Science.gov

Sample records for 252cf fission fragments

  1. True ternary fission, the collinear decay into fragments of similar size in the 252Cf(sf) and 235U(nth, f) reactions

    NASA Astrophysics Data System (ADS)

    von Oertzen, W.; Nasirov, A. K.

    2014-06-01

    The collinear cluster decay in 252Cf(sf, fff), with three cluster fragments of different masses (e.g. 132Sn, 52-48Ca, 68-72Ni), which has been observed by the FOBOS group in JINR, has established a new decay mode of heavy nuclei, the collinear cluster tripartition (CCT). The same type of ternary fission decay has been observed in the reaction 235U(nth, fff). This kind of “true ternary fission” of heavy nuclei has been predicted many times in theoretical works during the last decades. In the present note we discuss true ternary fission (TFFF) into three nuclei of almost equal size (e.g. Z=98→Zi=32, 34, 32) in the same systems. The possible fission channels are predicted from potential-energy (PES) calculations. These PES's show pronounced minima for several ternary fragmentation decays, e.g. for 252Cf(sf) and for 235U(nth, f). They suggest the existence of a variety of collinear ternary fission modes. The TFFF-decays chosen in this letter have very similar dynamical features as the previously observed collinear CCT-decays. The data obtained in the above mentioned experiments allow us to extract the yield for these TFFF-decays in both systems by using specific gates on the measured parameters. These yields are a few 1.0ṡ10-6/(binary fission).

  2. Microscopic cold fission yields of {sup 252}Cf

    SciTech Connect

    Mirea, M.; Delion, D. S.; Sandulescu, A.

    2010-04-15

    We show that the sharp maximum corresponding to {sup 107}Mo in the fragment distribution of the {sup 252}Cf cold fission is actually a Sn-like radioactivity, similar to other decay processes in which magic nuclei are involved, namely alpha decay and heavy cluster emission, also called Pb-like radioactivity. It turns out that the mass asymmetry degree of freedom has a key role in connecting initial Sn with the final Mo isotopes along the fission path. We investigate the cold rearrangement of nucleons within the framework of the two-center shell model in order to compute the cold valleys in the charge equilibrated fragmentation potential. The fission yields are estimated by using the semiclassical penetration approach. We consider 5 degrees of freedom, namely the interfragment distance, the shapes of fragments, the neck parameter, and mass asymmetry. We found an isomeric minimum between the internal and external barriers. It turns out that the inner cold valley of the total potential energy is connected to the doubly magic isotope {sup 132}Sn.

  3. Comparison of fission modes in 252Cf, 257Fm, and 260Md

    NASA Astrophysics Data System (ADS)

    van Aarle, J.; Siemon, K.; Wild, J. F.; Lougheed, R. W.; Westmeier, W.; Patzelt, P.

    1998-10-01

    Although the spontaneous-fission properties of heavy actinides have been studied for well over 35 years, many interesting and informative details continue to come into light. During the last decade, the spontaneous fission of 252Cf, 257Fm and 260Md has been extensively investigated at the Philipps University of Marburg (1-4), by means of a gadolinium-doped liquid scintillation tank for neutron counting and surface barrier detectors for fission fragment detection. The three nuclides represent the transition from the well-known asymmetric fission yield distribution, as it is characteristic for 252Cf, to a much more symmetrical one, found in the fission of 260Md. Therefore, trends in the dynamical changes of fission properties have been derived from these studies. For the spontaneous fission of 252Cf and 260Md, it was already shown that different fission modes, as proposed by theoretical calculations of Brosa et al. (5), could be separated, using the correlation between the neutrons emitted in a fission event and both the observed fission-fragment mass and the total kinetic energy (1, 2). In the case of 257Fm, no theoretical calculations for fission modes exist. However, from the fission properties of the two surrounding actinides, one can expect at least three different fission modes, namely two "standard" and the "supershort" mode. In this paper, results from the recent 257Fm experiment will be presented and compared to systematics extracted from the fission properties of other heavy actinides.

  4. Comparison of fission modes in {sup 252}Cf, {sup 257}Fm, and {sup 260}Md

    SciTech Connect

    Aarle, J. van; Siemon, K.; Patzelt, P.; Wild, J. F.; Lougheed, R. W.; Westmeier, W.

    1998-10-26

    Although the spontaneous-fission properties of heavy actinides have been studied for well over 35 years, many interesting and informative details continue to come into light. During the last decade, the spontaneous fission of {sup 252}Cf, {sup 257}Fm and {sup 260}Md has been extensively investigated at the Philipps University of Marburg, by means of a gadolinium-doped liquid scintillation tank for neutron counting and surface barrier detectors for fission fragment detection. The three nuclides represent the transition from the well-known asymmetric fission yield distribution, as it is characteristic for {sup 252}Cf, to a much more symmetrical one, found in the fission of {sup 260}Md. Therefore, trends in the dynamical changes of fission properties have been derived from these studies. For the spontaneous fission of {sup 252}Cf and {sup 260}Md, it was already shown that different fission modes, as proposed by theoretical calculations of Brosa et al. (5), could be separated, using the correlation between the neutrons emitted in a fission event and both the observed fission-fragment mass and the total kinetic energy (1, 2). In the case of {sup 257}Fm, no theoretical calculations for fission modes exist. However, from the fission properties of the two surrounding actinides, one can expect at least three different fission modes, namely two 'standard' and the 'supershort' mode. In this paper, results from the recent {sup 257}Fm experiment will be presented and compared to systematics extracted from the fission properties of other heavy actinides.

  5. Dynamics of the tri-nuclear system at spontaneous fission of 252Cf

    NASA Astrophysics Data System (ADS)

    Tashkhodjaev, R. B.; Nasirov, A. K.; Alpomeshev, E. Kh.

    2016-11-01

    To describe the dynamics of ternary fission of 252Cf an equation of motion of the tri-nuclear system was obtained and it was solved numerically. The fission of the 70Ni+50Ca+132Sn channel was chosen as one of the more probable channels of true ternary fission of 252Cf. The collinearity of ternary fission was checked by analyzing the results of the equation of motion. The results show that if initially all nuclei are placed collinearly (potential energy of this position is the smallest) and the component of the middle fragment's initial velocity which is perpendicular to this line is zero, then ternary fission is collinear, otherwise noncollinear ternary fission takes place.

  6. Cluster description of cold (neutronless) α ternary fission of 252Cf

    NASA Astrophysics Data System (ADS)

    Săndulescu, A.; Carstoiu, F.; Bulboacă, I.; Greiner, W.

    1999-10-01

    A coplanar three body cluster model (two deformed fragments and an α particle) similar to the model used for the description of cold binary fission was employed for the description of cold (neutronless) α accompanied fission of 252Cf. No preformation factors were considered. The three body potential was computed with the help of a double folding potential generated by the M3Y-NN effective interaction and realistic fragment ground state deformations. From the minimum action principle, the α particle trajectory equations, the corresponding ternary barriers, and an approximate WKB expression for the barrier penetrability are obtained. The relative cold ternary yields were calculated as the ratio of the penetrability of a given ternary fragmentation and the sum of the penetrabilities of all possible cold ternary fragmentations. Different scenarios were considered depending on the trajectories of the fragments. It was shown that two regions of cold fragmentation exist, a deformed one corresponding to large fragment deformations and a spherical one around 132Sn, similarly to the case of the cold binary fission of 252Cf. We have shown that for the scenario corresponding to the Lagrange point, where all forces acting on the α particle are in equilibrium, the cold α ternary yields of 252Cf are strongly correlated with the cold binary yields of the daughter nucleus 248Cm into the same heavy fragments. For all other scenarios only the spherical splittings are favored. We concluded that due to the present available experimental data on cold α ternary yields only the Lagrange scenario could describe the cold α ternary fission of 252Cf.

  7. Comparison of fission modes in {sup 252}Cf, {sup 257}Fm, and {sup 260}Md

    SciTech Connect

    van Aarle, J.; Siemon, K.; Patzelt, P.; Wild, J.F.; Lougheed, R.W.; Westmeier, W.

    1998-10-01

    Although the spontaneous-fission properties of heavy actinides have been studied for well over 35 years, many interesting and informative details continue to come into light. During the last decade, the spontaneous fission of {sup 252}Cf, {sup 257}Fm and {sup 260}Md has been extensively investigated at the Philipps University of Marburg (1{endash}4), by means of a gadolinium-doped liquid scintillation tank for neutron counting and surface barrier detectors for fission fragment detection. The three nuclides represent the transition from the well-known asymmetric fission yield distribution, as it is characteristic for {sup 252}Cf, to a much more symmetrical one, found in the fission of {sup 260}Md. Therefore, trends in the dynamical changes of fission properties have been derived from these studies. For the spontaneous fission of {sup 252}Cf and {sup 260}Md, it was already shown that different fission modes, as proposed by theoretical calculations of Brosa et al. (5), could be separated, using the correlation between the neutrons emitted in a fission event and both the observed fission-fragment mass and the total kinetic energy (1, 2). In the case of {sup 257}Fm, no theoretical calculations for fission modes exist. However, from the fission properties of the two surrounding actinides, one can expect at least three different fission modes, namely two {open_quotes}standard{close_quotes} and the {open_quotes}supershort{close_quotes} mode. In this paper, results from the recent {sup 257}Fm experiment will be presented and compared to systematics extracted from the fission properties of other heavy actinides. {copyright} {ital 1998 American Institute of Physics.}

  8. Bremsstrahlung emission of high energy accompanying spontaneous fission of {sup 252}Cf

    SciTech Connect

    Maydanyuk, S. P.; Olkhovsky, V. S.; Mandaglio, G.; Manganaro, M.; Fazio, G.; Giardina, G.

    2010-07-15

    The study of the bremsstrahlung photon emission accompanying fragments produced in the spontaneous fission of heavy nuclei by a fully quantum approach is presented for the first time. This kind of problem requires the knowledge of wave functions of the fissioning system leading to a wide distribution of couples of fragments that are the products of fission. With the aim of obtaining these wave functions, the interaction potential between the emitted fragment and residual nucleus is calculated by a standard approach. A new procedure was performed that allows an increase in the accuracy of calculations of radial integrals in the far asymptotic region and the achievement of the convenient convergence in calculations of the spectra. The total probability of the emitted photons in the spontaneous fission of {sup 252}Cf was calculated in such a way. We obtained good agreement between theory and experimental data up to 38 MeV for the bremsstrahlung spectrum of photons while the calculation of the total probability of photon emission accompanying fragments was performed up to an energy of 60 MeV. The analysis of contributions in the bremsstrahlung spectrum accompanying the emission of light, medium, and heavy fragments in the fission of {sup 252}Cf is presented.

  9. True ternary fission, the collinear cluster tripartition (CCT) of 252Cf

    NASA Astrophysics Data System (ADS)

    von Oertzen, W.; Pyatkov, Y. V.; Kamanin, D.

    2012-10-01

    In systematic work over the last decade (see Pyatkov et al. [12] and refs therein), the ternary fission decay of heavy nuclei, in 235U(n,fff) and 252Cf(sf) has been studied in a collinear geometry. The name used for this process is (CCT), with three fragments of similar size in a collinear decay, it is the true ternary fission. This decay has been observed in spontaneous fission as well as in a neutron induced reaction. The measurements are based on different experimental set-ups, with binary coincidences containing TOF and energy determinations. With two detector telescopes placed at 180°, the measurements of masses and energies of each of the registered two fragments, give complete kinematic solutions. Thus the missing mass events in binary coincidences can be determined, these events are obtained by blocking one of the lighter fragments on a structure in front of the detectors. The relatively high yield of CCT (more than 10-3 per binary fission) is explained. It is due to the favourable Q-values (more positive than for binary) and the large phase space of the ternary CCT-decay, dominated by three (magic) clusters: e.g. isotopes of Sn, Ca and Ni, 132Sn+50Ca+70Ni. It is shown that the collinear (prolate) geometry has the favoured potential energy relative to the oblate shapes. The ternary fission is considered to be a sequential process. With this assumption the kinetic energies of the fragments have been calculated by Vijay et al. [1]. The third fragments have very low kinetic energies (below 20 MeV) and have thus escaped their detection in previous work on "ternary fission", where in addition an oblate shape and a triangle for the momentum vectors have been assumed.

  10. True ternary fission, the collinear cluster tripartition (CCT) of {sup 252}Cf

    SciTech Connect

    Oertzen, W. von; Pyatkov, Y. V.; Kamanin, D.

    2012-10-20

    In systematic work over the last decade (see Pyatkov et al. [12] and refs therein), the ternary fission decay of heavy nuclei, in {sup 235}U(n,fff) and {sup 252}Cf(sf) has been studied in a collinear geometry. The name used for this process is (CCT), with three fragments of similar size in a collinear decay, it is the true ternary fission. This decay has been observed in spontaneous fission as well as in a neutron induced reaction. The measurements are based on different experimental set-ups, with binary coincidences containing TOF and energy determinations. With two detector telescopes placed at 180 Degree-Sign , the measurements of masses and energies of each of the registered two fragments, give complete kinematic solutions. Thus the missing mass events in binary coincidences can be determined, these events are obtained by blocking one of the lighter fragments on a structure in front of the detectors. The relatively high yield of CCT (more than 10{sup -3} per binary fission) is explained. It is due to the favourable Q-values (more positive than for binary) and the large phase space of the ternary CCT-decay, dominated by three (magic) clusters: e.g. isotopes of Sn, Ca and Ni, {sup 132}Sn+{sup 50}Ca+{sup 70}Ni. It is shown that the collinear (prolate) geometry has the favoured potential energy relative to the oblate shapes. The ternary fission is considered to be a sequential process. With this assumption the kinetic energies of the fragments have been calculated by Vijay et al.. The third fragments have very low kinetic energies (below 20 MeV) and have thus escaped their detection in previous work on 'ternary fission', where in addition an oblate shape and a triangle for the momentum vectors have been assumed.

  11. Detailed Study of the Angular Correlations in the Prompt Neutron Emission in Spontaneous Fission of 252Cf

    NASA Astrophysics Data System (ADS)

    Kopatch, Yu.; Chietera, A.; Stuttgé, L.; Gönnenwein, F.; Mutterer, M.; Gagarski, A.; Guseva, I.; Chernysheva, E.; Dorvaux, O.; Hambsch, F.-J.; Hanappe, F.; Mezentseva, Z.; Telezhnikov, S.

    An experiment has been performed at IPHC Strasbourg, aimed at the detailed investigation of angular correlations in the neutron emission from spontaneous fission of 252Cf. Fission fragments were measured by the angle-sensitive double ionization chamber CODIS while neutrons were detected by a set of 60 DEMON scintillator counters. The main aim of the experiment is the observation of the correlation between the fragment spins and neutron emission anisotropy. Preliminary results, based on the Monte-Carlo simulations, as well as the preliminary analysis of the experimental data are shown.

  12. All possible ternary fragmentations of {sup 252}Cf in collinear configuration

    SciTech Connect

    Manimaran, K.; Balasubramaniam, M.

    2011-03-15

    All possible ternary fragmentations in fission of {sup 252}Cf are studied in collinear configuration within a spherical approximation using the recently proposed ''three cluster model.'' The potential energy surface of collinear configuration exhibits a strong valley around {sup 48}Ca and its neighboring nuclei {sup 50}Ca, {sup 54}Ti, and {sup 60}Cr. Such strong minima are not seen in the potential energy surface of an equatorial configuration. As a consequence of strong minima in the potential, the overall relative yield is higher for the ternary fragmentation with {sup 48}Ca, {sup 50}Ca, {sup 54}Ti, {sup 60}Cr, and {sup 82}Ge as the third fragment. The results of potential energy and relative yield calculations reveal that collinear configuration increases the probability of emission of heavy fragments like {sup 48}Ca (doubly magic nucleus) and its neighboring nuclei as the third fragment. The obtained results indicate that the collinear configuration is the preferred configuration for intermediate nuclei ({sup 48}Ca, {sup 50}Ca, {sup 54}Ti, and {sup 60}Cr) as the third fragment in particle accompanied fission while the equatorial configuration may be a preferred configuration for light nuclei ({sup 4}He, {sup 10}Be) as the third fragment.

  13. A cyclic time optimization approach to the study of 252Cf fission products

    NASA Astrophysics Data System (ADS)

    Price, R. I.; Ebong, I. D. U.; Adams, John A.; Roy, R. R.

    1980-05-01

    A K X-ray-beta particle coincidence technique has been investigated for the study of the beta decay of fission products from 252Cf. A fission-fragments transport system has been developed and its optimization curve used for the identification of the half-life associated with the K X-ray peak originating from the Mo → Tc decay high-resolution lithium-drifted silicon spectrometer and a plastic scintillation spectrometer were used in the analysis of the K X-rays and beta particles respectively. A half-life of (0.98 ± 0.03) min was associated with the K X-rays from technetium. A Kurie plot of the coincidence beta spectrum revealed at least three beta groups with end-point energies of (2.19 ± 0.19) MeV, (1.64 ± 0.14) MeV and (1.04 ± 0.10) MeV.

  14. Prompt neutron fission spectrum mean energies for the fissile nuclides and /sup 252/Cf

    SciTech Connect

    Holden, N.E.

    1985-01-01

    The international standard for a neutron spectrum is that produced from the spontaneous fission of /sup 252/Cf, while the thermal neutron induced fission neutron spectra for the four fissile nuclides, /sup 233/U, /sup 235/U, /sup 239/Pu, and /sup 241/Pu are of interest from the standpoint of nuclear reactors. The average neutron energies of these spectra are tabulated. The individual measurements are recorded with the neutron energy range measured, the method of detection as well as the average neutron energy for each author. Also tabulated are the measurements of the ratio of mean energies for pairs of fission neutron spectra. 75 refs., 9 tabs. (LEW)

  15. Status of the electron cyclotron resonance charge breeder for the {sup 252}Cf fission source project at ATLAS

    SciTech Connect

    Vondrasek, R. C.; Scott, R.; Carr, J.; Pardo, R. C.

    2008-02-15

    The construction of the Californium Rare Ion Breeder Upgrade, a new radioactive beam facility for the Argonne tandem linac accelerator system (ATLAS), is in progress. The facility will use fission fragments from a 1 Ci {sup 252}Cf source, thermalized and collected into a low-energy particle beam by a helium gas catcher. In order to reaccelerate these beams, the existing ATLAS ECR1 ion source has been redesigned to function as a charge breeder source. The design features, initial results, and status of this charge breeder configuration are presented.

  16. Monte Carlo Hauser-Feshbach predictions of prompt fission γ rays: Application to nth+235U, nth+239Pu, and 252Cf (sf)

    NASA Astrophysics Data System (ADS)

    Becker, B.; Talou, P.; Kawano, T.; Danon, Y.; Stetcu, I.

    2013-01-01

    The prompt neutron and γ emission from primary fission fragments are calculated for thermal neutron induced fission of 235U and 239Pu and for spontaneous fission of 252Cf using a Monte Carlo Hauser-Feshbach approach for the evaporation of the excited fission fragments. Remaining free model parameters, such as excitation energy sharing and initial spin distribution, are determined by comparison of the neutron emission characteristics with experimental data. Using the obtained parameters the γ-ray characteristics, e.g., γ spectrum, multiplicity distribution, average multiplicity and energy, and multiplicity distribution, are calculated and compared with available experimental data.

  17. Beta spectroscopy of some neutron-rich cerium isotopes in252Cf fission products

    NASA Astrophysics Data System (ADS)

    Ebong, I. D. U.; Roy, R. R.

    1981-09-01

    The method of cyclic-time optimization has been used, in conjunction with a beta-Kx-ray coincidence technique, to obtain the beta spectrum of some decaying cerium isotopes in the fission products of252Cf. A Kurie plot of the beta spectrum revealed at least four beta groups. From the relative isotopic yields of Kx-ray the isotopic origin of each group has been determined. The coincidence method used in this study allows the measurement of beta groups feeding excited levels of daughter products with high internal conversion coefficients. The end-point energies and isotopic origin of the measured beta groups were as follows: 2.349(±0.100)MeV,145Ce; 1.715(±0.103)MeV,145Ce and148Ce; 1.267 (±0.103)MeV,145Ce; 0.748(±0.109) MeV,146Ce and148Ce.

  18. Structures of the neutron-rich nuclei observed in fission of {sup 252}Cf

    SciTech Connect

    Ramayya, A. V.; Hamilton, J. H.; Goodin, C. J.; Brewer, N. T.; Hwang, J. K.; Luo, Y. X.; Liu, S. H.; Stone, N. J.; Daniel, A. V.; Zhu, S. J.

    2014-08-14

    Analysis of high statistics triple coincidence fission γ data from {sup 252}Cf at Gammasphere including angular correlations yielded well-expanded high-spin level schemes with more complete and reliable spin/parity assignments for {sup 82}Ge, {sup 118,120,122}Cd and {sup 114,115}Rh. Both the quasi-particle/hole couplings and quasi-rotational degrees of freedom are implied to play roles in these Cd isotopes. Evidence for triaxial shapes and octupole components in the Cd isotopes is presented. These Cd isotopes may have triaxial deformations. High-spin level schemes of {sup 114,115}Rh have been established for the first time. The existence of a relatively large signature splitting and an yrare band shows typical features of a triaxially deformed nucleus. Possible excited deformed rotational bands are observed, for the first time, in {sup 82}Ge. From the multipole mixing ratio measurement, the ground state configurations of {sup 109,111}Ru, as well as excited states in {sup 103,107}Mo and {sup 111}Ru were determined.

  19. Results with the electron cyclotron resonance charge breeder for the 252Cf fission source project (Californium Rare Ion Breeder Upgrade) at Argonne Tandem Linac Accelerator System.

    PubMed

    Vondrasek, R; Kondrashev, S; Pardo, R; Scott, R; Zinkann, G P

    2010-02-01

    The construction of the Californium Rare Ion Breeder Upgrade, a new radioactive beam facility for the Argonne Tandem Linac Accelerator System (ATLAS), is nearing completion. The facility will use fission fragments from a 1 Ci (252)Cf source; thermalized and collected into a low-energy particle beam by a helium gas catcher. In order to reaccelerate these beams, an existing ATLAS electron cyclotron resonance (ECR) ion source was redesigned to function as an ECR charge breeder. Thus far, the charge breeder has been tested with stable beams of rubidium and cesium achieving charge breeding efficiencies of 9.7% into (85)Rb(17+) and 2.9% into (133)Cs(20+).

  20. 252Cf fission-neutron spectrum using a simplified time-of-flight setup: An advanced teaching laboratory experiment

    NASA Astrophysics Data System (ADS)

    Becchetti, F. D.; Febbraro, M.; Torres-Isea, R.; Ojaruega, M.; Baum, L.

    2013-02-01

    The removal of PuBe and AmBe neutron sources from many university teaching laboratories (due to heightened security issues) has often left a void in teaching various aspects of neutron physics. We have recently replaced such sources with sealed 252Cf oil-well logging sources (nominal 10-100 μCi), and developed several experiments using them as neutron sources. This includes a fission-neutron time-of-flight experiment using plastic scintillators, which utilizes the prompt γ rays emitted in 252Cf spontaneous fission as a fast timing start signal. The experiment can be performed with conventional nuclear instrumentation and a 1-D multi-channel pulse-height analyzer, available in most advanced teaching laboratories. Alternatively, a more sophisticated experiment using liquid scintillators and n/γ pulse-shape discrimination can be performed. Several other experiments using these neutron sources are also feasible. The experiments can introduce students to the problem of detecting the dark matter thought to dominate the universe and to the techniques used to detect contraband fissionable nuclear materials.

  1. Results with the electron cyclotron resonance charge breeder for the {sup 252}Cf fission source project (Californium Rare Ion Breeder Upgrade) at Argonne Tandem Linac Accelerator System

    SciTech Connect

    Vondrasek, R.; Kondrashev, S.; Pardo, R.; Scott, R.; Zinkann, G. P.

    2010-02-15

    The construction of the Californium Rare Ion Breeder Upgrade, a new radioactive beam facility for the Argonne Tandem Linac Accelerator System (ATLAS), is nearing completion. The facility will use fission fragments from a 1 Ci {sup 252}Cf source; thermalized and collected into a low-energy particle beam by a helium gas catcher. In order to reaccelerate these beams, an existing ATLAS electron cyclotron resonance (ECR) ion source was redesigned to function as an ECR charge breeder. Thus far, the charge breeder has been tested with stable beams of rubidium and cesium achieving charge breeding efficiencies of 9.7% into {sup 85}Rb{sup 17+} and 2.9% into {sup 133}Cs{sup 20+}.

  2. Analysis of linear energy transfers and quality factors of charged particles produced by spontaneous fission neutrons from 252Cf and 244Pu in the human body.

    PubMed

    Endo, Akira; Sato, Tatsuhiko

    2013-04-01

    Absorbed doses, linear energy transfers (LETs) and quality factors of secondary charged particles in organs and tissues, generated via the interactions of the spontaneous fission neutrons from (252)Cf and (244)Pu within the human body, were studied using the Particle and Heavy Ion Transport Code System (PHITS) coupled with the ICRP Reference Phantom. Both the absorbed doses and the quality factors in target organs generally decrease with increasing distance from the source organ. The analysis of LET distributions of secondary charged particles led to the identification of the relationship between LET spectra and target-source organ locations. A comparison between human body-averaged mean quality factors and fluence-averaged radiation weighting factors showed that the current numerical conventions for the radiation weighting factors of neutrons, updated in ICRP103, and the quality factors for internal exposure are valid.

  3. Measurement of the average number of prompt neutrons emitted per fission of /sup 233/U relative to /sup 252/Cf for the energy region 500 eV to 10 MeV and below 0. 3 eV

    SciTech Connect

    Gwin, R.; Spencer, R.R.; Ingle, R.W.

    1981-11-01

    The energy dependence of the average number of prompt fission neutrons emitted per fission, anti ..nu../sub p/(E), has been measured for /sup 233/U relative to anti ..nu../sub p/ for /sup 252/Cf over the neutron energy ranges 500 eV to 10 MeV and below 0.3 eV. A large Gd-loaded liquid scintillator was used to detect neutrons and the samples of /sup 233/U and /sup 252/Cf were contained in fission chambers. The present results for anti ..nu../sub p/(E) for /sup 233/U are in accord with the experimental results of Boldeman and the evaluated results of Lemmel in the thermal energy range, but in the neutron energy region between 100 keV and 1 MeV the present data are 1% or more larger than other experimental values.

  4. Correlation Measurements with {sup 252}Cf to Characterize Fissile Material

    SciTech Connect

    Mattingly, J.K.

    2000-01-04

    Measurements using {sup 252}Cf as a timed source of neutrons and gammas have in recent years undergone significant maturation. These methods use {sup 252}Cf as an observable source of spontaneous fission neutrons and gammas in conjunction with one or more neutron- and/or gamma-sensitive detectors to measure the time-distribution of correlated detector counts following (a) an observed {sup 252}Cf-fission event and/or (b) a counting event in another detector. Detection of {sup 252}Cf spontaneous fission is frequently achieved via use of a small ionization chamber in which the {sup 252}Cf is contained--in this case the timing of source emission events is random. However, one application subsequently described uses a neutron-absorbent ''shutter'' to modulate {sup 252}Cf emissions to produce a neutron source with deterministic timing. Other applications, frequently termed noise-analysis measurements, transform the time-distributions to the frequency domain. Collectively, these correlation methods use {sup 252}Cf to ''excite'' the fissile material and the response of the material is measured by an array of detectors and analyzed using standard time-correlation and/or frequency-analysis techniques. In recent years numerous advances have been made in the application of these methods to in-situ, or field measurements directed at characterizing various configurations of fissile material in operational facilities.

  5. Interaction of three fission fragments and yields of various ternary fragments

    NASA Astrophysics Data System (ADS)

    Denisov, V. Yu.; Pilipenko, N. A.; Sedykh, I. Yu.

    2017-01-01

    The interaction potential energy of the three deformed fragments formed in fission of 252Cf is studied for various combinations of three-fragment fission. The lowest height of the potential energy ridge between three touching and separated deformed fragments is sought. The excitation energies of various three-deformed-fragment configurations, at the lowest barrier heights related to the yield of the corresponding configuration, are considered in detail. The most probable three-fragment fission configurations are discussed. The yields of various ternary fragments in fission of 250Cf agree well with available experimental data.

  6. DSP Algorithms for Fission Fragment and Prompt Fission Neutron Spectroscopy

    SciTech Connect

    Zeynalova, O.; Zeynalov, Sh.; Hambsch, F.-J.; Oberstedt, S.; Fabry, I.

    2009-10-29

    Digital signal processing (DSP) algorithms are in high demand for modern nuclear fission investigation due to importance of increase the accuracy of fissile nuclear data for new generation of nuclear power stations. DSP algorithms for fission fragment (FF) and prompt fission neutron (PFN) spectroscopy are described in the present work. The twin Frisch-grid ionization chamber (GTIC) is used to measure the kinetic energy-, mass- and angular distributions of the FF in the {sup 252}Cf(SF) reaction. Along with the neutron time-of-flight (TOF) measurement the correlation between neutron emission and FF mass and energy is investigated. The TOF is measured between common cathode of the GTIC and the neutron detector (ND) pulses. Waveform digitizers (WFD) having 12 bit amplitude resolution and 100 MHz sampling frequency are used for the detector pulse sampling. DSP algorithms are developed as recursive procedures to perform the signal processing, similar to those available in various nuclear electronics modules, such as constant fraction discriminator (CFD), pulse shape discriminator (PSD), peak-sensitive analogue-to-digital converter (pADC) and pulse shaping amplifier (PSA). To measure the angle between FF and the cathode plane normal to the GTIC a new algorithm is developed having advantage over the traditional analogue pulse processing schemes. Algorithms are tested by comparing the numerical simulation of the data analysis of the {sup 252}Cf(SF) reaction with data available from literature.

  7. Graphite moderated (252)Cf source.

    PubMed

    Sajo-Bohus, Laszlo; Barros, Haydn; Greaves, Eduardo D; Vega-Carrillo, Hector Rene

    2015-06-01

    The Thorium molten-salt reactor is an attractive and affordable nuclear power option for developing countries with insufficient infrastructure and limited technological capability. In the aim of personnel training and experience gathering at the Universidad Simon Bolivar there is in progress a project of developing a subcritical thorium liquid-fuel reactor. The neutron source to run this subcritical reactor is a (252)Cf source and the reactor will use high-purity graphite as moderator. Using the MCNP5 code the neutron spectra of the (252)Cf in the center of the graphite moderator has been estimated along the channel where the liquid thorium salt will be inserted; also the ambient dose equivalent due to the source has been determined around the moderator.

  8. GAMMA DOSE RATE NEAR A NEW (252)Cf BRACHYTHERAPY SOURCE

    SciTech Connect

    Fortune, Eugene C; Gauld, Ian C; Wang, C

    2011-01-01

    A new generation of medical grade (252)Cf sources was developed in 2002 at the Oak Ridge National Laboratory. The combination of small size and large activity of (252)Cf makes the new source suitable to be used with the conventional high-dose-rate remote afterloading system for interstitial brachytherapy. A recent in-water calibration experiment showed that the measured gamma dose rates near the new source are slightly greater than the neutron dose rates, contradicting the well established neutron-to-gamma dose ratio of approximately 2:1 at locations near a (252)Cf brachytherapy source. Specifically, the MCNP-predicted gamma dose rate is a factor of two lower than the measured gamma dose rate at the distance of I cm, and the differences between the two results gradually diminish at distances farther away from the source. To resolve this discrepancy, we updated the source gamma spectrum by including in the ORIGEN-S data library the experimentally measured (252)Cf prompt gamma spectrum as well as the true (252)Cf spontaneous fission yield data to explicitly model delayed gamma emissions from fission products. We also investigated the bremsstrahlung X-rays produced by the beta particles emitted from fission product decays. The results show that the discrepancy of gamma dose rates is mainly caused by the omission of the bremsstrahlung X-rays in the MCNP runs. By including the bremsstrahlung X-rays, the MCNP results show that the gamma dose rates near a new (252)Cf source agree well with the measured results and that the gamma dose rates are indeed greater than the neutron dose rates.

  9. Results with the electron cyclotron resonance charge breeder for the 252Cf fission source project (Californium Rare Ion Breeder Upgrade) at Argonne Tandem Linac Accelerator System

    NASA Astrophysics Data System (ADS)

    Vondrasek, R.; Kondrashev, S.; Pardo, R.; Scott, R.; Zinkann, G. P.

    2010-02-01

    The construction of the Californium Rare Ion Breeder Upgrade, a new radioactive beam facility for the Argonne Tandem Linac Accelerator System (ATLAS), is nearing completion. The facility will use fission fragments from a 1 Ci C252f source; thermalized and collected into a low-energy particle beam by a helium gas catcher. In order to reaccelerate these beams, an existing ATLAS electron cyclotron resonance (ECR) ion source was redesigned to function as an ECR charge breeder. Thus far, the charge breeder has been tested with stable beams of rubidium and cesium achieving charge breeding efficiencies of 9.7% into R85b17+ and 2.9% into C133s20+.

  10. A multiple parallel-plate avalanche counter for fission-fragment detection

    NASA Astrophysics Data System (ADS)

    Wu, C. Y.; Henderson, R. A.; Haight, R. C.; Lee, H. Y.; Taddeucci, T. N.; Bucher, B.; Chyzh, A.; Devlin, M.; Fotiades, N.; Kwan, E.; O'Donnell, J. M.; Perdue, B. A.; Ullmann, J. L.

    2015-09-01

    A new low-mass multiple gas-filled parallel-plate avalanche counter for the fission-fragment detection has been developed to mark the fission occurrence in measurements of the prompt fission neutron energy spectrum as a function of incident neutron energy. It was used successfully for the neutron-induced fission of 235U and 239Pu with a total mass near 100 mg each and the spontaneous fission of 252Cf. Both the incident neutron energy and the prompt fission neutron energy are measured by using the time-of-flight method. The design and performance of this avalanche counter are described.

  11. Sputtering yield of Pu bombarded by fission Fragments from Cf

    SciTech Connect

    Danagoulian, Areg; Klein, Andreas; Mcneil, Wendy V; Yuan, Vincent W

    2008-01-01

    We present results on the yield of sputtering of Pu atoms from a Pu foil, bombarded by fission fragments from a {sup 252}Cf source in transmission geometry. We have found the number of Pu atoms/incoming fission fragments ejected to be 63 {+-} 1. In addition, we show measurements of the sputtering yield as a function of distance from the central axis, which can be understood as an angular distribution of the yield. The results are quite surprising in light of the fact that the Pu foil is several times the thickness of the range of fission fragment particles in Pu. This indicates that models like the binary collision model are not sufficient to explain this behavior.

  12. The SPIDER fission fragment spectrometer for fission product yield measurements

    DOE PAGES

    Meierbachtol, K.; Tovesson, F.; Shields, D.; ...

    2015-04-01

    We developed the SPectrometer for Ion DEtermination in fission Research (SPIDER) for measuring mass yield distributions of fission products from spontaneous and neutron-induced fission. The 2E–2v method of measuring the kinetic energy (E) and velocity (v) of both outgoing fission products has been utilized, with the goal of measuring the mass of the fission products with an average resolution of 1 atomic mass unit (amu). Moreover, the SPIDER instrument, consisting of detector components for time-of-flight, trajectory, and energy measurements, has been assembled and tested using 229Th and 252Cf radioactive decay sources. For commissioning, the fully assembled system measured fission productsmore » from spontaneous fission of 252Cf. Individual measurement resolutions were met for time-of-flight (250 ps FWHM), spacial resolution (2 mm FHWM), and energy (92 keV FWHM for 8.376 MeV). Finally, these mass yield results measured from 252Cf spontaneous fission products are reported from an E–v measurement.« less

  13. The content of 250Cf and 248Cm in 252Cf neutron sources and the effect on the neutron emission rate.

    PubMed

    Roberts, N J; Jones, L N

    2007-01-01

    One of the most common radionuclide neutron sources used for the calibration of detectors is (252)Cf. However, these sources also contain (250)Cf, which is present in the material from which the sources are made, and (248)Cm, which is formed as the daughter of (252)Cf via alpha-decay. Both decay by spontaneous fission with longer half-lives than (252)Cf. Consequently, as the source becomes older, the emission rate does not follow the decay curve of (252)Cf. Fits have been made to emission rate measurements of (252)Cf sources at NPL spanning over 30 y to deduce their (250)Cf and (248)Cm content. The emission rate of a source can be significantly underestimated if the presence of (250)Cf and (248)Cm is not taken into account, and this has been investigated for a typical (252)Cf source. The importance of this problem to other calibration laboratories and users of (252)Cf sources is emphasised.

  14. Erratum to "Multi-modal fission in collinear ternary cluster decay of 252Cf(sf,fff)" [Phys. Lett. B 746 (2015) 223

    NASA Astrophysics Data System (ADS)

    von Oertzen, W.; Nasirov, A. K.; Tashkodjaev, R. B.

    2016-11-01

    The scale of the ordinate axis of Fig. 4 on page 226 of PLB 746 (2015) 223 was incorrect. The new version of Fig. 4 (which is "Fig. 1" in the present note) with the correct ordinate axis is given here (upper part). The lower part shows the previous version. Five potential wells and barriers are shown. Considering a sequential process two barriers are relevant for the decay, with equal barriers for the symmetric cases with a smaller fragment at the center (in these cases only one barrier is shown). For the asymmetric case of 70Ni + 50Ca + 132Sn, two different barriers appear, denoted as (B1) and (B2), which correspond to the interactions of the middle cluster 50Ca with the outer nuclei 70Ni and 132Sn, respectively. In a sequential mechanism the separation of 132Sn from the other part via the barrier B2 having the smaller height, is favoured for the first step. For the second step the barrier (B1) between Ni and Ca, appears at smaller distances (dot-dashed curve) and is higher. The order of the barriers of the five channels is unchanged, compared to the figure in Ref. W. von Oertzen et al., Phys. Lett. B 746 (2015) 223.

  15. Corrigendum to "Multi-modal Fission in Collinear Ternary Cluster decay of 252Cf(sf,fff)" [Phys. Lett. B 746 (2015) 223

    NASA Astrophysics Data System (ADS)

    von Oertzen, W.; Nasirov, A. K.; Tashkodjaev, R. B.

    2017-02-01

    The scale of the ordinate axis of Fig. 4 on page 226 of PLB 746 (2015) 223 was incorrect. The new version of Fig. 4 (which is "Fig. 1" in the present note) with the correct ordinate axis is given here (upper part). The lower part shows the previous version. Five potential wells and barriers are shown. Considering a sequential process, two barriers are relevant for the sequential decay, with equal barriers for the symmetric cases with a smaller fragment at the center (in these cases only one barrier is shown). For the asymmetric case of 70Ni + 50Ca + 132Sn, two different barriers appear, denoted as (B1) and (B2), which correspond to the interactions of the middle cluster 50Ca with the outer nuclei 70Ni and 132Sn, respectively. In a sequential mechanism the separation of 132Sn from the other part via the barrier B2 has the smaller height, thus it is favored for the first step. For the second step the barrier (B1) between Ni and Ca, appears at smaller distances (dot-dashed curve) and is higher. The order of the barriers of the five channels is unchanged, compared to the figure in Ref. W. von Oertzen et al., Phys. Lett. B 746 (2015) 223.

  16. Coincident measurements of prompt fission γ rays and fission fragments at DANCE

    NASA Astrophysics Data System (ADS)

    Walker, C. L.; Baramsai, B.; Jandel, M.; Rusev, G.; Couture, A.; Mosby, S.; Ullmann, J.; Kawano, T.; Stetcu, I.; Talou, P.

    2015-10-01

    Modern statistical approaches to modeling fission involve the calculation of not only average quantities but also fully correlated distributions of all fission products. Applications such as those involving the detection of special nuclear materials also rely on fully correlated data of fission products. Experimental measurements of correlated data are thus critical to the validation of theory and the development of important applications. The goal of this experiment was to measure properties of prompt fission gamma-ray emission as a function of fission fragments' total kinetic energy in the spontaneous fission of 252Cf. The measurement was carried out at the Detector for Advanced Neutron Capture Experiments (DANCE), a 4 π γ-ray calorimeter. A prototype design consisting of two silicon detectors was installed in the center of DANCE, allowing simultaneous measurement of fission fragments and γ rays. Effort has been taken to simulate fragment kinetic energy losses as well as γ-ray attenuation in DANCE using such tools as GEANT4 and SRIM. Theoretical predictions generated by the code CGMF were also incorporated as input for these simulations. Results from the experiment and simulations will be presented, along with plans for future measurements.

  17. Comparative toxicity of /sup 226/Ra, /sup 239/Pu, /sup 241/Am, /sup 249/Cf, and /sup 252/Cf in C57BL/Do black and albino mice

    SciTech Connect

    Taylor, G.N.; Mays, C.W.; Lloyd, R.D.; Gardner, P.A.; Talbot, L.R.; McFarland, S.S.; Pollard, I.A.; Atherton, D.R.; VanMoorhem, D.; Brammer, D.

    1983-09-01

    Groups of C57BL/Do (black and albino) mice were injected with graded activities of /sup 226/Ra, /sup 239/Pu, /sup 241/Am, /sup 249/Cf, or /sup 252/Cf and were followed throughout life. Bone sarcoma was the principal radiation-induced end point, and the risks associated with average skeletal doses of the four transuranium radionuclides, relative to radium, were determined. The relative biological effectiveness (RBE) was calculated for each emitter by dividing its risk coefficient (bone sarcomas per 10(/sup 6/) mouse-rad) by the risk coefficient for /sup 226/Ra. Combined data for males and females in both black and albino mice gave the following values +/- SD for the RBE relative to /sup 226/Ra . 1.0: /sup 239/Pu . 15.3 +/- 3.9, /sup 241/Am . 4.9 +/- 1.4, /sup 249/Cf . 5.0 +/- 1.4, and /sup 252/Cf . 2.6 +/- 0.8. About 70% of the tumors occurred in the axial skeleton, and the risk coefficient for females averaged about four times higher than for males when all five nuclides were included. The RBE of fission fragment irradiation from /sup 252/Cf for cancer induction, relative to alpha irradiation, for the combined data in all of the animals given /sup 252/Cf and /sup 249/Cf, was 0.02 +/- 0.28, in agreement with the calculated theoretical value of 0.03, based on the ratio of summed track lengths in tissue.

  18. Comparative toxicity of /sup 226/Ra, /sup 239/Pu, /sup 241/Am, /sup 249/Cf, and /sup 252/Cf in C57BL/Do black and albino mice

    SciTech Connect

    Taylor, G.N.; Mays, C.W.; Lloyd, R.D.; Gardner, P.A.; TAlbot, L.R.; McFarland, S.S.; Pollard, T.A.; Atherton, D.R.; vanMoorhem, D.; Brammer, D.

    1983-09-01

    Groups of C57BL/Do (black and albino) mice were injected with graded activities of /sup 226/Ra, /sup 239/Pu, /sup 241/Am, /sup 249/Cf, or /sup 252/Cf and were followed throughout life. Bone sarcoma was the principal radiation-induced end point, and the risks associated with average skeletal doses of the four transuranium radionuclides, relative to radium, were determined. The relative biological effectiveness (RBE) was calculated for each emitter by dividing its risk coefficient (bone sarcomas per 10/sup 6/ mouse-rad) by the risk coefficient for /sup 226/Ra. Combined data for males and females in both black and albino mice gave the following values +- SD for the RBE relative to /sup 226/Ra = 1.0: /sup 239/Pu = 15.3 +- 3.9, /sup 241/Am = 4.9 +- 1.4, /sup 249/Cf = 5.0 +- 1.4, and /sup 252/Cf = 2.6 +- 0.8. About 70% of the tumors occurred in the axial skeleton, and the risk coefficient for females averaged about four times higher than for males when all five nuclides were included. The RBE of fission fragment irradiation from /sup 252/Cf for cancer induction, relative to ..cap alpha.. irradiation, for the combined data in all of the animals given /sup 252/Cf and /sup 249/Cf, was 0.02 +- 0.28, in agreement with the calculated theoretical value of 0.03, based on the ratio of summed track lengths in tissue.

  19. Light fragment preformation in cold fission of 282Cn

    NASA Astrophysics Data System (ADS)

    Poenaru, D. N.; Gherghescu, R. A.

    2016-11-01

    In a previous article, published in Phys. Rev. C 94, 014309 (2016), we have shown for the first time that the best dynamical trajectory during the deformation toward fission of the superheavy nucleus 286Fl is a linearly increasing radius of the light fragment, R_2. This macroscopic-microscopic result reminds us about the α or cluster preformation at the nuclear surface, assumed already in 1928, and proved microscopically many times. This time we give more detailed arguments for the nucleus 282Cn. Also similar figures are presented for heavy nuclei 240Pu and 252 Cf. The deep minimum of the total deformation energy near the surface is shown for the first time as a strong argument for cluster preformation.

  20. Description of the /sup 252/Cf(sf) neutron spectrum in the framework of a generalized Madland-Nix model

    SciTech Connect

    Marten, H.; Seeliger, D.

    1986-08-01

    The Madland-Nix model (MNM) for the calculation of fission neutron spectra is modified considering the dependence on fragment mass number A. Further, an approximation of this generalized Madland-Nix model (GMNM) that takes into account the different center-of-mass system spectra for the light and heavy fragment groups is discussed. These new calculations are compared with two versions of the original MNM. In particular, the level density parameter, which was adjusted by fitting the calculated spectra to a Maxwellian distribution deduced from experimental data, becomes more reasonable in the framework of the GMNM. The results of the different model calculations are compared with experimental data on the /sup 252/Cf(sf) neutron spectrum in the 0.1- to 20-MeV energy range.

  1. Radioluminescence of solid neodymium-doped laser materials excited by α-particles and fission fragments

    NASA Astrophysics Data System (ADS)

    Seregina, E. A.; Seregin, A. A.

    2013-02-01

    The characteristics of radioluminescence of Nd3+ : Y3Al5O12 crystals and laser glasses under excitation by plutonium-239 (239Pu) α-particles, as well as by α-particles and spontaneous fission fragments of californium-252 (252Cf), are studied. The radioluminescence branching ratios βij for the transition from the 2F25/2 level to the 2S+1LJ levels in Nd3+ : Y3Al5O12 crystals are measured. Radioluminescence from the 2P3/2 level to low-lying levels is observed. The βij ratios for transitions from the high-lying 2F25/2, 4D3/2, and 2P3/2 levels are theoretically calculated. The lifetimes of metastable levels of Nd3+ excited by 252Cf fission fragments are measured. The efficiency of the conversion of energy of α-particles and fission fragments to the energy of optical radiation of Nd3+ : Y3Al5O12 crystals and laser glasses is determined.

  2. Radioluminescence of solid neodymium-doped laser materials excited by {alpha}-particles and fission fragments

    SciTech Connect

    Seregina, E A; Seregin, A A

    2013-02-28

    The characteristics of radioluminescence of Nd{sup 3+} : Y{sub 3}Al{sub 5}O{sub 12} crystals and laser glasses under excitation by plutonium-239 ({sup 239}Pu) {alpha}-particles, as well as by {alpha}-particles and spontaneous fission fragments of californium-252 ({sup 252}Cf), are studied. The radioluminescence branching ratios {beta}{sub ij} for the transition from the {sup 2}F2{sub 5/2} level to the {sup 2S+1}L{sub J} levels in Nd{sup 3+} : Y{sub 3}Al{sub 5}O{sub 12} crystals are measured. Radioluminescence from the {sup 2}P{sub 3/2} level to low-lying levels is observed. The {beta}{sub ij} ratios for transitions from the high-lying {sup 2}F2{sub 5/2}, {sup 4}D{sub 3/2}, and {sup 2}P{sub 3/2} levels are theoretically calculated. The lifetimes of metastable levels of Nd{sup 3+} excited by {sup 252}Cf fission fragments are measured. The efficiency of the conversion of energy of {alpha}-particles and fission fragments to the energy of optical radiation of Nd{sup 3+} : Y{sub 3}Al{sub 5}O{sub 12} crystals and laser glasses is determined. (active media)

  3. Time-zero fission-fragment detector based on low-pressure multiwire proportional chambers

    SciTech Connect

    Assamagan, Ketevi; Baker, O.; Bayatian, G.; Carlini, Roger; Danagoulian, Areg; Eden, Thomas; Egiyan, Kim; Ent, Rolf; Fenker, Howard; Gan, Liping; Gasparian, Ashot; Grigoryan, Hovhannes; Greenwood, Z; Gueye, Paul; Hashimoto, Osamu; Johnston, Kathleen; Keppel, Cynthia; Knyazian, S.; Majewski, Stanislaw; Magaryan, A; Margarian, Yu.; Marikyan, Gagik; Martoff, Charles; Mkrtchyan, Hamlet; PARLAKYAN, L.; Parlakyan, L.; Sato, Ikuro; Sawafta, Reyad; Simicevic, Neven; Tadevosyan, Vardan; Takahashi, Toshiyuki; Tang, Liguang; VARTANYAN, G.; Vulcan, William; Wells, Steven; Wood, Stephen

    1999-05-01

    A time-zero fission fragment (FF) detector, based on the technique of low-pressure multiwire proportional chambers (LPMWPC), has been designed and constructed for the heavy hypernuclear lifetime experiment (E95-002) at Thomas Jefferson National Accelerator Facility. Its characteristics and the method of time-zero reconstruction were investigated using fission fragments from a 252Cf spontaneous fission source. The influence of the ionization energy loss was also studied. It is shown that Heptane, Hexane, and Isobutane gases at a pressure of 1z2Torr are all suitable for such a FF detector. As desired by experiment, a timing resolution of about 200ps (FWHM) for a chamber size of 21z21cm2 was achieved.

  4. Subcritical measurements using the /sup 252/Cf source-driven neutron noise analysis method

    SciTech Connect

    Mihalczo, J.T.; Blakeman, E.D.; Ragan, G.E.; Kryter, R.C.

    1985-01-01

    This paper describes recent measurements of the subcritical neutron multiplication factor using the /sup 252/Cf source-driven neutron noise analysis method. This work was supported by a program of collaboration between the United States Department of Energy and the Power Reactor and Nuclear Fuel Development Corporation of Japan related to the development of fast breeder technology. The experiment reported consists of a configuration of two interacting tanks of uranyl nitrate aqueous solution with different uranium concentrations in each tank. The /sup 252/Cf-source-driven neutron noise analysis method obtains the subcriticality from the signals of three detectors: the first, a parallel plate ionization chamber with /sup 252/Cf electroplated on one of its plates that is located in or near the system containing the fissile material, and produces an electrical pulse for every spontaneous fission that occurs and thereby serves as a timed source of fission neutrons; and the second and third detectors that are placed in or near the system containing fissile material and serve to detect particles from the fission chain multiplication process. 9 refs.

  5. ANISOTROPY FACTORS FOR A 252Cf SOURCE

    SciTech Connect

    Veinot, K. G.; Bogard, James S

    2009-01-01

    A new 252Cf source has been procured for use at the Dosimetry Applications and Research (DOSAR) facility at the Oak Ridge National Laboratory (ORNL). This source was encapsulated by the Californium Facility at ORNL, however, the encapsulation differs from previous designs designated as SR-Cf-100. The new encapsulation, designated SR-Cf-3000, has a similar cylindrical radius to the previous generation, but is 1.6 cm longer. Since the encapsulation geometries differ the amount of internal scattering of neutrons will also differ leading to changes in anisotropy factors between the two designs. Additionally, the different encapsulations will affect the absorbed dose and dose equivalent delivered per neutron emitted by the source since both the quantity and energy distribution of the emitted neutrons will vary with irradiation angle. This work presents the fluence anisotropy factors for the SR-Cf-3000 series encapsulation as well as absorbed dose and dose equivalent values calculated for various angles of irradiation. The fluence anisotropy factors vary from a maximum of 1.037 to a minimum of 0.641 for irradiation angles perpendicular and parallel to the source axis, respectively. Anisotropy in absorbed dose varied from a maximum of 1.033 to a minimum of 0.676 while anisotropy of dose equivalent varied from 1.035 to 0.657.

  6. Validation of IRDFF in 252Cf standard and IRDF-2002 reference neutron fields

    SciTech Connect

    Simakov, Stanislav; Capote Noy, Roberto; Greenwood, Lawrence R.; Griffin, Patrick J.; Kahler, Albert; Pronyaev, Vladimir; Trkov, A.; Zolotarev, K. I.

    2016-05-02

    The results of validation of the latest release of International Reactor Dosimetry and Fusion File, IRDFF-1.03, in the standard 252Cf(s.f.) and reference 235U(nth,f) neutron benchmark fields are presented. The spectrum-averaged cross sections were shown to confirm the recommended spectrum for 252Cf spontaneous fission source; that was not the case for the current recommended spectra for 235U(nth,f). IRDFF was also validated in the spectra of the research reactor facilities ISNF, Sigma-Sigma and YAYOI, which are available in the IRDF- 2002 collection. Before this analysis, the ISFN spectrum was resimulated to remove unphysical oscillations in spectrum. IRDFF-1.03 was shown to reasonably reproduce the spectrum-averaged data measured in these fields except for the case of YAYOI.

  7. Validation of IRDFF in 252Cf Standard and IRDF-2002 Reference Neutron Fields

    NASA Astrophysics Data System (ADS)

    Simakov, Stanislav; Capote, Roberto; Greenwood, Lawrence; Griffin, Patrick; Kahler, Albert; Pronyaev, Vladimir; Trkov, Andrej; Zolotarev, Konstantin

    2016-02-01

    The results of validation of the latest release of International Reactor Dosimetry and Fusion File, IRDFF-1.03, in the standard 252Cf(s.f.) and reference 235U(nth,f) neutron benchmark fields are presented. The spectrum-averaged cross sections were shown to confirm IRDFF-1.03 in the 252Cf standard spontaneous fission spectrum; that was not the case for the current recommended spectra for 235U(nth,f). IRDFF was also validated in the spectra of the research reactor facilities ISNF, Sigma-Sigma and YAYOI, which are available in the IRDF-2002 collection. The ISNF facility was re-simulated to remove unphysical oscillations in the spectrum. IRDFF-1.03 was shown to reproduce reasonably well the spectrum-averaged data measured in these fields except for the case of YAYOI.

  8. Attributes and templates from active measurements with {sup 252}Cf

    SciTech Connect

    Mihalczo, J.T.; Mattingly, J.K.

    2000-02-01

    Active neutron interrogation is useful for the detection of shielded HEU and could also be used for Pu. In an active technique, fissile material is stimulated by an external neutron source to produce fission with the emanation of neutrons and gamma rays. The time distribution of particles leaving the fissile material is measured with respect to the source emission in a variety of ways. A variety of accelerator and radioactive sources can be used. Active interrogation of nuclear weapons/components can be used in two ways: template matching or attribute estimation. Template matching compares radiation signatures with known reference signatures and for treaty applications has the problem of authentication of the reference signatures along with storage and retrieval of templates. Attribute estimation determines, for example, the fissile mass from various features of the radiation signatures and does not require storage of radiation signatures but does require calibration, which can be repeated as necessary. A nuclear materials identification system (NMIS) has been in use at the Oak Ridge Y-12 Plant for verification of weapons components being received and in storage by template matching and has been used with calibrations for attribute (fissile mass) estimation for HEU metal. NMIS employs a {sup 252}Cf source of low intensity (< 2 x 10{sup 6} n/sec) such that the dose at 1 m is approximately twice that on a commercial airline at altitude. The use of such a source presents no significant safety concerns either for personnel or nuclear explosive safety, and has been approved for use at the Pantex Plant on fully assembled weapons systems.

  9. Fission fragment driven neutron source

    DOEpatents

    Miller, Lowell G.; Young, Robert C.; Brugger, Robert M.

    1976-01-01

    Fissionable uranium formed into a foil is bombarded with thermal neutrons in the presence of deuterium-tritium gas. The resulting fission fragments impart energy to accelerate deuterium and tritium particles which in turn provide approximately 14 MeV neutrons by the reactions t(d,n).sup.4 He and d(t,n).sup.4 He.

  10. Development of a thin scintillation films fission-fragment detector and a novel neutron source

    DOE PAGES

    Rusev, Gencho Yordanov; Jandel, Marian; Baramsai, Bayarbadrakh; ...

    2015-08-26

    Here, investigation of prompt fission and neutron-capture Υ rays from fissile actinide samples at the Detector for Advanced Neutron Capture Experiments (DANCE) requires use of a fission-fragment detector to provide a trigger or a veto signal. A fission-fragment detector based on thin scintillating films and silicon photomultipliers has been built to serve as a trigger/veto detector in neutron-induced fission measurements at DANCE. The fissile material is surrounded by scintillating films providing a 4π detection of the fission fragments. The scintillations were registered with silicon photomultipliers. A measurement of the 235U(n,f) reaction with this detector at DANCE revealed a correct time-of-flightmore » spectrum and provided an estimate for the efficiency of the prototype detector of 11.6(7)%. Design and test measurements with the detector are described. A neutron source with fast timing has been built to help with detector-response measurements. The source is based on the neutron emission from the spontaneous fission of 252Cf and the same type of scintillating films and silicon photomultipliers. Overall time resolution of the source is 0.3 ns. Design of the source and test measurements with it are described. An example application of the source for determining the neutron/gamma pulse-shape discrimination by a stilbene crystal is given.« less

  11. Development of a thin scintillation films fission-fragment detector and a novel neutron source

    NASA Astrophysics Data System (ADS)

    Rusev, G.; Jandel, M.; Baramsai, B.; Bond, E. M.; Bredeweg, T. A.; Couture, A.; Daum, J. K.; Favalli, A.; Ianakiev, K. D.; Iliev, M. L.; Mosby, S.; Roman, A. R.; Springs, R. K.; Ullmann, J. L.; Walker, C. L.

    2015-08-01

    Investigation of prompt fission and neutron-capture Υ rays from fissile actinide samples at the Detector for Advanced Neutron Capture Experiments (DANCE) requires use of a fission-fragment detector to provide a trigger or a veto signal. A fission-fragment detector based on thin scintillating films and silicon photomultipliers has been built to serve as a trigger/veto detector in neutron-induced fission measurements at DANCE. The fissile material is surrounded by scintillating films providing a 4π detection of the fission fragments. The scintillations were registered with silicon photomultipliers. A measurement of the 235U(n,f) reaction with this detector at DANCE revealed a correct time-of-flight spectrum and provided an estimate for the efficiency of the prototype detector of 11.6(7)%. Design and test measurements with the detector are described. A neutron source with fast timing has been built to help with detector-response measurements. The source is based on the neutron emission from the spontaneous fission of 252Cf and the same type of scintillating films and silicon photomultipliers. Overall time resolution of the source is 0.3 ns. Design of the source and test measurements with it are described. An example application of the source for determining the neutron/gamma pulse-shape discrimination by a stilbene crystal is given.

  12. Measurement and calculation of the emission anisotropy of an X1 252Cf neutron source.

    PubMed

    Hawkes, N P; Freedman, R; Tagziria, H; Thomas, D J

    2007-01-01

    The authors have measured the emission anisotropy from a (252)Cf spontaneous fission neutron source in an X1 encapsulation. The measurements were made in a large low-scatter laboratory using a long counter, and data were taken at angles varying in 10 degrees steps from 0 degrees to 180 degrees relative to the cylindrical axis of the source. Corrections were made for room scatter, loss of neutrons due to air scatter and detector dead time. Calculations corresponding to these measurements were subsequently carried out using the two Monte Carlo codes MCNP and MCBEND, and the results are compared with the measurements and with each other.

  13. Development of position-sensitive time-of-flight spectrometer for fission fragment research

    SciTech Connect

    Arnold, C. W.; Tovesson, F.; Meierbachtol, K.; Bredeweg, T.; Jandel, M.; Jorgenson, H. J.; Laptev, A.; Rusev, G.; Shields, D. W.; White, M.; Blakeley, R. E.; Mader, D. M.; Hecht, A. A.

    2014-07-09

    A position-sensitive, high-resolution time-of-flight detector for fission fragments has been developed. The SPectrometer for Ion DEtermination in fission Research (SPIDER) is a 2E–2v spectrometer designed to measure the mass of light fission fragments to a single mass unit. The time pick-off detector pairs to be used in SPIDER have been tested with α-particles from 229Th and its decay chain and α-particles and spontaneous fission fragments from 252Cf. Each detector module is comprised of thin electron conversion foil, electrostatic mirror, microchannel plates, and delay-line anodes. Particle trajectories on the order of 700 mm are determined accurately to within 0.7 mm. Flight times were measured with 250 ps resolution FWHM. Computed particle velocities are accurate to within 0.06 mm/ns corresponding to a precision of 0.5%. As a result, an ionization chamber capable of 400 keV energy resolution coupled with the velocity measurements described here will pave the way for modestly efficient measurements of light fission fragments with unit mass resolution.

  14. Development of position-sensitive time-of-flight spectrometer for fission fragment research

    DOE PAGES

    Arnold, C. W.; Tovesson, F.; Meierbachtol, K.; ...

    2014-07-09

    A position-sensitive, high-resolution time-of-flight detector for fission fragments has been developed. The SPectrometer for Ion DEtermination in fission Research (SPIDER) is a 2E–2v spectrometer designed to measure the mass of light fission fragments to a single mass unit. The time pick-off detector pairs to be used in SPIDER have been tested with α-particles from 229Th and its decay chain and α-particles and spontaneous fission fragments from 252Cf. Each detector module is comprised of thin electron conversion foil, electrostatic mirror, microchannel plates, and delay-line anodes. Particle trajectories on the order of 700 mm are determined accurately to within 0.7 mm. Flightmore » times were measured with 250 ps resolution FWHM. Computed particle velocities are accurate to within 0.06 mm/ns corresponding to a precision of 0.5%. As a result, an ionization chamber capable of 400 keV energy resolution coupled with the velocity measurements described here will pave the way for modestly efficient measurements of light fission fragments with unit mass resolution.« less

  15. Angular momentum of fission fragments in low energy fission of actinides

    SciTech Connect

    Naik, H.; Dange, S.P.; Singh, R.J.

    2005-01-01

    Independent isomeric yield ratios (IYR) of {sup 128}Sb, {sup 130}Sb, {sup 132}Sb, {sup 131}Te, {sup 133}Te, {sup 132}I, {sup 134}I, {sup 136}I, {sup 135}Xe, and {sup 138}Cs have been determined in fast neutron induced fission of {sup 232}Th, {sup 238}U, {sup 240}Pu, and {sup 244}Cm as well as in thermal neutron induced fission of {sup 232}U and {sup 238}Pu using radiochemical and offline {gamma}-ray spectrometric techniques. From the IYR, fragment angular momenta (J{sub rms}) have been deduced using a spin-dependent statistical model analysis. These data along with the literature data for {sup 230}Th*, {sup 234}U*, {sup 236}U*, {sup 240}Pu*, {sup 242}Pu*, {sup 244}Cm(SF), {sup 246}Cm*, {sup 250}Cf*, and {sup 252}Cf(SF) for fifteen even-Z fissioning systems show the following important features: (i) The J{sub rms} of the odd-Z fission products are higher than those of the even-Z fission products, indicating the odd-even effect. For both the odd-Z and even-Z fission products, the J{sub rms} increase with Z{sub F}{sup 2}/A{sub F}. (ii) The J{sub rms} of fragments with spherical 50-p and 82-n shells are lower compared to those of fragments outside the spherical shell, indicating the effect of shell closure proximity. (iii) The J{sub rms} of the fission products increase with mass number in spite of fluctuations in shell closure proximity and odd-even effects but do not show any correlation with the neutron emission curve. (iv) In all fifteen even-Z fissioning systems from Th to Cf, the yield-weighted J{sub rms} values show an anticorrelation with the elemental yields. (v) The odd-even fluctuation on J{sub rms} does not change drastically from Th to Cf, unlike the proton odd-even effect ({delta}{sub p}) which decreases significantly with the increase of Coulomb parameter (Z{sub F}{sup 2}/A{sub F}{sup 1/3})

  16. Ternary fission of nuclei into comparable fragments

    SciTech Connect

    Karpeshin, F. F.

    2015-07-15

    The problem of nuclear fission into three comparable fragments is considered. A mechanism of true ternary fission is proposed. In contrast to sequential fission, where the three fragments arise upon two sequential events of binary fission, the mechanism in question relies on a scenario that originally involves fission into three fragments. This mechanism is driven by a hexadecapole deformation of the fissioning nucleus, in contrast to binary fission associated with quadrupole vibrations of the nuclear surface. The fragment-mass ratios are estimated. The dynamics of formation of collinear fragments and their subsequent motion in opposite directions is traced. The calculated probability of true ternary fission complies with observed values.

  17. Ternary fission of nuclei into comparable fragments

    NASA Astrophysics Data System (ADS)

    Karpeshin, F. F.

    2015-07-01

    The problem of nuclear fission into three comparable fragments is considered. A mechanism of true ternary fission is proposed. In contrast to sequential fission, where the three fragments arise upon two sequential events of binary fission, the mechanism in question relies on a scenario that originally involves fission into three fragments. This mechanism is driven by a hexadecapole deformation of the fissioning nucleus, in contrast to binary fission associated with quadrupole vibrations of the nuclear surface. The fragment-mass ratios are estimated. The dynamics of formation of collinear fragments and their subsequent motion in opposite directions is traced. The calculated probability of true ternary fission complies with observed values.

  18. FY04&05 LDRD Final Report Fission Fragment Sputtering

    SciTech Connect

    Ebbinghaus, B; Trelenberg, T; Meier, T; Felter, T; Sturgeon, J; Kuboda, A; Wolfer, B

    2006-02-22

    Fission fragments born within the first 7 {micro}m of the surface of U metal can eject a thousand or more atoms per fission event. Existing data in the literature show that the sputtering yield ranges from 10 to 10,000 atoms per fission event near the surface, but nothing definitive is known about the energy of the sputtered clusters. Experimental packages were constructed allowing the neutron irradiation of natural uranium foils to investigate the amount of material removed per fission event and the kinetic energy distribution of the sputtered atoms. Samples were irradiated but were never analyzed after irradiation. Similar experiments were attempted in a non-radioactive environment using accelerator driven ions in place of fission induced fragments. These experiments showed that tracks produced parallel to the surface (and not perpendicular to the surface) are the primary source of the resulting particulate ejecta. Modeling studies were conducted in parallel with the experimental work. Because the reactor irradiation experiments were not analyzed, data on the energy of the resulting particulate ejecta was not obtained. However, some data was found in the literature on self sputtering of {sup 252}Cf that was used to estimate the velocity and hence the energy of the ejected particulates. Modeling of the data in the literature showed that the energy of the ejecta was much lower than had been anticipated. A mechanism to understand the nature of the ejecta was pursued. Initially it was proposed that the fission fragment imparts its momenta on the electrons which then impart their momenta on the nuclei. Once the nuclei are in motion, the particulate ejecta would result. This initial model was wrong. The error was in the assumption that the secondary electrons impart their momenta directly on the nuclei. Modeling and theoretical considerations showed that the secondary electrons scatter many times before imparting all their momenta. As a result, their energy transfer is

  19. Absolute measurement of anti. nu. /sub p/ for /sup 252/Cf using the ORNL large liquid scintillator neutron detector

    SciTech Connect

    Spencer, R.R.; Gwin, R.; Ingle, R.

    1981-08-01

    The ORNL large liquid scintillator detector was used in a precise determination of anti ..nu../sub p/, the number of neutrons emitted promptly, for spontaneous fission of /sup 252/Cf. Measurements of the detector efficiency over a broad energy region were made by means of a proton-recoil technique employing the ORELA white neutron source. Monte Carlo calculation of the detector efficiency for a spectrum representative of /sup 252/Cf fission neutrons was calibrated with these elaborate measurements. The unusually flat response of the neutron detector resulted in elimination of several known sources of error. Experimental measurement was coupled with calculational methods to correct for other known errors. These measurements lead to an unusually small estimated uncertainty of 0.2% in the value obtained, anti ..nu../sub p/ = 3.773 +- 0.007.

  20. A New Facility For Non-Destructive Assay With A Time-Tagged {sup 252}Cf Source

    SciTech Connect

    Stevanato, L.; Caldogno, M.; Hao, Xin; Dima, R.; Fabris, D.; Nebbia, G.; Lunardon, M.; Moretto, S.; Pesente, S.; Viesti, G.; Sajo-Bohus, L.

    2011-06-01

    A new facility for Non-Destructive Assay based on a time-tagged {sup 252}Cf spontaneous fission source is now in operation at the Padova University. The system is designed to analyze samples with dimensions on the order of 20x20 cm{sup 2}, the material recognition being obtained by measuring simultaneously transmission of neutrons and gamma rays as a function of energy.

  1. Energy production using fission fragment rockets

    SciTech Connect

    Chapline, G.; Matsuda, Y.

    1991-08-01

    Fission fragment rockets are nuclear reactors with a core consisting of thin fibers in a vacuum, and which use magnetic fields to extract the fission fragments from the reactor core. As an alternative to ordinary nuclear reactors, fission fragment rockets would have the following advantages: Approximately twice as efficient if one can directly convert the fission fragment energy into electricity; by reducing the buildup of a fission fragment inventory in the reactor one could avoid a Chernobyl type disaster; and collecting the fission fragments outside the reactor could simplify the waste disposal problem. 6 refs., 4 figs., 2 tabs.

  2. Measurements of charge distributions of the fragments in the low energy fission reaction

    NASA Astrophysics Data System (ADS)

    Wang, Taofeng; Han, Hongyin; Meng, Qinghua; Wang, Liming; Zhu, Liping; Xia, Haihong

    2013-01-01

    The measurement for charge distributions of fragments in spontaneous fission 252Cf has been performed by using a unique style of detector setup consisting of a typical grid ionization chamber and a ΔΕ-Ε particle telescope, in which a thin grid ionization chamber served as the ΔΕ-section and the E-section was an Au-Si surface barrier detector. The typical physical quantities of fragments, such as mass number and kinetic energies as well as the deposition in the gas ΔΕ detector and E detector were derived from the coincident measurement data. The charge distributions of the light fragments for the fixed mass number A2* and total kinetic energy (TKE) were obtained by the least-squares fits for the response functions of the ΔΕ detector with multi-Gaussian functions representing the different elements. The results of the charge distributions for some typical fragments are shown in this article which indicates that this detection setup has the charge distribution capability of Ζ:ΔΖ>40:1. The experimental method developed in this work for determining the charge distributions of fragments is expected to be employed in the neutron induced fissions of 232Th and 238U or other low energy fission reactions.

  3. Reactor production of sup 252 Cf and transcurium isotopes

    SciTech Connect

    Alexander, C.W.; Halperin, J.; Walker, R.L.; Bigelow, J.E.

    1990-01-01

    Berkelium, californium, einsteinium, and fermium are currently produced in the High Flux Isotope Reactor (HFIR) and recovered in the Radiochemical Engineering Development Center (REDC) at the Oak Ridge National Laboratory (ORNL). All the isotopes are used for research. In addition, {sup 252}Cf, {sup 253}Es, and {sup 255}Fm have been considered or are used for industrial or medical applications. ORNL is the sole producer of these transcurium isotopes in the western world. A wide range of actinide samples were irradiated in special test assemblies at the Fast Flux Test Facility (FFTF) at Hanford, Washington. The purpose of the experiments was to evaluate the usefulness of the two-group flux model for transmutations in the special assemblies with an eventual goal of determining the feasibility of producing macro amounts of transcurium isotopes in the FFTF. Preliminary results from the production of {sup 254g}Es from {sup 252}Cf will be discussed. 14 refs., 5 tabs.

  4. Compound dual radiation action theory for 252Cf brachytherapy.

    PubMed

    Wang, C K; Zhang, X

    2004-01-01

    The existing dosimetry protocol that uses the concept of RBE for 252Cf brachytherapy contains large uncertainties. A new formula has been developed to correlate the biological effect (i.e. cell survival fraction) resulting from a mixed n + gamma radiation field with two physical quantities and two biological quantities. The formula is based on a pathway model evolved from that of the compound-dual-radiation-action (CDRA) theory, previously proposed by Rossi and Zaider. The new model employs the recently published data on radiation-induced DNA lesions. The new formula is capable of predicting quantitatively the synergistic effect caused by the interactions between neutron events and gamma ray events, and it is intended to be included into a new dosimetry protocol for future 252Cf brachytherapy.

  5. A pneumatic transfer system for special form {sup 252}Cf

    SciTech Connect

    Gehrke, R.J.; Berry, S.M.; Grafwallner, E.G.; Hoggan, J.M.

