Science.gov

Sample records for 252cf spontaneous fission

  1. Measurement of prompt fission neutron spectrum for spontaneous fission of 252Cf using γ multiplicity tagging

    NASA Astrophysics Data System (ADS)

    Blain, E.; Daskalakis, A.; Block, R. C.; Danon, Y.

    2017-06-01

    The prompt fission neutron spectrum from spontaneous fission of 252Cf is an integral part of several aspects of nuclear data. Not only is the spectrum itself of interest, but neutron detectors often use the spectrum for calibration, and other prompt fission neutron spectra are measured as a ratio to 252Cf. Therefore, reducing the uncertainties in this spectrum will allow for more accurate nuclear data to be available across a wide range of fields. The prompt fission neutron spectrum for the spontaneous fission of 252Cf was measured at Rensselaer Polytechnic Institute using the multiple γ tagging method with a 18.4-ng fission sample. An EJ-301 liquid scintillator fast neutron detector was used to measure the high energy portion of the spectrum, 0.5-7 MeV, and a thin EJ-204 plastic scintillator was used to measure the low energy portion of the spectrum, from 50 keV to 2 MeV. These spectra both show good agreement with the current evaluation of 252Cf and have low associated uncertainties providing a new high precision measurement that helps reduce the uncertainties in the prompt fission neutron spectrum for the spontaneous fission of 252Cf.

  2. Angular correlations in the prompt neutron emission in spontaneous fission of 252Cf

    NASA Astrophysics Data System (ADS)

    Kopatch, Yuri; Chietera, Andreina; Stuttgé, Louise; Gönnenwein, Friedrich; Mutterer, Manfred; Gagarski, Alexei; Guseva, Irina; Dorvaux, Olivier; Hanappe, Francis; Hambsch, Franz-Josef

    2017-09-01

    An experiment aiming at the detailed investigation of angular correlations in the neutron emission from spontaneous fission of 252Cf has been performed at IPHC Strasbourg using the angle-sensitive double ionization chamber CODIS for measuring fission fragments and a set of 60 DEMON scintillator counters for neutron detection. The main aim of the experiment is to search for an anisotropy of neutron emission in the center-of-mass system of the fragments. The present status of the data analysis and the full Monte-Carlo simulation of the experiment are reported in the present paper.

  3. Bremsstrahlung emission of high energy accompanying spontaneous fission of {sup 252}Cf

    SciTech Connect

    Maydanyuk, S. P.; Olkhovsky, V. S.; Mandaglio, G.; Manganaro, M.; Fazio, G.; Giardina, G.

    2010-07-15

    The study of the bremsstrahlung photon emission accompanying fragments produced in the spontaneous fission of heavy nuclei by a fully quantum approach is presented for the first time. This kind of problem requires the knowledge of wave functions of the fissioning system leading to a wide distribution of couples of fragments that are the products of fission. With the aim of obtaining these wave functions, the interaction potential between the emitted fragment and residual nucleus is calculated by a standard approach. A new procedure was performed that allows an increase in the accuracy of calculations of radial integrals in the far asymptotic region and the achievement of the convenient convergence in calculations of the spectra. The total probability of the emitted photons in the spontaneous fission of {sup 252}Cf was calculated in such a way. We obtained good agreement between theory and experimental data up to 38 MeV for the bremsstrahlung spectrum of photons while the calculation of the total probability of photon emission accompanying fragments was performed up to an energy of 60 MeV. The analysis of contributions in the bremsstrahlung spectrum accompanying the emission of light, medium, and heavy fragments in the fission of {sup 252}Cf is presented.

  4. Dynamics of the tri-nuclear system at spontaneous fission of 252Cf

    NASA Astrophysics Data System (ADS)

    Tashkhodjaev, R. B.; Nasirov, A. K.; Alpomeshev, E. Kh.

    2016-11-01

    To describe the dynamics of ternary fission of 252Cf an equation of motion of the tri-nuclear system was obtained and it was solved numerically. The fission of the 70Ni+50Ca+132Sn channel was chosen as one of the more probable channels of true ternary fission of 252Cf. The collinearity of ternary fission was checked by analyzing the results of the equation of motion. The results show that if initially all nuclei are placed collinearly (potential energy of this position is the smallest) and the component of the middle fragment's initial velocity which is perpendicular to this line is zero, then ternary fission is collinear, otherwise noncollinear ternary fission takes place.

