Science.gov

Sample records for 252cf neutron sources

  1. Measurement of the 250Cf component in a 252Cf neutron source at KRISS.

    PubMed

    Kim, Jungho; Park, Hyeonseo; Choi, Kil-Oung

    2014-10-01

    Neutron emission rate measurements have been carried out at the Korea Research Institute of Standards and Science using a manganese sulphate bath system for (252)Cf and (241)Am-Be sources since 2004. The relative measurement method was chosen in 2012, and the neutron emission rates agreed with those by the absolute measurement method within uncertainties. The neutron emission rate of an old (252)Cf source has been measured three times: in 2004, 2009 and 2012. The (250)Cf component was fitted to a double-exponential function of (252)Cf+(250)Cf, and the ratio of the (250)Cf component to the (252)Cf component was estimated to be 7.8 % in 2004 and 46.8 % in 2012. Underestimation of the neutron emission rates of old (252)Cf sources can be corrected if the neutron emission rate of the (250)Cf component is taken into account.

  2. /sup 252/Cf-source-driven neutron noise analysis method

    SciTech Connect

    Mihalczo, J.T.; King, W.T.; Blakeman, E.D.

    1985-01-01

    The /sup 252/Cf-source-driven neutron noise analysis method has been tested in a wide variety of experiments that have indicated the broad range of applicability of the method. The neutron multiplication factor k/sub eff/ has been satisfactorily detemined for a variety of materials including uranium metal, light water reactor fuel pins, fissile solutions, fuel plates in water, and interacting cylinders. For a uranyl nitrate solution tank which is typical of a fuel processing or reprocessing plant, the k/sub eff/ values were satisfactorily determined for values between 0.92 and 0.5 using a simple point kinetics interpretation of the experimental data. The short measurement times, in several cases as low as 1 min, have shown that the development of this method can lead to a practical subcriticality monitor for many in-plant applications. The further development of the method will require experiments oriented toward particular applications including dynamic experiments and the development of theoretical methods to predict the experimental observables.

  3. Water-extended polyester neutron shield for a 252Cf neutron source.

    PubMed

    Vega-Carrillo, H R; Manzanares-Acuña, E; Hernández-Dávila, V M; Gallego, E; Lorente, A; Donaire, I

    2007-01-01

    A Monte Carlo study to determine the shielding features to neutrons of water-extended polyester was carried out. During calculations, (252)Cf and shielding were modelled and the neutron spectra as well as the H(10) were calculated in four sites. The calculation was extended to include a water shielding, the source in vacuum and in air. Besides neutron shielding characteristics, the Kerma in air due to gammas emitted by (252)Cf and due to capture gamma rays in the shielding were included.

  4. Brazilian gamma-neutron dosemeter: response to 241AmBe and 252Cf neutron sources.

    PubMed

    Souto, E B; Campos, L L

    2011-03-01

    With the aim of improving the monitoring of workers potentially exposed to neutron radiation in Brazil, the IPEN/CNEN-SP in association with PRO-RAD designed and developed a passive individual gamma-neutron mixed-field dosemeter calibrated to be used to (241)AmBe sources. To verify the dosimetry system response to different neutron spectra, prototypes were irradiated with a (252)Cf source and evaluated using the dose-calculation algorithm developed for (241)AmBe sources.

  5. Design of a setup for 252Cf neutron source for storage and analysis purpose

    NASA Astrophysics Data System (ADS)

    Hei, Daqian; Zhuang, Haocheng; Jia, Wenbao; Cheng, Can; Jiang, Zhou; Wang, Hongtao; Chen, Da

    2016-11-01

    252Cf is a reliable isotopic neutron source and widely used in the prompt gamma ray neutron activation analysis (PGNAA) technique. A cylindrical barrel made by polymethyl methacrylate contained with the boric acid solution was designed for storage and application of a 5 μg 252Cf neutron source. The size of the setup was optimized with Monte Carlo code. The experiments were performed and the results showed the doses were reduced with the setup and less than the allowable limit. The intensity and collimating radius of the neutron beam could also be adjusted through different collimator.

  6. Graphite moderated (252)Cf source.

    PubMed

    Sajo-Bohus, Laszlo; Barros, Haydn; Greaves, Eduardo D; Vega-Carrillo, Hector Rene

    2015-06-01

    The Thorium molten-salt reactor is an attractive and affordable nuclear power option for developing countries with insufficient infrastructure and limited technological capability. In the aim of personnel training and experience gathering at the Universidad Simon Bolivar there is in progress a project of developing a subcritical thorium liquid-fuel reactor. The neutron source to run this subcritical reactor is a (252)Cf source and the reactor will use high-purity graphite as moderator. Using the MCNP5 code the neutron spectra of the (252)Cf in the center of the graphite moderator has been estimated along the channel where the liquid thorium salt will be inserted; also the ambient dose equivalent due to the source has been determined around the moderator.

  7. The content of 250Cf and 248Cm in 252Cf neutron sources and the effect on the neutron emission rate.

    PubMed

    Roberts, N J; Jones, L N

    2007-01-01

    One of the most common radionuclide neutron sources used for the calibration of detectors is (252)Cf. However, these sources also contain (250)Cf, which is present in the material from which the sources are made, and (248)Cm, which is formed as the daughter of (252)Cf via alpha-decay. Both decay by spontaneous fission with longer half-lives than (252)Cf. Consequently, as the source becomes older, the emission rate does not follow the decay curve of (252)Cf. Fits have been made to emission rate measurements of (252)Cf sources at NPL spanning over 30 y to deduce their (250)Cf and (248)Cm content. The emission rate of a source can be significantly underestimated if the presence of (250)Cf and (248)Cm is not taken into account, and this has been investigated for a typical (252)Cf source. The importance of this problem to other calibration laboratories and users of (252)Cf sources is emphasised.

  8. Measurement and calculation of the emission anisotropy of an X1 252Cf neutron source.

    PubMed

    Hawkes, N P; Freedman, R; Tagziria, H; Thomas, D J

    2007-01-01

    The authors have measured the emission anisotropy from a (252)Cf spontaneous fission neutron source in an X1 encapsulation. The measurements were made in a large low-scatter laboratory using a long counter, and data were taken at angles varying in 10 degrees steps from 0 degrees to 180 degrees relative to the cylindrical axis of the source. Corrections were made for room scatter, loss of neutrons due to air scatter and detector dead time. Calculations corresponding to these measurements were subsequently carried out using the two Monte Carlo codes MCNP and MCBEND, and the results are compared with the measurements and with each other.

  9. Characteristics of the simulated workplace neutron fields using a 252Cf source surrounded with cylindrical moderators.

    PubMed

    Tsujimura, N; Yoshida, T

    2004-01-01

    The authors established the simulated workplace neutron fields using a 252Cf source surrounded with cylindrical moderators at the Japan Nuclear Cycle Development Institute (JNC), Tokai Works. The moderators are annular cylinders made of polymethyl methacrylate and steel. The neutron energy spectrum at the reference calibration point was evaluated from the calculations by MCNP-4B and the measurements by the Bonner multisphere spectrometer and the hydrogen-filled proportional counters. The calculated neutron spectra were in good agreements with the measured ones. These fields can provide the realistic neutron spectra similar to those encountered around the glove-boxes of the fabrication process of MOX (PuO2-UO2 mixed oxide) fuel.

  10. Evaluation of the characteristics of the neutron reference field using D2O-moderated 252Cf source.

    PubMed

    Kowatari, M; Fujii, K; Takahashi, M; Yoshizawa, M; Shimizu, S; Kawasaki, K; Yamaguchi, Y

    2007-01-01

    The ambient/personal dose equivalent per fluence for D(2)O moderated (252)Cf neutron source was determined by measurement. An appropriate subtraction of the scattered neutrons is required for the accurate measurement of direct neutrons. A cubic shadow object was used for the subtraction of the scattered neutrons from the surroundings. The scattered neutrons to be subtracted vary with the position of the shadow object due to the large volume of the source. Using the Monte Carlo code MCNP-4C, the optimum positions of the shadow object were surveyed for subtracting the scattered neutrons. The energy spectra of direct neutrons were measured in the optimum position. The dosimetric parameters for the D(2)O moderated (252)Cf neutron source were reasonable, taking into account the uncertainties of the parameters.

  11. Fabrication of 50-mg /sup 252/Cf neutron sources for the FDA (Food and Drug Administration) activation analysis facility

    SciTech Connect

    Bigelow, J.E.; Cagle, E.B.; Knauer, J.B.

    1987-01-01

    The Transuranium Processing Plant (TPP) at ORNL has been requested by the Food and Drug Administration (FDA) to furnish 200 mg of /sup 252/Cf for use in their new activation analysis facility. This paper discusses the procedure to be employed in fabricating the californium into four neutron sources, each containing a nominal 50-mg of /sup 252/Cf. The ORNL Model LSD (Large, Stainless steel, Doubly encapsulated) neutron source consists of a 6.33-mm-diam aluminum pellet doubly encapsulated in Type 304L stainless steel. The pellet is comprised of an aluminum tube holding Cf/sub 2/O/sub 2/SO/sub 4/ microspheres confined by pressed aluminum powder. The microspheres are prepared in a separate vessel and then transferred into the specially designed aluminum tube prior to pressing.

  12. Replacing a 252Cf source with a neutron generator in a shuffler - a conceptual design performed with MCNPX

    SciTech Connect

    Schear, Melissa A; Tobin, Stephen J

    2009-01-01

    The {sup 252}Cf shuffler has been widely used in nuclear safeguards and radioactive waste management to assay fissile isotopes, such as {sup 235}U or {sup 239}Pu, present in a variety of samples, ranging from small cans of uranium waste to metal samples weighing several kilograms. Like other non-destructive assay instruments, the shuffler uses an interrogating neutron source to induce fissions in the sample. Although shufflers with {sup 252}Cf sources have been reliably used for several decades, replacing this isotopic source with a neutron generator presents some distinct advantages. Neutron generators can be run in a continuous or pulsed mode, and may be turned off, eliminating the need for shielding and a shuffling mechanism in the shuffler. There is also essentially no dose to personnel during installation, and no reliance on the availability of {sup 252}Cf. Despite these advantages, the more energetic neutrons emitted from the neutron generator (141 MeV for D-T generators) present some challenges for certain material types. For example when the enrichment of a uranium sample is unknown, the fission of {sup 238}U is generally undesirable. Since measuring uranium is one of the main uses of a shuffler, reducing the delayed neutron contribution from {sup 238}U is desirable. Hence, the shuffler hardware must be modified to accommodate a moderator configuration near the source to tailor the interrogating spectrum in a manner which promotes sub-threshold fissions (below 1 MeV) but avoids the over-moderation of the interrogating neutrons so as to avoid self-shielding. In this study, where there are many material and geometry combinations, the Monte Carlo N-Particle eXtended (MCNPX) transport code was used to model, design, and optimize the moderator configuration within the shuffler geometry. The code is then used to evaluate and compare the assay performances of both the modified shuffler and the current {sup 252}Cf shuffler designs for different test samples. The

  13. Characterization of neutron fields from bare and heavy water moderated (252)Cf spontaneous fission source using Bonner Sphere Spectrometer.

    PubMed

    Atanackovic, Jovica; Yonkeu, Andre; Dubeau, Jacques; Witharana, Sampath Hakmana; Priest, Nicholas

    2015-05-01

    In this work a calibrated Bonner Sphere Spectrometer (BSS), together with ISO shadow cones, was used to quantify the total and scattered components of bare and heavy water moderated (252)Cf neutron fields. All measurements were performed with a BSS that was calibrated at the National Physical Laboratory (NPL), Teddington, UK, which is a global primary standard laboratory and world-leading facility for neutron metrology and neutron instruments calibration. The fields were characterized for source-spectrometer distances of 80, 100, 150 and 200cm; and at heights of 103 and 200cm from the facility floor. As expected, the scattered contribution was greatest at the farthest distance from the source and closer to the floor. Hence, at a distance of 200cm and a height of 103cm, the scatter added to the direct field up to 162% of the total neutron fluence and up to 61% of the ambient dose equivalent, while at the same distance and height of 200cm above the floor, these values were up to 146% and 52%, respectively. In the case of heavy water moderated (252)Cf neutron fields, a shadow cone subtraction technique could not be implemented, however Monte Carlo simulations were utilized in order to differentiate between the direct and scatter components of the neutron fields. In this case, at a source-detector distance of 200cm and a height of 103cm, the scatter added to the direct field up to 148% of the total neutron fluence and up to 45% of the ambient dose equivalent, while at the same distance and a height of 200cm above the floor, these values were up to 134% and 42%, respectively.

  14. Moderated 252Cf neutron energy spectra in brain tissue and calculated boron neutron capture dose.

    PubMed

    Rivard, Mark J; Zamenhof, Robert G

    2004-11-01

    While there is significant clinical experience using both low- and high-dose (252)Cf brachytherapy, combination therapy using (10)B for neutron capture therapy-enhanced (252)Cf brachytherapy has not been performed. Monte Carlo calculations were performed in a brain phantom (ICRU 44 brain tissue) to evaluate the dose enhancement predicted for a range of (10)B concentrations over a range of distances from a clinical (252)Cf source. These results were compared to experimental measurements and calculations published in the literature. For (10)B concentrations neutron capture dose enhancement was small in comparison to the (252)Cf fast neutron dose.

  15. ANISOTROPY FACTORS FOR A 252Cf SOURCE

    SciTech Connect

    Veinot, K. G.; Bogard, James S

    2009-01-01

    A new 252Cf source has been procured for use at the Dosimetry Applications and Research (DOSAR) facility at the Oak Ridge National Laboratory (ORNL). This source was encapsulated by the Californium Facility at ORNL, however, the encapsulation differs from previous designs designated as SR-Cf-100. The new encapsulation, designated SR-Cf-3000, has a similar cylindrical radius to the previous generation, but is 1.6 cm longer. Since the encapsulation geometries differ the amount of internal scattering of neutrons will also differ leading to changes in anisotropy factors between the two designs. Additionally, the different encapsulations will affect the absorbed dose and dose equivalent delivered per neutron emitted by the source since both the quantity and energy distribution of the emitted neutrons will vary with irradiation angle. This work presents the fluence anisotropy factors for the SR-Cf-3000 series encapsulation as well as absorbed dose and dose equivalent values calculated for various angles of irradiation. The fluence anisotropy factors vary from a maximum of 1.037 to a minimum of 0.641 for irradiation angles perpendicular and parallel to the source axis, respectively. Anisotropy in absorbed dose varied from a maximum of 1.033 to a minimum of 0.676 while anisotropy of dose equivalent varied from 1.035 to 0.657.

  16. Calculation of Ambient (H*(10)) and Personal (Hp(10)) Dose Equivalent from a 252Cf Neutron Source

    SciTech Connect

    Traub, Richard J.

    2010-03-26

    The purpose of this calculation is to calculate the neutron dose factors for the Sr-Cf-3000 neutron source that is located in the 318 low scatter room (LSR). The dose factors were based on the dose conversion factors published in ICRP-21 Appendix 6, and the Ambient dose equivalent (H*(10)) and Personal dose equivalent (Hp(10)) dose factors published in ICRP Publication 74.

  17. On the use of a (252Cf-3He) assembly for landmine detection by the neutron back-scattering method.

    PubMed

    Elsheikh, N; Viesti, G; ElAgib, I; Habbani, F

    2012-04-01

    Experiments were carried out to optimize the performance of the neutron back-scattering (NBS) technique in landmine detection using an assembly consisting of three different layers placed above a (252)Cf neuron source, producing about 10(4)s(-1), in conjunction with a (3)He detector. The assembly was optimized experimentally. The selected assembly configuration was then examined against different (252)Cf stand-off distances and mine burial depths using dummy landmines. Furthermore, Monte Carlo simulations were performed to study the effect of the shield when a (252)Cf source in the range 10(4)-10(7)s(-1) was employed, and to optimize the geometry for future prototypes.

  18. Relative biological efficiency for the induction of various gene mutations in normal and enriched with 10B Tradescantia cells by neutrons from 252Cf source.

    PubMed

    Cebulska-Wasilewska, A; Schneider, K; Kim, J K

    2001-03-01

    The effectiveness of neutrons from a Californium-252 source in the induction of various abnormalities in the Tradescantia clone 4430 stamen hair cells (Trad-SH assay) were studied. A special attention was paid to check whether any enhancement in effects is visible in the cells enriched with boron ions. Inflorescences, normal or pretreated with chemicals containing boron, were irradiated in the air with neutrons from a 252Cf source at KAERI, Taejon, Korea. To estimate the relative biological effectiveness (RBE) of the beam under the study, numbers of Tradescantia inflorescence without chemical pretreatment were irradiated with various doses of X-rays. The ranges of radiation doses used for neutrons were 0-1.0Gy and for X-rays 0-0.5Gy. Following the culturing according to standard procedures screening of gene and lethal mutations in somatic cells of stamen hairs was done in the extended period, between days 7 and 19 after exposures. Maximal RBE values for the induction of pink, colorless and lethal mutations were evaluated from comparison of the slopes in linear parts of the dose response curves obtained after irradiation with X-rays and californium source. The RBE(max) value or the induction of gene mutation was estimated as 7.2 comparing the value 5.6 in the studies reported earlier. The comparison of dose-response curves and its alteration, due to changes in the cells and plants environment during and after irradiation, explains the observed differences. Inflorescence pretreated with borax responded to neutrons differently depending on the biological end points. Although, for the induction of pink mutations no significant difference was observed, though, in the case of cell lethality, pretreated with boron ion plants have shoved a statistically significant increase of the RBE value from 5.5 to 34.7, and in the case of colorless mutations from 1.6 to 5.6.

  19. Experimental determination of moisture distributions in fired clay brick using a 252Cf source: a neutron transmission study.

    PubMed

    El Abd, A; Abdel-Monem, A M; Kansouh, W A

    2013-04-01

    A neutron transmission method was proposed to study liquid transport in porous media. It was applied to study water penetration into two kinds of fired clay bricks. The results showed that the diffusion processes in the investigated samples are different. Water diffusivities and capillary absorption coefficients characterizing both the flow process and the brick samples were determined and compared. The proposed method is simple, accurate and reliable in studying water diffusion in porous media, in real time.

  20. Measured microdosimetric spectra and therapeutic potential of boron neutron capture enhancement of 252Cf brachytherapy.

    PubMed

    Burmeister, J; Kota, C; Maughan, R L

    2005-09-01

    Californium-252 is a neutron-emitting radioisotope used as a brachytherapy source for radioresistant tumors. Presented here are microdosimetric spectra measured as a function of simulated site diameter and distance from applicator tube 252Cf sources. These spectra were measured using miniature tissue-equivalent proportional counters (TEPCs). An investigation of the clinical potential of boron neutron capture (BNC) enhancement of 252Cf brachytherapy is also provided. The absorbed dose from the BNC reaction was measured using a boron-loaded miniature TEPC. Measured neutron, photon and BNC absorbed dose components are provided as a function of distance from the source. In general, the absorbed dose results show good agreement with results from other measurement techniques. A concomitant boost to 252Cf brachytherapy may be provided through the use of the BNC reaction. The potential magnitude of this BNC enhancement increases with increasing distance from the source and is capable of providing a therapeutic gain greater than 30% at a distance of 5 cm from the source, assuming currently achievable boron concentrations.

  1. 1987 Neutron and gamma personnel dosimeter intercomparison study using a D/sub 2/O-moderated /sup 252/Cf source

    SciTech Connect

    Swaja, R.E.; West, L.E.; Sims, C.S.; Welty, T.J.

    1989-05-01

    The thirteenth Personnel Dosimetry Intercomparison Study (i.e., PDIS 13) was conducted during April 1987 as a joint effort by Oak Ridge National Laboratory's (ORNL) Dosimetry Applications Research Group and the Southwest Radiation Calibration Center at the University of Arkansas. A total of 48 organizations (34 from the US and 14 from abroad) participated in PDIS 13. Participants submitted a total of 1,113 neutron and gamma dosimeters for this mixed field study. The dosimeters were transferred by mail and were handled by experimental personnel at ORNL and the University of Arkansas. The type of neutron dosimeter and the percentage of participants submitting that type are as follows: TLD-albedo (49%), direct interaction TLD (31%), CR-39 (17%), film (3%). The type of gamma dosimeter and the percentage of participants submitting that type are as follows: Li/sub 2/B/sub 4/O/sub 7/, alone or in combination with CaSO/sub 4/, (69%), /sup 7/LiF (28%), natural LiF (3%). Radiation exposures in PDIS 13 were limited to 0.5 and 1.5 mSv from /sup 252/Cf moderated by 15-cm of D/sub 2/O. Traditional exposures using the Health Physics Research Reactor (HPRR) were not possible due to the fact that all reactors at ORNL, including the HPRR, were shutdown by order of the Department of Energy at the time the intercomparison was performed. Planned exposures using a /sup 238/PuBe source were negated by a faulty timing mechanism. Based on accuracy and precision, direct interaction TLD dosimeters exhibited the best performance in PDIS 13 neutron measurements. They were followed, in order of best performance, by CR-39, TLD albedo, and film. The Li/sub 2/B/sub 4/O/sub 7/ type TLD dosimeters exhibited the best performance in PDIS 13 gamma measurements. They were followed by natural LiF, /sup 7/LiF, and film. 12 refs., 1 fig., 5 tabs.

  2. Interstitial /sup 252/Cf neutron therapy for glioblastoma multiforme

    SciTech Connect

    Maruyama, Y.; Chin, H.W.; Young, A.B.; Bean, J.; Tibbs, P.; Beach, J.L.

    1982-12-01

    /sup 252/Cf brachytherapy has been combined with whole brain photon beam therapy to 6000 rads in 5-7 weeks. In early phase I studies, all patients selected for study tolerated the procedure and the subsequent photon beam therapy. All showed improvement in performance status and decreased tumor size by CT scan evaluation, but it became clear that these tumors are of large size and bulk, produce marked adjacent brain edema, and require individualized implant therapy as well as high-dose external beam irradiation if response is to occur.

  3. A new facility for Non-Destructive Assay with a time-tagged {sup 252}Cf source

    SciTech Connect

    Stevanato, L.; Caldogno, M.; Hao Xin; Dima, R.; Fabris, D.; Nebbia, G.; Lunardon, M.; Moretto, S.; Pesente, S.; Viesti, G.; Sajo-Bohus, L.

    2010-08-04

    A new facility for non-destructive assay using a time-tagged {sup 252}Cf source is presented. The system is designed to analyze samples having maximum size of about 15x20 cm{sup 2}, the material recognition being obtained by measuring simultaneously transmission of neutrons and gamma rays.

  4. A new facility for non-destructive assay using a 252Cf source.

    PubMed

    Stevanato, L; Caldogno, M; Dima, R; Fabris, D; Hao, Xin; Lunardon, M; Moretto, S; Nebbia, G; Pesente, S; Pino, F; Sajo-Bohus, L; Viesti, G

    2013-03-01

    A new laboratory facility for non-destructive analysis (NDA) using a time-tagged (252)Cf source is presented. The system is designed to analyze samples having maximum size of about 20 × 25 cm(2), the material recognition being obtained by measuring simultaneously total and energy dependent transmission of neutrons and gamma rays. The equipment technical characteristics and performances of the NDA system are presented, exploring also limits due to the sample thickness. Some recent applications in the field of cultural heritage are presented. PMID:23276691

  5. Absolute measurement of anti. nu. /sub p/ for /sup 252/Cf using the ORNL large liquid scintillator neutron detector

    SciTech Connect

    Spencer, R.R.; Gwin, R.; Ingle, R.

    1981-08-01

    The ORNL large liquid scintillator detector was used in a precise determination of anti ..nu../sub p/, the number of neutrons emitted promptly, for spontaneous fission of /sup 252/Cf. Measurements of the detector efficiency over a broad energy region were made by means of a proton-recoil technique employing the ORELA white neutron source. Monte Carlo calculation of the detector efficiency for a spectrum representative of /sup 252/Cf fission neutrons was calibrated with these elaborate measurements. The unusually flat response of the neutron detector resulted in elimination of several known sources of error. Experimental measurement was coupled with calculational methods to correct for other known errors. These measurements lead to an unusually small estimated uncertainty of 0.2% in the value obtained, anti ..nu../sub p/ = 3.773 +- 0.007.

  6. A New Facility For Non-Destructive Assay With A Time-Tagged {sup 252}Cf Source

    SciTech Connect

    Stevanato, L.; Caldogno, M.; Hao, Xin; Dima, R.; Fabris, D.; Nebbia, G.; Lunardon, M.; Moretto, S.; Pesente, S.; Viesti, G.; Sajo-Bohus, L.

    2011-06-01

    A new facility for Non-Destructive Assay based on a time-tagged {sup 252}Cf spontaneous fission source is now in operation at the Padova University. The system is designed to analyze samples with dimensions on the order of 20x20 cm{sup 2}, the material recognition being obtained by measuring simultaneously transmission of neutrons and gamma rays as a function of energy.

  7. Intracavitary moderator balloon combined with 252Cf brachytherapy and boron neutron capture therapy, improving dosimetry in brain tumour and infiltrations

    PubMed Central

    Brandão, S F

    2015-01-01

    Objective: This article proposes a combination of californium-252 (252Cf) brachytherapy, boron neutron capture therapy (BNCT) and an intracavitary moderator balloon catheter applied to brain tumour and infiltrations. Methods: Dosimetric evaluations were performed on three protocol set-ups: 252Cf brachytherapy combined with BNCT (Cf-BNCT); Cf-BNCT with a balloon catheter filled with light water (LWB) and the same set-up with heavy water (HWB). Results: Cf-BNCT-HWB has presented dosimetric advantages to Cf-BNCT-LWB and Cf-BNCT in infiltrations at 2.0–5.0 cm from the balloon surface. However, Cf-BNCT-LWB has shown superior dosimetry up to 2.0 cm from the balloon surface. Conclusion: Cf-BNCT-HWB and Cf-BNCT-LWB protocols provide a selective dose distribution for brain tumour and infiltrations, mainly further from the 252Cf source, sparing the normal brain tissue. Advances in knowledge: Malignant brain tumours grow rapidly and often spread to adjacent brain tissues, leading to death. Improvements in brain radiation protocols have been continuously achieved; however, brain tumour recurrence is observed in most cases. Cf-BNCT-LWB and Cf-BNCT-HWB represent new modalities for selectively combating brain tumour infiltrations and metastasis. PMID:25927876

  8. 252Cf fission-neutron spectrum using a simplified time-of-flight setup: An advanced teaching laboratory experiment

    NASA Astrophysics Data System (ADS)

    Becchetti, F. D.; Febbraro, M.; Torres-Isea, R.; Ojaruega, M.; Baum, L.

    2013-02-01

    The removal of PuBe and AmBe neutron sources from many university teaching laboratories (due to heightened security issues) has often left a void in teaching various aspects of neutron physics. We have recently replaced such sources with sealed 252Cf oil-well logging sources (nominal 10-100 μCi), and developed several experiments using them as neutron sources. This includes a fission-neutron time-of-flight experiment using plastic scintillators, which utilizes the prompt γ rays emitted in 252Cf spontaneous fission as a fast timing start signal. The experiment can be performed with conventional nuclear instrumentation and a 1-D multi-channel pulse-height analyzer, available in most advanced teaching laboratories. Alternatively, a more sophisticated experiment using liquid scintillators and n/γ pulse-shape discrimination can be performed. Several other experiments using these neutron sources are also feasible. The experiments can introduce students to the problem of detecting the dark matter thought to dominate the universe and to the techniques used to detect contraband fissionable nuclear materials.

  9. The collinear cluster tri-partition (CCT) of 252Cf (sf): New aspects from neutron gated data

    NASA Astrophysics Data System (ADS)

    Pyatkov, Yu. V.; Kamanin, D. V.; von Oertzen, W.; Alexandrov, A. A.; Alexandrova, I. A.; Falomkina, O. V.; Jacobs, N.; Kondratjev, N. A.; Kuznetsova, E. A.; Lavrova, Yu. E.; Malaza, V.; Ryabov, Yu. V.; Strekalovsky, O. V.; Tyukavkin, A. N.; Zhuchko, V. E.

    2012-07-01

    Results of two different experiments for the study of fission of 252Cf (sf) events in coincidence with neutrons are reported. Two time-of-flight-energy (TOF- E detectors systems have been used. The fission fragment masses were obtained in a double arm coincidence set-up, where the missing mass in the binary decay is used to characterise ternary fission as a collinear cluster tri-partition (CCT). The 3He filled neutron counters have been arranged so as to detect principally neutrons emitted from an isotropic source in the laboratory frame. The fission events connected to the larger experimental neutron multiplicities show a wide range in the missing-mass spectrum, down to α -particles, carbon and oxygen isotopes. These are linked with magic nuclei in the binary mass-mass correlations of the fission fragments. These neutron gated data are virtually free from background events from scattered binary fission fragments. The ungated spectra are compared to those of the previous data from our previous article (Eur. Phys. J. A. 45, 29 (2010)), the observed structures agree well with the manifestations of the collinear cluster tri-partition of 252Cf (sf) observed earlier. Several new families of the CCT modes are observed.

  10. Brain tumour and infiltrations dosimetry of boron neutron capture therapy combined with 252Cf brachytherapy.

    PubMed

    Brandão, Sâmia F; Campos, Tarcísio P R

    2012-04-01

    This article presents a dosimetric investigation of boron neutron capture therapy (BNCT) combined with (252)Cf brachytherapy for brain tumour control. The study was conducted through computational simulation in MCNP5 code, using a precise and discrete voxel model of a human head, in which a hypothetical brain tumour was incorporated. A boron concentration ratio of 1:5 for healthy-tissue: tumour was considered. Absorbed and biologically weighted dose rates and neutron fluency in the voxel model were evaluated. The absorbed dose rate results were exported to SISCODES software, which generates the isodose surfaces on the brain. Analyses were performed to clarify the relevance of boron concentrations in occult infiltrations far from the target tumour, with boron concentration ratios of 1:1 up to 1:50 for healthy-tissue:infiltrations and healthy-tissue:tumour. The average biologically weighted dose rates at tumour area exceed up to 40 times the surrounding healthy tissue dose rates. In addition, the biologically weighted dose rates from boron have the main contribution at the infiltrations, especially far from primary tumour. In conclusion, BNCT combined with (252)Cf brachytherapy is an alternative technique for brain tumour treatment because it intensifies dose deposition at the tumour and at infiltrations, sparing healthy brain tissue.

  11. The sup 252 Cf(sf) neutron spectrum in the 5- to 20-MeV energy range

    SciTech Connect

    Marten, H.; Richter, D.; Seeliger, D. ); Fromm, W.D. ); Bottger, R.; Klein, H. )

    1990-11-01

    This paper reports on the {sup 252}Cf neutron spectrum measured at high energies with a miniature ionization chamber and two different NE-213 neutron detectors. The gamma-ray background and the main cosmic background caused by muons were suppressed by applying efficient pulse-shape discrimination. On the basis of two-dimensional spectroscopy of the neutron time-of-flight and scintillation pulse height, the sliding bias method is used to minimize experimental uncertainties. The experimental data, corrected for several systematic influences, confirm earlier results that show negative deviations from a reference Maxwellian distribution with a 1.42-MeV spectrum temperature for neutron energies above 6 MeV. Experimental results of this work are compared with various statistical model approaches to the {sup 252}Cf(sf) neutron spectrum.

  12. Detailed Study of the Angular Correlations in the Prompt Neutron Emission in Spontaneous Fission of 252Cf

    NASA Astrophysics Data System (ADS)

    Kopatch, Yu.; Chietera, A.; Stuttgé, L.; Gönnenwein, F.; Mutterer, M.; Gagarski, A.; Guseva, I.; Chernysheva, E.; Dorvaux, O.; Hambsch, F.-J.; Hanappe, F.; Mezentseva, Z.; Telezhnikov, S.

    An experiment has been performed at IPHC Strasbourg, aimed at the detailed investigation of angular correlations in the neutron emission from spontaneous fission of 252Cf. Fission fragments were measured by the angle-sensitive double ionization chamber CODIS while neutrons were detected by a set of 60 DEMON scintillator counters. The main aim of the experiment is the observation of the correlation between the fragment spins and neutron emission anisotropy. Preliminary results, based on the Monte-Carlo simulations, as well as the preliminary analysis of the experimental data are shown.

  13. Second malignancies following conventional or combined 252Cf neutron brachytherapy with external beam radiotherapy for breast cancer

    PubMed Central

    Valuckas, Konstantinas Povilas; Atkocius, Vydmantas; Kuzmickiene, Irena; Aleknavicius, Eduardas; Liukpetryte, Sarune; Ostapenko, Valerijus

    2013-01-01

    We retrospectively evaluated the risk of second malignancies among 832 patients with inner or central breast cancer treated with conventional external beam schedule (CRT group), or neutron brachytherapy using Californium-252 (252Cf) sources and hypofractionated external beam radiotherapy (HRTC group), between 1987 and 1996 at the Institute of Oncology, Vilnius University. Patients were observed until the occurrences of death or development of a second malignancy, or until 31 December 2009, whichever was earlier. Median follow-up time was 10.4 years (range, 1.2–24.1 years). Risk of second primary cancers was quantified using standardized incidence ratios (SIRs). Cox proportional hazards regression models were used to estimate hazard ratios (HRs). There was a significant increase in the risk of second primary cancers compared with the general population (SIR 1.3, 95% CI 1.1–1.5). The observed number of second primary cancers was also higher than expected for breast (SIR 1.8, 95% CI 1.3–2.4) and lung cancer (SIR 3.8, 95% CI 2.0–6.7). For second breast cancer, no raised relative risk was observed during the period ≥10 or more years after radiotherapy. Compared with the CRT group, HRTC patients had a not statistically significant higher risk of breast cancer. Increased relative risks were observed specifically for age at initial diagnosis of <50 years (HR 2.9, 95% CI 1.6–5.2) and for obesity (HR 2.8, 95% CI 1.1–7.2). PMID:23397075

  14. Analysis of linear energy transfers and quality factors of charged particles produced by spontaneous fission neutrons from 252Cf and 244Pu in the human body.

    PubMed

    Endo, Akira; Sato, Tatsuhiko

    2013-04-01

    Absorbed doses, linear energy transfers (LETs) and quality factors of secondary charged particles in organs and tissues, generated via the interactions of the spontaneous fission neutrons from (252)Cf and (244)Pu within the human body, were studied using the Particle and Heavy Ion Transport Code System (PHITS) coupled with the ICRP Reference Phantom. Both the absorbed doses and the quality factors in target organs generally decrease with increasing distance from the source organ. The analysis of LET distributions of secondary charged particles led to the identification of the relationship between LET spectra and target-source organ locations. A comparison between human body-averaged mean quality factors and fluence-averaged radiation weighting factors showed that the current numerical conventions for the radiation weighting factors of neutrons, updated in ICRP103, and the quality factors for internal exposure are valid.

  15. Description of the /sup 252/Cf(sf) neutron spectrum in the framework of a generalized Madland-Nix model

    SciTech Connect

    Marten, H.; Seeliger, D.

    1986-08-01

    The Madland-Nix model (MNM) for the calculation of fission neutron spectra is modified considering the dependence on fragment mass number A. Further, an approximation of this generalized Madland-Nix model (GMNM) that takes into account the different center-of-mass system spectra for the light and heavy fragment groups is discussed. These new calculations are compared with two versions of the original MNM. In particular, the level density parameter, which was adjusted by fitting the calculated spectra to a Maxwellian distribution deduced from experimental data, becomes more reasonable in the framework of the GMNM. The results of the different model calculations are compared with experimental data on the /sup 252/Cf(sf) neutron spectrum in the 0.1- to 20-MeV energy range.

  16. A comparison of the expected costs of high dose rate brachytherapy using 252Cf versus 192Ir.

    PubMed

    Rivard, Mark J; Kirk, Bernadette L; Stapleford, Liza J; Wazer, David E

    2004-12-01

    A cost analysis to compare high dose rate (HDR) brachytherapy using either californium-252 (252Cf) or 192Ir was performed to determine the prospects of widespread clinical implementation of HDR 252Cf. Interest in the neutron-emitting 252Cf radioisotope as a radiotherapy nuclide has undergone a resurgence given recent efforts to fabricate HDR remotely afterloaded sources, and other efforts to create a miniature source for improved accessibility to a variety of anatomic sites. Therefore, HDR 252Cf brachytherapy may prove to be a potential rival to the use of HDR 192Ir remotely afterloaded brachytherapy--the current standard-of-care treatment modality using HDR brachytherapy. Considering the possible improvements in clinical efficacy using HDR 252Cf brachytherapy and the enormous costs of other high-LET radiation sources, the cost differences between 252Cf and 192Ir may be well-justified.

  17. Status of the electron cyclotron resonance charge breeder for the {sup 252}Cf fission source project at ATLAS

    SciTech Connect

    Vondrasek, R. C.; Scott, R.; Carr, J.; Pardo, R. C.

    2008-02-15

    The construction of the Californium Rare Ion Breeder Upgrade, a new radioactive beam facility for the Argonne tandem linac accelerator system (ATLAS), is in progress. The facility will use fission fragments from a 1 Ci {sup 252}Cf source, thermalized and collected into a low-energy particle beam by a helium gas catcher. In order to reaccelerate these beams, the existing ATLAS ECR1 ion source has been redesigned to function as a charge breeder source. The design features, initial results, and status of this charge breeder configuration are presented.

  18. In-beam gamma-ray spectroscopy of {sup 248,250,252}Cf by neutron-transfer reactions using a Cf target

    SciTech Connect

    Takahashi, R.; Ishii, T.; Asai, M.; Nagae, D.; Makii, H.; Tsukada, K.; Toyoshima, A.; Ishii, Y.; Matsuda, M.; Makishima, A.; Shizuma, T.; Kohno, T.; Ogawa, M.

    2010-05-15

    The ground-state bands of {sup 248,250,252}Cf have been established up to the 10{sup +}, 12{sup +}, and 10{sup +} states, respectively, by in-beam gamma-ray spectroscopy using neutron-transfer reactions with a 153-MeV {sup 18}O beam and a highly radioactive Cf target. The deexcitation gamma rays in {sup 248,250,252}Cf were identified by taking coincidences with outgoing particles of {sup 16-19}O measured with Si DELTAE-E detectors, and by selecting their kinetic energies. Moments of inertia of {sup 248,250,252}Cf were discussed in terms of the N=152 deformed shell gap.

  19. Structures of the neutron-rich nuclei observed in fission of {sup 252}Cf

    SciTech Connect

    Ramayya, A. V.; Hamilton, J. H.; Goodin, C. J.; Brewer, N. T.; Hwang, J. K.; Luo, Y. X.; Liu, S. H.; Stone, N. J.; Daniel, A. V.; Zhu, S. J.

    2014-08-14

    Analysis of high statistics triple coincidence fission γ data from {sup 252}Cf at Gammasphere including angular correlations yielded well-expanded high-spin level schemes with more complete and reliable spin/parity assignments for {sup 82}Ge, {sup 118,120,122}Cd and {sup 114,115}Rh. Both the quasi-particle/hole couplings and quasi-rotational degrees of freedom are implied to play roles in these Cd isotopes. Evidence for triaxial shapes and octupole components in the Cd isotopes is presented. These Cd isotopes may have triaxial deformations. High-spin level schemes of {sup 114,115}Rh have been established for the first time. The existence of a relatively large signature splitting and an yrare band shows typical features of a triaxially deformed nucleus. Possible excited deformed rotational bands are observed, for the first time, in {sup 82}Ge. From the multipole mixing ratio measurement, the ground state configurations of {sup 109,111}Ru, as well as excited states in {sup 103,107}Mo and {sup 111}Ru were determined.

  20. Benchmark Experiments of Thermal Neutron and Capture Gamma-Ray Distributions in Concrete Using {sup 252}Cf

    SciTech Connect

    Asano, Yoshihiro; Sugita, Takeshi; Hirose, Hideyuki; Suzaki, Takenori

    2005-10-15

    The distributions of thermal neutrons and capture gamma rays in ordinary concrete were investigated by using {sup 252}Cf. Two subjects are considered. One is the benchmark experiments for the thermal neutron and the capture gamma-ray distributions in ordinary concrete. The thermal neutron and the capture gamma-ray distributions were measured by using gold-foil activation detectors and thermoluminescence detectors. These were compared with the simulations by using the discrete ordinates code ANISN with two different group structure types of cross-section library of a new Japanese version, JENDL-3.3, showing reasonable agreement with both fine and rough structure groups of thermal neutron energy. The other is a comparison of the simulations with two different cross-section libraries, JENDL-3.3 and ENDF/B-VI, for the deep penetration of neutrons in the concrete, showing close agreement in 0- to 100-cm-thick concrete. However, the differences in flux grow with an increase in concrete thickness, reaching up to approximately eight times near 4-m thickness.

  1. A feasibility study of [sup 252]Cf neutron brachytherapy, cisplatin + 5-FU chemo-adjuvant and accelerated hyperfractionated radiotherapy for advanced cervical cancer

    SciTech Connect

    Murayama, Y.; Wierzbicki, J. Univ. of Kentucky Medical Center, Lexington, KY ); Bowen, M.G.; Van Nagell, J.R.; Gallion, H.H.; DePriest, P. )

    1994-06-15

    The purpose was to evaluate the feasibility and toxicity of [sup 252]Cf neutron brachytherapy combined with hyperaccelerated chemoradiotherapy for Stage III and IV cervical cancers. Eleven patients with advanced Stage IIIB-IVA cervical cancers were treated with [sup 252]Cf neutron brachytherapy in an up-front schedule followed by cisplatin (CDDP; 50 mg/m[sup 2]) chemotherapy and hyperfractionated accelerated (1.2 Gy bid) radiotherapy given concurrently with intravenous infusion of 5-Fluorouracil (5-FU) (1000 mg/m[sup 2]/day [times] 4 days) in weeks 1 and 4 with conventional radiation (weeks 2, 3, 5, and 6). Total dose at a paracervical point A isodose surface was 80-85 Gy-eq by external and intracavitary therapy and 60 Gy at the pelvic sidewalls. Patients tolerated the protocol well. There was 91% compliance with the chemotherapy and full compliance with the [sup 252]Cf brachytherapy and the external beam radiotherapy. There were no problems with acute chemo or radiation toxicity. One patient developed a rectovaginal fistula (Grade 3-4 RTOG criteria) but no other patients developed significant late cystitis, proctitis or enteritis. There was complete response (CR) observed in all cases. With mean follow-up to 26 months, local control has been achieved with 90% actuarial 3-year survival with no evidence of disease (NED). [sup 252]Cf neutrons can be combined with cisplatin and 5-FU infusion chemotherapy plus hyperaccelerated chemoradiotherapy without unusual side effects or toxicity and with a high local response and tumor control rate. Further study of [sup 252]Cf neutron-chemoradiotherapy for advanced and bulky cervical cancer are indicated. The authors found chemotherapy was more effective with the improved local tumor control. 18 refs., 2 tabs.

  2. A probe for neutron activation analysis in a drill hole using 252Cf, and a Ge(Li) detector cooled by a melting cryogen

    USGS Publications Warehouse

    Tanner, A.B.; Moxham, R.M.; Senftle, F.E.; Baicker, J.A.

    1972-01-01

    A sonde has been built for high-resolution measurement of natural or neutron-induced gamma rays in boreholes. The sonde is 7.3 cm in diameter and about 2.2 m in length and weighs about 16 kg. The lithium-compensated germanium semiconductor detector is stabilized at -185 to -188??C for as much as ten hours by a cryostatic reservoir containing melting propane. During periods when the sonde is not in use the propane is kept frozen by a gravity-fed trickle of liquid nitrogen from a reservoir temporarily attached to the cryostat section. A 252Cf source, shielded from the detector, may be placed in the bottom section of the sonde for anlysis by measurement of neutron-activation or neutron-capture gamma rays. Stability of the cryostat with changing hydrostatic pressure, absence of vibration, lack of need for power to the cryostat during operation, and freedom of orientation make the method desirable for borehole, undersea, space, and some laboratory applications. ?? 1972.

  3. Fissible Deposit Characterization at the Former Oak Ridge K-25 Gaseous Diffusion Plant by {sup 252}CF-Source-Driven Measurements

    SciTech Connect

    Hannon, T.F.; Mihalczo, J.T.; Mullens, J.A.; Uckan, T.; Valentine, T.E.; Wyatt, M.S.

    1998-05-01

    largest deposits with the {sup 252}Cf-source-driven transmission (CFSDT) technique, an active neutron interrogation method developed for use at the Oak Ridge Y-12 Plant to identify nuclear weapons components in containers. The active CFSDT measurement technique uses CFSDT time-of-flight measurements of prompt neutrons and gamma rays from an externally introduced {sup 252}Cf source.

  4. Microarray analysis of DNA damage repair gene expression profiles in cervical cancer cells radioresistant to 252Cf neutron and X-rays

    PubMed Central

    2010-01-01

    Background The aim of the study was to obtain stable radioresistant sub-lines from the human cervical cancer cell line HeLa by prolonged exposure to 252Cf neutron and X-rays. Radioresistance mechanisms were investigated in the resulting cells using microarray analysis of DNA damage repair genes. Methods HeLa cells were treated with fractionated 252Cf neutron and X-rays, with a cumulative dose of 75 Gy each, over 8 months, yielding the sub-lines HeLaNR and HeLaXR. Radioresistant characteristics were detected by clone formation assay, ultrastructural observations, cell doubling time, cell cycle distribution, and apoptosis assay. Gene expression patterns of the radioresistant sub-lines were studied through microarray analysis and verified by Western blotting and real-time PCR. Results The radioresistant sub-lines HeLaNR and HeLaXR were more radioresisitant to 252Cf neutron and X-rays than parental HeLa cells by detecting their radioresistant characteristics, respectively. Compared to HeLa cells, the expression of 24 genes was significantly altered by at least 2-fold in HeLaNR cells. Of these, 19 genes were up-regulated and 5 down-regulated. In HeLaXR cells, 41 genes were significantly altered by at least 2-fold; 38 genes were up-regulated and 3 down-regulated. Conclusions Chronic exposure of cells to ionizing radiation induces adaptive responses that enhance tolerance of ionizing radiation and allow investigations of cellular radioresistance mechanisms. The insights gained into the molecular mechanisms activated by these "radioresistance" genes will lead to new therapeutic targets for cervical cancer. PMID:20184742

  5. Fluence-to-dose equivalent conversion factors for polyethylene-moderated {sup 252}Cf

    SciTech Connect

    Tanner, J.E.; Soldat, K.L.; Stewart, R.D.; Casson, W.H.

    1994-04-01

    Neutron measurements and calculations were conducted to characterize the polyethylene-moderated {sup 252}Cf source at Oak Ridge National Laboratory`s Radiation Calibration Laboratory (RADCAL). The 12-inch-diameter polyethylene sphere produces a highly scattered neutron spectrum which is more representative of most radiation fields found in the workplace than the D{sub 2}O-moderated {sup 252}Cf neutron spectrum typically used for dosimeter calibration. However, the energy-dependent fluence and dose equivalent must be well known before using such a source for radiation protection purposes. The measurements and calculations were performed as independent checks of the desired quantities which were the flux, the absorbed dose rate, the dose equivalent rate, and the average energy. These quantities were determined for the polyethylene sphere with and without an outer cadmium shell and compared with a D{sub 2}O-moderated {sup 252}Cf source.

  6. Results with the electron cyclotron resonance charge breeder for the 252Cf fission source project (Californium Rare Ion Breeder Upgrade) at Argonne Tandem Linac Accelerator System.

    PubMed

    Vondrasek, R; Kondrashev, S; Pardo, R; Scott, R; Zinkann, G P

    2010-02-01

    The construction of the Californium Rare Ion Breeder Upgrade, a new radioactive beam facility for the Argonne Tandem Linac Accelerator System (ATLAS), is nearing completion. The facility will use fission fragments from a 1 Ci (252)Cf source; thermalized and collected into a low-energy particle beam by a helium gas catcher. In order to reaccelerate these beams, an existing ATLAS electron cyclotron resonance (ECR) ion source was redesigned to function as an ECR charge breeder. Thus far, the charge breeder has been tested with stable beams of rubidium and cesium achieving charge breeding efficiencies of 9.7% into (85)Rb(17+) and 2.9% into (133)Cs(20+).

  7. On the Effect of an Error in a Standard D2O-Moderated 252Cf Energy Spectrum

    SciTech Connect

    Frederick Cummings

    2009-12-01

    There appears to be an error in the neutron fluence for neutrons with energies between 9 and 10 MeV for the tabulated D2O-moderated 252Cf source in ISO 8529-1. The error contributes a total error to neutron dose values from this source of approximately 3%.

  8. Results with the electron cyclotron resonance charge breeder for the {sup 252}Cf fission source project (Californium Rare Ion Breeder Upgrade) at Argonne Tandem Linac Accelerator System

    SciTech Connect

    Vondrasek, R.; Kondrashev, S.; Pardo, R.; Scott, R.; Zinkann, G. P.

    2010-02-15

    The construction of the Californium Rare Ion Breeder Upgrade, a new radioactive beam facility for the Argonne Tandem Linac Accelerator System (ATLAS), is nearing completion. The facility will use fission fragments from a 1 Ci {sup 252}Cf source; thermalized and collected into a low-energy particle beam by a helium gas catcher. In order to reaccelerate these beams, an existing ATLAS electron cyclotron resonance (ECR) ion source was redesigned to function as an ECR charge breeder. Thus far, the charge breeder has been tested with stable beams of rubidium and cesium achieving charge breeding efficiencies of 9.7% into {sup 85}Rb{sup 17+} and 2.9% into {sup 133}Cs{sup 20+}.

  9. A radiobiological model for the relative biological effectiveness of high-dose-rate 252Cf brachytherapy.

    PubMed

    Rivard, Mark J; Melhus, Christopher S; Zinkin, Heather D; Stapleford, Liza J; Evans, Krista E; Wazer, David E; Odlozilíková, Anna

    2005-09-01

    While there is significant clinical experience using both low- and high-dose-rate 252Cf brachytherapy, there are minimal data regarding values for the neutron relative biological effectiveness (RBE) with both modalities. The aim of this research was to derive a radiobiological model for 252Cf neutron RBE and to compare these results with neutron RBE values used clinically in Russia. The linear-quadratic (LQ) model was used as the basis to characterize cell survival after irradiation, with identical cell killing rates (S(N) = S(gamma)) between 252Cf neutrons and photons used for derivation of RBE. Using this equality, a relationship among neutron dose and LQ radiobiological parameter (i.e., alpha(N), beta(N), alpha(gamma), beta(gamma)) was obtained without the need to specify the photon dose. These results were used to derive the 252Cf neutron RBE, which was then compared with Russian neutron RBE values. The 252Cf neutron RBE was determined after incorporating the LQ radiobiological parameters obtained from cell survival studies with fast neutrons and teletherapy photons. For single-fraction high-dose-rate neutron doses of 0.5, 1.0, 1.5 and 2.0 Gy, the total biologically equivalent doses were 1.8, 3.4, 4.7 and 6.0 RBE Gy with 252Cf neutron RBE values of 3.2, 2.9, 2.7 and 2.5, respectively. Using clinical data for late-responding reactions from 252Cf, Russian investigators created an empirical model that predicted high-dose-rate 252Cf neutron RBE values ranging from 3.6 to 2.9 for similar doses and fractionation schemes and observed that 252Cf neutron RBE increases with the number of treatment fractions. Using these relationships, our results were in general concordance with high-dose-rate 252Cf RBE values obtained from Russian clinical experience.

  10. Neutron dosimetry, moderated energy spectrum, and neutron capture therapy for californium-252 medical sources

    NASA Astrophysics Data System (ADS)

    Rivard, Mark Joseph

    Examination of neutron dosimetry for 252Cf has been conducted using calculative and experimental means. Monte Carlo N-Particle (MCNP) transport code was used in a distributed computing environment as a parallel virtual machine (PVM) to determine the absorbed neutron dose and neutron energy spectrum from 252Cf in a variety of clinically relevant materials. Herein, a Maxwellian spectrum was used to model the 252Cf neutron emissions within these materials. 252Cf mixed-field dosimetry of Applicator Tube (AT) type sources was measured using 1.0 and 0.05 cm3 tissue-equivalent ion chambers and a miniature GM counter. A dosimetry protocol was formulated similar that of ICRU 45. The 252Cf AT neutron dosimetry was determined in the cylindrical coordinate system formalism recommended by the AAPM Task Group 43. These results demonstrated the overwhelming dependence of dosimetry on the source geometry factor as there was no significant neutron attenuation within the source or encapsulation. Gold foils and TLDs were used to measure the thermal flux in the vicinity of 252Cf AT sources to compare with the results calculated using MCNP. As the fast neutron energy spectrum did not markedly changed at increasing distances from the AT source, neutron dosimetry results obtained with paired ion chambers using fixed sensitivity factors agreed well with MCNP results and those in the literature. Calculations of moderated 252Cf neutron energy spectrum with various loadings of 10B and 157Gd were performed, in addition to analysis of neutron capture therapy dosimetry with these isotopes. Radiological concerns such as personnel exposure and shielding of 252Cf emissions were examined. Feasibility of a high specific-activity 252Cf HDR source was investigated through radiochemical and metallurgical studies using stand-ins such as Tb, Gd and 249Cf. Issues such as capsule burst strength due to helium production for a variety of proposed HDR sources were addressed. A recommended 252Cf source

  11. Compound dual radiation action theory for 252Cf brachytherapy.

    PubMed

    Wang, C K; Zhang, X

    2004-01-01

    The existing dosimetry protocol that uses the concept of RBE for 252Cf brachytherapy contains large uncertainties. A new formula has been developed to correlate the biological effect (i.e. cell survival fraction) resulting from a mixed n + gamma radiation field with two physical quantities and two biological quantities. The formula is based on a pathway model evolved from that of the compound-dual-radiation-action (CDRA) theory, previously proposed by Rossi and Zaider. The new model employs the recently published data on radiation-induced DNA lesions. The new formula is capable of predicting quantitatively the synergistic effect caused by the interactions between neutron events and gamma ray events, and it is intended to be included into a new dosimetry protocol for future 252Cf brachytherapy.

  12. A pneumatic transfer system for special form {sup 252}Cf

    SciTech Connect

    Gehrke, R.J.; Berry, S.M.; Grafwallner, E.G.; Hoggan, J.M.

    1996-09-01

    A pneumatic transfer system has been developed for use with series 100 Special Form {sup 252}Cf. It was developed to reduce the exposure to personnel handling sources of {sup 252}Cf with masses up to 150 {micro}g by permitting remotely activated two-way transfer between the storage container and the irradiation position. The pneumatic transfer system also permits transfers for reproducible repetitive irradiation periods. In addition to the storage container equipped with quick-release fittings, the transfer system consists of an irradiation station, a control box with momentary contact switches to activate the air-pressure control valves and indicators to identify the location of the source, and connecting air hose and electrical wire. A source of 20 psig air and 110 volt electrical power are required for operation of the transfer system which can be easily moved and set up by one individual in 5 to 10 minutes. Tests have shown that rarely does a source become lodged in the transfer tubing, but two methods have been developed to handle incomplete transfers of the {sup 252}Cf source. The first method consists of closing one air vent to allow a pressure impulse to propel the source to the opposite side. The second method applies to those {sup 252}Cf capsules with a threaded or tapped end to which a small ferromagnetic piece can be attached; an incompletely transferred source in the transfer tube can then be guided to a position of safety by surrounding the transfer tubing containing the capsule with a horseshoe magnet attached to the end of a long pole.

  13. Attributes and templates from active measurements with {sup 252}Cf

    SciTech Connect

    Mihalczo, J.T.; Mattingly, J.K.

    2000-02-01

    Active neutron interrogation is useful for the detection of shielded HEU and could also be used for Pu. In an active technique, fissile material is stimulated by an external neutron source to produce fission with the emanation of neutrons and gamma rays. The time distribution of particles leaving the fissile material is measured with respect to the source emission in a variety of ways. A variety of accelerator and radioactive sources can be used. Active interrogation of nuclear weapons/components can be used in two ways: template matching or attribute estimation. Template matching compares radiation signatures with known reference signatures and for treaty applications has the problem of authentication of the reference signatures along with storage and retrieval of templates. Attribute estimation determines, for example, the fissile mass from various features of the radiation signatures and does not require storage of radiation signatures but does require calibration, which can be repeated as necessary. A nuclear materials identification system (NMIS) has been in use at the Oak Ridge Y-12 Plant for verification of weapons components being received and in storage by template matching and has been used with calibrations for attribute (fissile mass) estimation for HEU metal. NMIS employs a {sup 252}Cf source of low intensity (< 2 x 10{sup 6} n/sec) such that the dose at 1 m is approximately twice that on a commercial airline at altitude. The use of such a source presents no significant safety concerns either for personnel or nuclear explosive safety, and has been approved for use at the Pantex Plant on fully assembled weapons systems.

  14. Test and evaluation results of the /sup 252/Cf shuffler at the Savannah River Plant

    SciTech Connect

    Crane, T.W.

    1981-03-01

    The /sup 252/Cf Shuffler, a nondestructive assay instrument employing californium neutron source irradiation and delayed-neutron counting, was developed for measuring /sup 235/U content of scrap and waste items generated at the Savannah River Plant (SRP) reactor fuel fabrication facility. The scrap and waste items include high-purity uranium-aluminum alloy ingots as well as pieces of castings, saw and lathe chips from machining operations, low-purity items such as oxides of uranium or uranium intermixed with flux materials found in recovery operations, and materials not recoverable at SRP such as floor sweepings or residues from the uranium scrap recovery operation. The uranium contains about 60% /sup 235/U with the remaining isotopes being /sup 236/U, /sup 238/U, and /sup 234/U in descending order. The test and evaluation at SRP concluded that the accuracy, safety, reliability, and ease of use made the /sup 252/Cf Shuffler a suitable instrument for routine use in an industrial, production-oriented plant.

  15. Production, distribution and applications of californium-252 neutron sources.

    PubMed

    Martin, R C; Knauer, J B; Balo, P A

    2000-01-01

    The radioisotope 252Cf is routinely encapsulated into compact, portable, intense neutron sources with a 2.6-yr half-life. A source the size of a person's little finger can emit up to 10(11) neutrons s(-1). Californium-252 is used commercially as a reliable, cost-effective neutron source for prompt gamma neutron activation analysis (PGNAA) of coal, cement and minerals, as well as for detection and identification of explosives, land mines and unexploded military ordinance. Other uses are neutron radiography, nuclear waste assays, reactor start-up sources, calibration standards and cancer therapy. The inherent safety of source encapsulations is demonstrated by 30 yr of experience and by US Bureau of Mines tests of source survivability during explosions. The production and distribution center for the US Department of Energy (DOE) Californium Program is the Radiochemical Engineering Development Center (REDC) at Oak Ridge National Laboratory (ORNL). DOE sells 252Cf to commercial reencapsulators domestically and internationally. Sealed 252Cf sources are also available for loan to agencies and subcontractors of the US government and to universities for educational, research and medical applications. The REDC has established the Californium User Facility (CUF) for Neutron Science to make its large inventory of 252Cf sources available to researchers for irradiations inside uncontaminated hot cells. Experiments at the CUF include a land mine detection system, neutron damage testing of solid-state detectors, irradiation of human cancer cells for boron neutron capture therapy experiments and irradiation of rice to induce genetic mutations.

  16. Shielding evaluation of a medical linear accelerator vault in preparation for installing a high-dose rate 252Cf remote afterloader.

    PubMed

    Melhus, C S; Rivard, M J; Kurkomelis, J; Liddle, C B; Massé, F X

    2005-01-01

    In support of the effort to begin high-dose rate 252Cf brachytherapy treatments at Tufts-New England Medical Center, the shielding capabilities of a clinical accelerator vault against the neutron and photon emissions from a 1.124 mg 252Cf source were examined. Outside the clinical accelerator vault, the fast neutron dose equivalent rate was below the lower limit of detection of a CR-39 etched track detector and below 0.14 +/- 0.02 muSv h(-1) with a proportional counter, which is consistent, within the uncertainties, with natural background. The photon dose equivalent rate was also measured to be below background levels (0.1 muSv h(-1)) using an ionisation chamber and an optically stimulated luminescence dosemeter. A Monte Carlo simulation of neutron transport through the accelerator vault was performed to validate measured values and determine the thermal-energy to low-energy neutron component. Monte Carlo results showed that the dose equivalent rate from fast neutrons was reduced by a factor of 100,000 after attenuation through the vault wall, and the thermal-energy neutron dose equivalent rate would be an additional factor of 1000 below that of the fast neutrons. Based on these findings, the shielding installed in this facility is sufficient for the use of at least 5.0 mg of 252Cf.

  17. Unconventional neutron sources for oil well logging

    NASA Astrophysics Data System (ADS)

    Frankle, C. M.; Dale, G. E.

    2013-09-01

    Americium-Beryllium (AmBe) radiological neutron sources have been widely used in the petroleum industry for well logging purposes. There is strong desire on the part of various governmental and regulatory bodies to find alternate sources due to the high activity and small size of AmBe sources. Other neutron sources are available, both radiological (252Cf) and electronic accelerator driven (D-D and D-T). All of these, however, have substantially different neutron energy spectra from AmBe and thus cause significantly different responses in well logging tools. We report on simulations performed using unconventional sources and techniques to attempt to better replicate the porosity and carbon/oxygen ratio responses a well logging tool would see from AmBe neutrons. The AmBe response of these two types of tools is compared to the response from 252Cf, D-D, D-T, filtered D-T, and T-T sources.

  18. 252Cf spectrum-averaged cross section for the 63Cu(n, p)63Ni reaction

    NASA Astrophysics Data System (ADS)

    Imamura, M.; Shibata, T.; Shibata, S.; Ohkubo, T.; Satoh, S.; Nogawa, N.

    1999-01-01

    The 63Ni produced by the 63Cu(n, p)63Ni reaction provides a unique measure to estimate the fast-neutron fluence of the Hiroshima/Nagasaki atomic bomb. In the similarity of the fission neutron spectrum of 252Cf to that of 235U, we have measured activation cross sections of the 63Cu(n, p)63Ni reaction averaged for the 252Cf fission spectrum.

  19. Biomedical neutron research at the Californium User Facility for neutron science

    SciTech Connect

    Martin, R.C.; Byrne, T.E.; Miller, L.F.

    1997-04-01

    The Californium User Facility for Neutron Science has been established at Oak Ridge National Laboratory (ORNL). The Californium User Facility (CUF) is a part of the larger Californium Facility, which fabricates and stores compact {sup 252}Cf neutron sources for worldwide distribution. The CUF can provide a cost-effective option for research with {sup 252}Cf sources. Three projects at the CUF that demonstrate the versatility of {sup 252}Cf for biological and biomedical neutron-based research are described: future establishment of a {sup 252}Cf-based neutron activation analysis system, ongoing work to produce miniature high-intensity, remotely afterloaded {sup 252}Cf sources for tumor therapy, and a recent experiment that irradiated living human lung cancer cells impregnated with experimental boron compounds to test their effectiveness for boron neutron capture therapy.

  20. NEUTRON ACTIVATION ANALYSIS APPLICATIONS AT THE SAVANNAH RIVER SITE USING AN ISOTOPIC NEUTRON SOURCE

    SciTech Connect

    Diprete, D; C Diprete, C; Raymond Sigg, R

    2006-08-14

    NAA using {sup 252}Cf is used to address important areas of applied interest at SRS. Sensitivity needs for many of the applications are not severe; analyses are accomplished using a 21 mg {sup 252}Cf NAA facility. Because NAA allows analysis of bulk samples, it offers strong advantages for samples in difficult-to-digest matrices when its sensitivity is sufficient. Following radiochemical separation with stable carrier addition, chemical yields for a number methods are determined by neutron activation of the stable carrier. In some of the cases where no suitable stable carriers exist, the source has been used to generate radioactive tracers to yield separations.

  1. Results with the electron cyclotron resonance charge breeder for the 252Cf fission source project (Californium Rare Ion Breeder Upgrade) at Argonne Tandem Linac Accelerator System

    NASA Astrophysics Data System (ADS)

    Vondrasek, R.; Kondrashev, S.; Pardo, R.; Scott, R.; Zinkann, G. P.

    2010-02-01

    The construction of the Californium Rare Ion Breeder Upgrade, a new radioactive beam facility for the Argonne Tandem Linac Accelerator System (ATLAS), is nearing completion. The facility will use fission fragments from a 1 Ci C252f source; thermalized and collected into a low-energy particle beam by a helium gas catcher. In order to reaccelerate these beams, an existing ATLAS electron cyclotron resonance (ECR) ion source was redesigned to function as an ECR charge breeder. Thus far, the charge breeder has been tested with stable beams of rubidium and cesium achieving charge breeding efficiencies of 9.7% into R85b17+ and 2.9% into C133s20+.

  2. Determination of the multiplication factor and its bias by the {sup 252}Cf-source technique: A method for code benchmarking with subcritical configurations

    SciTech Connect

    Perez, R.B.; Valentine, T.E.; Mihalczo, J.T.; Mattingly, J.K.

    1997-08-01

    A brief discussion of the Cf-252 source driven method for subcritical measurements serves as an introduction to the concept and use of the spectral ratio, {Gamma}. It has also been shown that the Monte Carlo calculation of spectral densities and effective multiplication factors have as a common denominator the transport propagator. This commonality follows from the fact that the Neumann series expansion of the propagator lends itself to the Monte Carlo method. On this basis a linear relationship between the spectral ratio and the effective multiplication factor has been shown. This relationship demonstrates the ability of subcritical measurements of the ratio of spectral densities to validate transport theory methods and cross sections.

  3. Production, Distribution, and Applications of Californium-252 Neutron Sources

    SciTech Connect

    Balo, P.A.; Knauer, J.B.; Martin, R.C.

    1999-10-03

    The radioisotope {sup 252}Cf is routinely encapsulated into compact, portable, intense neutron sources with a 2.6-year half-life. A source the size of a person's little finger can emit up to 10{sup 11} neutrons/s. Californium-252 is used commercially as a reliable, cost-effective neutron source for prompt gamma neutron activation analysis (PGNAA) of coal, cement, and minerals, as well as for detection and identification of explosives, laud mines, and unexploded military ordnance. Other uses are neutron radiography, nuclear waste assays, reactor start-up sources, calibration standards, and cancer therapy. The inherent safety of source encapsulations is demonstrated by 30 years of experience and by U.S. Bureau of Mines tests of source survivability during explosions. The production and distribution center for the U. S Department of Energy (DOE) Californium Program is the Radiochemical Engineering Development Center (REDC) at Oak Ridge National Laboratory (ORNL). DOE sells The radioisotope {sup 252}Cf is routinely encapsulated into compact, portable, intense neutron sources with a 2.6- year half-life. A source the size of a person's little finger can emit up to 10 neutrons/s. Californium-252 is used commercially as a reliable, cost-effective neutron source for prompt gamma neutron activation analysis (PGNAA) of coal, cement, and minerals, as well as for detection and identification of explosives, laud mines, and unexploded military ordnance. Other uses are neutron radiography, nuclear waste assays, reactor start-up sources, calibration standards, and cancer therapy. The inherent safety of source encapsulations is demonstrated by 30 years of experience and by U.S. Bureau of Mines tests of source survivability during explosions. The production and distribution center for the U. S Department of Energy (DOE) Californium Program is the Radiochemical Engineering Development Center (REDC) at Oak Ridge National Laboratory(ORNL). DOE sells {sup 252}Cf to commercial

  4. Comparison of fission modes in {sup 252}Cf, {sup 257}Fm, and {sup 260}Md

    SciTech Connect

    Aarle, J. van; Siemon, K.; Patzelt, P.; Wild, J. F.; Lougheed, R. W.; Westmeier, W.

    1998-10-26

    Although the spontaneous-fission properties of heavy actinides have been studied for well over 35 years, many interesting and informative details continue to come into light. During the last decade, the spontaneous fission of {sup 252}Cf, {sup 257}Fm and {sup 260}Md has been extensively investigated at the Philipps University of Marburg, by means of a gadolinium-doped liquid scintillation tank for neutron counting and surface barrier detectors for fission fragment detection. The three nuclides represent the transition from the well-known asymmetric fission yield distribution, as it is characteristic for {sup 252}Cf, to a much more symmetrical one, found in the fission of {sup 260}Md. Therefore, trends in the dynamical changes of fission properties have been derived from these studies. For the spontaneous fission of {sup 252}Cf and {sup 260}Md, it was already shown that different fission modes, as proposed by theoretical calculations of Brosa et al. (5), could be separated, using the correlation between the neutrons emitted in a fission event and both the observed fission-fragment mass and the total kinetic energy (1, 2). In the case of {sup 257}Fm, no theoretical calculations for fission modes exist. However, from the fission properties of the two surrounding actinides, one can expect at least three different fission modes, namely two 'standard' and the 'supershort' mode. In this paper, results from the recent {sup 257}Fm experiment will be presented and compared to systematics extracted from the fission properties of other heavy actinides.