    1996-09-01

    A pneumatic transfer system has been developed for use with series 100 Special Form {sup 252}Cf. It was developed to reduce the exposure to personnel handling sources of {sup 252}Cf with masses up to 150 {micro}g by permitting remotely activated two-way transfer between the storage container and the irradiation position. The pneumatic transfer system also permits transfers for reproducible repetitive irradiation periods. In addition to the storage container equipped with quick-release fittings, the transfer system consists of an irradiation station, a control box with momentary contact switches to activate the air-pressure control valves and indicators to identify the location of the source, and connecting air hose and electrical wire. A source of 20 psig air and 110 volt electrical power are required for operation of the transfer system which can be easily moved and set up by one individual in 5 to 10 minutes. Tests have shown that rarely does a source become lodged in the transfer tubing, but two methods have been developed to handle incomplete transfers of the {sup 252}Cf source. The first method consists of closing one air vent to allow a pressure impulse to propel the source to the opposite side. The second method applies to those {sup 252}Cf capsules with a threaded or tapped end to which a small ferromagnetic piece can be attached; an incompletely transferred source in the transfer tube can then be guided to a position of safety by surrounding the transfer tubing containing the capsule with a horseshoe magnet attached to the end of a long pole.

  6. Neutron-fragment and Neutron-neutron Correlations in Low-energy Fission

    SciTech Connect

    Lestone, J.P.

    2016-01-15

    A computational method has been developed to simulate neutron emission from thermal-neutron induced fission of {sup 235}U and from spontaneous fission of {sup 252}Cf. Measured pre-emission mass-yield curves, average total kinetic energies and their variances, both as functions of mass split, are used to obtain a representation of the distribution of fragment velocities. Measured average neutron multiplicities as a function of mass split and their dependence on total kinetic energy are used. Simulations can be made to reproduce measured factorial moments of neutron-multiplicity distributions with only minor empirical adjustments to some experimental inputs. The neutron-emission spectra in the rest-frame of the fragments are highly constrained by ENDF/B-VII.1 prompt-fission neutron-spectra evaluations. The n-f correlation measurements of Vorobyev et al. (2010) are consistent with predictions where all neutrons are assumed to be evaporated isotropically from the rest frame of fully accelerated fragments. Measured n-f and n-n correlations of others are a little weaker than the predictions presented here. These weaker correlations could be used to infer a weak scission-neutron source. However, the effect of neutron scattering on the experimental results must be studied in detail before moving away from a null hypothesis that all neutrons are evaporated from the fragments.

  7. Neutron activation analysis detection limits using {sup 252}Cf sources

    SciTech Connect

    DiPrete, D.P.; Sigg, R.A.

    2000-07-01

    The Savannah River Technology Center (SRTC) developed a neutron activation analysis (NAA) facility several decades ago using low-flux {sup 252}Cf neutron sources. Through this time, the facility has addressed areas of applied interest in managing the Savannah River Site (SRS). Some applications are unique because of the site's operating history and its chemical-processing facilities. Because sensitivity needs for many applications are not severe, they can be accomplished using an {approximately}6-mg {sup 252}Cf NAA facility. The SRTC {sup 252}Cf facility continues to support applied research programs at SRTC as well as other SRS programs for environmental and waste management customers. Samples analyzed by NAA include organic compounds, metal alloys, sediments, site process solutions, and many other materials. Numerous radiochemical analyses also rely on the facility for production of short-lived tracers, yielding by activation of carriers and small-scale isotope production for separation methods testing. These applications are more fully reviewed in Ref. 1. Although the flux [{approximately}2 x 10{sup 7} n/cm{sup 2}{center_dot}s] is low relative to reactor facilities, more than 40 elements can be detected at low and sub-part-per-million levels. Detection limits provided by the facility are adequate for many analytical projects. Other multielement analysis methods, particularly inductively coupled plasma atomic emission and inductively coupled plasma mass spectrometry, can now provide sensitivities on dissolved samples that are often better than those available by NAA using low-flux isotopic sources. Because NAA allows analysis of bulk samples, (a) it is a more cost-effective choice when its sensitivity is adequate than methods that require digestion and (b) it eliminates uncertainties that can be introduced by digestion processes.

  8. Potential Energy Calculations for Collinear Cluster Tripartition Fission Events

    NASA Astrophysics Data System (ADS)

    Unzhakova, A. V.; Pashkevich, V. V.; Pyatkov, Y. V.

    2014-09-01

    Strutinsky shell correction calculations were performed to describe the recent experimental results on collinear ternary fission. Collinear Cluster Tripartion fission events were studied experimentally in neutron induced fission of 235U, where the missing mass in the detected binary decay was suggested to characterize fission event as a collinear tripartition; and in spontaneous fission of 252Cf, where the direct detection of the three fission fragments has been used to confirm the existence of the Collinear Cluster Tripartition channel with a probability of 4.7×10-3 relative to the binary fission events.

  9. Fission fragment excited laser system

    DOEpatents

    McArthur, David A.; Tollefsrud, Philip B.

    1976-01-01

    A laser system and method for exciting lasing action in a molecular gas lasing medium which includes cooling the lasing medium to a temperature below about 150 K and injecting fission fragments through the lasing medium so as to preferentially excite low lying vibrational levels of the medium and to cause population inversions therein. The cooled gas lasing medium should have a mass areal density of about 5 .times. 10.sup.-.sup.3 grams/square centimeter, relaxation times of greater than 50 microseconds, and a broad range of excitable vibrational levels which are excitable by molecular collisions.

  10. Moderated 252Cf neutron energy spectra in brain tissue and calculated boron neutron capture dose.

    PubMed

    Rivard, Mark J; Zamenhof, Robert G

    2004-11-01

    While there is significant clinical experience using both low- and high-dose (252)Cf brachytherapy, combination therapy using (10)B for neutron capture therapy-enhanced (252)Cf brachytherapy has not been performed. Monte Carlo calculations were performed in a brain phantom (ICRU 44 brain tissue) to evaluate the dose enhancement predicted for a range of (10)B concentrations over a range of distances from a clinical (252)Cf source. These results were compared to experimental measurements and calculations published in the literature. For (10)B concentrations 252)Cf fast neutron dose.

  11. Sensitivity of 252Cf(sf) Neutron Observables to FREYA Inputs

    NASA Astrophysics Data System (ADS)

    Vogt, Ramona; Randrup, Jorgen; Talou, Patrick

    2016-09-01

    Within the framework of the fission event generator FREYA , (Fission Reaction Event Yield Algorithm) we have studied the sensitivity of various neutron observables to the yield distribution Y (A , Z , TKE) used as input to the code. Concentrating on the spontaneous fission of 252Cf, we generate a large number of different input yield distributions by performing simultaneous variations in the mass and charge yields as well as the kinetic energy distribution, governed by yield covariance matrices established from experimental data sets. For each of these input yield distributions, we then use FREYA to generate a large sample of complete fission events from which we extract various neutron observables, in particular the neutron multiplicity distribution, and the neutron spectrum associated with each multiplicity. On this basis, we are able to determine the sensitivity of those observables to the uncertainties in the input yield distribution obtained experimentally. This kind of study can be applied to any other case of interest and the information obtained can help to establish any needs and target accuracies required for further measurements to ensure reliable data validation. The work of J.R. was performed under the auspices of the U.S. Dept. of Energy by Lawrence Berkeley National Laboratory under Contract DE-AC02-05CH11231. The work of P.T. was performed under the auspices of the National Nuclear Security Administration.

  12. Fission fragment mass and energy distributions as a function of incident neutron energy measured in a lead slowing-down spectrometer

    SciTech Connect

    Romano, C.; Danon, Y.; Block, R.; Thompson, J.; Blain, E.; Bond, E.

    2010-01-15

    A new method of measuring fission fragment mass and energy distributions as a function of incident neutron energy in the range from below 0.1 eV to 1 keV has been developed. The method involves placing a double-sided Frisch-gridded fission chamber in Rensselaer Polytechnic Institute's lead slowing-down spectrometer (LSDS). The high neutron flux of the LSDS allows for the measurement of the energy-dependent, neutron-induced fission cross sections simultaneously with the mass and kinetic energy of the fission fragments of various small samples. The samples may be isotopes that are not available in large quantities (submicrograms) or with small fission cross sections (microbarns). The fission chamber consists of two anodes shielded by Frisch grids on either side of a single cathode. The sample is located in the center of the cathode and is made by depositing small amounts of actinides on very thin films. The chamber was successfully tested and calibrated using 0.41+-0.04 ng of {sup 252}Cf and the resulting mass distributions were compared to those of previous work. As a proof of concept, the chamber was placed in the LSDS to measure the neutron-induced fission cross section and fragment mass and energy distributions of 25.3+-0.5 mug of {sup 235}U. Changes in the mass distributions as a function of incident neutron energy are evident and are examined using the multimodal fission mode model.

  13. Replacing a 252Cf source with a neutron generator in a shuffler - a conceptual design performed with MCNPX

    SciTech Connect

    Schear, Melissa A; Tobin, Stephen J

    2009-01-01

    The {sup 252}Cf shuffler has been widely used in nuclear safeguards and radioactive waste management to assay fissile isotopes, such as {sup 235}U or {sup 239}Pu, present in a variety of samples, ranging from small cans of uranium waste to metal samples weighing several kilograms. Like other non-destructive assay instruments, the shuffler uses an interrogating neutron source to induce fissions in the sample. Although shufflers with {sup 252}Cf sources have been reliably used for several decades, replacing this isotopic source with a neutron generator presents some distinct advantages. Neutron generators can be run in a continuous or pulsed mode, and may be turned off, eliminating the need for shielding and a shuffling mechanism in the shuffler. There is also essentially no dose to personnel during installation, and no reliance on the availability of {sup 252}Cf. Despite these advantages, the more energetic neutrons emitted from the neutron generator (141 MeV for D-T generators) present some challenges for certain material types. For example when the enrichment of a uranium sample is unknown, the fission of {sup 238}U is generally undesirable. Since measuring uranium is one of the main uses of a shuffler, reducing the delayed neutron contribution from {sup 238}U is desirable. Hence, the shuffler hardware must be modified to accommodate a moderator configuration near the source to tailor the interrogating spectrum in a manner which promotes sub-threshold fissions (below 1 MeV) but avoids the over-moderation of the interrogating neutrons so as to avoid self-shielding. In this study, where there are many material and geometry combinations, the Monte Carlo N-Particle eXtended (MCNPX) transport code was used to model, design, and optimize the moderator configuration within the shuffler geometry. The code is then used to evaluate and compare the assay performances of both the modified shuffler and the current {sup 252}Cf shuffler designs for different test samples. The

  14. Measurement of the 250Cf component in a 252Cf neutron source at KRISS.

    PubMed

    Kim, Jungho; Park, Hyeonseo; Choi, Kil-Oung

    2014-10-01

    Neutron emission rate measurements have been carried out at the Korea Research Institute of Standards and Science using a manganese sulphate bath system for (252)Cf and (241)Am-Be sources since 2004. The relative measurement method was chosen in 2012, and the neutron emission rates agreed with those by the absolute measurement method within uncertainties. The neutron emission rate of an old (252)Cf source has been measured three times: in 2004, 2009 and 2012. The (250)Cf component was fitted to a double-exponential function of (252)Cf+(250)Cf, and the ratio of the (250)Cf component to the (252)Cf component was estimated to be 7.8 % in 2004 and 46.8 % in 2012. Underestimation of the neutron emission rates of old (252)Cf sources can be corrected if the neutron emission rate of the (250)Cf component is taken into account.

  15. A radiobiological model for the relative biological effectiveness of high-dose-rate 252Cf brachytherapy.

    PubMed

    Rivard, Mark J; Melhus, Christopher S; Zinkin, Heather D; Stapleford, Liza J; Evans, Krista E; Wazer, David E; Odlozilíková, Anna

    2005-09-01

    While there is significant clinical experience using both low- and high-dose-rate 252Cf brachytherapy, there are minimal data regarding values for the neutron relative biological effectiveness (RBE) with both modalities. The aim of this research was to derive a radiobiological model for 252Cf neutron RBE and to compare these results with neutron RBE values used clinically in Russia. The linear-quadratic (LQ) model was used as the basis to characterize cell survival after irradiation, with identical cell killing rates (S(N) = S(gamma)) between 252Cf neutrons and photons used for derivation of RBE. Using this equality, a relationship among neutron dose and LQ radiobiological parameter (i.e., alpha(N), beta(N), alpha(gamma), beta(gamma)) was obtained without the need to specify the photon dose. These results were used to derive the 252Cf neutron RBE, which was then compared with Russian neutron RBE values. The 252Cf neutron RBE was determined after incorporating the LQ radiobiological parameters obtained from cell survival studies with fast neutrons and teletherapy photons. For single-fraction high-dose-rate neutron doses of 0.5, 1.0, 1.5 and 2.0 Gy, the total biologically equivalent doses were 1.8, 3.4, 4.7 and 6.0 RBE Gy with 252Cf neutron RBE values of 3.2, 2.9, 2.7 and 2.5, respectively. Using clinical data for late-responding reactions from 252Cf, Russian investigators created an empirical model that predicted high-dose-rate 252Cf neutron RBE values ranging from 3.6 to 2.9 for similar doses and fractionation schemes and observed that 252Cf neutron RBE increases with the number of treatment fractions. Using these relationships, our results were in general concordance with high-dose-rate 252Cf RBE values obtained from Russian clinical experience.

  16. /sup 252/Cf-source-driven neutron noise analysis method

    SciTech Connect

    Mihalczo, J.T.; King, W.T.; Blakeman, E.D.

    1985-01-01

    The /sup 252/Cf-source-driven neutron noise analysis method has been tested in a wide variety of experiments that have indicated the broad range of applicability of the method. The neutron multiplication factor k/sub eff/ has been satisfactorily detemined for a variety of materials including uranium metal, light water reactor fuel pins, fissile solutions, fuel plates in water, and interacting cylinders. For a uranyl nitrate solution tank which is typical of a fuel processing or reprocessing plant, the k/sub eff/ values were satisfactorily determined for values between 0.92 and 0.5 using a simple point kinetics interpretation of the experimental data. The short measurement times, in several cases as low as 1 min, have shown that the development of this method can lead to a practical subcriticality monitor for many in-plant applications. The further development of the method will require experiments oriented toward particular applications including dynamic experiments and the development of theoretical methods to predict the experimental observables.

  17. Shielding design studies for a neutron irradiator system based on a 252Cf source.

    PubMed

    da Silva, A X; Crispim, V R

    2001-01-01

    This study aims to investigate a shielding design against neutrons and gamma rays from a source of 252Cf, using Monte Carlo simulation. The shielding materials studied were borated polyethylene, borated-lead polyethylene and stainless steel. The Monte Carlo code MCNP4B was used to design shielding for 252Cf based neutron irradiator systems. By normalising the dose equivalent rate values presented to the neutron production rate of the source, the resulting calculations are independent of the intensity of the actual 252Cf source. The results show that the total dose equivalent rates were reduced significantly by the shielding system optimisation.

  18. Development of high-activity {sup 252}Cf sources for neutron brachytherapy

    SciTech Connect

    Martin, R.C.; Laxson, R.R.; Miller, J.H.; Wierzbicki, J.G.; Rivard, M.J.; Marsh, D.L.

    1996-10-01

    The Gershenson Radiation Oncology Center of Wayne State University (WSU), Detroit, Michigan, is using {sup 252}Cf medical sources for neutron brachytherapy. These sources are based on a 20-year-old design containing {le} 30 {micro}g {sup 252}Cf in the form of a cermet wire of Cf{sub 2}O{sub 3} in a palladium matrix. The Radiochemical Engineering Development Center (REDC) of Oak Ridge National Laboratory has been asked to develop tiny high-activity {sup 252}Cf neutron sources for use with remote afterloading equipment to reduce treatment times and dose to clinical personnel and to expedite treatment of brain and other tumors. To date, the REDC has demonstrated that {sup 252}Cf loadings can be greatly increased in cermet wires much smaller than before. Equipment designed for hot cell fabrication of these wires is being tested. A parallel program is under way to relicense the existing source design for fabrication at the REDC.

  19. Multimodal fission and neutron evaporation

    SciTech Connect

    Brosa, U.

    1988-10-01

    The average multiplicities nu-bar(A) of prompt neutrons emitted in the spontaneous fission of /sup 252/Cf and /sup 258/Fm are derived. Two new features are predicted: A simple sawtooth for /sup 258/Fm and a triple one for /sup 252/Cf. Experiments to check these predictions should be feasible now.

  20. Porous fission fragment tracks in fluorapatite

    SciTech Connect

    Li Weixing; Ewing, Rodney C.; Wang Lumin; Sun Kai; Lang, Maik; Trautmann, Christina

    2010-10-01

    Fission tracks caused by the spontaneous fission of {sup 238}U in minerals, as revealed by chemical etching, are extensively used to determine the age and thermal history of Earth's crust. Details of the structure and annealing of tracks at the atomic scale have remained elusive, as the original track is destroyed during chemical etching. By combining transmission electron microscopy with in situ heating, we demonstrate that fission tracks in fluorapatite are actually porous tubes, instead of having an amorphous core, as generally assumed. Direct observation shows thermally induced track fragmentation in fluoapatite, in clear contrast to the amorphous tracks in zircon, which gradually ''fade'' without fragmentation. Rayleigh instability and the thermal emission of vacancies control the annealing of porous fission tracks in fluorapatite.

  1. A comparison of the expected costs of high dose rate brachytherapy using 252Cf versus 192Ir.

    PubMed

    Rivard, Mark J; Kirk, Bernadette L; Stapleford, Liza J; Wazer, David E

    2004-12-01

    A cost analysis to compare high dose rate (HDR) brachytherapy using either californium-252 (252Cf) or 192Ir was performed to determine the prospects of widespread clinical implementation of HDR 252Cf. Interest in the neutron-emitting 252Cf radioisotope as a radiotherapy nuclide has undergone a resurgence given recent efforts to fabricate HDR remotely afterloaded sources, and other efforts to create a miniature source for improved accessibility to a variety of anatomic sites. Therefore, HDR 252Cf brachytherapy may prove to be a potential rival to the use of HDR 192Ir remotely afterloaded brachytherapy--the current standard-of-care treatment modality using HDR brachytherapy. Considering the possible improvements in clinical efficacy using HDR 252Cf brachytherapy and the enormous costs of other high-LET radiation sources, the cost differences between 252Cf and 192Ir may be well-justified.

  2. Late-time emission of prompt fission γ rays

    NASA Astrophysics Data System (ADS)

    Talou, P.; Kawano, T.; Stetcu, I.; Lestone, J. P.; McKigney, E.; Chadwick, M. B.

    2016-12-01

    The emission of prompt fission γ rays within a few nanoseconds to a few microseconds following the scission point is studied in the Hauser-Feshbach formalism applied to the deexcitation of primary excited fission fragments. Neutron and γ -ray evaporations from fully accelerated fission fragments are calculated in competition at each stage of the decay, and the role of isomers in the fission products, before β decay, is analyzed. The time evolution of the average total γ -ray energy, the average total γ -ray multiplicity, and the fragment-specific γ -ray spectra is presented in the case of neutron-induced fission reactions of 235U and 239Pu, as well as spontaneous fission of 252Cf. The production of specific isomeric states is calculated and compared to available experimental data. About 7% of all prompt fission γ rays are predicted to be emitted between 10 ns and 5 μ s following fission, in the case of 235U and 239Pu(nth,f ) reactions, and up to 3% in the case of 252Cf spontaneous fission. The cumulative average total γ -ray energy increases by 2% to 5% in the same time interval. Finally, those results are shown to be robust against significant changes in the model input parameters.

  3. Late-time emission of prompt fission γ rays

    DOE PAGES

    Talou, Patrick; Kawano, Toshihiko; Stetcu, Ionel; ...

    2016-12-22

    The emission of prompt fission γ rays within a few nanoseconds to a few microseconds following the scission point is studied in the Hauser-Feshbach formalism applied to the deexcitation of primary excited fission fragments. Neutron and γ-ray evaporations from fully accelerated fission fragments are calculated in competition at each stage of the decay, and the role of isomers in the fission products, before β decay, is analyzed. The time evolution of the average total γ-ray energy, the average total γ-ray multiplicity, and the fragment-specific γ-ray spectra is presented in the case of neutron-induced fission reactions of 235U and 239Pu, asmore » well as spontaneous fission of 252Cf. The production of specific isomeric states is calculated and compared to available experimental data. About 7% of all prompt fission γ rays are predicted to be emitted between 10 ns and 5 μs following fission, in the case of 235U and 239Pu(nth,f) reactions, and up to 3% in the case of 252Cf spontaneous fission. The cumulative average total γ-ray energy increases by 2% to 5% in the same time interval. Lastly, those results are shown to be robust against significant changes in the model input parameters.« less

  4. A New Method of Prompt Fission Neutron Energy Spectrum Unfolding

    SciTech Connect

    Zeynalova, O. V.; Zeynalov, Sh.; Hambsch, F.-J.; Oberstedt, S.

    2010-11-25

    The prompt neutron emission in spontaneous fission of {sup 252}Cf has been investigated applying digital signal electronics along with associated digital signal processing algorithms. The goal was to find out the reasons of a long time existing discrepancy between theoretical calculations and the measurements of prompt fission neutron (PFN) emission dependence on the total kinetic energy (TKE) of fission fragments (FF). On the one hand the {sup 252}Cf(sf) reaction is one of the main references for nuclear data, on the other hand the understanding of PFN emission mechanism is very important for nuclear fission theory. Using a twin Frisch-grid ionization chamber for fission fragment (FF) detection and a NE213-equivalent neutron detector in total about 10{sup 7} fission fragment-neutron coincidences have been registered. Fission fragment kinetic energy, mass and angular distribution, neutron time-of-flight and pulse shape have been investigated using a 12 bit waveform digitizer. The signal waveforms have been analyzed using digital signal processing algorithms. For the first time the dependence of the number of emitted neutrons as a function of total kinetic energy (TKE) of the fragments is in very good agreement with theoretical calculations in the range of TKE from 140-220 MeV.

  5. AN INTERLABORATORY COMPARISON ON THE DETERMINATION OF 241Am, 244Cm AND 252Cf IN URINE.

    PubMed

    Gerstmann, Udo C; Taubner, Kerstin; Hartmann, Martina

    2016-09-01

    An intercomparison exercise on the determination of (241)Am, (244)Cm and (252)Cf in urine was performed. Since it was designed with regard to emergency preparedness, the detection limit for each nuclide was set to 0.1 Bq per 24-h urine sample. Most of the participating laboratories were established bioassay laboratories. However, some laboratories that routinely determine (241)Am only in environmental samples were also invited in order to explore their potential for emergency bioassay analysis. Another aspect of the intercomparison was to investigate the performance of all laboratories concerning the chemical yields of the (243)Am tracer in comparison with (244)Cm and (252)Cf. In summary, both types of laboratories showed good results. There was a negative bias for the results of (244)Cm and (252)Cf, which can be explained by slightly different radiochemical behaviours of americium, curium and californium and which is in agreement with results reported in the literature.

  6. Fission Fragment Properties from a Microscopic Approach

    SciTech Connect

    Dubray, N.; Goutte, H.; Delaroche, J.-P.

    2008-04-17

    We calculate potential energy surfaces in the elongation-asymmetry plane, up to very large deformations, with the Hartree-Fock-Bogoliubov method and the Gogny nucleon-nucleon effective interaction DIS, for the {sup 226}Th and {sup 256,258,260}Fm fissioning systems. We then define a criterion based on the nuclear density, in order to discriminate between pre- and post-scission configurations. Using this criterion, many scission configurations are identified, and are used for the calculation of several fragment properties, like fragment deformations, deformation energies, energy partitioning, neutron binding energies at scission, charge polarization, total fragment kinetic energies and neutron multiplicities.

  7. Design of a setup for 252Cf neutron source for storage and analysis purpose

    NASA Astrophysics Data System (ADS)

    Hei, Daqian; Zhuang, Haocheng; Jia, Wenbao; Cheng, Can; Jiang, Zhou; Wang, Hongtao; Chen, Da

    2016-11-01

    252Cf is a reliable isotopic neutron source and widely used in the prompt gamma ray neutron activation analysis (PGNAA) technique. A cylindrical barrel made by polymethyl methacrylate contained with the boric acid solution was designed for storage and application of a 5 μg 252Cf neutron source. The size of the setup was optimized with Monte Carlo code. The experiments were performed and the results showed the doses were reduced with the setup and less than the allowable limit. The intensity and collimating radius of the neutron beam could also be adjusted through different collimator.

  8. Water-extended polyester neutron shield for a 252Cf neutron source.

    PubMed

    Vega-Carrillo, H R; Manzanares-Acuña, E; Hernández-Dávila, V M; Gallego, E; Lorente, A; Donaire, I

    2007-01-01

    A Monte Carlo study to determine the shielding features to neutrons of water-extended polyester was carried out. During calculations, (252)Cf and shielding were modelled and the neutron spectra as well as the H(10) were calculated in four sites. The calculation was extended to include a water shielding, the source in vacuum and in air. Besides neutron shielding characteristics, the Kerma in air due to gammas emitted by (252)Cf and due to capture gamma rays in the shielding were included.

  9. On the use of a (252Cf-3He) assembly for landmine detection by the neutron back-scattering method.

    PubMed

    Elsheikh, N; Viesti, G; ElAgib, I; Habbani, F

    2012-04-01

    Experiments were carried out to optimize the performance of the neutron back-scattering (NBS) technique in landmine detection using an assembly consisting of three different layers placed above a (252)Cf neuron source, producing about 10(4)s(-1), in conjunction with a (3)He detector. The assembly was optimized experimentally. The selected assembly configuration was then examined against different (252)Cf stand-off distances and mine burial depths using dummy landmines. Furthermore, Monte Carlo simulations were performed to study the effect of the shield when a (252)Cf source in the range 10(4)-10(7)s(-1) was employed, and to optimize the geometry for future prototypes.

  10. Shielding of radiation fields generated by {sup 252}Cf in a concrete maze. Part 1: Experiment

    SciTech Connect

    Ipe, N.E.; McCall, R.C.; Jenkins, T.M.; Benson, E.

    1998-02-01

    A concrete room with a single-legged maze was constructed in order to simulate a medical accelerator room. Gamma and neutron measurements were performed along the maze with (a) a {sup 252}Cf source and (b) a tungsten-moderated {sup 252}Cf source placed inside the room. The measurements were repeated after placing an inner borated polyethylene door of varying thickness (2.54--10.16 cm) at 2 different locations. Measurements were also performed after lining the inside of the maze with different neutron moderating materials. The following results are reported: (1) the variation and contributions of individual components of the radiation fields as a function of distance along the maze, (2) the attenuation of neutron dose equivalent and reduction of capture gamma rays as a function of borated polyethylene (BPE) inner door thickness and location of the inner door; and (3) the effect of lining the maze corner with different neutron moderating materials.

  11. Conservation of Isospin in Neutron-rich Fission Fragments

    SciTech Connect

    Jain, A.K.; Choudhury, D.; Maheshwari, B.

    2014-06-15

    On the occasion of the 75{sup th} anniversary of the fission phenomenon, we present a surprisingly simple result which highlights the important role of isospin and its conservation in neutron rich fission fragments. We have analysed the fission fragment mass distribution from two recent heavyion reactions {sup 238}U({sup 18}O,f) and {sup 208}Pb({sup 18}O,f) as well as a thermal neutron fission reaction {sup 245}Cm(n{sup th},f). We find that the conservation of the total isospin explains the overall trend in the observed relative yields of fragment masses in each fission pair partition. The isospin values involved are very large making the effect dramatic. The findings open the way for more precise calculations of fission fragment distributions in heavy nuclei and may have far reaching consequences for the drip line nuclei, HI fusion reactions, and calculation of decay heat in the fission phenomenon.

  12. Brazilian gamma-neutron dosemeter: response to 241AmBe and 252Cf neutron sources.

    PubMed

    Souto, E B; Campos, L L

    2011-03-01

    With the aim of improving the monitoring of workers potentially exposed to neutron radiation in Brazil, the IPEN/CNEN-SP in association with PRO-RAD designed and developed a passive individual gamma-neutron mixed-field dosemeter calibrated to be used to (241)AmBe sources. To verify the dosimetry system response to different neutron spectra, prototypes were irradiated with a (252)Cf source and evaluated using the dose-calculation algorithm developed for (241)AmBe sources.

  13. Measured microdosimetric spectra and therapeutic potential of boron neutron capture enhancement of 252Cf brachytherapy.

    PubMed

    Burmeister, J; Kota, C; Maughan, R L

    2005-09-01

    Californium-252 is a neutron-emitting radioisotope used as a brachytherapy source for radioresistant tumors. Presented here are microdosimetric spectra measured as a function of simulated site diameter and distance from applicator tube 252Cf sources. These spectra were measured using miniature tissue-equivalent proportional counters (TEPCs). An investigation of the clinical potential of boron neutron capture (BNC) enhancement of 252Cf brachytherapy is also provided. The absorbed dose from the BNC reaction was measured using a boron-loaded miniature TEPC. Measured neutron, photon and BNC absorbed dose components are provided as a function of distance from the source. In general, the absorbed dose results show good agreement with results from other measurement techniques. A concomitant boost to 252Cf brachytherapy may be provided through the use of the BNC reaction. The potential magnitude of this BNC enhancement increases with increasing distance from the source and is capable of providing a therapeutic gain greater than 30% at a distance of 5 cm from the source, assuming currently achievable boron concentrations.

  14. {sup 252}Cf-source-correlated transmission measurements for uranyl fluoride deposit in a 24-in.-OD process pipe

    SciTech Connect

    Uckan, T.; Mihalczo, J.T.; Valentine, T.E.; Mullens, J.A.; Wyatt, M.S.; Hannon, T.F.

    1998-06-01

    Characterization of a hydrated uranyl fluoride (UO{sub 2}F{sub 2}{center_dot}nH{sub 2}O) deposit in a 17-ft-long, 24-in.-OD process pipe at the former Oak Ridge Gaseous Diffusion Plant was successfully performed by using {sup 252}Cf-source-correlated time-of-flight (TOF) transmission measurements. These measurements of neutrons and gamma rays through the pipe from an external {sup 2521}Cf fission source were used to measure the deposit profile and its distribution along the pipe, the hydration (or H/U), and the total uranium mass. The measurements were performed with a source in an ionization chamber on one side of the pipe and detectors on the other. Scanning the pipe vertically and horizontally produced a spatial and time-dependent radiograph of the deposit in which transmitted gamma rays and neutrons were separated in time. The cross-correlation function between the source and the detector was measured with the Nuclear Weapons Identification System. After correcting for pipe effects, the deposit thickness was determined from the transmitted neutrons and H/U from the gamma rays. Results were consistent with a later intrusive observation of the shape and the color of the deposit; i.e., the deposit was annular and was on the top of the pipe at some locations, demonstrating the usefulness of this method for deposit characterization.

  15. New fission-fragment detector for experiments at DANCE

    NASA Astrophysics Data System (ADS)

    Rusev, G.; Roman, A. R.; Daum, J. K.; Springs, R. K.; Bond, E. M.; Jandel, M.; Baramsai, B.; Bredeweg, T. A.; Couture, A.; Favalli, A.; Ianakiev, K. D.; Iliev, M. L.; Mosby, S.; Ullmann, J. L.; Walker, C. L.

    2015-10-01

    A fission-fragment detector based on thin scintillating films has been built to serve as a veto/trigger detector in neutron-induced fission measurements at DANCE. The fissile material is surrounded by scintillating films providing a 4 π detection of the fission fragments. The scintillation events caused by the fission fragment interactions in the films are registered with silicon photomultipliers. Design of the detector and test measurements are described. Work supported by the U.S. Department of Energy through the LANL/LDRD Program and the U.S. Department of Energy, Office of Science, Nuclear Physics under the Early Career Award No. LANL20135009.

  16. Study of Shape Isomeric States in Fission Fragments

    NASA Astrophysics Data System (ADS)

    Pyatkov, Yu. V.; Kamanin, D. V.; Alexandrov, A. A.; Alexandrova, I. A.; Kondtatyev, N. A.; Kuznetsova, , E. A.; Strekalovsky, A. O.; Strekalovsky, O. V.; Zhuchko, V. E.; Mkaza, N.

    2015-06-01

    For the first time the brake-up of the fission fragments crossing metal foil was observed. The effect takes place predominantly in front impacts. To treat the data we suppose the bulk of the fragments from the conventional binary fission to be borne in shape-isomer states which look like di-nuclear systems with magic cores.

  17. Isotopic yield in cold binary fission of even-even 244-258Cf isotopes

    NASA Astrophysics Data System (ADS)

    Santhosh, K. P.; Cyriac, Annu; Krishnan, Sreejith

    2016-05-01

    The cold binary fission of even-even 244-258Cf isotopes has been studied by taking the interacting barrier as the sum of Coulomb and proximity potential. The favorable fragment combinations are obtained from the cold valley plot (plot of driving potential vs. mass number of fragments) and by calculating the yield for charge minimized fragments. It is found that for 244,246,248Cf isotopes highest yield is for the fragments with isotope of Pb (Z = 82) as one fragment, whereas for 250Cf and 252Cf isotopes the highest yield is for the fragments with isotope of Hg (Z = 80) as one fragment. In the case of 254,256,258Cf isotopes the highest yield is for the fragments with Sn (Z = 50) as one fragment. Thus, the fragment combinations with maximum yield reveal the role of doubly magic and near doubly magic nuclei in binary fission. It is found that asymmetric splitting is favored for Cf isotopes with mass number A ≤ 250 and symmetric splitting is favored for Cf isotopes with A > 252. In the case of Cf isotope with A = 252, there is an equal probability for asymmetric and symmetric splitting. The individual yields obtained for the cold fission of 252Cf isotope are compared with the experimental data taken from the γ- γ- γ coincidences technique using Gammasphere.

  18. Fission and Properties of Neutron-Rich Nuclei - Proceedings of the Second International Conference

    NASA Astrophysics Data System (ADS)

    Hamilton, J. H.; Phillips, W. R.; Carter, H. K.

    The Table of Contents for the book is as follows: * Preface * Structure of Elementary Matter: Cold Valleys and Their Importance in Fission, Fusion and for Superheavy Nuclei * Tunnelling Phenomena in Nuclear Physics * Heavy Nuclei Studies Using Transfer Reactions * Isomeric Properties of Nuclei Near 78Ni * Investigation of Light Actinide Nuclei at Yale and Beyond * U-Projectile Fission at Relativistic Energies * Cluster Description of Cold Fission Modes in 252Cf * Neutron-pair Transfer Theory for Pear-shaped Ba Fission Fragments * New RMFA Parameters of Normal and Exotic Nuclei * Study of Fission Fragments from 12C+238U Reactions: Prompt and Delayed Spectroscopy * γ-Ray Angular Correlations in 252Cf and 248Cm Fission Fragments * Fragment Angular Momentum and Descent Dynamics in 252Cf Spontaneous Fission * The Experimental Investigation of Neutron-Rich Nuclei * High-Spin Structure of Some Odd-Z Nuclei with A ≈ 100 From Heavy-Ion Induced Fission * Coexistence of Symmetric and Asymmetric Nuclear Shapes and 10Be Ternary Fission * Octupole Effects in the Lanthanides * High Spin Structure of the 113-1l6Cd Isotopes Produced by Heavy-Ion Induced Fission Reaction * Temperature-Dependent Fission Barriers and Mass Distributions for 239U * Strength Distributions for Gamow Teller Transitions in Very Weakly Bound Systems * High Spin Fragmentation Spectroscopy * Search for a Four-Neutron Transfer From 8He to 4He * Microsecond Isomers in Fission Fragments in the Vicinity of the Doubly Magic 132Sn * Recent On-Line NMR/on Nuclear Magnetic Dipole Moments Near 132Sn: Meson Exchange Current Effects at the Shell Closure and Shell Model Treatment of Variation with Proton and Neutron Number * High-spin K-Isomers Beyond the Fusion Limit * High Energy Neutron Induced Fission: Charge Yield Distributions and Search and Spectroscopy of New Isomers * Hartree-Fock Mean-Field Models Using Separable Interactions * Variation of Fission Characteristics Over the Nuclear Chart * Investigation of

  19. The SPIDER fission fragment spectrometer for fission product yield measurements

    SciTech Connect

    Meierbachtol, K.; Tovesson, F.; Shields, D.; Arnold, C.; Blakeley, R.; Bredeweg, T.; Devlin, M.; Hecht, A. A.; Heffern, L. E.; Jorgenson, J.; Laptev, A.; Mader, D.; O׳Donnell, J. M.; Sierk, A.; White, M.

    2015-04-01

    We developed the SPectrometer for Ion DEtermination in fission Research (SPIDER) for measuring mass yield distributions of fission products from spontaneous and neutron-induced fission. The 2E–2v method of measuring the kinetic energy (E) and velocity (v) of both outgoing fission products has been utilized, with the goal of measuring the mass of the fission products with an average resolution of 1 atomic mass unit (amu). Moreover, the SPIDER instrument, consisting of detector components for time-of-flight, trajectory, and energy measurements, has been assembled and tested using 229Th and 252Cf radioactive decay sources. For commissioning, the fully assembled system measured fission products from spontaneous fission of 252Cf. Individual measurement resolutions were met for time-of-flight (250 ps FWHM), spacial resolution (2 mm FHWM), and energy (92 keV FWHM for 8.376 MeV). Finally, these mass yield results measured from 252Cf spontaneous fission products are reported from an E–v measurement.

  20. Ion sources for fission fragment accelerators

    NASA Astrophysics Data System (ADS)

    Köster, U.; Kester, O.; Habs, D.

    1998-03-01

    At the Grenoble and Munich high-flux reactors fission fragment accelerators are under design which will deliver beams of very neutron-rich fission products with a final energy between 3 and 6 MeV/u. In order to obtain an efficient acceleration in a compact accelerator, charge conversion of the 1+ ion beams from the in-pile ion source to a q/A⩾0.16 has to take place. In the chain from production to acceleration, ion sources are the key elements to reach high beam intensities of over 1010s-1. For the in-pile part the target-ion source assembly has not only to be very efficient, but should also be highly selective for the desired elements (which go from nickel to europium) on one hand and robust against the hostile environment (high neutron and gamma flux) on the other hand. Foreseen types are a surface ionization source, which could also be run as laser ion source for resonant photo ionization, and, for rare gases, a plasma ion source coupled via a transfer line to the target. For the charge state breeding several different schemes are considered: the combination of a Penning trap for bunching, cooling, and mass separation and an electron beam ion source (EBIS) as charge breeder, similar to REX-ISOLDE, an EBIS with direct injection of a dc beam of 1+ ions ("accu-EBIS") or an electron cyclotron resonance ion source (ECRIS) with either continuous or bunched extraction. The EBIS may provide higher charge states, whereas the ECRIS is able to work with much higher beam intensities and allows cw-operation. The advantage of each scheme is explained and some design requirements of the different sources are presented.

  1. Ion sources for fission fragment accelerators

    NASA Astrophysics Data System (ADS)

    Köster, U.; Kester, O.; Habs, D.

    1998-02-01

    At the Grenoble and Munich high-flux reactors fission fragment accelerators are under design which will deliver beams of very neutron-rich fission products with a final energy between 3 and 6 MeV/u. In order to obtain an efficient acceleration in a compact accelerator, charge conversion of the 1+ ion beams from the in-pile ion source to a q/A⩾0.16 has to take place. In the chain from production to acceleration, ion sources are the key elements to reach high beam intensities of over 1010s-1. For the in-pile part the target-ion source assembly has not only to be very efficient, but should also be highly selective for the desired elements (which go from nickel to europium) on one hand and robust against the hostile environment (high neutron and gamma flux) on the other hand. Foreseen types are a surface ionization source, which could also be run as laser ion source for resonant photo ionization, and, for rare gases, a plasma ion source coupled via a transfer line to the target. For the charge state breeding several different schemes are considered: the combination of a Penning trap for bunching, cooling, and mass separation and an electron beam ion source (EBIS) as charge breeder, similar to REX-ISOLDE, an EBIS with direct injection of a dc beam of 1+ ions ("accu-EBIS") or an electron cyclotron resonance ion source (ECRIS) with either continuous or bunched extraction. The EBIS may provide higher charge states, whereas the ECRIS is able to work with much higher beam intensities and allows cw-operation. The advantage of each scheme is explained and some design requirements of the different sources are presented.

  2. Advanced modeling of prompt fission neutrons

    SciTech Connect

    Talou, Patrick

    2009-01-01

    Theoretical and numerical studies of prompt fission neutrons are presented. The main results of the Los Alamos model often used in nuclear data evaluation work are reviewed briefly, and a preliminary assessment of uncertainties associated with the evaluated prompt fission neutron spectrum for n (0.5 MeV)+{sup 239}Pu is discussed. Advanced modeling of prompt fission neutrons is done by Monte Carlo simulations of the evaporation process of the excited primary fission fragments. The successive emissions of neutrons are followed in the statistical formalism framework, and detailed information, beyond average quantities, can be inferred. This approach is applied to the following reactions: {sup 252}Cf (sf), n{sub th} + {sup 239}Pu, n (0.5 MeV)+{sup 235}U, and {sup 236}Pu (sf). A discussion on the merits and present limitations of this approach concludes this presentation.

  3. Neutron-induced fission: properties of prompt neutron and γ rays as a function of incident energy

    NASA Astrophysics Data System (ADS)

    Stetcu, I.; Talou, P.; Kawano, T.

    2016-06-01

    We have applied the Hauser-Feshbach statistical theory, in a Monte-Carlo implementation, to the de-excitation of fission fragments, obtaining a reasonable description of the characteristics of neutrons and gamma rays emitted before beta decays toward stability. Originally implemented for the spontaneous fission of 252Cf and the neutroninduced fission of 235U and 239Pu at thermal neutron energy, in this contribution we discuss the extension of the formalism to incident neutron energies up to 20 MeV. For the emission of pre-fission neutrons, at incident energies beyond second-chance fission, we take into account both the pre-equilibrium and statistical pre-fission components. Phenomenological parameterizations of mass, charge and TKE yields are used to obtain the initial conditions for the fission fragments that subsequently decay via neutron and emissions. We illustrate this approach for 239Pu(n,f).

  4. Application of 252Cf-PDMS to characterize airborne particles deposited in an Antarctic glacier.

    PubMed

    da Cunha, K Dias; Evangelista, H; Dalia, K C; Simões, J C; Barros Leite, C V

    2004-05-05

    The aim of this study is to apply the (252)Cf-PDMS (plasma desorption mass spectrometry) technique to characterize particles deposited in ice samples. This technique allows identification of molecular ions, even large molecules, desorbed from the sample surface, in contrast with PIXE (particle induced X-ray emission) or EDS (energy dispersive spectrometry). Two shallow snow cores obtained from different glacial drainage basins on King George Island ice cap, South Shetland Islands (Antarctica), were analyzed by PDMS. The chemical compounds identified in the ice mass spectra show that the particle contents of both samples were statistically different, indicating a non-homogeneous spatial deposition distribution for the deposited particles. The analysis of the ice mass spectra suggests some possible sources for the airborne particles. The mass spectra of ice samples collected at a site exposed directly to air masses coming from the Drake Passage show a significant contribution of particles from crustal and anthropogenic sources. However, the mass spectra of ice samples taken from a site on a slope towards a local inlet point out a high influence of marine aerosol. Therefore, it was concluded that particles deposited onto the ice cap were attributable to different aerosol sources, besides long-range atmospheric transport. The (252)Cf-PDMS technique can be considered a powerful tool for studies of snow and ice samples, providing important information for understanding the global atmospheric transport and deposition of airborne particles.

  5. Half-lives of several states in isotopes produced in the SF of ^252Cf

    NASA Astrophysics Data System (ADS)

    Hwang, J. K.; Ramayya, A. V.; Hamilton, J. H.; Fong, D.; Beyer, C. J.; Gore, P. M.; Jones, E. F.; Teran, E.; Oberacker, V. E.; Umar, A. S.; Luo, Y. X.; Rasmussen, J. O.; Zhu, S. J.; Wu, S. C.; Lee, I. Y.; Fallon, P.; Stoyer, M. A.; Asztalos, S. J.; Ginter, T. N.; Cole, J. D.; Ter-Akopian, G. M.; Donangelo, R.

    2003-10-01

    Half-lives (T_1/2) of 15 states in isotopes produced in the SF of ^252Cf have been determined using a new technique. The ^252Cf source was placed inside the Gammasphere, and triple and higher fold coincidence events were recorded. The half-lives and quadrupole deformations of ^104Zr, ^152Ce, and ^158Sm are determined for the first time. Except for ^102Sr, ^104Zr(β_2=0.45(4)) and ^158Sm(β_2=0.46(5)) are the most deformed among medium and heavy nuclei. Large deformation could have its origin in the high spin down-sloping orbitals near Z=38,40,62 and N=40,64,96. These large prolate deformations at ^104Zr and ^158Sm are confirmed by Hartree-Fock-Bogoliubov calculations carried out in the present work. Further, an excited rotational band including seven new γ transitions in ^97Sr was also identified. The band head energy of the 829.8 keV state in ^97Sr has an half-life of 265(27) nsec.

  6. Test and evaluation results of the /sup 252/Cf shuffler at the Savannah River Plant

    SciTech Connect

    Crane, T.W.

    1981-03-01

    The /sup 252/Cf Shuffler, a nondestructive assay instrument employing californium neutron source irradiation and delayed-neutron counting, was developed for measuring /sup 235/U content of scrap and waste items generated at the Savannah River Plant (SRP) reactor fuel fabrication facility. The scrap and waste items include high-purity uranium-aluminum alloy ingots as well as pieces of castings, saw and lathe chips from machining operations, low-purity items such as oxides of uranium or uranium intermixed with flux materials found in recovery operations, and materials not recoverable at SRP such as floor sweepings or residues from the uranium scrap recovery operation. The uranium contains about 60% /sup 235/U with the remaining isotopes being /sup 236/U, /sup 238/U, and /sup 234/U in descending order. The test and evaluation at SRP concluded that the accuracy, safety, reliability, and ease of use made the /sup 252/Cf Shuffler a suitable instrument for routine use in an industrial, production-oriented plant.

  7. Brain tumour and infiltrations dosimetry of boron neutron capture therapy combined with 252Cf brachytherapy.

    PubMed

    Brandão, Sâmia F; Campos, Tarcísio P R

    2012-04-01

    This article presents a dosimetric investigation of boron neutron capture therapy (BNCT) combined with (252)Cf brachytherapy for brain tumour control. The study was conducted through computational simulation in MCNP5 code, using a precise and discrete voxel model of a human head, in which a hypothetical brain tumour was incorporated. A boron concentration ratio of 1:5 for healthy-tissue: tumour was considered. Absorbed and biologically weighted dose rates and neutron fluency in the voxel model were evaluated. The absorbed dose rate results were exported to SISCODES software, which generates the isodose surfaces on the brain. Analyses were performed to clarify the relevance of boron concentrations in occult infiltrations far from the target tumour, with boron concentration ratios of 1:1 up to 1:50 for healthy-tissue:infiltrations and healthy-tissue:tumour. The average biologically weighted dose rates at tumour area exceed up to 40 times the surrounding healthy tissue dose rates. In addition, the biologically weighted dose rates from boron have the main contribution at the infiltrations, especially far from primary tumour. In conclusion, BNCT combined with (252)Cf brachytherapy is an alternative technique for brain tumour treatment because it intensifies dose deposition at the tumour and at infiltrations, sparing healthy brain tissue.

  8. Applications of Event-by-Event Fission Modeling with FREYA

    SciTech Connect

    Vogt, R; Randrup, J

    2011-09-16

    The recently developed code FREYA (Fission Reaction Event Yield Algorithm) generates large samples of complete fission events, consisting of two receding product nuclei as well as a number of neutrons and photons, all with complete kinematic information. Thus it is possible to calculate arbitrary correlation observables whose behavior may provide unique insight into the fission process. We first discuss the present status of FREYA, which has now been extended to include spontaneous fission. Concentrating on {sup 239}Pu(n{sub th},f), {sup 240}Pu(sf) and {sup 252}Cf(sf), we discuss the neutron multiplicity correlations, the dependence of the neutron energy spectrum on the neutron multiplicity, and the relationship between the fragment kinetic energy and the number of neutrons and their energies. We also suggest novel fission observables that could be measured with modern detectors.

  9. Feasibility of an antiproton catalyzed fission fragment rocket

    SciTech Connect

    Hdinger, D.S.

    1992-03-01

    The purpose of this project was to investigate the feasibility of an antiproton catalyzed fission fragment rocket (FFR). The FFR is characterized by the extraction of fission fragments from the fissile fuel, and the utilization of their kinetic energy for thrust generation. A significant drawback to previous FFR designs was the requirement to maintain a critical nuclear pile as the fission fragment source. The author examined the possibility of replacing the critical pile with a sub-critical pile driven by antiprotons. Recent experiments have revealed that antiprotons stimulate highly energetic fissions in {sup 238}U, with a neutron multiplicity of 13.7 neutrons per fission. This interaction was used as a throttled neutron source. The pile consisted of layers of fissile coated fibers which are designed to allow fission fragments to escape them, where the fragments collide with a fluid. The heated fluid is then ejected from the rocket to provide thrust. The calculations performed indicate that each antiproton injected into the pile can stimulate 8 or more fissions while maintaining a neutron multiplication of less than 0.4. Based on the results seen, the engine design presented is inadequate. Limitations introduced by the reaction fluid far outweigh the simplicity-of-design gained. Despite this, the basic idea of using the antiproton-U interaction as a source of spacecraft propulsion warrants further study.

  10. Characteristics of the simulated workplace neutron fields using a 252Cf source surrounded with cylindrical moderators.

    PubMed

    Tsujimura, N; Yoshida, T

    2004-01-01

    The authors established the simulated workplace neutron fields using a 252Cf source surrounded with cylindrical moderators at the Japan Nuclear Cycle Development Institute (JNC), Tokai Works. The moderators are annular cylinders made of polymethyl methacrylate and steel. The neutron energy spectrum at the reference calibration point was evaluated from the calculations by MCNP-4B and the measurements by the Bonner multisphere spectrometer and the hydrogen-filled proportional counters. The calculated neutron spectra were in good agreements with the measured ones. These fields can provide the realistic neutron spectra similar to those encountered around the glove-boxes of the fabrication process of MOX (PuO2-UO2 mixed oxide) fuel.

  11. Application of 252Cf plasma desorption mass spectrometry in dental research

    NASA Astrophysics Data System (ADS)

    Fritsch, Hans-Walter; Schmidt, Lothar; Köhl, Peter; Jungclas, Hartmut; Duschner, Heins

    1993-07-01

    Topically applied fluorides introduced in dental hygiene products elevate the concentration levels of fluoride in oral fluids and thus also affect chemical reactions of enamel de- and remineralisation. The chemical reactions on the surface of tooth enamel still are a subject of controversy. Here 252Cf-plasma desorption mass spectrometry and argon ion etching are used to analyse the molecular structure of the upper layes of enamel. The mass spectrum of untreated enamel is characterised by a series of cluster ions containing phosphate. It is evident that under certain conditions the molecular structure of the surface enamel is completely transformed by treatment with fluorides. The result of the degradation and precipitation processes is reflected by a total replacement of the phosphate by fluoride in the measured cluster ion distribution. Stepwise etching of the upper layers by Ar+ ions reveals the transition from a nearly pure CaF2 structure to the unchanged composition of the enamel mineral.

  12. PIXE, 252Cf-PDMS and radiochemistry applied for soil and vegetable analysis

    NASA Astrophysics Data System (ADS)

    Dias da Cunha, K.; Cazicava, J.; Coelho, M. J.; Barros Leite, C. V.

    2006-01-01

    The aim of this work is to identify the elements present in vegetables and soils using PIXE (particle induced X-rays emission) and 252Cf-PDMS (252Cf plasma desorption mass spectrometry) techniques in order to estimate the possible influence of soil and agricultural techniques in the metal absorption by the vegetables. In this work, metal concentrations were evaluated in soil and vegetable samples from several regions, where different agricultural techniques were employed. Si, Zr, Ce, Th, Sc and Pb identified in the soil samples were not biologically available. Ga, Ge, As and Br identified in the tubercles indicate that spray pesticide used on the vegetable leaves was absorbed by them. 232Th and 238U present in the soil were not absorbed by the vegetables. The airborne particles from anthropogenic sources (as CFn, VCn) were absorbed by the vegetables. Compounds from mineral sources present in soil as V+, VCO3, HPO4, Cr+, CrOH+, Mn+, FeH+, Fe(OH)n and in the bioorganic compounds as N+, Ca (CN)n+and CnH+ were identified in vegetables. The metal absorption by the vegetables is not dependent of the metal concentration in soil. Different tubercles cultivated in the same soil show similar metal absorption. The exogenous contributions such as the elements present in water irrigation, pesticides, fertilizers and airborne particles deposited on leaves can be absorbed by vegetables. The absorption by the roots depends on the chemical compound of the elements. The use of pesticide sprays and air pollution can cause more contamination in the vegetables than in soil. The use of this methodology allows the identification of possible sources of metals in soils and in vegetables and the metal speciation.

  13. Nucleon localization and fragment formation in nuclear fission

    NASA Astrophysics Data System (ADS)

    Zhang, C. L.; Schuetrumpf, B.; Nazarewicz, W.

    2016-12-01

    Background: An electron localization measure was originally introduced to characterize chemical bond structures in molecules. Recently, a nucleon localization based on Hartree-Fock densities has been introduced to investigate α -cluster structures in light nuclei. Compared to the local nucleonic densities, the nucleon localization function has been shown to be an excellent indicator of shell effects and cluster correlations. Purpose: Using the spatial nucleon localization measure, we investigate the emergence of fragments in fissioning heavy nuclei. Methods: To illustrate basic concepts of nucleon localization, we employ the self-consistent energy density functional method with a quantified energy density functional optimized for fission studies. Results: We study the particle densities and spatial nucleon localization distributions along the fission pathways of 264Fm, 232Th, and 240Pu. We demonstrate that the fission fragments are formed fairly early in the evolution, well before scission. We illustrate the usefulness of the localization measure by showing how the hyperdeformed state of 232Th can be understood in terms of a quasimolecular state made of 132Sn and 100Zr fragments. Conclusions: Compared to nucleonic distributions, the nucleon localization function more effectively quantifies nucleonic clustering: its characteristic oscillating pattern, traced back to shell effects, is a clear fingerprint of cluster/fragment configurations. This is of particular interest for studies of fragment formation and fragment identification in fissioning nuclei.

  14. Point-by-Point model description of average prompt neutron data as a function of total kinetic energy of fission fragments

    NASA Astrophysics Data System (ADS)

    Tudora, A.

    2013-03-01

    The experimental data of average prompt neutron multiplicity as a function of total kinetic energy of fragments <ν>(TKE) exhibit, especially in the case of 252Cf(SF), different slopes dTKE/dν and different behaviours at low TKE values. The Point-by-Point (PbP) model can describe these different behaviours. The higher slope dTKE/dν and the flattening of <ν> at low TKE exhibited by a part of experimental data sets is very well reproduced when the PbP multi-parametric matrix ν(A,TKE) is averaged over a double distribution Y(A,TKE). The lower slope and the almost linear behaviour over the entire TKE range exhibited by other data sets is well described when the same matrix ν(A,TKE) is averaged over a single distribution Y(A). In the case of average prompt neutron energy in SCM as a function of TKE, different dTKE/dɛ slopes are also obtained by averaging the same PbP matrix ɛ(A,TKE) over Y(A,TKE) and over Y(A). The results are exemplified for three fissioning systems benefiting of experimental data as a function of TKE: 252Cf(SF), 235U(nth,f) and 239Pu(nth,f). In the case of 234U(n,f) for the first time it was possible to calculate <ν>(TKE) and <ɛ>(TKE) at many incident energies by averaging the PbP multi-parametric matrices over the experimental Y(A,TKE) distributions recently measured at IRMM for 14 incident energies in the range 0.3-5 MeV. The results revealed that the slope dTKE/dν does not vary with the incident energy and the flattening of <ν> at low TKE values is more pronounced at low incident energies. The average model parameters dependences on TKE resulted from the PbP treatment allow the use of the most probable fragmentation approach, having the great advantage to provide results at many TKE values in a very short computing time compared to PbP and Monte Carlo treatments.

  15. On the Effect of an Error in a Standard D2O-Moderated 252Cf Energy Spectrum

    SciTech Connect

    Frederick Cummings

    2009-12-01

    There appears to be an error in the neutron fluence for neutrons with energies between 9 and 10 MeV for the tabulated D2O-moderated 252Cf source in ISO 8529-1. The error contributes a total error to neutron dose values from this source of approximately 3%.

  16. A new facility for Non-Destructive Assay with a time-tagged {sup 252}Cf source

    SciTech Connect

    Stevanato, L.; Caldogno, M.; Hao Xin; Dima, R.; Fabris, D.; Nebbia, G.; Lunardon, M.; Moretto, S.; Pesente, S.; Viesti, G.; Sajo-Bohus, L.

    2010-08-04

    A new facility for non-destructive assay using a time-tagged {sup 252}Cf source is presented. The system is designed to analyze samples having maximum size of about 15x20 cm{sup 2}, the material recognition being obtained by measuring simultaneously transmission of neutrons and gamma rays.

  17. Analysis of fission-fragment mass distribution within the quantum-mechanical fragmentation theory

    NASA Astrophysics Data System (ADS)

    Singh, Pardeep; Kaur, Harjeet

    2016-11-01

    The fission-fragment mass distribution is analysed for the 208Pb(18O, f) reaction within the quantum-mechanical fragmentation theory (QMFT). The reaction potential has been calculated by taking the binding energies, Coulomb potential and proximity potential of all possible decay channels and a stationary Schrödinger equation has been solved numerically to calculate the fission-fragment yield. The overall results for mass distribution are compared with those obtained in experiment. Fine structure dips in yield, corresponding to fragment shell closures at Z = 50 and N=82, which are observed by Bogachev et al., are reproduced successfully in the present calculations. These calculations will help to estimate the formation probabilities of fission fragments and to understand many related phenomena occurring in the fission process.

  18. Hard error generation by neutron-induced fission fragments

    SciTech Connect

    Browning, J.S.; Gover, J.E.; Wrobel, T.F.; Hass, K.J.; Nasby, R.D.; Simpson, R.L.; Posey, L.D.; Boos, R.E.; Block, R.C.

    1987-12-01

    The authors observed that neutron-induced fission of uranium contaminants present in alumina ceramic package lids results in the release of fission fragments that can cause hard errors in metal-nitride-oxide nonvolatile RAMs (MNOS NVRAMs). Hard error generation requires the simultaneous presence of (1) a fission fragment with a linear energy transfer (LET) greater than 20 MeV/mg/cm/sup **2/ moving at an angle of 30 degrees or less from the electric field in the high-field, gate region of the memory transistor, and (2) a WRITE or ERASE voltage on the oxide-nitride transistor gate. In reactor experiments, they observe these hard errors when a ceramic lid is used on both MNOS NVRAMs and polysilicon-nitride-oxide (SNOS) capacitors, but hard errors are not observed when a gold-plated kovar lid is used on the package containing these die. They mapped the tracks of the fission fragments released from the ceramic lids with a mica track detector and used a Monte Carlo model of fission fragment transport through the ceramic lid to measure the concentration of uranium present in the lids. The authors' concentration measurements are in excellent agreement with other's measurement of uranium concentration in ceramic lids. The authors' Monte Carlo analyses also agree closely with their measurements of hard error probability in MNOS NVRAMs.

  19. The SOFIA experiment: Measurement of 236U fission fragment yields in inverse kinematics

    NASA Astrophysics Data System (ADS)

    Grente, L.; Taïeb, J.; Chatillon, A.; Martin, J.-F.; Pellereau, É.; Boutoux, G.; Gorbinet, T.; Bélier, G.; Laurent, B.; Alvarez-Pol, H.; Ayyad, Y.; Benlliure, J.; Caamaño, M.; Audouin, L.; Casarejos, E.; Cortina-Gil, D.; Farget, F.; Fernández-Domínguez, B.; Heinz, A.; Jurado, B.; Kelić-Heil, A.; Kurz, N.; Lindberg, S.; Löher, B.; Nociforo, C.; Paradela, C.; Pietri, S.; Ramos, D.; Rodriguez-Sanchez, J.-L.; Rodríguez-Tajes, C.; Rossi, D.; Schmidt, K.-H.; Simon, H.; Tassan-Got, L.; Törnqvist, H.; Vargas, J.; Voss, B.; Weick, H.; Yan, Y.

    2016-06-01

    The SOFIA (Studies On FIssion with Aladin) experiment aims at measuring fission-fragments isotopic yields with high accuracy using inverse kinematics at relativistic energies. This experimental technique allows to fully identify the fission fragments in nuclear charge and mass number, thus providing very accurate isotopic yields for low energy fission of a large variety of fissioning systems. This report focuses on the latest results obtained with this set-up concerning electromagnetic-induced fission of 236U.

  20. Measurements of gamma-ray dose from a moderated /sup 252/Cf source

    SciTech Connect

    McDonald, J.C.; Griffith, R.V.; Plato, P.; Miklos, J.

    1983-06-01

    The gamma-ray dose fraction from a moderated /sup 252/Cf source was determined by using three types of dosimetry systems. Measurements were carried out in air at a distance of 35 cm from the surface of the moderating sphere (50 cm from the source which is at the center of the sphere) to the geometrical center of each detector. The moderating sphere is 0.8-mm-thick stainless steel shell filled with D/sub 2/O and covered with 0.5 mm of cadmium. Measurements were also carried out with instruments and dosimeters positioned at the surface of a 40 cm x 40 cm x 15 cm plexiglass irradiation phantom whose front surface was also 35 cm from the surface of the moderating sphere. A-150 tissue-equivalent (TE) plastic ionization chambers and a TE proportional counter (TEPC) were used to measure tissue dose, from which the neutron dose equivalent was computed. The ratio of gamma-ray dose to the neutron dose equivalent was determined by using a relatively neutron-insensitive Geiger-Mueller (GM) counter and thermoluminescent dosimeters (TLD). In addition, the event-size spectrum measured by the TEPC was also used to compute the gamma-ray dose fraction. The average value for the ratio of gamma-ray dose to neutron dose equivalent was found to be 0.18 with an uncertainty of about +-18%.

  1. The sup 252 Cf-source-driven noise measurements of unreflected uranium hydride cylinder subcriticality

    SciTech Connect

    Mihalczo, J.T.; Pare, V.K.; Blakeman, E.D. )

    1991-01-01

    Subcritical neutron multiplication factors have been measured by the {sup 252}Cf-source-driven noise analysis method for unreflected, 15.0-cm-diam uranium hydride cylinders of varying heights. Because of the difficulty and cost of controlling the H/U ratio in damp uranium (93.2 wt% {sup 235}U) oxide power and fabricating sufficient material for experiments, few experiments have been performed with materials of low H/U ratios. These measurements may provide alternate information that can be used for verifying calculational methods since the H/U ratio for this material is 3.00. These measurements, which are the first application of this method to uranium hydride, were performed at the Los Alamos National Laboratory Critical Experiments Facility in 1989. These measurements were used to demonstrate the capability of this measurement method for this type of material and to provide a benchmark experiment for calculational methods with slightly moderated systems. Previous experiments by this method were for a wide variety of well-moderated systems or unmoderated uranium metal cylinders.

  2. Neutron emission and fragment yield in high-energy fission

    SciTech Connect

    Grudzevich, O. T. Klinov, D. A.

    2013-07-15

    The KRIS special library of spectra and emission probabilities in the decays of 1500 nuclei excited up to energies between 150 and 250 MeV was developed for correctly taking into account the decay of highly excited nuclei appearing as fission fragments. The emission of neutrons, protons, and photons was taken into account. Neutron emission fromprimary fragments was found to have a substantial effect on the formation of yields of postneutron nuclei. The library was tested by comparing the calculated and measured yields of products originating from the fission of nuclei that was induced by high-energy protons. The method for calculating these yields was tested on the basis of experimental data on the thermal-neutroninduced fission of {sup 235}U nuclei.

  3. Fabrication of 50-mg /sup 252/Cf neutron sources for the FDA (Food and Drug Administration) activation analysis facility

    SciTech Connect

    Bigelow, J.E.; Cagle, E.B.; Knauer, J.B.

    1987-01-01

    The Transuranium Processing Plant (TPP) at ORNL has been requested by the Food and Drug Administration (FDA) to furnish 200 mg of /sup 252/Cf for use in their new activation analysis facility. This paper discusses the procedure to be employed in fabricating the californium into four neutron sources, each containing a nominal 50-mg of /sup 252/Cf. The ORNL Model LSD (Large, Stainless steel, Doubly encapsulated) neutron source consists of a 6.33-mm-diam aluminum pellet doubly encapsulated in Type 304L stainless steel. The pellet is comprised of an aluminum tube holding Cf/sub 2/O/sub 2/SO/sub 4/ microspheres confined by pressed aluminum powder. The microspheres are prepared in a separate vessel and then transferred into the specially designed aluminum tube prior to pressing.

  4. The sup 252 Cf(sf) neutron spectrum in the 5- to 20-MeV energy range

    SciTech Connect

    Marten, H.; Richter, D.; Seeliger, D. ); Fromm, W.D. ); Bottger, R.; Klein, H. )

    1990-11-01

    This paper reports on the {sup 252}Cf neutron spectrum measured at high energies with a miniature ionization chamber and two different NE-213 neutron detectors. The gamma-ray background and the main cosmic background caused by muons were suppressed by applying efficient pulse-shape discrimination. On the basis of two-dimensional spectroscopy of the neutron time-of-flight and scintillation pulse height, the sliding bias method is used to minimize experimental uncertainties. The experimental data, corrected for several systematic influences, confirm earlier results that show negative deviations from a reference Maxwellian distribution with a 1.42-MeV spectrum temperature for neutron energies above 6 MeV. Experimental results of this work are compared with various statistical model approaches to the {sup 252}Cf(sf) neutron spectrum.

  5. Evaluation of the characteristics of the neutron reference field using D2O-moderated 252Cf source.

    PubMed

    Kowatari, M; Fujii, K; Takahashi, M; Yoshizawa, M; Shimizu, S; Kawasaki, K; Yamaguchi, Y

    2007-01-01

    The ambient/personal dose equivalent per fluence for D(2)O moderated (252)Cf neutron source was determined by measurement. An appropriate subtraction of the scattered neutrons is required for the accurate measurement of direct neutrons. A cubic shadow object was used for the subtraction of the scattered neutrons from the surroundings. The scattered neutrons to be subtracted vary with the position of the shadow object due to the large volume of the source. Using the Monte Carlo code MCNP-4C, the optimum positions of the shadow object were surveyed for subtracting the scattered neutrons. The energy spectra of direct neutrons were measured in the optimum position. The dosimetric parameters for the D(2)O moderated (252)Cf neutron source were reasonable, taking into account the uncertainties of the parameters.

  6. Fission Mode Influence on Prompt Neutrons and γ-rays Emitted in the Reaction 239Pu(nth,f)

    NASA Astrophysics Data System (ADS)

    Serot, O.; Litaize, O.; Regnier, D.

    Recently, a Monte-Carlo code, which simulates the fission fragment de-excitation process, has been developed at CEA- Cadarache. Our aim is to get a tool capable to predict spectra and multiplicities of prompt particles (neutron and gamma) and to investigate possible correlations between fission observables. One of the main challenges is to define properly the share of the available excitation energy at scission between the two nascent fission fragments. Initially, after the full acceleration of the fission fragments, these excitation energies were treated within a Fermi-gas approximation in aT2 (where a and T stand for the level density parameter and the nuclear temperature) and a mass dependent law of the temperature ratio (RT=TL/TH, with TL and TH the temperature of the light and heavy fragment) has been proposed. With this RT-law, the main fission observables of the 252Cf(sf) could be reproduced. Here, in order to take into account the fission modes by which the fissioning nucleus undergoes to fission, we have adopted a specific RT-law for each fission mode. For actinides, the main fission modes are called Standard I, Standard II and Super Long (following Brosa's terminology). This new procedure has been applied in the case of the thermal neutron induced fission of 239Pu, reaction for which fission modes are rather well known.

  7. Intracavitary moderator balloon combined with 252Cf brachytherapy and boron neutron capture therapy, improving dosimetry in brain tumour and infiltrations

    PubMed Central

    Brandão, S F

    2015-01-01

    Objective: This article proposes a combination of californium-252 (252Cf) brachytherapy, boron neutron capture therapy (BNCT) and an intracavitary moderator balloon catheter applied to brain tumour and infiltrations. Methods: Dosimetric evaluations were performed on three protocol set-ups: 252Cf brachytherapy combined with BNCT (Cf-BNCT); Cf-BNCT with a balloon catheter filled with light water (LWB) and the same set-up with heavy water (HWB). Results: Cf-BNCT-HWB has presented dosimetric advantages to Cf-BNCT-LWB and Cf-BNCT in infiltrations at 2.0–5.0 cm from the balloon surface. However, Cf-BNCT-LWB has shown superior dosimetry up to 2.0 cm from the balloon surface. Conclusion: Cf-BNCT-HWB and Cf-BNCT-LWB protocols provide a selective dose distribution for brain tumour and infiltrations, mainly further from the 252Cf source, sparing the normal brain tissue. Advances in knowledge: Malignant brain tumours grow rapidly and often spread to adjacent brain tissues, leading to death. Improvements in brain radiation protocols have been continuously achieved; however, brain tumour recurrence is observed in most cases. Cf-BNCT-LWB and Cf-BNCT-HWB represent new modalities for selectively combating brain tumour infiltrations and metastasis. PMID:25927876

  8. Electron distribution function in a plasma generated by fission fragments

    NASA Technical Reports Server (NTRS)

    Hassan, H. A.; Deese, J. E.

    1976-01-01

    A Boltzmann equation formulation is presented for the determination of the electron distribution function in a plasma generated by fission fragments. The formulation takes into consideration ambipolar diffusion, elastic and inelastic collisions, recombination and ionization, and allows for the fact that the primary electrons are not monoenergetic. Calculations for He in a tube coated with fissionable material shows that, over a wide pressure and neutron flux range, the distribution function is non-Maxwellian, but the electrons are essentially thermal. Moreover, about a third of the energy of the primary electrons is transferred into the inelastic levels of He. This fraction of energy transfer is almost independent of pressure and neutron flux.

  9. Fission fragment angular distributions in pre-actinide nuclei

    NASA Astrophysics Data System (ADS)

    Banerjee, Tathagata; Nath, S.; Jhingan, A.; Kaur, Gurpreet; Dubey, R.; Yadav, Abhishek; Laveen, P. V.; Shamlath, A.; Shareef, M.; Gehlot, J.; Saneesh, N.; Prasad, E.; Sugathan, P.; Pal, Santanu

    2016-10-01

    Background: Complete fusion of two nuclei leading to formation of a heavy compound nucleus (CN) is known to be hindered by various fission-like processes, in which the composite system reseparates after capture of the target and the projectile inside the potential barrier. As a consequence of these non-CN fission (NCNF) processes, fusion probability (PCN) starts deviating from unity. Despite substantial progress in understanding, the onset and the experimental signatures of NCNF and the degree of its influence on fusion have not yet been unambiguously identified. Purpose: This work aims to investigate the presence of NCNF, if any, in pre-actinide nuclei by systematic study of fission angular anisotropies and fission cross sections (σfis) in a number of nuclear reactions carried out at and above the Coulomb barrier (VB) . Method: Fission fragment angular distributions were measured for six 28Si-induced reactions involving isotopically enriched targets of 169Tm,176Yb,175Lu,180Hf,181Ta, and 182W leading to probable formation of CN in the pre-actinide region, at a laboratory energy (Elab) range of 129-146 MeV. Measurements were performed with large angular coverage (θlab=41∘ -170∘) in which fission fragments (FFs) were detected by nine hybrid telescope (E -Δ E ) detectors. Extracted fission angular anisotropies and σfis were compared with statistical model (SM) predictions. Results: Barring two reactions involving targets with large non-zero ground state spin (J ) , viz., 175Lu(7/2+) and 181Ta(7/2+) , experimental fission angular anisotropies were found to be higher in comparison with predictions of the statistical saddle point model (SSPM), at Ec .m . near VB. Comparison of present results with those from neighboring systems revealed that experimental anisotropies increasingly deviated from SSPM predictions as one moved from pre-actinide to actinide nuclei. For reactions involving targets with large nonzero J , this deviation was subdued. Comparison between

  10. FALSTAFF: a novel apparatus for fission fragment characterization

    NASA Astrophysics Data System (ADS)

    Panebianco, Stefano; Doré, Diane; Farget, Fanny; Lecolley, François-René; Lehaut, Grégory; Materna, Thomas; Pancin, Julien; Papaevangelou, Thomas

    2014-04-01

    The study of nuclear fission and in particular the correlation between the produced fragments and the associated neutrons is encountering renewed interest since new models are available on the market and a large set of applications show a rather stringent demand on high quality nuclear data. The future Neutrons For Science installation, being presently built at GANIL (Caen, France) in the framework of the SPIRAL2 project, will produce high intensity neutron beams from hundreds of keV up to 40 MeV. In view of this opportunity, the development of an experimental setup called FALSTAFF (Four Arm cLover for the Study of Actinide Fission Fragments) has been undertaken since 2011. This novel apparatus is meant to provide a full characterization of fission fragments in terms of mass, nuclear charge and kinetic energy. Moreover, it will provide a measurement of the mass before and after neutron evaporation, leading to the determination of the neutron multiplicity as a function of the fragmentation. The FALSTAFF setup is presently in its R&D phase in order to achieve the required specifications, especially in terms of time, space and energy resolution of the different detectors.

