments, cross-sections of fission, quasi-fission and evaporation residues, multiplicities of neutrons and γ-quanta and their dependence on the mechanism of formation and decay of compound systems have been studied.

  11. Radiation re-solution of fission gas in non-oxide nuclear fuel

    NASA Astrophysics Data System (ADS)

    Matthews, Christopher; Schwen, Daniel; Klein, Andrew C.

    2015-02-01

    Renewed interest in fast nuclear reactors is creating a need for better understanding of fission gas bubble behavior in non-oxide fuels to support very long fuel lifetimes. Collisions between fission fragments and their subsequent cascades can knock fission gas atoms out of bubbles and back into the fuel lattice. We showed that these collisions can be treated as using the so-called "homogenous" atom-by-atom re-solution theory and calculated using the Binary Collision Approximation code 3DOT. The calculations showed that there is a decrease in the re-solution parameter as bubble radius increases until about 50 nm, at which the re-solution parameter stays nearly constant. Furthermore, our model shows ion cascades created in the fuel result in many more implanted fission gas atoms than collisions directly with fission fragments. This calculated re-solution parameter can be used to find a re-solution rate for future bubble simulations.

  12. Spontaneous fission properties of sup 258 Fm, sup 259 Md, sup 260 Md, sup 258 No, and sup 260 (104): Bimodal fission

    SciTech Connect

    Hulet, E.K.; Wild, J.F.; Dougan, R.J.; Lougheed, R.W.; Landrum, J.H.; Dougan, A.D.; Baisden, P.A.; Henderson, C.M.; Dupzyk, R.J. ); Hahn, R.L.; and others

    1989-08-01

    We have measured the mass and kinetic-energy distributions from the spontaneous fission of {sup 258}Fm, {sup 258}No, {sup 259}Md, {sup 260}Md, and {sup 260}(104). All are observed to fission with a symmetrical division of mass. The total-kinetic-energy distributions strongly deviated from the Gaussian shape characteristically found in the fission of all other actinides. When the total-kinetic-energy distributions are resolved into two Gaussians, the constituent peaks lie near 200 and 233 MeV. We conclude that both low- and high-energy fission modes occur in four of the five nuclides studied. We call this property bimodal fission.'' Even though both modes are possible in the same nuclide, one generally predominates. We offer an explanation for each mode based on shell structures of the fissioning nucleus and of its fragments. The appearance of both modes of fission in this region of the nuclide chart seems to be a coincidence in that the opportunity to divide into near doubly magic Sn fragments occurs in the same region where the second fission barrier is expected to drop in energy below the ground state of the fissioning nucleus. Appropriate paths on the potential-energy surface of deformation have been found by theorists, but no physical grounds have been advanced that would allow the near equal populations we observe traveling each path. We suggest that this failure to find a reason for somewhat equal branching may be a fundamental flaw of current fission models. Assuming the proposed origins of these modes are correct, we conclude the low-energy, but also mass-symmetrical mode is likely to extend to far heavier nuclei. The high-energy mode will be restricted to a smaller region, a realm of nuclei defined by the proximity of the fragments to the strong neutron and proton shells in {sup 132}Sn.

  13. AMP-activated protein kinase mediates mitochondrial fission in response to energy stress

    PubMed Central

    Courchet, Julien; Lewis, Tommy L.; Losón, Oliver C.; Hellberg, Kristina; Young, Nathan P.; Chen, Hsiuchen; Polleux, Franck; Chan, David C.; Shaw, Reuben J.

    2016-01-01

    Mitochondria undergo fragmentation in response to electron transport chain (ETC) poisons and mitochondrial DNA–linked disease mutations, yet how these stimuli mechanistically connect to the mitochondrial fission and fusion machinery is poorly understood. We found that the energy-sensing adenosine monophosphate (AMP)–activated protein kinase (AMPK) is genetically required for cells to undergo rapid mitochondrial fragmentation after treatment with ETC inhibitors. Moreover, direct pharmacological activation of AMPK was sufficient to rapidly promote mitochondrial fragmentation even in the absence of mitochondrial stress. A screen for substrates of AMPK identified mitochondrial fission factor (MFF), a mitochondrial outer-membrane receptor for DRP1, the cytoplasmic guanosine triphosphatase that catalyzes mitochondrial fission. Nonphosphorylatable and phosphomimetic alleles of the AMPK sites in MFF revealed that it is a key effector of AMPK-mediated mitochondrial fission. PMID:26816379

  14. Finite Element Solver for Fission Dynamics

    2015-01-30

    FELIX is a physics computer code used to model fission fragment mass distributions in a fully quantum-mechanical, misroscopic framework that only relies on our current knowledge of nuclear forces. It is an implementation of the time-dependent generator coordinate method (TDGCM), which simulates the dynamics of a collective quantum wave-packet assuming the motion is adiabatic. In typical applications of the TDGCM, the nuclear collective wavepacket is obtained as a superposition of wavefunctions obtained by solving themore » Hartree-Fock-Bogoliubov equations of nuclear density functional theory (DFT). The program calculates at each time step the coefficients of that superposition.« less

  15. Finite Element Solver for Fission Dynamics

    SciTech Connect

    2015-01-30

    FELIX is a physics computer code used to model fission fragment mass distributions in a fully quantum-mechanical, misroscopic framework that only relies on our current knowledge of nuclear forces. It is an implementation of the time-dependent generator coordinate method (TDGCM), which simulates the dynamics of a collective quantum wave-packet assuming the motion is adiabatic. In typical applications of the TDGCM, the nuclear collective wavepacket is obtained as a superposition of wavefunctions obtained by solving the Hartree-Fock-Bogoliubov equations of nuclear density functional theory (DFT). The program calculates at each time step the coefficients of that superposition.

  16. Process for treating fission waste

    DOEpatents

    Rohrmann, Charles A.; Wick, Oswald J.

    1983-01-01

    A method is described for the treatment of fission waste. A glass forming agent, a metal oxide, and a reducing agent are mixed with the fission waste and the mixture is heated. After melting, the mixture separates into a glass phase and a metal phase. The glass phase may be used to safely store the fission waste, while the metal phase contains noble metals recovered from the fission waste.

  17. Evidence for bimodal fission in the heaviest elements

    SciTech Connect

    Hulet, E.K.; Wild, J.F.; Lougheed, R.W.; Dougan, R.J.; Landrum, J.H.; Dougan, A.D.; Schaedel, M.; Hahn, R.L.; Baisden, P.A.; Henderson, C.M.

    1987-08-01

    We have measured the mass and kinetic-energy partitioning in the spontaneous fission of five heavy nuclides: /sup 258/Fm, /sup 259/Md, /sup 260/Md /sup 258/No, and /sup 260/(104). Each was produced by heavy-ion reactions with either /sup 248/Cm, /sup 249/Bk, or /sup 254/Es targets. Energies of correlated fragments from the isotopes with millisecond half lives, /sup 258/No and /sup 260/(104), were measured on-line by a special rotating-wheel instrument, while the others were determined off-line after mass separation. All fissioned with mass distributions that were symmetric. Total-kinetic-energy distributions peaked near either 200 or 235 MeV. Surprisingly, because only a single Gaussian energy distribution had been observed previously in actinide fission, these energy distributions were skewed upward or downward from the peak in each case, except for /sup 260/(104), indicating a composite of two energy distributions. We were able to fit accurately two Gaussian curves to the gross energy distributions from the four remaining nuclides. From the multiple TKE distributions and the shapes of the mass distributions, we conclude that there is a low-energy fission component with liquid-drop characteristics which is admixed with a much higher-energy component due to closed fragment shells. We now have further evidence for this conclusion from measurements of the neutron multiplicity in the spontaneous fission of /sup 260/Md. 25 refs., 9 figs.

  18. Evidence for bimodal fission in the heaviest elements

    SciTech Connect

    Hulet, E.K.

    1987-12-10

    We have measured the mass and kinetic-energy partitioning in the spontaneous fission of five heavy nuclides: /sup 258/Fm, /sup 259/Md, /sup 260/Md, /sup 258/No, and /sup 260/(104). Each was produced by heavy-ion reactions with either /sup 248/Cm, /sup 249/Bk, or /sup 254/Es targets. Energies of correlated fragments from the isotopes with millisecond half lives, /sup 258/No and /sup 260/(104), were measured on-line by a special rotating-wheel instrument, while the others were determined off-line after mass separation. All fissioned with mass distributions that were symmetric. Total-kinetic-energy distributions peaked near either 200 or 235 MeV. Surprisingly, because only a single Gaussian energy distribution had been observed previously in actinide fission, these energy distributions were skewed upward or downward from the peak in each case, except for /sup 260/(104), indicating a composite of two energy distributions. We were able to fit accurately two Gaussian curves to the gross energy distributions from the four remaining nuclides. From the multiple TKE distributions and the shapes of the mass distributions, we conclude that there is a low-energy fission component with liquid-drop characteristics which is admixed with a much higher-energy component due to closed fragment shells. We now have further evidence for this conclusion from measurements of the neutron multiplicity in the spontaneous fission of /sup 260/Md.

  19. Pulsed Fission Propulsion Concept

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the 1960's U.S. Government laboratories, under Project Orion, investigated a pulsed nuclear fission propulsion system. Small nuclear pulse units would be sequentially discharged from the aft end of the vehicle. A blast shield and shock absorber system would protect the crew and convert the shock loads into a continuous propusive force.

  20. Pulsed Fission Propulsion Concept

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the 1960's U.S. Government laboratories, under Project Orion, investigated a pulsed nuclear fission propulsion system. Small nuclear pulse units would be sequentially discharged from the aft end of the vehicle. A blast shield and shock absorber system would protect the crew and convert the shock loads into a continuous propulsive force.

  1. The CARIBU gas catcher

    NASA Astrophysics Data System (ADS)

    Savard, G.; Levand, A. F.; Zabransky, B. J.

    2016-06-01

    The CARIBU upgrade of the ATLAS facility provides radioactive beams of neutron-rich isotopes for experiments at low and Coulomb barrier energies. It creates these beam using a large RF gas catcher that collects and cools fission fragments from an intense 252 Cf fission source and transforms them into a low-emittance monoenergetic beam. This beam can then be purified, reaccelerated and delivered to experiments. This technique is fast and universal, providing access to all fission fragment species independently of their chemical properties. The CARIBU gas catcher has been built to operate at high ionization density and in the presence of the contamination from the source. A brief overview of the CARIBU concept is given below, together with a more detailed description of the CARIBU gas catcher and the performance it has now achieved.

  2. Compound Nucleus Reactions in LENR, Analogy to Uranium Fission

    NASA Astrophysics Data System (ADS)

    Hora, Heinrich; Miley, George; Philberth, Karl

    2008-03-01

    The discovery of nuclear fission by Hahn and Strassmann was based on a very rare microanalytical result that could not initially indicate the very complicated details of this most important process. A similarity is discussed for the low energy nuclear reactions (LENRs) with analogies to the yield structure found in measurements of uranium fission. The LENR product distribution measured earlier in a reproducible way in experiments with thin film electrodes and a high density deuteron concentration in palladium has several striking similarities with the uranium fission fragment yield curve.ootnotetextG.H. Miley and J.A. Patterson, J. New Energy 1, 11 (1996); G.H. Miley et al, Proc ICCF6, p. 629 (1997).This comparison is specifically focussed to the Maruhn-Greiner local maximum of the distribution within the large-scale minimum when the fission nuclei are excited. Implications for uranium fission are discussed in comparison with LENR relative to the identification of fission a hypothetical compound nuclear reaction via a element ^306X126 with double magic numbers.

  3. Prompt fission gamma-ray studies at DANCE

    DOE PAGES

    Jandel, M.; Rusev, G.; Bond, E. M.; Bredeweg, T. A.; Chadwick, M. B.; Couture, A.; Fowler, M.. M; Haight, R. C.; Kawano, T.; Keksis, A. L.; et al

    2014-11-26

    Measurements of correlated data on prompt-fission γ-rays (PFG) have been carried out for various actinide isotopes in recent years using the Detector for Advanced Neutron Capture Experiments (DANCE) at Los Alamos National Laboratory (LANL). We have developed a model that conveniently parametrizes the correlated data of γ-ray multiplicity and energy. New results on two- dimensional prompt-fission γ-ray multiplicity versus energy distributions from spontaneous fission on ²⁵²Cf and neutron-induced fission on 242mAm are presented together with previously obtained results on 233,235U and ²³⁹Pu. Correlated PFG data from ²⁵²Cf are also compared to results of the detailed theoretical model developed at LANL,more » for different thresholds of PFG energies. Future plans to measure correlated data on fission fragments, prompt fission neutrons and γ-rays at DANCE are presented.« less

  4. Event-by-Event Simulation of Induced Fission

    SciTech Connect

    Vogt, R; Randrup, J

    2007-12-13

    We are developing a novel code that treats induced fission by statistical (or Monte-Carlo) simulation of individual decay chains. After its initial excitation, the fissionable compound nucleus may either deexcite by evaporation or undergo binary fission into a large number of fission channels each with different energetics involving both energy dissipation and deformed scission prefragments. After separation and Coulomb acceleration, each fission fragment undergoes a succession of individual (neutron) evaporations, leading to two bound but still excited fission products (that may further decay electromagnetically and, ultimately, weakly), as well as typically several neutrons. (The inclusion of other possible ejectiles is planned.) This kind of approach makes it possible to study more detailed observables than could be addressed with previous treatments which have tended to focus on average quantities. In particular, any type of correlation observable can readily be extracted from a generated set of events. With a view towards making the code practically useful in a variety of applications, emphasis is being put on making it numerically efficient so that large event samples can be generated quickly. In its present form, the code can generate one million full events in about 12 seconds on a MacBook laptop computer. The development of this qualitatively new tool is still at an early stage and quantitative reproduction of existing data should not be expected until a number of detailed refinement have been implemented.

  5. Probing energy dissipation, γ-ray and neutron multiplicity in the thermal neutron-induced fission of 239Pu

    NASA Astrophysics Data System (ADS)

    Pahlavani, M. R.; Mirfathi, S. M.

    2016-04-01

    The incorporation of the four-dimensional Langevin equations led to an integrative description of fission cross-section, fragment mass distribution and the multiplicity and energy distribution of prompt neutrons and γ-rays in the thermal neutron-induced fission of 239Pu. The dynamical approach presented in this paper thoroughly reproduces several experimental observables of the fission process at low excitation energy.

