Science.gov

Sample records for 252cf mixed radiation

  1. Compound dual radiation action theory for 252Cf brachytherapy.

    PubMed

    Wang, C K; Zhang, X

    2004-01-01

    The existing dosimetry protocol that uses the concept of RBE for 252Cf brachytherapy contains large uncertainties. A new formula has been developed to correlate the biological effect (i.e. cell survival fraction) resulting from a mixed n + gamma radiation field with two physical quantities and two biological quantities. The formula is based on a pathway model evolved from that of the compound-dual-radiation-action (CDRA) theory, previously proposed by Rossi and Zaider. The new model employs the recently published data on radiation-induced DNA lesions. The new formula is capable of predicting quantitatively the synergistic effect caused by the interactions between neutron events and gamma ray events, and it is intended to be included into a new dosimetry protocol for future 252Cf brachytherapy.

  2. QUALIFICATION OF THE SAVANNAH RIVER SITE 252CF SHUFFLER FOR RECEIPT VERIFICATION MEASUREMENTS OF MIXED U-PU OXIDES STORED IN 9975 SHIPPING CONTAINERS

    SciTech Connect

    Dubose, F.

    2011-05-26

    To extend their ability to perform accountability and verification measurements of {sup 235}U in a U-Pu oxide matrix, the K-Area Material Storage facility commissioned the development and construction of a Passive/Active {sup 252}Cf Shuffler. A series of {sup 252}Cf, PuO{sub 2}, and U-Pu oxide standards, in addition to a single U{sub 3}O{sub 8} standard, were measured to characterize and calibrate the shuffler. Accompanying these measurements were simulations using MCNP5/MCNPX, aimed at isolating the neutron countrate contributions for each of the isotopes present. Two calibration methods for determining the {sup 235}U content in mixed UPu oxide were then developed, yielding comparable results. The first determines the {sup 235}U mass by estimating the {sup 239}Pu/{sup 235}U ratio-dependent contributions from the primary delayed neutron contributors. The second defines an average linear response based on the {sup 235}U and {sup 239}Pu mass contents. In each case, it was observed that self-shielding due to {sup 235}U mass has a large influence on the observed rates, requiring bounds on the applicable limits of each calibration method.

  3. Graphite moderated (252)Cf source.

    PubMed

    Sajo-Bohus, Laszlo; Barros, Haydn; Greaves, Eduardo D; Vega-Carrillo, Hector Rene

    2015-06-01

    The Thorium molten-salt reactor is an attractive and affordable nuclear power option for developing countries with insufficient infrastructure and limited technological capability. In the aim of personnel training and experience gathering at the Universidad Simon Bolivar there is in progress a project of developing a subcritical thorium liquid-fuel reactor. The neutron source to run this subcritical reactor is a (252)Cf source and the reactor will use high-purity graphite as moderator. Using the MCNP5 code the neutron spectra of the (252)Cf in the center of the graphite moderator has been estimated along the channel where the liquid thorium salt will be inserted; also the ambient dose equivalent due to the source has been determined around the moderator.

  4. Brazilian gamma-neutron dosemeter: response to 241AmBe and 252Cf neutron sources.

    PubMed

    Souto, E B; Campos, L L

    2011-03-01

    With the aim of improving the monitoring of workers potentially exposed to neutron radiation in Brazil, the IPEN/CNEN-SP in association with PRO-RAD designed and developed a passive individual gamma-neutron mixed-field dosemeter calibrated to be used to (241)AmBe sources. To verify the dosimetry system response to different neutron spectra, prototypes were irradiated with a (252)Cf source and evaluated using the dose-calculation algorithm developed for (241)AmBe sources.

  5. A comparison of the expected costs of high dose rate brachytherapy using 252Cf versus 192Ir.

    PubMed

    Rivard, Mark J; Kirk, Bernadette L; Stapleford, Liza J; Wazer, David E

    2004-12-01

    A cost analysis to compare high dose rate (HDR) brachytherapy using either californium-252 (252Cf) or 192Ir was performed to determine the prospects of widespread clinical implementation of HDR 252Cf. Interest in the neutron-emitting 252Cf radioisotope as a radiotherapy nuclide has undergone a resurgence given recent efforts to fabricate HDR remotely afterloaded sources, and other efforts to create a miniature source for improved accessibility to a variety of anatomic sites. Therefore, HDR 252Cf brachytherapy may prove to be a potential rival to the use of HDR 192Ir remotely afterloaded brachytherapy--the current standard-of-care treatment modality using HDR brachytherapy. Considering the possible improvements in clinical efficacy using HDR 252Cf brachytherapy and the enormous costs of other high-LET radiation sources, the cost differences between 252Cf and 192Ir may be well-justified.

  6. Fluence-to-dose equivalent conversion factors for polyethylene-moderated {sup 252}Cf

    SciTech Connect

    Tanner, J.E.; Soldat, K.L.; Stewart, R.D.; Casson, W.H.

    1994-04-01

    Neutron measurements and calculations were conducted to characterize the polyethylene-moderated {sup 252}Cf source at Oak Ridge National Laboratory`s Radiation Calibration Laboratory (RADCAL). The 12-inch-diameter polyethylene sphere produces a highly scattered neutron spectrum which is more representative of most radiation fields found in the workplace than the D{sub 2}O-moderated {sup 252}Cf neutron spectrum typically used for dosimeter calibration. However, the energy-dependent fluence and dose equivalent must be well known before using such a source for radiation protection purposes. The measurements and calculations were performed as independent checks of the desired quantities which were the flux, the absorbed dose rate, the dose equivalent rate, and the average energy. These quantities were determined for the polyethylene sphere with and without an outer cadmium shell and compared with a D{sub 2}O-moderated {sup 252}Cf source.

  7. ANISOTROPY FACTORS FOR A 252Cf SOURCE

    SciTech Connect

    Veinot, K. G.; Bogard, James S

    2009-01-01

    A new 252Cf source has been procured for use at the Dosimetry Applications and Research (DOSAR) facility at the Oak Ridge National Laboratory (ORNL). This source was encapsulated by the Californium Facility at ORNL, however, the encapsulation differs from previous designs designated as SR-Cf-100. The new encapsulation, designated SR-Cf-3000, has a similar cylindrical radius to the previous generation, but is 1.6 cm longer. Since the encapsulation geometries differ the amount of internal scattering of neutrons will also differ leading to changes in anisotropy factors between the two designs. Additionally, the different encapsulations will affect the absorbed dose and dose equivalent delivered per neutron emitted by the source since both the quantity and energy distribution of the emitted neutrons will vary with irradiation angle. This work presents the fluence anisotropy factors for the SR-Cf-3000 series encapsulation as well as absorbed dose and dose equivalent values calculated for various angles of irradiation. The fluence anisotropy factors vary from a maximum of 1.037 to a minimum of 0.641 for irradiation angles perpendicular and parallel to the source axis, respectively. Anisotropy in absorbed dose varied from a maximum of 1.033 to a minimum of 0.676 while anisotropy of dose equivalent varied from 1.035 to 0.657.

  8. Attributes and templates from active measurements with {sup 252}Cf

    SciTech Connect

    Mihalczo, J.T.; Mattingly, J.K.

    2000-02-01

    Active neutron interrogation is useful for the detection of shielded HEU and could also be used for Pu. In an active technique, fissile material is stimulated by an external neutron source to produce fission with the emanation of neutrons and gamma rays. The time distribution of particles leaving the fissile material is measured with respect to the source emission in a variety of ways. A variety of accelerator and radioactive sources can be used. Active interrogation of nuclear weapons/components can be used in two ways: template matching or attribute estimation. Template matching compares radiation signatures with known reference signatures and for treaty applications has the problem of authentication of the reference signatures along with storage and retrieval of templates. Attribute estimation determines, for example, the fissile mass from various features of the radiation signatures and does not require storage of radiation signatures but does require calibration, which can be repeated as necessary. A nuclear materials identification system (NMIS) has been in use at the Oak Ridge Y-12 Plant for verification of weapons components being received and in storage by template matching and has been used with calibrations for attribute (fissile mass) estimation for HEU metal. NMIS employs a {sup 252}Cf source of low intensity (< 2 x 10{sup 6} n/sec) such that the dose at 1 m is approximately twice that on a commercial airline at altitude. The use of such a source presents no significant safety concerns either for personnel or nuclear explosive safety, and has been approved for use at the Pantex Plant on fully assembled weapons systems.

  9. Coal liquefaction process streams characterization and evaluation: The application of {sup 252}Cf-plasma desorption mass spectrometry to analysis of direct coal liquefaction heavy products

    SciTech Connect

    Larsen, J.W.; Lapucha, A.R.

    1992-10-01

    This study demonstrated the feasibility of using {sup 252}Cf PDMS, GPC, and MPLC for the examination of the tetrahydrofuran (THF)-soluble portion of distillation resid materials derived from direct coal liquefaction. The {sup 252}Cf-PDMS technique was used to determine molecular weight distributions of twenty-five THF-soluble resids. In order to detemine if {sup 252}Cf-PDMS responds differently to different chemical classes of compounds, Lehigh separated five of the samples into chemically distinct fractions by MPLC, then analyzed the parent samples, their fractions, and the re-mixed fractions by {sup 252}Cf-PDMS and GPC. Irreversible alteration of the samples upon separation was noted by Lehigh. This was confirmed by use of gas chromatographic (GC) analyses. The noted irreversible alterations prevented a direct comparison of the remixed materials and the original samples. Thus, the selective response of {sup 252}Cf-PDMS to different chemical classes of compounds could not be confirmed or ruled out. The number average molecular weights (M{sub n}) obtained by {sup 252}Cf-PDMS and GPC agreed well. However, the weight average molecular weights (M{sub w}) obtained by GPC are always higher than the corresponding {sup 252}Cf-PDMS results. Number average molecular weights and weight average molecular weights obtained with {sup 252}Cf-PDMS and GPC were compared with those obtained by field ionization mass spectrometry (FIMS), previously reported by SRI International for the parent resid samples from which the Lehigh THF-soluble samples were derived.

  10. Coal liquefaction process streams characterization and evaluation: The application of [sup 252]Cf-plasma desorption mass spectrometry to analysis of direct coal liquefaction heavy products

    SciTech Connect

    Larsen, J.W.; Lapucha, A.R.

    1992-10-01

    This study demonstrated the feasibility of using [sup 252]Cf PDMS, GPC, and MPLC for the examination of the tetrahydrofuran (THF)-soluble portion of distillation resid materials derived from direct coal liquefaction. The [sup 252]Cf-PDMS technique was used to determine molecular weight distributions of twenty-five THF-soluble resids. In order to detemine if [sup 252]Cf-PDMS responds differently to different chemical classes of compounds, Lehigh separated five of the samples into chemically distinct fractions by MPLC, then analyzed the parent samples, their fractions, and the re-mixed fractions by [sup 252]Cf-PDMS and GPC. Irreversible alteration of the samples upon separation was noted by Lehigh. This was confirmed by use of gas chromatographic (GC) analyses. The noted irreversible alterations prevented a direct comparison of the remixed materials and the original samples. Thus, the selective response of [sup 252]Cf-PDMS to different chemical classes of compounds could not be confirmed or ruled out. The number average molecular weights (M[sub n]) obtained by [sup 252]Cf-PDMS and GPC agreed well. However, the weight average molecular weights (M[sub w]) obtained by GPC are always higher than the corresponding [sup 252]Cf-PDMS results. Number average molecular weights and weight average molecular weights obtained with [sup 252]Cf-PDMS and GPC were compared with those obtained by field ionization mass spectrometry (FIMS), previously reported by SRI International for the parent resid samples from which the Lehigh THF-soluble samples were derived.

  11. Reactor production of sup 252 Cf and transcurium isotopes

    SciTech Connect

    Alexander, C.W.; Halperin, J.; Walker, R.L.; Bigelow, J.E.

    1990-01-01

    Berkelium, californium, einsteinium, and fermium are currently produced in the High Flux Isotope Reactor (HFIR) and recovered in the Radiochemical Engineering Development Center (REDC) at the Oak Ridge National Laboratory (ORNL). All the isotopes are used for research. In addition, {sup 252}Cf, {sup 253}Es, and {sup 255}Fm have been considered or are used for industrial or medical applications. ORNL is the sole producer of these transcurium isotopes in the western world. A wide range of actinide samples were irradiated in special test assemblies at the Fast Flux Test Facility (FFTF) at Hanford, Washington. The purpose of the experiments was to evaluate the usefulness of the two-group flux model for transmutations in the special assemblies with an eventual goal of determining the feasibility of producing macro amounts of transcurium isotopes in the FFTF. Preliminary results from the production of {sup 254g}Es from {sup 252}Cf will be discussed. 14 refs., 5 tabs.

  12. A pneumatic transfer system for special form {sup 252}Cf

    SciTech Connect

    Gehrke, R.J.; Berry, S.M.; Grafwallner, E.G.; Hoggan, J.M.

    1996-09-01

    A pneumatic transfer system has been developed for use with series 100 Special Form {sup 252}Cf. It was developed to reduce the exposure to personnel handling sources of {sup 252}Cf with masses up to 150 {micro}g by permitting remotely activated two-way transfer between the storage container and the irradiation position. The pneumatic transfer system also permits transfers for reproducible repetitive irradiation periods. In addition to the storage container equipped with quick-release fittings, the transfer system consists of an irradiation station, a control box with momentary contact switches to activate the air-pressure control valves and indicators to identify the location of the source, and connecting air hose and electrical wire. A source of 20 psig air and 110 volt electrical power are required for operation of the transfer system which can be easily moved and set up by one individual in 5 to 10 minutes. Tests have shown that rarely does a source become lodged in the transfer tubing, but two methods have been developed to handle incomplete transfers of the {sup 252}Cf source. The first method consists of closing one air vent to allow a pressure impulse to propel the source to the opposite side. The second method applies to those {sup 252}Cf capsules with a threaded or tapped end to which a small ferromagnetic piece can be attached; an incompletely transferred source in the transfer tube can then be guided to a position of safety by surrounding the transfer tubing containing the capsule with a horseshoe magnet attached to the end of a long pole.

  13. Interstitial /sup 252/Cf neutron therapy for glioblastoma multiforme

    SciTech Connect

    Maruyama, Y.; Chin, H.W.; Young, A.B.; Bean, J.; Tibbs, P.; Beach, J.L.

    1982-12-01

    /sup 252/Cf brachytherapy has been combined with whole brain photon beam therapy to 6000 rads in 5-7 weeks. In early phase I studies, all patients selected for study tolerated the procedure and the subsequent photon beam therapy. All showed improvement in performance status and decreased tumor size by CT scan evaluation, but it became clear that these tumors are of large size and bulk, produce marked adjacent brain edema, and require individualized implant therapy as well as high-dose external beam irradiation if response is to occur.

  14. Moderated 252Cf neutron energy spectra in brain tissue and calculated boron neutron capture dose.

    PubMed

    Rivard, Mark J; Zamenhof, Robert G

    2004-11-01

    While there is significant clinical experience using both low- and high-dose (252)Cf brachytherapy, combination therapy using (10)B for neutron capture therapy-enhanced (252)Cf brachytherapy has not been performed. Monte Carlo calculations were performed in a brain phantom (ICRU 44 brain tissue) to evaluate the dose enhancement predicted for a range of (10)B concentrations over a range of distances from a clinical (252)Cf source. These results were compared to experimental measurements and calculations published in the literature. For (10)B concentrations 252)Cf fast neutron dose.

  15. Intracavitary moderator balloon combined with 252Cf brachytherapy and boron neutron capture therapy, improving dosimetry in brain tumour and infiltrations

    PubMed Central

    Brandão, S F

    2015-01-01

    Objective: This article proposes a combination of californium-252 (252Cf) brachytherapy, boron neutron capture therapy (BNCT) and an intracavitary moderator balloon catheter applied to brain tumour and infiltrations. Methods: Dosimetric evaluations were performed on three protocol set-ups: 252Cf brachytherapy combined with BNCT (Cf-BNCT); Cf-BNCT with a balloon catheter filled with light water (LWB) and the same set-up with heavy water (HWB). Results: Cf-BNCT-HWB has presented dosimetric advantages to Cf-BNCT-LWB and Cf-BNCT in infiltrations at 2.0–5.0 cm from the balloon surface. However, Cf-BNCT-LWB has shown superior dosimetry up to 2.0 cm from the balloon surface. Conclusion: Cf-BNCT-HWB and Cf-BNCT-LWB protocols provide a selective dose distribution for brain tumour and infiltrations, mainly further from the 252Cf source, sparing the normal brain tissue. Advances in knowledge: Malignant brain tumours grow rapidly and often spread to adjacent brain tissues, leading to death. Improvements in brain radiation protocols have been continuously achieved; however, brain tumour recurrence is observed in most cases. Cf-BNCT-LWB and Cf-BNCT-HWB represent new modalities for selectively combating brain tumour infiltrations and metastasis. PMID:25927876

  16. Measurement of the 250Cf component in a 252Cf neutron source at KRISS.

    PubMed

    Kim, Jungho; Park, Hyeonseo; Choi, Kil-Oung

    2014-10-01

    Neutron emission rate measurements have been carried out at the Korea Research Institute of Standards and Science using a manganese sulphate bath system for (252)Cf and (241)Am-Be sources since 2004. The relative measurement method was chosen in 2012, and the neutron emission rates agreed with those by the absolute measurement method within uncertainties. The neutron emission rate of an old (252)Cf source has been measured three times: in 2004, 2009 and 2012. The (250)Cf component was fitted to a double-exponential function of (252)Cf+(250)Cf, and the ratio of the (250)Cf component to the (252)Cf component was estimated to be 7.8 % in 2004 and 46.8 % in 2012. Underestimation of the neutron emission rates of old (252)Cf sources can be corrected if the neutron emission rate of the (250)Cf component is taken into account.

  17. A radiobiological model for the relative biological effectiveness of high-dose-rate 252Cf brachytherapy.

    PubMed

    Rivard, Mark J; Melhus, Christopher S; Zinkin, Heather D; Stapleford, Liza J; Evans, Krista E; Wazer, David E; Odlozilíková, Anna

    2005-09-01

    While there is significant clinical experience using both low- and high-dose-rate 252Cf brachytherapy, there are minimal data regarding values for the neutron relative biological effectiveness (RBE) with both modalities. The aim of this research was to derive a radiobiological model for 252Cf neutron RBE and to compare these results with neutron RBE values used clinically in Russia. The linear-quadratic (LQ) model was used as the basis to characterize cell survival after irradiation, with identical cell killing rates (S(N) = S(gamma)) between 252Cf neutrons and photons used for derivation of RBE. Using this equality, a relationship among neutron dose and LQ radiobiological parameter (i.e., alpha(N), beta(N), alpha(gamma), beta(gamma)) was obtained without the need to specify the photon dose. These results were used to derive the 252Cf neutron RBE, which was then compared with Russian neutron RBE values. The 252Cf neutron RBE was determined after incorporating the LQ radiobiological parameters obtained from cell survival studies with fast neutrons and teletherapy photons. For single-fraction high-dose-rate neutron doses of 0.5, 1.0, 1.5 and 2.0 Gy, the total biologically equivalent doses were 1.8, 3.4, 4.7 and 6.0 RBE Gy with 252Cf neutron RBE values of 3.2, 2.9, 2.7 and 2.5, respectively. Using clinical data for late-responding reactions from 252Cf, Russian investigators created an empirical model that predicted high-dose-rate 252Cf neutron RBE values ranging from 3.6 to 2.9 for similar doses and fractionation schemes and observed that 252Cf neutron RBE increases with the number of treatment fractions. Using these relationships, our results were in general concordance with high-dose-rate 252Cf RBE values obtained from Russian clinical experience.

  18. Characteristics of the simulated workplace neutron fields using a 252Cf source surrounded with cylindrical moderators.

    PubMed

    Tsujimura, N; Yoshida, T

    2004-01-01

    The authors established the simulated workplace neutron fields using a 252Cf source surrounded with cylindrical moderators at the Japan Nuclear Cycle Development Institute (JNC), Tokai Works. The moderators are annular cylinders made of polymethyl methacrylate and steel. The neutron energy spectrum at the reference calibration point was evaluated from the calculations by MCNP-4B and the measurements by the Bonner multisphere spectrometer and the hydrogen-filled proportional counters. The calculated neutron spectra were in good agreements with the measured ones. These fields can provide the realistic neutron spectra similar to those encountered around the glove-boxes of the fabrication process of MOX (PuO2-UO2 mixed oxide) fuel.

  19. /sup 252/Cf-source-driven neutron noise analysis method

    SciTech Connect

    Mihalczo, J.T.; King, W.T.; Blakeman, E.D.

    1985-01-01

    The /sup 252/Cf-source-driven neutron noise analysis method has been tested in a wide variety of experiments that have indicated the broad range of applicability of the method. The neutron multiplication factor k/sub eff/ has been satisfactorily detemined for a variety of materials including uranium metal, light water reactor fuel pins, fissile solutions, fuel plates in water, and interacting cylinders. For a uranyl nitrate solution tank which is typical of a fuel processing or reprocessing plant, the k/sub eff/ values were satisfactorily determined for values between 0.92 and 0.5 using a simple point kinetics interpretation of the experimental data. The short measurement times, in several cases as low as 1 min, have shown that the development of this method can lead to a practical subcriticality monitor for many in-plant applications. The further development of the method will require experiments oriented toward particular applications including dynamic experiments and the development of theoretical methods to predict the experimental observables.

  20. Microscopic cold fission yields of {sup 252}Cf

    SciTech Connect

    Mirea, M.; Delion, D. S.; Sandulescu, A.

    2010-04-15

    We show that the sharp maximum corresponding to {sup 107}Mo in the fragment distribution of the {sup 252}Cf cold fission is actually a Sn-like radioactivity, similar to other decay processes in which magic nuclei are involved, namely alpha decay and heavy cluster emission, also called Pb-like radioactivity. It turns out that the mass asymmetry degree of freedom has a key role in connecting initial Sn with the final Mo isotopes along the fission path. We investigate the cold rearrangement of nucleons within the framework of the two-center shell model in order to compute the cold valleys in the charge equilibrated fragmentation potential. The fission yields are estimated by using the semiclassical penetration approach. We consider 5 degrees of freedom, namely the interfragment distance, the shapes of fragments, the neck parameter, and mass asymmetry. We found an isomeric minimum between the internal and external barriers. It turns out that the inner cold valley of the total potential energy is connected to the doubly magic isotope {sup 132}Sn.

  1. A feasibility study of [sup 252]Cf neutron brachytherapy, cisplatin + 5-FU chemo-adjuvant and accelerated hyperfractionated radiotherapy for advanced cervical cancer

    SciTech Connect

    Murayama, Y.; Wierzbicki, J. Univ. of Kentucky Medical Center, Lexington, KY ); Bowen, M.G.; Van Nagell, J.R.; Gallion, H.H.; DePriest, P. )

    1994-06-15

    The purpose was to evaluate the feasibility and toxicity of [sup 252]Cf neutron brachytherapy combined with hyperaccelerated chemoradiotherapy for Stage III and IV cervical cancers. Eleven patients with advanced Stage IIIB-IVA cervical cancers were treated with [sup 252]Cf neutron brachytherapy in an up-front schedule followed by cisplatin (CDDP; 50 mg/m[sup 2]) chemotherapy and hyperfractionated accelerated (1.2 Gy bid) radiotherapy given concurrently with intravenous infusion of 5-Fluorouracil (5-FU) (1000 mg/m[sup 2]/day [times] 4 days) in weeks 1 and 4 with conventional radiation (weeks 2, 3, 5, and 6). Total dose at a paracervical point A isodose surface was 80-85 Gy-eq by external and intracavitary therapy and 60 Gy at the pelvic sidewalls. Patients tolerated the protocol well. There was 91% compliance with the chemotherapy and full compliance with the [sup 252]Cf brachytherapy and the external beam radiotherapy. There were no problems with acute chemo or radiation toxicity. One patient developed a rectovaginal fistula (Grade 3-4 RTOG criteria) but no other patients developed significant late cystitis, proctitis or enteritis. There was complete response (CR) observed in all cases. With mean follow-up to 26 months, local control has been achieved with 90% actuarial 3-year survival with no evidence of disease (NED). [sup 252]Cf neutrons can be combined with cisplatin and 5-FU infusion chemotherapy plus hyperaccelerated chemoradiotherapy without unusual side effects or toxicity and with a high local response and tumor control rate. Further study of [sup 252]Cf neutron-chemoradiotherapy for advanced and bulky cervical cancer are indicated. The authors found chemotherapy was more effective with the improved local tumor control. 18 refs., 2 tabs.

  2. The analysis of complex mixed-radiation fields using near real-time imaging.

    PubMed

    Beaumont, Jonathan; Mellor, Matthew P; Joyce, Malcolm J

    2014-10-01

    A new mixed-field imaging system has been constructed at Lancaster University using the principles of collimation and back projection to passively locate and assess sources of neutron and gamma-ray radiation. The system was set up at the University of Manchester where three radiation sources: (252)Cf, a lead-shielded (241)Am/Be and a (22)Na source were imaged. Real-time discrimination was used to find the respective components of the neutron and gamma-ray fields detected by a single EJ-301 liquid scintillator, allowing separate images of neutron and gamma-ray emitters to be formed. (252)Cf and (22)Na were successfully observed and located in the gamma-ray image; however, the (241)Am/Be was not seen owing to surrounding lead shielding. The (252)Cf and (241)Am/Be neutron sources were seen clearly in the neutron image, demonstrating the advantage of this mixed-field technique over a gamma-ray-only image where the (241)Am/Be source would have gone undetected.

  3. Structures of the neutron-rich nuclei observed in fission of {sup 252}Cf

    SciTech Connect

    Ramayya, A. V.; Hamilton, J. H.; Goodin, C. J.; Brewer, N. T.; Hwang, J. K.; Luo, Y. X.; Liu, S. H.; Stone, N. J.; Daniel, A. V.; Zhu, S. J.

    2014-08-14

    Analysis of high statistics triple coincidence fission γ data from {sup 252}Cf at Gammasphere including angular correlations yielded well-expanded high-spin level schemes with more complete and reliable spin/parity assignments for {sup 82}Ge, {sup 118,120,122}Cd and {sup 114,115}Rh. Both the quasi-particle/hole couplings and quasi-rotational degrees of freedom are implied to play roles in these Cd isotopes. Evidence for triaxial shapes and octupole components in the Cd isotopes is presented. These Cd isotopes may have triaxial deformations. High-spin level schemes of {sup 114,115}Rh have been established for the first time. The existence of a relatively large signature splitting and an yrare band shows typical features of a triaxially deformed nucleus. Possible excited deformed rotational bands are observed, for the first time, in {sup 82}Ge. From the multipole mixing ratio measurement, the ground state configurations of {sup 109,111}Ru, as well as excited states in {sup 103,107}Mo and {sup 111}Ru were determined.

  4. AN INTERLABORATORY COMPARISON ON THE DETERMINATION OF 241Am, 244Cm AND 252Cf IN URINE.

    PubMed

    Gerstmann, Udo C; Taubner, Kerstin; Hartmann, Martina

    2016-09-01

    An intercomparison exercise on the determination of (241)Am, (244)Cm and (252)Cf in urine was performed. Since it was designed with regard to emergency preparedness, the detection limit for each nuclide was set to 0.1 Bq per 24-h urine sample. Most of the participating laboratories were established bioassay laboratories. However, some laboratories that routinely determine (241)Am only in environmental samples were also invited in order to explore their potential for emergency bioassay analysis. Another aspect of the intercomparison was to investigate the performance of all laboratories concerning the chemical yields of the (243)Am tracer in comparison with (244)Cm and (252)Cf. In summary, both types of laboratories showed good results. There was a negative bias for the results of (244)Cm and (252)Cf, which can be explained by slightly different radiochemical behaviours of americium, curium and californium and which is in agreement with results reported in the literature. PMID:26535001

  5. Design of a setup for 252Cf neutron source for storage and analysis purpose

    NASA Astrophysics Data System (ADS)

    Hei, Daqian; Zhuang, Haocheng; Jia, Wenbao; Cheng, Can; Jiang, Zhou; Wang, Hongtao; Chen, Da

    2016-11-01

    252Cf is a reliable isotopic neutron source and widely used in the prompt gamma ray neutron activation analysis (PGNAA) technique. A cylindrical barrel made by polymethyl methacrylate contained with the boric acid solution was designed for storage and application of a 5 μg 252Cf neutron source. The size of the setup was optimized with Monte Carlo code. The experiments were performed and the results showed the doses were reduced with the setup and less than the allowable limit. The intensity and collimating radius of the neutron beam could also be adjusted through different collimator.

  6. Water-extended polyester neutron shield for a 252Cf neutron source.

    PubMed

    Vega-Carrillo, H R; Manzanares-Acuña, E; Hernández-Dávila, V M; Gallego, E; Lorente, A; Donaire, I

    2007-01-01

    A Monte Carlo study to determine the shielding features to neutrons of water-extended polyester was carried out. During calculations, (252)Cf and shielding were modelled and the neutron spectra as well as the H(10) were calculated in four sites. The calculation was extended to include a water shielding, the source in vacuum and in air. Besides neutron shielding characteristics, the Kerma in air due to gammas emitted by (252)Cf and due to capture gamma rays in the shielding were included.

  7. On the use of a (252Cf-3He) assembly for landmine detection by the neutron back-scattering method.

    PubMed

    Elsheikh, N; Viesti, G; ElAgib, I; Habbani, F

    2012-04-01

    Experiments were carried out to optimize the performance of the neutron back-scattering (NBS) technique in landmine detection using an assembly consisting of three different layers placed above a (252)Cf neuron source, producing about 10(4)s(-1), in conjunction with a (3)He detector. The assembly was optimized experimentally. The selected assembly configuration was then examined against different (252)Cf stand-off distances and mine burial depths using dummy landmines. Furthermore, Monte Carlo simulations were performed to study the effect of the shield when a (252)Cf source in the range 10(4)-10(7)s(-1) was employed, and to optimize the geometry for future prototypes.

  8. Comparative toxicity of /sup 226/Ra, /sup 239/Pu, /sup 241/Am, /sup 249/Cf, and /sup 252/Cf in C57BL/Do black and albino mice

    SciTech Connect

    Taylor, G.N.; Mays, C.W.; Lloyd, R.D.; Gardner, P.A.; TAlbot, L.R.; McFarland, S.S.; Pollard, T.A.; Atherton, D.R.; vanMoorhem, D.; Brammer, D.

    1983-09-01

    Groups of C57BL/Do (black and albino) mice were injected with graded activities of /sup 226/Ra, /sup 239/Pu, /sup 241/Am, /sup 249/Cf, or /sup 252/Cf and were followed throughout life. Bone sarcoma was the principal radiation-induced end point, and the risks associated with average skeletal doses of the four transuranium radionuclides, relative to radium, were determined. The relative biological effectiveness (RBE) was calculated for each emitter by dividing its risk coefficient (bone sarcomas per 10/sup 6/ mouse-rad) by the risk coefficient for /sup 226/Ra. Combined data for males and females in both black and albino mice gave the following values +- SD for the RBE relative to /sup 226/Ra = 1.0: /sup 239/Pu = 15.3 +- 3.9, /sup 241/Am = 4.9 +- 1.4, /sup 249/Cf = 5.0 +- 1.4, and /sup 252/Cf = 2.6 +- 0.8. About 70% of the tumors occurred in the axial skeleton, and the risk coefficient for females averaged about four times higher than for males when all five nuclides were included. The RBE of fission fragment irradiation from /sup 252/Cf for cancer induction, relative to ..cap alpha.. irradiation, for the combined data in all of the animals given /sup 252/Cf and /sup 249/Cf, was 0.02 +- 0.28, in agreement with the calculated theoretical value of 0.03, based on the ratio of summed track lengths in tissue.

  9. Comparative toxicity of /sup 226/Ra, /sup 239/Pu, /sup 241/Am, /sup 249/Cf, and /sup 252/Cf in C57BL/Do black and albino mice

    SciTech Connect

    Taylor, G.N.; Mays, C.W.; Lloyd, R.D.; Gardner, P.A.; Talbot, L.R.; McFarland, S.S.; Pollard, I.A.; Atherton, D.R.; VanMoorhem, D.; Brammer, D.

    1983-09-01

    Groups of C57BL/Do (black and albino) mice were injected with graded activities of /sup 226/Ra, /sup 239/Pu, /sup 241/Am, /sup 249/Cf, or /sup 252/Cf and were followed throughout life. Bone sarcoma was the principal radiation-induced end point, and the risks associated with average skeletal doses of the four transuranium radionuclides, relative to radium, were determined. The relative biological effectiveness (RBE) was calculated for each emitter by dividing its risk coefficient (bone sarcomas per 10(/sup 6/) mouse-rad) by the risk coefficient for /sup 226/Ra. Combined data for males and females in both black and albino mice gave the following values +/- SD for the RBE relative to /sup 226/Ra . 1.0: /sup 239/Pu . 15.3 +/- 3.9, /sup 241/Am . 4.9 +/- 1.4, /sup 249/Cf . 5.0 +/- 1.4, and /sup 252/Cf . 2.6 +/- 0.8. About 70% of the tumors occurred in the axial skeleton, and the risk coefficient for females averaged about four times higher than for males when all five nuclides were included. The RBE of fission fragment irradiation from /sup 252/Cf for cancer induction, relative to alpha irradiation, for the combined data in all of the animals given /sup 252/Cf and /sup 249/Cf, was 0.02 +/- 0.28, in agreement with the calculated theoretical value of 0.03, based on the ratio of summed track lengths in tissue.

  10. Dynamics and energetics of a /sup 251/Cf-/sup 252/Cf power system

    SciTech Connect

    Harms, A.A. ); Cripps, G. )

    1988-06-01

    A combination fission-radioisotope compact power system involving the synergistic interaction of /sup 251/Cf and /sup 252/Cf is considered. Based on a nonlinear point kinetics formulation of the coupled reactions combined with the parametric incorporation of design and operational variables, it is shown that a stable autonomous power mode is readily attainable. This system appears particularly suitable for very long-life unattended operation for space and terrestrial applications.

  11. Comparison of fission modes in {sup 252}Cf, {sup 257}Fm, and {sup 260}Md

    SciTech Connect

    Aarle, J. van; Siemon, K.; Patzelt, P.; Wild, J. F.; Lougheed, R. W.; Westmeier, W.

    1998-10-26

    Although the spontaneous-fission properties of heavy actinides have been studied for well over 35 years, many interesting and informative details continue to come into light. During the last decade, the spontaneous fission of {sup 252}Cf, {sup 257}Fm and {sup 260}Md has been extensively investigated at the Philipps University of Marburg, by means of a gadolinium-doped liquid scintillation tank for neutron counting and surface barrier detectors for fission fragment detection. The three nuclides represent the transition from the well-known asymmetric fission yield distribution, as it is characteristic for {sup 252}Cf, to a much more symmetrical one, found in the fission of {sup 260}Md. Therefore, trends in the dynamical changes of fission properties have been derived from these studies. For the spontaneous fission of {sup 252}Cf and {sup 260}Md, it was already shown that different fission modes, as proposed by theoretical calculations of Brosa et al. (5), could be separated, using the correlation between the neutrons emitted in a fission event and both the observed fission-fragment mass and the total kinetic energy (1, 2). In the case of {sup 257}Fm, no theoretical calculations for fission modes exist. However, from the fission properties of the two surrounding actinides, one can expect at least three different fission modes, namely two 'standard' and the 'supershort' mode. In this paper, results from the recent {sup 257}Fm experiment will be presented and compared to systematics extracted from the fission properties of other heavy actinides.

  12. Measured microdosimetric spectra and therapeutic potential of boron neutron capture enhancement of 252Cf brachytherapy.

    PubMed

    Burmeister, J; Kota, C; Maughan, R L

    2005-09-01

    Californium-252 is a neutron-emitting radioisotope used as a brachytherapy source for radioresistant tumors. Presented here are microdosimetric spectra measured as a function of simulated site diameter and distance from applicator tube 252Cf sources. These spectra were measured using miniature tissue-equivalent proportional counters (TEPCs). An investigation of the clinical potential of boron neutron capture (BNC) enhancement of 252Cf brachytherapy is also provided. The absorbed dose from the BNC reaction was measured using a boron-loaded miniature TEPC. Measured neutron, photon and BNC absorbed dose components are provided as a function of distance from the source. In general, the absorbed dose results show good agreement with results from other measurement techniques. A concomitant boost to 252Cf brachytherapy may be provided through the use of the BNC reaction. The potential magnitude of this BNC enhancement increases with increasing distance from the source and is capable of providing a therapeutic gain greater than 30% at a distance of 5 cm from the source, assuming currently achievable boron concentrations.

  13. The content of 250Cf and 248Cm in 252Cf neutron sources and the effect on the neutron emission rate.

    PubMed

    Roberts, N J; Jones, L N

    2007-01-01

    One of the most common radionuclide neutron sources used for the calibration of detectors is (252)Cf. However, these sources also contain (250)Cf, which is present in the material from which the sources are made, and (248)Cm, which is formed as the daughter of (252)Cf via alpha-decay. Both decay by spontaneous fission with longer half-lives than (252)Cf. Consequently, as the source becomes older, the emission rate does not follow the decay curve of (252)Cf. Fits have been made to emission rate measurements of (252)Cf sources at NPL spanning over 30 y to deduce their (250)Cf and (248)Cm content. The emission rate of a source can be significantly underestimated if the presence of (250)Cf and (248)Cm is not taken into account, and this has been investigated for a typical (252)Cf source. The importance of this problem to other calibration laboratories and users of (252)Cf sources is emphasised.

  14. 252Cf spectrum-averaged cross section for the 63Cu(n, p)63Ni reaction

    NASA Astrophysics Data System (ADS)

    Imamura, M.; Shibata, T.; Shibata, S.; Ohkubo, T.; Satoh, S.; Nogawa, N.

    1999-01-01

    The 63Ni produced by the 63Cu(n, p)63Ni reaction provides a unique measure to estimate the fast-neutron fluence of the Hiroshima/Nagasaki atomic bomb. In the similarity of the fission neutron spectrum of 252Cf to that of 235U, we have measured activation cross sections of the 63Cu(n, p)63Ni reaction averaged for the 252Cf fission spectrum.

  15. Microarray analysis of DNA damage repair gene expression profiles in cervical cancer cells radioresistant to 252Cf neutron and X-rays

    PubMed Central

    2010-01-01

    Background The aim of the study was to obtain stable radioresistant sub-lines from the human cervical cancer cell line HeLa by prolonged exposure to 252Cf neutron and X-rays. Radioresistance mechanisms were investigated in the resulting cells using microarray analysis of DNA damage repair genes. Methods HeLa cells were treated with fractionated 252Cf neutron and X-rays, with a cumulative dose of 75 Gy each, over 8 months, yielding the sub-lines HeLaNR and HeLaXR. Radioresistant characteristics were detected by clone formation assay, ultrastructural observations, cell doubling time, cell cycle distribution, and apoptosis assay. Gene expression patterns of the radioresistant sub-lines were studied through microarray analysis and verified by Western blotting and real-time PCR. Results The radioresistant sub-lines HeLaNR and HeLaXR were more radioresisitant to 252Cf neutron and X-rays than parental HeLa cells by detecting their radioresistant characteristics, respectively. Compared to HeLa cells, the expression of 24 genes was significantly altered by at least 2-fold in HeLaNR cells. Of these, 19 genes were up-regulated and 5 down-regulated. In HeLaXR cells, 41 genes were significantly altered by at least 2-fold; 38 genes were up-regulated and 3 down-regulated. Conclusions Chronic exposure of cells to ionizing radiation induces adaptive responses that enhance tolerance of ionizing radiation and allow investigations of cellular radioresistance mechanisms. The insights gained into the molecular mechanisms activated by these "radioresistance" genes will lead to new therapeutic targets for cervical cancer. PMID:20184742

  16. Comparison of fission modes in {sup 252}Cf, {sup 257}Fm, and {sup 260}Md

    SciTech Connect

    van Aarle, J.; Siemon, K.; Patzelt, P.; Wild, J.F.; Lougheed, R.W.; Westmeier, W.

    1998-10-01

    Although the spontaneous-fission properties of heavy actinides have been studied for well over 35 years, many interesting and informative details continue to come into light. During the last decade, the spontaneous fission of {sup 252}Cf, {sup 257}Fm and {sup 260}Md has been extensively investigated at the Philipps University of Marburg (1{endash}4), by means of a gadolinium-doped liquid scintillation tank for neutron counting and surface barrier detectors for fission fragment detection. The three nuclides represent the transition from the well-known asymmetric fission yield distribution, as it is characteristic for {sup 252}Cf, to a much more symmetrical one, found in the fission of {sup 260}Md. Therefore, trends in the dynamical changes of fission properties have been derived from these studies. For the spontaneous fission of {sup 252}Cf and {sup 260}Md, it was already shown that different fission modes, as proposed by theoretical calculations of Brosa et al. (5), could be separated, using the correlation between the neutrons emitted in a fission event and both the observed fission-fragment mass and the total kinetic energy (1, 2). In the case of {sup 257}Fm, no theoretical calculations for fission modes exist. However, from the fission properties of the two surrounding actinides, one can expect at least three different fission modes, namely two {open_quotes}standard{close_quotes} and the {open_quotes}supershort{close_quotes} mode. In this paper, results from the recent {sup 257}Fm experiment will be presented and compared to systematics extracted from the fission properties of other heavy actinides. {copyright} {ital 1998 American Institute of Physics.}

  17. Identification of high spin states in {sup 134}I from {sup 252}Cf fission

    SciTech Connect

    Liu, S. H.; Hamilton, J. H.; Ramayya, A. V.; Hwang, J. K.; Daniel, A. V.; Ter-Akopian, G. M.; Luo, Y. X.; Rasmussen, J. O.; Zhu, S. J.; Ma, W. C.

    2009-06-15

    High spin states in {sup 134}I were identified for the first time based on measurements of prompt {gamma} rays from the spontaneous fission of {sup 252}Cf at Gammasphere. Five excited levels with five deexciting transitions were observed. The mass number was assigned based on the intensity of transitions in the complementary Rh fragments. Angular correlations for the first two transitions in {sup 134}I and for high spin states in {sup 133,135,136}I were performed, but were not sufficient to firmly assign the spins and parities in {sup 134}I.

  18. Measurement and calculation of the emission anisotropy of an X1 252Cf neutron source.

    PubMed

    Hawkes, N P; Freedman, R; Tagziria, H; Thomas, D J

    2007-01-01

    The authors have measured the emission anisotropy from a (252)Cf spontaneous fission neutron source in an X1 encapsulation. The measurements were made in a large low-scatter laboratory using a long counter, and data were taken at angles varying in 10 degrees steps from 0 degrees to 180 degrees relative to the cylindrical axis of the source. Corrections were made for room scatter, loss of neutrons due to air scatter and detector dead time. Calculations corresponding to these measurements were subsequently carried out using the two Monte Carlo codes MCNP and MCBEND, and the results are compared with the measurements and with each other.

  19. A new facility for non-destructive assay using a 252Cf source.

    PubMed

    Stevanato, L; Caldogno, M; Dima, R; Fabris, D; Hao, Xin; Lunardon, M; Moretto, S; Nebbia, G; Pesente, S; Pino, F; Sajo-Bohus, L; Viesti, G

    2013-03-01

    A new laboratory facility for non-destructive analysis (NDA) using a time-tagged (252)Cf source is presented. The system is designed to analyze samples having maximum size of about 20 × 25 cm(2), the material recognition being obtained by measuring simultaneously total and energy dependent transmission of neutrons and gamma rays. The equipment technical characteristics and performances of the NDA system are presented, exploring also limits due to the sample thickness. Some recent applications in the field of cultural heritage are presented. PMID:23276691

  20. Test and evaluation results of the /sup 252/Cf shuffler at the Savannah River Plant

    SciTech Connect

    Crane, T.W.

    1981-03-01

    The /sup 252/Cf Shuffler, a nondestructive assay instrument employing californium neutron source irradiation and delayed-neutron counting, was developed for measuring /sup 235/U content of scrap and waste items generated at the Savannah River Plant (SRP) reactor fuel fabrication facility. The scrap and waste items include high-purity uranium-aluminum alloy ingots as well as pieces of castings, saw and lathe chips from machining operations, low-purity items such as oxides of uranium or uranium intermixed with flux materials found in recovery operations, and materials not recoverable at SRP such as floor sweepings or residues from the uranium scrap recovery operation. The uranium contains about 60% /sup 235/U with the remaining isotopes being /sup 236/U, /sup 238/U, and /sup 234/U in descending order. The test and evaluation at SRP concluded that the accuracy, safety, reliability, and ease of use made the /sup 252/Cf Shuffler a suitable instrument for routine use in an industrial, production-oriented plant.

  1. Bremsstrahlung emission of high energy accompanying spontaneous fission of {sup 252}Cf

    SciTech Connect

    Maydanyuk, S. P.; Olkhovsky, V. S.; Mandaglio, G.; Manganaro, M.; Fazio, G.; Giardina, G.

    2010-07-15

    The study of the bremsstrahlung photon emission accompanying fragments produced in the spontaneous fission of heavy nuclei by a fully quantum approach is presented for the first time. This kind of problem requires the knowledge of wave functions of the fissioning system leading to a wide distribution of couples of fragments that are the products of fission. With the aim of obtaining these wave functions, the interaction potential between the emitted fragment and residual nucleus is calculated by a standard approach. A new procedure was performed that allows an increase in the accuracy of calculations of radial integrals in the far asymptotic region and the achievement of the convenient convergence in calculations of the spectra. The total probability of the emitted photons in the spontaneous fission of {sup 252}Cf was calculated in such a way. We obtained good agreement between theory and experimental data up to 38 MeV for the bremsstrahlung spectrum of photons while the calculation of the total probability of photon emission accompanying fragments was performed up to an energy of 60 MeV. The analysis of contributions in the bremsstrahlung spectrum accompanying the emission of light, medium, and heavy fragments in the fission of {sup 252}Cf is presented.

  2. Brain tumour and infiltrations dosimetry of boron neutron capture therapy combined with 252Cf brachytherapy.

    PubMed

    Brandão, Sâmia F; Campos, Tarcísio P R

    2012-04-01

    This article presents a dosimetric investigation of boron neutron capture therapy (BNCT) combined with (252)Cf brachytherapy for brain tumour control. The study was conducted through computational simulation in MCNP5 code, using a precise and discrete voxel model of a human head, in which a hypothetical brain tumour was incorporated. A boron concentration ratio of 1:5 for healthy-tissue: tumour was considered. Absorbed and biologically weighted dose rates and neutron fluency in the voxel model were evaluated. The absorbed dose rate results were exported to SISCODES software, which generates the isodose surfaces on the brain. Analyses were performed to clarify the relevance of boron concentrations in occult infiltrations far from the target tumour, with boron concentration ratios of 1:1 up to 1:50 for healthy-tissue:infiltrations and healthy-tissue:tumour. The average biologically weighted dose rates at tumour area exceed up to 40 times the surrounding healthy tissue dose rates. In addition, the biologically weighted dose rates from boron have the main contribution at the infiltrations, especially far from primary tumour. In conclusion, BNCT combined with (252)Cf brachytherapy is an alternative technique for brain tumour treatment because it intensifies dose deposition at the tumour and at infiltrations, sparing healthy brain tissue.

  3. Radioactive Beams from 252Cf Fission Using a Gas Catcher and an ECR Charge Breeder at ATLAS

    SciTech Connect

    Savard, Guy; Pardo, Richard C.; Moore, E. Frank; Hecht, Adam A.; Baker, Sam

    2005-03-15

    A proposed upgrade to the radioactive beam capability of the ATLAS facility has been proposed using 252Cf fission fragments thermalized and collected into a low-energy particle beam using a helium gas catcher. In order to reaccelerate these beams the ATLAS ECR-I will be reconfigured as a charge breeder source. A 1Ci 252Cf source is expected to provide sufficient yield to deliver beams of up to {approx}103 far from stability ions per second on target. A brief facility description and the expected performance information are provided in this report.

  4. Application of 252Cf plasma desorption mass spectrometry in dental research

    NASA Astrophysics Data System (ADS)

    Fritsch, Hans-Walter; Schmidt, Lothar; Köhl, Peter; Jungclas, Hartmut; Duschner, Heins

    1993-07-01

    Topically applied fluorides introduced in dental hygiene products elevate the concentration levels of fluoride in oral fluids and thus also affect chemical reactions of enamel de- and remineralisation. The chemical reactions on the surface of tooth enamel still are a subject of controversy. Here 252Cf-plasma desorption mass spectrometry and argon ion etching are used to analyse the molecular structure of the upper layes of enamel. The mass spectrum of untreated enamel is characterised by a series of cluster ions containing phosphate. It is evident that under certain conditions the molecular structure of the surface enamel is completely transformed by treatment with fluorides. The result of the degradation and precipitation processes is reflected by a total replacement of the phosphate by fluoride in the measured cluster ion distribution. Stepwise etching of the upper layers by Ar+ ions reveals the transition from a nearly pure CaF2 structure to the unchanged composition of the enamel mineral.

  5. Relative Yields of 149-153Pr in Spontaneous Fission of 252Cf

    NASA Astrophysics Data System (ADS)

    Eldridge, Jonathan; Wang, Enhong; Hwang, J. K.; Hamilton, Joe; Ramayya, A. V.; Luo, Y. X.; Rasmussen, J. O.; Zhu, S. J.; Liu, S. H.; Ter-Akopian, G. M.; Oganessian, Yu. Ts.

    2013-10-01

    The relative yields of the fission partners of 149-153Pr, resulting from the spontaneous fission of 252Cf, were studied. This study was done by means of γ - γ - γ , and γ - γ - γ - γ coincidence data taken in 2000 by the multi-HPGe, Compton-suppressed, gamma detector array, Gammasphere, at Lawrence Berkeley National Lab. The coincidence data were analyzed by double- and triple-gating on transitions in 149-153Pr and obtaining the intensities of the 93-101Y transitions. For 150 , 151 , 152 , 153Pr the 3n channel was found to be the strongest. The 149Pr, however, was found to peak at the 4n channel. These results were used to verify the assignments of the level schemes of 151 , 152 , 153Pr. The data are found to be in agreement with Wahl's independent yield tables.

  6. Analysis of linear energy transfers and quality factors of charged particles produced by spontaneous fission neutrons from 252Cf and 244Pu in the human body.

    PubMed

    Endo, Akira; Sato, Tatsuhiko

    2013-04-01

    Absorbed doses, linear energy transfers (LETs) and quality factors of secondary charged particles in organs and tissues, generated via the interactions of the spontaneous fission neutrons from (252)Cf and (244)Pu within the human body, were studied using the Particle and Heavy Ion Transport Code System (PHITS) coupled with the ICRP Reference Phantom. Both the absorbed doses and the quality factors in target organs generally decrease with increasing distance from the source organ. The analysis of LET distributions of secondary charged particles led to the identification of the relationship between LET spectra and target-source organ locations. A comparison between human body-averaged mean quality factors and fluence-averaged radiation weighting factors showed that the current numerical conventions for the radiation weighting factors of neutrons, updated in ICRP103, and the quality factors for internal exposure are valid.

  7. On the Effect of an Error in a Standard D2O-Moderated 252Cf Energy Spectrum

    SciTech Connect

    Frederick Cummings

    2009-12-01

    There appears to be an error in the neutron fluence for neutrons with energies between 9 and 10 MeV for the tabulated D2O-moderated 252Cf source in ISO 8529-1. The error contributes a total error to neutron dose values from this source of approximately 3%.

  8. A new facility for Non-Destructive Assay with a time-tagged {sup 252}Cf source

    SciTech Connect

    Stevanato, L.; Caldogno, M.; Hao Xin; Dima, R.; Fabris, D.; Nebbia, G.; Lunardon, M.; Moretto, S.; Pesente, S.; Viesti, G.; Sajo-Bohus, L.

    2010-08-04

    A new facility for non-destructive assay using a time-tagged {sup 252}Cf source is presented. The system is designed to analyze samples having maximum size of about 15x20 cm{sup 2}, the material recognition being obtained by measuring simultaneously transmission of neutrons and gamma rays.

  9. 1987 Neutron and gamma personnel dosimeter intercomparison study using a D/sub 2/O-moderated /sup 252/Cf source

    SciTech Connect

    Swaja, R.E.; West, L.E.; Sims, C.S.; Welty, T.J.

    1989-05-01

    The thirteenth Personnel Dosimetry Intercomparison Study (i.e., PDIS 13) was conducted during April 1987 as a joint effort by Oak Ridge National Laboratory's (ORNL) Dosimetry Applications Research Group and the Southwest Radiation Calibration Center at the University of Arkansas. A total of 48 organizations (34 from the US and 14 from abroad) participated in PDIS 13. Participants submitted a total of 1,113 neutron and gamma dosimeters for this mixed field study. The dosimeters were transferred by mail and were handled by experimental personnel at ORNL and the University of Arkansas. The type of neutron dosimeter and the percentage of participants submitting that type are as follows: TLD-albedo (49%), direct interaction TLD (31%), CR-39 (17%), film (3%). The type of gamma dosimeter and the percentage of participants submitting that type are as follows: Li/sub 2/B/sub 4/O/sub 7/, alone or in combination with CaSO/sub 4/, (69%), /sup 7/LiF (28%), natural LiF (3%). Radiation exposures in PDIS 13 were limited to 0.5 and 1.5 mSv from /sup 252/Cf moderated by 15-cm of D/sub 2/O. Traditional exposures using the Health Physics Research Reactor (HPRR) were not possible due to the fact that all reactors at ORNL, including the HPRR, were shutdown by order of the Department of Energy at the time the intercomparison was performed. Planned exposures using a /sup 238/PuBe source were negated by a faulty timing mechanism. Based on accuracy and precision, direct interaction TLD dosimeters exhibited the best performance in PDIS 13 neutron measurements. They were followed, in order of best performance, by CR-39, TLD albedo, and film. The Li/sub 2/B/sub 4/O/sub 7/ type TLD dosimeters exhibited the best performance in PDIS 13 gamma measurements. They were followed by natural LiF, /sup 7/LiF, and film. 12 refs., 1 fig., 5 tabs.

  10. All possible ternary fragmentations of {sup 252}Cf in collinear configuration

    SciTech Connect

    Manimaran, K.; Balasubramaniam, M.

    2011-03-15

    All possible ternary fragmentations in fission of {sup 252}Cf are studied in collinear configuration within a spherical approximation using the recently proposed ''three cluster model.'' The potential energy surface of collinear configuration exhibits a strong valley around {sup 48}Ca and its neighboring nuclei {sup 50}Ca, {sup 54}Ti, and {sup 60}Cr. Such strong minima are not seen in the potential energy surface of an equatorial configuration. As a consequence of strong minima in the potential, the overall relative yield is higher for the ternary fragmentation with {sup 48}Ca, {sup 50}Ca, {sup 54}Ti, {sup 60}Cr, and {sup 82}Ge as the third fragment. The results of potential energy and relative yield calculations reveal that collinear configuration increases the probability of emission of heavy fragments like {sup 48}Ca (doubly magic nucleus) and its neighboring nuclei as the third fragment. The obtained results indicate that the collinear configuration is the preferred configuration for intermediate nuclei ({sup 48}Ca, {sup 50}Ca, {sup 54}Ti, and {sup 60}Cr) as the third fragment in particle accompanied fission while the equatorial configuration may be a preferred configuration for light nuclei ({sup 4}He, {sup 10}Be) as the third fragment.

  11. Absolute measurement of anti. nu. /sub p/ for /sup 252/Cf using the ORNL large liquid scintillator neutron detector

    SciTech Connect

    Spencer, R.R.; Gwin, R.; Ingle, R.

    1981-08-01

    The ORNL large liquid scintillator detector was used in a precise determination of anti ..nu../sub p/, the number of neutrons emitted promptly, for spontaneous fission of /sup 252/Cf. Measurements of the detector efficiency over a broad energy region were made by means of a proton-recoil technique employing the ORELA white neutron source. Monte Carlo calculation of the detector efficiency for a spectrum representative of /sup 252/Cf fission neutrons was calibrated with these elaborate measurements. The unusually flat response of the neutron detector resulted in elimination of several known sources of error. Experimental measurement was coupled with calculational methods to correct for other known errors. These measurements lead to an unusually small estimated uncertainty of 0.2% in the value obtained, anti ..nu../sub p/ = 3.773 +- 0.007.

  12. Fabrication of 50-mg /sup 252/Cf neutron sources for the FDA (Food and Drug Administration) activation analysis facility

    SciTech Connect

    Bigelow, J.E.; Cagle, E.B.; Knauer, J.B.

    1987-01-01

    The Transuranium Processing Plant (TPP) at ORNL has been requested by the Food and Drug Administration (FDA) to furnish 200 mg of /sup 252/Cf for use in their new activation analysis facility. This paper discusses the procedure to be employed in fabricating the californium into four neutron sources, each containing a nominal 50-mg of /sup 252/Cf. The ORNL Model LSD (Large, Stainless steel, Doubly encapsulated) neutron source consists of a 6.33-mm-diam aluminum pellet doubly encapsulated in Type 304L stainless steel. The pellet is comprised of an aluminum tube holding Cf/sub 2/O/sub 2/SO/sub 4/ microspheres confined by pressed aluminum powder. The microspheres are prepared in a separate vessel and then transferred into the specially designed aluminum tube prior to pressing.

  13. The sup 252 Cf(sf) neutron spectrum in the 5- to 20-MeV energy range

    SciTech Connect

    Marten, H.; Richter, D.; Seeliger, D. ); Fromm, W.D. ); Bottger, R.; Klein, H. )

    1990-11-01

    This paper reports on the {sup 252}Cf neutron spectrum measured at high energies with a miniature ionization chamber and two different NE-213 neutron detectors. The gamma-ray background and the main cosmic background caused by muons were suppressed by applying efficient pulse-shape discrimination. On the basis of two-dimensional spectroscopy of the neutron time-of-flight and scintillation pulse height, the sliding bias method is used to minimize experimental uncertainties. The experimental data, corrected for several systematic influences, confirm earlier results that show negative deviations from a reference Maxwellian distribution with a 1.42-MeV spectrum temperature for neutron energies above 6 MeV. Experimental results of this work are compared with various statistical model approaches to the {sup 252}Cf(sf) neutron spectrum.

  14. Evaluation of the characteristics of the neutron reference field using D2O-moderated 252Cf source.

    PubMed

    Kowatari, M; Fujii, K; Takahashi, M; Yoshizawa, M; Shimizu, S; Kawasaki, K; Yamaguchi, Y

    2007-01-01

    The ambient/personal dose equivalent per fluence for D(2)O moderated (252)Cf neutron source was determined by measurement. An appropriate subtraction of the scattered neutrons is required for the accurate measurement of direct neutrons. A cubic shadow object was used for the subtraction of the scattered neutrons from the surroundings. The scattered neutrons to be subtracted vary with the position of the shadow object due to the large volume of the source. Using the Monte Carlo code MCNP-4C, the optimum positions of the shadow object were surveyed for subtracting the scattered neutrons. The energy spectra of direct neutrons were measured in the optimum position. The dosimetric parameters for the D(2)O moderated (252)Cf neutron source were reasonable, taking into account the uncertainties of the parameters.

  15. A New Facility For Non-Destructive Assay With A Time-Tagged {sup 252}Cf Source

    SciTech Connect

    Stevanato, L.; Caldogno, M.; Hao, Xin; Dima, R.; Fabris, D.; Nebbia, G.; Lunardon, M.; Moretto, S.; Pesente, S.; Viesti, G.; Sajo-Bohus, L.

    2011-06-01

    A new facility for Non-Destructive Assay based on a time-tagged {sup 252}Cf spontaneous fission source is now in operation at the Padova University. The system is designed to analyze samples with dimensions on the order of 20x20 cm{sup 2}, the material recognition being obtained by measuring simultaneously transmission of neutrons and gamma rays as a function of energy.

  16. True ternary fission, the collinear cluster tripartition (CCT) of {sup 252}Cf

    SciTech Connect

    Oertzen, W. von; Pyatkov, Y. V.; Kamanin, D.

    2012-10-20

    In systematic work over the last decade (see Pyatkov et al. [12] and refs therein), the ternary fission decay of heavy nuclei, in {sup 235}U(n,fff) and {sup 252}Cf(sf) has been studied in a collinear geometry. The name used for this process is (CCT), with three fragments of similar size in a collinear decay, it is the true ternary fission. This decay has been observed in spontaneous fission as well as in a neutron induced reaction. The measurements are based on different experimental set-ups, with binary coincidences containing TOF and energy determinations. With two detector telescopes placed at 180 Degree-Sign , the measurements of masses and energies of each of the registered two fragments, give complete kinematic solutions. Thus the missing mass events in binary coincidences can be determined, these events are obtained by blocking one of the lighter fragments on a structure in front of the detectors. The relatively high yield of CCT (more than 10{sup -3} per binary fission) is explained. It is due to the favourable Q-values (more positive than for binary) and the large phase space of the ternary CCT-decay, dominated by three (magic) clusters: e.g. isotopes of Sn, Ca and Ni, {sup 132}Sn+{sup 50}Ca+{sup 70}Ni. It is shown that the collinear (prolate) geometry has the favoured potential energy relative to the oblate shapes. The ternary fission is considered to be a sequential process. With this assumption the kinetic energies of the fragments have been calculated by Vijay et al.. The third fragments have very low kinetic energies (below 20 MeV) and have thus escaped their detection in previous work on 'ternary fission', where in addition an oblate shape and a triangle for the momentum vectors have been assumed.

  17. True ternary fission, the collinear cluster tripartition (CCT) of 252Cf

    NASA Astrophysics Data System (ADS)

    von Oertzen, W.; Pyatkov, Y. V.; Kamanin, D.

    2012-10-01

    In systematic work over the last decade (see Pyatkov et al. [12] and refs therein), the ternary fission decay of heavy nuclei, in 235U(n,fff) and 252Cf(sf) has been studied in a collinear geometry. The name used for this process is (CCT), with three fragments of similar size in a collinear decay, it is the true ternary fission. This decay has been observed in spontaneous fission as well as in a neutron induced reaction. The measurements are based on different experimental set-ups, with binary coincidences containing TOF and energy determinations. With two detector telescopes placed at 180°, the measurements of masses and energies of each of the registered two fragments, give complete kinematic solutions. Thus the missing mass events in binary coincidences can be determined, these events are obtained by blocking one of the lighter fragments on a structure in front of the detectors. The relatively high yield of CCT (more than 10-3 per binary fission) is explained. It is due to the favourable Q-values (more positive than for binary) and the large phase space of the ternary CCT-decay, dominated by three (magic) clusters: e.g. isotopes of Sn, Ca and Ni, 132Sn+50Ca+70Ni. It is shown that the collinear (prolate) geometry has the favoured potential energy relative to the oblate shapes. The ternary fission is considered to be a sequential process. With this assumption the kinetic energies of the fragments have been calculated by Vijay et al. [1]. The third fragments have very low kinetic energies (below 20 MeV) and have thus escaped their detection in previous work on "ternary fission", where in addition an oblate shape and a triangle for the momentum vectors have been assumed.

  18. Detailed Study of the Angular Correlations in the Prompt Neutron Emission in Spontaneous Fission of 252Cf

    NASA Astrophysics Data System (ADS)

    Kopatch, Yu.; Chietera, A.; Stuttgé, L.; Gönnenwein, F.; Mutterer, M.; Gagarski, A.; Guseva, I.; Chernysheva, E.; Dorvaux, O.; Hambsch, F.-J.; Hanappe, F.; Mezentseva, Z.; Telezhnikov, S.

    An experiment has been performed at IPHC Strasbourg, aimed at the detailed investigation of angular correlations in the neutron emission from spontaneous fission of 252Cf. Fission fragments were measured by the angle-sensitive double ionization chamber CODIS while neutrons were detected by a set of 60 DEMON scintillator counters. The main aim of the experiment is the observation of the correlation between the fragment spins and neutron emission anisotropy. Preliminary results, based on the Monte-Carlo simulations, as well as the preliminary analysis of the experimental data are shown.

  19. Replacing a 252Cf source with a neutron generator in a shuffler - a conceptual design performed with MCNPX

    SciTech Connect

    Schear, Melissa A; Tobin, Stephen J

    2009-01-01

    The {sup 252}Cf shuffler has been widely used in nuclear safeguards and radioactive waste management to assay fissile isotopes, such as {sup 235}U or {sup 239}Pu, present in a variety of samples, ranging from small cans of uranium waste to metal samples weighing several kilograms. Like other non-destructive assay instruments, the shuffler uses an interrogating neutron source to induce fissions in the sample. Although shufflers with {sup 252}Cf sources have been reliably used for several decades, replacing this isotopic source with a neutron generator presents some distinct advantages. Neutron generators can be run in a continuous or pulsed mode, and may be turned off, eliminating the need for shielding and a shuffling mechanism in the shuffler. There is also essentially no dose to personnel during installation, and no reliance on the availability of {sup 252}Cf. Despite these advantages, the more energetic neutrons emitted from the neutron generator (141 MeV for D-T generators) present some challenges for certain material types. For example when the enrichment of a uranium sample is unknown, the fission of {sup 238}U is generally undesirable. Since measuring uranium is one of the main uses of a shuffler, reducing the delayed neutron contribution from {sup 238}U is desirable. Hence, the shuffler hardware must be modified to accommodate a moderator configuration near the source to tailor the interrogating spectrum in a manner which promotes sub-threshold fissions (below 1 MeV) but avoids the over-moderation of the interrogating neutrons so as to avoid self-shielding. In this study, where there are many material and geometry combinations, the Monte Carlo N-Particle eXtended (MCNPX) transport code was used to model, design, and optimize the moderator configuration within the shuffler geometry. The code is then used to evaluate and compare the assay performances of both the modified shuffler and the current {sup 252}Cf shuffler designs for different test samples. The

  20. Status of the electron cyclotron resonance charge breeder for the {sup 252}Cf fission source project at ATLAS

    SciTech Connect

    Vondrasek, R. C.; Scott, R.; Carr, J.; Pardo, R. C.