  11. Coal liquefaction process streams characterization and evaluation: The application of [sup 252]Cf-plasma desorption mass spectrometry to analysis of direct coal liquefaction heavy products

    SciTech Connect

    Larsen, J.W.; Lapucha, A.R.

    1992-10-01

    This study demonstrated the feasibility of using [sup 252]Cf PDMS, GPC, and MPLC for the examination of the tetrahydrofuran (THF)-soluble portion of distillation resid materials derived from direct coal liquefaction. The [sup 252]Cf-PDMS technique was used to determine molecular weight distributions of twenty-five THF-soluble resids. In order to detemine if [sup 252]Cf-PDMS responds differently to different chemical classes of compounds, Lehigh separated five of the samples into chemically distinct fractions by MPLC, then analyzed the parent samples, their fractions, and the re-mixed fractions by [sup 252]Cf-PDMS and GPC. Irreversible alteration of the samples upon separation was noted by Lehigh. This was confirmed by use of gas chromatographic (GC) analyses. The noted irreversible alterations prevented a direct comparison of the remixed materials and the original samples. Thus, the selective response of [sup 252]Cf-PDMS to different chemical classes of compounds could not be confirmed or ruled out. The number average molecular weights (M[sub n]) obtained by [sup 252]Cf-PDMS and GPC agreed well. However, the weight average molecular weights (M[sub w]) obtained by GPC are always higher than the corresponding [sup 252]Cf-PDMS results. Number average molecular weights and weight average molecular weights obtained with [sup 252]Cf-PDMS and GPC were compared with those obtained by field ionization mass spectrometry (FIMS), previously reported by SRI International for the parent resid samples from which the Lehigh THF-soluble samples were derived.

  12. Coal liquefaction process streams characterization and evaluation: The application of {sup 252}Cf-plasma desorption mass spectrometry to analysis of direct coal liquefaction heavy products

    SciTech Connect

    Larsen, J.W.; Lapucha, A.R.

    1992-10-01

    This study demonstrated the feasibility of using {sup 252}Cf PDMS, GPC, and MPLC for the examination of the tetrahydrofuran (THF)-soluble portion of distillation resid materials derived from direct coal liquefaction. The {sup 252}Cf-PDMS technique was used to determine molecular weight distributions of twenty-five THF-soluble resids. In order to detemine if {sup 252}Cf-PDMS responds differently to different chemical classes of compounds, Lehigh separated five of the samples into chemically distinct fractions by MPLC, then analyzed the parent samples, their fractions, and the re-mixed fractions by {sup 252}Cf-PDMS and GPC. Irreversible alteration of the samples upon separation was noted by Lehigh. This was confirmed by use of gas chromatographic (GC) analyses. The noted irreversible alterations prevented a direct comparison of the remixed materials and the original samples. Thus, the selective response of {sup 252}Cf-PDMS to different chemical classes of compounds could not be confirmed or ruled out. The number average molecular weights (M{sub n}) obtained by {sup 252}Cf-PDMS and GPC agreed well. However, the weight average molecular weights (M{sub w}) obtained by GPC are always higher than the corresponding {sup 252}Cf-PDMS results. Number average molecular weights and weight average molecular weights obtained with {sup 252}Cf-PDMS and GPC were compared with those obtained by field ionization mass spectrometry (FIMS), previously reported by SRI International for the parent resid samples from which the Lehigh THF-soluble samples were derived.

  13. Fission studies of secondary beams from relativistic uranium projectiles: The proton even-odd effect in fission fragment charge yields

    SciTech Connect

    Junghans, A. R.; Benlliure, J.; Schmidt, K.-H.; Voss, B.; Boeckstiegel, C.; Clerc, H.-G.; Grewe, A.; Heinz, A.; Jong, M. de; Mueller, J.; Steinhaeuser, S.; Pfuetzner, M.

    1999-09-02

    Nuclear-charge yields of fragments produced by fission of neutron-deficient isotopes of uranium, protactinium, actinium, and radium have been measured. These radioactive isotopes were produced as secondary beams, and electromagnetic fission was induced in a lead target with an average excitation energy around 11 MeV. The local even-odd effect in symmetric and in asymmetric fission of thorium isotopes is found to be independent of Z{sup 2}/A. The charge yields of the fission fragments of the odd-Z fissioning protactinium and actinium show a pronounced even-odd effect. In asymmetric fission the unpaired proton predominantly sticks to the heavy fragment. A statistical model based on the single-particle level density at the Fermi energy is able to reproduce the overall trend of the local even-odd effects both in even-Z and odd-Z fissioning systems.

  14. Fission-fragment nuclear lasing of Ar/He/-Xe

    NASA Technical Reports Server (NTRS)

    De Young, R. J.; Shiu, Y. J.; Williams, M. D.

    1980-01-01

    Nuclear-pumped lasing of Ar-Xe and He-Xe has been demonstrated using (U-235)F6 fission-fragment excitation. Fission fragments were created by absorption of thermal neutrons in a combination of gaseous (U-235)F6 and laser-tube wall coatings formed from UF6 chemical reaction products. At a pressure of 600 torr Ar-(3%)Xe, lasing occurred at 2.65 microns in Xe. Up to 3 torr of gaseous (U-235)F6 was added to 600 torr Ar-Xe before serious laser quenching occurred. With 3 torr of (U-235)F6 added, 38% of the energy deposition came from gaseous UF6 and the remainder from the uranium wall coating. The neutron flux at lasing threshold was found to be 4 x 10 to the 15th n/sq cm sec.

  15. a Microscopic Theory of Low Energy Fission:. Fragment Properties

    NASA Astrophysics Data System (ADS)

    Younes, W.; Gogny, D.; Schunck, N.

    2014-09-01

    We present fully microscopic time-dependent calculations of fission-fragment properties (mass distributions, pre-scission energies, total kinetic and excitation energies) for the 235U(n, f) and 239Pu (n, f) reactions. The mass distributions for both reactions have been obtained as a function of incident neutron energy from thermal to 5 MeV. The various energies have been calculated for the thermal 239Pu (n, f) reaction. We compare our calculations to experimental results, wherever possible.

  16. Prompt {gamma}-ray spectroscopy of isotopically identified fission fragments

    SciTech Connect

    Shrivastava, A.; Caamano, M.; Rejmund, M.; Navin, A.; Rejmund, F.; Lemasson, A.; Schmitt, C.; Derkx, X.; Fernandez-Dominguez, B.; Golabek, C.; Roger, T.; Sieja, K.; Audouin, L.; Bacri, C. O.; Barreau, G.; Jurado, B.

    2009-11-15

    Measurements of prompt Doppler-corrected deexcitation {gamma} rays from uniquely identified fragments formed in fusion-fission reactions of the type {sup 12}C({sup 238}U,{sup 134}Xe)Ru are reported. The fragments were identified in both A and Z using the variable-mode, high-acceptance magnetic spectrometer VAMOS. States built on the characteristic neutron configurations forming high-spin isomers (7{sup -} and 10{sup +}) in {sup 134}Xe are presented and compared with the predictions of shell-model calculations using a new effective interaction in the region of Z{>=}50 and N{<=}82.

  17. Fission Cross Sections and Fission-Fragment Mass Yields via the Surrogate Reaction Method

    SciTech Connect

    Jurado, B.; Kessedjian, G.; Aiche, M.; Barreau, G.; Bidaud, A.; Czajkowski, S.; Dassie, D.; Haas, B.; Mathieu, L.; Osmanov, B.; Ahmad, I.

    2008-04-17

    The surrogate reaction method is a powerful tool to infer neutron-induced data of short-lived nuclei. After a short overview of the experimental techniques employed in the present surrogate experiments, we will concentrate on a recent measurement to determine neutron-induced fission cross sections for the actinides {sup 242,243}Cm and {sup 241}Am. The latest direct neutron-induced measurement for the {sup 243}Cm fission cross section is questioned by our results, since there are differences of more than 60% in the 0.7 to 7 MeV neutron energy range. Our experimental set-up has also enabled us to measure for the first time the fission fragment ''pseudo-mass'' distributions of {sup 243,244,245}Cm and {sup 242}Am compound nuclei in the excitation energy range from a few MeV to about 25 MeV.

  18. The average number of prompt neutrons and the distributions of prompt neutron emission number for spontaneous fission of plutonium-240, curium-242, and curium-244

    SciTech Connect

    Huanqiao, Z.; Shaoming, L.; Shengyue, D.; Zuhau, L.

    1984-03-01

    (The average number of prompt neutron v /SUB p/ and the distributions of prompt neutron number probability P(v) for spontaneous fission of /sup 240/Pu, /sup 242/Cm, and /sup 244/Cm relative to v /SUB p/ (/sup 252/Cf) have been measured using a large gadolinium-loaded liquid scintillation counter with a coincidence method.)The results were v /SUB p/ (/sup 240/Pu)=2.141+ or 0.016, v /SUB p/ (/sup 242/Cm)=2.562 + or - 0.020, and v /SUB p/ (/sup 244/Cm)= 2.721 + or - 0.021. (The measured distributions of prompt neutron number were fitted with Gaussian curves by a weighted least-squares method.) The widths of Gaussian distribution are 1.149 + or - 0.047, 1.159 + or - 0.074, and 1.175 + or 0.098 for /sup 240/Pu, /sup 242/Cm, and /sup 244/Cm, respectively. (The results as well as a previous measurement of spontaneous fission of /sup 252/Cf show the linear variation of sigma with v /SUB p/ at the first order of approximation.) The data were fitted by a least-squares method, and the result is given by a sigma= 0.980+0.076v /SUB p/ . This fact demonstrates the trend that the width of the excitation energy distribution of fission fragments increases with the average excitation energy of the fission fragments in the range of nuclides mentioned above.

  19. Spontaneous fission of the heaviest elements

    SciTech Connect

    Hoffman, D.C.

    1989-04-01

    Although spontaneous fission was discovered in /sup 238/U in 1940, detailed studies of the process were first made possible in the 1960's with the availability of milligram quantities of /sup 252/Cf. The advent of solid-state detectors made it possible to perform measurements of coincident fission fragments from even very short-lived spontaneous fission activities or those available in only very small quantities. Until 1971 it was believed that the main features of the mass and kinetic-energy distributions were essentially the same as those for thermal neutron-induced fission and that all low-energy fission proceeded via asymmetric mass division with total kinetic energies which could be derived by linear extrapolation from those of lighter elements. In 1971, measurements of /sup 257/Fm showed an increase in symmetric mass division with anomalously high TKE's. Subsequent experiments showed that in /sup 258/Fm and /sup 259/Fm, the most probable mass split was symmetric with very high total kinetic energy. Measurements for the heavier elements have shown symmetric mass distributions with both high and low total kinetic energies. Recent results for spontaneous fission properties of the heaviest elements are reviewed and compared with theory. 31 refs., 8 figs., 1 tab.

  20. Direct nuclear pumping by a volume source of fission fragments

    NASA Technical Reports Server (NTRS)

    Deese, J. E.; Hassan, H. A.

    1978-01-01

    A detailed kinetic model is presented for the analysis of nuclear pumped lasers when the pumping is a result of a volume source of fission fragments. The results of the model are employed to study a He-3 - Xe laser. For the range of pressures, neutron fluxes and mixtures considered, the gain and power calculations are in good agreement with experiment. Moreover, based on these calculations, it appears that the collisional recombination is the dominant pumping mechanism for 7p-7s transitions while direct excitation is the dominant pumping mechanism for the 5d-6p transitions.

  1. Energy and Angular Correlations of Fission Products

    NASA Astrophysics Data System (ADS)

    Peters, William; Smith, M. S.; Pain, S. D.; Febbraro, M.; Galindo-Uribarri, A.; Jones, K. L.; Smith, K.; Grzywacz, R.; Temanson, E.; Cizewski, J. A.

    2016-09-01

    Despite the discovery of fission nearly 80 years ago and its importance to nuclear energy, national security, and astrophysics; there are very few measurements that correlate multiple fission products. A proof-of-principle experiment is underway at Oak Ridge National Lab to measure the energy and angle correlation between prompt fission neutrons, gamma rays, and fragments in time-coincidence. The angular and energy spectrum of the prompt neutrons and /or gamma rays with respect to fragment mass, could reveal new details concerning the energy balance between these products and will be essential for benchmarking advanced fission models. An array of neutron and gamma-ray detectors is positioned opposite dual time-of-flight detectors and a total-energy detector to determine one fragment mass. Preliminary results from a spontaneous 252Cf source will be presented, along with plans for future improvements. Research sponsored in part by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U.S. Department of Energy.

  2. Structure of fragment energy spectra in spontaneous fission of sup 242 Cm and fast-neutron fission of sup 242 m Am

    SciTech Connect

    Fomushkin, E.F.; Vinogradov, Y.I.; Gavrilov, V.V.; Novoselov, G.F.; Shvetsov, A.M.

    1989-05-01

    A technique for measurement of the energy spectra of fission fragments is discussed. The fine structure found in the spectra of fragments from spontaneous fission of {sup 242}Cm and fast-neutron fission of {sup 242{ital m}}Am is analyzed. The quantitative parameters of the structure and their analogy with the characteristics of cold fission are discussed.

  3. A comparison of {sup 252}Cf and 14-MeV neutron excitation to identify chemical warfare agents by PGNAA

    SciTech Connect

    Caffrey, A.J.; Harlow, B.D.; Edwards, A.J.; Krebs, K.M.; Jones, J.L.; Yoon, W.; Zabriskie, J.M.; Dougan, A.D.

    2000-07-01

    Since 1992, Idaho National Engineering and Environmental Laboratory's portable isotopic neutron spectrometry (PINS) system has been widely used for the nondestructive assessment of munitions suspected to contain chemical warfare agents, such as the nerve agent sarin. PINS is a {sup 252}Cf-based prompt gamma-ray neutron activation analysis (PGNAA) system. The standard PINS system employs a partially moderated 5-{micro}g {sup 252}Cf source emitting 10{sup 7} n/s to excite the atomic nuclei inside the item under test. The chemical elements inside the item are revealed by their characteristic gamma-ray spectrum, measured by a high-resolution high-purity germanium gamma-ray spectrometer. The system computer then infers the fill compound or mixture from the elemental data extracted from the gamma-ray spectrum. Reliable PINS assessments can be completed in as little as 100 s for favorable cases such as white phosphorus smoke munitions, but normally, a 1000 to 3000 live-second counting interval is required. To improve PINS throughput when hundreds or more munitions must be assessed, they are evaluating the possible advantages of 14-MeV neutron excitation over their current radioisotopic source.

  4. Studies of Fission Fragment Rocket Engine Propelled Spacecraft

    NASA Technical Reports Server (NTRS)

    Werka, Robert O.; Clark, Rodney; Sheldon, Rob; Percy, Thomas K.

    2014-01-01

    The NASA Office of Chief Technologist has funded from FY11 through FY14 successive studies of the physics, design, and spacecraft integration of a Fission Fragment Rocket Engine (FFRE) that directly converts the momentum of fission fragments continuously into spacecraft momentum at a theoretical specific impulse above one million seconds. While others have promised future propulsion advances if only you have the patience, the FFRE requires no waiting, no advances in physics and no advances in manufacturing processes. Such an engine unequivocally can create a new era of space exploration that can change spacecraft operation. The NIAC (NASA Institute for Advanced Concepts) Program Phase 1 study of FY11 first investigated how the revolutionary FFRE technology could be integrated into an advanced spacecraft. The FFRE combines existent technologies of low density fissioning dust trapped electrostatically and high field strength superconducting magnets for beam management. By organizing the nuclear core material to permit sufficient mean free path for escape of the fission fragments and by collimating the beam, this study showed the FFRE could convert nuclear power to thrust directly and efficiently at a delivered specific impulse of 527,000 seconds. The FY13 study showed that, without increasing the reactor power, adding a neutral gas to the fission fragment beam significantly increased the FFRE thrust through in a manner analogous to a jet engine afterburner. This frictional interaction of gas and beam resulted in an engine that continuously produced 1000 pound force of thrust at a delivered impulse of 32,000 seconds, thereby reducing the currently studied DRM 5 round trip mission to Mars from 3 years to 260 days. By decreasing the gas addition, this same engine can be tailored for much lower thrust at much higher impulse to match missions to more distant destinations. These studies created host spacecraft concepts configured for manned round trip journeys. While the

  5. Compact multiwire proportional counters for the detection of fission fragments

    SciTech Connect

    Jhingan, Akhil; Sugathan, P.; Golda, K. S.; Singh, R. P.; Varughese, T.; Singh, Hardev; Behera, B. R.; Mandal, S. K.

    2009-12-15

    Two large area multistep position sensitive (two dimensional) multiwire proportional counters have been developed for experiments involving study of fission dynamics using general purpose scattering chamber facility at IUAC. Both detectors have an active area of 20x10 cm{sup 2} and provide position signals in horizontal (X) and vertical (Y) planes, timing signal for time of flight measurements and energy signal giving the differential energy loss in the active volume. The design features are optimized for the detection of low energy heavy ions at very low gas pressures. Special care was taken in setting up the readout electronics, constant fraction discriminators for position signals in particular, to get optimum position and timing resolutions along with high count rate handling capability of low energy heavy ions. A custom made charge sensitive preamplifier, having lower gain and shorter decay time, has been developed for extracting the differential energy loss signal. The position and time resolutions of the detectors were determined to be 1.1 mm full width at half maximum (FWHM) and 1.7 ns FWHM, respectively. The detector could handle heavy ion count rates exceeding 20 kHz without any breakdown. Time of flight signal in combination with differential energy loss signal gives a clean separation of fission fragments from projectile and target like particles. The timing and position signals of the detectors are used for fission coincidence measurements and subsequent extraction of their mass, angular, and total kinetic energy distributions. This article describes systematic study of these fission counters in terms of efficiency, time resolution, count rate handling capability, position resolution, and the readout electronics. The detector has been operated with both five electrode geometry and four electrode geometry, and a comparison has been made in their performances.

  6. Fission fragment assisted reactor concept for space propulsion: Foil reactor

    NASA Technical Reports Server (NTRS)

    Wright, Steven A.

    1991-01-01

    The concept is to fabricate a reactor using thin films or foils of uranium, uranium oxide and then to coat them on substrates. These coatings would be made so thin as to allow the escaping fission fragments to directly heat a hydrogen propellant. The idea was studied of direct gas heating and direct gas pumping in a nuclear pumped laser program. Fission fragments were used to pump lasers. In this concept two substrates are placed opposite each other. The internal faces are coated with thin foil of uranium oxide. A few of the advantages of this technology are listed. In general, however, it is felt that if one look at all solid core nuclear thermal rockets or nuclear thermal propulsion methods, one is going to find that they all pretty much look the same. It is felt that this reactor has higher potential reliability. It has low structural operating temperatures, very short burn times, with graceful failure modes, and it has reduced potential for energetic accidents. Going to a design like this would take the NTP community part way to some of the very advanced engine designs, such as the gas core reactor, but with reduced risk because of the much lower temperatures.

  7. In-beam gamma-ray spectroscopy of {sup 248,250,252}Cf by neutron-transfer reactions using a Cf target

    SciTech Connect

    Takahashi, R.; Ishii, T.; Asai, M.; Nagae, D.; Makii, H.; Tsukada, K.; Toyoshima, A.; Ishii, Y.; Matsuda, M.; Makishima, A.; Shizuma, T.; Kohno, T.; Ogawa, M.

    2010-05-15

    The ground-state bands of {sup 248,250,252}Cf have been established up to the 10{sup +}, 12{sup +}, and 10{sup +} states, respectively, by in-beam gamma-ray spectroscopy using neutron-transfer reactions with a 153-MeV {sup 18}O beam and a highly radioactive Cf target. The deexcitation gamma rays in {sup 248,250,252}Cf were identified by taking coincidences with outgoing particles of {sup 16-19}O measured with Si DELTAE-E detectors, and by selecting their kinetic energies. Moments of inertia of {sup 248,250,252}Cf were discussed in terms of the N=152 deformed shell gap.

  8. Search for instantaneous radiation near the instant of break momentum of various fissioning nuclear systems at low excitation energies

    SciTech Connect

    Vorobyev, A. S. Val'ski, G. V.; Gagarskii, A. M.; Guseva, I. S.; Petrov, G. A.; Petrova, V. I.; Serebrin, A. Yu.; Sokolov, V. E.; Shcherbakov, O. A.

    2011-12-15

    The main results of studying the properties of 'instantaneous' neutrons and {gamma} photons during the fission of {sup 233,235}U(n{sub th}, f) and {sup 239}Pu(n{sub th}, f) nuclei and spontaneous fission of {sup 252}Cf, which were performed on the WWR-M reactor at the St. Petersburg Nuclear Physics Institute, Russian Academy of Sciences, are presented. Along with obtaining the main characteristics of the instantaneous radiation from fission fragments, these studies were also aimed at gaining deeper insight into such exotic processes as the emission of break neutrons and {gamma} photons from a fissioning nucleus near the break point. These investigations were performed on different experimental setups using different analytical methods. This approach allowed us not only to find but also to reduce to minimum possible systematic effects. The yields of break neutrons were found to be about (5-7) Multiplication-Sign 10{sup -2} of the total number of neutrons per {sup 233,235}U(n, f) fission event and approximately twice as much for {sup 239}Pu(n, f) and {sup 252}Cf. The coefficient of T-odd asymmetry for {gamma} photons is in agreement with the estimate obtained on the assumption that the observed effect is mainly related to the {gamma} photons emitted by excited fragments with highly oriented angular momenta. This fact gave grounds to conclude that the desired break {gamma} photons cannot be reliably selected (within the obtained experimental accuracy) against the much larger background of {gamma} photons from fission fragments.

  9. Dependence of Fission-Fragment Properties On Excitation Energy For Neutron-Rich Actinides

    NASA Astrophysics Data System (ADS)

    Ramos, D.; Rodríguez-Tajes, C.; Caamaño, M.; Farget, F.; Audouin, L.; Benlliure, J.; Casarejos, E.; Clement, E.; Cortina, D.; Delaune, O.; Derkx, X.; Dijon, A.; Doré, D.; Fernández-Domínguez, B.; de France, G.; Heinz, A.; Jacquot, B.; Navin, A.; Paradela, C.; Rejmund, M.; Roger, T.; Salsac, M. D.; Schmitt, C.

    2016-03-01

    Experimental access to full isotopic fragment distributions is very important to determine the features of the fission process. However, the isotopic identification of fission fragments has been, in the past, partial and scarce. A solution based on the use of inverse kinematics to study transfer-induced fission of exotic actinides was carried out at GANIL, resulting in the first experiment accessing the full identification of a collection of fissioning systems and their corresponding fission fragment distribution. In these experiments, a 238U beam at 6.14 AMeV impinged on a carbon target to produce fissioning systems from U to Am by transfer reactions, and Cf by fusion reactions. Isotopic fission yields of 250Cf, 244Cm, 240Pu, 239Np and 238U are presented in this work. With this information, the average number of neutrons as a function of the atomic number of the fragments is calculated, which reflects the impact of nuclear structure around Z=50, N=80 on the production of fission fragments. The characteristics of the Super Long, Standard I, Standard II, and Standard III fission channels were extracted from fits of the fragment yields for different ranges of excitation energy. The position and contribution of the fission channels as function of excitation energy are presented.

  10. Neutron angular distribution in plutonium-240 spontaneous fission

    NASA Astrophysics Data System (ADS)

    Marcath, Matthew J.; Shin, Tony H.; Clarke, Shaun D.; Peerani, Paolo; Pozzi, Sara A.

    2016-09-01

    Nuclear safeguards applications require accurate fission models that exhibit prompt neutron anisotropy. In the laboratory reference frame, an anisotropic neutron angular distribution is observed because prompt fission neutrons carry momentum from fully accelerated fission fragments. A liquid organic scintillation detector array was used with pulse shape discrimination techniques to produce neutron-neutron cross-correlation time distributions and angular distributions from spontaneous fission in a 252Cf, a 0.84 g 240Pueff metal, and a 1.63 g 240Pueff metal sample. The effect of cross-talk, estimated with MCNPX-PoliMi simulations, is removed from neutron-neutron coincidences as a function of the angle between detector pairs. Fewer coincidences were observed at detector angles near 90°, relative to higher and lower detector angles. As light output threshold increases, the observed anisotropy increases due to spectral effects arising from fission fragment momentum transfer to emitted neutrons. Stronger anisotropy was observed in Cf-252 spontaneous fission prompt neutrons than in Pu-240 neutrons.

  11. Utilization of a /sup 252/Cf-/sup 235/U fueled subcritical multiplier for neutron activation analysis. Rev

    SciTech Connect

    Wogman, N.A.; Lepel, E.A.

    1984-02-01

    A /sup 252/Cf neutron activation analysis facility developed in 1975 has been used for the routine multielement analysis of a wide variety of solid and liquid samples. The present neutron flux is on the order of 10/sup 9/ thermal neutrons per cm/sup 2/ per second. Following activation, the radioisotopes are analyzed through their photon emissions with lithium drifted germanium detectors, anticoincidence shielded germanium detectors and NaI(T1) coincidence spectrometers. Although over 65 elements have been measured in environmental materials with this system, typical analyses include the elements Na, Al, Cl, K, Ca, Ti, V, Mn, Br, Sr, Rb, Ba, and Dy. Detection limits range from the sub parts per million upward. Over 8000 samples have been analyzed at an amortized neutron cost per sample of $31.

  12. Monte Carlo simulation optimisation of zinc sulphide based fast-neutron detector for radiography using a 252Cf source

    NASA Astrophysics Data System (ADS)

    Meshkian, Mohsen

    2016-02-01

    Neutron radiography is rapidly extending as one of the methods for non-destructive screening of materials. There are various parameters to be studied for optimising imaging screens and image quality for different fast-neutron radiography systems. Herein, a Geant4 Monte Carlo simulation is employed to evaluate the response of a fast-neutron radiography system using a 252Cf neutron source. The neutron radiography system is comprised of a moderator as the neutron-to-proton converter with suspended silver-activated zinc sulphide (ZnS(Ag)) as the phosphor material. The neutron-induced protons deposit energy in the phosphor which consequently emits scintillation light. Further, radiographs are obtained by simulating the overall radiography system including source and sample. Two different standard samples are used to evaluate the quality of the radiographs.

  13. The vacuum system for the Munich fission fragment accelerator

    NASA Astrophysics Data System (ADS)

    Maier-Komor, P.; Faestermann, T.; Krücken, R.; Nebel, F.; Winkler, S.; Groß, M.; Habs, D.; Kester, O.; Szerypo, J.; Thirolf, P. G.

    2006-05-01

    The Munich Accelerator for Fission Fragments (MAFF) is a radioactive ion beam facility which will be installed at the new research reactor FRM-II. This new reactor became critical in Spring 2004. The heart of MAFF, the target-ion source unit will be placed in the through-going beam tube of the FRM-II. This beam tube has been installed, tested and filled with helium in 2001. The cogent authorization procedures and safety levels developed for nuclear power plants are applied for this research reactor also. Therefore, MAFF also has to obey these very strict rules, because the typical 1 g load of 235U in the MAFF source creates a fission product activity of several 10 14 Bq after one reactor cycle of 52 days. All vacuum components must withstand a pressure of 6×10 5 Pa in addition to their UHV acceptability. Even dynamic gaskets must be strictly metallic, because organic compounds would not withstand the radioactive irradiation during the design lifetime of 30 years. Only dry vacuum pumps are suitable: refrigerator cryopumps for the high-vacuum part and five stages of roots pumps for roughing and regeneration.

  14. Ternary fission of a heavy nuclear system within a three-center shell model

    NASA Astrophysics Data System (ADS)

    Karpov, A. V.

    2016-12-01

    Background: Since more than 40 years of theoretical and experimental studies of true ternary fission, one is still quite far from its understanding. The true ternary fission channel, being strongly suppressed by the macroscopic properties of the potential energy, may, however, be present with a significant probability due to shell effects. Purpose: Development of a model for the multidimensional potential energy suitable for analysis of the nucleus-nucleus collisions with the possibility of ternary exit channel. Study of the potential possibility of fission of actinides into three heavy fragments. Method: The asymmetric three-center shell model of deformed nucleus is developed in this paper. The model can be applied for analysis of ternary as well as binary fission processes. Results: The potential energy surfaces for few ternary combinations in the fission channel are calculated for the 252Cf nucleus. Their properties are discussed. Conclusions: The potential energy structures are compared with the experimental observations. It was found that the potential energy has pronounced valleys favorable for ternary fission with formation of doubly magic tin as one of the fragments and two other lighter fragments. The positions of the found fission valleys are in a good agreement with the experimental data.

  15. Direct fission fragment energy conversion utilizing magnetic collimation

    NASA Astrophysics Data System (ADS)

    Tsvetkov, Pavel Valeryevich

    The objective of this dissertation was to determine the technological feasibility of direct fission fragment energy conversion utilizing magnetic collimation (DFFEC-MC). This objective was accomplished by producing a conceptual design for a DFFEC-MC system and by analysis of the potential DFFEC-MC system performance. Consistent analysis and evaluation of the technological feasibility of the DFFEC-MC concept were achieved using state-of-the-art computer codes that allowed realistic and consistent modeling of the important physical processes governing DFFEC-MC system performance. Unique computational schemes, including three-dimensional modeling, were constructed and applied to obtain the performance characteristics of DFFEC-MC systems. Special effort was made to include all important physical processes. Important simplifications introduced due to modeling limitations were also assessed. The analysis takes into consideration a wide range of operational aspects including fission fragment (FF) escape from the fuel, FF collimation, FF collection, criticality, long-term performance, energy conversion efficiency, heat removal, and safety characteristics. Required engineering conditions are formulated that must be satisfied in order for the DFFEC-MC concept to have a reasonable chance to demonstrate technological feasibility. Specific characteristics of individual system components and the entire DFFEC-MC system are evaluated. To identify which technological improvements are needed, several possible design solutions are provided for some of the components along with analyses of the corresponding DFFEC-MC system performance. As a result of the computational analysis, the conditions for achieving an attractive (high) system efficiency are demonstrated. A technologically feasible DFFEC-MC system layout with promising operational characteristics is presented. The resulting DFFEC-MC system is envisioned as an advanced DFFEC system that combines advantageous design solutions

  16. Theoretical study of the almost sequential mechanism of true ternary fission

    NASA Astrophysics Data System (ADS)

    Tashkhodjaev, R. B.; Muminov, A. I.; Nasirov, A. K.; von Oertzen, W.; Oh, Yongseok

    2015-05-01

    We consider the collinear ternary fission which is a sequential ternary decay with a very short time between the ruptures of two necks connecting the middle cluster of the ternary nuclear system and outer fragments. In particular, we consider the case where the Coulomb field of the first massive fragment separated during the first step of the fission produces a lower pre-scission barrier in the second step of the residual part of the ternary system. In this case, we obtain a probability of about 10-3 per binary fission for the yield of massive clusters such as 70Ni,Ge-8280,86Se, and 94Kr in the ternary fission of 252Cf. These products appear together with the clusters having mass numbers of A =132 -140 . The results show that the yield of a heavy cluster such as Ni-7068 would be followed by a product of A =138 -148 with a large probability as observed in the experimental data obtained with the FOBOS spectrometer at the Joint Institute for Nuclear Research. The third product is not observed. The landscape of the potential-energy surface shows that the configuration of the Ni +Ca +Sn decay channel is lower by about 12 MeV than that of the Ca +Ni +Sn channel. This leads to the fact that the yield of Ni and Sn is large. The analysis on the dependence of the velocity of the middle fragment on mass numbers of the outer products leads to the conclusion that, in the collinear tripartition channel of 252Cf, the middle cluster has a very small velocity, which does not allow it to be found in experiments.

  17. Absence of entrance channel effects in fission fragment anisotropies of the {sup 215}Fr compound nucleus

    SciTech Connect

    Appannababu, S.; Mukherjee, S.; Singh, N. L.; Rath, P. K.; Kumar, G. Kiran; Thomas, R. G.; Santra, S.; Nayak, B. K.; Saxena, A.; Choudhury, R. K.; Golda, K. S.; Jhingan, A.; Kumar, R.; Sugathan, P.; Singh, Hardev

    2009-08-15

    Fission fragment angular distributions have been measured for the reactions {sup 11}B+{sup 204}Pb and {sup 18}O+{sup 197}Au, both leading to the same compound nucleus {sup 215}Fr at near barrier energies. The measured fission fragment anisotropies as a function of E{sub c.m.}/V{sub B} are found to be consistent with the predictions of the standard saddle point statistical model (SSPM) for both the systems, suggesting the absence of entrance channel effects on fission fragment anisotropies even though the entrance channel mass asymmetries for both these systems fall on either side of the Bussinaro-Gallone critical mass asymmetry. The consistency of the present results with SSPM predictions can be understood within the framework of the pre-equilibrium fission model where fission before K equilibration is severely inhibited by the high values of ratios of fission barrier height to nuclear temperature.

  18. Properties of fission fragments for Z =112 -116 superheavy nuclei

    NASA Astrophysics Data System (ADS)

    Kaur, Gurjit; Sandhu, Kirandeep; Sharma, Manoj K.

    2016-07-01

    The dynamical cluster decay model (DCM) is applied to understand the dynamics of 48Ca+238U,244Pu,248Cm reactions at comparable excitation energies across the barrier. To understand the capture stage of *286112 ,*292114 , and *296116 nuclei, the compound nucleus formation probability is calculated. The indication of PC N<1 in the DCM framework demonstrates the fact that some competing process such as quasifission may occur at the capture stage of the 48Ca induced reactions. To understand this further, the comparative decay analysis of *286112 ,*292114 and *296116 , nuclei is carried out using β2 i deformations within hot optimum orientation criteria, and the calculated fission cross sections find nice agreement with available data. The fission mass distribution shows a double humped structure where a symmetric peak observed around the Sn region appears to find its genesis in a symmetric quasifission component. On the other hand, the emergence of peaks around Pb in the decay of Z =112 , 114, and 116 nuclei signify the possible presence of asymmetric quasifission. Higher and broader asymmetric quasifission peaks are observed for *296116 and *292114 nuclei as compared to *286112 nucleus. Beside this, the total kinetic energy (TKE) distribution of the decay fragments is also explored by using different proximity potentials, such as Prox-77, Prox-88, and Prox-00. Prox-88 seems to perform better and the calculated TKE values find relatively better comparison at lower angular momentum states. The possible role of different radii of the decaying nuclei is also exercised to understand the TKE ¯ dynamics of 48Ca+238U,244Pu,248Cm reactions.

  19. Description of induced nuclear fission with Skyrme energy functionals: Static potential energy surfaces and fission fragment properties

    NASA Astrophysics Data System (ADS)

    Schunck, N.; Duke, D.; Carr, H.; Knoll, A.

    2014-11-01

    Eighty years after its experimental discovery, a description of induced nuclear fission based solely on the interactions between neutrons and protons and quantum many-body methods still poses formidable challenges. The goal of this paper is to contribute to the development of a predictive microscopic framework for the accurate calculation of static properties of fission fragments for hot fission and thermal or slow neutrons. To this end, we focus on the 239Pu(n ,f ) reaction and employ nuclear density functional theory with Skyrme energy densities. Potential energy surfaces are computed at the Hartree-Fock-Bogoliubov approximation with up to five collective variables. We find that the triaxial degree of freedom plays an important role, both near the fission barrier and at scission. The impact of the parametrization of the Skyrme energy density and the role of pairing correlations on deformation properties from the ground state up to scission are also quantified. We introduce a general template for the quantitative description of fission fragment properties. It is based on the careful analysis of scission configurations, using both advanced topological methods and recently proposed quantum many-body techniques. We conclude that an accurate prediction of fission fragment properties at low incident neutron energies, although technologically demanding, should be within the reach of current nuclear density functional theory.

  20. A double-Bragg detector with digital signal processing for the event-by-event study of fission in actinide nuclei

    NASA Astrophysics Data System (ADS)

    Frost, R. J. W.; Smith, A. G.

    2016-09-01

    In the current paper, a windowless double-Bragg chamber incorporating full signal digitisation has been developed for the purpose of studying the energy (E), mass (A), charge (Z) and angular distributions (θ, Φ) of nuclei generated by fission. This device measures E for each fission fragment by collection of the charge produced during ionisation of the fill gas. Subsequent digitisation of the signals from each of two anodes yields information on dE/dx, as well as electron collection time, which can be further used for polar angle (θ) determination. Frisch-grid and cathode signals are also digitised and are used both for anode signal correction and to produce further information on θ. To verify the operation of this detector, three angular determination techniques from the literature were implemented, and the results were found to be consistent with the referenced paper. Current results from the spontaneous fission of 252Cf are presented.

  1. Microscopic Calculation of Fission Fragment Energies for the 239Pu(nth,f) Reaction

    SciTech Connect

    Younes, W; Gogny, D

    2011-10-03

    We calculate the total kinetic and excitation energies of fragments produced in the thermal-induced fission of {sup 239}Pu. This result is a proof-of-principle demonstration for a microscopic approach to the calculation of fission-fragment observables for applied data needs. In addition, the calculations highlight the application of a fully quantum mechanical description of scission, and the importance of exploring scission configurations as a function of the moments of the fragments, rather than through global constraints on the moments of the fissioning nucleus. Using a static microscopic calculation of configurations at and near scission, we have identified fission fragments for the {sup 239}Pu (n{sub th}, f) reaction and extracted their total kinetic and excitation energies. Comparison with data shows very good overall agreement between theory and experiment. Beyond their success as a proof of principle, these calculations also highlight the importance of local constraints on the fragments themselves in microscopic calculations.

  2. Properties of true quaternary fission of nuclei with allowance for its multistep and sequential character

    NASA Astrophysics Data System (ADS)

    Kadmensky, S. G.; Titova, L. V.; Bulychev, A. O.

    2015-07-01

    An analysis of basicmechanisms of binary and ternary fission of nuclei led to the conclusion that true ternary and quaternary fission of nuclei has a sequential two-step (three-step) character, where, at the first step, a fissile nucleus emits a third light particle (third and fourth light particles) under shakeup effects associated with a nonadiabatic character of its collective deformation motion, whereupon the residual nucleus undergoes fission to two fission fragments. Owing to this, the formulas derived earlier for the widths with respect to sequential two- and three-step decays of nuclei in constructing the theory of two-step twoproton decays and multistep decays in chains of genetically related nuclei could be used to describe the relative yields and angular and energy distributions of third and fourth light particles emitted in ( α, α), ( t, t), and ( α, t) pairs upon the true quaternary spontaneous fission of 252Cf and thermal-neutron-induced fission of 235U and 233U target nuclei. Mechanisms that explain a sharp decrease in the yield of particles appearing second in time and entering into the composition of light-particle pairs that originate from true quaternary fission of nuclei in relation to the yields of analogous particles in true ternary fission of nuclei are proposed.

  3. Properties of true quaternary fission of nuclei with allowance for its multistep and sequential character

    SciTech Connect

    Kadmensky, S. G. Titova, L. V.; Bulychev, A. O.

    2015-07-15

    An analysis of basicmechanisms of binary and ternary fission of nuclei led to the conclusion that true ternary and quaternary fission of nuclei has a sequential two-step (three-step) character, where, at the first step, a fissile nucleus emits a third light particle (third and fourth light particles) under shakeup effects associated with a nonadiabatic character of its collective deformation motion, whereupon the residual nucleus undergoes fission to two fission fragments. Owing to this, the formulas derived earlier for the widths with respect to sequential two- and three-step decays of nuclei in constructing the theory of two-step twoproton decays and multistep decays in chains of genetically related nuclei could be used to describe the relative yields and angular and energy distributions of third and fourth light particles emitted in (α, α), (t, t), and (α, t) pairs upon the true quaternary spontaneous fission of {sup 252}Cf and thermal-neutron-induced fission of {sup 235}U and {sup 233}U target nuclei. Mechanisms that explain a sharp decrease in the yield of particles appearing second in time and entering into the composition of light-particle pairs that originate from true quaternary fission of nuclei in relation to the yields of analogous particles in true ternary fission of nuclei are proposed.

  4. Fission fragment mass distributions in reactions forming the {sup 213}Fr compound nucleus

    SciTech Connect

    Appannababu, S.; Mukherjee, S.; Deshmukh, N. N.; Rath, P. K.; Singh, N. L.; Nayak, B. K.; Thomas, R. G.; Choudhury, R. K.; Sugathan, P.; Jhingan, A.; Negi, D.; Prasad, E.

    2011-03-15

    The fission fragment mass angle correlations and mass ratio distributions have been investigated for the two systems {sup 16}O+{sup 197}Au and {sup 27}Al+{sup 186}W, leading to the same compound nucleus {sup 213}Fr around the Coulomb barrier energies. Systematic analysis of the variance of the mass distributions as a function of temperature and angular momentum suggests true compound nuclear fission for both the reactions, indicating the absence of nonequilibrium fission processes.

  5. Benchmark Experiments of Thermal Neutron and Capture Gamma-Ray Distributions in Concrete Using {sup 252}Cf

    SciTech Connect

    Asano, Yoshihiro; Sugita, Takeshi; Hirose, Hideyuki; Suzaki, Takenori

    2005-10-15

    The distributions of thermal neutrons and capture gamma rays in ordinary concrete were investigated by using {sup 252}Cf. Two subjects are considered. One is the benchmark experiments for the thermal neutron and the capture gamma-ray distributions in ordinary concrete. The thermal neutron and the capture gamma-ray distributions were measured by using gold-foil activation detectors and thermoluminescence detectors. These were compared with the simulations by using the discrete ordinates code ANISN with two different group structure types of cross-section library of a new Japanese version, JENDL-3.3, showing reasonable agreement with both fine and rough structure groups of thermal neutron energy. The other is a comparison of the simulations with two different cross-section libraries, JENDL-3.3 and ENDF/B-VI, for the deep penetration of neutrons in the concrete, showing close agreement in 0- to 100-cm-thick concrete. However, the differences in flux grow with an increase in concrete thickness, reaching up to approximately eight times near 4-m thickness.

  6. Feasibility of an antiproton-catalyzed fission-fragment rocket. Master's thesis

    SciTech Connect

    Hidinger, D.S.

    1992-03-01

    The purpose of this project was to investigate the feasibility of an antiproton catalyzed fission fragment rocket (FFR). The FFR is characterized by the extraction of fission fragments from the fuel, and the utilization of their kinetic energy for thrust generation. A significant drawback to previous FFR designs was the required critical nuclear pile as the fission fragment source. The author examined the possibility of replacing the critical pile with a sub-critical pile driven by antiprotons. Recent experiments have revealed that antiprotons stimulate highly energetic fissions in {sup 238}U, with a neutron multiplicity of 13.7 neutrons per fissions. This interaction was used as a throttled neutron source. The pile consisted of layers of fissile coated fibers which are designed to allow fission fragments to escape them, where the fragments collide with a fluid. The heated fluid is then ejected from the rocket to provide thrust. The calculations performed indicate that each antiproton injected into the pile can stimulate 8 or more fissions while maintaining a neutron multiplication of less than 0.4. Based on the results, the specific design presented was inadequate. Despite this, the concept of using the antiproton-U interaction as a source of thrust warrants further study.

  7. Impact of prompt-neutron corrections on final fission-fragment distributions

    NASA Astrophysics Data System (ADS)

    Al-Adili, A.; Hambsch, F.-J.; Pomp, S.; Oberstedt, S.

    2012-11-01

    Background: One important quantity in nuclear fission is the average number of prompt neutrons emitted from the fission fragments, the prompt neutron multiplicity, ν¯. The total number of prompt fission neutrons, ν¯tot, increases with increasing incident neutron energy. The prompt-neutron multiplicity is also a function of the fragment mass and the total kinetic energy of the fragmentation. Those data are only known in sufficient detail for a few thermal-neutron-induced fission reactions on, for example, 233,235U and 239Pu. The enthralling question has always been asked how the additional excitation energy is shared between the fission fragments. The answer to this question is important in the analysis of fission-fragment data taken with the double-energy technique. Although in the traditional approach the excess neutrons are distributed equally across the mass distribution, a few experiments showed that those neutrons are predominantly emitted by the heavy fragments.Purpose: We investigated the consequences of the ν(A,TKE,En) distribution on the fission fragment observables.Methods: Experimental data obtained for the 234U(n,f) reaction with a Twin Frisch Grid Ionization Chamber, were analyzed assuming two different methods for the neutron evaporation correction. The effect of the two different methods on the resulting fragment mass and energy distributions is studied.Results: We found that the preneutron mass distributions obtained via the double-energy technique become slightly more symmetric, and that the impact is larger for postneutron fission-fragment distributions. In the most severe cases, a relative yield change up to 20-30% was observed.Conclusions: We conclude that the choice of the prompt-neutron correction method has strong implications on the understanding and modeling of the fission process and encourages new experiments to measure fission fragments in coincidence with prompt fission neutrons. Even more, the correct determination of postneutron

  8. Research on fission fragment excitation of gases and nuclear pumping of lasers

    NASA Technical Reports Server (NTRS)

    Schneider, R. T.; Davie, R. N.; Davis, J. F.; Fuller, J. L.; Paternoster, R. R.; Shipman, G. R.; Sterritt, D. E.; Helmick, H. H.

    1974-01-01

    Experimental investigations of fission fragment excited gases are reported along with a theoretical analysis of population inversions in fission fragment excited helium. Other studies reported include: nuclear augmentation of gas lasers, direct nuclear pumping of a helium-xenon laser, measurements of a repetitively pulsed high-power CO2 laser, thermodynamic properties of UF6 and UF6/He mixtures, and nuclear waste disposal utilizing a gaseous core reactor.

  9. Evaluation of the /sup 252/Cf-source-driven neutron noise analysis method for measuring the subcriticality of LWR fuel storage casks

    SciTech Connect

    Mihalczo, J.T.

    1987-01-01

    The /sup 252/Cf-source-driven neutron noise analysis method was evaluated to determine if it could be used to measure the subcriticality of storage casks of burnt light water reactor (LWR) fuel submerged in fuel storage pools, fully loaded and as they are being loaded. Measurements of k/sub eff/ would provide the parameter most directly related to the criticality safety of storage cask configurations of LWR fuel and could allow proper credit for fuel burnup without reliance on calculations. This, in turn, could lead to more cost-effective cask designs. Evaluation of the method for this application was based on experiments already completed at a critical experiments facility using arrays of pressurized water reactor (PWR) fuel pins typical of the size of storage cask configurations, the existence of neutron detectors that can function in shipping cask environments, and the ability to construct ionization chambers containing /sup 252/Cf of adequate intensity for these measurements.

  10. Scaling phenomena of isobaric yields in projectile fragmentation, spallation, and fission reactions

    NASA Astrophysics Data System (ADS)

    Ma, Chun-Wang; Huang, Ling; Song, Yi-Dan

    2017-02-01

    Background: The isobaric ratio difference scaling phenomenon, which has been found for the fragments produced in projectile fragmentation reactions, is related to the nuclear density change in reaction systems. Purpose: To verify whether the isobaric ratio difference scaling exists in the fragments produced in the spallation and fission reactions. Methods: The isobaric ratio difference scaling, denoted by SΔ lnR21 , is in theory deduced within the framework of the canonical ensemble theory at the grand-canonical limitation. The fragments measured in a series of projectile fragmentation, spallation, and fission reactions have been analyzed. Results: A good SΔ lnR21 scaling phenomenon is shown for the fragments produced both in the projectile fragmentation reactions and in the spallation reactions, whereas the SΔ lnR21 scaling phenomenon for the fragments in the fission reaction is less obvious. Conclusions: The SΔ lnR21 scaling is used to probe the properties of the equilibrium system at the time of fragment formation. The good scaling of SΔ lnR21 suggests that the equilibrium state can be achieved in the projectile fragmentation and spallation reactions. Whereas in the fission reaction, the result of SΔ lnR21 indicates that the equilibrium of the system is hard to achieve.

  11. Monte-Carlo Hauser-Feshbach simulations of prompt fission gamma-ray properties

    NASA Astrophysics Data System (ADS)

    Stetcu, Ionel; Talou, Patrick; Kawano, Toshihiko; Jandel, Marian

    2014-09-01

    Properties of prompt fission neutrons and γ rays, emitted before the weak decays of the fission fragments toward stability, are important for both nuclear technologies and a better understanding of the fission process. In the present work, we use the Hauser-Feshbach model to simulate the de-excitation of the fully accelerated fission fragments treated as compound nuclei. Our Monte-Carlo implementation of the Hauser-Feshbach statistical model, which takes into account the competition between the neutron and γ emissions, allows the description of both average quantities, like in the Los Alamos model, and correlations between the emitted particles. Our simulations will be compared against available experimental data and current evaluations. In particular, we will compare our average γ-ray spectrum with recent measurements at the research reactor KFKI in Budapest for the 235U(nth , f) and 252Cf(sf) reactions, as well as multiplicity-dependent distributions obtained at the DANCE facility at LANSCE. Properties of prompt fission neutrons and γ rays, emitted before the weak decays of the fission fragments toward stability, are important for both nuclear technologies and a better understanding of the fission process. In the present work, we use the Hauser-Feshbach model to simulate the de-excitation of the fully accelerated fission fragments treated as compound nuclei. Our Monte-Carlo implementation of the Hauser-Feshbach statistical model, which takes into account the competition between the neutron and γ emissions, allows the description of both average quantities, like in the Los Alamos model, and correlations between the emitted particles. Our simulations will be compared against available experimental data and current evaluations. In particular, we will compare our average γ-ray spectrum with recent measurements at the research reactor KFKI in Budapest for the 235U(nth , f) and 252Cf(sf) reactions, as well as multiplicity-dependent distributions obtained at the

  12. Distribution functions in plasmas generated by a volume source of fission fragments. [in nuclear pumped lasers

    NASA Technical Reports Server (NTRS)

    Deese, J. E.; Hassan, H. A.

    1979-01-01

    The role played by fission fragments and electron distribution functions in nuclear pumped lasers is considered and procedures for their calculations are outlined. The calculations are illustrated for a He-3/Xe mixture where fission is provided by the He-3(n,p)H-3 reaction. Because the dominant ion in the system depends on the Xe fraction, the distribution functions cannot be determined without the simultaneous consideration of a detailed kinetic model. As is the case for wall sources of fission fragments, the resulting plasmas are essentially thermal but the electron distribution functions are non-Maxwellian.

  13. Fission-fragment detector for DANCE based on thin scintillating films

    NASA Astrophysics Data System (ADS)

    Rusev, G.; Roman, A. R.; Daum, J. K.; Springs, R. K.; Bond, E. M.; Jandel, M.; Baramsai, B.; Bredeweg, T. A.; Couture, A.; Favalli, A.; Ianakiev, K. D.; Iliev, M. L.; Mosby, S.; Ullmann, J. L.; Walker, C. L.

    2015-12-01

    A fission-fragment detector based on thin scintillating films has been built to serve as a trigger/veto detector in neutron-induced fission measurements at DANCE. The fissile material is surrounded by scintillating films providing 4 π detection of the fission fragments. The scintillation photons were registered with silicon photomultipliers. A measurement of the 235U (n , f) reaction with this detector at DANCE revealed a correct time-of-flight spectrum and provided an estimate for the efficiency of the prototype detector of 11.6(7)%. Design and test measurements with the detector are described.

  14. Neutron emission as a function of fragment energy in the spontaneous fission of /sup 260/Md

    SciTech Connect

    Wild, J.F.; van Aarle, J.; Westmeiser, W.; Lougheed, R.W.; Hulet, E.K.; Moody, K.J.; Dougan, R.J.; Brandt, R.; Patzelt, P.

    1989-04-19

    We have made the first measurement of the number of neutrons emitted in the spontaneous fission of a nuclide in which very high fragment energies dominate the fission process. In bombardments of /sup 254/Es, we produced 28-d /sup 260/Md, which was neutron-counted in a 1-m-diam spherical tank containing a Gd-doped scintillator solution. The average number of neutrons emitted per fission is only 2.58 +- 0.11, substantially less than for other actinides. A direct correlation of neutron multiplicity with fragment excitation energy is clearly demonstrated. 3 refs., 5 figs.

  15. Shielding evaluation of a medical linear accelerator vault in preparation for installing a high-dose rate 252Cf remote afterloader.

    PubMed

    Melhus, C S; Rivard, M J; Kurkomelis, J; Liddle, C B; Massé, F X

    2005-01-01

    In support of the effort to begin high-dose rate 252Cf brachytherapy treatments at Tufts-New England Medical Center, the shielding capabilities of a clinical accelerator vault against the neutron and photon emissions from a 1.124 mg 252Cf source were examined. Outside the clinical accelerator vault, the fast neutron dose equivalent rate was below the lower limit of detection of a CR-39 etched track detector and below 0.14 +/- 0.02 muSv h(-1) with a proportional counter, which is consistent, within the uncertainties, with natural background. The photon dose equivalent rate was also measured to be below background levels (0.1 muSv h(-1)) using an ionisation chamber and an optically stimulated luminescence dosemeter. A Monte Carlo simulation of neutron transport through the accelerator vault was performed to validate measured values and determine the thermal-energy to low-energy neutron component. Monte Carlo results showed that the dose equivalent rate from fast neutrons was reduced by a factor of 100,000 after attenuation through the vault wall, and the thermal-energy neutron dose equivalent rate would be an additional factor of 1000 below that of the fast neutrons. Based on these findings, the shielding installed in this facility is sufficient for the use of at least 5.0 mg of 252Cf.

  16. Dynamical approach to isotopic-distribution of fission fragments from actinide nuclei

    NASA Astrophysics Data System (ADS)

    Ishizuka, Chikako; Chiba, Satoshi; Karpov, Alexander V.; Aritomo, Yoshihiro

    2016-06-01

    Measurements of the isotope distribution of fission fragments, often denoted as the primary fission yield (pre-neutron yield) or independent fission yield (post-neutron yield) are still challenging at low excitation energies, so that it is important to investigate it within a theory. Such quantities are vital for applications as well. In this study, fragment distributions from the fission of U isotopes at low excitation energies are studied using a dynamical model. The potential energy surface is derived from the two center shell model including the shell and pairing corrections. In order to calculate the charge distribution of fission fragments, we introduce a new parameter ηZ as the charge asymmetry, in addition to three parameters describing a nuclear shape, z as the distance between two centers of mass, δ as fragment deformation, and ηA as the mass asymmetry. Using this model, we calculated the isotopic distribution of 236U for the n-induced process 235U + n → 236U at low excitation energies. As a result, we found that the current model can well reproduce isotopic fission-fragment distribution which can be compared favorably with major libraries.

  17. Second malignancies following conventional or combined 252Cf neutron brachytherapy with external beam radiotherapy for breast cancer

    PubMed Central

    Valuckas, Konstantinas Povilas; Atkocius, Vydmantas; Kuzmickiene, Irena; Aleknavicius, Eduardas; Liukpetryte, Sarune; Ostapenko, Valerijus

    2013-01-01

    We retrospectively evaluated the risk of second malignancies among 832 patients with inner or central breast cancer treated with conventional external beam schedule (CRT group), or neutron brachytherapy using Californium-252 (252Cf) sources and hypofractionated external beam radiotherapy (HRTC group), between 1987 and 1996 at the Institute of Oncology, Vilnius University. Patients were observed until the occurrences of death or development of a second malignancy, or until 31 December 2009, whichever was earlier. Median follow-up time was 10.4 years (range, 1.2–24.1 years). Risk of second primary cancers was quantified using standardized incidence ratios (SIRs). Cox proportional hazards regression models were used to estimate hazard ratios (HRs). There was a significant increase in the risk of second primary cancers compared with the general population (SIR 1.3, 95% CI 1.1–1.5). The observed number of second primary cancers was also higher than expected for breast (SIR 1.8, 95% CI 1.3–2.4) and lung cancer (SIR 3.8, 95% CI 2.0–6.7). For second breast cancer, no raised relative risk was observed during the period ≥10 or more years after radiotherapy. Compared with the CRT group, HRTC patients had a not statistically significant higher risk of breast cancer. Increased relative risks were observed specifically for age at initial diagnosis of <50 years (HR 2.9, 95% CI 1.6–5.2) and for obesity (HR 2.8, 95% CI 1.1–7.2). PMID:23397075

  18. Evaluation of time-dose and fractionation for sup 252 Cf neutrons in preoperative bulky/barrel-cervix carcinoma radiotherapy

    SciTech Connect

    Maruyama, Y.; Wierzbicki, J. )

    1990-12-01

    Time-dose fractionation factors (TDF) were calculated for 252Cf (Cf) neutron therapy versus 137Cs for intracavitary use in the preoperative treatment of bulky/barrel-shaped Stage IB cervix cancers. The endpoint assessed was gross and microscopic tumor eradication from the hysterectomy specimen. We reviewed the data obtained in clinical trials between 1976-1987 at the University of Kentucky Medical Center. Preoperative photon therapy was approximately 45 Gy of whole pelvis irradiation in 5 weeks for both 137Cs and Cf treated patients. 137Cs implant was done after pelvic irradiation x1 to a mean dose of 2104 +/- 36 cGy at point A at a dose rate of 50.5 cGy/h. There were 37.5% positive specimens. Using Cf intracavitary implants, dose varied from 109 to 459 neutron cGy in 1-2 sessions. Specimens were more frequently cleared of tumor (up to 100% at appropriate dose) and showed a dose-response relationship, both by nominal dose and by TDF adjusted analysis of dose, dose-rate, number of sessions, and overall time. Limited understanding of relative biological effectiveness, schedule, effect of implants, and dose rate all made it difficult to use TDF to study neutron effects. Relative biological effectiveness (RBE) was estimated and showed that for Cf, RBE was a complex function of treatment variables. In the pilot clinical studies, a value of 6.0 had been assumed. The present findings of RBE for tumor destruction are larger than those assumed. Cf was effective for cervix tumor therapy and produced control without significant side effects due to the brachytherapy method used. The TDF model was of limited value in the present analysis and more information is still needed for RBE, dose-rate, and fractionation effects for Cf neutrons to develop a more sophisticated and relevant model.

  19. A position-sensitive twin ionization chamber for fission fragment and prompt neutron correlation experiments

    NASA Astrophysics Data System (ADS)

    Göök, A.; Geerts, W.; Hambsch, F.-J.; Oberstedt, S.; Vidali, M.; Zeynalov, Sh.

    2016-09-01

    A twin position-sensitive Frisch grid ionization chamber, intended as a fission fragment detector in experiments to study prompt fission neutron correlations with fission fragment properties, is presented. Fission fragment mass and energies are determined by means of the double kinetic energy technique, based on conservation of mass and linear momentum. The position sensitivity is achieved by replacing each anode plate in the standard twin ionization chamber by a wire plane and a strip anode, both readout by means of resistive charge division. This provides information about the fission axis orientation, which is necessary to reconstruct the neutron emission process in the fully accelerated fragment rest-frame. The energy resolution compared to the standard twin ionization chamber is found not to be affected by the modification. The angular resolution of the detector relative to an arbitrarily oriented axis is better than 7° FWHM. Results on prompt fission neutron angular distributions in 235U(n,f) obtained with the detector in combination with an array of neutron scintillation detectors is presented as a proof of principle.

  20. Dynamic approach to description of entrance channel effects in angular distributions of fission fragments

    NASA Astrophysics Data System (ADS)

    Eremenko, D. O.; Drozdov, V. A.; Fotina, O. V.; Platonov, S. Yu.; Yuminov, O. A.

    2016-07-01

    Background: It is well known that the anomalous behavior of angular anisotropies of fission fragments at sub- and near-barrier energies is associated with a memory of conditions in the entrance channel of the heavy-ion reactions, particularly, deformations and spins of colliding nuclei that determine the initial distributions for the components of the total angular momentum over the symmetry axis of the fissioning system and the beam axis. Purpose: We develop a new dynamic approach, which allows the description of the memory effects in the fission fragment angular distributions and provides new information on fusion and fission dynamics. Methods: The approach is based on the dynamic model of the fission fragment angular distributions which takes into account stochastic aspects of nuclear fission and thermal fluctuations for the tilting mode that is characterized by the projection of the total angular momentum onto the symmetry axis of the fissioning system. Another base of our approach is the quantum mechanical method to calculate the initial distributions over the components of the total angular momentum of the nuclear system immediately following complete fusion. Results: A method is suggested for calculating the initial distributions of the total angular momentum projection onto the symmetry axis for the nuclear systems formed in the reactions of complete fusion of deformed nuclei with spins. The angular distributions of fission fragments for the 16O+232Th,12C+235,236,238, and 13C+235U reactions have been analyzed within the dynamic approach over a range of sub- and above-barrier energies. The analysis allowed us to determine the relaxation time for the tilting mode and the fraction of fission events occurring in times not larger than the relaxation time for the tilting mode. Conclusions: It is shown that the memory effects play an important role in the formation of the angular distributions of fission fragments for the reactions induced by heavy ions. The

  1. Emission angle dependence of fission fragment spin: Effects of single particle spin and tilting mode

    NASA Astrophysics Data System (ADS)

    Datta, T.; Naik, H.; Dange, S. P.

    1995-06-01

    The high-spin yield fraction (HSF) for the fission product 132Im,g has been measured as a function of fragment emission angle (90° >=Θ>=10°) in the 237Np(α29 MeV,f) system. It was seen that the HSF for 132I or corresponding fragment (~=134I) spin initially decreases as emission angle decreases from 90° to ~=45° and then steadily increases at lower angles (Θ<45°). Contrary to the present observation in odd-Z 241Am fission, earlier we had observed that fragment spin continuously decreases to a limit with decrease in emission angle from 90° to 20° in even-even 242Pu fission. These data have been analyzed in the framework of the collective mode model invoking the effect of single particle spin. It is seen that for an odd-Z or A fissioning nucleus, angular variation of fragment spin could be accounted for on the basis of coupling between the odd nucleon spin (j>=k~=4ħ) projections and spin due to the collective rotational (tilting) degrees. Collective rotational degrees govern fragment spin for even-even fissioning nucleus.

  2. Investigation of phenomenological models for the Monte Carlo simulation of the prompt fission neutron and {gamma} emission

    SciTech Connect

    Litaize, O.; Serot, O.

    2010-11-15

    A Monte Carlo simulation of the fission fragment deexcitation process was developed in order to analyze and predict postfission-related nuclear data which are of crucial importance for basic and applied nuclear physics. The basic ideas of such a simulation were already developed in the past. In the present work, a refined model is proposed in order to make a reliable description of the distributions related to fission fragments as well as to prompt neutron and {gamma} energies and multiplicities. This refined model is mainly based on a mass-dependent temperature ratio law used for the initial excitation energy partition of the fission fragments and a spin-dependent excitation energy limit for neutron emission. These phenomenological improvements allow us to reproduce with a good agreement the {sup 252}Cf(sf) experimental data on prompt fission neutron multiplicity {nu}(A), {nu}(TKE), the neutron multiplicity distribution P({nu}), as well as their energy spectra N(E), and lastly the energy release in fission.

  3. Fission Measurements with Dance

    NASA Astrophysics Data System (ADS)

    Jandel, M.; Bredeweg, T. A.; Fowler, M. M.; Bond, E. M.; Chadwick, M. B.; Clement, R. R.; Couture, A.; O'Donnell, J. M.; Haight, R. C.; Keksis, A. L.; Reifarth, R.; Rundberg, R. S.; Ullmann, J. L.; Vieira, D. J.; Wilhelmy, J. B.; Wouters, J. M.; Agvaanluvsan, U.; Dashdorj, D.; Macri, R. A.; Parker, W. E.; Wilk, P. A.; Wu, C. Y.; Becker, J. A.; Angell, C. T.; Tonchev, A. P.; Baker, J. D.

    2008-08-01

    Neutron capture cross section measurements on actinides are complicated by the presence of neutron-induced fission. An efficient fission tagging detector used in coincidence with the Detector for Advanced Neutron Capture Experiments (DANCE) provides a powerful tool in undertaking simultaneous measurements of (n,γ) and (n,f) cross sections. Preliminary results on 235U(n,γ) and (n,f) and 242mAm(n,f) cross sections measured with DANCE and a custom fission-tagging parallel plate avalanche counter (PPAC) are presented. Additional measurements of γ-ray cluster multiplicity distributions for neutron-induced fission of 235U and 242mAm and spontaneous fission of 252Cf are shown, as well as γ-ray energy and average γ-ray energy distributions.

  4. Development of a thin scintillation films fission-fragment detector and a novel neutron source

    SciTech Connect

    Rusev, Gencho Yordanov; Jandel, Marian; Baramsai, Bayarbadrakh; Bond, Evelyn M.; Bredeweg, Todd Allen; Couture, Aaron Joseph; Daum, Jaimie Kay; Favalli, Andrea; Ianakiev, Kiril Dimitrov; Iliev, Metodi L.; Mosby, Shea Morgan; Roman, Audrey Rae; Springs, Rebecca Kristien; Ullmann, John Leonard; Walker, Carrie Lynn

    2015-08-26

    Here, investigation of prompt fission and neutron-capture Υ rays from fissile actinide samples at the Detector for Advanced Neutron Capture Experiments (DANCE) requires use of a fission-fragment detector to provide a trigger or a veto signal. A fission-fragment detector based on thin scintillating films and silicon photomultipliers has been built to serve as a trigger/veto detector in neutron-induced fission measurements at DANCE. The fissile material is surrounded by scintillating films providing a 4π detection of the fission fragments. The scintillations were registered with silicon photomultipliers. A measurement of the 235U(n,f) reaction with this detector at DANCE revealed a correct time-of-flight spectrum and provided an estimate for the efficiency of the prototype detector of 11.6(7)%. Design and test measurements with the detector are described. A neutron source with fast timing has been built to help with detector-response measurements. The source is based on the neutron emission from the spontaneous fission of 252Cf and the same type of scintillating films and silicon photomultipliers. Overall time resolution of the source is 0.3 ns. Design of the source and test measurements with it are described. An example application of the source for determining the neutron/gamma pulse-shape discrimination by a stilbene crystal is given.

  5. Unusually low fragment energies in the symmetric fission of /sup 259/Md

    SciTech Connect

    Wild, J.F.; Hulet, E.K.; Lougheed, R.W.; Baisden, P.A.; Landrum, J.H.; Dougan, R.J.; Mustafa, M.G.

    1982-10-01

    The 103-min isotope /sup 259/Md has been identified as the daughter of an electron-capture decay branch of /sup 259/No produced via the /sup 248/Cm(/sup 18/O,..cap alpha..3n) reaction. Chemical separations were used to confirm the identity of /sup 259/Md, which decays by spontaneous fission. The kinetic energies of coincident fission fragments were measured, corresponding to a fragment mass which is highly symmetric, similar to those of /sup 258/Fm and /sup 259/Fm. However, the total kinetic energy distribution for /sup 259/Md is considerably broader (FWHM approx.60 MeV) than those of /sup 258/Fm and /sup 259/Fm, and peaks at 201 MeV, about 35--40 MeV lower in energy. Furthermore, the maximum total Kinetic energy of 215 MeV for mass-symmetric events is about 30 MeV lower than for similar events from the spontaneous fission of /sup 258/Fm and /sup 259/Fm. A hypothesis that this energy difference resulted from the emission of light, hydrogen-like particles at scission in a large fraction of /sup 259/Md spontaneous fission decays was shown to be unfounded. From experiments to observe such particles with counter telescopes, an upper limit of 5% was determined for the fraction of fission events accompanied by light-particle emission. The total kinetic energy deficit at mass symmetry must, therefore, be distributed between internal excitation energy and fragment deformation energy at scission. Although the presence of a large amount of fragment deformation energy seems incompatible with symmetric fission into spherical Sn-like fragments, we prefer this explanation because the low total kinetic energy suggests a lowered Coulomb energy resulting from greater separation of the charge centers of deformed fragments at scission.

  6. Fission Fragment Angular Distributions measured with a Time Projection Chamber

    SciTech Connect

    Kleinrath, Verena

    2015-04-28

    The subject is presented in a series of slides with the following organization: Introduction (What is anisotropy? Relevance (Theory and ratio cross section), Previous measurements); Experiment (Particle tracking in the fissionTPC, Neutron time of flight, Data analysis & uncertainty calculation, Preliminary result for 235U); and Future Work (Refine 235U result, Process 239Pu data).

  7. Interplay between compound and fragments aspects of nuclear fission and heavy-ion reaction

    SciTech Connect

    Moller, Peter; Iwamoto, A; Ichikawa, I

    2010-09-10

    The scission point in nuclear fission plays a special role where one-body system changes to two-body system. Inverse of this situation is realized in heavy-ion fusion reaction where two-body system changes to one body system. Among several peculiar phenomena expected to occur during this change, we focus our attention to the behavior of compound and fragments shell effects. Some aspects of the interplay between compound and fragments shell effect are discussed related to the topics of the fission valleys in the potential energy surface of actinide nuclei and the fusion-like trajectory found in the cold fusion reaction leading to superheavy nuclei.

  8. Microarray analysis of DNA damage repair gene expression profiles in cervical cancer cells radioresistant to 252Cf neutron and X-rays

    PubMed Central

    2010-01-01

    Background The aim of the study was to obtain stable radioresistant sub-lines from the human cervical cancer cell line HeLa by prolonged exposure to 252Cf neutron and X-rays. Radioresistance mechanisms were investigated in the resulting cells using microarray analysis of DNA damage repair genes. Methods HeLa cells were treated with fractionated 252Cf neutron and X-rays, with a cumulative dose of 75 Gy each, over 8 months, yielding the sub-lines HeLaNR and HeLaXR. Radioresistant characteristics were detected by clone formation assay, ultrastructural observations, cell doubling time, cell cycle distribution, and apoptosis assay. Gene expression patterns of the radioresistant sub-lines were studied through microarray analysis and verified by Western blotting and real-time PCR. Results The radioresistant sub-lines HeLaNR and HeLaXR were more radioresisitant to 252Cf neutron and X-rays than parental HeLa cells by detecting their radioresistant characteristics, respectively. Compared to HeLa cells, the expression of 24 genes was significantly altered by at least 2-fold in HeLaNR cells. Of these, 19 genes were up-regulated and 5 down-regulated. In HeLaXR cells, 41 genes were significantly altered by at least 2-fold; 38 genes were up-regulated and 3 down-regulated. Conclusions Chronic exposure of cells to ionizing radiation induces adaptive responses that enhance tolerance of ionizing radiation and allow investigations of cellular radioresistance mechanisms. The insights gained into the molecular mechanisms activated by these "radioresistance" genes will lead to new therapeutic targets for cervical cancer. PMID:20184742

  9. Event-by-Event Fission Modeling of Prompt Neutrons and Photons from Neutron-Induced and Spontaneous Fission with FREYA

    NASA Astrophysics Data System (ADS)

    Vogt, Ramona; Randrup, Jorgen

    2013-04-01

    The event-by-event fission Monte Carlo code FREYA (Fission Reaction Event Yield Algorithm) generates large samples of complete fission events. Using FREYA, it is possible to obtain the fission products as well as the prompt neutrons and photons emitted during the fission process, all with complete kinematic information. We can therefore extract any desired correlation observables. Concentrating on ^239Pu(n,f), ^240Pu(sf) and ^252Cf(sf), we compare our FREYA results with available data on prompt neutron and photon emission and present predictions for novel fission observables that could be measured with modern detectors.

  10. From symmetric cold fission fragment mass distributions to extremely asymmetric alpha decay

    NASA Astrophysics Data System (ADS)

    Poenaru, D. N.; Ivascu, M.; Maruhn*, J. A.; Greiner*, W.

    1987-12-01

    The analytical superasymmetric fission model, successful in the study of extremely asymmetric decay modes like α-decay and heavy ion radioactivities, is applied to cold fission phenomena. The three groups of processes are described in a unifield manner, showing that cold fission could be considered heavy cluster emission. For 234U all groups have been detected. The highest symmetry of the gragment mass distributions should be observed for the neutron rich nucleus 264Fm, leading to doubly magic products 132Sn. The most probable light fragments from cold fission of 234,236U, 239Np and 240Pu are 100Zr, 104,106,108Mo respectively, in good agreement with experimental data.