  5. Radioactive Beams from 252Cf Fission Using a Gas Catcher and an ECR Charge Breeder at ATLAS

    SciTech Connect

    Savard, Guy; Pardo, Richard C.; Moore, E. Frank; Hecht, Adam A.; Baker, Sam

    2005-03-15

    A proposed upgrade to the radioactive beam capability of the ATLAS facility has been proposed using 252Cf fission fragments thermalized and collected into a low-energy particle beam using a helium gas catcher. In order to reaccelerate these beams the ATLAS ECR-I will be reconfigured as a charge breeder source. A 1Ci 252Cf source is expected to provide sufficient yield to deliver beams of up to {approx}103 far from stability ions per second on target. A brief facility description and the expected performance information are provided in this report.

  6. Comparison of fission modes in {sup 252}Cf, {sup 257}Fm, and {sup 260}Md

    SciTech Connect

    van Aarle, J.; Siemon, K.; Patzelt, P.; Wild, J.F.; Lougheed, R.W.; Westmeier, W.

    1998-10-01

    Although the spontaneous-fission properties of heavy actinides have been studied for well over 35 years, many interesting and informative details continue to come into light. During the last decade, the spontaneous fission of {sup 252}Cf, {sup 257}Fm and {sup 260}Md has been extensively investigated at the Philipps University of Marburg (1{endash}4), by means of a gadolinium-doped liquid scintillation tank for neutron counting and surface barrier detectors for fission fragment detection. The three nuclides represent the transition from the well-known asymmetric fission yield distribution, as it is characteristic for {sup 252}Cf, to a much more symmetrical one, found in the fission of {sup 260}Md. Therefore, trends in the dynamical changes of fission properties have been derived from these studies. For the spontaneous fission of {sup 252}Cf and {sup 260}Md, it was already shown that different fission modes, as proposed by theoretical calculations of Brosa et al. (5), could be separated, using the correlation between the neutrons emitted in a fission event and both the observed fission-fragment mass and the total kinetic energy (1, 2). In the case of {sup 257}Fm, no theoretical calculations for fission modes exist. However, from the fission properties of the two surrounding actinides, one can expect at least three different fission modes, namely two {open_quotes}standard{close_quotes} and the {open_quotes}supershort{close_quotes} mode. In this paper, results from the recent {sup 257}Fm experiment will be presented and compared to systematics extracted from the fission properties of other heavy actinides. {copyright} {ital 1998 American Institute of Physics.}

  7. Reactor production of sup 252 Cf and transcurium isotopes

    SciTech Connect

    Alexander, C.W.; Halperin, J.; Walker, R.L.; Bigelow, J.E.

    1990-01-01

    Berkelium, californium, einsteinium, and fermium are currently produced in the High Flux Isotope Reactor (HFIR) and recovered in the Radiochemical Engineering Development Center (REDC) at the Oak Ridge National Laboratory (ORNL). All the isotopes are used for research. In addition, {sup 252}Cf, {sup 253}Es, and {sup 255}Fm have been considered or are used for industrial or medical applications. ORNL is the sole producer of these transcurium isotopes in the western world. A wide range of actinide samples were irradiated in special test assemblies at the Fast Flux Test Facility (FFTF) at Hanford, Washington. The purpose of the experiments was to evaluate the usefulness of the two-group flux model for transmutations in the special assemblies with an eventual goal of determining the feasibility of producing macro amounts of transcurium isotopes in the FFTF. Preliminary results from the production of {sup 254g}Es from {sup 252}Cf will be discussed. 14 refs., 5 tabs.

  8. On replacing Am-Be neutron sources in compensated porosity logging tools.

    PubMed

    Peeples, Cody R; Mickael, Medhat; Gardner, Robin P

    2010-01-01

    Authors explored the direct replacement of Am-Be neutron sources in neutron porosity logging tools through Monte Carlo simulations using MCNP5. (252)Cf and electronic accelerator neutron sources based on the Deuterium-Tritium fusion reaction were considered. Between the sources, a tradeoff was noted between sensitivity to the presence of hydrogen and uncertainty due to counting statistics. It was concluded that both replacement sources as well as accelerator sources based on the Deuterium-Deuterium fusion reaction warrant further consideration as porosity log sources.

  9. Improvement in the practical implementation of neutron source strength calibration using prompt gamma rays.

    PubMed

    Khabaz, Rahim; Rene Vega-Carrillo, Hector

    2013-08-01

    In this study, the neutron emission rate from neutron sources using prompt gamma rays in hydrogen was determined, and several improvements were applied. Using Monte Carlo calculations, the best positions for the source, moderator and detector relative to each other were selected. For (241)Am-Be and (252)Cf sources, the sizes for polyethylene spheres with the highest efficiency were 12- and 10-inch, respectively. In addition, a new shielding cone was designed to account for scattered neutrons and gamma rays. The newly designed shielding cone, which is 45 cm in length, provided suitable attenuation for the source radiation.

  10. Microscopic cold fission yields of {sup 252}Cf

    SciTech Connect

    Mirea, M.; Delion, D. S.; Sandulescu, A.

    2010-04-15

    We show that the sharp maximum corresponding to {sup 107}Mo in the fragment distribution of the {sup 252}Cf cold fission is actually a Sn-like radioactivity, similar to other decay processes in which magic nuclei are involved, namely alpha decay and heavy cluster emission, also called Pb-like radioactivity. It turns out that the mass asymmetry degree of freedom has a key role in connecting initial Sn with the final Mo isotopes along the fission path. We investigate the cold rearrangement of nucleons within the framework of the two-center shell model in order to compute the cold valleys in the charge equilibrated fragmentation potential. The fission yields are estimated by using the semiclassical penetration approach. We consider 5 degrees of freedom, namely the interfragment distance, the shapes of fragments, the neck parameter, and mass asymmetry. We found an isomeric minimum between the internal and external barriers. It turns out that the inner cold valley of the total potential energy is connected to the doubly magic isotope {sup 132}Sn.

  11. Measurements of the neutron source strength at DIII-D

    SciTech Connect

    Heidbrink, W.W.; Taylor, P.L.; Phillips, J.A.

    1997-01-01

    A set of neutron counters and a pair of scintillators measure the 2.5 MeV neutron emission produced by the DIII-D tokamak. The neutron counter set provides a large dynamic range ({approximately}7 orders of magnitude) while the scintillators provide the very fast resolution needed for studying transient events. The counters are absolutely calibrated {ital in situ} with a {sup 252}Cf source and the scintillators are cross calibrated to the counters. The historic variations in the emission measured by the various detectors have been compared and are consistent within the estimated accuracy of the absolute calibration (15{percent}). In the discharges with the highest emission levels (2.4{times}10{sup 16} n/s), the signals from the neutron counters and the scintillators agree well. Comparisons with other diagnostics also corroborate the neutron measurements.{copyright} {ital 1997 American Institute of Physics.}

  12. Optimization of source-sample-detector geometries for bulk hydrogen analysis using epithermal neutrons.

    PubMed

    Csikai, J; Dóczi, R

    2009-01-01

    The advantages and limitations of epithermal neutrons in qualification of hydrocarbons via their H contents and C/H atomic ratios have been investigated systematically. Sensitivity of this method and the dimensions of the interrogated regions were determined for various types of hydrogenous samples. Results clearly demonstrate the advantages of direct neutron detection, e.g. by BF(3) counters as compared to the foil activation method in addition to using the hardness of the spectral shape of Pu-Be neutrons to that from a (252)Cf source.

  13. Collinear Cluster Tripartition as a Neutron Source--Evaluation of the Setup Parameters

    SciTech Connect

    Kamanin, D. V.; Kuznetsova, E. A.; Aleksandrov, A. A.; Aleksandrova, I. A.; Borzakov, S. B.; Chelnokov, M. L.; Pham Minh, D.; Kondratyev, N. A.; Kopach, Yu. N.; Panteleev, Ts.; Penionzhkevich, Yu. E.; Svirikhin, A. I.; Sokol, E. A.; Testov, D. A.; Zhuchko, V. E.; Yeremin, A. V.; Pyatkov, Yu. V.; Jacobs, N.; Ryabov, Yu. V.

    2010-04-30

    Forthcoming experiments aimed at studying the mechanism of collinear cluster tripartition are planning to be performed with the new facility. Charged products will be registered with the double arm time-of-flight spectrometer composed of mosaics of PIN -diodes and MCP (micro channel plates) based timing detectors. Several tens of {sup 3}He-filled counters will be gathered round the {sup 252}Cf source. In order to choose an optimal configuration of the neutron detector and other parameters of the experiment special modeling has performed using both 'neutron barrel' and known MCNP code. The first test run of the new facility is in progress also its 'neutron skin' in under construction.

  14. NSDUAZ unfolding package for neutron spectrometry and dosimetry with Bonner spheres.

    PubMed

    Vega-Carrillo, H R; Ortiz-Rodríguez, J M; Martínez-Blanco, M R

    2012-12-01

    NSDUAZ (Neutron Spectrometry and Dosimetry from the Universidad Autónoma de Zacatecas) is a user friendly neutron unfolding package for Bonner sphere spectrometer with (6)LiI(Eu) developed under LabView(®) environment. Unfolding is carried out using a recursive iterative procedure with the SPUNIT algorithm, where the starting spectrum is obtained from a library initial guess spectra to start the iterations. The NSDUAZ performance was evaluated using (252)Cf, (252)Cf/D(2)O, (241)AmBe neutron sources and the neutrons outside the radial beam port of a TRIGA Mark III nuclear reactor running to 10 W. PMID:22578610

  15. Detection of buried explosives using portable neutron sources with nanosecond timing.

    PubMed

    Kuznetsov, A V; Evsenin, A V; Gorshkov, I Yu; Osetrov, O I; Vakhtin, D N

    2004-07-01

    Significant reduction of time needed to identify hidden explosives and other hazardous materials by the "neutron in, gamma out" method has been achieved by introducing timed (nanosecond) neutron sources-the so-called nanosecond neutron analysis technique. Prototype mobile device for explosives' detection based on a timed (nanosecond) isotopic (252)Cf neutron source has been created. The prototype is capable of identifying 400 g of hidden explosives in 10 min. Tests have been also made with a prototype device using timed (nanosecond) neutron source based on a portable D-T neutron generator with built-in segmented detector of accompanying alpha-particles. The presently achieved intensity of the neutron generator is 5x10(7)n/s into 4pi, with over 10(6) of these neutrons being correlated with alpha-particles detected by the built-in alpha-particle detector. Results of measurements with an anti-personnel landmine imitator are presented. PMID:15145438

  16. AN INTERLABORATORY COMPARISON ON THE DETERMINATION OF 241Am, 244Cm AND 252Cf IN URINE.

    PubMed

    Gerstmann, Udo C; Taubner, Kerstin; Hartmann, Martina

    2016-09-01

    An intercomparison exercise on the determination of (241)Am, (244)Cm and (252)Cf in urine was performed. Since it was designed with regard to emergency preparedness, the detection limit for each nuclide was set to 0.1 Bq per 24-h urine sample. Most of the participating laboratories were established bioassay laboratories. However, some laboratories that routinely determine (241)Am only in environmental samples were also invited in order to explore their potential for emergency bioassay analysis. Another aspect of the intercomparison was to investigate the performance of all laboratories concerning the chemical yields of the (243)Am tracer in comparison with (244)Cm and (252)Cf. In summary, both types of laboratories showed good results. There was a negative bias for the results of (244)Cm and (252)Cf, which can be explained by slightly different radiochemical behaviours of americium, curium and californium and which is in agreement with results reported in the literature. PMID:26535001

  17. Quantitative NDA of isotopic neutron sources.

    PubMed

    Lakosi, L; Nguyen, C T; Bagi, J

    2005-01-01

    A non-destructive method for assaying transuranic neutron sources was developed, using a combination of gamma-spectrometry and neutron correlation technique. Source strength or actinide content of a number of PuBe, AmBe, AmLi, (244)Cm, and (252)Cf sources was assessed, both as a safety issue and with respect to combating illicit trafficking. A passive neutron coincidence collar was designed with (3)He counters embedded in a polyethylene moderator (lined with Cd) surrounding the sources to be measured. The electronics consist of independent channels of pulse amplifiers and discriminators as well as a shift register for coincidence counting. The neutron output of the sources was determined by gross neutron counting, and the actinide content was found out by adopting specific spontaneous fission and (alpha,n) reaction yields of individual isotopes from the literature. Identification of an unknown source type and constituents can be made by gamma-spectrometry. The coincidences are due to spontaneous fission in the case of Cm and Cf sources, while they are mostly due to neutron-induced fission of the Pu isotopes (i.e. self-multiplication) and the (9)Be(n,2n)(8)Be reaction in Be-containing sources. Recording coincidence rate offers a potential for calibration, exploiting a correlation between the Pu amount and the coincidence-to-total ratio. The method and the equipment were tested in an in-field demonstration exercise, with participation of national public authorities and foreign observers. Seizure of the illicit transport of a PuBe source was simulated in the exercise, and the Pu content of the source was determined. It is expected that the method could be used for identification and assay of illicit, found, or not documented neutron sources.

  18. True ternary fission, the collinear cluster tripartition (CCT) of {sup 252}Cf

    SciTech Connect

    Oertzen, W. von; Pyatkov, Y. V.; Kamanin, D.

    2012-10-20

    In systematic work over the last decade (see Pyatkov et al. [12] and refs therein), the ternary fission decay of heavy nuclei, in {sup 235}U(n,fff) and {sup 252}Cf(sf) has been studied in a collinear geometry. The name used for this process is (CCT), with three fragments of similar size in a collinear decay, it is the true ternary fission. This decay has been observed in spontaneous fission as well as in a neutron induced reaction. The measurements are based on different experimental set-ups, with binary coincidences containing TOF and energy determinations. With two detector telescopes placed at 180 Degree-Sign , the measurements of masses and energies of each of the registered two fragments, give complete kinematic solutions. Thus the missing mass events in binary coincidences can be determined, these events are obtained by blocking one of the lighter fragments on a structure in front of the detectors. The relatively high yield of CCT (more than 10{sup -3} per binary fission) is explained. It is due to the favourable Q-values (more positive than for binary) and the large phase space of the ternary CCT-decay, dominated by three (magic) clusters: e.g. isotopes of Sn, Ca and Ni, {sup 132}Sn+{sup 50}Ca+{sup 70}Ni. It is shown that the collinear (prolate) geometry has the favoured potential energy relative to the oblate shapes. The ternary fission is considered to be a sequential process. With this assumption the kinetic energies of the fragments have been calculated by Vijay et al.. The third fragments have very low kinetic energies (below 20 MeV) and have thus escaped their detection in previous work on 'ternary fission', where in addition an oblate shape and a triangle for the momentum vectors have been assumed.

  19. True ternary fission, the collinear cluster tripartition (CCT) of 252Cf

    NASA Astrophysics Data System (ADS)

    von Oertzen, W.; Pyatkov, Y. V.; Kamanin, D.

    2012-10-01

    In systematic work over the last decade (see Pyatkov et al. [12] and refs therein), the ternary fission decay of heavy nuclei, in 235U(n,fff) and 252Cf(sf) has been studied in a collinear geometry. The name used for this process is (CCT), with three fragments of similar size in a collinear decay, it is the true ternary fission. This decay has been observed in spontaneous fission as well as in a neutron induced reaction. The measurements are based on different experimental set-ups, with binary coincidences containing TOF and energy determinations. With two detector telescopes placed at 180°, the measurements of masses and energies of each of the registered two fragments, give complete kinematic solutions. Thus the missing mass events in binary coincidences can be determined, these events are obtained by blocking one of the lighter fragments on a structure in front of the detectors. The relatively high yield of CCT (more than 10-3 per binary fission) is explained. It is due to the favourable Q-values (more positive than for binary) and the large phase space of the ternary CCT-decay, dominated by three (magic) clusters: e.g. isotopes of Sn, Ca and Ni, 132Sn+50Ca+70Ni. It is shown that the collinear (prolate) geometry has the favoured potential energy relative to the oblate shapes. The ternary fission is considered to be a sequential process. With this assumption the kinetic energies of the fragments have been calculated by Vijay et al. [1]. The third fragments have very low kinetic energies (below 20 MeV) and have thus escaped their detection in previous work on "ternary fission", where in addition an oblate shape and a triangle for the momentum vectors have been assumed.

  20. Final report on Seed Money Project 3210-0346: Feasibility study for californium cold neutron source

    SciTech Connect

    Alsmiller, R.G.; Henderson, D.L.; Montgomery, B.H.

    1988-10-01

    A study has been completed of the feasibility and cost of building a cold neutron source that is not dependent on a reactor or accelerator. The neutron source is provided by up to ten /sup 252/Cf capsules, each containing 50 mg of the isotope produced in the High-Flux Isotope Reactor. The neutrons are moderated by heavy water and liquid deuterium to attain, in practice, a peak cold neutron flux of 1.4 /times/ 10/sup 13/ neutrons/(m/sup 2//center dot/s). The new facility would be located in the TURF Californium Facility. The estimated cost of the Californium Cold Neutron Source Facility is $6.5 million. 6 figs., 1 tab.

  1. Neutron interstitial brachytherapy for malignant gliomas: a pilot study

    SciTech Connect

    Patchell, R.A.; Maruyama, Y.; Tibbs, P.A.; Beach, J.L.; Kryscio, R.J.; Young, A.B.

    1988-01-01

    Fifty-six patients with malignant glioma were treated with implantation of the neutron-emitting element californium-252 (/sup 252/Cf) within 2 weeks after surgical debulking of the tumor. Implantation was performed using computerized tomography-guided placement of afterloading catheters, and the /sup 252/Cf sources were removed after approximately 300 neutron rads were delivered. Patients then received 6000 to 7000 conventional photon rads by external beam. The total photon-equivalent dose to the tumor ranged from 8100 to 9100 rads. The median survival time was 10 months, with 18-and 24-month survival rates of 28% and 19%, respectively. The results of reoperation or autopsy showed that patients had recurrence of the tumor but that radiation necrosis was restricted to the area of the original tumor. Serious complications occurred in five patients (9%) and consisted of wound infections in three, cerebral edema in one, and radiation necrosis beyond the original tumor margin in one. Previous studies using external-beam neutron radiation have shown that neutrons are capable of totally eradicating malignant gliomas; however, in most cases, unacceptable widespread radiation necrosis has resulted. Neutron implants are a logical way to increase the dose to the tumor and decrease the dose to normal brain. Interstitial neutron radiation can be given safely with /sup 252/Cf, and the survival results achieved by radiation alone using relatively low doses of interstitial neutron radiation from /sup 252/Cf implants plus conventional photon radiation were equal to the results attained with any currently available conventional therapy.

  2. Investigation and optimisation of mobile NaI(Tl) and 3He-based neutron detectors for finding point sources

    NASA Astrophysics Data System (ADS)

    Nilsson, Jonas M. C.; Finck, Robert R.; Rääf, Christopher

    2015-06-01

    Neutron radiation produces high-energy gamma radiation through (n,γ) reactions in matter. This can be used to detect neutron sources indirectly using gamma spectrometers. The sensitivity of a gamma spectrometer to neutrons can be amplified by surrounding it with polyvinyl chloride (PVC). The hydrogen in the PVC acts as a moderator and the chlorine emits prompt gammas when a neutron is captured. A 4.7-l 3He-based mobile neutron detector was compared to a 4-l NaI(Tl)-detector covered with PVC using this principle. Methods were also developed to optimise the measurement parameters of the systems. The detector systems were compared with regard to their ability to find 241AmBe, 252Cf and 238Pu-13C neutron sources. Results from stationary measurements were used to calculate optimal integration times as well as minimum detectable neutron emission rates. It was found that the 3He-based detector was more sensitive to 252Cf sources whereas the NaI(Tl) detector was more sensitive to 241AmBe and 238Pu-13C sources. The results also indicated that the sensitivity of the detectors to sources at known distances could theoretically be improved by 60% by changing from fixed integration times to list mode in mobile surveys.

  3. Moderator design studies for a new neutron reference source based on the D-T fusion reaction

    NASA Astrophysics Data System (ADS)

    Mozhayev, Andrey V.; Piper, Roman K.; Rathbone, Bruce A.; McDonald, Joseph C.

    2016-06-01

    The radioactive isotope Californium-252 (252Cf) is relied upon internationally as a neutron calibration source for ionizing radiation dosimetry because of its high specific activity. The source may be placed within a heavy-water (D2O) moderating sphere to produce a softened spectrum representative of neutron fields common to commercial nuclear power plant environments, among others. Due to termination of the U.S. Department of Energy loan/lease program in 2012, the expense of obtaining 252Cf sources has undergone a significant increase, rendering high output sources largely unattainable. On the other hand, the use of neutron generators in research and industry applications has increased dramatically in recent years. Neutron generators based on deuteriumtritium (D-T) fusion reaction provide high neutron fluence rates and, therefore, could possibly be used as a replacement for 252Cf. To be viable, the 14 MeV D-T output spectrum must be significantly moderated to approximate common workplace environments. This paper presents the results of an effort to select appropriate moderating materials and design a configuration to reshape the primary neutron field toward a spectrum approaching that from a nuclear power plant workplace. A series of Monte-Carlo (MCNP) simulations of single layer high- and low-Z materials are used to identify initial candidate moderators. Candidates are refined through a similar series of simulations involving combinations of 2-5 different materials. The simulated energy distribution using these candidate moderators are rated in comparison to a target spectrum. Other properties, such as fluence preservation and/or enhancement, prompt gamma production and other characteristics are also considered.

  4. Neutron source

    DOEpatents

    Cason, J.L. Jr.; Shaw, C.B.

    1975-10-21

    A neutron source which is particularly useful for neutron radiography consists of a vessel containing a moderating media of relatively low moderating ratio, a flux trap including a moderating media of relatively high moderating ratio at the center of the vessel, a shell of depleted uranium dioxide surrounding the moderating media of relatively high moderating ratio, a plurality of guide tubes each containing a movable source of neutrons surrounding the flux trap, a neutron shield surrounding one part of each guide tube, and at least one collimator extending from the flux trap to the exterior of the neutron source. The shell of depleted uranium dioxide has a window provided with depleted uranium dioxide shutters for each collimator. Reflectors are provided above and below the flux trap and on the guide tubes away from the flux trap.

  5. NEUTRON SOURCES

    DOEpatents

    Richmond, J.L.; Wells, C.E.

    1963-01-15

    A neutron source is obtained without employing any separate beryllia receptacle, as was formerly required. The new method is safer and faster, and affords a source with both improved yield and symmetry of neutron emission. A Be container is used to hold and react with Pu. This container has a thin isolating layer that does not obstruct the desired Pu--Be reaction and obviates procedures previously employed to disassemble and remove a beryllia receptacle. (AEC)

  6. Dynamics and energetics of a /sup 251/Cf-/sup 252/Cf power system

    SciTech Connect

    Harms, A.A. ); Cripps, G. )

    1988-06-01

    A combination fission-radioisotope compact power system involving the synergistic interaction of /sup 251/Cf and /sup 252/Cf is considered. Based on a nonlinear point kinetics formulation of the coupled reactions combined with the parametric incorporation of design and operational variables, it is shown that a stable autonomous power mode is readily attainable. This system appears particularly suitable for very long-life unattended operation for space and terrestrial applications.

  7. Determination of the optimum-size californium-252 neutron source for borehole capture gamma-ray analysis

    USGS Publications Warehouse

    Senftle, F.E.; Macy, R.J.; Mikesell, J.L.

    1979-01-01

    The fast- and thermal-neutron fluence rates from a 3.7 ??g 252Cf neutron source in a simulated borehole have been measured as a function of the source-to-detector distance using air, water, coal, iron ore-concrete mix, and dry sand as borehole media. Gamma-ray intensity measurements were made for specific spectral lines at low and high energies for the same range of source-to-detector distances in the iron ore-concrete mix and in coal. Integral gamma-ray counts across the entire spectrum were also made at each source-to-detector distance. From these data, the specific neutron-damage rate, and the critical count-rate criteria, we show that in an iron ore-concrete mix (low hydrogen concentration), 252Cf neutron sources of 2-40 ??g are suitable. The source size required for optimum gamma-ray sensitivity depends on the energy of the gamma ray being measured. In a hydrogeneous medium such as coal, similar measurements were made. The results show that sources from 2 to 20 ??g are suitable to obtain the highest gamma-ray sensitivity, again depending on the energy of the gamma ray being measured. In a hydrogeneous medium, significant improvement in sensitivity can be achieved by using faster electronics; in iron ore, it cannot. ?? 1979 North-Holland Publishing Co.

  8. QUALIFICATION OF THE SAVANNAH RIVER SITE 252CF SHUFFLER FOR RECEIPT VERIFICATION MEASUREMENTS OF MIXED U-PU OXIDES STORED IN 9975 SHIPPING CONTAINERS

    SciTech Connect

    Dubose, F.

    2011-05-26

    To extend their ability to perform accountability and verification measurements of {sup 235}U in a U-Pu oxide matrix, the K-Area Material Storage facility commissioned the development and construction of a Passive/Active {sup 252}Cf Shuffler. A series of {sup 252}Cf, PuO{sub 2}, and U-Pu oxide standards, in addition to a single U{sub 3}O{sub 8} standard, were measured to characterize and calibrate the shuffler. Accompanying these measurements were simulations using MCNP5/MCNPX, aimed at isolating the neutron countrate contributions for each of the isotopes present. Two calibration methods for determining the {sup 235}U content in mixed UPu oxide were then developed, yielding comparable results. The first determines the {sup 235}U mass by estimating the {sup 239}Pu/{sup 235}U ratio-dependent contributions from the primary delayed neutron contributors. The second defines an average linear response based on the {sup 235}U and {sup 239}Pu mass contents. In each case, it was observed that self-shielding due to {sup 235}U mass has a large influence on the observed rates, requiring bounds on the applicable limits of each calibration method.

  9. A thermal neutron source imager using coded apertures

    SciTech Connect

    Vanier, P.E.; Forman, L.; Selcow, E.C.

    1995-08-01

    To facilitate the process of re-entry vehicle on-site inspections, it would be useful to have an imaging technique which would allow the counting of deployed multiple nuclear warheads without significant disassembly of a missile`s structure. Since neutrons cannot easily be shielded without massive amounts of materials, they offer a means of imaging the separate sources inside a sealed vehicle. Thermal neutrons carry no detailed spectral information, so their detection should not be as intrusive as gamma ray imaging. A prototype device for imaging at close range with thermal neutrons has been constructed using an array of {sup 3}He position-sensitive gas proportional counters combined with a uniformly redundant coded aperture array. A sealed {sup 252}Cf source surrounded by a polyethylene moderator is used as a test source. By means of slit and pinhole experiments, count rates of image-forming neutrons (those which cast a shadow of a Cd aperture on the detector) are compared with the count rates for background neutrons. The resulting ratio, which limits the available image contrast, is measured as a function of distance from the source. The envelope of performance of the instrument is defined by the contrast ratio, the angular resolution, and the total count rate as a function of distance from the source. These factors will determine whether such an instrument could be practical as a tool for treaty verification.

  10. Calibration of neutron albedo dosemeters.

    PubMed

    Schwartz, R B; Eisenhauer, C M

    2002-01-01

    It is shown that by calibrating neutron albedo dosemeters under the proper conditions, two complicating effects will essentially cancel out, allowing accurate calibrations with no need for explicit corrections. The 'proper conditions' are: a large room (> or = 8 m on a side). use of a D2O moderated 252Cf source, and a source-to-phantom calibration distance of approximately 70 cm. PMID:12212898

  11. NEUTRON SOURCE

    DOEpatents

    Reardon, W.A.; Lennox, D.H.; Nobles, R.G.

    1959-01-13

    A neutron source of the antimony--beryllium type is presented. The source is comprised of a solid mass of beryllium having a cylindrical recess extending therein and a cylinder containing antimony-124 slidably disposed within the cylindrical recess. The antimony cylinder is encased in aluminum. A berylliunn plug is removably inserted in the open end of the cylindrical recess to completely enclose the antimony cylinder in bsryllium. The plug and antimony cylinder are each provided with a stud on their upper ends to facilitate handling remotely.

  12. Identification of high spin states in {sup 134}I from {sup 252}Cf fission

    SciTech Connect

    Liu, S. H.; Hamilton, J. H.; Ramayya, A. V.; Hwang, J. K.; Daniel, A. V.; Ter-Akopian, G. M.; Luo, Y. X.; Rasmussen, J. O.; Zhu, S. J.; Ma, W. C.

    2009-06-15

    High spin states in {sup 134}I were identified for the first time based on measurements of prompt {gamma} rays from the spontaneous fission of {sup 252}Cf at Gammasphere. Five excited levels with five deexciting transitions were observed. The mass number was assigned based on the intensity of transitions in the complementary Rh fragments. Angular correlations for the first two transitions in {sup 134}I and for high spin states in {sup 133,135,136}I were performed, but were not sufficient to firmly assign the spins and parities in {sup 134}I.

  13. Bremsstrahlung emission of high energy accompanying spontaneous fission of {sup 252}Cf

    SciTech Connect

    Maydanyuk, S. P.; Olkhovsky, V. S.; Mandaglio, G.; Manganaro, M.; Fazio, G.; Giardina, G.

    2010-07-15

    The study of the bremsstrahlung photon emission accompanying fragments produced in the spontaneous fission of heavy nuclei by a fully quantum approach is presented for the first time. This kind of problem requires the knowledge of wave functions of the fissioning system leading to a wide distribution of couples of fragments that are the products of fission. With the aim of obtaining these wave functions, the interaction potential between the emitted fragment and residual nucleus is calculated by a standard approach. A new procedure was performed that allows an increase in the accuracy of calculations of radial integrals in the far asymptotic region and the achievement of the convenient convergence in calculations of the spectra. The total probability of the emitted photons in the spontaneous fission of {sup 252}Cf was calculated in such a way. We obtained good agreement between theory and experimental data up to 38 MeV for the bremsstrahlung spectrum of photons while the calculation of the total probability of photon emission accompanying fragments was performed up to an energy of 60 MeV. The analysis of contributions in the bremsstrahlung spectrum accompanying the emission of light, medium, and heavy fragments in the fission of {sup 252}Cf is presented.

  14. Application of 252Cf plasma desorption mass spectrometry in dental research

    NASA Astrophysics Data System (ADS)

    Fritsch, Hans-Walter; Schmidt, Lothar; Köhl, Peter; Jungclas, Hartmut; Duschner, Heins

    1993-07-01

    Topically applied fluorides introduced in dental hygiene products elevate the concentration levels of fluoride in oral fluids and thus also affect chemical reactions of enamel de- and remineralisation. The chemical reactions on the surface of tooth enamel still are a subject of controversy. Here 252Cf-plasma desorption mass spectrometry and argon ion etching are used to analyse the molecular structure of the upper layes of enamel. The mass spectrum of untreated enamel is characterised by a series of cluster ions containing phosphate. It is evident that under certain conditions the molecular structure of the surface enamel is completely transformed by treatment with fluorides. The result of the degradation and precipitation processes is reflected by a total replacement of the phosphate by fluoride in the measured cluster ion distribution. Stepwise etching of the upper layers by Ar+ ions reveals the transition from a nearly pure CaF2 structure to the unchanged composition of the enamel mineral.

  15. Relative Yields of 149-153Pr in Spontaneous Fission of 252Cf

    NASA Astrophysics Data System (ADS)

    Eldridge, Jonathan; Wang, Enhong; Hwang, J. K.; Hamilton, Joe; Ramayya, A. V.; Luo, Y. X.; Rasmussen, J. O.; Zhu, S. J.; Liu, S. H.; Ter-Akopian, G. M.; Oganessian, Yu. Ts.

    2013-10-01

    The relative yields of the fission partners of 149-153Pr, resulting from the spontaneous fission of 252Cf, were studied. This study was done by means of γ - γ - γ , and γ - γ - γ - γ coincidence data taken in 2000 by the multi-HPGe, Compton-suppressed, gamma detector array, Gammasphere, at Lawrence Berkeley National Lab. The coincidence data were analyzed by double- and triple-gating on transitions in 149-153Pr and obtaining the intensities of the 93-101Y transitions. For 150 , 151 , 152 , 153Pr the 3n channel was found to be the strongest. The 149Pr, however, was found to peak at the 4n channel. These results were used to verify the assignments of the level schemes of 151 , 152 , 153Pr. The data are found to be in agreement with Wahl's independent yield tables.

  16. French comparison exercise with the rotating neutron spectrometer, 'ROSPEC'.

    PubMed

    Crovisier, P; Asselineau, B; Pelcot, G; Van-Ryckeghem, L; Cadiou, A; Truffert, H; Groetz, J E; Benmosbah, M

    2005-01-01

    The French laboratories in charge of 'neutron' dosimetry using the spectrometer 'ROSPEC', formed a working group in 2001. The participants began to study the behaviour of the instrument with a comparison exercise in broad energy neutron fields recommended by the International Organisation for Standardisation (ISO) and available at the LMDN in Cadarache. The complete version of the ROSPEC is made up of six spherical proportional counters fixed to a rotating platform. These counters cover different energy ranges which overlap each other to provide a link between the detectors, within the energy range from thermal neutrons to 4.5 MeV. The irradiation configurations chosen were ISO standard sources (252Cf, (252Cf+D2O)(/Cd), 241Am-Be) and the SIGMA facility. The results show that the 'thermal and epithermal' neutron fluence was widely overestimated by the spectrometer in all configurations.

  17. Multimodal fission and neutron evaporation

    SciTech Connect

    Brosa, U.

    1988-10-01

    The average multiplicities nu-bar(A) of prompt neutrons emitted in the spontaneous fission of /sup 252/Cf and /sup 258/Fm are derived. Two new features are predicted: A simple sawtooth for /sup 258/Fm and a triple one for /sup 252/Cf. Experiments to check these predictions should be feasible now.

  18. Neutron detector characterization for SCINTIA array

    SciTech Connect

    Matei, C.; Hambsch, F. J.; Oberstedt, S.

    2011-07-01

    SCINTIA is a new detector array of organic scintillators under development at the Inst. for Reference Materials and Measurements (IRMM). The present design of SCINTIA includes NE213, p-terphenyl and Li glass neutron detectors positioned in a spherical configuration around the target. The properties of a novel p-terphenyl neutron detector to be used with SCINTIA have been investigated using photon sources and neutrons from a time tagged {sup 252}Cf(sf) source. The results show that the p-terphenyl crystal has better energy resolution, increased proton light output and neutron efficiency when compared to a similar size NE213 equivalent neutron detector. (authors)

  19. Design of a californium-based epithermal neutron beam for neutron capture therapy.

    PubMed

    Yanch, J C; Kim, J K; Wilson, M J

    1993-08-01

    The potential of the spontaneously fissioning isotope, 252Cf, to provide epithermal neutrons for use in boron neutron capture therapy (BNCT) has been investigated using Monte Carlo simulation. The Monte Carlo code MCNP was used to design an assembly composed of a 26 cm long, 11 cm radius cylindrical D2O moderator followed by a 64 cm long Al filter. Lithium filters are placed between the moderator and the filter and between the Al and the patient. A reflector surrounding the moderator/filter assembly is required in order to maintain adequate therapy flux at the patient position. An ellipsoidal phantom composed of skull- and brain-equivalent material was used to determine the dosimetric effect of this beam. It was found that both advantage depths and advantage ratios compare very favourably with reactor and accelerator epithermal neutron sources. The dose rate obtainable, on the other hand, is 4.1 RBE cGy min-1, based on a very large (1.0 g) source of 252Cf. This dose rate is two to five times lower than those provided by existing reactor beams and can be viewed as a drawback of using 252Cf as a neutron source. Radioisotope sources, however, do offer the advantage of in-hospital installation.

  20. NEUTRON SOURCE

    DOEpatents

    Bernander, N.K. et al.

    1960-10-18

    An apparatus is described for producing neutrons through target bombardment with deuterons. Deuterium gas is ionized by electron bombardment and the deuteron ions are accelerated through a magnetic field to collimate them into a continuous high intensity beam. The ion beam is directed against a deuteron pervious metal target of substantially the same nnaterial throughout to embed the deuterous therein and react them to produce neutrons. A large quantity of neutrons is produced in this manner due to the increased energy and quantity of ions bombarding the target.

  1. Passive neutron assay of heterogeneous waste drums using the segmented Add-a-Source method

    SciTech Connect

    Menlove, H.O.

    1995-07-01

    We have developed passive neutron detectors that include the Add-a-Source (AS) technique to improve the accuracy of the nondestructive assay of plutonium in large waste containers. We have improved the AS by incorporating multiple positions for the {sup 252}Cf source on the exterior of a 200-L drum. The multiple positions give a better coverage of the drum and have the effect of segmenting the matrix as a function of fill height. We have applied the multiposition AS to the assay of drums with heterogeneous matrix combinations of concrete, polyethylene, wood, paper, and metal. The measurement errors caused by the matrix significantly reduced by the AS technique and anomalous shielding material in the drum can be flagged for more detailed investigation.

  2. Digitized two-parameter spectrometer for neutron-gamma mixed field

    SciTech Connect

    Matej, Z.; Cvachovec, J.; Prenosil, V.; Cvachovec, F.; Zaritski, S.

    2011-07-01

    This paper shows the results of digital processing of output pulses from combined photon-neutron detector using a commercially available digitizer ACQUIRIS DP 210. The advantage of digital processing is reduction of the apparatus in weight and size, acceleration of measurement, and increased resistance to pile-up of pulses. The neutron and photon spectrum of radionuclide source {sup 252}Cf is presented. (authors)

  3. Development of a new method for measurement of neutron detector efficiency up to 20 MeV

    DOE PAGES

    Kornilov, N. V.; Grimes, S. M.; Massey, T. N.; Brient, C. E.; Carter, D. E.; O'Donnell, J. E.; Bateman, F. B.; Carlson, A. D.; Haight, R. C.; Boukharouba, N.

    2014-09-03

    A new approach to neutron detector efficiency has been taken. A neutron detector has been calibrated with a 252Cf source at low energy. The calibration can be extended to energies above 8 MeV based on the 252Cf results. The techniques uses the fact that the cross section for a symmetric reaction with nucleus of atomic number A yielding a final nucleus with atomic number (2A-1) and a neutron A + A → (2A – 1) + n. This reaction must be symmetric about 90° in the center-of-mass system. Furthermore, the laboratory energies for the neutrons at the paired energies differmore » substantially. Thus, an efficiency known at one of the two angles can be used to determine the efficiency to higher energies or, for a negative Q, to lower neutron energies.« less

  4. Determining plutonium mass in spent fuel using Cf-252 interrogation with prompt neutron detection

    SciTech Connect

    Hu, Jianwei; Tobin, Stephen J; Menlove, Howard O; Croft, Stephen

    2010-01-01

    {sup 252}Cf Interrogation with Prompt Neutron (CIPN) detection is proposed as one of 14 NDA techniques to determine Pu mass in spent fuel assemblies (FAs). CIPN is a low-cost and portable instrument, and it looks like a modified fork detector combined with an active interrogation source. Fission chamber (FC) is chosen as neutron detector because of its insensitivity to {gamma} radiation. The CIPN assay is comprised of two measurements, a background count and an active count, without and with the {sup 252}Cf source next to the fuel respectively. The net signal above background is primarily due to the multiplication of Cf source neutrons caused by the fissile content. The capability of CIPN to detect diversion and to determine fissile content was quantified using MCNPX simulations. New schemes were proposed (such as burnup and cooling time correction, etc.) and the results show that the fissile content of a target spent fuel assembly can be determined using CIPN signal.

  5. All possible ternary fragmentations of {sup 252}Cf in collinear configuration

    SciTech Connect

    Manimaran, K.; Balasubramaniam, M.

    2011-03-15

    All possible ternary fragmentations in fission of {sup 252}Cf are studied in collinear configuration within a spherical approximation using the recently proposed ''three cluster model.'' The potential energy surface of collinear configuration exhibits a strong valley around {sup 48}Ca and its neighboring nuclei {sup 50}Ca, {sup 54}Ti, and {sup 60}Cr. Such strong minima are not seen in the potential energy surface of an equatorial configuration. As a consequence of strong minima in the potential, the overall relative yield is higher for the ternary fragmentation with {sup 48}Ca, {sup 50}Ca, {sup 54}Ti, {sup 60}Cr, and {sup 82}Ge as the third fragment. The results of potential energy and relative yield calculations reveal that collinear configuration increases the probability of emission of heavy fragments like {sup 48}Ca (doubly magic nucleus) and its neighboring nuclei as the third fragment. The obtained results indicate that the collinear configuration is the preferred configuration for intermediate nuclei ({sup 48}Ca, {sup 50}Ca, {sup 54}Ti, and {sup 60}Cr) as the third fragment in particle accompanied fission while the equatorial configuration may be a preferred configuration for light nuclei ({sup 4}He, {sup 10}Be) as the third fragment.

  6. Calibration of a Manganese Bath Relative to 252Cf Nu-Bar

    NASA Astrophysics Data System (ADS)

    Gilliam, David M.; Yue, Andrew T.; Scott Dewey, M.

    2009-08-01

    A large manganese sulfate bath is employed at the National Institute of Standards and Technology (NIST) to calibrate isotopic neutron sources relative to the national standard neutron source NBS-I. In the past few years many low-emission Cf-252 neutron sources have been calibrated for testing of neutron detectors for the U.S. Department of Homeland Security (DHS). The low-emission DHS sources are about a factor of 100 lower in emission rate than NBS-I, so that background fluctuations become more significant in making accurate calibrations. To verify and improve the calibrations relative to NBS-I, a new calibration for sealed Cf-252 neutron sources has been made by measuring the fission rate of a bare Cf-252 deposit and inferring its neutron emission rate from Cf-252 nu-bar, the well-established neutron multiplicity of spontaneous fission in Cf-252. The fission rate of the bare deposit was measured by counting fission fragments in vacuum with a surface barrier detector behind an aperture and spacer, which provided a well-defined solid angle for detection. A thin polyimide film was placed just above the Cf deposit to prevent contamination of the detector by self-sputtering of the Cf material in vacuum. Tests with additional layers of polyimide were performed to observe any perturbation in the detection efficiency due to scattering or absorption of alpha particles or fission fragments in the polyimide film. The increase in the background count rate due to accumulation of Cf on the polyimide film was less than 0.02% of the fission fragment count rate from the sample, at the end of all runs. It is estimated that this increase in background would have been about 150 times higher without the polyimide film. The sealed Cf source NIST-DHSA was compared to the bare source by relative neutron counting in an assembly of polyethylene moderator and He-3 detectors. The calibration via Cf-252 nu-bar gave a result that was 1.7% higher than the previous calibration relative to NBS

  7. Development of a thin scintillation films fission-fragment detector and a novel neutron source

    NASA Astrophysics Data System (ADS)

    Rusev, G.; Jandel, M.; Baramsai, B.; Bond, E. M.; Bredeweg, T. A.; Couture, A.; Daum, J. K.; Favalli, A.; Ianakiev, K. D.; Iliev, M. L.; Mosby, S.; Roman, A. R.; Springs, R. K.; Ullmann, J. L.; Walker, C. L.

    2015-08-01

    Investigation of prompt fission and neutron-capture Υ rays from fissile actinide samples at the Detector for Advanced Neutron Capture Experiments (DANCE) requires use of a fission-fragment detector to provide a trigger or a veto signal. A fission-fragment detector based on thin scintillating films and silicon photomultipliers has been built to serve as a trigger/veto detector in neutron-induced fission measurements at DANCE. The fissile material is surrounded by scintillating films providing a 4π detection of the fission fragments. The scintillations were registered with silicon photomultipliers. A measurement of the 235U(n,f) reaction with this detector at DANCE revealed a correct time-of-flight spectrum and provided an estimate for the efficiency of the prototype detector of 11.6(7)%. Design and test measurements with the detector are described. A neutron source with fast timing has been built to help with detector-response measurements. The source is based on the neutron emission from the spontaneous fission of 252Cf and the same type of scintillating films and silicon photomultipliers. Overall time resolution of the source is 0.3 ns. Design of the source and test measurements with it are described. An example application of the source for determining the neutron/gamma pulse-shape discrimination by a stilbene crystal is given.

  8. Development of a thin scintillation films fission-fragment detector and a novel neutron source

    DOE PAGES

    Rusev, Gencho Yordanov; Jandel, Marian; Baramsai, Bayarbadrakh; Bond, Evelyn M.; Bredeweg, Todd Allen; Couture, Aaron Joseph; Daum, Jaimie Kay; Favalli, Andrea; Ianakiev, Kiril Dimitrov; Iliev, Metodi L.; et al

    2015-08-26

    Here, investigation of prompt fission and neutron-capture Υ rays from fissile actinide samples at the Detector for Advanced Neutron Capture Experiments (DANCE) requires use of a fission-fragment detector to provide a trigger or a veto signal. A fission-fragment detector based on thin scintillating films and silicon photomultipliers has been built to serve as a trigger/veto detector in neutron-induced fission measurements at DANCE. The fissile material is surrounded by scintillating films providing a 4π detection of the fission fragments. The scintillations were registered with silicon photomultipliers. A measurement of the 235U(n,f) reaction with this detector at DANCE revealed a correct time-of-flightmore » spectrum and provided an estimate for the efficiency of the prototype detector of 11.6(7)%. Design and test measurements with the detector are described. A neutron source with fast timing has been built to help with detector-response measurements. The source is based on the neutron emission from the spontaneous fission of 252Cf and the same type of scintillating films and silicon photomultipliers. Overall time resolution of the source is 0.3 ns. Design of the source and test measurements with it are described. An example application of the source for determining the neutron/gamma pulse-shape discrimination by a stilbene crystal is given.« less

  9. Use of GEANT4 vs. MCNPX for the characterization of a boron-lined neutron detector

    NASA Astrophysics Data System (ADS)

    van der Ende, B. M.; Atanackovic, J.; Erlandson, A.; Bentoumi, G.

    2016-06-01

    This work compares GEANT4 with MCNPX in the characterization of a boron-lined neutron detector. The neutron energy ranges simulated in this work (0.025 eV to 20 MeV) are the traditional domain of MCNP simulations. This paper addresses the question, how well can GEANT4 and MCNPX be employed for detailed thermal neutron detector characterization? To answer this, GEANT4 and MCNPX have been employed to simulate detector response to a 252Cf energy spectrum point source, as well as to simulate mono-energetic parallel beam source geometries. The 252Cf energy spectrum simulation results demonstrate agreement in detector count rate within 3% between the two packages, with the MCNPX results being generally closer to experiment than are those from GEANT4. The mono-energetic source simulations demonstrate agreement in detector response within 5% between the two packages for all neutron energies, and within 1% for neutron energies between 100 eV and 5 MeV. Cross-checks between the two types of simulations using ISO-8529 252Cf energy bins demonstrates that MCNPX results are more self-consistent than are GEANT4 results, by 3-4%.

  10. Correction and verification of AECL Bonner Sphere response matrix based on mono-energetic neutron calibration performed at NPL.

    PubMed

    Atanackovic, J; Thomas, D J; Roberts, N J; Witharana, S; Dubeau, J; Yonkeu, A

    2014-10-01

    The AECL Bonner Sphere Spectrometer (BSS) was taken to National Physical Laboratory (NPL) for calibration in mono-energetic neutron fields and bare (252)Cf neutron fields. The mono-energetic radiations were performed using ISO-8529 prescribed neutron energies: 0.071, 0.144, 0.565, 1.2, 5 and 17 MeV. A central SP9 proportional counter was also evaluated at the NPL thermal neutron calibration facility in order to assess an effective pressure of (3)He inside the counter, i.e. number density of (3)He atoms. Based on these measurements and methods outlined by Thomas and Soochak, a new BSS response matrix was generated. The response matrix is then verified by unfolding spectra corresponding to various neutron fields. Those are NPL bare (252)Cf source, National Institute of Standards and Technology bare and heavy water moderated (252)Cf source and (241)AmBe calibration source located at National Research Council. A good agreement was observed with expected neutron fluence rates, as well as derived dosimetric quantities, such as International Commission on Radiological Protection-74 ambient dose equivalent.

  11. Neutron Calibration Facilities of the Irsn Research Laboratory in External Dosimetry

    NASA Astrophysics Data System (ADS)

    van Ryckeghem, L.; Lacoste, V.; Pelcot, G.; Pochat, J.-L.

    2003-06-01

    The Laboratory of Studies and Research in External Dosimetry (LRDE) associated to the National Office for Metrology (BNM) has to maintain the traceability of the French references for the calibration of neutron dosimeters. The LRDE owns a facility which provides some conventional neutron spectra from sources of 241Am-Be, 252Cf, and (252Cf + D2O)/Cd recommended by ISO standards. These ISO spectra appear not appropriated to simulate some kind of workplace spectra. In order to have similar radiation conditions between the calibration and the use of the device, LRDE has built facilities ("SIGMA" and "CANEL") providing some neutron spectra from thermal to fast energies reproducing those encountered in workplaces.

  12. Coal liquefaction process streams characterization and evaluation: The application of {sup 252}Cf-plasma desorption mass spectrometry to analysis of direct coal liquefaction heavy products

    SciTech Connect

    Larsen, J.W.; Lapucha, A.R.

    1992-10-01

    This study demonstrated the feasibility of using {sup 252}Cf PDMS, GPC, and MPLC for the examination of the tetrahydrofuran (THF)-soluble portion of distillation resid materials derived from direct coal liquefaction. The {sup 252}Cf-PDMS technique was used to determine molecular weight distributions of twenty-five THF-soluble resids. In order to detemine if {sup 252}Cf-PDMS responds differently to different chemical classes of compounds, Lehigh separated five of the samples into chemically distinct fractions by MPLC, then analyzed the parent samples, their fractions, and the re-mixed fractions by {sup 252}Cf-PDMS and GPC. Irreversible alteration of the samples upon separation was noted by Lehigh. This was confirmed by use of gas chromatographic (GC) analyses. The noted irreversible alterations prevented a direct comparison of the remixed materials and the original samples. Thus, the selective response of {sup 252}Cf-PDMS to different chemical classes of compounds could not be confirmed or ruled out. The number average molecular weights (M{sub n}) obtained by {sup 252}Cf-PDMS and GPC agreed well. However, the weight average molecular weights (M{sub w}) obtained by GPC are always higher than the corresponding {sup 252}Cf-PDMS results. Number average molecular weights and weight average molecular weights obtained with {sup 252}Cf-PDMS and GPC were compared with those obtained by field ionization mass spectrometry (FIMS), previously reported by SRI International for the parent resid samples from which the Lehigh THF-soluble samples were derived.

  13. Coal liquefaction process streams characterization and evaluation: The application of [sup 252]Cf-plasma desorption mass spectrometry to analysis of direct coal liquefaction heavy products

    SciTech Connect

    Larsen, J.W.; Lapucha, A.R.

    1992-10-01

    This study demonstrated the feasibility of using [sup 252]Cf PDMS, GPC, and MPLC for the examination of the tetrahydrofuran (THF)-soluble portion of distillation resid materials derived from direct coal liquefaction. The [sup 252]Cf-PDMS technique was used to determine molecular weight distributions of twenty-five THF-soluble resids. In order to detemine if [sup 252]Cf-PDMS responds differently to different chemical classes of compounds, Lehigh separated five of the samples into chemically distinct fractions by MPLC, then analyzed the parent samples, their fractions, and the re-mixed fractions by [sup 252]Cf-PDMS and GPC. Irreversible alteration of the samples upon separation was noted by Lehigh. This was confirmed by use of gas chromatographic (GC) analyses. The noted irreversible alterations prevented a direct comparison of the remixed materials and the original samples. Thus, the selective response of [sup 252]Cf-PDMS to different chemical classes of compounds could not be confirmed or ruled out. The number average molecular weights (M[sub n]) obtained by [sup 252]Cf-PDMS and GPC agreed well. However, the weight average molecular weights (M[sub w]) obtained by GPC are always higher than the corresponding [sup 252]Cf-PDMS results. Number average molecular weights and weight average molecular weights obtained with [sup 252]Cf-PDMS and GPC were compared with those obtained by field ionization mass spectrometry (FIMS), previously reported by SRI International for the parent resid samples from which the Lehigh THF-soluble samples were derived.

  14. Performance of the electronic personal dosemeter for neutron 'Saphydose-N' at different workplaces of nuclear facilities.

    PubMed

    Lahaye, T; Chau, Q; Ménard, S; Lacoste, V; Muller, H; Luszik-Bhadra, M; Reginatto, M; Bruguier, P

    2006-01-01

    This paper mainly aims at presenting the measurements and the results obtained with the electronic personal neutron dosemeter Saphydose-N at different facilities. Three campaigns were led in the frame of the European contract EVIDOS ('Evaluation of Individual Dosimetry in Mixed Neutron and Photon Radiation Fields'). The first one consisted in the measurements at the IRSN French research laboratory in reference neutron fields generated by a thermal facility (SIGMA), radionuclide ISO sources ((241)AmBe; (252)Cf; (252)Cf(D(2)O)\\Cd) and a realistic spectrum (CANEL/T400). The second one was performed at the Krümmel Nuclear Power Plant (Germany) close to the boiling water reactor and to a spent fuel transport cask. The third one was realised at Mol (Belgium), at the VENUS Research Reactor and at Belgonucléaire, a fuel processing factory.

  15. Lifetimes in neutron-rich fission fragments using the differential recoil distance method

    SciTech Connect

    Kruecken, R.; Chou, W.-T.; Cooper, J. R.; Beausang, C. W.; Barton, C. J.; Caprio, M. A.; Casten, R. F.; Hecht, A. A.; Novak, J. R.; Pietralla, N.

    2001-07-01

    Lifetimes in the neutron-rich nuclei {sup 104}Mo, {sup 110}Ru, and {sup 144}Ba were measured using the differential recoil distance method. The experiment was performed with a {sup 252}Cf fission source inside the New Yale Plunger Device. {gamma} rays were detected by the SPEctrometer for Experiments with Doppler shifts at Yale (SPEEDY) while fission fragments with the appropriate kinematics were detected by an array of photocells.

  16. Reliability of Monte Carlo simulations in modeling neutron yields from a shielded fission source

    NASA Astrophysics Data System (ADS)

    McArthur, Matthew S.; Rees, Lawrence B.; Czirr, J. Bart

    2016-08-01

    Using the combination of a neutron-sensitive 6Li glass scintillator detector with a neutron-insensitive 7Li glass scintillator detector, we are able to make an accurate measurement of the capture rate of fission neutrons on 6Li. We used this detector with a 252Cf neutron source to measure the effects of both non-borated polyethylene and 5% borated polyethylene shielding on detection rates over a range of shielding thicknesses. Both of these measurements were compared with MCNP calculations to determine how well the calculations reproduced the measurements. When the source is highly shielded, the number of interactions experienced by each neutron prior to arriving at the detector is large, so it is important to compare Monte Carlo modeling with actual experimental measurements. MCNP reproduces the data fairly well, but it does generally underestimate detector efficiency both with and without polyethylene shielding. For non-borated polyethylene it underestimates the measured value by an average of 8%. This increases to an average of 11% for borated polyethylene.

  17. Intense fusion neutron sources

    NASA Astrophysics Data System (ADS)

    Kuteev, B. V.; Goncharov, P. R.; Sergeev, V. Yu.; Khripunov, V. I.

    2010-04-01

    The review describes physical principles underlying efficient production of free neutrons, up-to-date possibilities and prospects of creating fission and fusion neutron sources with intensities of 1015-1021 neutrons/s, and schemes of production and application of neutrons in fusion-fission hybrid systems. The physical processes and parameters of high-temperature plasmas are considered at which optimal conditions for producing the largest number of fusion neutrons in systems with magnetic and inertial plasma confinement are achieved. The proposed plasma methods for neutron production are compared with other methods based on fusion reactions in nonplasma media, fission reactions, spallation, and muon catalysis. At present, intense neutron fluxes are mainly used in nanotechnology, biotechnology, material science, and military and fundamental research. In the near future (10-20 years), it will be possible to apply high-power neutron sources in fusion-fission hybrid systems for producing hydrogen, electric power, and technological heat, as well as for manufacturing synthetic nuclear fuel and closing the nuclear fuel cycle. Neutron sources with intensities approaching 1020 neutrons/s may radically change the structure of power industry and considerably influence the fundamental and applied science and innovation technologies. Along with utilizing the energy produced in fusion reactions, the achievement of such high neutron intensities may stimulate wide application of subcritical fast nuclear reactors controlled by neutron sources. Superpower neutron sources will allow one to solve many problems of neutron diagnostics, monitor nano-and biological objects, and carry out radiation testing and modification of volumetric properties of materials at the industrial level. Such sources will considerably (up to 100 times) improve the accuracy of neutron physics experiments and will provide a better understanding of the structure of matter, including that of the neutron itself.

  18. Spectral correction factors for conventional neutron dosemeters used in high-energy neutron environments.

    PubMed

    Lee, K W; Sheu, R J

    2015-04-01

    High-energy neutrons (>10 MeV) contribute substantially to the dose fraction but result in only a small or negligible response in most conventional moderated-type neutron detectors. Neutron dosemeters used for radiation protection purpose are commonly calibrated with (252)Cf neutron sources and are used in various workplace. A workplace-specific correction factor is suggested. In this study, the effect of the neutron spectrum on the accuracy of dose measurements was investigated. A set of neutron spectra representing various neutron environments was selected to study the dose responses of a series of Bonner spheres, including standard and extended-range spheres. By comparing (252)Cf-calibrated dose responses with reference values based on fluence-to-dose conversion coefficients, this paper presents recommendations for neutron field characterisation and appropriate correction factors for responses of conventional neutron dosemeters used in environments with high-energy neutrons. The correction depends on the estimated percentage of high-energy neutrons in the spectrum or the ratio between the measured responses of two Bonner spheres (the 4P6_8 extended-range sphere versus the 6″ standard sphere).

  19. On the effect of an error in a standard D2O-moderated 252Cf energy spectrum.

    PubMed

    Cummings, F M

    2009-12-01

    There appears to be an error in the neutron fluence for neutrons with energies between 9 and 10 MeV for the tabulated D2O-moderated Cf source in ISO 8529-1. If the referenced spectrum is used as tabulated, the error contributes a total error to neutron dose values from this source of approximately 3%.

  20. Neutron sources and applications

    SciTech Connect

    Price, D.L.; Rush, J.J.

    1994-01-01

    Review of Neutron Sources and Applications was held at Oak Brook, Illinois, during September 8--10, 1992. This review involved some 70 national and international experts in different areas of neutron research, sources, and applications. Separate working groups were asked to (1) review the current status of advanced research reactors and spallation sources; and (2) provide an update on scientific, technological, and medical applications, including neutron scattering research in a number of disciplines, isotope production, materials irradiation, and other important uses of neutron sources such as materials analysis and fundamental neutron physics. This report summarizes the findings and conclusions of the different working groups involved in the review, and contains some of the best current expertise on neutron sources and applications.

  1. Detailed dose distribution prediction of Cf-252 brachytherapy source with boron loading dose enhancement.

    PubMed

    Ghassoun, J; Mostacci, D; Molinari, V; Jehouani, A

    2010-02-01

    The purpose of this work is to evaluate the dose rate distribution and to determine the boron effect on dose rate distribution for (252)Cf brachytherapy source. This study was carried out using a Monte Carlo simulation. To validate the Monte Carlo computer code, the dosimetric parameters were determined following the updated TG-43 formalism and compared with current literature data. The validated computer code was then applied to evaluate the neutron and photon dose distribution and to illustrate the boron loading effect.

  2. Thermal neutron analysis (TNA) explosive detection based on electronic neutron generators

    SciTech Connect

    Lee, W.; Mahood, D.B.; Ryge, P.

    1994-12-31

    Thermal neutron analysis explosive detection systems have been developed and demonstrated for inspection of checked airline baggage and for detection of buried land mines. Thermal neutrons from a moderated neutron source impinge on the inspected object and the resulting capture gamma ray signatures provide detection information. Isotopic neutron sources, e.g. {sup 252}Cf, are compact, economical and reliable, but they are subject to the licensing requirements, safety concerns and public perception problems associated with radioactive material. These are mitigated by use of an electronic neutron generator - an ion accelerator with a target producing neutrons by a nuclear reaction such as D(d,n){sup 3}He or {sup 9}Be(d,n){sup 10}B. With suitable moderator designs based on neutron transport codes, operational explosive detection systems can be build and would provide effective alternatives to radioactive neutron sources. Calculations as well as laboratory and field experience with three generator types will be presented.

  3. Pulsed spallation neutron sources

    SciTech Connect

    Carpenter, J.M.

    1996-05-01

    This paper reviews the early history of pulsed spallation neutron source development ar Argonne and provides an overview of existing sources world wide. A number of proposals for machines more powerful than currently exist are under development, which are briefly described. The author reviews the status of the Intense Pulsed Neutron Source, its instrumentation, and its user program, and provide a few examples of applications in fundamental condensed matter physics, materials science and technology.

  4. Pulsed spallation Neutron Sources

    SciTech Connect

    Carpenter, J.M.

    1994-12-31

    This paper reviews the early history of pulsed spallation neutron source development at Argonne and provides an overview of existing sources world wide. A number of proposals for machines more powerful than currently exist are under development, which are briefly described. The author reviews the status of the Intense Pulsed Neutron Source, its instrumentation, and its user program, and provides a few examples of applications in fundamental condensed matter physics, materials science and technology.

  5. MCNP SIMULATION OF THE HP(10) ENERGY RESPONSE OF A BRAZILIAN TLD ALBEDO NEUTRON INDIVIDUAL DOSEMETER, FROM THERMAL TO 20 MeV.

    PubMed

    Freitas, B M; Martins, M M; Pereira, W W; da Silva, A X; Mauricio, C L P

    2016-09-01

    The Brazilian Instituto de Radioproteção e Dosimetria (IRD) runs a neutron individual monitoring system with a home-made TLD albedo dosemeter. It has already been characterised and calibrated in some reference fields. However, the complete energy response of this dosemeter is not known, and the calibration factors for all monitored workplace neutron fields are difficult to be obtained experimentally. Therefore, to overcome such difficulties, Monte Carlo simulations have been used. This paper describes the simulation of the HP(10) neutron response of the IRD TLD albedo dosemeter using the MCNPX transport code, for energies from thermal to 20 MeV. The validation of the MCNPX modelling is done comparing the simulated results with the experimental measurements for ISO standard neutron fields of (241)Am-Be, (252)Cf, (241)Am-B and (252)Cf(D2O) and also for (241)Am-Be source moderated with paraffin and silicone. Bare (252)Cf are used for normalisation. PMID:26276807

  6. Analysis of the scintillation mechanism in a pressurized {sup 4}He fast neutron detector using pulse shape fitting

    SciTech Connect

    Kelley, R.P. Ray, H.; Jordan, K.A.; Murer, D.

    2015-03-15

    An empirical investigation of the scintillation mechanism in a pressurized {sup 4}He gas fast neutron detector was conducted using pulse shape fitting. Scintillation signals from neutron interactions were measured and averaged to produce a single generic neutron pulse shape from both a {sup 252}Cf spontaneous fission source and a (d,d) neutron generator. An expression for light output over time was then developed by treating the decay of helium excited states in the same manner as the decay of radioactive isotopes. This pulse shape expression was fitted to the measured neutron pulse shape using a least-squares optimization algorithm, allowing an empirical analysis of the mechanism of scintillation inside the {sup 4}He detector. A further understanding of this mechanism in the {sup 4}He detector will advance the use of this system as a neutron spectrometer. For {sup 252}Cf neutrons, the triplet and singlet time constants were found to be 970 ns and 686 ns, respectively. For neutrons from the (d,d) generator, the time constants were found to be 884 ns and 636 ns. Differences were noted in the magnitude of these parameters compared to previously published data, however the general relationships were noted to be the same and checked with expected trends from theory. Of the excited helium states produced from a {sup 252}Cf neutron interaction, 76% were found to be born as triplet states, similar to the result from the neutron generator of 71%. The two sources yielded similar pulse shapes despite having very different neutron energy spectra, validating the robustness of the fits across various neutron energies.

  7. Optimizing moderation of He-3 neutron detectors for shielded fission sources

    DOE PAGES

    Rees, Lawrence B.; Czirr, J. Bart

    2012-07-10

    Abstract: The response of 3-He neutron detectors is highly dependent on the amount of moderator incorporated into the detector system. If there is too little moderation, neutrons will not react with the 3-He. If there is too much moderation, neutrons will not reach the 3-He. In applications for portal or border monitors where 3He detectors are used to interdict illicit Importation of plutonium, the fission source is always shielded to some extent. Since the energy distribution of neutrons emitted from the source depends on the amount and type of shielding present, the optimum placement of moderating material around 3-He tubesmore » is a function of shielding. In this paper, we use Monte Carlo techniques to model the response of 3-He tubes placed in polyethylene boxes for moderation. To model the shielded fission neutron source, we use a 252-Cf source placed in the center of spheres of water of varying radius. Detector efficiency as a function of box geometry and shielding are explored. We find that increasing the amount of moderator behind and to the sides of the detector generally improves the detector response, but that benefits are limited if the thickness of the polyethylene moderator is greater than about 5-7 cm. The thickness of the moderator in front of the 3He tubes, however, is very important. For bare sources, about 5-6 cm of moderator is optimum, but as the shielding increases, the optimum thickness of this moderator decreases to 0-1 cm. A two-tube box with a moderator thickness of 5 cm in front of the first tube and a thickness of 1 cm in front of the second tube is proposed to improve the detector's sensitivity to lower-energy neutrons.« less

  8. FABRICATION OF NEUTRON SOURCES

    DOEpatents

    Birden, J.H.

    1959-04-21

    A method is presented for preparing a neutron source from polonium-210 and substances, such as beryllium and boron, characterized by emission of neutrons upon exposure to alpha particles from the polonium. According to the invention, a source is prepared by placing powdered beryllium and a platinum foil electroplated with polonium-2;.0 in a beryllium container. The container is sealed and then heated by induction to a temperature of 450 to 1100 deg C to volatilize the polonium off the foil into the powder. The heating step is terminated upon detection of a maximum in the neutron flux level.

  9. Acoustic response of superheated droplet detectors to neutrons

    NASA Astrophysics Data System (ADS)

    Gao, Size; Zhang, Guiying; Ni, Bangfa; Zhao, Changjun; Zhang, Huanqiao; Guan, Yongjing; Chen, Zhe; Xiao, Caijin; Liu, Chao; Liu, Cunxiong

    2012-03-01

    The search for dark matter (DM) is a hot field nowadays, a number of innovative techniques have emerged. The superheated droplet technique is relatively mature; however, it is recently revitalized in a number of frontier fields including the search for DM. In this work, the acoustic response of Superheated Droplet Detectors (SDDs) to neutrons was studied by using a 252Cf neutron source, SDDs developed by the China Institute of Atomic Energy, a sound sensor, a sound card and a PC. Sound signals were filtered. The characteristics of FFT spectra, power spectra and time constants were used to determine the authenticity of the bubbles analyzed.

  10. Neutron radiative capture methods for surface elemental analysis

    USGS Publications Warehouse

    Trombka, J.I.; Senftle, F.; Schmadebeck, R.

    1970-01-01

    Both an accelerator and a 252Cf neutron source have been used to induce characteristic gamma radiation from extended soil samples. To demonstrate the method, measurements of the neutron-induced radiative capture and activation gamma rays have been made with both Ge(Li) and NaI(Tl) detectors, Because of the possible application to space flight geochemical analysis, it is believed that NaI(Tl) detectors must be used. Analytical procedures have been developed to obtain both qualitative and semiquantitative results from an interpretation of the measured NaI(Tl) pulse-height spectrum. Experiment results and the analytic procedure are presented. ?? 1970.