    2008-02-15

    The construction of the Californium Rare Ion Breeder Upgrade, a new radioactive beam facility for the Argonne tandem linac accelerator system (ATLAS), is in progress. The facility will use fission fragments from a 1 Ci {sup 252}Cf source, thermalized and collected into a low-energy particle beam by a helium gas catcher. In order to reaccelerate these beams, the existing ATLAS ECR1 ion source has been redesigned to function as a charge breeder source. The design features, initial results, and status of this charge breeder configuration are presented.

  1. 252Cf fission-neutron spectrum using a simplified time-of-flight setup: An advanced teaching laboratory experiment

    NASA Astrophysics Data System (ADS)

    Becchetti, F. D.; Febbraro, M.; Torres-Isea, R.; Ojaruega, M.; Baum, L.

    2013-02-01

    The removal of PuBe and AmBe neutron sources from many university teaching laboratories (due to heightened security issues) has often left a void in teaching various aspects of neutron physics. We have recently replaced such sources with sealed 252Cf oil-well logging sources (nominal 10-100 μCi), and developed several experiments using them as neutron sources. This includes a fission-neutron time-of-flight experiment using plastic scintillators, which utilizes the prompt γ rays emitted in 252Cf spontaneous fission as a fast timing start signal. The experiment can be performed with conventional nuclear instrumentation and a 1-D multi-channel pulse-height analyzer, available in most advanced teaching laboratories. Alternatively, a more sophisticated experiment using liquid scintillators and n/γ pulse-shape discrimination can be performed. Several other experiments using these neutron sources are also feasible. The experiments can introduce students to the problem of detecting the dark matter thought to dominate the universe and to the techniques used to detect contraband fissionable nuclear materials.

  2. The collinear cluster tri-partition (CCT) of 252Cf (sf): New aspects from neutron gated data

    NASA Astrophysics Data System (ADS)

    Pyatkov, Yu. V.; Kamanin, D. V.; von Oertzen, W.; Alexandrov, A. A.; Alexandrova, I. A.; Falomkina, O. V.; Jacobs, N.; Kondratjev, N. A.; Kuznetsova, E. A.; Lavrova, Yu. E.; Malaza, V.; Ryabov, Yu. V.; Strekalovsky, O. V.; Tyukavkin, A. N.; Zhuchko, V. E.

    2012-07-01

    Results of two different experiments for the study of fission of 252Cf (sf) events in coincidence with neutrons are reported. Two time-of-flight-energy (TOF- E detectors systems have been used. The fission fragment masses were obtained in a double arm coincidence set-up, where the missing mass in the binary decay is used to characterise ternary fission as a collinear cluster tri-partition (CCT). The 3He filled neutron counters have been arranged so as to detect principally neutrons emitted from an isotropic source in the laboratory frame. The fission events connected to the larger experimental neutron multiplicities show a wide range in the missing-mass spectrum, down to α -particles, carbon and oxygen isotopes. These are linked with magic nuclei in the binary mass-mass correlations of the fission fragments. These neutron gated data are virtually free from background events from scattered binary fission fragments. The ungated spectra are compared to those of the previous data from our previous article (Eur. Phys. J. A. 45, 29 (2010)), the observed structures agree well with the manifestations of the collinear cluster tri-partition of 252Cf (sf) observed earlier. Several new families of the CCT modes are observed.

  3. In-beam gamma-ray spectroscopy of {sup 248,250,252}Cf by neutron-transfer reactions using a Cf target

    SciTech Connect

    Takahashi, R.; Ishii, T.; Asai, M.; Nagae, D.; Makii, H.; Tsukada, K.; Toyoshima, A.; Ishii, Y.; Matsuda, M.; Makishima, A.; Shizuma, T.; Kohno, T.; Ogawa, M.

    2010-05-15

    The ground-state bands of {sup 248,250,252}Cf have been established up to the 10{sup +}, 12{sup +}, and 10{sup +} states, respectively, by in-beam gamma-ray spectroscopy using neutron-transfer reactions with a 153-MeV {sup 18}O beam and a highly radioactive Cf target. The deexcitation gamma rays in {sup 248,250,252}Cf were identified by taking coincidences with outgoing particles of {sup 16-19}O measured with Si DELTAE-E detectors, and by selecting their kinetic energies. Moments of inertia of {sup 248,250,252}Cf were discussed in terms of the N=152 deformed shell gap.

  4. Description of the /sup 252/Cf(sf) neutron spectrum in the framework of a generalized Madland-Nix model

    SciTech Connect

    Marten, H.; Seeliger, D.

    1986-08-01

    The Madland-Nix model (MNM) for the calculation of fission neutron spectra is modified considering the dependence on fragment mass number A. Further, an approximation of this generalized Madland-Nix model (GMNM) that takes into account the different center-of-mass system spectra for the light and heavy fragment groups is discussed. These new calculations are compared with two versions of the original MNM. In particular, the level density parameter, which was adjusted by fitting the calculated spectra to a Maxwellian distribution deduced from experimental data, becomes more reasonable in the framework of the GMNM. The results of the different model calculations are compared with experimental data on the /sup 252/Cf(sf) neutron spectrum in the 0.1- to 20-MeV energy range.

  5. Characterization of neutron fields from bare and heavy water moderated (252)Cf spontaneous fission source using Bonner Sphere Spectrometer.

    PubMed

    Atanackovic, Jovica; Yonkeu, Andre; Dubeau, Jacques; Witharana, Sampath Hakmana; Priest, Nicholas

    2015-05-01

    In this work a calibrated Bonner Sphere Spectrometer (BSS), together with ISO shadow cones, was used to quantify the total and scattered components of bare and heavy water moderated (252)Cf neutron fields. All measurements were performed with a BSS that was calibrated at the National Physical Laboratory (NPL), Teddington, UK, which is a global primary standard laboratory and world-leading facility for neutron metrology and neutron instruments calibration. The fields were characterized for source-spectrometer distances of 80, 100, 150 and 200cm; and at heights of 103 and 200cm from the facility floor. As expected, the scattered contribution was greatest at the farthest distance from the source and closer to the floor. Hence, at a distance of 200cm and a height of 103cm, the scatter added to the direct field up to 162% of the total neutron fluence and up to 61% of the ambient dose equivalent, while at the same distance and height of 200cm above the floor, these values were up to 146% and 52%, respectively. In the case of heavy water moderated (252)Cf neutron fields, a shadow cone subtraction technique could not be implemented, however Monte Carlo simulations were utilized in order to differentiate between the direct and scatter components of the neutron fields. In this case, at a source-detector distance of 200cm and a height of 103cm, the scatter added to the direct field up to 148% of the total neutron fluence and up to 45% of the ambient dose equivalent, while at the same distance and a height of 200cm above the floor, these values were up to 134% and 42%, respectively.

  6. Relative biological efficiency for the induction of various gene mutations in normal and enriched with 10B Tradescantia cells by neutrons from 252Cf source.

    PubMed

    Cebulska-Wasilewska, A; Schneider, K; Kim, J K

    2001-03-01

    The effectiveness of neutrons from a Californium-252 source in the induction of various abnormalities in the Tradescantia clone 4430 stamen hair cells (Trad-SH assay) were studied. A special attention was paid to check whether any enhancement in effects is visible in the cells enriched with boron ions. Inflorescences, normal or pretreated with chemicals containing boron, were irradiated in the air with neutrons from a 252Cf source at KAERI, Taejon, Korea. To estimate the relative biological effectiveness (RBE) of the beam under the study, numbers of Tradescantia inflorescence without chemical pretreatment were irradiated with various doses of X-rays. The ranges of radiation doses used for neutrons were 0-1.0Gy and for X-rays 0-0.5Gy. Following the culturing according to standard procedures screening of gene and lethal mutations in somatic cells of stamen hairs was done in the extended period, between days 7 and 19 after exposures. Maximal RBE values for the induction of pink, colorless and lethal mutations were evaluated from comparison of the slopes in linear parts of the dose response curves obtained after irradiation with X-rays and californium source. The RBE(max) value or the induction of gene mutation was estimated as 7.2 comparing the value 5.6 in the studies reported earlier. The comparison of dose-response curves and its alteration, due to changes in the cells and plants environment during and after irradiation, explains the observed differences. Inflorescence pretreated with borax responded to neutrons differently depending on the biological end points. Although, for the induction of pink mutations no significant difference was observed, though, in the case of cell lethality, pretreated with boron ion plants have shoved a statistically significant increase of the RBE value from 5.5 to 34.7, and in the case of colorless mutations from 1.6 to 5.6.

  7. Benchmark Experiments of Thermal Neutron and Capture Gamma-Ray Distributions in Concrete Using {sup 252}Cf

    SciTech Connect

    Asano, Yoshihiro; Sugita, Takeshi; Hirose, Hideyuki; Suzaki, Takenori

    2005-10-15

    The distributions of thermal neutrons and capture gamma rays in ordinary concrete were investigated by using {sup 252}Cf. Two subjects are considered. One is the benchmark experiments for the thermal neutron and the capture gamma-ray distributions in ordinary concrete. The thermal neutron and the capture gamma-ray distributions were measured by using gold-foil activation detectors and thermoluminescence detectors. These were compared with the simulations by using the discrete ordinates code ANISN with two different group structure types of cross-section library of a new Japanese version, JENDL-3.3, showing reasonable agreement with both fine and rough structure groups of thermal neutron energy. The other is a comparison of the simulations with two different cross-section libraries, JENDL-3.3 and ENDF/B-VI, for the deep penetration of neutrons in the concrete, showing close agreement in 0- to 100-cm-thick concrete. However, the differences in flux grow with an increase in concrete thickness, reaching up to approximately eight times near 4-m thickness.

  8. Shielding evaluation of a medical linear accelerator vault in preparation for installing a high-dose rate 252Cf remote afterloader.

    PubMed

    Melhus, C S; Rivard, M J; Kurkomelis, J; Liddle, C B; Massé, F X

    2005-01-01

    In support of the effort to begin high-dose rate 252Cf brachytherapy treatments at Tufts-New England Medical Center, the shielding capabilities of a clinical accelerator vault against the neutron and photon emissions from a 1.124 mg 252Cf source were examined. Outside the clinical accelerator vault, the fast neutron dose equivalent rate was below the lower limit of detection of a CR-39 etched track detector and below 0.14 +/- 0.02 muSv h(-1) with a proportional counter, which is consistent, within the uncertainties, with natural background. The photon dose equivalent rate was also measured to be below background levels (0.1 muSv h(-1)) using an ionisation chamber and an optically stimulated luminescence dosemeter. A Monte Carlo simulation of neutron transport through the accelerator vault was performed to validate measured values and determine the thermal-energy to low-energy neutron component. Monte Carlo results showed that the dose equivalent rate from fast neutrons was reduced by a factor of 100,000 after attenuation through the vault wall, and the thermal-energy neutron dose equivalent rate would be an additional factor of 1000 below that of the fast neutrons. Based on these findings, the shielding installed in this facility is sufficient for the use of at least 5.0 mg of 252Cf.

  9. Second malignancies following conventional or combined 252Cf neutron brachytherapy with external beam radiotherapy for breast cancer

    PubMed Central

    Valuckas, Konstantinas Povilas; Atkocius, Vydmantas; Kuzmickiene, Irena; Aleknavicius, Eduardas; Liukpetryte, Sarune; Ostapenko, Valerijus

    2013-01-01

    We retrospectively evaluated the risk of second malignancies among 832 patients with inner or central breast cancer treated with conventional external beam schedule (CRT group), or neutron brachytherapy using Californium-252 (252Cf) sources and hypofractionated external beam radiotherapy (HRTC group), between 1987 and 1996 at the Institute of Oncology, Vilnius University. Patients were observed until the occurrences of death or development of a second malignancy, or until 31 December 2009, whichever was earlier. Median follow-up time was 10.4 years (range, 1.2–24.1 years). Risk of second primary cancers was quantified using standardized incidence ratios (SIRs). Cox proportional hazards regression models were used to estimate hazard ratios (HRs). There was a significant increase in the risk of second primary cancers compared with the general population (SIR 1.3, 95% CI 1.1–1.5). The observed number of second primary cancers was also higher than expected for breast (SIR 1.8, 95% CI 1.3–2.4) and lung cancer (SIR 3.8, 95% CI 2.0–6.7). For second breast cancer, no raised relative risk was observed during the period ≥10 or more years after radiotherapy. Compared with the CRT group, HRTC patients had a not statistically significant higher risk of breast cancer. Increased relative risks were observed specifically for age at initial diagnosis of <50 years (HR 2.9, 95% CI 1.6–5.2) and for obesity (HR 2.8, 95% CI 1.1–7.2). PMID:23397075

  10. Results with the electron cyclotron resonance charge breeder for the 252Cf fission source project (Californium Rare Ion Breeder Upgrade) at Argonne Tandem Linac Accelerator System.

    PubMed

    Vondrasek, R; Kondrashev, S; Pardo, R; Scott, R; Zinkann, G P

    2010-02-01

    The construction of the Californium Rare Ion Breeder Upgrade, a new radioactive beam facility for the Argonne Tandem Linac Accelerator System (ATLAS), is nearing completion. The facility will use fission fragments from a 1 Ci (252)Cf source; thermalized and collected into a low-energy particle beam by a helium gas catcher. In order to reaccelerate these beams, an existing ATLAS electron cyclotron resonance (ECR) ion source was redesigned to function as an ECR charge breeder. Thus far, the charge breeder has been tested with stable beams of rubidium and cesium achieving charge breeding efficiencies of 9.7% into (85)Rb(17+) and 2.9% into (133)Cs(20+).

  11. True ternary fission, the collinear decay into fragments of similar size in the 252Cf(sf) and 235U(nth, f) reactions

    NASA Astrophysics Data System (ADS)

    von Oertzen, W.; Nasirov, A. K.

    2014-06-01

    The collinear cluster decay in 252Cf(sf, fff), with three cluster fragments of different masses (e.g. 132Sn, 52-48Ca, 68-72Ni), which has been observed by the FOBOS group in JINR, has established a new decay mode of heavy nuclei, the collinear cluster tripartition (CCT). The same type of ternary fission decay has been observed in the reaction 235U(nth, fff). This kind of “true ternary fission” of heavy nuclei has been predicted many times in theoretical works during the last decades. In the present note we discuss true ternary fission (TFFF) into three nuclei of almost equal size (e.g. Z=98→Zi=32, 34, 32) in the same systems. The possible fission channels are predicted from potential-energy (PES) calculations. These PES's show pronounced minima for several ternary fragmentation decays, e.g. for 252Cf(sf) and for 235U(nth, f). They suggest the existence of a variety of collinear ternary fission modes. The TFFF-decays chosen in this letter have very similar dynamical features as the previously observed collinear CCT-decays. The data obtained in the above mentioned experiments allow us to extract the yield for these TFFF-decays in both systems by using specific gates on the measured parameters. These yields are a few 1.0ṡ10-6/(binary fission).

  12. Results with the electron cyclotron resonance charge breeder for the {sup 252}Cf fission source project (Californium Rare Ion Breeder Upgrade) at Argonne Tandem Linac Accelerator System

    SciTech Connect

    Vondrasek, R.; Kondrashev, S.; Pardo, R.; Scott, R.; Zinkann, G. P.

    2010-02-15

    The construction of the Californium Rare Ion Breeder Upgrade, a new radioactive beam facility for the Argonne Tandem Linac Accelerator System (ATLAS), is nearing completion. The facility will use fission fragments from a 1 Ci {sup 252}Cf source; thermalized and collected into a low-energy particle beam by a helium gas catcher. In order to reaccelerate these beams, an existing ATLAS electron cyclotron resonance (ECR) ion source was redesigned to function as an ECR charge breeder. Thus far, the charge breeder has been tested with stable beams of rubidium and cesium achieving charge breeding efficiencies of 9.7% into {sup 85}Rb{sup 17+} and 2.9% into {sup 133}Cs{sup 20+}.

  13. Fissible Deposit Characterization at the Former Oak Ridge K-25 Gaseous Diffusion Plant by {sup 252}CF-Source-Driven Measurements

    SciTech Connect

    Hannon, T.F.; Mihalczo, J.T.; Mullens, J.A.; Uckan, T.; Valentine, T.E.; Wyatt, M.S.

    1998-05-01

    largest deposits with the {sup 252}Cf-source-driven transmission (CFSDT) technique, an active neutron interrogation method developed for use at the Oak Ridge Y-12 Plant to identify nuclear weapons components in containers. The active CFSDT measurement technique uses CFSDT time-of-flight measurements of prompt neutrons and gamma rays from an externally introduced {sup 252}Cf source.

  14. A probe for neutron activation analysis in a drill hole using 252Cf, and a Ge(Li) detector cooled by a melting cryogen

    USGS Publications Warehouse

    Tanner, A.B.; Moxham, R.M.; Senftle, F.E.; Baicker, J.A.

    1972-01-01

    A sonde has been built for high-resolution measurement of natural or neutron-induced gamma rays in boreholes. The sonde is 7.3 cm in diameter and about 2.2 m in length and weighs about 16 kg. The lithium-compensated germanium semiconductor detector is stabilized at -185 to -188??C for as much as ten hours by a cryostatic reservoir containing melting propane. During periods when the sonde is not in use the propane is kept frozen by a gravity-fed trickle of liquid nitrogen from a reservoir temporarily attached to the cryostat section. A 252Cf source, shielded from the detector, may be placed in the bottom section of the sonde for anlysis by measurement of neutron-activation or neutron-capture gamma rays. Stability of the cryostat with changing hydrostatic pressure, absence of vibration, lack of need for power to the cryostat during operation, and freedom of orientation make the method desirable for borehole, undersea, space, and some laboratory applications. ?? 1972.

  15. A molecular fraction method for measuring personnel radiation doses

    NASA Astrophysics Data System (ADS)

    Fadel, M. A.; Khalil, W. A.; Krodja, R. P.; Sheta, N.; Abd El-Baset, M. S.

    1987-02-01

    This work represents a development in fast and albedo neutron and gamma ray dosimetry, using cellulose nitrate, as a tissue equivalent material, in which radiation damage was registered. The changes in molecular fractions of the polymer were measured after irradiation with neutron fluences from a 252Cf source in the range 10 5-10 10 n/cm 2 and gamma doses in the range 10 -4-10 -1 Gy through the use of gel filtration chromatography. Effects of irradiation on phantom, phantom to dosimeter distance, phantom thickness and storage at extreme environmental conditions were studied on the detector response and readout. The results showed that main chain scission followed by formation of new molecular configurations is the predominant effect of radiation on the polymer. The method enables measurements of neutron fluences and gamma doses in mixed radiation fields. Empirical formulae for calculating the absorbed dose from the measured changes in molecular fraction intensities are given.

  16. Mixed-radiation discrimination using thermoluminescent dosimeters

    NASA Astrophysics Data System (ADS)

    Skopec, Marlene

    This work has developed, analyzed, and tested methods to discriminate among different types of radiation exposures using the glow curves of thermoluminescent dosimeters (TLDs). Thermoluminescent materials, Harshaw LiF:Mg,Ti (TLD-100) and CaF2:Tm (TLD-300), were exposed to pure proton, pure photon (x-ray and gamma), and mixed fields to examine and use differences in the thermoluminescent (TL) glow curve shapes for the purpose of radiation type discrimination. The effect of radiation type exposure order on thermoluminescent glow curve shape and the principle of superposition of glow curves were evaluated. Using computerized glow curve deconvolution (CGCD), no significant differences in glow curve shape or magnitude were found. Results demonstrated that the superposition of pure field glow curves is a valid method of simulating mixed field glow curves (i.e., the principle of superposition holds). Two robust and novel techniques for radiation type discrimination were developed: vector representation (VR) and principal component analysis (PCA). In VR, vectors were constructed from glow curve points and classified based on the vector inner product with a unit vector and vector magnitude. In PCA, variations in the glow curves due to radiation type are classified according to one principal component. The two methods were tested for accuracy using leave-one-out validation (LOOV) with classification based on the Mahalanobis distance. Overall, both techniques performed equally well, with over 92% accurate three category classification using the high temperature peak of TLD-100 and nearly 100% correct classification in TLD-300.

  17. Radiative forcing under mixed aerosol conditions

    NASA Astrophysics Data System (ADS)

    GarcíA, O. E.; Expósito, F. J.; DíAz, J. P.; DíAz, A. M.

    2011-01-01

    The mixture of mineral dust with biomass burning or urban-industrial aerosols presents significant differences in optical properties when compared to those of the individual constituents, leading to different impacts on solar radiation levels. This effect is assessed by estimating the direct radiative forcing (ΔF) of these aerosols from solar flux models using the radiative parameters derived from the Aerosol Robotic Network (AERONET). These data reveal that, in oceanic and vegetative covers (surface albedo (SA) < 0.30), the aerosol effect at the top of atmosphere (TOA) is always cooling the Earth-atmosphere system, regardless of the aerosol type. The obtained average values of ΔF range between -27 ± 15 Wm-2 (aerosol optical depth (AOD) at 0.55 μm, 0.3 ± 0.3) for mineral dust mixed with urban-industrial aerosols, registered in the East Asia region, and -34 ± 18 Wm-2 (AOD = 0.8 ± 0.4) for the mixture of the mineral dust and biomass burning particles, observed in the Central Africa region. In the intermediate SA range (0.30-0.50) the TOA radiative effect depends on the aerosol absorption properties. Thus, aerosols with single scattering albedo at 0.55 μm lower than ˜0.88 lead to a warming of the system, with ΔF of 10 ± 11 Wm-2 for the mixture of mineral dust and biomass burning. Cases with SA > 0.30 are not present in East Asia region. At the bottom of atmosphere (BOA) the maximum ΔF values are associated with the highest AOD levels obtained for the mixture of mineral dust and biomass burning aerosols (-130 ± 44 Wm-2 with AOD = 0.8 ± 0.4 for SA < 0.30).

  18. Mixed potentials in radiative stellar collapse

    NASA Astrophysics Data System (ADS)

    Thirukkanesh, S.; Maharaj, S. D.

    2010-07-01

    We study the behavior of a radiating star when the interior expanding, shearing fluid particles are traveling in geodesic motion. We demonstrate that it is possible to obtain new classes of exact solutions in terms of elementary functions without assuming a separable form for the gravitational potentials or initially fixing the temporal evolution of the model unlike earlier treatments. A systematic approach enables us to write the junction condition as a Riccati equation which under particular conditions may be transformed into a separable equation. New classes of solutions are generated which allow for mixed spatial and temporal dependence in the metric functions. We regain particular models found previously from our general classes of solutions.

  19. Application of the LPL model to mixed radiations

    SciTech Connect

    Curtis, S.B.

    1991-09-01

    The LPL (Lethal, Potentially Lethal) formulation was used to analyze sets of cell survival data from mixes of (1) alpha particles and X rays and (2) neon ions and X rays. The hypothesis tested was whether survival after mixed radiation could be predicted by simply adding the total number of lethal and potentially lethal lesions from each radiation in the theoretical survival expression. Results show that all data appear to conform satisfactorily to the LPL hypothesis except for the mixed neon-ion and X-ray results with a large dose of X rays (8 Gy) given first. 8 refs., 6 figs., 1 tab.

  20. Fission Product Transmutation in Mixed Radiation Fields

    SciTech Connect

    Harmon, Frank; Burgett, Erick; Starovoitova, Valeriia; Tsveretkov, Pavel

    2015-01-15

    Work under this grant addressed a part of the challenge facing the closure of the nuclear fuel cycle; reducing the radiotoxicity of lived fission products (LLFP). It was based on the possibility that partitioning of isotopes and accelerator-based transmutation on particular LLFP combined with geological disposal may lead to an acceptable societal solution to the problem of management. The feasibility of using photonuclear processes based on the excitation of the giant dipole resonance (GDR) by bremsstrahlung radiation as a cost effective transmutation method was accessed. The nuclear reactions of interest: (γ,xn), (n,γ), (γ,p) can be induced by bremsstrahlung radiation produced by high power electron accelerators. The driver of these processes would be an accelerator that produces a high energy and high power electron beam of ~ 100 MeV. The major advantages of such accelerators for this purpose are that they are essentially available “off the shelf” and potentially would be of reasonable cost for this application. Methods were examined that used photo produced neutrons or the bremsstrahlung photons only, or use both photons and neutrons in combination for irradiations of selected LLFP. Extrapolating the results to plausible engineering scale transmuters it was found that the energy cost for 129I and 99Tc transmutation by these methods are about 2 and 4%, respectively, of the energy produced from 1000MWe.

  1. Radiative corrections to the solar lepton mixing sum rule

    NASA Astrophysics Data System (ADS)

    Zhang, Jue; Zhou, Shun

    2016-08-01

    The simple correlation among three lepton flavor mixing angles ( θ 12, θ 13, θ 23) and the leptonic Dirac CP-violating phase δ is conventionally called a sum rule of lepton flavor mixing, which may be derived from a class of neutrino mass models with flavor symmetries. In this paper, we consider the solar lepton mixing sum rule θ 12 ≈ θ 12 ν + θ 13 cos δ, where θ 12 ν stems from a constant mixing pattern in the neutrino sector and takes the value of θ 12 ν = 45 ° for the bi-maximal mixing (BM), {θ}_{12}^{ν } = { tan}^{-1}(1/√{2}) ≈ 35.3° for the tri-bimaximal mixing (TBM) or {θ}_{12}^{ν } = { tan}^{-1}(1/√{5+1}) ≈ 31.7° for the golden-ratio mixing (GR), and investigate the renormalization-group (RG) running effects on lepton flavor mixing parameters when this sum rule is assumed at a superhigh-energy scale. For illustration, we work within the framework of the minimal supersymmetric standard model (MSSM), and implement the Bayesian approach to explore the posterior distribution of δ at the low-energy scale, which becomes quite broad when the RG running effects are significant. Moreover, we also discuss the compatibility of the above three mixing scenarios with current neutrino oscillation data, and observe that radiative corrections can increase such a compatibility for the BM scenario, resulting in a weaker preference for the TBM and GR ones.

  2. Conceptually Characterizing the Radiative Effects of Black Carbon Internal Mixing

    NASA Astrophysics Data System (ADS)

    Li, X.; Ming, Y.; Mauzerall, D. L.

    2014-12-01

    Black carbon (BC), as a strongly absorbing aerosol, is distinct from most other climate forcers, as it not only has positive top of atmosphere (TOA) radiative forcing, but also redistributes the absorbed radiation vertically through surface dimming and enhancement of atmospheric absorption. Internal mixing (IM) between BC and other aerosol species, e.g. sulfate and organic carbon (OC), primarily from fossil fuel and biomass burning respectively, further enhances its absorbing ability. Most studies of BC focus on particle-scale changes or TOA radiative forcing enhancement. Our work identifies three layer-scale radiative fluxes (at TOA, atmospheric absorption, and at the surface) due to IM and connects them to particle-scale effects through a new conceptual radiative transfer model (RTM). We also employ a Mie calculation for particle-scale effects and a comprehensive RTM for evaluation of the conceptual model. We find that, although scattering decreases and absorption increases by the same amount at the particle scale due to IM, a weakening in scattering is one order of magnitude less at the layer scale, and thus can be neglected to simplify the conceptual RTM. Our result after simplification indicates that IM enhances atmospheric absorption by increasing TOA forcing and decreasing surface forcing the same amount. This is supported by similar findings both globally and over major BC source regions using the comprehensive RTM. Our conceptual RTM well captures layer-scale radiative effects of IM by reducing the complexity of computing and understanding IM-radiation interactions. Using the conceptual RTM, we estimate a global average increase of 0.42 W/m2 when internal mixing of BC with sulfate and OC is included relative to a case where internal mixing with OC is absent. We conclude that including OC in IM with BC is important, especially when analyzing the climate effects of biomass burning and sulfate mitigation.

  3. Nanodosimetric Characterization of Mixed Radiation Fields: Status and Perspectives

    NASA Astrophysics Data System (ADS)

    Schulte, Reinhard; Bashkirov, Vladimir; Casiraghi, Margherita

    The nanodosimetric characterization of mixed radiation fields containing variable fluences of charged particles, neutrons, and photons with stochastic quantities related to the number of ionizations in biological targets of nanometric size is an active area of research and development. Applications include measurements in low-dose radiation environments, including outer space, for radiation protection as well as characterization of mixed radiation therapy fields present in particle therapy with protons, light ions, or neutrons. Approaches for the nanodosimetric characterization of mixed radiation fields should consist of balance of theoretical Monte Carlo simulations and experimental studies that can inform each other. The former should be carefully benchmarked with the latter, usually employing detectors filled with low-pressure gas in which nanodosimetric studies are possible. Research in experimental nanodosimetry has exploited the principle of low-pressure-gas scaling of mean interaction distances between energy transfer points up to a million-fold, thus allowing to collect single charges (ions or electrons) generated in cylindrical volumes equivalent to a short segment of DNA. When combined with arrival-time selection, position resolution of down to 5 nm, has been achieved for experimental track structure studies. The results of these experimental studies and Monte Carlo simulations using the Monte Carlo codes will be summarized. More recently, we have studied a new principle of 2D low-energy ion detection by impact ionization in a hole-pattern detector in combination with a low-pressure time projection chamber. First proof-of-principle and performance studies with this track-imaging detector and corresponding Monte Carlo simulations will be presented. The full potential of nanometric quantities in characterizing radiation quality for dosimetry of ionizing radiation is yet to be explored. The most significant signature of radiation quality may be the size and

  4. Marangoni mixed convection flow with Joule heating and nonlinear radiation

    SciTech Connect

    Hayat, Tasawar; Shaheen, Uzma; Shafiq, Anum; Alsaedi, Ahmed; Asghar, Saleem

    2015-07-15

    Marangoni mixed convective flow of Casson fluid in a thermally stratified medium is addressed. Flow analysis has been carried out in presence of inclined magnetic field. Heat transfer analysis is discussed in the presence of viscous dissipation, Joule heating and nonlinear thermal radiation. The governing nonlinear partial differential equations are first converted into ordinary differential systems and then developed the convergent series solutions. Flow pattern with the influence of pertinent parameters namely the magnetic parameter, Casson fluid parameter, temperature ratio parameter, stratification parameter, Prandtl number, Eckert number and radiation parameter is investigated. Expression of local Nusselt number is computed and analyzed. It is found that the Nusselt number decreases by increasing magnetic parameter, temperature ratio parameter, angle of inclination and stratification parameter. Moreover the effect of buoyancy parameter on the velocity distribution is opposite in both the opposing and assisting flow phenomena. Thermal field and associated layer thickness are enhanced for larger radiation parameter.

  5. Experimental validation of the new nanodosimetry-based cell survival model for mixed neutron and gamma-ray irradiation.

    PubMed

    Wang, C-K Chris; Zhang, Xin; Gifford, Ian; Burgett, Eric; Adams, Vince; Al-Sheikhly, Mohamad

    2007-09-01

    The new nanodosimetry-based linear-quadratic (LQ) formula has been reviewed for mixed-LET irradiation. V-79 Chinese hamster cells have been irradiated with a mixed-LET field of fission neutrons and gamma rays at the University of Maryland Training Reactor (MUTR). The results show that the experimental survival curve agrees well with that predicted by the new nanodosimetry-based LQ model. The experimental study described in this note, therefore, serves as a validation for the new model to be used for mixed-LET radiotherapies, e.g. 252Cf brachytherapy.

  6. Experimental validation of the new nanodosimetry-based cell survival model for mixed neutron and gamma-ray irradiation

    NASA Astrophysics Data System (ADS)

    Wang, C.-K. Chris; Zhang, Xin; Gifford, Ian; Burgett, Eric; Adams, Vince; Al-Sheikhly, Mohamad

    2007-09-01

    The new nanodosimetry-based linear-quadratic (LQ) formula has been reviewed for mixed-LET irradiation. V-79 Chinese hamster cells have been irradiated with a mixed-LET field of fission neutrons and gamma rays at the University of Maryland Training Reactor (MUTR). The results show that the experimental survival curve agrees well with that predicted by the new nanodosimetry-based LQ model. The experimental study described in this note, therefore, serves as a validation for the new model to be used for mixed-LET radiotherapies, e.g. 252Cf brachytherapy.

  7. Neutron radiative capture methods for surface elemental analysis

    USGS Publications Warehouse

    Trombka, J.I.; Senftle, F.; Schmadebeck, R.

    1970-01-01

    Both an accelerator and a 252Cf neutron source have been used to induce characteristic gamma radiation from extended soil samples. To demonstrate the method, measurements of the neutron-induced radiative capture and activation gamma rays have been made with both Ge(Li) and NaI(Tl) detectors, Because of the possible application to space flight geochemical analysis, it is believed that NaI(Tl) detectors must be used. Analytical procedures have been developed to obtain both qualitative and semiquantitative results from an interpretation of the measured NaI(Tl) pulse-height spectrum. Experiment results and the analytic procedure are presented. ?? 1970.

  8. Generating Far-Infrared Radiation By Two-Wave Mixing

    NASA Technical Reports Server (NTRS)

    Borenstain, Shmuel

    1992-01-01

    Far-infrared radiation 1 to 6 GHz generated by two-wave mixing in asymmetrically grown GaAs/AlxGa1-xAs multiple-quantum-well devices. Two near-infrared semiconductor diode lasers phase-locked. Outputs amplified, then combined in semiconductor nonlinear multiple-quantum-well planar waveguide. Necessary to optimize design of device with respect to three factors: high degree of confinement of electromagnetic field in nonlinear medium to maximize power density, phase matching to extend length of zone of interaction between laser beams in non-linear medium, and nonlinear susceptibility. Devices used as tunable local oscillators in heterodyne-detection radiometers.

  9. Dark radiation constraints on mixed Axion/Neutralino dark matter

    SciTech Connect

    Bae, Kyu Jung; Baer, Howard; Lessa, Andre E-mail: baer@nhn.ou.edu

    2013-04-01

    Recent analyses of CMB data combined with the measurement of BAO and H{sub 0} show that dark radiation — parametrized by the apparent number of additional neutrinos ΔN{sub eff} contributing to the cosmic expansion — is bounded from above by about ΔN{sub eff}∼<1.6 at 95% CL. We consider the mixed axion/neutralino cold dark matter scenario which arises in R-parity conserving supersymmetric (SUSY) models wherein the strong CP problem is solved by hadronic axions with a concommitant axion(a)/saxion(s)/axino(ã) supermultiplet. Our new results include improved calculations of thermal axion and saxion production and include effects of saxion decay to axinos and axions. We show that the above bound on ΔN{sub eff} is easily satisfied if saxions are mainly thermally produced and m{sub LSP} < m{sub ã}∼mixed neutralino/axion dark matter are highly constrained by combined CMB, BBN and Xe-100 constraints. In particular, supersymmetric models with a standard overabundance of neutralino dark matter are excluded for all values of the Peccei-Quinn breaking scale. Next generation WIMP direct detection experiments may be able to discover or exclude mixed axion-neutralino CDM scenarios where s → aa is the dominant saxion decay mode.

  10. Stirring and mixing of liquids using acoustic radiation force.

    PubMed

    Sarvazyan, Armen; Ostrovsky, Lev

    2009-06-01

    The possibility of using acoustic radiation force in standing waves for stirring and mixing small volumes of liquids is theoretically analyzed. The principle of stirring considered in this paper is based on moving the microparticles suspended in a standing acoustic wave by changing the frequency so that one standing wave mode is replaced by the other, with differently positioned minima of potential energy. The period-average transient dynamics of solid microparticles and gas microbubbles is considered, and simple analytical solutions are obtained for the case of standing waves of variable amplitude. It is shown that bubbles can be moved from one equilibrium position to another two to three orders of magnitude faster than solid particles. For example, radiation force in a standing acoustic wave field may induce movement of microbubbles with a speed of the order of a few m/s at a frequency of 1 MHz and ultrasound pressure amplitude of 100 kPa, whereas the speed of rigid particles does not exceed 1 cms under the same conditions. The stirring effect can be additionally enhanced due to the fact that the bubbles that are larger and smaller than the resonant bubbles move in opposite directions. Possible applications of the analyzed stirring mechanism, such as in microarrays, are discussed. PMID:19507936

  11. FINAL REPORT: An Investigation of the Microphysical, Radiative, and Dynamical Properties of Mixed-Phase Clouds

    SciTech Connect

    Shupe, Matthew D

    2007-10-01

    This final report summarizes the major accomplishments and products resulting from a three-year grant funded by the DOE, Office of Science, Atmospheric Radiation Measurement Program titled: An Investigation of the Microphysical, Radiative, and Dynamical Properties of Mixed-Phase Clouds. Accomplishments are listed under the following subcategories: Mixed-phase cloud retrieval method development; Mixed-phase cloud characterization; ARM mixed-phase cloud retrieval review; and New ARM MICROBASE product. In addition, lists are provided of service to the Atmospheric Radiation Measurement Program, data products provided to the broader research community, and publications resulting from this grant.

  12. Organic liquid scintillation detectors for on-the-fly neutron/gamma alarming and radionuclide identification in a pedestrian radiation portal monitor

    NASA Astrophysics Data System (ADS)

    Paff, Marc Gerrit; Ruch, Marc L.; Poitrasson-Riviere, Alexis; Sagadevan, Athena; Clarke, Shaun D.; Pozzi, Sara

    2015-07-01

    We present new experimental results from a radiation portal monitor based on the use of organic liquid scintillators. The system was tested as part of a 3He-free radiation portal monitor testing campaign at the European Commission's Joint Research Centre in Ispra, Italy, in February 2014. The radiation portal monitor was subjected to a wide range of test conditions described in ANSI N42.35, including a variety of gamma-ray sources and a 20,000 n/s 252Cf source. A false alarm test tested whether radiation portal monitors ever alarmed in the presence of only natural background. The University of Michigan Detection for Nuclear Nonproliferation Group's system triggered zero false alarms in 2739 trials. It consistently alarmed on a variety of gamma-ray sources travelling at 1.2 m/s at a 70 cm source to detector distance. The neutron source was detected at speeds up to 3 m/s and in configurations with up to 8 cm of high density polyethylene shielding. The success of on-the-fly radionuclide identification varied with the gamma-ray source measured as well as with which of two radionuclide identification methods was used. Both methods used a least squares comparison between the measured pulse height distributions to library spectra to pick the best match. The methods varied in how the pulse height distributions were modified prior to the least squares comparison. Correct identification rates were as high as 100% for highly enriched uranium, but as low as 50% for 241Am. Both radionuclide identification algorithms produced mixed results, but the concept of using liquid scintillation detectors for gamma-ray and neutron alarming in radiation portal monitor was validated.

  13. Mixed ionic-electronic conductor-based radiation detectors and methods of fabrication

    DOEpatents

    Conway, Adam; Beck, Patrick R; Graff, Robert T; Nelson, Art; Nikolic, Rebecca J; Payne, Stephen A; Voss, Lars; Kim, Hadong

    2015-04-07

    A method of fabricating a mixed ionic-electronic conductor (e.g. TlBr)-based radiation detector having halide-treated surfaces and associated methods of fabrication, which controls polarization of the mixed ionic-electronic MIEC material to improve stability and operational lifetime.

  14. Terahertz radiation generation by nonlinear mixing of two laser beams over a thin foil

    SciTech Connect

    Chauhan, Santosh; Parashar, J.

    2015-07-31

    Terahertz radiation generation via nonlinear mixing of two laser beams incident over a thin metal foil is explored. The lasers exert a ponderomotive force on the electrons of metal foil at beat frequency which lies in the terahertz range. The metal foil acts as antenna, producing terahertz radiations, highly directional in nature.

  15. Raman distributed temperature measurement at CERN high energy accelerator mixed field radiation test facility (CHARM)

    NASA Astrophysics Data System (ADS)

    Toccafondo, Iacopo; Nannipieri, Tiziano; Signorini, Alessandro; Guillermain, Elisa; Kuhnhenn, Jochen; Brugger, Markus; Di Pasquale, Fabrizio

    2015-09-01

    In this paper we present a validation of distributed Raman temperature sensing (RDTS) at the CERN high energy accelerator mixed field radiation test facility (CHARM), newly developed in order to qualify electronics for the challenging radiation environment of accelerators and connected high energy physics experiments. By investigating the effect of wavelength dependent radiation induced absorption (RIA) on the Raman Stokes and anti-Stokes light components in radiation tolerant Ge-doped multi-mode (MM) graded-index optical fibers, we demonstrate that Raman DTS used in loop configuration is robust to harsh environments in which the fiber is exposed to a mixed radiation field. The temperature profiles measured on commercial Ge-doped optical fibers is fully reliable and therefore, can be used to correct the RIA temperature dependence in distributed radiation sensing systems based on P-doped optical fibers.

  16. Mixed-radiation-field dosimetry utilizing Nuclear Quadrupole Resonance

    SciTech Connect

    Hintenlang, D.E.; Jamil, K.; Iselin, L.H.

    1992-01-01

    Radiation effects on urea, thiourea, guanidine carbonate and guanine sulfate were evaluated for both photon and neutron irradiations. Hydration of these materials typically provides a greatly increased sensitivity to both forms of radiation exposure, although not all materials lend themselves to this treatment without changing the chemical structure of the compound. Urea was found to be the most stable hydrated compound and provides the best sensitivity for quantifying radiation effects using NQR techniques. Urea permits a straight-forward quantification of each of the important parameters of the observed NQR signal, the FID. Several advanced data analysis methods were developed to assist in quantifying NQR spectra, both from urea and materials having more complex molecular structures, such as thiourea and guanidine sulfate. Unfortunately, these analysis techniques are frequently quite time consuming for the complex NQR spectra that result from some of these materials. The simpler analysis afforded by urea has therefore made it the prime candidate for an NQR dosimetry material. The moderate sensitivity of hydrated urea to photon irradiation does not permit this material to achieve the levels of performance required for a personnel dosimeter. It does, however, demonstrate acceptable sensitivity over dose ranges where it could provide a good biological dosimeter for several areas of radiation processing. The demonstrated photon sensitivity could permit hydrated urea to be used in applications such as food irradiation dosimetry. This material also exhibits a good sensitivity to neutron irradiation. The precise correlation between neutron exposure and the parameters of the resulting NQR spectra are currently being developed.

  17. Internal wave energy radiated from a turbulent mixed layer

    SciTech Connect

    Munroe, James R.; Sutherland, Bruce R.

    2014-09-15

    We examine mixed-layer deepening and the generation of internal waves in stratified fluid resulting from turbulence that develops in response to an applied surface stress. In laboratory experiments the stress is applied over the breadth of a finite-length tank by a moving roughened conveyor belt. The turbulence in the shear layer is characterized using particle image velocimetry to measure the kinetic energy density. The internal waves are measured using synthetic schlieren to determine their amplitudes, frequencies, and energy density. We also perform fully nonlinear numerical simulations restricted to two dimensions but in a horizontally periodic domain. These clearly demonstrate that internal waves are generated by transient eddies at the integral length scale of turbulence and which translate with the background shear along the base of the mixed layer. In both experiments and simulations we find that the energy density of the generated waves is 1%–3% of the turbulent kinetic energy density of the turbulent layer.

  18. On the parameterization of the biological effect in a mixed radiation field.

    PubMed

    Kraft, G; Scholz, M

    1994-10-01

    The exposure of astronauts and electronics to the cosmic radiation especially to the particle component pose a major risk to all space flights. Up to now it is not possible to quantify this risk within acceptable limits of accuracy. This uncertainty is not only caused by difficulties in the more or less exact prediction of the incidence of the cosmic radiation but depends also on the problem of the quantification of the radiation field and the correlation of the biological effect. Usually the biological action of a mixed radiation field is estimated as product of the measured dose with an average quality factor, the relative biological efficiency. Because of the large variation in energy and atomic number of the cosmic particles, average values of the quality factor are not precise for risk estimation. A more appropriate way to treat the biological effects of mixed radiation is the concept of particle fluence and action cross section. PMID:11540044

  19. Radiation from mixed multi-planar wire arrays

    SciTech Connect

    Safronova, A. S.; Kantsyrev, V. L.; Esaulov, A. A.; Weller, M. E.; Shlyaptseva, V. V.; Shrestha, I.; Keim, S. F.; Stafford, A.; Chuvatin, A. S.; Coverdale, C. A.; Apruzese, J. P.; Ouart, N. D.; Giuliani, J. L.

    2014-03-15

    The study of radiation from different wire materials in wire array Z-pinch plasma is a very challenging topic because it is almost impossible to separate different plasmas at the stagnation. A new approach is suggested based on planar wire array (PWA) loads to assess this problem. Multi-planar wire arrays are implemented that consist of few planes, each with the same number of wires and masses but from different wire materials, arranged in parallel rows. In particular, the experimental results obtained with triple PWAs (TPWAs) on the UNR Zebra generator are analyzed with Wire Ablation Dynamics Model, non-local thermodynamic equilibrium kinetic model, and 2D radiation magneto-hydrodynamic to illustrate this new approach. In TPWAs, two wire planes were from mid-atomic-number wire material and another plane was from alloyed Al, placed either in the middle or at the edge of the TPWA. Spatial and temporal properties of K-shell Al and L-shell Cu radiations were analyzed and compared from these two configurations of TPWAs. Advantages of the new approach are demonstrated and future work is discussed.

  20. The influence of different black carbon and sulfate mixing methods on their optical and radiative properties

    NASA Astrophysics Data System (ADS)

    Zhang, Hua; Zhou, Chen; Wang, Zhili; Zhao, Shuyun; Li, Jiangnan

    2015-08-01

    Three different internal mixing methods (Core-Shell, Maxwell-Garnett, and Bruggeman) and one external mixing method are used to study the impact of mixing methods of black carbon (BC) with sulfate aerosol on their optical properties, radiative flux, and heating rate. The optical properties of a mixture of BC and sulfate aerosol particles are considered for three typical bands. The results show that mixing methods, the volume ratio of BC to sulfate, and relative humidity have a strong influence on the optical properties of mixed aerosols. Compared to internal mixing, external mixing underestimates the particle mass absorption coefficient by 20-70% and the particle mass scattering coefficient by up to 50%, whereas it overestimates the particle single scattering albedo by 20-50% in most cases. However, the asymmetry parameter is strongly sensitive to the equivalent particle radius, but is only weakly sensitive to the different mixing methods. Of the internal methods, there is less than 2% difference in all optical properties between the Maxwell-Garnett and Bruggeman methods in all bands; however, the differences between the Core-Shell and Maxwell-Garnett/Bruggeman methods are usually larger than 15% in the ultraviolet and visible bands. A sensitivity test is conducted with the Beijing Climate Center Radiation transfer model (BCC-RAD) using a simulated BC concentration that is typical of east-central China and a sulfate volume ratio of 75%. The results show that the internal mixing methods could reduce the radiative flux more effectively because they produce a higher absorption. The annual mean instantaneous radiative force due to BC-sulfate aerosol is about -3.18 W/m2 for the external method and -6.91 W/m2 for the internal methods at the surface, and -3.03/-1.56/-1.85 W/m2 for the external/Core-Shell/(Maxwell-Garnett/Bruggeman) methods, respectively, at the tropopause.

  1. Field calibration studies for ionisation chambers in mixed high-energy radiation fields.

    PubMed

    Theis, C; Forkel-Wirth, D; Fuerstner, M; Mayer, S; Otto, Th; Roesler, S; Vincke, H

    2007-01-01

    The monitoring of ambient doses at work places around high-energy accelerators is a challenging task due the complexity of the mixed stray radiation fields encountered. At CERN, mainly Centronics IG5 high-pressure ionisation chambers are used to monitor radiation exposure in mixed fields. The monitors are calibrated in the operational quantity ambient dose equivalent H*(10) using standard, source-generated photon- and neutron fields. However, the relationship between ionisation chamber reading and ambient dose equivalent in a mixed high-energy radiation field can only be assessed if the spectral response to every component and the field composition is known. Therefore, comprehensive studies were performed at the CERN-EU high-energy reference field facility where the spectral fluence for each particle type has been assessed with Monte Carlo simulations. Moreover, studies have been performed in an accessible controlled radiation area in the vicinity of a beam loss point of CERN's proton synchrotron. The comparison of measurements and calculations has shown reasonable agreement for most exposure conditions. The results indicate that conventionally calibrated ionisation chambers can give satisfactory response in terms of ambient dose equivalent in stray radiation fields at high-energy accelerators in many cases. These studies are one step towards establishing a method of 'field calibration' of radiation protection instruments in which Monte Carlo simulations will be used to establish a correct correlation between the response of specific detectors to a given high-energy radiation field.

  2. Vertical mixing and ecological effects of ultraviolet radiation in planktonic communities.

    PubMed

    Ferrero, Emma; Eöry, Matías; Ferreyra, Gustavo; Schloss, Irene; Zagarese, Horacio; Vernet, Maria; Momo, Fernando

    2006-01-01

    We present a mathematical model for a phytoplankton-zooplankton system, based on a predator-prey scheme. The model considers the effects of sinking in the phytoplankton, vertical mixing and attenuation of photosynthetically active radiation (PAR) and ultraviolet radiation (UVR) in the water column. In a first approach, the model was studied under conditions of average PAR irradiance and shows fluctuations and stable equilibrium points. Secondly, we introduced the effects of photoperiod and photoinhibition by UVR and vertical mixing. Under these conditions, the phytoplankton biomass oscillates depending on the combined effects of UVR and mixing. Higher inhibition by UVR and longer mixing periods can induce strong fluctuations in the system but can also produce higher plankton peaks.

  3. Impurity mixing and radiation asymmetry in massive gas injection simulations of DIII-D

    SciTech Connect

    Izzo, V. A.

    2013-05-15

    Simulations of neon massive gas injection into DIII-D are performed with the 3D MHD code NIMROD. The poloidal and toroidal distribution of the impurity source is varied. This report will focus on the effects of the source variation on impurity mixing and radiated power asymmetry. Even toroidally symmetric impurity injection is found to produce asymmetric radiated power due to asymmetric convective heat flux produced by the 1/1 mode. When the gas source is toroidally localized, the phase relationship between the mode and the source location is important, affecting both radiation peaking and impurity mixing. Under certain circumstances, a single, localized gas jet could produce better radiation symmetry during the disruption thermal quench than evenly distributed impurities.

  4. Mixed Convection with Conduction and Surface Radiation from a Vertical Channel with Discrete Heating

    NASA Astrophysics Data System (ADS)

    Londhe, S. D.; Rao, C. G.

    2013-10-01

    A numerical investigation into fluid flow and heat transfer for the geometry of a vertical parallel plate channel subjected to conjugate mixed convection with radiation is attempted here. The channel considered has three identical flush-mounted discrete heat sources in its left wall, while the right wall that does not contain any heat source acts as a sink. Air, assumed to be a radiatively non-participating and having constant thermophysical properties subject to the Boussinesq approximation, is the cooling agent. The heat generated in the left wall gets conducted along it and is later dissipated by mixed convection and radiation. The governing equations, considered in their full strength sans the boundary layer approximations, are converted into vorticity-stream function form and are then normalized. These equations along with pertinent boundary conditions are solved through finite volume method coupled with Gauss-Seidel iterative technique. The effects of modified Richardson number, surface emissivity, thermal conductivity and aspect ratio on local temperature distribution along the channel, maximum channel temperature and relative contributions of mixed convection and radiation have been thoroughly studied. The prominence of radiation in the present problem has been highlighted.

  5. The angular dependence of an Si energy deposition spectrometer response at several radiation sources.

    PubMed

    Spurný, Frantisek; Trompier, François; Bottollier-Depois, Jean-François

    2005-06-01

    An MDU-Liulin spectrometer based on an Si-diode was mainly used during the last few years with the goal to use them for measurements onboard aircraft. To investigate its ability to obtain such measurements, the detector was tested in some radiation reference fields, like 60Co and other photon beams, neutrons of an AmBe and 252Cf sources and in high-energy radiation fields at CERN. Due to the high geometrical asymmetry of the Si-diode semiconductor, an angular dependence of the response would be expected. This work presents analyses and discusses the results of angular dependence studies obtained at the different radiation sources mentioned. It was found that these angular dependences vary with the type and energy of radiation. The influence of these variations on the use as a dosimeter onboard aircraft is also studied and discussed.

  6. A comparison of collimator geometries for imaging mixed radiation fields with fast liquid organic scintillators

    SciTech Connect

    Gamage, K. A. A.; Joyce, M. J.; Taylor, G. C.

    2011-07-01

    As a result of recent advances in digital pulse-shape discrimination methods it has become possible to image mixed fields (radiation environments compromising both neutrons and gamma rays) relatively quickly with a single, organic liquid 'fast' scintillator within a heavy metal collimator. The use of a liquid scintillator has significant benefits over other techniques for imaging radiation environments as the acquired data can be analysed to provide separate information about the gamma and neutron emissions from a source (or sources) in a single scan. The imaging resolution achieved is fundamentally related to the detector efficiency and to the collimator geometry. In this paper the impact of using two different geometries of tungsten collimator are compared experimentally and three different materials considered in the Monte Carlo simulation, in order to determine the optimum set-up for mixed-field imaging. The measurements were performed in the low-scatter facility of the National Physical Laboratory, Teddington. (authors)

  7. Intelligent monitor functional model with ionization chamber for mixed nuclear radiation field measurements

    SciTech Connect

    Valcov, N.; Purghel, L.; Celarel, A.

    1998-12-31

    By using the statistical discrimination technique, the components of an ionization current, due to a mixed radiation field, may be simultaneously measured. A functional model, including a series manufactured gamma-ray ratemeter was done, as an intermediate step in the design of specialized nuclear instrumentation, in order to check the concept of statistical discrimination method. The obtained results are in good agreement with the estimations of the statistical discrimination method.

  8. Three-Dimensional Mixed Convection Flow of Viscoelastic Fluid with Thermal Radiation and Convective Conditions

    PubMed Central

    Hayat, Tasawar; Ashraf, Muhammad Bilal; Alsulami, Hamed H.; Alhuthali, Muhammad Shahab

    2014-01-01

    The objective of present research is to examine the thermal radiation effect in three-dimensional mixed convection flow of viscoelastic fluid. The boundary layer analysis has been discussed for flow by an exponentially stretching surface with convective conditions. The resulting partial differential equations are reduced into a system of nonlinear ordinary differential equations using appropriate transformations. The series solutions are developed through a modern technique known as the homotopy analysis method. The convergent expressions of velocity components and temperature are derived. The solutions obtained are dependent on seven sundry parameters including the viscoelastic parameter, mixed convection parameter, ratio parameter, temperature exponent, Prandtl number, Biot number and radiation parameter. A systematic study is performed to analyze the impacts of these influential parameters on the velocity and temperature, the skin friction coefficients and the local Nusselt number. It is observed that mixed convection parameter in momentum and thermal boundary layers has opposite role. Thermal boundary layer is found to decrease when ratio parameter, Prandtl number and temperature exponent are increased. Local Nusselt number is increasing function of viscoelastic parameter and Biot number. Radiation parameter on the Nusselt number has opposite effects when compared with viscoelastic parameter. PMID:24608594

  9. Three-dimensional mixed convection flow of viscoelastic fluid with thermal radiation and convective conditions.

    PubMed

    Hayat, Tasawar; Ashraf, Muhammad Bilal; Alsulami, Hamed H; Alhuthali, Muhammad Shahab

    2014-01-01

    The objective of present research is to examine the thermal radiation effect in three-dimensional mixed convection flow of viscoelastic fluid. The boundary layer analysis has been discussed for flow by an exponentially stretching surface with convective conditions. The resulting partial differential equations are reduced into a system of nonlinear ordinary differential equations using appropriate transformations. The series solutions are developed through a modern technique known as the homotopy analysis method. The convergent expressions of velocity components and temperature are derived. The solutions obtained are dependent on seven sundry parameters including the viscoelastic parameter, mixed convection parameter, ratio parameter, temperature exponent, Prandtl number, Biot number and radiation parameter. A systematic study is performed to analyze the impacts of these influential parameters on the velocity and temperature, the skin friction coefficients and the local Nusselt number. It is observed that mixed convection parameter in momentum and thermal boundary layers has opposite role. Thermal boundary layer is found to decrease when ratio parameter, Prandtl number and temperature exponent are increased. Local Nusselt number is increasing function of viscoelastic parameter and Biot number. Radiation parameter on the Nusselt number has opposite effects when compared with viscoelastic parameter.

  10. Music therapy CD creation for initial pediatric radiation therapy: a mixed methods analysis.

    PubMed

    Barry, Philippa; O'Callaghan, Clare; Wheeler, Greg; Grocke, Denise

    2010-01-01

    A mixed methods research design was used to investigate the effects of a music therapy CD (MTCD) creation intervention on pediatric oncology patients' distress and coping during their first radiation therapy treatment. The music therapy method involved children creating a music CD using interactive computer-based music software, which was "remixed" by the music therapist-researcher to extend the musical material. Eleven pediatric radiation therapy outpatients aged 6 to 13 years were randomly assigned to either an experimental group, in which they could create a music CD prior to their initial treatment to listen to during radiation therapy, or to a standard care group. Quantitative and qualitative analyses generated multiple perceptions from the pediatric patients, parents, radiation therapy staff, and music therapist-researcher. Ratings of distress during initial radiation therapy treatment were low for all children. The comparison between the two groups found that 67% of the children in the standard care group used social withdrawal as a coping strategy, compared to 0% of the children in the music therapy group; this trend approached significance (p = 0.076). MTCD creation was a fun, engaging, and developmentally appropriate intervention for pediatric patients, which offered a positive experience and aided their use of effective coping strategies to meet the demands of their initial radiation therapy treatment. PMID:21275334

  11. Mixing state of aerosols over the Indo-Gangetic Plain: Radiative forcing and heating rate

    NASA Astrophysics Data System (ADS)

    Srivastava, R.; Ramachandran, S.

    2012-12-01

    Aerosols are a major atmospheric variable which perturb the Earth-atmosphere radiation balance by absorbing and scattering the solar and terrestrial radiation. Aerosols are produced by natural and anthropogenic processes. The presence of different types of aerosol over a location and aerosols transported from long-range can give rise to different mixing states because of aging and interaction among the different aerosol species. Knowledge of the mixing state of aerosols is important for an accurate assessment of aerosols in climate forcing, as assumptions regarding the mixing state of aerosol and its effect on optical properties can give rise to uncertainties in modeling their direct and indirect effects [1]. Seasonal variations in mixing states of aerosols over an urban (Kanpur) and a rural location (Gandhi College) in the Indo-Gangetic Plain (IGP) are determined using the measured and modeled aerosol optical properties, and the impact of aerosol mixing state on aerosol radiative forcing are investigated. IGP is one of the most populated and polluted river basins in the world, rich in fertile lands and agricultural production. Kanpur is an urban, industrial and densely populated city, and has several large/small scale industries and vehicles, while Gandhi College in IGP is a rural village, located southeast of Kanpur. Aerosol optical properties obtained from Aerosol Robotic Network sun/sky radiometers [2] over these two environmentally distinct locations in Indo-Gangetic Plain are used in the study, along with aerosol vertical profiles obtained from CALIPSO (Cloud- Aerosol Lidar and Infrared Pathfinder Satellite Observations) lidar observations. Probable mixing state of aerosols is determined utilizing the aerosol optical properties viz., aerosol optical depth, single scattering albedo and asymmetry parameter. The coated-sphere Mie calculation requires the refractive index of core and shell species, and the radius of core and shell particles. Core to shell radius

  12. Characterization of an in-core irradiator for testing of microelectronics in a mixed radiation environment

    NASA Astrophysics Data System (ADS)

    Aghara, Sukesh K.

    In recent years, the space industry is increasingly in search of easily available commercial and emerging technology devices in order to meet rigorous spacecraft requirements such as weight, power, and cost. Before an electronic device is put in a radiation environment, it is pre-tested and certified for space applications. This process of radiation testing and certification is costly and time intensive. Development of a test methodology and a facility to perform these tests quickly and cost effectively, would facilitate the radiation effects community and NASA to fulfill the "Faster, Better, Cheaper". With the rapid developments in the field of satellite-based telecommunications, the move from analog to digital controls for all electronic devices is imminent; hence, need for radiation-hardened mixed signal processing devices is obvious. Digital-to-Analog Converters (DAC) are of particular interest due to their complex design and performance and their importance in digital signal processing. Limited literature exists for radiation effects on DAC; most of these studies were performed with gamma-ray irradiations (Total Ionization Dose, TID) but the much needed displacement damage data is absent. In the first phase of this work, an in-core mixed radiation (neutron and gamma-ray) test facility at the University of Texas at Austin TRIGA Mark II nuclear research reactor was fully characterized. Further, a test methodology to perform radiation testing on complex "off-the-shelf" semiconductor circuits in a time and cost effective manner was developed. In the second phase, the characterized test facility and the methodology were then employed to successfully assess performance degradation of three commercially available DAC circuits: DAC 0808, MC 1408 (DIP package) and MC 1408 (SOIC package). This research has resulted in the development of a unique in-core fast neutron irradiation facility from a research reactor source. The average fast flux of 1.2E9 n/cm2-s at 1 k

  13. Mixed optical Cherenkov-Bremsstrahlung radiation in vicinity of the Cherenkov cone from relativistic heavy ions: Unusual dependence of the angular distribution width on the radiator thickness

    NASA Astrophysics Data System (ADS)

    Rozhkova, E. I.; Pivovarov, Yu. L.

    2016-07-01

    The Cherenkov radiation (ChR) angular distribution is usually described by the Tamm-Frank (TF) theory, which assumes that relativistic charged particle moves uniformly and rectilinearly in the optically transparent radiator. According to the TF theory, the full width at half maximum (FWHM) of the ChR angular distribution inversely depends on the radiator thickness. In the case of relativistic heavy ions (RHI) a slowing-down in the radiator may sufficiently change the angular distribution of optical radiation in vicinity of the Cherenkov cone, since there appears a mixed ChR-Bremsstrahlung radiation. As a result, there occurs a drastic transformation of the FWHM of optical radiation angular distribution in dependence on the radiator thickness: from inversely proportional (TF theory) to the linearly proportional one. In our paper we present the first analysis of this transformation taking account of the gradual velocity decrease of RHI penetrating through a radiator.

  14. Interactions between endothelial cells and T cells modulate responses to mixed neutron/gamma radiation.

    PubMed

    Cary, Lynnette H; Noutai, Daniel; Salber, Rudolph E; Williams, Margaret S; Ngudiankama, Barbara F; Whitnall, Mark H

    2014-06-01

    Detonation of an improvised nuclear device near a population center would cause significant casualties from the acute radiation syndrome (ARS) due to exposure to mixed neutron/gamma fields (MF). The pathophysiology of ARS involves inflammation, microvascular damage and alterations in immune function. Interactions between endothelial cells (EC) and hematopoietic cells are important not only for regulating immune cell traffic and function, but also for providing the microenvironment that controls survival, differentiation and migration of hematopoietic stem and progenitor cells in blood-forming tissues. Endothelial cells/leukocyte interactions also influence tumor progression and the results of anticancer therapies. In this study, we hypothesized that irradiation of endothelial cells would modulate their effects on hematopoietic cells and vice versa. Human umbilical vein endothelial cells (HUVEC) and immortalized T lymphocytes (Jurkat cells) were cultured individually and in co-culture after exposure to mixed fields. Effects of nonirradiated cells were compared to effects of irradiated cells and alterations in signaling pathways were determined. Mitogen-activated protein kinases (MAPKs) p38 and p44/42 (ERK1/2) in HUVEC exhibited higher levels of phosphorylated protein after exposure to mixed field radiation. IL-6, IL-8, G-CSF, platelet derived growth factor (PDGF) and angiopoietin 2 (ANG2) protein expression were upregulated in HUVEC by exposure to mixed field radiation. PCR arrays using HUVEC mRNA revealed alterations in gene expression after exposure to mixed fields and/or co-culture with Jurkat cells. The presence of HUVEC also influenced the function of Jurkat cells. Nonirradiated Jurkat cells showed an increase in proliferation when co-cultured with nonirradiated HUVEC, and a decrease in proliferation when co-cultured with irradiated HUVEC. Additionally, nonirradiated Jurkat cells incubated in media from irradiated HUVEC exhibited upregulation of activated

  15. Determination of canine dose conversion factors in mixed neutron and gamma radiation fields. Technical report

    SciTech Connect

    Torres, B.A.; Bhatt, R.C.; Myska, J.C.; Holland, B.K.

    1996-07-01

    The primary objective of mixed-field neutron/gamma radiation dosimetry in canine irradiation experiments conducted at the Armed Forces Radiobiology Research Institute (AFRRI) is to determine the absorbed midline tissue dose (MLT) at the region of interest in the canine. A dose conversion factor (DCF) can be applied to free-in-air (FIA) dose measurements to estimate the MLT doses to canines. This report is a summary of the measured DCFs that were used to determine the MLT doses in canines at AFRRI from 1979 to 1992.

  16. Predictive model for radiatively induced neutrino masses and mixings with dark matter.

    PubMed

    Gustafsson, Michael; No, Jose M; Rivera, Maximiliano A

    2013-05-24

    A minimal extension of the standard model to naturally generate small neutrino masses and provide a dark matter candidate is proposed. The dark matter particle is part of a new scalar doublet field that plays a crucial role in radiatively generating neutrino masses. The symmetry that stabilizes the dark matter also suppresses neutrino masses to appear first at three-loop level. Without the need of right-handed neutrinos or other very heavy new fields, this offers an attractive explanation of the hierarchy between the electroweak and neutrino mass scales. The model has distinct verifiable predictions for the neutrino masses, flavor mixing angles, colliders, and dark matter signals. PMID:23745861

  17. Predictive model for radiatively induced neutrino masses and mixings with dark matter.

    PubMed

    Gustafsson, Michael; No, Jose M; Rivera, Maximiliano A

    2013-05-24

    A minimal extension of the standard model to naturally generate small neutrino masses and provide a dark matter candidate is proposed. The dark matter particle is part of a new scalar doublet field that plays a crucial role in radiatively generating neutrino masses. The symmetry that stabilizes the dark matter also suppresses neutrino masses to appear first at three-loop level. Without the need of right-handed neutrinos or other very heavy new fields, this offers an attractive explanation of the hierarchy between the electroweak and neutrino mass scales. The model has distinct verifiable predictions for the neutrino masses, flavor mixing angles, colliders, and dark matter signals.