  6. Capture and fission with DANCE and NEUANCE

    NASA Astrophysics Data System (ADS)

    Jandel, M.; Baramsai, B.; Bond, E.; Rusev, G.; Walker, C.; Bredeweg, T. A.; Chadwick, M. B.; Couture, A.; Fowler, M. M.; Hayes, A.; Kawano, T.; Mosby, S.; Stetcu, I.; Taddeucci, T. N.; Talou, P.; Ullmann, J. L.; Vieira, D. J.; Wilhelmy, J. B.

    2015-12-01

    A summary of the current and future experimental program at DANCE is presented. Measurements of neutron capture cross sections are planned for many actinide isotopes with the goal to reduce the present uncertainties in nuclear data libraries. Detailed studies of capture gamma rays in the neutron resonance region will be performed in order to derive correlated data on the de-excitation of the compound nucleus. New approaches on how to remove the DANCE detector response from experimental data and retain the correlations between the cascade gamma rays are presented. Studies on 235U are focused on quantifying the population of short-lived isomeric states in 236U after neutron capture. For this purpose, a new neutron detector array NEUANCE is under construction. It will be installed in the central cavity of the DANCE array and enable the highly efficient tagging of fission and capture events. In addition, developments of fission fragment detectors are also underway to expand DANCE capabilities to measurements of fully correlated data on fission observables.

  7. Capture and fission with DANCE and NEUANCE

    DOE PAGES

    Jandel, M.; Baramsai, B.; Bond, E.; Rusev, G.; Walker, C.; Bredeweg, T. A.; Chadwick, M. B.; Couture, A.; Fowler, M. M.; Hayes, A.; et al

    2015-12-23

    A summary of the current and future experimental program at DANCE is presented. Measurements of neutron capture cross sections are planned for many actinide isotopes with the goal to reduce the present uncertainties in nuclear data libraries. Detailed studies of capture gamma rays in the neutron resonance region will be performed in order to derive correlated data on the de-excitation of the compound nucleus. New approaches on how to remove the DANCE detector response from experimental data and retain the correlations between the cascade gamma rays are presented. Studies on 235U are focused on quantifying the population of short-lived isomericmore » states in 236U after neutron capture. For this purpose, a new neutron detector array NEUANCE is under construction. It will be installed in the central cavity of the DANCE array and enable the highly efficient tagging of fission and capture events. In addition, developments of fission fragment detectors are also underway to expand DANCE capabilities to measurements of fully correlated data on fission observables.« less

  8. Capture and fission with DANCE and NEUANCE

    SciTech Connect

    Jandel, M.; Baramsai, B.; Bond, E.; Rusev, G.; Walker, C.; Bredeweg, T. A.; Chadwick, M. B.; Couture, A.; Fowler, M. M.; Hayes, A.; Kawano, T.; Mosby, S.; Stetcu, I.; Taddeucci, T. N.; Talou, P.; Ullmann, J. L.; Vieira, D. J.; Wilhelmy, J. B.

    2015-12-23

    A summary of the current and future experimental program at DANCE is presented. Measurements of neutron capture cross sections are planned for many actinide isotopes with the goal to reduce the present uncertainties in nuclear data libraries. Detailed studies of capture gamma rays in the neutron resonance region will be performed in order to derive correlated data on the de-excitation of the compound nucleus. New approaches on how to remove the DANCE detector response from experimental data and retain the correlations between the cascade gamma rays are presented. Studies on 235U are focused on quantifying the population of short-lived isomeric states in 236U after neutron capture. For this purpose, a new neutron detector array NEUANCE is under construction. It will be installed in the central cavity of the DANCE array and enable the highly efficient tagging of fission and capture events. In addition, developments of fission fragment detectors are also underway to expand DANCE capabilities to measurements of fully correlated data on fission observables.

  9. In-beam fission study for Heavy Element Synthesis

    NASA Astrophysics Data System (ADS)

    Nishio, Katsuhisa

    2013-12-01

    Fission fragment mass distributions were measured in heavy-ion induced fissions using 238U target nucleus. The measured mass distributions changed drastically with incident energy. The results are explained by a change of the ratio between fusion and qasifission with nuclear orientation. A calculation based on a fluctuation dissipation model reproduced the mass distributions and their incident energy dependence. Fusion probability was determined in the analysis. Evaporation residue cross sections were calculated with a statistical model in the reactions of 30Si + 238U and 34S + 238U using the obtained fusion probability in the entrance channel. The results agree with the measured cross sections for seaborgium and hassium isotopes.

  10. Experimental Progress Report--Modernizing the Fission Basis

    SciTech Connect

    Macri, R A

    2012-02-17

    In 2010 a proposal (Modernizing the Fission Basis) was prepared to 'resolve long standing differences between LANL and LLNL associated with the correct fission basis for analysis of nuclear test data'. Collaboration between LANL/LLNL/TUNL has been formed to implement this program by performing high precision measurements of neutron induced fission product yields as a function of incident neutron energy. This new program benefits from successful previous efforts utilizing mono-energetic neutrons undertaken by this collaboration. The first preliminary experiment in this new program was performed between July 24-31, 2011 at TUNL and had 2 main objectives: (1) demonstrating the capability to measure characteristic {gamma}-rays from specific fission products; (2) studying background effects from room scattered neutrons. In addition, a new dual fission ionization chamber has been designed and manufactured. The production design of the chamber is shown in the picture below. The first feasibility experiment to test this chamber is scheduled at the TUNL Tandem Laboratory from September 19-25, 2011. The dual fission chamber design will allow simultaneous exposure of absolute fission fragment emission rate detectors and the thick fission activation foils, positioned between the two chambers. This document formalizes the earlier experimental report demonstrating the experimental capability to make accurate (< 2 %) precision gamma-ray spectroscopic measurements of the excitation function of high fission product yields of the 239Pu(n,f) reaction (induced by quasimonoenergetic neutrons). A second experiment (9/2011) introduced an compact double-sided fission chamber into the experimental arrangement, and so the relative number of incident neutrons striking the sample foil at each bombarding energy is limited only by statistics. (The number of incident neutrons often limits the experimental accuracy.) Fission chamber operation was so exceptional that 2 more chambers have been

  11. Experimental study of the quasifission, fusion-fission, and de-excitation of Cf compound nuclei

    NASA Astrophysics Data System (ADS)

    Khuyagbaatar, J.; Hinde, D. J.; Carter, I. P.; Dasgupta, M.; Düllmann, Ch. E.; Evers, M.; Luong, D. H.; du Rietz, R.; Wakhle, A.; Williams, E.; Yakushev, A.

    2015-05-01

    Background: The fusion-evaporation reaction at energies around the Coulomb barrier is presently the only way to produce the heaviest elements. However, formation of evaporation residues is strongly hindered due to the competing fusion-fission and quasifission processes. Presently, a full understanding of these processes and their relationships has not been reached. Purpose: This work aims to use new fission measurements and existing evaporation residue and fission excitation function data for reactions forming Cf isotopes to investigate the dependence of the quasifission probability and characteristics on the identities of the two colliding nuclei in heavy element formation reactions. Method: Using the Australian National University's 14UD electrostatic accelerator and CUBE detector array, fission fragments from the 12C +235U , 34S +208Pb , 36S +206Pb , 36S +208Pb , and 44Ca +198Pt reactions were measured. Mass and angle distributions of fission fragments were extracted and compared to investigate the presence and characteristics of quasifission. Results: Mass-angle-correlated fission fragments were observed for the 44Ca +198Pt reaction; no correlation was observed in the other reactions measured. Flat-topped fission-fragment mass distributions were observed for 12C +235U at compound-nucleus excitation energies from 28 to 52 MeV. Less pronounced flat-topped distributions were observed, with very similar shapes, for all three sulfur-induced reactions at excitation energies lower than 45 MeV. Conclusions: A high probability of long-time-scale quasifission seems necessary to explain both the fission and evaporation residue data for the 34S +208Pb and 36S +206Pb reactions. Flat-topped mass distributions observed for 12C - and 34 ,36S -induced reactions are suggested to originate both from late-chance fusion-fission at low excitation energies and the persistence of shell effects at the higher energies associated with quasifission.

  12. Antiproton Powered Gas Core Fission Rocket

    NASA Astrophysics Data System (ADS)

    Kammash, T.

    Extensive research in recent years has demonstrated that “at rest” annihilation of antiprotons in the uranium isotope U238 leads to fission at nearly 100% efficiency. The resulting highly-ionizing, energetic fission fragments can heat a suitable medium to very high temperatures, making such a process particularly suitable for space propulsion applications. Such an ionized medium, which would serve as a propellant, can be confined by a magnetic field during the heating process, and subsequently ejected through a magnetic nozzle to generate thrust. The gasdynamic mirror (GDM) magnetic configuration is especially suited for this application since the underlying confinement principle is that the plasma be of such density and temperature as to make the ion-ion collision mean free path shorter than the plasma length. Under these conditions the plasma behaves like a fluid, and its escape from the system is analogous to the flow of a gas into vacuum from a vessel with a hole. For the system we propose we envisage radially injecting atomic or U238 plasma beam at a pre-determined position and axially pulsing an antiproton beam which upon interaction with the uranium target gives rise to near isotropic ejection of fission fragments with a total mass of 212 amu and total energy of about 160 MeV. These particles, along with the annihilation products (i.e. pions and muons) will heat the background U238 gas - inserted into the chamber just prior to the release of the antiproton - to one keV temperature. Preliminary analysis reveals that such a propulsion system can produce a specific impulse of about 3000 seconds at a thrust of about 50 kN. When applied to a round trip Mars mission, we find that such a journey can be accomplished in about 142 days with 2 days of thrusting and requiring only one gram of antiprotons to achieve it.

  13. Antiproton Powered Gas Core Fission Rocket

    NASA Astrophysics Data System (ADS)

    Kammash, Terry

    2005-02-01

    Extensive research in recent years has demonstrated that "at rest" annihilation of antiprotons in the uranium isotope U238 leads to fission at nearly 100% efficiency. The resulting highly-ionizing, energetic fission fragments can heat a suitable medium to very high temperatures, making such a process particularly suitable for space propulsion applications. Such an ionized medium, which would serve as a propellant, can be confined by a magnetic field during the heating process, and subsequently ejected through a magnetic nozzle to generate thrust. The gasdynamic mirror (GDM) magnetic configuration is especially suited for this application since the underlying confinement principle is that the plasma be of such density and temperature as to make the ion-ion collision mean free path shorter than the plasma length. Under these conditions the plasma behaves like a fluid, and its escape from the system is analogous to the flow of a gas into vacuum from a vessel with a hole. For the system we propose we envisage radially injecting atomic or U238 plasma beam at a pre-determined position and axially pulsing an antiproton beam which upon interaction with the uranium target gives rise to near isotropic ejection of fission fragments with a total mass of 212 amu and total energy of about 160 MeV. These particles, along with the annihilation products (i.e. pions and muons) will heat the background U238 gas — inserted into the chamber just prior to the release of the antiproton — to one keV temperature. Preliminary analysis reveals that such a propulsion system can produce a specific impulse of about 3000 seconds at a thrust of about 50 kN. When applied to a round trip Mars mission, we find that such a journey can be accomplished in about 142 days with 2 days of thrusting and requiring only one gram of antiprotons to achieve it.

  14. Antiproton Powered Gas Core Fission Rocket

    SciTech Connect

    Kammash, Terry

    2005-02-06

    Extensive research in recent years has demonstrated that 'at rest' annihilation of antiprotons in the uranium isotope U238 leads to fission at nearly 100% efficiency. The resulting highly-ionizing, energetic fission fragments can heat a suitable medium to very high temperatures, making such a process particularly suitable for space propulsion applications. Such an ionized medium, which would serve as a propellant, can be confined by a magnetic field during the heating process, and subsequently ejected through a magnetic nozzle to generate thrust. The gasdynamic mirror (GDM) magnetic configuration is especially suited for this application since the underlying confinement principle is that the plasma be of such density and temperature as to make the ion-ion collision mean free path shorter than the plasma length. Under these conditions the plasma behaves like a fluid, and its escape from the system is analogous to the flow of a gas into vacuum from a vessel with a hole. For the system we propose we envisage radially injecting atomic or U238 plasma beam at a pre-determined position and axially pulsing an antiproton beam which upon interaction with the uranium target gives rise to near isotropic ejection of fission fragments with a total mass of 212 amu and total energy of about 160 MeV. These particles, along with the annihilation products (i.e. pions and muons) will heat the background U238 gas - inserted into the chamber just prior to the release of the antiproton - to one keV temperature. Preliminary analysis reveals that such a propulsion system can produce a specific impulse of about 3000 seconds at a thrust of about 50 kN. When applied to a round trip Mars mission, we find that such a journey can be accomplished in about 142 days with 2 days of thrusting and requiring only one gram of antiprotons to achieve it.

  15. SHAPED FISSIONABLE METAL BODIES

    DOEpatents

    Wigner, E.P.; Williamson, R.R.; Young, G.J.

    1958-10-14

    A technique is presented for grooving the surface of fissionable fuel elements so that expansion can take place without damage to the interior structure of the fuel element. The fissionable body tends to develop internal stressing when it is heated internally by the operation of the nuclear reactor and at the same time is subjected to surface cooling by the circulating coolant. By producing a grooved or waffle-like surface texture, the annular lines of tension stress are disrupted at equally spaced intervals by the grooves, thereby relieving the tension stresses in the outer portions of the body while also facilitating the removal of accumulated heat from the interior portion of the fuel element.

  16. Nuclear energy release from fragmentation

    NASA Astrophysics Data System (ADS)

    Li, Cheng; Souza, S. R.; Tsang, M. B.; Zhang, Feng-Shou

    2016-08-01

    It is well known that binary fission occurs with positive energy gain. In this article we examine the energetics of splitting uranium and thorium isotopes into various numbers of fragments (from two to eight) with nearly equal size. We find that the energy released by splitting 230,232Th and 235,238U into three equal size fragments is largest. The statistical multifragmentation model (SMM) is applied to calculate the probability of different breakup channels for excited nuclei. By weighing the probability distributions of fragment multiplicity at different excitation energies, we find the peaks of energy release for 230,232Th and 235,238U are around 0.7-0.75 MeV/u at excitation energy between 1.2 and 2 MeV/u in the primary breakup process. Taking into account the secondary de-excitation processes of primary fragments with the GEMINI code, these energy peaks fall to about 0.45 MeV/u.

  17. [Fission product yields of 60 fissioning reactions]. Final report

    SciTech Connect

    Rider, B.F.