  11. Radioisotopic neutron transmission spectrometry: Quantitative analysis by using partial least-squares method.

    PubMed

    Kim, Jong-Yun; Choi, Yong Suk; Park, Yong Joon; Jung, Sung-Hee

    2009-01-01

    Neutron spectrometry, based on the scattering of high energy fast neutrons from a radioisotope and slowing-down by the light hydrogen atoms, is a useful technique for non-destructive, quantitative measurement of hydrogen content because it has a large measuring volume, and is not affected by temperature, pressure, pH value and color. The most common choice for radioisotope neutron source is (252)Cf or (241)Am-Be. In this study, (252)Cf with a neutron flux of 6.3x10(6)n/s has been used as an attractive neutron source because of its high flux neutron and weak radioactivity. Pulse-height neutron spectra have been obtained by using in-house built radioisotopic neutron spectrometric system equipped with (3)He detector and multi-channel analyzer, including a neutron shield. As a preliminary study, polyethylene block (density of approximately 0.947g/cc and area of 40cmx25cm) was used for the determination of hydrogen content by using multivariate calibration models, depending on the thickness of the block. Compared with the results obtained from a simple linear calibration model, partial least-squares regression (PLSR) method offered a better performance in a quantitative data analysis. It also revealed that the PLSR method in a neutron spectrometric system can be promising in the real-time, online monitoring of the powder process to determine the content of any type of molecules containing hydrogen nuclei.

  12. FABRICATION OF NEUTRON SOURCES

    DOEpatents

    Birden, J.H.

    1959-01-20

    A method is presented for preparing a more efficient neutron source comprising inserting in a container a quantity of Po-210, inserting B powder coated with either Ag, Pt, or Ni. The container is sealed and then slowly heated to about 450 C to volatilize the Po and effect combination of the coated powder with the Po. The neutron flux emitted by the unit is moritored and the heating step is terminated when the flux reaches a maximum or selected level.

  13. Preliminary calibration of the ACP safeguards neutron counter

    NASA Astrophysics Data System (ADS)

    Lee, T. H.; Kim, H. D.; Yoon, J. S.; Lee, S. Y.; Swinhoe, M.; Menlove, H. O.

    2007-10-01

    The Advanced Spent Fuel Conditioning Process (ACP), a kind of pyroprocess, has been developed at the Korea Atomic Energy Research Institute (KAERI). Since there is no IAEA safeguards criteria for this process, KAERI has developed a neutron coincidence counter to make it possible to perform a material control and accounting (MC&A) for its ACP materials for the purpose of a transparency in the peaceful uses of nuclear materials at KAERI. The test results of the ACP Safeguards Neutron Counter (ASNC) show a satisfactory performance for the Doubles count measurement with a low measurement error for its cylindrical sample cavity. The neutron detection efficiency is about 21% with an error of ±1.32% along the axial direction of the cavity. Using two 252Cf neutron sources, we obtained various parameters for the Singles and Doubles rates for the ASNC. The Singles, Doubles, and Triples rates for a 252Cf point source were obtained by using the MCNPX code and the results for the ft8 cap multiplicity tally option with the values of ɛ, fd, and ft measured with a strong source most closely match the measurement results to within a 1% error. A preliminary calibration curve for the ASNC was generated by using the point model equation relationship between 244Cm and 252Cf and the calibration coefficient for the non-multiplying sample is 2.78×10 5 (Doubles counts/s/g 244Cm). The preliminary calibration curves for the ACP samples were also obtained by using an MCNPX simulation. A neutron multiplication influence on an increase of the Doubles rate for a metal ingot and UO2 powder is clearly observed. These calibration curves will be modified and complemented, when hot calibration samples become available. To verify the validity of this calibration curve, a measurement of spent fuel standards for a known 244Cm mass will be performed in the near future.

  14. Coded source neutron imaging

    SciTech Connect

    Bingham, Philip R; Santos-Villalobos, Hector J

    2011-01-01

    Coded aperture techniques have been applied to neutron radiography to address limitations in neutron flux and resolution of neutron detectors in a system labeled coded source imaging (CSI). By coding the neutron source, a magnified imaging system is designed with small spot size aperture holes (10 and 100 m) for improved resolution beyond the detector limits and with many holes in the aperture (50% open) to account for flux losses due to the small pinhole size. An introduction to neutron radiography and coded aperture imaging is presented. A system design is developed for a CSI system with a development of equations for limitations on the system based on the coded image requirements and the neutron source characteristics of size and divergence. Simulation has been applied to the design using McStas to provide qualitative measures of performance with simulations of pinhole array objects followed by a quantitative measure through simulation of a tilted edge and calculation of the modulation transfer function (MTF) from the line spread function. MTF results for both 100um and 10um aperture hole diameters show resolutions matching the hole diameters.

  15. RPC for thermal neutron detection

    NASA Astrophysics Data System (ADS)

    Arnaldi, R.; Chiavassa, E.; Colla, A.; Cortese, P.; Dellacasa, G.; DeMarco, N.; Ferretti, A.; Gagliardi, M.; Gallio, M.; Gemme, R.; Musso, A.; Oppedisano, C.; Piccotti, A.; Poggio, F.; Scomparin, E.; Vercellin, E.

    2006-05-01

    The possibility to detect thermal neutrons with single gap Resistive Plate Chambers has been investigated. To detect neutrons a 10B4C thin coating on the inner surface of one RPC electrode is used as thermal neutron converter. The RPC detects the charged particles generated by neutrons via the (n, α) reaction on Boron. Tests on converter samples have been performed with a thermalized 252Cf source in order to evaluate the conversion efficiency: a good agreement between experimental results and simulation has been achieved. A detector prototype has been developed and tested on a low energy neutron beam at the European laboratories JRC in Belgium. A detailed description of the detector and the experimental test results are presented.

  16. Phase 1 environmental report for the Advanced Neutron Source at Oak Ridge National Laboratory

    SciTech Connect

    Blasing, T.J.; Brown, R.A.; Cada, G.F.; Easterly, C.; Feldman, D.L.; Hagan, C.W.; Harrington, R.M.; Johnson, R.O.; Ketelle, R.H.; Kroodsma, R.L.; McCold, L.N.; Reich, W.J.; Scofield, P.A.; Socolof, M.L.; Taleyarkhan, R.P.; Van Dyke, J.W.

    1992-02-01

    The US Department of Energy (DOE) has proposed the construction and operation of the Advanced Neutron Source (ANS), a 330-MW(f) reactor, at Oak Ridge National Laboratory (ORNL) to support neutron scattering and nuclear physics experiments. ANS would provide a steady-state source of neutrons that are thermalized to produce sources of hot, cold, and very coal neutrons. The use of these neutrons in ANS experiment facilities would be an essential component of national research efforts in basic materials science. Additionally, ANS capabilities would include production of transplutonium isotopes, irradiation of potential fusion and fission reactor materials, activation analysis, and production of medical and industrial isotopes such as {sup 252}Cf. Although ANS would not require licensing by the US Nuclear Regulatory Commission (NRC), DOE regards the design, construction, and operation of ANS as activities that would produce a licensable facility; that is, DOE is following the regulatory guidelines that NRC would apply if NRC were licensing the facility. Those guidelines include instructions for the preparation of an environmental report (ER), a compilation of available data and preliminary analyses regarding the environmental impacts of nuclear facility construction and operation. The ER, described and outlined in NRC Regulatory Guide 4.2, serves as a background document to facilitate the preparation of environmental impact statements (EISs). Using Regulatory Guide 4.2 as a model, this ANS ER provides analyses and information specific to the ANS site and area that can be adopted (and modified, if necessary) for the ANS EIS. The ER is being prepared in two phases. Phase 1 ER includes many of the data and analyses needed to prepare the EIS but does not include data or analyses of alternate sites or alternate technologies. Phase 2 ER will include the additional data and analyses stipulated by Regulatory Guide 4.2.

  17. DOSE PROFILE MODELING OF IDAHO NATIONAL LABORATORY’S ACTIVE NEUTRON INTERROGATION TEST FACILITY

    SciTech Connect

    D. L. Chichester; E. H. Seabury; J. M. Zabriskie; J. Wharton; A. J. Caffrey

    2009-06-01

    A new research and development laboratory has been commissioned at Idaho National Laboratory for performing active neutron interrogation research and development. The facility is designed to provide radiation shielding for DT fusion (14.1 MeV) neutron generators (2 x 108 neutrons per second), DD fusion (2.5 MeV) neutron generators (up to 2 x 106 neutrons per second), and 252Cf spontaneous fission neutron sources (6.7 x 107 neutrons per second, 30 micrograms). Shielding at the laboratory is comprised of modular concrete shield blocks 0.76 m thick with tongue-in-groove features to prevent radiation streaming, arranged into one small and one large test vault. The larger vault is designed to allow operation of the DT generator and has walls 3.8 m tall, an entrance maze, and a fully integrated electrical interlock system; the smaller test vault is designed for 252Cf and DD neutron sources and has walls 1.9 m tall and a simple entrance maze. Both analytical calculations and numerical simulations were used in the design process for the building to assess the performance of the shielding walls and to ensure external dose rates are within required facility limits. Dose rate contour plots have been generated for the facility to visualize the effectiveness of the shield wall and entrance maze and to illustrate the spatial profile of the radiation dose field above the facility and the effects of skyshine around the vaults.

  18. Evaluation of H*(10) using the developed spherical type neutron dose monitor.

    PubMed

    Bhuiya, S H; Yamanishi, H; Uda, T

    2010-10-01

    An instrument for evaluating the neutron ambient dose equivalent has been developed. It has the characteristic of uniform response to wide energy of neutrons. The monitor is four-layered spherically shaped, based on moderation and absorption of neutrons. Neutron dose can be evaluated from the linear combination of three specific responses of thermoluminescent dosimeters (TLDs), which are located at three depths in the moderator. TLDs were arranged between layers of two consecutive depths on 12 radial axes at even intervals so that the monitor is equally sensitive to all directions of neutrons. In order to verify the usefulness of dose evaluation by the monitor, irradiation experiments were conducted at the FRS, JAEA. The D2O-moderated 252Cf was used for the calibration of the monitor. Experiments were also conducted by using two neutron sources of 252Cf bare and 241Am-Be. As a result, the evaluated dose for each irradiation was obtained close to the actual irradiated dose. It was confirmed that the method of dose evaluation by the developed monitor can be applied to practical neutron fields where the distance of neutron source is unknown.

  19. [The CT-stereotaxic neutron brachytherapy of brain tumors with californium sources on the ANET-B apparatus].

    PubMed

    Melikian, A G; Liass, F M; Shkol'nik, F G; Chekhonadskiĭ, V N; Elisiutin, G P; Golanov, A V; Kachkov, I A; Borodkin, S M; Lobanov, S A; Spasokukotskaia, O N

    1992-01-01

    A method for stereotaxic intratissue radiotherapy of brain tumors based on the findings of computed tomography is described. Radiosurgical implantation of sources with increased 252Cf content emitting mixed neutron + gamma-radiation was accomplished by means of an ANET-B apparatus by the afterloading method. Neutron irradiation is particularly effective in patients with malignant tumors possessing a large fraction of cells in a state of deep anoxia. Dosimetric planning was conducted by means of an original computer system. Devices and radiation-technical equipment for adaptation of the ANET-B apparatus for irradiation of neurosurgical patients are described. The indications for the use of this method and its place among the complex of measures for the treatment of patients with new growths of the brain are discussed. The first experience in using CT-stereotaxic neutron brachytherapy with californium sources on the ANET-B apparatus for the treatment of 6 patients with malignant glial tumors of the brain is dwelt on.

  20. Fast-neutron spectrometry using a ³He ionization chamber and digital pulse shape analysis.

    PubMed

    Chichester, D L; Johnson, J T; Seabury, E H

    2012-08-01

    Digital pulse shape analysis (dPSA) has been used with a Cuttler-Shalev type (3)He ionization chamber to measure the fast-neutron spectra of a deuterium-deuterium electronic neutron generator, a bare (252)Cf spontaneous fission neutron source, and of the transmitted fast neutron spectra of a (252)Cf source attenuated by water, graphite, liquid nitrogen, and magnesium. Rise-time dPSA has been employed using the common approach for analyzing n +(3)He→(1)H+(3)H ionization events and improved to account for wall-effect and pile-up events, increasing the fidelity of these measurements. Simulations have been performed of the different experimental arrangements and compared with the measurements, demonstrating general agreement between the dPSA-processed fast-neutron spectra and predictions. The fast-neutron resonance features of the attenuation cross sections of the attenuating materials are clearly visible within the resolution limits of the electronics used for the measurements, and the potential applications of high-resolution fast-neutron spectrometry for nuclear nonproliferation and safeguards measurements are discussed.

  1. Californium-252 Neutron Therapy in China

    SciTech Connect

    Sharwin X. Zeng; Jian H. Gu

    2000-11-12

    Californium-252 brachytherapy, believed to be the most successful source for neutron therapy, gives most of the cures as well as long-term and complication-free survivals. Chinese radiation oncologists were interested in californium neutron therapy (Cf-NT) in the early 1980s, but {sup 252}Cf sources for medical use were not available in China until 1992 when a californium joint venture was established by the China Institute of Atomic Energy (Beijing) and the Research Institute for Nuclear Reactors (Dimitrovgrad) of Russia. In 1995, 25 seeds of {sup 252}Cf with a strength of 3 {mu}g each were sent to China for preclinical investigation. Three years later, a high dose rate (HDR) {sup 252}Cf source was imported and transferred into a home-made remote after-loader for intracavitary treatment in Chongqing, and a clinical trail was started in February 1999. This is the first time that Cf-NT was performed for cancer patients in China. Since then, Cf-NT in China has developed rapidly. It is estimated that one-tenth of those radiation oncology centers with brachytherapy practice will be equipped with californium units in 5 yr. That means more than 30 units will be in use in hospitals. That is significant compared with other countries, but it is just one, on average, for each province or one per 40 million people in China. Progress also has been achieved in the {sup 252}Cf treatment delivery equipment. Preliminary clinical trails showed complete response observed in all cases treated, with a rapid clearance of tumors and mild reactions in normal tissues. The short-term results are quite encouraging. To deal with problems due to the demand for Cf-NT in China, attention should be paid to the following particulars: (1) A high-strength miniature source is needed for HDR/MDR interstitial therapy to extend the Cf-NT coverage. (2) Basic work on radiophysics and radiobiology needs to be done, including source calibration, clinical dosimetry, clinical RBE determination, and Cf

  2. β-delayed neutron spectroscopy using trapped radioactive ions.

    PubMed

    Yee, R M; Scielzo, N D; Bertone, P F; Buchinger, F; Caldwell, S; Clark, J A; Deibel, C M; Fallis, J; Greene, J P; Gulick, S; Lascar, D; Levand, A F; Li, G; Norman, E B; Pedretti, M; Savard, G; Segel, R E; Sharma, K S; Sternberg, M G; Van Schelt, J; Zabransky, B J

    2013-03-01

    A novel technique for β-delayed neutron spectroscopy has been demonstrated using trapped ions. The neutron-energy spectrum is reconstructed by measuring the time of flight of the nuclear recoil following neutron emission, thereby avoiding all the challenges associated with neutron detection, such as backgrounds from scattered neutrons and γ rays and complicated detector-response functions. (137)I(+) ions delivered from a (252)Cf source were confined in a linear Paul trap surrounded by radiation detectors, and the β-delayed neutron-energy spectrum and branching ratio were determined by detecting the β(-) and recoil ions in coincidence. Systematic effects were explored by determining the branching ratio three ways. Improvements to achieve higher detection efficiency, better energy resolution, and a lower neutron-energy threshold are proposed. PMID:23496704

  3. Benchmark test of neutron transport calculations: indium, nickel, gold, europium, and cobalt activation with and without energy moderated fission neutrons by iron simulating the Hiroshima atomic bomb casing.

    PubMed

    Iwatani, K; Hoshi, M; Shizuma, K; Hiraoka, M; Hayakawa, N; Oka, T; Hasai, H

    1994-10-01

    A benchmark test of the Monte Carlo neutron and photon transport code system (MCNP) was performed using a bare- and energy-moderated 252Cf fission neutron source which was obtained by transmission through 10-cm-thick iron. An iron plate was used to simulate the effect of the Hiroshima atomic bomb casing. This test includes the activation of indium and nickel for fast neutrons and gold, europium, and cobalt for thermal and epithermal neutrons, which were inserted in the moderators. The latter two activations are also to validate 152Eu and 60Co activity data obtained from the atomic bomb-exposed specimens collected at Hiroshima and Nagasaki, Japan. The neutron moderators used were Lucite and Nylon 6 and the total thickness of each moderator was 60 cm or 65 cm. Measured activity data (reaction yield) of the neutron-irradiated detectors in these moderators decreased to about 1/1,000th or 1/10,000th, which corresponds to about 1,500 m ground distance from the hypocenter in Hiroshima. For all of the indium, nickel, and gold activity data, the measured and calculated values agreed within 25%, and the corresponding values for europium and cobalt were within 40%. From this study, the MCNP code was found to be accurate enough for the bare- and energy-moderated 252Cf neutron activation calculations of these elements using moderators containing hydrogen, carbon, nitrogen, and oxygen. PMID:8083048

  4. Benchmark test of neutron transport calculations: Indium, nickel, gold, europium, and cobalt activation with and without energy moderated fission neutrons by iron simulating the Hiroshima atomic bomb casing

    SciTech Connect

    Iwatani, Kazuo; Shizuma, Kiyoshi; Hasai, Hiromi; Hoshi, Masaharu; Hiraoka, Masayuki; Hayakawa, Norihiko; Oka, Takamitsu

    1994-10-01

    A benchmark test of the Monte Carlo neutron and photon transport code system (MCNP) was performed using a bare- and energy-moderated {sup 252}Cf fission neutron source which was obtained by transmission through 10-cm-thick iron. An iron plate was used to simulate the effect of the Hiroshima atomic bomb casing. This test includes the activation of indium and nickel for fast neutrons and gold, europium, and cobalt for thermal and epithermal neutrons, which were inserted in the moderators. The latter two activations are also to validate {sup 152}Eu and {sup 60}Co activity data obtained from the atomic bomb-exposed specimens collected at Hiroshima and Nagasaki, Japan. The neutron moderators used were Lucite and Nylon 6 and the total thickness of each moderator was 60 cm or 65 cm. Measured activity data (reaction yield) of the neutron-irradiated detectors in these moderators decreased to about 1/1,000th or 1/10,000th, which corresponds to about 1,500 m ground distance from the hypocenter in Hiroshima. For all of the indium, nickel, and gold activity data, the measured and calculated values agreed within 25%, and the corresponding values for europium and cobalt were within 40%. From this study, the MCNP code was found to be accurate enough for the bare- and energy-moderated {sup 252}Cf neutron activation calculations of these elements using moderators containing hydrogen, carbon, nitrogen, and oxygen. 18 refs., 10 figs., 4 tabs.

  5. Benchmark test of neutron transport calculations: indium, nickel, gold, europium, and cobalt activation with and without energy moderated fission neutrons by iron simulating the Hiroshima atomic bomb casing.

    PubMed

    Iwatani, K; Hoshi, M; Shizuma, K; Hiraoka, M; Hayakawa, N; Oka, T; Hasai, H

    1994-10-01

    A benchmark test of the Monte Carlo neutron and photon transport code system (MCNP) was performed using a bare- and energy-moderated 252Cf fission neutron source which was obtained by transmission through 10-cm-thick iron. An iron plate was used to simulate the effect of the Hiroshima atomic bomb casing. This test includes the activation of indium and nickel for fast neutrons and gold, europium, and cobalt for thermal and epithermal neutrons, which were inserted in the moderators. The latter two activations are also to validate 152Eu and 60Co activity data obtained from the atomic bomb-exposed specimens collected at Hiroshima and Nagasaki, Japan. The neutron moderators used were Lucite and Nylon 6 and the total thickness of each moderator was 60 cm or 65 cm. Measured activity data (reaction yield) of the neutron-irradiated detectors in these moderators decreased to about 1/1,000th or 1/10,000th, which corresponds to about 1,500 m ground distance from the hypocenter in Hiroshima. For all of the indium, nickel, and gold activity data, the measured and calculated values agreed within 25%, and the corresponding values for europium and cobalt were within 40%. From this study, the MCNP code was found to be accurate enough for the bare- and energy-moderated 252Cf neutron activation calculations of these elements using moderators containing hydrogen, carbon, nitrogen, and oxygen.

  6. A Comparison of Neutron-Based Non-Destructive Assessment Methods for Chemical Warfare Material and High Explosives

    SciTech Connect

    Seabury, E. H.; Chichester, D. L.; Wharton, C. J.; Caffrey, A. J.

    2009-03-10

    Prompt Gamma Neutron Activation Analysis (PGNAA) systems employ neutrons as a probe to interrogate items, e.g. chemical warfare materiel-filled munitions. The choice of a neutron source in field-portable systems is determined by its ability to excite nuclei of interest, operational concerns such as radiological safety and ease-of-use, and cost. Idaho National Laboratory's PINS Chemical Assay System has traditionally used a {sup 252}Cf isotopic neutron source, but recently a deuterium-tritium (DT) electronic neutron generator (ENG) has been tested as an alternate neutron source. This paper presents the results of using both of these neutron sources to interrogate chemical warfare materiel (CWM) and high explosive (HE) filled munitions.

  7. Characteristics of the Neutron Irradiation Facilities of the PSI Calibration Laboratory

    SciTech Connect

    Hoedlmoser, H.; Schuler, Ch.; Butterweck, G.; Mayer, S.

    2011-12-13

    The neutron radiation fields of the Calibration Laboratory at Paul Scherrer Institute (PSI) are traceable to the national standards of the Physikalisch-Technische Bundesanstalt (PTB) in Germany. A Berthold LB6411 neutron dose rate meter for neutron radiation is used as a secondary standard. Recently, a thorough characterization of the neutron irradiation fields of the {sup 241}Am-Be and {sup 252}Cf sources by means of reference measurements and a detailed MCNPX simulation of the irradiation facility has been initiated. In this work, the characteristics of the neutron radiation fields are summarized and presented together with model equations and an uncertainty analysis. MCNPX results are shown for the {sup 241}Am-Be source. A comparison of measured and simulated data shows an excellent agreement. From the simulation, valuable information about the neutron fields like the contribution of scattered neutrons in the fields and the energy spectra could be obtained.

  8. Study of a gold-foil-based multisphere neutron spectrometer.

    PubMed

    Wang, Z; Hutchinson, J D; Hertel, N E; Burgett, E; Howell, R M

    2008-01-01

    Multisphere neutron spectrometers with active thermal neutron detectors cannot be used in high-intensity radiation fields due to pulse pile-up and dead-time effects. Thus, a multisphere spectrometer using a passive detection system, specifically gold foils, has been investigated in this work. The responses of a gold-foil-based Bonner sphere neutron spectrometer were studied for two different gold-foil holder designs; an aluminium-polyethylene holder and a polyethylene holder. The responses of the two designs were calculated for four incident neutron beam directions, namely, parallel, perpendicular and at +/-45 degrees relative to the flat surface of the foil. It was found that the use of polyethylene holder resulted in a more isotropic response to neutrons for the four incident directions considered. The computed responses were verified by measuring the neutron spectrum of a 252Cf source with known strength.

  9. A modular large-area lithium foil multi-wire proportional counter neutron detector

    NASA Astrophysics Data System (ADS)

    Nelson, Kyle A.; Edwards, Nathaniel S.; Kusner, Michael R.; Mayhugh, Michael R.; Montag, Benjamin W.; Schmidt, Aaron J.; Wayant, Clayton D.; McGregor, Douglas S.

    2015-11-01

    Several Li foil multi-wire proportional counters were constructed with five layers of 75 μm thick 6Li foils spaced 1.63 cm apart. Each detector had 1250 cm2 of active area and was backfilled with 1.0 atm of P-10 gas. Two of these detectors were positioned back-to-front with 5.0 cm of high-density polyethylene (HDPE) positioned between the two detectors and on the front and back. Additional 2.54 cm thick HDPE sheets were added to the remaining sides. The detectors were operated with a single electronics unit and were delivered to a test facility where multiple neutron and gamma-ray sensitivity experiments were completed. First, a 252Cf neutron source was positioned at various distances from the front of the detector and the absolute detection efficiency (cps ng-1) was recorded at each distance. Second, a transient test was completed by moving the neutron source in front of the detector at a constant rate while recording the change in count rate (cps). Third, the lateral sensitivity and symmetry of the detection system was investigated by positioning a 252Cf source up to 5.0 m away from the centerline of the arrayed detectors in 1.0 m increments in both outward directions. The angular response was investigated by positioning the 252Cf source 2.0 m from the center of the device and recording the count rate at each stationary position in 15° increments from 0° to 360°. The count rate varied 15% from minimum to maximum during the angular response test. Additionally, the arrayed system was modeled in MCNP6 and had an intrinsic neutron detection efficiency of 12.6% for a bare 252Cf source, less than the experimentally determined efficiency of 13.9±0.03%, as expected. The gamma-ray sensitivity of the detection system was also investigated and pulse-height spectra were collected and plotted against a neutron response spectrum for comparison.

  10. Development of a thermal neutron sensor for Humanitarian Demining.

    PubMed

    Cinausero, M; Lunardon, M; Nebbia, G; Pesente, S; Viesti, G; Filippini, V

    2004-07-01

    A thermal neutron sensor prototype for Humanitarian Demining has been developed, trying to minimize cost and complexity of the system as required in such application. A (252)Cf source or a sealed-tube neutron generator is employed to produce primary fast neutrons that are thermalized in a moderator designed to optimize the neutron capture reaction yield in buried samples. A description of the sensor, including the performances of the acquisition system based on a Flash ADC card and final tests with explosive simulants are reported. A comparison of the sensor performance when using a radioactive source to that when employing a sealed-tube neutron generator is presented. Limitations and possible applications of this technique are discussed. PMID:15145439

  11. The neutron-gamma Feynman variance to mean approach: Gamma detection and total neutron-gamma detection (theory and practice)

    NASA Astrophysics Data System (ADS)

    Chernikova, Dina; Axell, Kåre; Avdic, Senada; Pázsit, Imre; Nordlund, Anders; Allard, Stefan

    2015-05-01

    Two versions of the neutron-gamma variance to mean (Feynman-alpha method or Feynman-Y function) formula for either gamma detection only or total neutron-gamma detection, respectively, are derived and compared in this paper. The new formulas have particular importance for detectors of either gamma photons or detectors sensitive to both neutron and gamma radiation. If applied to a plastic or liquid scintillation detector, the total neutron-gamma detection Feynman-Y expression corresponds to a situation where no discrimination is made between neutrons and gamma particles. The gamma variance to mean formulas are useful when a detector of only gamma radiation is used or when working with a combined neutron-gamma detector at high count rates. The theoretical derivation is based on the Chapman-Kolmogorov equation with the inclusion of general reactions and corresponding intensities for neutrons and gammas, but with the inclusion of prompt reactions only. A one energy group approximation is considered. The comparison of the two different theories is made by using reaction intensities obtained in MCNPX simulations with a simplified geometry for two scintillation detectors and a 252Cf-source. In addition, the variance to mean ratios, neutron, gamma and total neutron-gamma are evaluated experimentally for a weak 252Cf neutron-gamma source, a 137Cs random gamma source and a 22Na correlated gamma source. Due to the focus being on the possibility of using neutron-gamma variance to mean theories for both reactor and safeguards applications, we limited the present study to the general analytical expressions for Feynman-alpha formulas.

  12. ACCELERATOR BASED CONTINUOUS NEUTRON SOURCE.

    SciTech Connect

    SHAPIRO,S.M.; RUGGIERO,A.G.; LUDEWIG,H.

    2003-03-25

    Until the last decade, most neutron experiments have been performed at steady-state, reactor-based sources. Recently, however, pulsed spallation sources have been shown to be very useful in a wide range of neutron studies. A major review of neutron sources in the US was conducted by a committee chaired by Nobel laureate Prof. W. Kohn: ''Neutron Sources for America's Future-BESAC Panel on Neutron Sources 1/93''. This distinguished panel concluded that steady state and pulsed sources are complementary and that the nation has need for both to maintain a balanced neutron research program. The report recommended that both a new reactor and a spallation source be built. This complementarity is recognized worldwide. The conclusion of this report is that a new continuous neutron source is needed for the second decade of the 20 year plan to replace aging US research reactors and close the US neutron gap. it is based on spallation production of neutrons using a high power continuous superconducting linac to generate protons impinging on a heavy metal target. There do not appear to be any major technical challenges to the building of such a facility since a continuous spallation source has been operating in Switzerland for several years.

  13. What happened to the moon? A lunar history mission using neutrons

    SciTech Connect

    Breitkreutz, H.; Li, X.; Burfeindt, J.; Bernhardt, H. G.; Hoffmann, P.; Trieloff, M.; Schwarz, W. H.; Hopp, J.; Jessberger, E. K.; Hiesinger, H.

    2011-07-01

    The ages of lunar rocks can be determined using the {sup 40}Ar -{sup 39}Ar technique that can be used in-situ on the moon if a neutron source, a noble gas mass spectrometer and a gas extraction and purification system are brought to the lunar surface. A possible instrument for such a task is ISAGE, which combines a strong {sup 252}Cf neutron source and a compact spectrometer for in-situ dating of e.g. the South Pole Aitken impact basin or the potentially very young basalts south of the Aristachus Plateau. In this paper, the design of the neutron source will be discussed. The source is assumed to be a hollow sphere surrounded by a reflector, a geometry that provides a very homogeneous flux at the irradiation position inside the sphere. The optimal source geometry depending on the experimental conditions, the costs of transportation for the reflector and the costs of the source itself are calculated. A minimum {sup 252}Cf mass of 1.5 mg is determined. (authors)

  14. CHARACTERIZATION OF A THIN SILICON SENSOR FOR ACTIVE NEUTRON PERSONAL DOSEMETERS.

    PubMed

    Takada, M; Nunomiya, T; Nakamura, T; Matsumoto, T; Masuda, A

    2016-09-01

    A thin silicon sensor has been developed for active neutron personal dosemeters for use by aircrews and first responders. This thin silicon sensor is not affected by the funneling effect, which causes detection of cosmic protons and over-response to cosmic neutrons. There are several advantages to the thin silicon sensor: a decrease in sensitivity to gamma rays, an improvement of the energy detection limit for neutrons down to 0.8 MeV and an increase in the sensitivity to fast neutrons. Neutron response functions were experimentally obtained using 2.5 and 5 MeV monoenergy neutron beams and a (252)Cf neutron source. Simulation results using the Monte Carlo N-Particle transport code agree quite well with the experimental ones when an energy deposition region shaped like a circular truncated cone is used in place of a cylindrical region. PMID:27150515

  15. Implementation of the Fissile Mass Flow Monitor Source Verification and Confirmation

    SciTech Connect

    Uckan, Taner; March-Leuba, Jose A; Powell, Danny H; Nelson, Dennis; Radev, Radoslav

    2007-12-01

    This report presents the verification procedure for neutron sources installed in U.S. Department of Energy equipment used to measure fissile material flow. The Fissile Mass Flow Monitor (FMFM) equipment determines the {sup 235}U fissile mass flow of UF{sub 6} gas streams by using {sup 252}Cf neutron sources for fission activation of the UF{sub 6} gas and by measuring the fission products in the flow. The {sup 252}Cf sources in each FMFM are typically replaced every 2 to 3 years due to their relatively short half-life ({approx} 2.65 years). During installation of the new FMFM sources, the source identity and neutronic characteristics provided by the manufacturer are verified with the following equipment: (1) a remote-control video television (RCTV) camera monitoring system is used to confirm the source identity, and (2) a neutron detection system (NDS) is used for source-strength confirmation. Use of the RCTV and NDS permits remote monitoring of the source replacement process and eliminates unnecessary radiation exposure. The RCTV, NDS, and the confirmation process are described in detail in this report.

  16. Simulation of response functions of fast neutron sensors and development of thin neutron silicon sensor.

    PubMed

    Takada, Masashi; Nakamura, Takashi; Matsuda, Mikihiko; Nunomiya, Tomoya

    2014-10-01

    On radiation detection using silicon sensor, signals are produced from collected charges in a depletion layer; however, for high-energy particles, this depletion layer is extended due to funnelling phenomenon. The lengths of charge collection were experimentally obtained from proton peak energies in measured pulse-heights. The length is extended with increasing proton energy of up to 6 MeV, and then, is constant over 6 MeV. The response functions of fast neutron sensors were simulated for 5- and 15-MeV monoenergetic and (252)Cf neutron sources using the Monte Carlo N-Particle eXtended code. The simulation results agree well with the experimental ones, including the effect of funnelling phenomenon. In addition, a thin silicon sensor was developed for a new real-time personal neutron dosemeter. Photon sensitivity is vanishingly smaller than neutron one by a factor of 5×10(-4). PMID:24516186

  17. Simulation of response functions of fast neutron sensors and development of thin neutron silicon sensor.

    PubMed

    Takada, Masashi; Nakamura, Takashi; Matsuda, Mikihiko; Nunomiya, Tomoya

    2014-10-01

    On radiation detection using silicon sensor, signals are produced from collected charges in a depletion layer; however, for high-energy particles, this depletion layer is extended due to funnelling phenomenon. The lengths of charge collection were experimentally obtained from proton peak energies in measured pulse-heights. The length is extended with increasing proton energy of up to 6 MeV, and then, is constant over 6 MeV. The response functions of fast neutron sensors were simulated for 5- and 15-MeV monoenergetic and (252)Cf neutron sources using the Monte Carlo N-Particle eXtended code. The simulation results agree well with the experimental ones, including the effect of funnelling phenomenon. In addition, a thin silicon sensor was developed for a new real-time personal neutron dosemeter. Photon sensitivity is vanishingly smaller than neutron one by a factor of 5×10(-4).

  18. Status of neutron diagnostics on the experimental advanced superconducting tokamak

    NASA Astrophysics Data System (ADS)

    Zhong, G. Q.; Hu, L. Q.; Pu, N.; Zhou, R. J.; Xiao, M.; Cao, H. R.; Zhu, Y. B.; Li, K.; Fan, T. S.; Peng, X. Y.; Du, T. F.; Ge, L. J.; Huang, J.; Xu, G. S.; Wan, B. N.

    2016-11-01

    Neutron diagnostics have become a significant means to study energetic particles in high power auxiliary heating plasmas on the Experimental Advanced Superconducting Tokamak (EAST). Several kinds of neutron diagnostic systems have been implemented for time-resolved measurements of D-D neutron flux, fluctuation, emission profile, and spectrum. All detectors have been calibrated in laboratory, and in situ calibration using 252Cf neutron source in EAST is in preparation. A new technology of digitized pulse signal processing is adopted in a wide dynamic range neutron flux monitor, compact recoil proton spectrometer, and time of flight spectrometer. Improvements will be made continuously to the system to achieve better adaptation to the EAST's harsh γ-ray and electro-magnetic radiation environment.

  19. Fast neutron spectrometry and dosimetry using a spherical moderator with position-sensitive detectors.

    PubMed

    Li, Taosheng; Yang, Lianzhen; Ma, Jizeng; Fang, Dong

    2007-01-01

    A neutron spectrometry and dosimetry measurement system has been developed based on a different design of the divided regions for a sphere, with three position-sensitive counters. The characteristics of the measurement system have been investigated in the reference radiation fields of Am-Be and (252)Cf sources. When realistic input spectra are used for the unfolding, the overall deviations of the calculated results for four dosimetric quantities are less than +/-10%. The results of other input spectra are also discussed in this report.

  20. Neutron detection in a high gamma ray background with liquid scintillators

    SciTech Connect

    Stevanato, L.; Cester, D.; Viesti, G.; Nebbia, G.

    2013-04-19

    The capability of liquid scintillator (namely 2'' Multiplication-Sign 2'' cells of EJ301 and EJ309) of detecting neutrons in a very high gamma ray background is explored. A weak {sup 252}Cf source has been detected in a high {sup 137}Cs gamma ray background corresponding to a dose rate of 100 {mu}Sv/h with probability of detection in compliance with IEC requirements for hand held instruments. Tests were performed with new generation of CAEN digitizers, in particular the V1720 (8 Channel 12bit 250 MS/s) one.

  1. Monte Carlo N-particle simulation of neutron-based sterilisation of anthrax contamination

    PubMed Central

    Liu, B; Xu, J; Liu, T; Ouyang, X

    2012-01-01

    Objective To simulate the neutron-based sterilisation of anthrax contamination by Monte Carlo N-particle (MCNP) 4C code. Methods Neutrons are elementary particles that have no charge. They are 20 times more effective than electrons or γ-rays in killing anthrax spores on surfaces and inside closed containers. Neutrons emitted from a 252Cf neutron source are in the 100 keV to 2 MeV energy range. A 2.5 MeV D–D neutron generator can create neutrons at up to 1013 n s−1 with current technology. All these enable an effective and low-cost method of killing anthrax spores. Results There is no effect on neutron energy deposition on the anthrax sample when using a reflector that is thicker than its saturation thickness. Among all three reflecting materials tested in the MCNP simulation, paraffin is the best because it has the thinnest saturation thickness and is easy to machine. The MCNP radiation dose and fluence simulation calculation also showed that the MCNP-simulated neutron fluence that is needed to kill the anthrax spores agrees with previous analytical estimations very well. Conclusion The MCNP simulation indicates that a 10 min neutron irradiation from a 0.5 g 252Cf neutron source or a 1 min neutron irradiation from a 2.5 MeV D–D neutron generator may kill all anthrax spores in a sample. This is a promising result because a 2.5 MeV D–D neutron generator output >1013 n s−1 should be attainable in the near future. This indicates that we could use a D–D neutron generator to sterilise anthrax contamination within several seconds. PMID:22573293

  2. Neutron and Gamma Ray Pulse Shape Discrimination with Polyvinyltoluene

    SciTech Connect

    Lintereur, Azaree T.; Ely, James H.; Stave, Jean A.; McDonald, Benjamin S.

    2012-03-01

    The goal of this was research effort was to test the ability of two poly vinyltoluene research samples to produce recordable, distinguishable signals in response to gamma rays and neutrons. Pulse shape discrimination was performed to identify if the signal was generated by a gamma ray or a neutron. A standard figure of merit for pulse shape discrimination was used to quantify the gamma-neutron pulse separation. Measurements were made with gamma and neutron sources with and without shielding. The best figure of merit obtained was 1.77; this figure of merit was achieved with the first sample in response to an un-moderated 252Cf source shielded with 5.08 cm of lead.

  3. True ternary fission, the collinear decay into fragments of similar size in the 252Cf(sf) and 235U(nth, f) reactions

    NASA Astrophysics Data System (ADS)

    von Oertzen, W.; Nasirov, A. K.

    2014-06-01

    The collinear cluster decay in 252Cf(sf, fff), with three cluster fragments of different masses (e.g. 132Sn, 52-48Ca, 68-72Ni), which has been observed by the FOBOS group in JINR, has established a new decay mode of heavy nuclei, the collinear cluster tripartition (CCT). The same type of ternary fission decay has been observed in the reaction 235U(nth, fff). This kind of “true ternary fission” of heavy nuclei has been predicted many times in theoretical works during the last decades. In the present note we discuss true ternary fission (TFFF) into three nuclei of almost equal size (e.g. Z=98→Zi=32, 34, 32) in the same systems. The possible fission channels are predicted from potential-energy (PES) calculations. These PES's show pronounced minima for several ternary fragmentation decays, e.g. for 252Cf(sf) and for 235U(nth, f). They suggest the existence of a variety of collinear ternary fission modes. The TFFF-decays chosen in this letter have very similar dynamical features as the previously observed collinear CCT-decays. The data obtained in the above mentioned experiments allow us to extract the yield for these TFFF-decays in both systems by using specific gates on the measured parameters. These yields are a few 1.0ṡ10-6/(binary fission).

  4. Radioactivity in atomic-bomb samples from exposure to environmental neutrons.

    PubMed

    Endo, S; Shizuma, K; Tanaka, K; Ishikawa, M; Rühm, W; Egbert, S D; Hoshi, M

    2007-12-01

    For about one decade, activation measurements performed on environmental samples from a distance larger than 1 km from the hypocenter of the atomic-bomb explosion over Hiroshima suggested much higher thermal neutron fluences to the survivors than predicted. This caused concern among the radiation protection community and prompted a complete re-evaluation of all aspects of survivor dosimetry. While it was shown recently that secondary neutrons from cosmic radiation and other sources have probably been the reason for the high measured concentrations of the long-lived radioisotope 36Cl in these samples, the source for high measured concentrations of the short-lived radionuclides 152Eu and 60Co has not yet been investigated in detail. In order to quantify the production of 152Eu and 60Co in environmental samples by secondary neutrons from cosmic radiation, thermal neutron fluxes were measured by means of a He gas proportional counter in various buildings where these samples had been and still are being stored. Because a 252Cf neutron source has been operated occasionally close to one of the sample storage rooms, additional neutron flux measurements were carried out when the neutron source was in operation. The thermal neutron fluxes measured ranged from 0.00017 to 0.00093 n cm(-2) s(-1) and depended on the floor number of the investigated building. Based on the measured neutron fluxes, the specific activities from the reactions 151Eu(n,gamma)152Eu and 59Co(n,gamma)60Co in the atomic-bomb samples were estimated to be 7.9 mBq g(-1) Eu and 0.27 mBq g(-1) Co, respectively, in saturation. These activities are much lower than those recently measured in samples that had been exposed to atomic-bomb neutrons. It is therefore concluded that environmental and moderated 252Cf neutrons are not the source for the high activities that had been measured in these samples.

  5. A compact neutron beam generator system designed for prompt gamma nuclear activation analysis.

    PubMed

    Ghassoun, J; Mostacci, D

    2011-08-01

    In this work a compact system was designed for bulk sample analysis using the technique of PGNAA. The system consists of (252)Cf fission neutron source, a moderator/reflector/filter assembly, and a suitable enclosure to delimit the resulting neutron beam. The moderator/reflector/filter arrangement has been optimised to maximise the thermal neutron component useful for samples analysis with a suitably low level of beam contamination. The neutron beam delivered by this compact system is used to irradiate the sample and the prompt gamma rays produced by neutron reactions within the sample elements are detected by appropriate gamma rays detector. Neutron and gamma rays transport calculations have been performed using the Monte Carlo N-Particle transport code (MCNP5).

  6. Detection of fast neutrons from shielded nuclear materials using a semiconductor alpha detector.

    PubMed

    Pöllänen, R; Siiskonen, T

    2014-08-01

    The response of a semiconductor alpha detector to fast (>1 MeV) neutrons was investigated by using measurements and simulations. A polyethylene converter was placed in front of the detector to register recoil protons generated by elastic collisions between neutrons and hydrogen nuclei of the converter. The developed prototype equipment was tested with shielded radiation sources. The low background of the detector and insensitivity to high-energy gamma rays above 1 MeV are advantages when the detection of neutron-emitting nuclear materials is of importance. In the case of a (252)Cf neutron spectrum, the intrinsic efficiency of fast neutron detection was determined to be 2.5×10(-4), whereas three-fold greater efficiency was obtained for a (241)AmBe neutron spectrum.

  7. In-situ calibration of TFTR (Tokamak Fusion Test Reactor) neutron detectors

    SciTech Connect

    Hendel, H.W.; Palladino, R.W.; Barnes, C.W.; Diesso, M.; Felt, J.S.; Jassby, D.L.; Johnson, L.C.; Ku, L.P.; Liu, Q.P.; Motley, R.W.; Murphy, H.B.; Murphy, J.; Nieschmidt, E.B.; Roberts, J.A.; Saito, T.; Strachan, J.D.; Waszazak, R.J.; Young, K.

    1990-03-01

    We report results of the TFTR fission detector calibration performed in December 1988. A NBS-traceable, remotely controlled {sup 252}Cf neutron source was moved toroidally through the TFTR vacuum vessel. Detection efficiencies for two {sup 235}U detectors were measured for 930 locations of the neutron point source in toroidal scans at 16 different major radii and vertical heights. These scans effectively simulated the volume-distributed plasma neutron source, and the volume-integrated detection efficiency was found to be insensitive to plasma position. The Campbell mode is useful due to its large overlap with the count rate mode and large dynamic range. The resulting absolute plasma neutron source calibration has an uncertainty of {plus minus} 13%. 21 refs., 23 figs., 4 tabs.

  8. Dose estimations of fast neutrons from a nuclear reactor by micronuclear yields in onion seedlings.

    PubMed

    Fujikawa, K; Endo, S; Itoh, T; Yonezawa, Y; Hoshi, M

    1999-12-01

    Irradiations of onion seedlings with fission neutrons from bare, Pb-moderated, and Fe-moderated 252Cf sources induced micronuclei in the root-tip cells at similar rates. The rate per cGy averaged for the three sources, , was 19 times higher than rate induced by 60Co gamma-rays. When neutron doses, Dn, were estimated from frequencies of micronuclei induced in onion seedlings after exposure to neutron-gamma mixed radiation from a 1 W nuclear reactor, using the reciprocal of as conversion factor, resulting Dn values agreed within 10% with doses measured with paired ionizing chambers. This excellent agreement was achieved by the high sensitivity of the onion system to fast neutrons relative to gamma-rays and the high contribution of fast neutrons to the total dose of mixed radiation in the reactor's field.

  9. Octupole Deformation Bands of πh11/2 in Neutron-Rich 145,147La Nuclei

    NASA Astrophysics Data System (ADS)

    Zhu, Sheng-jiang; S, Zhu J.; Wang, Mu-ge; J, Hamilton H.; A, Ramayya V.; B, Babu R. S.; W, Ma C.; Long, Gui-lu; Zhu, Ling-yan; Li, Ming; A, Sakhaee; Gan, Cui-yun; Yang, Li-ming; J, Komicki; J, Cole D.; R, Aryaeinejad; M, Drigert W.; J, Rasmussen O.; M, Stoyer A.; S, Chu Y.; K, Gregorich E.; M, Mohar F.; S, Prussin G.; I, Lee Y.; Yu, Oganessian Ts; G, Ter-Akopian M.; A, Daniel V.

    1999-03-01

    Octupole deformation bands built on πh11/2 orbital in neutron-rich odd-Z 145,147La nuclei have been investigated by measuring the prompt γ-rays emitted from the 252Cf source. The alternating parity band structures and strong E1 transitions observed between negative- and positive-parity bands in both nuclei indicate the octupole deformation enhanced by the h11/2 single proton coupling. According to observed energy displacements the octupole deformation becomes stable at the intermediate spin states.

  10. RPC as Thermal Neutron Detector for Humanitarian De-Mining

    NASA Astrophysics Data System (ADS)

    Arnaldi, R.; Colla, A.; de Marco, N.; Ferretti, A.; Gallio, M.; Musso, A.; Oppedisano, C.; Piccotti, A.; Poggio, F.; Scomparin, E.; Sigaudo, F.; Travaglia, G.; Vercellin, E.; Cortese, P.; Dellacasa, G.

    2003-12-01

    The possibility of detecting thermal neutrons with single gap Resistive Plate Chambers has been investigated. The development of the detector has been performed in the framework of the DIAMINE European Project for Humanitarian De-mining. To convert neutrons the inner surface of one RPC electrode has been coated with a thin layer of 10B4C. The RPC detects the charged particles generated by neutrons via the (n,α) reaction on Boron. Tests of converter samples have been performed with a thermalized 252Cf source in order to evaluate the conversion efficiency: a good agreement between experimental results and simulation has been achieved. Futhermore a detailed description of a first detector prototype together with the results of a test on low energy neutron beams are presented.

  11. Materials for spallation neutron sources

    SciTech Connect

    Sommer, W.F.; Daemen, L.L.

    1996-03-01

    The Workshop on Materials for Spallation Neutron Sources at the Los Alamos Neutron Science Center, February 6 to 10, 1995, gathered scientists from Department of Energy national laboratories, other federal institutions, universities, and industry to discuss areas in which work is needed, successful designs and use of materials, and opportunities for further studies. During the first day of the workshop, speakers presented overviews of current spallation neutron sources. During the next 3 days, seven panels allowed speakers to present information on a variety of topics ranging from experimental and theoretical considerations on radiation damage to materials safety issues. An attempt was made to identify specific problems that require attention within the context of spallation neutron sources. This proceedings is a collection of summaries from the overview sessions and the panel presentations.

  12. High intensity, pulsed thermal neutron source

    DOEpatents

    Carpenter, J.M.

    1973-12-11

    This invention relates to a high intensity, pulsed thermal neutron source comprising a neutron-producing source which emits pulses of fast neutrons, a moderator block adjacent to the last neutron source, a reflector block which encases the fast neutron source and the moderator block and has a thermal neutron exit port extending therethrough from the moderator block, and a neutron energy- dependent decoupling reflector liner covering the interior surfaces of the thermal neutron exit port and surrounding all surfaces of the moderator block except the surface viewed by the thermal neutron exit port. (Official Gazette)

  13. Fast neutron flux analyzer with real-time digital pulse shape discrimination

    NASA Astrophysics Data System (ADS)

    Ivanova, A. A.; Zubarev, P. V.; Ivanenko, S. V.; Khilchenko, A. D.; Kotelnikov, A. I.; Polosatkin, S. V.; Puryga, E. A.; Shvyrev, V. G.; Sulyaev, Yu. S.

    2016-08-01

    Investigation of subthermonuclear plasma confinement and heating in magnetic fusion devices such as GOL-3 and GDT at the Budker Institute (Novosibirsk, Russia) requires sophisticated equipment for neutron-, gamma- diagnostics and upgrading data acquisition systems with online data processing. Measurement of fast neutron flux with stilbene scintillation detectors raised the problem of discrimination of the neutrons (n) from background cosmic particles (muons) and neutron-induced gamma rays (γ). This paper describes a fast neutron flux analyzer with real-time digital pulse-shape discrimination (DPSD) algorithm FPGA-implemented for the GOL-3 and GDT devices. This analyzer was tested and calibrated with the help of 137Cs and 252Cf radiation sources. The Figures of Merit (FOM) calculated for different energy cuts are presented.

  14. Development of 300 °C heat resistant boron-loaded resin for neutron shielding

    NASA Astrophysics Data System (ADS)

    Morioka, Atsuhiko; Sakurai, Shinji; Okuno, Koichi; Sato, Satoshi; Verzirov, Yury; Kaminaga, Atsushi; Nishitani, Takeo; Tamai, Hiroshi; Kudo, Yusuke; Yoshida, Shigeru; Matsukawa, Makoto

    2007-08-01

    A new neutron shielding material resistant to temperatures up to 300 °C is developed, consisting of a phenol-based resin with 6 wt% boron. The resin will be applied around the vacuum vessel of the DD plasma device to suppress the streaming neutrons and to reduce the nuclear heating of the superconducting coils. The neutron shielding performance of the newly developed resin, examined by the 252Cf neutron source, is almost the same as that of polyethylene, which is not effective above 100 °C. The new resin maintains its mechanical strength in the high temperature region. The outgas of CO 2, NH 3 and H 2O from the resin have been measured, however, the neutron shielding performance of the resin after 200 °C baking was almost the same as that before baking. Thirteen kinds of organic gases have been observed at ˜300 °C.

  15. Long counter and its application for the calibration of the neutron irradiators.

    PubMed

    Park, Hyeonseo; Kim, Jungho; Choi, Kil-Oung

    2014-10-01

    The Korea Research Institute of Standards and Science (KRISS) has constructed a new long counter that can be disassembled in parts and reassembled. This counter can be easily transported and used as a transfer standard instrument for neutron fluence measurements. The response function and the effective centre of the counter are investigated by calculating neutron energies from thermal to 30 MeV using MCNPX. By carrying out measurements using a (252)Cf source in the KRISS irradiation room, the accuracy of the evaluated effective centre position is confirmed. The 'distance variation method' is adopted to eliminate the effect of inscatter neutrons. This method is effective and used for the experimental determination of the effective centre. The neutron emission rates determined by the neutron fluence measurements using the long counter developed are compared with those measured by a manganese sulphate bath, and show good agreement within 3 %.

  16. Neutron noise measurements at the Delphi subcritical assembly

    SciTech Connect

    Szieberth, M.; Klujber, G.; Kloosterman, J. L.; De Haas, D.

    2012-07-01

    The paper presents the results and evaluations of a comprehensive set of neutron noise measurements on the Delphi subcritical assembly of the Delft Univ. of Technology. The measurements investigated the effect of different source distributions (inherent spontaneous fission and {sup 252}Cf) and the position of the detectors applied (both radially and vertically). The evaluation of the measured data has been performed by the variance-to-mean ratio (VTMR, Feynman-{alpha}), the autocorrelation (ACF, Rossi-{alpha}) and the cross-correlation (CCF) methods. The values obtained for the prompt decay constant show a strong bias, which depends both on the detector position and on the source distribution. This is due to the presence of higher modes in the system. It has been observed that the {alpha} value fitted is higher when the detector is close to the boundary of the core or to the {sup 252}Cf point-source. The higher alpha-modes have also been observed by fitting functions describing two alpha-modes. The successful set of measurement also provides a good basis for further theoretical investigations including the Monte Carlo simulation of the noise measurements and the calculation of the alpha-modes in the Delphi subcritical assembly. (authors)

  17. Neutron counting and gamma spectroscopy with PVT detectors.

    SciTech Connect

    Mitchell, Dean James; Brusseau, Charles A.

    2011-06-01

    Radiation portals normally incorporate a dedicated neutron counter and a gamma-ray detector with at least some spectroscopic capability. This paper describes the design and presents characterization data for a detection system called PVT-NG, which uses large polyvinyl toluene (PVT) detectors to monitor both types of radiation. The detector material is surrounded by polyvinyl chloride (PVC), which emits high-energy gamma rays following neutron capture reactions. Assessments based on high-energy gamma rays are well suited for the detection of neutron sources, particularly in border security applications, because few isotopes in the normal stream of commerce have significant gamma ray yields above 3 MeV. Therefore, an increased count rate for high-energy gamma rays is a strong indicator for the presence of a neutron source. The sensitivity of the PVT-NG sensor to bare {sup 252}Cf is 1.9 counts per second per nanogram (cps/ng) and the sensitivity for {sup 252}Cf surrounded by 2.5 cm of polyethylene is 2.3 cps/ng. The PVT-NG sensor is a proof-of-principal sensor that was not fully optimized. The neutron detector sensitivity could be improved, for instance, by using additional moderator. The PVT-NG detectors and associated electronics are designed to provide improved resolution, gain stability, and performance at high-count rates relative to PVT detectors in typical radiation portals. As well as addressing the needs for neutron detection, these characteristics are also desirable for analysis of the gamma-ray spectra. Accurate isotope identification results were obtained despite the common impression that the absence of photopeaks makes data collected by PVT detectors unsuitable for spectroscopic analysis. The PVT detectors in the PVT-NG unit are used for both gamma-ray and neutron detection, so the sensitive volume exceeds the volume of the detection elements in portals that use dedicated components to detect each type of radiation.

  18. A physics investigation of deadtime losses in neutron counting at low rates with Cf252

    SciTech Connect

    Evans, Louise G; Croft, Stephen

    2009-01-01

    {sup 252}Cf spontaneous fission sources are used for the characterization of neutron counters and the determination of calibration parameters; including both neutron coincidence counting (NCC) and neutron multiplicity deadtime (DT) parameters. Even at low event rates, temporally-correlated neutron counting using {sup 252}Cf suffers a deadtime effect. Meaning that in contrast to counting a random neutron source (e.g. AmLi to a close approximation), DT losses do not vanish in the low rate limit. This is because neutrons are emitted from spontaneous fission events in time-correlated 'bursts', and are detected over a short period commensurate with their lifetime in the detector (characterized by the system die-away time, {tau}). Thus, even when detected neutron events from different spontaneous fissions are unlikely to overlap in time, neutron events within the detected 'burst' are subject to intrinsic DT losses. Intrinsic DT losses for dilute Pu will be lower since the multiplicity distribution is softer, but real items also experience self-multiplication which can increase the 'size' of the bursts. Traditional NCC DT correction methods do not include the intrinsic (within burst) losses. We have proposed new forms of the traditional NCC Singles and Doubles DT correction factors. In this work, we apply Monte Carlo neutron pulse train analysis to investigate the functional form of the deadtime correction factors for an updating deadtime. Modeling is based on a high efficiency {sup 3}He neutron counter with short die-away time, representing an ideal {sup 3}He based detection system. The physics of dead time losses at low rates is explored and presented. It is observed that new forms are applicable and offer more accurate correction than the traditional forms.

  19. Comparative toxicity of /sup 226/Ra, /sup 239/Pu, /sup 241/Am, /sup 249/Cf, and /sup 252/Cf in C57BL/Do black and albino mice

    SciTech Connect

    Taylor, G.N.; Mays, C.W.; Lloyd, R.D.; Gardner, P.A.; TAlbot, L.R.; McFarland, S.S.; Pollard, T.A.; Atherton, D.R.; vanMoorhem, D.; Brammer, D.

    1983-09-01

    Groups of C57BL/Do (black and albino) mice were injected with graded activities of /sup 226/Ra, /sup 239/Pu, /sup 241/Am, /sup 249/Cf, or /sup 252/Cf and were followed throughout life. Bone sarcoma was the principal radiation-induced end point, and the risks associated with average skeletal doses of the four transuranium radionuclides, relative to radium, were determined. The relative biological effectiveness (RBE) was calculated for each emitter by dividing its risk coefficient (bone sarcomas per 10/sup 6/ mouse-rad) by the risk coefficient for /sup 226/Ra. Combined data for males and females in both black and albino mice gave the following values +- SD for the RBE relative to /sup 226/Ra = 1.0: /sup 239/Pu = 15.3 +- 3.9, /sup 241/Am = 4.9 +- 1.4, /sup 249/Cf = 5.0 +- 1.4, and /sup 252/Cf = 2.6 +- 0.8. About 70% of the tumors occurred in the axial skeleton, and the risk coefficient for females averaged about four times higher than for males when all five nuclides were included. The RBE of fission fragment irradiation from /sup 252/Cf for cancer induction, relative to ..cap alpha.. irradiation, for the combined data in all of the animals given /sup 252/Cf and /sup 249/Cf, was 0.02 +- 0.28, in agreement with the calculated theoretical value of 0.03, based on the ratio of summed track lengths in tissue.

  20. Comparative toxicity of /sup 226/Ra, /sup 239/Pu, /sup 241/Am, /sup 249/Cf, and /sup 252/Cf in C57BL/Do black and albino mice

    SciTech Connect

    Taylor, G.N.; Mays, C.W.; Lloyd, R.D.; Gardner, P.A.; Talbot, L.R.; McFarland, S.S.; Pollard, I.A.; Atherton, D.R.; VanMoorhem, D.; Brammer, D.

    1983-09-01

    Groups of C57BL/Do (black and albino) mice were injected with graded activities of /sup 226/Ra, /sup 239/Pu, /sup 241/Am, /sup 249/Cf, or /sup 252/Cf and were followed throughout life. Bone sarcoma was the principal radiation-induced end point, and the risks associated with average skeletal doses of the four transuranium radionuclides, relative to radium, were determined. The relative biological effectiveness (RBE) was calculated for each emitter by dividing its risk coefficient (bone sarcomas per 10(/sup 6/) mouse-rad) by the risk coefficient for /sup 226/Ra. Combined data for males and females in both black and albino mice gave the following values +/- SD for the RBE relative to /sup 226/Ra . 1.0: /sup 239/Pu . 15.3 +/- 3.9, /sup 241/Am . 4.9 +/- 1.4, /sup 249/Cf . 5.0 +/- 1.4, and /sup 252/Cf . 2.6 +/- 0.8. About 70% of the tumors occurred in the axial skeleton, and the risk coefficient for females averaged about four times higher than for males when all five nuclides were included. The RBE of fission fragment irradiation from /sup 252/Cf for cancer induction, relative to alpha irradiation, for the combined data in all of the animals given /sup 252/Cf and /sup 249/Cf, was 0.02 +/- 0.28, in agreement with the calculated theoretical value of 0.03, based on the ratio of summed track lengths in tissue.

  1. Luminescent and scintillating properties of lanthanum fluoride nanocrystals in response to gamma/neutron irradiation: codoping with Ce activator, Yb wavelength shifter, and Gd neutron captor

    NASA Astrophysics Data System (ADS)

    Vargas, J. M.; Blostein, J. J.; Sidelnik, I.; Rondón Brito, D.; Rodríguez Palomino, L. A.; Mayer, R. E.

    2016-09-01

    A novel concept for gamma radiation detection and spectroscopy, and detection of thermal neutrons based on co-doped lanthanum fluoride nanocrystals containing gadolinium is presented. The trends of colloidal synthesis of the mentioned material, LaF3 co-doped with Ce3+ as the activator, Yb3+ as the wavelength-shifter and Gd3+ as the neutron captor, is reported. Nanocrystals of the mentioned material were characterized by transmission electron microscopy, X ray diffraction, energy dispersive X ray spectroscopy, optical absorption, and photoluminescence spectroscopy. Gamma detection and its potential spectroscopy feature have been confirmed. The neutron detection capability has been confirmed by experiments performed using a 252Cf neutron source.

  2. Fission-fusion neutron source

    NASA Astrophysics Data System (ADS)

    Yu, Jinnan; Yu, Gang

    2009-04-01

    In order to meet the requirements of fusion power reactors and nuclear waste treatment, a concept of fission-fusion neutron source is proposed, which consists of a LiD assembly located in the heavy water region of the China Advanced Research Reactor. This assembly of LiD fuel rods will be irradiated with slow neutrons and will produce fusion neutrons in the central hole via the reaction 6Li(n, α). More precisely, tritium ions with a high energy of 2.739 MeV will be produced in LiD by the impinging slow neutrons. The tritium ions will in turn bombard the deuterium ions present in the LiD assembly, which will induce fusion reaction and then the production of 14 MeV neutrons. The fusion reaction rate will increase with the accumulation of tritium in LiD by the reaction between tritium and deuteron recoils produced by the 14 MeV neutrons. When the concentration of tritium reaches 0.5 · 10 22 and the fraction of fusion reactions between tritium and deuteron recoils approaches 1, the 14 MeV neutron flux is doubled and redoubled, an so forth, approaching saturation in which the tritium produced at a time t is exhausted by the fusion reactions to keep constant the tritium concentration in LiD.

  3. Benchmark test of transport calculations of gold and nickel activation with implications for neutron kerma at Hiroshima.

    PubMed

    Hoshi, M; Hiraoka, M; Hayakawa, N; Sawada, S; Munaka, M; Kuramoto, A; Oka, T; Iwatani, K; Shizuma, K; Hasai, H

    1992-11-01

    A benchmark test of the Monte Carlo neutron and photon transport code system (MCNP) was performed using a 252Cf fission neutron source to validate the use of the code for the energy spectrum analyses of Hiroshima atomic bomb neutrons. Nuclear data libraries used in the Monte Carlo neutron and photon transport code calculation were ENDF/B-III, ENDF/B-IV, LASL-SUB, and ENDL-73. The neutron moderators used were granite (the main component of which is SiO2, with a small fraction of hydrogen), Newlight [polyethylene with 3.7% boron (natural)], ammonium chloride (NH4Cl), and water (H2O). Each moderator was 65 cm thick. The neutron detectors were gold and nickel foils, which were used to detect thermal and epithermal neutrons (4.9 eV) and fast neutrons (> 0.5 MeV), respectively. Measured activity data from neutron-irradiated gold and nickel foils in these moderators decreased to about 1/1,000th or 1/10,000th, which correspond to about 1,500 m ground distance from the hypocenter in Hiroshima. For both gold and nickel detectors, the measured activities and the calculated values agreed within 10%. The slopes of the depth-yield relations in each moderator, except granite, were similar for neutrons detected by the gold and nickel foils. From the results of these studies, the Monte Carlo neutron and photon transport code was verified to be accurate enough for use with the elements hydrogen, carbon, nitrogen, oxygen, silicon, chlorine, and cadmium, and for the incident 252Cf fission spectrum neutrons. PMID:1399639

  4. Benchmark test of transport calculations of gold and nickel activation with implications for neutron kerma at Hiroshima.

    PubMed

    Hoshi, M; Hiraoka, M; Hayakawa, N; Sawada, S; Munaka, M; Kuramoto, A; Oka, T; Iwatani, K; Shizuma, K; Hasai, H

    1992-11-01

    A benchmark test of the Monte Carlo neutron and photon transport code system (MCNP) was performed using a 252Cf fission neutron source to validate the use of the code for the energy spectrum analyses of Hiroshima atomic bomb neutrons. Nuclear data libraries used in the Monte Carlo neutron and photon transport code calculation were ENDF/B-III, ENDF/B-IV, LASL-SUB, and ENDL-73. The neutron moderators used were granite (the main component of which is SiO2, with a small fraction of hydrogen), Newlight [polyethylene with 3.7% boron (natural)], ammonium chloride (NH4Cl), and water (H2O). Each moderator was 65 cm thick. The neutron detectors were gold and nickel foils, which were used to detect thermal and epithermal neutrons (4.9 eV) and fast neutrons (> 0.5 MeV), respectively. Measured activity data from neutron-irradiated gold and nickel foils in these moderators decreased to about 1/1,000th or 1/10,000th, which correspond to about 1,500 m ground distance from the hypocenter in Hiroshima. For both gold and nickel detectors, the measured activities and the calculated values agreed within 10%. The slopes of the depth-yield relations in each moderator, except granite, were similar for neutrons detected by the gold and nickel foils. From the results of these studies, the Monte Carlo neutron and photon transport code was verified to be accurate enough for use with the elements hydrogen, carbon, nitrogen, oxygen, silicon, chlorine, and cadmium, and for the incident 252Cf fission spectrum neutrons.

  5. Optical polarizing neutron devices designed for pulsed neutron sources

    SciTech Connect

    Takeda, M.; Kurahashi, K.; Endoh, Y.; Itoh, S.

    1997-09-01

    We have designed two polarizing neutron devices for pulsed cold neutrons. The devices have been tested at the pulsed neutron source at the Booster Synchrotron Utilization Facility of the National Laboratory for High Energy Physics. These two devices proved to have a practical use for experiments to investigate condensed matter physics using pulsed cold polarized neutrons.

  6. Neutron-emission measurements at a white neutron source

    SciTech Connect

    Haight, Robert C

    2010-01-01

    Data on the spectrum of neutrons emittcd from neutron-induced reactions are important in basic nuclear physics and in applications. Our program studies neutron emission from inelastic scattering as well as fission neutron spectra. A ''white'' neutron source (continuous in energy) allows measurements over a wide range of neutron energies all in one experiment. We use the tast neutron source at the Los Alamos Neutron Science Center for incident neutron energies from 0.5 MeV to 200 MeV These experiments are based on double time-of-flight techniques to determine the energies of the incident and emitted neutrons. For the fission neutron measurements, parallel-plate ionization or avalanche detectors identify fission in actinide samples and give the required fast timing pulse. For inelastic scattering, gamma-ray detectors provide the timing and energy spectroscopy. A large neutron-detector array detects the emitted neutrons. Time-of-flight techniques are used to measure the energies of both the incident and emitted neutrons. Design considerations for the array include neutron-gamma discrimination, neutron energy resolution, angular coverage, segmentation, detector efficiency calibration and data acquisition. We have made preliminary measurements of the fission neutron spectra from {sup 235}U, {sup 238}U, {sup 237}Np and {sup 239}Pu. Neutron emission spectra from inelastic scattering on iron and nickel have also been investigated. The results obtained will be compared with evaluated data.

  7. NIST Calibration of a Neutron Spectrometer ROSPEC.

    PubMed

    Heimbach, Craig

    2006-01-01

    A neutron spectrometer was acquired for use in the measurement of National Institute of Standards and Technology neutron fields. The spectrometer included options for the measurement of low and high energy neutrons, for a total measurement range from 0.01 eV up to 17 MeV. The spectrometer was evaluated in calibration fields and was used to determine the neutron spectrum of an Americium-Beryllium neutron source. The calibration fields used included bare and moderated (252)Cf, monoenergetic neutron fields of 2.5 MeV and 14 MeV, and a thermal-neutron beam. Using the calibration values determined in this exercise, the spectrometer gives a good approximation of the neutron spectrum, and excellent values for neutron fluence, for all NIST calibration fields. The spectrometer also measured an Americium-Beryllium neutron field in a NIST exposure facility and determined the field quite well. The spectrometer measured scattering effects in neutron spectra which previously could be determined only by calculation or integral measurements.

  8. NIST Calibration of a Neutron Spectrometer ROSPEC

    PubMed Central

    Heimbach, Craig

    2006-01-01

    A neutron spectrometer was acquired for use in the measurement of National Institute of Standards and Technology neutron fields. The spectrometer included options for the measurement of low and high energy neutrons, for a total measurement range from 0.01 eV up to 17 MeV. The spectrometer was evaluated in calibration fields and was used to determine the neutron spectrum of an Americium-Beryllium neutron source. The calibration fields used included bare and moderated 252Cf, monoenergetic neutron fields of 2.5 MeV and 14 MeV, and a thermal-neutron beam. Using the calibration values determined in this exercise, the spectrometer gives a good approximation of the neutron spectrum, and excellent values for neutron fluence, for all NIST calibration fields. The spectrometer also measured an Americium-Beryllium neutron field in a NIST exposure facility and determined the field quite well. The spectrometer measured scattering effects in neutron spectra which previously could be determined only by calculation or integral measurements. PMID:27274944

  9. Industrial applications of laser neutron source

    NASA Astrophysics Data System (ADS)

    Nakai, S.; Mima, K.; Kato, Y.; Tanaka, K.; Ikeda, Y.; Azechi, H.; Miyanaga, K.; Nakai, M.; Perlado, M.; Gonzalez Arrabal, R.