  18. Physical Parameters of Hot Horizontal-Branch Stars in NGC 6752: Deep Mixing and Radiative Levitation

    NASA Technical Reports Server (NTRS)

    Moehler, S.; Sweigart, A. V.; Landsman, W. B.; Heber, U.; Catelan, M.

    1999-01-01

    Atmospheric parameters (T(sub eff), log g and log n(sub He)/n(sub H-dot)) are derived for 42 hot horizontal branch (HB) stars in the globular cluster NGC 6752. For 19 stars Mg II and Fe II lines are detected indicating an iron enrichment by a factor 50 on average with respect to the cluster abundance whereas the magnesium abundances are consistent with the cluster metallicity. This finding adds to the growing evidence that radiative levitation plays a significant role in determining the physical parameters of blue HB stars. Indeed, we find that iron enrichment can explain part, but not all, of the problem of anomalously low gravities along the blue HB. Thus the physical parameters of horizontal branch stars hotter than about 11,500 K in NGC 6752, as derived in this paper, are best explained by a combination of helium mixing and radiative levitation effects.

  19. Mixed field radiation effects on dry and acidic solution saturated polyamide 6,6

    NASA Astrophysics Data System (ADS)

    Brown, L.; Bonin, H. W.; Bui, V. T.

    2005-05-01

    The disposal of Canada's radioactive waste materials has been the focus of ongoing research at the Royal Military College of Canada, in the use of polymer-based composite materials for the fabrication of disposal containers. An evaluation of the performance of polyamide 6,6 after exposure to radiation and acidic aqueous solutions provides the basis for the assessment of the lifetime performance of a polymeric-based storage container. This work demonstrates the importance of the combined effects of aqueous solution diffusion and radiation exposure on the mechanical performance and molecular structure of polyamide 6,6. Irradiation of dry samples initially results in a marked reduction of mechanical performance, however, post-irradiation aging allows for the return to pre-irradiation mechanical strength. Samples irradiated after exposure to either distilled water or 0.1 M sulfuric acid solutions exhibited increases in mechanical performance upon exposure to a mixed field radioactive environment.

  20. Interactions between a tropical mixed boundary layer and cumulus convection in a radiative-convective model

    SciTech Connect

    Dean, C.L.

    1993-05-01

    This report details a radiative-convective model, combining previously developed cumulus, stable cloud and radiation parameterizations with a boundary layer scheme, which was developed in the current study. The cloud model was modified to incorporate the effects of both small and large clouds. The boundary layer model was adapted from a mixed layer model was only slightly modified to couple it with the more sophisticated cloud model. The model was tested for a variety of imposed divergence profiles, which simulate the regions of the tropical ocean from approximately the intertropical Convergence Zone (ITCZ) to the subtropical high region. The sounding used to initialize the model for most of the runs is from the trade wind region of ATEX. For each experiment, the model was run with a timestep of 300 seconds for a period of 7 days.

  1. Radiative transfer in CO2-rich atmospheres: 1. Collisional line mixing implies a colder early Mars

    NASA Astrophysics Data System (ADS)

    Ozak, N.; Aharonson, O.; Halevy, I.

    2016-06-01

    Fast and accurate radiative transfer methods are essential for modeling CO2-rich atmospheres, relevant to the climate of early Earth and Mars, present-day Venus, and some exoplanets. Although such models already exist, their accuracy may be improved as better theoretical and experimental constraints become available. Here we develop a unidimensional radiative transfer code for CO2-rich atmospheres, using the correlated k approach and with a focus on modeling early Mars. Our model differs from existing models in that it includes the effects of CO2 collisional line mixing in the calculation of the line-by-line absorption coefficients. Inclusion of these effects results in model atmospheres that are more transparent to infrared radiation and, therefore, in colder surface temperatures at radiative-convective equilibrium, compared with results of previous studies. Inclusion of water vapor in the model atmosphere results in negligible warming due to the low atmospheric temperatures under a weaker early Sun, which translate into climatically unimportant concentrations of water vapor. Overall, the results imply that sustained warmth on early Mars would not have been possible with an atmosphere containing only CO2 and water vapor, suggesting that other components of the early Martian climate system are missing from current models or that warm conditions were not long lived.

  2. Effects of radiative heat transfer on the turbulence structure in inert and reacting mixing layers

    NASA Astrophysics Data System (ADS)

    Ghosh, Somnath; Friedrich, Rainer

    2015-05-01

    We use large-eddy simulation to study the interaction between turbulence and radiative heat transfer in low-speed inert and reacting plane temporal mixing layers. An explicit filtering scheme based on approximate deconvolution is applied to treat the closure problem arising from quadratic nonlinearities of the filtered transport equations. In the reacting case, the working fluid is a mixture of ideal gases where the low-speed stream consists of hydrogen and nitrogen and the high-speed stream consists of oxygen and nitrogen. Both streams are premixed in a way that the free-stream densities are the same and the stoichiometric mixture fraction is 0.3. The filtered heat release term is modelled using equilibrium chemistry. In the inert case, the low-speed stream consists of nitrogen at a temperature of 1000 K and the highspeed stream is pure water vapour of 2000 K, when radiation is turned off. Simulations assuming the gas mixtures as gray gases with artificially increased Planck mean absorption coefficients are performed in which the large-eddy simulation code and the radiation code PRISSMA are fully coupled. In both cases, radiative heat transfer is found to clearly affect fluctuations of thermodynamic variables, Reynolds stresses, and Reynolds stress budget terms like pressure-strain correlations. Source terms in the transport equation for the variance of temperature are used to explain the decrease of this variance in the reacting case and its increase in the inert case.

  3. Effects of radiative heat transfer on the turbulence structure in inert and reacting mixing layers

    SciTech Connect

    Ghosh, Somnath; Friedrich, Rainer

    2015-05-15

    We use large-eddy simulation to study the interaction between turbulence and radiative heat transfer in low-speed inert and reacting plane temporal mixing layers. An explicit filtering scheme based on approximate deconvolution is applied to treat the closure problem arising from quadratic nonlinearities of the filtered transport equations. In the reacting case, the working fluid is a mixture of ideal gases where the low-speed stream consists of hydrogen and nitrogen and the high-speed stream consists of oxygen and nitrogen. Both streams are premixed in a way that the free-stream densities are the same and the stoichiometric mixture fraction is 0.3. The filtered heat release term is modelled using equilibrium chemistry. In the inert case, the low-speed stream consists of nitrogen at a temperature of 1000 K and the highspeed stream is pure water vapour of 2000 K, when radiation is turned off. Simulations assuming the gas mixtures as gray gases with artificially increased Planck mean absorption coefficients are performed in which the large-eddy simulation code and the radiation code PRISSMA are fully coupled. In both cases, radiative heat transfer is found to clearly affect fluctuations of thermodynamic variables, Reynolds stresses, and Reynolds stress budget terms like pressure-strain correlations. Source terms in the transport equation for the variance of temperature are used to explain the decrease of this variance in the reacting case and its increase in the inert case.

  4. Genetic Engineering of a Radiation-Resistant Bacterium for Biodegradation of Mixed Wastes--Final Report

    SciTech Connect

    Mary E. Lidstrom

    2003-12-26

    Aqueous mixed low level wastes (MLLW) containing radionuclides, solvents, and/or heavy metals represent a serious current and future problem for DOE environmental management and cleanup. In order to provide low-cost treatment alternatives under mild conditions for such contained wastes, we have proposed to use the radiation-resistant bacterium, Deinococcus radiodurans. This project has focused on developing D. radiodurans strains for dual purpose processes: cometabolic treatment of haloorganics and other solvents and removal of heavy metals from waste streams in an above-ground reactor system. The characteristics of effective treatment strains that must be attained are: (a) high biodegradative and metal binding activity; (b) stable treatment characteristics in the absence of selection and in the presence of physiological stress; (c) survival and activity under harsh chemical conditions, including radiation. The result of this project has been a suite of strains with high biodegradative capabilities that are candidates for pilot stage treatment systems. In addition, we have determined how to create conditions to precipitate heavy metals on the surface of the bacterium, as the first step towards creating dual-use treatment strains for contained mixed wastes of importance to the DOE. Finally, we have analyzed stress response in this bacterium, to create the foundation for developing treatment processes that maximize degradation while optimizing survival under high stress conditions.

  5. Studies of degenerate and nearly degenerate four wave mixing of laser radiation in plasmas

    SciTech Connect

    Joshi, Chan . Dept. of Electrical Engineering)

    1990-12-01

    Optical Phase Conjugation is an area of nonlinear optics with a wide variety of potential applications. One method of generating as phase conjugate signal is with four wave mixing (FWM). In FWM, three input beams interact in a nonlinear medium, and a fourth beam is produced that is the phase conjugate of one of the input waves. Degeneate Four Wave Mixing (DFWM) is a special case of FWM in which all of the beams are at the same frequency. In a plasma, DFWM is an effective technique for phase conjugation in high density, low temperature plasmas. One way of enhancing the phase conjugate signal over and above the DFWM level is with Resonant Four Wave Mixing (RFWM), in which two of the input beams beat at a plasma resonance. In addition to enhancing the generated wave, RFWM can also serve as a diagnostic for many plasma parameters, such as the electron and ion temperatures, the ion acoustic velocity, and the damping rate. In this report, experimental evidence of RFWM with CO{sub 2} laser radiation (10.6 {mu}m) is presented, and the data is compared with theoretical predictions.

  6. Non-gray gas radiation effect on mixed convection in lid driven square cavity

    NASA Astrophysics Data System (ADS)

    Cherifi, Mohammed; Benbrik, Abderrahmane; Laouar-Meftah, Siham; Lemonnier, Denis

    2016-06-01

    A numerical study is performed to investigate the effect of non-gray radiation on mixed convection in a vertical two sided lid driven square cavity filled with air-H2O-CO2 gas mixture. The vertical moving walls of the enclosure are maintained at two different but uniform temperatures. The horizontal walls are thermally insulated and considered as adiabatic walls. The governing differential equations are solved by a finite-volume method and the SIMPLE algorithm was adopted to solve the pressure-velocity coupling. The radiative transfer equation (RTE) is solved by the discrete ordinates method (DOM). The spectral line weighted sum of gray gases model (SLW) is used to account for non-gray radiation properties. Simulations are performed in configurations where thermal and shear forces induce cooperating buoyancy forces. Streamlines, isotherms, and Nusselt number are analyzed for three different values of Richardson's number (from 0.1 to 10) and by considering three different medium (transparent medium, gray medium using the Planck mean absorption coefficient, and non-gray medium assumption).

  7. Line-Mixing Relaxation Matrix model for spectroscopic and radiative transfer studies

    NASA Astrophysics Data System (ADS)

    Mendaza, Teresa; Martin-Torres, Javier

    2016-04-01

    We present a generic model to compute the Relaxation Matrix easily adaptable to any molecule and type of spectroscopic lines or bands in non-reactive molecule collisions regimes. It also provides the dipole moment of every transition and level population of the selected molecule. The model is based on the Energy-Corrected Sudden (ECS) approximation/theory introduced by DePristo (1980), and on previous Relaxation Matrix studies for the interaction between molecular ro-vibrational levels (Ben-Rueven, 1966), atoms (Rosenkranz, 1975), linear molecules (Strow and Reuter, 1994; Niro, Boulet and Hartmann, 2004), and symmetric but not linear molecules (Tran et al., 2006). The model is open source, and it is user-friendly. To the point that the user only has to select the wished molecule and vibrational band to perform the calculations. It reads the needed spectroscopic data from the HIgh-resolution TRANsmission molecular absorption (HITRAN) (Rothman et al., 2013) and ExoMol (Tennyson and Yurchenko, 2012). In this work we present an example of the calculations with our model for the case of the 2ν3 band of methane (CH4), and a comparison with a previous work (Tran et al., 2010). The data produced by our model can be used to characterise the line-mixing effects on ro-vibrational lines of the infrared emitters of any atmosphere, to calculate accurate absorption spectra, that are needed in the interpretation of atmospheric spectra, radiative transfer modelling and General Circulation Models (GCM). References [1] A.E. DePristo, Collisional influence on vibration-rotation spectral line shapes: A scaling theoretical analysis and simplification, J. Chem. Phys. 73(5), 1980. [2] A. Ben-Reuven, Impact broadening of microwave spectra, Phys. Rev. 145(1), 7-22, 1966. [3] P.W. Rosenkranz, Shape of the 5 mm Oxygen Band in the Atmosphere, IEEE Transactions on Antennas and Propagation, vol. AP-23, no. 4, pp. 498-506, 1975. [4] Strow, L.L., D.D. Tobin, and S.E. Hannon, A compilation of

  8. Alanine blends for ESR measurements of thermal neutron fluence in a mixed radiation field.

    PubMed

    Marrale, M; Brai, M; Gennaro, G; Triolo, A; Bartolotta, A; D'Oca, M C; Rosi, G

    2007-01-01

    In this paper, the results of a study on the electron spin resonance (ESR) dosimetry to measure thermal neutron fluence in a mixed radiation field (neutron and photons) are presented. The ESR responses of alanine dosemeters with different additives are compared. In particular, the (10)B-acid boric and the Gd-oxide were chosen to enhance the sensitivity of alanine dosemeters to thermal neutrons. Irradiations were carried out inside the thermal column of the TAPIRO reactor of the ENEA center, Casaccia Rome. The main results are a greater neutron sensitivity and a smaller lowest detectable fluence for the dosemeters with gadolinium than for dosemeters of alanine with (10)B, which is well known to be much more sensitive to thermal neutrons than simple alanine.

  9. MHD mixed convection flow of a power law nanofluid over a vertical stretching sheet with radiation effect

    NASA Astrophysics Data System (ADS)

    Aini Mat, Nor Azian; Arifin, Norihan Md.; Nazar, Roslinda; Ismail, Fudziah; Bachok, Norfifah

    2013-09-01

    A similarity solution of the steady magnetohydrodynamic (MHD) mixed convection boundary layer flow due to a stretching vertical heated sheet in a power law nanofluid with thermal radiation effect is theoretically studied. The governing system of partial differential equations is first transformed into a system of ordinary differential equations. The transformed equations are solved numerically using the shooting method. The influence of pertinent parameters such as the nanoparticle volume fraction parameter, the magnetic parameter, the buoyancy or mixed convection parameter and the radiation parameter on the flow and heat transfer characteristics is discussed. Comparisons with published results are also presented.

  10. Shear mixing in stellar radiative zones. II. Robustness of numerical simulations

    NASA Astrophysics Data System (ADS)

    Prat, V.; Guilet, J.; Viallet, M.; Müller, E.

    2016-07-01

    Context. Recent numerical simulations suggest that the model by Zahn (1992, A&A, 265, 115) for the turbulent mixing of chemical elements due to differential rotation in stellar radiative zones is valid. Aims: We investigate the robustness of this result with respect to the numerical configuration and Reynolds number of the flow. Methods: We compare results from simulations performed with two different numerical codes, including one that uses the shearing-box formalism. We also extensively study the dependence of the turbulent diffusion coefficient on the turbulent Reynolds number. Results: The two numerical codes used in this study give consistent results. The turbulent diffusion coefficient is independent of the size of the numerical domain if at least three large turbulent structures fit in the box. Generally, the turbulent diffusion coefficient depends on the turbulent Reynolds number. However, our simulations suggest that an asymptotic regime is obtained when the turbulent Reynolds number is larger than 103. Conclusions: Shear mixing in the regime of small Péclet numbers can be investigated numerically both with shearing-box simulations and simulations using explicit forcing. Our results suggest that Zahn's model is valid at large turbulent Reynolds numbers.

  11. Radiative decays of double heavy baryons in a relativistic constituent three-quark model including hyperfine mixing effects

    SciTech Connect

    Branz, Tanja; Faessler, Amand; Gutsche, Thomas; Lyubovitskij, Valery E.; Oexl, Bettina; Ivanov, Mikhail A.; Koerner, Juergen G.

    2010-06-01

    We study flavor-conserving radiative decays of double-heavy baryons using a manifestly Lorentz covariant constituent three-quark model. Decay rates are calculated and compared to each other in the full theory, keeping masses finite, and also in the heavy quark limit. We discuss in some detail hyperfine mixing effects.

  12. Development and validation of a black carbon mixing state resolved three-dimensional model: Aging processes and radiative impact

    SciTech Connect

    Matsui, H.; Koike, Makoto; Kondo, Yutaka; Moteki, N.; Fast, Jerome D.; Zaveri, Rahul A.

    2013-03-16

    : A new two-dimensional aerosol bin scheme, which resolves both aerosol size and black carbon (BC) mixing state for BC aging processes (e.g., condensation and coagulation), has been developed and implemented into the WRF-chem model (MS-resolved WRF-chem). The mixing state of BC simulated by this model is compared with direct measurements over the East Asian region in spring 2009. Model simulations generally reproduce the observed features of the BC mixing state, such as the size-dependent number fractions of BC-containing and BC-free particles and the coating thickness of BC-containing particles. Sensitivity simulations show that the condensation process is dominant for the growth of thinly coated BC particles, while the coagulation process is necessary to produce thickly coated BC particles. Off-line optical and radiative calculations assuming an average mixing state for each size bin show that the domain- and period-averaged absorption coefficient and heating rate by aerosols are overestimated by 30 – 40% in the boundary layer compared with a benchmark simulation with the detailed treatment of mixing state. The absolute value of aerosol radiative forcing is also overestimated (10%, 3 W m-2) at the surface. However, these overestimations are reduced considerably when all the parameters (including mass and number concentration) are calculated with the simple treatment of mixing state. This is because the overestimation of radiative parameters due to higher absorption efficiency (compared with the benchmark simulation) is largely canceled by the underestimation of BC concentrations due to efficient wet removal processes. The overall errors in radiative forcing can be much smaller because of this cancellation but for the wrong reasons.

  13. Using Surface Remote Sensors to Derive Radiative Characteristics of Mixed-Phase Clouds: An Example from M-PACE

    SciTech Connect

    de Boer, Gijs; Collins, William D.; Menon, Surabi; Long, Charles N.

    2011-12-02

    Measurements from ground-based cloud radar, high spectral resolution lidar and microwave radiometer are used in conjunction with a column version of the Rapid Radiative Transfer Model (RRTMG) and radiosonde measurements to derive the surface radiative properties under mixed-phase cloud conditions. These clouds were observed during the United States Department of Energy (US DOE) Atmospheric Radiation Measurement (ARM) Mixed-Phase Arctic Clouds Experiment (M-PACE) between September and November of 2004. In total, sixteen half hour time periods are reviewed due to their coincidence with radiosonde launches. Cloud liquid (ice) water paths are found to range between 11.0-366.4 (0.5-114.1) gm-2, and cloud physical thicknesses fall between 286-2075 m. Combined with temperature and hydrometeor size estimates, this information is used to calculate surface radiative flux densities using RRTMG, which are demonstrated to generally agree with measured flux densities from surface-based radiometric instrumentation. Errors in longwave flux density estimates are found to be largest for thin clouds, while shortwave flux density errors are generally largest for thicker clouds. A sensitivity study is performed to understand the impact of retrieval assumptions and uncertainties on derived surface radiation estimates. Cloud radiative forcing is calculated for all profiles, illustrating longwave dominance during this time of year, with net cloud forcing generally between 50 and 90 Wm-2.

  14. Magnesium lactate mixed with EVA polymer/paraffin as an EPR dosimeter for radiation processing application

    NASA Astrophysics Data System (ADS)

    Soliman, Y. S.; Abdel-Fattah, A. A.

    2012-12-01

    The dosimetric characteristics of γ-radiation-induced defects in magnesium lactate (ML) rods (3.5 mm×10 mm) formulated by mixing ML with molten mixtures of paraffin wax and EVA copolymer have been investigated using electron paramagnetic resonance (EPR). The EPR spectrum of irradiated ML rods was characterized by a quartet signal with the spectroscopic splitting g-factor of 2.0048±0.0003 at 0.4 mT. The useful dose range of the rod dosimeter was 100 Gy to 80 kGy. The mass attenuation coefficient, μ/ρ, and the mass energy-absorption coefficient, μen/ρ, versus energy in the range of 10 keV to 20 MeV indicate that the prepared ML dosimeter is typically adipose tissue equivalent overall this energy range. The overall combined uncertainties (at 2σ) associated with routine dose monitoring in the dose range of 0.1-10 kGy and 10-80 kGy were found to be 6.14% and 6.36%, respectively.

  15. Calibration of a Manganese Bath Relative to 252Cf Nu-Bar

    NASA Astrophysics Data System (ADS)

    Gilliam, David M.; Yue, Andrew T.; Scott Dewey, M.

    2009-08-01

    A large manganese sulfate bath is employed at the National Institute of Standards and Technology (NIST) to calibrate isotopic neutron sources relative to the national standard neutron source NBS-I. In the past few years many low-emission Cf-252 neutron sources have been calibrated for testing of neutron detectors for the U.S. Department of Homeland Security (DHS). The low-emission DHS sources are about a factor of 100 lower in emission rate than NBS-I, so that background fluctuations become more significant in making accurate calibrations. To verify and improve the calibrations relative to NBS-I, a new calibration for sealed Cf-252 neutron sources has been made by measuring the fission rate of a bare Cf-252 deposit and inferring its neutron emission rate from Cf-252 nu-bar, the well-established neutron multiplicity of spontaneous fission in Cf-252. The fission rate of the bare deposit was measured by counting fission fragments in vacuum with a surface barrier detector behind an aperture and spacer, which provided a well-defined solid angle for detection. A thin polyimide film was placed just above the Cf deposit to prevent contamination of the detector by self-sputtering of the Cf material in vacuum. Tests with additional layers of polyimide were performed to observe any perturbation in the detection efficiency due to scattering or absorption of alpha particles or fission fragments in the polyimide film. The increase in the background count rate due to accumulation of Cf on the polyimide film was less than 0.02% of the fission fragment count rate from the sample, at the end of all runs. It is estimated that this increase in background would have been about 150 times higher without the polyimide film. The sealed Cf source NIST-DHSA was compared to the bare source by relative neutron counting in an assembly of polyethylene moderator and He-3 detectors. The calibration via Cf-252 nu-bar gave a result that was 1.7% higher than the previous calibration relative to NBS-I in the large manganese sulfate bath. This discrepancy is about equal to the current uncertainty in either calibration. Improvement in the Cf-252 nu-bar method is expected by use of a recently acquired measuring microscope for source-aperture geometry characterization and by comparisons of the neutron emission of bare deposit and the sealed sources in a new reduced-volume manganese bath.

  16. Analusis by 252Cf plasma desorption mass spectrometry of Bordetella pertussis endotoxin after nitrous deamination

    NASA Astrophysics Data System (ADS)

    Deprun, C.; Karibian, D.; Caroff, M.

    1993-07-01

    Endotoxic lipopolysaccharides (LPSs) are the major components of Gram-negative bacterial outer membrane. Like many amphipathic molecules, they pose problems of heterogeneity, purity, solubility, and aggregation. Nevertheless, PDMS has recently have been applied to unmodified endotoxins composed of LPS having uip to five sugar units in their saccharide chain. The B. Pertussis LPSs, most of which have a dodecasaccharide domain, ahve been analysed by classical methods and the masses of the separate lipid and saccharide domains determined after rupture of the bond linking them. However, the acid treatment employed for these and most chemical analyses can also modify structures in the vicinity of the bond. In order to investigate this biologically-important region, the endotoxin was treated to nitrous deamination, which shortens the saccharide chain to five sugars, but preserves the acid-labile region of the LPS. The PDM spectrum of this derivative, which required new conditions for its desorption, confirmed the structure analysis and demonstrated the presence of at least four molecular species.

  17. Chromosomal aberrations in peripheral blood lymphocytes exposed to a mixed beam of low energy neutrons and gamma radiation.

    PubMed

    Wojcik, A; Obe, G; Lisowska, H; Czub, J; Nievaart, V; Moss, R; Huiskamp, R; Sauerwein, W

    2012-09-01

    Cells exposed to thermal neutrons are simultaneously damaged by radiations with high and low linear energy transfer (LET). A question relevant for the assessment of risk of exposure to a mixed beam is whether the biological effect of both radiation types is additive or synergistic. The aim of the present investigation was to calculate whether the high and low LET components of a thermal neutron field interact when damaging cells. Human peripheral blood lymphocytes were exposed to neutrons from the HB11 beam at the Institute for Energy and Transport, Petten, Netherlands, in a 37 °C water phantom at varying depths, where the mix of high and low LET beam components differs. Chromosomal aberrations were analysed and the relative biological effectiveness (RBE) values as well as the expected contributions of protons and photons to the aberration yield were calculated based on a dose response of aberrations in lymphocytes exposed to (60)Co gamma radiation. The RBE for 10 dicentrics per 100 cells was 3 for mixed beam and 7.2 for protons. For 20 dicentrics per 100 cells the respective values were 2.4 and 5.8. Within the limitations of the experimental setup the results indicate that for this endpoint there is no synergism between the high and low LET radiations.

  18. Beam orientation optimization for intensity-modulated radiation therapy using mixed integer programming.

    PubMed

    Yang, Ruijie; Dai, Jianrong; Yang, Yong; Hu, Yimin

    2006-08-01

    The purpose of this study is to extend an algorithm proposed for beam orientation optimization in classical conformal radiotherapy to intensity-modulated radiation therapy (IMRT) and to evaluate the algorithm's performance in IMRT scenarios. In addition, the effect of the candidate pool of beam orientations, in terms of beam orientation resolution and starting orientation, on the optimized beam configuration, plan quality and optimization time is also explored. The algorithm is based on the technique of mixed integer linear programming in which binary and positive float variables are employed to represent candidates for beam orientation and beamlet weights in beam intensity maps. Both beam orientations and beam intensity maps are simultaneously optimized in the algorithm with a deterministic method. Several different clinical cases were used to test the algorithm and the results show that both target coverage and critical structures sparing were significantly improved for the plans with optimized beam orientations compared to those with equi-spaced beam orientations. The calculation time was less than an hour for the cases with 36 binary variables on a PC with a Pentium IV 2.66 GHz processor. It is also found that decreasing beam orientation resolution to 10 degrees greatly reduced the size of the candidate pool of beam orientations without significant influence on the optimized beam configuration and plan quality, while selecting different starting orientations had large influence. Our study demonstrates that the algorithm can be applied to IMRT scenarios, and better beam orientation configurations can be obtained using this algorithm. Furthermore, the optimization efficiency can be greatly increased through proper selection of beam orientation resolution and starting beam orientation while guaranteeing the optimized beam configurations and plan quality.

  19. Development and validation of a nanodosimetry-based cell survival model for mixed high- and low-LET radiations

    NASA Astrophysics Data System (ADS)

    Zhang, Xin

    A new nanodosimetry-based cell survival model for mixed high- and low-LET radiation has been developed. The new model employs three dosimetry quantities and three biological quantities. The three dosimetry quantities are related to energy depositions at two nanometer scales, 5nm and 25nm. The three biological quantities are related to lesion production and interaction probabilities, and lesion repair rate. The model assumes that the lesions created at the two nanometer scales are directly or indirectly responsible for cell death depending on the lesions' interaction and repair rate. The cell survival fraction derived from the new model can be expressed by the familiar dose-dependent linear quadratic formula. The coefficients alpha and beta are based on the three nanodosimetry quantities and the three biological quantities. Validation of the new model has been performed both by using published data and by the experimental data obtained. Published cell survival curves for V-79 Chinese hamster cells irradiated with various LET of radiations were used for validation. The new model was applied to radiation therapy by irradiating V-79 cells with mixed fission neutron and gamma-rays. The results show that the new model has been successfully used in a mixed n+gamma field to predict the synergistic effect between neutron and gamma-ray lesions and the RBE for fission neutrons.

  20. Search for instantaneous radiation near the instant of break momentum of various fissioning nuclear systems at low excitation energies

    SciTech Connect

    Vorobyev, A. S. Val'ski, G. V.; Gagarskii, A. M.; Guseva, I. S.; Petrov, G. A.; Petrova, V. I.; Serebrin, A. Yu.; Sokolov, V. E.; Shcherbakov, O. A.

    2011-12-15

    The main results of studying the properties of 'instantaneous' neutrons and {gamma} photons during the fission of {sup 233,235}U(n{sub th}, f) and {sup 239}Pu(n{sub th}, f) nuclei and spontaneous fission of {sup 252}Cf, which were performed on the WWR-M reactor at the St. Petersburg Nuclear Physics Institute, Russian Academy of Sciences, are presented. Along with obtaining the main characteristics of the instantaneous radiation from fission fragments, these studies were also aimed at gaining deeper insight into such exotic processes as the emission of break neutrons and {gamma} photons from a fissioning nucleus near the break point. These investigations were performed on different experimental setups using different analytical methods. This approach allowed us not only to find but also to reduce to minimum possible systematic effects. The yields of break neutrons were found to be about (5-7) Multiplication-Sign 10{sup -2} of the total number of neutrons per {sup 233,235}U(n, f) fission event and approximately twice as much for {sup 239}Pu(n, f) and {sup 252}Cf. The coefficient of T-odd asymmetry for {gamma} photons is in agreement with the estimate obtained on the assumption that the observed effect is mainly related to the {gamma} photons emitted by excited fragments with highly oriented angular momenta. This fact gave grounds to conclude that the desired break {gamma} photons cannot be reliably selected (within the obtained experimental accuracy) against the much larger background of {gamma} photons from fission fragments.

  1. Radiation injury of boron neutron capture therapy using mixed epithermal- and thermal neutron beams in patients with malignant glioma.

    PubMed

    Kageji, T; Nagahiro, S; Mizobuchi, Y; Toi, H; Nakagawa, Y; Kumada, H

    2004-11-01

    The purpose of this study was to clarify the radiation injury in acute or delayed stage after boron neutron capture therapy (BNCT) using mixed epithermal- and thermal neutron beams in patients with malignant glioma. Eighteen patients with malignant glioma underwent mixed epithermal- and thermal neutron beam and sodium borocaptate between 1998 and 2004. The radiation dose (i.e. physical dose of boron n-alpha reaction) in the protocol used between 1998 and 2000 (Protocol A, n = 8) prescribed a maximum tumor volume dose of 15 Gy. In 2001, a new dose-escalated protocol was introduced (Protocol B, n = 4); it prescribes a minimum tumor volume dose of 18 Gy or, alternatively, a minimum target volume dose of 15 Gy. Since 2002, the radiation dose was reduced to 80-90% dose of Protocol B because of acute radiation injury. A new Protocol was applied to 6 glioblastoma patients (Protocol C, n = 6). The average values of the maximum vascular dose of brain surface in Protocol A, B and C were 11.4+/-4.2 Gy, 15.7+/-1.2 and 13.9+/-3.6 Gy, respectively. Acute radiation injury such as a generalized convulsion within 1 week after BNCT was recognized in three patients of Protocol B. Delayed radiation injury such as a neurological deterioration appeared 3-6 months after BNCT, and it was recognized in 1 patient in Protocol A, 5 patients in Protocol B. According to acute radiation injury, the maximum vascular dose was 15.8+/-1.3 Gy in positive and was 12.6+/-4.3 Gy in negative. There was no significant difference between them. According to the delayed radiation injury, the maximum vascular dose was 13.8+/-3.8 Gy in positive and was 13.6+/-4.9 Gy in negative. There was no significant difference between them. The dose escalation is limited because most patients in Protocol B suffered from acute radiation injury. We conclude that the maximum vascular dose does not exceed over 12 Gy to avoid the delayed radiation injury, especially, it should be limited under 10 Gy in the case that tumor

  2. A Radiation Laboratory Curriculum Development at Western Kentucky University

    SciTech Connect

    Barzilov, Alexander P.; Novikov, Ivan S.; Womble, Phil C.

    2009-03-10

    We present the latest developments for the radiation laboratory curriculum at the Department of Physics and Astronomy of Western Kentucky University. During the last decade, the Applied Physics Institute (API) at WKU accumulated various equipment for radiation experimentation. This includes various neutron sources (computer controlled d-t and d-d neutron generators, and isotopic 252 Cf and PuBe sources), the set of gamma sources with various intensities, gamma detectors with various energy resolutions (NaI, BGO, GSO, LaBr and HPGe) and the 2.5-MeV Van de Graaff particle accelerator. XRF and XRD apparatuses are also available for students and members at the API. This equipment is currently used in numerous scientific and teaching activities. Members of the API also developed a set of laboratory activities for undergraduate students taking classes from the physics curriculum (Nuclear Physics, Atomic Physics, and Radiation Biophysics). Our goal is to develop a set of radiation laboratories, which will strengthen the curriculum of physics, chemistry, geology, biology, and environmental science at WKU. The teaching and research activities are integrated into real-world projects and hands-on activities to engage students. The proposed experiments and their relevance to the modern status of physical science are discussed.

  3. Transport and Mixing Patterns over Central California during the Carbonaceous Aerosol and Radiative Effects Study (CARES)

    SciTech Connect

    Fast, Jerome D.; Gustafson, William I.; Berg, Larry K.; Shaw, William J.; Pekour, Mikhail S.; Shrivastava, ManishKumar B.; Barnard, James C.; Ferrare, R.; Hostetler, Chris A.; Hair, John; Erickson, Matthew H.; Jobson, Tom; Flowers, Bradley; Dubey, Manvendra K.; Springston, Stephen R.; Pirce, Bradley R.; Dolislager, Leon; Pederson, J. R.; Zaveri, Rahul A.

    2012-02-17

    We describe the synoptic and regional-scale meteorological conditions that affected the transport and mixing of trace gases and aerosols in the vicinity of Sacramento, California during June 2010 when the Carbonaceous Aerosol and Radiative Effects Study (CARES) was conducted. The meteorological measurements collected by various instruments deployed during the campaign and the performance of the chemistry version of the Weather Research and Forecasting model (WRF-Chem) are both discussed. WRF-Chem was run daily during the campaign to forecast the spatial and temporal variation of carbon monoxide emitted from 20 anthropogenic source regions in California to guide aircraft sampling. The model is shown to reproduce the overall circulations and boundary-layer characteristics in the region, although errors in the upslope wind speed and boundary-layer depth contribute to differences in the observed and simulated carbon monoxide. Thermally-driven upslope flows that transported pollutants from Sacramento over the foothills of the Sierra Nevada occurred every afternoon, except during three periods when the passage of mid-tropospheric troughs disrupted the regional-scales flow patterns. The meteorological conditions after the passage of the third trough were the most favorable for photochemistry and likely formation of secondary organic aerosols. Meteorological measurements and model forecasts indicate that the Sacramento pollutant plume was likely transported over a downwind site that collected trace gas and aerosol measurements during 23 periods; however, direct transport occurred during only eight of these periods. The model also showed that emissions from the San Francisco Bay area transported by intrusions of marine air contributed a large fraction of the carbon monoxide in the vicinity of Sacramento, suggesting that this source likely affects local chemistry. Contributions from other sources of pollutants, such as those in the Sacramento Valley and San Joaquin Valley

  4. Transport and mixing patterns over Central California during the carbonaceous aerosol and radiative effects study (CARES)

    SciTech Connect

    Fast J. D.; Springston S.; Gustafson Jr., W. I.; Berg, L. K.; Shaw, W. J.; Pekour, M.; Shrivastava, M.; Barnard, J. C.; Ferrare, R. A.; Hostetler, C. A.; Hair, J. A.; Erickson, M.; Jobson, B. T.; Flowers, B.; Dubey, M. K.; Pierce, R. B.; Dolislager, L.; Pederson, J.; Zaveri, R. A.

    2012-02-17

    We describe the synoptic and regional-scale meteorological conditions that affected the transport and mixing of trace gases and aerosols in the vicinity of Sacramento, California during June 2010 when the Carbonaceous Aerosol and Radiative Effects Study (CARES) was conducted. The meteorological measurements collected by various instruments deployed during the campaign and the performance of the chemistry version of the Weather Research and Forecasting model (WRF-Chem) are both discussed. WRF-Chem was run daily during the campaign to forecast the spatial and temporal variation of carbon monoxide emitted from 20 anthropogenic source regions in California to guide aircraft sampling. The model is shown to reproduce the overall circulations and boundary-layer characteristics in the region, although errors in the upslope wind speed and boundary-layer depth contribute to differences in the observed and simulated carbon monoxide. Thermally-driven upslope flows that transported pollutants from Sacramento over the foothills of the Sierra Nevada occurred every afternoon, except during three periods when the passage of mid-tropospheric troughs disrupted the regional-scale flow patterns. The meteorological conditions after the passage of the third trough were the most favorable for photochemistry and likely formation of secondary organic aerosols. Meteorological measurements and model forecasts indicate that the Sacramento pollutant plume was likely transported over a downwind site that collected trace gas and aerosol measurements during 23 time periods; however, direct transport occurred during only eight of these periods. The model also showed that emissions from the San Francisco Bay area transported by intrusions of marine air contributed a large fraction of the carbon monoxide in the vicinity of Sacramento, suggesting that this source likely affects local chemistry. Contributions from other sources of pollutants, such as those in the Sacramento Valley and San Joaquin

  5. Dynamical Evolution and High-Energy Radiation of Mixed-Morphology Supernova Remnants

    NASA Astrophysics Data System (ADS)

    Shimizu, Takafumi

    2014-03-01

    Evolution of a supernova remnant (SNR) without an active neutron star is basically described by probation of shock waves. The shock waves accelerate charged particles. The particles accelerated to GeV radiate synchrotron radio emission, which appears to be shelllike morphology. The shock waves heat matter up to keV, and heated-electrons ionize ions. Compared with a time-scale of shock-heating of electrons by the shock, a time-scale of ionization of ions by electron collisions in the shock down stream region is longer. Hence an ionization state of SNR plasma is thought to be under-ionized state in which the ionization temperature is lower than the electron temperature, or collisional ionization equilibrium state at late time. In fact, X-ray spectra of many SNRs are explained by such plasma state model. SNRs that exhibit shell-like morphology in thermal X-ray as well as radio are categorized into shell-like SNRs. In contrast to shell-like SNRs, some SNRs exhibit shell-like radio but center-filled thermal X-ray morphology. Such SNRs are categorized into mixed-morphology SNRs (MM SNRs). Many MM SNRs interact with molecular clouds, suggested by OH maser and near infrared observations, and hence are thought to be remnants of core-collapse supernova of massive stars. Interestingly, recombination radiation X-rays, which are evidence that X-ray emitting plasmas are over-ionized states in which the ionization temperature is higher than the electron temperature, are detected from six MM SNRs. The center-filled X-rays with recombination radiation can not be explained by a picture of shock-wave propagation that explains the X-rays of shell-like SNRs. As well as X-rays, MM SNRs are characteristic in γ-ray emission. Several MM SNRs and shell-like SNRs are detected in the GeV γ-ray band by Fermi. The 1 - 100 GeV γ-ray luminosities of MM SNRs are ˜ 1034-1036 erg s-1, which are systematically higher than those of shell-like SNRs of ˜ 1033-1035 erg s-1. Such high luminosities

  6. Damage to DNA in bacterioplankton: a model of damage by ultraviolet radiation and its repair as influenced by vertical mixing.

    PubMed

    Huot, Y; Jeffrey, W H; Davis, R F; Cullen, J J

    2000-07-01

    A model of UV-induced DNA damage in oceanic bacterioplankton was developed and tested against previously published and novel measurements of cyclobutane pyrimidine dimers (CPD) in surface layers of the ocean. The model describes the effects of solar irradiance, wind-forced mixing of bacterioplankton and optical properties of the water on net DNA damage in the water column. The biological part includes the induction of CPD by UV radiation and repair of this damage through photoreactivation and excision. The modeled damage is compared with measured variability of CPD in the ocean: diel variation in natural bacterioplankton communities at the surface and in vertical profiles under different wind conditions (net damage as influenced by repair and mixing); in situ incubation of natural assemblages of bacterioplankton (damage and repair, no mixing); and in situ incubation of DNA solutions (no repair, no mixing). The model predictions are generally consistent with the measurements, showing similar patterns with depth, time and wind speed. A sensitivity analysis assesses the effect on net DNA damage of varying ozone thickness, colored dissolved organic matter concentration, chlorophyll concentration, wind speed and mixed layer depth. Ozone thickness and mixed layer depth are the most important factors affecting net DNA damage in the mixed layer. From the model, the total amplification factor (TAF; a relative measure of the increase of damage associated with a decrease in ozone thickness) for net DNA damage in the euphotic zone is 1.7, as compared with 2.1-2.2 for irradiance weighted for damage to DNA at the surface.

  7. In-situ measurements of the mixing state and optical properties of soot with implications for radiative forcing estimates

    PubMed Central

    Moffet, Ryan C.; Prather, Kimberly A.

    2009-01-01

    Our ability to predict how global temperatures will change in the future is currently limited by the large uncertainties associated with aerosols. Soot aerosols represent a major research focus as they influence climate by absorbing incoming solar radiation resulting in a highly uncertain warming effect. The uncertainty stems from the fact that the actual amount soot warms our atmosphere strongly depends on the manner and degree in which it is mixed with other species, a property referred to as mixing state. In global models and inferences from atmospheric heating measurements, soot radiative forcing estimates currently differ by a factor of 6, ranging between 0.2–1.2 W/m2, making soot second only to CO2 in terms of global warming potential. This article reports coupled in situ measurements of the size-resolved mixing state, optical properties, and aging timescales for soot particles. Fresh fractal soot particles dominate the measured absorption during peak traffic periods (6–9 AM local time). Immediately after sunrise, soot particles begin to age by developing a coating of secondary species including sulfate, ammonium, organics, nitrate, and water. Based on these direct measurements, the core-shell arrangement results in a maximum absorption enhancement of 1.6× over fresh soot. These atmospheric observations help explain the larger values for soot forcing measured by others and will be used to obtain closure in optical property measurements to reduce one of the largest remaining uncertainties in climate change. PMID:19581581

  8. Production of narrowband tunable extreme-ultraviolet radiation by noncollinear resonance-enhanced four-wave mixing.

    PubMed

    Hannemann, S; Hollenstein, U; van Duijn, E J; Ubachs, W

    2005-06-15

    Fourier-transform-limited extreme-ultraviolet (XUV) radiation (bandwidth approximately < 300 MHz) tunable around 91 nm is produced by use of two-photon resonance-enhanced four-wave mixing on the Kr resonance at 94 093 cm(-1). Noncollinear phase matching ensures the generation of an XUV sum frequency 2 omega1 + omega2 that can be filtered from auxiliary laser beams and harmonics by an adjustable slit. Application of the generated XUV light is demonstrated in spectroscopic investigations of highly excited states in H2 and N2.

  9. Radiation effects in mixed convection flow of a viscous fluid having temperature-dependent density along a permeable vertical plate

    NASA Astrophysics Data System (ADS)

    Siddiqa, S.; Asghar, S.; Hossain, Md. A.

    2012-03-01

    An analysis of a laminar mixed convection boundary-layer flow of an optically dense viscous fluid along a highly heated permeable vertical flat plate in the presence of thermal radiation is performed. The radiative heat flux term is expressed using the Rosseland diffusion approximation. Here, the fluid density is assumed to vary exponentially with temperature. The dimensionless boundary layer equations are reduced to a convenient form by primitive variable transformation and then integrated numerically employing the implicit finite difference method along with the Gaussian elimination technique. Furthermore, the boundary-layer equations are also reduced to a set of nonsimilar equations with the help of the stream function formulation and are simulated by the implicit finite-difference Keller box method. The influence of different physical parameters on the velocity and temperature profiles, as well as on the shear stress and heat transfer rate, is shown and analyzed.

  10. Influence of the vertical absorption profile of mixed Asian dust plumes on aerosol direct radiative forcing over East Asia

    NASA Astrophysics Data System (ADS)

    Noh, Young Min; Lee, Kwonho; Kim, Kwanchul; Shin, Sung-Kyun; Müller, Detlef; Shin, Dong Ho

    2016-08-01

    We estimate the aerosol direct radiative forcing (ADRF) and heating rate profiles of mixed East Asian dust plumes in the solar wavelength region ranging from 0.25 to 4.0 μm using the Santa Barbara Discrete Ordinate Atmospheric Radiative Transfer (SBDART) code. Vertical profiles of aerosol extinction coefficients and single-scattering albedos (SSA) were derived from measurements with a multi-wavelength Raman lidar system. The data are used as input parameters for our radiative transfer calculations. We considered four cases of radiative forcing in SBDART: 1. dust, 2. pollution, 3. mixed dust plume and the use of vertical profiles of SSA, and 4. mixed dust plumes and the use of column-averaged values of SSA. In our sensitivity study we examined the influence of SSA and aerosol layer height on our results. The ADRF at the surface and in the atmosphere shows a small dependence on the specific shape of the aerosol extinction vertical profile and its light-absorption property for all four cases. In contrast, at the top of the atmosphere (TOA), the ADRF is largely affected by the vertical distribution of the aerosols extinction. This effect increases if the light-absorption capacity (decrease of SSA) of the aerosols increases. We find different radiative effects in situations in which two layers of aerosols had different light-absorption properties. The largest difference was observed at the TOA for an absorbing aerosol layer at high altitude in which we considered in one case the vertical profile of SSA and in another case the column-averaged SSA only. The ADRF at the TOA increases when the light-absorbing aerosol layer is located above 3 km altitude. The differences between height-resolved SSA, which can be obtained from lidar data, and total layer-mean SSA indicates that the use of a layer-mean SSA can be rather misleading as it can induce a large error in the calculation of the ADRF at the TOA, which in turn may cause errors in the vertical profiles of heating rates.

  11. Gravitational wave luminosity and net momentum flux in head-on mergers of black holes: Radiative patterns and mode mixing

    NASA Astrophysics Data System (ADS)

    Aranha, Rafael Fernandes; Soares, Ivano Damião; Tonini, Eduardo Valentino

    2016-09-01

    We show that gravitational wave radiative patterns from a point test particle falling radially into a Schwarzschild black hole, as derived by Davis, Ruffini, Press and Price [M. Davis et al., Phys. Rev. Lett. 27, 1466 (1971).], are present in the nonlinear regime of head-on mergers of black holes. We use the Bondi-Sachs characteristic formulation and express the gravitational wave luminosity and the net momentum flux in terms of the news functions. We then evaluate the (-2 )-spin-weighted ℓ-multipole decomposition of these quantities via exact expressions valid in the nonlinear regime and defined at future null infinity. Our treatment is made in the realm of Robinson-Trautman dynamics, with characteristic initial data corresponding to the head-on merger of two black holes. We consider mass ratios in the range 0.01 ≤α ≤1 . We obtain the exponential decay with ℓ of the total energy contributed by each multipole ℓ, with an accurate linear correlation in the log-linear plot of the points up to α ≃0.7 . Above this mass ratio the contribution of the odd modes to the energy decreases faster than that of the even modes, leading to the breaking of the linear correlation; for α =1 the energy in all odd modes is zero. The dominant contribution to the total radiated energy comes from the quadrupole mode ℓ=2 corresponding, for instance, to about ≃84 % for small mass ratios up to ≃99.8 % for the limit case α =1 . The total rescaled radiated energy EWtotal/m0α2 decreases linearly with decreasing α , yielding for the point particle limit α →0 the value ≃0.0484 , about 5 times larger than the result of Davis et al. [1]. The mode decomposition of the net momentum flux and of the associated gravitational wave impulses results in an adjacent-even-odd mode-mixing pattern. We obtain that the impulses contributed by each (ℓ,ℓ+1 ) mixed mode also accurately satisfy the exponential decay with ℓ, for the whole mass ratio domain considered, 0.01 ≤α <1

  12. Linking Remotely Sensed Functional Diversity of Structural Traits to the Radiative Regime of a Temperate Mixed Forest

    NASA Astrophysics Data System (ADS)

    Schneider, F. D.; Morsdorf, F.; Furrer, R.; Schmid, B.; Schaepman, M. E.

    2015-12-01

    Patterns of functional diversity reflect the inter- and intraspecific variability of plant traits and are linked to other aspects of biodiversity, environmental factors and ecosystem function. To study the patterns at plot and stand level, spatially continuous trait measurements are required. Remote sensing methods based on airborne observations can offer such continuous high-resolution measurements, resolving individual trees of a forest at a regional extent. The study was performed at the Laegern forest, a temperate mixed forest dominated by deciduous and coniferous trees (Fagus sylvatica, Picea abies; 47°28'42.0" N, 8°21'51.8" E, 682 m asl; Switzerland). Canopy height, plant area index and foliage height diversity were derived from full-waveform airborne laser scanning data. These structural traits were used to calculate functional richness, functional evenness and functional divergence at a range of scales. A Bayesian multiresolution scale analysis was used to infer the scales at which functional diversity patterns occur. The radiative regime of the forest was simulated using the 3D radiative transfer model DART. Using a voxel-based forest reconstruction allowed us to derive top of canopy, bottom of canopy and absorbed photosynthetically active radiation. The results of this study will provide new insights on linking forest canopy structure to the radiative regime of the forest. Light availability is a critical factor determining plant growth and competition. Within canopy light scattering is mainly driven by the arrangement of leaves and their leaf optical properties. Therefore, we expect a link between the structural complexity of the forest as encompassed by functional diversity and the light availability within and below the canopy. Ultimately, this information can be used in dynamic ecosystem models such as ED2, allowing us to predict the influence of functional diversity and radiative properties on ecosystem functioning under current conditions and

  13. Mixed-phase cloud radiative properties over Ross Island, Antarctica: The influence of various synoptic-scale atmospheric circulation regimes

    NASA Astrophysics Data System (ADS)

    Scott, Ryan C.; Lubin, Dan

    2014-06-01

    Spectral downwelling shortwave irradiance measurements made beneath overcast stratiform cloud decks at Ross Island, Antarctica (77.5°S, 167°E), are used in conjunction with discrete ordinates-based radiative transfer simulations to examine how mixed-phase clouds influence shortwave irradiance at the surface during austral spring-summer. From 10 October 2012 until 4 February 2013, an Analytical Spectral Devices (ASD, Inc.) spectroradiometer deployed at the Arrival Heights (77.82°S, 166.65°E) laboratory of McMurdo Station measured in 1 min averages the downwelling spectral hemispheric (direct plus diffuse) irradiance spanning visible (VIS) and near-infrared regions of the solar spectrum, from 350 to 2200 nm. Conservative-scattering cloud optical depth τc is retrieved in the interval 1022-1033 nm, where the albedo of the snow-covered surface is lower than at VIS wavelengths. The impact of liquid versus mixed-phase cloud properties on the surface shortwave energy budget is discerned using irradiances in the 1.6 μm window. Five case studies employ NASA A-Train satellite and ancillary meteorological data sets to investigate the macrophysical, microphysical, and shortwave radiative characteristics of clouds possessing distinct meteorological histories. Cloud systems within marine air masses arriving at Ross Island after transiting the West Antarctic ice sheet (WAIS) and the Ross Ice Shelf are radiatively dominated by the ice phase. In contrast, moist marine air moving directly onshore from the Ross Sea brings low clouds with a stronger influence of liquid water. Deep cyclonic disturbances over the Ross Sea are seen to be limited in their ability to deliver significant moisture as far south as Ross Island, where clouds are mainly optically thin.

  14. Role of radiation trapping in degenerate four-wave-mixing experiments

    NASA Astrophysics Data System (ADS)

    Schiffer, M.; Ankerhold, G.; Cruse, E.; Lange, W.

    1994-03-01

    The process of degenerate four-wave mixing is studied experimentally in dense sodium vapor in a rare-gas atmosphere. The influence of trapped fluorescence light on the ground-state orientation is shown to be responsible for the observed strong reduction of saturation phenomena with increased sodium density. The interpretation is based on a simple model and is supported by results obtained by suppressing the fluorescence.

  15. MCNP-to-TORT Radiation Transport Calculations in Support of Mixed Oxide Fuels Testing for the Fissile Materials Disposition Program

    SciTech Connect

    Pace, J.V.

    1999-11-01

    The United States (US) Department of Energy Fissile Materials Disposition Program (FMDP) began studies for disposal of surplus weapons-grade plutonium (WG-Pu) as mixed uranium-plutonium oxide (@40X) fuel for commercial light-water reactors(LWRS). As a first step in this program, a test of the utilization of WG-Pu in a LWR environment is being conducted in an I-hole of the Advanced Test Reactor (ATR) at the Idaho National Engineering and Environmental Laboratory (INEEL). Initial radiation transport calculations of the test specimens were made at INEEL using the MCNP Monte Carlo radiation transport code to determine the linear heating rates in the fuel specimens. Unfortunately, the results of the calculations could not show the detailed high and low power-density spots in the specimens. Therefore, INEEL produced an MCNP source at the boundary of a rectangular parallelepiped enclosing the ATR I-hole, and Oak Ridge National Laboratory (ORNL) transformed this boundary source into a discrete -ordinates boundary source for the Three-dimensional Oak Ridge radiation Transport (TORT) code to pinpoint spatial detail. Agreement with average MCNP results were within 5%.

  16. Effects of Gamma Radiation on Individual and Mixed Ion Exchange Resins

    SciTech Connect

    Baumann, E.W.

    2003-01-06

    The ion exchange resins that are used to deionize moderator in the reactor purification systems may accumulate sufficient radiation dose to damage the resins. This radiation damage would be manifested by: (1) loss of useful exchange capacity of the bed, which is costly since resins from the reactor deionizers are not reused; (2) shrinking or swelling of the resins, which may have some effect on the hydraulic behavior of the beds; (3) release of resin degradation products into the process stream, which pollutes moderator with impurities and precursors of the neutron-induced radioisotopes. This document details results of a laboratory study to determine the magnitude of these three effects by gamma irradiation of individual resins and their mixtures.

  17. Mixing of 10-microm radiation in room-temperature Schottky diodes.

    PubMed

    Tannenwald, P E; Fetterman, H R; Freed, C; Parker, C D; Clifton, B J; O'Donnell, R G

    1981-10-01

    Schottky diodes have been used as room-temperature mixers of CO(2)-laser radiation. When a microwave local oscillator signal was introduced directly into the diode, beat notes between lasers separated by up to 69 GHz were observed. At CO(2) frequencies (30 THz) the photon energy exceeds the measured dc nonlinearities, and the device is expected to approach operation as a photon counter rather than a classical resistive mixer.

  18. Performance of the electronic personal dosemeter for neutron 'Saphydose-N' at different workplaces of nuclear facilities.

    PubMed

    Lahaye, T; Chau, Q; Ménard, S; Lacoste, V; Muller, H; Luszik-Bhadra, M; Reginatto, M; Bruguier, P

    2006-01-01

    This paper mainly aims at presenting the measurements and the results obtained with the electronic personal neutron dosemeter Saphydose-N at different facilities. Three campaigns were led in the frame of the European contract EVIDOS ('Evaluation of Individual Dosimetry in Mixed Neutron and Photon Radiation Fields'). The first one consisted in the measurements at the IRSN French research laboratory in reference neutron fields generated by a thermal facility (SIGMA), radionuclide ISO sources ((241)AmBe; (252)Cf; (252)Cf(D(2)O)\\Cd) and a realistic spectrum (CANEL/T400). The second one was performed at the Krümmel Nuclear Power Plant (Germany) close to the boiling water reactor and to a spent fuel transport cask. The third one was realised at Mol (Belgium), at the VENUS Research Reactor and at Belgonucléaire, a fuel processing factory.

  19. MCNP-to-TORT radiation transport calculations in support of mixed oxide fuels testing for the Fissile Materials Disposition Program

    SciTech Connect

    Pace, J.V. III

    1998-04-01

    The US (US) Department of Energy Fissile Materials Disposition Program has begun studies for disposal of surplus weapons-grade plutonium (WG-Pu) as mixed uranium plutonium oxide (MOX) fuel for commercial light water reactors (LWRs). Currently MOX fuel is used commercially in a number of foreign countries, but is not in the US. Most of the experience is with reactor grade plutonium (RG-Pu) in MOX fuel. Therefore, to use WG-Pu in MOX fuel, one must demonstrate that the experience with RG-Pu is relevant. As a first step in this program, the utilization of WG-Pu in a LWR environment must be demonstrated. To accomplish this, a test is to be conducted to investigate some of the unresolved issues. The initial tests will be made in an I-hole of the Advanced Test Reactor (ATR) at the Idaho National Engineering and Environmental Laboratory (INEEL). Initial radiation transport calculations of the test specimens were made at INEEL using the MCNP Monte Carlo radiation transport code. These calculations were made to determine the linear heating rates in the fuel specimens. Unfortunately, the results of the calculations could not show the detailed high and low power density spots in the specimens. However, a discrete ordinates radiation transport code could pinpoint these spatial details. Therefore, INEEL was tasked with producing a MCNP source at the boundary of a rectangular parallelepiped enclosing the ATR I-hole, and Oak Ridge National Laboratory was tasked with transforming this boundary source into a discrete ordinates boundary source for the Three-dimensional Oak Ridge radiation Transport (TORT) code. Thus, the TORT results not only complemented, but also were in agreement with the MCNP results.

  20. Genetic Engineering of a Radiation Resistant Bacterium for Biodegradation of Mixed Wastes

    SciTech Connect

    Lidstrom, Mary E.

    2003-06-01

    The specific aims of this project are to: (1) Clone and express broad spectrum oxygenases in D. radiodurans with a target TCE degradation rate of 1 nmol/min/mg protein, (2) analyze and upregulate stress response systems in D. radiodurans, and (3) test survival and activities of these strains in artificial mixtures of contaminants, designed to simulate DOE mixed waste streams, using bench-scale treatment reactors. In addition, we proposed to generate a set of new genetic tools to carry out this work. In this report, progress is described in the development of new tools and in the study of solvent resistance, heat shock regulation, and polyP metabolism.

  1. Time Dependent MHD Nano-Second Grade Fluid Flow Induced by Permeable Vertical Sheet with Mixed Convection and Thermal Radiation

    PubMed Central

    Ramzan, Muhammad; Bilal, Muhammad

    2015-01-01

    The aim of present paper is to study the series solution of time dependent MHD second grade incompressible nanofluid towards a stretching sheet. The effects of mixed convection and thermal radiation are also taken into account. Because of nanofluid model, effects Brownian motion and thermophoresis are encountered. The resulting nonlinear momentum, heat and concentration equations are simplified using appropriate transformations. Series solutions have been obtained for velocity, temperature and nanoparticle fraction profiles using Homotopy Analysis Method (HAM). Convergence of the acquired solution is discussed critically. Behavior of velocity, temperature and concentration profiles on the prominent parameters is depicted and argued graphically. It is observed that temperature and concentration profiles show similar behavior for thermophoresis parameter Νt but opposite tendency is noted in case of Brownian motion parameter Νb. It is further analyzed that suction parameter S and Hartman number Μ depict decreasing behavior on velocity profile. PMID:25962063

  2. Two-loop radiative corrections of electroweak mixing angle and branching fraction for Z going to bb

    NASA Astrophysics Data System (ADS)

    Huang, Yi-Cheng

    In this thesis I develop a numerical technique which is based on the Mellin-Barnes representation to calculate two-loop Feynman integrals. The resulting complex integrals of high dimensions are being applied with some treatments, such as the variable transform, reduction formulas, etc, to improve the convergence of the integrals. The approach is adopted to compute the two-loop radiative corrections of the electroweak mixing angle, sin theta W, and the hadronic branching ratio Rb for the process Z → bb¯. I focus on contributions with an internal fermion sub-loop using the on-shell renormalization scheme. The results will help to derive improved constraints on the Higgs particle.

  3. Radiative decay of the X(3872) as a mixed molecule-charmonium state in QCD sum rules

    SciTech Connect

    Nielsen, M.; Zanetti, C. M.

    2010-12-01

    We use QCD sum rules (QCDSR) to calculate the width of the radiative decay of the meson X(3872), assumed to be a mixture between charmonium and exotic molecular [cq][qc] states with J{sup PC}=1{sup ++}. We find that in a small range for the values of the mixing angle, 5 deg. {<=}{theta}{<=}13 deg., we get the branching ratio {Gamma}(X{yields}J/{psi}{gamma})/{Gamma}(X{yields}J/{psi}{pi}{sup +}{pi}{sup -})=0.19{+-}0.13, which is in agreement, with the experimental value. This result is compatible with the analysis of the mass and decay width of the mode J/{psi}(n{pi}) performed in the same approach.

  4. Time Dependent MHD Nano-Second Grade Fluid Flow Induced by Permeable Vertical Sheet with Mixed Convection and Thermal Radiation.

    PubMed

    Ramzan, Muhammad; Bilal, Muhammad

    2015-01-01

    The aim of present paper is to study the series solution of time dependent MHD second grade incompressible nanofluid towards a stretching sheet. The effects of mixed convection and thermal radiation are also taken into account. Because of nanofluid model, effects Brownian motion and thermophoresis are encountered. The resulting nonlinear momentum, heat and concentration equations are simplified using appropriate transformations. Series solutions have been obtained for velocity, temperature and nanoparticle fraction profiles using Homotopy Analysis Method (HAM). Convergence of the acquired solution is discussed critically. Behavior of velocity, temperature and concentration profiles on the prominent parameters is depicted and argued graphically. It is observed that temperature and concentration profiles show similar behavior for thermophoresis parameter Νt but opposite tendency is noted in case of Brownian motion parameter Νb. It is further analyzed that suction parameter S and Hartman number Μ depict decreasing behavior on velocity profile. PMID:25962063

  5. Monte Carlo simulation of the operational quantities at the realistic mixed neutron-photon radiation fields CANEL and SIGMA.

    PubMed

    Lacoste, V; Gressier, V

    2007-01-01

    The Institute for Radiological Protection and Nuclear Safety owns two facilities producing realistic mixed neutron-photon radiation fields, CANEL, an accelerator driven moderator modular device, and SIGMA, a graphite moderated americium-beryllium assembly. These fields are representative of some of those encountered at nuclear workplaces, and the corresponding facilities are designed and used for calibration of various instruments, such as survey meters, personal dosimeters or spectrometric devices. In the framework of the European project EVIDOS, irradiations of personal dosimeters were performed at CANEL and SIGMA. Monte Carlo calculations were performed to estimate the reference values of the personal dose equivalent at both facilities. The Hp(10) values were calculated for three different angular positions, 0 degrees, 45 degrees and 75 degrees, of an ICRU phantom located at the position of irradiation. PMID:17578872

  6. Interplay between evaporation radiation, and ocean mixing in the regulation of equatorial Pacific sea surface temperature

    SciTech Connect

    Grossman, R.

    1995-09-01

    Sea surface temperature (SST) regulation in the tropical oceans is an important aspect of global climate change. It has been observed that SST in the equatorial zone has not exceeded 304K over, at least, the past 10,000 years, and probably longer. Furthermore, recent satellite observations from the Earth Radiation Budget Experiment (ERBE) suggest that the greenhouse effect associated with mesoscale organized convection increases with increasing SST at a rate faster than this energy can be re-radiated to space. This suggests that a runaway greenhouse effect is possible in those parts of the tropical oceans where mesoscale convective systems (MCS) are prevalent. However, this is not observed. A search for mechanism(s) which can account for SST regulation is underway. Observational and theoretical evidence exists to suggest the importance of other feedback mechanisms as opposed to the cirrus shading and `super greenhouse effect` supported by the thermostat hypothesis. At least some of the time warm SSTs are associated with low wind speeds and low SSTs follow periods of high wind speed. 2 figs.

  7. Interactive effects of vertical mixing, nutrients and ultraviolet radiation: in situ photosynthetic responses of phytoplankton from high mountain lakes in Southern Europe

    NASA Astrophysics Data System (ADS)

    Helbling, E. W.; Carrillo, P.; Medina-Sánchez, J. M.; Durán, C.; Herrera, G.; Villar-Argaiz, M.; Villafañe, V. E.

    2013-02-01

    Global change, together with human activities, has resulted in increasing amounts of organic material (including nutrients) that water bodies receive. This input further attenuates the penetration of solar radiation, leading to the view that opaque lakes are more "protected" from solar ultraviolet radiation (UVR) than clear ones. Vertical mixing, however, complicates this view as cells are exposed to fluctuating radiation regimes, for which the effects have, in general, been neglected. Furthermore, the combined impacts of mixing, together with those of UVR and nutrient inputs are virtually unknown. In this study, we carried out complex in situ experiments in three high mountain lakes of Spain (Lake Enol in the National Park Picos de Europa, Asturias, and lakes Las Yeguas and La Caldera in the National Park Sierra Nevada, Granada), used as model ecosystems to evaluate the joint impact of these climate change variables. The main goal of this study was to address the question of how short-term pulses of nutrient inputs, together with vertical mixing and increased UVR fluxes modify the photosynthetic responses of phytoplankton. The experimentation consisted in all possible combinations of the following treatments: (a) solar radiation: UVR + PAR (280-700 nm) versus PAR (photosynthetically active radiation) alone (400-700 nm); (b) nutrient addition (phosphorus (P) and nitrogen (N)): ambient versus addition (P to reach to a final concentration of 30 μg P L-1, and N to reach N:P molar ratio of 31); and (c) mixing: mixed (one rotation from surface to 3 m depth (speed of 1 m 4 min-1, total of 10 cycles)) versus static. Our findings suggest that under ambient nutrient conditions there is a synergistic effect between vertical mixing and UVR, increasing phytoplankton photosynthetic inhibition and excretion of organic carbon (EOC) from opaque lakes as compared to algae that received constant mean irradiance within the epilimnion. The opposite occurs in clear lakes where

  8. Self-mixing detection of backscattered radiation in a single-mode erbium fibre laser for Doppler spectroscopy and velocity measurements

    SciTech Connect

    Dmitriev, A K; Konovalov, A N; Ul'yanov, V A

    2014-04-28

    We report an experimental study of the self-mixing effect in a single-mode multifrequency erbium fibre laser when radiation backscattered from an external moving object arrives at its cavity. To eliminate resulting chaotic pulsations in the laser, we have proposed a technique for suppressing backscattered radiation through the use of multimode fibre for radiation delivery. The multifrequency operation of the laser has been shown to lead to strong fluctuations of the amplitude of the Doppler signal and a nonmonotonic variation of the amplitude with distance to the scattering object. In spite of these features, the self-mixing signal was detected with a high signal-to-noise ratio (above 10{sup 2}) when the radiation was scattered by a rotating disc, and the Doppler frequency shift, evaluated as the centroid of its spectrum, had high stability (0.15%) and linearity relative to the rotation rate. We conclude that the self-mixing effect in this type of fibre laser can be used for measuring the velocity of scattering objects and in Doppler spectroscopy for monitoring the laser evaporation of materials and biological tissues. (control of laser radiation parameters)

  9. The roles of vertical mixing, solar radiation, and wind stress in a model simulation of the sea surface temperature seasonal cycle in the tropical Pacfic Ocean

    NASA Technical Reports Server (NTRS)

    Chen, Dake; Busalacchi, Antonio J.; Rothstein, Lewis M.