  11. Analysis of plasmas generated by fission fragments. [nuclear pumped lasers and helium plasma

    NASA Technical Reports Server (NTRS)

    Deese, J. E.; Hassan, H. A.

    1977-01-01

    A kinetic model is developed for a plasma generated by fission fragments and the results are employed to study helium plasma generated in a tube coated with fissionable material. Because both the heavy particles and electrons play important roles in creating the plasma, their effects are considered simultaneously. The calculations are carried out for a range of neutron fluxes and pressures. In general, the predictions of the theory are in good agreement with available intensity measurements. Moreover, the theory predicts the experimentally measured inversions. However, the calculated gain coefficients are such that lasing is not expected to take place in a helium plasma generated by fission fragments. The effects of an externally applied electric field are also considered.

  12. γ -ray spectroscopy of fission fragments produced in 208Pb(18O ,f )

    NASA Astrophysics Data System (ADS)

    Banerjee, P.; Ganguly, S.; Pradhan, M. K.; Moin Shaikh, Md.; Sharma, H. P.; Chakraborty, S.; Palit, R.; Pillay, R. G.; Nanal, V.; Saha, S.; Sethi, J.; Biswas, D. C.

    2015-08-01

    Prompt gamma-ray spectroscopy of fission fragments produced in the heavy-ion induced fusion-fission reaction 208Pb(18O,f ) at E =90 MeV has been performed. The relative isotopic yields of the fission fragments and the fragment mass distribution have been studied. Structures in the mass distribution have been discussed in the light of earlier results. Relative yields of several odd-A isotopes of Mo, Ru, Pd, and Cd and the odd-A isotones with N =62 and 64 have been studied along with the yields of the neighboring even-Z , even-N fragments and correlated to nuclear structural effects. The average total neutron multiplicity during fission has been measured to be 5.48 ±0.59 . The level schemes of the two neutron-rich nuclei 110Pd and 116Cd have been studied from γ -ray triple coincidence data. A large number of transitions, previously reported only from β -decay studies, have been observed in 110Pd for the first time. The yrast band in 116Cd has been extended up to spin (16+). In addition, a rotational sequence built upon an excited 5- state in 116Cd has been observed up to (13-). The level schemes have been discussed in the context of existing results, both experimental and theoretical, in the literature.

  13. Evaluation of the /sup 252/Cf-source-driven neutron noise analysis method for measuring the subcriticality of LWR fuel storage casks

    SciTech Connect

    Mihalczo, J.T.

    1987-11-15

    The /sup 252/Cf-source-driven neutron noise analysis method was evaluated to determine if it could be used to measure the subcriticality of storage casks of burnt LWR fuel submerged in fuel storage pools, fully loaded and as they are being loaded. The motivation for this evaluation was that measurements of k/sub eff/ would provide the parameter most directly related to the criticality safety of storage cask configurations of LWR fuel and could allow proper credit for fuel burnup without reliance on calculations. This in turn could lead to more cost-effective cask designs. Evaluation of the method for this application was based on (1) experiments already completed at a critical experiments facility using arrays of PWR fuel pins typical of the size of storage cask configurations, (2) the existence of neutron detectors that can function in shipping cask environments, and (3) the ability to construct ionization chambers containing /sup 252/Cf of adequate intensity for these measurements. These three considerations are discussed.

  14. QUALIFICATION OF THE SAVANNAH RIVER SITE 252CF SHUFFLER FOR RECEIPT VERIFICATION MEASUREMENTS OF MIXED U-PU OXIDES STORED IN 9975 SHIPPING CONTAINERS

    SciTech Connect

    Dubose, F.

    2011-05-26

    To extend their ability to perform accountability and verification measurements of {sup 235}U in a U-Pu oxide matrix, the K-Area Material Storage facility commissioned the development and construction of a Passive/Active {sup 252}Cf Shuffler. A series of {sup 252}Cf, PuO{sub 2}, and U-Pu oxide standards, in addition to a single U{sub 3}O{sub 8} standard, were measured to characterize and calibrate the shuffler. Accompanying these measurements were simulations using MCNP5/MCNPX, aimed at isolating the neutron countrate contributions for each of the isotopes present. Two calibration methods for determining the {sup 235}U content in mixed UPu oxide were then developed, yielding comparable results. The first determines the {sup 235}U mass by estimating the {sup 239}Pu/{sup 235}U ratio-dependent contributions from the primary delayed neutron contributors. The second defines an average linear response based on the {sup 235}U and {sup 239}Pu mass contents. In each case, it was observed that self-shielding due to {sup 235}U mass has a large influence on the observed rates, requiring bounds on the applicable limits of each calibration method.

  15. Total prompt γ-ray emission in fission

    NASA Astrophysics Data System (ADS)

    Wu, C. Y.; Chyzh, A.; Kwan, E.; Henserson, R. A.; Bredeweg, T. A.; Haight, R. C.; Hayes-Sterbenz, A. C.; Lee, H. Y.; O'Donnell, J. M.; Ullmann, J. L.

    2016-06-01

    The total prompt γ-ray energy distributions for the neutron-induced fission of 235U, 239,241Pu at incident neutron energy of 0.025 eV ‒ 100 keV, and the spontaneous fission of 252Cf were measured using the Detector for Advanced Neutron Capture Experiments (DANCE) array in coincidence with the detection of fission fragments by a parallel-plate avalanche counter. DANCE is a highly segmented, highly efficient 4π γ-ray calorimeter. Corrections were made to the measured distribution by unfolding the two-dimension spectrum of total γ-ray energy vs multiplicity using a simulated DANCE response matrix. The mean values of the total prompt γ-ray energy, determined from the unfolded distributions, are ~ 20% higher than those derived from measurements using single γ-ray detector for all the fissile nuclei studied. This raises serious concern on the validity of the mean total prompt γ-ray energy obtained from the product of mean values for both prompt γ-ray energy and multiplicity.

  16. New fission fragment distributions and r-process origin of the rare-earth elements.

    PubMed

    Goriely, S; Sida, J-L; Lemaître, J-F; Panebianco, S; Dubray, N; Hilaire, S; Bauswein, A; Janka, H-T

    2013-12-13

    Neutron star (NS) merger ejecta offer a viable site for the production of heavy r-process elements with nuclear mass numbers A≳140. The crucial role of fission recycling is responsible for the robustness of this site against many astrophysical uncertainties, but calculations sensitively depend on nuclear physics. In particular, the fission fragment yields determine the creation of 110≲A≲170 nuclei. Here, we apply a new scission-point model, called SPY, to derive the fission fragment distribution (FFD) of all relevant neutron-rich, fissioning nuclei. The model predicts a doubly asymmetric FFD in the abundant A≃278 mass region that is responsible for the final recycling of the fissioning material. Using ejecta conditions based on relativistic NS merger calculations, we show that this specific FFD leads to a production of the A≃165 rare-earth peak that is nicely compatible with the abundance patterns in the Sun and metal-poor stars. This new finding further strengthens the case of NS mergers as possible dominant origin of r nuclei with A≳140.

  17. Calculated fission-fragment yield systematics in the region 74 <=Z <= 94 and 90 <=N <= 150

    DOE PAGES

    Möller, Peter; Randrup, Jørgen

    2015-04-01

    Background: In the seminal experiment by Schmidt et al. [Nucl. Phys. A 665, 221 (2000)] in which fission-fragment charge distributions were obtained for 70 nuclides, asymmetric distributions were seen above nucleon number A ≈ 226 and symmetric ones below. Because asymmetric fission had often loosely been explained as a preference for the nucleus to always exploit the extra binding of fragments near ¹³²Sn it was assumed that all systems below A ≈ 226 would fission symmetrically because available isotopes do not have a proton-to-neutron Z/N ratio that allows division into fragments near ¹³²Sn. But the finding by Andreyev et al.more » [Phys. Rev. Lett. 105, 252502 (2010)] did not conform to this expectation because the compound system ¹⁸⁰Hg was shown to fission asymmetrically. It was suggested that this was a new type of asymmetric fission, because no strong shell effects occur for any possible fragment division. Purpose: We calculate a reference database for fission-fragment mass yields for a large region of the nuclear chart comprising 987 nuclides. A particular aim is to establish whether ¹⁸⁰Hg is part of a contiguous region of asymmetric fission, and if so, its extent, or if not, in contrast to the actinides, there are scattered smaller groups of nuclei that fission asymmetrically in this area of the nuclear chart. Methods: We use the by now well benchmarked Brownian shape-motion method and perform random walks on the previously calculated five-dimensional potential-energy surfaces. The calculated shell corrections are damped out with energy according to a prescription developed earlier. Results: We have obtained a theoretical reference database of fission-fragment mass yields for 987 nuclides. These results show an extended region of asymmetric fission with approximate extension 74 ≤ Z ≤ 85 and 100 ≤ N ≤ 120. The calculated yields are highly variable. We show 20 representative plots of these variable features and summarize the main

  18. Calculated fission-fragment yield systematics in the region 74 <=Z <= 94 and 90 <=N <= 150

    SciTech Connect

    Möller, Peter; Randrup, Jørgen

    2015-04-01

    Background: In the seminal experiment by Schmidt et al. [Nucl. Phys. A 665, 221 (2000)] in which fission-fragment charge distributions were obtained for 70 nuclides, asymmetric distributions were seen above nucleon number A ≈ 226 and symmetric ones below. Because asymmetric fission had often loosely been explained as a preference for the nucleus to always exploit the extra binding of fragments near ¹³²Sn it was assumed that all systems below A ≈ 226 would fission symmetrically because available isotopes do not have a proton-to-neutron Z/N ratio that allows division into fragments near ¹³²Sn. But the finding by Andreyev et al. [Phys. Rev. Lett. 105, 252502 (2010)] did not conform to this expectation because the compound system ¹⁸⁰Hg was shown to fission asymmetrically. It was suggested that this was a new type of asymmetric fission, because no strong shell effects occur for any possible fragment division. Purpose: We calculate a reference database for fission-fragment mass yields for a large region of the nuclear chart comprising 987 nuclides. A particular aim is to establish whether ¹⁸⁰Hg is part of a contiguous region of asymmetric fission, and if so, its extent, or if not, in contrast to the actinides, there are scattered smaller groups of nuclei that fission asymmetrically in this area of the nuclear chart. Methods: We use the by now well benchmarked Brownian shape-motion method and perform random walks on the previously calculated five-dimensional potential-energy surfaces. The calculated shell corrections are damped out with energy according to a prescription developed earlier. Results: We have obtained a theoretical reference database of fission-fragment mass yields for 987 nuclides. These results show an extended region of asymmetric fission with approximate extension 74 ≤ Z ≤ 85 and 100 ≤ N ≤ 120. The calculated yields are highly variable. We show 20 representative plots of these variable features and summarize the

  19. Mass yields and kinetic energy of fragments from fission of highly-excited nuclei with A≲220

    NASA Astrophysics Data System (ADS)

    Denisov, V. Yu.; Margitych, T. O.; Sedykh, I. Yu.

    2017-02-01

    It is shown that the potential energy surface of the two separated fragments has the saddle point, which takes place at small distance between the surfaces of well-deformed fragments. The height of this two-body saddle point is larger than the height of one-body fission barrier for nuclei with A ≲ 220. The mass yields of the fission fragments, which are appearing at the fission of nuclei with A ≲ 220, are related to the number of states of the two-fragment systems at the two-body saddle points. The characteristics of kinetic energy of fragments are described by using the trajectory motion equations with the dissipation terms. The Gaussian distribution of the final kinetic energy around the classical value of this energy induced by the stochastic fluctuations is taken into account at an evaluation of the total kinetic energy distributions of the fission fragments.

  20. Feasibility of Traveling Wave Direct Energy Conversion of Fission Reaction Fragments

    NASA Technical Reports Server (NTRS)

    Tarditi, A. G.; George, J. A.; Miley, G. H.; Scott, J. H.

    2013-01-01

    Fission fragment direct energy conversion has been considered in the past for the purpose of increasing nuclear power plant efficiency and for advanced space propulsion. Since the fragments carry electric charge (typically in the order of 20 e) and have 100 MeV-range kinetic energy, techniques utilizing very high-voltage DC electrodes have been considered. This study is focused on a different approach: the kinetic energy of the charged fission fragments is converted into alternating current by means of a traveling wave coupling scheme (Traveling Wave Direct Energy Converter, TWDEC), thereby not requiring the utilization of high voltage technology. A preliminary feasibility analysis of the concept is introduced based on a conceptual level study and on a particle simulation model of the beam dynamics.

  1. Basic results of investigations of scission neutrons in nuclear fission at low excitation energies

    SciTech Connect

    Petrov, G. A. Gagarski, A. M.; Guseva, I. S.; Sokolov, V. E.; Val'ski, G. V.; Vorobiev, A. S.; Krinitcin, D. O.; Shcherbakov, O. A.; Nikolaev, D. V.; Pleva, Yu. S.; Petrova, V. I.; Zavarukhina, T. A.

    2008-07-15

    To estimate the main characteristics of neutrons emitted shortly before the scission of a fissioning nucleus, various experiments sensitive to the presence of these scission neutrons in thermal-neutron-induced fission of {sup 235}U and spontaneous fission of {sup 252}Cf were performed. The results of the experiments were analyzed within theoretical calculations allowing for various possible neutron-emission mechanisms, including the possibility of the emergence of neutrons from the scission of a nucleus.

  2. Experimental Constraints on Neutrino Spectra Following Fission

    NASA Astrophysics Data System (ADS)

    Napolitano, Jim; Daya Bay Collaboration

    2016-09-01

    We discuss new initiatives to constrain predictions of fission neutrino spectra from nuclear reactors. These predictions are germane to the understanding of reactor flux anomalies; are needed to reduce systematic uncertainty in neutrino oscillation spectra; and inform searches for the diffuse supernova neutrino background. The initiatives include a search for very high- Q beta decay components to the neutrino spectrum from the Daya Bay power plant; plans for a measurement of the β- spectrum from 252Cf fission products; and precision measurements of the 235U fission neutrino spectrum from PROSPECT and other very short baseline reactor experiments.

  3. Impact of low-energy photons on the characteristics of prompt fission γ -ray spectra

    NASA Astrophysics Data System (ADS)

    Oberstedt, A.; Billnert, R.; Hambsch, F.-J.; Oberstedt, S.

    2015-07-01

    In this paper we report on a new study of prompt γ -rays from the spontaneous fission of 252Cf . Photons were measured in coincidence with fission fragments by employing four different lanthanide halide scintillation detectors. Together with results from a previous work of ours, we determined characteristic parameters with high precision, such as the average γ -ray multiplicity ν¯γ=(8.29 ±0.13 ), the average energy per photon ɛγ=(0.80 ±0.02 ) MeV, and the total γ -ray energy release per fission Eγ ,tot=(6.65 ±0.10 ) MeV. The excellent agreement between the individual results obtained in all six measurements proves the good repeatability of the applied experimental technique. The impact of low-energy photons, i.e., below 500 keV, on prompt fission γ -ray spectra characteristics has been investigated as well by comparing our results with those taken with the DANCE detector system, which appears to suffer from absorption effects in the low-energy region. Correction factors for this effect were estimated, giving results comparable to ours as well as to historical ones. From this we demonstrate that the different techniques of determining the average γ -ray multiplicity, either from a properly measured and normalized spectrum or a measured multiplicity distribution, give equivalent and consistent results.

  4. Fission fragment mass distributions in 35Cl+Sm,154144 reactions

    NASA Astrophysics Data System (ADS)

    Tripathi, R.; Sodaye, S.; Sudarshan, K.; Nayak, B. K.; Jhingan, A.; Pujari, P. K.; Mahata, K.; Santra, S.; Saxena, A.; Mirgule, E. T.; Thomas, R. G.

    2015-08-01

    Background: A new type of asymmetric fission was observed in β -delayed fission of 180Tl [Phys. Rev. Lett. 105, 252502 (2010), 10.1103/PhysRevLett.105.252502] as symmetric mass distribution would be expected based on conventional shell effects leading to the formation of N =50 fragments. Following this observation, theoretical calculations were carried out which predict asymmetric mass distribution for several mercury isotopes around mass region of ˜180 at low and moderate excitation energies [Moller, Randrup, and Sierk, Phys. Rev. C 85, 024306 (2012), 10.1103/PhysRevC.85.024306; Andreev, Adamian, and Antonenko, Phys. Rev. C 86, 044315 (2012), 10.1103/PhysRevC.86.044315]. Studies on fission fragment mass distribution are required in this mass region to investigate this newly observed phenomenon. Purpose: The fission fragment mass distributions have been measured in 35Cl+Sm,154144 reactions at Elab=152.5 ,156.1 ,and 163.7 MeV populating compound nuclei in the mass region of ˜180 with variable excitation energy and neutron number to investigate the nature of mass distribution. Method: The fission fragment mass distribution has been obtained by measuring the "time of flight (TOF)" of fragments with respect to the beam pulse using two multiwire proportional counters placed at θlab=±65 .5∘ with respect to the beam direction. From the TOF of fragments, their velocities were determined, which were used to obtain mass distribution taking the compound nucleus as the fissioning system. Results: For both systems, mass distributions, although, appear to be symmetric, could not be fitted well by a single Gaussian. The deviation from a single Gaussian fit is more pronounced for the 35Cl+144Sm reaction. A clear flat top mass distribution has been observed for the 35Cl+144Sm reaction at the lowest beam energy. The mass distribution is very similar to that observed in the 40Ca+142Nd reaction, which populated a similar compound nucleus, but for the pronounced dip in the

  5. Thermal neutron imaging with rare-earth-ion-doped LiCaAlF 6 scintillators and a sealed 252Cf source

    NASA Astrophysics Data System (ADS)

    Kawaguchi, Noriaki; Yanagida, Takayuki; Fujimoto, Yutaka; Yokota, Yuui; Kamada, Kei; Fukuda, Kentaro; Suyama, Toshihisa; Watanabe, Kenichi; Yamazaki, Atsushi; Chani, Valery; Yoshikawa, Akira

    2011-10-01

    Thermal neutron imaging with Ce-doped LiCaAlF 6 crystals has been performed. The prototype of the neutron imager using a Ce-doped LiCaAlF 6 scintillating crystal and a position sensitive photomultiplier tube (PSPMT) which had 64 multi-channel anode was developed. The Ce-doped LiCaAlF 6 single crystal was grown by the Czochralski method. A plate with dimensions of a diameter of 50×2 mm 2 was cut from the grown crystal, polished, and optically coupled to PSPMT by silicone grease. The 252Cf source (<1 MBq) was sealed with 43 mm of polyethylene for neutron thermalization. Alphabet-shaped Cd pieces with a thickness of 2 mm were used as a mask for the thermal neutrons. After corrections for the pedestals and gain of each pixel, we successfully obtained two-dimensional neutron images using Ce-doped LiCaAlF 6.

  6. Three-cluster model for the {alpha}-accompanied fission of californium nuclei

    SciTech Connect

    Manimaran, K.; Balasubramaniam, M.

    2009-02-15

    A three-cluster model is proposed to explain the particle-accompanied binary fission of radioactive nuclei. The model is developed as an extension of the preformed cluster model of Gupta and collaborators. The advantage of this model is that, for a fixed third fragment, we can calculate the fragmentation potential minimized in charge coordinate. For our study we chose the various neutron-deficient to neutron-rich californium nuclei, whose analysis reveals that the closed-shell effect of any one of the fragments in ternary fragmentation presents itself as the most favorable configuration to be observed. As one goes from a neutron-deficient to a neutron-rich californium isotope, the role of the neutron closed shell associated with any one of the preferred fragments changes to that of the proton closed shell, and for very neutron rich isotopes of californium the presence of a double closed shell nucleus enhances the decay probability. The quadrupole deformation of the light fragment (A{sub 2}) associated with the preferred configuration in the symmetric mass region also has a transition from positive to negative deformation as one goes from neutron-deficient to neutron-rich californium isotopes. The calculated relative yields of different fragmentation channels are compared with the available experimental yields for {sup 252}Cf.

  7. Fission fragment charge and mass distributions in 239Pu(n, f ) in the adiabatic nuclear energy density functional theory

    DOE PAGES

    Regnier, D.; Dubray, N.; Schunck, N.; ...

    2016-05-13

    Here, accurate knowledge of fission fragment yields is an essential ingredient of numerous applications ranging from the formation of elements in the r process to fuel cycle optimization for nuclear energy. The need for a predictive theory applicable where no data are available, together with the variety of potential applications, is an incentive to develop a fully microscopic approach to fission dynamics.

  8. Origin of the narrow, single peak in the fission-fragment mass distribution for 258Fm

    SciTech Connect

    Moller, Peter; Ickhikawa, Takatoshi; Iwamoto, Akira

    2008-01-01

    We discuss the origin of the narrowness of the single peak at mass-symmetric division in the fragment mass-yield curve for spontaneous fission of {sup 258}Fm. For this purpose, we employ the macroscopic-microscopic model and calculate a potential-energy curve at the mass-symmetric compact scission configuration, as a function of the fragment mass number, which is obtained from the single-particle wave-function densities. In the calculations, we minimize total energies by varying the deformations of the two fragments, with constraints on the mass quadrupole moment, and by keeping the neck radius zero. The energies thus become functions of mass asymmetry. Using the obtained potential, we solve the one-dimensional Schroedinger equation with a microscopic coordinate-dependent inertial mass to calculate the fragment mass-yield curve. The calculated mass yield, expressed in terms of the microscopic mass density, is consistent with the extremely narrow experimental mass distribution.

  9. Fission-fragment properties in 238U(n ,f ) between 1 and 30 MeV

    NASA Astrophysics Data System (ADS)

    Duke, D. L.; Tovesson, F.; Laptev, A. B.; Mosby, S.; Hambsch, F.-J.; Bryś, T.; Vidali, M.

    2016-11-01

    The fragment mass and kinetic energy in neutron-induced fission of 238U has been measured for incident energies from 1 to 30 MeV at the Los Alamos Neutron Science Center. The change in mass distributions over this energy range were studied, and the transition from highly asymmetric to more symmetric mass distributions is observed. A decrease in average total kinetic energy (TKE ¯) with increasing excitation energy is observed, consistent with previous experimental work. Additional structure at multichance fission thresholds is present in the TKE ¯ data. The correlations between fragment masses and total kinetic energy and how that changes with excitation energy of the fissioning compound nucleus were also measured. The fission mass yields and average total kinetic energy are important for fission-based technologies such as nuclear reactors to understand nuclear waste generation and energy output when developing new and advanced concepts. The correlations between fragment mass and kinetic energy are needed both as input for theoretical calculations of the deexcitation process in fission fragments by prompt radiation emission and for validating advanced theoretical fission models describing the formation of the primordial fragments.

  10. Accurate measurements of fission-fragment yields in 234,235,236,238U(γ,f) with the SOFIA set-up

    NASA Astrophysics Data System (ADS)

    Chatillon, A.; Taïeb, J.; Martin, J.-F.; Pellereau, E.; Boutoux, G.; Gorbinet, T.; Grente, L.; Bélier, G.; Laurent, B.; Alvarez-Pol, H.; Ayyad, Y.; Benlliure, J.; Caamaño, M.; Audouin, L.; Casarejos, E.; Cortina-Gil, D.; Farget, F.; Fernández-Domínguez, B.; Heinz, A.; Jurado, B.; Kelić-Heil, A.; Kurz, N.; Lindberg, S.; Löher, B.; Nociforo, C.; Paradela, C.; Pietri, S.; Ramos, D.; Rodriguez-Sanchez, J.-L.; Rodrìguez-Tajes, C.; Rossi, D.; Schmidt, K.-H.; Simon, H.; Tassan-Got, L.; Törnqvist, H.; Vargas, J.; Voss, B.; Weick, H.; Yan, Y.

    2016-03-01

    SOFIA (Studies On Fission with Aladin) is a new experimental set-up dedicated to accurate measurement of fission-fragments isotopic yields. It is located at GSI, the only place to use inverse kinematics at relativistic energies in order to study the (γ,f) electromagnetic-induced fission. The SOFIA set-up is a large-acceptance magnetic spectrometer, which allows to fully identify both fission fragments in coincidence on the whole fission-fragment range. This paper will report on fission yields obtained in 234,235,236,238U(γ,f) reactions.

  11. Radioactive beams from Californium fission at the CARIBU facility

    NASA Astrophysics Data System (ADS)

    Savard, Guy; Pardo, Richard; Baker, Sam; Davids, Cary; Peterson, Don; Phillips, Don; Vondrasek, Rick; Zabransky, Bruce; Zinkann, Gary

    2009-10-01

    The Californium Rare Ion Breeder Upgrade (CARIBU) of the ATLAS superconducting linac facility aims at providing low energy and reaccelerated neutron-rich radioactive beams to address key nuclear physics and astrophysics questions. These beams are obtained from fission fragments of a 1 Ci ^252Cf source, thermalized and collected into a low-energy particle beam by a helium gas catcher, mass analyzed by an isobar separator, and charge breed to higher charge states for acceleration in ATLAS. The method described is fast and universal and short-lived isotope yield scale essentially with Californium fission yields. Expected intensities of reaccelerated beams are up to ˜5x10^5 (10^7 at low energy) far-from-stability ions per second on target. Initial commissioning is being performed with weaker 2.5 and 80 mCi sources. Commissioning results, together with the nuclear physics and astrophysics program that will be pursued with the neutron-rich beams made available, will be presented. Plans for installation of the 1 Ci source will be discussed.

  12. Fission Fragment Mass Distributions and Total Kinetic Energy Release of 235-Uranium and 238-Uranium in Neutron-Induced Fission at Intermediate and Fast Neutron Energies

    SciTech Connect

    Duke, Dana Lynn

    2015-11-12

    This Ph.D. dissertation describes a measurement of the change in mass distributions and average total kinetic energy (TKE) release with increasing incident neutron energy for fission of 235U and 238U. Although fission was discovered over seventy-five years ago, open questions remain about the physics of the fission process. The energy of the incident neutron, En, changes the division of energy release in the resulting fission fragments, however, the details of energy partitioning remain ambiguous because the nucleus is a many-body quantum system. Creating a full theoretical model is difficult and experimental data to validate existing models are lacking. Additional fission measurements will lead to higher-quality models of the fission process, therefore improving applications such as the development of next-generation nuclear reactors and defense. This work also paves the way for precision experiments such as the Time Projection Chamber (TPC) for fission cross section measurements and the Spectrometer for Ion Determination in Fission (SPIDER) for precision mass yields.

  13. Isomer production ratios and the angular momentum distribution of fission fragments

    NASA Astrophysics Data System (ADS)

    Stetcu, I.; Talou, P.; Kawano, T.; Jandel, M.

    2013-10-01

    Latest generation fission experiments provide an excellent testing ground for theoretical models. In this contribution we compare the measurements for 235U(nth,f), obtained with the Detector for Advanced Neutron Capture Experiments (DANCE) calorimeter at Los Alamos Neutron Science Center (LANSCE), with our full-scale simulation of the primary fragment de-excitation, using the recently developed cgmf code, based on a Monte Carlo implementation of the Hauser-Feshbach theoretical model. We compute the isomer ratios as a function of the initial angular momentum of the fission fragments, for which no direct information exists. Comparison with the available experimental data allows us to determine the initial spin distribution. We also study the dependence of the isomer ratio on the knowledge of the low-lying discrete spectrum input for nuclear fission reactions, finding a high degree of sensitivity. Finally, in the same Hauser-Feshbach approach, we calculate the isomer production ratio for thermal neutron capture on stable isotopes, where the initial conditions (spin, excitation energy, etc.) are well understood. We find that with the current parameters involved in Hauser-Feshbach calculations, we obtain up to a factor of 2 deviation from the measured isomer ratios.

  14. From ground state to fission fragments: A complex, multi-dimensional multi-path problem

    SciTech Connect

    Moeller, P.; Nix, J.R.; Swiatecki, W.J.

    1992-03-01

    Experimental results on the fission properties of nuclei close to {sup 264}Fm show sudden and large changes with a change of only one or two neutrons or protons. The nucleus {sup 258}Fm, for instance, undergoes symmetric fission with a half-life of about 0.4 ms and a kinetic-energy distribution peaked at about 235 MeV whereas {sup 256}Fm undergoes asymmetric fission with a half-life of about 3 h and a kinetic-energy distribution peaked at about 200 MeV. Qualitatively, these sudden changes have been postulated to be due to the emergence of fragment shells in symmetric-fission products close to {sup 132}Sn. Here we present a quantitative calculation that shows where high-kinetic-energy symmetric fusion occurs and why it is associated with a sudden and large decrease in fission half-lives. We base our study on calculations of potential-energy surfaces in the macroscopic-microscopic model and a semi-empirical model for the nuclear inertia. We use the three-quadratic-surface parameterization to generate the shapes for which the potential-energy surfaces are calculated. The use of this parameterization and the use of the finite-range macroscopic model allows for the study of two touching spheres and similar shapes. Since these shapes are thought to correspond to the scission shapes for the high-kinetic-energy events it is of crucial importance that a continuous sequence of shapes leading from the nuclear ground state to these configurations can be studied within the framework of the model. We present the results of the calculations in terms of potential-energy surfaces and fission half-lives for heavy even nuclei. The surfaces are displayed in the form of contour diagrams as functions of two moments of the shape. They clearly show the appearance of a second fission valley, which leads to scission configurations close to tow touching spheres, for fissioning systems in the vicinity of {sup 264}Fm.

  15. From ground state to fission fragments: A complex, multi-dimensional multi-path problem

    SciTech Connect

    Moeller, P. ); Nix, J.R. ); Swiatecki, W.J. )

    1992-01-01

    Experimental results on the fission properties of nuclei close to {sup 264}Fm show sudden and large changes with a change of only one or two neutrons or protons. The nucleus {sup 258}Fm, for instance, undergoes symmetric fission with a half-life of about 0.4 ms and a kinetic-energy distribution peaked at about 235 MeV whereas {sup 256}Fm undergoes asymmetric fission with a half-life of about 3 h and a kinetic-energy distribution peaked at about 200 MeV. Qualitatively, these sudden changes have been postulated to be due to the emergence of fragment shells in symmetric-fission products close to {sup 132}Sn. Here we present a quantitative calculation that shows where high-kinetic-energy symmetric fusion occurs and why it is associated with a sudden and large decrease in fission half-lives. We base our study on calculations of potential-energy surfaces in the macroscopic-microscopic model and a semi-empirical model for the nuclear inertia. We use the three-quadratic-surface parameterization to generate the shapes for which the potential-energy surfaces are calculated. The use of this parameterization and the use of the finite-range macroscopic model allows for the study of two touching spheres and similar shapes. Since these shapes are thought to correspond to the scission shapes for the high-kinetic-energy events it is of crucial importance that a continuous sequence of shapes leading from the nuclear ground state to these configurations can be studied within the framework of the model. We present the results of the calculations in terms of potential-energy surfaces and fission half-lives for heavy even nuclei. The surfaces are displayed in the form of contour diagrams as functions of two moments of the shape. They clearly show the appearance of a second fission valley, which leads to scission configurations close to tow touching spheres, for fissioning systems in the vicinity of {sup 264}Fm.

  16. The electron Boltzmann equation in a plasma generated by fission fragments

    NASA Technical Reports Server (NTRS)

    Hassan, H. A.; Deese, J. E.

    1976-01-01

    A Boltzmann equation formulation is presented for the determination of the electron distribution function in a plasma generated by fission fragments. The formulation takes into consideration ambipolar diffusion, elastic and inelastic collisions, recombination and ionization, and allows for the fact that the primary electrons are not monoenergetic. Calculations for He in a tube coated with fissionable material show that, over a wide pressure and neutron flux range, the distribution function is non-Maxwellian, but the electrons are essentially thermal. Moreover, about a third of the energy of the primary electrons is transferred into the inelastic levels of He. This fraction of energy transfer is almost independent of pressure and neutron flux but increases sharply in the presence of a sustainer electric field.

  17. Simultaneous measurement of (n,γ) and (n,fission) cross sections with the DANCE array

    NASA Astrophysics Data System (ADS)

    Bredeweg, T. A.; Jandel, M.; Fowler, M. M.; Bond, E. M.; O'Donnell, J. M.; Reifarth, R.; Rundberg, R. S.; Ullmann, J. L.; Vieira, D. J.; Wilhelmy, J. B.; Wouters, J. M.; Macri, R. A.; Wu, C. Y.; Becker, J. A.

    2006-10-01

    We have recently begun a program of high precision measurements of the key production and destruction reactions of important radiochemical diagnostic isotopes, including several isotopes of uranium, plutonium and americium. The Detector for Advanced Neutron Capture Experiments (DANCE), a 4π BaF2 array located at the Los Alamos Neutron Science Center, will be used to measure the neutron capture cross sections for most of the isotopes of interest. Since neutron capture measurements on many of the actinides are complicated by the presence of γ-rays arising from low-energy neutron-induced fission, we are currently using a dual parallel-plate avalanche counter with the target material electro-deposited directly on the center cathode foil. This design provides a high efficiency for detecting fission fragments and allows loading of pre-assembled target/detector assemblies into the neutron beam line at DANCE. An outline of the current experimental program will be presented as well as results from measurements on ^235U and ^252Cf that utilized the fission-tag detector.

  18. Dynamical interpretation of average fission-fragment kinetic energy systematics and nuclear scission

    SciTech Connect

    Nadtochy, P.N.; Adeev, G.D.

    2005-11-01

    A dynamical interpretation of the well-known systematics for average total kinetic energy of fission fragments over a wide range of the Coulomb parameter (600fission theory--at zero neck radius and at finite neck radius--have been applied in dynamical calculations. Both have resulted in a fairly good description of the dependence of on the Coulomb parameter. The results of dynamical calculations of within three-dimensional Langevin dynamics show that the mean distance between the centers of mass of nascent fragments at the scission configuration increases linearly with the parameter Z{sup 2}/A{sup 1/3}. This distance changes approximately from 2.35R{sub 0} for {sup 119}Xe to 2.6R{sub 0} for {sup 256}Fm. In spite of this increase in mean distance between future fragments at scission, the linear dependence of on the parameter Z{sup 2}/A{sup 1/3} remains approximately valid over a wide range of the Coulomb parameter Z{sup 2}/A{sup 1/3}.

  19. Fissible Deposit Characterization at the Former Oak Ridge K-25 Gaseous Diffusion Plant by {sup 252}CF-Source-Driven Measurements

    SciTech Connect

    Hannon, T.F.; Mihalczo, J.T.; Mullens, J.A.; Uckan, T.; Valentine, T.E.; Wyatt, M.S.

    1998-05-01

    largest deposits with the {sup 252}Cf-source-driven transmission (CFSDT) technique, an active neutron interrogation method developed for use at the Oak Ridge Y-12 Plant to identify nuclear weapons components in containers. The active CFSDT measurement technique uses CFSDT time-of-flight measurements of prompt neutrons and gamma rays from an externally introduced {sup 252}Cf source.

  20. Determination of Nuclear Charge Distributions of Fission Fragments from ^{235}U (n_th, f) with Calorimetric Low Temperature Detectors

    NASA Astrophysics Data System (ADS)

    Grabitz, P.; Andrianov, V.; Bishop, S.; Blanc, A.; Dubey, S.; Echler, A.; Egelhof, P.; Faust, H.; Gönnenwein, F.; Gomez-Guzman, J. M.; Köster, U.; Kraft-Bermuth, S.; Mutterer, M.; Scholz, P.; Stolte, S.

    2016-08-01

    Calorimetric low temperature detectors (CLTD's) for heavy-ion detection have been combined with the LOHENGRIN recoil separator at the ILL Grenoble for the determination of nuclear charge distributions of fission fragments produced by thermal neutron-induced fission of ^{235}U. The LOHENGRIN spectrometer separates fission fragments according to their mass-to-ionic-charge ratio and their kinetic energy, but has no selectivity with respect to nuclear charges Z. For the separation of the nuclear charges, one can exploit the nuclear charge-dependent energy loss of the fragments passing through an energy degrader foil (absorber method). This separation requires detector systems with high energy resolution and negligible pulse height defect, as well as degrader foils which are optimized with respect to thickness, homogeneity, and energy loss straggling. In the present, contribution results of test measurements at the Maier Leibnitz tandem accelerator facility in Munich with ^{109}Ag and ^{127}I beams with the aim to determine the most suitable degrader material, as well as measurements at the Institut Laue-Langevin will be presented. These include a systematic study of the quality of Z-separation of fission fragments in the mass range 82le A le 132 and a systematic measurement of ^{92}Rb fission yields, as well as investigations of fission yields toward the symmetry region.

  1. Simultaneous measurement of (n, γ) and (n, fission) cross sections with the DANCE 4π BaF 2 array

    NASA Astrophysics Data System (ADS)

    Bredeweg, T. A.; Fowler, M. M.; Becker, J. A.; Bond, E. M.; Chadwick, M. B.; Clement, R. R. C.; Esch, E.-I.; Ethvignot, T.; Granier, T.; Jandel, M.; Macri, R. A.; O'Donnell, J. M.; Reifarth, R.; Rundberg, R. S.; Ullmann, J. L.; Vieira, D. J.; Wilhelmy, J. B.; Wouters, J. M.; Wu, C. Y.

    2007-08-01

    We have recently begun a program of high precision measurements of the key production and destruction reactions of important radiochemical diagnostic isotopes, including several isotopes of uranium, plutonium and americium. The detector for advanced neutron capture experiments (DANCE), a 4π BaF2 array located at the Los Alamos Neutron Science Center, will be used to measure the neutron capture cross sections for most of the isotopes of interest. However, neutron capture measurements on many of the actinides are complicated by the presence of prompt γ-rays arising from low energy neutron-induced fission, which competes with neutron capture to varying degrees. Previous measurements of 235U using the DANCE array have shown that we can partially resolve capture from fission events based on total γ-ray calorimetry (i.e. total γ-ray energy versus γ-ray multiplicity). The addition of a dedicated fission-tagging detector to the DANCE array has greatly improved our ability to separate these two competing processes. In addition to higher quality neutron capture data, the addition of a fission-tagging detector offers a means to determine the capture-to-fission ratio (σγ/σf) in a single measurement, which should reduce the effect of systematic uncertainties. We are currently using a dual parallel-plate avalanche counter (PPAC) with the target material electro-deposited directly on the center cathode foil. This design provides a high efficiency for detecting fission fragments and allows loading of pre-assembled target/detector assemblies into the neutron beam line at DANCE. Results from tests of the fission-tag detector, as well as preliminary results from measurements on 235U and 252Cf that utilized the fission-tag detector will be presented.

  2. Stochastic model of angular distributions of fragments originating from the fission of excited compound nuclei

    SciTech Connect

    Hiryanov, R. M.; Karpov, A. V.; Adeev, G. D.

    2008-08-15

    The anisotropy of angular distributions of fission fragments and the average multiplicity of prescission neutrons were calculated within a stochastic approach to fission dynamics on the basis of three-dimensional Langevin equations. This approach was combined with a Monte Carlo algorithm for the degree of freedom K (projection of the total angular momentum I onto the fission axis). The relaxation time {tau}{sub K} in the coordinate K was considered as a free parameter of the model; it was estimated on the basis of a fit to experimental data on the anisotropy of angular distributions. Specifically, the relaxation time {tau}{sub K} was estimated at 2 x 10{sup -21} s for the compound nuclei {sup 224}Th and {sup 225}Pa and at 4 x 10{sup -21} s for the heavier nuclei {sup 248}Cf, {sup 254}Fm, and {sup 264}Rf. The potential energy was calculated on the basis of the liquid-drop model with allowance for finiteness of the range of nuclear forces and for the diffuseness of the nuclear surface. A modified one-body viscosity mechanism featuring a coefficient k{sub s} that takes into account the reduction of the contribution from the wall formula was used to describe collective-energy dissipation. The coefficient k{sub s} was also treated as a free parameter and was estimated at 0.5 on the basis of a fit to experimental data on the average prescission multiplicity of neutrons.

  3. A probe for neutron activation analysis in a drill hole using 252Cf, and a Ge(Li) detector cooled by a melting cryogen

    USGS Publications Warehouse

    Tanner, A.B.; Moxham, R.M.; Senftle, F.E.; Baicker, J.A.

    1972-01-01

    A sonde has been built for high-resolution measurement of natural or neutron-induced gamma rays in boreholes. The sonde is 7.3 cm in diameter and about 2.2 m in length and weighs about 16 kg. The lithium-compensated germanium semiconductor detector is stabilized at -185 to -188??C for as much as ten hours by a cryostatic reservoir containing melting propane. During periods when the sonde is not in use the propane is kept frozen by a gravity-fed trickle of liquid nitrogen from a reservoir temporarily attached to the cryostat section. A 252Cf source, shielded from the detector, may be placed in the bottom section of the sonde for anlysis by measurement of neutron-activation or neutron-capture gamma rays. Stability of the cryostat with changing hydrostatic pressure, absence of vibration, lack of need for power to the cryostat during operation, and freedom of orientation make the method desirable for borehole, undersea, space, and some laboratory applications. ?? 1972.

  4. TPC tracking software for NIFFTE: the Neutron Induced Fission Fragment Tracking Experiment

    NASA Astrophysics Data System (ADS)

    Kudo, Ryuho; Klay, J. L.

    2008-10-01

    Ever since the scientific community started analyzing and filtering data using computers, programming has become a crucial part for the success of many projects. The NIFFTE Collaboration, which is building a Time Projection Chamber (TPC) to study neutron-induced fission of the major actinides, naturally requires a comprehensive software framework to analyze the high volume of data it will collect. Following the traditional TPC reconstruction model, we have written a set of offline analysis algorithms to reconstruct tracks left by the fission fragments in the TPC and determine their (A,Z). We accomplish this by organizing the raw TPC voxel data into 2 dimensional planes, performing cluster and hit-finding within those planes and then connecting the hits to create 3-D tracks. Finally, track fitting and error correction are performed and the fragment A,Z are determined from the distribution of specific ionization along the track. Since one of the goals of this project is to create a re-usable library of TPC reconstruction code that can be adapted to other TPC projects, the software uses open source tools and is built as an object-oriented package in C++. This poster will present the current status of the TPC reconstruction algorithms and discuss the motivations behind our specific programming choices.

  5. Investigation of fine-structure dips in fission-fragment mass distribution: An asymmetric two centre shell model approach

    NASA Astrophysics Data System (ADS)

    Malik, Sham S.

    2017-04-01

    The fission fragment mass distribution followed by neutron emission is studied for the 208Pb (18O , f) reaction using the asymmetric two centre shell model. The measured mass distribution spectrum reveals new kind of systematics on shell structure and leads to an improved understanding of structure effects in nuclear fission. A detailed investigation of shell effects both in potential and cranking mass parameter has been carried out for explaining the observed fine structure dips (i.e., less probable distributions) corresponding to shell closure (Z = 50 and/or N = 82) of fission fragments and their complementary partners. The available energy states for the decay process are obtained by solving the Schrödinger equation and found that first-five eigenstates are sufficient in reproducing the observed mass distribution spectrum. An outcome of the asymmetric two centre shell model also completely favours the observed claim that ;the total number of emitted neutrons between correlated pairs of fission fragments should not exceed 6;. A complete observed spectrum is obtained by adding the mass distribution yields of all 6-neutron emission channels. This suggests a possible importance of extending these calculations to get new insight into an understanding of the dynamical behaviour of fragment formation in the fission process.

  6. Evolution of uranium fission-fragment charge yields with neutron number. Strong effect of multi-chance fission on yield asymmetries

    NASA Astrophysics Data System (ADS)

    Möller, Peter; Schmitt, Christelle

    2017-01-01

    We use the Brownian shape-motion model, with its recent extensions, which allow modeling of odd-even staggering, to calculate the evolution of fission-fragment charge distributions with neutron number for the compound-system sequence 234U, 236U, 238U, and 240U. We compare to experimental data where available, for neutron- and electromagnetic-induced fission over a compound-nucleus excitation energy range from about 6 to 20 MeV. A notable result of the study is that the evolution of the location of the peak charge yield from Z=54 in 234U towards Z=52 in heavier isotopes, seen in the experimental data, is present also in the calculated yields. We further show that to describe yields at higher compound-nucleus excitation energies, then, already at 20 MeV, it is necessary to take multi-chance fission into account.

  7. Dynamical simulation of the fission process and anisotropy of the fission fragment angular distributions of excited nuclei produced in fusion reactions

    NASA Astrophysics Data System (ADS)

    Eslamizadeh, H.

    2016-10-01

    Abstract. A stochastic approach based on four-dimensional Langevin equations was applied to calculate the anisotropy of fission fragment angular distributions, average prescission neutron multiplicity, and the fission probability in a wide range of fissile parameters for the compound nuclei 197Tl,225Pa,248Cf , and 264Rf produced in fusion reactions. Three collective shape coordinates plus the projection of total spin of the compound nucleus to the symmetry axis K were considered in the four-dimensional dynamical model. In the dynamical calculations, nuclear dissipation was generated through the chaos-weighted wall and window friction formula. Furthermore, in the dynamical calculations the dissipation coefficient of K ,γk was considered as a free parameter, and its magnitude inferred by fitting measured data on the anisotropy of fission fragment angular distributions for the compound nuclei 197Tl,225Pa,248Cf , and 264Rf. Comparison of the calculated results for the anisotropy of fission fragment angular distributions with the experimental data showed that the results of the calculations are in good agreement with the experimental data by using values of the dissipation coefficient of K equal to (0.185-0.205), (0.175-0.192), (0.077-0.090), and (0.075-0.085) (MeVzs ) -1 /2 for the compound nuclei 197Tl,225Pa,248Cf , and 264Rf, respectively. It was also shown that the influence of the dissipation coefficient of K on the results of the calculations of the prescission neutron multiplicity and fission probability is small.

  8. Concept Assessment of a Fission Fragment Rocket Engine (FFRE) Propelled Spacecraft

    NASA Technical Reports Server (NTRS)

    Werka, Robert; Clark, Rod; Sheldon, Rob; Percy, Tom

    2012-01-01

    The March, 2012 issue of Aerospace America stated that ?the near-to-medium prospects for applying advanced propulsion to create a new era of space exploration are not very good. In the current world, we operate to the Moon by climbing aboard a Carnival Cruise Lines vessel (Saturn 5), sail from the harbor (liftoff) shedding whole decks of the ship (staging) along the way and, having reached the return leg of the journey, sink the ship (burnout) and return home in a lifeboat (Apollo capsule). Clearly this is an illogical way to travel, but forced on Explorers by today's propulsion technology. However, the article neglected to consider the one propulsion technology, using today's physical principles that offer continuous, substantial thrust at a theoretical specific impulse of 1,000,000 sec. This engine unequivocally can create a new era of space exploration that changes the way spacecraft operate. Today's space Explorers could travel in Cruise Liner fashion using the technology not considered by Aerospace America, the novel Dusty Plasma Fission Fragment Rocket Engine (FFRE). This NIAC study addresses the FFRE as well as its impact on Exploration Spacecraft design and operation. It uses common physics of the relativistic speed of fission fragments to produce thrust. It radiatively cools the fissioning dusty core and magnetically controls the fragments direction to practically implement previously patented, but unworkable designs. The spacecraft hosting this engine is no more complex nor more massive than the International Space Station (ISS) and would employ the successful ISS technology for assembly and check-out. The elements can be lifted in "chunks" by a Heavy Lift Launcher. This Exploration Spacecraft would require the resupply of small amounts of nuclear fuel for each journey and would be an in-space asset for decades just as any Cruise Liner on Earth. This study has synthesized versions of the FFRE, integrated one concept onto a host spacecraft designed for

  9. Relative biological efficiency for the induction of various gene mutations in normal and enriched with 10B Tradescantia cells by neutrons from 252Cf source.

    PubMed

    Cebulska-Wasilewska, A; Schneider, K; Kim, J K

    2001-03-01

    The effectiveness of neutrons from a Californium-252 source in the induction of various abnormalities in the Tradescantia clone 4430 stamen hair cells (Trad-SH assay) were studied. A special attention was paid to check whether any enhancement in effects is visible in the cells enriched with boron ions. Inflorescences, normal or pretreated with chemicals containing boron, were irradiated in the air with neutrons from a 252Cf source at KAERI, Taejon, Korea. To estimate the relative biological effectiveness (RBE) of the beam under the study, numbers of Tradescantia inflorescence without chemical pretreatment were irradiated with various doses of X-rays. The ranges of radiation doses used for neutrons were 0-1.0Gy and for X-rays 0-0.5Gy. Following the culturing according to standard procedures screening of gene and lethal mutations in somatic cells of stamen hairs was done in the extended period, between days 7 and 19 after exposures. Maximal RBE values for the induction of pink, colorless and lethal mutations were evaluated from comparison of the slopes in linear parts of the dose response curves obtained after irradiation with X-rays and californium source. The RBE(max) value or the induction of gene mutation was estimated as 7.2 comparing the value 5.6 in the studies reported earlier. The comparison of dose-response curves and its alteration, due to changes in the cells and plants environment during and after irradiation, explains the observed differences. Inflorescence pretreated with borax responded to neutrons differently depending on the biological end points. Although, for the induction of pink mutations no significant difference was observed, though, in the case of cell lethality, pretreated with boron ion plants have shoved a statistically significant increase of the RBE value from 5.5 to 34.7, and in the case of colorless mutations from 1.6 to 5.6.

  10. Fission fragments mass distributions of nuclei populated by the multinucleon transfer channels of the 18O + 232Th reaction

    NASA Astrophysics Data System (ADS)

    Léguillon, R.; Nishio, K.; Hirose, K.; Makii, H.; Nishinaka, I.; Orlandi, R.; Tsukada, K.; Smallcombe, J.; Chiba, S.; Aritomo, Y.; Ohtsuki, T.; Tatsuzawa, R.; Takaki, N.; Tamura, N.; Goto, S.; Tsekhanovich, I.; Petrache, C. M.; Andreyev, A. N.

    2016-10-01

    It is shown that the multinucleon transfer reactions is a powerful tool to study fission of exotic neutron-rich actinide nuclei, which cannot be accessed by particle-capture or heavy-ion fusion reactions. In this work, multinucleon transfer channels of the 18O + 232Th reaction are used to study fission of fourteen nuclei 231,232,233,234Th, 232,233,234,235,236Pa, and 234,235,236,237,238U. Identification of fissioning nuclei and of their excitation energy is performed on an event-by-event basis, through the measurement of outgoing ejectile particle in coincidence with fission fragments. Fission fragment mass distributions are measured for each transfer channel, in selected bins of excitation energy. In particular, the mass distributions of 231,234Th and 234,235,236Pa are measured for the first time. Predominantly asymmetric fission is observed at low excitation energies for all studied cases, with a gradual increase of the symmetric mode towards higher excitation energy. The experimental distributions are found to be in general agreement with predictions of the fluctuation-dissipation model.

  11. Fragment Angular Distributions in Neutron-Induced Fission of {sup 235}U and {sup 239}Pu using a Time Projection Chamber

    SciTech Connect

    Kleinrath, Verena

    2015-07-01

    Fission fragment angular distributions can lend insights into fission barrier shapes and level densities at the scission point, both important for fission theory development. Fragment emission anisotropies are also valuable for precision cross section ratio measurements, if the distributions are different for the two isotopes used in the ratio. Available angular data is sparse for {sup 235}U and even more so for {sup 239}Pu, especially at neutron energies above 5 MeV. The Neutron Induced Fission Fragment Tracking Experiment (NIFFTE) time projection chamber, which enables precise tracking of charged particles, can be used to study angular distributions and emission anisotropies of fission fragments in neutron-induced fission. In-beam data collected at the Los Alamos Neutron Science Center with a {sup 235}U/{sup 239}Pu target during the 2014 run-cycle will provide angular distributions as a function of incident neutron energy for these isotopes. (LA-UR-1426972). (authors)

  12. New insight on the high radiation resistance of UO2 against fission fragments

    NASA Astrophysics Data System (ADS)

    Szenes, G.

    2016-12-01

    Track radii are derived for semiconductors from a temperature distribution Θ(r) in which the width of the distribution is the only materials parameter. Analysis of track data for GeS, InP, GaAs and GaN show that the projectile velocity has no effect on track radii in semiconductors. Due to the missing velocity effect, the threshold for track formation, Set = 20 keV/nm is high in semiconducting UO2 in the whole range of projectile velocities. This is the origin of the high radiation resistance for fission fragments. Consequences for the simulation experiments with insulating CeO2 are discussed. It is verified that sputtering is described accurately by the Arrhenius equation for various materials including UO2. The ion-induced surface potential has a strong effect on the activation energy.

  13. Fission fragment charge and mass distributions in 239Pu(n ,f ) in the adiabatic nuclear energy density functional theory

    NASA Astrophysics Data System (ADS)

    Regnier, D.; Dubray, N.; Schunck, N.; Verrière, M.

    2016-05-01

    Background: Accurate knowledge of fission fragment yields is an essential ingredient of numerous applications ranging from the formation of elements in the r process to fuel cycle optimization for nuclear energy. The need for a predictive theory applicable where no data are available, together with the variety of potential applications, is an incentive to develop a fully microscopic approach to fission dynamics. Purpose: In this work, we calculate the pre-neutron emission charge and mass distributions of the fission fragments formed in the neutron-induced fission of 239Pu using a microscopic method based on nuclear density functional theory (DFT). Methods: Our theoretical framework is the nuclear energy density functional (EDF) method, where large-amplitude collective motion is treated adiabatically by using the time-dependent generator coordinate method (TDGCM) under the Gaussian overlap approximation (GOA). In practice, the TDGCM is implemented in two steps. First, a series of constrained EDF calculations map the configuration and potential-energy landscape of the fissioning system for a small set of collective variables (in this work, the axial quadrupole and octupole moments of the nucleus). Then, nuclear dynamics is modeled by propagating a collective wave packet on the potential-energy surface. Fission fragment distributions are extracted from the flux of the collective wave packet through the scission line. Results: We find that the main characteristics of the fission charge and mass distributions can be well reproduced by existing energy functionals even in two-dimensional collective spaces. Theory and experiment agree typically within two mass units for the position of the asymmetric peak. As expected, calculations are sensitive to the structure of the initial state and the prescription for the collective inertia. We emphasize that results are also sensitive to the continuity of the collective landscape near scission. Conclusions: Our analysis confirms

  14. Fission Fragment Angular Distribution measurements of 235U and 238U at CERN n_TOF facility

    NASA Astrophysics Data System (ADS)

    Leal-Cidoncha, E.; Durán, I.; Paradela, C.; Tarrío, D.; Leong, L. S.; Tassan-Got, L.; Audouin, L.; Altstadt, S.; Andrzejewski, J.; Barbagallo, M.; Bécares, V.; Bečvář, F.; Belloni, F.; Berthoumieux, E.; Billowes, J.; Boccone, V.; Bosnar, D.; Brugger, M.; Calviani, M.; Calviño, F.; Cano-Ott, D.; Carrapiço, C.; Cerutti, F.; Chiaveri, E.; Chin, M.; Colonna, N.; Cortés, G.; Cortés-Giraldo, M. A.; Diakaki, M.; Domingo-Pardo, C.; Dressler, R.; Dzysiuk, N.; Eleftheriadis, C.; Ferrari, A.; Fraval, K.; Ganesan, S.; García, A. R.; Giubrone, G.; Gómez-Hornillos, M. B.; Gonçalves, I. F.; González-Romero, E.; Griesmayer, E.; Guerrero, C.; Gunsing, F.; Gurusamy, P.; Hernández-Prieto, A.; Jenkins, D. G.; Jericha, E.; Kadi, Y.; Käppeler, F.; Karadimos, D.; Kivel, N.; Koehler, P.; Kokkoris, M.; Krtička, M.; Kroll, J.; Lampoudis, C.; Langer, C.; Lederer, C.; Leeb, H.; Lo Meo, S.; Losito, R.; Mallick, A.; Manousos, A.; Marganiec, J.; Martínez, T.; Massimi, C.; Mastinu, P. F.; Mastromarco, M.; Meaze, M.; Mendoza, E.; Mengoni, A.; Milazzo, P. M.; Mingrone, F.; Mirea, M.; Mondelaers, W.; Pavlik, A.; Perkowski, J.; Plompen, A.; Praena, J.; Quesada, J. M.; Rauscher, T.; Reifarth, R.; Riego, A.; Robles, M. S.; Roman, F.; Rubbia, C.; Sabaté-Gilarte, M.; Sarmento, R.; Saxena, A.; Schillebeeckx, P.; Schmidt, S.; Schumann, D.; Tagliente, G.; Tain, J. L.; Tsinganis, A.; Valenta, S.; Vannini, G.; Variale, V.; Vaz, P.; Ventura, A.; Versaci, R.; Vermeulen, M. J.; Vlachoudis, V.; Vlastou, R.; Wallner, A.; Ware, T.; Weigand, M.; Weiß, C.; Wright, T.; Žugec, P.

    2016-03-01

    Neutron-induced fission cross sections of 238U and 235U are used as standards in the fast neutron region up to 200 MeV. A high accuracy of the standards is relevant to experimentally determine other neutron reaction cross sections. Therefore, the detection effciency should be corrected by using the angular distribution of the fission fragments (FFAD), which are barely known above 20 MeV. In addition, the angular distribution of the fragments produced in the fission of highly excited and deformed nuclei is an important observable to investigate the nuclear fission process. In order to measure the FFAD of neutron-induced reactions, a fission detection setup based on parallel-plate avalanche counters (PPACs) has been developed and successfully used at the CERN-n_TOF facility. In this work, we present the preliminary results on the analysis of new 235U(n,f) and 238U(n,f) data in the extended energy range up to 200 MeV compared to the existing experimental data.

  15. 1987 Neutron and gamma personnel dosimeter intercomparison study using a D/sub 2/O-moderated /sup 252/Cf source

    SciTech Connect

    Swaja, R.E.; West, L.E.; Sims, C.S.; Welty, T.J.

    1989-05-01

    The thirteenth Personnel Dosimetry Intercomparison Study (i.e., PDIS 13) was conducted during April 1987 as a joint effort by Oak Ridge National Laboratory's (ORNL) Dosimetry Applications Research Group and the Southwest Radiation Calibration Center at the University of Arkansas. A total of 48 organizations (34 from the US and 14 from abroad) participated in PDIS 13. Participants submitted a total of 1,113 neutron and gamma dosimeters for this mixed field study. The dosimeters were transferred by mail and were handled by experimental personnel at ORNL and the University of Arkansas. The type of neutron dosimeter and the percentage of participants submitting that type are as follows: TLD-albedo (49%), direct interaction TLD (31%), CR-39 (17%), film (3%). The type of gamma dosimeter and the percentage of participants submitting that type are as follows: Li/sub 2/B/sub 4/O/sub 7/, alone or in combination with CaSO/sub 4/, (69%), /sup 7/LiF (28%), natural LiF (3%). Radiation exposures in PDIS 13 were limited to 0.5 and 1.5 mSv from /sup 252/Cf moderated by 15-cm of D/sub 2/O. Traditional exposures using the Health Physics Research Reactor (HPRR) were not possible due to the fact that all reactors at ORNL, including the HPRR, were shutdown by order of the Department of Energy at the time the intercomparison was performed. Planned exposures using a /sup 238/PuBe source were negated by a faulty timing mechanism. Based on accuracy and precision, direct interaction TLD dosimeters exhibited the best performance in PDIS 13 neutron measurements. They were followed, in order of best performance, by CR-39, TLD albedo, and film. The Li/sub 2/B/sub 4/O/sub 7/ type TLD dosimeters exhibited the best performance in PDIS 13 gamma measurements. They were followed by natural LiF, /sup 7/LiF, and film. 12 refs., 1 fig., 5 tabs.

  16. Position reconstruction in fission fragment detection using the low pressure MWPC technique for the JLab experiment E02-017

    SciTech Connect

    Xi-Yu, Qiu; Tang, Liguang; Margaryan, Amur T.; Jin-Zhang, Xu; Bi-Tao, Hu; Xi-Meng, Chen

    2014-07-01

    When a lambda hyperon was embedded in a nucleus, it can form a hypernucleus. The lifetime and its mass dependence of stable hypernuclei provide information about the weak decay of lambda hyperon inside nuclear medium. This work will introduce the Jefferson Lab experiment (E02-017) which aims to study the lifetime of the heavy hypernuclei using a specially developed fission fragment detection technique, a multi-wire proportional chamber operated under low gas pressure (LPMWPC). Presented here are the method and performance of the reconstruction of fission position on the target foil, the separation of target materials at different regions and the comparison and verification with the Mote Carlo simulation.

  17. Quantum mechanical method of fragment's angular and energy distribution calculation for binary and ternary fission

    SciTech Connect

    Kadmensky, S. G. Titova, L. V.; Pen'kov, N. V.

    2006-08-15

    In the framework of quantum-mechanical fission theory, the method of calculation for partial fission width amplitudes and asymptotic behavior of the fissile nucleus wave function with strong channel coupling taken into account has been suggested. The method allows one to solve the calculation problem of angular and energy distribution countation for binary and ternary fission.

  18. Fragmentation of polyatomic molecules by grazing incidence surface-induced dissociation (GI-SID).

    PubMed

    Wieghaus, A; Schmidt, L; Popova, A M; Komarov, V V; Jungclas, H

    1999-11-01

    The grazing incidence surface-induced dissociation (GI-SID) of n-hexadecylpyridinium and verapamil ions generated by fission fragment desorption was studied. These molecules show the effect of enhanced surface-induced dissociation at grazing incidence as it was observed in former experiments with metal organic ions. A liquid film of perfluorinated polyether is used as collision surface. Small hydrocarbon fragment ions predominate in the GI-SID spectra. Pyridine ions appear as specific fragment ions in the GI-SID spectrum of n-hexadecylpyridinium. The GI-SID conversion efficiency varies in the range 40-70%. The experimental results are discussed within the scope of a quantum mechanical model which is based on the accumulation of internal molecular energy by resonant excitation of collective vibrational states and energy transfer to a trap bond due to dipole-dipole interactions. In this context the GI-SID spectra of n-hexadecylpyridinium and verapamil ions are compared with the fragmentation occurring in regular (252)Cf plasma desorption mass spectrometry.

  19. Brownian shape motion on five-dimensional potential-energy surfaces:nuclear fission-fragment mass distributions.

    PubMed

    Randrup, Jørgen; Möller, Peter

    2011-04-01

    Although nuclear fission can be understood qualitatively as an evolution of the nuclear shape, a quantitative description has proven to be very elusive. In particular, until now, there existed no model with demonstrated predictive power for the fission-fragment mass yields. Exploiting the expected strongly damped character of nuclear dynamics, we treat the nuclear shape evolution in analogy with Brownian motion and perform random walks on five-dimensional fission potential-energy surfaces which were calculated previously and are the most comprehensive available. Test applications give good reproduction of highly variable experimental mass yields. This novel general approach requires only a single new global parameter, namely, the critical neck size at which the mass split is frozen in, and the results are remarkably insensitive to its specific value.

  20. Calculation of the fission-fragment yields of the pre-actinide nuclei by the example of the natPb isotopes

    NASA Astrophysics Data System (ADS)

    Maslyuk, V. T.; Parlag, O. A.; Lendyel, O. I.; Marynets, T. I.; Romanyuk, M. I.; Shevchenko, O. S.; Ranyuk, Ju. Ju.; Dovbnya, A. M.

    2016-11-01

    The calculations of the fission-fragment yields (mass and charge spectra) carried out within the frameworks of the proposed statistical method for the pre-actinide nuclei by the example of natPb (20 isotopes) are presented. The role of neutron shells with N = 50 and N = 82 in realizing the single- and double-humped shape of the fission-fragment yields, respectively, for the neutron-deficit and neutron-excess Pb isotopes has been investigated. An explanation of the experimental results on the natPb fission was performed taking into account transformations to the ensemble of the long- and short-lived nuclear fragments.

  1. Effect of projectile breakup on fission-fragment mass distributions in the Li,76 + 238U reactions

    NASA Astrophysics Data System (ADS)

    Santra, S.; Pal, A.; Rath, P. K.; Nayak, B. K.; Singh, N. L.; Chattopadhyay, D.; Behera, B. R.; Singh, Varinderjit; Jhingan, A.; Sugathan, P.; Golda, K. S.; Sodaye, S.; Appannababu, S.; Prasad, E.; Kailas, S.

    2014-12-01

    Background: Detailed studies on the effect of the breakup of weakly bound projectile on fission are scarce. Distinguishing the events of compound nuclear (CN) fission from the breakup or transfer induced fission to understand the properties of measured fission fragments is difficult but desirable. Purpose: To investigate the effect of projectile breakup and its breakup threshold energy on fission-fragment (FF) mass distributions and folding angle distributions for Li,76 + 238U reactions and find out the differences in the properties of the fission events produced by complete fusion (CF) from the total fusion (TF). Methods: The FF mass and folding angle distributions have been measured at energies around the Coulomb barrier using gas detectors by time-of-flight technique. The results are compared with the ones involving tightly bound projectiles as well as predictions from systematics to bring out the effect of the breakup. Results: A sharp increase in the peak to valley (P:V) ratio of FF mass distribution with the decrease in bombarding energy for Li,76 + 238U reactions is observed when all events are assumed to be CN fission. As the beam energy falls through the fusion barrier, the full width half maximum (FWHM) of the FF folding angle distribution is found to increase at sub-barrier energies, unlike the reactions involving tightly bound projectiles where a linear decrease in FWHM is expected. By selecting pure CN events from the scatter plot of the velocity components of the composite nuclei, the energy dependence of the deduced FWHM is found to be consistent with the ones involving tightly bound projectiles. Similarly, the P:V ratio obtained for the selected CN events is consistent with the theoretical calculations as well as the experimental data for the proton induced reaction forming similar CN. Conclusions: The presence of projectile breakup induced fission and a relatively low breakup threshold for 6Li compared to 7Li explains the observed differences in

  2. A new fission-fragment detector to complement the CACTUS-SiRi setup at the Oslo Cyclotron Laboratory

    NASA Astrophysics Data System (ADS)

    Tornyi, T. G.; Görgen, A.; Guttormsen, M.; Larsen, A. C.; Siem, S.; Krasznahorkay, A.; Csige, L.

    2014-02-01

    An array of Parallel Plate Avalanche Counters (PPAC) for the detection of heavy ions has been developed. The new device, NIFF (Nuclear Instrument for Fission Fragments), consists of four individual detectors and covers 60% of 2π. It was designed to be used in conjunction with the SiRi array of ΔE-E silicon telescopes for light charged particles and fits into the CACTUS array of 28 large-volume NaI scintillation detectors at the Oslo Cyclotron Laboratory. The low-pressure gas-filled PPACs are sensitive for the detection of fission fragments, but are insensitive to scattered beam particles of light ions or light-ion ejectiles. The PPAC detectors of NIFF have good time resolution and can be used either to select or to veto fission events in in-beam experiments with light-ion beams and actinide targets. The powerful combination of SiRi, CACTUS, and NIFF provides new research opportunities for the study of nuclear structure and nuclear reactions in the actinide region. The new setup is particularly well suited to study the competition of fission and γ decay as a function of excitation energy.

  3. Calculations of the anisotropy of the fission fragment angular distribution and neutron emission multiplicities prescission from Langevin dynamics

    SciTech Connect

    Jia Ying; Bao Jingdong

    2007-03-15

    The anisotropy of the fission fragment angular distribution defined at the saddle point and the neutron multiplicities emitted prior to scission for fissioning nuclei {sup 224}Th, {sup 229}Np, {sup 248}Cf, and {sup 254}Fm are calculated simultaneously by using a set of realistic coupled two-dimensional Langevin equations, where the (c,h,{alpha}=0) nuclear parametrization is employed. In comparison with the one-dimensional stochastic model without neck variation, our two-dimensional model produces results that are in better agreement with the experimental data, and the one-dimensional model is available only for low excitation energies. Indeed, to determine the temperature of the nucleus at the saddle point, we investigate the neutron emission during nucleus oscillation around the saddle point for different friction mechanisms. It is shown that the neutrons emitted during the saddle oscillation cause the temperature of a fissioning nuclear system at the saddle point to decrease and influence the fission fragment angular distribution.

  4. Fission fragment charge and mass distributions in 239Pu(n, f ) in the adiabatic nuclear energy density functional theory

    SciTech Connect

    Regnier, D.; Dubray, N.; Schunck, N.; Verriere, M.

    2016-05-13

    Here, accurate knowledge of fission fragment yields is an essential ingredient of numerous applications ranging from the formation of elements in the r process to fuel cycle optimization for nuclear energy. The need for a predictive theory applicable where no data are available, together with the variety of potential applications, is an incentive to develop a fully microscopic approach to fission dynamics.

  5. Origin of the narrow, single peak in the fission-fragment mass distribution for {sup 258}Fm

    SciTech Connect

    Ichikawa, Takatoshi; Iwamoto, Akira; Moeller, Peter

    2009-01-15

    We discuss the origin of the narrowness of the single peak at mass-symmetric division in the fragment mass-yield curve for spontaneous fission of {sup 258}Fm. For this purpose, we employ the macroscopic-microscopic model and calculate a potential-energy curve at the mass-symmetric compact scission configuration, as a function of the fragment mass number, which is obtained from the single-particle wave-function densities. In the calculations, we minimize total energies by varying the deformations of the two fragments, with constraints on the mass quadrupole moment, and by keeping the neck radius zero. The energies thus become functions of mass asymmetry. Using the obtained potential, we solve the one-dimensional Schroedinger equation with a microscopic coordinate-dependent inertial mass to calculate the fragment mass-yield curve. The calculated mass yield, expressed in terms of the microscopic mass density, is consistent with the extremely narrow experimental mass distribution.

  6. Experimental study of the three-component structure of mass-energy distributions of fission fragments of nuclei in the vicinity of Pb

    SciTech Connect

    Gruzintsev, E.N.; Itkis, M.G.; Kotlov, Y.V.; Okolovich, V.N.; Rusanov, A.Y.; Smirenkin, G.N.

    1988-05-01

    Measurements and a regression analysis of mass-energy distributions of fission fragments of the nuclei /sup 213/At, /sup 210/Po, and /sup 205/Bi were carried out, demonstrating a three-component structure in the kinetic energy spectra of fragments. The nature of this phenomenon is discussed, as well as its similarity to the recently observed bimodal spontaneous fission of nuclei in the vicinity of Fm.

  7. Dynamical description of the moments of the energy distribution of fission fragments and scission of a fissile nucleus

    SciTech Connect

    Borunov, M. V. Nadtochy, P. N.; Adeev, G. D.

    2007-11-15

    A multidimensional stochastic approach to fission dynamics on the basis of three-dimensional Langevin equations is applied systematically to calculating the first four moments of the energy distribution of fission fragments over a broad range of Coulomb parameter values (700 < Z{sup 2}/A{sup 1/3} < 1700). For the scission of a fissile nucleus into fragments, use was made of various criteria traditional in modern fission theory: the vanishing of the neck radius at the scission instant and the equality of the neck radius to about 0.3R{sub 0} at this instant. In calculating the energy distribution, both of the criteria used lead to a fairly good description of experimental data on the first two moments and to a satisfactory description of data on the third and fourth moments of the distribution. However, the quality of the description of available experimental data is insufficiently good for giving preference to any of these criteria. Within three-dimensional Langevin dynamics, it is shown that the vanishing-radius criterion leads to unexpectably good agreement with experimental data on the first four moments of the energy distribution. A modified version of one-body dissipation where the coefficient that takes into account the reduction of the wall-formula contribution was set to k{sub s} = 0.25 was used in the calculations.

  8. Neutron emission effects on fragment mass and kinetic energy distribution from fission of 239{sup Pu} induced by thermal neutrons

    SciTech Connect

    Montoya, M.; Rojas, J.; Lobato, I.

    2010-08-04

    The average of fragment kinetic energy (E-bar sign*) and the multiplicity of prompt neutrons ({nu}(bar sign)) as a function of fragment mass (m*), as well as the fragment mass yield (Y(m*)) from thermal neutron-induced fission of {sup 239}Pu have been measured by Tsuchiya et al.. In that work the mass and kinetic energy are calculated from the measured kinetic energy of one fragment and the difference of time of flight of the two complementary fragments. However they do not present their results about the standard deviation {sigma}{sub E}*(m*). In this work we have made a numerical simulation of that experiment which reproduces its results, assuming an initial distribution of the primary fragment kinetic energy (E(A)) with a constant value of the standard deviation as function of fragment mass ({sigma}{sub E}(A)). As a result of the simulation we obtain the dependence {sigma}{sub E}*(m*) which presents an enhancement between m* = 92 and m* = 110, and a peak at m* = 121.

  9. Neutron emission effects on fragment mass and kinetic energy distribution from fission of 239Pu induced by thermal neutrons

    NASA Astrophysics Data System (ADS)

    Montoya, M.; Rojas, J.; Lobato, I.