    1995-05-01

    In keeping with the statement of work, I have examined the fission product yields of 60 fissioning reactions. In co-authorship with the UTR (University Technical Representative) Talmadge R. England ``Evaluation and Compilation of Fission Product Yields 1993,`` LA-UR-94-3106(ENDF-349) October, (1994) was published. This is an evaluated set of fission product Yields for use in calculation of decay heat curves with improved accuracy has been prepared. These evaluated yields are based on all known experimental data through 1992. Unmeasured fission product yields are calculated from charge distribution, pairing effects, and isomeric state models developed at Los Alamos National Laboratory. The current evaluation has been distributed as the ENDF/B-VI fission product yield data set.

  18. Extended optical model for fission

    DOE PAGES

    Sin, M.; Capote, R.; Herman, M. W.; Trkov, A.

    2016-03-07

    A comprehensive formalism to calculate fission cross sections based on the extension of the optical model for fission is presented. It can be used for description of nuclear reactions on actinides featuring multi-humped fission barriers with partial absorption in the wells and direct transmission through discrete and continuum fission channels. The formalism describes the gross fluctuations observed in the fission probability due to vibrational resonances, and can be easily implemented in existing statistical reaction model codes. The extended optical model for fission is applied for neutron induced fission cross-section calculations on 234,235,238U and 239Pu targets. A triple-humped fission barrier ismore » used for 234,235U(n,f), while a double-humped fission barrier is used for 238U(n,f) and 239Pu(n,f) reactions as predicted by theoretical barrier calculations. The impact of partial damping of class-II/III states, and of direct transmission through discrete and continuum fission channels, is shown to be critical for a proper description of the measured fission cross sections for 234,235,238U(n,f) reactions. The 239Pu(n,f) reaction can be calculated in the complete damping approximation. Calculated cross sections for 235,238U(n,f) and 239Pu(n,f) reactions agree within 3% with the corresponding cross sections derived within the Neutron Standards least-squares fit of available experimental data. Lastly, the extended optical model for fission can be used for both theoretical fission studies and nuclear data evaluation.« less

  19. A thrust-sheet propulsion concept using fissionable elements

    NASA Technical Reports Server (NTRS)

    Moeckel, W. E.

    1976-01-01

    A space propulsion concept is proposed and analyzed which consists of a thin sheet coated on one side with fissionable material, so that nuclear power is converted directly into propulsive power. Thrust is available both from ejected fission fragments and from thermal radiation. Optimum thicknesses are determined for the active and substrate layers. This concept is shown to have potential mission capability (in terms of velocity increments) superior to that of all other advanced propulsion concepts for which performance estimates are available. A suitable spontaneously fissioning material such as Cf254 could provide an extremely high-performance first stage beyond earth orbit. In contrast with some other advanced nuclear propulsion concepts, there is no minimum size below which this concept is infeasible.

  20. A thrust-sheet propulsion concept using fissionable elements

    NASA Technical Reports Server (NTRS)

    Moeckel, W. E.

    1976-01-01

    A space propulsion concept is proposed and analyzed which consists of a thin sheet coated on one side with fissionable material, so that nuclear power is converted directly into propulsive power. Thrust is available both from ejected fission fragments and from thermal radiation. Optimum thicknesses are determined for the active and substrate layers. This concept is shown to have potential mission capability (in terms of velocity increments) superior to that of all other advanced propulsion concepts for which performance estimates are available. A suitable spontaneously fissioning material such as Cf-254 could provide an extremely high-performance first stage beyond earth orbit. In contrast with some other advanced nuclear propulsion concepts, there is no minimum size below which this concept is infeasible.

  1. Ternary fission of 466, 476 184X formed in U + U collisions

    NASA Astrophysics Data System (ADS)

    Karthikraj, C.; Subramanian, S.; Selvaraj, S.

    2016-06-01

    Recently, the very rare process of nuclear ternary fission has been of great interest in nuclear dynamics. Based on the statistical theory of fission, we discuss here the ternary-fission mass distribution of 466, 476 184X formed in low-energy U + U collisions for different heavy third fragments at T = 1 and 2MeV. The expected ternary configurations 208 Pb + 208 Pb + 50 Ca and 204 Hg + 204 Hg + 58 Cr are obtained from the ternary fission of 466 184X at T = 2 MeV. In addition, for both the systems, various possible ternary modes are listed for different heavy third fragments. Our results clearly indicate that the favored ternary configurations have either proton and/or neutron shell closure nucleus as one of their partners.

  2. Induced fission of Pu240 within a real-time microscopic framework

    DOE PAGES

    Bulgac, Aurel; Magierski, Piotr; Roche, Kenneth J.; Stetcu, Ionel

    2016-03-25

    Here, we describe the fissioning dynamics of 240Pu from a configuration in the proximity of the outer fission barrier to full scission and the formation of the fragments within an implementation of density functional theory extended to superfluid systems and real-time dynamics. The fission fragments emerge with properties similar to those determined experimentally, while the fission dynamics appears to be quite complex, with many excited shape and pairing modes. The evolution is found to be much slower than previously expected, and the ultimate role of the collective inertia is found to be negligible in this fully nonadiabatic treatment of nuclearmore » dynamics, where all collective degrees of freedom (CDOF) are included (unlike adiabatic treatments with a small number of CDOF).« less

  3. Induced Fission of (240)Pu within a Real-Time Microscopic Framework.

    PubMed

    Bulgac, Aurel; Magierski, Piotr; Roche, Kenneth J; Stetcu, Ionel

    2016-03-25

    We describe the fissioning dynamics of ^{240}Pu from a configuration in the proximity of the outer fission barrier to full scission and the formation of the fragments within an implementation of density functional theory extended to superfluid systems and real-time dynamics. The fission fragments emerge with properties similar to those determined experimentally, while the fission dynamics appears to be quite complex, with many excited shape and pairing modes. The evolution is found to be much slower than previously expected, and the ultimate role of the collective inertia is found to be negligible in this fully nonadiabatic treatment of nuclear dynamics, where all collective degrees of freedom (CDOF) are included (unlike adiabatic treatments with a small number of CDOF).

  4. Fission yield measurements at IGISOL

    NASA Astrophysics Data System (ADS)

    Lantz, M.; Al-Adili, A.; Gorelov, D.; Jokinen, A.; Kolhinen, V. S.; Mattera, A.; Moore, I.; Penttilä, H.; Pomp, S.; Prokofiev, A. V.; Rakopoulos, V.; Rinta-Antila, S.; Simutkin, V.; Solders, A.

    2016-06-01

    The fission product yields are an important characteristic of the fission process. In fundamental physics, knowledge of the yield distributions is needed to better understand the fission process. For nuclear energy applications good knowledge of neutroninduced fission-product yields is important for the safe and efficient operation of nuclear power plants. With the Ion Guide Isotope Separator On-Line (IGISOL) technique, products of nuclear reactions are stopped in a buffer gas and then extracted and separated by mass. Thanks to the high resolving power of the JYFLTRAP Penning trap, at University of Jyväskylä, fission products can be isobarically separated, making it possible to measure relative independent fission yields. In some cases it is even possible to resolve isomeric states from the ground state, permitting measurements of isomeric yield ratios. So far the reactions U(p,f) and Th(p,f) have been studied using the IGISOL-JYFLTRAP facility. Recently, a neutron converter target has been developed utilizing the Be(p,xn) reaction. We here present the IGISOL-technique for fission yield measurements and some of the results from the measurements on proton induced fission. We also present the development of the neutron converter target, the characterization of the neutron field and the first tests with neutron-induced fission.

  5. Fission cross section uncertainties with the NIFFTE TPC

    NASA Astrophysics Data System (ADS)

    Sangiorgio, Samuele; Niffte Collaboration

    2014-09-01

    Nuclear data such as neutron-induced fission cross sections play a fundamental role in nuclear energy and defense applications. In recent years, understanding of these systems has become increasingly dependent upon advanced simulation and modeling, where uncertainties in nuclear data propagate in the expected performances of existing and future systems. It is important therefore that uncertainties in nuclear data are minimized and fully understood. For this reason, the Neutron Induced Fission Fragment Tracking Experiment (NIFFTE) uses a Time Projection Chamber (TPC) to measure energy-differential (n,f) cross sections with unprecedented precision. The presentation will discuss how the capabilities of the NIFFTE TPC allow to directly measures systematic uncertainties in fission cross sections, in particular for what concerns fission-fragment identification, and target and beam uniformity. Preliminary results from recent analysis of 238U/235U and 239Pu/235U data collected with the TPC will be presented. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  6. Measurement of Fission Product Yields from Fast-Neutron Fission

    NASA Astrophysics Data System (ADS)

    Arnold, C. W.; Bond, E. M.; Bredeweg, T. A.; Fowler, M. M.; Moody, W. A.; Rusev, G.; Vieira, D. J.; Wilhelmy, J. B.; Becker, J. A.; Henderson, R.; Kenneally, J.; Macri, R.; McNabb, D.; Ryan, C.; Sheets, S.; Stoyer, M. A.; Tonchev, A. P.; Bhatia, C.; Bhike, M.; Fallin, B.; Gooden, M. E.; Howell, C. R.; Kelley, J. H.; Tornow, W.

    2014-09-01

    One of the aims of the Stockpile Stewardship Program is a reduction of the uncertainties on fission data used for analyzing nuclear test data [1,2]. Fission products such as 147Nd are convenient for determining fission yields because of their relatively high yield per fission (about 2%) and long half-life (10.98 days). A scientific program for measuring fission product yields from 235U,238U and 239Pu targets as a function of bombarding neutron energy (0.1 to 15 MeV) is currently underway using monoenergetic neutron beams produced at the 10 MV Tandem Accelerator at TUNL. Dual-fission chambers are used to determine the rate of fission in targets during activation. Activated targets are counted in highly shielded HPGe detectors over a period of several weeks to identify decaying fission products. To date, data have been collected at neutron bombarding energies 4.6, 9.0, 14.5 and 14.8 MeV. Experimental methods and data reduction techniques are discussed, and some preliminary results are presented.

  7. Electron-capture delayed fission in {sup 246}Es

    SciTech Connect

    Shaughnessy, D.A.; Gregorich, K.E.; Hendricks, M.B.; Lane, M.R.

    1997-12-31

    We have extended our systematic study of electron-capture delayed fission (ECDF) in neutron-deficient isotopes to {sup 246}Es. The {sup 246}Es was produced at the 88 Inch Cyclotron at Lawrence Berkeley National Laboratory via the {sup 249}Cf(p,xn){sup 250-x}Es reaction with 37 MeV protons. There were 19 {sup 249}Cf targets used simultaneously in our light ion multiple (LIM) target system. Alpha particles and fission fragments were detected in our rotating wheel system. In some experiments, TTA extractions were performed to remove interfering activities. The chemically separated samples were positioned between a solid-state particle detector and two x-rays detectors. This configuration enabled us to look for fissions in coincidence with K x-rays following electron-capture. Our measured production cross section of 13 {+-} 5 {mu}b for {sup 246}Es was much lower than the cross section predicted by a neutron evaporation code. The probability of delayed fission was determined from the number of x-ray/fission coincidences measured.

  8. Haumea and the rotational fission of trans-Neptunian objects

    NASA Astrophysics Data System (ADS)

    Ortiz, J. L.; Richardson, D. C.; Santos-Sanz, P.; Morales, N.; Benavidez, P. G.

    2012-09-01

    We think it is likely that rotational fission has occurred for a fraction of the known trans-Neptunian objects (TNOs). It is also likely that a number of binary or multiple systems have formed from that process in the trans-Neptunian belt. We focus on Haumea, which is a potential example of an object that has suffered rotational fission. Its current fast spin would be a slight evolution of a primordial fast spin, rather than the result of a catastrophic collision. We conclude that based on the specific angular momentum of Haumea and its satellites, and from N-body simulations of rotational fission applied to the case of Haumea. These show that the process is feasible, it might have generated satellites, and it might have even created a 'family' of bodies associated to Haumea's orbit. These associated bodies might come from the direct ejection of fragments, according to our simulations, or through the evolution of a proto-satellite formed during the fission event, or from an escapee that later suffered a disruption. In the future, perhaps TNO pairs may be found (i.e. pairs of bodies sharing very similar orbital elements but not bound together), as is the case in the NEA and Main Belt asteroid populations, where pairs are known to come from rotational fissions.

  9. U, Np, Pu and Am Prompt Fission Neutron Spectra

    SciTech Connect

    Maslov, Vladimir M.

    2008-05-12

    Prompt fission neutron spectra (PFNS) components due to soft and hard pre-fission neutrons are revealed in PFNS data of {sup 232}Th(n,F), {sup 238}U(n,F), {sup 235}U(n,F) and {sup 239}Pu(n,F) reactions for E{sub n}{<=}20 MeV. Average energies of these PFNS are systematically shifted to higher values, so that Th fission fragments look least heated, while those of Pu--most heated. The average energy is correlated with the emissive fission chances contributions to the observed fission cross sections. The predicted contribution of (n,xnf) neutrons is most pronounced in case of {sup 232}Th(n,F) reaction. The approach, based on the consistent description of {sup 237}Np(n,F), {sup 237}Np(n,2n){sup 236s}Np and {sup 241}Am(n,F), {sup 241}Am(n,2n) is used to predict the PFNS of the {sup 237}Np(n,F) and {sup 241}Am(n,F) reactions.

  10. Fission: The first 50 years

    SciTech Connect

    Vandenbosch, R.

    1989-01-01

    The possibility of fission had been largely unanticipated prior to its discovery in 1938. This process, with its dramatically large energy release and its formation of previously unknown nuclides, immediately captured the imagination of the scientific community. Both theoretical and experimental developments occurred at a rapid pace. I will begin my discussion of fission with the far-reaching paper of Bohr and Wheeler, who in little more than half a year laid out a framework for understanding many features of the fission process. I will then turn to our current understanding of a number of aspects of fission. One of these is the pronounced tendency of many nuclear species to fission asymmetrically. In fact, the discovery of fission was based on the identification of barium isotopes produced in asymmetric fission. The dramatic changes in the preferred mass division and kinetic energy release with the addition of only a few neutrons to the spontaneously fissioning Fermium isotopes will be emphasized. The problem of the dynamics of saddle to scission will be discussed---this is one aspect of fission for which we do not have all the answers. Another dynamical effect to be discussed is the apparent failure of transition state theory at high excitation energies. The role of single particle (shell) effects in enriching the structure if the potential energy surface will be explored. Spontaneously fissioning isomers and intermediate structure resonances will be discussed. The recognition that short-lived fission isomers are superdeformed shape isomers has been followed by the recent observation of superdeformed shape isomers in the rare earth region. 18 refs., 3 figs.