    1994-01-01

    The climatological seasonal cycle of sea surface temperature (SST) in the tropical Pacific is simulated using a newly developed upper ocean model. The roles of vertical mixing, solar radiation, and wind stress are investigated in a hierarchy of numerical experiments with various combinations of vertical mixing algorithms and surface-forcing products. It is found that the large SST annual cycle in the eastern equatorial Pacific is, to a large extent, controlled by the annually varying mixed layer depth which, in turn, is mainly determined by the competing effects of solar radiation and wind forcing. With the application of our hybrid vertical mixing scheme the model-simulated SST annual cycle is much improved in both amplitude and phase as compared to the case of a constant mixed layer depth. Beside the strong effects on vertical mixing, solar radiation is the primary heating term in the surface layer heat budget, and wind forcing influences SST by driving oceanic advective processes that redistribute heat in the upper ocean. For example, the SST seasonal cycle in the western Pacific basically follows the semiannual variation of solar heating, and the cycle in the central equatorial region is significantly affected by the zonal advective heat flux associated with the seasonally reversing South Equatorial Current. It has been shown in our experiments that the amount of heat flux modification needed to eliminate the annual mean SST errors in the model is, on average, no larger than the annual mean uncertainties among the various surface flux products used in this study. Whereas a bias correction is needed to account for remaining uncertainties in the annual mean heat flux, this study demonstrates that with proper treatment of mixed layer physics and realistic forcing functions the seasonal variability of SST is capable of being simulated successfully in response to external forcing without relying on a relaxation or damping formulation for the dominant surface heat

  10. Hot HB Stars in Globular Clusters: Physical Parameters and Consequences for Theory. 5; Radiative Levitation Versus Helium Mixing

    NASA Technical Reports Server (NTRS)

    Moehler, S.; Sweigart, A. V.; Landsman, W. B.; Heber, U.

    2000-01-01

    Atmospheric parameters (T(sub eff), log g), masses and helium abundances are derived for 42 hot horizontal branch (HB) stars in the globular cluster NGC6752. For 19 stars we derive magnesium and iron abundances as well and find that iron is enriched by a factor of 50 on average with respect to the cluster abundance whereas the magnesium abundances are consistent with the cluster abundance. Radiation pressure may levitate heavy elements like iron to the surface of the star in a diffusive process. Taking into account the enrichment of heavy elements in our spectroscopic analyses we find that high iron abundances can explain part, but not all, of the problem of anomalously low gravities along the blue HB. The blue HB stars cooler than about 15,100 K and the sdB stars (T(sub eff) greater than or = 20,000 K) agree well with canonical theory when analysed with metal-rich ([M/H] = +0.5) model atmospheres, but the stars in between these two groups remain offset towards lower gravities and masses. Deep Mixing in the red giant progenitor phase is discussed as another mechanism that may influence the position of the blue HB stars in the (T(sub eff), log g)-plane but not their masses.

  11. Calibration Tools for Measurement of Highly Enriched Uranium in Oxide and Mixed Uranium-Plutonium Oxide with a Passive-Active Neutron Drum Shuffler

    SciTech Connect

    Mount, M; O'Connell, W; Cochran, C; Rinard, P

    2003-06-13

    Lawrence Livermore National Laboratory (LLNL) has completed an extensive effort to calibrate the LLNL passive-active neutron drum (PAN) shuffler (Canberra Model JCC-92) for accountability measurement of highly enriched uranium (HEU) oxide and HEU in mixed uranium-plutonium (U-Pu) oxide. Earlier papers described the PAN shuffler calibration over a range of item properties by standards measurements and an extensive series of detailed simulation calculations. With a single normalization factor, the simulations agree with the HEU oxide standards measurements to within {+-}1.2% at one standard deviation. Measurement errors on mixed U-Pu oxide samples are in the {+-}2% to {+-}10% range, or {+-}20 g for the smaller items. The purpose of this paper is to facilitate transfer of the LLNL procedure and calibration algorithms to external users who possess an identical, or equivalent, PAN shuffler. Steps include (1) measurement of HEU standards or working reference materials (WRMs); (2) MCNP simulation calculations for the standards or WRMs and a range of possible masses in the same containers; (3) a normalization of the calibration algorithms using the standard or WRM measurements to account for differences in the {sup 252}Cf source strength, the delayed-neutron nuclear data, effects of the irradiation protocol, and detector efficiency; and (4) a verification of the simulation series trends against like LLNL results. Tools include EXCEL/Visual Basic programs which pre- and post-process the simulations, control the normalization, and embody the calibration algorithms.

  12. The ASTAR 2007 April 14 haze layer: The radiative effect of an aged and internally mixed aerosol in the Arctic

    NASA Astrophysics Data System (ADS)

    Engvall, A.-C.; Ström, J.; Tunved, P.; Schlager, H.; Minikin, A.

    2009-04-01

    the mixing state of the aerosol in the size range between 17 and 239 nm obtained from a volatility DMPS (V-DMPS). Information about the light-absorbing properties of the aerosol was obtained from a custom-built particle soot absorption photometer (PSAP), which provided the particle light-absorption coefficient sp at a wavelength of 525 nm. From this we estimated the black carbon mass concentration (BC, ng m-3) by using the commonly employed specific absorption coefficient 10 m2 g-1 [Petzold, et al., 1997]. As a part of the quality control, an intercomparison was made with measurements from the Zeppelin station (474 m.a.s.l.) at Ny-Ålesund [Ström, et al., 2003; Engvall, et al., 2008]. This indicated good agreement between the airborne and the ground-based size-distribution results for particles of diameter smaller than approximately 200 nm. To investigate the radiative effects of the enhanced aerosol layer a one-dimensional radiation model was used to simulate the amplified heating rate (K day-1). The calculations were based on in-situ measurements of the input variables, viz. relative humidity (RH), temperature (T), pressure (p), aerosol size distribution, and the scattering and absorption properties of the aerosols, for more details see [Treffeisen, et al., 2007]. CONCLUSIONS Transport of pollutants from the mid-latitudes into the Arctic free troposphere may give rise to a heating rate within the plume of up to 1.3 K day-1, dependent on the properties of the plume and the surface albedo. The surface properties, in this study ice/snow covered or ice-free ocean, are of importance since the latter case with a low albedo shows a 25-30% decrease of the heating rate compared to the snow/ice case. These results can be compared to those obtained by [Treffeisen, et al., 2007], who estimated a heating rate of 1.7 K day-1 at an altitude of 0.5 km based on the observed concentrations of particles, soot, and aerosol scattering during the highest pollution event ever recorded

  13. [Radiolysis of liposomes, of solutions of ferrous sulphate and of albumin mixed by gamma-neutron radiation at different dose rates].

    PubMed

    Riabchenko, N I; Ul'ianenko, S E; Riabchenko, V I; Dzikovskaia, L A; Ivannik, V P; Sokolov, V A

    2005-01-01

    Solutions of the ferrous sulfate, of the albumin and of the suspension of liposomes were irradiated by mixed gamma-neutron radiation (fission spectrum neutrons, contribution of gamma-component to the absorbed dose up to 20%) at the pulse reactor BARS-6 with single-pulse (duration 100 micros) or continuous radiation (duration 60 min). It was shown, that after the pulse irradiation the concentration of the malonic dialdehyde in liposomes was in 3-4 times higher than after the continuous radiation at equal absorbed doses (p < 0.05). On the contrary, the irradiation of the liposomes suspension as well as of the solutions of the ferrous sulfate and of the albumin in a mode of single-pulse or of continuous mode did not reveal the statistically significant differences in the production of Fe3+ ions and of peroxides of the albumin for two mode of the radiation action. PMID:16304771

  14. Efficient algorithms for mixed aleatory-epistemic uncertainty quantification with application to radiation-hardened electronics. Part I, algorithms and benchmark results.

    SciTech Connect

    Swiler, Laura Painton; Eldred, Michael Scott

    2009-09-01

    This report documents the results of an FY09 ASC V&V Methods level 2 milestone demonstrating new algorithmic capabilities for mixed aleatory-epistemic uncertainty quantification. Through the combination of stochastic expansions for computing aleatory statistics and interval optimization for computing epistemic bounds, mixed uncertainty analysis studies are shown to be more accurate and efficient than previously achievable. Part I of the report describes the algorithms and presents benchmark performance results. Part II applies these new algorithms to UQ analysis of radiation effects in electronic devices and circuits for the QASPR program.

  15. Interactive effects of vertical mixing, nutrients and ultraviolet radiation: in situ photosynthetic responses of phytoplankton from high mountain lakes of Southern Europe

    NASA Astrophysics Data System (ADS)

    Helbling, E. W.; Carrillo, P.; Medina-Sanchez, J. M.; Durán, C.; Herrera, G.; Villar-Argaiz, M.; Villafañe, V. E.

    2012-07-01

    Global change, together with human activities had resulted in increasing amounts of organic material (including nutrients) received by water bodies. This input further attenuates the penetration of solar radiation leading to the view that opaque lakes are more "protected" from solar ultraviolet radiation (UVR) than clear ones. Vertical mixing, however, complicates this view as cells are exposed to fluctuating radiation regimes, which effects have in general been neglected. Even more, the combined impacts of mixing, together with those of UVR and nutrients input are virtually unknown. In this study, we carried out in situ experiments in three high mountain lakes of Spain (Lake Enol in Asturias, and lakes Las Yeguas and La Caldera in Granada) to determine the combined effects of these three variables associated to global change on photosynthetic responses of natural phytoplankton communities. The experimentation consisted in all possible combinations of the following treatments: (a) solar radiation: UVR + PAR (280-700 nm) versus PAR alone (400-700 nm); (b) nutrient addition (phosphorus (P) and nitrogen (N)): ambient versus addition (P to reach to a final concentration of 30 μg P l-1, and N to reach a N : P molar ratio of 31) and, (c) mixing: mixed (one rotation from surface to 3 m depth (speed of 1 m every 4 min, total of 10 cycles) versus static. Our findings suggest that under in situ nutrient conditions there is a synergistic effect between vertical mixing and UVR, increasing phytoplankton photosynthetic inhibition and EOC from opaque lakes as compared to algae that received constant mean irradiance within the epilimnion. The opposite occurs in clear lakes where antagonistic effects were determined, with mixing partially counteracting the negative effects of UVR. Nutrients input mimicking atmospheric pulses from Saharan dust, reversed this effect and clear lakes became more inhibited during mixing, while opaque lakes benefited from the fluctuating irradiance

  16. Development of a Characterized Radiation Field for Evaluating Sensor Performance

    SciTech Connect

    Rogers, D.M.; Coggins, T.L.; Marsh, J.; Mann, St.D.; Waggoner, Ch.A.

    2008-07-01

    Numerous efforts are funded by US agencies (DOE, DoD, DHS) for development of novel radiation sensing and measurement systems. An effort has been undertaken to develop a flexible shielding system compatible with a variety of sources (beta, X-ray, gamma, and neutron) that can be highly characterized using conventional radiation detection and measurement systems. Sources available for use in this system include americium-beryllium (AmBe), plutonium-beryllium (PuBe), strontium-90 (Sr-90), californium-252 (Cf-252), krypton-85 (Kr-85), americium-241 (Am-241), and depleted uranium (DU). Shielding can be varied by utilization of materials that include lexan, water, oil, lead, and polyethylene. Arrangements and geometries of source(s) and shielding can produce symmetrical or asymmetrical radiation fields. The system has been developed to facilitate accurately repeatable configurations. Measurement positions are similarly capable of being accurately re-created. Stand-off measurement positions can be accurately re-established using differential global positioning system (GPS) navigation. Instruments used to characterize individual measurement locations include a variety of sodium iodide (NaI(Tl)) (3 x 3 inch, 4 x 4 x 16 inch, Fidler) and lithium iodide (LiI(Eu)) detectors (for use with multichannel analyzer software) and detectors for use with traditional hand held survey meters such as boron trifluoride (BF{sub 3}), helium-3 ({sup 3}He), and Geiger-Mueller (GM) tubes. Also available are Global Dosimetry thermoluminescent dosimeters (TLDs), CR39 neutron chips, and film badges. Data will be presented comparing measurement techniques with shielding/source configurations. The system is demonstrated to provide a highly functional process for comparison/characterization of various detector types relative to controllable radiation types and levels. Particular attention has been paid to use of neutron sources and measurements. (authors)

  17. Mechanism and computational model for Lyman-α-radiation generation by high-intensity-laser four-wave mixing in Kr-Ar gas

    NASA Astrophysics Data System (ADS)

    Louchev, Oleg A.; Bakule, Pavel; Saito, Norihito; Wada, Satoshi; Yokoyama, Koji; Ishida, Katsuhiko; Iwasaki, Masahiko

    2011-09-01

    We present a theoretical model combined with a computational study of a laser four-wave mixing process under optical discharge in which the non-steady-state four-wave amplitude equations are integrated with the kinetic equations of initial optical discharge and electron avalanche ionization in Kr-Ar gas. The model is validated by earlier experimental data showing strong inhibition of the generation of pulsed, tunable Lyman-α (Ly-α) radiation when using sum-difference frequency mixing of 212.6 nm and tunable infrared radiation (820-850 nm). The rigorous computational approach to the problem reveals the possibility and mechanism of strong auto-oscillations in sum-difference resonant Ly-α generation due to the combined effect of (i) 212.6-nm (2+1)-photon ionization producing initial electrons, followed by (ii) the electron avalanche dominated by 843-nm radiation, and (iii) the final breakdown of the phase matching condition. The model shows that the final efficiency of Ly-α radiation generation can achieve a value of ˜5×10-4 which is restricted by the total combined absorption of the fundamental and generated radiation.

  18. Mechanism and computational model for Lyman-{alpha}-radiation generation by high-intensity-laser four-wave mixing in Kr-Ar gas

    SciTech Connect

    Louchev, Oleg A.; Saito, Norihito; Wada, Satoshi; Bakule, Pavel; Yokoyama, Koji; Ishida, Katsuhiko; Iwasaki, Masahiko

    2011-09-15

    We present a theoretical model combined with a computational study of a laser four-wave mixing process under optical discharge in which the non-steady-state four-wave amplitude equations are integrated with the kinetic equations of initial optical discharge and electron avalanche ionization in Kr-Ar gas. The model is validated by earlier experimental data showing strong inhibition of the generation of pulsed, tunable Lyman-{alpha} (Ly-{alpha}) radiation when using sum-difference frequency mixing of 212.6 nm and tunable infrared radiation (820-850 nm). The rigorous computational approach to the problem reveals the possibility and mechanism of strong auto-oscillations in sum-difference resonant Ly-{alpha} generation due to the combined effect of (i) 212.6-nm (2+1)-photon ionization producing initial electrons, followed by (ii) the electron avalanche dominated by 843-nm radiation, and (iii) the final breakdown of the phase matching condition. The model shows that the final efficiency of Ly-{alpha} radiation generation can achieve a value of {approx}5x10{sup -4} which is restricted by the total combined absorption of the fundamental and generated radiation.

  19. Compounds of 6Li and natural Li for EPR dosimetry in photon/neutron mixed radiation fields.

    PubMed

    Lund, E; Gustafsson, H; Danilczuk, M; Sastry, M D; Lund, A

    2004-05-01

    Formates and dithionates of 6Li, enriched and 7Li in natural composition of Li offer a possibility to measure the absorbed dose from photons and thermal neutrons in a mixed radiation field for instance at a boron neutron capture therapy (BNCT) facility. Tests with formates and dithionates of enriched 6Li and lithium compounds with natural composition have been performed at the BNCT facility at Studsvik, Sweden. Irradiations have been performed at 3 cm depth in a Perspex phantom in a fluence rate of thermal neutrons 1.8 x 10(9) n cm(-2) s(-1). The compounds were also irradiated in a pure X-ray field from a 4MV linear accelerator at 5 cm depth in a phantom with accurately determined absorbed doses. The signal intensity and shape was investigated within 3 h after the irradiation. A single line spectrum attributed to the CO2- radical was observed after irradiation of lithium formate. An increase in line width occurring after neutron irradiation in comparison with photon irradiation of the 6Li sample was attributed to dipolar broadening between CO2- radicals trapped in the tracks of the alpha particles. A spectrum due to the SO3- radical anion was observed after irradiation of lithium dithionate. The signal amplitude increased using the 6Li in place of the Li with natural composition of isotopes, in studies with low energy X-ray irradiation. Due to the decreased line width, caused by the difference in g(N) and I between the isotopes, the sensitivity with 6Li dithionate may be enhanced by an order of magnitude compared to alanine dosimetry. After comprehensive examination of the different combinations of compounds with different amounts of 6Li and 7Li regarding dosimetry, radiation chemistry and EPR properties these dosimeter material might be used for dose determinations at BNCT treatments and for biomedical experiments. Interesting properties of the radical formation might be visible due to the large difference in ionization density of neutrons compared to photons.

  20. Mixed convection radiative flow of three dimensional Maxwell fluid over an inclined stretching sheet in presence of thermophoresis and convective condition

    SciTech Connect

    Ashraf, M. Bilal; Hayat, T.; Shehzad, S. A.; Alsaedi, A.

    2015-02-15

    Three dimensional radiative flow of Maxwell fluid over an inclined stretching surface with convective boundary condition is investigated. Heat and mass transfer analysis is taken into account with thermophoresis effects. Similarity transformations are utilized to reduce the partial differential equations into ordinary differential equations. Series solutions of velocity, temperature and concentration are developed. Influence of different parameters Biot number, therrmophoretic parameter, Deborah number, ratio parameter, inclined stretching angle, radiation parameter, mixed convection parameter and concentration buoyancy parameter on the non-dimensional velocity components, temperature and concentration are plotted and discussed in detail. Physical quantities of interests are tabulated and examined.

  1. Modulation of aerosol radiative forcing due to mixing state in clear and cloudy-sky: A case study from Delhi National Capital Region, India

    NASA Astrophysics Data System (ADS)

    Srivastava, Parul; Dey, Sagnik; Srivastava, Atul K.; Singh, Sachchidanand; Tiwari, Suresh; Agarwal, Poornima

    2016-04-01

    Aerosol properties change with the change in mixing state of aerosols and therefore it is a source of uncertainty in estimated aerosol radiative forcing (ARF) from observations or by models assuming a specific mixing state. The problem is important in the Indo-Gangetic Basin, Northern India, where various aerosol types mix and show strong seasonal variations. Quantifying the modulation of ARF by mixing state is hindered by lack of knowledge about proper aerosol composition. Hence, first a detailed chemical composition analysis of aerosols for Delhi National capital region (NCR) is carried out. Aerosol composition is arranged quantitatively into five major aerosol types - accumulation dust, coarse dust, water soluble (WS), water insoluble (WINS), and black carbon (BC) (directly measured by Athelometer). Eight different mixing cases - external mixing, internal mixing, and six combinations of core- shell mixing (BC over dust, WS over dust, WS over BC, BC over WS, WS over WINS, and BC over WINS; each of the combinations externally mixed with other species) have been considered. The spectral aerosol optical properties - extinction coefficient, single scattering albedo (SSA) and asymmetry parameter (g) for each of the mixing cases are calculated and finally 'clear-sky' and 'cloudy-sky' ARF at the top-of-the-atmosphere (TOA) and surface are estimated using a radiative transfer model. Comparison of surface-reaching flux for each of the cases with MERRA downward shortwave surface flux reveals the most likely mixing state. 'BC-WINS+WS+Dust' show least deviation relative to MERRA during the pre-monsoon (MAMJ) and monsoon (JAS) seasons and hence is the most probable mixing states. During the winter season (DJF), 'BC-Dust+WS+WINS' case shows the closest match with MERRA, while external mixing is the most probable mixing state in the post-monsoon season (ON). Lowest values for both TOA and surface 'clear-sky' ARF is observed for 'BC-WINS+WS+ Dust' mixing case. TOA ARF is 0.28±2

  2. Calculation of Ambient (H*(10)) and Personal (Hp(10)) Dose Equivalent from a 252Cf Neutron Source

    SciTech Connect

    Traub, Richard J.

    2010-03-26

    The purpose of this calculation is to calculate the neutron dose factors for the Sr-Cf-3000 neutron source that is located in the 318 low scatter room (LSR). The dose factors were based on the dose conversion factors published in ICRP-21 Appendix 6, and the Ambient dose equivalent (H*(10)) and Personal dose equivalent (Hp(10)) dose factors published in ICRP Publication 74.

  3. Experimental determination of moisture distributions in fired clay brick using a 252Cf source: a neutron transmission study.

    PubMed

    El Abd, A; Abdel-Monem, A M; Kansouh, W A

    2013-04-01

    A neutron transmission method was proposed to study liquid transport in porous media. It was applied to study water penetration into two kinds of fired clay bricks. The results showed that the diffusion processes in the investigated samples are different. Water diffusivities and capillary absorption coefficients characterizing both the flow process and the brick samples were determined and compared. The proposed method is simple, accurate and reliable in studying water diffusion in porous media, in real time.

  4. Comparison of lipids A of several Salmonella and Escherichia strains by 252Cf plasma desorption mass spectrometry.

    PubMed Central

    Karibian, D; Deprun, C; Caroff, M

    1993-01-01

    Plasma desorption mass spectrometry has recently been used with success to characterize underivatized lipid A preparations: the major molecular species present give signals indicating their masses, from which probable compositions could be inferred by using the overall composition determined by chemical analyses. In the present study, plasma desorption mass spectrometry was used to compare structures in lipid A preparations isolated from several smooth and rough strains of Escherichia and Salmonella species. Preparations isolated from strains of both genera revealed considerable variation in degree of heterogeneity (number of fatty acids and presence or absence of hexadecanoic acid, phosphorylethanolamine, and aminoarabinose). Molecular species usually associated with Salmonella lipid A were found in preparations from Escherichia sp. In addition, preparations from three different batches of lipid A from one strain of Salmonella minnesota showed significant differences in composition. These results demonstrate that preparations used for biological and structural analyses should be defined in terms of their particular molecular constituents and that no generalizations based on analysis of a single preparation should be made. PMID:8491718

  5. On the effect of an error in a standard D2O-moderated 252Cf energy spectrum.

    PubMed

    Cummings, F M

    2009-12-01

    There appears to be an error in the neutron fluence for neutrons with energies between 9 and 10 MeV for the tabulated D2O-moderated Cf source in ISO 8529-1. If the referenced spectrum is used as tabulated, the error contributes a total error to neutron dose values from this source of approximately 3%.

  6. Thin-shell mixing in radiative wind-shocks and the Lx ˜ Lbol scaling of O-star X-rays

    NASA Astrophysics Data System (ADS)

    Owocki, S. P.; Sundqvist, J. O.; Cohen, D. H.; Gayley, K. G.

    2013-03-01

    X-ray satellites since Einstein have empirically established that the X-ray luminosity from single O-stars scales linearly with bolometric luminosity, Lx ˜ 10-7Lbol. But straightforward forms of the most favoured model, in which X-rays arise from instability-generated shocks embedded in the stellar wind, predict a steeper scaling, either with mass-loss rate L_x ˜ dot{M}˜ L_bol^{1.7} if the shocks are radiative or with L_x ˜ dot{M}2 ˜ L_bol^{3.4} if they are adiabatic. This paper presents a generalized formalism that bridges these radiative versus adiabatic limits in terms of the ratio of the shock cooling length to the local radius. Noting that the thin-shell instability of radiative shocks should lead to extensive mixing of hot and cool material, we propose that the associated softening and weakening of the X-ray emission can be parametrized as scaling with the cooling length ratio raised to a power m, the `mixing exponent'. For physically reasonable values m ≈ 0.4, this leads to an X-ray luminosity L_x ˜ dot{M}^{0.6} ˜ L_bol that matches the empirical scaling. To fit observed X-ray line profiles, we find that such radiative-shock-mixing models require the number of shocks to drop sharply above the initial shock onset radius. This in turn implies that the X-ray luminosity should saturate and even decrease for optically thick winds with very high mass-loss rates. In the opposite limit of adiabatic shocks in low-density winds (e.g. from B-stars), the X-ray luminosity should drop steeply with dot{M}^2. Future numerical simulation studies will be needed to test the general thin-shell mixing ansatz for X-ray emission.

  7. Development of a personal dosimetry system based on optically stimulated luminescence of alpha-Al2O3:C for mixed radiation fields.

    PubMed

    Lee, S Y; Lee, K J

    2001-04-01

    To develop a personal optically stimulated luminescence (OSL) dosimetry system for mixed radiation fields using alpha-Al2O3:C, a discriminating badge filter system was designed by taking advantage of its optically stimulable properties and energy dependencies. This was done by designing a multi-element badge system for powder layered alpha-Al2O3:C material and an optical reader system based on high-intensity blue light-emitting diode (LED). The design of the multielement OSL dosimeter badge system developed allows the measurement of a personal dose equivalent value Hp(d) in mixed radiation fields of beta and gamma. Dosimetric properties of the personal OSL dosimeter badge system investigated here were the dose response, energy response and multi-readability. Based on the computational simulations and experiments of the proposed dosimeter design, it was demonstrated that a multi-element dosimeter system with an OSL technology based on alpha-Al2O3:C is suitable to obtain personal dose equivalent information in mixed radiation fields. PMID:11225704

  8. High-efficiency generation of pulsed Lyman-α radiation by resonant laser wave mixing in low pressure Kr-Ar mixture.

    PubMed

    Saito, Norihito; Oishi, Yu; Miyazaki, Koji; Okamura, Kotaro; Nakamura, Jumpei; Louchev, Oleg A; Iwasaki, Masahiko; Wada, Satoshi

    2016-04-01

    We report an experimental generation of ns pulsed 121.568 nm Lyman-α radiation by the resonant nonlinear four-wave mixing of 212.556 nm and 845.015 nm radiation pulses providing a high conversion efficiency 1.7x10-3 with the output pulse energy 3.6 μJ achieved using a low pressure Kr-Ar mixture. Theoretical analysis shows that this efficiency is achieved due to the advantage of using (i) the high input laser intensities in combination with (ii) the low gas pressure allowing us to avoid the onset of full-scale discharge in the laser focus. In particular, under our experimental conditions the main mechanism of photoionization caused by the resonant 2-photon 212.556 nm radiation excitation of Kr atoms followed by the 1-photon ionization leads to ≈17% loss of Kr atoms and efficiency loss only by the end of the pulse. The energy of free electrons, generated by 212.556 nm radiation via (2 + 1)-photon ionization and accelerated mainly by 845.015 nm radiation, remains during the pulse below the level sufficient for the onset of full-scale discharge by the electron avalanche. Our analysis also suggests that ≈30-fold increase of 845.015 nm pulse energy can allow one to scale up the L-α radiation pulse energy towards the level of ≈100 μJ. PMID:27137045

  9. High-efficiency generation of pulsed Lyman-α radiation by resonant laser wave mixing in low pressure Kr-Ar mixture.

    PubMed

    Saito, Norihito; Oishi, Yu; Miyazaki, Koji; Okamura, Kotaro; Nakamura, Jumpei; Louchev, Oleg A; Iwasaki, Masahiko; Wada, Satoshi

    2016-04-01

    We report an experimental generation of ns pulsed 121.568 nm Lyman-α radiation by the resonant nonlinear four-wave mixing of 212.556 nm and 845.015 nm radiation pulses providing a high conversion efficiency 1.7x10-3 with the output pulse energy 3.6 μJ achieved using a low pressure Kr-Ar mixture. Theoretical analysis shows that this efficiency is achieved due to the advantage of using (i) the high input laser intensities in combination with (ii) the low gas pressure allowing us to avoid the onset of full-scale discharge in the laser focus. In particular, under our experimental conditions the main mechanism of photoionization caused by the resonant 2-photon 212.556 nm radiation excitation of Kr atoms followed by the 1-photon ionization leads to ≈17% loss of Kr atoms and efficiency loss only by the end of the pulse. The energy of free electrons, generated by 212.556 nm radiation via (2 + 1)-photon ionization and accelerated mainly by 845.015 nm radiation, remains during the pulse below the level sufficient for the onset of full-scale discharge by the electron avalanche. Our analysis also suggests that ≈30-fold increase of 845.015 nm pulse energy can allow one to scale up the L-α radiation pulse energy towards the level of ≈100 μJ.

  10. An apparatus for the study of high temperature water radiolysis in a nuclear reactor: calibration of dose in a mixed neutron/gamma radiation field.

    PubMed

    Edwards, Eric J; Wilson, Paul P H; Anderson, Mark H; Mezyk, Stephen P; Pimblott, Simon M; Bartels, David M

    2007-12-01

    The cooling water of nuclear reactors undergoes radiolytic decomposition induced by gamma, fast electron, and neutron radiation in the core. To model the process, recombination reaction rates and radiolytic yields for the water radical fragments need to be measured at high temperature and pressure. Yields for the action of neutron radiation are particularly hard to determine independently because of the beta/gamma field also present in any reactor. In this paper we report the design of an apparatus intended to measure neutron radiolysis yields as a function of temperature and pressure. A new methodology for separation of neutron and beta/gamma radiolysis yields in a mixed radiation field is proposed and demonstrated.

  11. Remote Sensing and In-Situ Observations of Arctic Mixed-Phase and Cirrus Clouds Acquired During Mixed-Phase Arctic Cloud Experiment: Atmospheric Radiation Measurement Uninhabited Aerospace Vehicle Participation

    SciTech Connect

    McFarquhar, G.M.; Freer, M.; Um, J.; McCoy, R.; Bolton, W.

    2005-03-18

    The Atmospheric Radiation Monitor (ARM) uninhabited aerospace vehicle (UAV) program aims to develop measurement techniques and instruments suitable for a new class of high altitude, long endurance UAVs while supporting the climate community with valuable data sets. Using the Scaled Composites Proteus aircraft, ARM UAV participated in Mixed-Phase Arctic Cloud Experiment (M-PACE), obtaining unique data to help understand the interaction of clouds with solar and infrared radiation. Many measurements obtained using the Proteus were coincident with in-situ observations made by the UND Citation. Data from M-PACE are needed to understand interactions between clouds, the atmosphere and ocean in the Arctic, critical interactions given large-scale models suggest enhanced warming compared to lower latitudes is occurring.

  12. TEPC performance for a reference standard.

    PubMed

    Zhang, Weihua; Wang, Zhiqiang; Liu, Yina; Li, Chunjuan; Xiao, Xuefu; Luo, Hailong; Chen, Jun; Li, Wei

    2014-01-01

    A portable tissue-equivalent proportional counter (TEPC)-based system was developed, which will be used as a reference standard in the neutron mixed field for radiation protection. In this paper, microdosimetry of the TEPC system was studied both in neutron ((252)Cf and (241)Am-Be sources) and gamma ((137)Cs and (60)Co sources) reference radiation fields. The measured neutron and gamma-dose equivalent rates were, respectively, compared with those of the reference ambient dose equivalent rate H(*)(10). And the measured microdosimetric spectra were compared with the Monte Carlo code FLUKA simulated results. All of the comparisons primarily agreed well. PMID:24036657

  13. TEPC performance for a reference standard.

    PubMed

    Zhang, Weihua; Wang, Zhiqiang; Liu, Yina; Li, Chunjuan; Xiao, Xuefu; Luo, Hailong; Chen, Jun; Li, Wei

    2014-01-01

    A portable tissue-equivalent proportional counter (TEPC)-based system was developed, which will be used as a reference standard in the neutron mixed field for radiation protection. In this paper, microdosimetry of the TEPC system was studied both in neutron ((252)Cf and (241)Am-Be sources) and gamma ((137)Cs and (60)Co sources) reference radiation fields. The measured neutron and gamma-dose equivalent rates were, respectively, compared with those of the reference ambient dose equivalent rate H(*)(10). And the measured microdosimetric spectra were compared with the Monte Carlo code FLUKA simulated results. All of the comparisons primarily agreed well.

  14. Do the various radiations present in BNCT act synergistically? Cell survival experiments in mixed alpha-particle and gamma-ray fields.

    PubMed

    Phoenix, Ben; Green, Stuart; Hill, Mark A; Jones, Bleddyn; Mill, Andrew; Stevens, David L

    2009-07-01

    In many radiotherapy situations patients are exposed to mixed field radiation. In particular in BNCT, as with all neutron beam exposures, a significant fraction of the dose is contributed by low LET gamma ray photons. The components of such a mixed field may show a synergistic interaction and produce a greater cell kill effect than would be anticipated from the independent action of the different radiation types. Such a synergy would have important implications for treatment planning and in the interpretation of clinical results. An irradiation setup has been created at the Medical Research Council in Harwell to allow simultaneous irradiation of cells by cobalt-60 gamma rays and plutonium-238 alpha-particles. The setup allows for variation of dose and dose rates for both sources along with variation of the alpha particle energy. A series of cell survival assays for this mixed field have been carried out using V79-4 cells and compared to exposures to the individual components of the field under identical conditions. In the experimental setup described no significant synergistic effect was observed.

  15. Radiation-induced bystander effects in the Atlantic salmon (salmo salar L.) following mixed exposure to copper and aluminum combined with low-dose gamma radiation.

    PubMed

    Mothersill, Carmel; Smith, Richard W; Heier, Lene Sørlie; Teien, Hans-Christian; Lind, Ole Christian; Land, Ole Christian; Seymour, Colin B; Oughton, Deborah; Salbu, Brit

    2014-03-01

    Very little is known about the combined effects of low doses of heavy metals and radiation. However, such "multiple stressor" exposure is the reality in the environment. In the work reported in this paper, fish were exposed to cobalt 60 gamma irradiation with or without copper or aluminum in the water. Doses of radiation ranged from 4 to 75 mGy delivered over 48 or 6 h. Copper doses ranged from 10 to 80 μg/L for the same time period. The aluminum dose was 250 μg/L. Gills and skin were removed from the fish after exposure and explanted in tissue culture flasks for investigation of bystander effects of the exposures using a stress signal reporter assay, which has been demonstrated to be a sensitive indicator of homeostatic perturbations in cells. The results show complex synergistic interactions of radiation and copper. Gills on the whole produce more toxic bystander signals than skin, but the additivity scores show highly variable results which depend on dose and time of exposure. The impacts of low doses of copper and low doses of radiation are greater than additive, medium levels of copper alone have a similar level of effect of bystander signal toxicity to the low dose. The addition of radiation stress, however, produces clear protective effects in the reporters treated with skin-derived medium. Gill-derived medium from the same fish did not show protective effects. Radiation exposure in the presence of 80 μg/L led to highly variable results, which due to animal variation were not significantly different from the effect of copper alone. The results are stressor type, stressor concentration and time dependent. Clearly co-exposure to radiation and heavy metals does not always lead to simple additive effects.

  16. CONTROL OF LASER RADIATION PARAMETERS: Picosecond laser with discrete frequency tuning in the visible range utilizing stimulated Raman scattering with nonlinear mixing

    NASA Astrophysics Data System (ADS)

    Bel'skiĭ, A. M.; Gulis, I. M.; Mikhaĭlov, V. P.; Saechnikov, K. A.; Tsvirko, V. A.

    1992-08-01

    A YAG:Nd3+ laser emitting radiation at eight frequencies in the visible range has been developed. This continuously pumped passively mode-locked laser contained an intracavity LiIO3 crystal which served both as a Raman-active medium and as an element for nonlinear frequency mixing. Processes of stimulated Raman scattering with nonlinear mixing in an LiIO crystal were analyzed. It was established that the phonon mode having the E2 symmetry (ν = 824 cm-1) and the tilted polariton vibration having the A + E1 symmetry (ν ~ 650 cm-1) are actively involved in the emission process. Continuous frequency tuning could be achieved because of the angular dispersion of the tilted polaritons.

  17. Radiation

    NASA Video Gallery

    Outside the protective cocoon of Earth's atmosphere, the universe is full of harmful radiation. Astronauts who live and work in space are exposed not only to ultraviolet rays but also to space radi...

  18. Mixed Convective Flow of an Elastico-Viscous Fluid Past a Vertical Plate in the Presence of Thermal Radiation and Chemical Reaction with an Induced Magnetic Field

    NASA Astrophysics Data System (ADS)

    Das, Utpal Jyoti

    2016-01-01

    The purpose of the study is to investigate the steady, two-dimensional, hydromagnetic, mixed convection heat and mass transfer of a conducting, optically thin, incompressible, elastico-viscous fluid (characterized by the Walters' B' model) past a permeable, stationary, vertical, infinite plate in the presence of thermal radiation and chemical reaction with account for an induced magnetic field. The governing equations of the flow are solved by the series method, and expressions for the velocity field, induced magnetic field, temperature field, and the skin friction are obtained.

  19. Temperature and Concentration Stratification Effects in Mixed Convection Flow of an Oldroyd-B Fluid with Thermal Radiation and Chemical Reaction

    PubMed Central

    Hayat, Tasawar; Muhammad, Taseer; Shehzad, Sabir Ali; Alsaedi, Ahmed

    2015-01-01

    This research addresses the mixed convection flow of an Oldroyd-B fluid in a doubly stratified surface. Both temperature and concentration stratification effects are considered. Thermal radiation and chemical reaction effects are accounted. The governing nonlinear boundary layer equations are converted to coupled nonlinear ordinary differential equations using appropriate transformations. Resulting nonlinear systems are solved for the convergent series solutions. Graphs are plotted to examine the impacts of physical parameters on the non-dimensional temperature and concentration distributions. The local Nusselt number and the local Sherwood number are computed and analyzed numerically. PMID:26102200

  20. Criteria for personal dosimetry in mixed radiation fields in space. [analyzing trapped protons, tissue disintegration stars, and neutrons

    NASA Technical Reports Server (NTRS)

    Schaefer, H. J.

    1974-01-01

    The complexity of direct reading and passive dosimeters for monitoring radiation is studied to strike the right balance of compromise to simplify the monitoring procedure. Trapped protons, tissue disintegration stars, and neutrons are analyzed.

  1. Numerical study of entropy generation due to coupled laminar and turbulent mixed convection and thermal radiation in an enclosure filled with a semitransparent medium.

    PubMed

    Goodarzi, M; Safaei, M R; Oztop, Hakan F; Karimipour, A; Sadeghinezhad, E; Dahari, M; Kazi, S N; Jomhari, N

    2014-01-01

    The effect of radiation on laminar and turbulent mixed convection heat transfer of a semitransparent medium in a square enclosure was studied numerically using the Finite Volume Method. A structured mesh and the SIMPLE algorithm were utilized to model the governing equations. Turbulence and radiation were modeled with the RNG k-ε model and Discrete Ordinates (DO) model, respectively. For Richardson numbers ranging from 0.1 to 10, simulations were performed for Rayleigh numbers in laminar flow (10⁴) and turbulent flow (10⁸). The model predictions were validated against previous numerical studies and good agreement was observed. The simulated results indicate that for laminar and turbulent motion states, computing the radiation heat transfer significantly enhanced the Nusselt number (Nu) as well as the heat transfer coefficient. Higher Richardson numbers did not noticeably affect the average Nusselt number and corresponding heat transfer rate. Besides, as expected, the heat transfer rate for the turbulent flow regime surpassed that in the laminar regime. The simulations additionally demonstrated that for a constant Richardson number, computing the radiation heat transfer majorly affected the heat transfer structure in the enclosure; however, its impact on the fluid flow structure was negligible.

  2. Photoionization pathways and thresholds in generation of Lyman-α radiation by resonant four-wave mixing in Kr-Ar mixture

    NASA Astrophysics Data System (ADS)

    Louchev, Oleg A.; Saito, Norihito; Oishi, Yu; Miyazaki, Koji; Okamura, Kotaro; Nakamura, Jumpei; Iwasaki, Masahiko; Wada, Satoshi

    2016-09-01

    We develop a set of analytical approximations for the estimation of the combined effect of various photoionization processes involved in the resonant four-wave mixing generation of ns pulsed Lyman-α (L-α ) radiation by using 212.556 nm and 820-845 nm laser radiation pulses in Kr-Ar mixture: (i) multi-photon ionization, (ii) step-wise (2+1)-photon ionization via the resonant 2-photon excitation of Kr followed by 1-photon ionization and (iii) laser-induced avalanche ionization produced by generated free electrons. Developed expressions validated by order of magnitude estimations and available experimental data allow us to identify the area for the operation under high input laser intensities avoiding the onset of full-scale discharge, loss of efficiency and inhibition of generated L-α radiation. Calculations made reveal an opportunity for scaling up the output energy of the experimentally generated pulsed L-α radiation without significant enhancement of photoionization.

  3. Numerical Study of Entropy Generation due to Coupled Laminar and Turbulent Mixed Convection and Thermal Radiation in an Enclosure Filled with a Semitransparent Medium

    PubMed Central

    Goodarzi, M.; Safaei, M. R.; Oztop, Hakan F.; Karimipour, A.; Sadeghinezhad, E.; Dahari, M.; Kazi, S. N.; Jomhari, N.

    2014-01-01

    The effect of radiation on laminar and turbulent mixed convection heat transfer of a semitransparent medium in a square enclosure was studied numerically using the Finite Volume Method. A structured mesh and the SIMPLE algorithm were utilized to model the governing equations. Turbulence and radiation were modeled with the RNG k-ε model and Discrete Ordinates (DO) model, respectively. For Richardson numbers ranging from 0.1 to 10, simulations were performed for Rayleigh numbers in laminar flow (104) and turbulent flow (108). The model predictions were validated against previous numerical studies and good agreement was observed. The simulated results indicate that for laminar and turbulent motion states, computing the radiation heat transfer significantly enhanced the Nusselt number (Nu) as well as the heat transfer coefficient. Higher Richardson numbers did not noticeably affect the average Nusselt number and corresponding heat transfer rate. Besides, as expected, the heat transfer rate for the turbulent flow regime surpassed that in the laminar regime. The simulations additionally demonstrated that for a constant Richardson number, computing the radiation heat transfer majorly affected the heat transfer structure in the enclosure; however, its impact on the fluid flow structure was negligible. PMID:24778601

  4. Photoacclimation to long-term ultraviolet radiation exposure of natural sub-Antarctic phytoplankton communities: Fixed surface incubations versus mixed mesocosms.

    PubMed

    Hernando, Marcelo; Schloss, Irene; Roy, Suzanne; Ferreyra, Gustavo

    2006-01-01

    Solar UVB radiation (280-320 nm) is known to have detrimental effects on marine phytoplankton. Associated with the seasonal ozone hole in Antarctica, stratospheric ozone depletion occasionally influences the sub-Antarctic (Beagle Channel, Argentina) region, enhancing levels of UVB. The primary objective of this work was to study the effects of several (i.e. 6-10) days of exposure to UVB on the taxonomic composition and photosynthetic inhibition of local phytoplankton communities. For different light treatments, fixed-depth incubations placed in an outdoors water tank were compared with incubations in 1900 L mesocosms, where vertical mixing was present. Phytoplankton growth was inhibited by UV radiation (UVR) in fixed-depth experiments but not in the mixed mesocosms. Under fixed and mixed conditions alike, photosynthesis was significantly inhibited by UVB at the beginning of the experiment but no longer after several days of exposure, suggesting that cells had acclimated to radiation conditions. There was a change in species composition in response to UVR exposure in both experiments, which likely explained acclimation. In the community exposed to fixed conditions this change was from a phytoflagellate-dominated assemblage to a community with high relative abundance of diatoms after 6 days of exposure. UVA was responsible for most of the observed growth inhibition; however, the reduction in photosynthesis was produced by UVB. The reasons behind this variability in responses to UVR are associated with species-specific sensitivity and acclimation, and the previous light history of cells. In the community exposed in mesocosms, an assemblage codominated by phytoflagellates and diatoms was observed at the beginning of the experiments. After 10 days of exposure, green algae (Eutreptiella sp.) had increased, and phytoflagellates were the dominant group. The synthesis of mycosporine-like amino acids (MAAs), antioxidant enzymes and photosynthetic antenna pigments, in

  5. Radiative Forcing by Well-Mixed Greenhouse Gases: Estimates from Climate Models in the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4)

    NASA Technical Reports Server (NTRS)

    Collins, W. D.; Ramaswamy, V.; Schwarzkopf, M. D.; Sun, Y.; Portmann, R. W.; Fu, Q.; Casanova, S. E. B.; Dufresne, J.-L.; Fillmore, D. W.; Forster, P. M. D.; Galin, V. Y.; Gohar, L. K.; Ingram, W. J.; Kratz, D. P.; Lefebvre, M.-P.; Li, J.; Marquet, P.; Oinas, V.; Tsushima, Y.; Uchiyama, T.; Zhong, W. Y.

    2006-01-01

    The radiative effects from increased concentrations of well-mixed greenhouse gases (WMGHGs) represent the most significant and best understood anthropogenic forcing of the climate system. The most comprehensive tools for simulating past and future climates influenced by WMGHGs are fully coupled atmosphere-ocean general circulation models (AOGCMs). Because of the importance of WMGHGs as forcing agents it is essential that AOGCMs compute the radiative forcing by these gases as accurately as possible. We present the results of a radiative transfer model intercomparison between the forcings computed by the radiative parameterizations of AOGCMs and by benchmark line-by-line (LBL) codes. The comparison is focused on forcing by CO2, CH4, N2O, CFC-11, CFC-12, and the increased H2O expected in warmer climates. The models included in the intercomparison include several LBL codes and most of the global models submitted to the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4). In general, the LBL models are in excellent agreement with each other. However, in many cases, there are substantial discrepancies among the AOGCMs and between the AOGCMs and LBL codes. In some cases this is because the AOGCMs neglect particular absorbers, in particular the near-infrared effects of CH4 and N2O, while in others it is due to the methods for modeling the radiative processes. The biases in the AOGCM forcings are generally largest at the surface level. We quantify these differences and discuss the implications for interpreting variations in forcing and response across the multimodel ensemble of AOGCM simulations assembled for the IPCC AR4.

  6. Effects of the diurnal cycle in solar radiation on the tropical Indian Ocean mixed layer variability during wintertime Madden-Julian Oscillations

    NASA Astrophysics Data System (ADS)

    Li, Yuanlong; Han, Weiqing; Shinoda, Toshiaki; Wang, Chunzai; Lien, Ren-Chieh; Moum, James N.; Wang, Jih-Wang

    2013-10-01

    The effects of solar radiation diurnal cycle on intraseasonal mixed layer variability in the tropical Indian Ocean during boreal wintertime Madden-Julian Oscillation (MJO) events are examined using the HYbrid Coordinate Ocean Model. Two parallel experiments, the main run and the experimental run, are performed for the period of 2005-2011 with daily atmospheric forcing except that an idealized hourly shortwave radiation diurnal cycle is included in the main run. The results show that the diurnal cycle of solar radiation generally warms the Indian Ocean sea surface temperature (SST) north of 10°S, particularly during the calm phase of the MJO when sea surface wind is weak, mixed layer is thin, and the SST diurnal cycle amplitude (dSST) is large. The diurnal cycle enhances the MJO-forced intraseasonal SST variability by about 20% in key regions like the Seychelles-Chagos Thermocline Ridge (SCTR; 55°-70°E, 12°-4°S) and the central equatorial Indian Ocean (CEIO; 65°-95°E, 3°S-3°N) primarily through nonlinear rectification. The model also well reproduced the upper-ocean variations monitored by the CINDY/DYNAMO field campaign between September-November 2011. During this period, dSST reaches 0.7°C in the CEIO region, and intraseasonal SST variability is significantly amplified. In the SCTR region where mean easterly winds are strong during this period, diurnal SST variation and its impact on intraseasonal ocean variability are much weaker. In both regions, the diurnal cycle also has a large impact on the upward surface turbulent heat flux QT and induces diurnal variation of QT with a peak-to-peak difference of O(10 W m-2).

  7. Double diffusive magnetohydrodynamic (MHD) mixed convective slip flow along a radiating moving vertical flat plate with convective boundary condition.

    PubMed

    Rashidi, Mohammad M; Kavyani, Neda; Abelman, Shirley; Uddin, Mohammed J; Freidoonimehr, Navid

    2014-01-01

    In this study combined heat and mass transfer by mixed convective flow along a moving vertical flat plate with hydrodynamic slip and thermal convective boundary condition is investigated. Using similarity variables, the governing nonlinear partial differential equations are converted into a system of coupled nonlinear ordinary differential equations. The transformed equations are then solved using a semi-numerical/analytical method called the differential transform method and results are compared with numerical results. Close agreement is found between the present method and the numerical method. Effects of the controlling parameters, including convective heat transfer, magnetic field, buoyancy ratio, hydrodynamic slip, mixed convective, Prandtl number and Schmidt number are investigated on the dimensionless velocity, temperature and concentration profiles. In addition effects of different parameters on the skin friction factor, [Formula: see text], local Nusselt number, [Formula: see text], and local Sherwood number [Formula: see text] are shown and explained through tables.

  8. Double Diffusive Magnetohydrodynamic (MHD) Mixed Convective Slip Flow along a Radiating Moving Vertical Flat Plate with Convective Boundary Condition

    PubMed Central

    Rashidi, Mohammad M.; Kavyani, Neda; Abelman, Shirley; Uddin, Mohammed J.; Freidoonimehr, Navid

    2014-01-01

    In this study combined heat and mass transfer by mixed convective flow along a moving vertical flat plate with hydrodynamic slip and thermal convective boundary condition is investigated. Using similarity variables, the governing nonlinear partial differential equations are converted into a system of coupled nonlinear ordinary differential equations. The transformed equations are then solved using a semi-numerical/analytical method called the differential transform method and results are compared with numerical results. Close agreement is found between the present method and the numerical method. Effects of the controlling parameters, including convective heat transfer, magnetic field, buoyancy ratio, hydrodynamic slip, mixed convective, Prandtl number and Schmidt number are investigated on the dimensionless velocity, temperature and concentration profiles. In addition effects of different parameters on the skin friction factor, , local Nusselt number, , and local Sherwood number are shown and explained through tables. PMID:25343360

  9. Surface sites on Pt-CeO2 mixed oxide catalysts probed by CO adsorption: a synchrotron radiation photoelectron spectroscopy study.

    PubMed

    Neitzel, Armin; Lykhach, Yaroslava; Skála, Tomáš; Tsud, Nataliya; Vorokhta, Mykhailo; Mazur, Daniel; Prince, Kevin C; Matolín, Vladimír; Libuda, Jörg

    2014-12-01

    By means of synchrotron radiation photoemission spectroscopy, we have investigated Pt-CeO2 mixed oxide films prepared on CeO2(111)/Cu(111). Using CO molecules as a probe, we associate the corresponding surface species with specific surface sites. This allows us to identify the changes in the composition and morphology of Pt-CeO2 mixed oxide films caused by annealing in an ultrahigh vacuum. Specifically, two peaks in C 1s spectra at 289.4 and 291.2 eV, associated with tridentate and bidentate carbonate species, are formed on the nanostructured stoichiometric CeO2 film. The peak at 290.5-291.0 eV in the C 1s spectra indicates the onset of restructuring, i.e. coarsening, of the Pt-CeO2 film. This peak is associated with a carbonate species formed near an oxygen vacancy. The onset of cerium oxide reduction is indicated by the peak at 287.8-288.0 eV associated with carbonite species formed near Ce(3+) cations. The development of surface species on the Pt-CeO2 mixed oxides suggests that restructuring of the films occurs above 300 K irrespective of Pt loadings. We do not find any adsorbed CO species associated with Pt(4+) or Pt(2+). The onset of Pt(2+) reduction is indicated by the peak at 286.9 eV in the C 1s spectra due to CO adsorption on metallic Pt particles. The thermal stability of Pt(2+) in Pt-CeO2 mixed oxide depends on Pt loading. We find excellent stability of Pt(2+) for 12% Pt content in the CeO2 film, whereas at a Pt concentration of 25% in the CeO2 film, a large fraction of the Pt(2+) is converted into metallic Pt particles above 300 K.

  10. Fermion masses and neutrino mixing in an U(1){sub H} flavor symmetry model with hierarchical radiative generation for light charged fermion masses

    SciTech Connect

    Hernandez-Galeana, Albino

    2007-11-01

    I report the analysis performed on fermion masses and mixing, including neutrino mixing, within the context of a model with hierarchical radiative mass generation mechanism for light charged fermions, mediated by exotic scalar particles at one and two loops, respectively, meanwhile the neutrinos get Majorana mass terms at tree level through the Yukawa couplings with two SU(2){sub L} Higgs triplets. All the resulting mass matrices in the model, for the u, d, and e fermion charged sectors, the neutrinos and the exotic scalar particles, are diagonalized in exact analytical form. Quantitative analysis shows that this model is successful to accommodate the hierarchical spectrum of masses and mixing in the quark sector as well as the charged lepton masses. The lepton mixing matrix, V{sub PMNS}, is written completely in terms of the neutrino masses m{sub 1}, m{sub 2}, and m{sub 3}. Large lepton mixing for {theta}{sub 12} and {theta}{sub 23} is predicted in the range of values 0.7 < or approx. sin{sup 2}2{theta}{sub 12} < or approx. 0.7772 and 0.87 < or approx. sin{sup 2}2{theta}{sub 23} < or approx. 0.9023 by using 0.033 < or approx. s{sub 13}{sup 2} < or approx. 0.04. These values for lepton mixing are consistent with 3{sigma} allowed ranges provided by recent global analysis of neutrino data oscillation. From {delta}m{sub sol}{sup 2} bounds, neutrino masses are predicted in the range of values m{sub 1}{approx_equal}(1.706-2.494)x10{sup -3} eV, m{sub 2}{approx_equal}(6.675-12.56)x10{sup -3} eV, and m{sub 3}{approx_equal}(1.215-2.188)x10{sup -2} eV, respectively. The above allowed lepton mixing leads to the quark-lepton complementary relations {theta}{sub 12}{sup CKM}+{theta}{sub 12}{sup PMNS}{approx_equal}41.543 deg. -44.066 deg. and {theta}{sub 23}{sup CKM}+{theta}{sub 23}{sup PMNS}{approx_equal}36.835 deg. -38.295 deg. The new exotic scalar particles induce flavor changing neutral currents and contribute to lepton flavor violating processes such as E{yields}e{sub 1}e

  11. A smog chamber study coupling a photoionization aerosol electron/ion spectrometer to VUV synchrotron radiation: organic and inorganic-organic mixed aerosol analysis

    NASA Astrophysics Data System (ADS)

    Baeza-Romero, María Teresa; Gaie-Levrel, Francois; Mahjoub, Ahmed; López-Arza, Vicente; Garcia, Gustavo A.; Nahon, Laurent

    2016-07-01

    A reaction chamber was coupled to a photoionization aerosol time-of-flight mass spectrometer based on an electron/ion coincidence scheme and applied for on-line analysis of organic and inorganic-organic mixed aerosols using synchrotron tunable vacuum ultraviolet (VUV) photons as the ionization source. In this proof of principle study, both aerosol and gas phase were detected simultaneously but could be differentiated. Present results and perspectives for improvement for this set-up are shown in the study of ozonolysis ([O3] = 0.13-3 ppm) of α-pinene (2-3 ppm), and the uptake of glyoxal upon ammonium sulphate. In this work the ozone concentration was monitored in real time, together with the particle size distributions and chemical composition, the latter taking advantage of the coincidence spectrometer and the tuneability of the synchrotron radiation as a soft VUV ionization source.

  12. Direct and indirect effects of vertical mixing, nutrients and ultraviolet radiation on the bacterioplankton metabolism in high-mountain lakes from southern Europe

    NASA Astrophysics Data System (ADS)

    Durán, C.; Medina-Sánchez, J. M.; Herrera, G.; Villar-Argaiz, M.; Villafañe, V. E.; Helbling, E. W.; Carrillo, P.

    2014-05-01

    As a consequence of global change, modifications in the interaction among abiotic stressors on aquatic ecosystems have been predicted. Among other factors, UVR transparency, nutrient inputs and shallower epilimnetic layers could alter the trophic links in the microbial food web. Currently, there are some evidences of higher sensitiveness of aquatic microbial organisms to UVR in opaque lakes. Our aim was to assess the interactive direct and indirect effects of UVR (through the excretion of organic carbon - EOC - by algae), mixing regime and nutrient input on bacterial metabolism. We performed in situ short-term experiments under the following treatments: full sunlight (UVR + PAR, >280 nm) vs. UVR exclusion (PAR only, >400 nm); ambient vs. nutrient addition (phosphorus (P; 30 μg PL-1) and nitrogen (N; up to final N : P molar ratio of 31)); and static vs. mixed regime. The experiments were conducted in three high-mountain lakes of Spain: Enol [LE], Las Yeguas [LY] and La Caldera [LC] which had contrasting UVR transparency characteristics (opaque (LE) vs. clear lakes (LY and LC)). Under ambient nutrient conditions and static regimes, UVR exerted a stimulatory effect on heterotrophic bacterial production (HBP) in the opaque lake but not in the clear ones. Under UVR, vertical mixing and nutrient addition HBP values were lower than under the static and ambient nutrient conditions, and the stimulatory effect that UVR exerted on HBP in the opaque lake disappeared. By contrast, vertical mixing and nutrient addition increased HBP values in the clear lakes, highlighting for a photoinhibitory effect of UVR on HBP. Mixed regime and nutrient addition resulted in negative effects of UVR on HBP more in the opaque than in the clear lakes. Moreover, in the opaque lake, bacterial respiration (BR) increased and EOC did not support the bacterial carbon demand (BCD). In contrast, bacterial metabolic costs did not increase in the clear lakes and the increased nutrient availability even

  13. Validation of the radiation hydrocode RAGE against defect-driven mix experiments in a compressible, convergent, and miscible plasma system

    SciTech Connect

    Lanier, N.E.; Magelssen, G.R.; Batha, S.H.; Fincke, J.R.; Horsfield, C.J.; Parker, K.W.; Rothman, S.D.

    2006-04-15

    Accurate predictive hydrodynamics codes increase the efficiency with which ignition will be achieved at the National Ignition Facility (NIF) [J. W. Hogan et al., J. Nucl. Fus. 41, 567 (2001)]. By validating these codes against well-diagnosed experiments, additional confidence in their predictive capability is attained. This work presents comparisons between the predictive simulations of the Los Alamos hydrocode RAGE [R. M. Baltrusaitus et al., Phys. Fluids 8, 2471 (1996)] and data obtained from cylindrical defect-driven mix experiments conducted on the OMEGA [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)] laser. The results show that RAGE accurately captures much of the bulk hydrodynamics of the experiments. However, persistent discrepancies with respect to the small-scale fluid flows remain.

  14. COMPONENTS OF LASER SYSTEMS: Noise radiation power of phase-conjugate mirrors based on a degenerate four-wave mixing

    NASA Astrophysics Data System (ADS)

    Kovalev, Valerii I.

    1995-11-01

    An experimental investigation was made of the influence of the state of optically polished surfaces of various materials on the scattering coefficient which governs the power of the intrinsic noise of phase-conjugate mirrors based on a degenerate four-wave interaction. The angular dependence of this coefficient was also investigated. The noise power of a phase-conjugate mirror made of InAs, operating at the optimal pump wave intensities 1— 2 MW cm-2, may be reduced to ~2 × 10-7 W per one spatial mode of the radiation to be phase-conjugated. This was achieved by increasing the angle between the axes of the signal and the pump beams up to ~1 rad without a significant reduction of the reflection efficiency, which can be ~500%.

  15. [Early-onset radiation complications and tissue damage in the treatment of head and neck tumors].

    PubMed

    Isaev, P A; Medvedev, V S; Pasov, V V; Semin, D Iu; Derbugov, D N; Pol'kin, V V; Terekhov, O V

    2010-01-01

    The report discusses the results of an evaluation of the effectiveness of combined radiotherapy in 1,192 cases of head and neck tumors divided into 4 groups: distant radiotherapy in standard fractions of 1.8-2.3 Gy, 5 times a week, TTD of 60 Gy (group 1 - 486 40.8%); radiotherapy + local UHF hyperthermia + regional intraarterial chemotherapy + hyper glycemia + administrations of regional intraarterial chemotherapy + hyperglycemia + local UHF hyperthermia (group 2 - 244 20.5%); accelerated superfractition radiotherapy with variable STD of 1 and 1.5/2 Gy, TTD of 60 Gy, plus neoadjuvant polychemotherapy with cisplatin 100 mg/lm2 + 5-fluorouracil, continuous intravenous infusion of 3,000 mg for 72 h (group 3 - 204 17%1); combined photon-neutron therapy (group 4 - 258 21.6%): neutron beam therapy - 36 (3%); interstitial neutron brachytherapy with 252 Cf sources in combination with external beam gamma-therapy and chemotherapy. Overall radiation injury incidence was 1,087 (91.2%); oral mucositis grade I (WHO) - 110 (9.2%), grade II - 166(13.9%), grade III - 811 (68%), radiation dermatitis - 279 (23.4%), grade I/II - 196 (16.4%), grade III/IV - 83 (7%). Grade III/IV side effects developed in 26.7% after gamma therapy and in 72.2% - in the photon-neutron group (p < or = 0.0001). Skin damage was rare, as expected, in the photon-brachytherapy group (1.8%) (p < or = 0.0001). Hence, Cf252 neutron brachytherapy and radiotherapy with concomitant chemotherapy appeared to produce the most sparing effects. PMID:21137234

  16. Radiation Transport Analysis in Chalcogenide-Based Devices and a Neutron Howitzer Using MCNP

    NASA Astrophysics Data System (ADS)

    Bowler, Herbert

    As photons, electrons, and neutrons traverse a medium, they impart their energy in ways that are analytically difficult to describe. Monte Carlo methods provide valuable insight into understanding this behavior, especially when the radiation source or environment is too complex to simplify. This research investigates simulating various radiation sources using the Monte Carlo N-Particle (MCNP) transport code, characterizing their impact on various materials, and comparing the simulation results to general theory and measurements. A total of five sources were of interest: two photon sources of different incident particle energies (3.83 eV and 1.25 MeV), two electron sources also of different energies (30 keV and 100 keV), and a californium-252 (Cf-252) spontaneous fission neutron source. Lateral and vertical programmable metallization cells (PMCs) were developed by other researchers for exposure to these photon and electron sources, so simplified PMC models were implemented in MCNP to estimate the doses and fluences. Dose rates measured around the neutron source and the predicted maximum activity of activation foils exposed to the neutrons were determined using MCNP and compared to experimental results obtained from gamma-ray spectroscopy. The analytical fluence calculations for the photon and electron cases agreed with MCNP results, and differences are due to MCNP considering particle movements that hand calculations do not. Doses for the photon cases agreed between the analytical and simulated results, while the electron cases differed by a factor of up to 4.8. Physical dose rate measurements taken from the neutron source agreed with MCNP within the 10% tolerance of the measurement device. The activity results had a percent error of up to 50%, which suggests a need to further evaluate the spectroscopy setup.

  17. A Model for Particle Microphysics,Turbulent Mixing, and Radiative Transfer in the Stratocumulus-Topped Marine Boundary Layer and Comparisons with Measurements

    NASA Technical Reports Server (NTRS)

    Ackerman, Andrew S.; Toon, Owen B.; Hobbs, Peter V.

    1995-01-01

    A detailed 1D model of the stratocumulus-topped marine boundary layer is described. The model has three coupled components: a microphysics module that resolves the size distributions of aerosols and cloud droplets, a turbulence module that treats vertical mixing between layers, and a multiple wavelength radiative transfer module that calculates radiative heating rates and cloud optical properties. The results of a 12-h model simulation reproduce reasonably well the bulk thermodynamics, microphysical properties, and radiative fluxes measured in an approx. 500-m thick, summertime marine stratocumulus cloud layer by Nicholls. However, in this case, the model predictions of turbulent fluxes between the cloud and subcloud layers exceed the measurements. Results of model simulations are also compared to measurements of a marine stratus layer made under gate conditions and with measurements of a high, thin marine stratocumulus layer. The variations in cloud properties are generally reproduced by the model, although it underpredicts the entrainment of overlying air at cloud top under gale conditions. Sensitivities of the model results are explored. The vertical profile of cloud droplet concentration is sensitive to the lower size cutoff of the droplet size distribution due to the presence of unactivated haze particles in the lower region of the modeled cloud. Increases in total droplet concentrations do not always produce less drizzle and more cloud water in the model. The radius of the mean droplet volume does not correlate consistently with drizzle, but the effective droplet radius does. The greatest impacts on cloud properties predicted by the model are produced by halving the width of the size distribution of input condensation nuclei and by omitting the effect of cloud-top radiative cooling on the condensational growth of cloud droplets. The omission of infrared scattering produces noticeable changes in cloud properties. The collection efficiencies for droplets less

  18. A Model for Particle Microphysics, Turbulent Mixing, and Radiative Transfer in the Stratocumulus-Topped Marine Boundary Layer and Comparisons with Measurements

    NASA Technical Reports Server (NTRS)

    Ackerman, Andrew S.; Toon, Owen B.; Hobbs, Peter V.