    2010-08-01

    The industrial applications of the intense neutron source have been widely explored because of the unique features of the neutron-matter interaction. Usually, intense neutron sources are assembled with fission reactors or high energy ion accelerators. The big size and high cost of these systems are the bottle neck to promote the industrial applications of intense neutrons. In this paper, we propose the compact laser driven neutron source for the industrial application. As the first step of our project for the versatile applications of laser driven neutron source, Li-neutron and/or Li-proton interactions have been investigated for the application to the development of Li battery.

  10. Compact ion source neutron generator

    SciTech Connect

    Schenkel, Thomas; Persaud, Arun; Kapadia, Rehan; Javey, Ali; Chang-Hasnain, Constance; Rangelow, Ivo; Kwan, Joe

    2015-10-13

    A neutron generator includes a conductive substrate comprising a plurality of conductive nanostructures with free-standing tips and a source of an atomic species to introduce the atomic species in proximity to the free-standing tips. A target placed apart from the substrate is voltage biased relative to the substrate to ionize and accelerate the ionized atomic species toward the target. The target includes an element capable of a nuclear fusion reaction with the ionized atomic species to produce a one or more neutrons as a reaction by-product.

  11. Study of a nTHGEM-based thermal neutron detector

    NASA Astrophysics Data System (ADS)

    Li, Ke; Zhou, Jian-Rong; Wang, Xiao-Dong; Xiong, Tao; Zhang, Ying; Xie, Yu-Guang; Zhou, Liang; Xu, Hong; Yang, Gui-An; Wang, Yan-Feng; Wang, Yan; Wu, Jin-Jie; Sun, Zhi-Jia; Hu, Bi-Tao

    2016-07-01

    With new generation neutron sources, traditional neutron detectors cannot satisfy the demands of the applications, especially under high flux. Furthermore, facing the global crisis in 3He gas supply, research on new types of neutron detector as an alternative to 3He is a research hotspot in the field of particle detection. GEM (Gaseous Electron Multiplier) neutron detectors have high counting rate, good spatial and time resolution, and could be one future direction of the development of neutron detectors. In this paper, the physical process of neutron detection is simulated with Geant4 code, studying the relations between thermal conversion efficiency, boron thickness and number of boron layers. Due to the special characteristics of neutron detection, we have developed a novel type of special ceramic nTHGEM (neutron THick GEM) for neutron detection. The performance of the nTHGEM working in different Ar/CO2 mixtures is presented, including measurements of the gain and the count rate plateau using a copper target X-ray source. A detector with a single nTHGEM has been tested for 2-D imaging using a 252Cf neutron source. The key parameters of the performance of the nTHGEM detector have been obtained, providing necessary experimental data as a reference for further research on this detector. Supported by National Natural Science Foundation of China (11127508, 11175199, 11205253, 11405191), Key Laboratory of Neutron Physics, CAEP (2013DB06, 2013BB04) and CAS (YZ201512)

  12. Passive neutron design study for 200-L waste drums

    SciTech Connect

    Menlove, H.O.; Beddingfield, D.B.; Pickrell, M.M.

    1997-09-01

    We have developed a passive neutron counter for the measurement of plutonium in 200-L drums of scrap and waste. The counter incorporates high efficiency for the multiplicity counting in addition to the traditional coincidence counting. The {sup 252}Cf add-a-source feature is used to provide an accurate assay over a wide range of waste matrix materials. The room background neutron rate is reduced by using 30 cm of external polyethylene shielding and the cosmic-ray background is reduced by statistical filtering techniques. Monte Carlo Code calculations were used to determine the optimum detector design, including the gas pressure, size, number, and placement of the {sup 3}He tubes in the moderator. Various moderators, including polyethylene, plastics, teflon, and graphite, were evaluated to obtain the maximum efficiency and minimum detectable mass of plutonium.

  13. Californium-252 Neutron Sources for Medical Applications

    SciTech Connect

    Boulogne, A.R.

    2001-08-29

    Californium-252 neutron sources are being prepared to investigate the value of this radionuclide in diagnosing and treating diseases. A source resembling a cell-loaded radium needle was developed for neutron therapy. Since therapy needles are normally implanted in the body, very conservative design criteria were established to prevent leakage of radioactive. Methods are being developed to prepare very intense californium sources that could be used eventually for neutron radiography and for diagnosis by neutron activation analysis. This paper discusses these methods.

  14. Determining the 6Li doped side of a glass scintillator for ultra cold neutrons

    NASA Astrophysics Data System (ADS)

    Jamieson, Blair; Rebenitsch, Lori Ann

    2015-08-01

    Ultracold neutron (UCN) detectors using two visually very similar, to the microscopic level, pieces of optically contacted cerium doped lithium glasses have been proposed for high rate UCN experiments. The chief difference between the two glass scintillators is that one side is 6Li depleted and the other side 6Li doped. This note outlines a method to determine which side of the glass stack is doped with 6Li using AmBe and 252Cf neutron sources, and a Si surface barrier detector. The method sees an excess of events around the α and triton energies of neutron capture on 6Li when the enriched side is facing the Si surface barrier detector.

  15. Neutron spallation sources in Europe

    NASA Astrophysics Data System (ADS)

    Bryant, P. J.

    1996-11-01

    After a brief general and historical discussion, the main design features of spallation sources are described. At the present time, Europe not only has the world-leading pulsed neutron spallation source, the SNS-ISIS at RAL, UK, but it is on the point of commissioning a world-leading continuous cyclotron-driven source, the SINQ at PSI, Switzerland. Looking to the future, yet more powerful pulsed sources are actively under study and the difficult problem of high-power target design (>250 kW) is leading to a new technology for liquid targets. The accelerator designs, although basically classical, require custom-built solutions that are often at the limit of present day accelerator technology.

  16. Neutron spallation sources in Europe

    NASA Astrophysics Data System (ADS)

    Bryant, P. J.

    1996-11-01

    After a brief general and historical discussion, the main design features of spallation sources are described. At the present time, Europe not only has the world-leading pulsed neutron spallation source, the SNS-ISIS at RAL, UK, but it is on the point of commissioning a world-leading continuous cyclotron-driven source, the SINQ at PSI, Switzerland. Looking to the future, yet more powerful pulsed sources are actively under study and the difficult problem of high-power target design (>250 kW) is leading to a new technology for liquid targets. The accelerator designs, although basically classical, require custom-built solutions that are often at the limit of presentday accelerator technology.

  17. Composite polycrystalline semiconductor neutron detectors

    NASA Astrophysics Data System (ADS)

    Schieber, M.; Zuck, A.; Marom, G.; Khakhan, O.; Roth, M.; Alfassi, Z. B.

    2007-08-01

    Composite polycrystalline semiconductor detectors bound with different binders, both inorganic molten glasses, such as B 2O 3, PbO/B 2O 3, Bi 2O 3/PbO, and organic polymeric binders, such as isotactic polypropylene (iPP), polystyrene or nylon-6, and coated with different metal electrodes were tested at room temperature for α-particles and very weak thermal neutron sources. The detector materials tested were natural occurring hexagonal BN and cubic LiF, where both are not containing enriched isotopes of 10B or 6Li. The radiation sources were 5.5 MeV α's from 241Am, 5.3 MeV from 210Po and also 4.8 MeV from 226Ra. Some of these detectors were also tested with thermal neutrons from very weak 227Ac 9Be, 241Am- 10Be sources and also from a weak 238Pu+ 9Be and somewhat stronger 252Cf sources. The neutrons were thermalized with paraffin. Despite very low signal to noise ratio of only ˜2, the neutrons could be counted by subtracting the noise from the signal.

  18. Investigation of neutron converters for production of optically stimulated luminescence (OSL) neutron dosimeters using Al 2O 3:C

    NASA Astrophysics Data System (ADS)

    Mittani, J. C. R.; da Silva, A. A. R.; Vanhavere, F.; Akselrod, M. S.; Yukihara, E. G.

    2007-07-01

    This paper presents the optically stimulated luminescence (OSL) properties of neutron dosimeters in powder and in the form of pellets prepared with a mixture of Al 2O 3:C and neutron converters. The neutron converters investigated were high density polyethylene (HDPE), lithium fluoride (LiF), lithium fluoride 95% enriched with 6Li ( 6LiF), lithium carbonate 95% enriched with 6Li ( 6Li 2CO 3), boric acid enriched with 99% of 10B (H310BO) and gadolinium oxide (Gd 2O 3). The proportion of Al 2O 3:C and neutron converter in the mixture was varied to optimize the total OSL signal and neutron sensitivity. The neutron sensitivity and dose-response were determined for the OSL dosimeters using a bare 252Cf source and compared to the response of Harshaw TLD-600 and TLD-700 dosimeters ( 6LiF:Mg,Ti and 7LiF:Mg,Ti). The results demonstrate the possibility of developing an OSL dosimeter made of Al 2O 3:C powder and neutron converter with a neutron sensitivity (defined as the ratio between the 60Co equivalent gamma dose and the reference neutron absorbed dose) and neutron-gamma discrimination comparable to the TLD-600/TLD-700 combination. It was shown that the shape of the OSL decay curves varied with the type of the neutron converter, demonstrating the influence of the energy deposition mechanism and ionization density on the OSL process in Al 2O 3:C.

  19. Effect of diameter of nanoparticles and capture cross-section library on macroscopic dose enhancement in boron neutron capture therapy

    PubMed Central

    Farhood, Bagher

    2014-01-01

    Purpose The aim of this study is evaluation of the effect of diameter of 10B nanoparticles and various neutron capture cross-section libraries on macroscopic dose enhancement in boron neutron capture therapy (BNCT). Material and methods MCNPX Monte Carlo code was used for simulation of a 252Cf source, a soft tissue phantom and a tumor containing 10B nanoparticles. Using 252Cf as a neutron source, macroscopic dose enhancement factor (MDEF) and total dose rate in tumor in the presence of 100, 200, and 500 ppm of 10B nanoparticles with 25 nm, 50 nm, and 100 nm diameters were calculated. Additionally, the effect of ENDF, JEFF, JENDL, and CENDL neutron capture cross-section libraries on MDEF was evaluated. Results There is not a linear relationship between the average MDEF value and nanoparticles’ diameter but the average MDEF grows with increased concentration of 10B nanoparticles. There is an increasing trend for average MDEF with the tumor distance. The average MDEF values were obtained the same for various neutron capture cross-section libraries. The maximum and minimum doses that effect on the total dose in tumor were neutron and secondary photon doses, respectively. Furthermore, the boron capture related dose component reduced in some extent with increase of diameter of 10B nanoparticles. Conclusions Based on the results of this study, it can be concluded that from physical point of view, various nanoparticle diameters have no dominant effect on average MDEF value in tumor. Furthermore, it is concluded that various neutron capture cross-section libraries are resulted to the same macroscopic dose enhancements. However, it is predicted that taking into account the biological effects for various nanoparticle diameters will result in different dose enhancements. PMID:25834582

  20. A multitask neutron beam line for spallation neutron sources

    NASA Astrophysics Data System (ADS)

    Pietropaolo, A.; Festa, G.; Grazzi, F.; Barzagli, E.; Scherillo, A.; Schooneveld, E. M.; Civita, F.

    2011-08-01

    Here we present a new concept for a time-of-flight neutron scattering instrument allowing for simultaneous application of three different techniques: time-of-flight neutron diffraction, neutron resonance capture analysis and Bragg edge transmission analysis. The instrument can provide average resolution neutron radiography too. The potential of the proposed concept was explored by implementing the necessary equipment on INES (Italian Neutron Experimental Station) at the ISIS spallation neutron source (UK). The results obtained show the effectiveness of the proposed instrument to acquire relevant quantitative information in a non-invasive way on a historical metallurgical sample, namely a Japanese hand guard (tsuba). The aforementioned neutron techniques simultaneously exploited the extended neutron energy range available from 10 meV to 1 keV. This allowed a fully satisfactory characterization of the sample in terms of metal components and their combination in different phases, and forging and assembling methods.

  1. The Frankfurt neutron source FRANZ

    NASA Astrophysics Data System (ADS)

    Alzubaidi, Suha; Bartz, Ulrich; Basten, Markus; Bechtold, Alexander; Chau, Long Phi; Claessens, Christine; Dinter, Hannes; Droba, Martin; Fix, Christopher; Hähnel, Hendrik; Heilmann, Manuel; Hinrichs, Ole; Huneck, Simon; Klump, Batu; Lotz, Marcel; Mäder, Dominik; Meusel, Oliver; Noll, Daniel; Nowottnick, Tobias; Obermayer, Marcus; Payir, Onur; Petry, Nils; Podlech, Holger; Ratzinger, Ulrich; Schempp, Alwin; Schmidt, Stefan; Schneider, Philipp; Seibel, Anja; Schwarz, Malte; Schweizer, Waldemar; Volk, Klaus; Wagner, Christopher; Wiesner, Christoph

    2016-05-01

    A 2MeV proton beam will produce a quasi-Maxwellian neutron spectrum of around 30 keV by the 7Li(p, n)7Be reaction. The experiments are mainly focused on the measurement of differential neutron capture cross sections relevant for the astrophysical s-process in nuclear synthesis. Moreover, proton capture cross sections for the astrophysical p-process can be measured directly with the proton beam. For an efficient time of flight measurement of the neutron energies along the 0.7 m long drift from the Li-target to the sample, 1ns short, intense proton pulses are needed at the target. Additionally, to reach 107 n/cm2/s at the sample, a pulse repetition rate of 250 kHz is intended. After completion and successful running in, FRANZ will become a user facility with internal and external users. The 120 kV injector terminal and the 200mA proton source as well as the low-energy beam transport section and the FRANZ cave have been realized successfully. The 1.9 MV RF accelerator consists of a combined 4-Rod-RFQ/IH-DTL-resonator and is in the RF tuning and power testing phase. The 2 MeV transport and rebuncher section is ready for installation. In a first step FRANZ will offer experimental areas for neutron activation experiments and for proton beam experiments, as mentioned above. From the accelerator physics point of view, FRANZ will be an excellent facility for high current beam investigations and for beam wall interaction studies.

  2. SELF-REACTIVATING NEUTRON SOURCE FOR A NEUTRONIC REACTOR

    DOEpatents

    Newson, H.W.

    1959-02-01

    Reactors of the type employing beryllium in a reflector region around the active portion and to a neutron source for use therewith are discussed. The neutron source is comprised or a quantity of antimony permanently incorporated in, and as an integral part of, the reactor in or near the beryllium reflector region. During operation of the reactor the natural occurring antimony isotope of atomic weight 123 absorbs neutrons and is thereby transformed to the antimony isotope of atomic weight 124, which is radioactive and emits gamma rays. The gamma rays react with the beryllium to produce neutrons. The beryllium and antimony thus cooperate to produce a built in neutron source which is automatically reactivated by the operation of the reactor itself and which is of sufficient strength to maintain the slow neutron flux at a sufficiently high level to be reliably measured during periods when the reactor is shut down.

  3. Development and characterization of a high sensitivity segmented Fast Neutron Spectrometer (FaNS-2)

    NASA Astrophysics Data System (ADS)

    Langford, T. J.; Beise, E. J.; Breuer, H.; Heimbach, C. R.; Ji, G.; Nico, J. S.

    2016-01-01

    We present the development of a segmented fast neutron spectrometer (FaNS-2) based upon plastic scintillator and 3He proportional counters. It was designed to measure both the flux and spectrum of fast neutrons in the energy range of few MeV to 1 GeV. FaNS-2 utilizes capture-gated spectroscopy to identify neutron events and reject backgrounds. Neutrons deposit energy in the plastic scintillator before capturing on a 3He nucleus in the proportional counters. Segmentation improves neutron energy reconstruction while the large volume of scintillator increases sensitivity to low neutron fluxes. A main goal of its design is to study comparatively low neutron fluxes, such as cosmogenic neutrons at the Earth's surface, in an underground environment, or from low-activity neutron sources. In this paper, we present details of its design and construction as well as its characterization with a calibrated 252Cf source and monoenergetic neutron fields of 2.5 MeV and 14 MeV. Detected monoenergetic neutron spectra are unfolded using a Singular Value Decomposition method, demonstrating a 5% energy resolution at 14 MeV. Finally, we discuss plans for measuring the surface and underground cosmogenic neutron spectra with FaNS-2.

  4. Slow neutron leakage spectra from spallation neutron sources

    SciTech Connect

    Das, S G; Carpenter, J M; Prael, R E

    1980-02-01

    An efficient technique is described for Monte Carlo simulation of neutron beam spectra from target-moderator-reflector assemblies typical of pulsed spallation neutron sources. The technique involves the scoring of the transport-theoretical probability that a neutron will emerge from the moderator surface in the direction of interest, at each collision. An angle-biasing probability is also introduced which further enhances efficiency in simple problems. These modifications were introduced into the VIM low energy neutron transport code, representing the spatial and energy distributions of the source neutrons approximately as those of evaporation neutrons generated through the spallation process by protons of various energies. The intensity of slow neutrons leaking from various reflected moderators was studied for various neutron source arrangements. These include computations relating to early measurements on a mockup-assembly, a brief survey of moderator materials and sizes, and a survey of the effects of varying source and moderator configurations with a practical, liquid metal cooled uranium source Wing and slab, i.e., tangential and radial moderator arrangements, and Be vs CH/sub 2/ reflectors are compared. Results are also presented for several complicated geometries which more closely represent realistic arrangements for a practical source, and for a subcritical fission multiplier such as might be driven by an electron linac. An adaptation of the code was developed to enable time dependent calculations, and investigated the effects of the reflector, decoupling and void liner materials on the pulse shape.

  5. Switchable radioactive neutron source device

    DOEpatents

    Boyar, Robert E.; DeVolpi, Alexander; Stanford, George S.; Rhodes, Edgar A.

    1989-01-01

    This invention is a switchable neutron generating apparatus comprised of a pair of plates, the first plate having an alpha emitter section on it and the second plate having a target material portion on it which generates neutrons when its nuclei absorb an alpha particle. In operation, the alpha portion of the first plate is aligned with the neutron portion of the second plate to produce neutrons and brought out of alignment to cease production of neutrons.

  6. Switchable radioactive neutron source device

    DOEpatents

    Stanford, G.S.; Rhodes, E.A.; Devolpi, A.; Boyar, R.E.

    1987-11-06

    This invention is a switchable neutron generating apparatus comprised of a pair of plates, the first plate having an alpha emitter section on it and the second plate having a target material portion on it which generates neutrons when its nuclei absorb an alpha particle. In operation, the alpha portion of the first plate is aligned with the neutron portion of the second plate to produce neutrons and brought out of alignment to cease production of neutrons. 3 figs.

  7. New sources and instrumentation for neutron science

    NASA Astrophysics Data System (ADS)

    Gil, Alina

    2011-04-01

    Neutron-scattering research has a lot to do with our everyday lives. Things like medicine, food, electronics, cars and airplanes have all been improved by neutron-scattering research. Neutron research also helps scientists improve materials used in a multitude of different products, such as high-temperature superconductors, powerful lightweight magnets, stronger, lighter plastic products etc. Neutron scattering is one of the most effective ways to obtain information on both, the structure and the dynamics of condensed matter. Most of the world's neutron sources were built decades ago, and although the uses and demand for neutrons have increased throughout the years, few new sources have been built. The new construction, accelerator-based neutron source, the spallation source will provide the most intense pulsed neutron beams in the world for scientific research and industrial development. In this paper it will be described what neutrons are and what unique properties make them useful for science, how spallation source is designed to produce neutron beams and the experimental instruments that will use those beams. Finally, it will be described how past neutron research has affected our everyday lives and what we might expect from the most exciting future applications.

  8. Characterization of a prototype neutron portal monitor detector

    NASA Astrophysics Data System (ADS)

    Nakhoul, Nabil

    The main objective of this thesis is to provide characterization measurements on a prototype neutron portal monitor (NPM) detector constructed at the University of Massachusetts Lowell. NPM detectors are deployed at all United States border crossings and shipping ports to stop the illicit transfer of weapons-grade plutonium (WGPu) into our country. This large prototype detector with its 0.93 square meter face area is based on thermal neutron capture in 6Li as an alternate technology to the current, very expensive, 3He-based NPM. A neutron detection efficiency of 27.5 % is measured with a 252Cf source which has a spontaneous fission neutron spectrum very similar to that of 240Pu in WGPu. Measurements with an intense 137Cs source establish the extreme insensitivity of the prototype NPM to gamma-ray backgrounds with only one additional count registered for 1.1 million incident gamma rays. This detector also has the ability to locate neutron sources to within an angle of a few degrees. Its sensitivity is further demonstrated by discovering in a few-second measurement the presence of a 2 curie PuBe neutron source even at a distance of 95.5 feet. This thesis also covers in considerable detail the design features that give rise to both a high intrinsic neutron detection efficiency and an extreme gamma-ray insensitivity.

  9. Neutron sources: Present practice and future potential

    SciTech Connect

    Cierjacks, S.; Smith, A.B.

    1988-01-01

    The present capability and future potential of accelerator-based monoenergetic and white neutron sources are outlined in the context of fundamental and applied neutron-nuclear research. The neutron energy range extends from thermal to 500 MeV, and the time domain from steady-state to pico-second pulsed sources. Accelerator technology is summarized, including the production of intense light-ion, heavy-ion and electron beams. Target capabilities are discussed with attention to neutron-producing efficiency and power-handling capabilities. The status of underlying neutron-producing reactions is summarized. The present and future use of neutron sources in: fundamental neutron-nuclear research, nuclear data acquisition, materials damage studies, engineering tests, and biomedical applications are discussed. Emphasis is given to current status, near-term advances well within current technology, and to long-range projections. 90 refs., 4 figs.

  10. Neutron sources: present practice and future potential

    SciTech Connect

    Cierjacks, S.; Smith, A.B.

    1988-01-01

    The present capability and future potential of accelerator-based monoenergetic and white neutron sources are outlined in the context of fundamental and applied neutron-nuclear research. The neutron energy range extends from thermal to 500+ MeV, and the time domain from steady-state to pico-second pulsed sources. Accelerator technology is summarized, including the production of intense light-ion, heavy-ion and electron beams. Target capabilities are discussed with attention to neutron-production efficiency and power-handling capabilities. The status of underlying neutron-producing reactions is summarized. The present and future use of neutron sources in: (i) fundamental neutron-nuclear research, (ii) nuclear-data acquisition, (iii) materials-damage studies, (iv) engineering test, and (v) biomedical applications are discussed. Emphasis is given to current status, near-term advances well within current technology, and to long-range projections.

  11. Development of a modular directional and spectral neutron detection system using solid-state detectors

    NASA Astrophysics Data System (ADS)

    Weltz, A.; Torres, B.; McElwain, L.; Dahal, R.; Huang, J.; Bhat, I.; Lu, J.; Danon, Y.

    2015-08-01

    A detection system using room-temperature, microstructured solid-state thermal neutron detectors with very low leakage current has been developed at Rensselaer Polytechnic Institute (RPI) with the ability to provide positional and spectral information about an unknown neutron source. The Directional and Spectral Neutron Detection System (DSNDS) utilizes a set of small-but-scalable, zero-bias solid-state thermal neutron detectors which have demonstrated high thermal neutron efficiency and adequate gamma insensitivity. The DSNDS can gather spectral information about an unknown neutron source with a relatively small number of detectors, simplifying the detector electronics and minimizing cost; however, the DSNDS is modular in design, providing the capability to increase the detection efficiency and angular resolution. The system used in this paper was comprised of a stack of five high-density polyethylene (HDPE) disks with a thickness of 5 cm and a diameter of 30 cm, the middle disk containing 16 detectors positioned as one internal (moderated) and one external (unmoderated) ring of solid-state neutron detectors. These two detector rings provide the ability to determine the directionality of a neutron source. The system gathers spectral information about a neutron source in two ways: by measuring the relative responses of the internal ring of detectors as well as measuring the ratio of the internal-to-external detector responses. Experiments were performed with variable neutron spectra: a 252Cf spontaneous fission neutron source which was HDPE moderated, HDPE reflected, lead (Pb) shielded, and bare in order to benchmark the system for spectral sensitivity. Simulations were performed in order to characterize the neutron spectra corresponding to each of the source configurations and showed agreement with experimental measurements. The DSNDS demonstrates the ability to determine the relative angle of the source and the hardness of the neutron spectrum. By using the

  12. Apparatus for irradiating a continuously flowing stream of fluid. [For neutron activation analysis

    DOEpatents

    Speir, L.G.; Adams, E.L.

    1982-05-13

    An apparatus for irradiating a continuously flowing stream of fluid is disclosed. The apparatus consists of a housing having a spherical cavity and a spherical moderator containing a radiation source positioned within the spherical cavity. The spherical moderator is of lesser diameter than the spherical cavity so as to define a spherical annular volume around the moderator. The housing includes fluid intake and output conduits which open onto the spherical cavity at diametrically opposite positions. Fluid flows through the cavity around the spherical moderator and is uniformly irradiated due to the 4..pi.. radiation geometry. The irradiation source, for example a /sup 252/Cf neutron source, is removable from the spherical moderator through a radial bore which extends outwardly to an opening on the outside of the housing. The radiation source may be routinely removed without interrupting the flow of fluid or breaching the containment of the fluid.

  13. Measurement of neutron diffraction with compact neutron source RANS

    NASA Astrophysics Data System (ADS)

    Ikeda, Y.; Takamura, M.; Taketani, A.; Sunaga, H.; Otake, Y.; Suzuki, H.; Kumagai, M.; Oba, Y.; Hama, T.

    2016-11-01

    Diffraction is used as a measurement technique for crystal structure. X-rays or electron beam with wavelength that is close to the lattice constant of the crystal is often used for the measurement. They have sensitivity in surface (0.01mm) of heavy metals due to the mean free path for heavy ions. Neutron diffraction has the probe of the internal structure of the heavy metals because it has a longer mean free path than that of the X-rays or the electrons. However, the neutron diffraction measurement is not widely used because large facilities are required in the many neutron sources. RANS (Riken Accelerator-driven Compact Neutron Source) is developed as a neutron source which is usable easily in laboratories and factories. In RANS, fast neutrons are generated by 7MeV protons colliding on a Be target. Some fast neutrons are moderated with polyethylene to thermal neutrons. The thermal neutrons of 10meV which have wavelength of 10nm can be used for the diffraction measurement. In this study, the texture evolution in steels was measured with RANS and the validity of the compact neutron source was proved. The texture of IF steel sheets with the thickness of 1.0mm was measured with 10minutes run. The resolution is 2% and is enough to analyze a evolution in texture due to compression/tensile deformation or a volume fraction of two phases in the steel sample. These results have proven the possibility to use compact neutron source for the analysis of mesoscopic structure of metallic materials.

  14. Neutron producing reactions in PuBe neutron sources

    NASA Astrophysics Data System (ADS)

    Bagi, János; Lakosi, László; Nguyen, Cong Tam

    2016-01-01

    There are a plenty of out-of-use plutonium-beryllium neutron sources in Eastern Europe presenting both nuclear safeguards and security issues. Typically, their actual Pu content is not known. In the last couple of years different non-destructive methods were developed for their characterization. For such methods detailed knowledge of the nuclear reactions taking place within the source is necessary. In this paper we investigate the role of the neutron producing reactions, their contribution to the neutron yield and their dependence on the properties of the source.

  15. Neutron sources for a neutron capture therapy facility

    SciTech Connect

    Lennox, A.J.

    1993-04-01

    Recent advances in the development of boron pharmaceuticals have reopened the possibility of using epithermal neutrons to treat brain tumors containing boron-10. This paper summarizes the approaches being used to generate the neutron sources and identifies specific areas where more research and development are needed.

  16. Neutron Sources for Standard-Based Testing

    SciTech Connect

    Radev, Radoslav; McLean, Thomas

    2014-11-10

    The DHS TC Standards and the consensus ANSI Standards use 252Cf as the neutron source for performance testing because its energy spectrum is similar to the 235U and 239Pu fission sources used in nuclear weapons. An emission rate of 20,000 ± 20% neutrons per second is used for testing of the radiological requirements both in the ANSI standards and the TCS. Determination of the accurate neutron emission rate of the test source is important for maintaining consistency and agreement between testing results obtained at different testing facilities. Several characteristics in the manufacture and the decay of the source need to be understood and accounted for in order to make an accurate measurement of the performance of the neutron detection instrument. Additionally, neutron response characteristics of the particular instrument need to be known and taken into account as well as neutron scattering in the testing environment.

  17. Spallation Neutron Source reaches megawatt power

    SciTech Connect

    Dr. William F. Brinkman

    2009-09-30

    The Department of Energy's Spallation Neutron Source (SNS), already the world's most powerful facility for pulsed neutron scattering science, is now the first pulsed spallation neutron source to break the one-megawatt barrier. "Advances in the materials sciences are fundamental to the development of clean and sustainable energy technologies. In reaching this milestone of operating power, the Spallation Neutron Source is providing scientists with an unmatched resource for unlocking the secrets of materials at the molecular level," said Dr. William F. Brinkman, Director of DOE's Office of Science.

  18. Spallation Neutron Source reaches megawatt power

    ScienceCinema

    Dr. William F. Brinkman

    2016-07-12

    The Department of Energy's Spallation Neutron Source (SNS), already the world's most powerful facility for pulsed neutron scattering science, is now the first pulsed spallation neutron source to break the one-megawatt barrier. "Advances in the materials sciences are fundamental to the development of clean and sustainable energy technologies. In reaching this milestone of operating power, the Spallation Neutron Source is providing scientists with an unmatched resource for unlocking the secrets of materials at the molecular level," said Dr. William F. Brinkman, Director of DOE's Office of Science.

  19. Nested Focusing Optics for Compact Neutron Sources

    NASA Technical Reports Server (NTRS)

    Nabors, Sammy A.

    2015-01-01

    NASA's Marshall Space Flight Center, the Massachusetts Institute of Technology (MIT), and the University of Alabama Huntsville (UAH) have developed novel neutron grazing incidence optics for use with small-scale portable neutron generators. The technology was developed to enable the use of commercially available neutron generators for applications requiring high flux densities, including high performance imaging and analysis. Nested grazing incidence mirror optics, with high collection efficiency, are used to produce divergent, parallel, or convergent neutron beams. Ray tracing simulations of the system (with source-object separation of 10m for 5 meV neutrons) show nearly an order of magnitude neutron flux increase on a 1-mm diameter object. The technology is a result of joint development efforts between NASA and MIT researchers seeking to maximize neutron flux from diffuse sources for imaging and testing applications.

  20. Observation of Neutron Skyshine from an Accelerator Based Neutron Source

    SciTech Connect

    Franklyn, C. B.

    2011-12-13

    A key feature of neutron based interrogation systems is the need for adequate provision of shielding around the facility. Accelerator facilities adapted for fast neutron generation are not necessarily suitably equipped to ensure complete containment of the vast quantity of neutrons generated, typically >10{sup 11} n{center_dot}s{sup -1}. Simulating the neutron leakage from a facility is not a simple exercise since the energy and directional distribution can only be approximated. Although adequate horizontal, planar shielding provision is made for a neutron generator facility, it is sometimes the case that vertical shielding is minimized, due to structural and economic constraints. It is further justified by assuming the atmosphere above a facility functions as an adequate radiation shield. It has become apparent that multiple neutron scattering within the atmosphere can result in a measurable dose of neutrons reaching ground level some distance from a facility, an effect commonly known as skyshine. This paper describes a neutron detection system developed to monitor neutrons detected several hundred metres from a neutron source due to the effect of skyshine.

  1. Cyclotron-based neutron source for BNCT

    NASA Astrophysics Data System (ADS)

    Mitsumoto, T.; Yajima, S.; Tsutsui, H.; Ogasawara, T.; Fujita, K.; Tanaka, H.; Sakurai, Y.; Maruhashi, A.

    2013-04-01

    Kyoto University Research Reactor Institute (KURRI) and Sumitomo Heavy Industries, Ltd. (SHI) have developed a cyclotron-based neutron source for Boron Neutron Capture Therapy (BNCT). It was installed at KURRI in Osaka prefecture. The neutron source consists of a proton cyclotron named HM-30, a beam transport system and an irradiation & treatment system. In the cyclotron, H- ions are accelerated and extracted as 30 MeV proton beams of 1 mA. The proton beams is transported to the neutron production target made by a beryllium plate. Emitted neutrons are moderated by lead, iron, aluminum and calcium fluoride. The aperture diameter of neutron collimator is in the range from 100 mm to 250 mm. The peak neutron flux in the water phantom is 1.8×109 neutrons/cm2/sec at 20 mm from the surface at 1 mA proton beam. The neutron source have been stably operated for 3 years with 30 kW proton beam. Various pre-clinical tests including animal tests have been done by using the cyclotron-based neutron source with 10B-p-Borono-phenylalanine. Clinical trials of malignant brain tumors will be started in this year.

  2. Cyclotron-based neutron source for BNCT

    SciTech Connect

    Mitsumoto, T.; Yajima, S.; Tsutsui, H.; Ogasawara, T.; Fujita, K.; Tanaka, H.; Sakurai, Y.; Maruhashi, A.

    2013-04-19

    Kyoto University Research Reactor Institute (KURRI) and Sumitomo Heavy Industries, Ltd. (SHI) have developed a cyclotron-based neutron source for Boron Neutron Capture Therapy (BNCT). It was installed at KURRI in Osaka prefecture. The neutron source consists of a proton cyclotron named HM-30, a beam transport system and an irradiation and treatment system. In the cyclotron, H- ions are accelerated and extracted as 30 MeV proton beams of 1 mA. The proton beams is transported to the neutron production target made by a beryllium plate. Emitted neutrons are moderated by lead, iron, aluminum and calcium fluoride. The aperture diameter of neutron collimator is in the range from 100 mm to 250 mm. The peak neutron flux in the water phantom is 1.8 Multiplication-Sign 109 neutrons/cm{sup 2}/sec at 20 mm from the surface at 1 mA proton beam. The neutron source have been stably operated for 3 years with 30 kW proton beam. Various pre-clinical tests including animal tests have been done by using the cyclotron-based neutron source with {sup 10}B-p-Borono-phenylalanine. Clinical trials of malignant brain tumors will be started in this year.

  3. Basic physics with spallation-neutron sources

    SciTech Connect

    Michaudon, A.F.

    1994-05-01

    The neutron has unique intrinsic properties widely used in basic and applied sciences. The neutron plays a well-known role in applied sciences and technology and is a unique probe well suited for the exploration of condensed-matter properties. But the neutron is also used for many other basic-physics studies, including nuclear physics, particle physics, fundamental physics, astrophysics, and cosmology. These last studies are briefly reviewed in this paper. Spallation-neutron sources today have unmatched neutron-beam properties for such studies and have great potential in future technological developments whereby these studies could be carried out under much improved conditions.

  4. Neutron scattering instrumentation for biology at spallation neutron sources

    SciTech Connect

    Pynn, R.

    1994-12-31

    Conventional wisdom holds that since biological entities are large, they must be studied with cold neutrons, a domain in which reactor sources of neutrons are often supposed to be pre-eminent. In fact, the current generation of pulsed spallation neutron sources, such as LANSCE at Los Alamos and ISIS in the United Kingdom, has demonstrated a capability for small angle scattering (SANS) - a typical cold- neutron application - that was not anticipated five years ago. Although no one has yet built a Laue diffractometer at a pulsed spallation source, calculations show that such an instrument would provide an exceptional capability for protein crystallography at one of the existing high-power spoliation sources. Even more exciting is the prospect of installing such spectrometers either at a next-generation, short-pulse spallation source or at a long-pulse spallation source. A recent Los Alamos study has shown that a one-megawatt, short-pulse source, which is an order of magnitude more powerful than LANSCE, could be built with today`s technology. In Europe, a preconceptual design study for a five-megawatt source is under way. Although such short-pulse sources are likely to be the wave of the future, they may not be necessary for some applications - such as Laue diffraction - which can be performed very well at a long-pulse spoliation source. Recently, it has been argued by Mezei that a facility that combines a short-pulse spallation source similar to LANSCE, with a one-megawatt, long-pulse spallation source would provide a cost-effective solution to the global shortage of neutrons for research. The basis for this assertion as well as the performance of some existing neutron spectrometers at short-pulse sources will be examined in this presentation.

  5. International workshop on cold neutron sources

    SciTech Connect

    Russell, G.J.; West, C.D. )

    1991-08-01

    The first meeting devoted to cold neutron sources was held at the Los Alamos National Laboratory on March 5--8, 1990. Cosponsored by Los Alamos and Oak Ridge National Laboratories, the meeting was organized as an International Workshop on Cold Neutron Sources and brought together experts in the field of cold-neutron-source design for reactors and spallation sources. Eighty-four people from seven countries attended. Because the meeting was the first of its kind in over forty years, much time was spent acquainting participants with past and planned activities at reactor and spallation facilities worldwide. As a result, the meeting had more of a conference flavor than one of a workshop. The general topics covered at the workshop included: Criteria for cold source design; neutronic predictions and performance; energy deposition and removal; engineering design, fabrication, and operation; material properties; radiation damage; instrumentation; safety; existing cold sources; and future cold sources.

  6. A neutron Albedo system with time rejection for landmine and IED detection

    NASA Astrophysics Data System (ADS)

    Kovaltchouk, V. D.; Andrews, H. R.; Clifford, E. T. H.; Faust, A. A.; Ing, H.; McFee, J. E.

    2011-10-01

    A neutron Albedo system has been developed for imaging of buried landmines and improvised explosive devices (IEDs). It involves irradiating the ground with fast neutrons and subsequently detecting the thermalized neutrons that return. A scintillating 6Li loaded ZnS(Ag) screen with a sensitive area of 40 cm×40 cm is used as a thermal neutron detector. Scintillation light is captured by orthogonal arrays of wavelength-shifting fibers placed on either side of the scintillator surface and then transferred to X and Y multi-pixel PMTs. A timing circuit, used with pulsed neutron sources, records the time when a neutron detection takes place relative to an external synchronization pulse from the pulsed source. Experimental tests of the Albedo system performance have been done in a sand box with a 252Cf neutron source (no time gating) and with pulsed D-D (2.6 MeV) neutrons from the Defense R&D Ottawa Van de Graaff accelerator (with time gating). Information contained in the time evolution of the thermal neutron field provided improved detection capability and image reconstruction. The detector design is described and experimental results are discussed.

  7. Neutron spectrum unfolding using artificial neural network and modified least square method

    NASA Astrophysics Data System (ADS)

    Hosseini, Seyed Abolfazl

    2016-09-01

    MLSQR and ANN methods for 252Cf and 241Am-9Be source are validated against the ISO spectrum. The unfolded neutron energy spectra from both MLSQR and ANN methods show a good agreement with the actual spectrum of 252Cf and 241Am-9Be source.

  8. Modulating the Neutron Flux from a Mirror Neutron Source

    SciTech Connect

    Ryutov, D D

    2011-09-01

    A 14-MeV neutron source based on a Gas-Dynamic Trap will provide a high flux of 14 MeV neutrons for fusion materials and sub-component testing. In addition to its main goal, the source has potential applications in condensed matter physics and biophysics. In this report, the author considers adding one more capability to the GDT-based neutron source, the modulation of the neutron flux with a desired frequency. The modulation may be an enabling tool for the assessment of the role of non-steady-state effects in fusion devices as well as for high-precision, low-signal basic science experiments favoring the use of the synchronous detection technique. A conclusion is drawn that modulation frequency of up to 1 kHz and modulation amplitude of a few percent is achievable. Limitations on the amplitude of modulations at higher frequencies are discussed.

  9. Basic results of investigations of scission neutrons in nuclear fission at low excitation energies

    SciTech Connect

    Petrov, G. A. Gagarski, A. M.; Guseva, I. S.; Sokolov, V. E.; Val'ski, G. V.; Vorobiev, A. S.; Krinitcin, D. O.; Shcherbakov, O. A.; Nikolaev, D. V.; Pleva, Yu. S.; Petrova, V. I.; Zavarukhina, T. A.

    2008-07-15

    To estimate the main characteristics of neutrons emitted shortly before the scission of a fissioning nucleus, various experiments sensitive to the presence of these scission neutrons in thermal-neutron-induced fission of {sup 235}U and spontaneous fission of {sup 252}Cf were performed. The results of the experiments were analyzed within theoretical calculations allowing for various possible neutron-emission mechanisms, including the possibility of the emergence of neutrons from the scission of a nucleus.

  10. Fission fragment driven neutron source

    DOEpatents

    Miller, Lowell G.; Young, Robert C.; Brugger, Robert M.

    1976-01-01

    Fissionable uranium formed into a foil is bombarded with thermal neutrons in the presence of deuterium-tritium gas. The resulting fission fragments impart energy to accelerate deuterium and tritium particles which in turn provide approximately 14 MeV neutrons by the reactions t(d,n).sup.4 He and d(t,n).sup.4 He.

  11. Advanced Neutron Source (ANS) Project progress report

    SciTech Connect

    McBee, M.R.; Chance, C.M. ); Selby, D.L.; Harrington, R.M.; Peretz, F.J. )

    1990-04-01

    This report discusses the following topics on the advanced neutron source: quality assurance (QA) program; reactor core development; fuel element specification; corrosion loop tests and analyses; thermal-hydraulic loop tests; reactor control concepts; critical and subcritical experiments; material data, structural tests, and analysis; cold source development; beam tube, guide, and instrument development; hot source development; neutron transport and shielding; I C research and development; facility concepts; design; and safety.

  12. The University of Texas Cold Neutron Source

    NASA Astrophysics Data System (ADS)

    Ünlü, Kenan; Ríos-Martínez, Carlos; Wehring, Bernard W.

    1994-12-01

    A cold neutron source has been designed, constructed, and tested by the Nuclear Engineering Teaching Laboratory (NETL) at The University of Texas at Austin. The Texas Cold Neutron Source (TCNS) is located in one of the beam ports of the NETL 1-MW TRIGA Mark II research reactor. The main components of the TCNS are a cooled moderator, a heat pipe, a cryogenic refrigerator, and a neutron guide. 80 ml of mesitylene moderator are maintained at about 30 K in a chamber within the reactor graphite reflector by the heat pipe and cryogenic refrigerator. The heat pipe is a 3-m long aluminum tube that contains neon as the working fluid. The cold neutrons obtained from the moderator are transported by a curved 6-m long neutron guide. This neutron guide has a radius of curvature of 300 m, a 50 × 15 mm cross-section, 58Ni coating, and is separated into three channels. The TCNS will provide a low-background subthermal neutron beam for neutron capture and scattering research. After the installation of the external portion of the neutron guide, a neutron focusing system and a Prompt Gamma Activation Analysis facility will be set up at the TCNS.

  13. Characterization of a Pulse Neutron Source Yield under Field Conditions

    SciTech Connect

    Barzilov, Alexander; Novikov, Ivan; Womble, Phillip C.; Hopper, Lindsay

    2009-03-10

    Technique of rapid evaluation of a pulse neutron sources such as neutron generators under field conditions has been developed. The phoswich sensor and pulse-shape discrimination techniques have been used for the simultaneous measurements of fast neutrons, thermal neutrons, and photons. The sensor has been calibrated using activation neutron detectors and a pulse deuterium-tritium fusion neutron source.

  14. Neutron sources based on medical Linac

    NASA Astrophysics Data System (ADS)

    Costa, M.; Durisi, E.; Monti, V.; Visca, L.; Zanini, A.; Giannini, G.

    2016-11-01

    The paper proposes the study of a novel photo-neutron source based on a medical high-energy electron Linac. Previous studies by the authors already demonstrated the possibility to obtain with this technique a thermal neutron flux of the order of 107 cm-2 s-1 . This paper shows possible Linac's setup and a new photo-converter design to reach a thermal neutron flux around 6×107 cm-2 s-1 , keeping a reasonable high quality of the beam with respect to fast neutron and gamma contaminations.

  15. Californium-252: A New Isotopic Source for Neutron Radiography

    SciTech Connect

    Reinig, W.C.

    2001-08-29

    This report discusses a new isotopic source for neutron radiography, Californium-252. Nuclear reactors are the usual source of neutrons for radiography, primarily because of their intense neutron beams. If neutron radiography is to have widespread use, intense transportable neutron sources are required that can be used in plants, in laboratories and in the field.

  16. High Brightness Neutron Source for Radiography

    SciTech Connect

    Cremer, J. T.; Piestrup, Melvin, A.; Gary, Charles, K.; Harris, Jack, L. Williams, David, J.; Jones, Glenn, E.; Vainionpaa, J. , H.; Fuller, Michael, J.; Rothbart, George, H.; Kwan, J., W.; Ludewigt, B., A.; Gough, R.., A..; Reijonen, Jani; Leung, Ka-Ngo

    2008-12-08

    This research and development program was designed to improve nondestructive evaluation of large mechanical objects by providing both fast and thermal neutron sources for radiography. Neutron radiography permits inspection inside objects that x-rays cannot penetrate and permits imaging of corrosion and cracks in low-density materials. Discovering of fatigue cracks and corrosion in piping without the necessity of insulation removal is possible. Neutron radiography sources can provide for the nondestructive testing interests of commercial and military aircraft, public utilities and petrochemical organizations. Three neutron prototype neutron generators were designed and fabricated based on original research done at the Lawrence Berkeley National Laboratory (LBNL). The research and development of these generators was successfully continued by LBNL and Adelphi Technology Inc. under this STTR. The original design goals of high neutron yield and generator robustness have been achieved, using new technology developed under this grant. In one prototype generator, the fast neutron yield and brightness was roughly 10 times larger than previously marketed neutron generators using the same deuterium-deuterium reaction. In another generator, we integrate a moderator with a fast neutron source, resulting in a high brightness thermal neutron generator. The moderator acts as both conventional moderator and mechanical and electrical support structure for the generator and effectively mimics a nuclear reactor. In addition to the new prototype generators, an entirely new plasma ion source for neutron production was developed. First developed by LBNL, this source uses a spiral antenna to more efficiently couple the RF radiation into the plasma, reducing the required gas pressure so that the generator head can be completely sealed, permitting the possible use of tritium gas. This also permits the generator to use the deuterium-tritium reaction to produce 14-MeV neutrons with increases

  17. Cryogenic hydrogen circulation system of neutron source

    SciTech Connect

    Qiu, Y. N.; Hu, Z. J.; Wu, J. H.; Li, Q.; Zhang, Y.; Zhang, P.; Wang, G. P.

    2014-01-29

    Cold neutron sources of reactors and spallation neutron sources are classic high flux neutron sources in operation all over the world. Cryogenic fluids such as supercritical or supercooled hydrogen are commonly selected as a moderator to absorb the nuclear heating from proton beams. By comparing supercritical hydrogen circulation systems and supercooled hydrogen circulation systems, the merits and drawbacks in both systems are summarized. When supercritical hydrogen circulates as the moderator, severe pressure fluctuations caused by temperature changes will occur. The pressure control system used to balance the system pressure, which consists of a heater as an active controller for thermal compensation and an accumulator as a passive volume controller, is preliminarily studied. The results may provide guidelines for design and operation of other cryogenic hydrogen system for neutron sources under construction.

  18. An Accelerator Neutron Source for BNCT

    SciTech Connect

    Blue, Thomas, E

    2006-03-14

    The overall goal of this project was to develop an accelerator-based neutron source (ABNS) for Boron Neutron Capture Therapy (BNCT). Specifically, our goals were to design, and confirm by measurement, a target assembly and a moderator assembly that would fulfill the design requirements of the ABNS. These design requirements were 1) that the neutron field quality be as good as the neutron field quality for the reactor-based neutron sources for BNCT, 2) that the patient treatment time be reasonable, 3) that the proton current required to treat patients in reasonable times be technologially achievable at reasonable cost with good reliability, and accelerator space requirements which can be met in a hospital, and finally 4) that the treatment be safe for the patients.

  19. Set-up of a passive Bonner sphere system for neutron spectrometry at mixed fields with predominant photon component based on activation detector.

    PubMed

    Amgarou, K; Lacoste, V; Muller, H; Fernández, F

    2007-01-01

    A passive Bonner sphere system (BSS), based on thermal neutron activation detectors, was developed to perform neutron spectrometry in pulsed and very intense (n-gamma) fields with predominant photon component, as those produced by high energy (>10 MV) medical linear electron accelerators. In this paper, a description of the new system is presented together with an experimental characterisation of a portable Sodium Iodide (NaI) detector and a fixed high-purity Germanium one, both used to measure the induced gamma-activity of the activated materials, respectively, in situ and in the laboratory. The choice of the activated materials is justified according to pre-established practical considerations and physical criteria. The response functions of the entire passive BSS were calculated using the MCNPX code. A preliminary experimental validation with a bare (252)Cf source is given as well.

  20. Compact Neutron Sources for Energy and Security

    NASA Astrophysics Data System (ADS)

    Uesaka, Mitsuru; Kobayashi, Hitoshi

    We choose nuclear data and nuclear material inspection for energy application, and nondestructive testing of explosive and hidden nuclear materials for security application. Low energy (˜100keV) electrostatic accelerators of deuterium are commercially available for nondestructive testing. For nuclear data measurement, electrostatic ion accelerators and L-band (1.428GHz) and S-band (2.856GHz) electron linear accelerators (linacs) are used for the neutron source. Compact or mobile X-band (9.3, 11.424GHz) electron linac neutron sources are under development. A compact proton linac neutron source is used for nondestructive testing, especially water in solids. Several efforts for more neutron intensity using proton and deuteron accelerators are also introduced.

  1. Compact Neutron Sources for Energy and Security

    NASA Astrophysics Data System (ADS)

    Uesaka, Mitsuru; Kobayashi, Hitoshi

    We choose nuclear data and nuclear material inspection for energy application, and nondestructive testing of explosive and hidden nuclear materials for security application. Low energy (~100 keV) electrostatic accelerators of deuterium are commercially available for nondestructive testing. For nuclear data measurement, electrostatic ion accelerators and L-band (1.428GHz) and S-band (2.856GHz) electron linear accelerators (linacs) are used for the neutron source. Compact or mobile X-band (9.3, 11.424GHz) electron linac neutron sources are under development. A compact proton linac neutron source is used for nondestructive testing, especially water in solids. Several efforts for more neutron intensity using proton and deuteron accelerators are also introduced.

  2. Science Opportunities at ORNL Neutron Sources

    SciTech Connect

    Anderson, Ian

    2010-02-03

    The Neutron Sciences Directorate at Oak Ridge National Laboratory (ORNL) operates two of the most advanced neutron scattering research facilities in the world: the Spallation Neutron Source (SNS) and the High Flux Isotope Reactor (HFIR). Our vision is to provide unprecedented capabilities for understanding structure and properties across the spectrum of biology, chemistry, physics, and engineering, and to stay at the leading edge of neutron science by developing new instruments, tools, and services. This talk will provide an update on the operations of the two research facilities and highlight the significant research that is emerging. For example, scientists from ORNL are at the forefront of research on a new class of iron-based superconductors based on experiments performed at the Triple-Axis Spectrometer at HFIR and ARCS at SNS. The complementary nature of neutron and x-ray techniques will be discussed to spark discussion among attendees.

  3. Neutron production enhancements for the Intense Pulsed Neutron Source.

    SciTech Connect

    Iverson, E. B.

    1999-01-04

    The Intense Pulsed Neutron Source (IPNS) was the first high energy spallation neutron source in the US dedicated to materials research. It has operated for sixteen years, and in that time has had a very prolific record concerning the development of new target and moderator systems for pulsed spallation sources. IPNS supports a very productive user program on its thirteen instruments, which are oversubscribed by more than two times, meanwhile having an excellent overall reliability of 95%. Although the proton beam power is relatively low at 7 kW, the target and moderator systems are very efficient. The typical beam power which gives an equivalent flux for long-wavelength neutrons is about 60 kW, due to the use of a uranium target and liquid and solid methane moderators, precluded at some sources due to a higher accelerator power. The development of new target and moderator systems is by no means stagnant at IPNS. They are presently considering numerous enhancements to the target and moderators that offer prospects for increasing the useful neutron production by substantial factors. Many of these enhancements could be combined, although their combined benefit has not yet been well established. Meanwhile, IPNS is embarking on a coherent program of study concerning these improvements and their possible combination and implementation. Moreover, any improvements accomplished at IPNS would immediately increase the performance of IPNS instruments.

  4. Concrete enclosure for shielding a neutron source.

    PubMed

    Vega-Carrillo, H R; Villagrana-Muñoz, L E; Rivera-Perez, E; de Leon-Martinez, H A; Soto-Bernal, T G; Hernández-Davila, V M

    2013-09-01

    In the aim to design a shielding for a 0.185 TBq (239)PuBe isotopic neutron source several Monte Carlo calculations were carried out using MCNP5 code. First, a point-like source was modeled in vacuum and the neutron spectrum and ambient dose equivalent were calculated at several distances ranging from 5 cm up to 150 cm, these calculations were repeated modeling a real source, including air, and a 1×1×1 m(3) enclosure with 5, 15, 20, 25, 30, 50 and 80 cm-thick Portland type concrete walls. At all the points located inside the enclosure neutron spectra from 10(-8) up to 0.5 MeV were the same regardless the distance from the source showing the room-return effect in the enclosure, for energies larger than 0.5 MeV neutron spectra are diminished as the distance increases. Outside the enclosure it was noticed that neutron spectra becomes "softer" as the concrete thickness increases due to reduction of mean neutron energy. With the ambient dose values the attenuation curve in terms of concrete thickness was calculated.

  5. Design and verification of the shielding around the new Neutron Standards Laboratory (LPN) at CIEMAT.

    PubMed

    Méndez-Villafañe, R; Guerrero, J E; Embid, M; Fernández, R; Grandio, R; Pérez-Cejuela, P; Márquez, J L; Alvarez, F; Ortego, P

    2014-10-01

    The construction of the new Neutron Standards Laboratory at CIEMAT (Laboratorio de Patrones Neutrónicos) has been finalised and is ready to provide service. The facility is an ∼8 m×8 m×8 m irradiation vault, following the International Organization for Standardization 8529 recommendations. It relies on several neutron sources: a 5-GBq (5.8× 10(8) s(-1)) (252)Cf source and two (241)Am-Be neutron sources (185 and 11.1 GBq). The irradiation point is located 4 m over the ground level and in the geometrical centre of the room. Each neutron source can be moved remotely from its storage position inside a water pool to the irradiation point. Prior to this, an important task to design the neutron shielding and to choose the most appropriate materials has been developed by the Radiological Security Unit and the Ionizing Radiations Metrology Laboratory. MCNPX was chosen to simulate the irradiation facility. With this information the walls were built with a thickness of 125 cm. Special attention was put on the weak points (main door, air conditioning system, etc.) so that the ambient dose outside the facility was below the regulatory limits. Finally, the Radiation Protection Unit carried out a set of measurements in specific points around the installation with an LB6411 neutron monitor and a Reuter-Stokes high-pressure ion chamber to verify experimentally the results of the simulation.

  6. Advanced Neutron Source: The users' perspective

    SciTech Connect

    Peretz, F.J.

    1990-01-01

    User experiments will cover fields such as activation analysis of pollutants, irradiation of materials for the fusion program, and neutron scattering studies of materials as diverse as viruses, aerospace composites, and superconductors. Production capabilities must also be provided for the production of isotopes, especially of transuranic elements. The different ways in which these research areas and their required infrastructure influence the design of the Advanced Neutron Source will be the subject of this paper.

  7. THERMAL NEUTRON INTENSITIES IN SOILS IRRADIATED BY FAST NEUTRONS FROM POINT SOURCES. (R825549C054)

    EPA Science Inventory

    Thermal-neutron fluences in soil are reported for selected fast-neutron sources, selected soil types, and selected irradiation geometries. Sources include 14 MeV neutrons from accelerators, neutrons from spontaneously fissioning 252Cf, and neutrons produced from alp...

  8. Applicability of the Ge(n,γ) Reaction for Estimating Thermal Neutron Flux

    NASA Astrophysics Data System (ADS)

    Nikolov, J.; Medić, Ž.; Jovančević, N.; Hansman, J.; Todorović, N.; Krmar, M.

    A simple experimental setup was used to measure gamma lines appearing in spectra after interactions of neutrons with Ge in the active volume of a high-purity germanium detector placed in a low-background shield. As source of neutrons a 252Cf spontaneous fission source and different thicknesses of PVC plates were used to slow down neutrons. A cadmiumenvelope was placed over the detector dipstick to identify the effect from slow and fast neutrons. Intensities of several characteristic γ-lines were measured, including intensity of the 139.9 keV γ-line from the reaction 74Ge(n,γ)75mGe, usually used for estimation of thermal neutron flux. Obtained results signify that only a part of the detected 139.9 keV γ-rays originate from thermal neutron capture. Some preliminary results indicate that in our detection setup thermal neutron capture contributes with 30% to 50% to the total intensity of the 139.9 keV γ-line, depending on the thickness of the PVC plates.

  9. Evaluation of the neutron dosimeter used by Martin Marietta Energy Systems, Inc., ability to meet the requirements of the American National Standard for Personnel Neutron Dosimeters (neutron energies less than 20 MeV) ANSI N319-1976

    SciTech Connect

    Gunter, R.J.

    1994-07-01

    An evaluation of the neutron dosimeter used by the Centralized External Dosimetry System of Martin Marietta Energy Systems, Inc., was performed, and the dosimeter was shown to meet the requirements of the American National Standard for Personnel Neutron Dosimeters, ANSI N319-1976. This report details the requirements of the Standard, describes the tests performed, and evaluates the results of testing. To demonstrate compliance with the Standard, dosimeters were irradiated with a {sup 252}Cf source while mounted on a standard phantom. Dose was measured using the routine methodology employed by the Centralized External Dosimetry System for neutron dosimetry. The ability to accurately measure neutron dose was compared to specific performance criteria from the Standard. This includes testing the lower limit of detection, upper limit of detection, precision of results, and the capability to detect neutrons in a high gamma dose environment. In addition to neutron exposure, the dosimeters were required to be exposed to environmental factors including temperature extremes, high humidity, exposure to room light, and a drop to a hard surface. Only after exposure to these conditions were the dosimeters read, with results compared to the requirements of the Standard. Normal use factors of routine neutron dosimetry influencing the accuracy, sensitivity, or precision of the dosimetry system were also evaluated to measure their impact on dosimeter response.

  10. 10 CFR 39.55 - Tritium neutron generator target sources.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Tritium neutron generator target sources. 39.55 Section 39... Equipment § 39.55 Tritium neutron generator target sources. (a) Use of a tritium neutron generator target...) Use of a tritium neutron generator target source, containing quantities exceeding 1,110 GBg or in...

  11. 10 CFR 39.55 - Tritium neutron generator target sources.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Tritium neutron generator target sources. 39.55 Section 39... Equipment § 39.55 Tritium neutron generator target sources. (a) Use of a tritium neutron generator target...) Use of a tritium neutron generator target source, containing quantities exceeding 1,110 GBg or in...

  12. 10 CFR 39.55 - Tritium neutron generator target sources.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Tritium neutron generator target sources. 39.55 Section 39... Equipment § 39.55 Tritium neutron generator target sources. (a) Use of a tritium neutron generator target...) Use of a tritium neutron generator target source, containing quantities exceeding 1,110 GBg or in...

  13. 10 CFR 39.55 - Tritium neutron generator target sources.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Tritium neutron generator target sources. 39.55 Section 39... Equipment § 39.55 Tritium neutron generator target sources. (a) Use of a tritium neutron generator target...) Use of a tritium neutron generator target source, containing quantities exceeding 1,110 GBg or in...

  14. 10 CFR 39.55 - Tritium neutron generator target sources.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Tritium neutron generator target sources. 39.55 Section 39... Equipment § 39.55 Tritium neutron generator target sources. (a) Use of a tritium neutron generator target...) Use of a tritium neutron generator target source, containing quantities exceeding 1,110 GBg or in...

  15. Directional measurements for sources of fission neutrons

    SciTech Connect

    Byrd, R.C.; Auchampaugh, G.F.; Feldman, W.C.

    1993-11-01

    Although penetrating neutron and gamma-ray emissions arguably provide the most effective signals for locating sources of nuclear radiation, their relatively low fluxes make searching for radioactive materials a tedious process. Even assuming lightly shielded sources and detectors with large areas and high efficiencies, estimated counting times can exceed several minutes for source separations greater than ten meters. Because determining the source position requires measurements at several locations, each with its own background, the search procedure can be lengthy and difficult to automate. Although directional measurements can be helpful, conventional collimation reduces count rates and increases the detector size and weight prohibitively, especially for neutron instruments. We describe an alternative approach for locating radiation sources that is based on the concept of a polarized radiation field. In this model, the presence of a source adds a directional component to the randomly oriented background radiation. The net direction of the local field indicates the source angle, and the magnitude provides an estimate of the distance to the source. The search detector is therefore seen as a device that responds to this polarized radiation field. Our proposed instrument simply substitutes segmented detectors for conventional single-element ones, so it requires little or no collimating material or additional weight. Attenuation across the detector creates differences in the count rates for opposite segments, whose ratios can be used to calculate the orthogonal components of the polarization vector. Although this approach is applicable to different types of radiation and detectors, in this report we demonstrate its use for sources of fission neutrons by using a prototype fast-neutron detector, which also provides background-corrected energy spectra for the incident neutrons.

  16. Enrico Fermi's Discovery of Neutron-Induced Artificial Radioactivity: Neutrons and Neutron Sources

    NASA Astrophysics Data System (ADS)

    Guerra, Francesco; Leone, Matteo; Robotti, Nadia

    2006-09-01

    We reconstruct and analyze the path leading from James Chadwick’s discovery of the neutron in February 1932 through Frédéric Joliot and Irène Curie’s discovery of artificial radioactivity in January 1934 to Enrico Fermi’s discovery of neutron-induced artificial radioactivity in March 1934. We show, in particular, that Fermi’s innovative construction and use of radon-beryllium neutron sources permitted him to make his discovery.

  17. The Los Alamos Intense Neutron Source

    SciTech Connect

    Nebel, R.A.; Barnes, D.C.; Bollman, R.; Eden, G.; Morrison, L.; Pickrell, M.M.; Reass, W.

    1997-10-01

    The Intense Neutron Source (INS) is an Inertial Electrostatic Confinement (IEC) fusion device presently under construction at Los Alamos National Laboratory. It is designed to produce 10{sup 11} neutrons per second steady-state using D-T fuel. Phase 1 operation of this device will be as a standard three grid IEC ion focus device. Expected performance has been predicted by scaling from a previous IEC device. Phase 2 operation of this device will utilize a new operating scheme, the Periodically Oscillating Plasma Sphere (POPS). This scheme is related to both the Spherical Reflect Diode and the Oscillating Penning Trap. With this type of operation the authors hope to improve plasma neutron production to about 10{sup 13} neutrons/second.

  18. The angular dependence of an Si energy deposition spectrometer response at several radiation sources.

    PubMed

    Spurný, Frantisek; Trompier, François; Bottollier-Depois, Jean-François

    2005-06-01

    An MDU-Liulin spectrometer based on an Si-diode was mainly used during the last few years with the goal to use them for measurements onboard aircraft. To investigate its ability to obtain such measurements, the detector was tested in some radiation reference fields, like 60Co and other photon beams, neutrons of an AmBe and 252Cf sources and in high-energy radiation fields at CERN. Due to the high geometrical asymmetry of the Si-diode semiconductor, an angular dependence of the response would be expected. This work presents analyses and discusses the results of angular dependence studies obtained at the different radiation sources mentioned. It was found that these angular dependences vary with the type and energy of radiation. The influence of these variations on the use as a dosimeter onboard aircraft is also studied and discussed.

  19. Active neutron interrogation for verification of storage of weapons components at the Oak Ridge Y-12 Plant

    SciTech Connect

    Mihalczo, J.T.; Valentine, T.E.; Mattingly, J.K.; Mullens, J.A.; Hughes, S.S.

    1998-02-23

    A nuclear weapons identification system (NWIS), under development since 1984 at the Oak Ridge Y-12 Plant and presently in use there, uses active neutron interrogation with low-intensity {sup 252}Cf sources in ionization chambers to provide a timed source of fission neutrons from the spontaneous fission of {sup 252}Cf. To date, measurements have been performed on {approximately}15 different weapons systems in a variety of configurations both in and out of containers. Those systems included pits and fully assembled systems ready for deployment at the Pantex Plant in Amarillo, Texas, and weapons components at the Oak Ridge Y-12 Plant. These measurements have shown that NWIS can identify nuclear weapons and/or components; nuclear weapons/components can be distinguished from mockups where fissile material has been replaced by nonfissile material; omissions of small amounts (4%) of fissile material can be detected; changes in internal configurations can be determined; trainer parts can be identified as was demonstrated by verification of 512 containers with B33 components at the Y-12 Plant (as many as 32 in one 8-hour shift); and nonfissile components can be identified. The current NWIS activities at the Oak Ridge Y-12 Plant include: (1) further development of the system for more portability and lower power consumption, (2) collection of reference signatures for all weapons components in containers, and (3) confirmation of a particular weapons component in storage and confirmation of receipts. This paper describes the recent measurements with NWIS for a particular weapons component in storage that have resolved an Inspector General (IG`s) audit finding with regard to performance of confirmation of inventory.

  20. Status Report on the Spallation Neutron Source

    SciTech Connect

    Gabriel, T.A.

    1998-10-12

    The purpose of the Spallation Neutron Source Project (SNS) is to generate low-energy neutrons (ambient [{approximately}200 meV] and cold [{approximately}50 meV]) which can be used by up to 18 neutron beam lines to study the structure and functionality of materials. The neutrons are generated by the spallation process initiated by the interactions of 1-GeV protons with a Hg target. These neutrons are reflected by a Pb reflector and are moderated by 2 water (ambient) and 2 super critical hydrogen (cryogenic) moderators. The pulse structure for the 1 MW proton beam is 60 Hertz and < 0.7 {micro}s/pulse. The facility must be upgradable to higher power levels (2- and 4- MW) with minimal operational interruptions. Although not included in the current funding or baseline, a second target station and associated support structure which will be designed to utilize cold neutrons is also considered to be an upgrade that must be incorporated with minimal impact on operations.

  1. Neutron sources in nuclear astrophysics

    NASA Astrophysics Data System (ADS)

    Kunz, Rino E.; Denker, A.; Drotleff, H. W.; Grosse, M.; Knee, H.; Kuechler, S.; Seidel, R.; Soine, M.; Hammer, J. W.

    1995-03-01

    The excitations functions of the reactions 9Be((alpha) ,n)12C, 13C((alpha) ,n)16O, 17O((alpha) ,n)20Ne, 18O((alpha) ,n)21Ne, 21Ne((alpha) ,n)24Mg, 22Ne((alpha) ,n)25Mg, 25Mg((alpha) ,n)28Si and 26Mg((alpha) ,n)29Si have been measured at the 4 MV dynamitron accelerator in Stuttgart, Germany in the energy range of astrophysical interest, and from these S-factor- curves have been determined. Advanced techniques, especially with the windowless gastarget facility Rhinoceros have been applied. For neutron detection NE213 scintillation counters and a long counter like 4(pi) -detector have been used. A sensitivity limit in the range of 10-10b to 10-\\11b was reached with these experiments. Using our new experimental results astrophysical reaction rates have been calculated for all reactions except the Mg-reactions. Analytic expressions have been fitted to all reaction rates.

  2. Secondary electron ion source neutron generator

    DOEpatents

    Brainard, J.P.; McCollister, D.R.

    1998-04-28

    A neutron generator employing an electron emitter, an ion source bombarded by the electrons from the electron emitter, a plasma containment zone, and a target situated between the plasma containment zone and the electron emitter is disclosed. The target contains occluded deuterium, tritium, or a mixture thereof. 4 figs.

  3. Secondary electron ion source neutron generator

    DOEpatents

    Brainard, John P.; McCollister, Daryl R.