  5. Detailed Study of the Angular Correlations in the Prompt Neutron Emission in Spontaneous Fission of 252Cf

    NASA Astrophysics Data System (ADS)

    Kopatch, Yu.; Chietera, A.; Stuttgé, L.; Gönnenwein, F.; Mutterer, M.; Gagarski, A.; Guseva, I.; Chernysheva, E.; Dorvaux, O.; Hambsch, F.-J.; Hanappe, F.; Mezentseva, Z.; Telezhnikov, S.

    An experiment has been performed at IPHC Strasbourg, aimed at the detailed investigation of angular correlations in the neutron emission from spontaneous fission of 252Cf. Fission fragments were measured by the angle-sensitive double ionization chamber CODIS while neutrons were detected by a set of 60 DEMON scintillator counters. The main aim of the experiment is the observation of the correlation between the fragment spins and neutron emission anisotropy. Preliminary results, based on the Monte-Carlo simulations, as well as the preliminary analysis of the experimental data are shown.

  6. Comprehensive modeling of prompt fission neutrons and γ rays in the spontaneous fission of 252Cf

    NASA Astrophysics Data System (ADS)

    Talou, Patrick; Stetcu, Ionel; Kawano, Toshihiko

    2017-09-01

    We present a comprehensive set of calculations performed with the Monte Carlo Hauser-Feshbach code CGMF of the prompt fission neutrons and γ rays emitted in the spontaneous fission of Cf-252. This reaction has been studied in depth over the years and provides an almost perfect test for the assumptions, parameters and output of the CGMF code. Here we present results for prompt neutron observables beyond the ubiquitous average prompt fission neutron spectrum and multiplicity. In particular, we compare CGMF calculations to experimental data on neutron data per fragment mass split, neutron-light fragment and neutron-neutron angular distributions, and on the time dependence of the average prompt γ-ray multiplicity. Finally, we briefly discuss the recent integration of CGMF into the MCNP6.2 transport code.

  7. Isolation and Purification of the Xenon Fraction of 252Cf Spontaneous Fission Products for the Production of Radio Xenon Calibration Standards

    SciTech Connect

    McGrath, Christopher A.

    2015-04-01

    The presence of radioactive xenon isotopes indicates that fission events have occurred, and is used to help enforce the Comprehensive Test Ban Treaty. Idaho National Laboratory (INL) produces 135Xe, 133mXe, 133Xe, and 131mXe standards used for the calibration and testing of collection equipment and analytical techniques used to monitor radio xenon emissions. At INL, xenon is produced and collected as one of several spontaneous fission products from a 252Cf source. Further chromatographic purification of the fission gases ensures the separations of the xenon fraction for selective collection. An explanation of the fission gas collection, separation and purification is presented. Additionally, the range of 135Xe to 133Xe ratio that can be isolated is explained. This is an operational update on the work introduced previously, now that it is in operation and has been recharged with a second 252Cf source.

  8. Analysis of linear energy transfers and quality factors of charged particles produced by spontaneous fission neutrons from 252Cf and 244Pu in the human body.

    PubMed

    Endo, Akira; Sato, Tatsuhiko

    2013-04-01

    Absorbed doses, linear energy transfers (LETs) and quality factors of secondary charged particles in organs and tissues, generated via the interactions of the spontaneous fission neutrons from (252)Cf and (244)Pu within the human body, were studied using the Particle and Heavy Ion Transport Code System (PHITS) coupled with the ICRP Reference Phantom. Both the absorbed doses and the quality factors in target organs generally decrease with increasing distance from the source organ. The analysis of LET distributions of secondary charged particles led to the identification of the relationship between LET spectra and target-source organ locations. A comparison between human body-averaged mean quality factors and fluence-averaged radiation weighting factors showed that the current numerical conventions for the radiation weighting factors of neutrons, updated in ICRP103, and the quality factors for internal exposure are valid.

  9. Characterization of neutron fields from bare and heavy water moderated (252)Cf spontaneous fission source using Bonner Sphere Spectrometer.

    PubMed

    Atanackovic, Jovica; Yonkeu, Andre; Dubeau, Jacques; Witharana, Sampath Hakmana; Priest, Nicholas