    1995-01-01

    A detailed 1D model of the stratocumulus-topped marine boundary layer is described. The model has three coupled components: a microphysics module that resolves the size distributions of aerosols and cloud droplets, a turbulence module that treats vertical mixing between layers, and a multiple wavelength radiative transfer module that calculates radiative heating rates and cloud optical properties. The results of a 12-h model simulation reproduce reasonably well the bulk thermodynamics, microphysical properties, and radiative fluxes measured in an approx. 500-m thick, summertime marine stratocumulus cloud layer by Nicholls. However, in this case, the model predictions of turbulent fluxes between the cloud and subcloud layers exceed the measurements. Results of model simulations are also compared to measurements of a marine stratus layer made under gale conditions and with measurements of a high, thin marine stratocumulus layer. The variations in cloud properties are generally reproduced by the model, although it underpredicts the entrainment of overlying air at cloud top under gale conditions. Sensitivities of the model results are explored. The vertical profile of cloud droplet concentration is sensitive to the lower size cutoff of the droplet size distribution due to the presence of unactivated haze particles in the lower region of the modeled cloud. Increases in total droplet concentrations do not always produce less drizzle and more cloud water in the model. The radius of the mean droplet volume does not correlate consistently with drizzle, but the effective droplet radius does. The greatest impacts on cloud properties predicted by the model are produced by halving the width of the size distribution of input condensation nuclei and by omitting the effect of cloud-top radiative cooling on the condensational growth of cloud droplets. The omission of infrared scattering produces noticeable changes in cloud properties. The collection efficiencies for droplets less

  19. Neutron dosimetry, moderated energy spectrum, and neutron capture therapy for californium-252 medical sources

    NASA Astrophysics Data System (ADS)

    Rivard, Mark Joseph

    Examination of neutron dosimetry for 252Cf has been conducted using calculative and experimental means. Monte Carlo N-Particle (MCNP) transport code was used in a distributed computing environment as a parallel virtual machine (PVM) to determine the absorbed neutron dose and neutron energy spectrum from 252Cf in a variety of clinically relevant materials. Herein, a Maxwellian spectrum was used to model the 252Cf neutron emissions within these materials. 252Cf mixed-field dosimetry of Applicator Tube (AT) type sources was measured using 1.0 and 0.05 cm3 tissue-equivalent ion chambers and a miniature GM counter. A dosimetry protocol was formulated similar that of ICRU 45. The 252Cf AT neutron dosimetry was determined in the cylindrical coordinate system formalism recommended by the AAPM Task Group 43. These results demonstrated the overwhelming dependence of dosimetry on the source geometry factor as there was no significant neutron attenuation within the source or encapsulation. Gold foils and TLDs were used to measure the thermal flux in the vicinity of 252Cf AT sources to compare with the results calculated using MCNP. As the fast neutron energy spectrum did not markedly changed at increasing distances from the AT source, neutron dosimetry results obtained with paired ion chambers using fixed sensitivity factors agreed well with MCNP results and those in the literature. Calculations of moderated 252Cf neutron energy spectrum with various loadings of 10B and 157Gd were performed, in addition to analysis of neutron capture therapy dosimetry with these isotopes. Radiological concerns such as personnel exposure and shielding of 252Cf emissions were examined. Feasibility of a high specific-activity 252Cf HDR source was investigated through radiochemical and metallurgical studies using stand-ins such as Tb, Gd and 249Cf. Issues such as capsule burst strength due to helium production for a variety of proposed HDR sources were addressed. A recommended 252Cf source

  20. Digitized two-parameter spectrometer for neutron-gamma mixed field

    SciTech Connect

    Matej, Z.; Cvachovec, J.; Prenosil, V.; Cvachovec, F.; Zaritski, S.

    2011-07-01

    This paper shows the results of digital processing of output pulses from combined photon-neutron detector using a commercially available digitizer ACQUIRIS DP 210. The advantage of digital processing is reduction of the apparatus in weight and size, acceleration of measurement, and increased resistance to pile-up of pulses. The neutron and photon spectrum of radionuclide source {sup 252}Cf is presented. (authors)

  1. Energy Dependence of the Ruthenium(II)-Bipyridine Metal-to-Ligand-Charge-Transfer Excited State Radiative Lifetimes: Effects of ππ*(bipyridine) Mixing.

    PubMed

    Thomas, Ryan A; Tsai, Chia Nung; Mazumder, Shivnath; Lu, I Chen; Lord, Richard L; Schlegel, H Bernhard; Chen, Yuan Jang; Endicott, John F

    2015-06-18

    The variations in band shape with excited state energy found for the triplet metal to ligand charge transfer ((3)MLCT) emission spectra of ruthenium-bipyridine (Ru-bpy) chromophores at 77 K have been postulated to arise from excited state/excited state configurational mixing. This issue is more critically examined through the determination of the excited state energy dependence of the radiative rate constants (kRAD) for these emissions. Experimental values for kRAD were determined relative to known literature references for Ru-bpy complexes. When the lowest energy excited states are metal centered, kRAD can be anomalously small and such complexes have been identified using density functional theory (DFT) modeling. When such complexes are removed from the energy correlation, there is a strong (3)MLCT energy-dependent contribution to kRAD in addition to the expected classical energy cubed factor for complexes with excited state energies greater than 10 000 cm(-1). This correlates with the DFT calculations which show significant excited state electronic delocalization between a π(bpy-orbital) and a half-filled dπ*-(Ru(III)-orbital) for Ru-bpy complexes with (3)MLCT excited state energies greater than about 16 000 cm(-1). Overall, this work implicates the "stealing" of emission bandshapes as well as intensity from the higher energy, strongly allowed bpy-centered singlet ππ* excited state.

  2. Determination of the multiplication factor and its bias by the {sup 252}Cf-source technique: A method for code benchmarking with subcritical configurations

    SciTech Connect

    Perez, R.B.; Valentine, T.E.; Mihalczo, J.T.; Mattingly, J.K.

    1997-08-01

    A brief discussion of the Cf-252 source driven method for subcritical measurements serves as an introduction to the concept and use of the spectral ratio, {Gamma}. It has also been shown that the Monte Carlo calculation of spectral densities and effective multiplication factors have as a common denominator the transport propagator. This commonality follows from the fact that the Neumann series expansion of the propagator lends itself to the Monte Carlo method. On this basis a linear relationship between the spectral ratio and the effective multiplication factor has been shown. This relationship demonstrates the ability of subcritical measurements of the ratio of spectral densities to validate transport theory methods and cross sections.

  3. Results with the electron cyclotron resonance charge breeder for the 252Cf fission source project (Californium Rare Ion Breeder Upgrade) at Argonne Tandem Linac Accelerator System

    NASA Astrophysics Data System (ADS)

    Vondrasek, R.; Kondrashev, S.; Pardo, R.; Scott, R.; Zinkann, G. P.

    2010-02-01

    The construction of the Californium Rare Ion Breeder Upgrade, a new radioactive beam facility for the Argonne Tandem Linac Accelerator System (ATLAS), is nearing completion. The facility will use fission fragments from a 1 Ci C252f source; thermalized and collected into a low-energy particle beam by a helium gas catcher. In order to reaccelerate these beams, an existing ATLAS electron cyclotron resonance (ECR) ion source was redesigned to function as an ECR charge breeder. Thus far, the charge breeder has been tested with stable beams of rubidium and cesium achieving charge breeding efficiencies of 9.7% into R85b17+ and 2.9% into C133s20+.

  4. The Use of Lattice Radiation Therapy (LRT) in the Treatment of Bulky Tumors: A Case Report of a Large Metastatic Mixed Mullerian Ovarian Tumor.

    PubMed

    Blanco Suarez, Jesus Manuel; Amendola, Beatriz E; Perez, Naipy; Amendola, Marco; Wu, Xiaodong

    2015-01-01

    The objective of this teaching case is to report the excellent results of using lattice radiation therapy (LTR) for the treatment of a large metastasis from ovarian carcinosarcoma. This new technical concept extrapolates the traditional spatially fractionated radiation therapy (GRID) technique to advanced three-dimensional (3D) high-dose radiation therapy using modern instrumentation in radiation oncology. We report a case of a 61-year-old female with a large metastatic mass from ovarian carcinosarcoma treated by this procedure with excellent clinical and image-based follow-up results for more than four years. PMID:26719832

  5. Influence of thermophoresis on heat and mass transfer under non-Darcy MHD mixed convection along a vertical flat plate embedded in a porous medium in the presence of radiation

    NASA Astrophysics Data System (ADS)

    Kishan, N.; Jagadha, S.

    2016-01-01

    The paper presents an investigation of the influence of thermophoresis on MHD mixed convective heat and mass transfer of a viscous, incompressible and electrically conducting fluid along a vertical flat plate with radiation effects. The plate is permeable and embedded in a porous medium. To describe the deviation from the Darcy model the Forchheimer flow model is used. The Rosseland approximation is used to describe the radiative heat flux in the energy equation. The governing partial differential equations are transformed into a system of ordinary differential equations using similarity transformation. The nonlinear ordinary differential equations are linearized by using quasilinearization technique and then solved numerically by using implicit finite difference scheme. The numerical results are analyzed for the effects of various physical parameters such as magnetic parameter Ha, mixed convection parameter Ra d /Pe d , Reynolds number Red, radiation parameter R, thermophoretic parameter τ, Prandtl number Pr, and Schmidt number Sc. The heat transfer coefficient is also tabulated for different values of physical parameters.

  6. Dose estimations of fast neutrons from a nuclear reactor by micronuclear yields in onion seedlings.

    PubMed

    Fujikawa, K; Endo, S; Itoh, T; Yonezawa, Y; Hoshi, M

    1999-12-01

    Irradiations of onion seedlings with fission neutrons from bare, Pb-moderated, and Fe-moderated 252Cf sources induced micronuclei in the root-tip cells at similar rates. The rate per cGy averaged for the three sources, , was 19 times higher than rate induced by 60Co gamma-rays. When neutron doses, Dn, were estimated from frequencies of micronuclei induced in onion seedlings after exposure to neutron-gamma mixed radiation from a 1 W nuclear reactor, using the reciprocal of as conversion factor, resulting Dn values agreed within 10% with doses measured with paired ionizing chambers. This excellent agreement was achieved by the high sensitivity of the onion system to fast neutrons relative to gamma-rays and the high contribution of fast neutrons to the total dose of mixed radiation in the reactor's field.

  7. Modeling Mix in ICF Implosions

    NASA Astrophysics Data System (ADS)

    Weber, C. R.; Clark, D. S.; Chang, B.; Eder, D. C.; Haan, S. W.; Jones, O. S.; Marinak, M. M.; Peterson, J. L.; Robey, H. F.

    2014-10-01

    The observation of ablator material mixing into the hot spot of ICF implosions correlates with reduced yield in National Ignition Campaign (NIC) experiments. Higher Z ablator material radiatively cools the central hot spot, inhibiting thermonuclear burn. This talk focuses on modeling a ``high-mix'' implosion from the NIC, where greater than 1000 ng of ablator material was inferred to have mixed into the hot spot. Standard post-shot modeling of this implosion does not predict the large amounts of ablator mix necessary to explain the data. Other issues are explored in this talk and sensitivity to the method of radiation transport is found. Compared with radiation diffusion, Sn transport can increase ablation front growth and alter the blow-off dynamics of capsule dust. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  8. Unsteady MHD Mixed Convection Slip Flow of Casson Fluid over Nonlinearly Stretching Sheet Embedded in a Porous Medium with Chemical Reaction, Thermal Radiation, Heat Generation/Absorption and Convective Boundary Conditions

    PubMed Central

    Ullah, Imran; Bhattacharyya, Krishnendu; Shafie, Sharidan; Khan, Ilyas

    2016-01-01

    Numerical results are presented for the effect of first order chemical reaction and thermal radiation on mixed convection flow of Casson fluid in the presence of magnetic field. The flow is generated due to unsteady nonlinearly stretching sheet placed inside a porous medium. Convective conditions on wall temperature and wall concentration are also employed in the investigation. The governing partial differential equations are converted to ordinary differential equations using suitable transformations and then solved numerically via Keller-box method. It is noticed that fluid velocity rises with increase in radiation parameter in the case of assisting flow and is opposite in the case of opposing fluid while radiation parameter has no effect on fluid velocity in the forced convection. It is also seen that fluid velocity and concentration enhances in the case of generative chemical reaction whereas both profiles reduces in the case of destructive chemical reaction. Further, increase in local unsteadiness parameter reduces fluid velocity, temperature and concentration. Over all the effects of physical parameters on fluid velocity, temperature and concentration distribution as well as on the wall shear stress, heat and mass transfer rates are discussed in detail. PMID:27776174

  9. ZRBA1, a Mixed EGFR/DNA Targeting Molecule, Potentiates Radiation Response Through Delayed DNA Damage Repair Process in a Triple Negative Breast Cancer Model

    SciTech Connect

    Heravi, Mitra; Kumala, Slawomir; Rachid, Zakaria; Jean-Claude, Bertrand J.; Radzioch, Danuta; Muanza, Thierry M.

    2015-06-01

    Purpose: ZRBA1 is a combi-molecule designed to induce DNA alkylating lesions and to block epidermal growth factor receptor (EGFR) TK domain. Inasmuch as ZRBA1 downregulates the EGFR TK-mediated antisurvival signaling and induces DNA damage, we postulated that it might be a radiosensitizer. The aim of this study was to further investigate the potentiating effect of ZRBA1 in combination with radiation and to elucidate the possible mechanisms of interaction between these 2 treatment modalities. Methods and Materials: The triple negative human breast MDA-MB-468 cancer cell line and mouse mammary cancer 4T1 cell line were used in this study. Clonogenic assay, Western blot analysis, and DNA damage analysis were performed at multiple time points after treatment. To confirm our in vitro findings, in vivo tumor growth delay assay was performed. Results: Our results show that a combination of ZRBA1 and radiation increases the radiation sensitivity of both cell lines significantly with a dose enhancement factor of 1.56, induces significant numbers of DNA strand breaks, prolongs higher DNA damage up to 24 hours after treatment, and significantly increases tumor growth delay in a syngeneic mouse model. Conclusions: Our data suggest that the higher efficacy of this combination could be partially due to increased DNA damage and delayed DNA repair process and to the inhibition of EGFR. The encouraging results of this combination demonstrated a significant improvement in treatment efficiency and therefore could be applicable in early clinical trial settings.

  10. High-power continuous-wave mid-infrared radiation generated by difference frequency mixing of diode-laser-seeded fiber amplifiers and its application to dual-beam spectroscopy

    NASA Technical Reports Server (NTRS)

    Lancaster, D. G.; Richter, D.; Curl, R. F.; Tittel, F. K.; Goldberg, L.; Koplow, J.

    1999-01-01

    We report the generation of up to 0.7 mW of narrow-linewidth (<60-MHz) radiation at 3.3 micrometers by difference frequency mixing of a Nd:YAG-seeded 1.6-W Yb fiber amplifier and a 1.5-micrometers diode-laser-seeded 0.6-W Er/Yb fiber amplifier in periodically poled LiNbO3. A conversion efficiency of 0.09%/W (0.47 mWW-2 cm-1) was achieved. A room-air CH4 spectrum acquired with a compact 80-m multipass cell and a dual-beam spectroscopic configuration indicates an absorption sensitivity of +/-2.8 x 10(-5) (+/-1 sigma), corresponding to a sub-parts-in-10(9) (ppb) CH4 sensitivity (0.8 ppb).

  11. Effects of T cell depletion in radiation bone marrow chimeras. III. Characterization of allogeneic bone marrow cell populations that increase allogeneic chimerism independently of graft-vs-host disease in mixed marrow recipients

    SciTech Connect

    Sykes, M.; Chester, C.H.; Sundt, T.M.; Romick, M.L.; Hoyles, K.A.; Sachs, D.H. )

    1989-12-01

    The opposing problems of graft-vs-host disease vs failure of alloengraftment severely limit the success of allogeneic bone marrow transplantation as a therapeutic modality. We have recently used a murine bone marrow transplantation model involving reconstitution of lethally irradiated mice with mixtures of allogeneic and syngeneic marrow to demonstrate that an allogeneic bone marrow subpopulation, removed by T cell depletion with rabbit anti-mouse brain serum and complement (RAMB/C), is capable of increasing levels of allogeneic chimerism. This effect was observed in an F1 into parent genetic combination lacking the potential for graft-vs-host disease, and radiation protection studies suggested that it was not due to depletion of stem cells by RAMB/C. We have now attempted to characterize the cell population responsible for increasing allogeneic chimerism in this model. The results indicate that neither mature T cells nor NK cells are responsible for this activity. However, an assay involving mixed marrow reconstitution in an Ly-5 congenic strain combination was found to be more sensitive to small degrees of stem cell depletion than radiation protection assays using three-fold titrations of bone marrow cells. Using this assay, we were able to detect some degree of stem cell depletion by treatment with RAMB/C, but not with anti-T cell mAb. Nevertheless, if the effects of alloresistance observed in this model are considered, the degree of stem cell depletion detected by such mixing studies in insufficient to account for the effects of RAMB/C depletion on levels of allogeneic chimerism, suggesting that another cell population with this property remains to be identified.

  12. Neutron interstitial brachytherapy for malignant gliomas: a pilot study

    SciTech Connect

    Patchell, R.A.; Maruyama, Y.; Tibbs, P.A.; Beach, J.L.; Kryscio, R.J.; Young, A.B.

    1988-01-01

    Fifty-six patients with malignant glioma were treated with implantation of the neutron-emitting element californium-252 (/sup 252/Cf) within 2 weeks after surgical debulking of the tumor. Implantation was performed using computerized tomography-guided placement of afterloading catheters, and the /sup 252/Cf sources were removed after approximately 300 neutron rads were delivered. Patients then received 6000 to 7000 conventional photon rads by external beam. The total photon-equivalent dose to the tumor ranged from 8100 to 9100 rads. The median survival time was 10 months, with 18-and 24-month survival rates of 28% and 19%, respectively. The results of reoperation or autopsy showed that patients had recurrence of the tumor but that radiation necrosis was restricted to the area of the original tumor. Serious complications occurred in five patients (9%) and consisted of wound infections in three, cerebral edema in one, and radiation necrosis beyond the original tumor margin in one. Previous studies using external-beam neutron radiation have shown that neutrons are capable of totally eradicating malignant gliomas; however, in most cases, unacceptable widespread radiation necrosis has resulted. Neutron implants are a logical way to increase the dose to the tumor and decrease the dose to normal brain. Interstitial neutron radiation can be given safely with /sup 252/Cf, and the survival results achieved by radiation alone using relatively low doses of interstitial neutron radiation from /sup 252/Cf implants plus conventional photon radiation were equal to the results attained with any currently available conventional therapy.

  13. Mixed Dementia

    MedlinePlus

    ... bodies , What Is Alzheimer's? NIA-Funded Memory & Aging Project Reveals Mixed Dementia Common Data from the first ... disease. For example, in the Memory and Aging Project study involving long-term cognitive assessments followed by ...

  14. Cognition and Quality of Life After Chemotherapy Plus Radiotherapy (RT) vs. RT for Pure and Mixed Anaplastic Oligodendrogliomas: Radiation Therapy Oncology Group Trial 9402

    SciTech Connect

    Wang Meihua; Cairncross, Gregory; Shaw, Edward

    2010-07-01

    Purpose: Radiation Therapy Oncology Group 9402 compared procarbazine, lomustine, and vincristine (PCV) chemotherapy plus radiation therapy (PCV + RT) vs. RT alone for anaplastic oligodendroglioma. Here we report longitudinal changes in cognition and quality of life, effects of patient factors and treatments on cognition, quality of life and survival, and prognostic implications of cognition and quality of life. Methods and Materials: Cognition was assessed by Mini Mental Status Examination (MMSE) and quality of life by Brain-Quality of Life (B-QOL). Scores were analyzed for survivors and within 5 years of death. Shared parameter models evaluated MMSE/B-QOL with survival. Results: For survivors, MMSE and B-QOL scores were similar longitudinally and between treatments. For those who died, MMSE scores remained stable initially, whereas B-QOL slowly declined; both declined rapidly in the last year of life and similarly between arms. In the aggregate, scores decreased over time (p = 0.0413 for MMSE; p = 0.0016 for B-QOL) and were superior with age <50 years (p < 0.001 for MMSE; p = 0.0554 for B-QOL) and Karnofsky Performance Score (KPS) 80-100 (p < 0.001). Younger age and higher KPS were associated with longer survival. After adjusting for patient factors and drop-out, survival was longer after PCV + RT (HR = 0.66, 95% CI = 0.49-0.9, p = 0.0084; HR = 0.74, 95% CI = 0.54-1.01, p = 0.0592) in models with MMSE and B-QOL. In addition, there were no differences in MMSE and B-QOL scores between arms (p = 0.4752 and p = 0.2767, respectively); higher scores predicted longer survival. Conclusion: MMSE and B-QOL scores held steady in the upper range in both arms for survivors. Younger, fitter patients had better MMSE and B-QOL and longer survival.

  15. SU-E-T-361: Clinical Benefit of Automatic Beam Gating Mixed with Breath Hold in Radiation Therapy of Left Breast

    SciTech Connect

    Wu, J; Hill, G; Spiegel, J; Ye, J; Mehta, V

    2014-06-01

    Purpose: To investigate the clinical and dosimetric benefits of automatic gating of left breast mixed with breath-hold technique. Methods: Two Active Breathing Control systems, ABC2.0 and ABC3.0, were used during simulation and treatment delivery. The two systems are different such that ABC2.0 is a breath-hold system without beam control capability, while ABC3.0 has capability in both breath-hold and beam gating. At simulation, each patient was scanned twice: one with free breathing (FB) and one with breath hold through ABC. Treatment plan was generated on the CT with ABC. The same plan was also recalculated on the CT with FB. These two plans were compared to assess plan quality. For treatments with ABC2.0, beams with MU > 55 were manually split into multiple subfields. All subfields were identical and shared the total MU. For treatment with ABC3.0, beam splitting was unnecessary. Instead, treatment was delivered in gating mode mixed with breath-hold technique. Treatment delivery efficiency using the two systems was compared. Results: The prescribed dose was 50.4Gy at 1.8Gy/fraction. The maximum heart dose averaged over 10 patients was 46.0±2.5Gy and 24.5±12.2Gy for treatments with FB and with ABC respectively. The corresponding heart V10 was 13.2±3.6% and 1.0±1.6% respectively. The averaged MUs were 99.8±7.5 for LMT, 99.2±9.4 for LLT. For treatment with ABC2.0, normally the original beam was split into 2 subfields. The averaged total time to delivery all beams was 4.3±0.4min for treatments with ABC2.0 and 3.3±0.6min for treatments with ABC3.0 in gating mode. Conclusion: Treatment with ABC tremendously reduced heart dose. Compared to treatments with ABC2.0, gating with ABC3.0 reduced the total treatment time by 23%. Use of ABC3.0 improved the delivery efficiency, and eliminated the possibility of mistreatments. The latter may happen with ABC2.0 where beam is not terminated when breath signal falls outside of the treatment window.

  16. In-plant experience with passive-active shufflers at Los Alamos

    SciTech Connect

    Hurd, J.R.; Hsue, F.; Rinard, P.M.

    1995-09-01

    Two Canberra-built passive-active {sup 252}Cf shufflers of Los Alamos hardware and software design have been installed at Los Alamos National Laboratory, one at the Chemistry and Metallurgy Research (CMR) Facility at TA-3 and the other at the Plutonium Facility (PF-4) at TA-55. These instruments fulfill important safeguards and accountability measurement requirements for special nuclear material (SNM) in matrices too dense or otherwise not appropriate for typical gamma-ray or other neutron counting techniques. They support many programmatic requirements including measurements of transuranic (TRU) waste and inventory verification. This paper describes the instrument performance under plant conditions with various background radiations on well-characterized standards to determine long-term stability and establish a calibration. Results are also reported on verification measurements of previously unmeasured inventory items in various matrices and geometric distributions. Preliminary investigative measurements are presented on standards of mixed uranium and plutonium oxide (MOX).

  17. Developing a global mixed-canopy, height-variable vegetation structure dataset for estimating global vegetation albedo by a clumped canopy radiative transfer scheme in the NASA Ent Terrestrial Biosphere Model and GISS GCM

    NASA Astrophysics Data System (ADS)

    Montes, Carlo; Kiang, Nancy Y.; Ni-Meister, Wenge; Yang, Wenze; Schaaf, Crystal; Aleinov, Igor; Jonas, Jeffrey A.; Zhao, Feng; Yao, Tian; Wang, Zhuosen; Sun, Qingsong; Carrer, Dominique

    2016-04-01

    Processes determining biosphere-atmosphere coupling are strongly influenced by vegetation structure. Thus, ecosystem carbon sequestration and evapotranspiration affecting global carbon and water balances will depend upon the spatial extent of vegetation, its vertical structure, and its physiological variability. To represent this globally, Dynamic Global Vegetation Models (DGVMs) coupled to General Circulation Models (GCMs) make use of satellite and/or model-based vegetation classifications often composed by homogeneous communities. This work aims at developing a new Global Vegetation Structure Dataset (GVSD) by incorporating varying vegetation heights for mixed plant communities to be used as boundary conditions to the Analytical Clumped Two-Stream (ACTS) canopy radiative transfer scheme (Ni-Meister et al., 2010) incorporated into the NASA Ent Terrestrial Biosphere Model (TBM), the DGVM coupled to the NASA Goddard Institute for Space Studies (GISS) GCM. Information sources about land surface and vegetation characteristics obtained from a number of earth observation platforms and algorithms include the Moderate Resolution Imaging Spectroradiometer (MODIS) land cover and plant functional types (PFTs) (Friedl et al., 2010), soil albedo derived from MODIS (Carrer et al., 2014), along with vegetation height from the Geoscience Laser Altimeter System (GLAS) on board ICESat (Ice, Cloud, and land Elevation Satellite) (Simard et al., 2011; Tang et al., 2014). Three widely used Leaf Area Index (LAI) products are compared as input to the GVSD and ACTS forcing in terms of vegetation albedo: Global Data Sets of Vegetation (LAI)3g (Zhu et al. 2013), Beijing Normal University LAI (Yuan et al., 2011), and MODIS MOD15A2H product (Yang et al., 2006). Further PFT partitioning is performed according to a climate classification utilizing the Climate Research Unit (CRU; Harris et al., 2013) and the NOAA Global Precipitation Climatology Centre (GPCC; Scheider et al., 2014) data. Final

  18. Polarization of signal wave radiation generated by parametric four-wave mixing in rubidium vapor: Ultrafast ({approx}150-fs) and nanosecond time scale excitation

    SciTech Connect

    Zhu, C.-J.; Senin, A.A.; Lu, Z.-H.; Gao, J.; Xiao, Y.; Eden, J.G.

    2005-08-15

    The polarization characteristics of the signal wave produced in Rb vapor by difference-frequency, parametric four-wave mixing (FWM) has been investigated for either ultrafast ({approx}150 fs) or nanosecond time-scale excitation of the 5s{yields}{yields}5d, 7s two photon transitions. The electronic configurations of the 5d {sup 2}D{sub 5/2} and 7s {sup 2}S{sub 1/2} states of Rb, as well as their energy separation ({approx}608 cm{sup -1}), offers the opportunity to examine separately the resonantly enhanced 5s{yields}{yields}7s, 5d{yields}6p{yields}5s FWM pathways on the nanosecond time scale and then to drive both channels simultaneously with an ultrafast pulse of sufficient spectral width. As expected, dye laser ({approx}10 ns) excitation of the 5s{yields}{yields}5d (J=5/2) transition produces a signal wave ({lambda}{sub s}{approx}420 nm) having the same ellipticity as the driving optical field. Two photon excitation of Rb (7s) on the same time scale, however, generates an elliptically polarized signal when the pump is linearly polarized ({epsilon}=1), a result attributed to 7s{yields}6p, 5p amplified spontaneous emission at {approx}4 {mu}m and {approx}741 nm, respectively. Simultaneous excitation of the 5s{yields}{yields}7s, 5d transitions with {approx}150 fs pulses centered at {approx}770 nm yields polarization characteristics that can be approximated as a superposition of those for the individual transitions, thus displaying weak coupling between the two FWM channels. Also, the influence of molecular contributions to the FWM signal is observed for Rb number densities above {approx}5x10{sup 14} cm{sup -3}.

  19. Conducting RCRA inspections at mixed-waste facilities

    SciTech Connect

    Epstein, E.

    1991-07-01

    The document gives an overview of the regulation of radioactive mixed waste and provides RCRA inspectors with information on radiation, health physics, and training and access requirements for inspections of mixed waste facilities.

  20. Radiation-resistant microorganism

    DOEpatents

    Fliermans, Carl B.

    2010-06-15

    An isolated and purified bacterium is provided which was isolated from a high-level radioactive waste site of mixed waste. The isolate has the ability to degrade a wide variety of organic contaminants while demonstrating high tolerance to ionizing radiation. The organism is uniquely suited to bioremediation of a variety or organic contaminants while in the presence of ionizing radiation.

  1. Radiation-resistant microorganism

    DOEpatents

    Fliermans, Carl B.

    2007-01-09

    An isolated and purified bacterium is provided which was isolated from a high-level radioactive waste site of mixed waste. The isolate has the ability to degrade a wide variety of organic contaminants while demonstrating high tolerance to ionizing radiation. The organism is uniquely suited to bioremediation of a variety or organic contaminants while in the presence of ionizing radiation.

  2. [Mixed cryoglobulinemia].

    PubMed

    Roque, R; Ramiro, S; Vinagre, F; Cordeiro, A; Godinho, F; Santos, Maria José; Gonçalves, P; Canas da Silva, J

    2011-01-01

    The authors describe two clinical cases of cryoglobulinemia. A 70 years old woman, having skin ulcers on lower limbs, arthralgias, paresthesias and constitutional symptoms, for about 10 months. Exams revealed mild anemia, elevation of the biological parameters of inflammation and aminotransferases, positive cryoglobulin and rheumatoid factor in serum, and a severe reduction in C4 complement fraction. Hepatitis C virus (HCV) serology was negative. Idiopathic mixed cryoglobulinemia was diagnosed and corticosteroid therapy started. Given the lack of response, cyclophosphamide and plasmapheresis were added. Two weeks later the patient died in septic shock. The second case refers to a 41 years old female, with untreated hepatitis C who developed over a 6 month period petechiae and livedoid lesions on the lower limbs, peripheral neuropathy, and constitutional symptoms and was admitted with intestinal necrosis. Exams were consistent with the diagnosis of mixed cryoglobulinemia associated, with HCV. She started therapy with ribavirin and pegylated interferon-alpha, with improvement. PMID:22113605

  3. Radiation Hydrodynamics

    SciTech Connect

    Castor, J I

    2003-10-16

    hydrogen atoms from helium atoms, for instance. There are all just components of a mixed fluid in this case. So why do we have a special subject called ''radiation hydrodynamics'', when photons are just one of the many kinds of particles that comprise our fluid? The reason is that photons couple rather weakly to the atoms, ions and electrons, much more weakly than those particles couple with each other. Nor is the matter-radiation coupling negligible in many problems, since the star or nebula may be millions of mean free paths in extent. Radiation hydrodynamics exists as a discipline to treat those problems for which the energy and momentum coupling terms between matter and radiation are important, and for which, since the photon mean free path is neither extremely large nor extremely small compared with the size of the system, the radiation field is not very easy to calculate. In the theoretical development of this subject, many of the relations are presented in a form that is described as approximate, and perhaps accurate only to order of {nu}/c. This makes the discussion cumbersome. Why are we required to do this? It is because we are using Newtonian mechanics to treat our fluid, yet its photon component is intrinsically relativistic; the particles travel at the speed of light. There is a perfectly consistent relativistic kinetic theory, and a corresponding relativistic theory of fluid mechanics, which is perfectly suited to describing the photon gas. But it is cumbersome to use this for the fluid in general, and we prefer to avoid it for cases in which the flow velocity satisfies {nu} << c. The price we pay is to spend extra effort making sure that the source-sink terms relating to our relativistic gas component are included in the equations of motion in a form that preserves overall conservation of energy and momentum, something that would be automatic if the relativistic equations were used throughout.

  4. Photon energy response of luminescence dosemeters and its impact on assessment of Hp(10) and Hp(0.07) in mixed fields of varying energies of photons and beta radiation.

    PubMed

    Pradhan, A S

    2002-01-01

    X and gamma rays continue to remain the main contributors to the dose to humans. As these photons of varying energies are encountered in various applications, the study of photon energy response of a dosemeter is an important aspect to ensure the accuracy in dose measurement. Responses of dosemeters have to be experimentally established because for luminescence dosemeters, they depend not only on the effective atomic number (ratio of mass energy absorption coefficients of dosemeter and tissue) of the detector, but also considerably on the luminescence efficiency and the material surrounding the dosemeters. Metal filters are generally used for the compensation of energy dependence below 200 keV and/or to provide photon energy discrimination. It is noted that the contribution to Hp(0.07) could be measured more accurately than Hp(10). For the dosemeters exhibiting high photon energy-dependent response, estimation of the beta component of Hp(0.07) becomes very difficult in the mixed field of beta radiation and photons of energy less than 100 keV. Recent studies have shown that the thickness and the atomic number of metal filters not only affect the response below 200 keV but also cause a significant over-response for high energy (>6 MeV) photons often encountered in the environments of pressurised heavy water reactors and accelerators. PMID:12382729

  5. Intercomparison study on (152)Eu gamma ray and (36)Cl AMS measurements for development of the new Hiroshima-Nagasaki Atomic Bomb Dosimetry System 2002 (DS02).

    PubMed

    Hoshi, M; Endo, S; Tanaka, K; Ishikawa, M; Straume, T; Komura, K; Rühm, W; Nolte, E; Huber, T; Nagashima, Y; Seki, R; Sasa, K; Sueki, K; Fukushima, H; Egbert, S D; Imanaka, T

    2008-07-01

    In the process of developing a new dosimetry system for atomic bomb survivors in Hiroshima and Nagasaki (DS02), an intercomparison study between (152)Eu and (36)Cl measurements was proposed, to reconcile the discrepancy previously observed in the Hiroshima data between measurements and calculations of thermal neutron activation products. Nine granite samples, exposed to the atomic-bomb radiation in Hiroshima within 1,200 m of the hypocenter, as well as mixed standard solutions containing known amounts of europium and chlorine that were neutron-activated by a (252)Cf source, were used for the intercomparison. Gamma-ray spectrometry for (152)Eu was carried out with ultra low-background Ge detectors at the Ogoya Underground Laboratory, Kanazawa University, while three laboratories participated in the (36)Cl measurement using accelerator mass spectrometry (AMS): The Technical University of Munich, Germany, the Lawrence Livermore National Laboratory, USA and the University of Tsukuba, Japan. Measured values for the mixed standard solutions showed good agreement among the participant laboratories. They also agreed well with activation calculations, using the neutron fluences monitored during the (252)Cf irradiation, and the corresponding activation cross-sections taken from the JENDL-3.3 library. The measured-to-calculated ratios obtained were 1.02 for (152)Eu and 0.91-1.02 for (36)Cl, respectively. Similarly, the results of the granite intercomparison indicated good agreement with the DS02 calculation for these samples. An average measured-to-calculated ratio of 0.98 was obtained for all granite intercomparison measurements. The so-called neutron discrepancy that was previously observed and that which included increasing measured-to-calculated ratios for thermal neutron activation products for increasing distances beyond 1,000 m from the hypocenter was not seen in the results of the intercomparison study. The previously claimed discrepancy could be explained by

  6. RBE-LET relationships of high-LET radiations in Drosophila mutations.

    PubMed

    Yoshikawa, I; Takatsuji, T; Nagano, M; Takada, J; Endo, S; Hoshi, M

    1999-12-01

    The relative biological effectiveness (RBE) of 252Cf neutrons and synchrotron-generated high-energy charged particles for mutation induction was evaluated as a function of linear energy transfer (LET), using the loss of heterozygosity for wing-hair mutations and the reversion of the mutant white-ivory eye-color in Drosophila melanogaster. Loss of heterozygosity for wing-hair mutations results predominantly from mitotic crossing over induced in wing anlage cells of larvae, while the reverse mutation of eye-color is due to an intragenic structural change (2.96 kb-DNA excision) in the white locus on the X-chromosome. The measurements were performed in a combined mutation assay system so that induced mutant wing-hair clones as well as revertant eye-color clone can be detected simultaneously in the same individual. Larvae were irradiated at the age of 3 days post oviposition with 252Cf neutrons, carbon beam or neon beam. For the neutron irradiation, the RBE values for wing-hair mutations were larger than that for eye-color mutation by about 7 fold. The RBE of carbon ions for producing the wing-hair mutations increased with increase in LET. The estimated RBE values were found to be in the range 2 to 6.5 for the wing-hair. For neon beam irradiation, the RBE values for wing-hair mutations peak near 150 keV/micron and decrease with further increase in LET. On the other hand, the RBE values for the induction of the eye-color mutation are nearly unity in 252Cf neutrons and both ions throughout the LET range irradiated. We discuss the relationships between the initial DNA damage and LET in considering the mechanism of somatic mutation induction. PMID:10804999

  7. RBE-LET relationships of high-LET radiations in Drosophila mutations.

    PubMed

    Yoshikawa, I; Takatsuji, T; Nagano, M; Takada, J; Endo, S; Hoshi, M

    1999-12-01

    The relative biological effectiveness (RBE) of 252Cf neutrons and synchrotron-generated high-energy charged particles for mutation induction was evaluated as a function of linear energy transfer (LET), using the loss of heterozygosity for wing-hair mutations and the reversion of the mutant white-ivory eye-color in Drosophila melanogaster. Loss of heterozygosity for wing-hair mutations results predominantly from mitotic crossing over induced in wing anlage cells of larvae, while the reverse mutation of eye-color is due to an intragenic structural change (2.96 kb-DNA excision) in the white locus on the X-chromosome. The measurements were performed in a combined mutation assay system so that induced mutant wing-hair clones as well as revertant eye-color clone can be detected simultaneously in the same individual. Larvae were irradiated at the age of 3 days post oviposition with 252Cf neutrons, carbon beam or neon beam. For the neutron irradiation, the RBE values for wing-hair mutations were larger than that for eye-color mutation by about 7 fold. The RBE of carbon ions for producing the wing-hair mutations increased with increase in LET. The estimated RBE values were found to be in the range 2 to 6.5 for the wing-hair. For neon beam irradiation, the RBE values for wing-hair mutations peak near 150 keV/micron and decrease with further increase in LET. On the other hand, the RBE values for the induction of the eye-color mutation are nearly unity in 252Cf neutrons and both ions throughout the LET range irradiated. We discuss the relationships between the initial DNA damage and LET in considering the mechanism of somatic mutation induction.

  8. Remote afterloading for intracavitary and interstitial brachytherapy with californium-252

    NASA Astrophysics Data System (ADS)

    Tačev, Tačo; Grigorov, Grigor; Papírek, Tomáš; Kolařík, Vladimír.

    2004-01-01

    The authors present their design concept of remote afterloading for 252Cf brachytherapy with respect to characteristic peculiarities of 252Cf and the current worldwide development of remote afterloading devices. The afterloading device has been designed as a stationary radiator comprising three mutually interconnected units: (1) a control and drive unit, consisting of a control computer and a motor-driven Bowden system carrying the 252Cf source; (2) a source housed in a watertight, concrete vessel, which is stored in a strong room situated well beneath the patient's bed and (3) an afterloading application module installed in the irradiation room. As 252Cf is a nuclide with low specific activity, it was necessary to produce two independent devices for high dose rate intracavitary treatment and for low dose rate intestinal treatment. The sources may be moved arbitrarily during the treatment with a position accuracy of 0.5-1.0 mm within a distance of 520 cm from the source storage position in the strong room to the application position. The technical concept of the present automatic afterloading device for neutron brachytherapy represents one possible option of a range of conceivable design variants, which, while minimizing the technical and economic requirements, provides operating personnel with optimum protection and work safety, thus extending the applicability of high-LET radiation-based treatment methods in clinical practice.

  9. Efficacy of radiation countermeasures depends on radiation quality.

    PubMed

    Cary, Lynnette H; Ngudiankama, Barbara F; Salber, Rudolph E; Ledney, G David; Whitnall, Mark H

    2012-05-01

    The detonation of a nuclear weapon or a nuclear accident represent possible events with significant exposure to mixed neutron/γ-radiation fields. Although radiation countermeasures generally have been studied in subjects exposed to pure photons (γ or X rays), the mechanisms of injury of these low linear energy transfer (LET) radiations are different from those of high-LET radiation such as neutrons, and these differences may affect countermeasure efficacy. We compared 30-day survival in mice after varying doses of pure γ and mixed neutron/γ (mixed field) radiation (MF, Dn/Dt = 0.65), and also examined peripheral blood cells, bone marrow cell reconstitution, and cytokine expression. Mixed-field-irradiated mice displayed prolonged defects in T-cell populations compared to mice irradiated with pure γ photons. In mouse survival assays, the growth factor granulocyte colony-stimulating factor (G-CSF) was effective as a (post-irradiation) mitigator against both γ-photons and mixed-field radiation, while the thrombopoietin (TPO) mimetic ALXN4100TPO was effective only against γ irradiation. The results indicate that radiation countermeasures should be tested against radiation qualities appropriate for specific scenarios before inclusion in response plans. PMID:22468705

  10. Simple dynamic electromagnetic radiation detector

    NASA Technical Reports Server (NTRS)

    Been, J. F.

    1972-01-01

    Detector monitors gamma dose rate at particular position in a radiation facility where a mixed neutron-gamma environment exists, thus determining reactor power level changes. Device also maps gamma intensity profile across a neutron-gamma beam.

  11. Turbulent mix experiments and simulations

    SciTech Connect

    Dimonte, G.; Schneider, M.; Frerking, C.E.

    1995-08-01

    Hydrodynamic instabilities produce material mixing that can significantly degrade weapons performance. We investigate the Richtmyer-Meshkov (RM) and Rayleigh-Taylor (RT) instabilities in the turbulent regime in two experimental venues. RM experiments are conducted on the Nova laser with strong radiatively driven shocks (Mach > 20) in planar, two fluid targets. Interfacial perturbations are imposed with single sinusoidal modes to test linear theory and with three dimensional (3D) random modes to produce turbulent mix. RT experiments are conducted on a new facility, the Linear Electric Motor (LEM), in which macroscopic fluids are accelerated with arbitrary temporal profiles. This allows detailed diagnosis of the turbulence over a wide range of conditions. The Nova experiments study the high compression regime whereas the LEM experiments are incompressible. The results are compared to hydrodynamic simulations with the arbitrary Lagrangian-Eulerian code (CALE). The goal is to develop and test engineering models of mix.

  12. Housing Mix, School Mix: Barriers to Success

    ERIC Educational Resources Information Center

    Camina, M. M.; Iannone, P.

    2014-01-01

    Recent UK policy has emphasised both the development of socially mixed communities and the creation of balanced school intakes. In this paper, we use a case study of an area of mixed tenure in eastern England to explore policy in practice and the extent to which mechanisms of segregation impact on both the creation of socially mixed neighbourhoods…

  13. Mixing and Transport.

    PubMed

    Chang, Chein-Chi; Chapman, Tom; Siverts-Wong, Elena; Wei, Li; Mei, Ying

    2016-10-01

    This section covers research published during the calendar year 2015 on mixing and transport processes. The review covers mixing of anaerobic digesters, mixing of heat transfer, and environmental fate and transport. PMID:27620101

  14. Radiation enteritis

    MedlinePlus

    Radiation enteropathy; Radiation-induced small bowel injury; Post-radiation enteritis ... Radiation therapy uses high-powered x-rays, particles, or radioactive seeds to kill cancer cells. The therapy ...

  15. Radiative Forcing of Climate Change

    SciTech Connect

    Ramaswamy, V.; Boucher, Olivier; Haigh, J.; Hauglustaine, D.; Haywood, J.; Myhre, G.; Nakajima, Takahito; Shi, Guangyu; Solomon, S.; Betts, Robert E.; Charlson, R.; Chuang, C. C.; Daniel, J. S.; Del Genio, Anthony D.; Feichter, J.; Fuglestvedt, J.; Forster, P. M.; Ghan, Steven J.; Jones, A.; Kiehl, J. T.; Koch, D.; Land, C.; Lean, J.; Lohmann, Ulrike; Minschwaner, K.; Penner, Joyce E.; Roberts, D. L.; Rodhe, H.; Roelofs, G.-J.; Rotstayn, Leon D.; Schneider, T. L.; Schumann, U.; Schwartz, Stephen E.; Schwartzkopf, M. D.; Shine, K. P.; Smith, Steven J.; Stevenson, D. S.; Stordal, F.; Tegen, I.; van Dorland, R.; Zhang, Y.; Srinivasan, J.; Joos, Fortunat

    2001-10-01

    Chapter 6 of the IPCC Third Assessment Report Climate Change 2001: The Scientific Basis. Sections include: Executive Summary 6.1 Radiative Forcing 6.2 Forcing-Response Relationship 6.3 Well-Mixed Greenhouse Gases 6.4 Stratospheric Ozone 6.5 Radiative Forcing By Tropospheric Ozone 6.6 Indirect Forcings due to Chemistry 6.7 The Direct Radiative Forcing of Tropospheric Aerosols 6.8 The Indirect Radiative Forcing of Tropospheric Aerosols 6.9 Stratospheric Aerosols 6.10 Land-use Change (Surface Albedo Effect) 6.11 Solar Forcing of Climate 6.12 Global Warming Potentials hydrocarbons 6.13 Global Mean Radiative Forcings 6.14 The Geographical Distribution of the Radiative Forcings 6.15 Time Evolution of Radiative Forcings Appendix 6.1 Elements of Radiative Forcing Concept References.

  16. Radiation-induced disease.

    PubMed

    Bobrow, M

    1993-01-01

    The term radiation covers a wide spectrum of forms of energy, most of which have at one stage or another been suspected of causing human ill health. In general, study of the effects of radiation on health involves a mix of scientific disciplines, from population epidemiology to physics, which are seldom if ever found in a single scientist. As a result, interdisciplinary communication is of the utmost importance, and is a potent source of misunderstanding and misinformation. The forms of radiation which have been most specifically associated with health effects include ionizing and ultraviolet radiation. Claimed effects of electromagnetic and microwave radiation (excluding thermal effects) are too indefinite for detailed consideration. Ionizing radiation is a well-documented mutagen, which clearly causes cancers in humans, and human exposure has been increased by atomic weapons testing and medical and industrial uses of radioactivity. There is also a growing awareness of the possible role of some types of natural radiation, such as radon, in causing disease. Ultraviolet radiation is also associated with cancers, and is suspected of involvement in the increasing incidence of skin cancers in European populations. Factors thought to underlie recent changes in exposure to these mutagens are discussed.

  17. Terahertz homodyne self-mixing transmission spectroscopy

    SciTech Connect

    Mohr, Till Breuer, Stefan; Blömer, Dominik; Patel, Sanketkumar; Schlosser, Malte; Birkl, Gerhard; Elsäßer, Wolfgang; Simonetta, Marcello; Deninger, Anselm; Giuliani, Guido

    2015-02-09

    A compact homodyne self-mixing terahertz spectroscopy concept is experimentally investigated and confirmed by calculations. This method provides amplitude and phase information of the terahertz radiation emitted by a photoconductive antenna in a transmission experiment where a rotating chopper wheel serves as a feedback mirror. As a proof-of-principle experiment the frequency-dependent refractive index of Teflon is measured.

  18. Radiation Therapy

    MedlinePlus

    Radiation therapy is a cancer treatment. It uses high doses of radiation to kill cancer cells and stop them from ... half of all cancer patients receive it. The radiation may be external, from special machines, or internal, ...

  19. Radiation Therapy

    MedlinePlus

    ... people who have radiation therapy may feel more tired than usual, not feel hungry, or lose their ... of radiation therapy include: Fatigue. Fatigue, or feeling tired, is the most common side effect of radiation ...

  20. Radiation therapy

    MedlinePlus

    ... Because radiation is most harmful to quickly growing cells, radiation therapy damages cancer cells more than normal cells. ... cells from growing and dividing, and leads to cell death. Radiation therapy is used to fight many types of ...

  1. Coherent tunable far infrared radiation

    NASA Technical Reports Server (NTRS)

    Jennings, D. A.

    1989-01-01

    Tunable, CW, FIR radiation has been generated by nonlinear mixing of radiation from two CO2 lasers in a metal-insulator-metal (MIM) diode. The FIR difference-frequency power was radiated from the MIM diode antenna to a calibrated InSb bolometer. FIR power of 200 nW was generated by 250 mW from each of the CO2 lasers. Using the combination of lines from a waveguide CO2 laser, with its larger tuning range, with lines from CO2, N2O, and CO2-isotope lasers promises complete coverage of the entire FIR band with stepwise-tunable CW radiation.

  2. Atmospheric radiation

    SciTech Connect

    Harshvardhan, M.R. )

    1991-01-01

    Studies of atmospheric radiative processes are summarized for the period 1987-1990. Topics discussed include radiation modeling; clouds and radiation; radiative effects in dynamics and climate; radiation budget and aerosol effects; and gaseous absorption, particulate scattering and surface reflection. It is concluded that the key developments of the period are a defining of the radiative forcing to the climate system by trace gases and clouds, the recognition that cloud microphysics and morphology need to be incorporated not only into radiation models but also climate models, and the isolation of a few important unsolved theoretical problems in atmospheric radiation.

  3. Mixing in explosions

    SciTech Connect

    Kuhl, A.L.

    1993-12-01

    Explosions always contain embedded turbulent mixing regions, for example: boundary layers, shear layers, wall jets, and unstable interfaces. Described here is one particular example of the latter, namely, the turbulent mixing occurring in the fireball of an HE-driven blast wave. The evolution of the turbulent mixing was studied via two-dimensional numerical simulations of the convective mixing processes on an adaptive mesh. Vorticity was generated on the fireball interface by baroclinic effects. The interface was unstable, and rapidly evolved into a turbulent mixing layer. Four phases of mixing were observed: (1) a strong blast wave phase; (2) and implosion phase; (3) a reshocking phase; and (4) an asymptotic mixing phase. The flowfield was azimuthally averaged to evaluate the mean and r.m.s. fluctuation profiles across the mixing layer. The vorticity decayed due to a cascade process. This caused the corresponding enstrophy parameter to increase linearly with time -- in agreement with homogeneous turbulence calculations of G.K. Batchelor.

  4. Mixing in astrophysics

    SciTech Connect

    Fryer, Christopher Lee

    2011-01-07

    Turbulent mixing plays a vital role in many fields in astronomy. Here I review a few of these sites, discuss the importance of this turbulent mixing and the techniques used by astrophysicists to solve these problems.

  5. Scale dependence of entrainment-mixing mechanisms in cumulus clouds

    DOE PAGES

    Lu, Chunsong; Liu, Yangang; Niu, Shengjie; Endo, Satoshi

    2014-12-17

    This work empirically examines the dependence of entrainment-mixing mechanisms on the averaging scale in cumulus clouds using in situ aircraft observations during the Routine Atmospheric Radiation Measurement Aerial Facility Clouds with Low Optical Water Depths Optical Radiative Observations (RACORO) field campaign. A new measure of homogeneous mixing degree is defined that can encompass all types of mixing mechanisms. Analysis of the dependence of the homogenous mixing degree on the averaging scale shows that, on average, the homogenous mixing degree decreases with increasing averaging scales, suggesting that apparent mixing mechanisms gradually approach from homogeneous mixing to extreme inhomogeneous mixing with increasingmore » scales. The scale dependence can be well quantified by an exponential function, providing first attempt at developing a scale-dependent parameterization for the entrainment-mixing mechanism. The influences of three factors on the scale dependence are further examined: droplet-free filament properties (size and fraction), microphysical properties (mean volume radius and liquid water content of cloud droplet size distributions adjacent to droplet-free filaments), and relative humidity of entrained dry air. It is found that the decreasing rate of homogeneous mixing degree with increasing averaging scales becomes larger with larger droplet-free filament size and fraction, larger mean volume radius and liquid water content, or higher relative humidity. The results underscore the necessity and possibility of considering averaging scale in representation of entrainment-mixing processes in atmospheric models.« less

  6. Scale dependence of entrainment-mixing mechanisms in cumulus clouds

    SciTech Connect

    Lu, Chunsong; Liu, Yangang; Niu, Shengjie; Endo, Satoshi

    2014-12-17

    This work empirically examines the dependence of entrainment-mixing mechanisms on the averaging scale in cumulus clouds using in situ aircraft observations during the Routine Atmospheric Radiation Measurement Aerial Facility Clouds with Low Optical Water Depths Optical Radiative Observations (RACORO) field campaign. A new measure of homogeneous mixing degree is defined that can encompass all types of mixing mechanisms. Analysis of the dependence of the homogenous mixing degree on the averaging scale shows that, on average, the homogenous mixing degree decreases with increasing averaging scales, suggesting that apparent mixing mechanisms gradually approach from homogeneous mixing to extreme inhomogeneous mixing with increasing scales. The scale dependence can be well quantified by an exponential function, providing first attempt at developing a scale-dependent parameterization for the entrainment-mixing mechanism. The influences of three factors on the scale dependence are further examined: droplet-free filament properties (size and fraction), microphysical properties (mean volume radius and liquid water content of cloud droplet size distributions adjacent to droplet-free filaments), and relative humidity of entrained dry air. It is found that the decreasing rate of homogeneous mixing degree with increasing averaging scales becomes larger with larger droplet-free filament size and fraction, larger mean volume radius and liquid water content, or higher relative humidity. The results underscore the necessity and possibility of considering averaging scale in representation of entrainment-mixing processes in atmospheric models.

  7. Experiments with mixing in stratified flow over a topographic ridge

    NASA Astrophysics Data System (ADS)

    Griffiths, Ross; Dossmann, Yvan; Gamble Rosevear, Madeleine; McC. Hogg, Andy; Hughes, Graham; Copeland, Michael

    2015-11-01

    The interaction of balanced abyssal ocean flow with submarine topography is expected to generate lee waves, which can carry energy into the ocean interior, as well as local turbulent mixing near the boundary. We report observations of lee waves and turbulence, and measurements of the mixing rate, in laboratory experiments with a topographic ridge towed through a density stratification. The experiments span three parameter regimes including linear lee waves, nonlinear wave radiation and an evanescent regime in which wave radiation is not possible. The stratification evolves from an initially uniform buoyancy frequency to a mixed boundary layer and pycnocline. Full field density measurements provide the depth-dependence of energy loss to turbulent mixing. The ratio of the local mixing in the turbulent wake and remote mixing by wave radiation takes a nearly constant value that is not sensitive to the stratification or dynamical regime; the average value qmix = 0 . 90 +/- 0 . 06 in the linear lee wave regime, is three times larger than that assumed in parameterizations of internal wave-induced mixing in the ocean. The results suggest that mixing by local nonlinear mechanisms close to abyssal ocean topography may be much greater than remote mixing by lee waves. A project supported by the Australian Research Council DP120102744.

  8. Pelvic radiation - discharge

    MedlinePlus

    Radiation of the pelvis - discharge; Cancer treatment - pelvic radiation; Prostate cancer - pelvic radiation; Ovarian cancer - pelvic radiation; Cervical cancer - pelvic radiation; Uterine cancer - pelvic radiation; Rectal cancer - ...

  9. Foundations of chaotic mixing.

    PubMed

    Wiggins, Stephen; Ottino, Julio M

    2004-05-15

    The simplest mixing problem corresponds to the mixing of a fluid with itself; this case provides a foundation on which the subject rests. The objective here is to study mixing independently of the mechanisms used to create the motion and review elements of theory focusing mostly on mathematical foundations and minimal models. The flows under consideration will be of two types: two-dimensional (2D) 'blinking flows', or three-dimensional (3D) duct flows. Given that mixing in continuous 3D duct flows depends critically on cross-sectional mixing, and that many microfluidic applications involve continuous flows, we focus on the essential aspects of mixing in 2D flows, as they provide a foundation from which to base our understanding of more complex cases. The baker's transformation is taken as the centrepiece for describing the dynamical systems framework. In particular, a hierarchy of characterizations of mixing exist, Bernoulli --> mixing --> ergodic, ordered according to the quality of mixing (the strongest first). Most importantly for the design process, we show how the so-called linked twist maps function as a minimal picture of mixing, provide a mathematical structure for understanding the type of 2D flows that arise in many micromixers already built, and give conditions guaranteeing the best quality mixing. Extensions of these concepts lead to first-principle-based designs without resorting to lengthy computations.

  10. Mixing and compaction temperatures for Superpave mixes

    NASA Astrophysics Data System (ADS)

    Yildirim, Yetkin

    According to Superpave mixture design, gyratory specimens are mixed and compacted at equiviscous binder temperatures corresponding to viscosities of 0.17 and 0.28 Pa.s. respectively. These were the values previously used in the Marshal mix design method to determine optimal mixing and compaction temperatures. In order to estimate the appropriate mixing and compaction temperatures for Superpave mixture design, a temperature-viscosity relationship for the binder needs to be developed (ASTM D 2493, Calculation of Mixing and Compaction Temperatures). The current approach is simple and provides reasonable temperatures for unmodified binders. However, some modified binders have exhibited unreasonably high temperatures for mixing and compaction using this technique. These high temperatures can result in construction problems, damage of asphalt, and production of fumes. Heating asphalt binder to very high temperatures during construction oxidizes the binder and separates the polymer from asphalt binder. It is known that polymer modified asphalt binders have many benefits to the roads, such as; increasing rutting resistance, enhancing low temperature cracking resistance, improving traction, better adhesion and cohesion, elevating tensile strength which are directly related to the service life of the pavement. Therefore, oxidation and separation of the polymer from the asphalt binder results in reduction of the service life. ASTM D 2493 was established for unmodified asphalt binders which are Newtonian fluids at high temperatures. For these materials, viscosity does not depend on shear rate. However, most of the modified asphalt binders exhibit a phenomenon known as pseudoplasticity, where viscosity does depend on shear rate. Thus, at the high shear rates occurring during mixing and compaction, it is not necessary to go to very high temperatures. This research was undertaken to determine the shear rate during compaction such that the effect of this parameter could be

  11. Martian Mixed Layer during Pathfinder Mission

    NASA Astrophysics Data System (ADS)

    Martinez, G. M.; Valero, F.; Vazquez, L.

    2008-09-01

    of the convective mixed layer similarity. This theory neglects the effect of the radiation heating which is negligible under fair weather conditions on Earth. However, it is relevant under martian conditions due to the absorption of solar radiation by dust. Supported both by [11] and the low dust optical depth (≃ 0.3 for the PF summer), the con- vective heating of the mixed layer domiantes the radiation heating (around three times higher), al- lowing us to estimate these values via mixed layer similarity.

  12. Addition of Tomographic Capabilities to NMIS

    SciTech Connect

    Mullens, J.A.

    2003-03-11

    This paper describes tomographic capabilities for the Nuclear Materials Identification System (NMIS). The tomographic capabilities add weapons component spatial and material properties information that result in a more detailed item signature (template) and provide more information for physical attributes analyses. The Nuclear Materials Identification System (NMIS) is used routinely to confirm the identity of HEU components in sealed containers. It does this through a radiation signature acquired by shining a {sup 252}Cf source through the container and measuring the radiation at four detectors stacked vertically on the other side. This measurement gives a gamma and neutron radiation transmission profile of the weapons component, mixed with the radiation production due to the induced fissions in the fissile materials. This information is sufficient to match an ''unknown'' weapons component signature to a template signature from a reference item when measuring under controlled conditions. Tomography measures the interior of an item by making transmission measurements from all angles around the item, whereas NMIS makes the measurements from a single angle. Figure 1 is a standard example of tomographic reconstruction, the Shepp-Logan human brain phantom. The measured quantity is attenuation so high values (white) are highly attenuating areas.

  13. High-level dosimetry at the demagnetization experiments of permanent magnets.

    PubMed

    Lee, H S; Qiu, R; Hong, S; Chung, C W; Bizen, T; Li, J

    2007-01-01

    The measurements of high-energy and high dose mixed radiation from high-energy electron accelerator are carried out using a radiation damage monitor. It consists of two Radiation-Sensing Field-Effect Transistors (RADFETs) for total absorbed dose from mainly gamma ray and other charged particles and a Si PIN diode for neutron fluence. This is a part of the demagnetization study of rare earth permanent magnet irradiated by 2.5-GeV electron beam. The sensitivities of damage detectors are measured using 65-MeV quasi-monoenergic neutron, 14-MeV D-T neutron, (252)Cf neutron for Si PIN diode and (60)Co and (137)Cs gamma ray for RADFETs. Measured sensitivities are in acceptable range in the comparison of producer's proposed values. The dose and fluence measurements are carried out for the same target condition, Cu and Ta, as that for the demagnetization study. The 5 x 5 cm(2) cross-sectional and 5.5-cm-thick Pb target is also used for the general comparison with photoneutron yields. All measured dose and fluence are compared with the calculated results using the FLUKA code and agree well each other. The application of this kind of radiation damage monitor to high-level dosimetry at high-energy electron accelerator has been discussed. PMID:17575293

  14. Assurance Against Radiation Effects on Electronics

    NASA Technical Reports Server (NTRS)

    LaBel, Kenneth A.

    2004-01-01

    Contents include the following: The Space Radiation Environment. The Effects on Electronics. The Environment in Action. NASA Approaches to Commercial Electronics: the mission mix, flight projects, and proactive research. Final Thoughts: atomic interactions, direct ionization, interaction with nucleus.

  15. Comment on ``Mixed convection boundary layer flow over a horizontal plate with thermal radiation'' by A. Ishak, Heat Mass Transfer, DOI 10.1007/s00231-009-0552-3

    NASA Astrophysics Data System (ADS)

    Magyari, Eugen

    2010-10-01

    In a recent paper of Ishak (Heat Mass Transfer, doi: 10.1007/s00231-009-0552-3 , 2009) the similarity solutions of the title problem have been investigated numerically in some detail. The present note shows, however, that with the aid of a simple rescaling of the Prandtl number, the results reported by Ishak can easily be recovered from the well known solution of the same problem, without the effect of thermal radiation.

  16. Diffusion and ion mixing in amorphous alloys

    SciTech Connect

    Hahn, H.; Averback, R.S.; Ding, F.; Loxton, C.; Baker, J.

    1986-10-01

    Tracer impurity diffusion and ion beam mixing in amorphous (a-)Ni/sub 50/Zr/sub 50/ were measured. A correlation between the metallic radius of an impurity and its tracer diffusivity was observed; it is similar to that found in crystalline ..cap alpha..-Zr and ..cap alpha..-Ti. In addition, the temperature dependence of diffusion in a-NiZr exhibits Arrhenius behavior. Ion beam mixing of different impurities in a-NiZr correlates with tracer diffusivity at both high and low temperatures. At higher temperatures radiation enhanced diffusion (RED) was observed. The activation enthalpy of the RED diffusion coefficient is 0.3 eV/atom.

  17. Space Radiation

    NASA Technical Reports Server (NTRS)

    Wu, Honglu

    2006-01-01

    Astronauts receive the highest occupational radiation exposure. Effective protections are needed to ensure the safety of astronauts on long duration space missions. Increased cancer morbidity or mortality risk in astronauts may be caused by occupational radiation exposure. Acute and late radiation damage to the central nervous system (CNS) may lead to changes in motor function and behavior, or neurological disorders. Radiation exposure may result in degenerative tissue diseases (non-cancer or non-CNS) such as cardiac, circulatory, or digestive diseases, as well as cataracts. Acute radiation syndromes may occur due to occupational radiation exposure.

  18. Mixed matrix membrane development.

    PubMed

    Kulprathipanja, Santi

    2003-03-01

    Two types of mixed matrix membranes were developed by UOP in the late 1980s. The first type includes adsorbent polymers, such as silicalite-cellulose acetate (CA), NaX-CA, and AgX-CA mixed matrix membranes. The silicalite-CA has a CO(2)/H(2) selectivity of 5.15 +/- 2.2. In contrast, the CA membrane has a CO(2)/H(2) selectivity of 0.77 +/- 0.06. The second type of mixed matrix membrane is PEG-silicone rubber. The PEG-silicone rubber mixed matrix membrane has high selectivity for polar gases, such as SO(2), NH(3), and H(2)S.

  19. Mixed oxide solid solutions

    DOEpatents

    Magno, Scott; Wang, Ruiping; Derouane, Eric

    2003-01-01

    The present invention is a mixed oxide solid solution containing a tetravalent and a pentavalent cation that can be used as a support for a metal combustion catalyst. The invention is furthermore a combustion catalyst containing the mixed oxide solid solution and a method of making the mixed oxide solid solution. The tetravalent cation is zirconium(+4), hafnium(+4) or thorium(+4). In one embodiment, the pentavalent cation is tantalum(+5), niobium(+5) or bismuth(+5). Mixed oxide solid solutions of the present invention exhibit enhanced thermal stability, maintaining relatively high surface areas at high temperatures in the presence of water vapor.

  20. To Mix or Not to Mix?

    ERIC Educational Resources Information Center

    Shuttlewood, Rosemary

    2006-01-01

    In this article, the author discusses the teaching strategy of the mixed independent school where she works, in which they split the students into four or five ability sets. The sets are decided primarily either by pupil achievement in the entrance examinations prior to Y9 or by pupil performance in the prep school. The author also presents the…

  1. Influence of stimulated Raman scattering on the conversion efficiency in four wave mixing

    SciTech Connect

    Wunderlich, R.; Moore, M.A.; Garrett, W.R.; Payne, M.G.