    1998-01-01

    A neutron generator employing an electron emitter, an ion source bombarded by the electrons from the electron emitter, a plasma containment zone, and a target situated between the plasma containment zone and the electron emitter. The target contains occluded deuterium, tritium, or a mixture thereof

  4. DETECTORS AND EXPERIMENTAL METHODS: Equivalent properties of single event burnout induced by different sources

    NASA Astrophysics Data System (ADS)

    Yang, Shi-Yu; Cao, Zhou; Da, Dao-An; Xue, Yu-Xiong

    2009-05-01

    The experimental results of single event burnout induced by heavy ions and 252Cf fission fragments in power MOSFET devices have been investigated. It is concluded that the characteristics of single event burnout induced by 252Cf fission fragments is consistent to that in heavy ions. The power MOSFET in the “turn-off" state is more susceptible to single event burnout than it is in the “turn-on" state. The thresholds of the drain-source voltage for single event burnout induced by 173 MeV bromine ions and 252Cf fission fragments are close to each other, and the burnout cross section is sensitive to variation of the drain-source voltage above the threshold of single event burnout. In addition, the current waveforms of single event burnouts induced by different sources are similar. Different power MOSFET devices may have different probabilities for the occurrence of single event burnout.

  5. Cold moderators for pulsed neutron sources

    SciTech Connect

    Carpenter, J.M.

    1990-01-01

    This paper reviews cold moderators in pulsed neutron sources and provides details of the performance of different cold moderator materials and configurations. Analytical forms are presented which describe wavelength spectra and emission time distributions. Several types of cooling arrangements used in pulsed source moderators are described. Choices of materials are surveyed. The author examines some of the radiation damage effects in cold moderators, including the phenomenon of burping'' in irradiated cold solid methane. 9 refs., 15 figs., 4 tabs.

  6. Verification of threshold activation detection (TAD) technique in prompt fission neutron detection using scintillators containing 19F

    NASA Astrophysics Data System (ADS)

    Sibczynski, P.; Kownacki, J.; Moszyński, M.; Iwanowska-Hanke, J.; Syntfeld-Każuch, A.; Gójska, A.; Gierlik, M.; Kaźmierczak, Ł.; Jakubowska, E.; Kędzierski, G.; Kujawiński, Ł.; Wojnarowicz, J.; Carrel, F.; Ledieu, M.; Lainé, F.

    2015-09-01

    In the present study ⌀ 5''× 3'' and ⌀ 2''× 2'' EJ-313 liquid fluorocarbon as well as ⌀ 2'' × 3'' BaF2 scintillators were exposed to neutrons from a 252Cf neutron source and a Sodern Genie 16GT deuterium-tritium (D+T) neutron generator. The scintillators responses to β- particles with maximum endpoint energy of 10.4 MeV from the n+19F reactions were studied. Response of a ⌀ 5'' × 3'' BC-408 plastic scintillator was also studied as a reference. The β- particles are the products of interaction of fast neutrons with 19F which is a component of the EJ-313 and BaF2 scintillators. The method of fast neutron detection via fluorine activation is already known as Threshold Activation Detection (TAD) and was proposed for photofission prompt neutron detection from fissionable and Special Nuclear Materials (SNM) in the field of Homeland Security and Border Monitoring. Measurements of the number of counts between 6.0 and 10.5 MeV with a 252Cf source showed that the relative neutron detection efficiency ratio, defined as epsilonBaF2 / epsilonEJ-313-5'', is 32.0% ± 2.3% and 44.6% ± 3.4% for front-on and side-on orientation of the BaF2, respectively. Moreover, the ⌀ 5'' EJ-313 and side-on oriented BaF2 were also exposed to neutrons from the D+T neutron generator, and the relative efficiency epsilonBaF2 / epsilonEJ-313-5'' was estimated to be 39.3%. Measurements of prompt photofission neutrons with the BaF2 detector by means of data acquisition after irradiation (out-of-beam) of nuclear material and between the beam pulses (beam-off) techniques were also conducted on the 9 MeV LINAC of the SAPHIR facility.

  7. A capture-gated fast neutron detection method

    NASA Astrophysics Data System (ADS)

    Liu, Yi; Yang, Yi-Gang; Tai, Yang; Zhang, Zhi

    2016-07-01

    To address the problem of the shortage of neutron detectors used in radiation portal monitors (RPMs), caused by the 3He supply crisis, research on a cadmium-based capture-gated fast neutron detector is presented in this paper. The detector is composed of many 1 cm × 1 cm × 20 cm plastic scintillator cuboids covered by 0.1 mm thick film of cadmium. The detector uses cadmium to absorb thermal neutrons and produce capture γ-rays to indicate the detection of neutrons, and uses plastic scintillator to moderate neutrons and register γ-rays. This design removes the volume competing relationship in traditional 3He counter-based fast neutron detectors, which hinders enhancement of the neutron detection efficiency. Detection efficiency of 21.66% ± 1.22% has been achieved with a 40.4 cm × 40.4 cm × 20 cm overall detector volume. This detector can measure both neutrons and γ-rays simultaneously. A small detector (20.2 cm × 20.2 cm × 20 cm) demonstrated a 3.3 % false alarm rate for a 252Cf source with a neutron yield of 1841 n/s from 50 cm away within 15 s measurement time. It also demonstrated a very low (<0.06%) false alarm rate for a 3.21×105 Bq 137Cs source. This detector offers a potential single-detector replacement for both neutron and the γ-ray detectors in RPM systems. Supported by National Natural Science Foundation of China (11175098, 11375095)

  8. Portable, high intensity isotopic neutron source provides increased experimental accuracy

    NASA Technical Reports Server (NTRS)

    Mohr, W. C.; Stewart, D. C.; Wahlgren, M. A.

    1968-01-01

    Small portable, high intensity isotopic neutron source combines twelve curium-americium beryllium sources. This high intensity of neutrons, with a flux which slowly decreases at a known rate, provides for increased experimental accuracy.

  9. Compact neutron source development at LBNL

    SciTech Connect

    Reijonen, Jani; Lou, Tak Pui; Tolmachoff, Bryan; Leung, K.N.

    2001-07-25

    A compact neutron generator based on D-D or D-T fusion reactions is being developed at the Lawrence Berkeley National Laboratory. The deuterium or tritium ions are produced in a radio-frequency (RF) driven multicusp plasma source. Seven beamlets are extracted and are accelerated to energy of 100 keV by means of a three-electrode electrostatic accelerator column. The ion beam then impinges on a titanium coated copper target where either the 2.4 MeV D-D or 14 MeV D-T neutrons are generated by fusion reaction. The development of the neutron tube is divided into three phases. First, the accelerator column is operated at hydrogen beam intensity of 15 mA. Second phase consists of deuterium beam runs at pulsed, low duty cycle 150 mA operation. The third phase consists of deuterium or tritium operation at 1.5 A beam current. Phase one is completed and the results of hydrogen beam testing are discussed. Low duty cycle 150 mA deuterium operation is being investigated. Neutron flux will be measured. Finally the phase three operation and the advance neutron generator designs are described.

  10. Compact neutron source development at LBNL

    NASA Astrophysics Data System (ADS)

    Reijonen, Jani; Lou, Tak P.; Tolmachoff, Bryan; Leung, Ka-Ngo

    2001-12-01

    A compact neutron generator based on D-D or D-T fusion reactions is being developed at the Lawrence Berkeley National laboratory. The deuterium or tritium ions are produced in a radio-frequency (RF) driven multicusp plasma source. Seven beamlets are extracted and are accelerated to energy of 100 keV by means of a three-electrode electrostatic accelerator column. The ion beam then impinges on a titanium coated copper target where either the 2.4 MeV D-D or 13 MeV D-T neutrons are generated by fusion reaction. The development of the neutron tube is divided into three phases. First, the accelerator column is operated at hydrogen beam intensity of 15 mA. Second phase consists of deuterium beam runs at pulsed, low duty cycle 150 mA operation. The third phase consists of deuterium or tritium operation at 1.5 A beam current. Phase one is completed and the results of hydrogen beam testing are discussed. Low duty cycle 150 mA deuterium operation is being investigated. Neutron flux will be measured. Finally the phase three operation and the advance neutron generator designs are described.

  11. Charge breeding results and future prospects with electron cyclotron resonance ion source and electron beam ion source (invited)a)

    NASA Astrophysics Data System (ADS)

    Vondrasek, R.; Levand, A.; Pardo, R.; Savard, G.; Scott, R.

    2012-02-01

    The Californium Rare Ion Breeder Upgrade (CARIBU) of the Argonne National Laboratory ATLAS facility will provide low-energy and reaccelerated neutron-rich radioactive beams for the nuclear physics program. A 70 mCi 252Cf source produces fission fragments which are thermalized and collected by a helium gas catcher into a low-energy particle beam with a charge of 1+ or 2+. An electron cyclotron resonance (ECR) ion source functions as a charge breeder in order to raise the ion charge sufficiently for acceleration in the ATLAS linac. The final CARIBU configuration will utilize a 1 Ci 252Cf source to produce radioactive beams with intensities up to 106 ions/s for use in the ATLAS facility. The ECR charge breeder has been tested with stable beam injection and has achieved charge breeding efficiencies of 3.6% for 23Na8+, 15.6% for 84Kr17+, and 13.7% for 85Rb19+ with typical breeding times of 10 ms/charge state. For the first radioactive beams, a charge breeding efficiency of 11.7% has been achieved for 143Cs27+ and 14.7% for 143Ba27+. The project has been commissioned with a radioactive beam of 143Ba27+ accelerated to 6.1 MeV/u. In order to take advantage of its lower residual contamination, an EBIS charge breeder will replace the ECR charge breeder in the next two years. The advantages and disadvantages of the two techniques are compared taking into account the requirements of the next generation radioactive beam facilities.

  12. Charge breeding results and future prospects with electron cyclotron resonance ion source and electron beam ion source (invited)

    SciTech Connect

    Vondrasek, R.; Levand, A.; Pardo, R.; Savard, G.; Scott, R.

    2012-02-15

    The Californium Rare Ion Breeder Upgrade (CARIBU) of the Argonne National Laboratory ATLAS facility will provide low-energy and reaccelerated neutron-rich radioactive beams for the nuclear physics program. A 70 mCi {sup 252}Cf source produces fission fragments which are thermalized and collected by a helium gas catcher into a low-energy particle beam with a charge of 1+ or 2+. An electron cyclotron resonance (ECR) ion source functions as a charge breeder in order to raise the ion charge sufficiently for acceleration in the ATLAS linac. The final CARIBU configuration will utilize a 1 Ci {sup 252}Cf source to produce radioactive beams with intensities up to 10{sup 6} ions/s for use in the ATLAS facility. The ECR charge breeder has been tested with stable beam injection and has achieved charge breeding efficiencies of 3.6% for {sup 23}Na{sup 8+}, 15.6% for {sup 84}Kr{sup 17+}, and 13.7% for {sup 85}Rb{sup 19+} with typical breeding times of 10 ms/charge state. For the first radioactive beams, a charge breeding efficiency of 11.7% has been achieved for {sup 143}Cs{sup 27+} and 14.7% for {sup 143}Ba{sup 27+}. The project has been commissioned with a radioactive beam of {sup 143}Ba{sup 27+} accelerated to 6.1 MeV/u. In order to take advantage of its lower residual contamination, an EBIS charge breeder will replace the ECR charge breeder in the next two years. The advantages and disadvantages of the two techniques are compared taking into account the requirements of the next generation radioactive beam facilities.

  13. Realization of highly efficient hexagonal boron nitride neutron detectors

    NASA Astrophysics Data System (ADS)

    Maity, A.; Doan, T. C.; Li, J.; Lin, J. Y.; Jiang, H. X.

    2016-08-01

    We report the achievement of highly efficient 10B enriched hexagonal boron nitride (h-10BN) direct conversion neutron detectors. These detectors were realized from freestanding 4-in. diameter h-10BN wafers 43 μm in thickness obtained from epitaxy growth and subsequent mechanical separation from sapphire substrates. Both sides of the film were subjected to ohmic contact deposition to form a simple vertical "photoconductor-type" detector. Transport measurements revealed excellent vertical transport properties including high electrical resistivity (>1013 Ω cm) and mobility-lifetime (μτ) products. A much larger μτ product for holes compared to that of electrons along the c-axis of h-BN was observed, implying that holes (electrons) behave like majority (minority) carriers in undoped h-BN. Exposure to thermal neutrons from a californium-252 (252Cf) source moderated by a high density polyethylene moderator reveals that 43 μm h-10BN detectors possess 51.4% detection efficiency at a bias voltage of 400 V, which is the highest reported efficiency for any semiconductor-based neutron detector. The results point to the possibility of obtaining highly efficient, compact solid-state neutron detectors with high gamma rejection and low manufacturing and maintenance costs.

  14. Synchrotron based spallation neutron source concepts

    SciTech Connect

    Cho, Y.

    1998-07-01

    During the past 20 years, rapid-cycling synchrotrons (RCS) have been used very productively to generate short-pulse thermal neutron beams for neutron scattering research by materials science communities in Japan (KENS), the UK (ISIS) and the US (IPNS). The most powerful source in existence, ISIS in the UK, delivers a 160-kW proton beam to a neutron-generating target. Several recently proposed facilities require proton beams in the MW range to produce intense short-pulse neutron beams. In some proposals, a linear accelerator provides the beam power and an accumulator ring compresses the pulse length to the required {approx} 1 {micro}s. In others, RCS technology provides the bulk of the beam power and compresses the pulse length. Some synchrotron-based proposals achieve the desired beam power by combining two or more synchrotrons of the same energy, and others propose a combination of lower and higher energy synchrotrons. This paper presents the rationale for using RCS technology, and a discussion of the advantages and disadvantages of synchrotron-based spallation sources.

  15. Crystal Driven Neutron Source: A New Paradigm for Miniature Neutron Sources

    SciTech Connect

    Tang, V.; Meyer, G.; Falabella, S.; Guethlein, G.; Kerr, P.; Park, H. G.; Rusnak, B.; Sampayan, S.; Schmid, G.; Spadaccini, C.; Wang, L.; Morse, J.

    2009-03-10

    Neutron interrogation techniques have specific advantages for detection of hidden, shielded, or buried threats over other detection modalities in that neutrons readily penetrate most materials providing backscattered gammas indicative of the elemental composition of the potential threat. Such techniques have broad application to military and homeland security needs. Present neutron sources and interrogation systems are expensive and relatively bulky, thereby making widespread use of this technique impractical. Development of a compact, high intensity crystal driven neutron source is described. The crystal driven neutron source approach has been previously demonstrated using pyroelectric crystals that generate extremely high voltages when thermal cycled. Placement of a sharpened needle on the positively polarized surface of the pyroelectric crystal results in sufficient field intensification to field ionize background deuterium molecules in a test chamber, and subsequently accelerate the ions to energies in excess of {approx}100 keV, sufficient for either D-D or D-T fusion reactions with appropriate target materials. Further increase in ion beam current can be achieved through optimization of crystal thermal ramping, ion source and crystal accelerator configuration. The advantage of such a system is the compact size along with elimination of large, high voltage power supplies. A novel implementation discussed incorporates an independently controlled ion source in order to provide pulsed neutron operation having microsecond pulse width.

  16. A Combined Neutron and Gamma-Ray Multiplicity Counter Based on Liquid Scintillation Detectors

    SciTech Connect

    Andreas Enqvist; Marek Flaska; Jennifer Dolan; David L. Chichester; Sara A. Pozzi

    2011-10-01

    Multiplicity counters for neutron assay have been extensively used in materials control and accountability for nonproliferation and nuclear safeguards. Typically, neutron coincidence counters are utilized in these fields. In this work, we present a measurement system that makes use not only of neutron (n) multiplicity counting but also of gamma-ray (g) multiplicity counting and the combined higher-order multiples containing both neutrons and gamma rays. The benefit of this approach is in using both particle types available from the sample, leading to a reduction in measurement times needed when using more measurables. We present measurement results of n, g, nn, ng, gg, nnn, nng, ngg, and ggg multiples emitted by Mixed-Oxide (MOX) samples measured at Idaho National Laboratory (INL). The MOX measurement is compared to initial validation of the detection system done using a 252Cf source. The dual radiation measuring system proposed here uses extra measurables to improve the statistics when compared to a neutron-only system and allows for extended analysis and interpretation of sample parameters. New challenges such as the effect of very high intrinsic gamma-ray sources in the case of MOX samples is discussed. Successful measurements of multiples rates can be performed also when using high-Z shielding.

  17. A capture-gated neutron calorimeter using plastic scintillators and 3He drift tubes

    SciTech Connect

    Wang, Zhehui; Morris, Christopher L; Spaulding, Randy J; Bacon, Jeffrey D; Borozdin, Konstantin N; Chung, Kiwhan; Clark, Deborah J; Green, Jesse A; Greene, Steven J; Hogan, Gary E; Jason, Andrew; Lisowski, Paul W; Makela, Mark F; Mariam, Fessaha G; Miyadera, Haruo; Murray, Matthew M; Saunders, Alexander; Wysocki, Frederick J; Gray, Frederick E

    2010-01-01

    A segmented neutron calorimeter using nine 4-inch x 4-inch x 48-inch plastic scintillators and sixteen 2-inch-diameter 48-inch-long 200-mbar-{sup 3}He drift tubes is described. The correlated scintillator and neutron-capture events provide a means for n/{gamma} discrimination, critical to the neutron calorimetry when the {gamma} background is substantial and the {gamma} signals are comparable in amplitude to the neutron signals. A single-cell prototype was constructed and tested. It can distinguish between a {sup 17}N source and a {sup 252}Cf source when the {gamma} and the thermal neutron background are sufficiently small. The design and construction of the nine-cell segmented detector assembly follow the same principle. By recording the signals from individual scintillators, additional {gamma}-subtraction schemes, such as through the time-of-flight between two scintillators, may also be used. The variations of the light outputs from different parts of a scintillator bar are less than 10%.

  18. Measurement of {sup 235}U content and flow of UF{sub 6} using delayed neutrons or gamma rays following induced fission

    SciTech Connect

    Stromswold, D.C.; Peurrung, A.J.; Reeder, P.L.; Perkins, R.W.

    1996-06-01

    Feasibility experiments conducted at Pacific Northwest National Laboratory demonstrate that either delayed neutrons or energetic gamma rays from short-lived fission products can be used to monitor the blending of UF{sub 6} gas streams. A {sup 252}Cf neutron source was used to induce {sup 235}U fission in a sample, and delayed neutrons and gamma rays were measured after the sample moved {open_quotes}down-stream.{close_quotes} The experiments used a UO{sub 2} powder that was transported down the pipe to simulate the flowing UF{sub 6} gas. Computer modeling and analytic calculation extended the test results to a flowing UF{sub 6} gas system. Neutron or gamma-ray measurements made at two downstream positions can be used to indicate both the {sup 235}U content and UF{sub 6} flow rate. Both the neutron and gamma-ray techniques have the benefits of simplicity and long-term reliability, combined with adequate sensitivity for low-intrusion monitoring of the blending process. Alternatively, measuring the neutron emission rate from (a, n) reactions in the UF{sub 6} provides an approximate measure of the {sup 235}U content without using a neutron source to induce fission.

  19. INJECTION CHOICE FOR SPALLATION NEUTRON SOURCE RING.

    SciTech Connect

    WEI,J.; BEEBE-WANG,J.; BLASKIEWICZ,M.; BRODOWSKI,J.; FEDOTOV,A.; GARDNER,C.; LEE,Y.Y.; RAPARIA,D.; DANILOV,V.; HOLMES,J.; PRIOR,C.; REES,G.; MACHIDA,S.

    2001-06-18

    Injection is key in the low-loss design of high-intensity proton facilities like the Spallation Neutron Source (SNS). During the design of both the accumulator and the rapid-cycling-synchrotron version of the SNS, extensive comparison has been made to select injection scenarios that satisfy SNS's low-loss design criteria. This paper presents issues and considerations pertaining to the final choice of the SNS injection systems.

  20. A militarily fielded thermal neutron activation sensor for landmine detection

    NASA Astrophysics Data System (ADS)

    Clifford, E. T. H.; McFee, J. E.; Ing, H.; Andrews, H. R.; Tennant, D.; Harper, E.; Faust, A. A.

    2007-08-01

    The Canadian Department of National Defence has developed a teleoperated, vehicle-mounted, multi-sensor system to detect anti-tank landmines on roads and tracks in peacekeeping operations. A key part of the system is a thermal neutron activation (TNA) sensor which is placed above a suspect location to within a 30 cm radius and confirms the presence of explosives via detection of the 10.835 MeV gamma ray associated with thermal neutron capture on 14N. The TNA uses a 100 μg252Cf neutron source surrounded by four 7.62 cm×7.62 cm NaI(Tl) detectors. The system, consisting of the TNA sensor head, including source, detectors and shielding, the high-rate, fast pulse processing electronics and the data processing methodology are described. Results of experiments to characterize detection performance are also described. The experiments have shown that anti-tank mines buried 10 cm or less can be detected in roughly a minute or less, but deeper mines and mines significantly displaced horizontally take considerably longer time. Mines as deep as 30 cm can be detected for long count times (1000 s). Four TNA detectors are now in service with the Canadian Forces as part of the four multi-sensor systems, making it the first militarily fielded TNA sensor and the first militarily fielded confirmation sensor for landmines. The ability to function well in adverse climatic conditions has been demonstrated, both in trials and operations.

  1. Linac-driven spallation-neutron source

    SciTech Connect

    Jason, A.J.

    1995-05-01

    Strong interest has arisen in accelerator-driven spallation-neutron sources that surpass existing facilities (such as ISIS at Rutherford or LANSCE at Los Alamos) by more than an order of magnitude in beam power delivered to the spallation target. The approach chosen by Los Alamos (as well as the European Spallation Source) provides the full beam energy by acceleration in a linac as opposed to primary acceleration in a synchrotron or other circular device. Two modes of neutron production are visualized for the source. A short-pulse mode produces 1 MW of beam power (at 60 pps) in pulses, of length less than 1 ms, by compression of the linac macropulse through multi-turn injection in an accumulator ring. A long-pulse mode produces a similar beam power with 1-ms-long pulses directly applied to a target. This latter mode rivals the performance of existing reactor facilities to very low neutron energies. Combination with the short-pulse mode addresses virtually all applications.

  2. Advanced Neutron Sources: Plant Design Requirements

    SciTech Connect

    Not Available

    1990-07-01

    The Advanced Neutron Source (ANS) is a new, world class facility for research using hot, thermal, cold, and ultra-cold neutrons. At the heart of the facility is a 350-MW{sub th}, heavy water cooled and moderated reactor. The reactor is housed in a central reactor building, with supporting equipment located in an adjoining reactor support building. An array of cold neutron guides fans out into a large guide hall, housing about 30 neutron research stations. Office, laboratory, and shop facilities are included to provide a complete users facility. The ANS is scheduled to begin operation at the Oak Ridge National Laboratory at the end of the decade. This Plant Design Requirements document defines the plant-level requirements for the design, construction, and operation of the ANS. This document also defines and provides input to the individual System Design Description (SDD) documents. Together, this Plant Design Requirements document and the set of SDD documents will define and control the baseline configuration of the ANS.

  3. The advanced neutron source reactor: An overview

    SciTech Connect

    West, C.D.

    1990-01-01

    The Advanced Neutron Source (ANS) will be a new user facility for all kinds of neutron research, including neutron scattering, materials testing, materials analysis, isotope production and nuclear physics experiments. The centerpiece of the facility is to be the world's highest flux beam reactor. There will be beams of hot, cold and thermal neutrons for more than 40 simultaneous scattering and nuclear physics experiments. In addition, there will be irradiation positions and rabbit tubes for in-pile experiments, testing and isotopes production (including transuranium isotopes). To reduce technical risks and to minimize safety issues, the reactor design is based on technology already employed in existing research reactors. The fuel elements are annular assemblies of aluminum clad involute fuel plates, similar to the design of the High Flux Isotope Reactor (HFIR) at Oak Ridge and the Institut Laue-Langevin (ILL) Reactor in Grenoble. As is common with many other research reactors, the core is cooled, moderated and reflected by heavy water. The preferred fuel is U{sub 3}Si{sub 2} - a high-density fuel form developed by Argonne National Laboratory and Babcock and Wilcox that has been extensively tested in reactors in the United States, Europe and Japan. 7 figs., 2 tabs.

  4. Advanced Neutron Source: Plant Design Requirements

    SciTech Connect

    Not Available

    1990-07-01

    The Advanced Neutron Source will be a new world-class facility for research using hot, thermal, cold, and ultra-cold neutrons. The heart of the facility will be a 330-MW (fission), heavy-water cooled and heavy-water moderated reactor. The reactor will be housed in a central reactor building, with supporting equipment located in an adjoining reactor support building. An array of cold neutron guides will fan out into a large guide hall, housing about 30 neutron research stations. Appropriate office, laboratory, and shop facilities will be included to provide a complete facility for users. The ANS is scheduled to begin operation at the Oak Ridge National Laboratory early in the next decade. This PDR document defines the plant-level requirements for the design, construction, and operation of ANS. It also defines and provides input to the individual System Design Description (SDD) documents. Together, this PDR document and the set of SDD documents will define and control the baseline configuration of ANS.

  5. Source storage and transfer cask: Users Guide

    SciTech Connect

    Eccleston, G.W.; Speir, L.G.; Garcia, D.C.

    1985-04-01

    The storage and shield cask for the dual californium source is designed to shield and transport up to 3.7 mg (2 Ci) of /sup 252/Cf. the cask meets Department of Transportation (DOT) license requirements for Type A materials (DOT-7A). The cask is designed to transfer sources to and from the Flourinel and Fuel Storage (FAST) facility delayed-neutron interrogator. Californium sources placed in the cask must be encapsulated in the SR-CF-100 package and attached to Teleflex cables. The cask contains two source locations. Each location contains a gear box that allows a Teleflex cable to be remotely moved by a hand crank into and out of the cask. This transfer procedure permits sources to be easily removed and inserted into the delayed-neutron interrogator and reduces personnel radiation exposure during transfer. The radiation dose rate with the maximum allowable quantity of californium (3.7 mg) in the cask is 30 mR/h at the surface and less than 2 mR/h 1 m from the cask surface. This manual contains information about the cask, californium sources, describes the method to ship the cask, and how to insert and remove sources from the cask. 28 figs.

  6. Physics and technology of spallation neutron sources

    NASA Astrophysics Data System (ADS)

    Bauer, G. S.

    2001-05-01

    A substantial body of research is necessary in order to be able to make reliable predictions on the performance and safety of Accelerator Driven Systems (ADS), in particular of their spallation targets. So far, practical experience has resulted from the development of research neutron sources only. Next to fission and fusion, spallation is an efficient process for releasing neutrons from nuclei. Unlike the other two reactions, it is an endothermal process and can, therefore, not be used per se in energy generation. In order to sustain a spallation reaction, an energetic beam of particles, most commonly protons, must be supplied onto a heavy target. Spallation can, however, play an important role as a source of neutrons whose flux can be easily controlled via the driving beam. Although sophisticated Monte Carlo codes exist to compute all aspects of a spallation facility, many features can be understood on the basis of simple physics arguments. Technically a spallation facility is very demanding, not only because a reliable and economic accelerator of high power is needed to drive the reaction, but also, and in particular, because high levels of radiation and heat are generated in the target which are difficult to cope with. Radiation effects in a spallation environment are different from those commonly encountered in a reactor and are probably even more temperature dependent than the latter because of the high gas production rate. A commonly favored solution is the use of molten heavy metal targets. While radiation damage is not a problem in this case, except for the container, other issues need to be considered. R&D carried out for the development of spallation neutron sources will thus be beneficial also directly for ADS.

  7. Neutron diffractometers for structural biology at spallation neutron sources

    SciTech Connect

    Schoenborn, B.P.; Pitcher, E.

    1994-12-31

    Spallation neutron sources are ideal for diffraction studies of proteins and oriented molecular complexes. With spoliation neutrons and their time dependent wavelength structure, it is easy to electronically select data with an optimal wavelength bandwidth and cover the whole Laue spectrum as time (wavelength) resolved snapshots. This optimized data quality with best peak-to-background ratios and provides adequate spatial and energy resolution to eliminate peak overlaps. The application of this concept will use choppers to select the desired Laue wavelength spectrum and employ focusing optics and large cylindrical {sup 3}He detectors to optimize data collection rates. Such a diffractometer will cover a Laue wavelength range from 1 to 5{Angstrom} with a flight path length of 10m and an energy resolution of 0.25{Angstrom}. Moderator concepts for maximal flux distribution within this energy range will be discussed using calculated flux profiles. Since the energy resolution required for such timed data collection in this super Laue techniques is not very high, the use of a linac only (LAMPF) spoliation target is an exciting possibility with an order of magnitude increase in flux.

  8. DIVERSE ACTIVE WELL NEUTRON COINCIDENCE COUNTER UTILITY AT THE SAVANNAH RIVER NATIONAL LABORATORY

    SciTech Connect

    Dewberry, R; Saleem Salaymeh, S

    2007-01-08

    In this paper we describe use of the Aquila active well neutron coincidence counter for nuclear material assays of {sup 235}U in multiple analytical techniques at Savannah River Site (SRS), at the Savannah River National Laboratory (SRNL), and at Argonne West National Laboratory (AWNL). The uses include as a portable passive neutron counter for field measurements searching for evidence of {sup 252}Cf deposits and storage; as a portable active neutron counter using an external activation source for field measurements searching for trace {sup 235}U deposits and holdup; for verification measurements of U-Al reactor fuel elements; for verification measurements of uranium metal; and for verification measurements of process waste of impure uranium in a challenging cement matrix. The wide variety of uses described demonstrate utility of the technique for neutron coincidence verification measurements over the dynamic ranges of 100 g-5000 g for U metal, 200 g-1300 g for U-Al, and 8 g-35 g for process waste. In addition to demonstrating use of the instrument in both the passive and active modes, we also demonstrate its use in both the fast and thermal neutron modes.

  9. Determination of air/water ratio in pipes by fast neutrons: experiment and Monte Carlo simulation.

    PubMed

    AboAlfaraj, Tareq; Abdul-Majid, Samir

    2012-04-01

    Fast neutron dose attenuation from a (252)Cf neutron source is used for the determination of air to water ratio in pipes. Such measurement of the two-phase flow volume fraction is important for many industrial plants such as desalination plants and oil refineries. Fast neutrons penetrate liquid more than slow neutrons or gamma rays. Using diameters from 11.5 cm to 20.76 cm and with wall thicknesses from 0.45 to 1.02 cm, attenuation was independent of pipe wall thicknesses and diameters. Experimental data was in good agreement with values calculated using MCNP codes. The measured neutron flux values decreased with increasing water levels in pipes up to about 14 cm, indicating that our system can be used successfully in desalination plants in pipes of different sizes. The experimental sensitivity was found to be about 0.015 mSv/hcm and the system can be used to measure water level changes down to few millimeters. Use of such a system in fixed positions in the plant can provide information on plant's overall performance and can detect loss of flow immediately before any consequences. A portable system could be designed to measure the air to water ratio in different locations in the plant in a relatively short time.

  10. The design of a high-efficiency neutron counter for waste drums to provide optimized sensitivity for plutonium assay

    SciTech Connect

    Menlove, H.O.; Beddingfield, D.H.; Pickrell, M.M.

    1997-11-01

    An advanced passive neutron counter has been designed to improve the accuracy and sensitivity for the nondestructive assay of plutonium in scrap and waste containers. The High-Efficiency Neutron Counter (HENC) was developed under a Cooperative Research Development Agreement between the Los Alamos National Laboratory and Canberra Industries. The primary goal of the development was to produce a passive assay system for 200-L drums that has detectability limits and multiplicity counting features that are superior to previous systems. A detectability limit figure of merit (FOM) was defined that included the detector efficiency, the neutron die-away time, and the detector`s active volume and density that determine the cosmic-ray background. Monte Carlo neutron calculations were performed to determine the parameters to provide an optimum FOM. The system includes the {sup 252}Cf {open_quotes}add-a-source{close_quotes} feature to improve the accuracy as well as statistical filters to reduce the cosmic-ray spallation neutron background. The final decision gave an efficiency of 32% for plutonium with a detector {sup 3}He tube volume that is significantly smaller than for previous high-efficiency systems for 200-L drums. Because of the high efficiency of the HENC, we have incorporated neutron multiplicity counting for matrix corrections for those cases where the plutonium is localized in nonuniform hydrogenous materials. The paper describes the design and performance testing of the advanced system. 5 refs., 8 figs., 3 tabs.

  11. New sources and instrumentation for neutrons in biology

    PubMed Central

    Teixeira, S.C.M.; Ankner, J.; Bellissent-Funel, M.C.; Bewley, R.; Blakeley, M.P.; Coates, L.; Dahint, R.; Dalgliesh, R.; Dencher, N.; Dhont, J.; Fischer, P.; Forsyth, V.T.; Fragneto, G.; Frick, B.; Geue, T.; Gilles, R.; Gutberlet, T.; Haertlein, M.; Hauß, T.; Häußler, W.; Heller, W.T.; Herwig, K.; Holderer, O.; Juranyi, F.; Kampmann, R.; Knott, R.; Kohlbrecher, J.; Kreuger, S.; Langan, P.; Lechner, R.; Lynn, G.; Majkrzak, C.; May, R.; Meilleur, F.; Mo, Y.; Mortensen, K.; Myles, D.A.A.; Natali, F.; Neylon, C.; Niimura, N.; Ollivier, J.; Ostermann, A.; Peters, J.; Pieper, J.; Rühm, A.; Schwahn, D.; Shibata, K.; Soper, A.K.; Straessle, T.; Suzuki, U.-i.; Tanaka, I.; Tehei, M.; Timmins, P.; Torikai, N.; Unruh, T.; Urban, V.; Vavrin, R.; Weiss, K.; Zaccai, G.

    2008-01-01

    Neutron radiation offers significant advantages for the study of biological molecular structure and dynamics. A broad and significant effort towards instrumental and methodological development to facilitate biology experiments at neutron sources worldwide is reviewed. PMID:19132140

  12. Status of the intense pulsed neutron source

    SciTech Connect

    Brown, B.S.; Carpenter, J.M.; Crawford, R.K.; Rauchas, A.V.; Schulke, A.W.; Worlton, T.G.

    1988-01-01

    IPNS is not unique in having concerns about the level of funding, and the future looks good despite these concerns. This report details the progress made at IPNS during the last two years. Other papers in these proceedings discuss in detail the status of the enriched uranium Booster target, the two instruments that are under construction, GLAD and POSY II, and a proposal for research on an Advanced Pulsed Neutron Source (ASPUN) that has been submitted to the Department of Energy (DOE). Further details on IPNS are available in the IPNS Progress Report 1987--1988, available by writing the IPNS Division Office. 9 refs., 3 tabs.

  13. Neutron star binaries, pulsars and burst sources

    NASA Technical Reports Server (NTRS)

    Lamb, F. K.

    1981-01-01

    Unresolved issues involving neutron star binaries, pulsars, and burst sources are described. Attention is drawn to the types of observations most likely to resolve them. Many of these observations are likely to be carried out during the next decade by one or more missions that have been approved or proposed. Flux measurements with an imaging detector and broad-band spectroscopic studies in the energy range 30-150 keV are discussed. The need for soft X-ray and X-ray observations with an instrument which has arcminute angular resolution and an effective area substantially greater than of ROSAT or EXOSAT is also discussed.

  14. LENS: A New Pulsed Neutron Source for Research and Education

    PubMed Central

    Leuschner, M.; Baxter, D. V.; Cameron, J. M.; Derenchuk, V.; Lavelle, C.; Lone, A.; Nann, H.; Rinckel, T.; Snow, W. M.

    2005-01-01

    A new pulsed neutron source is under construction at the Indiana University Cyclotron Facility (IUCF). Neutrons are produced via (p,n) reactions by a low-energy proton beam incident on a thin beryllium target. The source is tightly coupled to a cold methane moderator held at a temperature of 20 K or below. The resulting time-averaged cold neutron flux is expected to be comparable to that of the Intense Pulsed Neutron Source (IPNS) facility at Argonne National Laboratory. The initial experimental suite will include instrumentation for small angle neutron scattering (SANS), moderator studies, radiography, and zero-field spin-echo SANS. PMID:27308113

  15. Field ion source development for neutron generators

    NASA Astrophysics Data System (ADS)

    Bargsten Johnson, B.; Schwoebel, P. R.; Holland, C. E.; Resnick, P. J.; Hertz, K. L.; Chichester, D. L.

    2012-01-01

    An ion source based on the principles of electrostatic field desorption is being developed to improve the performance of existing compact neutron generators. The ion source is an array of gated metal tips derived from field electron emitter array microfabrication technology. A comprehensive summary of development and experimental activities is presented. Many structural modifications to the arrays have been incorporated to achieve higher tip operating fields, while lowering fields at the gate electrode to prevent gate field electron emission which initiates electrical breakdown in the array. The latest focus of fabrication activities has been on rounding the gate electrode edge and surrounding the gate electrode with dielectric material. Array testing results have indicated a steady progression of increased array tip operating fields with each new design tested. The latest arrays have consistently achieved fields beyond those required for the onset of deuterium desorption (˜20 V/nm), and have demonstrated the desorption of deuterium at fields up to 36 V/nm. The number of ions desorbed from an array has been quantified, and field desorption of metal tip substrate material from array tips has been observed for the first time. Gas-phase field ionization studies with ˜10,000 tip arrays have achieved deuterium ion currents of ˜50 nA. Neutron production by field ionization has yielded ˜10 2 n/s from ˜1 mm 2 of array area using the deuterium-deuterium fusion reaction at 90 kV.

  16. Field Ion Source Development for Neutron Generators

    SciTech Connect

    B. Bargsten Johnson; P. R. Schwoebel; C. E. Holland; P. J. Resnick; K. L. Hertz; D. L. Chichester

    2012-01-01

    An ion source based on the principles of electrostatic field desorption is being developed to improve the performance of existing compact neutron generators. The ion source is an array of gated metal tips derived from field electron emitter array microfabrication technology. A comprehensive summary of development and experimental activities is presented. Many structural modifications to the arrays have been incorporated to achieve higher tip operating fields, while lowering fields at the gate electrode to prevent gate field electron emission which initiates electrical breakdown in the array. The latest focus of fabrication activities has been on rounding the gate electrode edge and surrounding the gate electrode with dielectric material. Array testing results have indicated a steady progression of increased array tip operating fields with each new design tested. The latest arrays have consistently achieved fields beyond those required for the onset of deuterium desorption ({approx}20 V/nm), and have demonstrated the desorption of deuterium at fields up to 36 V/nm. The number of ions desorbed from an array has been quantified, and field desorption of metal tip substrate material from array tips has been observed for the first time. Gas-phase field ionization studies with {approx}10,000 tip arrays have achieved deuterium ion currents of {approx}50 nA. Neutron production by field ionization has yielded {approx}10{sup 2} n/s from {approx}1 mm{sup 2} of array area using the deuterium-deuterium fusion reaction at 90 kV.

  17. Status of the intense pulsed neutron source

    SciTech Connect

    Carpenter, J.M.; Brown, B.S.; Kustom, R.L.; Lander, G.H.; Potts, C.W.; Schulke, A.W.; Wuestefeld, G.

    1985-01-01

    Fortunately in spite of some premature reports of its impending demise, IPNS has passed the fourth anniversary of the first delivery of protons to the targets (May 5, 1981) and is approaching the fourth anniversary of its operation as a scattering facility (August 4, 1981). On June 10, 1984, the RCS delivered its one billionth pulse to the IPNS target - the total number of protons delivered to the targets amounted then to 75 stp cm/sup 3/ of H/sub 2/ gas. Since startup IPNS has improved steadily in terms of the performance of the Rapid Cycling Synchrotron, the source and its moderators and the scattering instruments, and a substantial and productive user program has evolved. This report summarizes the current status of the Intense Pulsed Neutron Source at Argonne National Laboratory. We include reference to recent accelerator operating experience, neutron facility operating experience, improvements to these systems, design work on the ASPUN high-current facility, booster target design, the new solid methane moderator, characterization of the room temperature moderators, and provide some examples of recent results from several of the spectrometers.

  18. Using spallation neutron sources for defense research

    SciTech Connect

    Pynn, R.; Sterbenz, S.M.; Weinacht, D.J.

    1996-12-31

    Advanced characterization techniques and accelerated simulation are the cornerstones of the Energy Department`s science-based program to maintain confidence in the safety, reliability, and performance of the US nuclear deterrent in an era of no nuclear testing. Neutrons and protons provided by an accelerator-based facility have an important role to play in this program, impacting several of the key stockpile stewardship and management issues identified by the Department of Defense. Many of the techniques used for defense research at a spallation source have been used for many years for the basic research community, and to a lesser extent by industrial scientists. By providing access to a broad spectrum of researchers with different backgrounds, a spallation source such as the Los Alamos Neutron Science Center is able to promote synergistic interaction between defense, basic and industrial researchers. This broadens the scientific basis of the stockpile stewardship program in the short term and will provide spin-off to industrial and basic research in the longer term.

  19. European Spallation Source and Neutron Science

    NASA Astrophysics Data System (ADS)

    Yeck, James

    2014-03-01

    International collaborations in large-scale scientific projects can link Sciences and Society. Following this goal, the European Spallation Source (ESS) is a multi-disciplinary research centre under design and construction in Lund, Sweden. This new facility is funded by a collaboration of 17 European countries. Scandinavia is providing 50 percent of the construction cost whilst the other member states are providing financial support mainly via in-kind contribution from institutes, laboratories or industries of the given countries. Scientists and engineers from 35 different countries are members of the workforce in Lund who participate in its design and construction. The ESS will enable new opportunities for researchers in fields of life sciences, energy, environmental technology, cultural heritage and fundamental physics by producing very high flux neutrons to study condensed matter physics, chemistry, biology, nuclear physics and materials science. The ESS will be up to 30 times brighter than today's leading facilities and neutron sources. A tungsten target and a 5 MW long pulse proton accelerator, composed mainly of superconducting Radio-Frequency components, are used to achieve these goals.

  20. A neutron multiplicity analysis method for uranium samples with liquid scintillators

    NASA Astrophysics Data System (ADS)

    Zhou, Hao; Lin, Hongtao; Liu, Guorong; Li, Jinghuai; Liang, Qinglei; Zhao, Yonggang

    2015-10-01

    A new neutron multiplicity analysis method for uranium samples with liquid scintillators is introduced. An active well-type fast neutron multiplicity counter has been built, which consists of four BC501A liquid scintillators, a n/γdiscrimination module MPD-4, a multi-stop time to digital convertor MCS6A, and two Am-Li sources. A mathematical model is built to symbolize the detection processes of fission neutrons. Based on this model, equations in the form of R=F*P*Q*T could be achieved, where F indicates the induced fission rate by interrogation sources, P indicates the transfer matrix determined by multiplication process, Q indicates the transfer matrix determined by detection efficiency, T indicates the transfer matrix determined by signal recording process and crosstalk in the counter. Unknown parameters about the item are determined by the solutions of the equations. A 252Cf source and some low enriched uranium items have been measured. The feasibility of the method is proven by its application to the data analysis of the experiments.

  1. Characterization of a 6Li-loaded liquid organic scintillator for fast neutron spectrometry and thermal neutron detection.

    PubMed

    Bass, C D; Beise, E J; Breuer, H; Heimbach, C R; Langford, T J; Nico, J S

    2013-07-01

    The characterization of a liquid scintillator incorporating an aqueous solution of enriched lithium chloride to produce a scintillator with 0.40% (6)Li is presented, including the performance of the scintillator in terms of its optical properties and neutron response. The scintillator was incorporated into a fast neutron spectrometer, and the light output spectra from 2.5 MeV, 14.1 MeV, and (252)Cf neutrons were measured using capture-gated coincidence techniques. The spectrometer was operated without coincidence to perform thermal neutron measurements. Possible improvements in spectrometer performance are discussed.

  2. Detection of Landmines by Neutron Backscattering: Effects of Soil Moisture on the Detection System

    SciTech Connect

    Baysoy, D. Y.; Subasi, M.

    2010-01-21

    Detection of buried land mines by using neutron backscattering technique (NBS) is a well established method. It depends on detecting a hydrogen anomaly in dry soil. Since a landmine and its plastic casing contain much more hydrogen atoms than the dry soil, this anomaly can be detected by observing a rise in the number of neutrons moderated to thermal or epithermal energy. But, the presence of moisture in the soil limits the effectiveness of the measurements. In this work, a landmine detection system using the NBS technique was designed. A series of Monte Carlo calculations was carried out to determine the limits of the system due to the moisture content of the soil. In the simulations, an isotropic fast neutron source ({sup 252}Cf, 100 mug) and a neutron detection system which consists of five {sup 3}He detectors were used in a practicable geometry. In order to see the effects of soil moisture on the efficiency of the detection system, soils with different water contents were tested.

  3. Optimization and Characterization of a Novel Self Powered Solid State Neutron Detector

    NASA Astrophysics Data System (ADS)

    Clinton, Justin

    There is a strong interest in detecting both the diversion of special nuclear material (SNM) from legitimate, peaceful purposes and the transport of illicit SNM across domestic and international borders and ports. A simple solid-state detector employs a planar solar-cell type p-n junction and a thin conversion layer that converts incident neutrons into detectable charged particles, such as protons, alpha-particles, and heavier ions. Although simple planar devices can act as highly portable, low cost detectors, they have historically been limited to relatively low detection efficiencies; ˜10% and ˜0.2% for thermal and fast detectors, respectively. To increase intrinsic detection efficiency, the incorporation of 3D microstructures into p-i-n silicon devices was proposed. In this research, a combination of existing and new types of detector microstructures were investigated; Monte Carlo models, based on analytical calculations, were constructed and characterized using the GEANT4 simulation toolkit. The simulation output revealed that an array of etched hexagonal holes arranged in a honeycomb pattern and filled with either enriched (99% 10B) boron or parylene resulted in the highest intrinsic detection efficiencies of 48% and 0.88% for thermal and fast neutrons, respectively. The optimal parameters corresponding to each model were utilized as the basis for the fabrication of several prototype detectors. A calibrated 252Cf spontaneous fission source was utilized to generate fast neutrons, while thermal neutrons were created by placing the 252Cf in an HDPE housing designed and optimized using the MCNP simulation software. Upon construction, thermal neutron calibration was performed via activation analysis of gold foils and measurements from a 6Li loaded glass scintillator. Experimental testing of the prototype detectors resulted in maximum intrinsic efficiencies of 4.5 and 0.12% for the thermal and fast devices, respectively. The prototype thermal device was filled

  4. Spallation neutron source/proposed rf system

    SciTech Connect

    Meth, M.; Brennan, J.M.

    1993-09-30

    The rf system for the synchrotrons of the spallation neutron source is designed to accelerate 1.4 {times} 10{sup 14} protons/pulse to an energy of 3.6 GeV. Injection energy is 600 MeV. The synchrotron repetition frequency is 30 Hz, with a 50% duty factor. The choice of operating frequency is somewhat arbitrary. The authors propose a low frequency of 1.3 to 1.6 MHz, which is the second harmonic of the revolution frequency. The advantages of such a low frequency system are: (1) There will be two bunches in the machines and the time between bunches will be sufficiently long to allow for the rise time of the extraction kicker. No missing bunches will be necessary, which simplifies injection, and transient beam loading problems are avoided. (2) With only two bunches there are no unstable coupled-bunch modes of longitudinal instability. (3) In multi-gap low frequency cavities the transient time factor is essentially unity because the rf wavelength is much longer than the cavity dimensions. (4) Cavities in this low frequency range are basically lumped-element type structures, where the sources of the inductance and capacitance are clearly identified. This allows effective control of higher order mode impedances in such cavities. (5) Ferrite-loaded low-frequency cavities are necessarily low impedance structures; ferrites are lossy. This low impedance makes it possible to achieve system stability without large amounts of feedback in a heavily beam loaded system. (6) BNL has a good deal of experience in building rf systems in this range of frequency, voltage, and power level. This report outlines the essential parameters of a practical rf system for the synchrotrons of the Spallation Neutron Source. The design uses materials, ferrites and vacuum tubes, that are commercially available and with which the laboratory has recent experience.

  5. Accelerator based epithermal neutron source for neutron capture therapy

    SciTech Connect

    Brugger, R.; Kunze, J.

    1991-05-01

    Several investigators have suggested that a charged particle accelerator with light element reactions might be able to produce enough epithermal neutrons to be useful in Neutron Capture Therapy. The reaction choice so far has been the Li(p,n) reaction with protons up to 2.5 MeV. A moderator around the target would reduce the faster neutrons down to the epithermal energy region. The goals of the present research are: identify better reactions; improve the moderators; and find better combinations of 1 and 2. The target is to achieve, at the patient location, an epithermal neutron current of greater than 10{sup 9}n/cm{sup 2}sec, with a dose to tissue from the neutrons alone of less than 10{sup {minus}10} rads/n and a dose from the gamma rays in the beam of less than 10{sup {minus}10} rads/n.

  6. Cryogenic System for the Spallation Neutron Source

    SciTech Connect

    Arenius, D.; Chronis, W.; Creel, J.; Dixon, K.; Ganni, V.; Knudsen, P.

    2004-06-23

    The Spallation Neutron Source (SNS) is a neutron-scattering facility being built at Oak Ridge, TN for the US Department of Energy. The SNS accelerator linac consists of superconducting radio-frequency (SRF) cavities in cryostats (cryomodules). The linac cryomodules are cooled to 2.1 K by a 2300 watt cryogenic refrigeration system. As an SNS partner laboratory, Jefferson Lab is responsible for the installed integrated cryogenic system design for the SNS linac accelerator consisting of major subsystem equipment engineered and procured from industry. Jefferson Lab's work included developing the major vendor subsystem equipment procurement specifications, equipment procurement, and the integrated system engineering support of the field installation and commissioning. The major cryogenic system components include liquid nitrogen storage, gaseous helium storage, cryogen distribution transfer line system, 2.1-K cold box consisting of four stages of cold compressors, 4.5-K cold box, warm helium compressors with its associated oil removal, gas management, helium purification, gas impurity monitoring systems, and the supportive utilities of electrical power, cooling water and instrument air. The system overview, project organization, the important aspects, and the capabilities of the cryogenic system are described.

  7. The Spallation Neutron Source accelerator system design

    NASA Astrophysics Data System (ADS)

    Henderson, S.; Abraham, W.; Aleksandrov, A.; Allen, C.; Alonso, J.; Anderson, D.; Arenius, D.; Arthur, T.; Assadi, S.; Ayers, J.; Bach, P.; Badea, V.; Battle, R.; Beebe-Wang, J.; Bergmann, B.; Bernardin, J.; Bhatia, T.; Billen, J.; Birke, T.; Bjorklund, E.; Blaskiewicz, M.; Blind, B.; Blokland, W.; Bookwalter, V.; Borovina, D.; Bowling, S.; Bradley, J.; Brantley, C.; Brennan, J.; Brodowski, J.; Brown, S.; Brown, R.; Bruce, D.; Bultman, N.; Cameron, P.; Campisi, I.; Casagrande, F.; Catalan-Lasheras, N.; Champion, M.; Champion, M.; Chen, Z.; Cheng, D.; Cho, Y.; Christensen, K.; Chu, C.; Cleaves, J.; Connolly, R.; Cote, T.; Cousineau, S.; Crandall, K.; Creel, J.; Crofford, M.; Cull, P.; Cutler, R.; Dabney, R.; Dalesio, L.; Daly, E.; Damm, R.; Danilov, V.; Davino, D.; Davis, K.; Dawson, C.; Day, L.; Deibele, C.; Delayen, J.; DeLong, J.; Demello, A.; DeVan, W.; Digennaro, R.; Dixon, K.; Dodson, G.; Doleans, M.; Doolittle, L.; Doss, J.; Drury, M.; Elliot, T.; Ellis, S.; Error, J.; Fazekas, J.; Fedotov, A.; Feng, P.; Fischer, J.; Fox, W.; Fuja, R.; Funk, W.; Galambos, J.; Ganni, V.; Garnett, R.; Geng, X.; Gentzlinger, R.; Giannella, M.; Gibson, P.; Gillis, R.; Gioia, J.; Gordon, J.; Gough, R.; Greer, J.; Gregory, W.; Gribble, R.; Grice, W.; Gurd, D.; Gurd, P.; Guthrie, A.; Hahn, H.; Hardek, T.; Hardekopf, R.; Harrison, J.; Hatfield, D.; He, P.; Hechler, M.; Heistermann, F.; Helus, S.; Hiatt, T.; Hicks, S.; Hill, J.; Hill, J.; Hoff, L.; Hoff, M.; Hogan, J.; Holding, M.; Holik, P.; Holmes, J.; Holtkamp, N.; Hovater, C.; Howell, M.; Hseuh, H.; Huhn, A.; Hunter, T.; Ilg, T.; Jackson, J.; Jain, A.; Jason, A.; Jeon, D.; Johnson, G.; Jones, A.; Joseph, S.; Justice, A.; Kang, Y.; Kasemir, K.; Keller, R.; Kersevan, R.; Kerstiens, D.; Kesselman, M.; Kim, S.; Kneisel, P.; Kravchuk, L.; Kuneli, T.; Kurennoy, S.; Kustom, R.; Kwon, S.; Ladd, P.; Lambiase, R.; Lee, Y. Y.; Leitner, M.; Leung, K.-N.; Lewis, S.; Liaw, C.; Lionberger, C.; Lo, C. C.; Long, C.; Ludewig, H.; Ludvig, J.; Luft, P.; Lynch, M.; Ma, H.; MacGill, R.; Macha, K.; Madre, B.; Mahler, G.; Mahoney, K.; Maines, J.; Mammosser, J.; Mann, T.; Marneris, I.; Marroquin, P.; Martineau, R.; Matsumoto, K.; McCarthy, M.; McChesney, C.; McGahern, W.; McGehee, P.; Meng, W.; Merz, B.; Meyer, R.; Meyer, R.; Miller, B.; Mitchell, R.; Mize, J.; Monroy, M.; Munro, J.; Murdoch, G.; Musson, J.; Nath, S.; Nelson, R.; Nelson, R.; O`Hara, J.; Olsen, D.; Oren, W.; Oshatz, D.; Owens, T.; Pai, C.; Papaphilippou, I.; Patterson, N.; Patterson, J.; Pearson, C.; Pelaia, T.; Pieck, M.; Piller, C.; Plawski, T.; Plum, M.; Pogge, J.; Power, J.; Powers, T.; Preble, J.; Prokop, M.; Pruyn, J.; Purcell, D.; Rank, J.; Raparia, D.; Ratti, A.; Reass, W.; Reece, K.; Rees, D.; Regan, A.; Regis, M.; Reijonen, J.; Rej, D.; Richards, D.; Richied, D.; Rode, C.; Rodriguez, W.; Rodriguez, M.; Rohlev, A.; Rose, C.; Roseberry, T.; Rowton, L.; Roybal, W.; Rust, K.; Salazer, G.; Sandberg, J.; Saunders, J.; Schenkel, T.; Schneider, W.; Schrage, D.; Schubert, J.; Severino, F.; Shafer, R.; Shea, T.; Shishlo, A.; Shoaee, H.; Sibley, C.; Sims, J.; Smee, S.; Smith, J.; Smith, K.; Spitz, R.; Staples, J.; Stein, P.; Stettler, M.; Stirbet, M.; Stockli, M.; Stone, W.; Stout, D.; Stovall, J.; Strelo, W.; Strong, H.; Sundelin, R.; Syversrud, D.; Szajbler, M.; Takeda, H.; Tallerico, P.; Tang, J.; Tanke, E.; Tepikian, S.; Thomae, R.; Thompson, D.; Thomson, D.; Thuot, M.; Treml, C.; Tsoupas, N.; Tuozzolo, J.; Tuzel, W.; Vassioutchenko, A.; Virostek, S.; Wallig, J.; Wanderer, P.; Wang, Y.; Wang, J. G.; Wangler, T.; Warren, D.; Wei, J.; Weiss, D.; Welton, R.; Weng, J.; Weng, W.-T.; Wezensky, M.; White, M.; Whitlatch, T.; Williams, D.; Williams, E.; Wilson, K.; Wiseman, M.; Wood, R.; Wright, P.; Wu, A.; Ybarrolaza, N.; Young, K.; Young, L.; Yourd, R.; Zachoszcz, A.; Zaltsman, A.; Zhang, S.; Zhang, W.; Zhang, Y.; Zhukov, A.

    2014-11-01

    The Spallation Neutron Source (SNS) was designed and constructed by a collaboration of six U.S. Department of Energy national laboratories. The SNS accelerator system consists of a 1 GeV linear accelerator and an accumulator ring providing 1.4 MW of proton beam power in microsecond-long beam pulses to a liquid mercury target for neutron production. The accelerator complex consists of a front-end negative hydrogen-ion injector system, an 87 MeV drift tube linear accelerator, a 186 MeV side-coupled linear accelerator, a 1 GeV superconducting linear accelerator, a 248-m circumference accumulator ring and associated beam transport lines. The accelerator complex is supported by ~100 high-power RF power systems, a 2 K cryogenic plant, ~400 DC and pulsed power supply systems, ~400 beam diagnostic devices and a distributed control system handling ~100,000 I/O signals. The beam dynamics design of the SNS accelerator is presented, as is the engineering design of the major accelerator subsystems.

  8. Digital fast neutron radiography of steel reinforcing bar in concrete

    NASA Astrophysics Data System (ADS)

    Mitton, K.; Jones, A.; Joyce, M. J.

    2014-12-01

    Neutron imaging has previously been used in order to test for cracks, degradation and water content in concrete. However, these techniques often fall short of alternative non-destructive testing methods, such as γ-ray and X-ray imaging, particularly in terms of resolution. Further, thermal neutron techniques can be compromised by the significant expense associated with thermal neutron sources of sufficient intensity to yield satisfactory results that can often precipitate the need for a reactor. Such embodiments are clearly not portable in the context of the needs of field applications. This paper summarises the results of a study to investigate the potential for transmission radiography based on fast neutrons. The objective of this study was to determine whether the presence of heterogeneities in concrete, such as reinforcement structures, could be identified on the basis of variation in transmitted fast-neutron flux. Monte-Carlo simulations have been performed and the results from these are compared to those arising from practical tests using a 252Cf source. The experimental data have been acquired using a digital pulse-shape discrimination system that enables fast neutron transmission to be studied across an array of liquid scintillators placed in close proximity to samples under test, and read out in real time. Whilst this study does not yield sufficient spatial resolution, a comparison of overall flux ratios does provide a basis for the discrimination between samples with contrasting rebar content. This approach offers the potential for non-destructive testing that gives less dose, better transportability and better accessibility than competing approaches. It is also suitable for thick samples where γ-ray and X-ray methods can be limited.

  9. Electronic neutron sources for compensated porosity well logging

    SciTech Connect

    Chen, Allan Xi; Antolak, Arlyn J; Leung, Ka-Ngo

    2012-02-01

    The viability of replacing Americium–Beryllium (Am–Be) radiological neutron sources in compensated porosity nuclear well logging tools with D–T or D–D accelerator-driven neutron sources is explored. The analysis consisted of developing a model for a typical well-logging borehole configuration and computing the helium-3 detector response to varying formation porosities using three different neutron sources (Am–Be, D–D, and D–T). The results indicate that, when normalized to the same source intensity, the use of a D–D neutron source has greater sensitivity for measuring the formation porosity than either an Am–Be or D–T source. The results of the study provide operational requirements that enable compensated porosity well logging with a compact, low power D–D neutron generator, which the current state-of-the-art indicates is technically achievable.

  10. Electronic neutron sources for compensated porosity well logging

    NASA Astrophysics Data System (ADS)

    Chen, A. X.; Antolak, A. J.; Leung, K.-N.

    2012-08-01

    The viability of replacing Americium-Beryllium (Am-Be) radiological neutron sources in compensated porosity nuclear well logging tools with D-T or D-D accelerator-driven neutron sources is explored. The analysis consisted of developing a model for a typical well-logging borehole configuration and computing the helium-3 detector response to varying formation porosities using three different neutron sources (Am-Be, D-D, and D-T). The results indicate that, when normalized to the same source intensity, the use of a D-D neutron source has greater sensitivity for measuring the formation porosity than either an Am-Be or D-T source. The results of the study provide operational requirements that enable compensated porosity well logging with a compact, low power D-D neutron generator, which the current state-of-the-art indicates is technically achievable.

  11. Radiation Transport Analysis in Chalcogenide-Based Devices and a Neutron Howitzer Using MCNP

    NASA Astrophysics Data System (ADS)

    Bowler, Herbert

    As photons, electrons, and neutrons traverse a medium, they impart their energy in ways that are analytically difficult to describe. Monte Carlo methods provide valuable insight into understanding this behavior, especially when the radiation source or environment is too complex to simplify. This research investigates simulating various radiation sources using the Monte Carlo N-Particle (MCNP) transport code, characterizing their impact on various materials, and comparing the simulation results to general theory and measurements. A total of five sources were of interest: two photon sources of different incident particle energies (3.83 eV and 1.25 MeV), two electron sources also of different energies (30 keV and 100 keV), and a californium-252 (Cf-252) spontaneous fission neutron source. Lateral and vertical programmable metallization cells (PMCs) were developed by other researchers for exposure to these photon and electron sources, so simplified PMC models were implemented in MCNP to estimate the doses and fluences. Dose rates measured around the neutron source and the predicted maximum activity of activation foils exposed to the neutrons were determined using MCNP and compared to experimental results obtained from gamma-ray spectroscopy. The analytical fluence calculations for the photon and electron cases agreed with MCNP results, and differences are due to MCNP considering particle movements that hand calculations do not. Doses for the photon cases agreed between the analytical and simulated results, while the electron cases differed by a factor of up to 4.8. Physical dose rate measurements taken from the neutron source agreed with MCNP within the 10% tolerance of the measurement device. The activity results had a percent error of up to 50%, which suggests a need to further evaluate the spectroscopy setup.

  12. Neutron calibration sources in the Daya Bay experiment

    DOE PAGES

    Liu, J.; Carr, R.; Dwyer, D. A.; Gu, W. Q.; Li, G. S.; McKeown, R. D.; Qian, X.; Tsang, R. H. M.; Wu, F. F.; Zhang, C.

    2015-07-09

    We describe the design and construction of the low rate neutron calibration sources used in the Daya Bay Reactor Anti-neutrino Experiment. Such sources are free of correlated gamma-neutron emission, which is essential in minimizing induced background in the anti-neutrino detector. Thus, the design characteristics have been validated in the Daya Bay anti-neutrino detector.

  13. Neutron sources in North America: Present and future

    NASA Astrophysics Data System (ADS)

    Holden, Thomas; Krawitz, Aaron D.; Anderson, Ian

    2006-03-01

    Six neutron sources are available for research in North America. The facilities are funded by their respective governments as user-facilities. User proposals are accepted on a regular basis and if they are success ful in competition with all the other proposals, time is allocated for the experiments. This paper describes the neutron sources and their capabilities.

  14. Reflection Asymmetric Shapes in the Neutron-Rich 140,143Ba Isotopes

    NASA Astrophysics Data System (ADS)

    Zhu Sheng-jiang (S, J. Zhu; Wang, Mu-ge; J, H. Hamilton; A, V. Ramayya; B, R. S. Babu; W, C. Ma; Long, Gui-lu; Deng, Jing-kang; Zhu, Ling-yan; Li, Ming; T, N. Ginter; J, Komicki; J, D. Cole; R, Aryaeinejad; Y, K. Dardenne; M, W. Drigert; J, O. Rasmussen; Ts, Yu Oganessian; M, A. Stoyer; S, Y. Chu; K, E. Gregorich; M, F. Mohar; S, G. Prussin; I, Y. Lee; N, R. Johnson; F, K. McGowan

    1997-08-01

    Level schemes for the neutron-rich 140,143Ba nuclei have been determined by study of prompt γ-rays in spontaneous fission of 252Cf. The level pattern and enhanced E1 transitions between π = + and π = - bands show reflection asymmetric shapes with simplex quantum number s = +1 in 140Ba and s = ±i in 143Ba, respectively. The octupole deformation stability with spin variation has been discussed.

  15. A bright neutron source driven by relativistic transparency of solids

    NASA Astrophysics Data System (ADS)

    Roth, M.; Jung, D.; Falk, K.; Guler, N.; Deppert, O.; Devlin, M.; Favalli, A.; Fernandez, J.; Gautier, D. C.; Geissel, M.; Haight, R.; Hamilton, C. E.; Hegelich, B. M.; Johnson, R. P.; Kleinschmidt, A.; Merrill, F.; Schaumann, G.; Schoenberg, K.; Schollmeier, M.; Shimada, T.; Taddeucci, T.; Tybo, J. L.; Wagner, F.; Wender, S. A.; Wilde, C. H.; Wurden, G. A.

    2016-03-01

    Neutrons are a unique tool to alter and diagnose material properties and excite nuclear reactions with a large field of applications. It has been stated over the last years, that there is a growing need for intense, pulsed neutron sources, either fast or moderated neutrons for the scientific community. Accelerator based spallation sources provide unprecedented neutron fluxes, but could be complemented by novel sources with higher peak brightness that are more compact. Lasers offer the prospect of generating a very compact neutron source of high peak brightness that could be linked to other facilities more easily. We present experimental results on the first short pulse laser driven neutron source powerful enough for applications in radiography. For the first time an acceleration mechanism (BOA) based on the concept of relativistic transparency has been used to generate neutrons. This mechanism not only provides much higher particle energies, but also accelerated the entire target volume, thereby circumventing the need for complicated target treatment and no longer limited to protons as an intense ion source. As a consequence we have demonstrated a new record in laser-neutron production, not only in numbers, but also in energy and directionality based on an intense deuteron beam. The beam contained, for the first time, neutrons with energies in excess of 100 MeV and showed pronounced directionality, which makes then extremely useful for a variety of applications. The results also address a larger community as it paves the way to use short pulse lasers as a neutron source. They can open up neutron research to a broad academic community including material science, biology, medicine and high energy density physics as laser systems become more easily available to universities and therefore can complement large scale facilities like reactors or particle accelerators. We believe that this has the potential to increase the user community for neutron research largely.

  16. A Broad Coverage Neutron Source For Security Inspections

    NASA Astrophysics Data System (ADS)

    Yang, Yang; Robert, Stubbers; Linchun, Wu; George, Miley

    2004-05-01

    To meet the increasing demanding requirements for security safety inspections, a line-type neutron source employing a cylindrical IEC (RC-IEC) is proposed for non-destructive "in situ" security inspections. The advantages of such a neutron source include line geometry, modularity, swithcability, variable source strength, low cost with minimum maintenance. Detailed description of a 1/3 scale cylindrical device is presented, which might demonstrate that a reasonably long RC-IEC produces a stable discharge with reasonably uniform neutron production along the cylindrical axis. Aiming at the neutron production efficiency at the order of 106 n/J, several methods to maximize neutron production efficiency are discussed. The results of a two-dimensional computer code(MCP) using a Monte Carlo numerical approach for the RC-IEC device are presented together with an analysis of neutron yield vs. different operation parameters.

  17. The European scene regarding spallation neutron sources

    SciTech Connect

    Bauer, G.S.

    1996-06-01

    In Europe, a short pulse spallation neutron source, ISIS, has been operating for over 10 years, working its way up to a beam power level of 200 kW. A continuous source, SINQ, designed for a beam power of up to 1 MW, is scheduled to start operating at the end of 1996, and a detailed feasibility study has been completed for a 410 kW short pulse source, AUSTRON. Each of these sources seems to have settled for a target concept which is at or near the limits of its feasibility: The ISIS depleted uranium plate targets, heavy water cooled and Zircaloy clad, have so far not shown satisfactory service time and operation is likely to continue with a Ta-plate target, which, in the past has been used successfully for the equivalent of one full-beam-year before it was taken out of service due to degrading thermal properties. SINQ will initially use a rod target, made of Zircaloy only, but plans exist to move on to clad lead rods as quickly as possible. Apart from the not yet explored effect of hydrogen and helium production, there are also concerns about the generation of 7-Be in the cooling water from the spallation of oxygen, which might result in undesirably high radioactivity in the cooling plant room. A Liquid metal target, also under investigation for SINQ, would not only reduce this problem to a level of about 10 %, but would also minimize the risk of radiolytic corrosion in the beam interaction zone. Base on similar arguments, AUSTRON has been designed for edge cooled targets, but thermal and stress analyses show, that this concept is not feasible at higher power levels.

  18. Fuel cycle for a fusion neutron source

    NASA Astrophysics Data System (ADS)

    Ananyev, S. S.; Spitsyn, A. V.; Kuteev, B. V.