  11. A compact gas-filled avalanche counter for DANCE

    NASA Astrophysics Data System (ADS)

    Wu, C. Y.; Chyzh, A.; Kwan, E.; Henderson, R. A.; Gostic, J. M.; Carter, D.; Bredeweg, T. A.; Couture, A.; Jandel, M.; Ullmann, J. L.

    2012-12-01

    A compact gas-filled avalanche counter for the detection of fission fragments was developed for a highly segmented 4π γ-ray calorimeter, namely the Detector for Advanced Neutron Capture Experiments located at the Lujan Center of the Los Alamos Neutron Science Center. It has been used successfully for experiments with 235U, 238Pu, 239Pu, and 241Pu isotopes to provide a unique signature to differentiate the fission from the competing neutron-capture reaction channel. It was also used to study the spontaneous fission in 252Cf. The design and performance of this avalanche counter for targets with extreme α-decay rate up to ˜2.4×108/s are described.

  12. A compact gas-filled avalanche counter for DANCE

    DOE PAGES

    Wu, C. Y.; Chyzh, A.; Kwan, E.; Henderson, R. A.; Gostic, J. M.; Carter, D.; Bredeweg, T. A.; Couture, A.; Jandel, M.; Ullmann, J. L.

    2012-08-04

    A compact gas-filled avalanche counter for the detection of fission fragments was developed for a highly segmented 4π γ-ray calorimeter, namely the Detector for Advanced Neutron Capture Experiments located at the Lujan Center of the Los Alamos Neutron Science Center. It has been used successfully for experiments with 235U, 238Pu,239Pu, and 241Pu isotopes to provide a unique signature to differentiate the fission from the competing neutron-capture reaction channel. We also used it to study the spontaneous fission in 252Cf. The design and performance of this avalanche counter for targets with extreme α-decay rate up to ~2.4×108/s are described.

  13. A compact gas-filled avalanche counter for DANCE

    SciTech Connect

    Wu, C. Y.; Chyzh, A.; Kwan, E.; Henderson, R. A.; Gostic, J. M.; Carter, D.; Bredeweg, T. A.; Couture, A.; Jandel, M.; Ullmann, J. L.

    2012-08-04

    A compact gas-filled avalanche counter for the detection of fission fragments was developed for a highly segmented 4π γ-ray calorimeter, namely the Detector for Advanced Neutron Capture Experiments located at the Lujan Center of the Los Alamos Neutron Science Center. It has been used successfully for experiments with 235U, 238Pu,239Pu, and 241Pu isotopes to provide a unique signature to differentiate the fission from the competing neutron-capture reaction channel. We also used it to study the spontaneous fission in 252Cf. The design and performance of this avalanche counter for targets with extreme α-decay rate up to ~2.4×108/s are described.

  14. 34Si accompanied ternary fission of 242Cm in equatorial and collinear configuration

    NASA Astrophysics Data System (ADS)

    Santhosh, K. P.; Krishnan, Sreejith; Priyanka, B.

    2014-11-01

    Taking the interacting potential as the sum of Coulomb and proximity potential, 34Si accompanied cold ternary fission of 242Cm has been studied with fragments in the equatorial and collinear configuration. The cold valley plots (plot of driving potential versus mass number of fragments) and the calculations on the yields for the charge minimized fragments have been used to obtain the favorable fragment combinations. Thus, our study on the 34Si accompanied ternary fission of 242Cm reveals the role of near doubly magic shell closures (of 130Sn, 132Te, 134Te, etc.) in cold ternary fission. The comparison of relative yield reveals that in 34Si accompanied ternary fission of 242Cm, collinear configuration is preferred than the equatorial configuration. The relative yield for binary exit channel is found to be higher than that of ternary fragmentation (both equatorial and collinear configuration). The predicted yield for the binary fragmentation of 4He and 34Si from 242Cm are in agreement with the experimental data.

  15. FIssion Product Prompt γ-ray spectrometer: Development of an instrumented gas-filled magnetic spectrometer at the ILL

    NASA Astrophysics Data System (ADS)

    Blanc, A.; Chebboubi, A.; Faust, H.; Jentschel, M.; Kessedjian, G.; Köster, U.; Materna, T.; Panebianco, S.; Sage, C.; Urban, W.

    2013-12-01

    Accurate thermal neutron-induced fission data are important for applications in reactor physics as well as for fundamental nuclear physics. FIPPS is the new FIssion Product Prompt γ-ray Spectrometer being developed at the Institut Laue Langevin for neutron-induced fission studies. FIPPS is based on the combination of a large Germanium detector array surrounding a fission target, a Time-Of-Flight detector and a Gas-Filled Magnet (GFM) to identify mass, nuclear charge and kinetic energy of one of the fission fragments. The GFM will be instrumented with a Time-Projection Chamber (TPC) for individual 3D tracking of the fragments. A conceptual design study of the new spectrometer is presented.

  16. Breaking of Axial and Reflection Symmetries in Spontaneous Fission of Fermium Isotopes

    NASA Astrophysics Data System (ADS)

    Staszczak, A.; Baran, A.; Nazarewicz, W.

    The nuclear fission phenomenon is a magnificent example of a quantal collective motion during which the nucleus evolves in a multidimensional space representing shapes with different geometries. The triaxial degrees of freedom are usually important around the inner fission barrier, and reduce the fission barrier height by several MeV. Beyond the inner barrier, reflection-asymmetric shapes corresponding to asymmetric elongated fragments come into play. We discuss the interplay between different symmetry breaking mechanisms in the case of even-even fermium isotopes using the Skyrme HFB formalism.

  17. BREAKING OF AXIAL AND REFLECTION SYMMETRIES IN SPONTANEOUS FISSION OF FERMIUM ISOTOPES

    SciTech Connect

    Staszczak, A.; Nazarewicz, Witold; Baran, Andrzej K

    2011-01-01

    The nuclear fission phenomenon is a magnificent example of a quantal collective motion during which the nucleus evolves in a multidimensional space representing shapes with different geometries. The triaxial degrees of freedom are usually important around the inner fission barrier, and reduce the fission barrier height by several MeV. Beyond the inner barrier, reflection-asymmetric shapes corresponding to asymmetric elongated fragments come into play. We discuss the interplay between different symmetry breaking mechanisms in the case of even-even fermium isotopes using the Skyrme HFB formalism.

  18. Microscopic description of fission in neutron-rich radium isotopes with the Gogny energy density functional

    NASA Astrophysics Data System (ADS)

    Rodrıguez-Guzmán, R.; Robledo, L. M.

    2016-01-01

    Mean-field calculations, based on the D1S, D1N and D1M parametrizations of the Gogny energy density functional, have been carried out to obtain the potential energy surfaces relevant to fission in several Ra isotopes with the neutron number 144≤ N≤ 176. Inner and outer barrier heights as well as first and second isomer excitation energies are given. The existence of a well-developed third minimum along the fission paths of Ra nuclei is analyzed in terms of the energetics of the "fragments" defining such elongated configuration. The masses and charges of the fission fragments are studied as functions of the neutron number in the parent Ra isotope. The comparison between fission and α -decay half-lives, reveals that the former becomes faster for increasing neutron numbers. Though there exists a strong variance of the results with respect to the parameters used in the computation of the spontaneous fission rate, a change in tendency is observed at N=164 with a steady increase that makes heavier neutron-rich Ra isotopes stable against fission, diminishing the importance of fission recycling in the r-process.

  19. Advanced Monte Carlo modeling of prompt fission neutrons for thermal and fast neutron-induced fission reactions on Pu239

    NASA Astrophysics Data System (ADS)

    Talou, P.; Becker, B.; Kawano, T.; Chadwick, M. B.; Danon, Y.

    2011-06-01

    Prompt fission neutrons following the thermal and 0.5 MeV neutron-induced fission reaction of Pu239 are calculated using a Monte Carlo approach to the evaporation of the excited fission fragments. Exclusive data such as the multiplicity distribution P(ν), the average multiplicity as a function of fragment mass ν¯(A), and many others are inferred in addition to the most used average prompt fission neutron spectrum χ(Ein,Eout), as well as average neutron multiplicity ν¯. Experimental information on these more exclusive data help constrain the Monte Carlo model parameters. The calculated average total neutron multiplicity is ν¯c=2.871 in very close agreement with the evaluated value ν¯e=2.8725 present in the ENDF/B-VII.0 library. The neutron multiplicity distribution P(ν) is in very good agreement with the evaluation by Holden and Zucker. The calculated average spectrum differs in shape from the ENDF/B-VII.0 spectrum, evaluated with the Madland-Nix model. In particular, we predict more neutrons in the low-energy tail of the spectrum (below about 300 keV) than the Madland-Nix calculations, casting some doubts on how much scission neutrons contribute to the shape of the low-energy tail of the spectrum. The spectrum high-energy tail is very sensitive to the total kinetic energy distribution of the fragments as well as to the total excitation energy sharing at scission. Present experimental uncertainties on measured spectra above 6 MeV are too large to distinguish between various theoretical hypotheses. Finally, comparisons of the Monte Carlo results with experimental data on ν¯(A) indicate that more neutrons are emitted from the light fragments than the heavy ones, in agreement with previous works.

  20. Fission Particle Emission Multiplicity Simulation

    2006-09-27

    Simulates discrete neutron and gamma-ray emission from the fission of heavy nuclei that is either spontaneous or neutron induced. This is a function library that encapsulates the fission physics and is intended to be called Monte Carlo transport code.

  1. TREATMENT OF FISSION PRODUCT WASTE

    DOEpatents

    Huff, J.B.

    1959-07-28

    A pyrogenic method of separating nuclear reactor waste solutions containing aluminum and fission products as buring petroleum coke in an underground retort, collecting the easily volatile gases resulting as the first fraction, he uminum chloride as the second fraction, permitting the coke bed to cool and ll contain all the longest lived radioactive fission products in greatly reduced volume.

  2. Fission of actinides through quasimolecular shapes

    NASA Astrophysics Data System (ADS)

    Royer, Guy; Zhang, Hongfei; Eudes, Philippe; Moustabchir, Rachid; Moreau, Damien; Jaffré, Muriel; Morabit, Youssef; Particelli, Benjamin

    2013-12-01

    The potential energy of heavy nuclei has been calculated in the quasimolecular shape path from a generalized liquid drop model including the proximity energy, the charge and mass asymmetries and the microscopic corrections. The potential barriers are multiple-humped. The second maximum is the saddle-point. It corresponds to the transition from compact one-body shapes with a deep neck to two touching ellipsoids. The scission point lies at the end of an energy plateau well below the saddle-point and where the effects of the nuclear attractive forces between two separated fragments vanish. The energy on this plateau is the sum of the kinetic and excitation energies of the fragments. The shell and pairing corrections play an essential role to select the most probable fission path. The potential barrier heights agree with the experimental data and the theoretical half-lives follow the trend of the experimental values. A third peak and a shallow third minimum appear in asymmetric decay paths when one fragment is close to a double magic quasi-spherical nucleus, while the smaller one changes from oblate to prolate shapes.

  3. A threshold for dissipative fission

    SciTech Connect

    Thoennessen, M.; Bertsch, G.F.

    1993-09-21

    The empirical domain of validity of statistical theory is examined as applied to fission data on pre-fission data on pre-fission neutron, charged particle, and {gamma}-ray multiplicities. Systematics are found of the threshold excitation energy for the appearance of nonstatistical fission. From the data on systems with not too high fissility, the relevant phenomenological parameter is the ratio of the threshold temperature T{sub thresh} to the (temperature-dependent) fission barrier height E{sub Bar}(T). The statistical model reproduces the data for T{sub thresh}/E{sub Bar}(T) < 0.26 {plus_minus} 0.05, but underpredicts the multiplicities at higher T{sub thresh}/E{sub Bar}(T) independent of mass and fissility of the systems.

  4. Beta-Delayed Neutron Spectroscopy Using VANDLE at CARIBU

    NASA Astrophysics Data System (ADS)

    Taylor, S.; Kolos, K.; Grzywacz, R.; Paulauskas, S. V.; Madurga, M.; Savard, G.; Brewer, N. T.; Vandle Collaboration

    2015-10-01

    Measurement of spectroscopic information on beta-delayed neutrons of neutron rich fission fragments is of interest to the areas of astrophysics, reactor design, nuclear structure and stockpile stewardship. Using the Time of Flight (TOF) method, the Versatile Array of Neutron Detectors at Low Energy(VANDLE)[1,2,3] measured fission fragments of 252Cf provided by CARIBU at Argonne National Lab. 135,136Sb and 85As isotopes were measured to explore the nuclear structure around doubly magic nuclei 132Sn and 78Ni. A new TOF start detector was developed for this experiment using new Silicon Photo-Multipliers from SensL to allow for a lower beta particle energy detection threshold and better timing resolution compared to previous VANDLE experiments. This work is funded by the U.S. Department of Energy NNSA under the Stewardship Science Academic Alliance program through DOE Cooperative Agreement No. DE-FG52-08NA28552.

  5. Calculation of Ambient (H*(10)) and Personal (Hp(10)) Dose Equivalent from a 252Cf Neutron Source

    SciTech Connect

    Traub, Richard J.

    2010-03-26

    The purpose of this calculation is to calculate the neutron dose factors for the Sr-Cf-3000 neutron source that is located in the 318 low scatter room (LSR). The dose factors were based on the dose conversion factors published in ICRP-21 Appendix 6, and the Ambient dose equivalent (H*(10)) and Personal dose equivalent (Hp(10)) dose factors published in ICRP Publication 74.

  6. Experimental determination of moisture distributions in fired clay brick using a 252Cf source: a neutron transmission study.

    PubMed

    El Abd, A; Abdel-Monem, A M; Kansouh, W A

    2013-04-01

    A neutron transmission method was proposed to study liquid transport in porous media. It was applied to study water penetration into two kinds of fired clay bricks. The results showed that the diffusion processes in the investigated samples are different. Water diffusivities and capillary absorption coefficients characterizing both the flow process and the brick samples were determined and compared. The proposed method is simple, accurate and reliable in studying water diffusion in porous media, in real time.