    2010-08-01

    The average of fragment kinetic energy (E*) and the multiplicity of prompt neutrons (ν) as a function of fragment mass (m*), as well as the fragment mass yield (Y(m*)) from thermal neutron-induced fission of 239Pu have been measured by Tsuchiya et al.. In that work the mass and kinetic energy are calculated from the measured kinetic energy of one fragment and the difference of time of flight of the two complementary fragments. However they do not present their results about the standard deviation σE*(m*). In this work we have made a numerical simulation of that experiment which reproduces its results, assuming an initial distribution of the primary fragment kinetic energy (E(A)) with a constant value of the standard deviation as function of fragment mass (σE(A)). As a result of the simulation we obtain the dependence σE*(m*) which presents an enhancement between m* = 92 and m* = 110, and a peak at m* = 121.

  10. Interplay between theory and experiment for fission-fragment angular distributions from nuclei near the limits of stability

    NASA Astrophysics Data System (ADS)

    Freifelder, R.; Prakash, M.; Alexander, John M.

    1986-02-01

    We examine the application of transition-state theory for fission-fragment angular distributions to composite nuclei near the limits of stability. The possible roles of saddle-point and scission-point configurations are explored. For many heavy-ion reactions that involve large angular momenta, the observed anisotropies are between the predictions of the saddle-point and scisson-point models. Empirical correlations are shown between the effective moments of inertia and the spin and {Z 2}/{A} of the compound nucleus. These correlations provide evidence for a class of transition-state nuclei intermediate between saddle- and scission-point configurations. An important indication of these patterns is that the speed of collective deformation toward fission may well be slow enough to allow for statistical equilibrium in the tilting mode even for configurations well beyond the saddle point.

  11. Neutron emission effects on final fragments mass and kinetic energy distribution from low energy fission of 34U

    NASA Astrophysics Data System (ADS)

    Montoya, M.; Rojas, J.; Lobato, I.

    2008-12-01

    The kinetic energy distribution as a function of mass of final fragments (m) from low energy fission of $^{234}U$, measured with the Lohengrin spectrometer by Belhafaf et al. presents a peak around m=108 and another around m = 122. The authors attribute the first peak to the evaporation of a large number of neutrons around the corresponding mass number; and the second peak to the distribution of the primary fragment kinetic energy. Nevertheless, the theoretical calculations related to primary distribution made by Faust et al. do not result in a peak around m = 122. In order to clarify this apparent controversy, we have made a numerical experiment in which the masses and the kinetic energy of final fragments are calculated, assuming an initial distribution of the kinetic energy without peaks on the standard deviation as function of fragment mass. As a result we obtain a pronounced peak on the standard deviation of the kinetic energy distribution around m = 109, a depletion from m = 121 to m = 129, and an small peak around m = 122, which is not as big as the measured by Belhafaf et al. Our simulation also reproduces the experimental results on the yield of the final mass, the average number of emitted neutrons as a function of the provisional mass (calculated from the values of the final kinetic energy of the complementary fragments) and the average value of fragment kinetic energy as a function of the final mass.

  12. Nuclear Fission

    NASA Astrophysics Data System (ADS)

    Denschlag, J. O.

    This chapter first gives a survey on the history of the discovery of nuclear fission. It briefly presents the liquid-drop and shell models and their application to the fission process. The most important quantities accessible to experimental determination such as mass yields, nuclear charge distribution, prompt neutron emission, kinetic energy distribution, ternary fragment yields, angular distributions, and properties of fission isomers are presented as well as the instrumentation and techniques used for their measurement. The contribution concentrates on the fundamental aspects of nuclear fission. The practical aspects of nuclear fission are discussed in http://dx.doi.org/10.1007/978-1-4419-0720-2_57 of Vol. 6.

  13. Fission-fragment attachment to aerosols and their transport through capillary tubes

    SciTech Connect

    Novick, V.J.; Alvarez, J.L.; Greenwood, R.C.

    1981-01-01

    The transport of radioactive aerosols was studied using equipment, collectively called the Helium jet, that has been constructed to provide basic nuclear physics data on fission product nuclides. The transport of the fission products in the system depends on their attachment to aerosol particles. The system consists of 1) a tube furnace which generates aerosols by the sublimation or evaporation of source material, 2) a helium stream used to transport the aerosols, 3) a 25 m settling tube to eliminate the larger aerosols and smaller aerosols that would deposit in the capillary, 4) a Californium-252 self-fissioning source of fission product nuclides, and 5) a small capillary to carry the radioactive aerosols from the hot cell to the laboratory. Different source materials were aerosolized but NaCl is generally used because it yielded the highest transport efficiencies through the capillary. Particle size measurments were made with NaCl aerosols by using a cascade impactor, an optical light scattering device, and the capillary itself as a diffusion battery by performing radiation measurements and/or electrical conductivity measurements. Both radioactive and nonradioactive aerosols were measured in order to investigate the possibility of a preferential size range for fission product attachment. The measured size distributions were then used to calculate attachment coefficients and finally an attachment time.

  14. The FRS Ion Catcher - A facility for high-precision experiments with stopped projectile and fission fragments

    NASA Astrophysics Data System (ADS)

    Plaß, W. R.; Dickel, T.; Purushothaman, S.; Dendooven, P.; Geissel, H.; Ebert, J.; Haettner, E.; Jesch, C.; Ranjan, M.; Reiter, M. P.; Weick, H.; Amjad, F.; Ayet, S.; Diwisch, M.; Estrade, A.; Farinon, F.; Greiner, F.; Kalantar-Nayestanaki, N.; Knöbel, R.; Kurcewicz, J.; Lang, J.; Moore, I.; Mukha, I.; Nociforo, C.; Petrick, M.; Pfützner, M.; Pietri, S.; Prochazka, A.; Rink, A.-K.; Rinta-Antila, S.; Schäfer, D.; Scheidenberger, C.; Takechi, M.; Tanaka, Y. K.; Winfield, J. S.; Yavor, M. I.

    2013-12-01

    At the FRS Ion Catcher at GSI, projectile and fission fragments are produced at relativistic energies, separated in-flight, range-focused, slowed down and thermalized in a cryogenic stopping cell. A multiple-reflection time-of-flight mass spectrometer (MR-TOF-MS) is used to perform direct mass measurements and to provide an isobarically clean beam for further experiments, such as mass-selected decay spectroscopy. A versatile RF quadrupole transport and diagnostics unit guides the ions from the stopping cell to the MR-TOF-MS, provides differential pumping, ion identification and includes reference ion sources. The FRS Ion Catcher serves as a test facility for the Low-Energy Branch of the Super-FRS at the Facility for Antiproton and Ion Research (FAIR), where the cryogenic stopping cell and the MR-TOF-MS will be key devices for the research with stopped projectile and fission fragments that will be performed with the experiments MATS and LaSpec. Off-line tests of the stopping cell yield a combined ion survival and extraction efficiency for 219Rn ions of about 30% and an extraction time of about 25 ms. The stopping cell and the MR-TOF-MS were commissioned on-line as part of the FRS Ion Catcher. For the first time, a stopping cell for exotic nuclei was operated on-line at cryogenic temperatures. Using a gas density almost two times higher than ever reached before for a stopping cell with RF ion repelling structures, various 238U projectile fragments were thermalized and extracted with very high efficiency. Direct mass measurements of projectile fragments were performed with the MR-TOF-MS, among them the nuclide 213Rn with a half-life of 19.5 ms only.

  15. Combining random gene fission and rational gene fusion to discover near-infrared fluorescent protein fragments that report on protein-protein interactions.

    PubMed

    Pandey, Naresh; Nobles, Christopher L; Zechiedrich, Lynn; Maresso, Anthony W; Silberg, Jonathan J

    2015-05-15

    Gene fission can convert monomeric proteins into two-piece catalysts, reporters, and transcription factors for systems and synthetic biology. However, some proteins can be challenging to fragment without disrupting function, such as near-infrared fluorescent protein (IFP). We describe a directed evolution strategy that can overcome this challenge by randomly fragmenting proteins and concomitantly fusing the protein fragments to pairs of proteins or peptides that associate. We used this method to create libraries that express fragmented IFP as fusions to a pair of associating peptides (IAAL-E3 and IAAL-K3) and proteins (CheA and CheY) and screened for fragmented IFP with detectable near-infrared fluorescence. Thirteen novel fragmented IFPs were identified, all of which arose from backbone fission proximal to the interdomain linker. Either the IAAL-E3 and IAAL-K3 peptides or CheA and CheY proteins could assist with IFP fragment complementation, although the IAAL-E3 and IAAL-K3 peptides consistently yielded higher fluorescence. These results demonstrate how random gene fission can be coupled to rational gene fusion to create libraries enriched in fragmented proteins with AND gate logic that is dependent upon a protein-protein interaction, and they suggest that these near-infrared fluorescent protein fragments will be suitable as reporters for pairs of promoters and protein-protein interactions within whole animals.

  16. Effects of fuel particle size and fission-fragment-enhanced irradiation creep on the in-pile behavior in CERCER composite pellets

    NASA Astrophysics Data System (ADS)

    Zhao, Yunmei; Ding, Shurong; Zhang, Xunchao; Wang, Canglong; Yang, Lei

    2016-12-01

    The micro-scale finite element models for CERCER pellets with different-sized fuel particles are developed. With consideration of a grain-scale mechanistic irradiation swelling model in the fuel particles and the irradiation creep in the matrix, numerical simulations are performed to explore the effects of the particle size and the fission-fragment-enhanced irradiation creep on the thermo-mechanical behavior of CERCER pellets. The enhanced irradiation creep effect is applied in the 10 μm-thick fission fragment damage matrix layer surrounding the fuel particles. The obtained results indicate that (1) lower maximum temperature occurs in the cases with smaller-sized particles, and the effects of particle size on the mechanical behavior in pellets are intricate; (2) the first principal stress and radial axial stress remain compressive in the fission fragment damage layer at higher burnup, thus the mechanism of radial cracking found in the experiment can be better explained.

  17. Excitation energy dependence of fragment-mass distributions from fission of 180,190Hg formed in fusion reactions of 36Ar + 144,154Sm

    DOE PAGES

    Nishio, K.; Andreyev, A. N.; Chapman, R.; ...

    2015-06-30

    Mass distributions of fission fragments from the compound nuclei 180Hg and 190 Hg formed in fusion reactions 36Ar + 144 Smand 36Ar + 154Sm, respectively, were measured at initial excitation energies of E*(180Hg) = 33-66 MeV and E*(190Hg) = 48-71 MeV. In the fission of 180Hg, the mass spectra were well reproduced by assuming only an asymmetric-mass division, with most probable light and heavy fragment masses more » $$\\overline{A}_L$$/$$\\overline{A}_H$$ = 79/101. The mass asymmetry for 180Hg agrees well with that obtained in the low-energy β+/EC-delayed fission of 180Tl, from our earlier ISOLDE(CERN) experiment. Fission of 190Hg is found to proceed in a similar way, delivering the mass asymmetry of$$\\overline{A}_L$$/$$\\overline{A}_H$$ = 83/107, throughout the measured excitation energy range. The persistence as a function of excitation energy of the mass-asymmetric fission for both proton-rich Hg isotopes gives strong evidence for the survival of microscopic effects up to effective excitation energies of compound nuclei as high as 40 MeV. In conclusion, this behavior is different from fission of actinide nuclei and heavier mercury isotope 198Hg.« less

  18. Excitation energy dependence of fragment-mass distributions from fission of 180,190Hg formed in fusion reactions of 36Ar + 144,154Sm

    NASA Astrophysics Data System (ADS)

    Nishio, K.; Andreyev, A. N.; Chapman, R.; Derkx, X.; Düllmann, Ch. E.; Ghys, L.; Heßberger, F. P.; Hirose, K.; Ikezoe, H.; Khuyagbaatar, J.; Kindler, B.; Lommel, B.; Makii, H.; Nishinaka, I.; Ohtsuki, T.; Pain, S. D.; Sagaidak, R.; Tsekhanovich, I.; Venhart, M.; Wakabayashi, Y.; Yan, S.

    2015-09-01

    Mass distributions of fission fragments from the compound nuclei 180Hg and 190Hg formed in fusion reactions 36Ar + 144Sm and 36Ar + 154Sm, respectively, were measured at initial excitation energies of E* (180Hg) = 33- 66 MeV and E* (190Hg) = 48- 71 MeV. In the fission of 180Hg, the mass spectra were well reproduced by assuming only an asymmetric-mass division, with most probable light and heavy fragment masses AbarL /AbarH = 79 / 101. The mass asymmetry for 180Hg agrees well with that obtained in the low-energy β+ / EC -delayed fission of 180Tl, from our earlier ISOLDE(CERN) experiment. Fission of 190Hg is found to proceed in a similar way, delivering the mass asymmetry of AbarL /AbarH = 83 / 107, throughout the measured excitation energy range. The persistence as a function of excitation energy of the mass-asymmetric fission for both proton-rich Hg isotopes gives strong evidence for the survival of microscopic effects up to effective excitation energies of compound nuclei as high as 40 MeV. This behavior is different from fission of actinide nuclei and heavier mercury isotope 198Hg.

  19. Structure properties of {sup 226}Th and {sup 256,258,260}Fm fission fragments: Mean-field analysis with the Gogny force

    SciTech Connect

    Dubray, N.; Goutte, H.; Delaroche, J.-P.

    2008-01-15

    The constrained Hartree-Fock-Bogoliubov method is used with the Gogny interaction D1S to calculate potential energy surfaces of fissioning nuclei {sup 226}Th and {sup 256,258,260}Fm up to very large deformations. The constraints employed are the mass quadrupole and octupole moments. In this subspace of collective coordinates, many scission configurations are identified ranging from symmetric to highly asymmetric fragmentations. Corresponding fragment properties at scission are derived yielding fragment deformations, deformation energies, energy partitioning, neutron binding energies at scission, neutron multiplicities, charge polarization, and total fragment kinetic energies.

  20. Fission fragment angular distributions in the reactions {sup 16}O+{sup 188}Os and {sup 28}Si+{sup 176}Yb

    SciTech Connect

    Tripathi, R.; Sudarshan, K.; Sharma, S. K.; Reddy, A. V. R.; Pujari, P. K.; Goswami, A.; Ramachandran, K.

    2009-06-15

    Fission fragment angular distributions have been measured in the reactions {sup 16}O+{sup 188}Os and {sup 28}Si+{sup 176}Yb to investigate the contribution from noncompound nucleus fission. Parameters for statistical model calculations were fixed using fission cross section data in the {sup 16}O+{sup 188}Os reaction. Experimental anisotropies were in reasonable agreement with those calculated using the statistical saddle point model for both reactions. The present results are also consistent with those of mass distribution studies in the fission of {sup 202}Po, formed in the reactions with varying entrance channel mass asymmetry. However, the present studies do not show a large fusion hindrance as reported in the pre-actinide region based on the measurement of evaporation residue cross section.

  1. Total Absorption Spectroscopy of Fission Fragments Relevant for Reactor Antineutrino Spectra and Decay Heat Calculations

    NASA Astrophysics Data System (ADS)

    Porta, A.; Zakari-Issoufou, A.-A.; Fallot, M.; Algora, A.; Tain, J. L.; Valencia, E.; Rice, S.; Bui, V. M.; Cormon, S.; Estienne, M.; Agramunt, J.; Äystö, J.; Bowry, M.; Briz, J. A.; Caballero-Folch, R.; Cano-Ott, D.; Cucouanes, A.; Elomaa, V.-V.; Eronen, T.; Estévez, E.; Farrelly, G. F.; Garcia, A. R.; Gelletly, W.; Gomez-Hornillos, M. B.; Gorlychev, V.; Hakala, J.; Jokinen, A.; Jordan, M. D.; Kankainen, A.; Karvonen, P.; Kolhinen, V. S.; Kondev, F. G.; Martinez, T.; Mendoza, E.; Molina, F.; Moore, I.; Perez-Cerdán, A. B.; Podolyák, Zs.; Penttilä, H.; Regan, P. H.; Reponen, M.; Rissanen, J.; Rubio, B.; Shiba, T.; Sonzogni, A. A.; Weber, C.

    2016-03-01

    Beta decay of fission products is at the origin of decay heat and antineutrino emission in nuclear reactors. Decay heat represents about 7% of the reactor power during operation and strongly impacts reactor safety. Reactor antineutrino detection is used in several fundamental neutrino physics experiments and it can also be used for reactor monitoring and non-proliferation purposes. 92,93Rb are two fission products of importance in reactor antineutrino spectra and decay heat, but their β-decay properties are not well known. New measurements of 92,93Rb β-decay properties have been performed at the IGISOL facility (Jyväskylä, Finland) using Total Absorption Spectroscopy (TAS). TAS is complementary to techniques based on Germanium detectors. It implies the use of a calorimeter to measure the total gamma intensity de-exciting each level in the daughter nucleus providing a direct measurement of the beta feeding. In these proceedings we present preliminary results for 93Rb, our measured beta feedings for 92Rb and we show the impact of these results on reactor antineutrino spectra and decay heat calculations.

  2. Angular distributions of evaporated particles, fission and intermediate-mass fragments : on the search for consistent models

    NASA Astrophysics Data System (ADS)

    Alexander, J. M.

    During the last two years there has been a true cacophony concerning the meaning of experimental angular distributions for fission and fission-like fragments. The heavily used, saddle-point, transition-state model has been shown to be of limited value for high-spin systems, and a wide variety of proposals has appeared often with mutual inconsistencies and conflicting views. Even though equilibrium statistical models for fragment emission and particle evaporation must have a very close kinship, this relationship, often left as murky, has now come onto center stage for understanding reactions at ≽ 100 MeV. Basic questions concern the nature of the decision-point configurations, their degrees of freedom, the role of deformation and the relevant moments of inertia. This paper points out serious inconsistencies in several recent scission-point models and discusses conditions for applicability of saddle-point and scission-point approaches. Au cours des deux dernières années, l'interprétation des distributions angulaires de fragments a donné lieu à une véritable cacophonie. Les limitations du modèle courant considérant le point selle comme un état de transition sont apparues clairement pour les systèmes à haut spin, et une grande variété de remèdes prescntant souvent des incohérences mutuelles et des points de vue conflictuels ont été proposés. Même si les modèles décrivant l'émission de fragments ou de particules légères doivent nécessairement posséder une parente naturelle, cette relation, souvent laissée dans l'ombre, se trouve maintenant au centre de la compréhension des mécanismes de réactions lorsque les énergies d'excitation dépassent 100 MeV. Les questions primordiales concernent la nature des configurations critiques du point de vue de l'évolution ultérieure du système, de leurs degrés de liberté, du rôle de la déformation, et des moments d'inertie concernés. Cet article met en évidence de sérieuses incohérences dans

  3. Final report: Accelerated beta decay for disposal of fission fragment wastes

    SciTech Connect

    Reiss, Howard R.

    2000-03-06

    The fundamental theory of the interaction of intense, low-frequency electromagnetic fields with certain radioactive nuclei has been fully formulated. The nuclei are of the type that exists in high-level radioactive wastes that are end products of the production of energy from nuclear fission. The basic physical mechanisms that underlie the coupling of the applied field to the nucleus have been identified. Both the basic theory and numerical predictions that stem from it support the conclusion that high-level radioactive wastes can be disposed of by substantially accelerating the rate of radioactive decay. Some old experiments on the acceleration of this type of radioactivity, with results that were not understood at the time, have been re-examined. Their interpretation is now clear, and the experiments are found to be in agreement with the theory.

  4. New statistical scission-point model to predict fission fragment observables

    NASA Astrophysics Data System (ADS)

    Lemaître, Jean-François; Panebianco, Stefano; Sida, Jean-Luc; Hilaire, Stéphane; Heinrich, Sophie

    2015-09-01

    The development of high performance computing facilities makes possible a massive production of nuclear data in a full microscopic framework. Taking advantage of the individual potential calculations of more than 7000 nuclei, a new statistical scission-point model, called SPY, has been developed. It gives access to the absolute available energy at the scission point, which allows the use of a parameter-free microcanonical statistical description to calculate the distributions and the mean values of all fission observables. SPY uses the richness of microscopy in a rather simple theoretical framework, without any parameter except the scission-point definition, to draw clear answers based on perfect knowledge of the ingredients involved in the model, with very limited computing cost.

  5. Fragment mass and kinetic-energy distributions from spontaneous fission of the neutron-deficient isotopes, 1. 2-s /sup 246/Fm and 38-s /sup 248/Fm

    SciTech Connect

    Hoffman, D.; Lee, D.; Ghiorso, A.; Nurmia, M.; Aleklett, K.

    1980-10-01

    We have measured the mass and kinetic-energy distributions for fragments from the spontaneous fission of 1.2-s /sup 246/Fm and 38-s /sup 248/Fm. The mass distributions are highly asymmetric and the average total kinetic energies of 199 +- 4 MeV and 198 +- 4 MeV, respectively, are consistent with systematics for lower Z actinides. Their properties are in contrast to those of /sup 258/Fm and /sup 259/Fm, whose spontaneous fission results in narrowly symmetric mass distributions accompanied by unusually high total kinetic energies.

  6. Effects of Neutron Emission on Fragment Mass and Kinetic Energy Distribution from Thermal Neutron-Induced Fission of {sup 235}U

    SciTech Connect

    Montoya, M.; Rojas, J.; Saetone, E.

    2007-10-26

    The mass and kinetic energy distribution of nuclear fragments from thermal neutron-induced fission of {sup 235}U(n{sub th},f) have been studied using a Monte-Carlo simulation. Besides reproducing the pronounced broadening in the standard deviation of the kinetic energy at the final fragment mass number around m = 109, our simulation also produces a second broadening around m = 125. These results are in good agreement with the experimental data obtained by Belhafaf et al. and other results on yield of mass. We conclude that the obtained results are a consequence of the characteristics of the neutron emission, the sharp variation in the primary fragment kinetic energy and mass yield curves. We show that because neutron emission is hazardous to make any conclusion on primary quantities distribution of fragments from experimental results on final quantities distributions.

  7. Future research program on prompt γ-ray emission in nuclear fission

    NASA Astrophysics Data System (ADS)

    Oberstedt, S.; Billnert, R.; Hambsch, F.-J.; Lebois, M.; Oberstedt, A.; Wilson, J. N.

    2015-12-01

    In recent years the measurement of prompt fission γ-ray spectra (PFGS) has gained renewed interest, after about forty years since the first comprehensive studies of the reactions 235U(n th , f), 239Pu(n th ,f) and 252Cf(sf). The renaissance was initiated by requests for new values especially for γ-ray multiplicity and average total energy release per fission in neutron-induced fission of 235U and 239Pu. Both isotopes are considered the most important ones with respect to the modeling of innovative cores required for the Generation-IV reactors, the majority working with fast neutrons. During the last 5 years we have conducted a systematic study of spectral data for thermal-neutron-induced fission on 235U and 241Pu as well as for the spontaneous fission of 252Cf with unprecedented accuracy. From the new data we conclude that those reactions do not considerably contribute to the observed heat excess and suspect other reactions playing a significant role. Possible contributions may originate from fast-neutron-induced reactions on 238U, which is largely present in the fuel, or from γ-induced fission from neutron capture in the construction material. A first experiment campaign on prompt γ-ray emission from fast-neutron-induced fission on 235,238U was successfully performed in order to test our assumptions. In the following we attempt to summarize, what has been done in the field to date, and to motivate future measurement campaigns exploiting dedicated neutron and photon beams as well as upcoming highly efficient detector assemblies.

  8. Coulomb and even-odd effects in cold and super-asymmetric fragmentation for thermal neutron induced fission of 235U

    NASA Astrophysics Data System (ADS)

    Montoya, M.

    2016-07-01

    Even-odd effects of the maximal total kinetic energy (Kmax) as a function of charge (Z) and mass (A) of fragments from thermal neutron induced fission of actinides are questioned by other authors. In this work, visiting old results on thermal neutron induced fission of 235U, those even-odd effects are reconfirmed. The cases seeming to contradict even-odd effects are interpreted with the Coulomb effect hypothesis. According to Coulomb effect hypothesis, Kmax is equal to the Coulomb interaction energy of the most compact scission configuration. As a consequence, between two isobaric charge splits with similar Q-values, the more asymmetrical one will get the more compact scission configuration and then it will reach the higher Kmax-value. In some cases, the more asymmetrical charge split corresponds, by coincidence, to an odd charge split; consequently its higher Kmax-value may be misinterpreted as anti-even-odd effect. Another experimental result reported in the literature is the increasing of even-odd effects on charge distribution on the more asymmetrical fragmentations region. In this region, the difference between Kmax and Q-values increases with asymmetry, which means that the corresponding scission configuration needs higher total deformation energy to occur. Higher deformation energy of the fragments implies lower free energy to break nucleon pairs. Consequently, in the asymmetric fragmentation region, the even-odd effects of the distribution of proton number and neutron number must increase with asymmetry.

  9. Investigation of the angular dependence of the escape of /sup 233/U and /sup 235/U fission fragments as a result of capture of a polarized thermal neutron

    SciTech Connect

    Vesna, V.A.; Knyaz'kov, V.A.; Kolomenskii, E.A.; Lobashev, V.M.; Pirozhkov, A.N.; Popeko, L.A.; Smotritskii, L.M.; Solov'ev, S.M.; Titov, N.A.

    1980-06-05

    The P-parity nonconserving asymmetry of the fission of /sup 233/U and /sup 235/U was measured by using the integral method. The escape asymmetry coefficients of a light fragment are equal to (3.60 +- /sup -/0.34) x 10/sup -4/ and (0.75 +- 0.12) x 10/sup -4/, respectively. The violation of spatial parity is accompanied by a P-parity-conserving, left-right asymmetry with the coefficients (-3.24 +- 0.33) x 10/sup -4/ and (1.65 +- 0.11) x 10/sup -4/, respectively.

  10. A method to calculate fission-fragment yields Y(Z,N) versus proton and neutron number in the Brownian shape-motion model

    DOE PAGES

    Moller, Peter; Ichikawa, Takatoshi

    2015-12-23

    In this study, we propose a method to calculate the two-dimensional (2D) fission-fragment yield Y(Z,N) versus both proton and neutron number, with inclusion of odd-even staggering effects in both variables. The approach is to use the Brownian shape-motion on a macroscopic-microscopic potential-energy surface which, for a particular compound system is calculated versus four shape variables: elongation (quadrupole moment Q2), neck d, left nascent fragment spheroidal deformation ϵf1, right nascent fragment deformation ϵf2 and two asymmetry variables, namely proton and neutron numbers in each of the two fragments. The extension of previous models 1) introduces a method to calculate this generalizedmore » potential-energy function and 2) allows the correlated transfer of nucleon pairs in one step, in addition to sequential transfer. In the previous version the potential energy was calculated as a function of Z and N of the compound system and its shape, including the asymmetry of the shape. We outline here how to generalize the model from the “compound-system” model to a model where the emerging fragment proton and neutron numbers also enter, over and above the compound system composition.« less

  11. A method to calculate fission-fragment yields Y(Z,N) versus proton and neutron number in the Brownian shape-motion model

    SciTech Connect

    Moller, Peter; Ichikawa, Takatoshi

    2015-12-23

    In this study, we propose a method to calculate the two-dimensional (2D) fission-fragment yield Y(Z,N) versus both proton and neutron number, with inclusion of odd-even staggering effects in both variables. The approach is to use the Brownian shape-motion on a macroscopic-microscopic potential-energy surface which, for a particular compound system is calculated versus four shape variables: elongation (quadrupole moment Q2), neck d, left nascent fragment spheroidal deformation ϵf1, right nascent fragment deformation ϵf2 and two asymmetry variables, namely proton and neutron numbers in each of the two fragments. The extension of previous models 1) introduces a method to calculate this generalized potential-energy function and 2) allows the correlated transfer of nucleon pairs in one step, in addition to sequential transfer. In the previous version the potential energy was calculated as a function of Z and N of the compound system and its shape, including the asymmetry of the shape. We outline here how to generalize the model from the “compound-system” model to a model where the emerging fragment proton and neutron numbers also enter, over and above the compound system composition.

  12. Characteristic features of first and second moments of fission-fragment energy distribution as functions of nucleon composition

    SciTech Connect

    Gruzintsev, E.N.; Itkis, M.G.; Mul'gin, S.I.; Okolovich, V.N.; Rusanov, A.Y.; Serdyuk, O.I.; Smirenkin, G.N.; Subbotin, M.I.

    1988-08-01

    We discuss the totality of experimental data obtained at the Alma-Ata isochronous cyclotron for the mean kinetic energy /similar to/(E/sub k/) and energy dispersion sigma/sub E//sup 2/ for nuclei with Z = 68--85, A = 165--213. The dependences of these first two moments of the E/sub k/ distribution as functions of the nucleon composition of the fissioning nucleus are found to have a new feature: a ''break'' in the curve in the vicinity of (Z/sup 2//A/sup 1//sup ///sup 3/)/sub 0/approx. =1000. This effect is due to the fact that the descent-to-scission stage is absent for fissioning nuclei with Z/sup 2//A/sup 1//sup ///sup 3/<(Z/sup 2//A/sup 1//sup ///sup 3/)/sub 0/.

  13. Fission Spectrum

    DOE R&D Accomplishments Database

    Bloch, F.; Staub, H.

    1943-08-18

    Measurements of the spectrum of the fission neutrons of 25 are described, in which the energy of the neutrons is determined from the ionization produced by individual hydrogen recoils. The slow neutrons producing fission are obtained by slowing down the fast neutrons from the Be-D reaction of the Stanford cyclotron. In order to distinguish between fission neutrons and the remaining fast cyclotron neutrons both the cyclotron current and the pusle amplifier are modulated. A hollow neutron container, in which slow neutrons have a lifetime of about 2 milliseconds, avoids the use of large distances. This method results in much higher intensities than the usual modulation arrangement. The results show a continuous distribution of neutrons with a rather wide maximum at about 0.8 MV falling off to half of its maximum value at 2.0 MV. The total number of netrons is determined by comparison with the number of fission fragments. The result seems to indicate that only about 30% of the neutrons have energies below .8 MV. Various tests are described which were performed in order to rule out modification of the spectrum by inelastic scattering. Decl. May 4, 1951

  14. Bimodal fission

    SciTech Connect

    Hulet, E.K.

    1989-04-19

    In recent years, we have measured the mass and kinetic-energy distributions from the spontaneous fission of /sup 258/Fm, /sup 259/Md, /sup 260/Md, /sup 258/No, /sup 262/No, and /sup 260/(104). All are observed to fission with a symmetrical division of mass, whereas the total-kinetic-energy (TKE) distributions strongly deviated from the Gaussian shape characteristically found in the fission of all other actinides. When the TKE distributions are resolved into two Gaussians the constituent peaks lie near 200 and near 233 MeV. We conclude two modes or bimodal fission is occurring in five of the six nuclides studied. Both modes are possible in the same nuclides, but one generally predominates. We also conclude the low-energy but mass-symmetrical mode is likely to extend to far heavier nuclei; while the high-energy mode will be restricted to a smaller region, a region of nuclei defined by the proximity of the fragments to the strong neutron and proton shells in /sup 132/Sn. 16 refs., 7 figs., 1 tab.

  15. Student Experiments in Spontaneous Fission.

    ERIC Educational Resources Information Center

    Becchetti, F. D.; Ying, J. S.

    1981-01-01

    Advanced undergraduate experiments utilizing a commercially available, thin spontaneous fission source are described, including studies of the energy and mass distribution of the fission fragments and their energy and angular correlation. The experiments provide a useful introduction to fission, nuclear mass equations, heavy-ion physics, and…

  16. Exposure and temperature dependence of elongated blister formation in complex radiation environments

    SciTech Connect

    McDonell, W.R.

    1981-01-01

    Blistering of platinum alloy surfaces by /sup 252/Cf alpha particle and fission fragment radiations occurred at relatively low concentrations of implanted helium during exposures at room temperature as well as at 1000/sup 0/C. Distinctive configurations of the blisters resulting from transport of atoms displaced by the fission fragments persisted during the high temperature exposures. Post-exposure heating of specimens exposed at room-temperature produced no additional blistering until temperatures of 1300/sup 0/C were reached. Post-exposure heating of 1000/sup 0/C blistered specimens produced only thermal etching effects. The low helium concentrations required for blistering and the distinctive blister configurations produced by /sup 252/Cf exposures suggest a unique mode of surface distortion resulting from the large number and highly localized distributions of atom displacements generated by /sup 252/Cf fission fragments. Such conditions may not be duplicated in the He-ion and fast neutron radiation environments of fusion reactors.

  17. DETECTORS AND EXPERIMENTAL METHODS: Equivalent properties of single event burnout induced by different sources

    NASA Astrophysics Data System (ADS)

    Yang, Shi-Yu; Cao, Zhou; Da, Dao-An; Xue, Yu-Xiong

    2009-05-01

    The experimental results of single event burnout induced by heavy ions and 252Cf fission fragments in power MOSFET devices have been investigated. It is concluded that the characteristics of single event burnout induced by 252Cf fission fragments is consistent to that in heavy ions. The power MOSFET in the “turn-off" state is more susceptible to single event burnout than it is in the “turn-on" state. The thresholds of the drain-source voltage for single event burnout induced by 173 MeV bromine ions and 252Cf fission fragments are close to each other, and the burnout cross section is sensitive to variation of the drain-source voltage above the threshold of single event burnout. In addition, the current waveforms of single event burnouts induced by different sources are similar. Different power MOSFET devices may have different probabilities for the occurrence of single event burnout.

  18. Separation of fission products based on ionic liquids: Task-specific ionic liquids containing an aza-crown ether fragment

    SciTech Connect

    Luo, Huimin; Dai, Sheng; Bonnesen, Peter V; Buchanan III, A C

    2005-01-01

    A new class of task-specific ionic liquids (TSILs) based on the covalent attachment of imidazolium cations to a monoaza-crown ether fragment has been synthesized and characterized. The efficacy of these TSILs for the biphasic extraction of Cs(+) and Sr(2+) from aqueous solutions has been evaluated. The extraction properties of these TSILs can be influenced by the structures of the covalently attached imidazolium cations, which highlight the possibilities to enhance or tune the selectivities of crown ethers toward target ionic species through the covalent coupling with the imidazolium cations. (c) 2005 Elsevier B.V. All rights reserved.

  19. Improved fission neutron energy discrimination with 4He detectors through pulse filtering

    NASA Astrophysics Data System (ADS)

    Zhu, Ting; Liang, Yinong; Rolison, Lucas; Barker, Cathleen; Lewis, Jason; Gokhale, Sasmit; Chandra, Rico; Kiff, Scott; Chung, Heejun; Ray, Heather; Baciak, James E.; Enqvist, Andreas; Jordan, Kelly A.

    2017-03-01

    This paper presents experimental and computational techniques implemented for 4He gas scintillation detectors for induced fission neutron detection. Fission neutrons are produced when natural uranium samples are actively interrogated by 2.45 MeV deuterium-deuterium fusion reaction neutrons. Fission neutrons of energies greater than 2.45 MeV can be distinguished by their different scintillation pulse height spectra since 4He detectors retain incident fast neutron energy information. To enable the preferential detection of fast neutrons up to 10 MeV and suppress low-energy event counts, the detector photomultiplier gain is lowered and trigger threshold is increased. Pile-up and other unreliable events due to the interrogating neutron flux and background radiation are filtered out prior to the evaluation of pulse height spectra. With these problem-specific calibrations and data processing, the 4He detector's accuracy at discriminating fission neutrons up to 10 MeV is improved and verified with 252Cf spontaneous fission neutrons. Given the 4He detector's ability to differentiate fast neutron sources, this proof-of-concept active-interrogation measurement demonstrates the potential of special nuclear materials detection using a 4He fast neutron detection system.

  20. Excitation energy dependence of fragment-mass distributions from fission of 180,190Hg formed in fusion reactions of 36Ar + 144,154Sm

    SciTech Connect

    Nishio, K.; Andreyev, A. N.; Chapman, R.; Derkx, X.; Düllmann, Ch. E.; Ghys, L.; Heßberger, F. P.; Hirose, K.; Ikezoe, H.; Khuyagbaatar, J.; Kindler, B.; Lommel, B.; Makii, H.; Nishinaka, I.; Ohtsuki, T.; Pain, S. D.; Sagaidak, R.; Tsekhanovich, I.; Venhart, M.; Wakabayashi, Y.; Yan, S.

    2015-06-30

    Mass distributions of fission fragments from the compound nuclei 180Hg and 190 Hg formed in fusion reactions 36Ar + 144 Smand 36Ar + 154Sm, respectively, were measured at initial excitation energies of E*(180Hg) = 33-66 MeV and E*(190Hg) = 48-71 MeV. In the fission of 180Hg, the mass spectra were well reproduced by assuming only an asymmetric-mass division, with most probable light and heavy fragment masses $\\overline{A}_L$/$\\overline{A}_H$ = 79/101. The mass asymmetry for 180Hg agrees well with that obtained in the low-energy β+/EC-delayed fission of 180Tl, from our earlier ISOLDE(CERN) experiment. Fission of 190Hg is found to proceed in a similar way, delivering the mass asymmetry of$\\overline{A}_L$/$\\overline{A}_H$ = 83/107, throughout the measured excitation energy range. The persistence as a function of excitation energy of the mass-asymmetric fission for both proton-rich Hg isotopes gives strong evidence for the survival of microscopic effects up to effective excitation energies of compound nuclei as high as 40 MeV. In conclusion, this behavior is different from fission of actinide nuclei and heavier mercury isotope 198Hg.

  1. The Microscopic Theory of Fission

    SciTech Connect

    Younes, W; Gogny, D

    2009-06-09

    Fission-fragment properties have been calculated for thermal neutron-induced fission on a {sup 239}Pu target, using constrained Hartree-Fock-Bogoliubov calculations with a finite-range effective interaction. A quantitative criterion based on the interaction energy between the nascent fragments is introduced to define the scission configurations. The validity of this criterion is benchmarked against experimental measurements of the kinetic energies and of multiplicities of neutrons emitted by the fragments.

  2. Benchmark test of neutron transport calculations: Indium, nickel, gold, europium, and cobalt activation with and without energy moderated fission neutrons by iron simulating the Hiroshima atomic bomb casing

    SciTech Connect

    Iwatani, Kazuo; Shizuma, Kiyoshi; Hasai, Hiromi; Hoshi, Masaharu; Hiraoka, Masayuki; Hayakawa, Norihiko; Oka, Takamitsu

    1994-10-01

    A benchmark test of the Monte Carlo neutron and photon transport code system (MCNP) was performed using a bare- and energy-moderated {sup 252}Cf fission neutron source which was obtained by transmission through 10-cm-thick iron. An iron plate was used to simulate the effect of the Hiroshima atomic bomb casing. This test includes the activation of indium and nickel for fast neutrons and gold, europium, and cobalt for thermal and epithermal neutrons, which were inserted in the moderators. The latter two activations are also to validate {sup 152}Eu and {sup 60}Co activity data obtained from the atomic bomb-exposed specimens collected at Hiroshima and Nagasaki, Japan. The neutron moderators used were Lucite and Nylon 6 and the total thickness of each moderator was 60 cm or 65 cm. Measured activity data (reaction yield) of the neutron-irradiated detectors in these moderators decreased to about 1/1,000th or 1/10,000th, which corresponds to about 1,500 m ground distance from the hypocenter in Hiroshima. For all of the indium, nickel, and gold activity data, the measured and calculated values agreed within 25%, and the corresponding values for europium and cobalt were within 40%. From this study, the MCNP code was found to be accurate enough for the bare- and energy-moderated {sup 252}Cf neutron activation calculations of these elements using moderators containing hydrogen, carbon, nitrogen, and oxygen. 18 refs., 10 figs., 4 tabs.

  3. Benchmark test of neutron transport calculations: indium, nickel, gold, europium, and cobalt activation with and without energy moderated fission neutrons by iron simulating the Hiroshima atomic bomb casing.

    PubMed

    Iwatani, K; Hoshi, M; Shizuma, K; Hiraoka, M; Hayakawa, N; Oka, T; Hasai, H

    1994-10-01

    A benchmark test of the Monte Carlo neutron and photon transport code system (MCNP) was performed using a bare- and energy-moderated 252Cf fission neutron source which was obtained by transmission through 10-cm-thick iron. An iron plate was used to simulate the effect of the Hiroshima atomic bomb casing. This test includes the activation of indium and nickel for fast neutrons and gold, europium, and cobalt for thermal and epithermal neutrons, which were inserted in the moderators. The latter two activations are also to validate 152Eu and 60Co activity data obtained from the atomic bomb-exposed specimens collected at Hiroshima and Nagasaki, Japan. The neutron moderators used were Lucite and Nylon 6 and the total thickness of each moderator was 60 cm or 65 cm. Measured activity data (reaction yield) of the neutron-irradiated detectors in these moderators decreased to about 1/1,000th or 1/10,000th, which corresponds to about 1,500 m ground distance from the hypocenter in Hiroshima. For all of the indium, nickel, and gold activity data, the measured and calculated values agreed within 25%, and the corresponding values for europium and cobalt were within 40%. From this study, the MCNP code was found to be accurate enough for the bare- and energy-moderated 252Cf neutron activation calculations of these elements using moderators containing hydrogen, carbon, nitrogen, and oxygen.

  4. Two neutron correlations in photo-fission

    NASA Astrophysics Data System (ADS)

    Dale, D. S.; Kosinov, O.; Forest, T.; Burggraf, J.; Stave, S.; Warren, G.; Starovoitova, V.

    2016-09-01

    A large body of experimental work has established the strong kinematical correlation between fission fragments and fission neutrons. Here, we report on the progress of investigations of the potential for strong two neutron correlations arising from the nearly back-to-back nature of the two fission fragments that emit these neutrons in the photo-fission process. In initial measurements, a pulsed electron linear accelerator was used to generate bremsstrahlung photons that impinged upon an actinide target, and the energy and opening angle distributions of coincident neutrons were measured using a large acceptance neutron detector array. A planned comprehensive set of measurements of two neutron correlations in the photo-fission of actinides is expected to shed light on several fundamental aspects of the fission process including the multiplicity distributions associated with the light and heavy fission fragments, the nuclear temperatures of the fission fragments, and the mass distribution of the fission fragments as a function of energy released. In addition to these measurements providing important nuclear data, the unique kinematics of fission and the resulting two neutron correlations have the potential to be the basis for a new tool to detect fissionable materials. A key technical challenge of this program arises from the need to perform coincidence measurements with a low duty factor, pulsed electron accelerator. This has motivated the construction of a large acceptance neutron detector array, and the development of data analysis techniques to directly measure uncorrelated two neutron backgrounds.

  5. Two neutron correlations in photo-fission

    SciTech Connect

    Dale, D. S.; Kosinov, O.; Forest, T.; Burggraf, J.; Stave, S.; Warren, G.; Starovoitova, V.

    2016-01-01

    A large body of experimental work has established the strong kinematical correlation between fission fragments and fission neutrons. Here, we report on the progress of investigations of the potential for strong two neutron correlations arising from the nearly back-to-back nature of the two fission fragments that emit these neutrons in the photo-fission process. In initial measurements, a pulsed electron linear accelerator was used to generate bremsstrahlung photons that impinged upon an actinide target, and the energy and opening angle distributions of coincident neutrons were measured using a large acceptance neutron detector array. A planned comprehensive set of measurements of two neutron correlations in the photo-fission of actinides is expected to shed light on several fundamental aspects of the fission process including the multiplicity distributions associated with the light and heavy fission fragments, the nuclear temperatures of the fission fragments, and the mass distribution of the fission fragments as a function of energy released. In addition to these measurements providing important nuclear data, the unique kinematics of fission and the resulting two neutron correlations have the potential to be the basis for a new tool to detect fissionable materials. A key technical challenge of this program arises from the need to perform coincidence measurements with a low duty factor, pulsed electron accelerator. This has motivated the construction of a large acceptance neutron detector array, and the development of data analysis techniques to directly measure uncorrelated two neutron backgrounds.

  6. Fission modelling with FIFRELIN

    NASA Astrophysics Data System (ADS)

    Litaize, Olivier; Serot, Olivier; Berge, Léonie

    2015-12-01

    The nuclear fission process gives rise to the formation of fission fragments and emission of particles (n,γ , e-) . The particle emission from fragments can be prompt and delayed. We present here the methods used in the FIFRELIN code, which simulates the prompt component of the de-excitation process. The methods are based on phenomenological models associated with macroscopic and/or microscopic ingredients. Input data can be provided by experiment as well as by theory. The fission fragment de-excitation can be performed within Weisskopf (uncoupled neutron and gamma emission) or a Hauser-Feshbach (coupled neutron/gamma emission) statistical theory. We usually consider five free parameters that cannot be provided by theory or experiments in order to describe the initial distributions required by the code. In a first step this set of parameters is chosen to reproduce a very limited set of target observables. In a second step we can increase the statistics to predict all other fission observables such as prompt neutron, gamma and conversion electron spectra but also their distributions as a function of any kind of parameters such as, for instance, the neutron, gamma and electron number distributions, the average prompt neutron multiplicity as a function of fission fragment mass, charge or kinetic energy, and so on. Several results related to different fissioning systems are presented in this work. The goal in the next decade will be i) to replace some macroscopic ingredients or phenomenological models by microscopic calculations when available and reliable, ii) to be a support for experimentalists in the design of detection systems or in the prediction of necessary beam time or count rates with associated statistics when measuring fragments and emitted particle in coincidence iii) extend the model to be able to run a calculation when no experimental input data are available, iv) account for multiple chance fission and gamma emission before fission, v) account for the

  7. Absorption by XeCl* excimer molecules of their own emission of the B-X transition (λ = 308 nm) in a dense Ar-Xe-CCl4 medium upon pumping by fast electrons and uranium-235 fission fragments

    NASA Astrophysics Data System (ADS)

    Mis'kevich, A. I.; Dyuzhov, Yu. A.; Suvorov, A. A.

    2016-08-01

    Luminescence of dense Ar-Xe-CCl4 gas mixtures with a low CCl4 content upon pumping by fast electrons and uranium-235 fission fragments is studied by spectroscopic methods. It is found that, in a cell with a resonator tuned to the B-X transition of the XeCl* molecule (λ = 308 nm), the D-state population of the XeCl* excimer molecule (the D-X transition, λ = 235 nm) depends on the B-state population and increases by many times with increasing B-state population of the XeCl* molecule. The stimulated absorption coefficient k = 1.2 × 10-16 of B-X transition emission of the XeCl* molecule (λmax = 308 nm), which leads to population of the D-state of this molecule, and the coefficient of amplification μ = 2.5 × 10-4 cm-1 of B-X transition emission of the Xe Cl* molecule (λ = 308 nm) are measured upon pumping by uranium- 235 fission fragments with the specific energy input into the gas medium of ~60 mJ/cm3 and a specific power of energy input of about 240 W/cm3.

  8. Neutron Emission in Fission And Quasi-Fission of Hs

    SciTech Connect

    Itkis, I. M.; Itkis, M. G.; Knyazheva, G. N.; Kozulin, E. M.; Krupa, L.; Hanappe, F.; Dorvaux, O.; Stuttge, L.

    2010-04-30

    Mass and energy distributions of fission-like fragments obtained in the reactions {sup 26}Mg+{sup 248}Cm, {sup 36}S+{sup 238}U and {sup 58}Fe+{sup 208}Pb leading to the formation of {sup 266,274}Hs are reported. From the analysis of TKE distributions for symmetric fragment it was found that at energies below the Coulomb barrier the bimodal fission of {sup 274}Hs, formed in the reaction {sup 26}Mg+{sup 248}Cm, is observed, while in the reaction {sup 36}S+{sup 238}U at these energies the main part of the symmetric fragments arises from the quasi-fission process. At energies above the Coulomb barrier the fusion-fission is a main process leading to the formation of symmetric fragment for the both reactions. In the case of {sup 58}Fe+{sup 208}Pb reaction the quasi-fission process is the main reaction mechanism at all measured energies. The pre- and post-scission neutron multiplicities as a function of the fragment mass have been obtained for all studied reactions.

  9. Nuclear Fission Research at IRMM

    SciTech Connect

    Hambsch, Franz-Josef

    2005-05-24

    The Institute for Reference Materials and Measurements (IRMM) will celebrate its 45th anniversary in 2005. With its 150-MeV Geel Electron Linear Accelerator (GELINA) and 7-MV Van de Graaff accelerator as multi-purpose neutron sources, it served the nuclear physics community for this period.The research in the field of nuclear fission was focused in recent years on both the measurement and calculation of fission cross sections, and the measurement of fission fragment properties.Fission cross sections were determined for 233Pa and 234U; the fission process was studied in the resolved resonance region of 239Pu(n,f) and for 251Cf(nth,f). These measurements derive their interest from accelerator driven systems, the thorium fuel cycle, high temperature reactors, safety issues of current reactors, and basic physics. The measurements are supported by several modeling efforts that aim at improving model codes and nuclear data evaluation.

  10. Spontaneous Fission

    DOE R&D Accomplishments Database

    Segre, Emilio

    1950-11-22

    The first attempt to discover spontaneous fission in uranium was made by [Willard] Libby, who, however, failed to detect it on account of the smallness of effect. In 1940, [K. A.] Petrzhak and [G. N.] Flerov, using more sensitive methods, discovered spontaneous fission in uranium and gave some rough estimates of the spontaneous fission decay constant of this substance. Subsequently, extensive experimental work on the subject has been performed by several investigators and will be quoted in the various sections. [N.] Bohr and [A.] Wheeler have given a theory of the effect based on the usual ideas of penetration of potential barriers. On this project spontaneous fission has been studied for the past several years in an effort to obtain a complete picture of the phenomenon. For this purpose the spontaneous fission decay constants {lambda} have been measured for separated isotopes of the heavy elements wherever possible. Moreover, the number {nu} of neutrons emitted per fission has been measured wherever feasible, and other characteristics of the spontaneous fission process have been studied. This report summarizes the spontaneous fission work done at Los Alamos up to January 1, 1945. A chronological record of the work is contained in the Los Alamos monthly reports.

  11. Cluster aspects of binary fission

    NASA Astrophysics Data System (ADS)

    Andreev, A. V.; Adamian, G. G.; Antonenko, N. V.

    2013-04-01

    With the improved scission-point model the mass distributions are calculated for induced fission of different Hg isotopes with even mass numbers A =180, 184, 188, 192, 196, 198. The calculated mass distribution and mean total kinetic energy of fission fragments are in a good agreement with the existing experimental data. The change in the shape of the mass distribution from asymmetric to more symmetric is revealed with increasing A of the fissioning AHg nucleus, and the reactions are proposed to verify this prediction experimentally.

  12. Dynamical Aspects of Nuclear Fission

    NASA Astrophysics Data System (ADS)

    Kliman, J.; Itkis, M. G.; Gmuca, Š.

    2008-11-01

    Fission dynamics. Dependence of scission-neutron yield on light-fragment mass for [symbol]=1/2 [et al.]. Dynamics of capture quasifission and fusion-fission competition / L. Stuttgé ... [et al.] -- Fission-fission. The processes of fusion-fission and quasi-fission of superheavy nuclei / M. G. Itkis ... [et al.]. Fission and quasifission in the reactions [symbol]Ca+[symbol]Pb and [symbol]Ni+[symbol]W / G. N. Knyazheva ... [et al.]. Mass-energy characteristics of reactions [symbol]Fe+[symbol][symbol][symbol]266Hs and [symbol]Mg+[symbol]Cm[symbol][symbol]Hs at Coulomb barrier / L. Krupa ... [et al.]. Fusion of heavy ions at extreme sub-barrier energies / Ş. Mişicu and H. Esbensen. Fusion and fission dynamics of heavy nuclear system / V. Zagrebaev and W. Greiner. Time-dependent potential energy for fusion and fission processes / A. V. Karpov ... [et al.] -- Superheavy elements. Advances in the understanding of structure and production mechanisms for superheavy elements / W. Greiner and V. Zagrebaev. Fission barriers of heaviest nuclei / A. Sobiczewski ... [et al.]. Possibility of synthesizing doubly magic superheavy nuclei / Y Aritomo ... [et al.]. Synthesis of superheavy nuclei in [symbol]Ca-induced reactions / V. K. Utyonkov ... [et al.] -- Fragmentation. Production of neutron-rich nuclei in the nucleus-nucleus collisions around the Fermi energy / M. Veselský. Signals of enlarged core in [symbol]Al / Y. G. Ma ... [et al.] -- Exotic modes. New insight into the fission process from experiments with relativistic heavy-ion beams / K.-H. Schmidt ... [et al.]. New results for the intensity of bimodal fission in binary and ternary spontaneous fission of [symbol]Cf / C. Goodin ... [et al.]. Rare fission modes: study of multi-cluster decays of actinide nuclei / D. V. Kamanin ... [et al.]. Energy distribution of ternary [symbol]-particles in [symbol]Cf(sf) / M. Mutterer ... [et al.]. Preliminary results of experiment aimed at searching for collinear cluster tripartition of

  13. Fission yield studies at the IGISOL facility

    NASA Astrophysics Data System (ADS)

    Penttilä, H.; Elomaa, V.-V.; Eronen, T.; Hakala, J.; Jokinen, A.; Kankainen, A.; Moore, I. D.; Rahaman, S.; Rinta-Antila, S.; Rissanen, J.; Rubchenya, V.; Saastamoinen, A.; Weber, C.; Äystö, J.

    2012-04-01

    Low-energy-particle-induced fission is a cost-effective way to produce neutron-rich nuclei for spectroscopic studies. Fission has been utilized at the IGISOL to produce isotopes for decay and nuclear structure studies, collinear laser spectroscopy and precision mass measurements. The ion guide technique is also very suitable for the fission yield measurements, which can be performed very efficiently by using the Penning trap for fission fragment identification and counting. The proton- and neutron-induced fission yield measurements at the IGISOL are reviewed, and the independent isotopic yields of Zn, Ga, Rb, Sr, Cd and In in 25MeV deuterium-induced fission are presented for the first time. Moving to a new location next to the high intensity MCC30/15 light-ion cyclotron will allow also the use of the neutron-induced fission to produce the neutron rich nuclei at the IGISOL in the future.

  14. Development of prototype induced-fission-based Pu accountancy instrument for safeguards applications.

    PubMed

    Seo, Hee; Lee, Seung Kyu; An, Su Jung; Park, Se-Hwan; Ku, Jeong-Hoe; Menlove, Howard O; Rael, Carlos D; LaFleur, Adrienne M; Browne, Michael C

    2016-09-01

    Prototype safeguards instrument for nuclear material accountancy (NMA) of uranium/transuranic (U/TRU) products that could be produced in a future advanced PWR fuel processing facility has been developed and characterized. This is a new, hybrid neutron measurement system based on fast neutron energy multiplication (FNEM) and passive neutron albedo reactivity (PNAR) methods. The FNEM method is sensitive to the induced fission rate by fast neutrons, while the PNAR method is sensitive to the induced fission rate by thermal neutrons in the sample to be measured. The induced fission rate is proportional to the total amount of fissile material, especially plutonium (Pu), in the U/TRU product; hence, the Pu amount can be calibrated as a function of the induced fission rate, which can be measured using either the FNEM or PNAR method. In the present study, the prototype system was built using six (3)He tubes, and its performance was evaluated for various detector parameters including high-voltage (HV) plateau, efficiency profiles, dead time, and stability. The system's capability to measure the difference in the average neutron energy for the FNEM signature also was evaluated, using AmLi, PuBe, (252)Cf, as well as four Pu-oxide sources each with a different impurity (Al, F, Mg, and B) and producing (α,n) neutrons with different average energies. Future work will measure the hybrid signature (i.e., FNEM×PNAR) for a Pu source with an external interrogating neutron source after enlarging the cavity size of the prototype system to accommodate a large-size Pu source (~600g Pu).

  15. Fission measurements with PPAC detectors using a coincidence technique

    SciTech Connect

    Paradela, C.; Duran, I.; Tarrio, D.; Audouin, L.; Tassan-Got, L.; Stephan, C.

    2011-07-01

    A fission detection setup based on Parallel Plate Avalanche Counters (PPAC) has been constructed and used at the CERN n-TOF facility. The setup takes advantage of the coincidence detection of both fission fragments to discriminate the background reactions produced by high energy neutrons and it allows obtaining neutron-induced fission cross section up to 1 GeV. (authors)

  16. The need for precise and well-documented experimental data on prompt fission neutron spectra from neutron-induced fission of 239Pu

    DOE PAGES

    Neudecker, Denise; Taddeucci, Terry Nicholas; Haight, Robert Cameron; ...

    2016-01-06

    The spectrum of neutrons emitted promptly after 239Pu(n,f)—a so-called prompt fission neutron spectrum (PFNS)—is a quantity of high interest, for instance, for reactor physics and global security. However, there are only few experimental data sets available that are suitable for evaluations. In addition, some of those data sets differ by more than their 1-σ uncertainty boundaries. We present the results of MCNP studies indicating that these differences are partly caused by underestimated multiple scattering contributions, over-corrected background, and inconsistent deconvolution methods. A detailed uncertainty quantification for suitable experimental data was undertaken including these effects, and test-evaluations were performed with themore » improved uncertainty information. The test-evaluations illustrate that the inadequately estimated effects and detailed uncertainty quantification have an impact on the evaluated PFNS and associated uncertainties as well as the neutron multiplicity of selected critical assemblies. A summary of data and documentation needs to improve the quality of the experimental database is provided based on the results of simulations and test-evaluations. Furthermore, given the possibly substantial distortion of the PFNS by multiple scattering and background effects, special care should be taken to reduce these effects in future measurements, e.g., by measuring the 239Pu PFNS as a ratio to either the 235U or 252Cf PFNS.« less

  17. The Need for Precise and Well-documented Experimental Data on Prompt Fission Neutron Spectra from Neutron-induced Fission of {sup 239}Pu

    SciTech Connect

    Neudecker, D. Taddeucci, T.N.; Haight, R.C.; Lee, H.Y.; White, M.C.; Rising, M.E.

    2016-01-15

    The spectrum of neutrons emitted promptly after {sup 239}Pu(n,f)—a so-called prompt fission neutron spectrum (PFNS)—is a quantity of high interest, for instance, for reactor physics and global security. However, there are only few experimental data sets available that are suitable for evaluations. In addition, some of those data sets differ by more than their 1-σ uncertainty boundaries. We present the results of MCNP studies indicating that these differences are partly caused by underestimated multiple scattering contributions, over-corrected background, and inconsistent deconvolution methods. A detailed uncertainty quantification for suitable experimental data was undertaken including these effects, and test-evaluations were performed with the improved uncertainty information. The test-evaluations illustrate that the inadequately estimated effects and detailed uncertainty quantification have an impact on the evaluated PFNS and associated uncertainties as well as the neutron multiplicity of selected critical assemblies. A summary of data and documentation needs to improve the quality of the experimental database is provided based on the results of simulations and test-evaluations. Given the possibly substantial distortion of the PFNS by multiple scattering and background effects, special care should be taken to reduce these effects in future measurements, e.g., by measuring the {sup 239}Pu PFNS as a ratio to either the {sup 235}U or {sup 252}Cf PFNS.

  18. SOFIA, a Next-Generation Facility for Fission Yields Measurements and Fission Study. First Results and Perspectives

    NASA Astrophysics Data System (ADS)

    Audouin, L.; Pellereau, E.; Taieb, J.; Boutoux, G.; Béliera, G.; Chatillon, A.; Ebran, A.; Gorbinet, T.; Laurent, B.; Martin, J.-F.; Tassan-Got, L.; Jurado, B.; Alvarez-Pol, H.; Ayyad, Y.; Benlliure, J.; Caamano, M.; Cortina-Gil, D.; Fernandez-Dominguez, B.; Paradela, C.; Rodriguez-Sanchez, J.-L.; Vargas, J.; Casarejos, E.; Heinz, A.; Kelic-Heil, A.; Kurz, N.; Nociforo, C.; Pietri, S.; Prochazka, A.; Rossi, D.; Schmidt, K.-H.; Simon, H.; Voss, B.; Weick, H.; Winfield, J. S.

    2015-10-01

    Fission fragments play an important role in nuclear reactors evolution and safety. However, fragments yields are poorly known : data are essentially limited to mass yields from thermal neutron-induced fissions on a very few nuclei. SOFIA (Study On FIssion with Aladin) is an innovative experimental program on nuclear fission carried out at the GSI facility, which aims at providing isotopic yields on a broad range of fissioning systems. Relativistic secondary beams of actinides and pre-actinides are selected by the Fragment Separator (FRS) and their fission is triggered by electromagnetic interaction. The resulting excitation energy is comparable to the result of an interaction with a low-energy neutron, thus leading to useful data for reactor simulations. For the first time ever, both fission fragments are completely identified in charge and mass in a new recoil spectrometer, allowing for precise yields measurements. The yield of prompt neutrons can then be deduced, and the fission mechanism can be ascribed, providing new constraints for fission models. During the first experiment, all the technical challenges were matched : we have thus set new experimental standards in the measurements of relativistic heavy ions (time of flight, position, energy loss).This communication presents a first series of results obtained on the fission of 238U; many other fissioning systems have also been measured and are being analyzed presently. A second SOFIA experiment is planned in September 2014, and will be focused on the measurement of the fission of 236U, the analog of 235U+n.

  19. Cold fission as heavy ion emission

    NASA Astrophysics Data System (ADS)

    Poenaru, D. N.; Maruhn, J. A.; Greiner, W.; Ivaşcu, M.; Mazilu, D.; Gherghescu, R.

    1987-09-01

    The last version of the analytical superasymmetric fission model is applied to study cold fission processes. Strong shell effects are present either in one or both fission fragments. A smooth behaviour is observed when the proton or the neutron numbers are changed by four units. Increasing Z and N, in the transuranium region, a sharp transition from asymmetry with a large peak-to-valley ratio to symmetry at Z=100 and/or N=164 is obtained. The transition toward asymmetry at higher Z and N is much smoother. The most probable cold fission light fragments from234U,236U,239Np and240Pu are100Zr,104Mo,106Mo and106Mo, respectively, in good agreement with experimental data. The unified treatment of alpha decay, heavy ion radioactivities and cold fission is illustrated for234U — the first nucleus in which all three groups have been already observed.

  20. Investigations of fission characteristics and correlation effects

    NASA Astrophysics Data System (ADS)

    Gundorin, N. A.; Zeinalov, Sh. S.; Kopach, Yu. N.; Popov, A. B.; Furman, V. I.

    2016-07-01

    We review the experimental results on the P-even and P-odd angular correlations of fission fragments in the fission of the 235U and 239Pu nuclei induced by unpolarized and polarized resonance neutrons, and on the TRI and ROT effects in the ternary and binary fission of actinides induced by polarized thermal neutrons. Also reported are the measured yields of prompt and delayed neutrons per fission event. The experimental data are analyzed within a novel theoretical framework developed by the JINR—RNC KI Collaboration, whereby the reduction of the multidimensional phase space of fission fragments to the JπK-channel space is consistently validated and the role of resonance interference in the observed correlation effects is revealed.

  1. Benchmarking nuclear fission theory

    SciTech Connect

    Bertsch, G. F.; Loveland, W.; Nazarewicz, W.; Talou, P.

    2015-05-14

    We suggest a small set of fission observables to be used as test cases for validation of theoretical calculations. Thus, the purpose is to provide common data to facilitate the comparison of different fission theories and models. The proposed observables are chosen from fission barriers, spontaneous fission lifetimes, fission yield characteristics, and fission isomer excitation energies.

  2. Compact fission counter for DANCE

    SciTech Connect

    Wu, C Y; Chyzh, A; Kwan, E; Henderson, R; Gostic, J; Carter, D; Bredeweg, T; Couture, A; Jandel, M; Ullmann, J

    2010-11-06

    The Detector for Advanced Neutron Capture Experiments (DANCE) consists of 160 BF{sub 2} crystals with equal solid-angle coverage. DANCE is a 4{pi} {gamma}-ray calorimeter and designed to study the neutron-capture reactions on small quantities of radioactive and rare stable nuclei. These reactions are important for the radiochemistry applications and modeling the element production in stars. The recognition of capture event is made by the summed {gamma}-ray energy which is equivalent of the reaction Q-value and unique for a given capture reaction. For a selective group of actinides, where the neutron-induced fission reaction competes favorably with the neutron capture reaction, additional signature is needed to distinguish between fission and capture {gamma} rays for the DANCE measurement. This can be accomplished by introducing a detector system to tag fission fragments and thus establish a unique signature for the fission event. Once this system is implemented, one has the opportunity to study not only the capture but also fission reactions. A parallel-plate avalanche counter (PPAC) has many advantages for the detection of heavy charged particles such as fission fragments. These include fast timing, resistance to radiation damage, and tolerance of high counting rate. A PPAC also can be tuned to be insensitive to {alpha} particles, which is important for experiments with {alpha}-emitting actinides. Therefore, a PPAC is an ideal detector for experiments requiring a fast and clean trigger for fission. A PPAC with an ingenious design was fabricated in 2006 by integrating amplifiers into the target assembly. However, this counter was proved to be unsuitable for this application because of issues related to the stability of amplifiers and the ability to separate fission fragments from {alpha}'s. Therefore, a new design is needed. A LLNL proposal to develop a new PPAC for DANCE was funded by NA22 in FY09. The design goal is to minimize the mass for the proposed counter

  3. Measurement of {sup 235}U content and flow of UF{sub 6} using delayed neutrons or gamma rays following induced fission

    SciTech Connect

    Stromswold, D.C.; Peurrung, A.J.; Reeder, P.L.; Perkins, R.W.

    1996-06-01

    Feasibility experiments conducted at Pacific Northwest National Laboratory demonstrate that either delayed neutrons or energetic gamma rays from short-lived fission products can be used to monitor the blending of UF{sub 6} gas streams. A {sup 252}Cf neutron source was used to induce {sup 235}U fission in a sample, and delayed neutrons and gamma rays were measured after the sample moved {open_quotes}down-stream.{close_quotes} The experiments used a UO{sub 2} powder that was transported down the pipe to simulate the flowing UF{sub 6} gas. Computer modeling and analytic calculation extended the test results to a flowing UF{sub 6} gas system. Neutron or gamma-ray measurements made at two downstream positions can be used to indicate both the {sup 235}U content and UF{sub 6} flow rate. Both the neutron and gamma-ray techniques have the benefits of simplicity and long-term reliability, combined with adequate sensitivity for low-intrusion monitoring of the blending process. Alternatively, measuring the neutron emission rate from (a, n) reactions in the UF{sub 6} provides an approximate measure of the {sup 235}U content without using a neutron source to induce fission.

  4. Fission of actinide nuclei using multi-nucleon transfer reactions

    NASA Astrophysics Data System (ADS)

    Léguillon, Romain; Nishio, Katsuhisa; Hirose, Kentaro; Orlandi, Riccardo; Makii, Hiroyuki; Nishinaka, Ichiro; Ishii, Tetsuro; Tsukada, Kazuaki; Asai, Masato; Chiba, Satoshi; Ohtsuki, Tsutomu; Araki, Shohei; Watanabe, Yukinobu; Tatsuzawa, Ryotaro; Takaki, Naoyuki

    2014-09-01

    We are promoting a campaign to measure fission-fragment mass distributions for neutron-rich actinide nuclei populated by transfer reactions from their ground state up to an excitation energy of several tens MeV. We thus obtain the excitation energy dependence of the mass distribution. The experiment was carried out at the 20 MV JAEA tandem facility at Tokai. We report on the data obtained in the direct reaction 18 O + 232 Th . Transfer-channels and excitation energies of the fissioning nuclei were identified using silicon dE-E detectors located at forward angle. Two fission fragments were detected in coincidence using multi-wire proportional counters. Fission fragment masses were determined by kinematic consideration. We obtained the fission fragment mass distributions for 13 nuclei from actinium to uranium and some fission barrier heights. We are promoting a campaign to measure fission-fragment mass distributions for neutron-rich actinide nuclei populated by transfer reactions from their ground state up to an excitation energy of several tens MeV. We thus obtain the excitation energy dependence of the mass distribution. The experiment was carried out at the 20 MV JAEA tandem facility at Tokai. We report on the data obtained in the direct reaction 18 O + 232 Th . Transfer-channels and excitation energies of the fissioning nuclei were identified using silicon dE-E detectors located at forward angle. Two fission fragments were detected in coincidence using multi-wire proportional counters. Fission fragment masses were determined by kinematic consideration. We obtained the fission fragment mass distributions for 13 nuclei from actinium to uranium and some fission barrier heights. Present study is supported by the Ministry of Education, Culture, Sports, Science and Technology of Japan.

  5. The scission point configuration of fissioning nuclei

    NASA Astrophysics Data System (ADS)

    Ivanyuk, Fedir

    2016-06-01

    We define the optimal shape which fissioning nuclei attain just before the scission and calculate the deformation energy as function of the mass asymmetry at the scission point. The calculated deformation energy is used in quasi-static approximation for the estimation of mass distribution, total kinetic and excitation energy of fission fragments, and the total number of prompt neutrons. The calculated results reproduce rather well the experimental data on the position of the peaks in the mass distribution of fission fragments, the total kinetic and excitation energy of fission fragments. The calculated value of neutron multiplicity is somewhat larger than experimental results. The saw-tooth structure of neutron multiplicity is qualitatively reproduced.

  6. Energetics of the fission process

    NASA Astrophysics Data System (ADS)

    Gönnenwein, Friedrich

    1994-09-01

    The mass asymmetry of fragments from nuclear fission of heavy nuclei is reviewed. While mass asymmetry is a common and well-known phenomenon for low-energy fission of the lighter actinides, more recent experiments have demonstrated that, for the heaviest actinides, the mass distribution switches to a symmetric one. On the other hand, it has been discovered that, though for fissioning nuclei with mass numbers A225 the mass distribution is basically symmetric, an asymmetric component is clearly to be identified for nuclei down to the Pb-region. In the absence of a generally accepted dynamical theory of fission, the above experimental findings are discussed in terms of static energy considerations. Triggered from the outset by the structure of the potential energy surface at the saddlepoint, the energy balance at the scission point between the available energy ( Q-value) of the reaction and the Coulomb and deformation energy of the nascent fragments is shown to steer the characteristics of the fragment mass distributions.

  7. A compact time-of-flight spectrometer for electrofission studies*

    NASA Astrophysics Data System (ADS)

    Heil, R. D.; Drexler, J.; Huber, K.; Kneissl, U.; Mank, G.; Ries, H.; Ströher, H.; Weber, T.; Wilke, W.

    1985-09-01

    A compact time-of-flight spectrometer for measurements of fission fragment distributions is described. The start detector consists of a channel plate arrangement with an electrostatic mirror. The time resolution of PPACs, serving as stop detectors, has been optimized. Velocity distributions of 252Cf fragments and mean velocities are reported. The results are discussed with respect to planned (e, e'f) coincidence experiments at the Mainz microtron.

  8. Fission dynamics within time-dependent Hartree-Fock: Deformation-induced fission

    NASA Astrophysics Data System (ADS)

    Goddard, Philip; Stevenson, Paul; Rios, Arnau

    2015-11-01

    Background: Nuclear fission is a complex large-amplitude collective decay mode in heavy nuclei. Microscopic density functional studies of fission have previously concentrated on adiabatic approaches based on constrained static calculations ignoring dynamical excitations of the fissioning nucleus and the daughter products. Purpose: We explore the ability of dynamic mean-field methods to describe fast fission processes beyond the fission barrier, using the nuclide Pu240 as an example. Methods: Time-dependent Hartree-Fock calculations based on the Skyrme interaction are used to calculate nonadiabatic fission paths, beginning from static constrained Hartree-Fock calculations. The properties of the dynamic states are interpreted in terms of the nature of their collective motion. Fission product properties are compared to data. Results: Parent nuclei constrained to begin dynamic evolution with a deformation less than the fission barrier exhibit giant-resonance-type behavior. Those beginning just beyond the barrier explore large-amplitude motion but do not fission, whereas those beginning beyond the two-fragment pathway crossing fission to final states which differ according to the exact initial deformation. Conclusions: Time-dependent Hartree-Fock is able to give a good qualitative and quantitative description of fast fission, provided one begins from a sufficiently deformed state.

  9. Multimodal Fission in Heavy-Ion Induced Reactions

    SciTech Connect

    Pokrovskiy, I. V.; Bogachev, A. A.; Iitkis, M. G.; Iitkis, J. M.; Kondratiev, N. A.; Kozulin, E. M.; Dorvaux, O.; Rowley, N.; Schmitt, Ch.; Stuttge, L.