    2015-12-01

    The concept of a tokamak-based stationary fusion neutron source (FNS) for scientific research (neutron diffraction, etc.), tests of structural materials for future fusion reactors, nuclear waste transmutation, fission reactor fuel production, and control of subcritical nuclear systems (fusion-fission hybrid reactor) is being developed in Russia. The fuel cycle system is one of the most important systems of FNS that provides circulation and reprocessing of the deuterium-tritium fuel mixture in all fusion reactor systems: the vacuum chamber, neutral injection system, cryogenic pumps, tritium purification system, separation system, storage system, and tritium-breeding blanket. The existing technologies need to be significantly upgraded since the engineering solutions adopted in the ITER project can be only partially used in the FNS (considering the capacity factor higher than 0.3, tritium flow up to 200 m3Pa/s, and temperature of reactor elements up to 650°C). The deuterium-tritium fuel cycle of the stationary FNS is considered. The TC-FNS computer code developed for estimating the tritium distribution in the systems of FNS is described. The code calculates tritium flows and inventory in tokamak systems (vacuum chamber, cryogenic pumps, neutral injection system, fuel mixture purification system, isotope separation system, tritium storage system) and takes into account tritium loss in the fuel cycle due to thermonuclear burnup and β decay. For the two facility versions considered, FNS-ST and DEMO-FNS, the amount of fuel mixture needed for uninterrupted operation of all fuel cycle systems is 0.9 and 1.4 kg, consequently, and the tritium consumption is 0.3 and 1.8 kg per year, including 35 and 55 g/yr, respectively, due to tritium decay.

  19. Fuel cycle for a fusion neutron source

    SciTech Connect

    Ananyev, S. S. Spitsyn, A. V. Kuteev, B. V.

    2015-12-15

    The concept of a tokamak-based stationary fusion neutron source (FNS) for scientific research (neutron diffraction, etc.), tests of structural materials for future fusion reactors, nuclear waste transmutation, fission reactor fuel production, and control of subcritical nuclear systems (fusion–fission hybrid reactor) is being developed in Russia. The fuel cycle system is one of the most important systems of FNS that provides circulation and reprocessing of the deuterium–tritium fuel mixture in all fusion reactor systems: the vacuum chamber, neutral injection system, cryogenic pumps, tritium purification system, separation system, storage system, and tritium-breeding blanket. The existing technologies need to be significantly upgraded since the engineering solutions adopted in the ITER project can be only partially used in the FNS (considering the capacity factor higher than 0.3, tritium flow up to 200 m{sup 3}Pa/s, and temperature of reactor elements up to 650°C). The deuterium–tritium fuel cycle of the stationary FNS is considered. The TC-FNS computer code developed for estimating the tritium distribution in the systems of FNS is described. The code calculates tritium flows and inventory in tokamak systems (vacuum chamber, cryogenic pumps, neutral injection system, fuel mixture purification system, isotope separation system, tritium storage system) and takes into account tritium loss in the fuel cycle due to thermonuclear burnup and β decay. For the two facility versions considered, FNS-ST and DEMO-FNS, the amount of fuel mixture needed for uninterrupted operation of all fuel cycle systems is 0.9 and 1.4 kg, consequently, and the tritium consumption is 0.3 and 1.8 kg per year, including 35 and 55 g/yr, respectively, due to tritium decay.

  20. H- radio frequency source development at the Spallation Neutron Source

    SciTech Connect

    Welton, Robert F; Pennisi, Terry R; Roseberry, Ron T; Stockli, Martin P

    2012-01-01

    The Spallation Neutron Source (SNS) now routinely operates nearly 1 MW of beam power on target with a highly persistent {approx}38 mA peak current in the linac and an availability of {approx}90%. H{sup -} beam pulses ({approx}1 ms, 60 Hz) are produced by a Cs-enhanced, multicusp ion source closely coupled with an electrostatic low energy beam transport (LEBT), which focuses the 65 kV beam into a radio frequency quadrupole accelerator. The source plasma is generated by RF excitation (2 MHz, {approx}60 kW) of a copper antenna that has been encased with a thickness of {approx}0.7 mm of porcelain enamel and immersed into the plasma chamber. The ion source and LEBT normally have a combined availability of {approx}99%. Recent increases in duty-factor and RF power have made antenna failures a leading cause of downtime. This report first identifies the physical mechanism of antenna failure from a statistical inspection of {approx}75 antennas which ran at the SNS, scanning electron microscopy studies of antenna surface, and cross sectional cuts and analysis of calorimetric heating measurements. Failure mitigation efforts are then described which include modifying the antenna geometry and our acceptance/installation criteria. Progress and status of the development of the SNS external antenna source, a long-term solution to the internal antenna problem, are then discussed. Currently, this source is capable of delivering comparable beam currents to the baseline source to the SNS and, an earlier version, has briefly demonstrated unanalyzed currents up to {approx}100 mA (1 ms, 60 Hz) on the test stand. In particular, this paper discusses plasma ignition (dc and RF plasma guns), antenna reliability, magnet overheating, and insufficient beam persistence.

  1. H- radio frequency source development at the Spallation Neutron Source.

    PubMed

    Welton, R F; Dudnikov, V G; Gawne, K R; Han, B X; Murray, S N; Pennisi, T R; Roseberry, R T; Santana, M; Stockli, M P; Turvey, M W

    2012-02-01

    The Spallation Neutron Source (SNS) now routinely operates nearly 1 MW of beam power on target with a highly persistent ∼38 mA peak current in the linac and an availability of ∼90%. H(-) beam pulses (∼1 ms, 60 Hz) are produced by a Cs-enhanced, multicusp ion source closely coupled with an electrostatic low energy beam transport (LEBT), which focuses the 65 kV beam into a radio frequency quadrupole accelerator. The source plasma is generated by RF excitation (2 MHz, ∼60 kW) of a copper antenna that has been encased with a thickness of ∼0.7 mm of porcelain enamel and immersed into the plasma chamber. The ion source and LEBT normally have a combined availability of ∼99%. Recent increases in duty-factor and RF power have made antenna failures a leading cause of downtime. This report first identifies the physical mechanism of antenna failure from a statistical inspection of ∼75 antennas which ran at the SNS, scanning electron microscopy studies of antenna surface, and cross sectional cuts and analysis of calorimetric heating measurements. Failure mitigation efforts are then described which include modifying the antenna geometry and our acceptance∕installation criteria. Progress and status of the development of the SNS external antenna source, a long-term solution to the internal antenna problem, are then discussed. Currently, this source is capable of delivering comparable beam currents to the baseline source to the SNS and, an earlier version, has briefly demonstrated unanalyzed currents up to ∼100 mA (1 ms, 60 Hz) on the test stand. In particular, this paper discusses plasma ignition (dc and RF plasma guns), antenna reliability, magnet overheating, and insufficient beam persistence.

  2. Development of a neutron measurement system in unified non-destructive assay for the PRIDE facility

    NASA Astrophysics Data System (ADS)

    Seo, Hee; Park, Se-Hwan; Won, Byung-Hee; Ahn, Seong-Kyu; Shin, Hee-Sung; Na, Sang-Ho; Song, Dae-Yong; Kim, Ho-Dong; Lee, Seung Kyu

    2013-12-01

    The Korea Atomic Energy Research Institute (KAERI) has made an effort to develop pyroprocessing technology to resolve an on-going problem in Korea, i.e., the management of spent nuclear fuels. To this end, a test-bed facility for pyroprocessing, called PRIDE (PyRoprocessing Integrated inactive DEmonstration facility), is being constructed at KAERI. The main objective of PRIDE is to evaluate the performance of the unit processes, remote operation, maintenance, and proliferation resistance. In addition, integrating all unit processes into a one-step process is also one of the main goals. PRIDE can also provide a good opportunity to test safeguards instrumentations for a pyroprocessing facility such as nuclear material accounting devices, surveillance systems, radiation monitoring systems, and process monitoring systems. In the present study, a non-destructive assay (NDA) system for the testing of nuclear material accountancy of PRIDE was designed by integrating three different NDA techniques, i.e., neutron, gamma-ray, and mass measurements. The developed neutron detection module consists of 56 3He tubes and 16 AMPTEK A111 signal processing circuits. The amplifiers were matched in terms of the gain and showed good uniformity after a gain-matching procedure (%RSD=0.37%). The axial and the radial efficiency distributions within the cavity were then measured using a 252Cf neutron source and were compared with the MCNPX calculation results. The measured efficiency distributions showed excellent agreement with the calculations, which confirmed the accuracy of the MCNPX model of the system.

  3. Facility for fast neutron irradiation tests of electronics at the ISIS spallation neutron source

    SciTech Connect

    Andreani, C.; Pietropaolo, A.; Salsano, A.; Gorini, G.; Tardocchi, M.; Paccagnella, A.; Gerardin, S.; Frost, C. D.; Ansell, S.; Platt, S. P.

    2008-03-17

    The VESUVIO beam line at the ISIS spallation neutron source was set up for neutron irradiation tests in the neutron energy range above 10 MeV. The neutron flux and energy spectrum were shown, in benchmark activation measurements, to provide a neutron spectrum similar to the ambient one at sea level, but with an enhancement in intensity of a factor of 10{sup 7}. Such conditions are suitable for accelerated testing of electronic components, as was demonstrated here by measurements of soft error rates in recent technology field programable gate arrays.

  4. Fissile mass estimation by pulsed neutron source interrogation

    NASA Astrophysics Data System (ADS)

    Israelashvili, I.; Dubi, C.; Ettedgui, H.; Ocherashvili, A.; Pedersen, B.; Beck, A.; Roesgen, E.; Crochmore, J. M.; Ridnik, T.; Yaar, I.

    2015-06-01

    Passive methods for detecting correlated neutrons from spontaneous fissions (e.g. multiplicity and SVM) are widely used for fissile mass estimations. These methods can be used for fissile materials that emit a significant amount of fission neutrons (like plutonium). Active interrogation, in which fissions are induced in the tested material by an external continuous source or by a pulsed neutron source, has the potential advantages of fast measurement, alongside independence of the spontaneous fissions of the tested fissile material, thus enabling uranium measurement. Until recently, using the multiplicity method, for uranium mass estimation, was possible only for active interrogation made with continues neutron source. Pulsed active neutron interrogation measurements were analyzed with techniques, e.g. differential die away analysis (DDA), which ignore or implicitly include the multiplicity effect (self-induced fission chains). Recently, both, the multiplicity and the SVM techniques, were theoretically extended for analyzing active fissile mass measurements, made by a pulsed neutron source. In this study the SVM technique for pulsed neutron source is experimentally examined, for the first time. The measurements were conducted at the PUNITA facility of the Joint Research Centre in Ispra, Italy. First promising results, of mass estimation by the SVM technique using a pulsed neutron source, are presented.

  5. Fundamental neutron physics at a 1 MW long pulse spallation neutron source

    SciTech Connect

    Greene, G.L.

    1995-12-31

    Modern neutron sources and modern neutron science share a common origin in mid twentieth century scientific investigations concerned with the study of the fundamental interactions between elementary particles. Since the time of that common origin, neutron science and the study of elementary particles have evolved into quite disparate disciplines. The neutron became recognized as a powerful tool for the study of condensed matter with modern neutron sources being primarily used (and primarily justified) as tools for condensed matter research. The study of elementary particles has, of course, led to the development of rather different tools and is now dominated by activities carried out at extremely high energies. Notwithstanding this trend, the study of fundamental interactions using neutrons has continued and remains a vigorous activity at many contemporary neutron sources. This research, like neutron scattering research, has benefited enormously by the development of modern high flux neutron facilities. Future sources, particularly high power spallation sources, offer exciting possibilities for the continuation of this program of research.

  6. Advancements in the development of a directional-position sensing fast neutron detector using acoustically tensioned metastable fluids

    NASA Astrophysics Data System (ADS)

    Archambault, Brian C.; Webster, Jeffrey A.; Grimes, Thomas F.; Fischer, Kevin F.; Hagen, Alex R.; Taleyakhan, Rusi P.

    2015-06-01

    Advancements in the development of a direction and position sensing fast neutron detector which utilizes the directional acoustic tensioned metastable fluid detector (D-ATMFD) are described. The resulting D-ATMFD sensor is capable of determining the direction of neutron radiation with a single compact detector versus use of arrays of detectors in conventional directional systems. Directional neutron detection and source positioning offer enhanced detection speeds in comparison to traditional proximity searching; including enabling determination of the neutron source shape, size, and strength in near real time. This paper discusses advancements that provide the accuracy and precision of ascertaining directionality and source localization information utilizing enhanced signal processing-cum-signal analysis, refined computational algorithms, and on-demand enlargement capability of the detector sensitive volume. These advancements were accomplished utilizing experimentation and theoretical modeling. Benchmarking and qualifications studies were successfully conducted with random and fission based special nuclear material (SNM) neutron sources (239Pu-Be and 252Cf). These results of assessments have indicated that the D-ATMFD compares well in technical performance with banks of competing directional fast neutron detector technologies under development worldwide, but it does so with a single detector unit, an unlimited field of view, and at a significant reduction in both cost and size while remaining completely blind to common background (e.g., beta-gamma) radiation. Rapid and direct SNM neutron source imaging with two D-ATMFD sensors was experimentally demonstrated, and furthermore, validated via multidimensional nuclear particle transport simulations utilizing MCNP-PoliMi. Characterization of a scaled D-ATMFD based radiation portal monitor (RPM) as a cost-effective and efficient 3He sensor replacement was performed utilizing MCNP-PoliMi simulations, the results of which

  7. Characterization of short-pulse laser driven neutron source

    NASA Astrophysics Data System (ADS)

    Falk, Katerina; Jung, Daniel; Guler, Nevzat; Deppert, Oliver; Devlin, Matthew; Fernandez, J. C.; Gautier, D. C.; Geissel, M.; Haight, R. C.; Hegelich, B. M.; Henzlova, Daniela; Ianakiev, K. D.; Iliev, Metodi; Johnson, R. P.; Merrill, F. E.; Schaumann, G.; Schoenberg, K.; Shimada, T.; Taddeucci, T. N.; Tybo, J. L.; Wagner, F.; Wender, S. A.; Wurden, G. A.; Favalli, Andrea; Roth, Markus

    2014-10-01

    We present a full spectral characterization of a novel laser driven neutron source, which employed the Break Out Afterburner ion acceleration mechanism. Neutrons were produced by nuclear reactions of the ions deposited on Be or Cu converters. We observed neutrons at energies up to 150 MeV. The neutron spectra were measured by five neutron time-of-flight detectors at various positions and distances from the source. The nTOF detectors observed that emission of neutrons is a superposition of an isotropic component peaking at 3.5--5 MeV resulting from nuclear reactions in the converter and a directional component at 25--70 MeV, which was a product of break-up reaction of the forward moving deuterons. Energy shifts due to geometrical effects in BOA were also observed.

  8. Microtron MT 25 as a source of neutrons

    SciTech Connect

    Kralik, M.; Solc, J.; Chvatil, D.; Krist, P.; Turek, K.; Granja, C.

    2012-08-15

    The objective was to describe Microtron MT25 as a source of neutrons generated by bremsstrahlung induced photonuclear reactions in U and Pb targets. Bremsstrahlung photons were produced by electrons accelerated at energy 21.6 MeV. Spectral fluence of the generated neutrons was calculated with MCNPX code and then experimentally determined at two positions by means of a Bonner spheres spectrometer in which the detector of thermal neutrons was replaced by activation Mn tablets or track detectors CR-39 with a {sup 10}B radiator. The measured neutron spectral fluence and the calculated anisotropy served for the estimation of neutron yield from the targets and for the determination of ambient dose equivalent rate at the place of measurement. Microtron MT25 is intended as one of the sources for testing neutron sensitive devices which will be sent into the space.

  9. CARIBU: a new facility for the study of neutron-rich isotopes

    NASA Astrophysics Data System (ADS)

    Savard, G.; Pardo, R. C.; Baker, S.; Davids, C. N.; Levand, A.; Peterson, D.; Phillips, D. G.; Sun, T.; Vondrasek, R.; Zabransky, B. J.; Zinkann, G. P.

    2011-07-01

    The Californium Rare Ion Breeder Upgrade (CARIBU) to the ATLAS superconducting linac facility is currently being commissioned. It provides low-energy and re-accelerated beams of neutron-rich isotopes obtained from 252Cf fission. The fission products from a 252Cf source are stopped in a large high-intensity gas catcher, thermalized and extracted through an RFQ cooler, accelerated to 50 kV and mass separated in a high-resolution separator before being sent to either an ECR charge breeder for post-acceleration through the ATLAS linac or to a low-energy experimental area. This approach gives access to beams of very neutron-rich isotopes, many of which have not been available at low or Coulomb barrier energies previously. These beams provide unique opportunities for measurements along the r-process path. To take advantage of these unique possibility, the reaccelerated beams from CARIBU will be made available at the experimental stations of ATLAS to serve equipment such as Gammasphere, HELIOS and the reaction spectrometers. In addition, the Canadian Penning Trap (CPT) mass spectrometer has been moved to the CARIBU low-energy experimental area and a new injection line has been built. The new injection line consists of a RFQ buncher sitting on a 50 kV high-voltage platform that will accumulate the mass separated 50 kV radioactive beams, cool and extract them as a pulsed beam of 3 keV. This beam can be sent either to a tape station for diagnostics and tuning, or a cryogenic linear trap for preparation before transfer to the high-precision Penning trap where the mass measurements will take place. Initial CARIBU commissioning is proceeding with a 2 mCi source that will be replaced by a 100 mCi source as the commissioning proceeds. Final operation will use a 1 Ci source and attain yield in excess of 107 ions/sec for the most intense beams at low energy, an order of magnitude less for reaccelerated beams.

  10. A Dipole Assisted IEC Neutron Source

    SciTech Connect

    Prajakti Joshi Shrestha

    2005-11-28

    A potential opportunity to enhance Inertial Electrostatic Confinement (IEC) fusion exists by augmenting it with a magnetic dipole configuration. The theory is that the dipole fields will enhance the plasma density in the center region of the IEC and the combined IEC and dipole confinement properties will reduce plasma losses. To demonstrate that a hybrid Dipole-IEC configuration can provide an improved neutron source vs. a stand alone IEC, a first model Dipole-IEC experiment was benchmarked against a reference IEC. A triple Langmuir probe was used to find the electron temperature and density. It was found that the magnetic field increases the electron density by a factor of 16, the electron temperature decreases in the presence of a magnetic field, the discharge voltage decreases in the presence of a magnetic field, the potential of the dipole strongly influences the densities obtained in the center. The experimental set-up and plasma diagnostics are discussed in detail, as well as the results, and the developmental issues.

  11. Advanced Neutron Source (ANS) Project Progress report, FY 1991

    SciTech Connect

    Campbell, J.H. ); Selby, D.L.; Harrington, R.M. ); Thompson, P.B. . Engineering Division)

    1992-01-01

    This report discusses the following about the Advanced Neutron Source: Project Management; Research and Development; Fuel Development; Corrosion Loop Tests and Analyses; Thermal-Hydraulic Loop Tests; Reactor Control and Shutdown Concepts; Critical and Subcritical Experiments; Material Data, Structural Tests, and Analysis; Cold-Source Development; Beam Tube, Guide, and Instrument Development; Hot-Source Development; Neutron Transport and Shielding; I C Research and Development; Design; and Safety.

  12. Advanced Neutron Source (ANS) Project Progress report, FY 1991

    SciTech Connect

    Campbell, J.H.; Selby, D.L.; Harrington, R.M.; Thompson, P.B.

    1992-01-01

    This report discusses the following about the Advanced Neutron Source: Project Management; Research and Development; Fuel Development; Corrosion Loop Tests and Analyses; Thermal-Hydraulic Loop Tests; Reactor Control and Shutdown Concepts; Critical and Subcritical Experiments; Material Data, Structural Tests, and Analysis; Cold-Source Development; Beam Tube, Guide, and Instrument Development; Hot-Source Development; Neutron Transport and Shielding; I & C Research and Development; Design; and Safety.

  13. Real-Time Active Cosmic Neutron Background Reduction Methods

    SciTech Connect

    Mukhopadhyay, Sanjoy; Maurer, Richard; Wolff, Ronald; Mitchell, Stephen; Guss, Paul

    2013-09-01

    from man-made sources like 252Cf or Am-Be was removed.

  14. Real-time active cosmic neutron background reduction methods

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Sanjoy; Maurer, Richard; Wolff, Ronald; Mitchell, Stephen; Guss, Paul

    2013-09-01

    from man-made sources like 252Cf or Am-Be was removed.

  15. Inertial electrostatic confinement I(IEC) neutron sources

    SciTech Connect

    Nebel, R.A.; Barnes, D.C.; Caramana, E.J.; Janssen, R.D.; Nystrom, W.D.; Tiouririne, T.N.; Trent, B.C.; Miley, G.H.; Javedani, J.

    1995-12-01

    Inertial Electrostatic Confinement (IEC) is one of the earliest plasma confinement concepts, having first been suggested by P.T. Farnsworth in the 1950s. The concept involves a simple apparatus of concentric spherical electrostatic grids or a combination of grids and magnetic fields. An electrostatic structure is formed from the confluence of electron or ion beams. Gridded IEC systems have demonstrated neutron yields as high as 2*10 [10]. neutrons/sec in steady state. These systems have considerable potential as small, inexpensive, portable neutron sources for assaying applications. Neutron tomography is also a potential application. This paper discusses the IEC concept and how it can be adapted to a steady-state assaying source and an intense pulsed neutron source. Theoretical modeling and experimental results are presented.

  16. Characterization of the radiation background at the Spallation Neutron Source

    NASA Astrophysics Data System (ADS)

    DiJulio, Douglas D.; Cherkashyna, Nataliia; Scherzinger, Julius; Khaplanov, Anton; Pfeiffer, Dorothea; Cooper-Jensen, Carsten P.; Fissum, Kevin G.; Kanaki, Kalliopi; Kirstein, Oliver; Ehlers, Georg; Gallmeier, Franz X.; Hornbach, Donald E.; Iverson, Erik B.; Newby, Robert J.; Hall-Wilton, Richard J.; Bentley, Phillip M.

    2016-09-01

    We present a survey of the radiation background at the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory, TN, USA during routine daily operation. A broad range of detectors was used to characterize primarily the neutron and photon fields throughout the facility. These include a WENDI-2 extended range dosimeter, a thermoscientific NRD, an Arktis 4He detector, and a standard NaI photon detector. The information gathered from the detectors was used to map out the neutron dose rates throughout the facility and also the neutron dose rate and flux profiles of several different beamlines. The survey provides detailed information useful for developing future shielding concepts at spallation neutron sources, such as the European Spallation Source (ESS), currently under construction in Lund, Sweden.

  17. Recent advances in laser-driven neutron sources

    NASA Astrophysics Data System (ADS)

    Alejo, A.; Ahmed, H.; Green, A.; Mirfayzi, S. R.; Borghesi, M.; Kar, S.

    2016-11-01

    Due to the limited number and high cost of large-scale neutron facilities, there has been a growing interest in compact accelerator-driven sources. In this context, several potential schemes of laser-driven neutron sources are being intensively studied employing laser-accelerated electron and ion beams. In addition to the potential of delivering neutron beams with high brilliance, directionality and ultra-short burst duration, a laser-driven neutron source would offer further advantages in terms of cost-effectiveness, compactness and radiation confinement by closed-coupled experiments. Some of the recent advances in this field are discussed, showing improvements in the directionality and flux of the laser-driven neutron beams.

  18. Tagging fast neutrons from an (241)Am/(9)Be source.

    PubMed

    Scherzinger, J; Annand, J R M; Davatz, G; Fissum, K G; Gendotti, U; Hall-Wilton, R; Håkansson, E; Jebali, R; Kanaki, K; Lundin, M; Nilsson, B; Rosborge, A; Svensson, H

    2015-04-01

    Shielding, coincidence, and time-of-flight measurement techniques are employed to tag fast neutrons emitted from an (241)Am/(9)Be source resulting in a continuous polychromatic energy-tagged beam of neutrons with energies up to 7MeV. The measured energy structure of the beam agrees qualitatively with both previous measurements and theoretical calculations. PMID:25644080

  19. Tagging fast neutrons from an (241)Am/(9)Be source.

    PubMed

    Scherzinger, J; Annand, J R M; Davatz, G; Fissum, K G; Gendotti, U; Hall-Wilton, R; Håkansson, E; Jebali, R; Kanaki, K; Lundin, M; Nilsson, B; Rosborge, A; Svensson, H

    2015-04-01

    Shielding, coincidence, and time-of-flight measurement techniques are employed to tag fast neutrons emitted from an (241)Am/(9)Be source resulting in a continuous polychromatic energy-tagged beam of neutrons with energies up to 7MeV. The measured energy structure of the beam agrees qualitatively with both previous measurements and theoretical calculations.

  20. Summary of alpha-neutron sources in GADRAS.

    SciTech Connect

    Mitchell, Dean James; Thoreson, Gregory G.; Harding, Lee T.

    2012-05-01

    A common source of neutrons for calibration and testing is alpha-neutron material, named for the alpha-neutron nuclear reaction that occurs within. This material contains a long-lived alpha-emitter and a lighter target element. When the alpha particle from the emitter is absorbed by the target, neutrons and gamma rays are released. Gamma Detector Response and Analysis Software (GADRAS) includes built-in alpha-neutron source definitions for AcC, AmB, AmBe, AmF, AmLi, CmC, and PuC. In addition, GADRAS users may create their own alpha-neutron sources by placing valid alpha-emitters and target elements in materials within their one-dimensional models (1DModel). GADRAS has the ability to use pre-built alpha-neutron sources for plotting or as trace-sources in 1D models. In addition, if any material (existing or user-defined) specified in a 1D model contains both an alpha emitter in conjunction with a target nuclide, or there is an interface between such materials, then the appropriate neutron-emission rate from the alpha-neutron reaction will be computed. The gamma-emissions from these sources are also computed, but are limited to a subset of nine target nuclides. If a user has experimental data to contribute to the alpha-neutron gamma emission database, it may be added directly or submitted to the GADRAS developers for inclusion. The gadras.exe.config file will be replaced when GADRAS updates are installed, so sending the information to the GADRAS developers is the preferred method for updating the database. This is also preferable because it enables other users to benefit from your efforts.

  1. Fundamental neutron physics beamline at the spallation neutron source at ORNL

    DOE PAGES

    Fomin, N.; Greene, G. L.; Allen, R. R.; Cianciolo, V.; Crawford, C.; Tito, T. M.; Huffman, P. R.; Iverson, E. B.; Mahurin, R.; Snow, W. M.

    2014-11-04

    In this paper, we describe the Fundamental Neutron Physics Beamline (FnPB) facility located at the Spallation Neutron Source at Oak Ridge National Laboratory. The FnPB was designed for the conduct of experiments that investigate scientific issues in nuclear physics, particle physics, astrophysics and cosmology using a pulsed slow neutron beam. Finally, we present a detailed description of the design philosophy, beamline components, and measured fluxes of the polychromatic and monochromatic beams.

  2. The Macromolecular Neutron Diffractometer MaNDi at the Spallation Neutron Source

    SciTech Connect

    Coates, Leighton; Cuneo, Matthew J.; Frost, Matthew J.; He, Junhong; Weiss, Kevin L.; McFeeters, Hana; Tomanicek, Stephen J.; Vandavasi, Venu Gopal; Langan, Paul; Iverson, Erik B.

    2015-07-18

    The Macromolecular Neutron Diffractometer (MaNDi) is located on beamline 11B of the Spallation Neutron Source at Oak Ridge National Laboratory. Moreover, the instrument is a neutron time-of-flight wavelength-resolved Laue diffractometer optimized to collect diffraction data from single crystals. Finally, the instrument has been designed to provide flexibility in several instrumental parameters, such as beam divergence and wavelength bandwidth, to allow data collection from a range of macromolecular systems.

  3. The Macromolecular Neutron Diffractometer MaNDi at the Spallation Neutron Source

    DOE PAGES

    Coates, Leighton; Cuneo, Matthew J.; Frost, Matthew J.; He, Junhong; Weiss, Kevin L.; McFeeters, Hana; Tomanicek, Stephen J.; Vandavasi, Venu Gopal; Langan, Paul; Iverson, Erik B.

    2015-07-18

    The Macromolecular Neutron Diffractometer (MaNDi) is located on beamline 11B of the Spallation Neutron Source at Oak Ridge National Laboratory. Moreover, the instrument is a neutron time-of-flight wavelength-resolved Laue diffractometer optimized to collect diffraction data from single crystals. Finally, the instrument has been designed to provide flexibility in several instrumental parameters, such as beam divergence and wavelength bandwidth, to allow data collection from a range of macromolecular systems.

  4. Study of neutron focusing at the Texas Cold Neutron Source. Final report

    SciTech Connect

    Wehring, B.W.; Uenlue, K.

    1996-12-19

    The goals of this three-year study were: (1) design a neutron focusing system for use with the Texas Cold Neutron Source (TCNS) to produce an intense beam of cold neutrons appropriate for prompt gamma activation analysis (PGAA); (2) orchestrate the construction of the focusing system, integrate it into the TCNS neutron guide complex, and measure its performance; and (3) design, setup, and test a cold-neutron PGAA system which utilizes the guided focused cold neutron beam. During the first year of the DOE grant, a new procedure was developed and used to design a focusing converging guide consisting of truncated rectangular cone sections. Detailed calculations were performed using a 3-D Monte Carlo code which the authors wrote to trace neutrons through the curved guide of the TCNS into the proposed converging guide. Using realistic reflectivities for Ni-Ti supermirrors, the authors obtained gains of 3 to 5 for 4 different converging guide geometries. During the second year of the DOE grant, the subject of this final report, Ovonic Synthetic Materials Company was contracted to build a converging neutron guide focusing system to the specifications. Considerable time and effort were spent working with Ovonics on selecting the materials for the converging neutron guide system. The major portion of the research on the design of a cold-neutron PGAA system was also completed during the second year. At the beginning of the third year of the grant, a converging neutron guide focusing system had been ordered, and a cold-neutron PGAA system had been designed. Since DOE did not fund the third year, there was no money to purchase the required equipment for the cold-neutron PGAA system and no money to perform tests of either the converging neutron guide or the cold-neutron PGAA system. The research already accomplished would have little value without testing the systems which had been designed. Thus the project was continued at a pace that could be sustained with internal funding.

  5. Studies of D-Li neutron source: An overview

    NASA Astrophysics Data System (ADS)

    Gomes, I.; Smith, D. L.

    1994-06-01

    The construction of a neutron source facility able to reproduce the radiation environment predicted for a fusion reactor can be considered a very important milestone for the fusion program. Such a neutron source should allow materials testing over a wide range of neutron flux and neutron fluence. To date, none of the existing facilities reproduce the neutron flux with the energy spectrum of a fusion reactor. As a result, the major part of the required material database is obtained by extrapolations which may not be as reliable as needed to predict the real performance of those materials under fusion reactor conditions. As an example, the effect of the gas production, transmutation, atomic displacement, and other nuclear responses on the ductility and swelling and perhaps other properties as well must be analyzed in samples which have undergone reactor conditions environment. This study is focused on the neutronics analysis of a D-Li neutron source. Neutron induced nuclear responses and neutron transport are calculated with the aim at defining the expected performance of a D-Li neutron source. The first section describes the differences in the magnitude of the neutron flux when material is present or not inside the test cell. The second section deals with nuclear responses such as DPA, helium production, and nuclear heating. In the third section, calculations of the available volume above a threshold DPA value are presented. Section four presents results for the gamma-ray flux distribution. A brief discussion about tritium generation in the lithium jet is given in section flive, and the conclusions are summarized in section six.

  6. A potential alternative/complement to the traditional thermal neutron based counting in Nuclear Safeguards and Security

    NASA Astrophysics Data System (ADS)

    Chernikova, Dina; Naeem, Syed F.; Axell, Kåre; Trnjanin, Nermin; Nordlund, Anders

    2016-02-01

    A new concept for thermal neutron based correlation and multiplicity measurements is proposed in this paper. The main idea of the concept consists of using 2.223 MeV gammas (or 1.201 MeV, DE) originating in the 1 H (n , γ) 2 D-reaction instead of using traditional thermal neutron counting. Results of investigations presented in this paper indicate that gammas from thermal neutron capture reactions preserve the information about the correlation characteristics of thermal (fast) neutrons in the same time scale. Therefore, instead of thermal neutron detectors (or as a complement) one may use traditional and inexpensive gamma detectors, such as NaI, BGO, CdZnTe or any other gamma detector. In this work we used D8×8 cm2 NaI scintillator to test the concept. Thus, the new approach helps to address the problem of replacement of 3He-counters and problems related to the specific measurements of spent nuclear fuel directly in the spent fuel pool. It has a particular importance for Nuclear Safeguards and Security. Overall, this work represents the proof of concept study and reports on the experimental and numerical evidence that thermal neutron capture gammas may be used in the context of correlation and multiplicity measurements. Investigations were performed using a 252Cf-correlated neutron source and an 241Am-Be-random neutron source. The related idea of the Gamma Differential Die-Away approach is investigated numerically in this paper as well, and will be tested experimentally in future work.

  7. Advanced Neutron Source radiological design criteria

    SciTech Connect

    Westbrook, J.L.

    1995-08-01

    The operation of the proposed Advanced Neutron Source (ANS) facility will present a variety of radiological protection problems. Because it is desired to design and operate the ANS according to the applicable licensing standards of the Nuclear Regulatory Commission (NRC), it must be demonstrated that the ANS radiological design basis is consistent not only with state and Department of Energy (DOE) and other usual federal regulations, but also, so far as is practicable, with NRC regulations and with recommendations of such organizations as the Institute of Nuclear Power Operations (INPO) and the Electric Power Research Institute (EPRI). Also, the ANS radiological design basis is in general to be consistent with the recommendations of authoritative professional and scientific organizations, specifically the National Council on Radiation Protection and Measurements (NCRP) and the International Commission on Radiological Protection (ICRP). As regards radiological protection, the principal goals of DOE regulations and guidance are to keep occupational doses ALARA [as low as (is) reasonably achievable], given the current state of technology, costs, and operations requirements; to control and monitor contained and released radioactivity during normal operation to keep public doses and releases to the environment ALARA; and to limit doses to workers and the public during accident conditions. Meeting these general design objectives requires that principles of dose reduction and of radioactivity control by employed in the design, operation, modification, and decommissioning of the ANS. The purpose of this document is to provide basic radiological criteria for incorporating these principles into the design of the ANS. Operations, modification, and decommissioning will be covered only as they are affected by design.

  8. Compact, energy EFFICIENT neutron source: enabling technology for various applications

    SciTech Connect

    Hershcovitch, A.; Roser, T.

    2009-12-01

    A novel neutron source comprising of a deuterium beam (energy of about 100 KeV) injected into a tube filled with tritium gas and/or tritium plasma that generates D-T fusion reactions, whose products are 14.06 MeV neutrons and 3.52 MeV alpha particles, is described. At the opposite end of the tube, the energy of deuterium ions that did not interact is recovered. Beryllium walls of proper thickness can be utilized to absorb 14 MeV neutrons and release 2-3 low energy neutrons. Each ion source and tube forms a module. Larger systems can be formed from multiple units. Unlike currently proposed methods, where accelerator-based neutron sources are very expensive, large, and require large amounts of power for operation, this neutron source is compact, inexpensive, easy to test and to scale up. Among possible applications for this neutron source concept are sub-critical nuclear breeder reactors and transmutation of radioactive waste.

  9. A clean, bright, and versatile source of neutron decay products

    NASA Astrophysics Data System (ADS)

    Dubbers, D.; Abele, H.; Baeßler, S.; Märkisch, B.; Schumann, M.; Soldner, T.; Zimmer, O.

    2008-11-01

    We present a case study on a new type of beam station for the measurement of angular correlations in the β-decay of free neutrons. This beam station, called proton and electron radiation channel (PERC), is a cold-neutron guide that delivers at its open end, instead of neutrons, a beam of electrons and protons from neutron decays that take place far inside the guide. These charged neutron-decay products are magnetically guided to the end of the neutron guide, where they are separated from the cold-neutron beam. In this way, a general-purpose source of neutron decay products is obtained which can be operated as a user facility for a variety of different experiments in neutron decay correlation spectroscopy that may be installed at this beam station. The angular distribution of the emitted charged particles depends on the magnetic field configuration and can be chosen freely, according to the need of the experiment being carried out. A gain in phase space density of several orders of magnitude can be achieved with PERC, as compared to existing neutron decay spectrometers. Detailed calculations show that the spectra and angular distributions of the emerging electrons and protons will be distortion- and background-free on the level of 10 -4, more than 10 times better than that achieved today.

  10. Slower, colder, longer : prospects for a very cold neutron source.

    SciTech Connect

    Micklich, B. J.; Carpenter, J. M.; Intense Pulsed Neutron Source

    2007-01-01

    The motivation for our study is to establish the prospects for a neutron source providing intense pulsed beams with spectra as cold as is realistic. The scientific motivation is to serve applications in nanoscience, biology and technology.

  11. Effect of irradiation of wheat grains with fast neutrons on the grain yield and other characteristics of the plants.

    PubMed

    Hanafy, Magda S; Mohamed, Hanan A

    2014-04-01

    The effects of fast neutrons from a (252)Cf source in the fluence range 10(5)-10(8)n/cm(2) on the Egyptian wheat cultivar (Sakha 92) were studied. The experiment was conducted for three successive seasons (2008/2009, 2009/2010, and 2010/2011) to study the effect of the irradiation on the plant growth, grain yield, and physiological changes of three generations of plants produced by irradiated moisturized grains. A low fast-neutron fluence 2 × 10(6)n/cm(2) increased the yield throughout the three mutagenic generations considerably. It also increased concentrations of the total chlorophyll, sugars, and crude protein. These changes improve the quantity and quality of the grain. Also, a study of the effect of salinity of the irrigation water on the characteristics of the third-generation grains produced by neutron-irradiated grains was performed. With increasing concentration of sodium chloride in the irrigation water in the range 0.5-1.5%, concentrations of osmoprotectants, namely, reducing sugars and proline amino acids, increased. The concentration of Na(+) in the grains increased in parallel with the salinity of the irrigation water regardless of irradiation, while the concentrations of Ca(2+) and K(+) decreased. PMID:24509363

  12. NSDann2BS, a neutron spectrum unfolding code based on neural networks technology and two bonner spheres

    NASA Astrophysics Data System (ADS)

    Ortiz-Rodríguez, J. M.; Reyes Alfaro, A.; Reyes Haro, A.; Solís Sánches, L. O.; Miranda, R. Castañeda; Cervantes Viramontes, J. M.; Vega-Carrillo, H. R.

    2013-07-01

    In this work a neutron spectrum unfolding code, based on artificial intelligence technology is presented. The code called "Neutron Spectrometry and Dosimetry with Artificial Neural Networks and two Bonner spheres", (NSDann2BS), was designed in a graphical user interface under the LabVIEW programming environment. The main features of this code are to use an embedded artificial neural network architecture optimized with the "Robust design of artificial neural networks methodology" and to use two Bonner spheres as the only piece of information. In order to build the code here presented, once the net topology was optimized and properly trained, knowledge stored at synaptic weights was extracted and using a graphical framework build on the LabVIEW programming environment, the NSDann2BS code was designed. This code is friendly, intuitive and easy to use for the end user. The code is freely available upon request to authors. To demonstrate the use of the neural net embedded in the NSDann2BS code, the rate counts of 252Cf, 241AmBe and 239PuBe neutron sources measured with a Bonner spheres system.

  13. NSDann2BS, a neutron spectrum unfolding code based on neural networks technology and two bonner spheres

    SciTech Connect

    Ortiz-Rodriguez, J. M.; Reyes Alfaro, A.; Reyes Haro, A.; Solis Sanches, L. O.; Miranda, R. Castaneda; Cervantes Viramontes, J. M.; Vega-Carrillo, H. R.

    2013-07-03

    In this work a neutron spectrum unfolding code, based on artificial intelligence technology is presented. The code called ''Neutron Spectrometry and Dosimetry with Artificial Neural Networks and two Bonner spheres'', (NSDann2BS), was designed in a graphical user interface under the LabVIEW programming environment. The main features of this code are to use an embedded artificial neural network architecture optimized with the ''Robust design of artificial neural networks methodology'' and to use two Bonner spheres as the only piece of information. In order to build the code here presented, once the net topology was optimized and properly trained, knowledge stored at synaptic weights was extracted and using a graphical framework build on the LabVIEW programming environment, the NSDann2BS code was designed. This code is friendly, intuitive and easy to use for the end user. The code is freely available upon request to authors. To demonstrate the use of the neural net embedded in the NSDann2BS code, the rate counts of {sup 252}Cf, {sup 241}AmBe and {sup 239}PuBe neutron sources measured with a Bonner spheres system.

  14. Effect of irradiation of wheat grains with fast neutrons on the grain yield and other characteristics of the plants.

    PubMed

    Hanafy, Magda S; Mohamed, Hanan A

    2014-04-01

    The effects of fast neutrons from a (252)Cf source in the fluence range 10(5)-10(8)n/cm(2) on the Egyptian wheat cultivar (Sakha 92) were studied. The experiment was conducted for three successive seasons (2008/2009, 2009/2010, and 2010/2011) to study the effect of the irradiation on the plant growth, grain yield, and physiological changes of three generations of plants produced by irradiated moisturized grains. A low fast-neutron fluence 2 × 10(6)n/cm(2) increased the yield throughout the three mutagenic generations considerably. It also increased concentrations of the total chlorophyll, sugars, and crude protein. These changes improve the quantity and quality of the grain. Also, a study of the effect of salinity of the irrigation water on the characteristics of the third-generation grains produced by neutron-irradiated grains was performed. With increasing concentration of sodium chloride in the irrigation water in the range 0.5-1.5%, concentrations of osmoprotectants, namely, reducing sugars and proline amino acids, increased. The concentration of Na(+) in the grains increased in parallel with the salinity of the irrigation water regardless of irradiation, while the concentrations of Ca(2+) and K(+) decreased.

  15. An ultra-cold neutron source at the MLNSC

    SciTech Connect

    Bowles, T.J.; Brun, T.; Hill, R.; Morris, C.; Seestrom, S.J.; Crow, L.; Serebrov, A.

    1998-11-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The authors have carried out the research and development of an Ultra-Cold Neutron (UCN) source at the Manuel Lujan Neutron Scattering Center (MLNSC). A first generation source was constructed to test the feasibility of a rotor source. The source performed well with an UCN production rate reasonably consistent with that expected. This source can now provide the basis for further development work directed at using UCN in fundamental physics research as well as possible applications in materials science.

  16. Outline of a proposal for a new neutron source: The pulsed neutron research facility

    SciTech Connect

    Brown, B.S.; Carpenter, J.M.; Kustom, R.L.

    1992-04-01

    Accelerator-based, pulsed spallation neutron sources have been performing neutron scattering research for about fifteen years. During this time beam intensities have increased by a factor of 100 and more than 50 spectrometers are now operating on four major sources worldwide. The pulsed sources have proven to be highly effective and complementary to reactor-based sources in that there are important scientific areas for which each type of source has unique capabilities. We describe a proposal for a new pulsed neutron facility based on a Fixed Field Alternating Gradient synchrotron. The specifications for this new machine, which are now only being formulated, are for an accelerator that will produce (100 {divided by} 200) {mu}A of time-averaged proton current at (500 {divided by} 1000) MeV, in short pulses at 30 Hz. Appropriate target and moderator systems and an array of scattering instruments will be provided to make the facility a full-blown research installation. The neutron source, named the Pulsed Neutron Research Facility (PNRF), will be as powerful as any pulsed source now operating in the world and will also act as a test bed for the Fixed Field Alternating Gradient Synchrotron concept as a basis for more powerful sources in the future. The peak thermal neutron flux in PNRF will be about 5{center dot}10{sup 15}n/cm{sup 2}{center dot}s.

  17. Outline of a proposal for a new neutron source: The pulsed neutron research facility

    SciTech Connect

    Brown, B.S.; Carpenter, J.M.; Kustom, R.L.

    1992-04-01

    Accelerator-based, pulsed spallation neutron sources have been performing neutron scattering research for about fifteen years. During this time beam intensities have increased by a factor of 100 and more than 50 spectrometers are now operating on four major sources worldwide. The pulsed sources have proven to be highly effective and complementary to reactor-based sources in that there are important scientific areas for which each type of source has unique capabilities. We describe a proposal for a new pulsed neutron facility based on a Fixed Field Alternating Gradient synchrotron. The specifications for this new machine, which are now only being formulated, are for an accelerator that will produce (100 {divided_by} 200) {mu}A of time-averaged proton current at (500 {divided_by} 1000) MeV, in short pulses at 30 Hz. Appropriate target and moderator systems and an array of scattering instruments will be provided to make the facility a full-blown research installation. The neutron source, named the Pulsed Neutron Research Facility (PNRF), will be as powerful as any pulsed source now operating in the world and will also act as a test bed for the Fixed Field Alternating Gradient Synchrotron concept as a basis for more powerful sources in the future. The peak thermal neutron flux in PNRF will be about 5{center_dot}10{sup 15}n/cm{sup 2}{center_dot}s.

  18. Prospect for application of compact accelerator-based neutron source to neutron engineering diffraction

    NASA Astrophysics Data System (ADS)

    Ikeda, Yoshimasa; Taketani, Atsushi; Takamura, Masato; Sunaga, Hideyuki; Kumagai, Masayoshi; Oba, Yojiro; Otake, Yoshie; Suzuki, Hiroshi

    2016-10-01

    A compact accelerator-based neutron source has been lately discussed on engineering applications such as transmission imaging and small angle scattering as well as reflectometry. However, nobody considers using it for neutron diffraction experiment because of its low neutron flux. In this study, therefore, the neutron diffraction experiments are carried out using Riken Accelerator-driven Compact Neutron Source (RANS), to clarify the capability of the compact neutron source for neutron engineering diffraction. The diffraction pattern from a ferritic steel was successfully measured by suitable arrangement of the optical system to reduce the background noise, and it was confirmed that the recognizable diffraction pattern can be measured by a large sampling volume with 10 mm in cubic for an acceptable measurement time, i.e. 10 min. The minimum resolution of the 110 reflection for RANS is approximately 2.5% at 8 μs of the proton pulse width, which is insufficient to perform the strain measurement by neutron diffraction. The moderation time width at the wavelength corresponding to the 110 reflection is estimated to be approximately 30 μs, which is the most dominant factor to determine the resolution. Therefore, refinements of the moderator system to decrease the moderation time by decreasing a thickness of the moderator or by applying the decoupler system or application of the angular dispersive neutron diffraction technique are important to improve the resolution of the diffraction experiment using the compact neutron source. In contrast, the texture evolution due to plastic deformation was successfully observed by measuring a change in the diffraction peak intensity by RANS. Furthermore, the volume fraction of the austenitic phase in the dual phase mock specimen was also successfully evaluated by fitting the diffraction pattern using a Rietveld code. Consequently, RANS has been proved to be capable for neutron engineering diffraction aiming for the easy access

  19. Data acquisition system for the neutron scattering instruments at the intense pulsed neutron source

    SciTech Connect

    Crawford, R.K.; Daly, R.T.; Haumann, J.R.; Hitterman, R.L.; Morgan, C.B.; Ostrowski, G.E.; Worlton, T.G.

    1981-01-01

    The Intense Pulsed Neutron Source (IPNS) at Argonne National Laboratory is a major new user-oriented facility which is now coming on line for basic research in neutron scattering and neutron radiation damage. This paper describes the data-acquisition system which will handle data acquisition and instrument control for the time-of-flight neutron-scattering instruments at IPNS. This discussion covers the scientific and operational requirements for this system, and the system architecture that was chosen to satisfy these requirements. It also provides an overview of the current system implementation including brief descriptions of the hardware and software which have been developed.

  20. Utilization of the intense pulsed neutron source (IPNS) at Argonne National Laboratory for neutron activation analysis

    SciTech Connect

    Heinrich, R.R.; Greenwood, L.R.; Popek, R.J.; Schulke, A.W. Jr.

    1983-01-01

    The Intense Pulsed Neutron Source (IPNS) neutron scattering facility (NSF) has been investigated for its applicability to neutron activation analysis. A polyethylene insert has been added to the vertical hole VT3 which enhances the thermal neutron flux by a factor of two. The neutron spectral distribution at this position has been measured by the multiple-foil technique which utilized 28 activation reactions and the STAYSL computer code. The validity of this spectral measurement was tested by two irradiations of National Bureau of Standards SRM-1571 (orchard leaves), SRM-1575 (pine needles), and SRM-1645 (river sediment). The average thermal neutron flux for these irradiations normalized to 10 ..mu..amp proton beam is 4.0 x 10/sup 11/ n/cm/sup 2/-s. Concentrations of nine trace elements in each of these SRMs have been determined by gamma-ray spectrometry. Agreement of measured values to certified values is demonstrated to be within experiment error.

  1. Conceptual design of an RFQ accelerator-based neutron source for boron neutron-capture therapy

    SciTech Connect

    Wangler, T.P.; Stovall, J.E.; Bhatia, T.S.; Wang, C.K.; Blue, T.E.; Gahbauer, R.A.

    1989-01-01

    We present a conceptual design of a low-energy neutron generator for treatment of brain tumors by boron neutron capture theory (BNCT). The concept is based on a 2.5-MeV proton beam from a radio-frequency quadrupole (RFQ) linac, and the neutrons are produced by the /sup 7/Li(p,n)/sup 7/Be reaction. A liquid lithium target and modulator assembly are designed to provide a high flux of epithermal neutrons. The patient is administered a tumor-specific /sup 10/Be-enriched compound and is irradiated by the neutrons to create a highly localized dose from the reaction /sup 10/B(n,..cap alpha..)/sup 7/Li. An RFQ accelerator-based neutron source for BNCT is compact, which makes it practical to site the facility within a hospital. 11 refs., 5 figs., 1 tab.

  2. Neutron Capture and Fission Measurements on Actinides at Dance

    NASA Astrophysics Data System (ADS)

    Chyzh, A.; Wu, C. Y.; Kwan, E.; Henderson, R. A.; Gostic, J. M.; Ullmann, J. L.; Bredeweg, T. A.; Jandel, M.; Couture, A. J.; O'Donnell, J. M.; Haight, R. C.; Lee, H. Y.

    2013-03-01

    The prompt γ-ray energy and multiplicity distributions in the spontaneous fission of 252Cf have been measured using a highly granular 4π γ-ray calorimeter. Corrections were made for both energy and multiplicity distributions according to the detector response, which is simulated numerically using a model validated with the γ-ray calibration sources. A comparison of the total γray energy distribution was made between the measurement and a simulation by random sampling of the corrected γ-ray energy and multiplicity distributions through the detector response. A reasonable agreement is achieved between the measurement and simulation, indicating weak correlations between γ-ray energy and multiplicity. Moreover, the increasing agreement with increasing multiplicity manifests the stochastic aspect of the prompt γ decay in spontaneous fission. This calorimeter was designed for the study of neutron capture reactions and an example is given, where the238Pu(n, γ) measurement was carried out in the laboratory environment for the first time.

  3. Status of the Ultracold neutron source upgrade at LANSCE

    SciTech Connect

    Pattie, Robert Wayne Jr.

    2015-10-31

    Several slides show the source and flux of ultracold neutrons produced. In summary, an upgraded UCN source has been designed, and parts are currently being fabricated. Nickel phosphorus-coated guides will improve transport to the experiment hall. The source will be installed in the spring of 2016 and commissioned in the fall of 2016.

  4. Spatial response characterization of liquid scintillator detectors using collimated gamma-ray and neutron beams

    NASA Astrophysics Data System (ADS)

    Naeem, S. F.; Clarke, S. D.; Pozzi, S. A.

    2013-10-01

    Liquid scintillators are suitable for many applications because they can detect and characterize fast neutrons as well as gamma-rays. This paper presents the response of a 15-cm-in-length×15-cm-in-height×8.2-cm-in-width EJ-309 liquid scintillator with respect to the position of neutron and gamma-ray interactions. Liquid scintillator cells are typically filled with 97% of the scintillating cocktail to address thermal expansion of the liquid in varying temperature conditions. Measurements were taken with collimated 137Cs and 252Cf sources for gamma-ray and neutron mapping of the detector, respectively. MCNPX-PoliMi (ver. 2.0) simulations were also performed to demonstrate the spatial response of the detector. Results show that the detector response is greatest at the center and decreases when the collimated neutron and gamma-ray beam is moved toward the edge of the detector. The measured response in the voxels surrounding the detector center decreased by approximately 6% and 12% for gamma-ray and neutron scans, respectively, when compared to the center voxel. The measured decrease in the detector response was most pronounced at the corners of detector assembly. For the corner voxels located in the bottom row of the detector, the measured response decreased by approximately 39% for both gamma-ray and neutron scans. For the corner voxels located in the top row of the detector, the measured response decreased by approximately 66% and 48% for gamma-ray and neutron scans, respectively. Both measurements and simulations show the inefficient production of secondary charged particles in the voxels located in the top portion of the detector due to the presence of expansion volume. Furthermore, the presence of the expansion volume potentially affects the transport of the scintillation light through the coupling window between the liquid scintillator and the photocathode in the photomultiplier tube.

  5. Intrinsic neutron source strengths in uranium solutions

    NASA Astrophysics Data System (ADS)

    Anderson, R. E.; Robba, A. A.; Seale, R. L.; Rutherford, D. A.; Butterfield, K. B.; Brunson, G. S.

    Neutron production rates for 5 pct. enriched uranyl fluoride and 93 pct. uranyl nitrate solutions have been measured using a high efficiency neutron well counter. Measurements were made for both solution types as a function of sample volume. These results were extrapolated to zero sample volume to eliminate sample size effects, such as multiplication and absorption. For the 5 pct. enriched uranyl fluoride solution, a neutron production rate of 0.0414 (+ or -) 0.0041 n/s/ml was measured; for the 93 pct. enriched uranyl nitrate solution, a neutron production rate of 0.0232 (+ or -) 0.0023 n/s/ml was measured. The biggest uncertainty is in measuring the detector efficiency, and further work on this aspect of the experiment is planned. Calculations for the neutron production rates based on measured thick-target (alpha, n) production rates and the known alpha stopping powers are in reasonable agreement with the data for the uranyl nitrate solution, but are in poor agreement with the data for the uranyl fluoride solution.

  6. A Neutron Source Facility for Neutron Cross-Section Measurements on Radioactive Targets at RIA

    SciTech Connect

    Ahle, L E; Bernstein, L; Rusnak, B; Berio, R

    2003-05-20

    The stockpile stewardship program is interested in neutron cross-section measurements on nuclei that are a few nucleons away from stability. Since neutron targets do not exist, radioactive targets are the only way to directly perform these measurements. This requires a facility that can provide high production rates for these short-lived nuclei as well as a source of neutrons. The Rare Isotope Accelerator (RIA) promises theses high production rates. Thus, adding a co-located neutron source facility to the RIA project baseline would allow these neutron cross-section measurements to be made. A conceptual design for such a neutron source has been developed, which would use two accelerators, a Dynamitron and a linac, to create the neutrons through a variety of reactions (d-d, d-t, deuteron break-up, p-Li). This range of reactions is needed in order to provide the desired energy range from 10's of keV to 20 MeV. The facility would also have hot cells to perform chemistry on the radioactive material both before and after neutron irradiation. The present status of this design and direction of future work will be discussed.

  7. Optimal Neutron Source & Beam Shaping Assembly for Boron Neutron Capture Therapy

    SciTech Connect

    J. Vujic; E. Greenspan; W.E. Kastenber; Y. Karni; D. Regev; J.M. Verbeke, K.N. Leung; D. Chivers; S. Guess; L. Kim; W. Waldron; Y. Zhu

    2003-04-30

    There were three objectives to this project: (1) The development of the 2-D Swan code for the optimization of the nuclear design of facilities for medical applications of radiation, radiation shields, blankets of accelerator-driven systems, fusion facilities, etc. (2) Identification of the maximum beam quality that can be obtained for Boron Neutron Capture Therapy (BNCT) from different reactor-, and accelerator-based neutron sources. The optimal beam-shaping assembly (BSA) design for each neutron source was also to e obtained. (3) Feasibility assessment of a new neutron source for NCT and other medical and industrial applications. This source consists of a state-of-the-art proton or deuteron accelerator driving and inherently safe, proliferation resistant, small subcritical fission assembly.

  8. Development and testing of an active area neutron dosemeter.

    PubMed

    Brushwood, J M; Gow, J P D; Beeley, P A; Spyrou, N M

    2004-01-01

    This paper describes the design, development and testing of an active area neutron dosemeter (AAND). The classic moderator and central detector is retained but in AAND this arrangement is augmented by small thermal neutron detectors positioned within the moderating body. The outputs from these detectors are combined using an appropriately weighted linear superposition to fit both the ambient dose equivalent and the radiation weighting factor. Experimental verifications of both the modelled detector energy reponses and the overall AAND response are given. In the relatively soft D2O moderated 252Cf spectra, the AAND determined both the H*(10) and mean radiation weighting factor to better than +10%.

  9. Simulating Makrofol as a detector for neutron-induced recoils.

    PubMed

    Zhang, G; Becker, F; Urban, M; Xuan, Y

    2011-03-01

    The response of solid-state nuclear track detector is extremely dependent on incident angles of neutrons, which determine the angular distribution of secondary particles. In this paper, the authors present a method to investigate the angular response of Makrofol detectors. Using the C++-based Monte-Carlo tool-kit Geant4 in combination with SRIM and our MATLAB codes, we simulated the angular response of Makrofol. The simulations were based on the restricted energy loss model, and the concept of energy threshold and critical angle. Experiments were carried out with (252)Cf neutrons to verify the simulation results.

  10. Study of PIN diode energy traps created by neutrons

    NASA Astrophysics Data System (ADS)

    Sopko, V.; Sopko, B.; Chren, D.; Dammer, J.

    2013-03-01

    Characterization of radiation defects is still ongoing and finds greater application in the increasing radiation doses on semiconductor detectors in experiments. Studying the changes of silicon PIN diode for high doses of radiation is the fundamental motivation for our measurements. In this article we describe the behavior of the PIN diode and development of the disorder caused by neutrons from a 252Cf and doses up to 8 Gy. The calibration curve for PIN diode shows the effect of disorders as the changes of the voltampere characteristics depending on the dose of neutron irradiation. The measured values for defects are in good agreement with created energy traps.

  11. On the Development of a Miniature Neutron Generator for the Brachytherapy Treatment of Cancer

    NASA Astrophysics Data System (ADS)

    Forman, L.

    2009-03-01

    Brachytherapy refers to application of an irradiation source within a tumor. 252Cf needles used in brachytherapy have been successfully applied to treatment of some of the most virulent cancers but it is doubtful that it will be widely used because of difficulty in dealing with unwanted dose (source cannot be turned off) and in adhering to stringent NRC regulations that have been exacerbated in our post 911 environment. We have been working on the development of a miniature neutron generator with the reaction target placed at the end of a needle (tube) for brachytherapy applications. Orifice geometries are most amenable, e.g. rectum and cervix, but interstitial use is possible with microsurgery. This paper dicusses the results of a 30 watt DD neutron generator SBU project that demonstrates that sufficient hydrogen isotope current can be delivered down a small diameter needle required for a DT neutron treatment device, and, will summarize the progress of building a commercial device pursued by the All Russian Institute for Automatics (VNIIA) supported by the DOE's Industrial Proliferation Prevention Program (IPP). It is known that most of the fast neutron (FN) beam cancer treatment facilities have been closed down. It appears that the major limitation in the use of FN beams has been damage to healthy tissue, which is relatively insensitive to photons, but this problem is alleviated by brachytherapy. Moreover, recent clinical results indicate that fast neutrons in the boost mode are most highly effective in treating large, hypoxic, and rapidly repopulating diseases. It appears that early boost application of FN may halt angiogenesis (development and repair of tumor vascular system) and shrink the tumor resulting in lower hypoxia. The boost brachytherapy application of a small, low cost neutron generator holds promise of significant contribution to the treatment of cancer.

  12. New spallation neutron sources, their performance and applications

    SciTech Connect

    Not Available

    1985-01-01

    Pulsed spallation sources now operating in the world are at the KEK Laboratory in Japan (the KENS source), at Los Alamos National Laboratory (WNR) and at Argonne National Laboratory (IPNS), both the latter being in the US. The Intense Pulsed Neutron Source (IPNS) is currently the world's most intense source with a peak neutron flux of 4 x 10/sup 14/ n cm/sup -2/s/sup -1/ at a repetition rate of 30 Hz, and globally producing approx. 1.5 x 10/sup 15/ n/sec. Present pulsed sources are still relatively weak compared to their potential. In 1985 the Rutherford Spallation Neutron Source will come on line, and eventually be approx. 30 more intense than the present IPNS. Later, in 1986 the WNR/PSR option at Los Alamos will make that facility of comparable intensity, while a subcritical fission booster at IPNS will keep IPNS competitive. These new sources will expand the applications of pulsed neutrons but are still based on accelerators built for other scientific purposes, usually nuclear or high-energy physics. Accelerator physicists are now designing machines expressly for spallation neutron research, and the proton currents attainable appear in the milliamps. (IPNS now runs at 0.5 GeV and 14 ..mu..A). Such design teams are at the KFA Laboratory Julich, Argonne National Laboratory and KEK. Characteristics, particularly the different time structure of the pulses, of these new sources will be discussed. S

  13. Nuclear and dosimetric features of an isotopic neutron source

    NASA Astrophysics Data System (ADS)

    Vega-Carrillo, H. R.; Hernández-Dávila, V. M.; Rivera, T.; Sánchez, A.

    2014-02-01

    A multisphere neutron spectrometer was used to determine the features of a 239PuBe neutron source that is used to operate the ESFM-IPN Subcritical Reactor. To determine the source main features it was located a 100 cm from the spectrometer which was a 6LiI(Eu) scintillator and 2, 3, 5, 8, 10 and 12 in.-diameter polyethylene spheres. Count rates obtained with the spectrometer were unfolded using the NSDUAZ code and neutron spectrum, total fluence, and ambient dose equivalent were determined. A Monte Carlo calculation was carried out to estimate the spectrum and integral features being less than values obtained experimentally due to the presence of 241Pu in the Pu used to fabricate the source. Actual neutron yield and the mass fraction of 241Pu was estimated.

  14. Fast-neutron, coded-aperture imager

    NASA Astrophysics Data System (ADS)

    Woolf, Richard S.; Phlips, Bernard F.; Hutcheson, Anthony L.; Wulf, Eric A.

    2015-06-01

    This work discusses a large-scale, coded-aperture imager for fast neutrons, building off a proof-of concept instrument developed at the U.S. Naval Research Laboratory (NRL). The Space Science Division at the NRL has a heritage of developing large-scale, mobile systems, using coded-aperture imaging, for long-range γ-ray detection and localization. The fast-neutron, coded-aperture imaging instrument, designed for a mobile unit (20 ft. ISO container), consists of a 32-element array of 15 cm×15 cm×15 cm liquid scintillation detectors (EJ-309) mounted behind a 12×12 pseudorandom coded aperture. The elements of the aperture are composed of 15 cm×15 cm×10 cm blocks of high-density polyethylene (HDPE). The arrangement of the aperture elements produces a shadow pattern on the detector array behind the mask. By measuring of the number of neutron counts per masked and unmasked detector, and with knowledge of the mask pattern, a source image can be deconvolved to obtain a 2-d location. The number of neutrons per detector was obtained by processing the fast signal from each PMT in flash digitizing electronics. Digital pulse shape discrimination (PSD) was performed to filter out the fast-neutron signal from the γ background. The prototype instrument was tested at an indoor facility at the NRL with a 1.8-μCi and 13-μCi 252Cf neutronsource at three standoff distances of 9, 15 and 26 m (maximum allowed in the facility) over a 15-min integration time. The imaging and detection capabilities of the instrument were tested by moving the source in half- and one-pixel increments across the image plane. We show a representative sample of the results obtained at one-pixel increments for a standoff distance of 9 m. The 1.8-μCi source was not detected at the 26-m standoff. In order to increase the sensitivity of the instrument, we reduced the fastneutron background by shielding the top, sides and back of the detector array with 10-cm-thick HDPE. This shielding configuration led

  15. Beam extraction and delivery at compact neutron sources

    NASA Astrophysics Data System (ADS)

    Mezei, F.

    2016-11-01

    The beam performance of a source of radiation is primarily characterized by its brightness, which remains constant in a conservative force field along the propagation of the beam. The neutron flux at an area with direct view to a homogenous radiation emitting moderator surface will just depend on the solid angle of beam divergence as determined by the moderator size. Recently it was found that by reducing the size of neutron moderators their brightness can be enhanced by a factor in the range of up to 3-6. In direct view of such moderators from sizable distances often required in neutron scattering applications the beam divergence will become reduced. Supermirror based neutron optical guide systems allow us to deliver neutron beam divergences independently of distance from the source. Due to the low radiation fields at compact sources such systems can be placed close to the neutron emitting moderators, a specific advantage and a new design feature. Focusing type neutron guides with phase space acceptance properly matched to the phase space to be delivered over distance can provide for beam delivery with small losses of brightness within a convenient and flexible range of beam parameters.

  16. GEM-based thermal neutron beam monitors for spallation sources

    NASA Astrophysics Data System (ADS)

    Croci, G.; Claps, G.; Caniello, R.; Cazzaniga, C.; Grosso, G.; Murtas, F.; Tardocchi, M.; Vassallo, E.; Gorini, G.; Horstmann, C.; Kampmann, R.; Nowak, G.; Stoermer, M.

    2013-12-01

    The development of new large area and high flux thermal neutron detectors for future neutron spallation sources, like the European Spallation Source (ESS) is motivated by the problem of 3He shortage. In the framework of the development of ESS, GEM (Gas Electron Multiplier) is one of the detector technologies that are being explored as thermal neutron sensors. A first prototype of GEM-based thermal neutron beam monitor (bGEM) has been built during 2012. The bGEM is a triple GEM gaseous detector equipped with an aluminum cathode coated by 1 μm thick B4C layer used to convert thermal neutrons to charged particles through the 10B(n,7Li)α nuclear reaction. This paper describes the results obtained by testing a bGEM detector at the ISIS spallation source on the VESUVIO beamline. Beam profiles (FWHMx=31 mm and FWHMy=36 mm), bGEM thermal neutron counting efficiency (≈1%), detector stability (3.45%) and the time-of-flight spectrum of the beam were successfully measured. This prototype represents the first step towards the development of thermal neutrons detectors with efficiency larger than 50% as alternatives to 3He-based gaseous detectors.

  17. Systematic evaluation of neutron shielding effects for materials

    SciTech Connect

    Ueki, K.; Ohashi, A.; Nariyama, N.; Nagayama, S.; Fujita, T.; Hattori, K.; Anayama, Y.

    1996-11-01

    Three types of experiments with a {sup 252}Cf neutron source are proposed to evaluate systematically the neutron shielding effects of a material. The type 1 experiment deals with each shielding material alone, the type 2 experiment combines a shielding material and a structural material, and the type 3 experiment constructs the optimization with the materials used in the type 2 experiment. In the stainless steel (SS) + polyethylene shielding system, because of the location of the SS slabs at the source side, the tenth layer of the polyethylene becomes approximately one-half the value as when the polyethylene is employed alone. This is the enhancement effect of the SS. In the type 3 experiment, the total thickness of the SS + polyethylene shielding system is 40 cm, and the total thicknesses of the SS and the polyethylene slabs are fixed at 25 and 15 cm thick, respectively. The minimum total dose-equivalent rate (neutron + secondary gamma rays) is observed when the polyethylene slabs are located at a 20-cm depth from the source side, with an arrangement of 20-cm-thick SS + 15-cm-thick polyethylene + 5-cm-thick and SS, and with a ratio of the maximum to the minimum dose-equivalent rate of 2.5. The shielding optimization can be constructed by combining the materials having different shielding characteristics. The experimental results of the three types of experiments are reproduced fairly well by using the continuous-energy Monte Carlo code MCNP 4A with a next-event surface crossing estimator.

  18. Core Vessel Insert Handling Robot for the Spallation Neutron Source

    SciTech Connect

    Graves, Van B; Dayton, Michael J

    2011-01-01

    The Spallation Neutron Source provides the world's most intense pulsed neutron beams for scientific research and industrial development. Its eighteen neutron beam lines will eventually support up to twenty-four simultaneous experiments. Each beam line consists of various optical components which guide the neutrons to a particular instrument. The optical components nearest the neutron moderators are the core vessel inserts. Located approximately 9 m below the high bay floor, these inserts are bolted to the core vessel chamber and are part of the vacuum boundary. They are in a highly radioactive environment and must periodically be replaced. During initial SNS construction, four of the beam lines received Core Vessel Insert plugs rather than functional inserts. Remote replacement of the first Core Vessel Insert plug was recently completed using several pieces of custom-designed tooling, including a highly complicated Core Vessel Insert Robot. The design of this tool are discussed.