  7. Comparison of lipids A of several Salmonella and Escherichia strains by 252Cf plasma desorption mass spectrometry.

    PubMed Central

    Karibian, D; Deprun, C; Caroff, M

    1993-01-01

    Plasma desorption mass spectrometry has recently been used with success to characterize underivatized lipid A preparations: the major molecular species present give signals indicating their masses, from which probable compositions could be inferred by using the overall composition determined by chemical analyses. In the present study, plasma desorption mass spectrometry was used to compare structures in lipid A preparations isolated from several smooth and rough strains of Escherichia and Salmonella species. Preparations isolated from strains of both genera revealed considerable variation in degree of heterogeneity (number of fatty acids and presence or absence of hexadecanoic acid, phosphorylethanolamine, and aminoarabinose). Molecular species usually associated with Salmonella lipid A were found in preparations from Escherichia sp. In addition, preparations from three different batches of lipid A from one strain of Salmonella minnesota showed significant differences in composition. These results demonstrate that preparations used for biological and structural analyses should be defined in terms of their particular molecular constituents and that no generalizations based on analysis of a single preparation should be made. PMID:8491718

  8. On the effect of an error in a standard D2O-moderated 252Cf energy spectrum.

    PubMed

    Cummings, F M

    2009-12-01

    There appears to be an error in the neutron fluence for neutrons with energies between 9 and 10 MeV for the tabulated D2O-moderated Cf source in ISO 8529-1. If the referenced spectrum is used as tabulated, the error contributes a total error to neutron dose values from this source of approximately 3%.

  9. Fifty years with nuclear fission

    SciTech Connect

    Behrens, J.W.; Carlson, A.D. )

    1989-01-01

    The news of the discovery of nuclear fission, by Otto Hahn and Fritz Strassmann in Germany, was brought to the United States by Niels Bohr in January 1939. Since its discovery, the United States, and the world for that matter, has never been the same. It therefore seemed appropriate to acknowledge the fifieth anniversary of its discovery by holding a topical meeting entitled, Fifty Years with Nuclear Fission,'' in the United States during the year 1989. The objective of the meeting was to bring together pioneers of the nuclear industry and other scientists and engineers to report on reminiscences of the past and on the more recent development in fission science and technology. The conference highlighted the early pioneers of the nuclear industry by dedicated a full day (April 26), consisting of two plenary sessions, at the National Academy of Sciences (NAS) in Washington, DC. More recent developments in fission science and technology in addition to historical reflections were topics for two fully days of sessions (April 27 and 28) at the main site of the NIST in Gaithersburg, Maryland. The wide range of topics covered in this Volume 1 by this topical meeting included plenary invited, and contributed sessions entitled: Preclude to the First Chain Reaction -- 1932 to 1942; Early Fission Research -- Nuclear Structure and Spontaneous Fission; 50 Years of Fission, Science, and Technology; Nuclear Reactors, Secure Energy for the Future; Reactors 1; Fission Science 1; Safeguards and Space Applications; Fission Data; Nuclear Fission -- Its Various Aspects; Theory and Experiments in Support of Theory; Reactors and Safeguards; and General Research, Instrumentation, and By-Product. The individual papers have been cataloged separately.

  10. Fission and dipole resonances in metal clusters

    SciTech Connect

    Martin, T. P.; Billas, I. M. L.; Branz, W.; Heinebrodt, M.; Tast, F.; Malinowski, N.

    1997-06-20

    It is not obvious that metal clusters should behave like atomic nuclei--but they do. Of course the energy and distance scales are quite different. But aside from this, the properties of these two forms of condensed matter are amazingly similar. The shell model developed by nuclear physicists describes very nicely the electronic properties of alkali metal clusters. The giant dipole resonances in the excitation spectra of nuclei have their analogue in the plasmon resonances of metal clusters. Finally, the droplet model describing the fission of unstable nuclei can be successively applied to the fragmentation of highly charged metal clusters. The similarity between clusters and nuclei is not accidental. Both systems consist of fermions moving, nearly freely, in a confined space.

  11. Lasers from fission. [nuclear pumping feasibility experiments

    NASA Technical Reports Server (NTRS)

    Schneider, R. T.; Thom, K.; Helmick, H. H.

    1975-01-01

    The feasibility of the nuclear pumping of lasers was demonstrated in three experiments conducted independently at three different laboratories. In this context nuclear pumping of lasers is understood to be the excitation of a laser by the kinetic energy of the fission fragments only. A description is given of research concerned with the use of nuclear energy for the excitation of gas lasers. Experimental work was supplemented by theoretical research. Attention is given to a nuclear pumped He-Xe laser, a nuclear pumped CO laser, and a neon-nitrogen laser pumped by alpha particles. Studies involving uranium hexafluoride admixture to laser media are discussed along with research on uranium hexafluoride-fueled reactors.

  12. Organelle fission in eukaryotes.

    PubMed

    Osteryoung, K W

    2001-12-01

    The cellular machineries that power chloroplast and mitochondrial division in eukaryotes carry out the topologically challenging job of constricting and severing these double-membraned organelles. Consistent with their endosymbiotic origins, mitochondria in protists and chloroplasts in photosynthetic eukaryotes have evolved organelle-targeted forms of FtsZ, the prokaryotic ancestor of tubulin, as key components of their fission complexes. In fungi, animals and plants, mitochondria no longer utilize FtsZ for division, but several mitochondrial division proteins that localize to the outer membrane and intermembrane space, including two related to the filament-forming dynamins, have been identified in yeast and animals. Although the reactions that mediate organelle division are not yet understood, recent progress in uncovering the constituents of the organelle division machineries promises rapid advancement in our understanding of the biochemical mechanisms underlying the distinct but related processes of chloroplast and mitochondrial division in eukaryotes.

  13. Fission yeast septation.

    PubMed

    Cortés, Juan C G; Ramos, Mariona; Osumi, Masako; Pérez, Pilar; Ribas, Juan Carlos

    2016-01-01

    In animal cells cytokinesis relies on the contraction of an actomyosin ring that pulls the plasma membrane to create a cleavage furrow, whose ingression finally divides the mother cell into two daughter cells. Fungal cells are surrounded by a tough and flexible structure called cell wall, which is considered to be the functional equivalent of the extracellular matrix in animal cells. Therefore, in addition to cleavage furrow ingression, fungal cytokinesis also requires the centripetal formation of a septum wall structure that develops between the dividing cells, whose genesis must be strictly coordinated with both the actomyosin ring closure and plasma membrane ingression. Here we briefly review what is known about the septum structure and composition in the fission yeast Schizosaccharomyces pombe, the recent progress about the relationship between septum biosynthesis and actomyosin ring constriction, and the importance of the septum and ring in the steady progression of the cleavage furrow. PMID:27574536

  14. Fission yeast septation

    PubMed Central

    Cortés, Juan C. G.; Ramos, Mariona; Osumi, Masako; Pérez, Pilar; Ribas, Juan Carlos

    2016-01-01

    ABSTRACT In animal cells cytokinesis relies on the contraction of an actomyosin ring that pulls the plasma membrane to create a cleavage furrow, whose ingression finally divides the mother cell into two daughter cells. Fungal cells are surrounded by a tough and flexible structure called cell wall, which is considered to be the functional equivalent of the extracellular matrix in animal cells. Therefore, in addition to cleavage furrow ingression, fungal cytokinesis also requires the centripetal formation of a septum wall structure that develops between the dividing cells, whose genesis must be strictly coordinated with both the actomyosin ring closure and plasma membrane ingression. Here we briefly review what is known about the septum structure and composition in the fission yeast Schizosaccharomyces pombe, the recent progress about the relationship between septum biosynthesis and actomyosin ring constriction, and the importance of the septum and ring in the steady progression of the cleavage furrow. PMID:27574536

  15. Interplay of fission modes in mass distribution of light actinide nuclei 225,227Pa

    NASA Astrophysics Data System (ADS)

    Dubey, R.; Sugathan, P.; Jhingan, A.; Kaur, Gurpreet; Mukul, Ish; Mohanto, G.; Siwal, D.; Saneesh, N.; Banerjee, T.; Thakur, Meenu; Mahajan, Ruchi; Kumar, N.; Chatterjee, M. B.

    2016-01-01

    Fission-fragment mass distributions were measured for 225,227Pa nuclei formed in fusion reactions of 19F + 206,208Pb around fusion barrier energies. Mass-angle correlations do not indicate any quasi-fission like events in this bombarding energy range. Mass distributions were fitted by Gaussian distribution and mass variance extracted. At below-barrier energies, the mass variance was found to increase with decrease in energy for both nuclei. Results from present work were compared with existing data for induced fission of 224,226Th and 228U around barrier energies. Enhancement in mass variance of 225,227Pa nuclei at below-barrier energies shows evidence for presence of asymmetric fission events mixed with symmetric fission events. This is in agreement with the results of mass distributions of nearby nuclei 224,226Th and 228U where two-mode fission process was observed. Two-mode feature of fission arises due to the shell effects changing the landscape of the potential-energy surfaces at low excitation energies. The excitation-energy dependence of the mass variance gives strong evidence for survival of microscopic shell effects in fission of light actinide nuclei 225,227Pa with initial excitation energy ∼30-50 MeV.

  16. [Use of time-of-flight mass spectrometry with ionization division fragments of californium-252 for studying the mechanisms of action of drugs on DNA and its components].

    PubMed

    Sukhodub, L F; Grebenik, L I; Chivanov, V D

    1994-01-01

    Using soft-ionization mass spectrometry (252-Cf particle desorption mass spectrometry, PDMS) a minor adduct of anticancer drug prospidine and deoxyguanosine-5-phosphate (pdG) has been found. It has been shown experimentally that PDMS is very useful for study of biological mixtures as well as mechanisms of interactions between drugs and biomolecules.

  17. [An improved method of preparing protein and peptide probes in mass spectrometry with ionization of division fragments by californium-252 (TOF-PDMS)].

    PubMed

    Chivanov, V D; Zubarev, R A; Aksenov, S A; Bordunova, O G; Eremenko, V I; Kabanets, V M; Tatarinova, V I; Mishnev, A K; Kuraev, V V; Knysh, A N; Eremenko, I A

    1996-08-01

    The addition of organic acids (picric, oxalic, citric, or tartaric) to peptide and protein samples was found to significantly increase the yield of their quasi-molecular ions (QMI) in time-of-flight 252Cf plasma desorption mass spectrometry. The yield of the ions depended on the pKa of the acid added.

  18. Studies on fission with ALADIN. Precise and simultaneous measurement of fission yields, total kinetic energy and total prompt neutron multiplicity at GSI

    NASA Astrophysics Data System (ADS)

    Martin, Julie-Fiona; Taieb, Julien; Chatillon, Audrey; Bélier, Gilbert; Boutoux, Guillaume; Ebran, Adeline; Gorbinet, Thomas; Grente, Lucie; Laurent, Benoit; Pellereau, Eric; Alvarez-Pol, Héctor; Audouin, Laurent; Aumann, Thomas; Ayyad, Yassid; Benlliure, Jose; Casarejos, Enrique; Cortina Gil, Dolores; Caamaño, Manuel; Farget, Fanny; Fernández Domínguez, Beatriz; Heinz, Andreas; Jurado, Beatriz; Kelić-Heil, Aleksandra; Kurz, Nikolaus; Nociforo, Chiara; Paradela, Carlos; Pietri, Stéphane; Ramos, Diego; Rodríguez-Sànchez, Jose-Luis; Rodríguez-Tajes, Carme; Rossi, Dominic; Schmidt, Karl-Heinz; Simon, Haik; Tassan-Got, Laurent; Vargas, Jossitt; Voss, Bernd; Weick, Helmut

    2015-12-01

    A novel technique for fission studies, based on the inverse kinematics approach, is presented. Following pioneering work in the nineties, the SOFIA Collaboration has designed and built an experimental set-up dedicated to the simultaneous measurement of isotopic yields, total kinetic energies and total prompt neutron multiplicities, by fully identifying both fission fragments in coincidence, for the very first time. This experiment, performed at GSI, permits to study the fission of a wide variety of fissioning systems, ranging from mercury to neptunium, possibly far from the valley of stability. A first experiment, performed in 2012, has provided a large array of unprecedented data regarding the nuclear fission process. An excerpt of the results is presented. With this solid starter, further improvements of the experimental set-up are considered, which are consistent with the expected developments at the GSI facility, in order to measure more fission observables in coincidence. The completeness reached in the SOFIA data, permits to scrutinize the correlations between the interesting features of fission, offering a very detailed insight in this still unraveled mechanism.

  19. Fifty years with nuclear fission

    SciTech Connect

    Behrens, J.W.; Carlson, A.D. )

    1989-01-01

    The news of the discovery of nucler fission, by Otto Hahn and Fritz Strassmann in Germany, was brought to the United States by Niels Bohr in January 1939. Since its discovery, the United States, and the world for that matter, has never been the same. It therefore seemed appropriate to acknowledge the fiftieth anniversary of its discovery by holding a topical meeting entitled, Fifty years with nuclear fission,'' in the United States during the year 1989. The objective of the meeting was to bring together pioneers of the nuclear industry and other scientists and engineers to report on reminiscences of the past and on the more recent developments in fission science and technology. The conference highlighted the early pioneers of the nuclear industry by dedicating a full day (April 26), consisting of two plenary sessions, at the National Academy of Sciences (NAS) in Washington, DC. More recent developments in fission science and technology in addition to historical reflections were topics for two full days of sessions (April 27 and 28) at the main sites of the NIST in Gaithersburg, Maryland. The wide range of topics covered by Volume 2 of this topical meeting included plenary invited, and contributed sessions entitled, Nuclear fission -- a prospective; reactors II; fission science II; medical and industrial applications by by-products; reactors and safeguards; general research, instrumentation, and by-products; and fission data, astrophysics, and space applications. The individual papers have been cataloged separately.

  20. Recent Results from Lohengrin on Fission Yields and Related Decay Properties

    NASA Astrophysics Data System (ADS)

    Serot, O.; Amouroux, C.; Bidaud, A.; Capellan, N.; Chabod, S.; Ebran, A.; Faust, H.; Kessedjian, G.; Köester, U.; Letourneau, A.; Litaize, O.; Martin, F.; Materna, T.; Mathieu, L.; Panebianco, S.; Regis, J.-M.; Rudigier, M.; Sage, C.; Urban, W.

    2014-05-01

    The Lohengrin mass spectrometer is one of the 40 instruments built around the reactor of the Institute Laue-Langevin (France) which delivers a very intense thermal neutron flux. Usually, Lohengrin was combined with a high-resolution ionization chamber in order to obtain good nuclear charge discrimination within a mass line, yielding an accurate isotopic yield determination. Unfortunately, this experimental procedure can only be applied for fission products with a nuclear charge less than about 42, i.e. in the light fission fragment region. Since 2008, a large collaboration has started with the aim of studying various fission aspects, mainly in the heavy fragment region. For that, a new experimental setup which allows isotopic identification by γ-ray spectrometry has been developed and validated. This technique was applied on the 239Pu(nth,f) reaction where about 65 fission product yields were measured with an uncertainty that has been reduced on average by a factor of 2 compared with what was that previously available in nuclear data libraries. The same γ-ray spectrometric technique is currently being applied to the study of the 233U(nth,f) reaction. Our aim is to deduce charge and mass distributions of the fission products and to complete the experimental data that exist mainly for light fission fragments. The measurement of 41 mass yields from the 241Am(2nth,f) reaction has been also performed. In addition to these activities on fission yield measurements, various new nanosecond isomers were discovered. Their presence can be revealed from a strong deformed ionic charge distribution compared to a 'normal' Gaussian shape. Finally, a new neutron long-counter detector designed to have a detection efficiency independent of the detected neutron energy has been built. Combining this neutron device with a Germanium detector and a beta-ray detector array allowed us to measure the beta-delayed neutron emission probability Pn of some important fission products for reactor

  1. On the dynamics of fission of hot nuclei

    NASA Astrophysics Data System (ADS)

    Fröbrich, P.