    1988-01-01

    Secondary nonlinear optical effects following parametric four wave mixing in sodium vapor are investigated. The generated ultraviolet radiation induces stimulated Raman scattering and other four wave mixing process. Population transfer due to Raman transitions strongly influences the phase matching conditions for the primary mixing process. Pulse shortening and a reduction in conversion efficiency are observed. 8 refs., 3 figs.

  2. Radiation Exposure

    MedlinePlus

    Radiation is energy that travels in the form of waves or high-speed particles. It occurs naturally in sunlight. Man-made radiation is used in X-rays, nuclear weapons, nuclear power plants and cancer treatment. If you are exposed to small amounts of radiation over a ...

  3. Mixed Ability Teaching.

    ERIC Educational Resources Information Center

    Skov, Poul

    1986-01-01

    As a basis for taking a position on the future school structure in grades 8-10 in Denmark, an extensive study was carried out on mixed ability teaching (teaching in heterogeneous classes) on these grade levels. Results showed that mixed ability teaching gave at least as good results as teaching in differentiated classes. (Author/LMO)

  4. Recurrent mixed tumor.

    PubMed

    Batsakis, J G

    1986-01-01

    Recurrence of benign neoplasms can usually be attributed to incomplete excision. Such is the case with benign mixed tumors of salivary glands. Certain histopathologic features of mixed tumors, however, appear to facilitate recurrences. These are: a predominantly myxoid composition, and transcapsular extension by the tumor. Multicentric origin is possible, but it must be regarded as a much lower order of probability.

  5. Turbulent Mixing Characteristics in Stratocumulus Clouds

    NASA Astrophysics Data System (ADS)

    Wang, S.; Wang, Q.; Bucholtz, A.; Zheng, X.

    2010-12-01

    Turbulence mixing in stratocumulus clouds plays fundamental roles in impacting aerosol-cloud microphysics, regulating cloud macroscopic distribution both in space and time, and interacting with large- and meso-scale meteorological conditions. Understanding the turbulence mixing is a key in understanding physical processes in stratocumulus. This work aims at providing some turbulence mixing characteristics within the entrainment zone using a large-eddy simulation (LES) technique in selected observation cases from two recent field campaigns: Physics of Stratocumulus Top (POST) and VAMOS Ocean-Cloud-Atmosphere-Land Study- Regional experiment (VOCALS-Rex). LES simulation results of two cases of observed stratocumulus clouds will be discussed. The first one is a nighttime cloud case observed on 8 August 2008 during POST. This case is characterized by a relatively weak inversion (~ 5K), weak wind shear across the inversion and strong moisture variability. The other is a daytime cloud case observed on 29 October 2008. This case is characterized by a strong inversion (15 K) and relatively strong wind shear ( ~7 m s-1) across the inversion, which is due to a westward upslope of the PBL height. We apply COAMPS-LES to both cases with initial soundings derived from the observations and large-scale conditions calculated using COAMPS real-time forecasts. Observed longwave radiative (LW) flux from POST is used to validate a simple LW radiation parameterization. Basic turbulence statistics are also computed from the observations; and they are used to evaluate the LES simulations. Analyses of the simulations are focused on the probability density function of Richardson number within the entrainment zone and mixing line characteristics, which can be used to understand the mixing processes produced by the wind shear, radiative cooling and evaporation.

  6. Microfluidic Mixing: A Review

    PubMed Central

    Lee, Chia-Yen; Chang, Chin-Lung; Wang, Yao-Nan; Fu, Lung-Ming

    2011-01-01

    The aim of microfluidic mixing is to achieve a thorough and rapid mixing of multiple samples in microscale devices. In such devices, sample mixing is essentially achieved by enhancing the diffusion effect between the different species flows. Broadly speaking, microfluidic mixing schemes can be categorized as either “active”, where an external energy force is applied to perturb the sample species, or “passive”, where the contact area and contact time of the species samples are increased through specially-designed microchannel configurations. Many mixers have been proposed to facilitate this task over the past 10 years. Accordingly, this paper commences by providing a high level overview of the field of microfluidic mixing devices before describing some of the more significant proposals for active and passive mixers. PMID:21686184

  7. Theory for Neutrino Mixing

    NASA Astrophysics Data System (ADS)

    He, Xiao-Gang

    2016-07-01

    Since the discovery of neutrino oscillations, for which Takaaki Kajita and Arthur B. McDonald were awarded the 2015 Nobel prize in physics, tremendous progresses have been made in measuring the mixing angles which determine the oscillation pattern. A lot of theoretical efforts have been made to understand how neutrinos mix with each other. Present data show that in the standard parameterization of the mixing matrix, θ23 is close to π/4 and the CP violating phase is close to - π/2. In this talk I report results obtained in arXiv:1505.01932 (Phys. Lett. B750(2015)620) and arXive:1404.01560 (Chin. J. Phys.53(2015)100101) and discuss some implications for theoretical model buildings for such mixing pattern. Specific examples for neutrino mixing based on A4 family symmetry are given.

  8. Theory for Neutrino Mixing

    NASA Astrophysics Data System (ADS)

    He, Xiao-Gang

    2016-07-01

    Since the discovery of neutrino oscillations, for which Takaaki Kajita and Arthur B. McDonald were awarded the 2015 Nobel prize in physics, tremendous progresses have been made in measuring the mixing angles which determine the oscillation pattern. A lot of theoretical efforts have been made to understand how neutrinos mix with each other. Present data show that in the standard parameterization of the mixing matrix, θ23 is close to π/4 and the CP violating phase is close to ‑ π/2. In this talk I report results obtained in arXiv:1505.01932 (Phys. Lett. B750(2015)620) and arXive:1404.01560 (Chin. J. Phys.53(2015)100101) and discuss some implications for theoretical model buildings for such mixing pattern. Specific examples for neutrino mixing based on A4 family symmetry are given.

  9. High-mix insulins

    PubMed Central

    Kalra, Sanjay; Farooqi, Mohammad Hamed; El-Houni, Ali E.

    2015-01-01

    Premix insulins are commonly used insulin preparations, which are available in varying ratios of different molecules. These drugs contain one short- or rapid-acting, and one intermediate- or long-acting insulin. High-mix insulins are mixtures of insulins that contain 50% or more than 50% of short-acting insulin. This review describes the clinical pharmacology of high-mix insulins, including data from randomized controlled trials. It suggests various ways, in which high-mix insulin can be used, including once daily, twice daily, thrice daily, hetero-mix, and reverse regimes. The authors provide a rational framework to help diabetes care professionals, identify indications for pragmatic high-mix use. PMID:26425485

  10. Microstructural origins of radiation-induced changes in mechanical properties of 316 L and 304 L austenitic stainless steels irradiated with mixed spectra of high-energy protons and spallation neutrons

    NASA Astrophysics Data System (ADS)

    Sencer, B. H.; Bond, G. M.; Hamilton, M. L.; Garner, F. A.; Maloy, S. A.; Sommer, W. F.

    2001-07-01

    A number of candidate alloys were exposed to a particle flux and spectrum at Los Alamos Neutron Science Center (LANSCE) that closely match the mixed high-energy proton/neutron spectra expected in accelerator production of tritium (APT) window and blanket applications. Austenitic stainless steels 316 L and 304 L are two of these candidate alloys possessing attractive strength and corrosion resistance for APT applications. This paper describes the dose dependence of the irradiation-induced microstructural evolution of SS 316 L and 304 L in the temperature range 30-60°C and consequent changes in mechanical properties. It was observed that the microstructural evolution during irradiation was essentially identical in the two alloys, a behavior mirrored in their changes in mechanical properties. With one expection, it was possible to correlate all changes in mechanical properties with visible microstructural features. A late-term second abrupt decrease in uniform elongation was not associated with visible microstructure, but is postulated to be a consequence of large levels of retained hydrogen measured in the specimens. In spite of large amounts of both helium and hydrogen retained, approaching 1 at.% at the highest exposures, no visible cavities were formed, indicating that the gas atoms were either in solution or in subresolvable clusters.

  11. Engineering arbitrary pure and mixed quantum states

    SciTech Connect

    Pechen, Alexander

    2011-10-15

    Controlled manipulation by atomic- and molecular-scale quantum systems has attracted a lot of research attention in recent years. A fundamental problem is to provide deterministic methods for controlled engineering of arbitrary quantum states. This work proposes a deterministic method for engineering arbitrary pure and mixed states of a wide class of quantum systems. The method exploits a special combination of incoherent and coherent controls (incoherent and coherent radiation) and has two properties which are specifically important for manipulating by quantum systems: it realizes the strongest possible degree of their state control, complete density matrix controllability, meaning the ability to steer arbitrary pure and mixed initial states into any desired pure or mixed final state, and it is all-to-one, such that each particular control transfers all initial system states into one target state.

  12. ADVANCED MIXING MODELS

    SciTech Connect

    Lee, S; Richard Dimenna, R; David Tamburello, D

    2008-11-13

    The process of recovering the waste in storage tanks at the Savannah River Site (SRS) typically requires mixing the contents of the tank with one to four dual-nozzle jet mixers located within the tank. The typical criteria to establish a mixed condition in a tank are based on the number of pumps in operation and the time duration of operation. To ensure that a mixed condition is achieved, operating times are set conservatively long. This approach results in high operational costs because of the long mixing times and high maintenance and repair costs for the same reason. A significant reduction in both of these costs might be realized by reducing the required mixing time based on calculating a reliable indicator of mixing with a suitably validated computer code. The work described in this report establishes the basis for further development of the theory leading to the identified mixing indicators, the benchmark analyses demonstrating their consistency with widely accepted correlations, and the application of those indicators to SRS waste tanks to provide a better, physically based estimate of the required mixing time. Waste storage tanks at SRS contain settled sludge which varies in height from zero to 10 ft. The sludge has been characterized and modeled as micron-sized solids, typically 1 to 5 microns, at weight fractions as high as 20 to 30 wt%, specific gravities to 1.4, and viscosities up to 64 cp during motion. The sludge is suspended and mixed through the use of submersible slurry jet pumps. To suspend settled sludge, water is added to the tank as a slurry medium and stirred with the jet pump. Although there is considerable technical literature on mixing and solid suspension in agitated tanks, very little literature has been published on jet mixing in a large-scale tank. If shorter mixing times can be shown to support Defense Waste Processing Facility (DWPF) or other feed requirements, longer pump lifetimes can be achieved with associated operational cost and

  13. Radiation Proctopathy

    PubMed Central

    Grodsky, Marc B.; Sidani, Shafik M.

    2015-01-01

    Radiation therapy is a widely utilized treatment modality for pelvic malignancies, including prostate cancer, rectal cancer, and cervical cancer. Given its fixed position in the pelvis, the rectum is at a high risk for injury secondary to ionizing radiation. Despite advances made in radiation science, up to 75% of the patients will suffer from acute radiation proctitis and up to 20% may experience chronic symptoms. Symptoms can be variable and include diarrhea, bleeding, incontinence, and fistulization. A multitude of treatment options exist. This article summarizes the latest knowledge relating to radiation proctopathy focusing on the vast array of treatment options. PMID:26034407

  14. Radiation proctopathy.

    PubMed

    Grodsky, Marc B; Sidani, Shafik M

    2015-06-01

    Radiation therapy is a widely utilized treatment modality for pelvic malignancies, including prostate cancer, rectal cancer, and cervical cancer. Given its fixed position in the pelvis, the rectum is at a high risk for injury secondary to ionizing radiation. Despite advances made in radiation science, up to 75% of the patients will suffer from acute radiation proctitis and up to 20% may experience chronic symptoms. Symptoms can be variable and include diarrhea, bleeding, incontinence, and fistulization. A multitude of treatment options exist. This article summarizes the latest knowledge relating to radiation proctopathy focusing on the vast array of treatment options. PMID:26034407

  15. The Mixed-Phase Arctic Cloud Experiment.

    SciTech Connect

    Verlinde, J.; Harrington, Jerry Y.; McFarquhar, Greg; Yannuzzi, V. T.; Avramov, Alexander; Greenburg, S.; Johnson, N.; Zhang, G.; Poellot, Michael; Mather, Jim H.; Turner, David D.; Eloranta, E. W.; Zak, Bernard D.; Prenni, Anthony J.; Daniel, J. S.; Kok, G. L.; Tobin, D. C.; Holz, R. E.; Sassen, Kenneth; Spangenberg, D.; Minnis, Patrick; Tooman, Tim P.; Ivey, Mark D.; Richardson, S. J.; Bahrmann, C. P.; Shupe, Matthew D.; DeMott, Paul J.; Heymsfield, Andrew J.; Schofield, R.

    2007-02-01

    In order to help bridge the gaps in our understanding of mixed-phase Arctic clouds, the Department of Energy Atmospheric Radiation Measurement Program (DOE-ARM) funded an integrated, systematic observational study. The major objective of the Mixed-Phase Arctic Cloud Experiment (M-PACE), conducted September 27–October 22, 2004 during the autumnal transition season, was to collect a focused set of observations needed to advance our understanding of the cloud microphysics, cloud dynamics, thermodynamics, radiative properties, and evolution of Arctic mixed-phase clouds. These data would then be used to improve to both detailed models of Arctic clouds and large-scale climate models. M-PACE successfully documented the microphysical structure of arctic mixed-phase clouds, with multiple in situ profiles in both single-layer and multi-layer clouds, over the two ground-based remote sensing sites at Barrow and Oliktok Point. Liquid was found in clouds with temperatures down to -30C, the coldest cloud top temperature below -40C sampled by the aircraft. The remote sensing instruments suggest that ice was present in low concentrations, mostly concentrated in precipitation shafts, although there are indications of light ice precipitation present below the optically thick single-layer clouds. Flights into arctic cirrus clouds revealed microphysics properties very similar to their mid-latitude in situ formed cousins, with dominant ice crystal habit bullet rosettes.

  16. Rotation induced mixing in stellar interiors

    NASA Astrophysics Data System (ADS)

    Zahn, J.-P.

    2013-12-01

    The standard model of stellar structure is unable to account for various observational facts, such as anomalies in the surface composition, and there is now a broad consensus that some extra mixing must occur in the radiation zones, in addition to the always present convective overshoot or penetration. The search for the causes of this extra mixing started in the late seventies, and it was quickly realized - in particular by Sylvie Vauclair and her co-workers - that some mild turbulence must be present to counteract the effect of gravitational settling and radiative levitation. What could be responsible for this turbulence? One suggestion was the internal gravity waves emitted at the boundary of convection zones, but it is still not established whether these waves will lead to true mixing. However they transport angular momentum, and therefore they generate differential rotation, which may be shear-unstable and thus lead to turbulence. Another way to transport angular momentum and produce an unstable rotation profile is through the large-scale circulation which is induced by the structural adjustments as the star evolves, or by the torques applied to it (due to stellar wind, accretion, tides). These processes participate in what is called the "rotational mixing"; their implementation in stellar evolution codes - again under Sylvie's impulse - has given birth to a new generation of stellar models, which agree much better with the observational constraints, although there is still room for improvement.

  17. Neutron Calibration Facilities of the Irsn Research Laboratory in External Dosimetry

    NASA Astrophysics Data System (ADS)

    van Ryckeghem, L.; Lacoste, V.; Pelcot, G.; Pochat, J.-L.

    2003-06-01

    The Laboratory of Studies and Research in External Dosimetry (LRDE) associated to the National Office for Metrology (BNM) has to maintain the traceability of the French references for the calibration of neutron dosimeters. The LRDE owns a facility which provides some conventional neutron spectra from sources of 241Am-Be, 252Cf, and (252Cf + D2O)/Cd recommended by ISO standards. These ISO spectra appear not appropriated to simulate some kind of workplace spectra. In order to have similar radiation conditions between the calibration and the use of the device, LRDE has built facilities ("SIGMA" and "CANEL") providing some neutron spectra from thermal to fast energies reproducing those encountered in workplaces.

  18. Determining plutonium mass in spent fuel using Cf-252 interrogation with prompt neutron detection

    SciTech Connect

    Hu, Jianwei; Tobin, Stephen J; Menlove, Howard O; Croft, Stephen

    2010-01-01

    {sup 252}Cf Interrogation with Prompt Neutron (CIPN) detection is proposed as one of 14 NDA techniques to determine Pu mass in spent fuel assemblies (FAs). CIPN is a low-cost and portable instrument, and it looks like a modified fork detector combined with an active interrogation source. Fission chamber (FC) is chosen as neutron detector because of its insensitivity to {gamma} radiation. The CIPN assay is comprised of two measurements, a background count and an active count, without and with the {sup 252}Cf source next to the fuel respectively. The net signal above background is primarily due to the multiplication of Cf source neutrons caused by the fissile content. The capability of CIPN to detect diversion and to determine fissile content was quantified using MCNPX simulations. New schemes were proposed (such as burnup and cooling time correction, etc.) and the results show that the fissile content of a target spent fuel assembly can be determined using CIPN signal.

  19. Entrainment and mixing mechanism in monsoon clouds

    NASA Astrophysics Data System (ADS)

    Bera, Sudarsan; Prabhakaran, Thara; Pandithurai, Govindan; Brenguier, Jean-Louis

    2015-04-01

    Entrainment and consequent mixing impacts the cloud microphysical parameters and droplet size distribution (DSD) significantly which are very important for cloud radiative properties and the mechanism for first rain drop formation. The entrainment and mixing mechanisms are investigated in this study using in situ observations in warm cumulus clouds over monsoon region. Entrainment is discussed in the framework of the homogeneous and inhomogeneous mixing concepts and their effects on cloud droplet size distribution, number concentration, liquid water content and mean radius are described. The degree of homogeneity increases with droplet number concentration and adiabatic fraction, indicating homogeneous type mixing in the cloud core where dilution is less. Inhomogeneous mixing is found to be a dominating process at cloud edges where dilution is significant. Cloud droplet size distribution (DSD) is found to shift towards lower sizes during a homogeneous mixing event in the cloud core whereas spectral width of DSD decreases due to inhomogeneous mixing at cloud edges. Droplet size spectra suggests that largest droplets are mainly formed in the less diluted cloud core while diluted cloud edges have relatively smaller droplets, so that raindrop formation occurs mainly in the core of the cloud. The origin of the entrained parcels in deep cumulus clouds is investigated using conservative thermodynamical parameters. The entrained parcels originate from a level close to the observation level or slightly below through lateral edges. Cloud edges are significantly diluted due to entrainment of sub-saturated environmental air which can penetrate several hundred meters inside the cloud before it gets mixed completely with the cloud mass. Less diluted parcels inside the cloud core originates from a level much below the cloud base height. Penetrating downdraft from cloud top is seldom observed at the observation level and strong downdrafts may be attributed to in-cloud oscillation

  20. ADVANCED MIXING MODELS

    SciTech Connect

    Lee, S; Dimenna, R; Tamburello, D

    2011-02-14

    The process of recovering and processing High Level Waste (HLW) the waste in storage tanks at the Savannah River Site (SRS) typically requires mixing the contents of the tank with one to four mixers (pumps) located within the tank. The typical criteria to establish a mixed condition in a tank are based on the number of pumps in operation and the time duration of operation. To ensure that a mixed condition is achieved, operating times are typically set conservatively long. This approach results in high operational costs because of the long mixing times and high maintenance and repair costs for the same reason. A significant reduction in both of these costs might be realized by reducing the required mixing time based on calculating a reliable indicator of mixing with a suitably validated computer code. The focus of the present work is to establish mixing criteria applicable to miscible fluids, with an ultimate goal of addressing waste processing in HLW tanks at SRS and quantifying the mixing time required to suspend sludge particles with the submersible jet pump. A single-phase computational fluid dynamics (CFD) approach was taken for the analysis of jet flow patterns with an emphasis on the velocity decay and the turbulent flow evolution for the farfield region from the pump. Literature results for a turbulent jet flow are reviewed, since the decay of the axial jet velocity and the evolution of the jet flow patterns are important phenomena affecting sludge suspension and mixing operations. The work described in this report suggests a basis for further development of the theory leading to the identified mixing indicators, with benchmark analyses demonstrating their consistency with widely accepted correlations. Although the indicators are somewhat generic in nature, they are applied to Savannah River Site (SRS) waste tanks to provide a better, physically based estimate of the required mixing time. Waste storage tanks at SRS contain settled sludge which varies in

  1. Role of defects in radiation chemistry of crystalline organic materials. 3. Geometrical and electronic structures of alkene radical anion and cation in alkene/n-alkane mixed crystals as studied by ESR spectroscopy

    SciTech Connect

    Matsuura, Kaoru; Muto, Hachizo; Nunome, Keichi )

    1991-11-14

    An ESR study has been made in order to elucidate the electronic structures of alkene radical anions and cations, the former radicals being first detected in the hexene/n-hexene mixed crystals irradiated at 4.2 K along with the cation. The present work extended to the hexene and butene isomers has resulted in evidence that both anions with vinylene and vinylidene groups have pyramidal structures with {sigma}-character, which differ from the planar or twisted structures of corresponding cations. The proton hyperfine couplings of their anions were only about one-third as large as those for the cations: {vert bar}A{vert bar}(two {alpha}-H) = {vert bar}0.45, 0.1, {minus}0.25{vert bar} mT; a (two pairs of {beta}-H) = 1.38 and 0.56 mT for the 3-hexene anion, and a(two {alpha}-H) = 1.3 mT and a(two pairs of {beta}-H) = 4.6 and 2.9 mT for the cation. The differences in the geometrical structures and in the sizes of the proton couplings of the anion and cation radicals were discussed on the basis of a simple molecular orbital calculation. It has been found that the anion is stabilized by admixing {vert bar}2s;C> atomic orbitals (AO) with a lower core integral than {vert bar}2p;C> AO to the unpaired electron orbital and that the small {beta}-proton couplings mainly originate from low extent of hyperconjugation due to a wide energy separation of C{double bond}C {pi}-antibonding and C-H pseudo-{pi}-bonding orbitals.

  2. Nearly discontinuous chaotic mixing

    SciTech Connect

    Sharp, David Howland; Lim, Hyun K; Yu, Yan; Glimm, James G

    2009-01-01

    A new scientific approach is presented for a broad class of chaotic problems involving a high degree of mixing over rapid time scales. Rayleigh-Taylor and Richtmyer-Meshkov unstable flows are typical of such problems. Microscopic mixing properties such as chemical reaction rates for turbulent mixtures can be obtained with feasible grid resolution. The essential dependence of (some) fluid mixing observables on transport phenomena is observed. This dependence includes numerical as well as physical transport and it includes laminar as well as turbulent transport. A new approach to the mathematical theory for the underlying equations is suggested.

  3. Radiation Chemistry

    NASA Astrophysics Data System (ADS)

    Wojnárovits, L.

    Ionizing radiation causes chemical changes in the molecules of the interacting medium. The initial molecules change to new molecules, resulting in changes of the physical, chemical, and eventually biological properties of the material. For instance, water decomposes to its elements H2 and O2. In polymers, degradation and crosslinking take place. In biopolymers, e.g., DNS strand breaks and other alterations occur. Such changes are to be avoided in some cases (radiation protection), however, in other cases they are used for technological purposes (radiation processing). This chapter introduces radiation chemistry by discussing the sources of ionizing radiation (radionuclide sources, machine sources), absorption of radiation energy, techniques used in radiation chemistry research, and methods of absorbed energy (absorbed dose) measurements. Radiation chemistry of different classes of inorganic (water and aqueous solutions, inorganic solids, ionic liquids (ILs)) and organic substances (hydrocarbons, halogenated compounds, polymers, and biomolecules) is discussed in concise form together with theoretical and experimental backgrounds. An essential part of the chapter is the introduction of radiation processing technologies in the fields of polymer chemistry, food processing, and sterilization. The application of radiation chemistry to nuclear technology and to protection of environment (flue gas treatment, wastewater treatment) is also discussed.

  4. Guidelines for mixed waste minimization

    SciTech Connect

    Owens, C.

    1992-02-01

    Currently, there is no commercial mixed waste disposal available in the United States. Storage and treatment for commercial mixed waste is limited. Host States and compacts region officials are encouraging their mixed waste generators to minimize their mixed wastes because of management limitations. This document provides a guide to mixed waste minimization.

  5. Idealized mixing impacts

    SciTech Connect

    Peterson, R.A.

    1999-12-08

    The dispersion of tetraphenylborate in continuous stirred tank reactors plays a significant role in the utility achieved from the tetraphenylborate. Investigating idealized mixing of the materials can illuminate how this dispersion occurs.

  6. Mixed-Media Owls

    ERIC Educational Resources Information Center

    Schultz, Kathy

    2010-01-01

    The fun of creating collages is there are unlimited possibilities for the different kinds of materials one can use. In this article, the author describes how her eighth-grade students created an owl using mixed media.

  7. Asymmetric antiproton debuncher: No bad mixing, more good mixing

    SciTech Connect

    Visnjic, V.

    1994-07-01

    An asymmetric lattice for the Fermilab Antiproton Debuncher is designed. The lattice has zero mixing between the pickups and the kickers (bad mixing) while the mixing in the rest of the machine (good mixing) can be varied (even during the operation of the machine) in order to optimize the stochastic cooling. As an example, a lattice with zero bad mixing and twice the good mixing is presented. The betatron cooling rate in this lattice is twice its present value.

  8. Organic scintillator detector response simulations with DRiFT

    NASA Astrophysics Data System (ADS)

    Andrews, M. T.; Bates, C. R.; McKigney, E. A.; Solomon, C. J.; Sood, A.

    2016-09-01

    This work presents the organic scintillation simulation capabilities of DRiFT, a post-processing Detector Response Function Toolkit for MCNP® output. DRiFT is used to create realistic scintillation detector response functions to incident neutron and gamma mixed-field radiation. As a post-processing tool, DRiFT leverages the extensively validated radiation transport capabilities of MCNP® 6 , which also provides the ability to simulate complex sources and geometries. DRiFT is designed to be flexible, it allows the user to specify scintillator material, PMT type, applied PMT voltage, and quenching data used in simulations. The toolkit's capabilities, which include the generation of pulse shape discrimination plots and full-energy detector spectra, are demonstrated in a comparison of measured and simulated neutron contributions from 252Cf and PuBe, and photon spectra from 22Na and 228Th sources. DRiFT reproduced energy resolution effects observed in EJ-301 measurements through the inclusion of scintillation yield variances, photon transport noise, and PMT photocathode and multiplication noise.

  9. [The CT-stereotaxic neutron brachytherapy of brain tumors with californium sources on the ANET-B apparatus].

    PubMed

    Melikian, A G; Liass, F M; Shkol'nik, F G; Chekhonadskiĭ, V N; Elisiutin, G P; Golanov, A V; Kachkov, I A; Borodkin, S M; Lobanov, S A; Spasokukotskaia, O N

    1992-01-01

    A method for stereotaxic intratissue radiotherapy of brain tumors based on the findings of computed tomography is described. Radiosurgical implantation of sources with increased 252Cf content emitting mixed neutron + gamma-radiation was accomplished by means of an ANET-B apparatus by the afterloading method. Neutron irradiation is particularly effective in patients with malignant tumors possessing a large fraction of cells in a state of deep anoxia. Dosimetric planning was conducted by means of an original computer system. Devices and radiation-technical equipment for adaptation of the ANET-B apparatus for irradiation of neurosurgical patients are described. The indications for the use of this method and its place among the complex of measures for the treatment of patients with new growths of the brain are discussed. The first experience in using CT-stereotaxic neutron brachytherapy with californium sources on the ANET-B apparatus for the treatment of 6 patients with malignant glial tumors of the brain is dwelt on.

  10. Radiator technology

    NASA Technical Reports Server (NTRS)

    Juhasz, Albert J.

    1993-01-01

    Radiator technology is discussed in the context of the Civilian Space Technology Initiative's (CSTI's) high capacity power-thermal management project. The CSTI project is a subset of a project to develop a piloted Mars nuclear electric propulsion (NEP) vehicle. The following topics are presented in vugraph form: advanced radiator concepts; heat pipe codes and testing; composite materials; radiator design and integration; and surface morphology.

  11. Hawking radiation

    NASA Astrophysics Data System (ADS)

    Parentani, Renaud; Spindel, Philippe

    2011-12-01

    Hawking radiation is the thermal radiation predicted to be spontaneously emitted by black holes. It arises from the steady conversion of quantum vacuum fluctuations into pairs of particles, one of which escaping at infinity while the other is trapped inside the black hole horizon. It is named after the physicist Stephen Hawking who derived its existence in 1974. This radiation reduces the mass of black holes and is therefore also known as black hole evaporation.

  12. Temperature-dependent ion beam mixing

    SciTech Connect

    Rehn, L.E.; Alexander, D.E.

    1993-08-01

    Recent work on enhanced interdiffusion rates during ion-beam mixing at elevated temperatures is reviewed. As discussed previously, expected increase in ion-beam mixing rates due to `radiation-enhanced diffusion` (RED), i.e. the free migration of isolated vacancy and interstitial defects, is well documented in single-crystal specimens in the range of 0.4 to 0.6 of absolute melting temperature. In contrast, the increase often observed at somewhat lower temperatures during ion-beam mixing of polycrystalline specimens is not well understood. However, sufficient evidence is available to show that this increase reflects intracascade enhancement of a thermally-activated process that also occurs without irradiation. Recent evidence is presented which suggests that this process is Diffusion-induced Grain-Boundary Migration (DIGM). An important complementary conclusion is that because ion-beam mixing in single-crystal specimens exhibits no significant temperature dependence below that of RED, models that invoke only irradiation-specific phenomena, e.g., cascade-overlap, thermal-spikes, or liquid-diffusion, and hence which predict no difference in mixing behavior between single- or poly-crystalline specimens, cannot account for the existing results.

  13. RADIATION SHIELDING COMPOSITION

    DOEpatents

    Dunegan, H.L.

    1963-01-29

    A light weight radiation shielding composition is described whose mechanical and radiological properties can be varied within wide limits. The composition of this shielding material consists of four basic ingredients: powder of either Pb or W, a plastic resin, a resin plasticizer, and a polymerization catalyst to promote an interaction of the plasticizer with the plastic resin. Air may be mixed into the above ingredients in order to control the density of the final composition. For equivalent gamma attenuation, the shielding composition weighs one-third to one-half as much as conventional Pb shielding. (AEC)

  14. Set-up of a passive Bonner sphere system for neutron spectrometry at mixed fields with predominant photon component based on activation detector.

    PubMed

    Amgarou, K; Lacoste, V; Muller, H; Fernández, F

    2007-01-01

    A passive Bonner sphere system (BSS), based on thermal neutron activation detectors, was developed to perform neutron spectrometry in pulsed and very intense (n-gamma) fields with predominant photon component, as those produced by high energy (>10 MV) medical linear electron accelerators. In this paper, a description of the new system is presented together with an experimental characterisation of a portable Sodium Iodide (NaI) detector and a fixed high-purity Germanium one, both used to measure the induced gamma-activity of the activated materials, respectively, in situ and in the laboratory. The choice of the activated materials is justified according to pre-established practical considerations and physical criteria. The response functions of the entire passive BSS were calculated using the MCNPX code. A preliminary experimental validation with a bare (252)Cf source is given as well.

  15. Mixing of Supersonic Streams

    NASA Technical Reports Server (NTRS)

    Hawk, C. W.; Landrum, D. B.; Muller, S.; Turner, M.; Parkinson, D.

    1998-01-01

    The Strutjet approach to Rocket Based Combined Cycle (RBCC) propulsion depends upon fuel-rich flows from the rocket nozzles and turbine exhaust products mixing with the ingested air for successful operation in the ramjet and scramjet modes. It is desirable to delay this mixing process in the air-augmented mode of operation present during low speed flight. A model of the Strutjet device has been built and is undergoing test to investigate the mixing of the streams as a function of distance from the Strutjet exit plane during simulated low speed flight conditions. Cold flow testing of a 1/6 scale Strutjet model is underway and nearing completion. Planar Laser Induced Fluorescence (PLIF) diagnostic methods are being employed to observe the mixing of the turbine exhaust gas with the gases from both the primary rockets and the ingested air simulating low speed, air augmented operation of the RBCC. The ratio of the pressure in the turbine exhaust duct to that in the rocket nozzle wall at the point of their intersection is the independent variable in these experiments. Tests were accomplished at values of 1.0, 1.5 and 2.0 for this parameter. Qualitative results illustrate the development of the mixing zone from the exit plane of the model to a distance of about 19 equivalent rocket nozzle exit diameters downstream. These data show the mixing to be confined in the vertical plane for all cases, The lateral expansion is more pronounced at a pressure ratio of 1.0 and suggests that mixing with the ingested flow would be likely beginning at a distance of 7 nozzle exit diameters downstream of the nozzle exit plane.

  16. Mixing of Supersonic Streams

    NASA Technical Reports Server (NTRS)

    Hawk, C. W.; Landrum, D. B.; Muller, S.; Turner, M.; Parkinson, D.

    1998-01-01

    The Strutjet approach to Rocket Based Combined Cycle (RBCC) propulsion depends upon fuel-rich flows from the rocket nozzles and turbine exhaust products mixing with the ingested air for successful operation in the ramjet and scramjet modes. It is desirable to delay this mixing process in the air-augmented mode of operation present during low speed flight. A model of the Strutjet device has been built and is undergoing test to investigate the mixing of the streams as a function of distance from the Strutjet exit plane during simulated low speed flight conditions. Cold flow testing of a 1/6 scale Strutjet model is underway and nearing completion. Planar Laser Induced Fluorescence (PLIF) diagnostic methods are being employed to observe the mixing of the turbine exhaust gas with the gases from both the primary rockets and the ingested air simulating low speed, air augmented operation of the RBCC. The ratio of the pressure in the turbine exhaust duct to that in the rocket nozzle wall at the point of their intersection is the independent variable in these experiments. Tests were accomplished at values of 1.0, 1.5 and 2.0 for this parameter. Qualitative results illustrate the development of the mixing zone from the exit plane of the model to a distance of about 10 rocket nozzle exit diameters downstream. These data show the mixing to be confined in the vertical plane for all cases, The lateral expansion is more pronounced at a pressure ratio of 1.0 and suggests that mixing with the ingested flow would be likely beginning at a distance of 7 nozzle exit diameters downstream of the nozzle exit plane.

  17. Hawaii Ocean Mixing Experiment: Program Summary

    NASA Technical Reports Server (NTRS)

    Ray, Richard D.; Chao, Benjamin F. (Technical Monitor)

    2002-01-01

    baroclinic (depth varying) tide, all validated with near-Ridge data, will be applied, to reveal the mechanisms of tidal energy conversion along the Ridge, and allow spatial and temporal integration of the rate of conversion. Field experiments include a survey to identify "hot spots" of enhanced mixing and barotropic to baroclinic conversion, a Nearfield study identifying the dominant mechanisms responsible for topographic mixing, and a Farfield program which quantifies the barotropic energy flux convergence at the Ridge and the flux divergence associated with low mode baroclinic waves radiation. The difference is a measure of the tidal power available for mixing at the Ridge. Field work is planned from years 2000 through 2002, with analysis and modeling efforts extending through early 2006. If successful, HOME will yield an understanding of the dominant topographic mixing processes applicable throughout the global ocean. It will advance understanding of two central problems in ocean science, the maintenance of the abyssal stratification, and the dissipation of the tides. HOME data will be used to improve the parameterization of dissipation in models which presently assimilate TOPEX-POSEIDON observations. The improved understanding of the dynamics and spatial distribution of mixing processes will benefit future long-term programs such as CLIVAR.

  18. Understanding Radiation.

    ERIC Educational Resources Information Center

    Department of Energy, Washington, DC. Nuclear Energy Office.

    Radiation is a natural energy force that has been a part of the environment since the Earth was formed. It takes various forms, none of which can be smelled, tasted, seen, heard, or felt. Nevertheless, scientists know what it is, where it comes from, how to measure and detect it, and how it affects people. Cosmic radiation from outer space and…

  19. Low-Dose-Rate Californium-252 Neutron Intracavitary Afterloading Radiotherapy Combined With Conformal Radiotherapy for Treatment of Cervical Cancer

    SciTech Connect

    Zhang Min; Xu Hongde; Pan Songdan; Lin Shan; Yue Jianhua; Liu Jianren

    2012-07-01

    Purpose: To study the efficacy of low-dose-rate californium-252 ({sup 252}Cf) neutron intracavitary afterloading radiotherapy (RT) combined with external pelvic RT for treatment of cervical cancer. Methods and Materials: The records of 96 patients treated for cervical cancer from 2006 to 2010 were retrospectively reviewed. For patients with tumors {<=}4 cm in diameter, external beam radiation was performed (1.8 Gy/day, five times/week) until the dose reached 20 Gy, and then {sup 252}Cf neutron intracavitary afterloading RT (once/week) was begun, and the frequency of external beam radiation was changed to four times/week. For patients with tumors >4 cm, {sup 252}Cf RT was performed one to two times before whole-pelvis external beam radiation. The tumor-eliminating dose was determined by using the depth limit of 5 mm below the mucosa as the reference point. In all patients, the total dose of the external beam radiation ranged from 46.8 to 50 Gy. For {sup 252}Cf RT, the dose delivered to point A was 6 Gy/fraction, once per week, for a total of seven times, and the total dose was 42 Gy. Results: The mean {+-} SD patient age was 54.7 {+-} 13.7 years. Six patients had disease assessed at stage IB, 13 patients had stage IIA, 49 patients had stage IIB, 3 patients had stage IIIA, 24 patients had stage IIIB, and 1 patient had stage IVA. All patients obtained complete tumor regression (CR). The mean {+-} SD time to CR was 23.5 {+-} 3.4 days. Vaginal bleeding was fully controlled in 80 patients within 1 to 8 days. The mean {+-} SD follow-up period was 27.6 {+-} 12.7 months (range, 6-48 months). Five patients died due to recurrence or metastasis. The 3-year survival and disease-free recurrence rates were 89.6% and 87.5 %, respectively. Nine patients experienced mild radiation proctitis, and 4 patients developed radiocystitis. Conclusions: Low-dose-rate {sup 252}Cf neutron RT combined with external pelvic RT is effective for treating cervical cancer, with a low incidence of

  20. Mixed waste management options

    SciTech Connect

    Owens, C.B.; Kirner, N.P.

    1991-12-31

    Disposal fees for mixed waste at proposed commercial disposal sites have been estimated to be $15,000 to $40,000 per cubit foot. If such high disposal fees are imposed, generators may be willing to apply extraordinary treatment or regulatory approaches to properly dispose of their mixed waste. This paper explores the feasibility of several waste management scenarios and attempts to answer the question: Can mixed waste be managed out of existence? Existing data on commercially generated mixed waste streams are used to identify the realm of mixed waste known to be generated. Each waste stream is evaluated from both a regulatory and technical perspective in order to convert the waste into a strictly low-level radioactive or a hazardous waste. Alternative regulatory approaches evaluated in this paper include a delisting petition, no migration petition, and a treatability variance. For each waste stream, potentially available treatment options are identified that could lead to these variances. Waste minimization methodology and storage for decay are also considered. Economic feasibility of each option is discussed broadly.

  1. Radiation detector

    DOEpatents

    Fultz, B.T.

    1980-12-05

    Apparatus is provided for detecting radiation such as gamma rays and x-rays generated in backscatter Moessbauer effect spectroscopy and x-ray spectrometry, which has a large window for detecting radiation emanating over a wide solid angle from a specimen and which generates substantially the same output pulse height for monoenergetic radiation that passes through any portion of the detection chamber. The apparatus includes a substantially toroidal chamber with conductive walls forming a cathode, and a wire anode extending in a circle within the chamber with the anode lying closer to the inner side of the toroid which has the least diameter than to the outer side. The placement of the anode produces an electric field, in a region close to the anode, which has substantially the same gradient in all directions extending radially from the anode, so that the number of avalanche electrons generated by ionizing radiation is independent of the path of the radiation through the chamber.

  2. Radiation detector

    DOEpatents

    Fultz, Brent T.

    1983-01-01

    Apparatus is provided for detecting radiation such as gamma rays and X-rays generated in backscatter Mossbauer effect spectroscopy and X-ray spectrometry, which has a large "window" for detecting radiation emanating over a wide solid angle from a specimen and which generates substantially the same output pulse height for monoenergetic radiation that passes through any portion of the detection chamber. The apparatus includes a substantially toroidal chamber with conductive walls forming a cathode, and a wire anode extending in a circle within the chamber with the anode lying closer to the inner side of the toroid which has the least diameter than to the outer side. The placement of the anode produces an electric field, in a region close to the anode, which has substantially the same gradient in all directions extending radially from the anode, so that the number of avalanche electrons generated by ionizing radiation is independent of the path of the radiation through the chamber.

  3. Diffuse radiation

    NASA Technical Reports Server (NTRS)

    1981-01-01

    A diffuse celestial radiation which is isotropic at least on a course scale were measured from the soft X-ray region to about 150 MeV, at which energy the intensity falls below that of the galactic emission for most galactic latitudes. The spectral shape, the intensity, and the established degree of isotropy of this diffuse radiation already place severe constraints on the possible explanations for this radiation. Among the extragalactic theories, the more promising explanations of the isotropic diffuse emission appear to be radiation from exceptional galaxies from matter antimatter annihilation at the boundaries of superclusters of galaxies of matter and antimatter in baryon symmetric big bang models. Other possible sources for extragalactic diffuse gamma radiation are discussed and include normal galaxies, clusters of galaxies, primordial cosmic rays interacting with intergalactic matter, primordial black holes, and cosmic ray leakage from galaxies.

  4. Dilution jet mixing program

    NASA Technical Reports Server (NTRS)

    Srinivasan, R.; Coleman, E.; Johnson, K.

    1984-01-01

    Parametric tests were conducted to quantify the mixing of opposed rows of jets (two-sided injection) in a confined cross flow. Results show that jet penetrations for two sided injections are less than that for single-sided injections, but the jet spreading rates are faster for a given momentum ratio and orifice plate. Flow area convergence generally enhances mixing. Mixing characteristics with asymmetric and symmetric convergence are similar. For constant momentum ratio, the optimum S/H(0) with in-line injections is one half the optimum value for single sided injections. For staggered injections, the optimum S/H(0) is twice the optimum value for single-sided injection. The correlations developed predicted the temperature distributions within first order accuracy and provide a useful tool for predicting jet trajectory and temperature profiles in the dilution zone with two-sided injections.

  5. Natural convective mixing flows

    NASA Astrophysics Data System (ADS)

    Ramos, Eduardo; de La Cruz, Luis; del Castillo, Luis

    1998-11-01

    Natural convective mixing flows. Eduardo Ramos and Luis M. de La Cruz, National University of Mexico and Luis Del Castillo San Luis Potosi University. The possibility of mixing a fluid with a natural convective flow is analysed by solving numerically the mass, momentum and energy equations in a cubic container. Two opposite vertical walls of the container are assumed to have temperatures that oscillate as functions of time. The phase of the oscillations is chosen in such a way that alternating corrotating vortices are formed in the cavity. The mixing efficiency of this kind of flow is examined with a Lagrangian tracking technique. This work was partially financed by CONACyT-Mexico project number GE0044

  6. Mixed waste: Proceedings

    SciTech Connect

    Moghissi, A.A.; Blauvelt, R.K.; Benda, G.A.; Rothermich, N.E.

    1993-12-31

    This volume contains the peer-reviewed and edited versions of papers submitted for presentation a the Second International Mixed Waste Symposium. Following the tradition of the First International Mixed Waste Symposium, these proceedings were prepared in advance of the meeting for distribution to participants. The symposium was organized by the Mixed Waste Committee of the American Society of Mechanical Engineers. The topics discussed at the symposium include: stabilization technologies, alternative treatment technologies, regulatory issues, vitrification technologies, characterization of wastes, thermal technologies, laboratory and analytical issues, waste storage and disposal, organic treatment technologies, waste minimization, packaging and transportation, treatment of mercury contaminated wastes and bioprocessing, and environmental restoration. Individual abstracts are catalogued separately for the data base.

  7. Capture cross section measurement analysis in the Californium-252 spectrum with the Monte Carlo method.

    PubMed

    Manojlovič, Stanko; Trkov, Andrej; Žerovnik, Gašper; Snoj, Luka

    2015-07-01

    Absolute average capture cross sections of gold, thorium, tantalum, molybdenum, copper and strontium in (252)Cf spontaneous fission neutron spectrum were simulated for two types of experiment setups preformed by Z. Dezso and J. Csikai and by L. Green. The experiments were simulated with MCNP5 using cross section data from the ENDF/B-VII.0 library. The determination of neutron backscattering was calculated with the use of neutron flagging. Correction factors to experimentally measured values were determined to obtain average cross sections in a pure (252)Cf spontaneous fission spectrum. Influence of concrete wall thickness, air moisture and room size on the average cross section was analyzed. Correction factors amounted to about 30%. Corrected values corresponding to average cross sections in a pure (252)Cf spectrum were calculated for (197)Au, (232)Th, (181)Ta, (98)Mo, (65)Cu and (84)Sr. Average cross sections were also calculated with the RR_UNC software using IRDFF-v.1.05 and ENDF/B-VII.0 libraries. The revised average radiative capture cross sections are 75.5±0.1 mb for (197)Au, 87.0±1.6 mb for (232)Th , 98.0±4.5 mb for (181)Ta, 21.2±0.5 mb for (98)Mo, 10.3±0.3 mb for (63)Cu, and 34.9±6.5 mb for (84)Sr.

  8. Correction and verification of AECL Bonner Sphere response matrix based on mono-energetic neutron calibration performed at NPL.

    PubMed

    Atanackovic, J; Thomas, D J; Roberts, N J; Witharana, S; Dubeau, J; Yonkeu, A

    2014-10-01

    The AECL Bonner Sphere Spectrometer (BSS) was taken to National Physical Laboratory (NPL) for calibration in mono-energetic neutron fields and bare (252)Cf neutron fields. The mono-energetic radiations were performed using ISO-8529 prescribed neutron energies: 0.071, 0.144, 0.565, 1.2, 5 and 17 MeV. A central SP9 proportional counter was also evaluated at the NPL thermal neutron calibration facility in order to assess an effective pressure of (3)He inside the counter, i.e. number density of (3)He atoms. Based on these measurements and methods outlined by Thomas and Soochak, a new BSS response matrix was generated. The response matrix is then verified by unfolding spectra corresponding to various neutron fields. Those are NPL bare (252)Cf source, National Institute of Standards and Technology bare and heavy water moderated (252)Cf source and (241)AmBe calibration source located at National Research Council. A good agreement was observed with expected neutron fluence rates, as well as derived dosimetric quantities, such as International Commission on Radiological Protection-74 ambient dose equivalent.

  9. Mixed species radioiodine air sampling readout and dose assessment system

    DOEpatents

    Distenfeld, Carl H.; Klemish, Jr., Joseph R.

    1978-01-01

    This invention provides a simple, reliable, inexpensive and portable means and method for determining the thyroid dose rate of mixed airborne species of solid and gaseous radioiodine without requiring highly skilled personnel, such as health physicists or electronics technicians. To this end, this invention provides a means and method for sampling a gas from a source of a mixed species of solid and gaseous radioiodine for collection of the mixed species and readout and assessment of the emissions therefrom by cylindrically, concentrically and annularly molding the respective species around a cylindrical passage for receiving a conventional probe-type Geiger-Mueller radiation detector.

  10. Atomization and mixing study

    NASA Technical Reports Server (NTRS)

    Ferrenberg, A.; Jaqua, V. W.

    1983-01-01

    The state of the art in atomization and mixing for triplet, pentad, and coaxial injectors is described. Injectors that are applicable for LOX/hydrocarbon propellants and main chamber and fuel rich preburner/gas generator mixture ratios are of special interest. Various applicable correlating equations and parameters as well as test data found in the literature are presented. The validity, utility, and important aspects of these data and correlations are discussed and the measurement techniques used are evaluated. Propellant mixing tests performed are described and summarized, results are reported, and tentative conclusions are included.

  11. Turbulence and Interfacial Mixing

    SciTech Connect

    Glimm, James; Li, Xiaolin

    2005-03-15

    The authors study mix from analytical and numerical points of view. These investigations are linked. The analytical studies (in addition to laboratory experiments) provide bench marks for the direct simulation of mix. However, direct simulation is too detailed to be useful and to expensive to be practical. They also consider averaged equations. Here the major issue is the validation of the closure assumptions. They appeal to the direct simulation methods for this step. They have collaborated with several NNSA teams; moreover, Stony Brook alumni (former students, faculty and research collaborators) presently hold staff positions in NNSA laboratories.

  12. Mixed crystal organic scintillators

    DOEpatents

    Zaitseva, Natalia P; Carman, M Leslie; Glenn, Andrew M; Hamel, Sebastien; Hatarik, Robert; Payne, Stephen A; Stoeffl, Wolfgang

    2014-09-16

    A mixed organic crystal according to one embodiment includes a single mixed crystal having two compounds with different bandgap energies, the organic crystal having a physical property of exhibiting a signal response signature for neutrons from a radioactive source, wherein the signal response signature does not include a significantly-delayed luminescence characteristic of neutrons interacting with the organic crystal relative to a luminescence characteristic of gamma rays interacting with the organic crystal. According to one embodiment, an organic crystal includes bibenzyl and stilbene or a stilbene derivative, the organic crystal having a physical property of exhibiting a signal response signature for neutrons from a radioactive source.

  13. Mixed waste characterization strategy

    SciTech Connect

    Baldwin, C.E.; Stakebake, J.; Peters, M.

    1992-01-01

    Radioactive mixed wastes containing a radioactive component subject to the Atomic Energy Act (AEA) and hazardous waste subject to resource Conservation and Recovery Act (RCRA) are generated, treated, and stored at the Rocky Flats Plant (RFP) and are subject to federal and state statutory and regulatory requirements. The US Environmental Protection Agency (EPA) and the Colorado Department of Health (CDH) are the two primary regulatory agencies which enforce these requirements. This paper describes the mechanism by which RFP will characterize mixed wastes within the LDR provisions of RCRA and the LDR FFCA as well as for meeting the waste acceptance criteria for disposal.

  14. Mixed waste characterization strategy

    SciTech Connect

    Baldwin, C.E.; Stakebake, J.; Peters, M.

    1992-08-01

    Radioactive mixed wastes containing a radioactive component subject to the Atomic Energy Act (AEA) and hazardous waste subject to resource Conservation and Recovery Act (RCRA) are generated, treated, and stored at the Rocky Flats Plant (RFP) and are subject to federal and state statutory and regulatory requirements. The US Environmental Protection Agency (EPA) and the Colorado Department of Health (CDH) are the two primary regulatory agencies which enforce these requirements. This paper describes the mechanism by which RFP will characterize mixed wastes within the LDR provisions of RCRA and the LDR FFCA as well as for meeting the waste acceptance criteria for disposal.

  15. MixDown

    2010-01-01

    MixDown is a meta-build tool that orchestrates and manages the building of multiple 3rd party libraries. It can manage the downloading, uncompressing, unpacking, patching, configuration, build, and installation of 3rd party libraries using a variety of configuration and build tools. As a meta-build tool, it relies on 3rd party tools such as GNU Autotools, make, Cmake, scons, etc. to actually confugure and build libraries. MixDown includes an extensive database of settings to be used formore » general machines and specific leadership class computing resources.« less

  16. Atomization and Mixing Study

    NASA Technical Reports Server (NTRS)

    Ferrenberg, A.; Hunt, K.; Duesberg, J.

    1985-01-01

    The primary objective was the obtainment of atomization and mixing performance data for a variety of typical liquid oxygen/hydrocarbon injector element designs. Such data are required to establish injector design criteria and to provide critical inputs to liquid rocket engine combustor performance and stability analysis, and computational codes and methods. Deficiencies and problems with the atomization test equipment were identified, and action initiated to resolve them. Test results of the gas/liquid mixing tests indicated that an assessment of test methods was required. A series of 71 liquid/liquid tests were performed.

  17. Split supersymmetry radiates flavor

    NASA Astrophysics Data System (ADS)

    Baumgart, Matthew; Stolarski, Daniel; Zorawski, Thomas

    2014-09-01

    Radiative flavor models where the hierarchies of Standard Model (SM) fermion masses and mixings are explained via loop corrections are elegant ways to solve the SM flavor puzzle. Here we build such a model in the context of mini-split supersymmetry (SUSY) where both flavor and SUSY breaking occur at a scale of 1000 TeV. This model is consistent with the observed Higgs mass, unification, and dark matter as a weakly interacting massive particle. The high scale allows large flavor mixing among the sfermions, which provides part of the mechanism for radiative flavor generation. In the deep UV, all flavors are treated democratically, but at the SUSY-breaking scale, the third, second, and first generation Yukawa couplings are generated at tree level, one loop, and two loops, respectively. Save for one, all the dimensionless parameters in the theory are O(1), with the exception being a modest and technically natural tuning that explains both the smallness of the bottom Yukawa coupling and the largeness of the Cabibbo angle.

  18. Radiation dosimeter

    DOEpatents

    Fox, Richard J.

    1983-01-01

    A radiation detector readout circuit is provided which produces a radiation dose-rate readout from a detector even though the detector output may be highly energy dependent. A linear charge amplifier including an output charge pump circuit amplifies the charge signal pulses from the detector and pumps the charge into a charge storage capacitor. The discharge rate of the capacitor through a resistor is controlled to provide a time-dependent voltage which when integrated provides an output proportional to the dose-rate of radiation detected by the detector. This output may be converted to digital form for readout on a digital display.

  19. Radiation dosimeter

    DOEpatents

    Fox, R.J.

    1981-09-01

    A radiation detector readout circuit is provided which produces a radiation dose-rate readout from a detector even through the detector output may be highly energy dependent. A linear charge amplifier including an output charge pump circuit amplifies the charge signal pulses from the detector and pumps the charge into a charge storage capacitor. The discharge rate of the capacitor through a resistor is controlled to provide a time-dependent voltage which when integrated provides an output proportional to the dose-rate of radiation detected by the detector. This output may be converted to digital form for readout on a digital display.

  20. Sylgard® Mixing Study

    SciTech Connect

    Bello, Mollie; Welch, Cynthia F.; Goodwin, Lynne Alese; Keller, Jennie

    2014-08-22

    Sylgard® 184 and Sylgard® 186 silicone elastomers form Dow Corning® are used as potting agents across the Nuclear Weapons Complex. A standardized mixing procedure is required for filled versions of these products. The present study is a follow-up to a mixing study performed by MST-7 which established the best mixing procedure to use when adding filler to either 184 or 186 base resins. The most effective and consistent method of mixing resin and curing agent for three modified silicone elastomer recipes is outlined in this report. For each recipe, sample size, mixing type, and mixing time was varied over 10 separate runs. The results show that the THINKY™ Mixer gives reliable mixing over varying batch sizes and mixing times. Hand Mixing can give improved mixing, as indicated by reduced initial viscosity; however, this method is not consistent.

  1. Application of Stochastic Radiative Transfer Theory to the ARM Cloud-Radiative Parameterization Problem

    SciTech Connect

    Veron, Dana E

    2009-03-12

    This project had two primary goals: 1) development of stochastic radiative transfer as a parameterization that could be employed in an AGCM environment, and 2) exploration of the stochastic approach as a means for representing shortwave radiative transfer through mixed-phase layer clouds. To achieve these goals, an analysis of the performance of the stochastic approach was performed, a simple stochastic cloud-radiation parameterization for an AGCM was developed and tested, a statistical description of Arctic mixed phase clouds was developed and the appropriateness of stochastic approach for representing radiative transfer through mixed-phase clouds was assessed. Significant progress has been made in all of these areas and is detailed below.

  2. Application of Stochastic Radiative Transfer Theory to the ARM Cloud-Radiative Parameterization Problem

    SciTech Connect

    Dana E. Veron

    2012-04-09

    This project had two primary goals: (1) development of stochastic radiative transfer as a parameterization that could be employed in an AGCM environment, and (2) exploration of the stochastic approach as a means for representing shortwave radiative transfer through mixed-phase layer clouds. To achieve these goals, climatology of cloud properties was developed at the ARM CART sites, an analysis of the performance of the stochastic approach was performed, a simple stochastic cloud-radiation parameterization for an AGCM was developed and tested, a statistical description of Arctic mixed phase clouds was developed and the appropriateness of stochastic approach for representing radiative transfer through mixed-phase clouds was assessed. Significant progress has been made in all of these areas and is detailed in the final report.

  3. Mixed-Initiative Clustering

    ERIC Educational Resources Information Center

    Huang, Yifen

    2010-01-01

    Mixed-initiative clustering is a task where a user and a machine work collaboratively to analyze a large set of documents. We hypothesize that a user and a machine can both learn better clustering models through enriched communication and interactive learning from each other. The first contribution or this thesis is providing a framework of…

  4. True Anonymity Without Mixes

    NASA Astrophysics Data System (ADS)

    Molina-Jimenez, C.; Marshall, L.

    2002-04-01

    Anonymizers based on mix computers interposed between the sender and the receiver of an e-mail message have been used in the Internet for several years by senders of e-mail messages who do not wish to disclose their identity. Unfortunately, the degree of anonymity provided by this paradigm is limited and fragile. First, the messages sent are not truly anonymous but pseudo-anonymous since one of the mixes, at least, always knows the sender's identity. Secondly, the strength of the system to protect the sender's identity depends on the ability and the willingness of the mixes to keep the secret. If the mixes fail, the sender/'s anonymity is reduced to pieces. In this paper, we propose a novel approach for sending truly anonymous messages over the Internet where the anonymous message is sent from a PDA which uses dynamically assigned temporary, non-personal, random IP and MAC addresses. Anonymous E-cash is used to pay for the service.

  5. Mixing and Transport.

    ERIC Educational Resources Information Center

    Ditmars, John D.

    1978-01-01

    Presents a literature review of longitudinal dispersion, mixing and transport in streams, rivers, lakes, reservoirs, estuaries, and oceans. This review covers also: (1) fluid-solid mixtures and (2) oil spill behavior. A list of 189 references published in 1976 and 1977 is presented. (HM)

  6. Progress in mix modeling

    SciTech Connect

    Harrison, A.K.

    1997-03-14

    We have identified the Cranfill multifluid turbulence model (Cranfill, 1992) as a starting point for development of subgrid models of instability, turbulent and mixing processes. We have differenced the closed system of equations in conservation form, and coded them in the object-oriented hydrodynamics code FLAG, which is to be used as a testbed for such models.

  7. Stabilizer for mixed fuels

    SciTech Connect

    Yamamura, M.; Igarashi, T.; Ukigai, T.

    1984-03-13

    A stabilizer for mixed fuels containing a reaction product obtained by reacting (1) a polyol having at least 3 hydroxyl groups in the molecule and a molecular weight of 400-10,000 with (2) an epihalohydrin, as the principal component.

  8. Mixed valent metals

    NASA Astrophysics Data System (ADS)

    Riseborough, P. S.; Lawrence, J. M.

    2016-08-01

    We review the theory of mixed-valent metals and make comparison with experiments. A single-impurity description of the mixed-valent state is discussed alongside the description of the nearly-integer valent or Kondo limit. The degeneracy N of the f-shell plays an important role in the description of the low-temperature Fermi-liquid state. In particular, for large N, there is a rapid cross-over between the mixed-valent and the Kondo limit when the number of f electrons is changed. We discuss the limitations on the application of the single-impurity description to concentrated compounds such as those caused by the saturation of the Kondo effect and those due to the presence of magnetic interactions between the impurities. This discussion is followed by a description of a periodic lattice of mixed-valent ions, including the role of the degeneracy N. The article concludes with a comparison of theory and experiment. Topics covered include the single-impurity Anderson model, Luttinger’s theorem, the Friedel sum rule, the Schrieffer–Wolff transformation, the single-impurity Kondo model, Kondo screening, the Wilson ratio, local Fermi-liquids, Fermi-liquid sum rules, the Noziéres exhaustion principle, Doniach’s diagram, the Anderson lattice model, the Slave-Boson method, etc.

  9. Mixed valent metals

    NASA Astrophysics Data System (ADS)

    Riseborough, P. S.; Lawrence, J. M.

    2016-08-01

    We review the theory of mixed-valent metals and make comparison with experiments. A single-impurity description of the mixed-valent state is discussed alongside the description of the nearly-integer valent or Kondo limit. The degeneracy N of the f-shell plays an important role in the description of the low-temperature Fermi-liquid state. In particular, for large N, there is a rapid cross-over between the mixed-valent and the Kondo limit when the number of f electrons is changed. We discuss the limitations on the application of the single-impurity description to concentrated compounds such as those caused by the saturation of the Kondo effect and those due to the presence of magnetic interactions between the impurities. This discussion is followed by a description of a periodic lattice of mixed-valent ions, including the role of the degeneracy N. The article concludes with a comparison of theory and experiment. Topics covered include the single-impurity Anderson model, Luttinger’s theorem, the Friedel sum rule, the Schrieffer-Wolff transformation, the single-impurity Kondo model, Kondo screening, the Wilson ratio, local Fermi-liquids, Fermi-liquid sum rules, the Noziéres exhaustion principle, Doniach’s diagram, the Anderson lattice model, the Slave-Boson method, etc.

  10. DOE mixed waste treatment capacity analysis

    SciTech Connect

    Ross, W.A.; Wehrman, R.R.; Young, J.R.; Shaver, S.R.

    1994-06-01

    This initial DOE-wide analysis compares the reported national capacity for treatment of mixed wastes with the calculated need for treatment capacity based on both a full treatment of mixed low-level and transuranic wastes to the Land Disposal Restrictions and on treatment of transuranic wastes to the WIPP waste acceptance criteria. The status of treatment capacity is reported based on a fifty-element matrix of radiation-handling requirements and functional treatment technology categories. The report defines the classifications for the assessment, describes the models used for the calculations, provides results from the analysis, and includes appendices of the waste treatment facilities data and the waste stream data used in the analysis.

  11. Healthful radiation.

    PubMed

    Agard, E T

    1997-01-01

    This title of this article sounds paradoxical to most people because the general public is not fully aware of the many benefits radiation has brought to people's healthcare. Radiation has provided the most effective means of noninvasive diagnosis of many diseases, thus reducing the need for exploratory surgery, at significantly reduced risks. Furthermore, radiotherapy has been effective in treating many diseases without surgical removal of the diseased part. The breast is one excellent example of the benefits of radiation in both diagnosis and treatment with preservation. Yet the public still regards radiation as mysterious and dangerous, while trained experts regard it as beneficial with manageable risks. This article suggests ways of presenting this material to the public in a manner that is interesting and informative. PMID:8972833

  12. Radiation sickness

    MedlinePlus

    ... process so that they do not cause radiation injury to others. This may complicate the first aid and resuscitation process. Check the person's breathing and pulse. Start CPR , if necessary. Remove the person's clothing and place ...

  13. Healthful radiation

    SciTech Connect

    Agard, E.T.

    1997-01-01

    This title of this article sounds paradoxical to most people because the general public is not fully aware of the many benefits radiation has brought to people`s healthcare. Radiation has provided the most effective means of noninvasive diagnosis of many diseases, thus reducing the need for exploratory surgery, at significantly reduced risks. Furthermore, radiotherapy has been effective in treating many diseases without surgical removal of the diseased part. The breast is one excellent example of the benefits of radiation in both diagnosis and treatment with preservation. Yet the public still regards radiation as mysterious and dangerous, while trained experts regard it as beneficial with manageable risks. This article suggests ways of presenting this material to the public in a manner that is interesting and informative. 11 refs.

  14. Radiation Therapy

    MedlinePlus

    ... Radiation (also called x-rays, gamma rays, or photons) either kills tumor cells directly or interferes with ... treatment per day, five days a week, for two to seven weeks. Potiential Side Effects Most people ...

  15. Radiation Transport

    SciTech Connect

    Urbatsch, Todd James

    2015-06-15

    We present an overview of radiation transport, covering terminology, blackbody raditation, opacities, Boltzmann transport theory, approximations to the transport equation. Next we introduce several transport methods. We present a section on Caseology, observing transport boundary layers. We briefly broach topics of software development, including verification and validation, and we close with a section on high energy-density experiments that highlight and support radiation transport.

  16. Radiation Sensor

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Claypack is a cost-effective portable system developed by Barringer Research Ltd. for rapid on-site analysis of clay minerals. It is an adaptation of a hand-held rationing radiometer. By measuring the intensity of reflected radiation, the device discriminates among different minerals present in a sample. It simultaneously analyzes radiation intensities in two separate bands of the spectrum, and calculates the ratio of one to the other. The "reflectance ratio" is computer processed and displayed in digital form.

  17. Radiation enteritis.

    PubMed

    Harb, Ali H; Abou Fadel, Carla; Sharara, Ala I

    2014-01-01

    Radiation enteritis continues to be a major health concern in recipients of radiation therapy. The incidence of radiation enteritis is expected to continue to rise during the coming years paralleling the unprecedented use of radiotherapy in pelvic cancers. Radiation enteritis can present as either an acute or chronic syndrome. The acute form presents within hours to days of radiation exposure and typically resolves within few weeks. The chronic form may present as early as 2 months or as long as 30 years after exposure. Risk factors can be divided into patient and treatment-related factors. Chronic radiation enteritis is characterized by progressive obliterative endarteritis with exaggerated submucosal fibrosis and can manifest by stricturing, formation of fistulae, local abscesses, perforation, and bleeding. In the right clinical context, diagnosis can be confirmed by cross-sectional imaging, flexible or video capsule endoscopy. Present treatment strategies are directed primarily towards symptom relief and management of emerging complications. Recently, however, there has been a shift towards rational drug design based on improved understanding of the molecular basis of disease in an effort to limit the fibrotic process and prevent organ damage.