    2006-08-14

    Mass, energy and folding angle distributions of the fission fragments as well as multiplicities of neutron and gamma-quanta emissions accompanying the fission process were measured for fission of 226Th, 227Pa and 234Pu compound nuclei produced in reactions with 18O and 26Mg projectiles over a wide energy range. Data were analyzed with respect to the presence of fission modes. Asymmetric fission was observed even at very high initial excitation for all the measured systems. The so-called fission mode S1 (caused by the proton shell Z{approx}50 and neutron shell N{approx}82 in heavy fragment) was found to be dominant in asymmetric fission of 234Pu. Reactions with not full linear momentum transfer were observed in the folding spectra for all the measured systems.

  10. Fission meter

    DOEpatents

    Rowland, Mark S [Alamo, CA; Snyderman, Neal J [Berkeley, CA

    2012-04-10

    A neutron detector system for discriminating fissile material from non-fissile material wherein a digital data acquisition unit collects data at high rate, and in real-time processes large volumes of data directly into information that a first responder can use to discriminate materials. The system comprises counting neutrons from the unknown source and detecting excess grouped neutrons to identify fission in the unknown source.

  11. Current Issues in Nuclear Data Evaluation Methodology: {sup 235}U Prompt Fission Neutron Spectra and Multiplicity for Thermal Neutrons

    SciTech Connect

    Trkov, A.; Capote, R.; Pronyaev, V.G.

    2015-01-15

    Issues in evaluation methodology of the prompt fission neutron spectra (PFNS) and neutron multiplicity for the thermal-neutron-induced fission of the {sup 235}U are discussed. The inconsistency between the experimental differential and integral data is addressed. By using differential data as ”shape data” good consistency was achieved between available sets of differential data. Integral dosimetry data have been used to define the PFNS slope at high outgoing neutron energies, where the quality of the differential data is poor. The inclusion into the fit of measured integral (spectrum-averaged) cross sections had a very small impact in the region where differential PFNS data are abundant and accurate, but removed the discrepancy with integral data at higher neutron emission energies. All experimental data are consistently fitted giving a PFNS average energy of 2.008 MeV. The impact on criticality prediction of the newly evaluated PFNS was tested. The highly enriched {sup 235}U solution assemblies with high leakage HEU-SOL-THERM-001 and HEU-SOL-THERM-009 benchmarks are the most sensitive to the PFNS. Criticality calculations for those solutions show a significant increase in reactivity if the average neutron energy of the fission neutrons is reduced from the ENDF/B-VI.5 value of 2.03 MeV. The proposed reduction of the PFNS average energy by 1.1% can be compensated by reducing the average number of neutrons per fission ν{sup ¯} at the thermal energy to the Gwin et al. measured value. The simple least-squares PFNS fit was confirmed by a more sophisticated combined fit of differential PFNS data for {sup 233,235}U, {sup 239}Pu and {sup 252}Cf nuclides with the generalised least-squares method using the GMA and GANDR codes.

  12. Current Issues in Nuclear Data Evaluation Methodology: 235U Prompt Fission Neutron Spectra and Multiplicity for Thermal Neutrons

    NASA Astrophysics Data System (ADS)

    Trkov, A.; Capote, R.; Pronyaev, V. G.

    2015-01-01

    Issues in evaluation methodology of the prompt fission neutron spectra (PFNS) and neutron multiplicity for the thermal-neutron-induced fission of the 235U are discussed. The inconsistency between the experimental differential and integral data is addressed. By using differential data as "shape data" good consistency was achieved between available sets of differential data. Integral dosimetry data have been used to define the PFNS slope at high outgoing neutron energies, where the quality of the differential data is poor. The inclusion into the fit of measured integral (spectrum-averaged) cross sections had a very small impact in the region where differential PFNS data are abundant and accurate, but removed the discrepancy with integral data at higher neutron emission energies. All experimental data are consistently fitted giving a PFNS average energy of 2.008 MeV. The impact on criticality prediction of the newly evaluated PFNS was tested. The highly enriched 235U solution assemblies with high leakage HEU-SOL-THERM-001 and HEU-SOL-THERM-009 benchmarks are the most sensitive to the PFNS. Criticality calculations for those solutions show a significant increase in reactivity if the average neutron energy of the fission neutrons is reduced from the ENDF/B-VI.5 value of 2.03 MeV. The proposed reduction of the PFNS average energy by 1.1% can be compensated by reducing the average number of neutrons per fission νbar at the thermal energy to the Gwin et al. measured value. The simple least-squares PFNS fit was confirmed by a more sophisticated combined fit of differential PFNS data for 233,235U, 239Pu and 252Cf nuclides with the generalised least-squares method using the GMA and GANDR codes.

  13. A new design of fission detector for prompt fission neutron investigation

    NASA Astrophysics Data System (ADS)

    Zeynalov, Sh.; Zeynalova, O.; Nazarenko, M. A.; Hambsch, F.-J.; Oberstedt, S.

    2012-10-01

    In this work we report recent achievements in design of twin back-to-back ionization chamber (TIC) for fission fragment (FF) mass and kinetic energy spectroscopy. Correlated FF kinetic energies, their masses and the angle of the fission axes in 3D Cartesian coordinates can be determined from analysis of the heights and shapes of the pulses induced by the fission fragments on the anodes of TIC. Anodes of TIC were designed as consisting of isolated strips each having independent electronic circuitry and special multi-channel pulse processing apparatus. Mathematical algorithms were provided along with formulae derived for fission axis angles determination. It was shown how the point of fission fragments origin on the target plane may be determined using the same measured data. The last feature made the TIC a rather powerful tool for prompt fission neutron (PFN) emission investigation in event by event analysis of individual fission reactions from non point fissile source. Position sensitive neutron induced fission detector for neutron imaging applications with both thermal and low energy neutrons was found as another possible implementation of the designed TIC.

  14. Inhibition of peroxisome fission, but not mitochondrial fission, increases yeast chronological lifespan.

    PubMed

    Lefevre, Sophie D; Kumar, Sanjeev; van der Klei, Ida J

    2015-01-01

    Mitochondria are key players in aging and cell death. It has been suggested that mitochondrial fragmentation, mediated by the Dnm1/Fis1 organelle fission machinery, stimulates aging and cell death. This was based on the observation that Saccharomyces cerevisiae Δdnm1 and Δfis1 mutants show an enhanced lifespan and increased resistance to cell death inducers. However, the Dnm1/Fis1 fission machinery is also required for peroxisome division. Here we analyzed the significance of peroxisome fission in yeast chronological lifespan, using yeast strains in which fission of mitochondria was selectively blocked. Our data indicate that the lifespan extension caused by deletion of FIS1 is mainly due to a defect in peroxisome fission and not caused by a block in mitochondrial fragmentation. These observations are underlined by our observation that deletion of FIS1 does not lead to lifespan extension in yeast peroxisome deficient mutant cells.

  15. Event-by-Event Fission with FREYA

    SciTech Connect

    Randrup, J; Vogt, R

    2010-11-09

    The recently developed code FREYA (Fission Reaction Event Yield Algorithm) generates large samples of complete fission events, consisting of two receding product nuclei as well as a number of neutrons and photons, all with complete kinematic information. Thus it is possible to calculate arbitrary correlation observables whose behavior may provide unique insight into the fission process. The presentation first discusses the present status of FREYA, which has now been extended up to energies where pre-equilibrium emission becomes significant and one or more neutrons may be emitted prior to fission. Concentrating on {sup 239}Pu(n,f), we discuss the neutron multiplicity correlations, the dependence of the neutron energy spectrum on the neutron multiplicity, and the relationship between the fragment kinetic energy and the number of neutrons and their energies. We also briefly suggest novel fission observables that could be measured with modern detectors.

  16. Fission dynamics within time-dependent Hartree-Fock. II. Boost-induced fission

    NASA Astrophysics Data System (ADS)

    Goddard, Philip; Stevenson, Paul; Rios, Arnau

    2016-01-01

    Background: Nuclear fission is a complex large-amplitude collective decay mode in heavy nuclei. Microscopic density functional studies of fission have previously concentrated on adiabatic approaches based on constrained static calculations ignoring dynamical excitations of the fissioning nucleus and the daughter products. Purpose: We explore the ability of dynamic mean-field methods to describe induced fission processes, using quadrupole boosts in the nuclide 240Pu as an example. Methods: Following upon the work presented in Goddard et al. [Phys. Rev. C 92, 054610 (2015)], 10.1103/PhysRevC.92.054610, quadrupole-constrained Hartree-Fock calculations are used to create a potential energy surface. An isomeric state and a state beyond the second barrier peak are excited by means of instantaneous as well as temporally extended gauge boosts with quadrupole shapes. The subsequent deexcitation is studied in a time-dependent Hartree-Fock simulation, with emphasis on fissioned final states. The corresponding fission fragment mass numbers are studied. Results: In general, the energy deposited by the quadrupole boost is quickly absorbed by the nucleus. In instantaneous boosts, this leads to fast shape rearrangements and violent dynamics that can ultimately lead to fission. This is a qualitatively different process than the deformation-induced fission. Boosts induced within a finite time window excite the system in a relatively gentler way and do induce fission but with a smaller energy deposition. Conclusions: The fission products obtained using boost-induced fission in time-dependent Hartree-Fock are more asymmetric than the fragments obtained in deformation-induced fission or the corresponding adiabatic approaches.

  17. Prompt fission neutron spectra of n+235U above the (n,nf) fission threshold

    NASA Astrophysics Data System (ADS)

    Shu, Neng-Chuan; Jia, Min; Chen, Yong-Jing; Liu, Ting-Jin

    2015-05-01

    Calculations of prompt fission neutron spectra (PFNS) from the 235U(n, f) reaction were performed with a semi-empirical method for En = 7.0 and 14.7 MeV neutron energies. The total PFNS were obtained as a superposition of (n,xnf) pre-fission neutron spectra and post-fission spectra of neutrons which were evaporated from fission fragments, and these two kinds of spectra were taken as an expression of the evaporation spectrum. The contributions of (n,xnf) fission neutron spectra on the calculated PFNS were discussed. The results show that emission of one or two neutrons in the (n,nf) or (n,2nf) reactions influences the PFNS shape, and the neutron spectra of the (n,xnf) fission-channel are soft compared with the neutron spectra of the (n,f) fission channel. In addition, analysis of the multiple-chance fission component showed that second-chance fission dominates the PFNS with an incident neutron energy of 14.7 MeV whereas first-chance fission dominates the 7 MeV case. Supported by National Natural Science Foundation of China (11205246, 91126010, U1230127, 91226102), IAEA CRP (15905), and Defense Industrial Technology Development Program (B0120110034)

  18. Fission-Fusion Neutron Source Progress Report July 31, 2009

    SciTech Connect

    Chapline, G; Daffin, F; Clarke, R

    2010-02-19

    In this report the authors describe progress in evaluating the feasibility of a novel concept for producing intense pulses of 14 MeV neutrons using the DT fusion reaction. In this new scheme the heating of the DT is accomplished using fission fragments rather than ion beams as in conventional magnet fusion schemes or lasers in ICF schemes. This has the great advantage that there is no need for any large auxiliary power source. The scheme does require large magnetic fields, but generating these fields, e.g. with superconducting magnets, requires only a modest power source. As a source of fission fragments they propose using a dusty reactor concept introduced some time ago by one of us (RC). The version of the dusty reactor that they propose using for our neutron source would operate as a thermal neutron reactor and use highly enriched uranium in the form of micron sized pellets of UC. Our scheme for using the fission fragments to produce intense pulses of 14 MeV neutrons is based on the fission fragment rocket idea. In the fission fragment rocket scheme it was contemplated that the fission fragments produced in a low density reactor core would then be guided out of the reactor by large magnetic fields. A simple version of this idea would be to use the fission fragments escaping from one side of a tandem magnet mirror to heat DT gas confined in the adjacent magnetic trap.

  19. Fusion-fission study at IUAC: Recent results

    NASA Astrophysics Data System (ADS)

    Pullanhiotan, Sugathan

    2016-10-01

    Several properties observed in heavy ion induced fission led to the conclusion that fission is not always originated from fully equilibrated compound nucleus. Soon after the collision of two nuclei, it forms a di-nuclear system than can fission before a compound nucleus is formed. This process termed quasi-fission is a major hurdle to the formation of heavier elements by fusion. Fission originated before complete equilibration showed anomalously large angular anisotropy and mass distribution wider than what is expected from compound nucleus fission. The standard statistical model fails to predict the outcome of quasi-fission and currently no dynamical model is fully developed to predict all the features of quasi-fission. Though much progress has been made in recent times, a full understanding of the fission dynamics is still missing. Experiments identifying the influence of entrance channel parameters on dynamics of fusion-fission showed contrasting results. At IUAC accelerator facility many experiments have been performed to make a systematic study of fission dynamics using mass distribution, angular distribution and neutron multiplicity measurements in mass region around A ∼ 200. Recent measurement on mass distribution of fission fragment from reaction 19 F +206,208 Pb around fusion barrier energy showed the influence of multi-mode fission in enhancing the mass variance at low excitation energy. In this talk I will present some of these results.

  20. Optimizing moderation of He-3 neutron detectors for shielded fission sources

    SciTech Connect

    Rees, Lawrence B.; Czirr, J. Bart

    2012-07-10

    Abstract: The response of 3-He neutron detectors is highly dependent on the amount of moderator incorporated into the detector system. If there is too little moderation, neutrons will not react with the 3-He. If there is too much moderation, neutrons will not reach the 3-He. In applications for portal or border monitors where 3He detectors are used to interdict illicit Importation of plutonium, the fission source is always shielded to some extent. Since the energy distribution of neutrons emitted from the source depends on the amount and type of shielding present, the optimum placement of moderating material around 3-He tubes is a function of shielding. In this paper, we use Monte Carlo techniques to model the response of 3-He tubes placed in polyethylene boxes for moderation. To model the shielded fission neutron source, we use a 252-Cf source placed in the center of spheres of water of varying radius. Detector efficiency as a function of box geometry and shielding are explored. We find that increasing the amount of moderator behind and to the sides of the detector generally improves the detector response, but that benefits are limited if the thickness of the polyethylene moderator is greater than about 5-7 cm. The thickness of the moderator in front of the 3He tubes, however, is very important. For bare sources, about 5-6 cm of moderator is optimum, but as the shielding increases, the optimum thickness of this moderator decreases to 0-1 cm. A two-tube box with a moderator thickness of 5 cm in front of the first tube and a thickness of 1 cm in front of the second tube is proposed to improve the detector's sensitivity to lower-energy neutrons.

  1. Optimizing moderation of He-3 neutron detectors for shielded fission sources

    DOE PAGES

    Rees, Lawrence B.; Czirr, J. Bart

    2012-07-10

    Abstract: The response of 3-He neutron detectors is highly dependent on the amount of moderator incorporated into the detector system. If there is too little moderation, neutrons will not react with the 3-He. If there is too much moderation, neutrons will not reach the 3-He. In applications for portal or border monitors where 3He detectors are used to interdict illicit Importation of plutonium, the fission source is always shielded to some extent. Since the energy distribution of neutrons emitted from the source depends on the amount and type of shielding present, the optimum placement of moderating material around 3-He tubesmore » is a function of shielding. In this paper, we use Monte Carlo techniques to model the response of 3-He tubes placed in polyethylene boxes for moderation. To model the shielded fission neutron source, we use a 252-Cf source placed in the center of spheres of water of varying radius. Detector efficiency as a function of box geometry and shielding are explored. We find that increasing the amount of moderator behind and to the sides of the detector generally improves the detector response, but that benefits are limited if the thickness of the polyethylene moderator is greater than about 5-7 cm. The thickness of the moderator in front of the 3He tubes, however, is very important. For bare sources, about 5-6 cm of moderator is optimum, but as the shielding increases, the optimum thickness of this moderator decreases to 0-1 cm. A two-tube box with a moderator thickness of 5 cm in front of the first tube and a thickness of 1 cm in front of the second tube is proposed to improve the detector's sensitivity to lower-energy neutrons.« less

  2. Ionization Chamber for Prompt Fission Neutron Investigations

    NASA Astrophysics Data System (ADS)

    Zeynalov, Sh.; Zeynalova, O.; Hambsch, F.-J.; Sedyshev, P.; Shvetsov, V.

    In this work we report recent achievements in design of twin back-to-back ionization chamber (TIC) for fission fragment (FF) mass and kinetic energy measurement. Correlated FF kinetic energies, their masses and the angle of FF in respect to the axes in 3D Cartesian coordinates can be determined from analysis of the heights and shapes of the pulses induced by the fission fragments on the anodes of TIC. Anodes of TIC were designed as consisting of isolated strips each having independent electronic circuitry and special multi-channel pulse processing apparatus. Mathematical formulae provided for FF angles measured in respect to the coordinate axes. It was shown how the point of fission fragments origin on the target plane may be determined using the same measured data. The last feature made the TIC a rather powerful tool for prompt fission neutron (PFN) emission investigation in event-by-event analysis of individual fission reactions from non- point fissile source. Position sensitive neutron induced fission detector for neutron-imaging applications with both thermal and low energy neutrons was found as another possible implementation of the designed TIC.

  3. Verification of threshold activation detection (TAD) technique in prompt fission neutron detection using scintillators containing 19F

    NASA Astrophysics Data System (ADS)

    Sibczynski, P.; Kownacki, J.; Moszyński, M.; Iwanowska-Hanke, J.; Syntfeld-Każuch, A.; Gójska, A.; Gierlik, M.; Kaźmierczak, Ł.; Jakubowska, E.; Kędzierski, G.; Kujawiński, Ł.; Wojnarowicz, J.; Carrel, F.; Ledieu, M.; Lainé, F.

    2015-09-01

    In the present study ⌀ 5''× 3'' and ⌀ 2''× 2'' EJ-313 liquid fluorocarbon as well as ⌀ 2'' × 3'' BaF2 scintillators were exposed to neutrons from a 252Cf neutron source and a Sodern Genie 16GT deuterium-tritium (D+T) neutron generator. The scintillators responses to β- particles with maximum endpoint energy of 10.4 MeV from the n+19F reactions were studied. Response of a ⌀ 5'' × 3'' BC-408 plastic scintillator was also studied as a reference. The β- particles are the products of interaction of fast neutrons with 19F which is a component of the EJ-313 and BaF2 scintillators. The method of fast neutron detection via fluorine activation is already known as Threshold Activation Detection (TAD) and was proposed for photofission prompt neutron detection from fissionable and Special Nuclear Materials (SNM) in the field of Homeland Security and Border Monitoring. Measurements of the number of counts between 6.0 and 10.5 MeV with a 252Cf source showed that the relative neutron detection efficiency ratio, defined as epsilonBaF2 / epsilonEJ-313-5'', is 32.0% ± 2.3% and 44.6% ± 3.4% for front-on and side-on orientation of the BaF2, respectively. Moreover, the ⌀ 5'' EJ-313 and side-on oriented BaF2 were also exposed to neutrons from the D+T neutron generator, and the relative efficiency epsilonBaF2 / epsilonEJ-313-5'' was estimated to be 39.3%. Measurements of prompt photofission neutrons with the BaF2 detector by means of data acquisition after irradiation (out-of-beam) of nuclear material and between the beam pulses (beam-off) techniques were also conducted on the 9 MeV LINAC of the SAPHIR facility.

  4. Average neutronic properties of prompt fission products

    SciTech Connect

    Foster, D.G. Jr.; Arthur, E.D.

    1982-02-01

    Calculations of the average neutronic properties of the ensemble of fission products producted by fast-neutron fission of /sup 235/U and /sup 239/Pu, where the properties are determined before the first beta decay of any of the fragments, are described. For each case we approximate the ensemble by a weighted average over 10 selected nuclides, whose properties we calculate using nuclear-model parameters deduced from the systematic properties of other isotopes of the same elements as the fission fragments. The calculations were performed primarily with the COMNUC and GNASH statistical-model codes. The results, available in ENDF/B format, include cross sections, angular distributions of neutrons, and spectra of neutrons and photons, for incident-neutron energies between 10/sup -5/ eV and 20 MeV. Over most of this energy range, we find that the capture cross section of /sup 239/Pu fission fragments is systematically a factor of two to five greater than for /sup 235/U fission fragments.

  5. Electron-capture delayed fission properties of 244Es

    SciTech Connect

    Shaughnessy, Dawn A.; Gregorich, Kenneth E.; Adams, Jeb L.; Lane, Michael R.; Laue, Carola A.; Lee, Diana M.; McGrath, Christopher A.; Ninov, Victor; Patin, Joshua B.; Strellis, Dan A.; Sylwester, Eric R.; Wilk, Philip A.; Hoffman, Darleane C.

    2001-03-16

    Electron-capture delayed fission was observed in {sup 244}Es produced via the {sup 237}Np({sup 12}C,5n){sup 244}Es reaction at 81 MeV (on target) with a production cross section of 0.31{+-}0.12 {micro}b. The mass-yield distribution of the fission fragments is highly asymmetric. The average preneutron-emission total kinetic energy of the fragments was measured to be 186{+-}19 MeV. Based on the ratio of the number of fission events to the measured number of {alpha} decays from the electron-capture daughter {sup 244}Cf (100% {alpha} branch), the probability of delayed fission was determined to be (1.2{+-}0.4) x 10{sup -4}. This value for the delayed fission probability fits the experimentally observed trend of increasing delayed fission probability with increasing Q value for electron-capture.

  6. Collinear cluster tripartition channel in the reaction {sup 235}U(n{sub th}, f)

    SciTech Connect

    Pyatkov, Yu. V.; Kamanin, D. V.; Kopach, Yu. N.; Alexandrov, A. A.; Alexandrova, I. A.; Borzakov, S. B.; Voronov, Yu. N.; Zhuchko, V. E.; Kuznetsova, E. A. Panteleev, Ts.; Tyukavkin, A. N.

    2010-08-15

    Investigation of the {sup 235}U(n{sub th}, f) reaction using the miniFOBOS double-arm time-of-flight spectrometer of fission fragments confirmed manifestations of the earlier unknown many-body, at least ternary, decay involving almost collinear decay-product escape, which were first observed in the spontaneous fission of {sup 252}Cf(sf). The use of variables sensitive to the nuclear charge of fission fragments allowed the reliability of identification of decay events to be increased and new decay modes to be revealed.

  7. Fission studies with 140 MeV {alpha} particles

    SciTech Connect

    Buttkewitz, A.; Duhm, H. H.; Strauss, W.; Goldenbaum, F.; Machner, H.

    2009-09-15

    Binary fission induced by 140 MeV {alpha} particles has been measured for {sup nat}Ag, {sup 139}La, {sup 165}Ho, and {sup 197}Au targets. The measured quantities are the total kinetic energies, fragment masses, and fission cross sections. The results are compared with other data and systematics. A minimum of the fission probability in the vicinity Z{sup 2}/A=24 is observed.

  8. Spontaneous fission properties of the heavy elements: Bimodal fission

    SciTech Connect

    Hulet, E.K.

    1988-11-11

    We have measured the mass and kinetic-energy distributions from the spontaneous fission of SVYFm, SVYNo, SVZMd, SWMd, SW(104), and SWSNo. All are observed to fission with a symmetrical division of mass, whereas the total-kinetic-energy (TKE) distributions strongly deviated from the Gaussian shape characteristically found in the fission of all other actinides. When the TKE distributions are resolved into two Gaussian's, the constituent peaks lie near 200 and near 233 MeV. We conclude two modes or bimodal fission is occurring in five of the six nuclides studied. Both modes are possible in the same nuclide, but one generally predominates. We also conclude the low-energy but mass-symmetrical mode is likely to extend to far heavier nuclei; while the high-energy mode will be restricted to a smaller region, a region of nuclei defined by the proximity of the fragments to the strong neutron and proton shells in TSSn. 21 refs., 7 figs., 1 tab.

  9. Enhanced trigger for the NIFFTE fissionTPC in presence of high-rate alpha backgrounds

    NASA Astrophysics Data System (ADS)

    Bundgaard, Jeremy; Niffte Collaboration

    2015-10-01

    Nuclear physics and nuclear energy communities call for new, high precision measurements to improve existing fission models and design next generation reactors. The Neutron Induced Fission Fragment Tracking experiment (NIFFTE) has developed the fission Time Projection Chamber (fissionTPC) to measure neutron induced fission with unrivaled precision. The fissionTPC is annually deployed to the Weapons Neutron Research facility at Los Alamos Neutron Science Center where it operates with a neutron beam passing axially through the drift volume, irradiating heavy actinide targets to induce fission. The fissionTPC was developed at the Lawrence Livermore National Laboratory's TPC lab, where it measures spontaneous fission from radioactive sources to characterize detector response, improve performance, and evolve the design. To measure 244Cm, we've developed a fission trigger to reduce the data rate from alpha tracks while maintaining a high fission detection efficiency. In beam, alphas from 239Pu are a large background when detecting fission fragments; implementing the fission trigger will greatly reduce this background. The implementation of the cathode fission trigger in the fissionTPC will be presented along with a detailed study of its efficiency.

  10. Spontaneous fission half-lives and their systematics

    SciTech Connect

    Holden, N.E.

    1998-03-01

    Spontaneous fission is a phenomenon exhibited by heavy nuclei, which can be a major mode of decay of nuclei of elements heavier than thorium and can be a determining factor in their stability. For purposes of this paper, spontaneous fission will be considered a process in which a nucleus breaks up into two approximately equal parts. The emission of light nuclei or heavy ions such as {sup 12}C, {sup 16}O, or {sup 32}S will not be considered. This radioactive decay mode is often much smaller than the spontaneous fission decay mode, although this is not true in all cases. Barwick noted that this might indicate that the assumed half-life for spontaneous fission of some older experiments might be partially due to heavy fragment radioactivity. Other than taking note of this potential correction to spontaneous fission half-lives, this decay mode of heavy fragment radioactivity will be ignored. Excited states of some heavy nuclei may decay via spontaneous fission. These so-called fission isomers will not be discussed here. Electron capture (EC) or beta-delayed fission is a process in which prompt fission of a sufficiently excited daughter state occurs following population by EC or beta decay. The fission activity will appear to decay with the half-life of the parent and was earlier confused in some cases with SF. This process has been discussed in detail in a review and will not be considered in this paper.

  11. Binary stars - Formation by fragmentation

    NASA Technical Reports Server (NTRS)

    Boss, Alan P.

    1988-01-01

    Theories of binary star formation by capture, separate nuclei, fission and fragmentation are compared, assessing the success of theoretical attempts to explain the observed properties of main-sequence binary stars. The theory of formation by fragmentation is examined, discussing the prospects for checking the theory against observations of binary premain-sequence stars. It is concluded that formation by fragmentation is successful at explaining many of the key properties of main-sequence binary stars.

  12. Decreasing mitochondrial fission prevents cholestatic liver injury.

    PubMed

    Yu, Tianzheng; Wang, Li; Lee, Hakjoo; O'Brien, Dawn K; Bronk, Steven F; Gores, Gregory J; Yoon, Yisang

    2014-12-05

    Mitochondria frequently change their shape through fission and fusion in response to physiological stimuli as well as pathological insults. Disrupted mitochondrial morphology has been observed in cholestatic liver disease. However, the role of mitochondrial shape change in cholestasis is not defined. In this study, using in vitro and in vivo models of bile acid-induced liver injury, we investigated the contribution of mitochondrial morphology to the pathogenesis of cholestatic liver disease. We found that the toxic bile salt glycochenodeoxycholate (GCDC) rapidly fragmented mitochondria, both in primary mouse hepatocytes and in the bile transporter-expressing hepatic cell line McNtcp.24, leading to a significant increase in cell death. GCDC-induced mitochondrial fragmentation was associated with an increase in reactive oxygen species (ROS) levels. We found that preventing mitochondrial fragmentation in GCDC by inhibiting mitochondrial fission significantly decreased not only ROS levels but also cell death. We also induced cholestasis in mouse livers via common bile duct ligation. Using a transgenic mouse model inducibly expressing a dominant-negative fission mutant specifically in the liver, we demonstrated that decreasing mitochondrial fission substantially diminished ROS levels, liver injury, and fibrosis under cholestatic conditions. Taken together, our results provide new evidence that controlling mitochondrial fission is an effective strategy for ameliorating cholestatic liver injury.

  13. Extraction of potential energy in charge asymmetry coordinate from experimental fission data

    NASA Astrophysics Data System (ADS)

    Paşca, H.; Andreev, A. V.; Adamian, G. G.; Antonenko, N. V.

    2016-12-01

    For fissioning isotopes of Ra, Ac, Th, Pa, and U, the potential energies as a function of the charge asymmetry coordinate are extracted from the experimental charge distributions of the fission fragment and compared with the calculated scission-point driving potentials. The role of the potential energy surfaces in the description of the fission charge distribution is discussed.

  14. β-delayed fission of 180Tl

    NASA Astrophysics Data System (ADS)

    Elseviers, J.; Andreyev, A. N.; Huyse, M.; Van Duppen, P.; Antalic, S.; Barzakh, A.; Bree, N.; Cocolios, T. E.; Comas, V. F.; Diriken, J.; Fedorov, D.; Fedosseev, V. N.; Franchoo, S.; Ghys, L.; Heredia, J. A.; Ivanov, O.; Köster, U.; Marsh, B. A.; Nishio, K.; Page, R. D.; Patronis, N.; Seliverstov, M. D.; Tsekhanovich, I.; Van den Bergh, P.; Van De Walle, J.; Venhart, M.; Vermote, S.; Veselský, M.; Wagemans, C.

    2013-10-01

    The detailed analysis of the β-delayed fission data of 180Tl is presented. The experiment was performed by producing a pure beam of 180Tl by means of highly selective resonance laser ionization followed by mass separation with the ISOLDE (CERN, Geneva) isotope separator. A surprising asymmetric mass distribution of fission fragments from 180Hg, the daughter of 180Tl β decays, was observed. Here, the energy calibration of the silicon detectors, which is crucial for a proper determination of the fission fragments’ energy and mass split, is presented and the total kinetic energy and its dependence on the mass split ratio is discussed. A more precise β-delayed fission probability PβDF(180Tl)=3.2(2)×10-3% was deduced.

  15. Diabetes regulates mitochondrial biogenesis and fission in neurons

    PubMed Central

    Edwards, J.L.; Quattrini, A.; Lentz, S.I.; Figueroa-Romero, C.; Cerri, F.; Backus, C.; Hong, Y.; Feldman, E.L.

    2014-01-01

    Aims Normal mitochondrial (Mt) activity is a critical component of neuronal metabolism and function. Disruption of Mt activity by altered Mt fission and fusion is the root cause of both neurodegenerative disorders and Charcot-Marie-Tooth Type 2A inherited neuropathy. The current study addressed the role of Mt fission in the pathogenesis of diabetic neuropathy (DN). Methods Mt biogenesis and fission were assayed in both in vivo and in vitro models of DN. Gene, protein, mitochondrial DNA and ultrastructural analyses were used to assess Mt biogenesis and fission. Results Our data reveal increased Mt biogenesis in dorsal root ganglion (DRG) neurons from diabetic compared to non-diabetic mice. An essential step in Mt biogenesis is Mt fission, regulated by the Mt fission protein Drp1. Evaluation of in vivo diabetic neurons indicated small, fragmented Mt, suggesting increased fission. In vitro studies reveal short-term hyperglycemic exposure increased expression of Drp1. The influence of hyperglycemia-mediated Mt fission on cellular viability was evaluated by knockdown of Drp1. Knockdown of Drp1 resulted in decreased susceptibility to hyperglycemic damage. Conclusions We propose that: 1) Mt undergo biogenesis in response to hyperglycemia, but the increased biogenesis is insufficient to accommodate the metabolic load; 2) hyperglycemia causes an excess of Mt fission, creating small, damaged mitochondria; and 3) reduction of aberrant Mt fission increases neuronal survival and indicates an important role for the fission-fusion equilibrium in the pathogenesis of DN. PMID:19847394

  16. Presaddle and postsaddle dissipative effects in fission using complete kinematics measurements

    NASA Astrophysics Data System (ADS)

    Rodríguez-Sánchez, J. L.; Benlliure, J.; Taïeb, J.; Alvarez-Pol, H.; Audouin, L.; Ayyad, Y.; Bélier, G.; Boutoux, G.; Casarejos, E.; Chatillon, A.; Cortina-Gil, D.; Gorbinet, T.; Heinz, A.; Kelić-Heil, A.; Laurent, B.; Martin, J.-F.; Paradela, C.; Pellereau, E.; Pietras, B.; Ramos, D.; Rodríguez-Tajes, C.; Rossi, D. M.; Simon, H.; Vargas, J.; Voss, B.

    2016-12-01

    A complete kinematics measurement of the two fission fragments was used for the first time to investigate fission dynamics at small and large deformations. Fissioning systems with high excitation energies, compact shapes, and low angular momenta were produced in inverse kinematics by using spallation reactions of lead projectiles. A new generation experimental setup allowed for the first full and unambiguous identification in mass and atomic number of both fission fragments. This measurement permitted us to accurately determine fission cross sections, the charge distribution, and the neutron excess of the fission fragments as a function of the atomic number of the fissioning system. These data are compared with different model calculations to extract information on the value of the dissipation parameter at small and large deformations. The present results do not show any sizable dependence of the nuclear dissipation parameter on temperature or deformation.

  17. Possible origin of transition from symmetric to asymmetric fission

    NASA Astrophysics Data System (ADS)

    Paşca, H.; Andreev, A. V.; Adamian, G. G.; Antonenko, N. V.

    2016-09-01

    The charged distributions of fragments produced in the electromagnetic-induced fission of the even-even isotopes of Rn, Ra, Th, and U are described within an improved scission-point model and compared with the available experimental data. The three-equal-peaked charge distributions are predicted for several fissioning nuclei with neutron number N = 136. The possible explanation of the transition from a symmetric fission mode to an asymmetric one around N ∼ 136 is presented. The excitation energy dependencies of the asymmetric and symmetric fission modes are anticipated.

  18. Fission foil detector calibrations with high energy protons

    NASA Technical Reports Server (NTRS)

    Benton, E. V.; Frank, A. L.

    1995-01-01

    Fission foil detectors (FFD's) are passive devices composed of heavy metal foils in contact with muscovite mica films. The heavy metal nuclei have significant cross sections for fission when irradiated with neutrons and protons. Each isotope is characterized by threshold energies for the fission reactions and particular energy-dependent cross sections. In the FFD's, fission fragments produced by the reactions are emitted from the foils and create latent particle tracks in the adjacent mica films. When the films are processed surface tracks are formed which can be optically counted. The track densities are indications of the fluences and spectra of neutrons and/or protons. In the past, detection efficiencies have been calculated using the low energy neutron calibrated dosimeters and published fission cross sections for neutrons and protons. The problem is that the addition of a large kinetic energy to the (n,nucleus) or (p,nucleus) reaction could increase the energies and ranges of emitted fission fragments and increase the detector sensitivity as compared with lower energy neutron calibrations. High energy calibrations are the only method of resolving the uncertainties in detector efficiencies. At high energies, either proton or neutron calibrations are sufficient since the cross section data show that the proton and neutron fission cross sections are approximately equal. High energy proton beams have been utilized (1.8 and 4.9 GeV, 80 and 140 MeV) for measuring the tracks of fission fragments emitted backward and forward.

  19. Fission foil detector calibrations with high energy protons

    SciTech Connect

    Benton, E.V.; Frank, A.L.

    1995-03-01

    Fission foil detectors (FFD`s) are passive devices composed of heavy metal foils in contact with muscovite mica films. The heavy metal nuclei have significant cross sections for fission when irradiated with neutrons and protons. Each isotope is characterized by threshold energies for the fission reactions and particular energy-dependent cross sections. In the FFD`s, fission fragments produced by the reactions are emitted from the foils and create latent particle tracks in the adjacent mica films. When the films are processed surface tracks are formed which can be optically counted. The track densities are indications of the fluences and spectra of neutrons and/or protons. In the past, detection efficiencies have been calculated using the low energy neutron calibrated dosimeters and published fission cross sections for neutrons and protons. The problem is that the addition of a large kinetic energy to the (n,nucleus) or (p,nucleus) reaction could increase the energies and ranges of emitted fission fragments and increase the detector sensitivity as compared with lower energy neutron calibrations. High energy calibrations are the only method of resolving the uncertainties in detector efficiencies. At high energies, either proton or neutron calibrations are sufficient since the cross section data show that the proton and neutron fission cross sections are approximately equal. High energy proton beams have been utilized (1.8 and 4.9 GeV, 80 and 140 MeV) for measuring the tracks of fission fragments emitted backward and forward.

  20. Geometry of membrane fission.

    PubMed

    Frolov, Vadim A; Escalada, Artur; Akimov, Sergey A; Shnyrova, Anna V

    2015-01-01

    Cellular membranes define the functional geometry of intracellular space. Formation of new membrane compartments and maintenance of complex organelles require division and disconnection of cellular membranes, a process termed membrane fission. Peripheral membrane proteins generally control membrane remodeling during fission. Local membrane stresses, reflecting molecular geometry of membrane-interacting parts of these proteins, sum up to produce the key membrane geometries of fission: the saddle-shaped neck and hour-glass hemifission intermediate. Here, we review the fundamental principles behind the translation of molecular geometry into membrane shape and topology during fission. We emphasize the central role the membrane insertion of specialized protein domains plays in orchestrating fission in vitro and in cells. We further compare individual to synergistic action of the membrane insertion during fission mediated by individual protein species, proteins complexes or membrane domains. Finally, we describe how local geometry of fission intermediates defines the functional design of the protein complexes catalyzing fission of cellular membranes.

  1. Angular momentum effects in multimodal fission of 226Th

    NASA Astrophysics Data System (ADS)

    Chubarian, G. G.; Hurst, B. J.; O'Kelly, D.; Schmitt, R. P.; Itkis, M. G.; Kondratiev, N. A.; Kozulin, E. M.; Oganessian, Yu. Ts.; Pashkevich, V. V.; Pokrovsky, I. V.; Salamatin, V. S.; Rusanov, A. Ya.; Calabretta, L.; Maiolino, C.; Lukashin, K.; Agodi, C.; Bellia, G.; Hanappe, F.; Liatard, E.; Huck, A.; Stuttgé, L.

    1998-12-01

    The γ-rays from the multimodal fission of the 226Th formed in 18O+208Pb was investigated at the near- and sub-barrier energies. The corresponding excitation energies at the saddle point, Esp*, ranged from 23 to 26 MeV. The average γ-ray multiplicities and relative γ-ray energies as a function of the mass of the fission fragments exhibits a complex structure and strong variations. Such strong variations have never been previously observed in heavy ion-induced fusion-fission reactions. Obtained results may be explained with the influence of shell effects on the properties of the fission fragments. Present work is the one in series of investigation of the multimodal fission phenomena in At-Th region.

  2. Angular momentum effects in multimodal fission of {sup 226}Th

    SciTech Connect

    Chubarian, G.G.; Hurst, B.J.; OKelly, D.; Schmitt, R.P.; Itkis, M.G.; Kondratiev, N.A.; Kozulin, E.M.; Oganessian, Y.T.; Pashkevich, V.V.; Pokrovsky, I.V.; Salamatin, V.S.; Rusanov, A.Y.; Calabretta, L.; Maiolino, C.; Lukashin, K.; Agodi, C.; Bellia, G.; Hanappe, F.; Liatard, E.; Huck, A.; Stuttge, L.

    1998-12-01

    The {gamma}-rays from the multimodal fission of the {sup 226}Th formed in {sup 18}O+{sup 208}Pb was investigated at the near- and sub-barrier energies. The corresponding excitation energies at the saddle point, E{sub sp}{sup {asterisk}}, ranged from 23 to 26 MeV. The average {gamma}-ray multiplicities and relative {gamma}-ray energies as a function of the mass of the fission fragments exhibits a complex structure and strong variations. Such strong variations have never been previously observed in heavy ion-induced fusion-fission reactions. Obtained results may be explained with the influence of shell effects on the properties of the fission fragments. Present work is the one in series of investigation of the multimodal fission phenomena in At-Th region. {copyright} {ital 1998 American Institute of Physics.}

  3. Prompt fission gamma-ray studies at DANCE

    SciTech Connect

    Jandel, M.; Rusev, G.; Bond, E. M.; Bredeweg, T. A.; Chadwick, M. B.; Couture, A.; Fowler, M.. M; Haight, R. C.; Kawano, T.; Keksis, A. L.; Mosby, S. M.; O’Donnell, J. M.; Rundberg, R. S.; Stetcu, I.; Talou, P.; Ullmann, J. L.; Vieira, D. J.; Wilhelmy, J. B.; Stoyer, M. A.; Haslett, R. J.; Henderson, R. A.; Becker, J. A.; Wu, C. Y.

    2014-11-26

    Measurements of correlated data on prompt-fission γ-rays (PFG) have been carried out for various actinide isotopes in recent years using the Detector for Advanced Neutron Capture Experiments (DANCE) at Los Alamos National Laboratory (LANL). We have developed a model that conveniently parametrizes the correlated data of γ-ray multiplicity and energy. New results on two- dimensional prompt-fission γ-ray multiplicity versus energy distributions from spontaneous fission on ²⁵²Cf and neutron-induced fission on 242mAm are presented together with previously obtained results on 233,235U and ²³⁹Pu. Correlated PFG data from ²⁵²Cf are also compared to results of the detailed theoretical model developed at LANL, for different thresholds of PFG energies. Future plans to measure correlated data on fission fragments, prompt fission neutrons and γ-rays at DANCE are presented.

  4. The quantum and thermodynamical characteristics of fission taking into account adiabatic and nonadiabatic modes of motion

    SciTech Connect

    Kadmensky, S. G.

    2007-09-15

    In the framework of the quantum theory of spontaneous and low-energy induced fission, the nature of quantum and thermodynamical properties of a fissioning system is analyzed taking into account adiabatic and nonadiabatic modes of motion for different fission stages. It is shown that, owing to the influence of the Coriolis interaction, the states of the fissile nucleus and of primary fission products are cold and strongly nonequilibrium. The important role of superfluid and pairing nucleon-nucleon correlations for binary and ternary fission is demonstrated. The mechanism of pumping of high values of relative orbital momenta and spins of fission fragments for binary and ternary fission and the nonevaporation mechanism of formation of third particles for ternary fission are investigated. The anisotropies and P-odd, P-even, and T-odd asymmetries for angular distributions of fission products are analyzed.

  5. Mass-asymmetric fission in the 40ca+142Nd reaction

    NASA Astrophysics Data System (ADS)

    Prasad, E.; Hinde, D. J.; Williams, E.; Dasgupta, M.; Carter, I. P.; Cook, K. J.; Jeung, D. Y.; Luong, D. H.; McNeil, S.; Palshetkar, C. S.; Rafferty, D. C.; Simenel, C.; Wakhle, A.; Ramachandran, K.; Khuyagbaatar, J.; Dullmann, Ch. E.; Lommel, B.; Kindler, B.

    2016-09-01

    Shell effects play a major role in fission. Mass-asymmetric fission observed in the spontaneous and low energy fission of actinide nuclei was explained by incorporating the fragment shell properties in liquid drop model. Asymmetric fission has also been observed in the low energy fission of neutron-deficient 180Hg nuclei in recent β-delayed fission experiments. This low-energy β-delayed fission has been explained in terms of strong shell effects in pre-scission configurations associated with the system after capture. Calculations predicted asymmetric fission for heavier Hg isotopes as well, at compound nuclear excitation energy as high as 40 MeV. To explore the evolution of fission fragment mass distribution as a function of neutron and proton numbers and also with excitation energy, fission fragment mass distributions have been measured for the 40Ca+142Nd reaction forming the compound nucleus 182Hg at energies around the capture barrier, using the Heavy Ion Accelerator Facility and CUBE spectrometer at the Australian National University. Mass-asymmetric fission is observed in this reaction at an excitation energy of 33.6 MeV. The results are consistent with the β-delayed fission measurements and indicate the presence of shell effects even at higher exciation energies.

  6. Estimation of the number of prompt fission gamma rays

    SciTech Connect

    Valentine, T.E.

    2000-07-01

    The correlation between the total gamma-ray energy from fission and the number of prompt neutrons emitted from fission is used to estimate the average number of prompt gamma rays from fission in lieu of performing a measurement. Competition in the emission of prompt gamma rays and neutrons from the de-excitation of fission fragments has been observed experimentally. Mathematical models were used to estimate the properties of prompt gamma rays from the spontaneous fission of various nuclides that are encountered in nuclear safeguard applications. The estimated prompt gamma-ray parameters for spontaneous fission of {sup 238}U, {sup 238}Pu, {sup 240}Pu, {sup 242}Pu, {sup 242}Cm, and {sup 244}Cm are presented. The total prompt gamma-ray energy was estimated using the average number of neutrons from fission for each nuclide. The average energy of prompt gamma rays from fission was estimated, and the average number of prompt gamma rays from fission was estimated. The data presented can be used to characterize spontaneous fission isotopes commonly encountered in nuclear safeguard applications. This information may prove useful for development of advanced nondestructive assay methods. Furthermore, the models presented in this summary provide a mechanism to estimate gamma-ray properties for any fission process. The use of models to estimate gamma-ray properties from fission highlights the fact that little experimental data exist for many spontaneous fission nuclides. Measurements of the gamma-ray properties not only would be useful for developing nondestructive assay methods but also would provide additional information about the fission process.

  7. Advanced development of the spectrum sciences Model 5005-TF, single-event test fixture

    SciTech Connect

    Ackermann, M.R.; Browning, J.S. ); Hughlock, B.W. ); Lum, G.K. ); Tsacoyeanes, W.C. Lab., Inc., Cambridge, MA ); Weeks, M.D. )

    1990-09-01

    This report summarizes the advanced development of the Spectrum Sciences Model 5005-TF, Single-Event Test Fixture. The Model 5005-TF uses a Californium-252 (Cf-252) fission-fragment source to test integrated circuits and other devices for the effects of single-event phenomena. Particle identification methods commonly used in high-energy physics research and nuclear engineering have been incorporated into the Model 5005-TF for estimating the particle charge, mass, and energy parameters. All single-event phenomena observed in a device under test (DUT) are correlated with an identified fission fragment, and its linear energy transfer (LET) and range in the semiconductor material of the DUT.

  8. In-beam Fission Study at JAEA

    NASA Astrophysics Data System (ADS)

    Nishio, Katsuhisa

    2013-12-01

    Fission fragment mass distributions were measured in heavy-ion induced fissions using 238U target nucleus. The measured mass distributions changed drastically with incident energy. The results are explained by a change of the ratio between fusion and quasifission with nuclear orientation. A calculation based on a fluctuation dissipation model reproduced the mass distributions and their incident energy dependence. Fusion probability was determined in the analysis. Evaporation residue cross sections were calculated with a statistical model in the reactions of 30Si + 238U and 34S + 238U using the obtained fusion probability in the entrance channel. The results agree with the measured cross sections for seaborgium and hassium isotopes.

  9. Selective perturbation of in vivo linear energy transfer using high- Z vaginal applicators for Cf-252 brachytherapy

    NASA Astrophysics Data System (ADS)

    Rivard, M. J.; Evans, K. E.; Leal, L. C.; Kirk, B. L.

    2004-01-01

    Californium-252 ( 252Cf) brachytherapy sources emit both neutrons and photons, and have the potential to vastly improve the current standard-of-practice for brachytherapy. While hydrogenous materials readily attenuate the 252Cf fission energy neutrons, high- Z materials are utilized to attenuate the 252Cf gamma-rays. These differences in shielding materials may be exploited when treating with a vaginal applicator to possibly improve patient survival through perturbation of the in vivo linear energy transfer radiation.

  10. Our 50-year odyssey with fission: Summary

    SciTech Connect

    Nix, J.R.

    1989-01-01

    On the occasion of this International Conference on Fifty Years Research in Nuclear Fission, we summarize our present understanding of the fission process and the challenges that lie ahead. The basic properties of fission arise from a delicate competition between disruptive Coulomb forces, cohesive nuclear forces, and fluctuating shell and pairing forces. These static forces are primarily responsible for such experimental phenomena as deformed ground-state nuclear shapes, fission into fragments of unequal size, sawtooth neutron yields, spontaneously fissioning isomers, broad resonances and narrow intermediate structure in fission cross sections, and cluster radioactivity. However, inertial and dissipative forces also play decisive roles in the dynamical evolution of a fissioning nucleus. The energy dissipated between the saddle and scission points is small for low initial excitation energy at the saddle point and increases with increasing excitation energy. At moderate excitation energies, the dissipation of collective energy into internal single-particle excitation energy proceeds largely through the interaction of nucleons with the mean field and with each other in the vicinity of the nuclear surface, as well as through the transfer of nucleons between the two portions of the evolving dumbell-like system. These unique dissipation mechanisms arise from the Pauli exclusion principle for fermions and the details of the nucleon-nucleon interaction, which make the mean free path of a nucleon near the Fermi surface at low excitation energy longer than the nuclear radius. With its inverse process of heavy-ion fusion reactions, fission continues to yield surprises in the study of large-amplitude collective nuclear motion. 87 refs., 12 figs.

  11. Fission-Fusion Neutron Source Progress Report Sept 30, 2009

    SciTech Connect

    Chapline, G F; Daffin, F; Clark, R

    2010-02-19

    In this report the authors describe the progress made in FY09 in evaluating the feasibility of a new concept for using the DT fusion reaction to produce intense pulses of 14 MeV neutrons. In this new scheme the heating of the DT is accomplished using fission fragments rather than ion beams as in conventional magnet confinement fusion schemes or lasers in inertial confinement schemes. As a source of fission fragments they propose using a dust reactor concept introduced some time ago by one of us (RC). An attractive feature of this approach is that there is no need for a large auxiliary power source to heat the DT plasma to the point where self-sustaining fusion become possible. Their scheme does require pulsed magnetic fields, but generating these fields requires only a modest power source. The dust reactor that they propose using for their neutron source would use micron-sized UC pellets suspended in a vacuum as the reactor fuel. Surrounding the fuel with a moderator such as heavy water (D{sub 2}O) would allow the reactor to operate as a thermal reactor and require only modest amounts of HEU. The scheme for using fission fragments to generate intense pulses of 14 MeV neutrons is based on the fission fragment rocket idea. In the fission fragment rocket scheme it was contemplated that the fission fragments produced in a low density reactor core could be guided out of the reactor by large magnetic fields used to form a 'rocket exhaust'. Their adaptation of this idea for the purposes of making a neutron source involves using the fission fragments escaping from one side of a tandem magnet mirror to heat DT gas confined in the adjacent magnetic trap.

  12. Realistic fission model and the r-process in neutron star mergers

    SciTech Connect

    Shibagaki, S.; Kajino, T.; Chiba, S.; Mathews, G. J.

    2014-05-09

    About half of heavy elements are considered to be produced by the rapid neutron-capture process, r-process. The neutron star merger is one of the viable candidates for the astrophysical site of r-process nucleosynthesis. Nuclear fission reactions play an important role in the r-process of neutron star mergers. However theoretical predictions about fission properties of neutron-rich nuclei have some uncertainties. Especially, their fission fragment distributions are totally unknown and the phenomenologically extrapolated distribution was often applied to nucleosynthesis calculations. In this study, we have carried out r-process nucleosynthesis calculations based upon new theoretical estimates of fission fragment distributions. We discuss the effects on the r-process in neutron star mergers from the nuclear fission of heavy neutron-rich actinide elements. We also discuss how variations in the fission fragment distributions affect the abundance pattern.

  13. General Description of Fission Observables: GEF Model Code

    NASA Astrophysics Data System (ADS)

    Schmidt, K.-H.; Jurado, B.; Amouroux, C.; Schmitt, C.

    2016-01-01

    The GEF ("GEneral description of Fission observables") model code is documented. It describes the observables for spontaneous fission, neutron-induced fission and, more generally, for fission of a compound nucleus from any other entrance channel, with given excitation energy and angular momentum. The GEF model is applicable for a wide range of isotopes from Z = 80 to Z = 112 and beyond, up to excitation energies of about 100 MeV. The results of the GEF model are compared with fission barriers, fission probabilities, fission-fragment mass- and nuclide distributions, isomeric ratios, total kinetic energies, and prompt-neutron and prompt-gamma yields and energy spectra from neutron-induced and spontaneous fission. Derived properties of delayed neutrons and decay heat are also considered. The GEF model is based on a general approach to nuclear fission that explains a great part of the complex appearance of fission observables on the basis of fundamental laws of physics and general properties of microscopic systems and mathematical objects. The topographic theorem is used to estimate the fission-barrier heights from theoretical macroscopic saddle-point and ground-state masses and experimental ground-state masses. Motivated by the theoretically predicted early localisation of nucleonic wave functions in a necked-in shape, the properties of the relevant fragment shells are extracted. These are used to determine the depths and the widths of the fission valleys corresponding to the different fission channels and to describe the fission-fragment distributions and deformations at scission by a statistical approach. A modified composite nuclear-level-density formula is proposed. It respects some features in the superfluid regime that are in accordance with new experimental findings and with theoretical expectations. These are a constant-temperature behaviour that is consistent with a considerably increased heat capacity and an increased pairing condensation energy that is

  14. Fission Reaction Event Yield Algorithm

    SciTech Connect

    Hagmann, Christian; Verbeke, Jerome; Vogt, Ramona; Roundrup, Jorgen

    2016-05-31

    FREYA (Fission Reaction Event Yield Algorithm) is a code that simulated the decay of a fissionable nucleus at specified excitation energy. In its present form, FREYA models spontaneous fission and neutron-induced fission up to 20 MeV. It includes the possibility of neutron emission from the nuclear prior to its fussion (nth chance fission).

  15. A time projection chamber for high accuracy and precision fission cross-section measurements

    DOE PAGES

    Heffner, M.; Asner, D. M.; Baker, R. G.; ...

    2014-05-22

    The fission Time Projection Chamber (fissionTPC) is a compact (15 cm diameter) two-chamber MICROMEGAS TPC designed to make precision cross-section measurements of neutron-induced fission. The actinide targets are placed on the central cathode and irradiated with a neutron beam that passes axially through the TPC inducing fission in the target. The 4π acceptance for fission fragments and complete charged particle track reconstruction are powerful features of the fissionTPC which will be used to measure fission cross-sections and examine the associated systematic errors. This study provides a detailed description of the design requirements, the design solutions, and the initial performance ofmore » the fissionTPC.« less

  16. A time projection chamber for high accuracy and precision fission cross-section measurements

    SciTech Connect

    Heffner, M.; Asner, D. M.; Baker, R. G.; Baker, J.; Barrett, S.; Brune, C.; Bundgaard, J.; Burgett, E.; Carter, D.; Cunningham, M.; Deaven, J.; Duke, D. L.; Greife, U.; Grimes, S.; Hager, U.; Hertel, N.; Hill, T.; Isenhower, D.; Jewell, K.; King, J.; Klay, J. L.; Kleinrath, V.; Kornilov, N.; Kudo, R.; Laptev, A. B.; Leonard, M.; Loveland, W.; Massey, T. N.; McGrath, C.; Meharchand, R.; Montoya, L.; Pickle, N.; Qu, H.; Riot, V.; Ruz, J.; Sangiorgio, S.; Seilhan, B.; Sharma, S.; Snyder, L.; Stave, S.; Tatishvili, G.; Thornton, R. T.; Tovesson, F.; Towell, D.; Towell, R. S.; Watson, S.; Wendt, B.; Wood, L.; Yao, L.

    2014-05-22

    The fission Time Projection Chamber (fissionTPC) is a compact (15 cm diameter) two-chamber MICROMEGAS TPC designed to make precision cross-section measurements of neutron-induced fission. The actinide targets are placed on the central cathode and irradiated with a neutron beam that passes axially through the TPC inducing fission in the target. The 4π acceptance for fission fragments and complete charged particle track reconstruction are powerful features of the fissionTPC which will be used to measure fission cross-sections and examine the associated systematic errors. This study provides a detailed description of the design requirements, the design solutions, and the initial performance of the fissionTPC.

  17. A time projection chamber for high accuracy and precision fission cross-section measurements

    NASA Astrophysics Data System (ADS)

    Heffner, M.; Asner, D. M.; Baker, R. G.; Baker, J.; Barrett, S.; Brune, C.; Bundgaard, J.; Burgett, E.; Carter, D.; Cunningham, M.; Deaven, J.; Duke, D. L.; Greife, U.; Grimes, S.; Hager, U.; Hertel, N.; Hill, T.; Isenhower, D.; Jewell, K.; King, J.; Klay, J. L.; Kleinrath, V.; Kornilov, N.; Kudo, R.; Laptev, A. B.; Leonard, M.; Loveland, W.; Massey, T. N.; McGrath, C.; Meharchand, R.; Montoya, L.; Pickle, N.; Qu, H.; Riot, V.; Ruz, J.; Sangiorgio, S.; Seilhan, B.; Sharma, S.; Snyder, L.; Stave, S.; Tatishvili, G.; Thornton, R. T.; Tovesson, F.; Towell, D.; Towell, R. S.; Watson, S.; Wendt, B.; Wood, L.; Yao, L.

    2014-09-01

    The fission Time Projection Chamber (fissionTPC) is a compact (15 cm diameter) two-chamber MICROMEGAS TPC designed to make precision cross-section measurements of neutron-induced fission. The actinide targets are placed on the central cathode and irradiated with a neutron beam that passes axially through the TPC inducing fission in the target. The 4π acceptance for fission fragments and complete charged particle track reconstruction are powerful features of the fissionTPC which will be used to measure fission cross-sections and examine the associated systematic errors. This paper provides a detailed description of the design requirements, the design solutions, and the initial performance of the fissionTPC.

  18. A Time Projection Chamber for High Accuracy and Precision Fission Cross-Section Measurements

    SciTech Connect

    T. Hill; K. Jewell; M. Heffner; D. Carter; M. Cunningham; V. Riot; J. Ruz; S. Sangiorgio; B. Seilhan; L. Snyder; D. M. Asner; S. Stave; G. Tatishvili; L. Wood; R. G. Baker; J. L. Klay; R. Kudo; S. Barrett; J. King; M. Leonard; W. Loveland; L. Yao; C. Brune; S. Grimes; N. Kornilov; T. N. Massey; J. Bundgaard; D. L. Duke; U. Greife; U. Hager; E. Burgett; J. Deaven; V. Kleinrath; C. McGrath; B. Wendt; N. Hertel; D. Isenhower; N. Pickle; H. Qu; S. Sharma; R. T. Thornton; D. Tovwell; R. S. Towell; S.

    2014-09-01

    The fission Time Projection Chamber (fissionTPC) is a compact (15 cm diameter) two-chamber MICROMEGAS TPC designed to make precision cross-section measurements of neutron-induced fission. The actinide targets are placed on the central cathode and irradiated with a neutron beam that passes axially through the TPC inducing fission in the target. The 4p acceptance for fission fragments and complete charged particle track reconstruction are powerful features of the fissionTPC which will be used to measure fission cross-sections and examine the associated systematic errors. This paper provides a detailed description of the design requirements, the design solutions, and the initial performance of the fissionTPC.

  19. Mitotic Golgi partitioning is driven by the membrane-fissioning protein CtBP3/BARS.

    PubMed

    Hidalgo Carcedo, Cristina; Bonazzi, Matteo; Spanò, Stefania; Turacchio, Gabriele; Colanzi, Antonino; Luini, Alberto; Corda, Daniela

    2004-07-02

    Organelle inheritance is an essential feature of all eukaryotic cells. As with other organelles, the Golgi complex partitions between daughter cells through the fission of its membranes into numerous tubulovesicular fragments. We found that the protein CtBP3/BARS (BARS) was responsible for driving the fission of Golgi membranes during mitosis in vivo. Moreover, by in vitro analysis, we identified two stages of this Golgi fragmentation process: disassembly of the Golgi stacks into a tubular network, and BARS-dependent fission of these tubules. Finally, this BARS-induced fission of Golgi membranes controlled the G2-to-prophase transition of the cell cycle, and hence cell division.

  20. Unexpected asymmetry of the charge distribution in the fission of Th,224222 at high excitation energies

    NASA Astrophysics Data System (ADS)

    Paşca, H.; Andreev, A. V.; Adamian, G. G.; Antonenko, N. V.

    2016-12-01

    Using the improved scission-point model, the isotopic trends of the charge distribution of fission fragments are studied in induced fission of even-even Th isotopes. The calculated results are in good agreement with available experimental data. With increasing neutron number the transition from symmetric to asymmetric fission mode is shown to be related to the change of the potential energy surface. The change of the shape of mass distribution with increasing excitation energy is discussed for fissioning ATh nuclei. At high excitation energies, there are unexpected large asymmetric modes in the fission of neutron-deficient Th isotopes considered.

  1. Microscopic Calculations of 240Pu Fission

    SciTech Connect

    Younes, W; Gogny, D

    2007-09-11

    Hartree-Fock-Bogoliubov calculations have been performed with the Gogny finite-range effective interaction for {sup 240}Pu out to scission, using a new code developed at LLNL. A first set of calculations was performed with constrained quadrupole moment along the path of most probable fission, assuming axial symmetry but allowing for the spontaneous breaking of reflection symmetry of the nucleus. At a quadrupole moment of 345 b, the nucleus was found to spontaneously scission into two fragments. A second set of calculations, with all nuclear moments up to hexadecapole constrained, was performed to approach the scission configuration in a controlled manner. Calculated energies, moments, and representative plots of the total nuclear density are shown. The present calculations serve as a proof-of-principle, a blueprint, and starting-point solutions for a planned series of more comprehensive calculations to map out a large set of scission configurations, and the associated fission-fragment properties.

  2. The Fission Barrier Landscape

    SciTech Connect

    Phair, L.; Moretto, L. G.

    2008-04-17

    Fission excitation functions have been measured for a chain of neighboring compound nuclei from {sup 207}Po to {sup 212}Po. We present a new analysis which provides a determination of the fission barriers and ground state shell effects with nearly spectroscopic accuracy. The accuracy achieved in this analysis may lead to a future detailed exploration of the saddle mass surface and its spectroscopy.

  3. Fission gas detection system

    DOEpatents

    Colburn, Richard P.

    1985-01-01

    A device for collecting fission gas released by a failed fuel rod which device uses a filter to pass coolant but which filter blocks fission gas bubbles which cannot pass through the filter due to the surface tension of the bubble.

  4. Insights into nuclear structure and the fission process from spontaneous fission

    SciTech Connect

    Hamilton, J.H.; Butler-Moore, K.; Ramayya, A.V.

    1993-12-31

    The {gamma}-rays emitted following spontaneous and induced fission are rich sources of information about the structure of neutron-rich nuclei and about the fission process itself. The study of spontaneous fissioning isotopes with large Ge detector arrays are providing a wealth of such information as seen, for example, in recent reports. In this paper we present some of our most recent results on nuclear structure studies and conclusions on the fission process itself. In our work, we have employed in spontaneous fission, a triple gamma coincidence study for the first time and a high resolution, X-ray detector-{gamma}-coincidence study. These data provide powerful ways of separating the gamma rays which belong to a particular nucleus. The triple coincidence technique was used to uniquely identify the levels in {sup 136}Te and higher spin states in its N=84 isotones, {sup 138}Xe and {sup 140}Ba{sup 171}. Some other examples of the level structures observed in the low and high mass partners are presented, including a detailed analysis of the backbending of the moment of inertia in {sup 112,114,116}Pd. Finally, we present the first examples of how our analysis allows one to extract a detailed picture of the dependence of the angular momentum on the mass and atomic numbers of the fission fragments and of the long-sought neutron multiplicity distribution from zero-n to ten-n as a function of the charge and mass asymmetry.

  5. Prompt fission neutron spectra in fast-neutron-induced fission of 238U

    NASA Astrophysics Data System (ADS)

    Desai, V. V.; Nayak, B. K.; Saxena, A.; Suryanarayana, S. V.; Capote, R.

    2015-07-01

    Prompt fission neutron spectrum (PFNS) measurements for the neutron-induced fission of 238U are carried out at incident neutron energies of 2.0, 2.5, and 3.0 MeV, respectively. The time-of-flight technique is employed to determine the energy of fission neutrons. The prompt fission neutron energy spectra so obtained are analyzed using Watt parametrization to derive the neutron multiplicity and average prompt fission neutron energy. The present experimental PFNS data are compared with the evaluated spectra taken from the ENDF/B-VII.1 library and the predictive calculations carried out using the empire-3.2 (Malta) code with built-in Los Alamos (LA) and Kornilov PFNS models. The sensitivity of the empire-3.2 LA model-calculated PFNS to the nuclear level density parameter of the average fission fragment and to the total kinetic energy is investigated. empire-3.2 LA model PFNS calculations that use Madland 2006-recommended values [D. G. Madland, Nucl. Phys. A 772, 113 (2006), 10.1016/j.nuclphysa.2006.03.013] of the total kinetic energy and the level density parameter a =A /(10 ±0.5 ) compare very well to measured data at all incident neutron incident energies.

  6. The discovery and spontaneous fission properties of /sup 262/No

    SciTech Connect

    Lougheed, R.W.; Hulet, E.K.; Wild, J.F.; Moody, K.J.; Dougan, R.J.; Gannett, C.M.; Henderson, R.A.; Hoffman, D.C.; Lee, D.M.

    1989-04-19

    We have discovered /sup 262/No, as the electron capture daughter of /sup 262/Lr(t/sub 1/2/ = 216 m). This new isotope of nobelium decays by spontaneous fission with about a 5-ms half-life which is several orders of magnitude longer than recent theoretical estimates. We measured a sharply symmetric fission-fragment mass division and a bimodal total kinetic energy distribution; the high-energy symmetric-fission path was most abundant. /sup 262/No is the first nuclide with 160 neutrons to be discovered and is the closest to the N = 162 neutron subshell for which enhanced stability is predicted. 14 refs., 3 figs.

  7. Discovery of a new mode of nuclear fission

    SciTech Connect

    Hulet, E.K.; Wild, J.F.; Dougan, R.J.; Lougheed, R.W.; Landrum, J.H.; Dougan, A.D.; Schaedel, M.; Hahn, R.L.; Baisden, P.A.; Henderson, C.M.

    1986-01-01

    We measured the mass and kinetic-energy partitioning in the spontaneous fission of /sup 258/Fm, /sup 259/Md, /sup 260/Md, /sup 258/No, and /sup 260/(104). Surprisingly, these energy distributions were skewed upward or downward from the peak in each case, except for /sup 260/(104), indicating a composite of two energy distributions. We interpret this as a new mode of fission in which there is mixture of liquid-drop-like and fragment-shell-directed symmetric fission.

  8. Bimodal symmetric fission observed in the heaviest elements

    SciTech Connect

    Hulet, E.K.; Wild, J.F.; Dougan, R.J.; Lougheed, R.W.; Landrum, J.H.; Dougan, A.D.; Schadel, M.; Hahn, R.L.; Baisden, P.A.; Henderson, C.M.

    1986-01-27

    We measured the mass and kinetic-energy partitioning in the spontaneous fission of /sup 258/Fm, /sup 259/Md, /sup 260/Md, /sup 258/No, and /sup 260/(104). All fissioned with mass distributions that were symmetric. Total-kinetic-energy distributions peaked near either 200 or 235 MeV. Surprisingly, these energy distributions were skewed upward or downward from the peak in each case, except for /sup 260/(104), indicating a composite of two energy distributions. We interpret this as a mixture of liquid-drop-like and fragment-shell directed symmetric fission, although theory had not anticipated this phenomenon.

  9. Constraining the level density using fission of lead projectiles

    NASA Astrophysics Data System (ADS)

    Rodríguez-Sánchez, J. L.; Benlliure, J.; Álvarez-Pol, H.; Audouin, L.; Ayyad, Y.; Bélier, G.; Boutoux, G.; Casarejos, E.; Chatillon, A.; Cortina-Gil, D.; Gorbinet, T.; Heinz, A.; Kelić-Heil, A.; Laurent, B.; Martin, J.-F.; Paradela, C.; Pellereau, E.; Pietras, B.; Ramos, D.; Rodríguez-Tajes, C.; Rossi, D. M.; Simon, H.; Taïeb, J.; Vargas, J.; Voss, B.

    2015-10-01

    The nuclear level density is one of the main ingredients for the statistical description of the fission process. In this work, we propose to constrain the description of this parameter by using fission reactions induced by protons and light ions on 208Pb at high kinetic energies. The experiment was performed at GSI (Darmstadt), where the combined use of the inverse kinematics technique with an efficient detection setup allowed us to measure the atomic number of the two fission fragments in coincidence. This measurement permitted us to obtain with high precision the partial fission cross sections and the width of the charge distribution as a function of the atomic number of the fissioning system. These data and others previously measured, covering a large range in fissility, are compared to state-of-the-art calculations. The results reveal that total and partial fission cross sections cannot unambiguously constrain the level density at ground-state and saddle-point deformations and additional observables, such as the width of the charge distribution of the final fission fragments, are required.

  10. Biomodal spontaneous fission

    SciTech Connect

    Hulet, E.K. )

    1989-09-26

    Investigations of mass and kinetic-energy distributions from spontaneous fission have been extended in recent years to an isotope of element 104 and, for half-lives, to an isotope of element 108. The results have been surprising in that spontaneous fission half-lives have turned out to be much longer than expected and mass and kinetic- energy distributions were found to abruptly shift away from those of the lighter actinides, showing two modes of fission. These new developments have caused a re-evaluation of our understanding of the fission process, bringing an even deeper appreciation of the role played by nuclear shell effects upon spontaneous fission properties. 16 refs., 10 figs.

  11. Fission yield calculation using toy model based on Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Jubaidah, Kurniadi, Rizal

    2015-09-01

    Toy model is a new approximation in predicting fission yield distribution. Toy model assumes nucleus as an elastic toy consist of marbles. The number of marbles represents the number of nucleons, A. This toy nucleus is able to imitate the real nucleus properties. In this research, the toy nucleons are only influenced by central force. A heavy toy nucleus induced by a toy nucleon will be split into two fragments. These two fission fragments are called fission yield. In this research, energy entanglement is neglected. Fission process in toy model is illustrated by two Gaussian curves intersecting each other. There are five Gaussian parameters used in this research. They are scission point of the two curves (Rc), mean of left curve (μL) and mean of right curve (μR), deviation of left curve (σL) and deviation of right curve (σR). The fission yields distribution is analyses based on Monte Carlo simulation. The result shows that variation in σ or µ can significanly move the average frequency of asymmetry fission yields. This also varies the range of fission yields distribution probability. In addition, variation in iteration coefficient only change the frequency of fission yields. Monte Carlo simulation for fission yield calculation using toy model successfully indicates the same tendency with experiment results, where average of light fission yield is in the range of 90fission yield is in about 135

  12. Fission yield calculation using toy model based on Monte Carlo simulation

    SciTech Connect

    Jubaidah; Kurniadi, Rizal

    2015-09-30

    Toy model is a new approximation in predicting fission yield distribution. Toy model assumes nucleus as an elastic toy consist of marbles. The number of marbles represents the number of nucleons, A. This toy nucleus is able to imitate the real nucleus properties. In this research, the toy nucleons are only influenced by central force. A heavy toy nucleus induced by a toy nucleon will be split into two fragments. These two fission fragments are called fission yield. In this research, energy entanglement is neglected. Fission process in toy model is illustrated by two Gaussian curves intersecting each other. There are five Gaussian parameters used in this research. They are scission point of the two curves (R{sub c}), mean of left curve (μ{sub L}) and mean of right curve (μ{sub R}), deviation of left curve (σ{sub L}) and deviation of right curve (σ{sub R}). The fission yields distribution is analyses based on Monte Carlo simulation. The result shows that variation in σ or µ can significanly move the average frequency of asymmetry fission yields. This also varies the range of fission yields distribution probability. In addition, variation in iteration coefficient only change the frequency of fission yields. Monte Carlo simulation for fission yield calculation using toy model successfully indicates the same tendency with experiment results, where average of light fission yield is in the range of 90fission yield is in about 135

  13. Ternary fission of 260No in equatorial configuration

    NASA Astrophysics Data System (ADS)

    Ismail, M.; Seif, W. M.; Hashem, A. S.

    2016-10-01

    Spontaneous ternary fission is one of the observed decay modes of heavy nuclei. We systematically investigate the equatorial ternary fission of the 260No isotope. In the framework of the three-cluster model, the three-body interaction potential is calculated in terms of the folded M3Y-Reid nucleon-nucleon force and the Coulomb one. The relative orientations of the deformed heavy nuclei participating in the fragmentation process are taken into account. All possible emitted light particles with even mass numbers A = 4-52 are considered. The favored fragmentation channels are estimated as the ones characterized with peaks in the Q-value and local minima in the fragmentation potential. In the absence of nuclear deformations, the closed shell effects are found to play the key role in determining the channels of minimum fragmentation potential and the involved two heavier fragments tend to be of comparable sizes. Inclusion of nuclear deformations manifest the participation of highly deformed prolate nuclei, with large mass asymmetry, as heavy fragment partners in the estimated favored fragmentation channels. The results indicate that the equatorial ternary fission of 260No is most favored with the light emitted nuclei 4,6,8 2He and 10 4Be through the fragmentation channels 155 60Nd + 4 2He + 101 0Zr, 153 60Nd + 6 2He + 101 40Zr, 152 60Nd + 8 2He + 100 40Zr, and 152 0Nd + 10 4Be + 98 38Sr, respectively.