    2007-05-01

    ) probabilities prescission neutron multiplicities and spectra prescission charged particle multiplicities and spectra prescission γ-multiplicities and spectra evaporation residue cross sections fission time distributions temperatures at scission fission fragment angular distributions The results above are obtained with the Ito-discretization of the Langevin equation and might lead to some modifications when using the Klimontovich [Yu.L. Klimontovich, Usp. Fiz. Nauk. 37, 737 (1994)] discretization, which is claimed to be more physical [A.E. Gettinger, I.I. Gontchar, J. Phys. G: Nucl. Part. Phys. 26, 347 (2000)]. A satisfactory description of the measured correlation between the kinetic energy distribution and prescission neutron multiplicities could only be obtained when the mass asymmetry degree of freedom is included in the Langevin theory [P.N. Nadtochy, G.D. Adeev, A.V. Karpov, Phys. Rev. C 65, 064615 (2002)], thus generalizing the two-dimensional not overdamped Langevin models of Refs. [G.R. Tillack, R. Reif, A. Schülcke, P. Fröbrich, H.J. Krappe, H.G. Reusch, Phys. Lett. B 296, 296 (1992)] and [T. Wada, Y. Abe, N. Carjan, Phys. Rev. Lett. 70, 3528 (1993)]. A recent article analysing the mass distribution of fission fragments is [E.G. Ryabov, A.V. Karpov, G.D. Adeev, Nucl. Phys. A 765, 39 (2006)]. The first important point I want to stress is that the driving force of a hot system is not simply the negative gradient of the conservative potential but should contain a thermodynamical correction which is not taken into account in a number of publications.

  2. Fusion, fission, and quasi-fission using TDHF

    NASA Astrophysics Data System (ADS)

    Umar, Sait; Oberacker, Volker

    2014-03-01

    We study fusion, fission, and quasi-fission reactions using the time-dependent Hartee-Fock (TDHF) approach together with the density-constrained TDHF method for fusion. The only input is the Skyrme NN interaction, there are no adjustable parameters. We discuss the identification of quasi-fission in 40Ca+238U, the scission dynamics in symmetric fission of 264Fm, as well as calculating heavy-ion interaction potentials V (R) , mass parameters M (R) , and total fusion cross sections from light to heavy systems. Some of the effects naturally included in these calculations are: neck formation, mass exchange, internal excitations, deformation effects, as well as nuclear alignment for deformed systems. Supported by DOE grant DE-FG02-96ER40975.

  3. Spontaneous Fission: A Kinetic Approach

    SciTech Connect

    Bonasera, A.; Iwamoto, A.; Bonasera, A.

    1997-01-01

    We present an attempt towards the many-body description of spontaneous fission based on the semiclassical Vlasov equation and the Feynman path integral method. We define suitable collective variables from the Vlasov solution and use the imaginary time technique for the dynamics below the Coulomb barrier. We demonstrate (1) the stability of the Vlasov solution, (2) the ability of this model to calculate the basic features of the whole spontaneous fission process, (3) the sensitivity of the dynamics below the barrier to the mean field potential, and (4) the important role of collective excitations and of particle emission during the fission process. {copyright} {ital 1997} {ital The American Physical Society}

  4. First results from the new double velocity-double energy spectrometer VERDI

    NASA Astrophysics Data System (ADS)

    Frégeau, M. O.; Oberstedt, S.; Gamboni, Th.; Geerts, W.; Hambsch, F.-J.; Vidali, M.

    2016-05-01

    The VERDI spectrometer (VElocity foR Direct mass Identification) is a two arm time-of-flight spectrometer built at the European Commission Joint Research Centre IRMM. It determines fragment masses and kinetic energy distributions produced in nuclear fission by means of the double velocity and double energy (2v-2E) method. The simultaneous measurement of pre- and post neutron fragment characteristics allows studying the share of excitation energy between the two fragments. In particular, the evolution of fission modes and neutron multiplicity may be studied as a function of the available excitation energy. Both topics are of great importance for the development of models used in the evaluation of nuclear data, and also have important implications for the fundamental understanding of the fission process. The development of VERDI focus on maximum geometrical efficiency while striving for highest possible mass resolution. An innovative transmission start detector, using electrons ejected from the target itself, was developed. Stop signal and kinetic energy of both fragments are provided by two arrays of silicon detectors. The present design provides about 200 times higher geometrical efficiency than that of the famous COSI FAN TUTTE spectrometer [Nuclear Instruments and Methods in Physics Research 219 (1984) 569]. We report about a commissioning experiment of the VERDI spectrometer, present first results from a 2v-2E measurement of 252Cf spontaneous fission and discuss the potential of this instrument to contribute to the investigation prompt fission neutron characteristics as a function of fission fragment properties.

  5. Fission of rotating fermium isotopes

    NASA Astrophysics Data System (ADS)

    Baran, A.; Staszczak, A.

    2014-05-01

    In this paper we discuss the process of fission of even fermium isotopes, on the basis of their rotational states. The nuclear intrinsic vorticity and its coupling to the global rotation of the nucleus are used to simulate the interaction between the rotational motion and the pairing field, and lead to pairing quenching in the case of higher angular momentum states. The rotation leads to a decreasing of the fission barrier heights. The ingredients of the model—ground state fission barriers, pairing correlation energies and the cranking moments of inertia—are obtained within the self-consistent Hartree-Fock-Bogoliubov framework using the Skyrme \\text{Sk}{{\\text{M}}^{*}} energy density functional. Fission barriers and half-lives are estimated for spins I up to I = 16ℏ.

  6. The binary fission origin of the moon

    NASA Technical Reports Server (NTRS)

    Binder, Alan B.

    1986-01-01

    The major arguments for and against the binary fission model of lunar origin are reviewed. Unresolved problems include: (1) how the protoearth acquired sufficient angular velocity to fission, and (2) how the earth-moon system lost its excess angular momentum after fission. Despite these uncertainties, the compositional similarities between the earth's mantle and the bulk moon suggest that the fission model is worth considering. The proposed sequence of events in the formation of the moon by binary fission is given.

  7. Identification of genes affecting vacuole membrane fragmentation in Saccharomyces cerevisiae.

    PubMed

    Michaillat, Lydie; Mayer, Andreas

    2013-01-01

    The equilibrium of membrane fusion and fission influences the volume and copy number of organelles. Fusion of yeast vacuoles has been well characterized but their fission and the mechanisms determining vacuole size and abundance remain poorly understood. We therefore attempted to systematically characterize factors necessary for vacuole fission. Here, we present results of an in vivo screening for deficiencies in vacuolar fragmentation activity of an ordered collection deletion mutants, representing 4881 non-essential genes of the yeast Saccharomyces cerevisiae. The screen identified 133 mutants with strong defects in vacuole fragmentation. These comprise numerous known fragmentation factors, such as the Fab1p complex, Tor1p, Sit4p and the V-ATPase, thus validating the approach. The screen identified many novel factors promoting vacuole fragmentation. Among those are 22 open reading frames of unknown function and three conspicuous clusters of proteins with known function. The clusters concern the ESCRT machinery, adaptins, and lipases, which influence the production of diacylglycerol and phosphatidic acid. A common feature of these factors of known function is their capacity to change membrane curvature, suggesting that they might promote vacuole fragmentation via this property.

  8. Identification of Genes Affecting Vacuole Membrane Fragmentation in Saccharomyces cerevisiae

    PubMed Central

    Michaillat, Lydie; Mayer, Andreas

    2013-01-01

    The equilibrium of membrane fusion and fission influences the volume and copy number of organelles. Fusion of yeast vacuoles has been well characterized but their fission and the mechanisms determining vacuole size and abundance remain poorly understood. We therefore attempted to systematically characterize factors necessary for vacuole fission. Here, we present results of an in vivo screening for deficiencies in vacuolar fragmentation activity of an ordered collection deletion mutants, representing 4881 non-essential genes of the yeast Saccharomyces cerevisiae. The screen identified 133 mutants with strong defects in vacuole fragmentation. These comprise numerous known fragmentation factors, such as the Fab1p complex, Tor1p, Sit4p and the V-ATPase, thus validating the approach. The screen identified many novel factors promoting vacuole fragmentation. Among those are 22 open reading frames of unknown function and three conspicuous clusters of proteins with known function. The clusters concern the ESCRT machinery, adaptins, and lipases, which influence the production of diacylglycerol and phosphatidic acid. A common feature of these factors of known function is their capacity to change membrane curvature, suggesting that they might promote vacuole fragmentation via this property. PMID:23383298

  9. Advanced Space Fission Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Houts, Michael G.; Borowski, Stanley K.

    2010-01-01

    Fission has been considered for in-space propulsion since the 1940s. Nuclear Thermal Propulsion (NTP) systems underwent extensive development from 1955-1973, completing 20 full power ground tests and achieving specific impulses nearly twice that of the best chemical propulsion systems. Space fission power systems (which may eventually enable Nuclear Electric Propulsion) have been flown in space by both the United States and the Former Soviet Union. Fission is the most developed and understood of the nuclear propulsion options (e.g. fission, fusion, antimatter, etc.), and fission has enjoyed tremendous terrestrial success for nearly 7 decades. Current space nuclear research and technology efforts are focused on devising and developing first generation systems that are safe, reliable and affordable. For propulsion, the focus is on nuclear thermal rockets that build on technologies and systems developed and tested under the Rover/NERVA and related programs from the Apollo era. NTP Affordability is achieved through use of previously developed fuels and materials, modern analytical techniques and test strategies, and development of a small engine for ground and flight technology demonstration. Initial NTP systems will be capable of achieving an Isp of 900 s at a relatively high thrust-to-weight ratio. The development and use of first generation space fission power and propulsion systems will provide new, game changing capabilities for NASA. In addition, development and use of these systems will provide the foundation for developing extremely advanced power and propulsion systems capable of routinely and affordably accessing any point in the solar system. The energy density of fissile fuel (8 x 10(exp 13) Joules/kg) is more than adequate for enabling extensive exploration and utilization of the solar system. For space fission propulsion systems, the key is converting the virtually unlimited energy of fission into thrust at the desired specific impulse and thrust

  10. Spontaneous fission of the superheavy nucleus 286Fl

    NASA Astrophysics Data System (ADS)

    Poenaru, D. N.; Gherghescu, R. A.

    2016-07-01

    The decimal logarithm of spontaneous fission half-life of the superheavy nucleus 286Fl experimentally determined is log10Tfexp(s ) =-0.632 . We present a method to calculate the half-life based on the cranking inertia and the deformation energy, functions of two independent surface coordinates, using the best asymmetric two center shell model. Spherical shapes are assumed. In the first stage we study the statics. At a given mass asymmetry up to about η =0.5 the potential barrier has a two hump shape, but for larger η it has only one hump. The touching point deformation energy versus mass asymmetry shows the three minima, produced by shell effects, corresponding to three decay modes: spontaneous fission, cluster decay, and α decay. The least action trajectory is determined in the plane (R ,η ) , where R is the separation distance of the fission fragments and η is the mass asymmetry. We may find a sequence of several trajectories one of which gives the least action. The parametrization with two deformation coordinates (R ,η ) and the radius of the light fragment, R2, exponentially or linearly decreasing with R is compared with the simpler one, in which R2=constant and with a linearly decreasing or linearly increasing R2. The latter is closer to the reality and reminds us about the α or cluster preformation at the nuclear surface.

  11. Four-dimensional Langevin dynamics of heavy-ion-induced fission

    NASA Astrophysics Data System (ADS)

    Nadtochy, P. N.; Ryabov, E. G.; Gegechkori, A. E.; Anischenko, Yu. A.; Adeev, G. D.

    2012-06-01

    A four-dimensional dynamical model based on Langevin equations was developed and applied to calculate a wide set of experimental observables for the reactions 16O+208Pb→224Th and 16O+232Th→248Cf over a wide range of excitation energy. The fusion-fission and evaporation residue cross sections, fission fragment mass-energy distribution parameters, prescission neutron multiplicities, and anisotropy of angular distribution of fission fragments could be reasonably reproduced using a modified one-body mechanism for nuclear friction with a reduction coefficient of the contribution from a wall formula ks≃0.25 and a dissipation coefficient for the orientation degree of freedom (K coordinate) γK≃ 0.077 (MeVzs)-1/2. Inclusion of the K coordinate into calculation of potential energy changes the stiffness of the nucleus with respect to mass asymmetry coordinate for the values of K≠0 and results in a shift of the Businaro-Gallone point towards larger Z2/A values. The experimental data on the fission fragment mass-energy distribution parameters together with mean prescission neutron multiplicity for heavy fissioning nuclei are reproduced through the four-dimensional Langevin calculations more accurately than through three-dimensional calculations.

  12. Quasifission and fusion-fission in reactions with massive nuclei: Comparison of reactions leading to the Z=120 element

    SciTech Connect

    Nasirov, A. K.; Giardina, G.; Mandaglio, G.; Manganaro, M.; Hanappe, F.; Heinz, S.; Hofmann, S.; Muminov, A. I.; Scheid, W.

    2009-02-15

    The yields of evaporation residues, fusion-fission, and quasifission fragments in the {sup 48}Ca+{sup 144,154}Sm and {sup 16}O+{sup 186}W reactions are analyzed in the framework of the combined theoretical method based on the dinuclear system concept and advanced statistical model. The measured yields of evaporation residues for the {sup 48}Ca+{sup 154}Sm reaction can be well reproduced. The measured yields of fission fragments are decomposed into contributions coming from fusion-fission, quasifission, and fast-fission. The decrease in the measured yield of quasifission fragments in {sup 48}Ca+{sup 154}Sm at the large collision energies and the lack of quasifission fragments in the {sup 48}Ca+{sup 144}Sm reaction are explained by the overlap in mass angle distributions of the quasifission and fusion-fission fragments. The investigation of the optimal conditions for the synthesis of the new element Z=120 (A=302) show that the {sup 54}Cr+{sup 248}Cm reaction is preferable in comparison with the {sup 58}Fe+{sup 244}Pu and {sup 64}Ni+{sup 238}U reactions because the excitation function of the evaporation residues of the former reaction is some orders of magnitude larger than that for the last two reactions.