  18. A Combined Neutron and Gamma-Ray Multiplicity Counter Based on Liquid Scintillation Detectors

    SciTech Connect

    Andreas Enqvist; Marek Flaska; Jennifer Dolan; David L. Chichester; Sara A. Pozzi

    2011-10-01

    Multiplicity counters for neutron assay have been extensively used in materials control and accountability for nonproliferation and nuclear safeguards. Typically, neutron coincidence counters are utilized in these fields. In this work, we present a measurement system that makes use not only of neutron (n) multiplicity counting but also of gamma-ray (g) multiplicity counting and the combined higher-order multiples containing both neutrons and gamma rays. The benefit of this approach is in using both particle types available from the sample, leading to a reduction in measurement times needed when using more measurables. We present measurement results of n, g, nn, ng, gg, nnn, nng, ngg, and ggg multiples emitted by Mixed-Oxide (MOX) samples measured at Idaho National Laboratory (INL). The MOX measurement is compared to initial validation of the detection system done using a 252Cf source. The dual radiation measuring system proposed here uses extra measurables to improve the statistics when compared to a neutron-only system and allows for extended analysis and interpretation of sample parameters. New challenges such as the effect of very high intrinsic gamma-ray sources in the case of MOX samples is discussed. Successful measurements of multiples rates can be performed also when using high-Z shielding.

  19. Biological effects of cosmic radiation: deterministic and stochastic.

    PubMed

    Blakely, E A

    2000-11-01

    Our basic understanding of the biological responses to cosmic radiations comes in large part from an international series of ground-based laboratory studies, where accelerators have provided the source of representative charged particle radiations. Most of the experimental studies have been performed using acute exposures to a single radiation type at relatively high doses and dose rates. However, most exposures in flight occur from low doses of mixed radiation fields at low-dose rates. This paper provides a brief overview of existing pertinent clinical and biological radiation data and the limitations associated with data available from specific components of the radiation fields in airflight and space travel.

  20. Biological effects of cosmic radiation: deterministic and stochastic

    NASA Technical Reports Server (NTRS)

    Blakely, E. A.

    2000-01-01

    Our basic understanding of the biological responses to cosmic radiations comes in large part from an international series of ground-based laboratory studies, where accelerators have provided the source of representative charged particle radiations. Most of the experimental studies have been performed using acute exposures to a single radiation type at relatively high doses and dose rates. However, most exposures in flight occur from low doses of mixed radiation fields at low-dose rates. This paper provides a brief overview of existing pertinent clinical and biological radiation data and the limitations associated with data available from specific components of the radiation fields in airflight and space travel.

  1. Unitarity constraints on trimaximal mixing

    SciTech Connect

    Kumar, Sanjeev

    2010-07-01

    When the neutrino mass eigenstate {nu}{sub 2} is trimaximally mixed, the mixing matrix is called trimaximal. The middle column of the trimaximal mixing matrix is identical to tribimaximal mixing and the other two columns are subject to unitarity constraints. This corresponds to a mixing matrix with four independent parameters in the most general case. Apart from the two Majorana phases, the mixing matrix has only one free parameter in the CP conserving limit. Trimaximality results in interesting interplay between mixing angles and CP violation. A notion of maximal CP violation naturally emerges here: CP violation is maximal for maximal 2-3 mixing. Similarly, there is a natural constraint on the deviation from maximal 2-3 mixing which takes its maximal value in the CP conserving limit.

  2. Radiation enteritis and radiation scoliosis

    SciTech Connect

    Shah, M.; Eng, K.; Engler, G.L.

    1980-09-01

    Any patient with radiation scoliosis should be suspected of having a visceral lesion as well. Chronic radiation enteritis may be manifested by intestinal obstruction, fistulas, perforation, and hemorrhage. Intestinal obstruction is the most common complication, and must be differentiated from postoperative cast or from spinal-traction syndrome. Obstruction that does not respond promptly to conservative measures must be treated surgically. Irradiated bowel is ischemic, and necrosis with spontaneous perforation can only be avoided with early diagnosis and surgical intervention.

  3. Radiatively induced quark and lepton mass model

    NASA Astrophysics Data System (ADS)

    Nomura, Takaaki; Okada, Hiroshi

    2016-10-01

    We propose a radiatively induced quark and lepton mass model in the first and second generation with extra U (1) gauge symmetry and vector-like fermions. Then we analyze the allowed regions which simultaneously satisfy the FCNCs for the quark sector, LFVs including μ- e conversion, the quark mass and mixing, and the lepton mass and mixing. Also we estimate the typical value for the (g - 2) μ in our model.

  4. Experiments in mixed reality

    NASA Astrophysics Data System (ADS)

    Krum, David M.; Sadek, Ramy; Kohli, Luv; Olson, Logan; Bolas, Mark

    2010-01-01

    As part of the Institute for Creative Technologies and the School of Cinematic Arts at the University of Southern California, the Mixed Reality lab develops technologies and techniques for presenting realistic immersive training experiences. Such experiences typically place users within a complex ecology of social actors, physical objects, and collections of intents, motivations, relationships, and other psychological constructs. Currently, it remains infeasible to completely synthesize the interactivity and sensory signatures of such ecologies. For this reason, the lab advocates mixed reality methods for training and conducts experiments exploring such methods. Currently, the lab focuses on understanding and exploiting the elasticity of human perception with respect to representational differences between real and virtual environments. This paper presents an overview of three projects: techniques for redirected walking, displays for the representation of virtual humans, and audio processing to increase stress.

  5. Mixed Acid Oxidation

    SciTech Connect

    Pierce, R.A.

    1999-10-26

    Several non-thermal processes have been developed to destroy organic waste compounds using chemicals with high oxidation potentials. These efforts have focused on developing technologies that work at low temperatures, relative to incineration, to overcome many of the regulatory issues associated with obtaining permits for waste incinerators. One such technique with great flexibility is mixed acid oxidation. Mixed acid oxidation, developed at the Savannah River Site, uses a mixture of an oxidant (nitric acid) and a carrier acid (phosphoric acid). The carrier acid acts as a non-volatile holding medium for the somewhat volatile oxidant. The combination of acids allows appreciable amounts of the concentrated oxidant to remain in the carrier acid well above the oxidant''s normal boiling point.

  6. Radiation Oncology Treatment Team

    MedlinePlus

    ... Upper GI What is Radiation Therapy? Find a Radiation Oncologist Last Name: Facility: City: State: Zip Code: ... who specializes in using radiation to treat cancer . Radiation Oncologists Radiation oncologists are the doctors who will ...

  7. Radiation Therapy (For Parents)

    MedlinePlus

    ... 5 Things to Know About Zika & Pregnancy Radiation Therapy KidsHealth > For Parents > Radiation Therapy Print A A ... many questions and concerns about it. About Radiation Therapy In radiation therapy, high-energy radiation from X- ...

  8. Brain radiation - discharge

    MedlinePlus

    Radiation - brain - discharge; Cancer-brain radiation; Lymphoma - brain radiation; Leukemia - brain radiation ... Decadron) while you are getting radiation to the brain. It may make you hungrier, cause leg swelling ...

  9. In situ characterization of polymer blend mixing

    NASA Astrophysics Data System (ADS)

    Fabian, Zoltan Thomas

    Currently there is great interest in the development of polymer blend morphology arising from processing to control the properties of blends. A non-destructive technique, non-radiative energy transfer (NRET), was utilized to investigate polymer blend mixing ex and in situ . Donor (naphthyl) labeled polymers and acceptor (anthryl) labeled polymers were segregated to either phase domain limiting NRET to the interphase, and therefore permitting superior spatial resolution than obtained by other techniques such as light scattering. Observed donor and acceptor fluorescence intensities were correlated to respective concentrations, sample geometry, and interphase volume using a fluorescence model derived from the Beer-Lambert Law and Forster's description of NRET between a single donor-acceptor chromophore pair. Particular attention was devoted to the phenomena of direct chromophore excitation, NRET, and radiative energy transfer. The model was used to interpret experiments on the two determinant attributes of polymer mixing: interphase thickness and interphase area. Relative interphase thickness comparisons via polymer interdiffusion in a miscible blend of donor-labeled polystyrene and acceptor-labeled polystyrene indicated increasing ratios of acceptor fluorescence to donor fluorescence resulting from (1) longer diffusion time and (2) higher temperatures. Interphase area effects in an immiscible donor-labeled poly(methyl methacrylate)/acceptor-labeled polystyrene blend revealed a linear relationship between interphase area and donor to acceptor fluorescence ratio. Further interphase area investigation revealed that as the ratio of interphase area to sample volume increases, the resulting donor to acceptor fluorescence ratio approaches that of a homogenous mixed sample of equivalent thickness and dye concentration. The observed fluorescence ratio response to mixing was utilized to interpret two commercial applications: interphase contact and random immiscible blend

  10. Mixing of Supersonic Streams

    NASA Technical Reports Server (NTRS)

    Hawk, Clark W.; Landrum, D. Brian; Spetman, David

    1997-01-01

    The Strutjet approach to Rocket Based Combined Cycle (RBCC) propulsion depends upon fuel-rich flows from the rocket nozzles and turbine exhaust products mixing with the ambient air for successful operation in the ramjet and scramjet modes. A model of the Strutjet device has been built and is undergoing test to investigate the mixing of the streams as a function of distance from the Strutjet exit plane. The modeling basis was centered on using convective Mach Number as the similarity parameter to establish correlation between subscale, cold flow tests and full scale, hot firing modes. This parameter has been used successfully to correlate supersonic shear layer growth rates. The experiment design includes hot (600 R) air as the rocket exhaust simulant and hot (760 R) carbon dioxide as the turbine exhaust gas simulant. The combination of gases and their elevated temperatures was required to achieve a convective Mach Number which matched the fall scale item design conditions. The carbon dioxide is seeded with Acetone to permit tracing of the mixing processes through Laser Induced Fluorescence (LIF) techniques. The experiment and its design will be discussed in detail. Both the rocket and turbine exhaust duct nozzles are of unique (square and rectangular) shape and the turbine exhaust e)dt intersects the rocket nozzle wall upstream of the exit. Cold flow testing with the individual nozzles has been conducted to ascertain their behavior in comparison to conventional flow theory. These data are presented.

  11. Mixing, entropy and competition

    NASA Astrophysics Data System (ADS)

    Klimenko, A. Y.

    2012-06-01

    Non-traditional thermodynamics, applied to random behaviour associated with turbulence, mixing and competition, is reviewed and analysed. Competitive mixing represents a general framework for the study of generic properties of competitive systems and can be used to model a wide class of non-equilibrium phenomena ranging from turbulent premixed flames and invasion waves to complex competitive systems. We demonstrate consistency of the general principles of competition with thermodynamic description, review and analyse the related entropy concepts and introduce the corresponding competitive H-theorem. A competitive system can be characterized by a thermodynamic quantity—competitive potential—which determines the likely direction of evolution of the system. Contested resources tend to move between systems from lower to higher values of the competitive potential. There is, however, an important difference between conventional thermodynamics and competitive thermodynamics. While conventional thermodynamics is constrained by its zeroth law and is fundamentally transitive, the transitivity of competitive thermodynamics depends on the transitivity of the competition rules. Intransitivities are common in the real world and are responsible for complex behaviour in competitive systems. This work follows ideas and methods that have originated from the analysis of turbulent combustion, but reviews a much broader scope of issues linked to mixing and competition, including thermodynamic characterization of complex competitive systems with self-organization. The approach presented here is interdisciplinary and is addressed to the general educated readers, whereas the mathematical details can be found in the appendices.

  12. Mixing of carbonate waters

    USGS Publications Warehouse

    Wigley, T.M.L.; Plummer, L.N.

    1976-01-01

    When mineral solutions of different compositions are mixed, the molalities and activities of individual ions in the mixture are often non-linear functions of their end-member values. This non-linearity is particularly significant in determining mineral saturation levels. Mixtures of saturated solutions may be either undersaturated or supersaturated depending on the end-member compositions and the physical conditions in which end-members and their mixtures exist. In carbonate solutions important non-linear effects occur due to redistribution of carbonate species. In extreme cases this causes mixture pH to be below both the end-member pH values. A simple but precise computer program (WATMIX) has been developed for calculating mixture composition for closed and open system mixing of arbitrary end-members. A number of mixing examples are considered which allow one to isolate three important processes leading to non-linear behaviour: the algebraic effect, the ??PCO2 effect, and the ionic strength effect. ?? 1976.

  13. Radiation cataract.

    PubMed

    Kleiman, N J

    2012-01-01

    Until very recently, ocular exposure guidelines were based on the assumption that radiation cataract is a deterministic event requiring threshold doses generally greater than 2 Gy. This view was, in part, based on older studies which generally had short follow-up periods, failed to take into account increasing latency as dose decreased, had relatively few subjects with doses below a few Gy, and were not designed to detect early lens changes. Newer findings, including those in populations exposed to much lower radiation doses and in subjects as diverse as astronauts, medical workers, atomic bomb survivors, accidentally exposed individuals, and those undergoing diagnostic or radiotherapeutic procedures, strongly suggest dose-related lens opacification at significantly lower doses. These observations resulted in a recent re-evaluation of current lens occupational exposure guidelines, and a proposed lowering of the presumptive radiation cataract threshold to 0.5 Gy/year and the occupational lens exposure limit to 20 mSv/year, regardless of whether received as an acute, protracted, or chronic exposure. Experimental animal studies support these conclusions and suggest a role for genotoxicity in the development of radiation cataract. Recent findings of a low or even zero threshold for radiation-induced lens opacification are likely to influence current research efforts and directions concerning the cellular and molecular mechanisms underlying this pathology. Furthermore, new guidelines are likely to have significant implications for occupational and/or accidental exposure, and the need for occupational eye protection (e.g. in fields such as interventional medicine).

  14. MixSIAR: advanced stable isotope mixing models in R

    EPA Science Inventory

    Background/Question/Methods The development of stable isotope mixing models has coincided with modeling products (e.g. IsoSource, MixSIR, SIAR), where methodological advances are published in parity with software packages. However, while mixing model theory has recently been ex...

  15. Synchrotron radiation

    SciTech Connect

    Knotek, M.L.

    1987-01-01

    Synchrotron radiation has had a revolutionary effect on a broad range of scientific studies, from physics, chemistry and metallurgy to biology, medicine and geoscience. The situation during the last decade has been one of very rapid growth, there is a great vitality to the field and a capability has been given to a very broad range of scientific disciplines which was undreamed of just a decade or so ago. Here we will discuss some of the properties of synchrotron radiation that makes it so interesting and something of the sources in existence today including the National Synchrotron Light Source (NSLS). The NSLS is one of the new facilities built specifically for synchrotron radiation research and the model that was developed there for involvement of the scientific community is a good one which provides some good lessons for these facilities and others.

  16. RADIATION INTEGRATOR

    DOEpatents

    Glass, F.M.; Wilson, H.N.

    1959-02-17

    Radiation detecting and measuring systems, particularly a compact, integrating, background monitor, are discussed. One of the principal features of the system is the use of an electrometer tube where the input of the tube is directly connected to an electrode of the radiation detector and a capacitor is coupled to the tube input. When a predetermined quantity of radiation has been integrated, a trigger signal is fed to a recorder and a charge is delivered to the capacitor to render the tube inoperative. The capacitor is then recharged for the next period of operation. With this arrangement there is a substantial reduction in lead lengths and the principal components may be enclosed and hermetically sealed to insure low leakage.

  17. Radiation receiver

    DOEpatents

    Hunt, Arlon J.

    1983-01-01

    The apparatus for collecting radiant energy and converting same to alternate energy form includes a housing having an interior space and a radiation transparent window allowing, for example, solar radiation to be received in the interior space of the housing. Means are provided for passing a stream of fluid past said window and for injecting radiation absorbent particles in said fluid stream. The particles absorb the radiation and because of their very large surface area, quickly release the heat to the surrounding fluid stream. The fluid stream particle mixture is heated until the particles vaporize. The fluid stream is then allowed to expand in, for example, a gas turbine to produce mechanical energy. In an aspect of the present invention properly sized particles need not be vaporized prior to the entrance of the fluid stream into the turbine, as the particles will not damage the turbine blades. In yet another aspect of the invention, conventional fuel injectors are provided to inject fuel into the fluid stream to maintain the proper temperature and pressure of the fluid stream should the source of radiant energy be interrupted. In yet another aspect of the invention, an apparatus is provided which includes means for providing a hot fluid stream having hot particles disbursed therein which can radiate energy, means for providing a cooler fluid stream having cooler particles disbursed therein, which particles can absorb radiant energy and means for passing the hot fluid stream adjacent the cooler fluid stream to warm the cooler fluid and cooler particles by the radiation from the hot fluid and hot particles.

  18. Radiation receiver

    DOEpatents

    Hunt, A.J.

    1983-09-13

    The apparatus for collecting radiant energy and converting same to alternate energy form includes a housing having an interior space and a radiation transparent window allowing, for example, solar radiation to be received in the interior space of the housing. Means are provided for passing a stream of fluid past said window and for injecting radiation absorbent particles in said fluid stream. The particles absorb the radiation and because of their very large surface area, quickly release the heat to the surrounding fluid stream. The fluid stream particle mixture is heated until the particles vaporize. The fluid stream is then allowed to expand in, for example, a gas turbine to produce mechanical energy. In an aspect of the present invention properly sized particles need not be vaporized prior to the entrance of the fluid stream into the turbine, as the particles will not damage the turbine blades. In yet another aspect of the invention, conventional fuel injectors are provided to inject fuel into the fluid stream to maintain the proper temperature and pressure of the fluid stream should the source of radiant energy be interrupted. In yet another aspect of the invention, an apparatus is provided which includes means for providing a hot fluid stream having hot particles disbursed therein which can radiate energy, means for providing a cooler fluid stream having cooler particles disbursed therein, which particles can absorb radiant energy and means for passing the hot fluid stream adjacent the cooler fluid stream to warm the cooler fluid and cooler particles by the radiation from the hot fluid and hot particles. 5 figs.

  19. RADIATION SOURCES

    DOEpatents

    Brucer, M.H.

    1958-04-15

    A novel long-lived source of gamma radiation especially suitable for calibration purposes is described. The source of gamma radiation is denoted mock iodine131, which comprises a naixture of barium-133 and cesium-137. The barium and cesium are present in a barium-cesium ratio of approximately 5.7/1 to 14/1, uniformly dispersed in an ion exchange resin and a filter surrounding the resin comprised of a material of atomic number below approximately 51, and substantially 0.7 to 0.9 millimeter thick.

  20. Radiation dermatitis

    SciTech Connect

    Shack, R.B.; Lynch, J.B.

    1987-04-01

    Even in this era of modern radiotherapy, injuries associated with the medical and industrial use of radiation devices will continue to pose a difficult problem for the reconstructive surgeon. It must be borne in mind that the single most serious hazard to surgery in irradiated tissue is the lodgement of bacteria in tissue rendered avascular by the radiation and the secondary necrosis from the infection itself. The basic principles of wound management must be augmented by thorough knowledge of the use of well-vascularized muscle and musculocutaneous flap to provide adequate, blood-rich, soft-tissue coverage.

  1. Revisiting the quark-lepton complementarity and triminimal parametrization of neutrino mixing matrix

    SciTech Connect

    Kang, Sin Kyu

    2011-05-01

    We examine how a parametrization of neutrino mixing matrix reflecting quark-lepton complementarity can be probed by considering phase-averaged oscillation probabilities, flavor composition of neutrino fluxes coming from atmospheric and astrophysical neutrinos and lepton flavor violating radiative decays. We discuss some distinct features of the parametrization by comparing the triminimal parametrization of perturbations to the tribimaximal neutrino mixing matrix.

  2. Predicted levels of human radiation tolerance extrapolated from clinical studies of radiation effects

    NASA Technical Reports Server (NTRS)

    Lushbaugh, C. C.

    1972-01-01

    Results of clinical studies of radiation effects on man are used to evaluate space radiation hazards encountered during manned space travel. Considered are effects of photons as well as of mixed fission neutrons and gamma irradiations in establishing body radiosensitivity and tolerance levels. Upper and lower dose-response-time relations for acute radiation syndromes in patients indicate that man is more than sufficiently radioresistant to make the risks of an early radiation effect during one short space mission intangibly small in relation to the other nonradiation risks involved.

  3. MAGNETO-THERMOHALINE MIXING IN RED GIANTS

    SciTech Connect

    Denissenkov, Pavel A.; Pinsonneault, Marc; MacGregor, Keith B. E-mail: pinsono@astronomy.ohio-state.edu

    2009-05-10

    We revise a magnetic buoyancy model that has recently been proposed as a mechanism for extra mixing in the radiative zones of low-mass red giants. The most important revision is our accounting of the heat exchange between rising magnetic flux rings and their surrounding medium. This increases the buoyant rising time by five orders of magnitude; therefore, the number of magnetic flux rings participating in the mixing has to be increased correspondingly. On the other hand, our revised model takes advantage of the fact that the mean molecular weight of the rings formed in the vicinity of the hydrogen burning shell has been reduced by {sup 3}He burning. This increases their thermohaline buoyancy (hence, decreases the total ring number) considerably, making it equivalent to the pure magnetic buoyancy produced by a frozen-in toroidal field with B {sub {psi}} {approx} 10 MG. We emphasize that some toroidal field is still needed for the rings to remain cohesive while rising. Besides, this field prevents the horizontal turbulent diffusion from eroding the {mu} contrast between the rings and their surrounding medium. We propose that the necessary toroidal magnetic field is generated by differential rotation of the radiative zone that stretches a preexisting poloidal field around the rotation axis, and that magnetic flux rings are formed as a result of its buoyancy-related instability.

  4. Mixed waste chemical compatibility with packaging components

    SciTech Connect

    Nigrey, P.J.; Conroy, M.; Blalock, L.B.

    1994-05-01

    In this paper, a chemical compatibility testing program for packaging of mixed wastes at will be described. We will discuss the choice of four y-radiation doses, four time durations, four temperatures and four waste solutions to simulate the hazardous waste components of mixed wastes for testing materials compatibility of polymers. The selected simulant wastes are (1) an aqueous alkaline mixture of sodium nitrate and sodium nitrite; (2) a chlorinated hydrocarbon mixture; (3) a simulant liquid scintillation fluid; and (4) a mixture of ketones. A selection of 10 polymers with anticipated high resistance to one or more of these types of environments are proposed for testing as potential liner or seal materials. These polymers are butadiene acrylonitrile copolymer, cross-linked polyethylene, epichlorhyarin, ethylene-propylene rubber, fluorocarbon, glass-filled tetrafluoroethylene, high-density poly-ethylene, isobutylene-isoprene copolymer, polypropylene, and styrene-butadiene rubber. We will describe the elements of the testing plan along with a metric for establishing time resistance of the packaging materials to radiation and chemicals.

  5. Mix/Cast Contamination Control

    NASA Technical Reports Server (NTRS)

    Wallentine, M.

    2005-01-01

    Presented is a training handbook for Mix/Cast Contamination Control; a part of a series of training courses to qualify access to Mix/Cast facilities. Contents: List Contamination Control Requirements; Identify foreign objects debris (FOD), Control Areas and their guidelines; Describe environmental monitoring; List Contamination Control Initiatives; Describe concern for Controlled Materials; Identify FOD Controlled Areas in Mix/Cast.

  6. Magnetically coupled system for mixing

    DOEpatents

    Miller, III, Harlan; Meichel, George; Legere, Edward; Malkiel, Edwin; Woods, Robert Paul; Ashley, Oliver; Katz, Joseph; Ward, Jason; Petersen, Paul

    2015-09-22

    The invention provides a mixing system comprising a magnetically coupled drive system and a foil for cultivating algae, or cyanobacteria, in an open or enclosed vessel. The invention provides effective mixing, low energy usage, low capital expenditure, and ease of drive system component maintenance while maintaining the integrity of a sealed mixing vessel.

  7. Magnetically coupled system for mixing

    DOEpatents

    Miller, III, Harlan; Meichel, George; Legere, Edward; Malkiel, Edwin; Woods, Robert Paul; Ashley, Oliver; Katz, Joseph; Ward, Jason; Petersen, Paul

    2014-04-01

    The invention provides a mixing system comprising a magnetically coupled drive system and a foil for cultivating algae, or cyanobacteria, in an open or enclosed vessel. The invention provides effective mixing, low energy usage, low capital expenditure, and ease of drive system component maintenance while maintaining the integrity of a sealed mixing vessel.

  8. The mixed chemistry problem

    NASA Astrophysics Data System (ADS)

    Guzman-Ramirez, L.; Zijlstra, A. A.; Gesicki, K.; Lagadec, E.; Jones, D.; Millar, T. J.; Woods, P. M.; Chuimin, R. N.

    2014-04-01

    Planetary nebulae (PNe) represent the last stage of evolution of intermediate mass stars (0.8 to 8M⊙) and, hence, by their very nature are fundamental to galactic evolution. The massive envelopes ejected during their earlier evolution (AGB phase) are an important source of recycled material in the form of dust and molecular gas into the interstellar medium. A small fraction of PNe show both O- and C-rich features and are therefore classified as mixed-chemistry objects. The origin of their mixed-chemistry is still uncertain. Our chemical models show that the PAHs may form in irradiated dense tori, and HST images confirm the presence of such tori in some of the objects. Using the VISIR/VLT, we spatially resolved the precise location of the PAHs. We find a dense dusty structures in all of the objects observed. The ionised [SIV] material is located inside the dusty tori, while the PAHs are present at the outer edges of these tori. This confirms that the PAHs formation is due to the photodissociation of CO. In the Galactic Disk, very few PNe have shown to harbour these mixed-chemistry phenomenon. We propose to observe the tori of a sample of bipolar PNe from the Galactic Disk that harbour a close binary system inside them. The chemical models show that the formation of long C-chain molecules is possible to occur in O-rich environments, but the formation of these C-rich molecules require a very dense region (Av˜4). To test this theory we propose to observe the very dense tori of these Galactic Disk PNe and compare these sample with the already observed sample of PNe in the Galactic Bulge (Guzman-Ramirez, et al., 2011;Guzman-Ramirez, et al., 2013, submitted).

  9. B Lifetimes and Mixing

    SciTech Connect

    Evans, Harold G.; /Indiana U.

    2009-05-01

    The Tevatron experiments, CDF and D0, have produced a wealth of new B-physics results since the start of Run II in 2001. We've observed new B-hadrons, seen new effects, and increased many-fold the precision with which we know the properties of b-quark systems. In these proceedings, we will discuss two of the most fruitful areas in the Tevatron B-physics program: lifetimes and mixing. We'll examine the experimental issues driving these analyses, present a summary of the latest results, and discuss prospects for the future.

  10. Radiation accidents

    SciTech Connect

    Saenger, E.L.

    1986-09-01

    It is essential that emergency physicians understand ways to manage patients contaminated by radioactive materials and/or exposed to external radiation sources. Contamination accidents require careful surveys to identify the metabolic pathway of the radionuclides to guide prognosis and treatment. The level of treatment required will depend on careful surveys and meticulous decontamination. There is no specific therapy for the acute radiation syndrome. Prophylactic antibodies are desirable. For severely exposed patients treatment is similar to the supportive care given to patients undergoing organ transplantation. For high-dose extremity injury, no methods have been developed to reverse the fibrosing endarteritis that eventually leads to tissue death so frequently found with this type of injury. Although the Three Mile Island episode of March 1979 created tremendous public concern, there were no radiation injuries. The contamination outside the reactor building and the release of radioiodine were negligible. The accidental fuel element meltdown at Chernobyl, USSR, resulted in many cases of acute radiation syndrome. More than 100,000 people were exposed to high levels of radioactive fallout. The general principles outlined here are applicable to accidents of that degree of severity.

  11. Radiation accidents.

    PubMed

    Saenger, E L

    1986-09-01

    It is essential that emergency physicians understand ways to manage patients contaminated by radioactive materials and/or exposed to external radiation sources. Contamination accidents require careful surveys to identify the metabolic pathway of the radionuclides to guide prognosis and treatment. The level of treatment required will depend on careful surveys and meticulous decontamination. There is no specific therapy for the acute radiation syndrome. Prophylactic antibodies are desirable. For severely exposed patients treatment is similar to the supportive care given to patients undergoing organ transplantation. For high-dose extremity injury, no methods have been developed to reverse the fibrosing endarteritis that eventually leads to tissue death so frequently found with this type of injury. Although the Three Mile Island episode of March 1979 created tremendous public concern, there were no radiation injuries. The contamination outside the reactor building and the release of radioiodine were negligible. The accidental fuel element meltdown at Chernobyl, USSR, resulted in many cases of acute radiation syndrome. More than 100,000 people were exposed to high levels of radioactive fallout. The general principles outlined here are applicable to accidents of that degree of severity. PMID:3526994

  12. Radiation Models

    ERIC Educational Resources Information Center

    James, W. G. G.

    1970-01-01

    Discusses the historical development of both the wave and the corpuscular photon model of light. Suggests that students should be informed that the two models are complementary and that each model successfully describes a wide range of radiation phenomena. Cites 19 references which might be of interest to physics teachers and students. (LC)

  13. Radiation Emergencies

    MedlinePlus

    ... enough, it can cause premature aging or even death. Although there are no guarantees of safety during a radiation emergency, you can take actions to protect yourself. You should have a disaster plan. Being prepared can help reduce fear, anxiety and losses. If you do experience a ...

  14. Mixing-State Sensitivity of Aerosol Absorption in the EMAC Chemistry-Climate Model

    NASA Astrophysics Data System (ADS)

    Klingmueller, Klaus; Steil, Benedikt; Bruehl, Christoph; Tost, Holger; Lelieveld, Jos

    2014-05-01

    The modelling of aerosol radiative forcing is a major cause of uncertainty in the assessment of global and regional atmospheric energy budgets and climate change. One reason is the strong dependence of the aerosol optical properties on the mixing state of aerosol components like black carbon and sulphates. Using the atmospheric chemistry-climate model EMAC, we study the radiative transfer assuming various mixing states. The aerosol optics code we employ builds on the AEROPT submodel which assumes homogeneous internal mixing utilising the volume average refractive index mixing rule. We have extended the submodel to additionally account for external mixing, partial external mixing and multilayered particles. Furthermore, we have implemented the volume average dielectric constant and Maxwell Garnett Mixing rule. We present results from regional case studies employing a new column version of the aerosol optical properties and radiative transfer code of EMAC, considering columns over China, India and Africa. The regional results are complemented by global results from a simulation for the year 2005. Our findings corroborate much stronger absorption by internal than external mixtures. Well mixed aerosol often is a good approximation for particles with a black carbon core, whereas particles with black carbon at the surface absorb significantly less. Therefore, we conclude that it is generally recommended to take the inner structure of internally mixed particles into account.

  15. A Research Agenda for Radiation Oncology: Results of the Radiation Oncology Institute's Comprehensive Research Needs Assessment

    SciTech Connect

    Jagsi, Reshma; Bekelman, Justin E.; Brawley, Otis W.; Deasy, Joseph O.; Le, Quynh-Thu; Michalski, Jeff M.; Movsas, Benjamin; Thomas, Charles R.; Lawton, Colleen A.; Lawrence, Theodore S.; Hahn, Stephen M.

    2012-10-01

    Purpose: To promote the rational use of scarce research funding, scholars have developed methods for the systematic identification and prioritization of health research needs. The Radiation Oncology Institute commissioned an independent, comprehensive assessment of research needs for the advancement of radiation oncology care. Methods and Materials: The research needs assessment used a mixed-method, qualitative and quantitative social scientific approach, including structured interviews with diverse stakeholders, focus groups, surveys of American Society for Radiation Oncology (ASTRO) members, and a prioritization exercise using a modified Delphi technique. Results: Six co-equal priorities were identified: (1) Identify and develop communication strategies to help patients and others better understand radiation therapy; (2) Establish a set of quality indicators for major radiation oncology procedures and evaluate their use in radiation oncology delivery; (3) Identify best practices for the management of radiation toxicity and issues in cancer survivorship; (4) Conduct comparative effectiveness studies related to radiation therapy that consider clinical benefit, toxicity (including quality of life), and other outcomes; (5) Assess the value of radiation therapy; and (6) Develop a radiation oncology registry. Conclusions: To our knowledge, this prioritization exercise is the only comprehensive and methodologically rigorous assessment of research needs in the field of radiation oncology. Broad dissemination of these findings is critical to maximally leverage the impact of this work, particularly because grant funding decisions are often made by committees on which highly specialized disciplines such as radiation oncology are not well represented.

  16. Wave mixing spectroscopy

    SciTech Connect

    Smith, R.W.

    1980-08-01

    Several new aspects of nonlinear or wave mixing spectroscopy were investigated utilizing the polarization properties of the nonlinear output field and the dependence of this field upon the occurrence of multiple resonances in the nonlinear susceptibility. First, it is shown theoretically that polarization-sensitive detection may be used to either eliminate or controllably reduce the nonresonant background in coherent anti-Stokes Raman spectroscopy, allowing weaker Raman resonances to be studied. The features of multi-resonant four-wave mixing are examined in the case of an inhomogeneously broadened medium. It is found that the linewidth of the nonlinear output narrows considerably (approaching the homogeneous width) when the quantum mechanical expressions for the doubly- and triply-resonant susceptibilities are averaged over a Doppler or strain broadened profile. Experimental studies of nonlinear processes in Pr/sup +3/:LaF/sub 3/ verify this linewidth narrowing, but indicate that this strain broadened system cannot be treated with a single broadening parameter as in the case of Doppler broadening in a gas. Several susceptibilities are measured from which are deduced dipole matrix elements and Raman polarizabilities related to the /sup 3/H/sub 4/, /sup 3/H/sub 6/, and /sup 3/P/sub 0/ levels of the praseodymium ions.

  17. Study of PIN diode energy traps created by neutrons

    NASA Astrophysics Data System (ADS)

    Sopko, V.; Sopko, B.; Chren, D.; Dammer, J.

    2013-03-01

    Characterization of radiation defects is still ongoing and finds greater application in the increasing radiation doses on semiconductor detectors in experiments. Studying the changes of silicon PIN diode for high doses of radiation is the fundamental motivation for our measurements. In this article we describe the behavior of the PIN diode and development of the disorder caused by neutrons from a 252Cf and doses up to 8 Gy. The calibration curve for PIN diode shows the effect of disorders as the changes of the voltampere characteristics depending on the dose of neutron irradiation. The measured values for defects are in good agreement with created energy traps.

  18. A Library of Rad Hard Mixed-Voltage/Mixed-Signal Building Blocks for Integration of Avionics Systems for Deep Space

    NASA Technical Reports Server (NTRS)

    Mojarradi, M. M.; Blaes, B.; Kolawa, E. A.; Blalock, B. J.; Li, H. W.; Buck, K.; Houge, D.

    2001-01-01

    To build the sensor intensive system-on-a-chip for the next generation spacecrafts for deep space, Center for Integration of Space Microsystems at JPL (CISM) takes advantage of the lower power rating and inherent radiation resistance of Silicon on Insulator technology (SOI). We are developing a suite of mixed-voltage and mixed-signal building blocks in Honeywell's SOI process that can enable the rapid integration of the next generation avionics systems with lower power rating, higher reliability, longer life, and enhanced radiation tolerance for spacecrafts such as the Europa Orbiter and Europa Lander. The mixed-voltage building blocks are predominantly for design of adaptive power management systems. Their design centers around an LDMOS structure that is being developed by Honeywell, Boeing Corp, and the University of Idaho. The mixed-signal building blocks are designed to meet the low power, extreme radiation requirement of deep space applications. These building blocks are predominantly used to interface analog sensors to the digital CPU of the next generation avionics system on a chip. Additional information is contained in the original extended abstract.

  19. Application of a Flip-Flop Nozzle on Plume Mixing Enhancement

    NASA Technical Reports Server (NTRS)

    Schreck, Stefan; Michaelian, Mark; Ho, Chih-Ming

    1999-01-01

    Mach wave radiation is a major source of noise in high speed jets. It is created by turbulent eddies which travel at supersonic speed within the shear layer of the jet. Downstream of the potential core, the convection speed of the eddies decays and noise production is reduced. Once the convection speeds drops below the speed of sound, eddy Mach wave radiation ceases. Mach wave radiation may be reduced by shortening the core length of the jet. This requires a faster growth of the shear layer, i.e. enhanced mixing in the jet. We investigated the possibility of mixing enhancement by the excitation of the instability waves in a supersonic rectangular jet.

  20. Mixed Mode Matrix Multiplication

    SciTech Connect

    Meng-Shiou Wu; Srinivas Aluru; Ricky A. Kendall

    2004-09-30

    In modern clustering environments where the memory hierarchy has many layers (distributed memory, shared memory layer, cache,...), an important question is how to fully utilize all available resources and identify the most dominant layer in certain computations. When combining algorithms on all layers together, what would be the best method to get the best performance out of all the resources we have? Mixed mode programming model that uses thread programming on the shared memory layer and message passing programming on the distributed memory layer is a method that many researchers are using to utilize the memory resources. In this paper, they take an algorithmic approach that uses matrix multiplication as a tool to show how cache algorithms affect the performance of both shared memory and distributed memory algorithms. They show that with good underlying cache algorithm, overall performance is stable. When underlying cache algorithm is bad, superlinear speedup may occur, and an increasing number of threads may also improve performance.

  1. Radioactive mixed waste disposal

    SciTech Connect

    Jasen, W.G.; Erpenbeck, E.G.

    1993-02-01

    Various types of waste have been generated during the 50-year history of the Hanford Site. Regulatory changes in the last 20 years have provided the emphasis for better management of these wastes. Interpretations of the Atomic Energy Act of 1954 (AEA), the Resource Conservation and Recovery Act of 1976 (RCRA), and the Hazardous and Solid Waste Amendments (HSWA) have led to the definition of radioactive mixed wastes (RMW). The radioactive and hazardous properties of these wastes have resulted in the initiation of special projects for the management of these wastes. Other solid wastes at the Hanford Site include low-level wastes, transuranic (TRU), and nonradioactive hazardous wastes. This paper describes a system for the treatment, storage, and disposal (TSD) of solid radioactive waste.

  2. Relating space radiation environments to risk estimates

    NASA Technical Reports Server (NTRS)

    Curtis, Stanley B.

    1993-01-01

    A number of considerations must go into the process of determining the risk of deleterious effects of space radiation to travelers. Among them are (1) determination of the components of the radiation environment (particle species, fluxes and energy spectra) which will encounter, (2) determination of the effects of shielding provided by the spacecraft and the bodies of the travelers which modify the incident particle spectra and mix of particles, and (3) determination of relevant biological effects of the radiation in the organs of interest. The latter can then lead to an estimation of risk from a given space scenario. Clearly, the process spans many scientific disciplines from solar and cosmic ray physics to radiation transport theeory to the multistage problem of the induction by radiation of initial lesions in living material and their evolution via physical, chemical, and biological processes at the molecular, cellular, and tissue levels to produce the end point of importance.

  3. Biogenic inputs to ocean mixing.

    PubMed

    Katija, Kakani

    2012-03-15

    Recent studies have evoked heated debate about whether biologically generated (or biogenic) fluid disturbances affect mixing in the ocean. Estimates of biogenic inputs have shown that their contribution to ocean mixing is of the same order as winds and tides. Although these estimates are intriguing, further study using theoretical, numerical and experimental techniques is required to obtain conclusive evidence of biogenic mixing in the ocean. Biogenic ocean mixing is a complex problem that requires detailed understanding of: (1) marine organism behavior and characteristics (i.e. swimming dynamics, abundance and migratory behavior), (2) mechanisms utilized by swimming animals that have the ability to mix stratified fluids (i.e. turbulence and fluid drift) and (3) knowledge of the physical environment to isolate contributions of marine organisms from other sources of mixing. In addition to summarizing prior work addressing the points above, observations on the effect of animal swimming mode and body morphology on biogenic fluid transport will also be presented. It is argued that to inform the debate on whether biogenic mixing can contribute to ocean mixing, our studies should focus on diel vertical migrators that traverse stratified waters of the upper pycnocline. Based on our understanding of mixing mechanisms, body morphologies, swimming modes and body orientation, combined with our knowledge of vertically migrating populations of animals, it is likely that copepods, krill and some species of gelatinous zooplankton and fish have the potential to be strong sources of biogenic mixing. PMID:22357597

  4. Radiation Therapy for Cancer

    MedlinePlus

    ... What is radiation therapy? Radiation therapy uses high-energy radiation to shrink tumors and kill cancer cells ( ... is a measure of the amount of radiation energy absorbed by 1 kilogram of human tissue. Different ...

  5. Chest radiation - discharge

    MedlinePlus

    Radiation - chest - discharge; Cancer - chest radiation; Lymphoma - chest radiation ... When you have radiation treatment for cancer, your body goes through changes. About 2 weeks after your first treatment: It may be hard ...

  6. Risk Factors: Radiation

    Cancer.gov

    Radiation of certain wavelengths, called ionizing radiation, has enough energy to damage DNA and cause cancer. Ionizing radiation includes radon, x-rays, gamma rays, and other forms of high-energy radiation.

  7. Acute Radiation Syndrome

    MedlinePlus

    ... Dictionary Radiation Emergencies & Your Health Possible Health Effects Contamination and Exposure Acute Radiation Syndrome (ARS) Cutaneous Radiation ... Decision Making in Radiation Emergencies Protective Actions Internal Contamination Clinical Reference (ICCR) Application Psychological First Aid in ...

  8. Fluid mixing in stratified gravity currents: the Prandtl mixing length.

    PubMed

    Odier, P; Chen, J; Rivera, M K; Ecke, R E

    2009-04-01

    Shear-induced vertical mixing in a stratified flow is a key ingredient of thermohaline circulation. We experimentally determine the vertical flux of momentum and density of a forced gravity current using high-resolution velocity and density measurements. A constant eddy-viscosity model provides a poor description of the physics of mixing, but a Prandtl mixing length model relating momentum and density fluxes to mean velocity and density gradients works well. For the average gradient Richardson number Ri(g) approximately 0.08 and a Taylor Reynolds number Re(lambda) approximately 100, the mixing lengths are fairly constant, about the same magnitude, comparable to the turbulent shear length.

  9. Radiatively Driven Turbulence at the Cloud Top

    NASA Astrophysics Data System (ADS)

    de Lozar, Alberto; Mellado, Juan Pedro

    2012-11-01

    We use Direct Numerical Simulations to investigate a radiatively-driven smoke cloud-top mixing layer. This configuration mimics relevant aspects of stratocumuls clouds, in particular the mixing across an inversion that bounds a radiatively driven turbulent flow. A 1D formulation is employed for the radiation calculations. Below the inversion a convective boundary layer propagates downwards into the cloud-bulk. The convective boundary layer decouples from the inversion properties other than the injected buoyancy flux. This buoyancy flux is equal to the total radiative cooling minus the cooling of the inversion layer where the cloud mixes with the free atmosphere. An exact equation at a properly defined inversion point divides the inversion cooling into three components: a molecular flux, a turbulent flux and the direct radiative cooling by the smoke inside the inversion layer. The normalized turbulent flux levels to a constant value (0 . 175 +/- 0 . 05), which is independent of the stratification. As suggested by earlies studies, we observe that the turbulent entrainment only occurs at the small scales and that eddies larger than four optical lengths (50 m in a typical DYCOMS-II cloud) perform little or no entrainment.

  10. Coherent microwave radiation from a laser induced plasma

    SciTech Connect

    Shneider, M. N.; Miles, R. B.

    2012-12-24

    We propose a method for generation of coherent monochromatic microwave/terahertz radiation from a laser-induced plasma. It is shown that small-scale plasma, located in the interaction region of two co-propagating plane-polarized laser beams, can be a source of the dipole radiation at a frequency equal to the difference between the frequencies of the lasers. This radiation is coherent and appears as a result of the so-called optical mixing in plasma.

  11. Authoring Immersive Mixed Reality Experiences

    NASA Astrophysics Data System (ADS)

    Misker, Jan M. V.; van der Ster, Jelle

    Creating a mixed reality experience is a complicated endeavour. From our practice as a media lab in the artistic domain we found that engineering is “only” a first step in creating a mixed reality experience. Designing the appearance and directing the user experience are equally important for creating an engaging, immersive experience. We found that mixed reality artworks provide a very good test bed for studying these topics. This chapter details three steps required for authoring mixed reality experiences: engineering, designing and directing. We will describe a platform (VGE) for creating mixed reality environments that incorporates these steps. A case study (EI4) is presented in which this platform was used to not only engineer the system, but in which an artist was given the freedom to explore the artistic merits of mixed reality as an artistic medium, which involved areas such as the look and feel, multimodal experience and interaction, immersion as a subjective emotion and game play scenarios.

  12. Mixing entropy in Dean flows

    NASA Astrophysics Data System (ADS)

    Fodor, Petru; Vyhnalek, Brian; Kaufman, Miron

    2013-03-01

    We investigate mixing in Dean flows by solving numerically the Navier-Stokes equation for a circular channel. Tracers of two chemical species are carried by the fluid. The centrifugal forces, experienced as the fluid travels along a curved trajectory, coupled with the fluid incompressibility induce cross-sectional rotating flows (Dean vortices). These transversal flows promote the mixing of the chemical species. We generate images for different cross sections along the trajectory. The mixing efficiency is evaluated using the Shannon entropy. Previously we have found, P. S. Fodor and M. Kaufman, Modern Physics Letters B 25, 1111 (2011), this measure to be useful in understanding mixing in the staggered herringbone mixer. The mixing entropy is determined as function of the Reynolds number, the angle of the cross section and the observation scale (number of bins). Quantitative comparison of the mixing in the Dean micromixer and in the staggered herringbone mixer is attempted.

  13. Lepton mixing and discrete symmetries

    NASA Astrophysics Data System (ADS)

    Hernandez, D.; Smirnov, A. Yu.

    2012-09-01

    The pattern of lepton mixing can emerge from breaking a flavor symmetry in different ways in the neutrino and charged lepton Yukawa sectors. In this framework, we derive the model-independent conditions imposed on the mixing matrix by the structure of discrete groups of the von Dyck type which include A4, S4, and A5. We show that, in general, these conditions lead to at least two equations for the mixing parameters (angles and CP phase δ). These constraints, which correspond to unbroken residual symmetries, are consistent with nonzero 13 mixing and deviations from maximal 2-3 mixing. For the simplest case, which leads to an S4 model and reproduces the allowed values of the mixing angles, we predict δ=(90°-120°).

  14. Synergistic effect of mixed neutron and gamma irradiation in bipolar operational amplifier OP07

    NASA Astrophysics Data System (ADS)

    Yan, Liu; Wei, Chen; Shanchao, Yang; Xiaoming, Jin; Chaohui, He

    2016-09-01

    This paper presents the synergistic effects in bipolar operational amplifier OP07. The radiation effects are studied by neutron beam, gamma ray, and mixed neutron/gamma ray environments. The characterateristics of the synergistic effects are studied through comparison of different experiment results. The results show that the bipolar operational amplifier OP07 exhibited significant synergistic effects in the mixed neutron and gamma irradiation. The bipolar transistor is identified as the most radiation sensitive unit of the operational amplifier. In this paper, a series of simulations are performed on bipolar transistors in different radiation environments. In the theoretical simulation, the geometric model and calculations based on the Medici toolkit are built to study the radiation effects in bipolar components. The effect of mixed neutron and gamma irradiation is simulated based on the understanding of the underlying mechanisms of radiation effects in bipolar transistors. The simulated results agree well with the experimental data. The results of the experiments and simulation indicate that the radiation effects in the bipolar devices subjected to mixed neutron and gamma environments is not a simple combination of total ionizing dose (TID) effects and displacement damage. The data suggests that the TID effect could enhance the displacement damage. The synergistic effect should not be neglected in complex radiation environments.

  15. Model analysis of influences of aerosol mixing state upon its optical properties in East Asia

    NASA Astrophysics Data System (ADS)

    Han, Xiao; Zhang, Meigen; Zhu, Lingyun; Xu, Liren

    2013-07-01

    The air quality model system RAMS (Regional Atmospheric Modeling System)-CMAQ (Models-3 Community Multi-scale Air Quality) coupled with an aerosol optical/radiative module was applied to investigate the impact of different aerosol mixing states (i.e., externally mixed, half externally and half internally mixed, and internally mixed) on radiative forcing in East Asia. The simulation results show that the aerosol optical depth (AOD) generally increased when the aerosol mixing state changed from externally mixed to internally mixed, while the single scattering albedo (SSA) decreased. Therefore, the scattering and absorption properties of aerosols can be significantly affected by the change of aerosol mixing states. Comparison of simulated and observed SSAs at five AERONET (Aerosol Robotic Network) sites suggests that SSA could be better estimated by considering aerosol particles to be internally mixed. Model analysis indicates that the impact of aerosol mixing state upon aerosol direct radiative forcing (DRF) is complex. Generally, the cooling effect of aerosols over East Asia are enhanced in the northern part of East Asia (Northern China, Korean peninsula, and the surrounding area of Japan) and are reduced in the southern part of East Asia (Sichuan Basin and Southeast China) by internal mixing process, and the variation range can reach ±5 W m-2. The analysis shows that the internal mixing between inorganic salt and dust is likely the main reason that the cooling effect strengthens. Conversely, the internal mixture of anthropogenic aerosols, including sulfate, nitrate, ammonium, black carbon, and organic carbon, could obviously weaken the cooling effect.

  16. Smoothing of mixed complementarity problems

    SciTech Connect

    Gabriel, S.A.; More, J.J.

    1995-09-01

    The authors introduce a smoothing approach to the mixed complementarity problem, and study the limiting behavior of a path defined by approximate minimizers of a nonlinear least squares problem. The main result guarantees that, under a mild regularity condition, limit points of the iterates are solutions to the mixed complementarity problem. The analysis is applicable to a wide variety of algorithms suitable for large-scale mixed complementarity problems.

  17. Tunable infrared source employing Raman mixing

    DOEpatents

    Byer, Robert L.; Herbst, Richard L.

    1980-01-01

    A tunable source of infrared radiation is obtained by irradiating an assemblage of Raman active gaseous atoms or molecules with a high intensity pumping beam of coherent radiation at a pump frequency .omega..sub.p to stimulate the generation of Stokes wave energy at a Stokes frequency .omega..sub.s and to stimulate the Raman resonant mode at the Raman mode frequency .omega..sub.R within the irradiated assemblage where the pump frequency .omega..sub.p minus the Stokes frequency .omega..sub.s is equal to the Raman mode frequency .omega..sub.R. The stimulated assemblage is irradiated with a tunable source of coherent radiation at a frequency .omega..sub.i to generate the output infrared radiation of the frequency .omega..sub.0 which is related to the Raman mode frequency .omega..sub.R and the input wave .omega..sub.i by the relation .omega..sub.0 =.omega..sub.i .+-..omega..sub.R. In one embodiment the interaction between the pump wave energy .omega..sub.p and the tunable input wave energy .omega..sub.i is collinear and the ratio of the phase velocity mismatch factor .DELTA.k to the electric field exponential gain coefficient T is within the range of 0.1 to 5. In another embodiment the pump wave energy .omega..sub.p and the tunable input wave energy .omega..sub.i have velocity vectors k.sub.p and k.sub.i which cross at an angle to each other to compensate for phase velocity mismatches in the medium. In another embodiment, the Stokes wave energy .omega..sub.s is generated by pump energy .omega..sub.p in a first Raman cell and .omega..sub.s, .omega..sub.i and .omega..sub.p are combined in a second Raman mixing cell to produce the output at .omega..sub.i.

  18. Entrainment and mixing in stratified shear flows

    NASA Astrophysics Data System (ADS)

    Strang, Eric James

    1997-12-01

    The results of a laboratory experiment designed to study turbulent entrainment at sheared density interfaces are described. In the parameter ranges investigated the entrainment problem is mainly determined by two parameters, the bulk Richardson number RiB = /Delta bD//Delta U2 and the frequency ratio fN = ND//Delta U. When RiB > 1.5, the buoyancy effects play a governing role, whence interfacial instabilities locally mix heavy and light fluids. The nature of interfacial instabilities is governed by RiB or a related quantity, the mean local gradient Richardson number /overline [Ri]g=/overline [N(z)]2/(/overline[/partial u//partial z)]2, where N(z) is the Brunt-Vaisala frequency local to the interface. When RiB < 5 (or /overline [Rig] < 1), the interfacial mixing is dominated by Kelvin- Helmholtz (K-H) instabilities. Interfacial swelling as a result of the collective breakdown of K-H billows into turbulence persists for a time dictated by the rates of local generation and removal of mixed fluid, and the two processes appear to be coadjutant (with a maximum flux Richardson number or mixing efficiency of Rif ~ 0.15-0.4) when RiB≃ 3-5. At RiB~ 5, the K-H regime transitions to a new regime wherein the interface is dominated by interfacial/Holmboe wave instabilities. Here, the entrainment rates are much smaller and there is no evidence of interfacial swelling. In the K-H regime, the swelling of the interface introduces its own forcing time scale, which excites and radiates internal waves in the lower layer if it is continuously stratified. Consequently, the amount of energy available for entrainment decreases and, depending on fN, the entrainment velocities in the linearly stratified case can be substantially smaller than the two-layer case (up to 50%). In the interfacial/Holmboe wave breaking regime, internal wave radiation to the bottom layer is much smaller, so as the difference in entrainment rates of the two-layer and linearly stratified cases. Furthermore, when Ri

  19. Spacecraft Radiator Freeze Protection Using a Regenerative Heat Exchanger

    NASA Technical Reports Server (NTRS)

    Ungar, Eugene K.; Schunk, Richard G.

    2011-01-01

    An active thermal control system architecture has been modified to include a regenerative heat exchanger (regenerator) inboard of the radiator. Rather than using a radiator bypass valve a regenerative heat exchanger is placed inboard of the radiators. A regenerator cold side bypass valve is used to set the return temperature. During operation, the regenerator bypass flow is varied, mixing cold radiator return fluid and warm regenerator outlet fluid to maintain the system setpoint. At the lowest heat load for stable operation, the bypass flow is closed off, sending all of the flow through the regenerator. This lowers the radiator inlet temperature well below the system set-point while maintaining full flow through the radiators. By using a regenerator bypass flow control to maintain system setpoint, the required minimum heat load to avoid radiator freezing can be reduced by more than half compared to a radiator bypass system.

  20. Optimal broadcasting of mixed states

    SciTech Connect

    Dang Guifang; Fan Heng

    2007-08-15

    The N to M (M{>=}N) universal quantum broadcasting of mixed states {rho}{sup xN} is proposed for a qubit system. The broadcasting of mixed states is universal and optimal in the sense that the shrinking factor is independent of the input state and achieves the upper bound. The quantum broadcasting of mixed qubits is a generalization of the universal quantum cloning machine for identical pure input states. A pure state decomposition of the identical mixed qubits {rho}{sup xN} is obtained.

  1. Shortwave Radiation

    NASA Technical Reports Server (NTRS)

    Klassen, Steve; Bugbee, Bruce

    2005-01-01

    Accurate shortwave radiation data is critical to evapotranspiration (ET) models used for developing irrigation schedules to optimize crop production while saving water, minimizing fertilizer, herbicide, and pesticide applications, reducing soil erosion, and protecting surface and ground water quality. Low cost silicon cell pyranometers have proven to be sufficiently accurate and robust for widespread use in agricultural applications under unobstructed daylight conditions. More expensive thermopile pyranometers are required for use as calibration standards and measurements under light with unique spectral properties (electric lights, under vegetation, in greenhouses and growth chambers). Routine cleaning, leveling, and annual calibration checks will help to ensure the integrity of long-term data.

  2. Ion-beam mixing in crystalline and amorphous germanium isotope multilayers

    SciTech Connect

    Bracht, H.; Radek, M.; Kube, R.; Knebel, S.; Posselt, M.; Schmidt, B.; Haller, E. E.; Bougeard, D.

    2011-11-01

    Gallium (Ga) implantation induced self-atom mixing in crystalline and amorphous germanium (Ge) is investigated utilizing isotopically controlled Ge multilayer structures grown by molecular beam epitaxy. The distribution of the Ga ions and the ion-beam induced depth-dependent mixing of the isotope structure was determined by means of secondary ion mass spectrometry. Whereas the distribution of Ga in the crystalline and amorphous Ge is very similar and accurately reproduced by computer simulations based on binary collision approximation (BCA), the ion-beam induced self-atom mixing is found to depend strongly on the state of the Ge structure. The experiments reveal stronger self-atom mixing in crystalline than in amorphous Ge. Atomistic simulations based on BCA reproduce the experimental results only when unphysically low Ge displacement energies are assumed. Analysis of the self-atom mixing induced by silicon implantation confirms the low displacement energy deduced within the BCA approach. This demonstrates that thermal spike mixing contributes significantly to the overall mixing of the Ge isotope structures. The disparity observed in the ion-beam mixing efficiency of crystalline and amorphous Ge indicates different dominant mixing mechanisms. We propose that self-atom mixing in crystalline Ge is mainly controlled by radiation enhanced diffusion during the early stage of mixing before the crystalline structure turns amorphous, whereas in an already amorphous state self-atom mixing is mediated by cooperative diffusion events.

  3. Mixed additive models

    NASA Astrophysics Data System (ADS)

    Carvalho, Francisco; Covas, Ricardo

    2016-06-01

    We consider mixed models y =∑i =0 w Xiβi with V (y )=∑i =1 w θiMi Where Mi=XiXi⊤ , i = 1, . . ., w, and µ = X0β0. For these we will estimate the variance components θ1, . . ., θw, aswell estimable vectors through the decomposition of the initial model into sub-models y(h), h ∈ Γ, with V (y (h ))=γ (h )Ig (h )h ∈Γ . Moreover we will consider L extensions of these models, i.e., y˚=Ly+ɛ, where L=D (1n1, . . ., 1nw) and ɛ, independent of y, has null mean vector and variance covariance matrix θw+1Iw, where w =∑i =1 n wi .

  4. Mixed oxide fuel development

    SciTech Connect

    Leggett, R.D.; Omberg, R.P.

    1987-05-08

    This paper describes the success of the ongoing mixed-oxide fuel development program in the United States aimed at qualifying an economical fuel system for liquid metal cooled reactors. This development has been the cornerstone of the US program for the past 20 years and has proceeded in a deliberate and highly disciplined fashion with high emphasis on fuel reliability and operational safety as major features of an economical fuel system. The program progresses from feature testing in EBR-II to qualifying full size components in FFTF under fully prototypic conditions to establish a basis for extending allowable lifetimes. The development program started with the one year (300 EFPD) core, which is the FFTF driver fuel, continued with the demonstration of a two year (600 EFPD) core and is presently evaluating a three year (900 EFPD) fuel system. All three of these systems, consistent with other LMR fuel programs around the world, use fuel pellets gas bonded to a cladding tube that is assembled into a bundle and fitted into a wrapper tube or duct for ease of insertion into a core. The materials of construction progressed from austenitic CW 316 SS to lower swelling austenitic D9 to non swelling ferritic/martensitic HT9. 6 figs., 2 tabs.

  5. Mixed waste analysis

    SciTech Connect

    Reynolds, J.J.; Turner, C.A.

    1993-12-31

    Improved superpower relations followed by the Soviet Union`s collapse acted as catalysts for changing the mission at Rocky Flats. Now, environmental concerns command as much attention as production capability. As a result, laboratory instruments once dedicated to plutonium production have a new purpose - the analysis of mixed wastes. Waste drums destined for WIPP require headspace analysis by GS/MS (gas chromatography/mass spectrometry) for volatile and semi-volatile organic compounds (VOC and SVOC). Flame AA analysis provides information on inorganic constituents. EPA guidelines for waste analysis (SW-846) overlook the obstacles of glove box manipulations. Sometimes, SW-846 guidelines conflict with the Rocky Flats waste minimization effort. However, the EPA encourages SW-846 adaptations if experimental data confirms the results. For water and soil samples, AA analysis of laboratory control samples show method capability inside a glove box. Non-radioactive drum headspace samples use a revised version of USEPA compendium method TO-14. Radioactive drum headspace samples require new instrumentation and change to SW-846 methods.

  6. Radiation protection in space.

    PubMed

    Reitz, G; Facius, R; Sandler, H

    1995-01-01

    Radiation environment, basic concepts of radiation protection, and specific aspects of the space radiation field are reviewed. The discussion of physico-chemical and subcellular radiation effects includes mechanisms of radiation action and cellular consequences. The discussion of radiobiological effects includes unique aspects of HZE particle effects, space flight findings, terrestrial findings, analysis of somatic radiation effects and effects on critical organs, and early and delayed effects. Other topics include the impact of the space flight environment, measurement of radiation exposure, establishing radiation protection limits, limitations in establishing space-based radiation exposure limits, radiation protection measures, and recommendations. PMID:11541474

  7. Mixing in polymeric microfluidic devices.

    SciTech Connect

    Schunk, Peter Randall; Sun, Amy Cha-Tien; Davis, Robert H.; Brotherton, Christopher M. (University of Colorado at Boulder, Boulder, CO)

    2006-04-01

    This SAND report describes progress made during a Sandia National Laboratories sponsored graduate fellowship. The fellowship was funded through an LDRD proposal. The goal of this project is development and characterization of mixing strategies for polymeric microfluidic devices. The mixing strategies under investigation include electroosmotic flow focusing, hydrodynamic focusing, physical constrictions and porous polymer monoliths. For electroosmotic flow focusing, simulations were performed to determine the effect of electroosmotic flow in a microchannel with heterogeneous surface potential. The heterogeneous surface potential caused recirculations to form within the microchannel. These recirculations could then be used to restrict two mixing streams and reduce the characteristic diffusion length. Maximum mixing occurred when the ratio of the mixing region surface potential to the average channel surface potential was made large in magnitude and negative in sign, and when the ratio of the characteristic convection time to the characteristic diffusion time was minimized. Based on these results, experiments were performed to evaluate the manipulation of surface potential using living-radical photopolymerization. The material chosen to manipulate typically exhibits a negative surface potential. Using living-radical surface grafting, a positive surface potential was produced using 2-(Dimethylamino)ethyl methacrylate and a neutral surface was produced using a poly(ethylene glycol) surface graft. Simulations investigating hydrodynamic focusing were also performed. For this technique, mixing is enhanced by using a tertiary fluid stream to constrict the two mixing streams and reduce the characteristic diffusion length. Maximum mixing occurred when the ratio of the tertiary flow stream flow-rate to the mixing streams flow-rate was maximized. Also, like the electroosmotic focusing mixer, mixing was also maximized when the ratio of the characteristic convection time to the

  8. Anomalous Sediment Mixing by Bioturbation

    NASA Astrophysics Data System (ADS)

    Roche, K. R.; Aubeneau, A. F.; Xie, M.; Packman, A. I.

    2013-12-01

    Bioturbation, the reworking of sediments by animals and plants, is the dominant mode of sediment mixing in low-energy environments, and plays an important role in sedimentary biogeochemical processes. Mixing resulting from bioturbation has historically been modeled as a diffusive process. However, diffusion models often do not provide a sufficient description of sediment mixing due to bioturbation. Stochastic models, such as the continuous time random walk (CTRW) model, provide more general descriptions of mixing behavior that are applicable even when regular diffusion assumptions are not met. Here we present results from an experimental investigation of anomalous sediment mixing by bioturbation in freshwater sediments. Clean and heavy-metal-contaminated sediments were collected from Lake DePue, a backwater lake of the Illinois River. The burrowing worm species Lumbriculus variegatus was introduced to homogenized Lake DePue sediments in aerated aquaria. We then introduced inert fine fluorescent particles to the sediment-water interface. Using time-lapse photography, we observed the mixing of the fluorescent particles into the sediment bed over a two-week period. We developed image analysis software to characterize the concentration distribution of the fluorescent particles as a function of sediment depth, and applied this to the time-series of images to evaluate sediment mixing. We fit a one-dimensional CTRW model to the depth profiles to evaluate the underlying statistical properties of the mixing behavior. This analysis suggests that the sediment mixing caused by L. variegatus burrowing is subdiffusive in time and superdiffusive in space. We also found that heavy metal contamination significantly reduces L. variegatus burrowing, causing increasingly anomalous sediment mixing. This result implies that there can be important feedbacks between sediment chemistry, organism behavior, and sediment mixing that are not considered in current environmental models.

  9. Development and testing of an active area neutron dosemeter.

    PubMed

    Brushwood, J M; Gow, J P D; Beeley, P A; Spyrou, N M

    2004-01-01

    This paper describes the design, development and testing of an active area neutron dosemeter (AAND). The classic moderator and central detector is retained but in AAND this arrangement is augmented by small thermal neutron detectors positioned within the moderating body. The outputs from these detectors are combined using an appropriately weighted linear superposition to fit both the ambient dose equivalent and the radiation weighting factor. Experimental verifications of both the modelled detector energy reponses and the overall AAND response are given. In the relatively soft D2O moderated 252Cf spectra, the AAND determined both the H*(10) and mean radiation weighting factor to better than +10%.

  10. Optical vortices in six-wave mixing

    NASA Astrophysics Data System (ADS)

    Coles, Matt M.; Williams, Mathew D.; Andrews, David L.

    2014-02-01

    Optical vortex light engendered with integer units of orbital angular momentum (OAM) may be involved in frequency upconversion. Second harmonic generation is usually forbidden in isotropic media due to parity constraints, but it becomes allowed by six-wave mixing. Here, we present a rigorous quantum analysis for the case of a Laguerre-Gaussian input beam comprising photons endowed with a single unit of OAM. Such a process gives rise to the novel entanglement of orbital momentum in two emergent photons; it transpires that the mechanism delivers a harmonic output whose polarization is essentially parallel to the incident radiation. This investigation ascertains the character of the emission, both under forward propagation and back-reflection geometries, and identifies in detail the form of distribution in the entangled total orbital momentum. A distinctive conical spread, originating from the entangled distribution in the emission pair, affords a potential means to determine the individual angular momenta.

  11. Mixed Mesodermal Tumors of the Uterus

    PubMed Central

    Afonso, Jose F.