  14. Nuclear fission of Fm isotopes

    SciTech Connect

    Asano, T.; Wada, T.; Ohta, M.; Chiba, S.

    2010-06-01

    Multi-modal fission has been systematically investigated for the series of isotopes of Fm and Cf. The multi-dimensional Langevin-type stochastic differential equation is used for the dynamical calculation. The primary fission mode changes from mass-asymmetric fission to mass-symmetric fission with the increase of neutron numbers for both Fm and Cf cases.

  15. Sharp change-over from compound nuclear fission to quasifission

    SciTech Connect

    Ghosh, T. K.; Banerjee, K.; Bhattacharya, C.; Bhattacharya, S.; Kundu, S.; Mali, P.; Meena, J. K.; Mukherjee, G.; Mukhopadhyay, S.; Rana, T. K.; Bhattacharya, P.; Golda, K. S.

    2009-05-15

    Fission fragment mass distributions have been measured from the decay of the compound nucleus {sup 246}Bk that has been populated via two entrance channels. These entrance channels have a slight difference in their mass asymmetries that puts them on either side of the Businaro Gallone mass asymmetry parameter. Both target nuclei were deformed. Near the Coulomb barrier, at similar excitation energies, the width of the fission fragment mass distribution was found to be drastically different for the {sup 14}N+{sup 232}Th reaction compared to the {sup 11}B+{sup 235}U reaction. The entrance channel mass asymmetry was found to affect the fusion process sharply.

  16. /sup 252/Cf-based direct uranium logging system. Final report

    SciTech Connect

    Steinman, D.K.; Stokes, J.; Adams, J.A.; Pepper, C.S.; Bryan, D.E.; Smith, W.J.; Atwell, T.; Friesenhahn, S.; Dittrich, T.R.; Houston, D.H.

    1980-01-01

    Volume II comprises three appendices: reduced logging data from the field trips; samples of other output formats utilized by the data management software; and cost/benefit summaries for the field trips in 1978.

  17. Utilization of /sup 252/Cf-/sup 235/U fueled subcritical multiplier for neutron activation analysis

    SciTech Connect

    Wogman, N.A.; Lepel, E.A.

    1983-10-05

    Neutron activation analysis is normally performed at thermal fluxes of 10/sup 13/ n/cm/sup 2//s irradiating samples of a few milligrams. When a ten thousand-fold larger sample is available, neutron activation can be performed at proportionately lower fluxes. Thus, a 10 g sample irradiated at 10/sup 9/ n/cm/sup 2//s contains as much activity as a 1 mg sample irradiated at 10/sup 13/ n/cm/sup 2//s. This paper describes the utilization of a subcritical multiplier operating at about 10/sup 9/ n/cm/sup 2//s for the activation of a broad range of sample types and elemental concentrations.

  18. Analusis by 252Cf plasma desorption mass spectrometry of Bordetella pertussis endotoxin after nitrous deamination

    NASA Astrophysics Data System (ADS)

    Deprun, C.; Karibian, D.; Caroff, M.

    1993-07-01

    Endotoxic lipopolysaccharides (LPSs) are the major components of Gram-negative bacterial outer membrane. Like many amphipathic molecules, they pose problems of heterogeneity, purity, solubility, and aggregation. Nevertheless, PDMS has recently have been applied to unmodified endotoxins composed of LPS having uip to five sugar units in their saccharide chain. The B. Pertussis LPSs, most of which have a dodecasaccharide domain, ahve been analysed by classical methods and the masses of the separate lipid and saccharide domains determined after rupture of the bond linking them. However, the acid treatment employed for these and most chemical analyses can also modify structures in the vicinity of the bond. In order to investigate this biologically-important region, the endotoxin was treated to nitrous deamination, which shortens the saccharide chain to five sugars, but preserves the acid-labile region of the LPS. The PDM spectrum of this derivative, which required new conditions for its desorption, confirmed the structure analysis and demonstrated the presence of at least four molecular species.

  19. Fission Systems for Mars Exploration

    NASA Technical Reports Server (NTRS)

    Houts, Michael G.; Kim, T.; Dorney, D. J.; Swint, Marion Shayne

    2012-01-01

    Fission systems are used extensively on earth, and 34 such systems have flown in space. The energy density of fission is over 10 million times that of chemical reactions, giving fission the potential to eliminate energy density constraints for many space missions. Potential safety and operational concerns with fission systems are well understood, and strategies exist for affordably developing such systems. By enabling a power-rich environment and highly efficient propulsion, fission systems could enable affordable, sustainable exploration of Mars.

  20. Fission in a Plasma

    SciTech Connect

    Younes, W.

    2016-10-26

    A three-year theory project was undertaken to study the fission process in extreme astrophysical environments, such as the crust of neutron stars. In the first part of the project, the effect of electron screening on the fission process was explored using a microscopic approach. For the first time, these calculations were carried out to the breaking point of the nucleus. In the second part of the project, the population of the fissioning nucleus was calculated within the same microscopic framework. These types of calculations are extremely computer-intensive and have seldom been applied to heavy deformed nuclei, such as fissioning actinides. The results, tools and methodologies produced in this work will be of interest to both the basic-science and nuclear-data communities.

  1. Late-time emission of prompt fission γ rays

    SciTech Connect

    Talou, Patrick; Kawano, Toshihiko; Stetcu, Ionel; Lestone, John Paul; McKigney, Edward Allen; Chadwick, Mark Benjamin

    2016-12-22

    The emission of prompt fission γ rays within a few nanoseconds to a few microseconds following the scission point is studied in the Hauser-Feshbach formalism applied to the deexcitation of primary excited fission fragments. Neutron and γ-ray evaporations from fully accelerated fission fragments are calculated in competition at each stage of the decay, and the role of isomers in the fission products, before β decay, is analyzed. The time evolution of the average total γ-ray energy, the average total γ-ray multiplicity, and the fragment-specific γ-ray spectra is presented in the case of neutron-induced fission reactions of 235U and 239Pu, as well as spontaneous fission of 252Cf. The production of specific isomeric states is calculated and compared to available experimental data. About 7% of all prompt fission γ rays are predicted to be emitted between 10 ns and 5 μs following fission, in the case of 235U and 239Pu(nth,f) reactions, and up to 3% in the case of 252Cf spontaneous fission. The cumulative average total γ-ray energy increases by 2% to 5% in the same time interval. Lastly, those results are shown to be robust against significant changes in the model input parameters.

  2. Feasibility of Colliding-beam fast-fission reactor via 238U80++238 U80+ --> 4 FF + 5n + 430 MeV beam with suppressed plutonium and direct conversion of fission fragment (FF) energy into electricity and/or Rocket propellant with high specific impulse

    NASA Astrophysics Data System (ADS)

    Maglich, Bogdan; Hester, Tim; Calsec Collaboration

    2015-10-01

    Uranium-uranium colliding beam experiment1, used fully ionized 238U92+ at energy 100GeV --> <-- 100 GeV, has measured total σ = 487 b. Reaction rate of colliding beams is proportional to neutron flux-squared. First functional Auto-Collider3-6, a compact Migma IV, 1 m in diameter, had self-colliding deuterons, D+, of 725 KeV --> <-- 725 KeV, resulting in copious production of T and 3He. U +U Autocollider``EXYDER'' will use strong-focusing magnet7, which would increase reaction rate by 104. 80 times ionized U ions accelerated through 3 MV accelerator, will collide beam 240 MeV --> <-- 240 MeV. Reaction is: 238U80+ +238 U80+ --> 4 FF + 5n + 430 MeV. Using a simple model1 fission σf ~ 100 b. Suppression of Pu by a factor of 106 will be achieved because NO thermal neutron fission can take place; only fast, 1-3 MeV, where σabs is negligible. Direct conversion of 95% of 430 MeV produced is carried by electrically charged FFs which are magnetically funneled for direct conversion of energy of FFs via electrostatic decelerators4,11. 90% of 930 MeV is electrically recoverable. Depending on the assumptions, we project electric _ power density production of 20 to 200 MWe m-3, equivalent to Thermal 1.3 - 13 GWthm-3. If one-half of unburned U is used for propulsion while rest powers system, heavy FF ion mass provides specific impulse Isp = 106 sec., 103 times higher than current rocket engines.

  3. The fundamental role of fission during r-process nucleosynthesis in neutron star mergers

    NASA Astrophysics Data System (ADS)

    Goriely, S.

    2015-02-01

    The rapid neutron-capture process, or r-process, is known to be of fundamental importance for explaining the origin of approximately half of the A > 60 stable nuclei observed in nature. Despite important efforts, the astrophysical site of the r-process remains unidentified. Here we study r-process nucleosynthesis in a material that is dynamically ejected by tidal and pressure forces during the merging of binary neutron stars. r-process nucleosynthesis during the decompression is known to be largely insensitive to the detailed astrophysical conditions because of efficient fission recycling, producing a composition that closely follows the solar r-abundance distribution for nuclei with mass numbers A > 140. Due to the important role played by fission in such a scenario, the impact of fission is carefully analyzed. We consider different state-of-the-art global models for the determination of the fission paths, nuclear level densities at the fission saddle points and fission fragment distributions. Based on such models, the sensitivity of the calculated r-process abundance distribution is studied. The fission path is found to strongly affect the region of heavy nuclei responsible for the fission recycling, while the fission fragment distribution of nuclei along the A ≃ 278 isobars defines the abundance pattern of nuclei produced in the 110 ≲ A ≲ 170 region. The late capture of prompt fission neutrons is also shown to affect the abundance distribution, and in particular the shape of the third r-process peak around A ≃ 195.

  4. Reducing Uncertainties in Neutron-Induced Fission Cross Sections Using a Time Projection Chamber

    NASA Astrophysics Data System (ADS)

    Manning, Brett; Niffte Collaboration

    2015-10-01

    Neutron-induced fission cross sections for actinides have long been of great interest for nuclear energy and stockpile stewardship. Traditionally, measurements were performed using fission chambers which provided limited information about the detected fission events. For the case of 239Pu(n,f), sensitivity studies have shown a need for more precise measurements. Recently the Neutron Induced Fission Fragment Tracking Experiment (NIFFTE) has developed the fission Time Projection Chamber (fissionTPC) to measure fission cross sections to better than 1% uncertainty by providing 3D tracking of fission fragments. The fissionTPC collected data to calculate the 239Pu(n,f) cross section at the Weapons Neutron Research facility at the Los Alamos Neutron Science Center during the 2014 run cycle. Preliminary analysis has been focused on studying particle identification and target and beam non-uniformities to reduce the uncertainty on the cross section. Additionally, the collaboration is investigating other systematic errors that could not be well studied with a traditional fission chamber. LA-UR-15-24906.

  5. Ternary fission of 260No in collinear configuration

    NASA Astrophysics Data System (ADS)

    Ismail, M.; Seif, W. M.; Hashem, A. S.; Botros, M. M.; Abdul-Magead, I. A. M.

    2016-09-01

    We investigate the collinear ternary fission of the 260No isotope. The calculations are performed in the framework of the three cluster model for all possible accompanied light particles of even mass numbers A = 4 - 52. The folding nuclear and Coulomb interaction potentials are used, based on the M3Y-Reid nucleon-nucleon force for the nuclear part. The deformation of the involved fragments and their relative orientations with respect to each other inside the fissioning nuclei are considered. Among all possible fragmentation channels, the suggested most probable channels are indicated as the ones showing a peak in the Q-value and a local minimum in the fragmentation potential, with respect to the mass and charge asymmetries. The indicated favored fragmentation channels from the approximate spherical calculations and those obtained after considering the deformations of the produced fragments are discussed in detail. In addition to the preferred heavy fragments of closed shells, favored prolate ones of high deformations appear when the nuclear deformations are taken into account. Among indicated fifty six favored channels, a collinear ternary fission of the 260No isotope is indicated to be most favored through the fragmentation channels of 15058Ce+410Be+40100Zr,60152Nd+412Be+3896Sr,58150Ce+614C+3896Sr,58148Ce+616C+3896Sr,54140Xe+822O+4098Zr,42106Mo+1848Ar+42106Mo and 41104Nb+2052Ca+41104Nb.

  6. Singlet exciton fission photovoltaics.

    PubMed

    Lee, Jiye; Jadhav, Priya; Reusswig, Philip D; Yost, Shane R; Thompson, Nicholas J; Congreve, Daniel N; Hontz, Eric; Van Voorhis, Troy; Baldo, Marc A

    2013-06-18

    Singlet exciton fission, a process that generates two excitons from a single photon, is perhaps the most efficient of the various multiexciton-generation processes studied to date, offering the potential to increase the efficiency of solar devices. But its unique characteristic, splitting a photogenerated singlet exciton into two dark triplet states, means that the empty absorption region between the singlet and triplet excitons must be filled by adding another material that captures low-energy photons. This has required the development of specialized device architectures. In this Account, we review work to develop devices that harness the theoretical benefits of singlet exciton fission. First, we discuss singlet fission in the archetypal material, pentacene. Pentacene-based photovoltaic devices typically show high external and internal quantum efficiencies. They have enabled researchers to characterize fission, including yield and the impact of competing loss processes, within functional devices. We review in situ probes of singlet fission that modulate the photocurrent using a magnetic field. We also summarize studies of the dissociation of triplet excitons into charge at the pentacene-buckyball (C60) donor-acceptor interface. Multiple independent measurements confirm that pentacene triplet excitons can dissociate at the C60 interface despite their relatively low energy. Because triplet excitons produced by singlet fission each have no more than half the energy of the original photoexcitation, they limit the potential open circuit voltage within a solar cell. Thus, if singlet fission is to increase the overall efficiency of a solar cell and not just double the photocurrent at the cost of halving the voltage, it is necessary to also harvest photons in the absorption gap between the singlet and triplet energies of the singlet fission material. We review two device architectures that attempt this using long-wavelength materials: a three-layer structure that uses

  7. Spontaneous fission properties of sub 103 sup 259 Lr

    SciTech Connect

    Hamilton, T.M.; Gregorich, K.E.; Lee, D.M.; Czerwinski, K.R.; Hannink, N.J.; Kacher, C.D.; Kadkhodayan, B.; Kreek, S.A.; Nurmia, M.J.; Lane, M.R.; Neu, M.P.; Tuerler, A.; Hoffman, D.C. Chemistry Department, University of California, Berkeley, California 94720 )

    1992-11-01

    We have measured the mass and kinetic-energy distributions of fragments from the spontaneous fission of {sup 259}Lr. The {sup 259}Lr was produced via the {sup 248}Cm ({sup 15}N,4{ital n}) reaction with a production cross section of 100 nb using 81-MeV projectiles. The kinetic energies and times of the alpha particles and coincident fission fragments were measured using our rotating wheel system. From these data the half-life, mass, and kinetic-energy distributions were derived. The total kinetic-energy (TKE) distribution appears to consist of a single component with a most probable pre-neutron-emission TKE of 215{plus minus}3 MeV. The mass distribution is predominantly symmetric with a full width at half maximum of about 20 mass numbers. These results are consistent with trends observed for other trans-berkelium spontaneously fissioning isotopes. We determined the half-life to be 6.14{plus minus}0.36 s by measuring its alpha decay and the observed spontaneous fission half-life was consistent with that value. An energy of 8.439{plus minus}0.010 MeV was measured for the main alpha transition of {sup 259}Lr. We measured a spontaneous fission to alpha-decay ratio of 0.25{plus minus}0.03 which results in a partial half-life for spontaneous fission of 31{plus minus}4 s, if there are no other appreciable modes of decay.

  8. Event-by-Event Simulation of Induced Fission

    SciTech Connect

    Vogt, Ramona; Randrup, Joergen

    2008-04-17

    We are developing a novel code that treats induced fission by statistical (or Monte-Carlo) simulation of individual decay chains. After its initial excitation, the fissionable compound nucleus may either de-excite by evaporation or undergo binary fission into a large number of fission channels each with different energetics involving both energy dissipation and deformed scission pre-fragments. After separation and Coulomb acceleration, each fission fragment undergoes a succession of individual (neutron) evaporations, leading to two bound but still excited fission products (that may further decay electromagnetically and, ultimately, weakly), as well as typically several neutrons. (The inclusion of other possible ejectiles is planned.) This kind of approach makes it possible to study more detailed observables than could be addressed with previous treatments which have tended to focus on average quantities. In particular, any type of correlation observable can readily be extracted from a generated set of events. With a view towards making the code practically useful in a variety of applications, emphasis is being put on making it numerically efficient so that large event samples can be generated quickly. In its present form, the code can generate one million full events in about 12 seconds on a MacBook laptop computer. The development of this qualitatively new tool is still at an early stage and quantitative reproduction of existing data should not be expected until a number of detailed refinement have been implemented.

  9. Shell effects in fission and quasi-fission of heavy and superheavy nuclei

    NASA Astrophysics Data System (ADS)

    Itkis, M. G.; A¨ysto¨, J.; Beghini, S.; Bogachev, A. A.; Corradi, L.; Dorvaux, O.; Gadea, A.; Giardina, G.; Hanappe, F.; Itkis, I. M.; Jandel, M.; Kliman, J.; Khlebnikov, S. V.; Kniajeva, G. N.; Kondratiev, N. A.; Kozulin, E. M.; Krupa, L.; Latina, A.; Materna, T.; Montagnoli, G.; Oganessian, Yu. Ts.; Pokrovsky, I. V.; Prokhorova, E. V.; Rowley, N.; Rubchenya, V. A.; Rusanov, A. Ya.; Sagaidak, R. N.; Scarlassara, F.; Stefanini, A. M.; Stuttge, L.; Szilner, S.; Trotta, M.; Trzaska, W. H.; Vakhtin, D. N.; Vinodkumar, A. M.; Voskressenski, V. M.; Zagrebaev, V. I.

    2004-04-01

    Results of the experiments aimed at the study of fission and quasi-fission processes in the reactions 12C+ 204Pb, 48Ca+ 144,154Sm, 168Er, 208Pb, 244Pu, 248Cm; 58Fe+ 208Pb, 244Pu, 248Cm, and 64Ni+ 186W, 242Pu are presented in the work. The choice of the above-mentioned reactions was inspired by recent experiments on the production of the isotopes 283112, 289114 and 283116 at Dubna [1],[2] using the same reactions. The 58Fe and 64Ni projectiles were chosen since the corresponding projectile-target combinations lead to the synthesis of even heavier elements. The experiments were carried out at the U-400 accelerator of the Flerov Laboratory of Nuclear Reactions (JINR, Russia), the XTU Tandem accelerator of the National Laboratory of Legnaro (LNL, Italy) and the Accelerator of the Laboratory of University of Jyvaskyla (JYFL, Finland) using the time-of-flight spectrometer of fission fragments CORSET[3] and the neutron multi-detector DEMON[4],[5]. The role of shell effects and the influence of the entrance channel on the mechanism of the compound nucleus fusion-fission and the competitive process of quasi-fission are discussed.

  10. Toward an Automated Analysis of Slow Ions in Nuclear Track Emulsion

    NASA Astrophysics Data System (ADS)

    Mamatkulov, K. Z.; Kattabekov, R. R.; Ambrozova, I.; Artemenkov, D. A.; Bradnova, V.; Kamanin, D. V.; Majling, L.; Marey, A.; Ploc, O.; Rusakova, V. V.; Stanoeva, R.; Turek, K.; Zaitsev, A. A.; Zarubin, P. I.; Zarubina, I. G.

    Application of the nuclear track emulsion technique (NTE) in radioactivity and nuclear fission studies is discussed. It is suggested to use a HSP-1000 automated microscope for searching for a collinear cluster tri-partition of heavy nuclei implanted in NTE. Calibrations of α-particles and ion ranges in a novel NTE are carried out. Surface exposures of NTE samples to a 252Cf source started. Planar events containing fragments and long-range α-particles as well as fragment triples only are studied. NTE samples are calibrated by ions Kr and Xe of energy of 1.2 and 3 A MeV.

  11. Spontaneous fission half-life of /sup 249/Cf

    SciTech Connect

    Tarantin, N.I.; Buklanov, G.V.; Kim Su Men; Korotkin, Yu.S.

    1987-11-01

    The authors describe a method for determining the spontaneous fission half-life of Cf 249 which is comprised in the preparatory stages of berkelium 249 separation by extraction chromatography and in the analytic stages of the detection of fission fragments using dielectric track detectors consisting of polyethylene terephthalate and muscovite. The half-life was calculated in the basis of the mass and composition of the sample material, the exposure time, the recording efficiency, and the number of recorded fission tracks, and was determined to be (8.5 plus or minus 0.5) multiplied by ten to the tenth power years after averaging measurement results. The ratio of the probabilities of Cf 249 decay by alpha particle emission and spontaneous fission was calculated from the ratio of their respective intensities.

  12. Special features of the K = 0 channel in nuclear fission

    SciTech Connect

    Barabanov, A. L.; Furman, W. I.

    2009-08-15

    The opinion that the K = 0 fission channel is completely closed if the spin J and the parity {pi} of the nucleus undergoing fission do not satisfy the condition (-1){sup J} = {pi} is widespread. On the basis of a detailed analysis of quantum numbers characterizing the rotational states of deformed nuclei, it is shown that this opinion is erroneous. In fact, the K = 0 channel may be partly open. Its suppression is caused by special features of fission barriers in the state being considered. It is also shown that factors that suppress the K = 0channel may exist even in states characterized by J and {pi} values such that they satisfy the condition (-1){sup J} = {pi}. More precise information about the contribution of the K = 0 channel may be obtained by measuring the hexadecapole component of the angular distribution of fragments originating from the slow-neutron-induced fission of aligned nuclei.

  13. Nuclear fission of neutron-deficient protactinium nuclides

    SciTech Connect

    Nishinaka, I.; Nagame, Y.; Tsukada, K.; Ikezoe, H.; Sueki, K.; Nakahara, H.; Tanikawa, M.; Ohtsuki, T.

    1997-08-01

    Fragment velocity, kinetic energy, mass yield, and element yield distributions in the fission of neutron-deficient Pa isotopes produced in the reactions of {sup 16}O and {sup 18}O on {sup 209}Bi have been measured at incident beam energies near and above the Coulomb barriers by the time-of-flight and radiochemical methods. An asymmetric mass-division component has been observed. Measured fission cross sections were compared with the results of statistical model calculations which take into account two fission barrier heights for symmetric and asymmetric yields. The fission barrier height deduced for the asymmetric fission is found slightly lower than that for the symmetric one. The difference between the two barrier heights in the fission of the present protactinium nuclides (N{approximately}135) is considerably smaller than that in the neutron-rich nuclide of {sup 233}Pa (N{approximately}142), indicating that the difference sensitively depends on the neutron number of the fissioning nuclide. {copyright} {ital 1997} {ital The American Physical Society}

  14. New fission valley for /sup 258/Fm and nuclei beyond

    SciTech Connect

    Moeller, P.; Nix, J.R.; Swiatecki, W.J.

    1986-01-01

    Experimental results on the fission properties of nuclei close to /sup 264/Fm show sudden and large changes with a change of only one or two neutrons or protons. The nucleus /sup 258/Fm, for instance, undergoes symmetric fission with a half-life of about 0.4 ms and a kinetic energy peaked at about 235 MeV whereas /sup 256/Fm undergoes asymmetric fission with a half-life of about 3 h and a kinetic energy peaked at about 200 MeV. Qualitatively, these sudden changes hve been postulated to be due to the emergence of fragment shells in symmetric fission products close to /sup 132/Sn. A quantitative calculation that shows where high-kinetic-energy symmetric fission occurs and why it is associated with a sudden and large decrease in fission half-lives. The study is based on calculations of potential-energy surfaces in the macroscopic-microscopic model and a semi-empirical model for the nuclear inertia. The implications of the new fission valley on the stability of the heaviest elements is discussed. 33 refs., 12 figs.

  15. β-delayed fission and α decay of 178Tl

    NASA Astrophysics Data System (ADS)

    Liberati, V.; Andreyev, A. N.; Antalic, S.; Barzakh, A.; Cocolios, T. E.; Elseviers, J.; Fedorov, D.; Fedoseeev, V. N.; Huyse, M.; Joss, D. T.; Kalaninová, Z.; Köster, U.; Lane, J. F. W.; Marsh, B.; Mengoni, D.; Molkanov, P.; Nishio, K.; Page, R. D.; Patronis, N.; Pauwels, D.; Radulov, D.; Seliverstov, M.; Sjödin, M.; Tsekhanovich, I.; Van den Bergh, P.; Van Duppen, P.; Venhart, M.; Veselský, M.

    2013-10-01

    A detailed nuclear-decay spectroscopy study of the neutron-deficient isotope 178Tl has been performed using the highly selective Resonance Ionization Laser Ion Source and ISOLDE mass separator (CERN), which allowed a unique isobarically pure beam of 178Tl to be produced. The first identification of the β-delayed fission of this isotope was made and its probability PβDF(178Tl)=0.15(6)% was determined. An asymmetric fission fragment mass distribution of the daughter isotope 178Hg (populated by the β decay of 178Tl) was deduced based on the measured fission fragment energies. The fine-structure α-decay pattern of 178Tl allowed the low-energy states in the daughter nucleus 174Au to be studied.

  16. Fission properties of the 1. 5-s spontaneous fission activity produced in bombardmentof /sup 248/Cm with /sup 18/O

    SciTech Connect

    Hoffman, D.C.; Lee, D.; Ghiorso, A.; Nurmia, M.J.; Aleklett, K.; Leino, M.

    1981-08-01

    We have measured the mass and kinetic-energy distributions of fragments from the spontaneous fission of a 1.5-s activity produced in bombardments of /sup 248/Cm with 95-MeV /sup 18/O ions. Its spontaneous fission decay exhibits a very symmetric, narrow (full width at half maximum = 12 mass units) mass distribution, a very high total kinetic energy of 234 +- 2 MeV, and increasing total kinetic energy with increasingly symmetric mass division. Based on its half-life and the similarity of its fission properties to the unique fission properties so far only observed for /sup 258/Fm and /sup 259/Fm, the most likely assignment of this activity is to the known /sup 259/Fm. However, assignment to some as yet undiscovered neutron-rich heavy element isotope such as /sup 260/Md cannot be unequivocally excluded.

  17. Modernizing the Fission Basis

    NASA Astrophysics Data System (ADS)

    Tonchev, Anton; Henderson, Roger; Schunck, Nicolas; Sroyer, Mark; Vogt, Ramona

    2016-09-01

    In 1939, Niels Bohr and John Wheeler formulated a theory of neutron-induced nuclear fission based on the hypothesis of the compound nucleus. Their theory, the so-called ``Bohr hypothesis,'' is still at the heart of every theoretical fission model today and states that the decay of a compound nucleus for a given excitation energy, spin, and parity is independent of its formation. We propose the first experiment to validate to 1-2% absolute uncertainties the practical consequences of the Bohr hypothesis during induced nuclear fission. We will compare the fission product yields (FPYs) of the same 240Pu compound nucleus produced via two different reactions (i) n+239Pu and (ii) γ+240 Pu. These high-precision FPYs measurements will be extremely beneficial for our fundamental understanding of the nuclear fission process and nuclear reactions from first principles. This work was performed under the auspices of US DOE by LLNL under Contract DE-AC52-07NA27344. Funding was provided via the LDRD-ERD-069 project.

  18. Microscopic theory of nuclear fission: a review

    NASA Astrophysics Data System (ADS)

    Schunck, N.; Robledo, L. M.

    2016-11-01

    This article reviews how nuclear fission is described within nuclear density functional theory. A distinction should be made between spontaneous fission, where half-lives are the main observables and quantum tunnelling the essential concept, and induced fission, where the focus is on fragment properties and explicitly time-dependent approaches are often invoked. Overall, the cornerstone of the density functional theory approach to fission is the energy density functional formalism. The basic tenets of this method, including some well-known tools such as the Hartree-Fock-Bogoliubov (HFB) theory, effective two-body nuclear potentials such as the Skyrme and Gogny force, finite-temperature extensions and beyond mean-field corrections, are presented succinctly. The energy density functional approach is often combined with the hypothesis that the time-scale of the large amplitude collective motion driving the system to fission is slow compared to typical time-scales of nucleons inside the nucleus. In practice, this hypothesis of adiabaticity is implemented by introducing (a few) collective variables and mapping out the many-body Schrödinger equation into a collective Schrödinger-like equation for the nuclear wave-packet. The region of the collective space where the system transitions from one nucleus to two (or more) fragments defines what are called the scission configurations. The inertia tensor that enters the kinetic energy term of the collective Schrödinger-like equation is one of the most essential ingredients of the theory, since it includes the response of the system to small changes in the collective variables. For this reason, the two main approximations used to compute this inertia tensor, the adiabatic time-dependent HFB and the generator coordinate method, are presented in detail, both in their general formulation and in their most common approximations. The collective inertia tensor enters also the Wentzel-Kramers-Brillouin (WKB) formula used to extract

  19. Microscopic Theory of Nuclear Fission: A Review

    DOE PAGES

    Schunck, N.; Robledo, L. M.

    2016-10-11

    This paper reviews how nuclear fission is described within nuclear density functional theory. A distinction should be made between spontaneous fission, where half-lives are the main observables and quantum tunnelling the essential concept, and induced fission, where the focus is on fragment properties and explicitly time-dependent approaches are often invoked. Overall, the cornerstone of the density functional theory approach to fission is the energy density functional formalism. The basic tenets of this method, including some well-known tools such as the Hartree–Fock–Bogoliubov (HFB) theory, effective two-body nuclear potentials such as the Skyrme and Gogny force, finite-temperature extensions and beyond mean-field corrections,more » are presented succinctly. The energy density functional approach is often combined with the hypothesis that the time-scale of the large amplitude collective motion driving the system to fission is slow compared to typical time-scales of nucleons inside the nucleus. In practice, this hypothesis of adiabaticity is implemented by introducing (a few) collective variables and mapping out the many-body Schrödinger equation into a collective Schrödinger-like equation for the nuclear wave-packet. The region of the collective space where the system transitions from one nucleus to two (or more) fragments defines what are called the scission configurations. The inertia tensor that enters the kinetic energy term of the collective Schrödinger-like equation is one of the most essential ingredients of the theory, since it includes the response of the system to small changes in the collective variables. For this reason, the two main approximations used to compute this inertia tensor, the adiabatic time-dependent HFB and the generator coordinate method, are presented in detail, both in their general formulation and in their most common approximations. The collective inertia tensor enters also the Wentzel–Kramers–Brillouin (WKB) formula

  20. Microscopic Theory of Nuclear Fission: A Review

    SciTech Connect

    Schunck, N.; Robledo, L. M.

    2016-10-11

    This paper reviews how nuclear fission is described within nuclear density functional theory. A distinction should be made between spontaneous fission, where half-lives are the main observables and quantum tunnelling the essential concept, and induced fission, where the focus is on fragment properties and explicitly time-dependent approaches are often invoked. Overall, the cornerstone of the density functional theory approach to fission is the energy density functional formalism. The basic tenets of this method, including some well-known tools such as the Hartree–Fock–Bogoliubov (HFB) theory, effective two-body nuclear potentials such as the Skyrme and Gogny force, finite-temperature extensions and beyond mean-field corrections, are presented succinctly. The energy density functional approach is often combined with the hypothesis that the time-scale of the large amplitude collective motion driving the system to fission is slow compared to typical time-scales of nucleons inside the nucleus. In practice, this hypothesis of adiabaticity is implemented by introducing (a few) collective variables and mapping out the many-body Schrödinger equation into a collective Schrödinger-like equation for the nuclear wave-packet. The region of the collective space where the system transitions from one nucleus to two (or more) fragments defines what are called the scission configurations. The inertia tensor that enters the kinetic energy term of the collective Schrödinger-like equation is one of the most essential ingredients of the theory, since it includes the response of the system to small changes in the collective variables. For this reason, the two main approximations used to compute this inertia tensor, the adiabatic time-dependent HFB and the generator coordinate method, are presented in detail, both in their general formulation and in their most common approximations. The collective inertia tensor enters also the Wentzel–Kramers–Brillouin (WKB) formula used to

  1. Microscopic theory of nuclear fission: a review.

    PubMed

    Schunck, N; Robledo, L M

    2016-11-01

    This article reviews how nuclear fission is described within nuclear density functional theory. A distinction should be made between spontaneous fission, where half-lives are the main observables and quantum tunnelling the essential concept, and induced fission, where the focus is on fragment properties and explicitly time-dependent approaches are often invoked. Overall, the cornerstone of the density functional theory approach to fission is the energy density functional formalism. The basic tenets of this method, including some well-known tools such as the Hartree-Fock-Bogoliubov (HFB) theory, effective two-body nuclear potentials such as the Skyrme and Gogny force, finite-temperature extensions and beyond mean-field corrections, are presented succinctly. The energy density functional approach is often combined with the hypothesis that the time-scale of the large amplitude collective motion driving the system to fission is slow compared to typical time-scales of nucleons inside the nucleus. In practice, this hypothesis of adiabaticity is implemented by introducing (a few) collective variables and mapping out the many-body Schrödinger equation into a collective Schrödinger-like equation for the nuclear wave-packet. The region of the collective space where the system transitions from one nucleus to two (or more) fragments defines what are called the scission configurations. The inertia tensor that enters the kinetic energy term of the collective Schrödinger-like equation is one of the most essential ingredients of the theory, since it includes the response of the system to small changes in the collective variables. For this reason, the two main approximations used to compute this inertia tensor, the adiabatic time-dependent HFB and the generator coordinate method, are presented in detail, both in their general formulation and in their most common approximations. The collective inertia tensor enters also the Wentzel-Kramers-Brillouin (WKB) formula used to extract

  2. Kinetic energy deficit in the symmetric fission of /sup 259/Md. [Light particle emission in /sup 256/Fm fission

    SciTech Connect

    Hulet, E.K.; Wild, J.F.; Lougheed, R.W.; Baisden, P.A.; Dougan, R.J.; Mustafa, M.G.

    1980-10-01

    The fragment energies of about 725 coincidence events have now been observed in the spontaneous fission (SF) decay of 105-min /sup 259/Md since its discovery in 1977. The fission of /sup 259/Md is characterized by a symmetric mass distribution, similar to those of /sup 258/Fm and /sup 259/Fm, but with a broad total kinetic energy (anti TKE) distribution which peaks at about 195 MeV, in contrast to those of /sup 258/Fm and /sup 259/Fm, for which the anti TKE is about 240 MeV. This kinetic energy deficit, approx. 40 MeV, has been postulated to be due to the emission of hydrogen-like particles by /sup 259/Md at the scission point in a large fraction of the fissions, leaving the residual fissioning nucleus with 100 protons. The residual nucleus would then be able to divide into two ultrastable tin-like fission fragments, but with less kinetic energy than that observed in the SF of /sup 258/Fm and /sup 259/Fm, because of binding-energy losses and a reduction in the Coulomb repulsion of the major fragments. To test this hypothesis, counter-telescope experiments aimed at detecting and identifying these light particles were performed. In 439 SF events 3 + 3 protons of the appropriate energy were observed, too few to account for the kinetic energy deficit in the fission of /sup 259/Md. There seems to be no explanation for this problem within the framework of current fission theory. These results are discussed along with preliminary measurements of light-particle emission in the SF of /sup 256/Fm. 5 figures.

  3. Fission cross-sections, prompt fission neutron and γ-ray emission in request for nuclear applications

    NASA Astrophysics Data System (ADS)

    Hambsch, F.-J.; Salvador-Castiñeira, P.; Oberstedt, S.; Göök, A.; Billnert, R.

    2016-06-01

    In recent years JRC-IRMM has been investigating fission cross-sections of 240,242Pu in the fast-neutron energy range relevant for innovative reactor systems and requested in the High Priority Request List (HPRL) of the OECD/Nuclear Energy Agency (NEA). In addition to that, prompt neutron multiplicities are being investigated for the major isotopes 235U, 239Pu in the neutron-resonance region using a newly developed scintillation detector array (SCINTIA) and an innovative modification of the Frisch-grid ionisation chamber for fission-fragment detection. These data are highly relevant for improved neutron data evaluation and requested by the OECD/Working Party on Evaluation Cooperation (WPEC). Thirdly, also prompt fission γ-ray emission is investigated using highly efficient lanthanide-halide detectors with superior timing resolution. Again, those data are requested in the HPRL for major actinides to solve open questions on an under-prediction of decay heat in nuclear reactors. The information on prompt fission neutron and γ-ray emission is crucial for benchmarking nuclear models to study the de-excitation process of neutron-rich fission fragments. Information on γ-ray emission probabilities is also useful in decommissioning exercises on damaged nuclear power plants like Fukushima Daiichi to which JRC-IRMM is contributing. The results on the 240,242Pu fission cross section, 235U prompt neutron multiplicity in the resonance region and correlations with fission fragments and prompt γ-ray emission for several isotopes will be presented and put into perspective.

  4. Fission track dating of kimberlitic zircons

    USGS Publications Warehouse

    Haggerty, S.E.; Raber, E.; Naeser, C.W.

    1983-01-01

    The only reliable method for dating kimberlites at present is the lengthy and specialized hydrothermal procedure that extracts 206Pb and 238U from low-uranium zircons. This paper describes a second successful method by fission track dating of large single-crystal zircons, 1.0-1.5 cm in dimension. The use of large crystals overcomes the limitations imposed in conventional fission track analysis which utilizes crushed fragments. Low track densities, optical track dispersion, and the random orientation of polished surfaces in the etch and irradiation cycle are effectively overcome. Fission track ages of zircons from five African kimberlites are reported, from the Kimberley Pool (90.3 ?? 6.5 m.y.), Orapa (87.4 ?? 5.7 and 92.4 ?? 6.1 m.y.), Nzega (51.1 ?? 3.8 m.y.), Koffiefontein (90.0 ?? 8.2 m.y.), and Val do Queve (133.4 ?? 11.5 m.y.). In addition we report the first radiometric ages (707.9 ?? 59.6 and 705.5 ?? 61.0 m.y.) of crustal zircons from kimberlites in northwest Liberia. The fission track ages agree well with earlier age estimates. Most of the zircons examined in this study are zoned with respect to uranium but linear correlations are established (by regression analysis) between zones of variable uranium content, and within zones of constant uranium content (by analysis of variance). Concordance between the fission track method and the U/Pb technique is established and we concluded that track fading from thermal annealing has not taken place. Kimberlitic zircons dated in this study, therefore, record the time of eruption. ?? 1983.

  5. Quantum and Thermodynamic Properties of Spontaneous and Low-Energy Induced Fission of Nuclei

    SciTech Connect

    Kadmensky, S.G.

    2005-12-01

    It is shown that A. Bohr's concept of transition fission states can be matched with the properties of Coriolis interaction if an axisymmetric fissile nucleus near the scission point remains cold despite a nonadiabatic character of nuclear collective deformation motion. The quantum and thermodynamic properties of various stages of binary and ternary fission after the descent of a fissile nucleus from the outer saddle point are studied within quantum-mechanical fission theory. It is shown that two-particle nucleon-nucleon correlations--in particular, superfluid correlations--play an important role in the formation of fission products and in the classification of fission transitions. The distributions of thermalized primary fission fragments with respect to spins and their projections onto the symmetry axis of the fissile nucleus and fission fragments are constructed, these distributions determining the properties of prompt neutrons and gamma rays emitted by these fragments. A new nonevaporation mechanism of third-particle production in ternary fission is proposed. This mechanism involves transitions of third particles from the cluster states of the fissile-nucleus neck to high-energy states under effects of the shake-off type that are due to the nonadiabatic character of nuclear collective deformation motion.

  6. Prompt neutron emission from the spontaneous fission of sup 260 Md

    SciTech Connect

    Wild, J.F.; van Aarle, J.; Westmeier, W.; Lougheed, R.W.; Hulet, E.K.; Moody, K.J.; Dougan, R.J.; Koop, E.; Glaser, R.E.; Brandt, R.; Patzelt, P. Philipps University, D-3550, Marburg an der Lahn, )

    1990-02-01

    We have made the first measurement of the number of neutrons emitted from the spontaneous fission of a nuclide in which very high fragment energies dominate the fission process. In bombardments of {sup 254}Es, we produced a large sample of 28-d {sup 260}Md, which was neutron counted in a 1-m-diameter spherical tank containing a Gd-doped scintillator solution. The average number of neutrons emitted per fission is only 2.58{plus minus}0.11, substantially less than for other actinides. A linear dependence of neutron multiplicity on fragment-excitation energy is observed to the highest values of total kinetic energy.

  7. Fission Product Library and Resource

    SciTech Connect

    Burke, J. T.; Padgett, S.

    2016-09-29

    Fission product yields can be extracted from an irradiated sample by performing gamma ray spectroscopy on the whole sample post irradiation. There are several pitfalls to avoid when trying to determine a specific isotope's fission product yield.

  8. Mitochondrial fragmentation in excitotoxicity requires ROCK activation.

    PubMed

    Martorell-Riera, Alejandro; Segarra-Mondejar, Marc; Reina, Manuel; Martínez-Estrada, Ofelia M; Soriano, Francesc X

    2015-01-01

    Mitochondria morphology constantly changes through fission and fusion processes that regulate mitochondrial function, and it therefore plays a prominent role in cellular homeostasis. Cell death progression is associated with mitochondrial fission. Fission is mediated by the mainly cytoplasmic Drp1, which is activated by different post-translational modifications and recruited to mitochondria to perform its function. Our research and other studies have shown that in the early moments of excitotoxic insult Drp1 must be nitrosylated to mediate mitochondrial fragmentation in neurons. Nonetheless, mitochondrial fission is a multistep process in which filamentous actin assembly/disassembly and myosin-mediated mitochondrial constriction play prominent roles. Here we establish that in addition to nitric oxide production, excitotoxicity-induced mitochondrial fragmentation also requires activation of the actomyosin regulator ROCK. Although ROCK1 has been shown to phosphorylate and activate Drp1, experiments using phosphor-mutant forms of Drp1 in primary cortical neurons indicate that in excitotoxic conditions, ROCK does not act directly on Drp1 to mediate fission, but may act on the actomyosin complex. Thus, these data indicate that a wider range of signaling pathways than those that target Drp1 are amenable to be inhibited to prevent mitochondrial fragmentation as therapeutic option.

  9. Light charged particles emitted in fission reactions induced by protons on 208Pb

    NASA Astrophysics Data System (ADS)

    Rodríguez-Sánchez, J. L.; Benlliure, J.; Paradela, C.; Ayyad, Y.; Casarejos, E.; Alvarez-Pol, H.; Audouin, L.; Bélier, G.; Boutoux, G.; Chatillon, A.; Cortina-Gil, D.; Gorbinet, T.; Heinz, A.; Kelić-Heil, A.; Laurent, B.; Martin, J.-F.; Pellereau, E.; Pietras, B.; Ramos, D.; Rodríguez-Tajes, C.; Rossi, D. M.; Simon, H.; Taïeb, J.; Vargas, J.; Voss, B.

    2016-09-01

    Light charged particles emitted in proton-induced fission reactions on 208Pb have been measured at different kinetic energies: 370 A ,500 A , and 650 A MeV. The experiment was performed by the SOFIA Collaboration at the GSI facilities in Darmstadt (Germany). The inverse kinematics technique was combined with a setup especially designed to measure light charged particles in coincidence with fission fragments. This measurement allowed us, for the first time, to obtain correlations between the light charged particles emitted during the fission process and the charge distributions of the fission fragments. These correlations were compared with different model calculations to assess the ground-to-saddle dynamics. The results confirm that transient and dissipative effects are required for an accurate description of the fission observables.

  10. Radiation re-solution of fission gas in non-oxide nuclear fuel

    NASA Astrophysics Data System (ADS)

    Matthews, Christopher; Schwen, Daniel; Klein, Andrew C.

    2015-02-01

    Renewed interest in fast nuclear reactors is creating a need for better understanding of fission gas bubble behavior in non-oxide fuels to support very long fuel lifetimes. Collisions between fission fragments and their subsequent cascades can knock fission gas atoms out of bubbles and back into the fuel lattice. We showed that these collisions can be treated as using the so-called "homogenous" atom-by-atom re-solution theory and calculated using the Binary Collision Approximation code 3DOT. The calculations showed that there is a decrease in the re-solution parameter as bubble radius increases until about 50 nm, at which the re-solution parameter stays nearly constant. Furthermore, our model shows ion cascades created in the fuel result in many more implanted fission gas atoms than collisions directly with fission fragments. This calculated re-solution parameter can be used to find a re-solution rate for future bubble simulations.

  11. Shell Effects in Fusion-Fission of Heavy and Superheavy Nuclei

    NASA Astrophysics Data System (ADS)

    Itkis, M. G.; Bogatchev, A. A.; Itkis, I. M.; Jandel, M.; Kliman, J.; Kniajeva, G. N.; Kondratiev, N. A.; Korzyukov, I. V.; Kozulin, E. M.; Krupa, L.; Oganessian, Yu. Ts.; Pokrovsky, I. V.; Prokhorova, E. V.; Voskresenski, V. M.; Zagrebaev, V. I.; Rusanov, A. Ya.; Corradi, L.; Gadea, A.; Latina, L.; Stefanini, A. M.; Szilner, S.; Trotta, M.; Vinodkumar, A. M.; Beghini, S.; Montagnoli, G.; Scarlassara, F.; Äystö, J.; Khlebnikov, S. V.; Rubchenya, V. A.; Trzaska, W. H.; Vakhtin, D. N.; Goverdovski, A. A.; Hanappe, F.; Materna, T.; Dorvaux, O.; Rowley, N.; Stuttge, L.; Giardina, G.

    2003-07-01

    The process of fusion-fission of heavy and superheavy nuclei with Z=82-122 formed in the reactions with 48Ca, 58Fe and 64Ni ions at energies near and below the Coulomb barrier has been studied. The experiments were carried out at the U-400 accelerator of the Flerov Laboratory of Nuclear Reactions (JINR, Russia), the XTU Tandem accelerator of the National Laboratory of Legnaro (LNL, Italy ) and the Accelerator of the Laboratory of University of Jyväskylä (JYFL, Finland) using the time-of-flight spectrometer of fission fragments CORSET[1] and the neutron multi-detector DEMON[2,3]. As a result of the experiments, mass and energy distributions (MED) of fission fragments, cross-sections of fission, quasi-fission and evaporation residues, multiplicities of neutrons and γ-quanta and their dependence on the mechanism of formation and decay of compound systems have been studied.

  12. Process for treating fission waste

    DOEpatents

    Rohrmann, Charles A.; Wick, Oswald J.

    1983-01-01

    A method is described for the treatment of fission waste. A glass forming agent, a metal oxide, and a reducing agent are mixed with the fission waste and the mixture is heated. After melting, the mixture separates into a glass phase and a metal phase. The glass phase may be used to safely store the fission waste, while the metal phase contains noble metals recovered from the fission waste.

  13. Spontaneous fission properties of sup 258 Fm, sup 259 Md, sup 260 Md, sup 258 No, and sup 260 (104): Bimodal fission

    SciTech Connect

    Hulet, E.K.; Wild, J.F.; Dougan, R.J.; Lougheed, R.W.; Landrum, J.H.; Dougan, A.D.; Baisden, P.A.; Henderson, C.M.; Dupzyk, R.J. ); Hahn, R.L.; and others

    1989-08-01

    We have measured the mass and kinetic-energy distributions from the spontaneous fission of {sup 258}Fm, {sup 258}No, {sup 259}Md, {sup 260}Md, and {sup 260}(104). All are observed to fission with a symmetrical division of mass. The total-kinetic-energy distributions strongly deviated from the Gaussian shape characteristically found in the fission of all other actinides. When the total-kinetic-energy distributions are resolved into two Gaussians, the constituent peaks lie near 200 and 233 MeV. We conclude that both low- and high-energy fission modes occur in four of the five nuclides studied. We call this property bimodal fission.'' Even though both modes are possible in the same nuclide, one generally predominates. We offer an explanation for each mode based on shell structures of the fissioning nucleus and of its fragments. The appearance of both modes of fission in this region of the nuclide chart seems to be a coincidence in that the opportunity to divide into near doubly magic Sn fragments occurs in the same region where the second fission barrier is expected to drop in energy below the ground state of the fissioning nucleus. Appropriate paths on the potential-energy surface of deformation have been found by theorists, but no physical grounds have been advanced that would allow the near equal populations we observe traveling each path. We suggest that this failure to find a reason for somewhat equal branching may be a fundamental flaw of current fission models. Assuming the proposed origins of these modes are correct, we conclude the low-energy, but also mass-symmetrical mode is likely to extend to far heavier nuclei. The high-energy mode will be restricted to a smaller region, a realm of nuclei defined by the proximity of the fragments to the strong neutron and proton shells in {sup 132}Sn.

  14. Uncertainties in nuclear fission data

    NASA Astrophysics Data System (ADS)

    Talou, Patrick; Kawano, Toshihiko; Chadwick, Mark B.; Neudecker, Denise; Rising, Michael E.

    2015-03-01

    We review the current status of our knowledge of nuclear fission data, and quantify uncertainties related to each fission observable whenever possible. We also discuss the roles that theory and experiment play in reducing those uncertainties, contributing to the improvement of our fundamental understanding of the nuclear fission process as well as of evaluated nuclear data libraries used in nuclear applications.

  15. Power deposition in volumetric /U-235/F6-He fission-pumped nuclear lasers

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Deyoung, R. J.

    1978-01-01

    The power deposition in (U-235)F6-He fission-pumped nuclear lasers is studied. Specifically, means to maximize the energy density in the He gas are assessed. Primary loss mechanisms are identified as the fission-fragment transport to the laser-cell wall and UF6 gas excitation. The losses are thus strongly dependent on UF6 concentration. It is found that maximum power will be deposited in a laser tube when the tube radius is as large as the range of fission fragments. Experimental results indicate that when the tube radius equals the fission-fragment range, the ratio of a UF6 partial pressure to total pressure is 0.15, and the UF6-He mixing ratio is 1:6, maximum power will be deposited.

  16. Shell effects in fission, quasifission and multinucleon transfer reaction

    NASA Astrophysics Data System (ADS)

    Kozulin, E. M.; Knyazheva, G. N.; Itkis, I. M.; Kozulina, N. I.; Loktev, T. A.; Novikov, K. V.; Harca, I.

    2014-05-01

    Results of the study of mass-energy distributions of binary fragments for a wide range of nuclei with Z= 82-122 produced in reactions of ions located between 22Ne and 136Xe at energies close and below the Coulomb barrier are reported. The role of the shell effects, the influence of the entrance channel asymmetry and the deformations of colliding nuclei on the mechanism of the fusion-fission, quasifission and multinucleon transfer reactions are discussed. The observed peculiarities of the mass and energy distributions of reaction fragments are determined by the shell structure of the formed fragments. Special attention is paid on the symmetric fragment features in order to clarify the origin of these fragments (fission or quasifission). The influence of shell effects on the fragment yield in quasifission and multinucleon transfer reactions is considered. It is noted that the major part of the asymmetric quasifission fragments peaks around the region of the Z=82 and N=126 (double magic lead) and Z=28 and N=50 shells; moreover the maximum of the yield of the quasifission component is a mixing between all these shells. Hence, shell effects are everywhere present and determine the basic characteristics of fragment mass distributions.

  17. Evidence for bimodal fission in the heaviest elements

    SciTech Connect

    Hulet, E.K.

    1987-12-10

    We have measured the mass and kinetic-energy partitioning in the spontaneous fission of five heavy nuclides: /sup 258/Fm, /sup 259/Md, /sup 260/Md, /sup 258/No, and /sup 260/(104). Each was produced by heavy-ion reactions with either /sup 248/Cm, /sup 249/Bk, or /sup 254/Es targets. Energies of correlated fragments from the isotopes with millisecond half lives, /sup 258/No and /sup 260/(104), were measured on-line by a special rotating-wheel instrument, while the others were determined off-line after mass separation. All fissioned with mass distributions that were symmetric. Total-kinetic-energy distributions peaked near either 200 or 235 MeV. Surprisingly, because only a single Gaussian energy distribution had been observed previously in actinide fission, these energy distributions were skewed upward or downward from the peak in each case, except for /sup 260/(104), indicating a composite of two energy distributions. We were able to fit accurately two Gaussian curves to the gross energy distributions from the four remaining nuclides. From the multiple TKE distributions and the shapes of the mass distributions, we conclude that there is a low-energy fission component with liquid-drop characteristics which is admixed with a much higher-energy component due to closed fragment shells. We now have further evidence for this conclusion from measurements of the neutron multiplicity in the spontaneous fission of /sup 260/Md.

  18. Evidence for bimodal fission in the heaviest elements

    SciTech Connect

    Hulet, E.K.; Wild, J.F.; Lougheed, R.W.; Dougan, R.J.; Landrum, J.H.; Dougan, A.D.; Schaedel, M.; Hahn, R.L.; Baisden, P.A.; Henderson, C.M.

    1987-08-01

    We have measured the mass and kinetic-energy partitioning in the spontaneous fission of five heavy nuclides: /sup 258/Fm, /sup 259/Md, /sup 260/Md /sup 258/No, and /sup 260/(104). Each was produced by heavy-ion reactions with either /sup 248/Cm, /sup 249/Bk, or /sup 254/Es targets. Energies of correlated fragments from the isotopes with millisecond half lives, /sup 258/No and /sup 260/(104), were measured on-line by a special rotating-wheel instrument, while the others were determined off-line after mass separation. All fissioned with mass distributions that were symmetric. Total-kinetic-energy distributions peaked near either 200 or 235 MeV. Surprisingly, because only a single Gaussian energy distribution had been observed previously in actinide fission, these energy distributions were skewed upward or downward from the peak in each case, except for /sup 260/(104), indicating a composite of two energy distributions. We were able to fit accurately two Gaussian curves to the gross energy distributions from the four remaining nuclides. From the multiple TKE distributions and the shapes of the mass distributions, we conclude that there is a low-energy fission component with liquid-drop characteristics which is admixed with a much higher-energy component due to closed fragment shells. We now have further evidence for this conclusion from measurements of the neutron multiplicity in the spontaneous fission of /sup 260/Md. 25 refs., 9 figs.

  19. Elastocapillary Instability in Mitochondrial Fission

    NASA Astrophysics Data System (ADS)

    Gonzalez-Rodriguez, David; Sart, Sébastien; Babataheri, Avin; Tareste, David; Barakat, Abdul I.; Clanet, Christophe; Husson, Julien

    2015-08-01

    Mitochondria are dynamic cell organelles that constantly undergo fission and fusion events. These dynamical processes, which tightly regulate mitochondrial morphology, are essential for cell physiology. Here we propose an elastocapillary mechanical instability as a mechanism for mitochondrial fission. We experimentally induce mitochondrial fission by rupturing the cell's plasma membrane. We present a stability analysis that successfully explains the observed fission wavelength and the role of mitochondrial morphology in the occurrence of fission events. Our results show that the laws of fluid mechanics can describe mitochondrial morphology and dynamics.

  20. Experimental Progress Report--Modernizing the Fission Basis

    SciTech Connect

    Macri, R A

    2012-02-17

    In 2010 a proposal (Modernizing the Fission Basis) was prepared to 'resolve long standing differences between LANL and LLNL associated with the correct fission basis for analysis of nuclear test data'. Collaboration between LANL/LLNL/TUNL has been formed to implement this program by performing high precision measurements of neutron induced fission product yields as a function of incident neutron energy. This new program benefits from successful previous efforts utilizing mono-energetic neutrons undertaken by this collaboration. The first preliminary experiment in this new program was performed between July 24-31, 2011 at TUNL and had 2 main objectives: (1) demonstrating the capability to measure characteristic {gamma}-rays from specific fission products; (2) studying background effects from room scattered neutrons. In addition, a new dual fission ionization chamber has been designed and manufactured. The production design of the chamber is shown in the picture below. The first feasibility experiment to test this chamber is scheduled at the TUNL Tandem Laboratory from September 19-25, 2011. The dual fission chamber design will allow simultaneous exposure of absolute fission fragment emission rate detectors and the thick fission activation foils, positioned between the two chambers. This document formalizes the earlier experimental report demonstrating the experimental capability to make accurate (< 2 %) precision gamma-ray spectroscopic measurements of the excitation function of high fission product yields of the 239Pu(n,f) reaction (induced by quasimonoenergetic neutrons). A second experiment (9/2011) introduced an compact double-sided fission chamber into the experimental arrangement, and so the relative number of incident neutrons striking the sample foil at each bombarding energy is limited only by statistics. (The number of incident neutrons often limits the experimental accuracy.) Fission chamber operation was so exceptional that 2 more chambers have been

  1. Event-by-Event Simulation of Induced Fission

    SciTech Connect

    Vogt, R; Randrup, J

    2007-12-13

    We are developing a novel code that treats induced fission by statistical (or Monte-Carlo) simulation of individual decay chains. After its initial excitation, the fissionable compound nucleus may either deexcite by evaporation or undergo binary fission into a large number of fission channels each with different energetics involving both energy dissipation and deformed scission prefragments. After separation and Coulomb acceleration, each fission fragment undergoes a succession of individual (neutron) evaporations, leading to two bound but still excited fission products (that may further decay electromagnetically and, ultimately, weakly), as well as typically several neutrons. (The inclusion of other possible ejectiles is planned.) This kind of approach makes it possible to study more detailed observables than could be addressed with previous treatments which have tended to focus on average quantities. In particular, any type of correlation observable can readily be extracted from a generated set of events. With a view towards making the code practically useful in a variety of applications, emphasis is being put on making it numerically efficient so that large event samples can be generated quickly. In its present form, the code can generate one million full events in about 12 seconds on a MacBook laptop computer. The development of this qualitatively new tool is still at an early stage and quantitative reproduction of existing data should not be expected until a number of detailed refinement have been implemented.

  2. Prompt fission gamma-ray studies at DANCE

    DOE PAGES

    Jandel, M.; Rusev, G.; Bond, E. M.; ...

    2014-11-26

    Measurements of correlated data on prompt-fission γ-rays (PFG) have been carried out for various actinide isotopes in recent years using the Detector for Advanced Neutron Capture Experiments (DANCE) at Los Alamos National Laboratory (LANL). We have developed a model that conveniently parametrizes the correlated data of γ-ray multiplicity and energy. New results on two- dimensional prompt-fission γ-ray multiplicity versus energy distributions from spontaneous fission on ²⁵²Cf and neutron-induced fission on 242mAm are presented together with previously obtained results on 233,235U and ²³⁹Pu. Correlated PFG data from ²⁵²Cf are also compared to results of the detailed theoretical model developed at LANL,more » for different thresholds of PFG energies. Future plans to measure correlated data on fission fragments, prompt fission neutrons and γ-rays at DANCE are presented.« less

  3. Probing energy dissipation, γ-ray and neutron multiplicity in the thermal neutron-induced fission of 239Pu

    NASA Astrophysics Data System (ADS)

    Pahlavani, M. R.; Mirfathi, S. M.

    2016-04-01

    The incorporation of the four-dimensional Langevin equations led to an integrative description of fission cross-section, fragment mass distribution and the multiplicity and energy distribution of prompt neutrons and γ-rays in the thermal neutron-induced fission of 239Pu. The dynamical approach presented in this paper thoroughly reproduces several experimental observables of the fission process at low excitation energy.

  4. Capture and fission with DANCE and NEUANCE

    NASA Astrophysics Data System (ADS)

    Jandel, M.; Baramsai, B.; Bond, E.; Rusev, G.; Walker, C.; Bredeweg, T. A.; Chadwick, M. B.; Couture, A.; Fowler, M. M.; Hayes, A.; Kawano, T.; Mosby, S.; Stetcu, I.; Taddeucci, T. N.; Talou, P.; Ullmann, J. L.; Vieira, D. J.; Wilhelmy, J. B.

    2015-12-01

    A summary of the current and future experimental program at DANCE is presented. Measurements of neutron capture cross sections are planned for many actinide isotopes with the goal to reduce the present uncertainties in nuclear data libraries. Detailed studies of capture gamma rays in the neutron resonance region will be performed in order to derive correlated data on the de-excitation of the compound nucleus. New approaches on how to remove the DANCE detector response from experimental data and retain the correlations between the cascade gamma rays are presented. Studies on 235U are focused on quantifying the population of short-lived isomeric states in 236U after neutron capture. For this purpose, a new neutron detector array NEUANCE is under construction. It will be installed in the central cavity of the DANCE array and enable the highly efficient tagging of fission and capture events. In addition, developments of fission fragment detectors are also underway to expand DANCE capabilities to measurements of fully correlated data on fission observables.

  5. Capture and fission with DANCE and NEUANCE

    DOE PAGES

    Jandel, M.; Baramsai, B.; Bond, E.; ...

    2015-12-23

    A summary of the current and future experimental program at DANCE is presented. Measurements of neutron capture cross sections are planned for many actinide isotopes with the goal to reduce the present uncertainties in nuclear data libraries. Detailed studies of capture gamma rays in the neutron resonance region will be performed in order to derive correlated data on the de-excitation of the compound nucleus. New approaches on how to remove the DANCE detector response from experimental data and retain the correlations between the cascade gamma rays are presented. Studies on 235U are focused on quantifying the population of short-lived isomericmore » states in 236U after neutron capture. For this purpose, a new neutron detector array NEUANCE is under construction. It will be installed in the central cavity of the DANCE array and enable the highly efficient tagging of fission and capture events. In addition, developments of fission fragment detectors are also underway to expand DANCE capabilities to measurements of fully correlated data on fission observables.« less

  6. Capture and fission with DANCE and NEUANCE

    SciTech Connect

    Jandel, M.; Baramsai, B.; Bond, E.; Rusev, G.; Walker, C.; Bredeweg, T. A.; Chadwick, M. B.; Couture, A.; Fowler, M. M.; Hayes, A.; Kawano, T.; Mosby, S.; Stetcu, I.; Taddeucci, T. N.; Talou, P.; Ullmann, J. L.; Vieira, D. J.; Wilhelmy, J. B.

    2015-12-23

    A summary of the current and future experimental program at DANCE is presented. Measurements of neutron capture cross sections are planned for many actinide isotopes with the goal to reduce the present uncertainties in nuclear data libraries. Detailed studies of capture gamma rays in the neutron resonance region will be performed in order to derive correlated data on the de-excitation of the compound nucleus. New approaches on how to remove the DANCE detector response from experimental data and retain the correlations between the cascade gamma rays are presented. Studies on 235U are focused on quantifying the population of short-lived isomeric states in 236U after neutron capture. For this purpose, a new neutron detector array NEUANCE is under construction. It will be installed in the central cavity of the DANCE array and enable the highly efficient tagging of fission and capture events. In addition, developments of fission fragment detectors are also underway to expand DANCE capabilities to measurements of fully correlated data on fission observables.

  7. Entropy Driven Excitation Energy Sorting in Superfluid Fission Dynamics

    SciTech Connect

    Schmidt, Karl-Heinz; Jurado, Beatriz

    2010-05-28

    It is shown that the constant-temperature behavior of nuclei in the superfluid regime leads to an energy-sorting process if two nuclei are in thermal contact, as is the case in the fission process. This effect explains why an increase of the initial excitation energy leads an increase of the number of emitted neutrons from the heavy fission fragment, only. The observed essentially complete energy sorting may be seen as a new counterintuitive manifestation of quantum-mechanical properties of microscopic systems.

  8. In-beam fission study for Heavy Element Synthesis

    NASA Astrophysics Data System (ADS)

    Nishio, Katsuhisa

    2013-12-01

    Fission fragment mass distributions were measured in heavy-ion induced fissions using 238U target nucleus. The measured mass distributions changed drastically with incident energy. The results are explained by a change of the ratio between fusion and qasifission with nuclear orientation. A calculation based on a fluctuation dissipation model reproduced the mass distributions and their incident energy dependence. Fusion probability was determined in the analysis. Evaporation residue cross sections were calculated with a statistical model in the reactions of 30Si + 238U and 34S + 238U using the obtained fusion probability in the entrance channel. The results agree with the measured cross sections for seaborgium and hassium isotopes.

  9. Collinear Cluster Tripartition:. First Steps in Physical Treating

    NASA Astrophysics Data System (ADS)

    Kamanin, D. V.; Alexandrov, A. A.; Alexandrova, I. A.; Kondtatyev, N. A.; Kuznetsova, E. A.; Strekalovsky, O. V.; Zhuchko, V. E.; Pyatkov, Yu. V.; von Oertzen, W.

    2013-06-01

    Preliminary results of the analysis of the rectangular structures in the mass correlation distributions of the fission fragments from 252Cf (sf) are presented. The structures lie in the region of big missing mass and are connected with the multi-body decay of the mother system. The ternary chain-like prescission configuration seems to be too compact and could decay due to tunneling only. More elongated four-body configuration leading to the quaternary decay let meet energy conservation law in the scission point.

  10. Measurement of Angular-Momentum-Dependent Fission Probabilities of 240Pu

    NASA Astrophysics Data System (ADS)

    Koglin, Johnathon; Burke, Jason; Jovanovic, Igor

    2016-09-01

    An experimental technique using the surrogate reaction method has been developed to measure fission probabilities of actinides as a function of angular momentum state of the fissioning nucleus near the fission barrier. In this work, the 240Pu (α ,α' f) reaction was used as a surrogate for 239Pu (n , f) . An array of 12 silicon telescopes positioned at 10 degree intervals from 40 to 140 degrees detect the outgoing reaction particle for identification and measurement of the excitation energy. The angular momentum state is determined by measuring the angular distribution of fission fragments. The expected distributions are predicted from the Wigner d function. An array of 50 photovoltaic (solar) cells detects fission fragments with 10-degree granularity. The solar cells are sensitive to fission fragments but have no response to light ions. Relative contributions from different angular momentum states are extracted from the measured distributions and compared across all α particle scattering angles to determine fission probability at a specific angular momentum state. The first experiment using this technique was recently completed using 37 MeV α particles incident on 240Pu. First results will be discussed. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. This material is based upon work supported by the U.S. Department of Homeland Security under Grant Award Nu.

  11. Extended optical model for fission

    SciTech Connect

    Sin, M.; Capote, R.; Herman, M. W.; Trkov, A.

    2016-03-07

    A comprehensive formalism to calculate fission cross sections based on the extension of the optical model for fission is presented. It can be used for description of nuclear reactions on actinides featuring multi-humped fission barriers with partial absorption in the wells and direct transmission through discrete and continuum fission channels. The formalism describes the gross fluctuations observed in the fission probability due to vibrational resonances, and can be easily implemented in existing statistical reaction model codes. The extended optical model for fission is applied for neutron induced fission cross-section calculations on 234,235,238U and 239Pu targets. A triple-humped fission barrier is used for 234,235U(n,f), while a double-humped fission barrier is used for 238U(n,f) and 239Pu(n,f) reactions as predicted by theoretical barrier calculations. The impact of partial damping of class-II/III states, and of direct transmission through discrete and continuum fission channels, is shown to be critical for a proper description of the measured fission cross sections for 234,235,238U(n,f) reactions. The 239Pu(n,f) reaction can be calculated in the complete damping approximation. Calculated cross sections for 235,238U(n,f) and 239Pu(n,f) reactions agree within 3% with the corresponding cross sections derived within the Neutron Standards least-squares fit of available experimental data. Lastly, the extended optical model for fission can be used for both theoretical fission studies and nuclear data evaluation.

  12. Extended optical model for fission

    DOE PAGES

    Sin, M.; Capote, R.; Herman, M. W.; ...

    2016-03-07

    A comprehensive formalism to calculate fission cross sections based on the extension of the optical model for fission is presented. It can be used for description of nuclear reactions on actinides featuring multi-humped fission barriers with partial absorption in the wells and direct transmission through discrete and continuum fission channels. The formalism describes the gross fluctuations observed in the fission probability due to vibrational resonances, and can be easily implemented in existing statistical reaction model codes. The extended optical model for fission is applied for neutron induced fission cross-section calculations on 234,235,238U and 239Pu targets. A triple-humped fission barrier ismore » used for 234,235U(n,f), while a double-humped fission barrier is used for 238U(n,f) and 239Pu(n,f) reactions as predicted by theoretical barrier calculations. The impact of partial damping of class-II/III states, and of direct transmission through discrete and continuum fission channels, is shown to be critical for a proper description of the measured fission cross sections for 234,235,238U(n,f) reactions. The 239Pu(n,f) reaction can be calculated in the complete damping approximation. Calculated cross sections for 235,238U(n,f) and 239Pu(n,f) reactions agree within 3% with the corresponding cross sections derived within the Neutron Standards least-squares fit of available experimental data. Lastly, the extended optical model for fission can be used for both theoretical fission studies and nuclear data evaluation.« less

  13. Extended optical model for fission

    NASA Astrophysics Data System (ADS)

    Sin, M.; Capote, R.; Herman, M. W.; Trkov, A.

    2016-03-01

    A comprehensive formalism to calculate fission cross sections based on the extension of the optical model for fission is presented. It can be used for description of nuclear reactions on actinides featuring multi-humped fission barriers with partial absorption in the wells and direct transmission through discrete and continuum fission channels. The formalism describes the gross fluctuations observed in the fission probability due to vibrational resonances, and can be easily implemented in existing statistical reaction model codes. The extended optical model for fission is applied for neutron induced fission cross-section calculations on 234,235,238U and 239Pu targets. A triple-humped fission barrier is used for U,235234(n ,f ) , while a double-humped fission barrier is used for 238U(n ,f ) and 239Pu(n ,f ) reactions as predicted by theoretical barrier calculations. The impact of partial damping of class-II/III states, and of direct transmission through discrete and continuum fission channels, is shown to be critical for a proper description of the measured fission cross sections for 234,235,238U(n ,f ) reactions. The 239Pu(n ,f ) reaction can be calculated in the complete damping approximation. Calculated cross sections for U,238235(n ,f ) and 239Pu(n ,f ) reactions agree within 3% with the corresponding cross sections derived within the Neutron Standards least-squares fit of available experimental data. The extended optical model for fission can be used for both theoretical fission studies and nuclear data evaluation.

  14. Antiproton Powered Gas Core Fission Rocket

    SciTech Connect

    Kammash, Terry

    2005-02-06

    Extensive research in recent years has demonstrated that 'at rest' annihilation of antiprotons in the uranium isotope U238 leads to fission at nearly 100% efficiency. The resulting highly-ionizing, energetic fission fragments can heat a suitable medium to very high temperatures, making such a process particularly suitable for space propulsion applications. Such an ionized medium, which would serve as a propellant, can be confined by a magnetic field during the heating process, and subsequently ejected through a magnetic nozzle to generate thrust. The gasdynamic mirror (GDM) magnetic configuration is especially suited for this application since the underlying confinement principle is that the plasma be of such density and temperature as to make the ion-ion collision mean free path shorter than the plasma length. Under these conditions the plasma behaves like a fluid, and its escape from the system is analogous to the flow of a gas into vacuum from a vessel with a hole. For the system we propose we envisage radially injecting atomic or U238 plasma beam at a pre-determined position and axially pulsing an antiproton beam which upon interaction with the uranium target gives rise to near isotropic ejection of fission fragments with a total mass of 212 amu and total energy of about 160 MeV. These particles, along with the annihilation products (i.e. pions and muons) will heat the background U238 gas - inserted into the chamber just prior to the release of the antiproton - to one keV temperature. Preliminary analysis reveals that such a propulsion system can produce a specific impulse of about 3000 seconds at a thrust of about 50 kN. When applied to a round trip Mars mission, we find that such a journey can be accomplished in about 142 days with 2 days of thrusting and requiring only one gram of antiprotons to achieve it.

  15. A thrust-sheet propulsion concept using fissionable elements

    NASA Technical Reports Server (NTRS)

    Moeckel, W. E.

    1976-01-01

    A space propulsion concept is proposed and analyzed which consists of a thin sheet coated on one side with fissionable material, so that nuclear power is converted directly into propulsive power. Thrust is available both from ejected fission fragments and from thermal radiation. Optimum thicknesses are determined for the active and substrate layers. This concept is shown to have potential mission capability (in terms of velocity increments) superior to that of all other advanced propulsion concepts for which performance estimates are available. A suitable spontaneously fissioning material such as Cf254 could provide an extremely high-performance first stage beyond earth orbit. In contrast with some other advanced nuclear propulsion concepts, there is no minimum size below which this concept is infeasible.

  16. A thrust-sheet propulsion concept using fissionable elements

    NASA Technical Reports Server (NTRS)

    Moeckel, W. E.