  13. Fractals and fragmentation

    NASA Technical Reports Server (NTRS)

    Turcotte, D. L.

    1986-01-01

    The use of renormalization group techniques on fragmentation problems is examined. The equations which represent fractals and the size-frequency distributions of fragments are presented. Method for calculating the size distributions of asteriods and meteorites are described; the frequency-mass distribution for these interplanetary objects are due to fragmentation. The application of two renormalization group models to fragmentation is analyzed. It is observed that the models yield a fractal behavior for fragmentation; however, different values for the fractal dimension are produced . It is concluded that fragmentation is a scale invariant process and that the fractal dimension is a measure of the fragility of the fragmented material.

  14. Development of the quantum theory of T-odd asymmetries for prescission and evaporated third particles in ternary nuclear fission induced by cold polarized neutrons

    SciTech Connect

    Kadmensky, S. G.; Bunakov, V. E.; Titova, L. V.; Kadmensky, S. S.

    2011-10-15

    A comparative analysis of the results obtained by experimentally and theoretically studying T-odd asymmetries for various third particles in the true and delayed ternary nuclear fission induced by cold polarized neutrons was performed. It was confirmed that the appearance of these asymmetries was associated with the effect of rotation of a polarized system undergoing fission on the angular distributions of prescission and evaporated third particles with respect to the direction along which the emerging fission fragments flew apart, this effect being determined by the Coriolis interaction of the rotational and the internalmotion of the fissioning system. A quantum-mechanical description of particle motion in a rotating coordinate system was generalized to the case where gamma-ray emission was present. It was shown that the separation of the motions of an axially symmetric fissile system into a rotational and an internal motion was valid in the external region as well, where ternary-fission products had already been formed, if it was considered that the motion of fission fragments was tightly connected with the system symmetry axis, which rotated in the laboratory frame. It was found that the dependence of the fissile-system moment of inertia appearing in the Coriolis interaction Hamiltonian on the distance between the fission fragments flying apart generated an additional phase in the amplitude of the radial distribution of fission fragments. It was shown that this phase might change sizably the contribution of the interference between fission amplitudes of neutron resonances excited in a fissile compound nucleus to the absolute values of T -odd asymmetries, especially for third particles such as neutrons and photons, which interacted only slightly with fission fragments.

  15. S-nitrosylation of Drp1 mediates beta-amyloid-related mitochondrial fission and neuronal injury.

    PubMed

    Cho, Dong-Hyung; Nakamura, Tomohiro; Fang, Jianguo; Cieplak, Piotr; Godzik, Adam; Gu, Zezong; Lipton, Stuart A

    2009-04-01

    Mitochondria continuously undergo two opposing processes, fission and fusion. The disruption of this dynamic equilibrium may herald cell injury or death and may contribute to developmental and neurodegenerative disorders. Nitric oxide functions as a signaling molecule, but in excess it mediates neuronal injury, in part via mitochondrial fission or fragmentation. However, the underlying mechanism for nitric oxide-induced pathological fission remains unclear. We found that nitric oxide produced in response to beta-amyloid protein, thought to be a key mediator of Alzheimer's disease, triggered mitochondrial fission, synaptic loss, and neuronal damage, in part via S-nitrosylation of dynamin-related protein 1 (forming SNO-Drp1). Preventing nitrosylation of Drp1 by cysteine mutation abrogated these neurotoxic events. SNO-Drp1 is increased in brains of human Alzheimer's disease patients and may thus contribute to the pathogenesis of neurodegeneration.

  16. Event-by-event evaluation of the prompt fission neutron spectrum from 239Pu(n,f)

    SciTech Connect

    Vogt, R; Randrup, J; Brown, D A; Descalle, M A; Ormand, W E

    2011-11-28

    We have developed an improved evaluation method for the spectrum of neutrons emitted in fission of {sup 239}Pu induced by incident neutrons with energies up to 20 MeV. The covariance data, including incident energy correlations introduced by the evaluation method, were used to fix the input parameters in our event-by-event model of fission, FREYA, by applying formal statistical methods. Formal estimates of uncertainties in the evaluation were developed by randomly sampling model inputs and calculating likelihood functions based on agreement with the evaluated . Our approach is able to employ a greater variety of fission measurements than the relatively coarse spectral data alone. It also allows the study of numerous fission observables for more accurate model validation. The combination of an event-by-event Monte Carlo fission model with a statistical-likelihood analysis is thus a powerful tool for evaluation of fission-neutron data. Our empirical model FREYA follows the complete fission event from birth of the excited fragments through their decay via neutron emission until the fragment excitation energy is below the neutron separation energy when neutron emission can no longer occur. The most recent version of FREYA incorporates pre-equilibrium neutron emission, the emission of the first neutron before equilibrium is reached in the compound nucleus, and multi-chance fission, neutron evaporation prior to fission when the incident neutron energy is above the neutron separation energy. Energy, momentum, charge and mass number are conserved throughout the fission process. The best available values of fragment masses and total kinetic energies are used as inputs to FREYA. We fit three parameters that are not well under control from previous measurements: the shift in the total fragment kinetic energy; the energy scale of the asymptotic level density parameter, controlling the fragment 'temperature' for neutron evaporation; and the relative excitation of the

  17. Using a Time Projection Chamber to Measure High Precision Neutron-Induced Fission Cross Sections

    SciTech Connect

    Manning, Brett

    2015-08-06

    2014 LANSCE run cycle data will provide a preliminary 239Pu(n,f) cross section and will quantify uncertainties: PID and Target/beam non-uniformities. Continued running during the 2015 LANSCE run cycle: Thin targets to see both fission fragments and 239Pu(n,f) cross section and fully quantified uncertainties

  18. Time delays in heavy-ion-induced fission of medium-Z nuclei, measured by crystal blocking

    SciTech Connect

    Andersen, J. U.; Chevallier, J.; Forster, J. S.; Karamian, S. A.; Vane, C Randy; Beene, James R; Gross, Carl J; Krause, Herbert F; Liang, J Felix; Shapira, Dan; Uguzzoni, A.

    2012-01-01

    Time delays in fission induced by bombardment of Mo with 170- and 180-MeV {sup 32}S, 225- and 240-MeV {sup 48}Ti, and 300-MeV {sup 58}Ni have been measured by observation of crystal blocking of fission fragments. In contrast to earlier measurements with a W target, the results are consistent with fission of a compound nucleus in competition with mainly neutron emission. Most of the fissions happen on a time scale much shorter than attoseconds but there is a significant component of fission with much longer lifetimes. The measurements are reproduced with a standard statistical model, including a Kramers correction to fission widths from the viscosity of hot nuclear matter. These new results support the interpretation of our earlier measurements with a W target, which indicate that there is a transition in heavy-ion-induced fission at large atomic number and mass, from multichance fission in the standard Bohr-Wheeler picture to fission without formation of a compound nucleus. The process is slowed down by nuclear viscosity, with measured delays of order attoseconds.

  19. NIFFTE Time Projection Chamber for Fission Cross Section Measurements

    NASA Astrophysics Data System (ADS)

    Castillo, Ryan; Neutron Induced Fission Fragment Tracking Experiment Collaboration

    2011-10-01

    In order to design safer and more efficient Generation IV nuclear reactors, more accurate knowledge of fission cross sections is needed. The goal of the Time Projection Chamber (TPC) used by the Neutron Induced Fission Fragment Tracking Experiment (NIFFTE) collaboration is to measure the cross sections of several fissile materials to within 1% uncertainty. The ability of the TPC to produce 3D ``pictures'' of charged particle trajectories will eliminate unwanted alpha particles in the data. Another important source of error is the normalization of data the U-235 standard. NIFFTE will use the H(n,n)H reaction instead, which is known to better than 0.2%. The run control and monitoring system will eventually allow for nearly complete automation and off-site monitoring of the experiment. This presentation will cover the need for precision measurements and an overview of the experiment. This work was supported by the U.S. Department of Energy Division of Energy Research.

  20. Realistic fission models, new beta-decay half-lives and the r-process in neutron star mergers

    SciTech Connect

    Shibagaki, S.; Kajino, T.; Chiba, S.; Lorusso, G.; Nishimura, S.; Mathews, G. J.

    2014-05-02

    Almost half of heavy nuclei beyond iron are considered to be produced by rapid neutron capture process (r-process). This process occurs in the neutron-rich environment such as core-collapse supernovae or neutron star mergers, but the main production site is still unknown. In the r-process of neutron star mergers, nuclear fission reactions play an important role. Also beta-decay half-lives of magic nuclei are crucial for the r-process. We have carried out r-process nucleosynthesis calculations based upon new theoretical estimates of fission fragment distributions and new beta-decay half-lives for N=82 nuclei measured at RIBF-RIKEN. We investigate the effect of nuclear fission on abundance patterns in the matter ejected from neutron star mergers with two different fission fragment mass distributions. We also discuss how the new experimental beta-decay half-lives affect the r-process.

  1. Mass measurements near the r-process path using the Canadian Penning Trap mass spectrometer

    NASA Astrophysics Data System (ADS)

    Van Schelt, J.; Lascar, D.; Savard, G.; Clark, J. A.; Caldwell, S.; Chaudhuri, A.; Fallis, J.; Greene, J. P.; Levand, A. F.; Li, G.; Sharma, K. S.; Sternberg, M. G.; Sun, T.; Zabransky, B. J.

    2012-04-01

    The masses of 40 neutron-rich nuclides from Z=51 to 64 were measured at an average precision of δm/m=10-7 using the Canadian Penning Trap mass spectrometer at Argonne National Laboratory. The measurements, of fission fragments from a 252Cf spontaneous fission source in a helium gas catcher, approach the predicted path of the astrophysical r process. Where overlap exists, this data set is largely consistent with previous measurements from Penning traps, storage rings, and reaction energetics, but large systematic deviations are apparent in β-endpoint measurements. Differences in mass excess from the 2003 Atomic Mass Evaluation of up to 400 keV are seen, as well as systematic disagreement with various mass models.

  2. Description of induced nuclear fission with Skyrme energy functionals. II. Finite temperature effects

    NASA Astrophysics Data System (ADS)

    Schunck, N.; Duke, D.; Carr, H.

    2015-03-01

    Understanding the mechanisms of induced nuclear fission for a broad range of neutron energies could help resolve fundamental science issues, such as the formation of elements in the universe, but could have also a large impact on societal applications in energy production or nuclear waste management. The goal of this paper is to set up the foundations of a microscopic theory to study the static aspects of induced fission as a function of the excitation energy of the incident neutron, from thermal to fast neutrons. To account for the high excitation energy of the compound nucleus, we employ a statistical approach based on finite temperature nuclear density functional theory with Skyrme energy densities, which we benchmark on the 239Pu(n ,f ) reaction. We compute the evolution of the least-energy fission pathway across multidimensional potential energy surfaces with up to five collective variables as a function of the nuclear temperature and predict the evolution of both the inner and the outer fission barriers as a function of the excitation energy of the compound nucleus. We show that the coupling to the continuum induced by the finite temperature is negligible in the range of neutron energies relevant for many applications of neutron-induced fission. We prove that the concept of quantum localization introduced recently can be extended to T >0 , and we apply the method to study the interaction energy and total kinetic energy of fission fragments as a function of the temperature for the most probable fission. While large uncertainties in theoretical modeling remain, we conclude that a finite temperature nuclear density functional may provide a useful framework to obtain accurate predictions of fission fragment properties.

  3. Thorium-uranium fission radiography

    NASA Technical Reports Server (NTRS)

    Haines, E. L.; Weiss, J. R.; Burnett, D. S.; Woolum, D. S.

    1976-01-01

    Results are described for studies designed to develop routine methods for in-situ measurement of the abundance of Th and U on a microscale in heterogeneous samples, especially rocks, using the secondary high-energy neutron flux developed when the 650 MeV proton beam of an accelerator is stopped in a 42 x 42 cm diam Cu cylinder. Irradiations were performed at three different locations in a rabbit tube in the beam stop area, and thick metal foils of Bi, Th, and natural U as well as polished silicate glasses of known U and Th contents were used as targets and were placed in contact with mica which served as a fission track detector. In many cases both bare and Cd-covered detectors were exposed. The exposed mica samples were etched in 48% HF and the fission tracks counted by conventional transmitted light microscopy. Relative fission cross sections are examined, along with absolute Th track production rates, interaction tracks, and a comparison of measured and calculated fission rates. The practicality of fast neutron radiography revealed by experiments to data is discussed primarily for Th/U measurements, and mixtures of other fissionable nuclei are briefly considered.

  4. Measurement of prompt X-rays in 238U(n,f) from threshold to 400 MeV. Investigation of fission charge yield evolution

    NASA Astrophysics Data System (ADS)

    Granier, T.; Nelson, R. O.; Ethvignot, T.; Devlin, M.; Fotiades, N.; Garrett, P. E.; Younes, W.

    2013-09-01

    Prompt K X-ray emission yields in the fission induced by neutrons on 238U have been measured for the first time for incident energies ranging from below 1MeV up to 400MeV. Results are used to investigate the evolution with incident neutron energy of the fragment elemental distribution and the X-ray emission probability per element. The progressive increase of the symmetric fission probability with neutron energy is observed in qualitative agreement with Wahl systematics for the primary fission fragment charge yields.

  5. Fission and Properties of Neutron-Rich Nuclei

    NASA Astrophysics Data System (ADS)

    Hamilton, Joseph H.; Ramayya, A. V.; Carter, H. K.