  19. Systematic neutron guide misalignment for an accelerator-driven spallation neutron source

    NASA Astrophysics Data System (ADS)

    Zendler, C.; Bentley, P. M.

    2016-08-01

    The European Spallation Source (ESS) is a long pulse spallation neutron source that is currently under construction in Lund, Sweden. A considerable fraction of the 22 planned instruments extend as far as 75-150 m from the source. In such long beam lines, misalignment between neutron guide segments can decrease the neutron transmission significantly. In addition to a random misalignment from installation tolerances, the ground on which ESS is built can be expected to sink with time, and thus shift the neutron guide segments further away from the ideal alignment axis in a systematic way. These systematic errors are correlated to the ground structure, position of buildings and shielding installation. Since the largest deformation is expected close to the target, even short instruments might be noticeably affected. In this study, the effect of this systematic misalignment on short and long ESS beam lines is analyzed, and a possible mitigation by overillumination of subsequent guide sections investigated.

  20. Feasibility of sealed D-T neutron generator as neutron source for liver BNCT and its beam shaping assembly.

    PubMed

    Liu, Zheng; Li, Gang; Liu, Linmao

    2014-04-01

    This paper involves the feasibility of boron neutron capture therapy (BNCT) for liver tumor with four sealed neutron generators as neutron source. Two generators are placed on each side of the liver. The high energy of these emitted neutrons should be reduced by designing a beam shaping assembly (BSA) to make them useable for BNCT. However, the neutron flux decreases as neutrons pass through different materials of BSA. Therefore, it is essential to find ways to increase the neutron flux. In this paper, the feasibility of using low enrichment uranium as a neutron multiplier is investigated to increase the number of neutrons emitted from D-T neutron generators. The neutron spectrum related to our system has a proper epithermal flux, and the fast and thermal neutron fluxes comply with the IAEA recommended values.

  1. Plans for an Ultra Cold Neutron source at Los Alamos

    SciTech Connect

    Seestrom, S.J.; Bowles, T.J.; Hill, R.; Greene, G.L.

    1996-10-01

    Ultra Cold Neutrons (UCN) can be produced at spallation sources using a variety of techniques. To date the technique used has been to Bragg scatter and Doppler shift cold neutrons into UCN from a moving crystal. This is particularly applicable to short-pulse spallation sources. We are presently constructing a UCN source at LANSCE using this method. In addition, large gains in UCN density should be possible using cryogenic UCN sources. Research is under way at Gatchina to demonstrate technical feasibility of a frozen deuterium source. If successful, a source of this type could be implemented at future spallation source, such as the long pulse source being planned at Los Alamos, with a UCN density that may be two orders of magnitude higher than that presently available at reactors.

  2. Development of an ultra cold neutron source at MLNSC

    SciTech Connect

    Seestrom, S.J.; Bowles, T.J.; Hill, R.; Greene, G.L.; Morris, C.L.

    1996-09-01

    Ultra Cold Neutrons (UCN) can be produced at spallation sources using a variety of techniques. To date the technique used has been to Bragg scatter and Doppler shift cold neutrons into UCN from a moving crystal. This is particularly applicable to short-pulse spallation sources. We are presently constructing a UCN source at LANSCE using this method. In addition, large gains in UCN density should be possible using cryogenic UCN sources. Research is under way at Gatchina to demonstrate technical feasibility of a frozen deuterium source. If successful, a source of this type could be implemented at future spallation sources, such as the long pulse source being planned at Los Alamos, with a UCN density that may be two orders of magnitude higher than that presently available at reactors.

  3. Use of Neutron Benchmark Fields for the Validation of Dosimetry Cross Sections

    NASA Astrophysics Data System (ADS)

    Griffin, Patrick

    2016-02-01

    The evolution of validation metrics for dosimetry cross sections in neutron benchmark fields is explored. The strength of some of the metrics in providing validation evidence is examined by applying them to the 252Cf spontaneous fission standard neutron benchmark field, the 235U thermal neutron fission reference benchmark field, the ACRR pool-type reactor central cavity reference benchmark fields, and the SPR-III fast burst reactor central cavity. The IRDFF dosimetry cross section library is used in the validation study and observations are made on the amount of coverage provided to the library contents by validation data available in these benchmark fields.

  4. Status report on the Low Energy Neutron Source for 2015

    NASA Astrophysics Data System (ADS)

    Baxter, D. V.; Rinckel, T.

    2016-11-01

    The Low Energy Neutron Source at Indiana University first produced cold neutrons in April of 2005. Ten years after first reaching this milestone, the facility has three instruments in operation on its cold target station, and a second target station is devoted to thermal and fast neutron physics offers capabilities in radiation effects research (single-event effects in electronics) and radiography. Key elements in our success over these last ten years have been the diversity of activities we have been able maintain (which often involves using each of our instruments for multiple different activities), the close relationship we have developed with a number of major sources, and the focus we have had on innovation in neutron instrumentation. In this presentation, we will introduce some of the highlights from our most recent activities, provide an update on some of our technical challenges, and describe some of our ideas for the future.

  5. Research opportunities with compact accelerator-driven neutron sources

    NASA Astrophysics Data System (ADS)

    Anderson, I. S.; Andreani, C.; Carpenter, J. M.; Festa, G.; Gorini, G.; Loong, C.-K.; Senesi, R.

    2016-10-01

    Since the discovery of the neutron in 1932 neutron beams have been used in a very broad range of applications, As an aging fleet of nuclear reactor sources is retired the use of compact accelerator-driven neutron sources (CANS) is becoming more prevalent. CANS are playing a significant and expanding role in research and development in science and engineering, as well as in education and training. In the realm of multidisciplinary applications, CANS offer opportunities over a wide range of technical utilization, from interrogation of civil structures to medical therapy to cultural heritage study. This paper aims to provide the first comprehensive overview of the history, current status of operation, and ongoing development of CANS worldwide. The basic physics and engineering regarding neutron production by accelerators, target-moderator systems, and beam line instrumentation are introduced, followed by an extensive discussion of various evolving applications currently exploited at CANS.

  6. LOW VOLTAGE 14 Mev NEUTRON SOURCE

    DOEpatents

    Little, R.N. Jr.; Graves, E.R.

    1959-09-29

    An apparatus yielding high-energy neutrons at the rate of 10/sup 8/ or more per second by the D,T or D,D reactions is described. The deuterium gas filling is ionized by electrons emitted from a filament, and the resulting ions are focused into a beam and accelerated against a fixed target. The apparatus is built in accordance with the relationship V/sub s/ = A--B log pd, where V/sub s/ is the sparking voltage, p the gas pressure, and d the gap length between the high voltage electrodes. Typical parameters to obtain the high neutron yields are 55 to 80 kv, 0.5 to 7.0 ma beam current, 5 to 12 microns D/sub 2/, and a gap length of 1 centimeter.

  7. A New Method of Prompt Fission Neutron Energy Spectrum Unfolding

    SciTech Connect

    Zeynalova, O. V.; Zeynalov, Sh.; Hambsch, F.-J.; Oberstedt, S.

    2010-11-25

    The prompt neutron emission in spontaneous fission of {sup 252}Cf has been investigated applying digital signal electronics along with associated digital signal processing algorithms. The goal was to find out the reasons of a long time existing discrepancy between theoretical calculations and the measurements of prompt fission neutron (PFN) emission dependence on the total kinetic energy (TKE) of fission fragments (FF). On the one hand the {sup 252}Cf(sf) reaction is one of the main references for nuclear data, on the other hand the understanding of PFN emission mechanism is very important for nuclear fission theory. Using a twin Frisch-grid ionization chamber for fission fragment (FF) detection and a NE213-equivalent neutron detector in total about 10{sup 7} fission fragment-neutron coincidences have been registered. Fission fragment kinetic energy, mass and angular distribution, neutron time-of-flight and pulse shape have been investigated using a 12 bit waveform digitizer. The signal waveforms have been analyzed using digital signal processing algorithms. For the first time the dependence of the number of emitted neutrons as a function of total kinetic energy (TKE) of the fragments is in very good agreement with theoretical calculations in the range of TKE from 140-220 MeV.

  8. High Intensity Accelerator and Neutron Source in China

    NASA Astrophysics Data System (ADS)

    Guan, Xialing; Wei, J.; Loong, Chun

    2011-06-01

    High intensity Accelerator is being studied all over world for numerous applications, which includes the waste transmutation, spallation neutron source and material irradiation facilities. The R/D activities of the technology of High intensity accelerator are also developed in China for some year, and have some good facilities around China. This paper will reports the status of some high intensity accelerators and neutron source in China, which including ADS/RFQ; CARR; CSNS; PKUNIFTY & CPHS. This paper will emphatically report the Compact Pulsed Hadron Source (CPHS) led by the Department of Engineering Physics of Tsinghua University in Beijing, China.

  9. Time-correlated neutron analysis of a multiplying HEU source

    NASA Astrophysics Data System (ADS)

    Miller, E. C.; Kalter, J. M.; Lavelle, C. M.; Watson, S. M.; Kinlaw, M. T.; Chichester, D. L.; Noonan, W. A.

    2015-06-01

    The ability to quickly identify and characterize special nuclear material remains a national security challenge. In counter-proliferation applications, identifying the neutron multiplication of a sample can be a good indication of the level of threat. Currently neutron multiplicity measurements are performed with moderated 3He proportional counters. These systems rely on the detection of thermalized neutrons, a process which obscures both energy and time information from the source. Fast neutron detectors, such as liquid scintillators, have the ability to detect events on nanosecond time scales, providing more information on the temporal structure of the arriving signal, and provide an alternative method for extracting information from the source. To explore this possibility, a series of measurements were performed on the Idaho National Laboratory's MARVEL assembly, a configurable HEU source. The source assembly was measured in a variety of different HEU configurations and with different reflectors, covering a range of neutron multiplications from 2 to 8. The data was collected with liquid scintillator detectors and digitized for offline analysis. A gap based approach for identifying the bursts of detected neutrons associated with the same fission chain was used. Using this approach, we are able to study various statistical properties of individual fission chains. One of these properties is the distribution of neutron arrival times within a given burst. We have observed two interesting empirical trends. First, this distribution exhibits a weak, but definite, dependence on source multiplication. Second, there are distinctive differences in the distribution depending on the presence and type of reflector. Both of these phenomena might prove to be useful when assessing an unknown source. The physical origins of these phenomena can be illuminated with help of MCNPX-PoliMi simulations.

  10. The new Cold Neutron Chopper Spectrometer at the Spallation Neutron Source -- Design and Performance

    SciTech Connect

    Ehlers, Georg; Podlesnyak, Andrey A.; Niedziela, Jennifer L.; Iverson, Erik B.; Sokol, Paul E.

    2011-01-01

    The design and performance of the new cold neutron chopper spectrometer (CNCS) at the Spallation Neutron Source in Oak Ridge are described. CNCS is a direct-geometry inelastic time-of-flight spectrometer, designed essentially to cover the same energy and momentum transfer ranges as IN5 at ILL, LET at ISIS, DCS at NIST, TOFTOF at FRM-II, AMATERAS at J-PARC, PHAROS at LANSCE, and NEAT at HZB, at similar energy resolution. Measured values of key figures such as neutron flux at sample position and energy resolution are compared between measurements and ray tracing Monte Carlo simulations, and good agreement (better than 20% of absolute numbers) has been achieved. The instrument performs very well in the cold and thermal neutron energy ranges, and promises to become a workhorse for the neutron scattering community for quasielastic and inelastic scattering experiments.

  11. The new cold neutron chopper spectrometer at the Spallation Neutron Source: Design and performance

    SciTech Connect

    Ehlers, G.; Podlesnyak, A. A.; Niedziela, J. L.; Iverson, E. B.; Sokol, P. E.

    2011-08-15

    The design and performance of the new cold neutron chopper spectrometer (CNCS) at the Spallation Neutron Source in Oak Ridge are described. CNCS is a direct-geometry inelastic time-of-flight spectrometer, designed essentially to cover the same energy and momentum transfer ranges as IN5 at ILL, LET at ISIS, DCS at NIST, TOFTOF at FRM-II, AMATERAS at J-PARC, PHAROS at LANSCE, and NEAT at HZB, at similar energy resolution. Measured values of key figures such as neutron flux at sample position and energy resolution are compared between measurements and ray tracing Monte Carlo simulations, and good agreement (better than 20% of absolute numbers) has been achieved. The instrument performs very well in the cold and thermal neutron energy ranges, and promises to become a workhorse for the neutron scattering community for quasielastic and inelastic scattering experiments.

  12. Experiments and Simulations of the Use of Time-Correlated Thermal Neutron Counting to Determine the Multiplication of an Assembly of Highly Enriched Uranium

    SciTech Connect

    David L. Chichester; Mathew T. Kinlaw; Scott M. Watson; Jeffrey M. Kalter; Eric C. Miller; William A. Noonan

    2014-11-01

    A series of experiments and numerical simulations using thermal-neutron time-correlated measurements has been performed to determine the neutron multiplication, M, of assemblies of highly enriched uranium available at Idaho National Laboratory. The experiments used up to 14.4 kg of highly-enriched uranium, including bare assemblies and assemblies reflected with high-density polyethylene, carbon steel, and tungsten. A small 252Cf source was used to initiate fission chains within the assembly. Both the experiments and the simulations used 6-channel and 8-channel detector systems, each consisting of 3He proportional counters moderated with polyethylene; data was recorded in list mode for analysis. 'True' multiplication values for each assembly were empirically derived using basic neutron production and loss values determined through simulation. A total of one-hundred and sixteen separate measurements were performed using fifty-seven unique measurement scenarios, the multiplication varied from 1.75 to 10.90. This paper presents the results of these comparisons and discusses differences among the various cases.

  13. BNL Activities in Advanced Neutron Source Development: Past and Present

    SciTech Connect

    Hastings, J.B.; Ludewig, H.; Montanez, P.; Todosow, M.; Smith, G.C.; Larese, J.Z.

    1998-06-14

    Brookhaven National Laboratory has been involved in advanced neutron sources almost from its inception in 1947. These efforts have mainly focused on steady state reactors beginning with the construction of the first research reactor for neutron beams, the Brookhaven Graphite Research Reactor. This was followed by the High Flux Beam Reactor that has served as the design standard for all the subsequent high flux reactors constructed worldwide. In parallel with the reactor developments BNL has focused on the construction and use of high energy proton accelerators. The first machine to operate over 1 GeV in the world was the Cosmotron. The machine that followed this, the AGS, is still operating and is the highest intensity proton machine in the world and has nucleated an international collaboration investigating liquid metal targets for next generation pulsed spallation sources. Early work using the Cosmotron focused on spallation product studies for both light and heavy elements into the several GeV proton energy region. These original studies are still important today. In this report we discuss the facilities and activities at BNL focused on advanced neutron sources. BNL is involved in the proton source for the Spallation Neutron source, spectrometer development at LANSCE, target studies using the AGS and state-of-the-art neutron detector development.

  14. BNL ACTIVITIES IN ADVANCED NEUTRON SOURCE DEVELOPMENT: PAST AND PRESENT

    SciTech Connect

    HASTINGS,J.B.; LUDEWIG,H.; MONTANEZ,P.; TODOSOW,M.; SMITH,G.C.; LARESE,J.Z.

    1998-06-14

    Brookhaven National Laboratory has been involved in advanced neutron sources almost from its inception in 1947. These efforts have mainly focused on steady state reactors beginning with the construction of the first research reactor for neutron beams, the Brookhaven Graphite Research Reactor. This was followed by the High Flux Beam Reactor that has served as the design standard for all the subsequent high flux reactors constructed worldwide. In parallel with the reactor developments BNL has focused on the construction and use of high energy proton accelerators. The first machine to operate over 1 GeV in the world was the Cosmotron. The machine that followed this, the AGS, is still operating and is the highest intensity proton machine in the world and has nucleated an international collaboration investigating liquid metal targets for next generation pulsed spallation sources. Early work using the Cosmotron focused on spallation product studies for both light and heavy elements into the several GeV proton energy region. These original studies are still important today. In the sections below the authors discuss the facilities and activities at BNL focused on advanced neutron sources. BNL is involved in the proton source for the Spallation Neutron source, spectrometer development at LANSCE, target studies using the AGS and state-of-the-art neutron detector development.

  15. Accelerator-based epithermal neutron sources for boron neutron capture therapy of brain tumors.

    PubMed

    Blue, Thomas E; Yanch, Jacquelyn C

    2003-01-01

    This paper reviews the development of low-energy light ion accelerator-based neutron sources (ABNSs) for the treatment of brain tumors through an intact scalp and skull using boron neutron capture therapy (BNCT). A major advantage of an ABNS for BNCT over reactor-based neutron sources is the potential for siting within a hospital. Consequently, light-ion accelerators that are injectors to larger machines in high-energy physics facilities are not considered. An ABNS for BNCT is composed of: (1) the accelerator hardware for producing a high current charged particle beam, (2) an appropriate neutron-producing target and target heat removal system (HRS), and (3) a moderator/reflector assembly to render the flux energy spectrum of neutrons produced in the target suitable for patient irradiation. As a consequence of the efforts of researchers throughout the world, progress has been made on the design, manufacture, and testing of these three major components. Although an ABNS facility has not yet been built that has optimally assembled these three components, the feasibility of clinically useful ABNSs has been clearly established. Both electrostatic and radio frequency linear accelerators of reasonable cost (approximately 1.5 M dollars) appear to be capable of producing charged particle beams, with combinations of accelerated particle energy (a few MeV) and beam currents (approximately 10 mA) that are suitable for a hospital-based ABNS for BNCT. The specific accelerator performance requirements depend upon the charged particle reaction by which neutrons are produced in the target and the clinical requirements for neutron field quality and intensity. The accelerator performance requirements are more demanding for beryllium than for lithium as a target. However, beryllium targets are more easily cooled. The accelerator performance requirements are also more demanding for greater neutron field quality and intensity. Target HRSs that are based on submerged-jet impingement and

  16. Accelerator-based neutron source for boron neutron capture therapy (BNCT) and method

    DOEpatents

    Yoon, W.Y.; Jones, J.L.; Nigg, D.W.; Harker, Y.D.

    1999-05-11

    A source for boron neutron capture therapy (BNCT) comprises a body of photoneutron emitter that includes heavy water and is closely surrounded in heat-imparting relationship by target material; one or more electron linear accelerators for supplying electron radiation having energy of substantially 2 to 10 MeV and for impinging such radiation on the target material, whereby photoneutrons are produced and heat is absorbed from the target material by the body of photoneutron emitter. The heavy water is circulated through a cooling arrangement to remove heat. A tank, desirably cylindrical or spherical, contains the heavy water, and a desired number of the electron accelerators circumferentially surround the tank and the target material as preferably made up of thin plates of metallic tungsten. Neutrons generated within the tank are passed through a surrounding region containing neutron filtering and moderating materials and through neutron delimiting structure to produce a beam or beams of epithermal neutrons normally having a minimum flux intensity level of 1.0{times}10{sup 9} neutrons per square centimeter per second. Such beam or beams of epithermal neutrons are passed through gamma ray attenuating material to provide the required epithermal neutrons for BNCT use. 3 figs.

  17. Accelerator-based neutron source for boron neutron capture therapy (BNCT) and method

    DOEpatents

    Yoon, Woo Y.; Jones, James L.; Nigg, David W.; Harker, Yale D.

    1999-01-01

    A source for boron neutron capture therapy (BNCT) comprises a body of photoneutron emitter that includes heavy water and is closely surrounded in heat-imparting relationship by target material; one or more electron linear accelerators for supplying electron radiation having energy of substantially 2 to 10 MeV and for impinging such radiation on the target material, whereby photoneutrons are produced and heat is absorbed from the target material by the body of photoneutron emitter. The heavy water is circulated through a cooling arrangement to remove heat. A tank, desirably cylindrical or spherical, contains the heavy water, and a desired number of the electron accelerators circumferentially surround the tank and the target material as preferably made up of thin plates of metallic tungsten. Neutrons generated within the tank are passed through a surrounding region containing neutron filtering and moderating materials and through neutron delimiting structure to produce a beam or beams of epithermal neutrons normally having a minimum flux intensity level of 1.0.times.10.sup.9 neutrons per square centimeter per second. Such beam or beams of epithermal neutrons are passed through gamma ray attenuating material to provide the required epithermal neutrons for BNCT use.

  18. Neutron Radiographic Inspection of Industrial Components using Kamini Neutron Source Facility

    NASA Astrophysics Data System (ADS)

    Raghu, N.; Anandaraj, V.; Kasiviswanathan, K. V.; Kalyanasundaram, P.

    2008-03-01

    Kamini (Kalpakkam Mini) reactor is a U233 fuelled, demineralised light water moderated and cooled, beryllium oxide reflected, low power (30 kW) nuclear research reactor. This reactor functions as a neutron source with a flux of 1012 n/cm2 s-1 at core centre with facilitates for carrying out neutron radiography, neutron activation analysis and neutron shielding experiments. There are two beam tubes for neutron radiography. The length/diameter ratio of the collimators is about 160 and the aperture size is 220 mm×70 mm. Flux at the outer end of the beam tube is ˜106-107 n/cm2 s. The north end beam tube is for radiography of inactive object while the south side beam tube is for radiography of radioactive objects. The availability of high neutron flux coupled with good collimated beam provides high quality radiographs with short exposure time. The reactor being a unique national facility for neutron radiography has been utilized in the examination of irradiated components, aero engine turbine blades, riveted plates, automobile chain links and for various types of pyro devices used in the space programme. In this paper, an overview of the salient features of this reactor facility for neutron radiography and our experience in the inspection of a variety of industrial components will be given.

  19. Fission reactor neutron sources for neutron capture therapy--a critical review.

    PubMed

    Harling, Otto K; Riley, Kent J

    2003-01-01

    The status of fission reactor-based neutron beams for neutron capture therapy (NCT) is reviewed critically. Epithermal neutron beams, which are favored for treatment of deep-seated tumors, have been constructed or are under construction at a number of reactors worldwide. Some of the most recently constructed epithermal neutron beams approach the theoretical optimum for beam purity. Of these higher quality beams, at least one is suitable for use in high through-put routine therapy. It is concluded that reactor-based epithermal neutron beams with near optimum characteristics are currently available and more can be constructed at existing reactors. Suitable reactors include relatively low power reactors using the core directly as a source of neutrons or a fission converter if core neutrons are difficult to access. Thermal neutron beams for NCT studies with small animals or for shallow tumor treatments, with near optimum properties have been available at reactors for many years. Additional high quality thermal beams can also be constructed at existing reactors or at new, small reactors. Furthermore, it should be possible to design and construct new low power reactors specifically for NCT, which meet all requirements for routine therapy and which are based on proven and highly safe reactor technology.

  20. Study of neutron focusing at the Texas Cold Neutron Source. Final report

    SciTech Connect

    Wehring, B.W.; Uenlue, K.

    1995-03-06

    Funds were received for the first year of a three year DOE Nuclear Engineering Research Grant, ``Study of Neutron Focusing at the Texas Cold Neutron Source`` (FGO2-92ER75711). The purpose of this three year study was to develop a neutron focusing system to be used with the Texas Cold Neutron Source (TCNS) to produce an intense beam of neutrons. A prompt gamma activation analysis (PGAA) facility was also to be designed, setup, and tested under the three year project. During the first year of the DOE grant, a new procedure was developed and used to design a focusing converging guide consisting of truncated rectangular cone sections. Detailed calculations were performed using a 3-D Monte Carlo code which we wrote to trace neutrons through the curved guide of the TCNS into the proposed converging guide. Using realistic reflectivities for Ni-Ti supermirrors, we obtained gains of 3 to 5 for the neutron flux averaged over an area of 1 {times} 1 cm.

  1. Neutron experiments at Portsmouth for measuring flow and {sup 235}U content in UF{sub 6} gas

    SciTech Connect

    Stromswold, D C; Reeder, P L; Peurrung, A J

    1997-04-01

    The Portsmouth Gaseous Diffusion Plant produces enriched uranium for use in commercial power reactors. The plant also aids disposal of excess high-enrichment uranium (HEU) by blending it with lower-enrichment material. Experiments were conducted to test two neutron-based methods for monitoring the down-blending of HEU. Results of the initial experiments showed that gas (on-off) could be detected, but that additional tests and data are needed to quantify the flow velocity and {sup 235}U content. The experiments used a {sup 252}Cf neutron source to induce fission in a small fraction of the {sup 235}U contained in the UF{sub 6} gas. The first method measured the attenuation of neutrons passing through the low-pressure UF{sub 6} gas in a 7.6-cm diameter pipe. The concept was based on the fact that some of the thermal neutrons are absorbed by {sup 235}U, thus changing the observed count rate. The second method, tested on a 20-cm diameter pipe where gas pressure was higher, used a modulated neutron flux to induce fission in the {sup 235}U. Modulation was achieved by moving a neutron source. During both experiments, plant monitoring equipment showed that light gases (freon, oxygen, and nitrogen) were present in widely varying amounts, along with the UF{sub 6} gas. These gases may have affected the experimental results, at least to the extent that they replaced UF{sub 6}. This report also contains results of computer simulations and tests performed on the electronics after the experiments were completed at Portsmouth. Recommendations are made for follow-on work to measure the flow velocity and {sup 235}U content.

  2. Materials for cold neutron sources: Cryogenic and irradiation effects

    SciTech Connect

    Alexander, D.J.

    1990-01-01

    Materials for the construction of cold neutron sources must satisfy a range of demands. The cryogenic temperature and irradiation create a severe environment. Candidate materials are identified and existing cold sources are briefly surveyed to determine which materials may be used. Aluminum- and magnesium-based alloys are the preferred materials. Existing data for the effects of cryogenic temperature and near-ambient irradiation on the mechanical properties of these alloys are briefly reviewed, and the very limited information on the effects of cryogenic irradiation are outlined. Generating mechanical property data under cold source operating conditions is a daunting prospect. It is clear that the cold source material will be degraded by neutron irradiation, and so the cold source must be designed as a brittle vessel. The continued effective operation of many different cold sources at a number of reactors makes it clear that this can be accomplished. 46 refs., 8 figs., 2 tab.

  3. Precision mass measurements of neutron-rich nuclei, and limitations on the r-process environment

    NASA Astrophysics Data System (ADS)

    Van Schelt, Jonathon A.

    2012-05-01

    The masses of 65 neutron-rich nuclides and 6 metastable states from Z = 49 to 64 were measured at a typical precision of δm/m= 10-7 using the Canadian Penning Trap mass spectrometer at Argonne National Laboratory. The measurements are on fission fragments from 252Cf spontaneous fission sources, including those measurements made at the new Californium Rare Isotope Breeder Upgrade facility (CARIBU) and an earlier source. The measured nuclides lie on or approach the predicted path of the astrophysical r process. Where overlap exists, this data set is largely consistent with previous measurements from Penning traps, storage rings, and reaction energetics, but large systematic deviations are apparent in β-endpoint measurements. Simulations of the r process were undertaken to determine how quickly material can pass through the studied elements for a variety of conditions, placing limits on what temperatures densities allow passage on a desired timescale. The new masses produce manifold differences in effective lifetime compared to simulations performed with some model masses.

  4. Proton Driver Linac for the Frankfurt Neutron Source

    SciTech Connect

    Wiesner, C.; Chau, L. P.; Dinter, H.; Droba, M.; Heilmann, M.; Joshi, N.; Maeder, D.; Metz, A.; Meusel, O.; Noll, D.; Podlech, H.; Ratzinger, U.; Reichau, H.; Schempp, A.; Schmidt, S.; Schweizer, W.; Volk, K.; Wagner, C.; Mueller, I.

    2010-08-04

    The Frankfurt Neutron Source at the Stern-Gerlach-Zentrum (FRANZ) will deliver high neutron fluxes in the energy range of 1 to 500 keV. The Activation Mode provides a high averaged neutron flux created by a cw proton beam of up to 5 mA, while in the Compressor Mode intense neutron pulses of 1 ns length are formed with a repetition rate of up to 250 kHz. The Compressor Mode is well-suited for energy-dependent neutron capture measurements using the Time-of-Flight method in combination with a 4{pi} BaF{sub 2} detector array. The design of the proton driver linac for both operation modes is presented. This includes the volume type ion source, the ExB chopper located in the low energy section, the RFQ-IH combination for beam acceleration and the bunch compressor. Finally, the neutron production at the lithium-7 target and the resulting energy spectrum is described.

  5. The Spallation Neutron Source Beam Commissioning and Initial Operations

    SciTech Connect

    Henderson, Stuart; Aleksandrov, Alexander V.; Allen, Christopher K.; Assadi, Saeed; Bartoski, Dirk; Blokland, Willem; Casagrande, F.; Campisi, I.; Chu, C.; Cousineau, Sarah M.; Crofford, Mark T.; Danilov, Viatcheslav; Deibele, Craig E.; Dodson, George W.; Feshenko, A.; Galambos, John D.; Han, Baoxi; Hardek, T.; Holmes, Jeffrey A.; Holtkamp, N.; Howell, Matthew P.; Jeon, D.; Kang, Yoon W.; Kasemir, Kay; Kim, Sang-Ho; Kravchuk, L.; Long, Cary D.; McManamy, T.; Pelaia, II, Tom; Piller, Chip; Plum, Michael A.; Pogge, James R.; Purcell, John David; Shea, T.; Shishlo, Andrei P; Sibley, C.; Stockli, Martin P.; Stout, D.; Tanke, E.; Welton, Robert F; Zhang, Y.; Zhukov, Alexander P

    2015-09-01

    The Spallation Neutron Source (SNS) accelerator delivers a one mega-Watt beam to a mercury target to produce neutrons used for neutron scattering materials research. It delivers ~ 1 GeV protons in short (< 1 us) pulses at 60 Hz. At an average power of ~ one mega-Watt, it is the highest-powered pulsed proton accelerator. The accelerator includes the first use of superconducting RF acceleration for a pulsed protons at this energy. The storage ring used to create the short time structure has record peak particle per pulse intensity. Beam commissioning took place in a staged manner during the construction phase of SNS. After the construction, neutron production operations began within a few months, and one mega-Watt operation was achieved within three years. The methods used to commission the beam and the experiences during initial operation are discussed.

  6. Digital front-end electronics for a tagged neutron inspection system

    SciTech Connect

    Cester, D.; Stevanato, L.; Viesti, G.; Nebbia, G.

    2013-04-19

    In this paper, we shall present a simple VME front-end system that employs the FADC CAEN V1720 8- channel 12-bit 250-MS/s digitizer. This system produces coincidence spectra between the trigger particle and other detectors and it replaces the traditional technique of chaining analog electronics. Tests have been performed using a pulser working at different frequencies as well as employing a {sup 252}Cf source in concert with an array of detectors.

  7. Detection of supernova neutrinos at spallation neutron sources

    NASA Astrophysics Data System (ADS)

    Huang, Ming-Yang; Guo, Xin-Heng; Young, Bing-Lin

    2016-07-01

    After considering supernova shock effects, Mikheyev-Smirnov-Wolfenstein effects, neutrino collective effects, and Earth matter effects, the detection of supernova neutrinos at the China Spallation Neutron Source is studied and the expected numbers of different flavor supernova neutrinos observed through various reaction channels are calculated with the neutrino energy spectra described by the Fermi-Dirac distribution and the “beta fit” distribution respectively. Furthermore, the numerical calculation method of supernova neutrino detection on Earth is applied to some other spallation neutron sources, and the total expected numbers of supernova neutrinos observed through different reactions channels are given. Supported by National Natural Science Foundation of China (11205185, 11175020, 11275025, 11575023)

  8. Dynamically polarized samples for neutron protein crystallography at the Spallation Neutron Source

    NASA Astrophysics Data System (ADS)

    Zhao, Jinkui; Pierce, Josh; Myles, Dean; Robertson, J. L.; Herwig, Kenneth W.; Standaert, Bob; Cuneo, Matt; Li, Le; Meilleur, Flora

    2016-09-01

    To prepare for the next generation neutron scattering instruments for the planned second target station at the Spallation Neutron Source (SNS) and to broaden the scientific impact of neutron protein crystallography at the Oak Ridge National Laboratory, we have recently ramped up our efforts to develop a dynamically polarized target for neutron protein crystallography at the SNS. Proteins contain a large amount of hydrogen which contributes to incoherent diffraction background and limits the sensitivity of neutron protein crystallography. This incoherent background can be suppressed by using polarized neutron diffraction, which in the same time also improves the coherent diffraction signal. Our plan is to develop a custom Dynamic Nuclear Polarization (DNP) setup tailored to neutron protein diffraction instruments. Protein crystals will be polarized at a magnetic field of 5 T and temperatures of below 1 K. After the dynamic polarization process, the sample will be brought to a frozen-spin mode in a 0.5 T holding field and at temperatures below 100 mK. In a parallel effort, we are also investigating various ways of incorporating polarization agents needed for DNP, such as site specific spin labels, into protein crystals.

  9. Optimizing moderator dimensions for neutron scattering at the spallation neutron source.

    PubMed

    Zhao, J K; Robertson, J L; Herwig, Kenneth W; Gallmeier, Franz X; Riemer, Bernard W

    2013-12-01

    In this work, we investigate the effect of neutron moderator dimensions on the performance of neutron scattering instruments at the Spallation Neutron Source (SNS). In a recent study of the planned second target station at the SNS facility, we have found that the dimensions of a moderator play a significant role in determining its surface brightness. A smaller moderator may be significantly brighter over a smaller viewing area. One of the immediate implications of this finding is that for modern neutron scattering instrument designs, moderator dimensions and brightness have to be incorporated as an integrated optimization parameter. Here, we establish a strategy of matching neutron scattering instruments with moderators using analytical and Monte Carlo techniques. In order to simplify our treatment, we group the instruments into two broad categories: those with natural collimation and those that use neutron guide systems. For instruments using natural collimation, the optimal moderator selection depends on the size of the moderator, the sample, and the moderator brightness. The desired beam divergence only plays a role in determining the distance between sample and moderator. For instruments using neutron optical systems, the smallest moderator available that is larger than the entrance dimension of the closest optical element will perform the best (assuming, as is the case here that smaller moderators are brighter).

  10. Evaluation of thermal neutron irradiation field using a cyclotron-based neutron source for alpha autoradiography.

    PubMed

    Tanaka, H; Sakurai, Y; Suzuki, M; Masunaga, S; Mitsumoto, T; Kinashi, Y; Kondo, N; Narabayashi, M; Nakagawa, Y; Watanabe, T; Fujimoto, N; Maruhashi, A; Ono, K

    2014-06-01

    It is important to measure the microdistribution of (10)B in a cell to predict the cell-killing effect of new boron compounds in the field of boron neutron capture therapy. Alpha autoradiography has generally been used to detect the microdistribution of (10)B in a cell. Although it has been performed using a reactor-based neutron source, the realization of an accelerator-based thermal neutron irradiation field is anticipated because of its easy installation at any location and stable operation. Therefore, we propose a method using a cyclotron-based epithermal neutron source in combination with a water phantom to produce a thermal neutron irradiation field for alpha autoradiography. This system can supply a uniform thermal neutron field with an intensity of 1.7×10(9) (cm(-2)s(-1)) and an area of 40mm in diameter. In this paper, we give an overview of our proposed system and describe a demonstration test using a mouse liver sample injected with 500mg/kg of boronophenyl-alanine.

  11. High Flux Isotope Reactor cold neutron source reference design concept

    SciTech Connect

    Selby, D.L.; Lucas, A.T.; Hyman, C.R.

    1998-05-01

    In February 1995, Oak Ridge National Laboratory`s (ORNL`s) deputy director formed a group to examine the need for upgrades to the High Flux Isotope Reactor (HFIR) system in light of the cancellation of the Advanced neutron Source Project. One of the major findings of this study was that there was an immediate need for the installation of a cold neutron source facility in the HFIR complex. In May 1995, a team was formed to examine the feasibility of retrofitting a liquid hydrogen (LH{sub 2}) cold source facility into an existing HFIR beam tube. The results of this feasibility study indicated that the most practical location for such a cold source was the HB-4 beam tube. This location provides a potential flux environment higher than the Institut Laue-Langevin (ILL) vertical cold source and maximizes the space available for a future cold neutron guide hall expansion. It was determined that this cold neutron beam would be comparable, in cold neutron brightness, to the best facilities in the world, and a decision was made to complete a preconceptual design study with the intention of proceeding with an activity to install a working LH{sub 2} cold source in the HFIR HB-4 beam tube. During the development of the reference design the liquid hydrogen concept was changed to a supercritical hydrogen system for a number of reasons. This report documents the reference supercritical hydrogen design and its performance. The cold source project has been divided into four phases: (1) preconceptual, (2) conceptual design and testing, (3) detailed design and procurement, and (4) installation and operation. This report marks the conclusion of the conceptual design phase and establishes the baseline reference concept.

  12. On the scintillation efficiency of carborane-loaded liquid scintillators for thermal neutron detection

    NASA Astrophysics Data System (ADS)

    Chang, Zheng; Okoye, Nkemakonam C.; Urffer, Matthew J.; Green, Alexander D.; Childs, Kyle E.; Miller, Laurence F.

    2015-01-01

    The scintillation efficiency in response to thermal neutrons was studied by loading different concentrations of carborane (0-8.5 wt%) and naphthalene (0 and 100 g/L) in five liquid organic scintillators. The sample was characterized in Pb and Cd shields under the irradiation of the thermal neutrons from a 252Cf source. A method was developed to extract the net neutron response from the pulse-height spectra. It was found that the order of scintillation efficiencies for both γ-rays and thermal neutrons is as follows: diisopropylnaphthalene>toluene (concentrated solutes)>toluene~pseudocumene~m-xylene. The quench constants, obtained by fitting the Stern-Volmer model to the plots of light output versus carborane concentration, are in the range of 0.35-1.4 M-1 for all the scintillators. The Birks factors, estimated using the specific energy loss profiles of the incident particles, are in the range of 9.3-14 mg cm-2 MeV-1 for all the samples. The light outputs are in the range of 63-86 keV electron equivalents (keVee) in response to thermal neutrons. Loading naphthalene generally promotes the scintillation efficiency of the scintillator with a benzene derivative solvent. Among all the scintillators tested, the diisopropylnaphthalene-based scintillator shows the highest scintillation efficiency, lowest Birks factor, and smallest quench constants. These properties are primarily attributed to the double fused benzene-ring structure of the solvent, which is more efficient to populate to the excited singlet state under ionizing radiation and to transfer the excitation energy to the fluorescent solutes.

  13. Accelerator shield design of KIPT neutron source facility

    SciTech Connect

    Zhong, Z.; Gohar, Y.

    2013-07-01

    Argonne National Laboratory (ANL) of the United States and Kharkov Institute of Physics and Technology (KIPT) of Ukraine have been collaborating on the design development of a neutron source facility at KIPT utilizing an electron-accelerator-driven subcritical assembly. Electron beam power is 100 kW, using 100 MeV electrons. The facility is designed to perform basic and applied nuclear research, produce medical isotopes, and train young nuclear specialists. The biological shield of the accelerator building is designed to reduce the biological dose to less than 0.5-mrem/hr during operation. The main source of the biological dose is the photons and the neutrons generated by interactions of leaked electrons from the electron gun and accelerator sections with the surrounding concrete and accelerator materials. The Monte Carlo code MCNPX serves as the calculation tool for the shield design, due to its capability to transport electrons, photons, and neutrons coupled problems. The direct photon dose can be tallied by MCNPX calculation, starting with the leaked electrons. However, it is difficult to accurately tally the neutron dose directly from the leaked electrons. The neutron yield per electron from the interactions with the surrounding components is less than 0.01 neutron per electron. This causes difficulties for Monte Carlo analyses and consumes tremendous computation time for tallying with acceptable statistics the neutron dose outside the shield boundary. To avoid these difficulties, the SOURCE and TALLYX user subroutines of MCNPX were developed for the study. The generated neutrons are banked, together with all related parameters, for a subsequent MCNPX calculation to obtain the neutron and secondary photon doses. The weight windows variance reduction technique is utilized for both neutron and photon dose calculations. Two shielding materials, i.e., heavy concrete and ordinary concrete, were considered for the shield design. The main goal is to maintain the total

  14. Residual stress measurement using the pulsed neutron source at LANSCE

    SciTech Connect

    Bourke, M.A.M.; Goldstone, J.A. ); Holden, T.M. )

    1991-01-01

    The presence of residual stress in engineering components can effect their mechanical properties and structural integrity. Neutron diffraction is the only measuring technique which can make spatially resolved non-destructive strain measurements in the interior of components. By recording the change in the crystalline interplanar spacing, elastic strains can be measured for individual lattice reflections. Using a pulsed neutron source, all the lattice reflections are recorded in each measurement which allows anisotropic effects to be studied. Measurements made at the Manuel Lujan Jr Neutron Scattering Centre (LANSCE) demonstrate the potential for stress measurements on a pulsed source and indicate the advantages and disadvantages over measurements made on a reactor. 15 refs., 7 figs.

  15. Neutron imaging with the short-pulse laser driven neutron source at the Trident laser facility

    NASA Astrophysics Data System (ADS)

    Guler, N.; Volegov, P.; Favalli, A.; Merrill, F. E.; Falk, K.; Jung, D.; Tybo, J. L.; Wilde, C. H.; Croft, S.; Danly, C.; Deppert, O.; Devlin, M.; Fernandez, J.; Gautier, D. C.; Geissel, M.; Haight, R.; Hamilton, C. E.; Hegelich, B. M.; Henzlova, D.; Johnson, R. P.; Schaumann, G.; Schoenberg, K.; Schollmeier, M.; Shimada, T.; Swinhoe, M. T.; Taddeucci, T.; Wender, S. A.; Wurden, G. A.; Roth, M.

    2016-10-01

    Emerging approaches to short-pulse laser-driven neutron production offer a possible gateway to compact, low cost, and intense broad spectrum sources for a wide variety of applications. They are based on energetic ions, driven by an intense short-pulse laser, interacting with a converter material to produce neutrons via breakup and nuclear reactions. Recent experiments performed with the high-contrast laser at the Trident laser facility of Los Alamos National Laboratory have demonstrated a laser-driven ion acceleration mechanism operating in the regime of relativistic transparency, featuring a volumetric laser-plasma interaction. This mechanism is distinct from previously studied ones that accelerate ions at the laser-target surface. The Trident experiments produced an intense beam of deuterons with an energy distribution extending above 100 MeV. This deuteron beam, when directed at a beryllium converter, produces a forward-directed neutron beam with ˜5 × 109 n/sr, in a single laser shot, primarily due to deuteron breakup. The neutron beam has a pulse duration on the order of a few nanoseconds with an energy distribution extending from a few hundreds of keV to almost 80 MeV. For the experiments on neutron-source spot-size measurements, our gated neutron imager was setup to select neutrons in the energy range of 2.5-35 MeV. The spot size of neutron emission at the converter was measured by two different imaging techniques, using a knife-edge and a penumbral aperture, in two different experimental campaigns. The neutron-source spot size is measured ˜1 mm for both experiments. The measurements and analysis reported here give a spatial characterization for this type of neutron source for the first time. In addition, the forward modeling performed provides an empirical estimate of the spatial characteristics of the deuteron ion-beam. These experimental observations, taken together, provide essential yet unique data to benchmark and verify theoretical work into the

  16. Advanced modeling of prompt fission neutrons

    SciTech Connect

    Talou, Patrick

    2009-01-01

    Theoretical and numerical studies of prompt fission neutrons are presented. The main results of the Los Alamos model often used in nuclear data evaluation work are reviewed briefly, and a preliminary assessment of uncertainties associated with the evaluated prompt fission neutron spectrum for n (0.5 MeV)+{sup 239}Pu is discussed. Advanced modeling of prompt fission neutrons is done by Monte Carlo simulations of the evaporation process of the excited primary fission fragments. The successive emissions of neutrons are followed in the statistical formalism framework, and detailed information, beyond average quantities, can be inferred. This approach is applied to the following reactions: {sup 252}Cf (sf), n{sub th} + {sup 239}Pu, n (0.5 MeV)+{sup 235}U, and {sup 236}Pu (sf). A discussion on the merits and present limitations of this approach concludes this presentation.

  17. A Californium-252 Neutron Source for Student Use

    ERIC Educational Resources Information Center

    Bowen, H. J.

    1975-01-01

    Describes an undergraduate chemistry experiment which utilizes small samples of Californium 252 as a neutron source for the activation of 12 other elements. The students prepare decay curves of the radioactive isotopes and perform nondestructive activation analyses for gram amounts of some elements. (MLH)

  18. Fission-Fusion Neutron Source Progress Report July 31, 2009

    SciTech Connect

    Chapline, G; Daffin, F; Clarke, R

    2010-02-19

    In this report the authors describe progress in evaluating the feasibility of a novel concept for producing intense pulses of 14 MeV neutrons using the DT fusion reaction. In this new scheme the heating of the DT is accomplished using fission fragments rather than ion beams as in conventional magnet fusion schemes or lasers in ICF schemes. This has the great advantage that there is no need for any large auxiliary power source. The scheme does require large magnetic fields, but generating these fields, e.g. with superconducting magnets, requires only a modest power source. As a source of fission fragments they propose using a dusty reactor concept introduced some time ago by one of us (RC). The version of the dusty reactor that they propose using for our neutron source would operate as a thermal neutron reactor and use highly enriched uranium in the form of micron sized pellets of UC. Our scheme for using the fission fragments to produce intense pulses of 14 MeV neutrons is based on the fission fragment rocket idea. In the fission fragment rocket scheme it was contemplated that the fission fragments produced in a low density reactor core would then be guided out of the reactor by large magnetic fields. A simple version of this idea would be to use the fission fragments escaping from one side of a tandem magnet mirror to heat DT gas confined in the adjacent magnetic trap.

  19. Opportunities for Neutrino Physics at the Spallation Neutron Source (SNS)

    SciTech Connect

    Efremenko, Yuri; Hix, William Raphael

    2009-01-01

    In this paper we discuss opportunities for a neutrino program at the Spallation Neutrons Source (SNS) being commissioning at ORNL. Possible investigations can include study of neutrino-nuclear cross sections in the energy rage important for supernova dynamics and neutrino nucleosynthesis, search for neutrino-nucleus coherent scattering, and various tests of the standard model of electro-weak interactions.

  20. The Spallation Neutron Source and the Neutrino Physics Program

    SciTech Connect

    Stancu, Ion

    2008-02-21

    In this paper we describe the recently-completed Spallation Neutron Source (SNS) at the Oak Ridge National Laboratory (ORNL), along with a proposed long-term neutrino physics program to study neutrino-nucleus cross-sections and neutrino oscillations.

  1. Neutrino Cross-Section Measurements at the Spallation Neutron Source

    SciTech Connect

    Stancu, Ion

    2008-02-21

    In this paper we discuss the proposal to build a neutrino facility at the recently-completed Spallation Neutron Source (SNS) at the Oak Ridge National Laboratory (ORNL). This facility can host an extensive, long-term program to study neutrino-nucleus cross-sections in the range of interest for nuclear astrophysics and nuclear theory.

  2. Concept of DT fuel cycle for a fusion neutron source

    SciTech Connect

    Anan'ev, S.; Spitsyn, A.V.; Kuteev, B.V.; Cherkez, D.I.; Shirnin, P.N.; Kazakovsky, N.T.

    2015-03-15

    A concept of DT-fusion neutron source (FNS) with the neutron yield higher than 10{sup 18} neutrons per second is under design in Russia. Such a FNS is of interest for many applications: 1) basic and applied research (neutron scattering, etc); 2) testing the structural materials for fusion reactors; 3) control of sub-critical nuclear systems and 4) nuclear waste processing (including transmutation of minor actinides). This paper describes the fuel cycle concept of a compact fusion neutron source based on a small spherical tokamak (FNS-ST) with a MW range of DT fusion power and considers the key physics issues of this device. The major and minor radii are ∼0.5 and ∼0.3 m, magnetic field ∼1.5 T, heating power less than 15 MW and plasma current 1-2 MA. The system provides the fuel mixture with equal fractions of D and T (D:T = 1:1) for all FNS technology systems. (authors)

  3. Evidence for octupole excitations in the odd-odd neutron-rich nucleus {sup 142}Cs

    SciTech Connect

    Liu, S. H.; Hamilton, J. H.; Ramayya, A. V.; Hwang, J. K.; Luo, Y. X.; Rasmussen, J. O.; Zhu, S. J.; Ma, W. C.; Daniel, A. V.; Ter-Akopian, G. M.

    2010-05-15

    High-spin states in the neutron-rich nucleus {sup 142}Cs are reinvestigated from a study of the spontaneous fission of {sup 252}Cf with the Gammasphere detector array. A new level scheme is built and spin-parities are assigned to levels based on angular correlation measurements and systematics. The new structure of {sup 142}Cs is proposed to be related to octupole correlations. The electric dipole moment of {sup 142}Cs is measured and a dramatic decrease of the dipole moments with increasing neutron numbers in the Cs isotopic chain is found.

  4. Automatic pneumatic source-control system for positioning gamma and neutron calibration sources

    SciTech Connect

    Hunt, G.F.

    1980-10-17

    A microcomputer-based source-control system was developed to move gamma and neutron calibration sources into position for sample irradiation. In addition to monitoring interlocks and system status, the computer calculates for gamma sources the time required for a requested exposure at a specified distance. All system use data is stored, and monthly reports are generated.

  5. Low-Dose-Rate Californium-252 Neutron Intracavitary Afterloading Radiotherapy Combined With Conformal Radiotherapy for Treatment of Cervical Cancer

    SciTech Connect

    Zhang Min; Xu Hongde; Pan Songdan; Lin Shan; Yue Jianhua; Liu Jianren

    2012-07-01

    Purpose: To study the efficacy of low-dose-rate californium-252 ({sup 252}Cf) neutron intracavitary afterloading radiotherapy (RT) combined with external pelvic RT for treatment of cervical cancer. Methods and Materials: The records of 96 patients treated for cervical cancer from 2006 to 2010 were retrospectively reviewed. For patients with tumors {<=}4 cm in diameter, external beam radiation was performed (1.8 Gy/day, five times/week) until the dose reached 20 Gy, and then {sup 252}Cf neutron intracavitary afterloading RT (once/week) was begun, and the frequency of external beam radiation was changed to four times/week. For patients with tumors >4 cm, {sup 252}Cf RT was performed one to two times before whole-pelvis external beam radiation. The tumor-eliminating dose was determined by using the depth limit of 5 mm below the mucosa as the reference point. In all patients, the total dose of the external beam radiation ranged from 46.8 to 50 Gy. For {sup 252}Cf RT, the dose delivered to point A was 6 Gy/fraction, once per week, for a total of seven times, and the total dose was 42 Gy. Results: The mean {+-} SD patient age was 54.7 {+-} 13.7 years. Six patients had disease assessed at stage IB, 13 patients had stage IIA, 49 patients had stage IIB, 3 patients had stage IIIA, 24 patients had stage IIIB, and 1 patient had stage IVA. All patients obtained complete tumor regression (CR). The mean {+-} SD time to CR was 23.5 {+-} 3.4 days. Vaginal bleeding was fully controlled in 80 patients within 1 to 8 days. The mean {+-} SD follow-up period was 27.6 {+-} 12.7 months (range, 6-48 months). Five patients died due to recurrence or metastasis. The 3-year survival and disease-free recurrence rates were 89.6% and 87.5 %, respectively. Nine patients experienced mild radiation proctitis, and 4 patients developed radiocystitis. Conclusions: Low-dose-rate {sup 252}Cf neutron RT combined with external pelvic RT is effective for treating cervical cancer, with a low incidence of

  6. Measurement of Ultracold Neutrons Produced by Using Doppler-shifted Bragg Reflection at a Pulsed-neutron Source

    DOE R&D Accomplishments Database

    Brun, T. O.; Carpenter, J. M.; Krohn, V. E.; Ringo, G. R.; Cronin, J. W.; Dombeck, T. W.; Lynn, J. W.; Werner, S. A.

    1979-01-01

    Ultracold neutrons (UCN) have been produced at the Argonne pulsed-neutron source by the Doppler shift of 400-m/s neutrons Bragg reflected from a moving crystal. The peak density of UCN produced at the crystal exceeds 0.1 n/cm{sup 3}.

  7. Calibration Tools for Measurement of Highly Enriched Uranium in Oxide and Mixed Uranium-Plutonium Oxide with a Passive-Active Neutron Drum Shuffler

    SciTech Connect

    Mount, M; O'Connell, W; Cochran, C; Rinard, P

    2003-06-13

    Lawrence Livermore National Laboratory (LLNL) has completed an extensive effort to calibrate the LLNL passive-active neutron drum (PAN) shuffler (Canberra Model JCC-92) for accountability measurement of highly enriched uranium (HEU) oxide and HEU in mixed uranium-plutonium (U-Pu) oxide. Earlier papers described the PAN shuffler calibration over a range of item properties by standards measurements and an extensive series of detailed simulation calculations. With a single normalization factor, the simulations agree with the HEU oxide standards measurements to within {+-}1.2% at one standard deviation. Measurement errors on mixed U-Pu oxide samples are in the {+-}2% to {+-}10% range, or {+-}20 g for the smaller items. The purpose of this paper is to facilitate transfer of the LLNL procedure and calibration algorithms to external users who possess an identical, or equivalent, PAN shuffler. Steps include (1) measurement of HEU standards or working reference materials (WRMs); (2) MCNP simulation calculations for the standards or WRMs and a range of possible masses in the same containers; (3) a normalization of the calibration algorithms using the standard or WRM measurements to account for differences in the {sup 252}Cf source strength, the delayed-neutron nuclear data, effects of the irradiation protocol, and detector efficiency; and (4) a verification of the simulation series trends against like LLNL results. Tools include EXCEL/Visual Basic programs which pre- and post-process the simulations, control the normalization, and embody the calibration algorithms.

  8. Accelerator-Driven Neutron Source for Cargo Screening

    SciTech Connect

    Ludewigt, B.A.; Bleuel, D.L.; Hoff, M.D.; Kwan, J.W.; Li, D.; Ratti, A.; Staples, J.W.; Virostek, S.P.; Wells, R.P.

    2006-11-15

    Advanced neutron interrogation systems for the screening ofsea-land cargo containers for shielded special nuclear materials (SNM)require a high-yield neutron source to achieve the desired detectionprobability, false alarm rate, and throughput. An accelerator-drivenneutron source is described that produces a forward directed beam ofhigh-energy (up to 8.5 MeV) neutrons utilizing the D(d,n)3He reaction atdeuteron beam energies of up to 6 MeV. The key components of the neutronsource are a high-current RFQ accelerator and an innovative neutronproduction target. A microwave-driven deuteron source is coupled to anelectrostatic LEBT that injects a 40 mA D+-beam into a 6 MeV, 5.1meter-long, 200 MHz RFQ. The RFQ is based on an unusual beam dynamicsdesign and is capable of operating at a duty factor that produces morethan 1.2 mA timeaverage beam current. The beam is transported to a2-atmosphere deuterium gas target with a specially-designed, thinentrance window. A high-frequency dipole magnet is used to spread thebeam over the long dimension of the 4 by 35 cm target window. The sourcewill be capable of delivering a neutron flux of ~;2 x 107 n/(cm2 x s) tothe center of a sea-land cargo container and is expected t o satisfy therequirements for full testing and demonstration of advanced neutroninterrogation techniques based on stimulated SNM signatures.

  9. Heat generation and neutron beam characteristics in a high power pulsed spallation neutron source

    SciTech Connect

    Jerng, D.W.; Carpenter, J.M.

    1996-11-01

    In the course of conceptual design of a high power pulsed spallation source, a Monte Carlo model was developed for heat generation and neutronics studies. In this paper, we present two sets of results. The first set of calculations was performed with a simple target model to investigate general characteristics of power distribution and neutron production with various proton energies ranging from 0.8 to 12 GeV. The second set was performed with a realistic target model including major components of the target system to provide basic parameters for engineering design of a high power pulsed spallation source. Calculated results generally confirm that higher proton energy provides and advantage in target cooling system requirements and yet somewhat lower neutron beam intensity as a counter effect. The heat generation in the systems surrounding the target was investigated in detail and found to have important variation with position and according to proton beam energy. Calculations of the neutron currents from the moderators showed that the neutron beam intensity from moderators in the front region of the target decreased fro higher proton energy while that from moderators in the back region of the target remained almost unchanged.

  10. Upgrades to the ultracold neutron source at the Los Alamos Neutron Science Center

    NASA Astrophysics Data System (ADS)

    Pattie, Robert; LANL-nEDM Collaboration

    2015-10-01

    The spallation-driven solid deutrium-based ultracold neutron (UCN) source at the Los Alamos Neutron Science Center (LANSCE) has provided a facility for precision measurements of fundamental symmetries via the decay observables from neutron beta decay for nearly a decade. In preparation for a new room temperature neutron electric dipole moment (nEDM) experiment and to increase the statistical sensitivity of all experiments using the source an effort to increase the UCN output is underway. The ultimate goal is to provide a density of 100 UCN/cc or greater in the nEDM storage cell. This upgrade includes redesign of the cold neutron moderator and UCN converter geometries, improved coupling and coating of the UCN transport system through the biological shielding, optimization of beam timing structure, and increase of the proton beam current. We will present the results of the MCNP and UCN transport simulations that led to the new design, which will be installed spring 2016, and UCN guide tests performed at LANSCE and the Institut Laue-Langevin to study the UCN transport properties of a new nickel-based guide coating.

  11. Thermal-hydraulic studies of the Advanced Neutron Source cold source

    SciTech Connect

    Williams, P.T.; Lucas, A.T.

    1995-08-01

    The Advanced Neutron Source (ANS), in its conceptual design phase at Oak Ridge National Laboratory, was to be a user-oriented neutron research facility producing the most intense steady-state flux of thermal and cold neutrons in the world. Among its many scientific applications, the production of cold neutrons was a significant research mission for the ANS. The cold neutrons come from two independent cold sources positioned near the reactor core. Contained by an aluminum alloy vessel, each cold source is a 410-mm-diam sphere of liquid deuterium that functions both as a neutron moderator and a cryogenic coolant. With nuclear heating of the containment vessel and internal baffling, steady-state operation requires close control of the liquid deuterium flow near the vessel`s inner surface. Preliminary thermal-hydraulic analyses supporting the cold source design were performed with heat conduction simulations of the vessel walls and multidimensional computational fluid dynamics simulations of the liquid deuterium flow and heat transfer. This report presents the starting phase of a challenging program and describes the cold source conceptual design, the thermal-hydraulic feasibility studies of the containment vessel, and the future computational and experimental studies that were planned to verify the final design.

  12. A Microfabricated Deuterium Ion Source for Compact Neutron Generators

    NASA Astrophysics Data System (ADS)

    Johnson, Benjamin Bargsten

    Active neutron interrogation is generally accepted as a reliable means of detecting the illicit transportation of special nuclear materials, in particular highly enriched uranium. The development of portable active neutron interrogation systems for field detection applications could be facilitated by the use of a new deuterium ion source which has the potential to advance many of the performance limiting aspects of exiting compact, accelerator-driven neutron generators. The ion source being investigated is a gated array of sharp metal tips that uses high electric fields to generate deuterium ion currents through the physical processes of field ionization and field desorption. The deuterium ions produced by the source are extracted and used to drive a D-D (or D-T) fusion reaction to create neutrons. The basic microstructure for the ion source array is derived from modern semiconductor microfabrication technology for field emitter arrays, though many structural modifications have been made in an attempt to reach the required operating fields of the ion generation processes. Pulsed (field desorption) and d.c. (field ionization) tests conducted with each array design type developed thus far indicate a steady improvement in array tip operating fields. Field ionization studies were conducted with arrays at source temperatures of 77 K and 293 K. Newly developed arrays have demonstrated field ionization currents upwards of ˜50 nA, which is roughly 50% of the maximum ion production possible, as presently fabricated. Neutron production by field ionization was demonstrated for the first time from the microfabricated arrays. A maximum neutron yield of 95 n/s (6300 n/s/cm2 of array active area) was observed from a 1.5 mm2 array using a D-D fusion reaction at -90 kV. Field desorption studies at 77 K and 293 K were conducted in parallel with field ionization testing. To date, the arrays have consistently demonstrated the field desorption of deuterium ions from array tip surfaces

  13. Tritium target fabrication for the rotating target neutron source

    NASA Astrophysics Data System (ADS)

    Adair, H. L.; Kobisk, E. H.; Byrum, B. L.

    1982-09-01

    The Isotope Research Materials Laboratory (IRML) of the Oak Ridge National Laboratory (ORNL) prepares tritium targets that are used to produce an intense beam of 14.5 MeV neutrons by the 13H( 12H, 01n) 24He reaction. The intense beams of 14.5 MeV neutrons are used in programs involving cancer research, materials evaluation, and materials identification. Many of the tritium targets prepared by IRML for the past four years have been used in support of the Rotating Target Neutron Source (RTNS) programs at the Lawrence Livermore National Laboratory (LLNL). The tritium targets are prepared by the vacuum evaporation of titanium from a rod-fed electron beam gun. The resulting vapor-condensed titanium layers are exposed to a tritium atmosphere to form titanium tritide. A summary of tritium target development at IRML with an emphasis on the RTNS programs is presented.

  14. Nuclear science research at the WNR and LANSCE neutron sources

    SciTech Connect

    Lisowski, P.W.

    1994-06-01

    The Weapons Neutron Research (WNR) Facility and the Los Alamos Neutron Scattering Center (LANSCE) use 800 MeV proton beam from the Los Alamos Meson Physics Facility (LAMPF) to generate intense bursts of neutrons. Experiments using time-of-flight (TOF) energy determination can cover an energy range from thermal to about 2 MeV at LANSCE and 0.1 to 800 MeV at WNR. At present, three flight paths at LANSCE and six flight paths at WNR are used in basic and applied nuclear science research. In this paper we present a status report on WNR and LANSCE, discuss plans for the future, and describe three experiments recently completed or underway that use the unique features of these sources.

  15. Solitary neutron stars as gamma-ray sources

    NASA Astrophysics Data System (ADS)

    Ruderman, M.

    Very high energy particle accelerators exist in the outer magnetospheres of some rapidly spinning solitary radiopulsars. The production of e± pairs and γ-rays associated with these accelerators evolves as the pulsar spins down. Expected evolution proceeds from a weak γ-ray source to a stronger Crab-like pulsar, then to a Vela-like pulsar, to a much stronger Cos B source, and, after several 104years, to an extinct aligned Vela-like neutron star whose further spin-down is quenched. The latter can be reignited to be a transient Gamma Ray Burst source by various "match-like" phenomena. Reasons are given for the different evolution of canonical radiopulsars. Outer magnetosphere accelerators in millisecond pulsars and around magnetized neutron stars with accretion disks are also considered.

  16. A high power accelerator driver system for spallation neutron sources

    SciTech Connect

    Jason, A.; Blind, B.; Channell, P.

    1996-07-01

    This is the final report of a two-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). For several years, the Los Alamos Meson Physics Facility (LAMPF) and the Proton Storage Ring (PSR) have provided a successful driver for the nearly 100-kW Los Alamos Neutron Scattering Center (LANSCE) source. The authors have studied an upgrade to this system. The goal of this effort was to establish a credible design for the accelerator driver of a next-generation source providing 1-MW of beam power. They have explored a limited subset of the possible approaches to a driver and have considered only the low 1-MW beam power. The next-generation source must utilize the optimum technology and may require larger neutron intensities than they now envision.

  17. Dense Plasma Focus Fusion Neutron Sources Progress at NSTec, September 2011

    SciTech Connect

    Hagen, E. C.

    2011-07-02

    A number of dense plasma focus (DPF) sources are introduced, including their operating characteristics and current activities. Neutron resonance spectroscopy is discussed and the feasibility of using DPF for neutron sources is considered.

  18. Measuring and monitoring KIPT Neutron Source Facility Reactivity

    SciTech Connect

    Cao, Yan; Gohar, Yousry; Zhong, Zhaopeng

    2015-08-01

    Argonne National Laboratory (ANL) of USA and Kharkov Institute of Physics and Technology (KIPT) of Ukraine have been collaborating on developing and constructing a neutron source facility at Kharkov, Ukraine. The facility consists of an accelerator-driven subcritical system. The accelerator has a 100 kW electron beam using 100 MeV electrons. The subcritical assembly has keff less than 0.98. To ensure the safe operation of this neutron source facility, the reactivity of the subcritical core has to be accurately determined and continuously monitored. A technique which combines the area-ratio method and the flux-to-current ratio method is purposed to determine the reactivity of the KIPT subcritical assembly at various conditions. In particular, the area-ratio method can determine the absolute reactivity of the subcritical assembly in units of dollars by performing pulsed-neutron experiments. It provides reference reactivities for the flux-to-current ratio method to track and monitor the reactivity deviations from the reference state while the facility is at other operation modes. Monte Carlo simulations are performed to simulate both methods using the numerical model of the KIPT subcritical assembly. It is found that the reactivities obtained from both the area-ratio method and the flux-to-current ratio method are spatially dependent on the neutron detector locations and types. Numerical simulations also suggest optimal neutron detector locations to minimize the spatial effects in the flux-to-current ratio method. The spatial correction factors are calculated using Monte Carlo methods for both measuring methods at the selected neutron detector locations. Monte Carlo simulations are also performed to verify the accuracy of the flux-to-current ratio method in monitoring the reactivity swing during a fuel burnup cycle.

  19. INL Neutron Interrogation R&D: FY2010 MPACT End of Year Report

    SciTech Connect

    D. L. Chichester; E. H. Seabury; J. Wharton; S. M. Watson

    2010-08-01

    Experiments have been carried out to investigate the feasibility and utility of using neutron interrogation and small-scale, portable prompt gamma-ray neutron activation analysis (PGNAA) instruments for assaying uranium for safeguards applications. Prior work has shown the potential of the PGNAA technique for assaying uranium using reactor-based neutron sources and high-yield electronic neutron generators (ENGs). In this project we adapted Idaho National Laboratory's portable isotopic neutron spectroscopy (PINS) PGNAA system for measuring natural-enrichment uranium yellowcake and metallic depleted uranium and highly enriched uranium. This work used 252Cf as well as deuterium-deuterium (DD) and deuterium-tritium (DT) ENGs. For PGNAA measurements a limiting factor when assaying large objects is the detector dead time due to fast-neutron scattering off of the uranium; this limits the maximum useable neutron source strength to O(107) neutrons per second. Under these conditions the low PGNAA reaction cross sections for uranium prohibited the collection of useful uranium PGNAA signatures from either the yellowcake or metallic uranium samples. Measurement of the decay product activation in these materials following irradiation in the PGNAA geometry similarly did not produce useful uranium activation product – fission product signatures. A customized irradiation geometry tailored to optimally thermalize the interrogation neutron source, intended only for generating long-lived activation products – fission products and not intended for PGNAA measurements, might be possible using small scale ENGs but an application need and a modeling and simulation exercise would be recommended before advancing to experiments. Neutron interrogation PGNAA using a DT-ENG was found to be a quick and useful qualitative method for detecting the presence of oxygen in natural-enrichment uranium yellowcake. With a low effort of development work it would be reasonable to expect this measurement

  20. A field evaporation deuterium ion source for neutron generators

    SciTech Connect

    Reichenbach, Birk; Solano, I.; Schwoebel, P. R.

    2008-05-01

    Proof-of-principle experiments have demonstrated an electrostatic field evaporation based deuterium ion source for use in compact, high-output deuterium-tritium neutron generators. The ion source produces principally atomic deuterium and titanium ions. More than 100 ML of deuterated titanium thin film can be removed and ionized from a single tip in less than 20 ns. The measurements indicate that with the use of microfabricated tip arrays the deuterium ion source could provide sufficient ion current to produce 10{sup 9}-10{sup 10} n/cm{sup 2} of tip array area.

  1. A field evaporation deuterium ion source for neutron generators

    NASA Astrophysics Data System (ADS)

    Reichenbach, Birk; Solano, I.; Schwoebel, P. R.

    2008-05-01

    Proof-of-principle experiments have demonstrated an electrostatic field evaporation based deuterium ion source for use in compact, high-output deuterium-tritium neutron generators. The ion source produces principally atomic deuterium and titanium ions. More than 100 ML of deuterated titanium thin film can be removed and ionized from a single tip in less than 20 ns. The measurements indicate that with the use of microfabricated tip arrays the deuterium ion source could provide sufficient ion current to produce 109-1010 n/cm2 of tip array area.