    1976-01-01

    A space propulsion concept is proposed and analyzed which consists of a thin sheet coated on one side with fissionable material, so that nuclear power is converted directly into propulsive power. Thrust is available both from ejected fission fragments and from thermal radiation. Optimum thicknesses are determined for the active and substrate layers. This concept is shown to have potential mission capability (in terms of velocity increments) superior to that of all other advanced propulsion concepts for which performance estimates are available. A suitable spontaneously fissioning material such as Cf-254 could provide an extremely high-performance first stage beyond earth orbit. In contrast with some other advanced nuclear propulsion concepts, there is no minimum size below which this concept is infeasible.

  17. Observation of mass-asymmetric fission of mercury nuclei in heavy ion fusion

    NASA Astrophysics Data System (ADS)

    Prasad, E.; Hinde, D. J.; Ramachandran, K.; Williams, E.; Dasgupta, M.; Carter, I. P.; Cook, K. J.; Jeung, D. Y.; Luong, D. H.; McNeil, S.; Palshetkar, C. S.; Rafferty, D. C.; Simenel, C.; Wakhle, A.; Khuyagbaatar, J.; Düllmann, Ch. E.; Lommel, B.; Kindler, B.

    2015-06-01

    Background: Mass-asymmetric fission has been observed in low energy fission of 180Hg . Calculations predicted the persistence of asymmetric fission in this region even at excitation energies of 30-40 MeV. Purpose: To investigate fission mass distributions by populating different isotopes of Hg using heavy ion fusion reactions. Methods: Fission fragment mass-angle distributions have been measured for two reactions, 40Ca+142Nd and 13C+182W , populating 182Hg and 195Hg , respectively, using the Heavy Ion Accelerator Facility and CUBE spectrometer at the Australian National University. Measurements were made at beam energies around the capture barrier for the two reactions and mass ratio distributions were obtained using the kinematic reconstruction method. Results: Asymmetric fission has been observed following the population of 182Hg at an excitation energy of 22.8 MeV above the saddle point. A symmetric peaked mass ratio distribution was observed for 195Hg nuclei at a similar excitation energy above the saddle point. Conclusions: Mass-asymmetric fission has been observed in neutron deficient Hg nuclei populated via heavy ion fusion for the first time. The results are consistent with observations from beta-delayed fission measurements and provide a proof-of-principle for expanding experimental studies of the influence of shell effects on the fission processes.

  18. Fission yield measurements at IGISOL

    NASA Astrophysics Data System (ADS)

    Lantz, M.; Al-Adili, A.; Gorelov, D.; Jokinen, A.; Kolhinen, V. S.; Mattera, A.; Moore, I.; Penttilä, H.; Pomp, S.; Prokofiev, A. V.; Rakopoulos, V.; Rinta-Antila, S.; Simutkin, V.; Solders, A.

    2016-06-01

    The fission product yields are an important characteristic of the fission process. In fundamental physics, knowledge of the yield distributions is needed to better understand the fission process. For nuclear energy applications good knowledge of neutroninduced fission-product yields is important for the safe and efficient operation of nuclear power plants. With the Ion Guide Isotope Separator On-Line (IGISOL) technique, products of nuclear reactions are stopped in a buffer gas and then extracted and separated by mass. Thanks to the high resolving power of the JYFLTRAP Penning trap, at University of Jyväskylä, fission products can be isobarically separated, making it possible to measure relative independent fission yields. In some cases it is even possible to resolve isomeric states from the ground state, permitting measurements of isomeric yield ratios. So far the reactions U(p,f) and Th(p,f) have been studied using the IGISOL-JYFLTRAP facility. Recently, a neutron converter target has been developed utilizing the Be(p,xn) reaction. We here present the IGISOL-technique for fission yield measurements and some of the results from the measurements on proton induced fission. We also present the development of the neutron converter target, the characterization of the neutron field and the first tests with neutron-induced fission.

  19. Measurement of Fission Product Yields from Fast-Neutron Fission

    NASA Astrophysics Data System (ADS)

    Arnold, C. W.; Bond, E. M.; Bredeweg, T. A.; Fowler, M. M.; Moody, W. A.; Rusev, G.; Vieira, D. J.; Wilhelmy, J. B.; Becker, J. A.; Henderson, R.; Kenneally, J.; Macri, R.; McNabb, D.; Ryan, C.; Sheets, S.; Stoyer, M. A.; Tonchev, A. P.; Bhatia, C.; Bhike, M.; Fallin, B.; Gooden, M. E.; Howell, C. R.; Kelley, J. H.; Tornow, W.

    2014-09-01

    One of the aims of the Stockpile Stewardship Program is a reduction of the uncertainties on fission data used for analyzing nuclear test data [1,2]. Fission products such as 147Nd are convenient for determining fission yields because of their relatively high yield per fission (about 2%) and long half-life (10.98 days). A scientific program for measuring fission product yields from 235U,238U and 239Pu targets as a function of bombarding neutron energy (0.1 to 15 MeV) is currently underway using monoenergetic neutron beams produced at the 10 MV Tandem Accelerator at TUNL. Dual-fission chambers are used to determine the rate of fission in targets during activation. Activated targets are counted in highly shielded HPGe detectors over a period of several weeks to identify decaying fission products. To date, data have been collected at neutron bombarding energies 4.6, 9.0, 14.5 and 14.8 MeV. Experimental methods and data reduction techniques are discussed, and some preliminary results are presented.

  20. Induced Fission of 240Pu within a Real-Time Microscopic Framework

    NASA Astrophysics Data System (ADS)

    Bulgac, Aurel; Magierski, Piotr; Roche, Kenneth J.; Stetcu, Ionel

    2016-03-01

    We describe the fissioning dynamics of 240Pu from a configuration in the proximity of the outer fission barrier to full scission and the formation of the fragments within an implementation of density functional theory extended to superfluid systems and real-time dynamics. The fission fragments emerge with properties similar to those determined experimentally, while the fission dynamics appears to be quite complex, with many excited shape and pairing modes. The evolution is found to be much slower than previously expected, and the ultimate role of the collective inertia is found to be negligible in this fully nonadiabatic treatment of nuclear dynamics, where all collective degrees of freedom (CDOF) are included (unlike adiabatic treatments with a small number of CDOF).

  1. Induced Fission of (240)Pu within a Real-Time Microscopic Framework.

    PubMed

    Bulgac, Aurel; Magierski, Piotr; Roche, Kenneth J; Stetcu, Ionel

    2016-03-25

    We describe the fissioning dynamics of ^{240}Pu from a configuration in the proximity of the outer fission barrier to full scission and the formation of the fragments within an implementation of density functional theory extended to superfluid systems and real-time dynamics. The fission fragments emerge with properties similar to those determined experimentally, while the fission dynamics appears to be quite complex, with many excited shape and pairing modes. The evolution is found to be much slower than previously expected, and the ultimate role of the collective inertia is found to be negligible in this fully nonadiabatic treatment of nuclear dynamics, where all collective degrees of freedom (CDOF) are included (unlike adiabatic treatments with a small number of CDOF).

  2. Yeast mitochondrial fission proteins induce antagonistic Gaussian membrane curvatures to regulate apoptosis

    NASA Astrophysics Data System (ADS)

    Lee, Michelle; Hwee Lai, Ghee; Schmidt, Nathan; Xian, Wujing; Wong, Gerard C. L.

    2013-03-01

    Mitochondria form a dynamic and interconnected network, which disintegrates during apoptosis to generate numerous smaller mitochondrial fragments. This process is at present not well understood. Yeast mitochondrial fission machinery proteins, Dnm1 and Fis1, are believed to regulate programmed cell death in yeast. Yeast Dnm1 has been previously shown to promote mitochondrial fragmentation and degradation characteristic of apoptotic cells, while yeast Fis1 inhibits cell death by limiting the mitochondrial fission induced by Dnm1 [Fannjiang et al, Genes & Dev. 2004. 18: 2785-2797]. To better understand the mechanisms of these antagonistic fission proteins, we use synchrotron small angle x-ray scattering (SAXS) to investigate their interaction with model cell membranes. The relationship between each protein, Dnm1 and Fis1, and protein-induced changes in membrane curvature and topology is examined. Through the comparison of the membrane rearrangement and phase behavior induced by each protein, we will discuss their respective roles in the regulation of mitochondrial fission.

  3. Induced fission of Pu240 within a real-time microscopic framework

    DOE PAGES

    Bulgac, Aurel; Magierski, Piotr; Roche, Kenneth J.; ...

    2016-03-25

    Here, we describe the fissioning dynamics of 240Pu from a configuration in the proximity of the outer fission barrier to full scission and the formation of the fragments within an implementation of density functional theory extended to superfluid systems and real-time dynamics. The fission fragments emerge with properties similar to those determined experimentally, while the fission dynamics appears to be quite complex, with many excited shape and pairing modes. The evolution is found to be much slower than previously expected, and the ultimate role of the collective inertia is found to be negligible in this fully nonadiabatic treatment of nuclearmore » dynamics, where all collective degrees of freedom (CDOF) are included (unlike adiabatic treatments with a small number of CDOF).« less

  4. Neutron multiplicity in the fission of 238U and 235U with neutrons up to 200 MeV.

    PubMed

    Ethvignot, T; Devlin, M; Duarte, H; Granier, T; Haight, R C; Morillon, B; Nelson, R O; O'Donnell, J M; Rochman, D

    2005-02-11

    Prompt-fission-neutron multiplicities were measured for 238U(n,f) and 235U(n,f) from 0.4 to 200 MeV. The data are of great importance in connection with accelerator-coupled nuclear reactor systems incinerating actinides. We report that fission induced by 200 MeV neutrons produces approximately 10 more prompt neutrons than fission induced by reactor neutrons. Most neutrons are evaporated from the fission fragments and the prefission compound nucleus, as the preequilibrium emission of energetic neutrons accounts for a maximum of 15% of the prompt neutrons at 200 MeV.

  5. Fission: The first 50 years

    SciTech Connect

    Vandenbosch, R.

    1989-01-01

    The possibility of fission had been largely unanticipated prior to its discovery in 1938. This process, with its dramatically large energy release and its formation of previously unknown nuclides, immediately captured the imagination of the scientific community. Both theoretical and experimental developments occurred at a rapid pace. I will begin my discussion of fission with the far-reaching paper of Bohr and Wheeler, who in little more than half a year laid out a framework for understanding many features of the fission process. I will then turn to our current understanding of a number of aspects of fission. One of these is the pronounced tendency of many nuclear species to fission asymmetrically. In fact, the discovery of fission was based on the identification of barium isotopes produced in asymmetric fission. The dramatic changes in the preferred mass division and kinetic energy release with the addition of only a few neutrons to the spontaneously fissioning Fermium isotopes will be emphasized. The problem of the dynamics of saddle to scission will be discussed---this is one aspect of fission for which we do not have all the answers. Another dynamical effect to be discussed is the apparent failure of transition state theory at high excitation energies. The role of single particle (shell) effects in enriching the structure if the potential energy surface will be explored. Spontaneously fissioning isomers and intermediate structure resonances will be discussed. The recognition that short-lived fission isomers are superdeformed shape isomers has been followed by the recent observation of superdeformed shape isomers in the rare earth region. 18 refs., 3 figs.

  6. Drp1-Dependent Mitochondrial Fission Plays Critical Roles in Physiological and Pathological Progresses in Mammals

    PubMed Central

    Hu, Chenxia; Huang, Yong; Li, Lanjuan

    2017-01-01

    Current research has demonstrated that mitochondrial morphology, distribution, and function are maintained by the balanced regulation of mitochondrial fission and fusion, and perturbation of the homeostasis between these processes has been related to cell or organ dysfunction and abnormal mitochondrial redistribution. Abnormal mitochondrial fusion induces the fragmentation of mitochondria from a tubular morphology into pieces; in contrast, perturbed mitochondrial fission results in the fusion of adjacent mitochondria. A member of the dynamin family of large GTPases, dynamin-related protein 1 (Drp1), effectively influences cell survival and apoptosis by mediating the mitochondrial fission process in mammals. Drp1-dependent mitochondrial fission is an intricate process regulating both cellular and organ dynamics, including development, apoptosis, acute organ injury, and various diseases. Only after clarification of the regulative mechanisms of this critical protein in vivo and in vitro will it set a milestone for preventing mitochondrial fission related pathological processes and refractory diseases. PMID:28098754

  7. Drp1-Dependent Mitochondrial Fission Plays Critical Roles in Physiological and Pathological Progresses in Mammals.

    PubMed

    Hu, Chenxia; Huang, Yong; Li, Lanjuan

    2017-01-13

    Current research has demonstrated that mitochondrial morphology, distribution, and function are maintained by the balanced regulation of mitochondrial fission and fusion, and perturbation of the homeostasis between these processes has been related to cell or organ dysfunction and abnormal mitochondrial redistribution. Abnormal mitochondrial fusion induces the fragmentation of mitochondria from a tubular morphology into pieces; in contrast, perturbed mitochondrial fission results in the fusion of adjacent mitochondria. A member of the dynamin family of large GTPases, dynamin-related protein 1 (Drp1), effectively influences cell survival and apoptosis by mediating the mitochondrial fission process in mammals. Drp1-dependent mitochondrial fission is an intricate process regulating both cellular and organ dynamics, including development, apoptosis, acute organ injury, and various diseases. Only after clarification of the regulative mechanisms of this critical protein in vivo and in vitro will it set a milestone for preventing mitochondrial fission related pathological processes and refractory diseases.

  8. Measurements of high-energy neutron-induced fission ofnatPb and 209Bi

    NASA Astrophysics Data System (ADS)

    Tarrío, D.; Tassan-Got, L.; Audouin, L.; Berthier, B.; Duran, I.; Ferrant, L.; Isaev, S.; Le Naour, C.; Paradela, C.; Stephan, C.; Trubert, D.; Abbondanno, U.; Aerts, G.; Álvarez, H.; Álvarez-Velarde, F.; Andriamonje, S.; Andrzejewski, J.; Assimakopoulos, P.; Badurek, G.; Baumann, P.; Becvár, F.; Berthoumieux, E.; Calviño, F.; Calviani, M.; Cano-Ott, D.; Capote, R.; Carrapiço, C.; Cennini, P.; Chepel, V.; Chiaveri, E.; Colonna, N.; Cortes, G.; Couture, A.; Cox, J.; Dahlfors, M.; David, S.; Dillmann, I.; Domingo-Pardo, C.; Dridi, W.; Eleftheriadis, C.; Embid-Segura, M.; Ferrari, A.; Ferreira-Marques, R.; Fujii, K.; Furman, W.; Gonçalves, I.; González-Romero, E.; Gramegna, F.; Guerrero, C.; Gunsig, F.; Haas, B.; Haight, R.; Heil, M.; Herrera-Martinez, A.; Igashira, M.; Jericha, E.; Kadi, Y.; Käppeler, F.; Karadimos, D.; Karamanis, D.; Kerveno, M.; Koehler, P.; Kossionides, E.; Krticka, M.; Lampoudis, C.; Leeb, H.; Lindote, A.; Lopes, I.; Lozano, M.; Lukic, S.; Marganiec, J.; Marrone, S.; Martínez, T.; Massimi, C.; Mastinu, P.; Mengoni, A.; Milazzo, P. M.; Moreau, C.; Mosconi, M.; Neves, F.; Oberhummer, H.; O'Brien, S.; Oshima, M.; Pancin, J.; Papachristodoulou, C.; Papadopoulos, C.; Patronis, N.; Pavlik, A.; Pavlopoulos, P.; Perrot, L.; Pigni, M. T.; Plag, R.; Plompen, A.; Plukis, A.; Poch, A.; Praena, J.; Pretel, C.; Quesada, J.; Rauscher, T.; Reifarth, R.; Rubbia, C.; Rudolf, G.; Rullhusen, P.; Salgado, J.; Santos, C.; Sarchiapone, L.; Savvidis, I.; Tagliente, G.; Tain, J. L.; Tavora, L.; Terlizzi, R.; Vannini, G.; Vaz, P.; Ventura, A.; Villamarin, D.; Vicente, M. C.; Vlachoudis, V.; Vlastou, R.; Voss, F.; Walter, S.; Wiescher, M.; Wisshak, K.

    2010-10-01

    The CERN Neutron Time-Of-Flight (n_TOF) facility is well suited to measure low cross sections as those of neutron-induced fission in subactinides. The cross section ratios of natPb and 209Bi relative to 235U and 238U were measured using PPAC detectors and a fragment coincidence method that allows us to identify the fission events. The present experiment provides first results for neutron-induced fission up to 1 GeV. Good agreement is found with previous experimental data below 200 MeV. The comparison with proton-induced fission indicates that the limiting regime where neutron-induced and proton-induced fission reach equal cross sections is close to 1 GeV.

  9. Spontaneous fission properties of {sup 262}{sub 104}Rf

    SciTech Connect

    Lane, M.R.; Gregorich, K.E.; Lee, D.M.; Mohar, M.F.; Hsu, M.; Kacher, C.D.; Kadkhodayan, B.; Neu, M.P.; Stoyer, N.J.; Sylwester, E.R.; Yang, J.C.; Hoffman, D.C. |

    1996-06-01

    We have measured the mass and kinetic-energy distributions of fragments from the spontaneous fission (SF) of {sup 262}{sub 104}Rf. The {sup 262}{sub 104}Rf was produced via the {sup 244}Pu({sup 22}Ne,4{ital n}) reaction with a production cross section of {approximately}0.7 nb using 114.4-MeV projectiles. The kinetic energies and times of the coincident fission fragments were measured using our rotating wheel system. From these data the half-life, mass, and kinetic-energy distributions were derived. The total kinetic-energy (TKE) distribution appears to consist of a single component with a most probable pre-neutron-emission TKE of 215{plus_minus}2 MeV. The mass distribution is symmetric with a full width at half maximum of about 22 mass numbers. These results are consistent with trends observed for other trans-berkelium spontaneously fissioning isotopes. We determined the half-life to be 2.1{plus_minus}0.2 s by measuring its spontaneous fission decay. We also attempted to observe the alpha decay of {sup 262}{sub 104}Rf by searching for alpha decay correlated in time with SF from the alpha daughter, 1.2-ms {sup 258}No. We observed no such decays and have set an upper limit of 0.8{percent} (68{percent} confidence level) on the alpha decay branch of {sup 262}{sub 104}Rf. {copyright} {ital 1996 The American Physical Society.}

  10. First-Principle Characterization for Singlet Fission Couplings.

    PubMed

    Yang, Chou-Hsun; Hsu, Chao-Ping

    2015-05-21

    The electronic coupling for singlet fission, an important parameter for determining the rate, has been found to be too small unless charge-transfer (CT) components were introduced in the diabatic states, mostly through perturbation or a model Hamiltonian. In the present work, the fragment spin difference (FSD) scheme was generalized to calculate the singlet fission coupling. The largest coupling strength obtained was 14.8 meV for two pentacenes in a crystal structure, or 33.7 meV for a transition-state structure, which yielded a singlet fission lifetime of 239 or 37 fs, generally consistent with experimental results (80 fs). Test results with other polyacene molecules are similar. We found that the charge on one fragment in the S1 diabatic state correlates well with FSD coupling, indicating the importance of the CT component. The FSD approach is a useful first-principle method for singlet fission coupling, without the need to include the CT component explicitly.

  11. The CARIBU gas catcher

    NASA Astrophysics Data System (ADS)

    Savard, G.; Levand, A. F.; Zabransky, B. J.

    2016-06-01

    The CARIBU upgrade of the ATLAS facility provides radioactive beams of neutron-rich isotopes for experiments at low and Coulomb barrier energies. It creates these beam using a large RF gas catcher that collects and cools fission fragments from an intense 252 Cf fission source and transforms them into a low-emittance monoenergetic beam. This beam can then be purified, reaccelerated and delivered to experiments. This technique is fast and universal, providing access to all fission fragment species independently of their chemical properties. The CARIBU gas catcher has been built to operate at high ionization density and in the presence of the contamination from the source. A brief overview of the CARIBU concept is given below, together with a more detailed description of the CARIBU gas catcher and the performance it has now achieved.

  12. Prompt radiation as a probe for fission dynamics

    SciTech Connect

    Karpeshin, F. F.

    2011-07-15

    It is shown that the Strutinsky-Denisov induced polarization mechanism leads to the appearance of the prompt electric dipole radiation from fission fragments of {sup 235}Uby thermal neutrons in the domain of around 5 MeV. The probability of the radiation is at the level of 0.001 per fission, which is in agreement with experiment. The angular distribution exhibits left-right asymmetry with respect to the direction of the neutron polarization axis. That means that the emission of gamma quanta at the given angle depends on the neutron polarization. The asymmetry is at the level of 10{sup -3}. The study of this effect will give a direct information about the scission configuration, nuclear viscosity, and dissipation properties of the collective energy of the surface vibration in fragments with large amplitude. This will give a complete picture of the process of snapping back the nuclear surface.

  13. Nuclear fission fragment excitation of electronic transition laser media

    NASA Technical Reports Server (NTRS)

    Lorents, D. C.; Mccusker, M. V.; Rhodes, C. K.

    1976-01-01

    Specific characteristics of the media including density, excitation rates, wavelength, kinetics, fissile material, scale size, and medium uniformity are assessed. The use of epithermal neutrons, homogeneously mixed fissile material, and special high cross section nuclear isotopes to optimize coupling of the energy to the medium are shown to be important considerations maximizing the scale size, energy deposition, and medium uniformity. It is demonstrated that e-beam excitation can be used to simulate nuclear pumping conditions to facilitate the search for candidate media.

  14. TREATMENT OF FISSION PRODUCT WASTE

    DOEpatents

    Huff, J.B.

    1959-07-28

    A pyrogenic method of separating nuclear reactor waste solutions containing aluminum and fission products as buring petroleum coke in an underground retort, collecting the easily volatile gases resulting as the first fraction, he uminum chloride as the second fraction, permitting the coke bed to cool and ll contain all the longest lived radioactive fission products in greatly reduced volume.

  15. Membrane biology: fission behind BARs.

    PubMed

    Haucke, Volker

    2012-06-05

    Membrane bending is accomplished in part by amphipathic helix insertion into the bilayer and the assembly of BAR domain scaffolds preparing the membrane for fission. Two recent studies highlight the roles of amphipathic helices and BAR scaffolds in membrane fission and establish the structural basis of membrane bending by the N-BAR protein endophilin.

  16. BREAKING OF AXIAL AND REFLECTION SYMMETRIES IN SPONTANEOUS FISSION OF FERMIUM ISOTOPES

    SciTech Connect

    Staszczak, A.; Nazarewicz, Witold; Baran, Andrzej K

    2011-01-01

    The nuclear fission phenomenon is a magnificent example of a quantal collective motion during which the nucleus evolves in a multidimensional space representing shapes with different geometries. The triaxial degrees of freedom are usually important around the inner fission barrier, and reduce the fission barrier height by several MeV. Beyond the inner barrier, reflection-asymmetric shapes corresponding to asymmetric elongated fragments come into play. We discuss the interplay between different symmetry breaking mechanisms in the case of even-even fermium isotopes using the Skyrme HFB formalism.

  17. Breaking of Axial and Reflection Symmetries in Spontaneous Fission of Fermium Isotopes

    NASA Astrophysics Data System (ADS)

    Staszczak, A.; Baran, A.; Nazarewicz, W.

    The nuclear fission phenomenon is a magnificent example of a quantal collective motion during which the nucleus evolves in a multidimensional space representing shapes with different geometries. The triaxial degrees of freedom are usually important around the inner fission barrier, and reduce the fission barrier height by several MeV. Beyond the inner barrier, reflection-asymmetric shapes corresponding to asymmetric elongated fragments come into play. We discuss the interplay between different symmetry breaking mechanisms in the case of even-even fermium isotopes using the Skyrme HFB formalism.

  18. Challenges of Fission Research at the Improved Igisol Facility

    NASA Astrophysics Data System (ADS)

    Penttilä, Heikki; Eronen, Tommi; Dendooven, Peter; Hakala, Jani; Huang, Wenxue; Huikari, Jussi; Jokinen, Ari; Kankainen, Anu; Kolhinen, Veli; Kopecky, Stefan; Nieminen, Arto; Popov, Andrey; Rinta-Antila, Sami; Wang, Youbao; Äystö, Juha

    2003-10-01

    The new instrumentation for radioactive ion manipulation at the IGISOL facility has risen up a demand to improve the performance of the ion guide itself. The original gas cell technique IGISOL is shortly described and the current weaknesses pointed out. The program in progress to improve the ion guide performance is described. These improvements are expected to give the highest gain in the studies of fission fragments.

  19. Chameleon fragmentation

    SciTech Connect

    Brax, Philippe

    2014-02-01

    A scalar field dark energy candidate could couple to ordinary matter and photons, enabling its detection in laboratory experiments. Here we study the quantum properties of the chameleon field, one such dark energy candidate, in an ''afterglow'' experiment designed to produce, trap, and detect chameleon particles. In particular, we investigate the possible fragmentation of a beam of chameleon particles into multiple particle states due to the highly non-linear interaction terms in the chameleon Lagrangian. Fragmentation could weaken the constraints of an afterglow experiment by reducing the energy of the regenerated photons, but this energy reduction also provides a unique signature which could be detected by a properly-designed experiment. We show that constraints from the CHASE experiment are essentially unaffected by fragmentation for φ{sup 4} and 1/φ potentials, but are weakened for steeper potentials, and we discuss possible future afterglow experiments.

  20. Fifty years with nuclear fission

    SciTech Connect

    Behrens, J.W.; Carlson, A.D. )

    1989-01-01

    The news of the discovery of nuclear fission, by Otto Hahn and Fritz Strassmann in Germany, was brought to the United States by Niels Bohr in January 1939. Since its discovery, the United States, and the world for that matter, has never been the same. It therefore seemed appropriate to acknowledge the fifieth anniversary of its discovery by holding a topical meeting entitled, Fifty Years with Nuclear Fission,'' in the United States during the year 1989. The objective of the meeting was to bring together pioneers of the nuclear industry and other scientists and engineers to report on reminiscences of the past and on the more recent development in fission science and technology. The conference highlighted the early pioneers of the nuclear industry by dedicated a full day (April 26), consisting of two plenary sessions, at the National Academy of Sciences (NAS) in Washington, DC. More recent developments in fission science and technology in addition to historical reflections were topics for two fully days of sessions (April 27 and 28) at the main site of the NIST in Gaithersburg, Maryland. The wide range of topics covered in this Volume 1 by this topical meeting included plenary invited, and contributed sessions entitled: Preclude to the First Chain Reaction -- 1932 to 1942; Early Fission Research -- Nuclear Structure and Spontaneous Fission; 50 Years of Fission, Science, and Technology; Nuclear Reactors, Secure Energy for the Future; Reactors 1; Fission Science 1; Safeguards and Space Applications; Fission Data; Nuclear Fission -- Its Various Aspects; Theory and Experiments in Support of Theory; Reactors and Safeguards; and General Research, Instrumentation, and By-Product. The individual papers have been cataloged separately.

  1. 34Si accompanied ternary fission of 242Cm in equatorial and collinear configuration

    NASA Astrophysics Data System (ADS)

    Santhosh, K. P.; Krishnan, Sreejith; Priyanka, B.

    2014-11-01

    Taking the interacting potential as the sum of Coulomb and proximity potential, 34Si accompanied cold ternary fission of 242Cm has been studied with fragments in the equatorial and collinear configuration. The cold valley plots (plot of driving potential versus mass number of fragments) and the calculations on the yields for the charge minimized fragments have been used to obtain the favorable fragment combinations. Thus, our study on the 34Si accompanied ternary fission of 242Cm reveals the role of near doubly magic shell closures (of 130Sn, 132Te, 134Te, etc.) in cold ternary fission. The comparison of relative yield reveals that in 34Si accompanied ternary fission of 242Cm, collinear configuration is preferred than the equatorial configuration. The relative yield for binary exit channel is found to be higher than that of ternary fragmentation (both equatorial and collinear configuration). The predicted yield for the binary fragmentation of 4He and 34Si from 242Cm are in agreement with the experimental data.

  2. Incorporation of a tilting coordinate into the multidimensional Langevin dynamics of heavy-ion-induced fission: Analysis of experimental data from fusion-fission reactions

    NASA Astrophysics Data System (ADS)

    Nadtochy, P. N.; Ryabov, E. G.; Gegechkori, A. E.; Anischenko, Yu. A.; Adeev, G. D.

    2014-01-01

    A four-dimensional dynamical model was developed and applied to study fission characteristics in a wide range of a fissility parameter. Three collective shape coordinates and the K coordinate were considered dynamically from the ground-state deformation to the scission into fission fragments. A modified one-body mechanism for nuclear dissipation with a reduction coefficient ks of the contribution from a "wall" formula has been used in the study. The inclusion of the K coordinate in the dynamical consideration and use of the "chaos-weighted wall formula" with a deformation-dependent scaling factor ks(q1) lead to fairly good reproduction of the variances of the fission-fragment mass distribution and the prescission neutron multiplicity for a number of fissioning compound nuclei in a wide fissility range. The four-dimensional dynamical calculations describe better experimental prescission neutron multiplicity and variances of fission-fragment mass distribution for heaviest nuclei with respect to a three-dimensional dynamical model, where the K coordinate is assumed to be equal to zero. The estimate of a dissipation coefficient for the orientation degree of freedom, γK≃0.077 (MeVzs)-1/2, is good for heavy nuclei and a larger value of γK≃0.2 (MeVzs)-1/2 is needed for nuclei with mass ACN ≃ 200.

  3. Target of rapamycin signaling mediates vacuolar fragmentation.

    PubMed

    Stauffer, Bobbiejane; Powers, Ted

    2017-02-01

    In eukaryotic cells, cellular homeostasis requires that different organelles respond to intracellular as well as environmental signals and modulate their behavior as conditions demand. Understanding the molecular mechanisms required for these changes remains an outstanding goal. One such organelle is the lysosome/vacuole, which undergoes alterations in size and number in response to environmental and physiological stimuli. Changes in the morphology of this organelle are mediated in part by the equilibrium between fusion and fission processes. While the fusion of the yeast vacuole has been studied intensively, the regulation of vacuolar fission remains poorly characterized by comparison. In recent years, a number of studies have incorporated genome-wide visual screens and high-throughput microscopy to identify factors required for vacuolar fission in response to diverse cellular insults, including hyperosmotic and endoplasmic reticulum stress. Available evidence now demonstrates that the rapamycin-sensitive TOR network, a master regulator of cell growth, is required for vacuolar fragmentation in response to stress. Importantly, many of the genes identified in these studies provide new insights into potential links between the vacuolar fission machinery and TOR signaling. Together these advances both extend our understanding of the regulation of vacuolar fragmentation in yeast as well as underscore the role of analogous events in mammalian cells.

  4. Photon-induced Fission Product Yield Measurements on 235U, 238U, and 239Pu

    NASA Astrophysics Data System (ADS)

    Krishichayan, Fnu; Bhike, M.; Tonchev, A. P.; Tornow, W.

    2015-10-01

    During the past three years, a TUNL-LANL-LLNL collaboration has provided data on the fission product yields (FPYs) from quasi-monoenergetic neutron-induced fission of 235U, 238U, and 239Pu at TUNL in the 0.5 to 15 MeV energy range. Recently, we have extended these experiments to photo-fission. We measured the yields of fission fragments ranging from 85Kr to 147Nd from the photo-fission of 235U, 238U, and 239Pu using 13-MeV mono-energetic photon beams at the HIGS facility at TUNL. First of its kind, this measurement will provide a unique platform to explore the effect of the incoming probe on the FPYs, i.e., photons vs. neutrons. A dual-fission ionization chamber was used to determine the number of fissions in the targets and these samples (along with Au monitor foils) were gamma-ray counted in the low-background counting facility at TUNL. Details of the experimental set-up and results will be presented and compared to the FPYs obtained from neutron-induced fission at the same excitation energy of the compound nucleus. Work supported in part by the NNSA-SSAA Grant No. DE-NA0001838.

  5. Fission of actinides through quasimolecular shapes

    NASA Astrophysics Data System (ADS)

    Royer, Guy; Zhang, Hongfei; Eudes, Philippe; Moustabchir, Rachid; Moreau, Damien; Jaffré, Muriel; Morabit, Youssef; Particelli, Benjamin

    2013-12-01

    The potential energy of heavy nuclei has been calculated in the quasimolecular shape path from a generalized liquid drop model including the proximity energy, the charge and mass asymmetries and the microscopic corrections. The potential barriers are multiple-humped. The second maximum is the saddle-point. It corresponds to the transition from compact one-body shapes with a deep neck to two touching ellipsoids. The scission point lies at the end of an energy plateau well below the saddle-point and where the effects of the nuclear attractive forces between two separated fragments vanish. The energy on this plateau is the sum of the kinetic and excitation energies of the fragments. The shell and pairing corrections play an essential role to select the most probable fission path. The potential barrier heights agree with the experimental data and the theoretical half-lives follow the trend of the experimental values. A third peak and a shallow third minimum appear in asymmetric decay paths when one fragment is close to a double magic quasi-spherical nucleus, while the smaller one changes from oblate to prolate shapes.

  6. Fifty years with nuclear fission

    SciTech Connect

    Behrens, J.W.; Carlson, A.D. )

    1989-01-01

    The news of the discovery of nucler fission, by Otto Hahn and Fritz Strassmann in Germany, was brought to the United States by Niels Bohr in January 1939. Since its discovery, the United States, and the world for that matter, has never been the same. It therefore seemed appropriate to acknowledge the fiftieth anniversary of its discovery by holding a topical meeting entitled, Fifty years with nuclear fission,'' in the United States during the year 1989. The objective of the meeting was to bring together pioneers of the nuclear industry and other scientists and engineers to report on reminiscences of the past and on the more recent developments in fission science and technology. The conference highlighted the early pioneers of the nuclear industry by dedicating a full day (April 26), consisting of two plenary sessions, at the National Academy of Sciences (NAS) in Washington, DC. More recent developments in fission science and technology in addition to historical reflections were topics for two full days of sessions (April 27 and 28) at the main sites of the NIST in Gaithersburg, Maryland. The wide range of topics covered by Volume 2 of this topical meeting included plenary invited, and contributed sessions entitled, Nuclear fission -- a prospective; reactors II; fission science II; medical and industrial applications by by-products; reactors and safeguards; general research, instrumentation, and by-products; and fission data, astrophysics, and space applications. The individual papers have been cataloged separately.

  7. Studies on fission with ALADIN. Precise and simultaneous measurement of fission yields, total kinetic energy and total prompt neutron multiplicity at GSI

    NASA Astrophysics Data System (ADS)

    Martin, Julie-Fiona; Taieb, Julien; Chatillon, Audrey; Bélier, Gilbert; Boutoux, Guillaume; Ebran, Adeline; Gorbinet, Thomas; Grente, Lucie; Laurent, Benoit; Pellereau, Eric; Alvarez-Pol, Héctor; Audouin, Laurent; Aumann, Thomas; Ayyad, Yassid; Benlliure, Jose; Casarejos, Enrique; Cortina Gil, Dolores; Caamaño, Manuel; Farget, Fanny; Fernández Domínguez, Beatriz; Heinz, Andreas; Jurado, Beatriz; Kelić-Heil, Aleksandra; Kurz, Nikolaus; Nociforo, Chiara; Paradela, Carlos; Pietri, Stéphane; Ramos, Diego; Rodríguez-Sànchez, Jose-Luis; Rodríguez-Tajes, Carme; Rossi, Dominic; Schmidt, Karl-Heinz; Simon, Haik; Tassan-Got, Laurent; Vargas, Jossitt; Voss, Bernd; Weick, Helmut

    2015-12-01

    A novel technique for fission studies, based on the inverse kinematics approach, is presented. Following pioneering work in the nineties, the SOFIA Collaboration has designed and built an experimental set-up dedicated to the simultaneous measurement of isotopic yields, total kinetic energies and total prompt neutron multiplicities, by fully identifying both fission fragments in coincidence, for the very first time. This experiment, performed at GSI, permits to study the fission of a wide variety of fissioning systems, ranging from mercury to neptunium, possibly far from the valley of stability. A first experiment, performed in 2012, has provided a large array of unprecedented data regarding the nuclear fission process. An excerpt of the results is presented. With this solid starter, further improvements of the experimental set-up are considered, which are consistent with the expected developments at the GSI facility, in order to measure more fission observables in coincidence. The completeness reached in the SOFIA data, permits to scrutinize the correlations between the interesting features of fission, offering a very detailed insight in this still unraveled mechanism.

  8. Spallation-induced fission reactions

    NASA Astrophysics Data System (ADS)

    Benlliure, J.; Rodríguez-Sánchez, J. L.

    2017-03-01

    During the last decade spallation-induced fission reactions have received particular attention because of their impact in the design of spallation-neutron sources or radioactive beam facilities, but also in the understanding of the fission process at high excitation energy. In this paper, we review the main progress brought by modern experimental techniques, in particular those based in the inverse kinematic, as well as the achievements in modelling these reactions. We will also address future possibilities for improving the investigation of fission dynamics.

  9. Fission at intermediate nucleon energies

    NASA Astrophysics Data System (ADS)

    Lo Meo, S.; Mancusi, D.; Massimi, C.; Vannini, G.; Ventura, A.

    2014-07-01

    In the present work Monte Carlo calculations of fission of actinides and pre- actinides induced by protons and neutrons in the energy range from 100 MeV to 1 GeV are carried out by means of a recent version of the Liège Intranuclear Cascade Model, INCL++, coupled with different evaporation-fission codes, in particular GEMINI++ and ABLA07. Fission model parameters are adjusted on experimental (p, f) cross sections and used to predict (n, f) cross sections, in order to provide a theoretical support to the campaign of neutron cross section measurements at the n_TOF facility at CERN.

  10. On the dynamics of fission of hot nuclei

    NASA Astrophysics Data System (ADS)

    Fröbrich, P.

    2007-05-01

    ) probabilities prescission neutron multiplicities and spectra prescission charged particle multiplicities and spectra prescission γ-multiplicities and spectra evaporation residue cross sections fission time distributions temperatures at scission fission fragment angular distributions The results above are obtained with the Ito-discretization of the Langevin equation and might lead to some modifications when using the Klimontovich [Yu.L. Klimontovich, Usp. Fiz. Nauk. 37, 737 (1994)] discretization, which is claimed to be more physical [A.E. Gettinger, I.I. Gontchar, J. Phys. G: Nucl. Part. Phys. 26, 347 (2000)]. A satisfactory description of the measured correlation between the kinetic energy distribution and prescission neutron multiplicities could only be obtained when the mass asymmetry degree of freedom is included in the Langevin theory [P.N. Nadtochy, G.D. Adeev, A.V. Karpov, Phys. Rev. C 65, 064615 (2002)], thus generalizing the two-dimensional not overdamped Langevin models of Refs. [G.R. Tillack, R. Reif, A. Schülcke, P. Fröbrich, H.J. Krappe, H.G. Reusch, Phys. Lett. B 296, 296 (1992)] and [T. Wada, Y. Abe, N. Carjan, Phys. Rev. Lett. 70, 3528 (1993)]. A recent article analysing the mass distribution of fission fragments is [E.G. Ryabov, A.V. Karpov, G.D. Adeev, Nucl. Phys. A 765, 39 (2006)]. The first important point I want to stress is that the driving force of a hot system is not simply the negative gradient of the conservative potential but should contain a thermodynamical correction which is not taken into account in a number of publications.

  11. Lasers from fission. [nuclear pumping feasibility experiments

    NASA Technical Reports Server (NTRS)

    Schneider, R. T.; Thom, K.; Helmick, H. H.

    1975-01-01

    The feasibility of the nuclear pumping of lasers was demonstrated in three experiments conducted independently at three different laboratories. In this context nuclear pumping of lasers is understood to be the excitation of a laser by the kinetic energy of the fission fragments only. A description is given of research concerned with the use of nuclear energy for the excitation of gas lasers. Experimental work was supplemented by theoretical research. Attention is given to a nuclear pumped He-Xe laser, a nuclear pumped CO laser, and a neon-nitrogen laser pumped by alpha particles. Studies involving uranium hexafluoride admixture to laser media are discussed along with research on uranium hexafluoride-fueled reactors.

  12. Recent Results from Lohengrin on Fission Yields and Related Decay Properties

    NASA Astrophysics Data System (ADS)

    Serot, O.; Amouroux, C.; Bidaud, A.; Capellan, N.; Chabod, S.; Ebran, A.; Faust, H.; Kessedjian, G.; Köester, U.; Letourneau, A.; Litaize, O.; Martin, F.; Materna, T.; Mathieu, L.; Panebianco, S.; Regis, J.-M.; Rudigier, M.; Sage, C.; Urban, W.

    2014-05-01

    The Lohengrin mass spectrometer is one of the 40 instruments built around the reactor of the Institute Laue-Langevin (France) which delivers a very intense thermal neutron flux. Usually, Lohengrin was combined with a high-resolution ionization chamber in order to obtain good nuclear charge discrimination within a mass line, yielding an accurate isotopic yield determination. Unfortunately, this experimental procedure can only be applied for fission products with a nuclear charge less than about 42, i.e. in the light fission fragment region. Since 2008, a large collaboration has started with the aim of studying various fission aspects, mainly in the heavy fragment region. For that, a new experimental setup which allows isotopic identification by γ-ray spectrometry has been developed and validated. This technique was applied on the 239Pu(nth,f) reaction where about 65 fission product yields were measured with an uncertainty that has been reduced on average by a factor of 2 compared with what was that previously available in nuclear data libraries. The same γ-ray spectrometric technique is currently being applied to the study of the 233U(nth,f) reaction. Our aim is to deduce charge and mass distributions of the fission products and to complete the experimental data that exist mainly for light fission fragments. The measurement of 41 mass yields from the 241Am(2nth,f) reaction has been also performed. In addition to these activities on fission yield measurements, various new nanosecond isomers were discovered. Their presence can be revealed from a strong deformed ionic charge distribution compared to a 'normal' Gaussian shape. Finally, a new neutron long-counter detector designed to have a detection efficiency independent of the detected neutron energy has been built. Combining this neutron device with a Germanium detector and a beta-ray detector array allowed us to measure the beta-delayed neutron emission probability Pn of some important fission products for reactor

  13. DIRECT ENERGY CONVERSION (DEC) FISSION REACTORS - A U.S. NERI PROJECT

    SciTech Connect

    D. BELLER; G. POLANSKY; ET AL

    2000-11-01

    The direct conversion of the electrical energy of charged fission fragments was examined early in the nuclear reactor era, and the first theoretical treatment appeared in the literature in 1957. Most of the experiments conducted during the next ten years to investigate fission fragment direct energy conversion (DEC) were for understanding the nature and control of the charged particles. These experiments verified fundamental physics and identified a number of specific problem areas, but also demonstrated a number of technical challenges that limited DEC performance. Because DEC was insufficient for practical applications, by the late 1960s most R&D ceased in the US. Sporadic interest in the concept appears in the literature until this day, but there have been no recent programs to develop the technology. This has changed with the Nuclear Energy Research Initiative that was funded by the U.S. Congress in 1999. Most of the previous concepts were based on a fission electric cell known as a triode, where a central cathode is coated with a thin layer of nuclear fuel. A fission fragment that leaves the cathode with high kinetic energy and a large positive charge is decelerated as it approaches the anode by a charge differential of several million volts, it then deposits its charge in the anode after its kinetic energy is exhausted. Large numbers of low energy electrons leave the cathode with each fission fragment; they are suppressed by negatively biased on grid wires or by magnetic fields. Other concepts include magnetic collimators and quasi-direct magnetohydrodynamic generation (steady flow or pulsed). We present the basic principles of DEC fission reactors, review the previous research, discuss problem areas in detail and identify technological developments of the last 30 years relevant to overcoming these obstacles. A prognosis for future development of direct energy conversion fission reactors will be presented.

  14. The binary fission origin of the moon

    NASA Technical Reports Server (NTRS)

    Binder, Alan B.

    1986-01-01

    The major arguments for and against the binary fission model of lunar origin are reviewed. Unresolved problems include: (1) how the protoearth acquired sufficient angular velocity to fission, and (2) how the earth-moon system lost its excess angular momentum after fission. Despite these uncertainties, the compositional similarities between the earth's mantle and the bulk moon suggest that the fission model is worth considering. The proposed sequence of events in the formation of the moon by binary fission is given.

  15. Fragmentation Processes

    NASA Astrophysics Data System (ADS)

    Whelan, Colm T.

    2012-12-01

    Preface; 1. Direct and resonant double-photoionization: from atoms to solids L. Avaldi and G. Stefani; 2. The application of propagation exterior complex scaling to atomic collisions P. L. Bartlett and A. T. Stelbovics; 3. Fragmentation of molecular-ion beams in intense ultra-short laser pulses I. Ben-Itzhak; 4. Atoms with one and two active electrons in strong laser fields I. A. Ivanov and A. S. Kheifets; 5. Experimental aspects of ionization studies by positron and positronium impact G. Laricchia, D. A. Cooke, Á. Kövér and S. J. Brawley; 6. (e,2e) spectroscopy using fragmentation processes J. Lower, M. Yamazaki and M. Takahashi; 7. A coupled pseudostate approach to the calculation of ion-atom fragmentation processes M. McGovern, H. R. J. Walters and C. T. Whelan; 8. Electron Impact Ionization using (e,2e) coincidence techniques from threshold to intermediate energies A. J. Murray; 9. (e,2e) processes on atomic inner shells C. T. Whelan; 10. Spin resolved atomic (e,2e) processes J. Lower and C. T. Whelan; Index.

  16. Fission of rotating fermium isotopes

    NASA Astrophysics Data System (ADS)

    Baran, A.; Staszczak, A.

    2014-05-01

    In this paper we discuss the process of fission of even fermium isotopes, on the basis of their rotational states. The nuclear intrinsic vorticity and its coupling to the global rotation of the nucleus are used to simulate the interaction between the rotational motion and the pairing field, and lead to pairing quenching in the case of higher angular momentum states. The rotation leads to a decreasing of the fission barrier heights. The ingredients of the model—ground state fission barriers, pairing correlation energies and the cranking moments of inertia—are obtained within the self-consistent Hartree-Fock-Bogoliubov framework using the Skyrme \\text{Sk}{{\\text{M}}^{*}} energy density functional. Fission barriers and half-lives are estimated for spins I up to I = 16ℏ.

  17. Ternary Fission of CF Isotopes

    NASA Astrophysics Data System (ADS)

    Vermote, S.; Wagemans, C.; Serot, O.; Soldner, T.; Geltenbort, P.; Almahamid, I.; Lukens, W.; Floyd, J.

    2008-04-01

    During the last years, different Cm and Cf isotopes have been studied by our research group in the frame of a systematic investigation of gas emission characteristics in ternary fission. In this paper we report on the energy distribution and the emission probability of 3H, 4He and 6He particles emitted in neutron induced ternary fission of 249Cf and 251Cf. Both measurements were performed at the high flux reactor of the Institute Laue-Langevin (Grenoble, France), using suited ΔE-E telescope detectors, consisting of well-calibrated silicon surface barrier detectors. In this way, the available database can be expanded with new results for Z=98 isotopes, for which the information on neutron induced ternary fission is almost nonexistent. These measurements are important for the systematic investigation of gas emission characteristics in ternary fission.

  18. Nuclear energy release from fragmentation

    NASA Astrophysics Data System (ADS)

    Li, Cheng; Souza, S. R.; Tsang, M. B.; Zhang, Feng-Shou

    2016-08-01

    It is well known that binary fission occurs with positive energy gain. In this article we examine the energetics of splitting uranium and thorium isotopes into various numbers of fragments (from two to eight) with nearly equal size. We find that the energy released by splitting 230,232Th and 235,238U into three equal size fragments is largest. The statistical multifragmentation model (SMM) is applied to calculate the probability of different breakup channels for excited nuclei. By weighing the probability distributions of fragment multiplicity at different excitation energies, we find the peaks of energy release for 230,232Th and 235,238U are around 0.7-0.75 MeV/u at excitation energy between 1.2 and 2 MeV/u in the primary breakup process. Taking into account the secondary de-excitation processes of primary fragments with the GEMINI code, these energy peaks fall to about 0.45 MeV/u.

  19. Advanced Space Fission Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Houts, Michael G.; Borowski, Stanley K.

    2010-01-01

    Fission has been considered for in-space propulsion since the 1940s. Nuclear Thermal Propulsion (NTP) systems underwent extensive development from 1955-1973, completing 20 full power ground tests and achieving specific impulses nearly twice that of the best chemical propulsion systems. Space fission power systems (which may eventually enable Nuclear Electric Propulsion) have been flown in space by both the United States and the Former Soviet Union. Fission is the most developed and understood of the nuclear propulsion options (e.g. fission, fusion, antimatter, etc.), and fission has enjoyed tremendous terrestrial success for nearly 7 decades. Current space nuclear research and technology efforts are focused on devising and developing first generation systems that are safe, reliable and affordable. For propulsion, the focus is on nuclear thermal rockets that build on technologies and systems developed and tested under the Rover/NERVA and related programs from the Apollo era. NTP Affordability is achieved through use of previously developed fuels and materials, modern analytical techniques and test strategies, and development of a small engine for ground and flight technology demonstration. Initial NTP systems will be capable of achieving an Isp of 900 s at a relatively high thrust-to-weight ratio. The development and use of first generation space fission power and propulsion systems will provide new, game changing capabilities for NASA. In addition, development and use of these systems will provide the foundation for developing extremely advanced power and propulsion systems capable of routinely and affordably accessing any point in the solar system. The energy density of fissile fuel (8 x 10(exp 13) Joules/kg) is more than adequate for enabling extensive exploration and utilization of the solar system. For space fission propulsion systems, the key is converting the virtually unlimited energy of fission into thrust at the desired specific impulse and thrust

  20. Bid mediates fission, membrane permeabilization and peri-nuclear accumulation of mitochondria as a prerequisite for oxidative neuronal cell death.

    PubMed

    Grohm, Julia; Plesnila, Nikolaus; Culmsee, Carsten

    2010-07-01

    Mitochondria are highly dynamic organelles that undergo permanent fusion and fission, a process that is important for mitochondrial function and cellular survival. Emerging evidence suggests that oxidative stress disturbs mitochondrial morphology dynamics, resulting in detrimental mitochondrial fragmentation. In particular, such fatal mitochondrial fission has been detected in neurons exposed to oxidative stress, suggesting mitochondrial dynamics as a key feature in intrinsic death pathways. However, the regulation of mitochondrial fission in neurons exposed to lethal stress is largely unknown. Here, we used a model of glutamate toxicity in HT-22 cells for investigating mitochondrial fission and fusion in neurons exposed to oxidative stress. In these immortalized hippocampal neurons, glutamate induces glutathione depletion and increased formation of reactive oxygen species (ROS). Glutamate toxicity resulted in mitochondrial fragmentation and peri-nuclear accumulation of the organelles. Further, mitochondrial fission was associated with loss of mitochondrial outer membrane potential (MOMP). The Bid-inhibitor BI-6c9 prevented MOMP and mitochondrial fission, and protected the cells from cell death. In conclusion, oxidative stress induced by glutamate causes mitochondrial translocation of Bid thereby inducing mitochondrial fission and associated mitochondrial cell death pathways. Inhibiting regulators of pathological mitochondrial fragmentation is proposed as an efficient strategy of neuroprotection.

  1. Theoretical study of different features of the fission process of excited nuclei in the framework of the modified statistical model and four-dimensional dynamical model

    NASA Astrophysics Data System (ADS)

    Eslamizadeh, H.

    2017-02-01

    Evaporation residue cross section, fission probability, anisotropy of fission fragment angular distribution, mass and energy distributions of fission fragments and the pre-scission neutron multiplicity for the excited compound nuclei {}168{{Y}}{{b}}, {}172{{Y}}{{b}}, {}178{{W}} and {}227{{P}}{{a}} produced in fusion reactions have been calculated in the framework of the modified statistical model and multidimensional dynamical model. In the dynamical calculations, the dynamics of fission of excited nuclei has been studied by solving three- and four-dimensional Langevin equations with dissipation generated through the chaos-weighted wall and window friction formula. Three collective shape coordinates plus the projection of total spin of the compound nucleus to the symmetry axis, K, were considered in the four-dimensional dynamical model. A non-constant dissipation coefficient of K, {γ }k, was applied in the four-dimensional dynamical calculations. A comparison of the results of the three- and four-dimensional dynamical models with the experimental data showed that the results of the four-dimensional dynamical model for the evaporation residue cross section, fission probability, anisotropy of fission fragment angular distribution, mass and energy distributions of fission fragments and the pre-scission neutron multiplicity are in better agreement with the experimental data. It was also shown that the modified statistical model can reproduce the above-mentioned experimental data by choosing appropriate values of the temperature coefficient of the effective potential, λ , and the scaling factor of the fission-barrier height, {r}s.

  2. A compact gas-filled avalanche counter for DANCE

    SciTech Connect

    Wu, C. Y.; Chyzh, A.; Kwan, E.; Henderson, R. A.; Gostic, J. M.; Carter, D.; Bredeweg, T. A.; Couture, A.; Jandel, M.; Ullmann, J. L.

    2012-08-04

    A compact gas-filled avalanche counter for the detection of fission fragments was developed for a highly segmented 4π γ-ray calorimeter, namely the Detector for Advanced Neutron Capture Experiments located at the Lujan Center of the Los Alamos Neutron Science Center. It has been used successfully for experiments with 235U, 238Pu,239Pu, and 241Pu isotopes to provide a unique signature to differentiate the fission from the competing neutron-capture reaction channel. We also used it to study the spontaneous fission in 252Cf. The design and performance of this avalanche counter for targets with extreme α-decay rate up to ~2.4×108/s are described.

  3. A compact gas-filled avalanche counter for DANCE

    DOE PAGES

    Wu, C. Y.; Chyzh, A.; Kwan, E.; ...

    2012-08-04

    A compact gas-filled avalanche counter for the detection of fission fragments was developed for a highly segmented 4π γ-ray calorimeter, namely the Detector for Advanced Neutron Capture Experiments located at the Lujan Center of the Los Alamos Neutron Science Center. It has been used successfully for experiments with 235U, 238Pu,239Pu, and 241Pu isotopes to provide a unique signature to differentiate the fission from the competing neutron-capture reaction channel. We also used it to study the spontaneous fission in 252Cf. The design and performance of this avalanche counter for targets with extreme α-decay rate up to ~2.4×108/s are described.

  4. Revealing hidden regularities with a general approach to fission

    NASA Astrophysics Data System (ADS)

    Schmidt, Karl-Heinz; Jurado, Beatriz

    2015-12-01

    Selected aspects of a general approach to nuclear fission are described with the focus on the possible benefit of meeting the increasing need of nuclear data for the existing and future emerging nuclear applications. The most prominent features of this approach are the evolution of quantum-mechanical wave functions in systems with complex shape, memory effects in the dynamics of stochastic processes, the influence of the Second Law of thermodynamics on the evolution of open systems in terms of statistical mechanics, and the topological properties of a continuous function in multi-dimensional space. It is demonstrated that this approach allows reproducing the measured fission barriers and the observed properties of the fission fragments and prompt neutrons. Our approach is based on sound physical concepts, as demonstrated by the fact that practically all the parameters have a physical meaning, and reveals a high degree of regularity in the fission observables. Therefore, we expect a good predictive power within the region extending from Po isotopes to Sg isotopes where the model parameters have been adjusted. Our approach can be extended to other regions provided that there is enough empirical information available that allows determining appropriate values of the model parameters. Possibilities for combining this general approach with microscopic models are suggested. These are supposed to enhance the predictive power of the general approach and to help improving or adjusting the microscopic models. This could be a way to overcome the present difficulties for producing evaluations with the required accuracy.

  5. Reducing Uncertainties in Neutron Induced Fission Cross Sections via a Time Projection Chamber

    NASA Astrophysics Data System (ADS)

    Magee, Joshua; Niffte Collaboration

    2016-09-01

    Neutron induced fission cross sections of actinides are of great interest in nuclear energy and stockpile stewardship. Traditionally, measurements of these cross sections have been made with fission chambers, which provide limited information on the actual fragments, and ultimately result in uncertainties on the order of several percent. The Neutron Induced Fission Fragment Tracking Experiment collaboration (NIFFTE) designed and built a fission Time Project Chamber (fission TPC), which provides additional information on these processes, through 3-dimensional tracking, improved particle identification, and in-situ profiles of target and beam non-uniformities. Ultimately, this should provide sub-percent measurements of (n,f) cross-sections. During the 2015 run cycle, measurements of several actinides were performed at the Los Alamos Neutron Science Center (LANSCE) Weapons Neutron Research (WNR) facility. An overview of the fission TPC will be given, as well as the current progress towards a sub-percent measurement of the 239Pu/235U (n,f) cross-section ratio. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  6. Measurements of the cross section for fission of /sup 242/Cm in nanogram quantities by neutrons with energy 0. 1--1. 4 MeV

    SciTech Connect

    Vorotnikov, P.E.; Dmitriev, S.V.; Molchanov, Y.D.; Otroshchenko, G.A.; Pchelin, V.A.; Chistyakov, L.V.; Smirnov, A.N.

    1984-11-01

    Measurements of the cross section of neutron fission of /sup 242/Cm are reported. The measurements were made in a pulsed electrostatic accelerator with use of metal-oxide-semiconductor fragment detectors.

  7. Changes in target fragmentation mechanisms with increasing projectile energy in intermediate energy nuclear collisions

    SciTech Connect

    Loveland, W. ); Aleklett, K.; Sihver, L. ); Xu, Z.; Casey, C. ); Morrissey, D.J. ); Liljenzin, J.O. ); de Saint-Simon, M. ); Seaborg, G.T. )

    1990-03-01

    We have measured the target fragment production cross sections and angular distributions for the interaction of 16 MeV/nucleon {sup 32}S, 32 MeV/nucleon {sup 40}Ar, and 44 MeV/nucleon {sup 40}Ar with {sup 197}Au. We have deduced the fragment isobaric yield distributions and moving frame angular distributions from these data. The fission cross sections decrease with increasing projectile energy and the heavy residue cross sections (which are much larger than previous counter measurements) increase. There is an unusual change in the fragment isobaric yield distributions in the reactions induced by 32 MeV/nucleon {sup 40}Ar and 44 MeV/nucleon {sup 40}Ar. We have used the symmetry properties of the moving frame distributions to show the relative time scale of the reaction mechanisms involved. The fission fragments associated with the peripheral collision peak in the folding angle distribution originate in a normal, slow fission process in which statistical equilibrium has been established. At the two lowest projectile energies, the fission fragments associated with the central collision peak in the folding angle distribution originate in part in fast, nonequilibrium processes. At the highest projectile energies, there are no fission fragments associated with high-momentum-transfer events. The intermediate mass fragments originate primarily in events in which statistical equilibrium has not been established.

  8. Refinements in the Los Alamos model of the prompt fission neutron spectrum

    NASA Astrophysics Data System (ADS)

    Madland, D. G.; Kahler, A. C.

    2017-01-01

    This paper presents a number of refinements to the original Los Alamos model of the prompt fission neutron spectrum and average prompt neutron multiplicity as derived in 1982. The four refinements are due to new measurements of the spectrum and related fission observables many of which were not available in 1982. They are also due to a number of detailed studies and comparisons of the model with previous and present experimental results including not only the differential spectrum, but also integral cross sections measured in the field of the differential spectrum. The four refinements are (a) separate neutron contributions in binary fission, (b) departure from statistical equilibrium at scission, (c) fission-fragment nuclear level-density models, and (d) center-of-mass anisotropy. With these refinements, for the first time, good agreement has been obtained for both differential and integral measurements using the same Los Alamos model spectrum.

  9. Pulse-height defect in single-crystal CVD diamond detectors

    NASA Astrophysics Data System (ADS)

    Beliuskina, O.; Strekalovsky, A. O.; Aleksandrov, A. A.; Aleksandrova, I. A.; Devaraja, H. M.; Heinz, C.; Heinz, S.; Hofmann, S.; Ilich, S.; Imai, N.; Kamanin, D. V.; Kis, M.; Knyazheva, G. N.; Kozhuharov, C.; Kuznetsova, E. A.; Maurer, J.; Mishinsky, G. V.; Pomorski, M.; Pyatkov, Yu. V.; Strekalovsky, O. V.; Träger, M.; Zhuchko, V. E.

    2017-02-01

    The pulse-height versus deposited energy response of a single-crystal chemical vapor deposition (scCVD) diamond detector was measured for ions of Ti, Cu, Nb, Ag, Xe, Au, and of fission fragments of 252 Cf at different energies. For the fission fragments, data were also measured at different electric field strengths of the detector. Heavy ions have a significant pulse-height defect in CVD diamond material, which increases with increasing energy of the ions. It also depends on the electrical field strength applied at the detector. The measured pulse-height defects were explained in the framework of recombination models. Calibration methods known from silicon detectors were modified and applied. A comparison with data for the pulse-height defect in silicon detectors was performed.

  10. Fission gas in thoria

    NASA Astrophysics Data System (ADS)

    Kuganathan, Navaratnarajah; Ghosh, Partha S.; Galvin, Conor O. T.; Arya, Ashok K.; Dutta, Bijon K.; Dey, Gautam K.; Grimes, Robin W.

    2017-03-01

    The fission gases Xe and Kr, formed during normal reactor operation, are known to degrade fuel performance, particularly at high burn-up. Using first-principles density functional theory together with a dispersion correction (DFT + D), in ThO2 we calculate the energetics of neutral and charged point defects, the di-vacancy (DV), different neutral tri-vacancies (NTV), the charged tetravacancy (CTV) defect cluster geometries and their interaction with Xe and Kr. The most favourable incorporation point defect site for Xe or Kr in defective ThO2 is the fully charged thorium vacancy. The lowest energy NTV in larger supercells of ThO2 is NTV3, however, a single Xe atom is most stable when accommodated within a NTV1. The di-vacancy (DV) is a significantly less favoured incorporation site than the NTV1 but the CTV offers about the same incorporation energy. Incorporation of a second gas atom in a NTV is a high energy process and more unfavourable than accommodation within an existing Th vacancy. The bi-NTV (BNTV) cluster geometry studied will accommodate one or two gas atoms with low incorporation energies but the addition of a third gas atom incurs a high energy penalty. The tri-NTV cluster (TNTV) forms a larger space which accommodates three gas atoms but again there is a penalty to accommodate a fourth gas atom. By considering the energy to form the defect sites, solution energies were generated showing that in ThO2-x the most favourable solution equilibrium site is the NTV1 while in ThO2 it is the DV.

  11. Calculation of Ambient (H*(10)) and Personal (Hp(10)) Dose Equivalent from a 252Cf Neutron Source

    SciTech Connect

    Traub, Richard J.

    2010-03-26

    The purpose of this calculation is to calculate the neutron dose factors for the Sr-Cf-3000 neutron source that is located in the 318 low scatter room (LSR). The dose factors were based on the dose conversion factors published in ICRP-21 Appendix 6, and the Ambient dose equivalent (H*(10)) and Personal dose equivalent (Hp(10)) dose factors published in ICRP Publication 74.

  12. The Response of an Albedo Neutron Dosimeter to Moderated AmBe and 252(Cf) Neutron Sources.

    DTIC Science & Technology

    2014-09-26

    thermoluminescence detectors (TLD) are situated on each side of a cad- mium disc as illustrated in Fig. 1 (a). Since the Navy uses detectors held in dental...exposure, or loss or gain of stored thermoluminescence signal after exposure, were necessary. RESULTS AND DISCUSSION ii The results of the experiments to...Falk, "A Personnel Neutron Dosimeter Using Lithium Fluoride Thermoluminescent Dosim- eters," Report No. RFP-1581, Dow Chemical Co., Golden CO (1971

  13. Physics of enriched uranyl fluoride deposit characterizations using active neutron and gamma interrogation techniques with {sup 252}Cf

    SciTech Connect

    Wyatt, M.S.; Uckan, T.; Mihalczo, J.T.; Valentine, T.E.; Hannon, T.F.

    1998-08-01

    A method was developed and successfully applied to characterize large uranyl fluoride (UO{sub 2}F{sub 21}) deposits at the former Oak Ridge Gaseous Diffusion Plant. These deposits were formed by a wet air in-leakage into the UF{sub 6} process gas lines over a period of years. The resulting UO{sub 2}F{sub 2} is hygroscopic, readily absorbing moisture from the air to form hydrates as UO{sub 2}F{sub 2}-nH{sub 2}O. The ratio of hydrogen to uranium, denoted H/U, can vary from 0--16, and has significant nuclear criticality safety impacts for large deposits. In order to properly formulate the required course of action, a non-intrusive characterization of the distribution of the fissile material within the pipe, its total mass, and amount of hydration was needed. The Nuclear Weapons Identification System (NWIS) previously developed at the Oak Ridge Y-12 Plant for identification of uranium weapons components in storage containers was used to successfully characterize the distribution, hydration, and total mass of these deposits.

  14. On the effect of an error in a standard D2O-moderated 252Cf energy spectrum.

    PubMed

    Cummings, F M

    2009-12-01

    There appears to be an error in the neutron fluence for neutrons with energies between 9 and 10 MeV for the tabulated D2O-moderated Cf source in ISO 8529-1. If the referenced spectrum is used as tabulated, the error contributes a total error to neutron dose values from this source of approximately 3%.

  15. Quasifission and fusion-fission in reactions with massive nuclei: Comparison of reactions leading to the Z=120 element

    SciTech Connect

    Nasirov, A. K.; Giardina, G.; Mandaglio, G.; Manganaro, M.; Hanappe, F.; Heinz, S.; Hofmann, S.; Muminov, A. I.; Scheid, W.

    2009-02-15

    The yields of evaporation residues, fusion-fission, and quasifission fragments in the {sup 48}Ca+{sup 144,154}Sm and {sup 16}O+{sup 186}W reactions are analyzed in the framework of the combined theoretical method based on the dinuclear system concept and advanced statistical model. The measured yields of evaporation residues for the {sup 48}Ca+{sup 154}Sm reaction can be well reproduced. The measured yields of fission fragments are decomposed into contributions coming from fusion-fission, quasifission, and fast-fission. The decrease in the measured yield of quasifission fragments in {sup 48}Ca+{sup 154}Sm at the large collision energies and the lack of quasifission fragments in the {sup 48}Ca+{sup 144}Sm reaction are explained by the overlap in mass angle distributions of the quasifission and fusion-fission fragments. The investigation of the optimal conditions for the synthesis of the new element Z=120 (A=302) show that the {sup 54}Cr+{sup 248}Cm reaction is preferable in comparison with the {sup 58}Fe+{sup 244}Pu and {sup 64}Ni+{sup 238}U reactions because the excitation function of the evaporation residues of the former reaction is some orders of magnitude larger than that for the last two reactions.

  16. Description of induced nuclear fission with Skyrme energy functionals. II. Finite temperature effects

    NASA Astrophysics Data System (ADS)

    Schunck, N.; Duke, D.; Carr, H.

    2015-03-01

    Understanding the mechanisms of induced nuclear fission for a broad range of neutron energies could help resolve fundamental science issues, such as the formation of elements in the universe, but could have also a large impact on societal applications in energy production or nuclear waste management. The goal of this paper is to set up the foundations of a microscopic theory to study the static aspects of induced fission as a function of the excitation energy of the incident neutron, from thermal to fast neutrons. To account for the high excitation energy of the compound nucleus, we employ a statistical approach based on finite temperature nuclear density functional theory with Skyrme energy densities, which we benchmark on the 239Pu(n ,f ) reaction. We compute the evolution of the least-energy fission pathway across multidimensional potential energy surfaces with up to five collective variables as a function of the nuclear temperature and predict the evolution of both the inner and the outer fission barriers as a function of the excitation energy of the compound nucleus. We show that the coupling to the continuum induced by the finite temperature is negligible in the range of neutron energies relevant for many applications of neutron-induced fission. We prove that the concept of quantum localization introduced recently can be extended to T >0 , and we apply the method to study the interaction energy and total kinetic energy of fission fragments as a function of the temperature for the most probable fission. While large uncertainties in theoretical modeling remain, we conclude that a finite temperature nuclear density functional may provide a useful framework to obtain accurate predictions of fission fragment properties.

  17. Thorium-uranium fission radiography

    NASA Technical Reports Server (NTRS)

    Haines, E. L.; Weiss, J. R.; Burnett, D. S.; Woolum, D. S.

    1976-01-01

    Results are described for studies designed to develop routine methods for in-situ measurement of the abundance of Th and U on a microscale in heterogeneous samples, especially rocks, using the secondary high-energy neutron flux developed when the 650 MeV proton beam of an accelerator is stopped in a 42 x 42 cm diam Cu cylinder. Irradiations were performed at three different locations in a rabbit tube in the beam stop area, and thick metal foils of Bi, Th, and natural U as well as polished silicate glasses of known U and Th contents were used as targets and were placed in contact with mica which served as a fission track detector. In many cases both bare and Cd-covered detectors were exposed. The exposed mica samples were etched in 48% HF and the fission tracks counted by conventional transmitted light microscopy. Relative fission cross sections are examined, along with absolute Th track production rates, interaction tracks, and a comparison of measured and calculated fission rates. The practicality of fast neutron radiography revealed by experiments to data is discussed primarily for Th/U measurements, and mixtures of other fissionable nuclei are briefly considered.

  18. Realistic fission models, new beta-decay half-lives and the r-process in neutron star mergers

    SciTech Connect

    Shibagaki, S.; Kajino, T.; Chiba, S.; Lorusso, G.; Nishimura, S.; Mathews, G. J.

    2014-05-02

    Almost half of heavy nuclei beyond iron are considered to be produced by rapid neutron capture process (r-process). This process occurs in the neutron-rich environment such as core-collapse supernovae or neutron star mergers, but the main production site is still unknown. In the r-process of neutron star mergers, nuclear fission reactions play an important role. Also beta-decay half-lives of magic nuclei are crucial for the r-process. We have carried out r-process nucleosynthesis calculations based upon new theoretical estimates of fission fragment distributions and new beta-decay half-lives for N=82 nuclei measured at RIBF-RIKEN. We investigate the effect of nuclear fission on abundance patterns in the matter ejected from neutron star mergers with two different fission fragment mass distributions. We also discuss how the new experimental beta-decay half-lives affect the r-process.

  19. Event-by-event evaluation of the prompt fission neutron spectrum from 239Pu(n,f)

    SciTech Connect

    Vogt, R; Randrup, J; Brown, D A; Descalle, M A; Ormand, W E

    2011-11-28

    We have developed an improved evaluation method for the spectrum of neutrons emitted in fission of {sup 239}Pu induced by incident neutrons with energies up to 20 MeV. The covariance data, including incident energy correlations introduced by the evaluation method, were used to fix the input parameters in our event-by-event model of fission, FREYA, by applying formal statistical methods. Formal estimates of uncertainties in the evaluation were developed by randomly sampling model inputs and calculating likelihood functions based on agreement with the evaluated . Our approach is able to employ a greater variety of fission measurements than the relatively coarse spectral data alone. It also allows the study of numerous fission observables for more accurate model validation. The combination of an event-by-event Monte Carlo fission model with a statistical-likelihood analysis is thus a powerful tool for evaluation of fission-neutron data. Our empirical model FREYA follows the complete fission event from birth of the excited fragments through their decay via neutron emission until the fragment excitation energy is below the neutron separation energy when neutron emission can no longer occur. The most recent version of FREYA incorporates pre-equilibrium neutron emission, the emission of the first neutron before equilibrium is reached in the compound nucleus, and multi-chance fission, neutron evaporation prior to fission when the incident neutron energy is above the neutron separation energy. Energy, momentum, charge and mass number are conserved throughout the fission process. The best available values of fragment masses and total kinetic energies are used as inputs to FREYA. We fit three parameters that are not well under control from previous measurements: the shift in the total fragment kinetic energy; the energy scale of the asymptotic level density parameter, controlling the fragment 'temperature' for neutron evaporation; and the relative excitation of the

  20. Comparison of yields of neutron-rich nuclei in proton- and photon-induced 238U fission

    NASA Astrophysics Data System (ADS)

    Khan, F. A.; Bhowmick, Debasis; Basu, D. N.; Farooq, M.; Chakrabarti, Alok

    2016-11-01

    A comparative study of fission of actinides, especially 238U, by proton and bremsstrahlung photon is performed. The relative mass distribution of 238U fission fragments has been explored theoretically for both proton- and photon-induced fission. The integrated yield along with charge distribution of the products are calculated to find the neutron richness in comparison with the nuclei produced by the r process in nucleosynthesis. Some r -process nuclei in the intermediate-mass range for symmetric fission mode are found to be produced almost two orders of magnitude more for proton-induced fission than for photofission, although the rest of the neutron-rich nuclei in the asymmetric mode are produced in comparable proportion for both processes.