    2008-08-01

    Opening session. Nuclear processes in stellar explosions / M. Wiescher. In-beam [symbol]-ray spectroscopy of neutron-rich nuclei at NSCL / A. Gade -- Nuclear structure I. Shell-model structure of neutron-rich nuclei beyond [symbol]Sn / A. Covello ... [et al.]. Shell structure and evolution of collectivity in nuclei above the [symbol]Sn core / S. Sarkar and M. S. Sarkar. Heavy-ion fusion using density-constrained TDHF / A. S. Umar and V. E. Oberacker. Towards an extended microscopic theory for upper-fp shell nuclei / K. P. Drumev. Properties of the Zr and Pb isotopes near the drip-line / V. N. Tarasov ... [et al.]. Identification of high spin states in [symbol] Cs nuclei and shell model calculations / K. Li ... [et al.]. Recent measurements of spherical and deformed isomers using the Lohengrin fission-fragment spectrometer / G. S. Simpson ... [et al.] -- Nuclear structure II. Nuclear structure investigation with rare isotope spectroscopic investigations at GSI / P. Boutachkov. Exploring the evolution of the shell structures by means of deep inelastic reactions / G. de Anaelis. Probing shell closures in neutron-rich nuclei / R. Krücken for the S277 and REX-ISOLDEMINIBALL collaborations. Structure of Fe isotopes at the limits of the pf-shell / N. Hoteling ... [et al.]. Spectroscopy of K isomers in shell-stabilized trans-fermium nuclei / S. K. Tandel ... [et al.] -- Radioactive ion beam facilities. SPIRAL2 at GANIL: a world leading ISOL facility for the next decade / S. Gales. New physics at the International Facility for Antiproton and Ion Research (FAIR) next to GSI / I. Augustin ... [et al.]. Radioactive beams from a high powered ISOL system / A. C. Shotter. RlKEN RT beam factory / T. Motobayashi. NSCL - ongoing activities and future perspectives / C. K. Gelbke. Rare isotope beams at Argonne / W. F. Henning. HRIBF: scientific highlights and future prospects / J. R. Beene. Radioactive ion beam research done in Dubna / G. M. Ter-Akopian ... [et al.] -- Fission I

  6. Fission of nuclei with Z=102-112 produced in reactions with {sup 22}Ne and {sup 48}Ca ions

    SciTech Connect

    Itkis, M. G.; Oganessian, Yu. Ts.; Kozulin, E. M.; Kondratiev, N. A.; Krupa, L.; Pokrovsky, I. V.; Polyakov, A. N.; Ponomarenko, V. A.; Prokhorova, E. V.; Pustylnik, B. I.; Vakatov, V. I.; Rusanov, A. Ya.

    1998-12-21

    The talk presents new results obtained in the study of fission of superheavy nuclei {sup 256}No, {sup 270}Sg and {sup 286}112 formed in reactions with {sup 22}Ne and {sup 48}Ca ions at energies near or considerably lower than the Coulomb barrier. The experiments have been performed at the U-400 accelerator of the Flerov Laboratory of Nuclear Reactions (FLNR) with the use of the time-of-flight spectrometer of fission fragments CORSET.

  7. Fusion hindrance and quasi-fission in heavy-ion induced reactions: disentangling the effect of different parameters

    SciTech Connect

    Fioretto, E.; Stefanini, A. M.; Behera, B. R.; Corradi, L.; Gadea, A.; Latina, A.; Trotta, M.; Beghini, S.; Montagnoli, G.; Scarlassara, F.; Chizhov, A. Yu.; Itkis, I. M.; Itkis, M. G.; Kniajeva, G. N.; Kondratiev, N. A.; Kozulin, E. M.; Pokrovsky, I. V.; Sagaidak, R. N.; Voskressensky, V. M.; Courtin, S.

    2006-04-26

    Experimental results on the fusion inhibition effect near the Coulomb barrier due to the onset of the quasi-fission mechanism are presented. The investigation was focused on reactions induced by 48Ca projectiles on different heavy targets and comparing them to reactions induced by light ions such as 12C and 16O leading to the same compound nuclei. Cross sections and angular distributions of evaporation residues and fission fragments have been measured.

  8. Sensitivity of Measured Fission Yields on Prompt-neutron Corrections

    NASA Astrophysics Data System (ADS)

    Al-Adili, A.; Hambsch, F.-J.; Pomp, S.; Oberstedt, S.

    2014-05-01

    Although the number of emitted prompt neutrons from the fission fragments increases as a function of excitation energy, it is not fully understood whether the increase in νbar (A) as a function of En is mass dependent. The share of excitation energies among the fragments is still under debate, but there are reasons to believe that the excess in neutron emission originates only from the heavy fragments, leaving νbarlight (A) almost unchanged. We have investigated the consequences of a mass-dependent increase in νbar (A) on the final mass and energy distributions. The analysis have been performed on experimentally measured data on 234U (n, f). The assumptions concerning νbar (A) are essential when analysing measurements based on the 2E-technique, and impact significantly on the measured observables. For example, the post-neutron emission mass yield distribution revealed changes up to 10-30 %. The outcome of this work pinpoints the urgent need to determine νbar (A) experimentally, and in particular, how νbar (A) changes as a function of incident neutron energy. Many fission yields in the data libraries could be largely affected, since their analysis is based on a different assumption concerning the neutron emission.

  9. Shape of spectra and mean energies of prompt fission neutrons from {sup 237}Np fission induced by primary neutrons of energy in the range E{sub n} < 20 MeV

    SciTech Connect

    Svirin, M. I.

    2008-10-15

    An analysis of the spectrum of prompt neutrons originating from {sup 237}Np fission induced by primary neutrons of energy E{sub n} = 14.7 MeV confirms the results obtained previously for {sup 232}Th (E{sub n} = 14.7, 17.7 MeV), {sup 235}U (14.7 MeV), and {sup 238}U (13.2, 14.7, 16, and 17.7 MeV) nuclei. In the experimental spectrum measured in the emissive fission of {sup 237}Np, there is also an excess of soft neutrons in the energy range E < 2 MeV in relation to what follows from a traditional theoretical description that considers two sources of prompt fission neutrons: fully accelerated fission fragments and excited nuclei prior to their separation. In just the same way as in the cases of {sup 232}Th and {sup 235,238}U, the shape of the prompt-fission-neutron spectrum for {sup 237}Np is reproduced theoretically over the entire measured range of secondary-neutron energies upon including nonaccelerated fragments as a third source of neutrons in the computational scheme. A description of the spectra and mean energies of prompt fission neutrons versus the bombarding-neutron energy is obtained on the basis of experimental data and their analysis. The results on mean energies are compared with data on the proton-induced fission of {sup 236,238}U nuclei.

  10. Energy dependence of mass, charge, isotopic, and energy distributions in neutron-induced fission of 235U and 239Pu

    NASA Astrophysics Data System (ADS)

    Pasca, H.; Andreev, A. V.; Adamian, G. G.; Antonenko, N. V.; Kim, Y.

    2016-05-01

    The mass, charge, isotopic, and kinetic-energy distributions of fission fragments are studied within an improved scission-point statistical model in the reactions 235U+n and 239Pu+n at different energies of the incident neutron. The charge and mass distributions of the electromagnetic- and neutron-induced fission of 214,218Ra, 230,232,238U are also shown. The available experimental data are well reproduced and the energy-dependencies of the observable characteristics of fission are predicted for future experiments.

  11. T-odd angular correlations in the emission of prompt gamma rays and neutrons in nuclear fission induced by polarized neutrons

    NASA Astrophysics Data System (ADS)

    Danilyan, G. V.; Klenke, J.; Krakhotin, V. A.; Kopach, Yu. N.; Novitsky, V. V.; Pavlov, V. S.; Shatalov, P. B.

    2011-05-01

    Study of the T-odd three-vector correlation in the emission of prompt neutrons from 235U fission by polarized cold neutrons has been continued at the facility MEPHISTO of the FRM II reactor (Technical University of Munich). The sought correlation was not found within experimental error of 2.3 × 10-5. The upper limit for the asymmetry coefficient has been set to | D n | < 6 × 10-5 at 99% confidence level, whereas for ternary fission correlation coefficient D α = (170±20) × 10-5. This limit casts doubt on a model that explains the three-vector correlation in ternary fission by the Coriolis mechanism. At the same time, five-vector correlation in the emission of prompt fission neutrons has been measured, which describes the rotation of the fissioning nucleus at the moment it breaks (ROT effect). At the angle 22.5° to the fission axis, the correlation coefficient was found to be (1.57 ± 0.20) × 10-4, while at the angle of 67.5° it is zero within the experimental uncertainty. The existence of ROT effect in the emission of prompt fission neutrons can be explained by the anisotropy of neutron emission in the rest frame of the fragment (fission fragments are aligned with respect to the axis of deformation of the fissioning nucleus), similar to the mechanism of ROT effect in the emission of prompt γ-rays.

  12. PRODUCING ENERGY AND RADIOACTIVE FISSION PRODUCTS

    DOEpatents

    Segre, E.; Kennedy, J.W.; Seaborg, G.T.

    1959-10-13

    This patent broadly discloses the production of plutonium by the neutron bombardment of uranium to produce neptunium which decays to plutonium, and the fissionability of plutonium by neutrons, both fast and thermal, to produce energy and fission products.

  13. Neutronics for critical fission reactors and subcritical fission in hybrids

    NASA Astrophysics Data System (ADS)

    Salvatores, Massimo

    2012-06-01

    The requirements of future innovative nuclear fuel cycles will focus on safety, sustainability and radioactive waste minimization. Critical fast neutron reactors and sub-critical, external source driven systems (accelerator driven and fusion-fission hybrids) have a potential role to meet these requirements in view of their physics characteristics. This paper provides a short introduction to these features.

  14. Neutronics for critical fission reactors and subcritical fission in hybrids

    SciTech Connect

    Salvatores, Massimo

    2012-06-19

    The requirements of future innovative nuclear fuel cycles will focus on safety, sustainability and radioactive waste minimization. Critical fast neutron reactors and sub-critical, external source driven systems (accelerator driven and fusion-fission hybrids) have a potential role to meet these requirements in view of their physics characteristics. This paper provides a short introduction to these features.

  15. Investigation of dissipation in the tilting degree of freedom from four-dimensional Langevin dynamics of heavy-ion-induced fission

    NASA Astrophysics Data System (ADS)

    Nadtochy, P. N.; Ryabov, E. G.; Adeev, G. D.

    2015-04-01

    A four-dimensional dynamical model based on Langevin equations was applied to calculate a wide set of experimental observables for heavy fissioning compound nuclei. Three collective shape coordinates plus the tilting coordinate were considered dynamically from the ground state deformation to the scission into fission fragments. A modified one-body mechanism for nuclear dissipation with a reduction coefficient ks of the contribution from a ‘wall’ formula was used for shapes parameters. Different possibilities of deformation-dependent dissipation coefficient for the tilting coordinate ({{γ }K}) were investigated. Presented results demonstrate that the influence of the ks and γK parameters on the calculated quantities can be selectively probed. The nuclear viscosity with respect to the nuclear shape parameters influences the \\lt {{n}pre}\\gt , the fission fragment mass-energy distribution parameters, and the angular distribution of fission fragments. At the same time the viscosity coefficient γK affects the angular distribution of fission fragments only. The independence of anisotropy on the fission fragment mass is found at both Langevin calculations performed with deformation-dependent and constant γK coefficients.

  16. Process for treating fission waste. [Patent application

    DOEpatents

    Rohrmann, C.A.; Wick, O.J.

    1981-11-17

    A method is described for the treatment of fission waste. A glass forming agent, a metal oxide, and a reducing agent are mixed with the fission waste and the mixture is heated. After melting, the mixture separates into a glass phase and a metal phase. The glass phase may be used to safely store the fission waste, while the metal phase contains noble metals recovered from the fission waste.

  17. Effects of nuclear orientation on fusion and fission process for reactions using actinide target nuclei

    SciTech Connect

    Nishio, K.; Ikezoe, H.; Mitsuoka, S.; Nishinaka, I.; Makii, H.; Nagame, Y.; Watanabe, Y.; Ohtsuki, T.; Hirose, K.; Hofmann, S.

    2010-04-30

    Fission fragment mass distributions in the reaction of {sup 30}Si+{sup 238}U were measured at the energies around the Coulomb barrier. At the above-barrier energies, the mass distribution showed Gaussian shape. At the sub-barrier energies, triple-humped distribution was observed, which consists of symmetric fission and asymmetric fission peaked at A{sub L}/A{sub H}approx =90/178. The asymmetric fission should be attributed to quasifission from the results of the measured evaporation residue (ER) cross-sections produced by {sup 30}Si+{sup 238}U. The cross-section for {sup 263}Sg at the above-barrier energy agree with the statistical model calculation which assumes that the measured fission cross-sections are equal to the fusion cross-sections, whereas the one for {sup 264}Sg measured at the sub-barrier energy is smaller than the calculation, indicating the presence for quasifission. We also report the results on the fragment mass distributions for {sup 36,34}S+{sup 238}U and {sup 40}Ar+{sup 238}U.

  18. Radiation re-solution of fission gas in non-oxide nuclear fuel

    SciTech Connect

    Matthews, Christopher; Schwen, Daniel; Klein, Andrew C.

    2015-02-01

    Renewed interest in fast nuclear reactors is creating a need for better understanding of fission gas bubble behavior in non-oxide fuels to support very long fuel lifetimes. Collisions between fission fragments and their subsequent cascades can knock fission gas atoms out of bubbles and back into the fuel lattice. We showed that these collisions can be treated as using the so-called ‘‘homogenous’’ atom-by-atom re-solution theory and calculated using the Binary Collision Approximation code 3DOT. The calculations showed that there is a decrease in the re-solution parameter as bubble radius increases until about 50 nm, at which the re-solution parameter stays nearly constant. Furthermore, our model shows ion cascades created in the fuel result in many more implanted fission gas atoms than collisions directly with fission fragments. This calculated re-solution parameter can be used to find a re-solution rate for future bubble simulations.

  19. Etching fission tracks in zircons

    USGS Publications Warehouse

    Naeser, C.W.

    1969-01-01

    A new technique has been developed whereby fission tracks can be etched in zircon with a solution of sodium hydroxide at 220??C. Etching time varied between 15 minutes and 5 hours. Colored zircon required less etching time than the colorless varieties.

  20. Space Fission System Test Effectiveness

    SciTech Connect

    Houts, Mike; Schmidt, Glen L.; Van Dyke, Melissa; Godfroy, Tom; Martin, James; Bragg-Sitton, Shannon; Dickens, Ricky; Salvail, Pat; Harper, Roger

    2004-02-04

    Space fission technology has the potential to enable rapid access to any point in the solar system. If fission propulsion systems are to be developed to their full potential, however, near-term customers need to be identified and initial fission systems successfully developed, launched, and utilized. One key to successful utilization is to develop reactor designs that are highly testable. Testable reactor designs have a much higher probability of being successfully converted from paper concepts to working space hardware than do designs which are difficult or impossible to realistically test. ''Test Effectiveness'' is one measure of the ability to realistically test a space reactor system. The objective of this paper is to discuss test effectiveness as applied to the design, development, flight qualification, and acceptance testing of space fission systems. The ability to perform highly effective testing would be particularly important to the success of any near-term mission, such as NASA's Jupiter Icy Moons Orbiter, the first mission under study within NASA's Project Prometheus, the Nuclear Systems Program.