    1974-01-01

    Two of five women with mixed mesodermal tumor of the uterus are well more than ten years after therapy. A third was well when last seen two years after therapy and died at age 84 but autopsy was not done. Review of the literature and the reported experience indicates that this diagnosis should be suspected more often. Since histologic features may vary from one place to another within the lesion, accurate assessment requires examination of adequate specimens of the tumor. The mere presence of heterologous elements in an endometrial carcinoma changes the five-year survival rate from 85 percent to less than 35 percent. While total abdominal hysterectomy with bilateral salpingo-oophorectomy is mandatory, radiation therapy should be added more often than in the past, as it has been clearly shown that many of these tumors are radiosensitive. ImagesFigure 1.Figure 2. PMID:4359847

  12. Mixed-Methods Research Methodologies

    ERIC Educational Resources Information Center

    Terrell, Steven R.

    2012-01-01

    Mixed-Method studies have emerged from the paradigm wars between qualitative and quantitative research approaches to become a widely used mode of inquiry. Depending on choices made across four dimensions, mixed-methods can provide an investigator with many design choices which involve a range of sequential and concurrent strategies. Defining…

  13. Mixed Waste Working Group report

    SciTech Connect

    Not Available

    1993-11-09

    The treatment of mixed waste remains one of this country`s most vexing environmental problems. Mixed waste is the combination of radioactive waste and hazardous waste, as defined by the Resource Conservation and Recovery Act (RCRA). The Department of Energy (DOE), as the country`s largest mixed waste generator, responsible for 95 percent of the Nation`s mixed waste volume, is now required to address a strict set of milestones under the Federal Facility Compliance Act of 1992. DOE`s earlier failure to adequately address the storage and treatment issues associated with mixed waste has led to a significant backlog of temporarily stored waste, significant quantities of buried waste, limited permanent disposal options, and inadequate treatment solutions. Between May and November of 1993, the Mixed Waste Working Group brought together stakeholders from around the Nation. Scientists, citizens, entrepreneurs, and bureaucrats convened in a series of forums to chart a course for accelerated testing of innovative mixed waste technologies. For the first time, a wide range of stakeholders were asked to examine new technologies that, if given the chance to be tested and evaluated, offer the prospect for better, safer, cheaper, and faster solutions to the mixed waste problem. In a matter of months, the Working Group has managed to bridge a gap between science and perception, engineer and citizen, and has developed a shared program for testing new technologies.

  14. Mixed connective tissue disease.

    PubMed

    Gunnarsson, Ragnar; Hetlevik, Siri Opsahl; Lilleby, Vibke; Molberg, Øyvind

    2016-02-01

    The concept of mixed connective tissue disease (MCTD) as a separate connective tissue disease (CTD) has persisted for more than four decades. High titers of antibodies targeting the U1 small nuclear ribonucleoprotein particle (U1 snRNP) in peripheral blood are a sine qua non for the diagnosis of MCTD, in addition to distinct clinical features including Raynaud's phenomenon (RP), "puffy hands," arthritis, myositis, pleuritis, pericarditis, interstitial lung disease (ILD), and pulmonary hypertension (PH). Recently, population-based epidemiology data from Norway estimated the point prevalence of adult-onset MCTD to be 3.8 per 100,000 and the mean annual incidence to be 2.1 per million per year, supporting the notion that MCTD is the least common CTD. Little is known about the etiology of MCTD, but recent genetic studies have confirmed that MCTD is a strongly HLA (​human leukocyte antigen)-linked disease, as the HLA profiles of MCTD differ distinctly from the corresponding profiles of ethnically matched healthy controls and other CTDs. In the first section of this review, we provide an update on the clinical, immunological, and genetic features of MCTD and discuss the relationship between MCTD and the other CTDs. Then we proceed to discuss the recent advances in therapy and our current understanding of prognosis and prognostic factors, especially those that are associated with the more serious pulmonary and cardiovascular complications of the disease. In the final section, we discuss some of the key, unresolved questions related to anti-RNP-associated diseases and indicate how these questions may be approached in future studies. PMID:27421219

  15. Biomass conversion to mixed alcohols

    SciTech Connect

    Holtzapple, M.T.; Loescher, M.; Ross, M.

    1996-10-01

    This paper discusses the MixAlco Process which converts a wide variety of biomass materials (e.g. municipal solid waste, sewage sludge, agricultural residues) to mixed alcohols. First, the biomass is treated with lime to enhance its digestibility. Then, a mixed culture of acid-forming microorganisms converts the lime-treated biomass to volatile fatty acids (VFA) such as acetic, propionic, and butyric acids. To maintain fermentor pH, a neutralizing agent (e.g. calcium carbonate or lime) is added, so the fermentation actually produces VFA salts such as calcium acetate, propionate, and butyrate. The VFA salts are recovered and thermally converted to ketones (e.g. acetone, methylethyl ketone, diethyl ketone) which are subsequently hydrogenated to mixed alcohols (e.g. isopropanol, isobutanol, isopentanol). Processing costs are estimated at $0.72/gallon of mixed alcohols making it potentially attractive for transportation fuels.

  16. Active Mixing in a Microchannel

    NASA Astrophysics Data System (ADS)

    Guo, Chun-Hai; Tan, Jun-Jie; Ren, Deng-Feng; Zhang, Yu-Cheng; Wang, Fu-Hua

    2010-11-01

    We investigate a minute magneto hydro-dynamic mixer with relatively rapid mixing enhancement experimentally and analytically. The mixer is fabricated with brass and polymethyl methacrylate (PMMA) layers. A secondary flow is generated by using the Lorentz force in the fluids. The efficiency of mixing is greatly improved due to the large increase of the contact area between two mixing fluids. The micro particle image velocimetry technique is employed to measure the fluid flow characteristics in the micro-channel. Numerical simulation is performed based on the theoretical model of the computational fluid dynamics and the electromagnetic field theory. The experimental results are in good agreement with the numerical results, which indicates that the mixing area is enlarged by the driving of Lorentz force and the mixing can be enhanced.

  17. CHARACTERIZING PULSATING MIXING OF SLURRIES

    SciTech Connect

    Bamberger, Judith A.; Meyer, Perry A.

    2007-12-01

    This paper describes the physical properties for defining the operation of a pulse jet mixing system. Pulse jet mixing operates with no moving parts located in the vessel to be mixed. Pulse tubes submerged in the vessel provide a pulsating flow due to a controlled combination of applied pressure to expel the fluid from the pulse tube nozzle followed by suction to refill the pulse tube through the same nozzle. For mixing slurries nondimensional parameters to define mixing operation include slurry properties, geometric properties and operational parameters. Primary parameters include jet Reynolds number and Froude number; alternate parameters may include particle Galileo number, particle Reynolds number, settling velocity ratio, and hindered settling velocity ratio. Rating metrics for system performance include just suspended velocity, concentration distribution as a function of elevation, and blend time.

  18. Examination of turbulent entrainment-mixing mechanisms using a combined approach

    SciTech Connect

    Lu, C.; Liu, Y.; Niu, S.

    2011-10-01

    Turbulent entrainment-mixing mechanisms are investigated by applying a combined approach to the aircraft measurements of three drizzling and two nondrizzling stratocumulus clouds collected over the U.S. Department of Energy's Atmospheric Radiation Measurement Southern Great Plains site during the March 2000 cloud Intensive Observation Period. Microphysical analysis shows that the inhomogeneous entrainment-mixing process occurs much more frequently than the homogeneous counterpart, and most cases of the inhomogeneous entrainment-mixing process are close to the extreme scenario, having drastically varying cloud droplet concentration but roughly constant volume-mean radius. It is also found that the inhomogeneous entrainment-mixing process can occur both near the cloud top and in the middle level of a cloud, and in both the nondrizzling clouds and nondrizzling legs in the drizzling clouds. A new dimensionless number, the scale number, is introduced as a dynamical measure for different entrainment-mixing processes, with a larger scale number corresponding to a higher degree of homogeneous entrainment mixing. Further empirical analysis shows that the scale number that separates the homogeneous from the inhomogeneous entrainment-mixing process is around 50, and most legs have smaller scale numbers. Thermodynamic analysis shows that sampling average of filament structures finer than the instrumental spatial resolution also contributes to the dominance of inhomogeneous entrainment-mixing mechanism. The combined microphysical-dynamical-thermodynamic analysis sheds new light on developing parameterization of entrainment-mixing processes and their microphysical and radiative effects in large-scale models.

  19. Millimeter-wave generation via plasma three-wave mixing

    NASA Astrophysics Data System (ADS)

    Schumacher, Robert W.; Santoru, Joseph

    1988-06-01

    Plasma three-wave mixing is a collective phenomena whereby electron-beam-driven electron plasma waves (EPWs) are nonlinearly coupled to an electromagnetic (EM) radiation field. The basic physics of three-wave mixing is investigated in the mm-wave regime and the scaling of mm-wave characteristics established with beam and plasma parameters. Our approach is to employ two counterinjected electron beams in a plasma-loaded circular waveguide to drive counterstreaming EPWs. The nonlinear coupling of these waves generates an EM waveguide mode which oscillates at twice the plasma frequency and is coupled out into rectangular waveguides. Independent control of the waveguide plasma, beam voltage, and beam current is exercised to allow a careful parametric investigation of beam transport, EPW dynamics and three-wave-mixing physics. The beam-plasma experiment, which employs a wire-anode discharge to generate high-density plasma in a 3.8 cm-diameter waveguide, has been used to generate radiation at frequencies from 7 to 60 GHz. Two cold-cathode, secondary-emission electron guns are used to excite the EPWs. Output radiation is observed only when both beams are injected, and the total beam current exceeds a threshold value of 3 A. The threshold is related to the self-magnetic pinch of each beam which increases the beam density and growth rate of the EPWs.

  20. The Mixed-Phase Arctic Cloud Experiment (M-PACE)

    NASA Technical Reports Server (NTRS)

    Verlinde, J.; Harrington, J. Y.; McFarquhar, G. M.; Yannuzzi, V. T.; Avramov, A.; Greenberg, S.; Johnson, N.; Zhang, G.; Poellot, M. R.; Mather, J. H.; Turner, D. D.; Eloranta, E. W.; Zak, B. D.; Prenni, A. J.; Daniel, J. S.; Kok, G. L.; Tobin, D. C.; Holz, R.; Sassen, K.; Spangenberg, D.; Minnis, P.; Tooman, T. P.; Ivey, M. D.; Richardson, S. J.; Bahramann, C. P.

    2007-01-01

    The Mixed-Phase Arctic Cloud Experiment (M-PACE) was conducted September 27 through October 22, 2004 on the North Slope of Alaska. The primary objective was to collect a data set suitable to study interactions between microphysics, dynamics and radiative transfer in mixed-phase Arctic clouds. Observations taken during the 1997/1998 Surface Heat and Energy Budget of the Arctic (SHEBA) experiment revealed that Arctic clouds frequently consist of one (or more) liquid layers precipitating ice. M-PACE sought to investigate the physical processes of these clouds utilizing two aircraft (an in situ aircraft to characterize the microphysical properties of the clouds and a remote sensing aircraft to constraint the upwelling radiation) over the Department of Energy s Atmospheric Radiation Measurement (ARM) Climate Research Facility (ACRF) on the North Slope of Alaska. The measurements successfully documented the microphysical structure of Arctic mixed-phase clouds, with multiple in situ profiles collected in both single-layer and multi-layer clouds over two ground-based remote sensing sites. Liquid was found in clouds with temperatures down to -30 C, the coldest cloud top temperature below -40 C sampled by the aircraft. Remote sensing instruments suggest that ice was present in low concentrations, mostly concentrated in precipitation shafts, although there are indications of light ice precipitation present below the optically thick single-layer clouds. The prevalence of liquid down to these low temperatures could potentially be explained by the relatively low measured ice nuclei concentrations.

  1. Scheme for the detection of mixing processes in vacuum

    NASA Astrophysics Data System (ADS)

    Fillion-Gourdeau, François; Lefebvre, Catherine; MacLean, Steve

    2015-03-01

    A scheme for the detection of photons generated by vacuum mixing processes is proposed to observe the quantum electrodynamic photon-photon interaction. The strategy consists in the utilization of a high numerical aperture parabolic mirror that tightly focuses two copropagating laser beams with different frequencies. This produces a very-high-intensity region in the vicinity of the focus, where the photon-photon nonlinear interaction can then induce new electromagnetic radiation by wave-mixing processes. These processes are investigated theoretically. The field at the focus is obtained from the Stratton-Chu vector diffraction theory, which can accommodate any configuration of an incoming laser beam. The number of photons generated is evaluated for an incident radially polarized beam. It is demonstrated that using this field configuration, vacuum mixing processes could be detected with envisaged laser technologies.

  2. Radiation Insulation

    NASA Technical Reports Server (NTRS)

    1993-01-01

    An aluminized polymer film is a highly effective radiation barrier for both manned and unmanned spacecraft. Variations of this space-devised material are also used as an energy conservation technique for homes and offices. One commercial company, Tech 2000 (formerly Buckeye Radiant Barrier), markets 'Super R' Radiant Barrier, which finds its origins in the Apollo Mission programs. The material is placed between wall studs and exterior facing before siding or in new roof installation, between roof support and roof sheathing. Successful retrofit installations have included schools and shrink wrap ovens. The radiant barrier blocks 95 percent of radiant energy, thus retaining summer heat and blocking winter cold. Suppliers claim utility bill reductions of 20 percent or more.

  3. RADIATION DOSIMETER

    DOEpatents

    Balkwell, W.R. Jr.; Adams, G.D. Jr.

    1960-05-10

    An improvement was made in the determination of amounts of ionizing radiation, particularly low-energy beta particles of less than 1000 rad total dose by means of fluid-phase dosimeter employing a stabilized-- sensitized ferrous-ferric colorimetric system in a sulphuric acid medium. The improvement in the dosimeter consists of adding to the ferrous-ferric system in concentrations of 10/sub -2/ to 10/sup -4/M an organic compound having one or more carboxylic or equivalent groups, such compounds being capable of chelating or complexing the iron ions in the solution. Suitable sensitizing and stabilizing agents are benzoic, phthalic, salicylic, malonic, lactic, maleic, oxalic, citric, succinic, phenolic tartaric, acetic, and adipic acid, as well as other compounds which are added to the solution alone or in certain combinations. As in conventional fluid-phase dosimeters, the absorbed dosage is correlated with a corresponding change in optical density at particular wavelengths of the solution.

  4. Radiation Insulation

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The Apollo and subsequent spacecraft have had highly effective radiation barriers; made of aluminized polymer film, they bar or let in heat to maintain consistent temperatures inside. Tech 2000, formerly Quantum International Corporation used the NASA technology in its insulating materials, Super "Q" Radiant Barrier, for home, industry and mobile applications. The insulation combines industrial aluminum foil overlaid around a core of another material, usually propylene or mylar. The outer layer reflects up to 97 percent of heat; the central layer creates a thermal break in the structure and thus allows low radiant energy emission. The Quantum Cool Wall, used in cars and trucks, takes up little space while providing superior insulation, thus reducing spoilage and costs. The panels can also dampen sound and engine, exhaust and solar heat.

  5. Radiation dosimeters

    DOEpatents

    Hoelsher, James W.; Hegland, Joel E.; Braunlich, Peter F.; Tetzlaff, Wolfgang

    1992-01-01

    Radiation dosimeters and dosimeter badges. The dosimeter badges include first and second parts which are connected to join using a securement to produce a sealed area in which at least one dosimeter is held and protected. The badge parts are separated to expose the dosimeters to a stimulating laser beam used to read dose exposure information therefrom. The badge is constructed to allow automated disassembly and reassembly in a uniquely fitting relationship. An electronic memory is included to provide calibration and identification information used during reading of the dosimeter. Dosimeter mounts which reduce thermal heating requirements are shown. Dosimeter constructions and production methods using thin substrates and phosphor binder-layers applied thereto are also taught.

  6. RADIATION COUNTER

    DOEpatents

    Goldsworthy, W.W.

    1958-02-01

    This patent relates to a radiation counter, and more particularly, to a scintillation counter having high uniform sensitivity over a wide area and capable of measuring alpha, beta, and gamma contamination over wide energy ranges, for use in quickly checking the contami-nation of personnel. Several photomultiplier tubes are disposed in parallel relationship with a light tight housing behind a wall of scintillation material. Mounted within the housing with the photomultipliers are circuit means for producing an audible sound for each pulse detected, and a range selector developing a voltage proportional to the repetition rate of the detected pulses and automatically altering its time constant when the voltage reaches a predetermined value, so that manual range adjustment of associated metering means is not required.

  7. A Rat Body Phantom for Radiation Analysis

    NASA Technical Reports Server (NTRS)

    Qualls, Garry D.; Clowdsley, Martha S.; Slaba, Tony C.; Walker, Steven A.

    2010-01-01

    To reduce the uncertainties associated with estimating the biological effects of ionizing radiation in tissue, researchers rely on laboratory experiments in which mono-energetic, single specie beams are applied to cell cultures, insects, and small animals. To estimate the radiation effects on astronauts in deep space or low Earth orbit, who are exposed to mixed field broad spectrum radiation, these experimental results are extrapolated and combined with other data to produce radiation quality factors, radiation weighting factors, and other risk related quantities for humans. One way to reduce the uncertainty associated with such extrapolations is to utilize analysis tools that are applicable to both laboratory and space environments. The use of physical and computational body phantoms to predict radiation exposure and its effects is well established and a wide range of human and non-human phantoms are in use today. In this paper, a computational rat phantom is presented, as well as a description of the process through which that phantom has been coupled to existing radiation analysis tools. Sample results are presented for two space radiation environments.

  8. Impact of Antarctic mixed-phase clouds on climate

    PubMed Central

    Lawson, R. Paul; Gettelman, Andrew

    2014-01-01

    Precious little is known about the composition of low-level clouds over the Antarctic Plateau and their effect on climate. In situ measurements at the South Pole using a unique tethered balloon system and ground-based lidar reveal a much higher than anticipated incidence of low-level, mixed-phase clouds (i.e., consisting of supercooled liquid water drops and ice crystals). The high incidence of mixed-phase clouds is currently poorly represented in global climate models (GCMs). As a result, the effects that mixed-phase clouds have on climate predictions are highly uncertain. We modify the National Center for Atmospheric Research (NCAR) Community Earth System Model (CESM) GCM to align with the new observations and evaluate the radiative effects on a continental scale. The net cloud radiative effects (CREs) over Antarctica are increased by +7.4 Wm−2, and although this is a significant change, a much larger effect occurs when the modified model physics are extended beyond the Antarctic continent. The simulations show significant net CRE over the Southern Ocean storm tracks, where recent measurements also indicate substantial regions of supercooled liquid. These sensitivity tests confirm that Southern Ocean CREs are strongly sensitive to mixed-phase clouds colder than −20 °C. PMID:25489069

  9. Impact of Antarctic mixed-phase clouds on climate.

    PubMed

    Lawson, R Paul; Gettelman, Andrew

    2014-12-23

    Precious little is known about the composition of low-level clouds over the Antarctic Plateau and their effect on climate. In situ measurements at the South Pole using a unique tethered balloon system and ground-based lidar reveal a much higher than anticipated incidence of low-level, mixed-phase clouds (i.e., consisting of supercooled liquid water drops and ice crystals). The high incidence of mixed-phase clouds is currently poorly represented in global climate models (GCMs). As a result, the effects that mixed-phase clouds have on climate predictions are highly uncertain. We modify the National Center for Atmospheric Research (NCAR) Community Earth System Model (CESM) GCM to align with the new observations and evaluate the radiative effects on a continental scale. The net cloud radiative effects (CREs) over Antarctica are increased by +7.4 Wm(-2), and although this is a significant change, a much larger effect occurs when the modified model physics are extended beyond the Antarctic continent. The simulations show significant net CRE over the Southern Ocean storm tracks, where recent measurements also indicate substantial regions of supercooled liquid. These sensitivity tests confirm that Southern Ocean CREs are strongly sensitive to mixed-phase clouds colder than -20 °C.

  10. Adaptors for radiation detectors

    DOEpatents

    Livesay, Ronald Jason

    2015-07-28

    Described herein are adaptors and other devices for radiation detectors that can be used to make accurate spectral measurements of both small and large bulk sources of radioactivity, such as building structures, soils, vessels, large equipment, and liquid bodies. Some exemplary devices comprise an adaptor for a radiation detector, wherein the adaptor can be configured to collimate radiation passing through the adapter from an external radiation source to the radiation detector and the adaptor can be configured to enclose a radiation source within the adapter to allow the radiation detector to measure radiation emitted from the enclosed radiation source.

  11. Adaptors for radiation detectors

    DOEpatents

    Livesay, Ronald Jason

    2014-04-22

    Described herein are adaptors and other devices for radiation detectors that can be used to make accurate spectral measurements of both small and large bulk sources of radioactivity, such as building structures, soils, vessels, large equipment, and liquid bodies. Some exemplary devices comprise an adaptor for a radiation detector, wherein the adaptor can be configured to collimate radiation passing through the adapter from an external radiation source to the radiation detector and the adaptor can be configured to enclose a radiation source within the adapter to allow the radiation detector to measure radiation emitted from the enclosed radiation source.

  12. Effects of simulant mixed waste on EPDM and butyl rubber

    SciTech Connect

    Nigrey, P.J.; Dickens, T.G.

    1997-11-01

    The authors have developed a Chemical Compatibility Testing Program for the evaluation of plastic packaging components which may be used in transporting mixed waste forms. In this program, they have screened 10 plastic materials in four liquid mixed waste simulants. These plastics were butadiene-acrylonitrile copolymer (Nitrile) rubber, cross-linked polyethylene, epichlorohydrin rubber, ethylene-propylene (EPDM) rubber, fluorocarbons (Viton and Kel-F{trademark}), polytetrafluoro-ethylene (Teflon), high-density polyethylene, isobutylene-isoprene copolymer (Butyl) rubber, polypropylene, and styrene-butadiene (SBR) rubber. The selected simulant mixed wastes were (1) an aqueous alkaline mixture of sodium nitrate and sodium nitrite; (2) a chlorinated hydrocarbon mixture; (3) a simulant liquid scintillation fluid; and (4) a mixture of ketones. The screening testing protocol involved exposing the respective materials to approximately 3 kGy of gamma radiation followed by 14-day exposures to the waste simulants at 60 C. The rubber materials or elastomers were tested using Vapor Transport Rate measurements while the liner materials were tested using specific gravity as a metric. The authors have developed a chemical compatibility program for the evaluation of plastic packaging components which may be incorporated in packaging for transporting mixed waste forms. From the data analyses performed to date, they have identified the thermoplastic, polychlorotrifluoroethylene, as having the greatest chemical compatibility after having been exposed to gamma radiation followed by exposure to the Hanford Tank simulant mixed waste. The most striking observation from this study was the poor performance of polytetrafluoroethylene under these conditions. In the evaluation of the two elastomeric materials they have concluded that while both materials exhibit remarkable resistance to these environmental conditions, EPDM has a greater resistance to this corrosive simulant mixed waste.

  13. Turbidity Current Head Mixing

    NASA Astrophysics Data System (ADS)

    Hernandez, David; Sanchez, Miguel Angel; Medina, Pablo

    2010-05-01

    coastal diffusion using image analysis. Applied Scientific Research 59,.191-204. 1998. [5] J.M. Redondo. Turbulent mixing in the Atmosphere and Ocean. Fluid Physics. 584-597. World Scientific. New York. 1994

  14. Mixed Confidence Estimation for Iterative CT Reconstruction.

    PubMed

    Perlmutter, David S; Kim, Soo Mee; Kinahan, Paul E; Alessio, Adam M

    2016-09-01

    Dynamic (4D) CT imaging is used in a variety of applications, but the two major drawbacks of the technique are its increased radiation dose and longer reconstruction time. Here we present a statistical analysis of our previously proposed Mixed Confidence Estimation (MCE) method that addresses both these issues. This method, where framed iterative reconstruction is only performed on the dynamic regions of each frame while static regions are fixed across frames to a composite image, was proposed to reduce computation time. In this work, we generalize the previous method to describe any application where a portion of the image is known with higher confidence (static, composite, lower-frequency content, etc.) and a portion of the image is known with lower confidence (dynamic, targeted, etc). We show that by splitting the image space into higher and lower confidence components, MCE can lower the estimator variance in both regions compared to conventional reconstruction. We present a theoretical argument for this reduction in estimator variance and verify this argument with proof-of-principle simulations. We also propose a fast approximation of the variance of images reconstructed with MCE and confirm that this approximation is accurate compared to analytic calculations of and multi-realization image variance. This MCE method requires less computation time and provides reduced image variance for imaging scenarios where portions of the image are known with more certainty than others allowing for potentially reduced radiation dose and/or improved dynamic imaging. PMID:27008663

  15. Fluid mixing in stratified gravity currents: the Prandtl mixing length.

    PubMed

    Odier, P; Chen, J; Rivera, M K; Ecke, R E

    2009-04-01

    Shear-induced vertical mixing in a stratified flow is a key ingredient of thermohaline circulation. We experimentally determine the vertical flux of momentum and density of a forced gravity current using high-resolution velocity and density measurements. A constant eddy-viscosity model provides a poor description of the physics of mixing, but a Prandtl mixing length model relating momentum and density fluxes to mean velocity and density gradients works well. For the average gradient Richardson number Ri(g) approximately 0.08 and a Taylor Reynolds number Re(lambda) approximately 100, the mixing lengths are fairly constant, about the same magnitude, comparable to the turbulent shear length. PMID:19392360

  16. Mapping the Mixed Methods–Mixed Research Synthesis Terrain

    PubMed Central

    Sandelowski, Margarete; Voils, Corrine I.; Leeman, Jennifer; Crandell, Jamie L.

    2012-01-01

    Mixed methods–mixed research synthesis is a form of systematic review in which the findings of qualitative and quantitative studies are integrated via qualitative and/or quantitative methods. Although methodological advances have been made, efforts to differentiate research synthesis methods have been too focused on methods and not focused enough on the defining logics of research synthesis—each of which may be operationalized in different ways—or on the research findings themselves that are targeted for synthesis. The conduct of mixed methods–mixed research synthesis studies may more usefully be understood in terms of the logics of aggregation and configuration. Neither logic is preferable to the other nor tied exclusively to any one method or to any one side of the qualitative/quantitative binary. PMID:23066379

  17. Radiograph and passive data analysis using mixed variable optimization

    DOEpatents

    Temple, Brian A.; Armstrong, Jerawan C.; Buescher, Kevin L.; Favorite, Jeffrey A.

    2015-06-02

    Disclosed herein are representative embodiments of methods, apparatus, and systems for performing radiography analysis. For example, certain embodiments perform radiographic analysis using mixed variable computation techniques. One exemplary system comprises a radiation source, a two-dimensional detector for detecting radiation transmitted through a object between the radiation source and detector, and a computer. In this embodiment, the computer is configured to input the radiographic image data from the two-dimensional detector and to determine one or more materials that form the object by using an iterative analysis technique that selects the one or more materials from hierarchically arranged solution spaces of discrete material possibilities and selects the layer interfaces from the optimization of the continuous interface data.

  18. [Marketing mix in health service].

    PubMed

    Ameri, Cinzia; Fiorini, Fulvio

    2015-01-01

    The marketing mix is the combination of the marketing variables that a firm employs with the purpose to achieve the expected volume of business within its market. In the sale of goods, four variables compose the marketing mix (4 Ps): Product, Price, Point of sale and Promotion. In the case of providing services, three further elements play a role: Personnel, Physical Evidence and Processes (7 Ps). The marketing mix must be addressed to the consumers as well as to the employees of the providing firm. Furthermore, it must be interpreted as employees ability to satisfy customers (interactive marketing).

  19. Nanofluidic mixing via hybrid surface

    SciTech Connect

    Ye, Ziran; Li, Shunbo; Zhou, Bingpu; Hui, Yu Sanna; Shen, Rong; Wen, Weijia

    2014-10-20

    We report the design and fabrication of the nanofluidic mixer comprising hybrid hydrophobic/hydrophilic micro-patterns on the top and bottom walls of the nanochannel. The unique feature of such mixer is that, without any geometric structure inside the nanochannel, the mixing can be realized solely by the hybrid surfaces. Besides, the mixing length in nanomixer has been significantly shortened comparing to micromixer. We attribute the mixing achievement to be caused by the convection and chaotic flows of two fluids along the hybrid surface due to the large surface-to-volume ratio of the nanochannel.

  20. [Marketing mix in health service].

    PubMed

    Ameri, Cinzia; Fiorini, Fulvio

    2015-01-01

    The marketing mix is the combination of the marketing variables that a firm employs with the purpose to achieve the expected volume of business within its market. In the sale of goods, four variables compose the marketing mix (4 Ps): Product, Price, Point of sale and Promotion. In the case of providing services, three further elements play a role: Personnel, Physical Evidence and Processes (7 Ps). The marketing mix must be addressed to the consumers as well as to the employees of the providing firm. Furthermore, it must be interpreted as employees ability to satisfy customers (interactive marketing). PMID:26093140

  1. Mixed-mu superconducting bearings

    SciTech Connect

    Hull, John R.; Mulcahy, Thomas M.

    1998-01-01

    A mixed-mu superconducting bearing including a ferrite structure disposed for rotation adjacent a stationary superconductor material structure and a stationary permanent magnet structure. The ferrite structure is levitated by said stationary permanent magnet structure.

  2. Mixed-mu superconducting bearings

    SciTech Connect

    Hull, J.R.; Mulcahy, T.M.

    1998-03-03

    A mixed-mu superconducting bearing is disclosed including a ferrite structure disposed for rotation adjacent a stationary superconductor material structure and a stationary permanent magnet structure. The ferrite structure is levitated by said stationary permanent magnet structure. 9 figs.

  3. Crossflow Mixing of Noncircular Jets

    NASA Technical Reports Server (NTRS)

    Liscinsky, D. S.; True, B.; Holdeman, J. D.

    1995-01-01

    An experimental investigation has been conducted of the isothermal mixing of a turbulent jet injected perpendicular to a uniform crossflow through several different types of sharp-edged orifices. Jet penetration and mixing was studied using planar Mie scattering to measure time-averaged mixture fraction distributions of circular, square, elliptical, and rectangular orifices of equal geometric area injected into a constant velocity crossflow. Hot-wire anemometry was also used to measure streamwise turbulence intensity distributions at several downstream planes. Mixing effectiveness was determined using (1) a spatial unmixedness parameter based on the variance of the mean jet concentration distributions and (2) by direct comparison of the planar distributions of concentration and of turbulence intensity. No significant difference in mixing performance was observed for the six configurations based on comparison of the mean properties.

  4. Is the tribimaximal mixing accidental?

    SciTech Connect

    Abbas, Mohammed; Smirnov, A. Yu.

    2010-07-01

    The tribimaximal (TBM) mixing is not accidental if structures of the corresponding leptonic mass matrices follow immediately from certain (residual or broken) flavor symmetry. We develop a simple formalism which allows one to analyze effects of deviations of the lepton mixing from TBM on the structure of the neutrino mass matrix and on the underlying flavor symmetry. We show that possible deviations from the TBM mixing can lead to strong modifications of the mass matrix and strong violation of the TBM-mass relations. As a result, the mass matrix may have an 'anarchical' structure with random values of elements or it may have some symmetry that differs from the TBM symmetry. Interesting examples include matrices with texture zeros, matrices with certain 'flavor alignment' as well as hierarchical matrices with a two-component structure, where the dominant and subdominant contributions have different symmetries. This opens up new approaches to understanding the lepton mixing.

  5. Perspectives on dilution jet mixing

    NASA Technical Reports Server (NTRS)

    Holdeman, J. D.

    1986-01-01

    A microcomputer code which displays 3-D oblique and 2-D plots of the temperature distribution downstream of jets mixing with a confined crossflow has been used to investigate the effects of varying the several independent flow and geometric parameters on the mixing. Temperature profiles calculated with this empirical model are presented to show the effects of orifice size and spacing, momentum flux ratio, density ratio, variable temperature mainstream, flow area convergence, orifice aspect ratio, and opposed and axially staged rows of jets.

  6. Mixing of discontinuously deforming media

    NASA Astrophysics Data System (ADS)

    Smith, L. D.; Rudman, M.; Lester, D. R.; Metcalfe, G.

    2016-02-01

    Mixing of materials is fundamental to many natural phenomena and engineering applications. The presence of discontinuous deformations—such as shear banding or wall slip—creates new mechanisms for mixing and transport beyond those predicted by classical dynamical systems theory. Here, we show how a novel mixing mechanism combining stretching with cutting and shuffling yields exponential mixing rates, quantified by a positive Lyapunov exponent, an impossibility for systems with cutting and shuffling alone or bounded systems with stretching alone, and demonstrate it in a fluid flow. While dynamical systems theory provides a framework for understanding mixing in smoothly deforming media, a theory of discontinuous mixing is yet to be fully developed. New methods are needed to systematize, explain, and extrapolate measurements on systems with discontinuous deformations. Here, we investigate "webs" of Lagrangian discontinuities and show that they provide a template for the overall transport dynamics. Considering slip deformations as the asymptotic limit of increasingly localised smooth shear, we also demonstrate exactly how some of the new structures introduced by discontinuous deformations are analogous to structures in smoothly deforming systems.

  7. Mixing of discontinuously deforming media.

    PubMed

    Smith, L D; Rudman, M; Lester, D R; Metcalfe, G

    2016-02-01

    Mixing of materials is fundamental to many natural phenomena and engineering applications. The presence of discontinuous deformations-such as shear banding or wall slip-creates new mechanisms for mixing and transport beyond those predicted by classical dynamical systems theory. Here, we show how a novel mixing mechanism combining stretching with cutting and shuffling yields exponential mixing rates, quantified by a positive Lyapunov exponent, an impossibility for systems with cutting and shuffling alone or bounded systems with stretching alone, and demonstrate it in a fluid flow. While dynamical systems theory provides a framework for understanding mixing in smoothly deforming media, a theory of discontinuous mixing is yet to be fully developed. New methods are needed to systematize, explain, and extrapolate measurements on systems with discontinuous deformations. Here, we investigate "webs" of Lagrangian discontinuities and show that they provide a template for the overall transport dynamics. Considering slip deformations as the asymptotic limit of increasingly localised smooth shear, we also demonstrate exactly how some of the new structures introduced by discontinuous deformations are analogous to structures in smoothly deforming systems. PMID:26931594

  8. Mixing Effect in Internal Blast

    NASA Astrophysics Data System (ADS)

    Granholm, R. H.; Sandusky, H. W.

    2009-12-01

    Detonation product gases are usually assumed to be completely mixed with an existing atmosphere by the time a peak quasi-static pressure (Pqs) is reached within an enclosed internal blast environment. With incomplete mixing, however, comes a loss in pressure from unburned fuel as well as a previously unrecognized source of error: heat capacity of the gas increases substantially with temperature, providing an energy sink in regions of unmixed hot gas. Our objective was to look at the extent of mixing by measuring gas temperature at several locations within a blast chamber at the time of peak Pqs. We recorded ranges of up to 400° C depending on charge location within the chamber, which is presumed to affect turbulence and mixing. Losses in peak Pqs of up to 13% may be attributed to this mixing effect for 1-kg Pentolite charges in a 62-m3 chamber in the simple geometries tested. A reasonably accurate Pqs may be extracted from blast wave reverberations in a chamber, allowing a closer look at effects such as gas mixing and consistency among multiple gages. These results point to an explanation for missing energy and a better understanding of heat flow in internal blast.

  9. Intensified diapycnal mixing in the midlatitude western boundary currents.

    PubMed

    Jing, Zhao; Wu, Lixin

    2014-12-10

    The wind work on oceanic near-inertial motions is suggested to play an important role in furnishing the diapycnal mixing in the deep ocean which affects the uptake of heat and carbon by the ocean as well as climate changes. However, it remains a puzzle where and through which route the near-inertial energy penetrates into the deep ocean. Using the measurements collected in the Kuroshio extension region during January 2005, we demonstrate that the diapycnal mixing in the thermocline and deep ocean is tightly related to the shear variance of wind-generated near-inertial internal waves with the diapycnal diffusivity 6 × 10(-5) m(2)s(-1) almost an order stronger than that observed in the circulation gyre. It is estimated that 45%-62% of the local near-inertial wind work 4.5 × 10(-3) Wm(-2) radiates into the thermocline and deep ocean and accounts for 42%-58% of the energy required to furnish mixing there. The elevated mixing is suggested to be maintained by the energetic near-inertial wind work and strong eddy activities causing enhanced downward near-inertial energy flux than earlier findings. The western boundary current turns out to be a key region for the penetration of near-inertial energy into the deep ocean and a hotspot for the diapycnal mixing in winter.

  10. Intensified diapycnal mixing in the midlatitude western boundary currents.

    PubMed

    Jing, Zhao; Wu, Lixin

    2014-01-01

    The wind work on oceanic near-inertial motions is suggested to play an important role in furnishing the diapycnal mixing in the deep ocean which affects the uptake of heat and carbon by the ocean as well as climate changes. However, it remains a puzzle where and through which route the near-inertial energy penetrates into the deep ocean. Using the measurements collected in the Kuroshio extension region during January 2005, we demonstrate that the diapycnal mixing in the thermocline and deep ocean is tightly related to the shear variance of wind-generated near-inertial internal waves with the diapycnal diffusivity 6 × 10(-5) m(2)s(-1) almost an order stronger than that observed in the circulation gyre. It is estimated that 45%-62% of the local near-inertial wind work 4.5 × 10(-3) Wm(-2) radiates into the thermocline and deep ocean and accounts for 42%-58% of the energy required to furnish mixing there. The elevated mixing is suggested to be maintained by the energetic near-inertial wind work and strong eddy activities causing enhanced downward near-inertial energy flux than earlier findings. The western boundary current turns out to be a key region for the penetration of near-inertial energy into the deep ocean and a hotspot for the diapycnal mixing in winter. PMID:25491363

  11. Radiation damage by neutrons to plastic scintillators

    SciTech Connect

    Buss, G.; Dannemann, A.; Holm, U.; Wick, K.

    1995-08-01

    Polystyrene based scintillator SCSN38, wavelength shifter Y7 with polymethylmethacrylate matrix and pure PM-MA light guide GS218 have been irradiated in the mixed radiation field of a pool reactor. About 77% of the dose released in SCSN38 was caused by the {gamma}-field, 23% by fast neutrons. The total dose ranged from 2 to 105 kGy. The dose measurements were made using alanine dosimeters. Transmission and fluorescence of the samples have been measured before and several times after irradiation. The radiation damage results shown o differences to irradiations in pure {gamma}-fields with corresponding released doses.

  12. Pre-experiment testing of the Multi Channel Systems 16-channel preamplifier CPA16

    SciTech Connect

    Patin, J B; Stoyer, M A; Moody, K J; Friensehner, A V

    2003-11-03

    The 16-channel preamplifier model CPA16 from Multi Channel Systems was studied. The CPA16 preamplifier/amplifier module is a candidate to be used as the preamplifiers and amplifiers for the focal plane detectors of the Mass Analyzer of Super Heavy Atoms (MASHA). The equipment used to test the CPA16, the results of testing the CPA16 with a pulser, a mixed {sup 229}Th/{sup 148}Gd source and a {sup 252}Cf source, and a summary of the results will be presented.

  13. An Earth longwave radiation climate model

    NASA Technical Reports Server (NTRS)

    Yang, S. K.

    1984-01-01

    An Earth outgoing longwave radiation (OLWR) climate model was constructed for radiation budget study. Required information is provided by on empirical 100mb water vapor mixing ratio equation of the mixing ratio interpolation scheme. Cloud top temperature is adjusted so that the calculation would agree with NOAA scanning radiometer measurements. Both clear sky and cloudy sky cases are calculated and discussed for global average, zonal average and world-wide distributed cases. The results agree well with the satellite observations. The clear sky case shows that the OLWR field is highly modulated by water vapor, especially in the tropics. The strongest longitudinal variation occurs in the tropics. This variation can be mostly explained by the strong water vapor gradient. Although in the zonal average case the tropics have a minimum in OLWR, the minimum is essentially contributed by a few very low flux regions, such as the Amazon, Indonesian and the Congo.

  14. Improvement in the practical implementation of neutron source strength calibration using prompt gamma rays.

    PubMed

    Khabaz, Rahim; Rene Vega-Carrillo, Hector

    2013-08-01

    In this study, the neutron emission rate from neutron sources using prompt gamma rays in hydrogen was determined, and several improvements were applied. Using Monte Carlo calculations, the best positions for the source, moderator and detector relative to each other were selected. For (241)Am-Be and (252)Cf sources, the sizes for polyethylene spheres with the highest efficiency were 12- and 10-inch, respectively. In addition, a new shielding cone was designed to account for scattered neutrons and gamma rays. The newly designed shielding cone, which is 45 cm in length, provided suitable attenuation for the source radiation.

  15. Fast neutron spectrometry and dosimetry using a spherical moderator with position-sensitive detectors.

    PubMed

    Li, Taosheng; Yang, Lianzhen; Ma, Jizeng; Fang, Dong

    2007-01-01

    A neutron spectrometry and dosimetry measurement system has been developed based on a different design of the divided regions for a sphere, with three position-sensitive counters. The characteristics of the measurement system have been investigated in the reference radiation fields of Am-Be and (252)Cf sources. When realistic input spectra are used for the unfolding, the overall deviations of the calculated results for four dosimetric quantities are less than +/-10%. The results of other input spectra are also discussed in this report.

  16. Relating quark mixing neutrino mixing and {delta}{sub lep}

    SciTech Connect

    Barr, S. M.; Chen Hengyu

    2013-05-23

    It is proposed that all flavor mixing is caused by the mixing of the three quark and lepton families with vectorlike fermions in 5+5-bar multiplets of SU(5). The entire 3 Multiplication-Sign 3 complex mass matrix of the neutrinos M{sub {nu}} is then found to have a simple expression in terms of two complex parameters and an overall scale. Thus, all the presently unknown neutrino parameters are predicted. The best fits are for {theta}{sub atm} Less-Than-Or-Equivalent-To 40 Degree-Sign The leptonic Dirac CP phase is found to be somewhat greater than {pi}.

  17. Radiative forcing and climate response

    NASA Astrophysics Data System (ADS)

    Hansen, J.; Sato, M.; Ruedy, R.

    1997-03-01

    -50% of the positive forcing due to the increase of well-mixed greenhouse gases in the same period. As the net ozone change includes halogen-driven ozone depletion with negative radiative forcing and a tropospheric ozone increase with positive radiative forcing, it is possible that the halogen-driven ozone depletion has counterbalanced more than half of the radiative forcing due to well-mixed greenhouse gases since 1979.

  18. Radiated noise from an externally blown flap

    NASA Technical Reports Server (NTRS)

    Reddy, N. N.; Yu, J. C.

    1975-01-01

    The far field noise from subsonic jet impingement on a wing-flap with a 45 deg bend was experimentally investigated. The test parameters are jet Mach number and flap length. For long flaps, the primary source mechanisms are found to be turbulent mixing and flow impingement. For short flaps, the interaction of turbulent flow with the flap trailing edge appears to strongly influence the radiated noise.

  19. Helium Microbeam Mixing of Bilayers.

    NASA Astrophysics Data System (ADS)

    Davis, John Baran

    This study is an experimental and theoretical investigation of room-temperature mixing of bilayers by micron-width He^+ ion beams. Bilayer targets, including Cu/Al, Cu/Si and Sb/Si, were irradiated at room temperature in the University at Albany's Dynamitron particle accelerator with 2-MeV He^+ ion beams ranging from 2 to 6 μm in width. At doses on the order of 10^ {19}/cm^2, RBS spectra revealed evidence of interface mixing in all targets to depths of several thousand A within the cylinder irradiated by the beam. Both RBS spectra and isometric RBS contour maps of the target also showed that mixing of the interface extends laterally well beyond the irradiated area. The interface mixing reaches a maximum in an annular region several times larger in diameter than the ion-beam. Standard theories of primary-recoil, secondary -cascade and thermal-spike mixing predicted interface widths two orders of magnitude smaller than observed for Cu/Al bilayers. Furthermore, He^+ irradiation of Cu/Al targets at liquid-nitrogen temperature did not produce interface mixing, further indicating that ballistic interpretations of the mixing are inadequate. Defect concentrations as a function of position and time were calculated by numerical solution of coupled rate equations for vacancies and interstitials in aluminum. The results of these calculations show that room-temperature He^+ mixing of Cu/Al results almost exclusively from interstitial migration. The numerically calculated concentration of interstitials within the damage cylinder was used to derive an approximate expression for interface width as a function of dose. Comparisons of these predicted values with the experimentally determined interface width as a function of dose agree, within uncertainties. In addition, the annular region observed on RBS maps is explained by the continued presence of a non-equilibrium concentration of interstitials after the ion beam is shut off. Interface mixing in Cu/Si targets, although

  20. Mixing in massive stellar mergers

    NASA Astrophysics Data System (ADS)

    Gaburov, E.; Lombardi, J. C.; Portegies Zwart, S.

    2008-01-01

    The early evolution of dense star clusters is possibly dominated by close interactions between stars, and physical collisions between stars may occur quite frequently. Simulating a stellar collision event can be an intensive numerical task, as detailed calculations of this process require hydrodynamic simulations in three dimensions. We present a computationally inexpensive method in which we approximate the merger process, including shock heating, hydrodynamic mixing and mass loss, with a simple algorithm based on conservation laws and a basic qualitative understanding of the hydrodynamics of stellar mergers. The algorithm relies on Archimedes' principle to dictate the distribution of the fluid in the stable equilibrium situation. We calibrate and apply the method to mergers of massive stars, as these are expected to occur in young and dense star clusters. We find that without the effects of microscopic mixing, the temperature and chemical composition profiles in a collision product can become double-valued functions of enclosed mass. Such an unphysical situation is mended by simulating microscopic mixing as a post-collision effect. In this way we find that head-on collisions between stars of the same spectral type result in substantial mixing, while mergers between stars of different spectral type, such as type B and O stars (~10 and ~40Msolar respectively), are subject to relatively little hydrodynamic mixing. Our algorithm has been implemented in an easy-to-use software package, which we have made publicly available for download.1

  1. Bulk characterization of (U, Pu) mixed carbide fuel for distribution of plutonium

    SciTech Connect

    Devi, K. V. Vrinda Khan, K. B.; Biju, K.; Kumar, Arun

    2015-06-24

    Homogeneous distribution of plutonium in (U, Pu) mixed fuels is important from fuel performance as well as reprocessing point of view. Radiation imaging and assay techniques are employed for the detection of Pu rich agglomerates in the fuel. A simulation study of radiation transport was carried out to analyse the technique of autoradiography so as to estimate the minimum detectability of Pu agglomerates in MC fuel with nominal PuC content of 70% using Monte Carlo simulations.

  2. Radiation Critical Readiness Review

    NASA Technical Reports Server (NTRS)

    Misek, William

    2010-01-01

    This slide presentation reviews the radiation preparedness and radiation monitors on the International Space Station (ISS). It includes information on the Tissue Equivalent Proportional Counter (TEPC), Radiation Area Monitors, Extra-Vehicular Charged Particle Directional Spectrometer (EV-CPDS), and the space radiation analysis group.

  3. Radiation and People

    ERIC Educational Resources Information Center

    Freilich, Florence G.

    1970-01-01

    Describes the development of radiation as a tool of medicine. Includes topics on history of radiation, electromagnetic spectrum, X-ray tubes, high energy machines, radioactive sources, artificial radioactivity, radioactive scanning, units, present radiation background, and effect of radiation on living tissue. (DS)

  4. Advanced radiator concepts

    NASA Technical Reports Server (NTRS)

    Diem-Kirsop, P. S.

    1985-01-01

    The liquid droplet radiator and the liquid belt radiator currently under study by the NASA LeRC are discussed. These advanced concepts offer benefits in reduced mass, compact stowage, and ease of deployment. Operation and components of the radiators are described, heat transfer characteristics are discussed, and critical technologies are identified. The impact of the radiators on large power systems is also assessed.

  5. Californium-252 Brachytherapy Combined With External-Beam Radiotherapy for Cervical Cancer: Long-Term Treatment Results

    SciTech Connect

    Lei Xin; Qian Chengyuan; Qing Yi; Zhao Kewei; Yang Zhengzhou; Dai Nan; Zhong Zhaoyang; Tang Cheng; Li Zheng; Gu Xianqing; Zhou Qian; Feng Yan; Xiong Yanli; Shan Jinlu; Wang Dong

    2011-12-01

    Purpose: To observe, by retrospective analysis, the curative effects and complications due to californium-252 ({sup 252}Cf) neutron intracavitary brachytherapy (ICBT) combined with external-beam radiotherapy (EBRT) in the treatment of cervical cancer. Methods and Materials: From February 1999 to December 2007, 696 patients with cervical cancer (Stages IB to IIIB) were treated with {sup 252}Cf-ICBT in combination of EBRT. Of all, 31 patients were at Stage IB, 104 at IIA, 363 at IIB, 64 at IIIA, and 134 at IIIB. Californium-252 ICBT was delivered at 7-12 Gy per insertion per week, with a total dose of 29-45 Gy to reference point A in three to five insertions. The whole pelvic cavity was treated with 8-MV X-ray external irradiation at 2 Gy per fraction, four times per week. After 16-38 Gy of external irradiation, the center of the whole pelvic field was blocked with a 4-cm-wide lead shield, with a total external irradiation dose of 44-56 Gy. The total treatment course was 5 to 6 weeks. Results: Overall survival rate at 3 and 5 years for all patients was 76.0% and 64.9%, respectively. Disease-free 3- and 5-year survival rates of patients were 71.2% and 58.4%, respectively. Late complications included vaginal contracture and adhesion, radiation proctitis, radiation cystitis, and inflammatory bowel, which accounted for 5.8%, 7.1%, 6.2%, and 4.9%, respectively. Univariate analysis results showed significant correlation of stage, age, histopathologic grade, and lymph node status with overall survival. Cox multiple regression analysis showed that the independent variables were stage, histopathologic grade, tumor size, and lymphatic metastasis in all patients. Conclusion: Results of this series suggest that the combined use of {sup 252}Cf-ICBT with EBRT is an effective method for treatment of cervical cancer.

  6. Radiation transport calculations for cosmic radiation.

    PubMed

    Endo, A; Sato, T

    2012-01-01

    The radiation environment inside and near spacecraft consists of various components of primary radiation in space and secondary radiation produced by the interaction of the primary radiation with the walls and equipment of the spacecraft. Radiation fields inside astronauts are different from those outside them, because of the body's self-shielding as well as the nuclear fragmentation reactions occurring in the human body. Several computer codes have been developed to simulate the physical processes of the coupled transport of protons, high-charge and high-energy nuclei, and the secondary radiation produced in atomic and nuclear collision processes in matter. These computer codes have been used in various space radiation protection applications: shielding design for spacecraft and planetary habitats, simulation of instrument and detector responses, analysis of absorbed doses and quality factors in organs and tissues, and study of biological effects. This paper focuses on the methods and computer codes used for radiation transport calculations on cosmic radiation, and their application to the analysis of radiation fields inside spacecraft, evaluation of organ doses in the human body, and calculation of dose conversion coefficients using the reference phantoms defined in ICRP Publication 110.

  7. Radiation transport calculations for cosmic radiation.

    PubMed

    Endo, A; Sato, T

    2012-01-01

    The radiation environment inside and near spacecraft consists of various components of primary radiation in space and secondary radiation produced by the interaction of the primary radiation with the walls and equipment of the spacecraft. Radiation fields inside astronauts are different from those outside them, because of the body's self-shielding as well as the nuclear fragmentation reactions occurring in the human body. Several computer codes have been developed to simulate the physical processes of the coupled transport of protons, high-charge and high-energy nuclei, and the secondary radiation produced in atomic and nuclear collision processes in matter. These computer codes have been used in various space radiation protection applications: shielding design for spacecraft and planetary habitats, simulation of instrument and detector responses, analysis of absorbed doses and quality factors in organs and tissues, and study of biological effects. This paper focuses on the methods and computer codes used for radiation transport calculations on cosmic radiation, and their application to the analysis of radiation fields inside spacecraft, evaluation of organ doses in the human body, and calculation of dose conversion coefficients using the reference phantoms defined in ICRP Publication 110. PMID:23089013

  8. Ice and liquid partitioning in mid-latitude and artic mixed-phase clouds: how common is the real mixed-phase state

    NASA Astrophysics Data System (ADS)

    Meyer, Jessica; Krämer, Martina; Afchine, Armin; Gallagher, Martin; Dorsey, James; Brown, Phil; Woolley, Alan; Bierwirth, Eike; Ehrlich, Andre; Wendisch, Manfred; Gehrmann, Martin

    2013-04-01

    The influence of mixed-phase clouds on the radiation budget of the earth is largely unknown. One of the key parameters to determine mixed-phase cloud radiative properties however is the fraction of ice particles and liquid droplets in these clouds. The separate detection of liquid droplets and ice crystals especially in the small cloud particle size range below 50 µm remains challenging though. Here, we present airborne NIXE-CAPS mixed-phase cloud particle measurements observed in mid-latitude and Arctic low-level mixed-phase clouds during the COALESC field campaign in 2011 and the Arctic field campaign VERDI in 2012. NIXE-CAPS (Novel Ice EXpEriment - Cloud and Aerosol Particle Spectrometer, manufactured by DMT) is a cloud particle spectrometer which measures the cloud particle number, size as well as their phase for each cloud particle in the diameter range 0.6 to 945 µm. The common understanding in mixed-phase cloud research is that liquid droplets and ice crystals in the same cloud volume are rather sparse, but instead either liquid droplets or ice crystals are present. However, recently published model studies (e.g. Korolev, A. & Field, P., The effect of dynamics on mixed-phase clouds: Theoretical considerations. J. Atmos. Sci. 65, 66-86, 2008) indicate that a cloud state containing both liquid droplets and ice crystals can be kept up by turbulence. Indeed, our particle by particle analyses of the observed mixed-phase clouds during COALESC and VERDI indicate that the real mixed-phase state is rather common in the atmosphere. The spatial distribution of the mixed-phase ice fraction and the size of the droplets and ice crystals however vary substantially from case to case. The latter parameters seem to be influenced not only by concentration of ice nuclei but also - to a large degree - by cloud dynamics.

  9. Isospin Mixing in MAGNESIUM-24.

    NASA Astrophysics Data System (ADS)

    Hoyle, Charles David

    The (beta)-(gamma) circular polarization correlation asymmetry was measured for the pure Gamow-Teller decay of ('28)Al, for the pure Fermi decay of ('14)O and for the mixed decay of the ('24)Al 4('+) ground state to the 8.437 MeV, 4('+) state in ('24)Mg. The expected results were obtained for the pure Gamow-Teller and Fermi decays. From the results of the ('24)Al decay the isospin mixing of the 8.437 MeV, 4('+) state and the 9.515 MeV, 4('+) analog state in ('24)Mg was determined. The charge dependent matrix element mixing these two states was determined to be -95 (+OR-) 36 keV. This is the largest charge dependent matrix element observed in (beta) decay to date. This large value has not been completely explained and suggests the existence of a (DELTA)T = 1 nuclear force.

  10. Wireless radiation sensor

    DOEpatents

    Lamberti, Vincent E.; Howell, Jr, Layton N.; Mee, David K.; Kress, Reid L.

    2016-08-09

    Disclosed is a sensor for detecting radiation. The sensor includes a ferromagnetic metal and a radiation sensitive material coupled to the ferromagnetic metal. The radiation sensitive material is operable to change a tensile stress of the ferromagnetic metal upon exposure to radiation. The radiation is detected based on changes in the magnetic switching characteristics of the ferromagnetic metal caused by the changes in the tensile stress.

  11. A mixed finite element domain decomposition method for nearly elastic wave equations in the frequency domain

    SciTech Connect

    Feng, Xiaobing

    1996-12-31

    A non-overlapping domain decomposition iterative method is proposed and analyzed for mixed finite element methods for a sequence of noncoercive elliptic systems with radiation boundary conditions. These differential systems describe the motion of a nearly elastic solid in the frequency domain. The convergence of the iterative procedure is demonstrated and the rate of convergence is derived for the case when the domain is decomposed into subdomains in which each subdomain consists of an individual element associated with the mixed finite elements. The hybridization of mixed finite element methods plays a important role in the construction of the discrete procedure.

  12. Application of fall-line mix models to understand degraded yield

    SciTech Connect

    Welser-Sherrill, L; Cooley, J H; Haynes, D A; Wilson, D C; Sherrill, M E; Mancini, R C; Tommasini, R

    2008-02-28

    Mixing between fuel and shell material is an important topic in the inertial confinement fusion community, and is commonly accepted as the primary mechanism for neutron yield degradation. Typically, radiation hydrodynamic simulations that lack mixing (clean simulations) tend to considerably overestimate the neutron yield. We present here a series of yield calculations based on a variety of fall-line inspired mix models. The results are compared to a series of OMEGA experiments which provide total neutron yields and time-dependent yield rates.

  13. Nonideal Rayleigh–Taylor mixing

    PubMed Central

    Lim, Hyunkyung; Iwerks, Justin; Glimm, James; Sharp, David H.

    2010-01-01

    Rayleigh–Taylor mixing is a classical hydrodynamic instability that occurs when a light fluid pushes against a heavy fluid. The two main sources of nonideal behavior in Rayleigh–Taylor (RT) mixing are regularizations (physical and numerical), which produce deviations from a pure Euler equation, scale invariant formulation, and nonideal (i.e., experimental) initial conditions. The Kolmogorov theory of turbulence predicts stirring at all length scales for the Euler fluid equations without regularization. We interpret mathematical theories of existence and nonuniqueness in this context, and we provide numerical evidence for dependence of the RT mixing rate on nonideal regularizations; in other words, indeterminacy when modeled by Euler equations. Operationally, indeterminacy shows up as nonunique solutions for RT mixing, parametrized by Schmidt and Prandtl numbers, in the large Reynolds number (Euler equation) limit. Verification and validation evidence is presented for the large eddy simulation algorithm used here. Mesh convergence depends on breaking the nonuniqueness with explicit use of the laminar Schmidt and Prandtl numbers and their turbulent counterparts, defined in terms of subgrid scale models. The dependence of the mixing rate on the Schmidt and Prandtl numbers and other physical parameters will be illustrated. We demonstrate numerically the influence of initial conditions on the mixing rate. Both the dominant short wavelength initial conditions and long wavelength perturbations are observed to play a role. By examination of two classes of experiments, we observe the absence of a single universal explanation, with long and short wavelength initial conditions, and the various physical and numerical regularizations contributing in different proportions in these two different contexts. PMID:20615983

  14. Nonideal Rayleigh-Taylor mixing

    SciTech Connect

    Sharp, David Howland; Lin, Hyun K; Iwerks, Justin G; Gliman, James G

    2009-01-01

    Rayleigh-Taylor mixing is a classical hydrodynamic Instability, which occurs when a light fluid pushes against a heavy fluid. The two main sources of nonideal behavior in Rayleigh-Taylor (RT) mixing are regularizations (physical and numerical) which produce deviations from a pure Euler equation, scale Invariant formulation, and non Ideal (i.e. experimental) initial conditions. The Kolmogorov theory of turbulence predicts stirring at all length scales for the Euler fluid equations without regularization. We Interpret mathematical theories of existence and non-uniqueness in this context, and we provide numerical evidence for dependence of the RT mixing rate on nonideal regularizations, in other words indeterminacy when modeled by Euler equations. Operationally, indeterminacy shows up as non unique solutions for RT mixing, parametrized by Schmidt and Prandtl numbers, In the large Reynolds number (Euler equation) limit. Verification and validation evidence is presented for the large eddy simulation algorithm used here. Mesh convergence depends on breaking the nonuniqueness with explicit use of the laminar Schmidt and PrandtJ numbers and their turbulent counterparts, defined in terms of subgrid scale models. The dependence of the mixing rate on the Schmidt and Prandtl numbers and other physical parameters will be illustrated. We demonstrate numerically the influence of initial conditions on the mixing rate. Both the dominant short wavelength Initial conditions and long wavelength perturbations are observed to playa role. By examination of two classes of experiments, we observe the absence of a single universal explanation, with long and short wavelength initial conditions, and the various physical and numerical regularizations contributing In different proportions In these two different contexts.

  15. Further evidence for mixed emotions.

    PubMed

    Larsen, Jeff T; McGraw, A Peter

    2011-06-01

    Emotion theorists have long debated whether valence, which ranges from pleasant to unpleasant states, is an irreducible aspect of the experience of emotion or whether positivity and negativity are separable in experience. If valence is irreducible, it follows that people cannot feel happy and sad at the same time. Conversely, if positivity and negativity are separable, people may be able to experience such mixed emotions. The authors tested several alternative interpretations for prior evidence that happiness and sadness can co-occur in bittersweet situations (i.e., those containing both pleasant and unpleasant aspects). One possibility is that subjects who reported mixed emotions merely vacillated between happiness and sadness. The authors tested this hypothesis in Studies 1-3 by asking subjects to complete online continuous measures of happiness and sadness. Subjects reported more simultaneously mixed emotions during a bittersweet film clip than during a control clip. Another possibility is that subjects in earlier studies reported mixed emotions only because they were explicitly asked whether they felt happy and sad. The authors tested this hypothesis in Studies 4-6 with open-ended measures of emotion. Subjects were more likely to report mixed emotions after the bittersweet clip than the control clip. Both patterns occurred even when subjects were told that they were not expected to report mixed emotions (Studies 2 and 5) and among subjects who did not previously believe that people could simultaneously feel happy and sad (Studies 3 and 6). These results provide further evidence that positivity and negativity are separable in experience.

  16. Nonideal Rayleigh-Taylor Mixing

    SciTech Connect

    Lim, H.; Glimm, J.; Iwerks, J.; Sharp, D.H.

    2010-08-01

    Rayleigh-Taylor mixing is a classical hydrodynamic instability that occurs when a light fluid pushes against a heavy fluid. The two main sources of nonideal behavior in Rayleigh-Taylor (RT) mixing are regularizations (physical and numerical), which produce deviations from a pure Euler equation, scale invariant formulation, and nonideal (i.e., experimental) initial conditions. The Kolmogorov theory of turbulence predicts stirring at all length scales for the Euler fluid equations without regularization. We interpret mathematical theories of existence and nonuniqueness in this context, and we provide numerical evidence for dependence of the RT mixing rate on nonideal regularizations; in other words, indeterminacy when modeled by Euler equations. Operationally, indeterminacy shows up as nonunique solutions for RT mixing, parametrized by Schmidt and Prandtl numbers, in the large Reynolds number (Euler equation) limit. Verification and validation evidence is presented for the large eddy simulation algorithm used here. Mesh convergence depends on breaking the nonuniqueness with explicit use of the laminar Schmidt and Prandtl numbers and their turbulent counterparts, defined in terms of subgrid scale models. The dependence of the mixing rate on the Schmidt and Prandtl numbers and other physical parameters will be illustrated. We demonstrate numerically the influence of initial conditions on the mixing rate. Both the dominant short wavelength initial conditions and long wavelength perturbations are observed to play a role. By examination of two classes of experiments, we observe the absence of a single universal explanation, with long and short wavelength initial conditions, and the various physical and numerical regularizations contributing in different proportions in these two different contexts.

  17. The role of ice nuclei recycling in the maintenance of cloud ice in Arctic mixed-phase stratocumulus

    DOE PAGES

    Solomon, A.; Feingold, G.; Shupe, M. D.

    2015-04-21

    This study investigates the maintenance of cloud ice production in Arctic mixed phase stratocumulus in large-eddy simulations that include a prognostic ice nuclei (IN) formulation and a diurnal cycle. Balances derived from a mixed-layer model and phase analyses are used to provide insight into buffering mechanisms that maintain ice in these cloud systems. We find that for the case under investigation, IN recycling through subcloud sublimation considerably prolongs ice production over a multi-day integration. This effective source of IN to the cloud dominates over mixing sources from above or below the cloud-driven mixed layer. Competing feedbacks between dynamical mixing andmore » recycling are found to slow the rate of ice lost from the mixed layer when a diurnal cycle is simulated. The results of this study have important implications for maintaining phase partitioning of cloud ice and liquid that determine the radiative forcing of Arctic mixed-phase clouds.« less

  18. The role of ice nuclei recycling in the maintenance of cloud ice in Arctic mixed-phase stratocumulus

    DOE PAGES

    Solomon, A.; Feingold, G.; Shupe, M. D.

    2015-09-25

    This study investigates the maintenance of cloud ice production in Arctic mixed-phase stratocumulus in large eddy simulations that include a prognostic ice nuclei (IN) formulation and a diurnal cycle. Balances derived from a mixed-layer model and phase analyses are used to provide insight into buffering mechanisms that maintain ice in these cloud systems. We find that, for the case under investigation, IN recycling through subcloud sublimation considerably prolongs ice production over a multi-day integration. This effective source of IN to the cloud dominates over mixing sources from above or below the cloud-driven mixed layer. Competing feedbacks between dynamical mixing andmore » recycling are found to slow the rate of ice lost from the mixed layer when a diurnal cycle is simulated. The results of this study have important implications for maintaining phase partitioning of cloud ice and liquid that determine the radiative forcing of Arctic mixed-phase clouds.« less

  19. Mixe de Tlahuitoltepec, Oaxaca (Mixe of Tlahuitoltepec, Oaxaca).

    ERIC Educational Resources Information Center

    Mexico Coll. (Mexico City)

    This document is one of 17 volumes on indigenous Mexican languages and is the result of a project undertaken by the Archivo de Lenguas Indigenas de Mexico. This volume contains information on Mixe, an indigenous language of Mexico spoken in Tlahuitoltepec, in the state of Oaxaca. The objective of collecting such a representative sampling of the…

  20. Use and abuse of mixing models (MixSIAR)

    EPA Science Inventory

    Background/Question/MethodsCharacterizing trophic links in food webs is a fundamental ecological question. In our efforts to quantify energy flow through food webs, ecologists have increasingly used mixing models to analyze biological tracer data, often from stable isotopes. Whil...