  2. Small plasma focus as neutron pulsed source for nuclides identification

    SciTech Connect

    Milanese, M.; Moroso, R.; Barbaglia, M.; Niedbalski, J.; Mayer, R.; Castillo, F.

    2013-10-15

    In this paper, we present preliminary results on the feasibility of employing a low energy (2 kJ, 31 kV) plasma focus device as a portable source of pulsed neutron beams (2.45 MeV) generated by nuclear fusion reactions D-D, for the “in situ” analysis of substances by nuclear activation. This source has the relevant advantage of being pulsed at requirement, transportable, not permanently radioactive, without radioactive waste, cheap, among others. We prove the feasibility of using this source showing several spectra of the characteristic emission line for manganese, gold, lead, and silver.

  3. Post irradiation examination of the Spallation Neutron Source target vessels

    SciTech Connect

    McClintock, David A; Ferguson, Phillip D; Mansur, Louis K

    2010-01-01

    The Spallation Neutron Source (SNS) at Oak Ridge National Laboratory is an accelerator-based pulsed neutron source that produces high-energy spallation neutrons by bombarding liquid mercury flowing through a stainless steel target vessel. During operation the proton beam and spallation neutrons produce radiation damage in the AISI 316L austenitic stainless steel target vessel and water-cooled shroud. The beam pulses also cause rapid heating of the liquid mercury, which may produce cavitation erosion damage on the inner surface of the target vessel. The cavitation erosion rate is thought to be highly sensitive to beam power and predicted to be the primary life-limiting factor of target vessel. Though mitigation of cavitation erosion and radiation damage to the target vessel will be a critical for successful high-power operation of the SNS facility, the effects of radiation damage and cavitation erosion to target vessels in liquid metal spallation systems are not well known. Therefore preparations are being undertaken to perform post irradiation examination (PIE) of the liquid mercury target vessel and water-cooled shroud after end-of-life occurs. An overview of the planned PIE for the SNS target vessel is presented here, including proposed techniques for specimen acquisition and subsequent material properties characterization.

  4. Fission-Fusion Neutron Source Progress Report Sept 30, 2009

    SciTech Connect

    Chapline, G F; Daffin, F; Clark, R

    2010-02-19

    In this report the authors describe the progress made in FY09 in evaluating the feasibility of a new concept for using the DT fusion reaction to produce intense pulses of 14 MeV neutrons. In this new scheme the heating of the DT is accomplished using fission fragments rather than ion beams as in conventional magnet confinement fusion schemes or lasers in inertial confinement schemes. As a source of fission fragments they propose using a dust reactor concept introduced some time ago by one of us (RC). An attractive feature of this approach is that there is no need for a large auxiliary power source to heat the DT plasma to the point where self-sustaining fusion become possible. Their scheme does require pulsed magnetic fields, but generating these fields requires only a modest power source. The dust reactor that they propose using for their neutron source would use micron-sized UC pellets suspended in a vacuum as the reactor fuel. Surrounding the fuel with a moderator such as heavy water (D{sub 2}O) would allow the reactor to operate as a thermal reactor and require only modest amounts of HEU. The scheme for using fission fragments to generate intense pulses of 14 MeV neutrons is based on the fission fragment rocket idea. In the fission fragment rocket scheme it was contemplated that the fission fragments produced in a low density reactor core could be guided out of the reactor by large magnetic fields used to form a 'rocket exhaust'. Their adaptation of this idea for the purposes of making a neutron source involves using the fission fragments escaping from one side of a tandem magnet mirror to heat DT gas confined in the adjacent magnetic trap.

  5. Study of neutron focusing at the Texas Cold Neutron Source: Progress report

    SciTech Connect

    Wehring, B.W.; Uenlue, K.

    1993-01-28

    The purpose of this three year study is to develop a neutron focusing system to be used with the Texas Cold Neutron Source (TCNS) to produce an intense beam of neutrons. A prompt gamma activation analysis (PGAA) facility will also be designed, setup, and tested under this DOE grant. During the first year of the DOE grant, a new procedure was developed and used to design a focusing converging guide consisting of truncated rectangular cone sections. Detailed calculations were performed using a 3-D Monte Carlo code which the authors wrote to trace neutrons through the existing curved guide of the TCNS into the proposed converging guide. Using realistic reflectivities for Ni-Ti supermirrors, they obtained gains of 4 to 5 for the neutron flux averaged over an area of 1 x 1 cm. Two graduate students were supported by the first year of the DOE grant. Both have passed the Nuclear Engineering qualifying examination and have been admitted to candidacy for the doctoral degree at The University of Texas at Austin. Their programs of study and dissertation projects have been approved by the appropriate committees.

  6. The optimum choice of gate width for neutron coincidence counting

    NASA Astrophysics Data System (ADS)

    Croft, S.; Henzlova, D.; Favalli, A.; Hauck, D. K.; Santi, P. A.

    2014-11-01

    In the measurement field of international nuclear safeguards, passive neutron coincidence counting is used to quantify the spontaneous fission rate of certain special nuclear materials. The shift register autocorrelation analysis method is the most commonly used approach. However, the Feynman-Y technique, which is more commonly applied in reactor noise analysis, provides an alternative means to extract the correlation information from a pulse train. In this work we consider how to select the optimum gate width for each of these two time-correlation analysis techniques. The optimum is considered to be that which gives the lowest fractional precision on the net doublets rate. Our theoretical approach is approximate but is instructional in terms of revealing the key functional dependence. We show that in both cases the same performance figure of merit applies so that common design criteria apply to the neutron detector head. Our prediction is that near optimal results, suitable for most practical applications, can be obtained from both techniques using a common gate width setting. The estimated precision is also comparable in the two cases. The theoretical expressions are tested experimentally using 252Cf spontaneous fission sources measured in two thermal well counters representative of the type in common use by international inspectorates. Fast accidental sampling was the favored method of acquiring the Feynman-Y data. Our experimental study confirmed the basic functional dependences predicted although experimental results when available are preferred. With an appropriate gate setting Feynman-Y analysis provides an alternative to shift register analysis for safeguards applications which is opening up new avenues of data collection and data reduction to explore.

  7. Target Operational Experience at the Spallation Neutron Source

    SciTech Connect

    Riemer, Bernie; Janney, Jim G; Kaminskas, Saulius; McClintock, David A; Rosenblad, Peter M

    2013-01-01

    The Spallation Neutron Source (SNS) at the Oak Ridge National Laboratory (ORNL) has operated at unprecedented power levels for a short-pulse spallation source. Target operations have been successful but not without difficulties. Three targets out of the eight used to date have ended life unexpectedly causing interruptions to the neutron science users. The first of a kind mercury target design experiences beam-pulse induced cavitation damage that is suspected in one of the target leaks. The two other targets suffered early failures due to defective welds. Diagnosing the causes of target leaks and understanding of the progression of cavitation erosion and radiation damage effects has made use of post-irradiation examination (PIE) capabilities. As a result of PIE, review of quality assurance practices and related investigations, design changes are being implemented and manufacturing oversight improved. This paper describes SNS target operating experience, including the more important observations and lessons learned.

  8. The Advanced Neutron Source research and development plan

    SciTech Connect

    Selby, D.L.

    1992-11-30

    The Advanced Neutron Source (ANS) is being designed as a user-oriented neutron research laboratory centered around the most intense continuous beams of thermal and subthermal neutrons in the world. The ANS will be built around a new research reactor of {approximately} 330 MW fission power, producing an unprecedented peak thermal flux of > 7 {times} 10{sup 19} M{sup {minus}2} {center_dot} S{sup {minus}1}. Primarily a research facility, the ANS will accommodate more than 1000 academic, industrial, and government researchers each year. They will conduct basic research in all branches of science-as well as applied research-leading to better understanding of new materials, including high temperature super conductors, plastics, and thin films. Some 48 neutron beam stations will be set up in the ANS beam rooms and the neutron guide hall for neutron scattering and for fundamental and nuclear physics research. There also will be extensive facilities for materials irradiation, isotope production, and analytical chemistry. The R&D program will focus on the four objectives: Address feasibility issues; provide analysis support; evaluate options for improvement in performance beyond minimum requirements; and provide prototype demonstrations for unique facilities. The remainder of this report presents (1) the process by which the R&D activities are controlled and (2) a discussion of the individual tasks that have been identified for the R&D program, including their justification, schedule and costs. The activities discussed in this report will be performed by Martin Marietta Energy Systems, Inc. (MMES) through the Oak Ridge National Laboratory (ORNL) and through subcontracts with industry, universities, and other national laboratories. It should be noted that in general a success path has been assumed for all tasks.

  9. The Advanced Neutron Source research and development plan

    SciTech Connect

    Selby, D.L.

    1992-11-30

    The Advanced Neutron Source (ANS) is being designed as a user-oriented neutron research laboratory centered around the most intense continuous beams of thermal and subthermal neutrons in the world. The ANS will be built around a new research reactor of [approximately] 330 MW fission power, producing an unprecedented peak thermal flux of > 7 [times] 10[sup 19] M[sup [minus]2] [center dot] S[sup [minus]1]. Primarily a research facility, the ANS will accommodate more than 1000 academic, industrial, and government researchers each year. They will conduct basic research in all branches of science-as well as applied research-leading to better understanding of new materials, including high temperature super conductors, plastics, and thin films. Some 48 neutron beam stations will be set up in the ANS beam rooms and the neutron guide hall for neutron scattering and for fundamental and nuclear physics research. There also will be extensive facilities for materials irradiation, isotope production, and analytical chemistry. The R D program will focus on the four objectives: Address feasibility issues; provide analysis support; evaluate options for improvement in performance beyond minimum requirements; and provide prototype demonstrations for unique facilities. The remainder of this report presents (1) the process by which the R D activities are controlled and (2) a discussion of the individual tasks that have been identified for the R D program, including their justification, schedule and costs. The activities discussed in this report will be performed by Martin Marietta Energy Systems, Inc. (MMES) through the Oak Ridge National Laboratory (ORNL) and through subcontracts with industry, universities, and other national laboratories. It should be noted that in general a success path has been assumed for all tasks.

  10. The advanced neutron source research and development plan

    SciTech Connect

    Selby, D.L.

    1995-08-01

    The Advanced Neutron Source (ANS) is being designed as a user-oriented neutron research laboratory centered around the most intense continuous beams of thermal and subthermal neutrons in the world (an order of magnitude more intense than beams available from the most advanced existing reactors). The ANS will be built around a new research reactor of 330-MW fission power, producing an unprecedented peak thermal flux of >7 {center_dot} 10{sup 19} {center_dot} m{sup -2} {center_dot} s{sup -1}. Primarily a research facility, the ANS will accommodate more than 1000 academic, industrial, and government researchers each year. They will conduct basic research in all branches of science as well as applied research leading to better understanding of new materials, including high temperature super conductors, plastics, and thin films. Some 48 neutron beam stations will be set up in the ANS beam rooms and the neutron guide hall for neutron scattering and for fundamental and nuclear physics research. There also will be extensive facilities for materials irradiation, isotope production, and analytical chemistry. The top level work breakdown structure (WBS) for the project. As noted in this figure, one component of the project is a research and development (R&D) program (WBS 1.1). This program interfaces with all of the other project level two WBS activities. Because one of the project guidelines is to meet minimum performance goals without relying on new inventions, this R&D activity is not intended to produce new concepts to allow the project to meet minimum performance goals. Instead, the R&D program will focus on the four objectives described.

  11. Computational Benchmark Calculations Relevant to the Neutronic Design of the Spallation Neutron Source (SNS)

    SciTech Connect

    Gallmeier, F.X.; Glasgow, D.C.; Jerde, E.A.; Johnson, J.O.; Yugo, J.J.

    1999-11-14

    The Spallation Neutron Source (SNS) will provide an intense source of low-energy neutrons for experimental use. The low-energy neutrons are produced by the interaction of a high-energy (1.0 GeV) proton beam on a mercury (Hg) target and slowed down in liquid hydrogen or light water moderators. Computer codes and computational techniques are being benchmarked against relevant experimental data to validate and verify the tools being used to predict the performance of the SNS. The LAHET Code System (LCS), which includes LAHET, HTAPE ad HMCNP (a modified version of MCNP version 3b), have been applied to the analysis of experiments that were conducted in the Alternating Gradient Synchrotron (AGS) facility at Brookhaven National Laboratory (BNL). In the AGS experiments, foils of various materials were placed around a mercury-filled stainless steel cylinder, which was bombarded with protons at 1.6 GeV. Neutrons created in the mercury target, activated the foils. Activities of the relevant isotopes were accurately measured and compared with calculated predictions. Measurements at BNL were provided in part by collaborating scientists from JAERI as part of the AGS Spallation Target Experiment (ASTE) collaboration. To date, calculations have shown good agreement with measurements.

  12. Actinide/beryllium neutron sources with reduced dispersion characteristics

    DOEpatents

    Schulte, Louis D.

    2012-08-14

    Neutron source comprising a composite, said composite comprising crystals comprising BeO and AmBe.sub.13, and an excess of beryllium, wherein the crystals have an average size of less than 2 microns; the size distribution of the crystals is less than 2 microns; and the beryllium is present in a 7-fold to a 75-fold excess by weight of the amount of AmBe.sub.13; and methods of making thereof.

  13. Obsidian sources characterized by neutron-activation analysis.

    PubMed

    Gordus, A A; Wright, G A; Griffin, J B

    1968-07-26

    Concentrations of elements such as manganese, scandium, lanthanum, rubidium, samarium, barium, and zirconium in obsidian samples from different flows show ranges of 1000 percent or more, whereas the variation in element content in obsidian samples from a single flow appears to be less than 40 percent. Neutron-activation analysis of these elements, as well as of sodium and iron, provides a means of identifying the geologic source of an archeological artifact of obsidian.

  14. SPALLATION NEUTRON SOURCE OPERATIONAL EXPERIENCE AT 1 MW

    SciTech Connect

    Galambos, John D

    2011-01-01

    The Spallation Neutron Source (SNS) has been operating at the MW level for about one year. Experience in beam loss control and machine activation at this power level is presented. Also experience with machine protection systems is reviewed, which is critical at this power level. One of the most challenging operational aspects of high power operation has been attaining high availability, which is also discussed

  15. Non-uniform Neutron Source Approximation for Iterative Reconstruction of Coded Source Images

    SciTech Connect

    Gregor, Jens; Bingham, Philip R

    2016-01-01

    X-ray and neutron optics both lack ray focusing capabilities. An x-ray source can be made small and powerful enough to facilitate high-resolution imaging while providing adequate flux. This is not yet possible for neutrons. One remedy is to employ a computational imaging technique such as magnified coded source imaging. The greatest challenge associated with successful reconstruction of high-resolution images from such radiographs is to precisely model the flux distribution for complex non-uniform neutron sources. We have developed a framework based on Monte Carlo simulation and iterative reconstruction that facilitates high- resolution coded source neutron imaging. In this paper, we define a methodology to empirically measure and approximate the flux profile of a non-uniform neutron source, and we show how to incorporate the result within the forward model of an iterative reconstruction algorithm. We assess improvement in image quality by comparing reconstructions based respectively on the new empirical forward model and our previous analytic models.

  16. Neutron-induced fission: properties of prompt neutron and γ rays as a function of incident energy

    NASA Astrophysics Data System (ADS)

    Stetcu, I.; Talou, P.; Kawano, T.

    2016-06-01

    We have applied the Hauser-Feshbach statistical theory, in a Monte-Carlo implementation, to the de-excitation of fission fragments, obtaining a reasonable description of the characteristics of neutrons and gamma rays emitted before beta decays toward stability. Originally implemented for the spontaneous fission of 252Cf and the neutroninduced fission of 235U and 239Pu at thermal neutron energy, in this contribution we discuss the extension of the formalism to incident neutron energies up to 20 MeV. For the emission of pre-fission neutrons, at incident energies beyond second-chance fission, we take into account both the pre-equilibrium and statistical pre-fission components. Phenomenological parameterizations of mass, charge and TKE yields are used to obtain the initial conditions for the fission fragments that subsequently decay via neutron and emissions. We illustrate this approach for 239Pu(n,f).

  17. Oak Ridge Spallation Neutron Source (ORSNS) target station design integration

    SciTech Connect

    McManamy, T.; Booth, R.; Cleaves, J.; Gabriel, T.

    1996-06-01

    The conceptual design for a 1- to 3-MW short pulse spallation source with a liquid mercury target has been started recently. The design tools and methods being developed to define requirements, integrate the work, and provide early cost guidance will be presented with a summary of the current target station design status. The initial design point was selected with performance and cost estimate projections by a systems code. This code was developed recently using cost estimates from the Brookhaven Pulsed Spallation Neutron Source study and experience from the Advanced Neutron Source Project`s conceptual design. It will be updated and improved as the design develops. Performance was characterized by a simplified figure of merit based on a ratio of neutron production to costs. A work breakdown structure was developed, with simplified systems diagrams used to define interfaces and system responsibilities. A risk assessment method was used to identify potential problems, to identify required research and development (R&D), and to aid contingency development. Preliminary 3-D models of the target station are being used to develop remote maintenance concepts and to estimate costs.

  18. Radiative neutron capture as a counting technique at pulsed spallation neutron sources: a review of current progress

    NASA Astrophysics Data System (ADS)

    Schooneveld, E. M.; Pietropaolo, A.; Andreani, C.; Perelli Cippo, E.; Rhodes, N. J.; Senesi, R.; Tardocchi, M.; Gorini, G.

    2016-09-01

    Neutron scattering techniques are attracting an increasing interest from scientists in various research fields, ranging from physics and chemistry to biology and archaeometry. The success of these neutron scattering applications is stimulated by the development of higher performance instrumentation. The development of new techniques and concepts, including radiative capture based neutron detection, is therefore a key issue to be addressed. Radiative capture based neutron detectors utilize the emission of prompt gamma rays after neutron absorption in a suitable isotope and the detection of those gammas by a photon counter. They can be used as simple counters in the thermal region and (simultaneously) as energy selector and counters for neutrons in the eV energy region. Several years of extensive development have made eV neutron spectrometers operating in the so-called resonance detector spectrometer (RDS) configuration outperform their conventional counterparts. In fact, the VESUVIO spectrometer, a flagship instrument at ISIS serving a continuous user programme for eV inelastic neutron spectroscopy measurements, is operating in the RDS configuration since 2007. In this review, we discuss the physical mechanism underlying the RDS configuration and the development of associated instrumentation. A few successful neutron scattering experiments that utilize the radiative capture counting techniques will be presented together with the potential of this technique for thermal neutron diffraction measurements. We also outline possible improvements and future perspectives for radiative capture based neutron detectors in neutron scattering application at pulsed neutron sources.

  19. Radiative neutron capture as a counting technique at pulsed spallation neutron sources: a review of current progress.

    PubMed

    Schooneveld, E M; Pietropaolo, A; Andreani, C; Perelli Cippo, E; Rhodes, N J; Senesi, R; Tardocchi, M; Gorini, G

    2016-09-01

    Neutron scattering techniques are attracting an increasing interest from scientists in various research fields, ranging from physics and chemistry to biology and archaeometry. The success of these neutron scattering applications is stimulated by the development of higher performance instrumentation. The development of new techniques and concepts, including radiative capture based neutron detection, is therefore a key issue to be addressed. Radiative capture based neutron detectors utilize the emission of prompt gamma rays after neutron absorption in a suitable isotope and the detection of those gammas by a photon counter. They can be used as simple counters in the thermal region and (simultaneously) as energy selector and counters for neutrons in the eV energy region. Several years of extensive development have made eV neutron spectrometers operating in the so-called resonance detector spectrometer (RDS) configuration outperform their conventional counterparts. In fact, the VESUVIO spectrometer, a flagship instrument at ISIS serving a continuous user programme for eV inelastic neutron spectroscopy measurements, is operating in the RDS configuration since 2007. In this review, we discuss the physical mechanism underlying the RDS configuration and the development of associated instrumentation. A few successful neutron scattering experiments that utilize the radiative capture counting techniques will be presented together with the potential of this technique for thermal neutron diffraction measurements. We also outline possible improvements and future perspectives for radiative capture based neutron detectors in neutron scattering application at pulsed neutron sources. PMID:27502571

  20. Colliding Neutron Stars as the Source of Heavy Elements

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-09-01

    Where do the heavy elements the chemical elements beyond iron in our universe come from? One of the primary candidate sources is the merger of two neutron stars, but recent observations have cast doubt on this model. Can neutron-star mergers really be responsible?Elements from Collisions?Periodic table showing the origin of each chemical element. Those produced by the r-process are shaded orange and attributed to supernovae in this image; though supernovae are one proposed source of r-process elements, an alternative source is the merger of two neutron stars. [Cmglee]When a binary-neutron-star system inspirals and the two neutron stars smash into each other, a shower of neutrons are released. These neutrons are thought to bombard the surrounding atoms, rapidly producing heavy elements in what is known as r-process nucleosynthesis.So could these mergers be responsible for producing the majority of the universes heavy r-process elements? Proponents of this model argue that its supported by observations. The overall amount of heavy r-process material in the Milky Way, for instance, is consistent with the expected ejection amounts from mergers, based both on predicted merger rates for neutron stars in the galaxy, and on the observed rates of soft gamma-ray bursts (which are thought to accompany double-neutron-star mergers).Challenges from Ultra-Faint DwarfsRecently, however, r-process elements have been observed in ultra-faint dwarf satellite galaxies. This discovery raises two major challenges to the merger model for heavy-element production:When neutron stars are born during a core-collapse supernova, mass is ejected, providing the stars with asymmetric natal kicks. During the second collapse in a double-neutron-star binary, wouldnt the kick exceed the low escape velocity of an ultra-faint dwarf, ejecting the binary before it could merge and enrich the galaxy?Ultra-faint dwarfs have very old stellar populations and the observation of r-process elements in these stars

  1. Methods for lipid nanostructure investigation at neutron and synchrotron sources

    NASA Astrophysics Data System (ADS)

    Kiselev, M. A.

    2011-03-01

    A lipid membrane is a main component of biological membranes. Contemporary bionanotechnologies use phospholipids and ceramides as basic components of drugs and cosmetic preparations. Phospholipids-based nanoparticles are used as drug carriers. Effective development of bionanotechnologies in Russia calls for creation of physical methods to diagnose the particle nanostructure which would be promising for application in pharmacology. Radiation with wavelengths of 1-10 Å is an adequate instrument for detecting the nanostructure of lipid bi- and monolayers. The review deals with methods that apply neutron scattering and synchrotron radiation for studying nanostructures of lipid membranes, phospholipid nanoparticles, and phospholipid monolayers on a water surface by techniques of diffraction, small-angle scattering, and reflectometry. The importance of the mutually complementary application of neutron and synchrotron radiation for solving urgent problems of membrane biophysics, microbiology, dermapharmacology, and bionanotechnologies is demonstrated by particular examples of studies of phospholipid membranes and ceramide-based membranes. The efficiency of development and application of new methods for solving urgent problems of biophysics is shown. The review is written on the basis of results obtained over the period of 1999-2010 at the Joint Institute for Nuclear Research (JINR) Laboratory of Neutron Physics in collaboration with the Pharmaceutical Departments of universities of France (Paris-Sud, Chatenay Malabry) and Germany (Martin Luther University, Halle). The experiments were performed at various European and Russian neutron and synchrotron sources.

  2. Advanced Neutron Source: Plant Design Requirements. Revision 4

    SciTech Connect

    Not Available

    1990-07-01

    The Advanced Neutron Source will be a new world-class facility for research using hot, thermal, cold, and ultra-cold neutrons. The heart of the facility will be a 330-MW (fission), heavy-water cooled and heavy-water moderated reactor. The reactor will be housed in a central reactor building, with supporting equipment located in an adjoining reactor support building. An array of cold neutron guides will fan out into a large guide hall, housing about 30 neutron research stations. Appropriate office, laboratory, and shop facilities will be included to provide a complete facility for users. The ANS is scheduled to begin operation at the Oak Ridge National Laboratory early in the next decade. This PDR document defines the plant-level requirements for the design, construction, and operation of ANS. It also defines and provides input to the individual System Design Description (SDD) documents. Together, this PDR document and the set of SDD documents will define and control the baseline configuration of ANS.

  3. Liquid Li based neutron source for BNCT and science application.

    PubMed

    Horiike, H; Murata, I; Iida, T; Yoshihashi, S; Hoashi, E; Kato, I; Hashimoto, N; Kuri, S; Oshiro, S

    2015-12-01

    Liquid lithium (Li) is a candidate material for a target of intense neutron source, heat transfer medium in space engines and charges stripper. For a medical application of BNCT, epithermal neutrons with least energetic neutrons and γ-ray are required so as to avoid unnecessary doses to a patient. This is enabled by lithium target irradiated by protons at 2.5 MeV range, with utilizing the threshold reaction of (7)Li(p,n)(7)Be at 1.88 MeV. In the system, protons at 2.5 MeV penetrate into Li layer by 0.25 mm with dissipating heat load near the surface. To handle it, thin film flow of high velocity is important for stable operation. For the proton accelerator, electrostatic type of the Schnkel or the tandem is planned to be employed. Neutrons generated at 0.6 MeV are gently moderated to epithermal energy while suppressing accompanying γ-ray minimum by the dedicated moderator assembly.

  4. Liquid Li based neutron source for BNCT and science application.

    PubMed

    Horiike, H; Murata, I; Iida, T; Yoshihashi, S; Hoashi, E; Kato, I; Hashimoto, N; Kuri, S; Oshiro, S

    2015-12-01

    Liquid lithium (Li) is a candidate material for a target of intense neutron source, heat transfer medium in space engines and charges stripper. For a medical application of BNCT, epithermal neutrons with least energetic neutrons and γ-ray are required so as to avoid unnecessary doses to a patient. This is enabled by lithium target irradiated by protons at 2.5 MeV range, with utilizing the threshold reaction of (7)Li(p,n)(7)Be at 1.88 MeV. In the system, protons at 2.5 MeV penetrate into Li layer by 0.25 mm with dissipating heat load near the surface. To handle it, thin film flow of high velocity is important for stable operation. For the proton accelerator, electrostatic type of the Schnkel or the tandem is planned to be employed. Neutrons generated at 0.6 MeV are gently moderated to epithermal energy while suppressing accompanying γ-ray minimum by the dedicated moderator assembly. PMID:26253274

  5. Elemental composition in sealed plutonium-beryllium neutron sources.

    PubMed

    Xu, N; Kuhn, K; Gallimore, D; Martinez, A; Schappert, M; Montoya, D; Lujan, E; Garduno, K; Tandon, L

    2014-10-22

    Five sealed plutonium-beryllium (PuBe) neutron sources from various manufacturers were disassembled. Destructive chemical analyses for recovered PuBe materials were conducted for disposition purposes. A dissolution method for PuBe alloys was developed for quantitative plutonium (Pu) and beryllium (Be) assay. Quantitation of Be and trace elements was performed using plasma based spectroscopic instruments, namely inductively coupled plasma mass spectrometry (ICP-MS) and atomic emission spectrometry (ICP-AES). Pu assay was accomplished by an electrochemical method. Variations in trace elemental contents among the five PuBe sources are discussed. PMID:25464182

  6. Elemental composition in sealed plutonium-beryllium neutron sources.

    PubMed

    Xu, N; Kuhn, K; Gallimore, D; Martinez, A; Schappert, M; Montoya, D; Lujan, E; Garduno, K; Tandon, L

    2014-10-22

    Five sealed plutonium-beryllium (PuBe) neutron sources from various manufacturers were disassembled. Destructive chemical analyses for recovered PuBe materials were conducted for disposition purposes. A dissolution method for PuBe alloys was developed for quantitative plutonium (Pu) and beryllium (Be) assay. Quantitation of Be and trace elements was performed using plasma based spectroscopic instruments, namely inductively coupled plasma mass spectrometry (ICP-MS) and atomic emission spectrometry (ICP-AES). Pu assay was accomplished by an electrochemical method. Variations in trace elemental contents among the five PuBe sources are discussed.

  7. SOURCES: a code for calculating (alpha,n), spontaneous fission, and delayed neutron sources and spectra.

    PubMed

    Wilson, W B; Perry, R T; Charlton, W S; Parish, T A; Shores, E F

    2005-01-01

    SOURCES is a computer code that determines neutron production rates and spectra from (alpha,n) reactions, spontaneous fission and delayed neutron emission owing to the decay of radionuclides in homogeneous media, interface problems and three-region interface problems. The code is also capable of calculating the neutron production rates due to (alpha,n) reactions induced by a monoenergetic beam of alpha particles incident on a slab of target material. The (alpha,n) spectra are calculated using an assumed isotropic angular distribution in the centre-of-mass system with a library of 107 nuclide decay alpha-particle spectra, 24 sets of measured and/or evaluated (alpha,n) cross sections and product nuclide level branching fractions, and functional alpha particle stopping cross sections for Z < 106. Spontaneous fission sources and spectra are calculated with evaluated half-life, spontaneous fission branching and Watt spectrum parameters for 44 actinides. The delayed neutron spectra are taken from an evaluated library of 105 precursors. The code outputs the magnitude and spectra of the resultant neutron sources. It also provides an analysis of the contributions to that source by each nuclide in the problem. PMID:16381695

  8. Neutron source in the MCNPX shielding calculating for electron accelerator driven facility

    SciTech Connect

    Zhong, Z.; Gohar, Y.

    2012-07-01

    Argonne National Laboratory (ANL) of USA and Kharkov Inst. of Physics and Technology (KIPT) of Ukraine have been collaborating on the design development of an experimental neutron source facility. It is an accelerator driven system (ADS) utilizing a subcritical assembly driven by electron accelerator. The facility will be utilized for performing basic and applied nuclear researches, producing medical isotopes, and training young nuclear specialists. Monte Carlo code MCNPX has been utilized as a design tool due to its capability to transport electrons, photons, and neutrons at high energies. However the facility shielding calculations with MCNPX need enormous computational resources and the small neutron yield per electron makes sampling difficulty for the Monte Carlo calculations. A method, based on generating and utilizing neutron source file, was proposed and tested. This method reduces significantly the required computer resources and improves the statistics of the calculated neutron dose outside the shield boundary. However the statistical errors introduced by generating the neutron source were not directly represented in the results, questioning the validity of this methodology, because an insufficiently sampled neutron source can cause error on the calculated neutron dose. This paper presents a procedure for the validation of the generated neutron source file. The impact of neutron source statistic on the neutron dose is examined by calculating the neutron dose as a function of the number of electron particles used for generating the neutron source files. When the value of the calculated neutron dose converges, it means the neutron source has scored sufficient records and statistic does not have apparent impact on the calculated neutron dose. In this way, the validity of neutron source and the shield analyses could be verified. (authors)

  9. Novel Large Area High Resolution Neutron Detector for the Spallation Neutron Source

    SciTech Connect

    Lacy, Jeffrey L

    2009-05-22

    , probably at a small fraction of the cost of He-3 detectors. In addition to neutron scattering science, the fully developed base technology can be used as a rugged, low-cost neutron detector in area monitoring and surveying. Radiation monitors are used in a number of other settings for occupational and environmental radiation safety. Such a detector can also be used in environmental monitoring and remote nuclear power plant monitoring. For example, the Department of Energy could use it to characterize nuclear waste dumps, coordinate clean-up efforts, and assess the radioactive contaminants in the air and water. Radiation monitors can be used to monitor the age and component breakdown of nuclear warheads and to distinguish between weapons and reactor grade plutonium. The UN's International Atomic Energy Agency (IAEA) uses radiation monitors for treaty verification, remote monitoring, and enforcing the non-proliferation of nuclear weapons. As part of treaty verification, monitors can be used to certify the contents of containers during inspections. They could be used for portal monitoring to secure border checkpoints, sea ports, air cargo centers, public parks, sporting venues, and key government buildings. Currently, only 2% of all sea cargo shipped is inspected for radiation sources. In addition, merely the presence of radiation is detected and nothing is known about the radioactive source until further testing. The utilization of radiation monitors with neutron sensitivity and capability of operation in hostile port environments would increase the capacity and effectiveness of the radioactive scanning processes.

  10. Conceptual design for one megawatt spallation neutron source at Argonne

    SciTech Connect

    Chio, Y.; Bailey, J.; Brown, B.

    1993-12-31

    The feasibility study of a spallation neutron source based on a rapid cycling synchrotron which delivers a proton beam of 2 GeV in energy and 0.5mA time-average current at a 30-Hz repetition rate is presented. The lattice consists of 90-degree phase advanced FODO cells with dispersion-free straight sections, and has a three-fold symmetry. The ring magnet system will be energized by 20-Hz and 60-Hz resonant circuits to decrease the dB/dt during the acceleration cycle. This lowers the peak acceleration voltage requirement to 130kV. The single turn extraction system will be used to extract the beam alternatively to two target stations. The first station will operate at 10Hz for research using long wavelength neutrons, and the second station will use the remaining pulses, collectively, providing 36 neutron beams. The 400-MeV negative-hydrogen-ion injector linac consists of an ion source, rf quadrupole, matching section, 100MeV drift-tube linac, and a 300-Mev coupled-cavity linac.

  11. Tomsk Polytechnic University cyclotron as a source for neutron based cancer treatment

    SciTech Connect

    Lisin, V. A.; Bogdanov, A. V.; Golovkov, V. M.; Sukhikh, L. G.; Verigin, D. A.; Musabaeva, L. I.

    2014-02-15

    In this paper we present our cyclotron based neutron source with average energy 6.3 MeV generated during the 13.6 MeV deuterons interactions with beryllium target, neutron field dosimetry, and dosimetry of attendant gamma fields. We also present application of our neutron source for cancer treatment.

  12. Modeling of water radiolysis at spallation neutron sources

    SciTech Connect

    Daemen, L.L.; Kanner, G.S.; Lillard, R.S.; Butt, D.P.; Brun, T.O.; Sommer, W.F.

    1998-12-01

    In spallation neutron sources neutrons are produced when a beam of high-energy particles (e.g., 1 GeV protons) collides with a (water-cooled) heavy metal target such as tungsten. The resulting spallation reactions produce a complex radiation environment (which differs from typical conditions at fission and fusion reactors) leading to the radiolysis of water molecules. Most water radiolysis products are short-lived but extremely reactive. When formed in the vicinity of the target surface they can react with metal atoms, thereby contributing to target corrosion. The authors will describe the results of calculations and experiments performed at Los Alamos to determine the impact on target corrosion of water radiolysis in the spallation radiation environment. The computational methodology relies on the use of the Los Alamos radiation transport code, LAHET, to determine the radiation environment, and the AEA code, FACSIMILE, to model reaction-diffusion processes.

  13. A Search for Point Sources of EeV Neutrons

    NASA Astrophysics Data System (ADS)

    Pierre Auger Collaboration; Abreu, P.; Aglietta, M.; Ahlers, M.; Ahn, E. J.; Albuquerque, I. F. M.; Allard, D.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Alves Batista, R.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Antiči'c, T.; Aramo, C.; Arganda, E.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Badescu, A. M.; Balzer, M.; Barber, K. B.; Barbosa, A. F.; Bardenet, R.; Barroso, S. L. C.; Baughman, B.; Bäuml, J.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellétoile, A.; Bellido, J. A.; BenZvi, S.; Berat, C.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanco, F.; Blanco, M.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brancus, I.; Brogueira, P.; Brown, W. C.; Bruijn, R.; Buchholz, P.; Bueno, A.; Buroker, L.; Burton, R. E.; Caballero-Mora, K. S.; Caccianiga, B.; Caramete, L.; Caruso, R.; Castellina, A.; Catalano, O.; Cataldi, G.; Cazon, L.; Cester, R.; Chauvin, J.; Cheng, S. H.; Chiavassa, A.; Chinellato, J. A.; Chirinos Diaz, J.; Chudoba, J.; Cilmo, M.; Clay, R. W.; Cocciolo, G.; Collica, L.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cook, H.; Cooper, M. J.; Coppens, J.; Cordier, A.; Coutu, S.; Covault, C. E.; Creusot, A.; Criss, A.; Cronin, J.; Curutiu, A.; Dagoret-Campagne, S.; Dallier, R.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; De Donato, C.; de Jong, S. J.; De La Vega, G.; de Mello Junior, W. J. M.; de Mello Neto, J. R. T.; De Mitri, I.; de Souza, V.; de Vries, K. D.; del Peral, L.; del Río, M.; Deligny, O.; Dembinski, H.; Dhital, N.; Di Giulio, C.; Díaz Castro, M. L.; Diep, P. N.; Diogo, F.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dong, P. N.; Dorofeev, A.; dos Anjos, J. C.; Dova, M. T.; D'Urso, D.; Dutan, I.; Ebr, J.; Engel, R.; Erdmann, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Facal San Luis, P.; Falcke, H.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipčič, A.; Fliescher, S.; Fracchiolla, C. E.; Fraenkel, E. D.; Fratu, O.; Fröhlich, U.; Fuchs, B.; Gaior, R.; Gamarra, R. F.; Gambetta, S.; García, B.; Garcia Roca, S. T.; Garcia-Gamez, D.; Garcia-Pinto, D.; Gascon Bravo, A.; Gemmeke, H.; Ghia, P. L.; Giller, M.; Gitto, J.; Glass, H.; Gold, M. S.; Golup, G.; Gomez Albarracin, F.; Gómez Berisso, M.; Gómez Vitale, P. F.; Gonçalves, P.; Gonzalez, J. G.; Gookin, B.; Gorgi, A.; Gouffon, P.; Grashorn, E.; Grebe, S.; Griffith, N.; Grigat, M.; Grillo, A. F.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Hansen, P.; Harari, D.; Harrison, T. A.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Herve, A. E.; Hojvat, C.; Hollon, N.; Holmes, V. C.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huber, D.; Huege, T.; Insolia, A.; Ionita, F.; Italiano, A.; Jansen, S.; Jarne, C.; Jiraskova, S.; Josebachuili, M.; Kadija, K.; Kampert, K. H.; Karhan, P.; Kasper, P.; Katkov, I.; Kégl, B.; Keilhauer, B.; Keivani, A.; Kelley, J. L.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Knapp, J.; Koang, D.-H.; Kotera, K.; Krohm, N.; Krömer, O.; Kruppke-Hansen, D.; Kuempel, D.; Kulbartz, J. K.; Kunka, N.; La Rosa, G.; Lachaud, C.; LaHurd, D.; Latronico, L.; Lauer, R.; Lautridou, P.; Le Coz, S.; Leão, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; López, R.; Lopez Agüera, A.; Louedec, K.; Lozano Bahilo, J.; Lu, L.; Lucero, A.; Ludwig, M.; Lyberis, H.; Maccarone, M. C.; Macolino, C.; Maldera, S.; Maller, J.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, J.; Marin, V.; Maris, I. C.; Marquez Falcon, H. R.; Marsella, G.; Martello, D.; Martin, L.; Martinez, H.; Martínez Bravo, O.; Martraire, D.; Masías Meza, J. J.; Mathes, H. J.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurel, D.; Maurizio, D.; Mazur, P. O.; Medina-Tanco, G.; Melissas, M.; Melo, D.; Menichetti, E.; Menshikov, A.; Mertsch, P.; Meurer, C.; Meyhandan, R.; Mi'canovi'c, S.; Micheletti, M. I.; Minaya, I. A.; Miramonti, L.; Molina-Bueno, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morales, B.; Morello, C.; Moreno, E.; Moreno, J. C.; Mostafá, M.; Moura, C. A.; Muller, M. A.; Müller, G.; Münchmeyer, M.; Mussa, R.; Navarra, G.; Navarro, J. L.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Nhung, P. T.; Niechciol, M.; Niemietz, L.; Nierstenhoefer, N.; Nitz, D.; Nosek, D.; Nožka, L.; Oehlschläger, J.; Olinto, A.; Ortiz, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Parente, G.; Parizot, E.; Parra, A.; Pastor, S.; Paul, T.; Pech, M.; Peķala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Pesce, R.; Petermann, E.; Petrera, S.; Petrolini, A.; Petrov, Y.; Pfendner, C.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Ponce, V. H.; Pontz, M.; Porcelli, A.; Privitera, P.; Prouza, M.; Quel, E. J.; Querchfeld, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rivera, H.; Rizi, V.; Roberts, J.; Rodrigues de Carvalho, W.; Rodriguez, G.; Rodriguez Cabo, I.; Rodriguez Martino, J.; Rodriguez Rojo, J.; Rodríguez-Frías, M. D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Rouillé-d'Orfeuil, B.; Roulet, E.; Rovero, A. C.; Rühle, C.; Saftoiu, A.; Salamida, F.; Salazar, H.; Salesa Greus, F.; Salina, G.; Sánchez, F.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sarkar, S.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, A.; Scholten, O.; Schoorlemmer, H.; Schovancova, J.; Schovánek, P.; Schröder, F.; Schulte, S.; Schuster, D.; Sciutto, S. J.; Scuderi, M.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Silva Lopez, H. H.; Sima, O.; 'Smiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Spinka, H.; Squartini, R.; Srivastava, Y. N.; Stanic, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Stutz, A.; Suarez, F.; Suomijärvi, T.; Supanitsky, A. D.; Šuša, T.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Szuba, M.; Tapia, A.; Tartare, M.; Taşcău, O.; Tcaciuc, R.; Thao, N. T.; Thomas, D.; Tiffenberg, J.; Timmermans, C.; Tkaczyk, W.; Todero Peixoto, C. J.; Toma, G.; Tomankova, L.; Tomé, B.; Tonachini, A.; Travnicek, P.; Tridapalli, D. B.; Tristram, G.; Trovato, E.; Tueros, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van Aar, G.; van den Berg, A. M.; van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Verzi, V.; Vicha, J.; Videla, M.; Villaseñor, L.; Wahlberg, H.; Wahrlich, P.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Werner, F.; Westerhoff, S.; Whelan, B. J.; Widom, A.; Wieczorek, G.; Wiencke, L.; Wilczyńska, B.; Wilczyński, H.; Will, M.; Williams, C.; Winchen, T.; Wommer, M.; Wundheiler, B.; Yamamoto, T.; Yapici, T.; Younk, P.; Yuan, G.; Yushkov, A.; Zamorano Garcia, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Zhou, J.; Zhu, Y.; Zimbres Silva, M.; Ziolkowski, M.

    2012-12-01

    A thorough search of the sky exposed at the Pierre Auger Cosmic Ray Observatory reveals no statistically significant excess of events in any small solid angle that would be indicative of a flux of neutral particles from a discrete source. The search covers from -90° to +15° in declination using four different energy ranges above 1 EeV (1018 eV). The method used in this search is more sensitive to neutrons than to photons. The upper limit on a neutron flux is derived for a dense grid of directions for each of the four energy ranges. These results constrain scenarios for the production of ultrahigh energy cosmic rays in the Galaxy.

  14. Review of the Advanced Neutron Source (ANS) materials irradiation facilities

    SciTech Connect

    Goland, A.N. )

    1991-03-01

    The purpose of the workshop was to document as accurately as possible the present and future needs for neutron irradiation capacity and facilities as related to the design of the Advanced Neutron Source (ANS) which will be the next generation steady-state research reactor. The report provides the findings and recommendations of the working group. After introductory and background information is presented, the discussion includes the status of the ANS design, in particular in-core materials irradiation facilities design and important experimental parameters. The summary of workshop discussions describes a survey of irradiation-effects research community and opportunities for ex-core irradiation facilities. 20 refs., 2 figs., 4 tabs. (MHB)

  15. Advanced Neutron Source Reactor thermal analysis of fuel plate defects

    SciTech Connect

    Giles, G.E.

    1995-08-01

    The Advanced Neutron Source Reactor (ANSR) is a research reactor designed to provide the highest continuous neutron beam intensity of any reactor in the world. The present technology for determining safe operations were developed for the High Flux Isotope Reactor (HFIR). These techniques are conservative and provide confidence in the safe operation of HFIR. However, the more intense requirements of ANSR necessitate the development of more accurate, but still conservative, techniques. This report details the development of a Local Analysis Technique (LAT) that provides an appropriate approach. Application of the LAT to two ANSR core designs are presented. New theories of the thermal and nuclear behavior of the U{sub 3}Si{sub 2} fuel are utilized. The implications of lower fuel enrichment and of modifying the inspection procedures are also discussed. Development of the computer codes that enable the automate execution of the LAT is included.

  16. Coded source neutron imaging at the PULSTAR reactor

    SciTech Connect

    Xiao, Ziyu; Mishra, Kaushal; Hawari, Ayman; Bingham, Philip R; Bilheux, Hassina Z; Tobin Jr, Kenneth William

    2011-01-01

    A neutron imaging facility is located on beam-tube No.5 of the 1-MW PULSTAR reactor at North Carolina State University. An investigation of high resolution imaging using the coded source imaging technique has been initiated at the facility. Coded imaging uses a mosaic of pinholes to encode an aperture, thus generating an encoded image of the object at the detector. To reconstruct the image data received by the detector, the corresponding decoding patterns are used. The optimized design of coded mask is critical for the performance of this technique and will depend on the characteristics of the imaging beam. In this work, a 34 x 38 uniformly redundant array (URA) coded aperture system is studied for application at the PULSTAR reactor neutron imaging facility. The URA pattern was fabricated on a 500 ?m gadolinium sheet. Simulations and experiments with a pinhole object have been conducted using the Gd URA and the optimized beam line.

  17. Physics data base for the Beam Plasma Neutron Source (BPNS)

    NASA Astrophysics Data System (ADS)

    Coensgen, F. H.; Casper, T. A.; Correll, D. L.; Damm, C. C.; Futch, A. H.; Molvik, A. W.

    1990-10-01

    A 14-MeV deuterium-tritium (D-T) neutron source for accelerated end-of-life testing of fusion reactor materials has been designed on the basis of a linear two-component collisional plasma system. An intense flux (up to 5 x 10(exp 18)/sq m sec) of 14 MeV neutrons is produced in a fully ionized high-density (n sub e approx. = 3 x 10(exp 21) per cu m) tritium target by transverse injection of 60 MW of neutral beam power. Power deposited in the target is removed by thermal electron conduction to large end chambers, where it is deposited in gaseous plasma collectors. We show in this paper that the major physics issues have now been experimentally demonstrated. These include magnetohydrodynamic (MHD) equilibrium and stability, microstability, startup, fueling, Spitzer electron thermal conductivity, and power deposition in a gaseous plasma collector. However, an integrated system was not demonstrated.

  18. Small-angle neutron scattering at pulsed spallation sources

    SciTech Connect

    Seeger, P.A.; Hjelm, R.P. Jr.

    1990-01-01

    The importance of small-angle neutron scattering (SANS) in biological, chemical, physical, and engineering research mandates that all intense neutron sources be equipped with SANS instruments. Four existing instruments are described, and the general differences between pulsed-source and reactor-based instrument designs are discussed. The basic geometries are identical, but dynamic range is achieved by using a broad band of wavelengths (with time-of-flight analysis) rather than by moving the detector. This allows a more optimized collimation system. Data acquisition requirements at a pulsed source are more severe, requiring large, fast histogramming memories. Data reduction is also more complex, as all wave length-dependent and angle-dependent backgrounds and non-linearities must be accounted for before data can be transformed to intensity vs Q. A comparison is shown between the Los Alamos pulsed instrument and D-11 (Institute Laue-Langevin), and examples from the four major topics of the conference are shown. The general conclusion is that reactor-based instruments remain superior at very low Q or if only a narrow range of Q is required, but that the current generation of pulsed-source instruments is competitive at moderate Q and may be faster when a wide range of Q is required. In principle, a user should choose which facility to use on the basis of optimizing the experiment; in practice the tradeoffs are not severe and the choice is usually made on the basis of availability.

  19. Nuclear Material Detection by One-Short-Pulse-Laser-Driven Neutron Source

    SciTech Connect

    Favalli, Andrea; Aymond, F.; Bridgewater, Jon S.; Croft, Stephen; Deppert, O.; Devlin, Matthew James; Falk, Katerina; Fernandez, Juan Carlos; Gautier, Donald Cort; Gonzales, Manuel A.; Goodsell, Alison Victoria; Guler, Nevzat; Hamilton, Christopher Eric; Hegelich, Bjorn Manuel; Henzlova, Daniela; Ianakiev, Kiril Dimitrov; Iliev, Metodi; Johnson, Randall Philip; Jung, Daniel; Kleinschmidt, Annika; Koehler, Katrina Elizabeth; Pomerantz, Ishay; Roth, Markus; Santi, Peter Angelo; Shimada, Tsutomu; Swinhoe, Martyn Thomas; Taddeucci, Terry Nicholas; Wurden, Glen Anthony; Palaniyappan, Sasikumar; McCary, E.

    2015-01-28

    Covered in the PowerPoint presentation are the following areas: Motivation and requirements for active interrogation of nuclear material; laser-driven neutron source; neutron diagnostics; active interrogation of nuclear material; and, conclusions, remarks, and future works.

  20. Prompt neutron multiplicities for the transplutonium nuclides

    SciTech Connect

    Holden, N.E.; Zucker, M.S.

    1985-01-01

    The direct determination of the average prompt neutron emission values is reviewed, and a method of comparing different sites of neutron emission multiplicity distribution values is described. Measured and recommended values are tabulated for these nuclides: /sup 241/Am, /sup 242/Am, /sup 242/Cm, /sup 243/Cm, /sup 244/Cm, /sup 246/Cm, /sup 247/Cm, /sup 248/Cm, /sup 250/Cm, /sup 245/Cm, /sup 249/Bk, /sup 246/Cf, /sup 249/Cf, /sup 250/Cf, /sup 252/Cf, /sup 254/Cf, /sup 251/Cf, /sup 253/Es, /sup 254/Es, /sup 244/Fm, /sup 246/Fm, /sup 255/Fm, /sup 252/No, /sup 254/Fm, /sup 256/Fm, /sup 257/Fm. 59 refs., 24 tabs. (LEW)

  1. Collective Band Structures in the Neutron-Rich 107,109Ru Nuclei

    NASA Astrophysics Data System (ADS)

    Zhu, Sheng-jiang; Gan, Cui-yun; J, Hamilton H.; A, Ramayya V.; B, Babu R. S.; M, Sakhaee; W, Ma C.; Long, Gui-lu; Deng, Jing-kang; Zhu, Ling-yan; Li, Ming; Yang, Li-ming; J, Komicki; J, Cole D.; R, Aryaeinejad; Y, Dardenne K.; M, Drigert W.; J, Rasmussen O.; M, Stoyer A.; S, Chu Y.; K, Gregorich E.; M, Mohar F.; S, Prussin G.; I, Lee Y.; N, Johnson R.; F, McGowan K.

    1998-11-01

    The levels in neutron-rich odd-A 107,109Ru nuclei have been investigated by using γ-γ- and γ-γ-γ-coincidence studies of the prompt γ-rays from the spontaneous fission of 252Cf. The ground state bands and the negative parity bands are identified and expanded in both nuclei. Triaxial rotor plus particle model calculations indicate the ground state bands originate from ν(d5/2 + g7/2) quasiparticle configurations and the negative parity bands are from νh11/2 orbital.

  2. Reinvestigation of two-phonon γ-vibrational band in neutron-rich 114Pd

    NASA Astrophysics Data System (ADS)

    Huang, Y.; Zhu, S. J.; Hamilton, J. H.; Ramayya, A. V.; Wang, E. H.; Liu, Y. X.; Sun, Y.; Hwang, J. K.; Xiao, Z. G.; Li, H. J.; Luo, Y. X.; Rasmussen, J. O.; Ter-Akopian, G. M.; Oganessian, Yu. Ts.

    2016-08-01

    The level structure in neutron-rich 114Pd nucleus has been reinvestigated by measuring prompt γ rays emitted in the spontaneous fission of 252Cf. A two-phonon γ-vibrational band built on the 1639.3keV level is observed, which confirms the previous suggestion from a β-decay experiment. Systematical comparison supports the assignment for a two-phonon γ-vibrational band in 114Pd. Triaxial projected shell model calculations for the multi-phonon γ bands of 114Pd are in good agreement with the experimental data.

  3. Nuclear structure of the odd-odd N=85 neutron-rich nucleus {sup 140}Cs

    SciTech Connect

    Liu, S. H.; Hamilton, J. H.; Ramayya, A. V.; Hwang, J. K.; Luo, Y. X.; Rasmussen, J. O.; Daniel, A. V.; Ter-Akopian, G. M.; Zhu, S. J.; Ma, W. C.

    2010-03-15

    High-spin excited states in the neutron-rich nucleus {sup 140}Cs were re-investigated from the spontaneous fission of {sup 252}Cf with the Gammasphere detector array. Seven new transitions at low and moderate spin and 13 at high spin were observed in {sup 140}Cs and the level scheme of {sup 140}Cs was extended to 3794 keV with a new sideband. Spins and parities were assigned to levels based on angular correlation measurements and the systematics in the N=85 isotones.

  4. The continued development of the Spallation Neutron Source external antenna H{sup -} ion source

    SciTech Connect

    Welton, R. F.; Carmichael, J.; Fuga, R.; Goulding, R. H.; Han, B.; Kang, Y.; Lee, S. W.; Murray, S. N.; Pennisi, T.; Potter, K. G.; Santana, M.; Stockli, M. P.; Desai, N. J.

    2010-02-15

    The U.S. Spallation Neutron Source (SNS) is an accelerator-based, pulsed neutron-scattering facility, currently in the process of ramping up neutron production. In order to ensure that the SNS will meet its operational commitments as well as provide for future facility upgrades with high reliability, we are developing a rf-driven, H{sup -} ion source based on a water-cooled, ceramic aluminum nitride (AlN) plasma chamber. To date, early versions of this source have delivered up to 42 mA to the SNS front end and unanalyzed beam currents up to {approx}100 mA (60 Hz, 1 ms) to the ion source test stand. This source was operated on the SNS accelerator from February to April 2009 and produced {approx}35 mA (beam current required by the ramp up plan) with availability of {approx}97%. During this run several ion source failures identified reliability issues, which must be addressed before the source re-enters production: plasma ignition, antenna lifetime, magnet cooling, and cooling jacket integrity. This report discusses these issues, details proposed engineering solutions, and notes progress to date.

  5. Materials Selection for the HFIR Cold Neutron Source

    SciTech Connect

    Farrell, K.

    2001-08-24

    In year 2002 the High Flux Isotope Reactor (HFIR) will be fitted with a source of cold neutrons to upgrade and expand its existing neutron scattering facilities. The in-reactor components of the new source consist of a moderator vessel containing supercritical hydrogen gas moderator at a temperature of 20K and pressure of 15 bar, and a surrounding vacuum vessel. They will be installed in an enlarged beam tube located at the site of the present horizontal beam tube, HB-4; which terminates within the reactor's beryllium reflector. These components must withstand exceptional service conditions. This report describes the reasons and factors underlying the choice of 6061-T6 aluminum alloy for construction of the in-reactor components. The overwhelming considerations are the need to minimize generation of nuclear heat and to remove that heat through the flowing moderator, and to achieve a minimum service life of about 8 years coincident with the replacement schedule for the beryllium reflector. 6061-T6 aluminum alloy offers the best combination of low nuclear heating, high thermal conductivity, good fabricability, compatibility with hydrogen, superior cryogenic properties, and a well-established history of satisfactory performance in nuclear environments. These features are documented herein. An assessment is given of the expected performance of each component of the cold source.

  6. A compact neutron generator using a field ionization source

    SciTech Connect

    Persaud, Arun; Waldmann, Ole; Kapadia, Rehan; Takei, Kuniharu; Javey, Ali; Schenkel, Thomas

    2012-02-15

    We study field ionization as a means to create ions for compact and rugged neutron source. Arrays of carbon nano-fibers promise the high field-enhancement factors required for efficient field ionization. We report on the fabrication of arrays of field emitters with a density up to 106 tips/cm2 and measure their performance characteristics using electron field emission. Lastly, the critical issue of uniformity is discussed, as are efforts towards coating the nano-fibers to enhance their lifetime and surface properties.

  7. BEAM LOSS MITIGATION IN THE OAK RIDGE SPALLATION NEUTRON SOURCE

    SciTech Connect

    Plum, Michael A

    2012-01-01

    The Oak Ridge Spallation Neutron Source (SNS) accelerator complex routinely delivers 1 MW of beam power to the spallation target. Due to this high beam power, understanding and minimizing the beam loss is an ongoing focus area of the accelerator physics program. In some areas of the accelerator facility the equipment parameters corresponding to the minimum loss are very different from the design parameters. In this presentation we will summarize the SNS beam loss measurements, the methods used to minimize the beam loss, and compare the design vs. the loss-minimized equipment parameters.

  8. STUDY OF A 10-MW CONTINUOUS SPALLATION NEUTRON SOURCE.

    SciTech Connect

    RUGGIERO,A.G.LUDEWIG,H.SHAPIRO,S.

    2003-05-12

    This paper reports on the feasibility study of a proton Super-Conducting Linac as the driver for an Accelerator-based Continuous Neutron Source (ACNS) [1] to be located at Brookhaven National Laboratory (BNL). The Linac is to be operated in the Continuous Wave (CW) mode to produce an average 10 MW of beam power. The Linac beam energy is taken to be 1.25 GeV. The required average proton beam intensity in exit is then 8 mA.

  9. Beginnings of remote handling at the RAL Spallation Neutron Source

    SciTech Connect

    Liska, D.J.; Hirst, J.

    1985-01-01

    Expenditure of funds and resources for remote maintenance systems traditionally are delayed until late in an accelerator's development. However, simple remote-surveillance equipment can be included early in facility planning to set the stage for future remote-handling needs and to identify appropriate personnel. Some basic equipment developed in the UK at the Spallation Neutron Source (SNS) that serves this function and that has been used to monitor beam loss during commissioning is described. A photograph of this equipment, positioned over the extractor septum magnet, is shown. This method can serve as a pattern approach to the problem of initiating remote-handling activities in other facilities.

  10. Neutron source capability assessment for cumulative fission yields measurements

    SciTech Connect

    Descalle, M A; Dekin, W; Kenneally, J

    2011-04-06

    A recent analysis of high-quality cumulative fission yields data for Pu-239 published in the peer-reviewed literature showed that the quoted experimental uncertainties do not allow a clear statement on how the fission yields vary as a function of energy. [Prussin2009] To make such a statement requires a set of experiments with well 'controlled' and understood sources of experimental errors to reduce uncertainties as low as possible, ideally in the 1 to 2% range. The Inter Laboratory Working Group (ILWOG) determined that Directed Stockpile Work (DSW) would benefit from an experimental program with the stated goal to reduce the measurement uncertainties significantly in order to make a definitive statement of the relationship of energy dependence to the cumulative fission yields. Following recent discussions between Lawrence Livermore National Laboratory (LLNL) and Los Alamos National Laboratory (LANL), there is a renewed interest in developing a concerted experimental program to measure fission yields in a neutron energy range from thermal energy (0.025 eV) to 14 MeV with an emphasis on discrete energies from 0.5 to 4 MeV. Ideally, fission yields would be measured at single energies, however, in practice there are only 'quasi-monoenergetic' neutrons sources of finite width. This report outlines a capability assessment as of June 2011 of available neutron sources that could be used as part of a concerted experimental program to measure cumulative fission yields. In a framework of international collaborations, capabilities available in the United States, at the Atomic Weapons Establishment (AWE) in the United Kingdom and at the Commissariat Energie Atomique (CEA) in France are listed. There is a need to develop an experimental program that will reduce the measurement uncertainties significantly in order to make a definitive statement of the relationship of energy dependence to the cumulative fission yields. Fission and monoenergetic neutron sources are available that

  11. Flat-spectrum radio sources - Cosmic conspiracy or relativistic neutrons?

    NASA Technical Reports Server (NTRS)

    Giovanoni, Peter M.; Kazanas, Demosthenes

    1990-01-01

    The intensity spectrum of the core of radio-loud AGN varies smoothly from 10 exp 8.5 to 10 to the 16th Hz, and is flat between 10 to the 9th and 10 to the 10th Hz, implying that a single emission mechanism is responsible. It is proposed here that energy is transported from the central source by relativistic neutrons which travel freely over a large volume and decay into relativistic protons. The protons produce secondary electrons which generate the observed radiation. The photon spectra thus produced are largely model-independent and flat.

  12. A new fuel loading design for the Advanced Neutron Source

    SciTech Connect

    Gehin, J.C.; Renier, J.P.; Worley, B.A.

    1994-06-01

    A new fuel loading design has been developed for the Advanced Neutron Source Reactor. In this reactor the combination of a small core volume and high power results in a very high power density. Using a direct optimization procedure the thermal-hydraulic margins for oxide temperature drop, centerline temperature and incipient boiling (and thus critical heat flux) were maximized to increase the limiting thermal power from 298 MW to 346 MW compared to the previous fuel grading, while maintaining the desired peak reflector thermal flux.

  13. Advanced Neutron Source (ANS) Project. Progress report FY 1993

    SciTech Connect

    Campbell, J.H.; Selby, D.L.; Harrington, R.M.; Thompson, P.B.

    1994-01-01

    This report covers the progress made in 1993 in the following sections: (1) project management; (2) research and development; (3) design and (4) safety. The section on research and development covers the following: (1) reactor core development; (2) fuel development; (3) corrosion loop tests and analysis; (4) thermal-hydraulic loop tests; (5) reactor control and shutdown concepts; (6) critical and subcritical experiments; (7) material data, structure tests, and analysis; (8) cold source development; (9) beam tube, guide, and instrument development; (10) neutron transport and shielding; (11) I and C research and development; and (12) facility concepts.

  14. Validation of multigroup neutron cross sections for the Advanced Neutron Source against the FOEHN critical experimental measurements

    SciTech Connect

    Smith, L.A.; Gehin, J.C.; Worley, B.A.; Renier, J.P.

    1994-04-01

    The FOEHN critical experiments were analyzed to validate the use of multigroup cross sections in the design of the Advanced Neutron Source. Eleven critical configurations were evaluated using the KENO, DORT, and VENTURE neutronics codes. Eigenvalue and power density profiles were computed and show very good agreement with measured values.

  15. Generalization of the analytical solution of neutron point kinetics equations with time-dependent external source

    NASA Astrophysics Data System (ADS)

    Seidi, M.; Behnia, S.; Khodabakhsh, R.

    2014-09-01

    Point reactor kinetics equations with one group of delayed neutrons in the presence of the time-dependent external neutron source are solved analytically during the start-up of a nuclear reactor. Our model incorporates the random nature of the source and linear reactivity variation. We establish a general relationship between the expectation values of source intensity and the expectation values of neutron density of the sub-critical reactor by ignoring the term of the second derivative for neutron density in neutron point kinetics equations. The results of the analytical solution are in good agreement with the results obtained with numerical solution.

  16. Performance of a reflectometer at continuous wave and pulsed neutron sources

    SciTech Connect

    Fitzsimmons, M.R.

    1995-12-31

    The Monte-Carlo simulations presented here involve simulations of reflectivity measurements of one sample using a reflectometer of traditional geometry at different neutron sources. The same reflectometer was used in all simulations. Only the characteristics of the neutron source, and the technique used to measure neutron wavelength were changed. In the case of the CW simulation, a monochromating crystal was used to select a nearly monochromatic beam (MB) from the neutron spectrum. In the simulations of the pulse sources, the time needed to traverse a fixed distance was measured, from which neutron wavelength is deduced.

  17. Spallation neutron source saddle antenna H{sup -} ion source project

    SciTech Connect

    Dudnikov, Vadim; Johnson, Rolland P.; Dudnikova, Galina; Stockli, Martin; Welton, Robert

    2010-02-15

    In this project we are developing an H{sup -} source which will synthesize the most important developments in the field of negative ion sources to provide high current, high brightness, good lifetime, high reliability, and high power efficiency. We describe two planned modifications to the present spallation neutron source external antenna source in order to increase the plasma density near the output aperture: (1) replacing the present 2 MHz plasma-forming solenoid antenna with a 13 MHz saddle-type antenna and (2) replacing the permanent multicusp magnetic system with a weaker electromagnet.

  18. A Project of Boron Neutron Capture Therapy System based on a Proton Linac Neutron Source

    NASA Astrophysics Data System (ADS)

    Kiyanagi, Yoshikai; Asano, Kenji; Arakawa, Akihiro; Fukuchi, Shin; Hiraga, Fujio; Kimura, Kenju; Kobayashi, Hitoshi; Kubota, Michio; Kumada, Hiroaki; Matsumoto, Hiroshi; Matsumoto, Akira; Sakae, Takeji; Saitoh, Kimiaki; Shibata, Tokushi; Yoshioka, Masakazu

    At present, the clinical trials of Boron Neutron Capture Therapy (BNCT) are being performed at research reactor facilities. However, an accelerator based BNCT has a merit that it can be built in a hospital. So, we just launched a development project for the BNCT based on an accelerator in order to establish and to spread the BNCT as an effective therapy in the near future. In the project, a compact proton linac installed in a hospital will be applied as a neutron source, and energy of the proton beam is planned to be less than about 10 MeV to reduce the radioactivity. The BNCT requires epithermal neutron beam with an intensity of around 1x109 (n/cm2/sec) to deliver the therapeutic dose to a deeper region in a body and to complete the irradiation within an hour. From this condition, the current of the proton beam required is estimated to be a few mA on average. Enormous heat deposition in the target is a big issue. We are aiming at total optimization of the accelerator based BNCT from the linac to the irradiation position. Here, the outline of the project is introduced and the moderator design is presented.

  19. 5 MW pulsed spallation neutron source, Preconceptual design study

    SciTech Connect

    Not Available

    1994-06-01

    This report describes a self-consistent base line design for a 5 MW Pulsed Spallation Neutron Source (PSNS). It is intended to establish feasibility of design and as a basis for further expanded and detailed studies. It may also serve as a basis for establishing project cost (30% accuracy) in order to intercompare competing designs for a PSNS not only on the basis of technical feasibility and technical merit but also on the basis of projected total cost. The accelerator design considered here is based on the objective of a pulsed neutron source obtained by means of a pulsed proton beam with average beam power of 5 MW, in {approx} 1 {mu}sec pulses, operating at a repetition rate of 60 Hz. Two target stations are incorporated in the basic facility: one for operation at 10 Hz for long-wavelength instruments, and one operating at 50 Hz for instruments utilizing thermal neutrons. The design approach for the proton accelerator is to use a low energy linear accelerator (at 0.6 GeV), operating at 60 Hz, in tandem with two fast cycling booster synchrotrons (at 3.6 GeV), operating at 30 Hz. It is assumed here that considerations of cost and overall system reliability may favor the present design approach over the alternative approach pursued elsewhere, whereby use is made of a high energy linear accelerator in conjunction with a dc accumulation ring. With the knowledge that this alternative design is under active development, it was deliberately decided to favor here the low energy linac-fast cycling booster approach. Clearly, the present design, as developed here, must be carried to the full conceptual design stage in order to facilitate a meaningful technology and cost comparison with alternative designs.

  20. Characteristics comparison between a cyclotron-based neutron source and KUR-HWNIF for boron neutron capture therapy

    NASA Astrophysics Data System (ADS)

    Tanaka, H.; Sakurai, Y.; Suzuki, M.; Masunaga, S.; Kinashi, Y.; Kashino, G.; Liu, Y.; Mitsumoto, T.; Yajima, S.; Tsutsui, H.; Maruhashi, A.; Ono, K.

    2009-06-01

    At Kyoto University Research Reactor Institute (KURRI), 275 clinical trials of boron neutron capture therapy (BNCT) have been performed as of March 2006, and the effectiveness of BNCT has been revealed. In order to further develop BNCT, it is desirable to supply accelerator-based epithermal-neutron sources that can be installed near the hospital. We proposed the method of filtering and moderating fast neutrons, which are emitted from the reaction between a beryllium target and 30-MeV protons accelerated by a cyclotron accelerator, using an optimum moderator system composed of iron, lead, aluminum and calcium fluoride. At present, an epithermal-neutron source is under construction from June 2008. This system consists of a cyclotron accelerator, beam transport system, neutron-yielding target, filter, moderator and irradiation bed. In this article, an overview of this system and the properties of the treatment neutron beam optimized by the MCNPX Monte Carlo neutron transport code are presented. The distribution of biological effect weighted dose in a head phantom compared with that of Kyoto University Research Reactor (KUR) is shown. It is confirmed that for the accelerator, the biological effect weighted dose for a deeply situated tumor in the phantom is 18% larger than that for KUR, when the limit dose of the normal brain is 10 Gy-eq. The therapeutic time of the cyclotron-based neutron sources are nearly one-quarter of that of KUR. The cyclotron-based epithermal-neutron source is a promising alternative to reactor-based neutron sources for treatments by BNCT.