    2015-05-01

    In this work a calibrated Bonner Sphere Spectrometer (BSS), together with ISO shadow cones, was used to quantify the total and scattered components of bare and heavy water moderated (252)Cf neutron fields. All measurements were performed with a BSS that was calibrated at the National Physical Laboratory (NPL), Teddington, UK, which is a global primary standard laboratory and world-leading facility for neutron metrology and neutron instruments calibration. The fields were characterized for source-spectrometer distances of 80, 100, 150 and 200cm; and at heights of 103 and 200cm from the facility floor. As expected, the scattered contribution was greatest at the farthest distance from the source and closer to the floor. Hence, at a distance of 200cm and a height of 103cm, the scatter added to the direct field up to 162% of the total neutron fluence and up to 61% of the ambient dose equivalent, while at the same distance and height of 200cm above the floor, these values were up to 146% and 52%, respectively. In the case of heavy water moderated (252)Cf neutron fields, a shadow cone subtraction technique could not be implemented, however Monte Carlo simulations were utilized in order to differentiate between the direct and scatter components of the neutron fields. In this case, at a source-detector distance of 200cm and a height of 103cm, the scatter added to the direct field up to 148% of the total neutron fluence and up to 45% of the ambient dose equivalent, while at the same distance and a height of 200cm above the floor, these values were up to 134% and 42%, respectively. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Comparison of fission modes in 252Cf, 257Fm, and 260Md

    NASA Astrophysics Data System (ADS)

    van Aarle, J.; Siemon, K.; Wild, J. F.; Lougheed, R. W.; Westmeier, W.; Patzelt, P.

    1998-10-01

    Although the spontaneous-fission properties of heavy actinides have been studied for well over 35 years, many interesting and informative details continue to come into light. During the last decade, the spontaneous fission of 252Cf, 257Fm and 260Md has been extensively investigated at the Philipps University of Marburg (1-4), by means of a gadolinium-doped liquid scintillation tank for neutron counting and surface barrier detectors for fission fragment detection. The three nuclides represent the transition from the well-known asymmetric fission yield distribution, as it is characteristic for 252Cf, to a much more symmetrical one, found in the fission of 260Md. Therefore, trends in the dynamical changes of fission properties have been derived from these studies. For the spontaneous fission of 252Cf and 260Md, it was already shown that different fission modes, as proposed by theoretical calculations of Brosa et al. (5), could be separated, using the correlation between the neutrons emitted in a fission event and both the observed fission-fragment mass and the total kinetic energy (1, 2). In the case of 257Fm, no theoretical calculations for fission modes exist. However, from the fission properties of the two surrounding actinides, one can expect at least three different fission modes, namely two "standard" and the "supershort" mode. In this paper, results from the recent 257Fm experiment will be presented and compared to systematics extracted from the fission properties of other heavy actinides.

  11. Comparison of fission modes in {sup 252}Cf, {sup 257}Fm, and {sup 260}Md

    SciTech Connect

    Aarle, J. van; Siemon, K.; Patzelt, P.; Wild, J. F.; Lougheed, R. W.; Westmeier, W.

    1998-10-26

    Although the spontaneous-fission properties of heavy actinides have been studied for well over 35 years, many interesting and informative details continue to come into light. During the last decade, the spontaneous fission of {sup 252}Cf, {sup 257}Fm and {sup 260}Md has been extensively investigated at the Philipps University of Marburg, by means of a gadolinium-doped liquid scintillation tank for neutron counting and surface barrier detectors for fission fragment detection. The three nuclides represent the transition from the well-known asymmetric fission yield distribution, as it is characteristic for {sup 252}Cf, to a much more symmetrical one, found in the fission of {sup 260}Md. Therefore, trends in the dynamical changes of fission properties have been derived from these studies. For the spontaneous fission of {sup 252}Cf and {sup 260}Md, it was already shown that different fission modes, as proposed by theoretical calculations of Brosa et al. (5), could be separated, using the correlation between the neutrons emitted in a fission event and both the observed fission-fragment mass and the total kinetic energy (1, 2). In the case of {sup 257}Fm, no theoretical calculations for fission modes exist. However, from the fission properties of the two surrounding actinides, one can expect at least three different fission modes, namely two 'standard' and the 'supershort' mode. In this paper, results from the recent {sup 257}Fm experiment will be presented and compared to systematics extracted from the fission properties of other heavy actinides.

  12. Gamma-ray multiplicity measurement of the spontaneous fission decay of 252Cf in a segmented HPGe/BGO detector array

    SciTech Connect

    Bleuel, D L; Bernstein, L A; Burke, J T; Gibelin, J; Heffner, M D; Mintz, J; Norman, E B; Phair, L; Scielzo, N D; Sheets, S A; Snyderman, N J; Stoyer, M A; Wiedeking, M

    2008-04-23

    Coincident {gamma} rays from a {sup 252}Cf source were measured using an array of six segmented high-purity germanium (HPGe) Clover detectors each enclosed by 16 bismuth-germanate (BGO) detectors. The detectors were arranged in a cubic pattern around a 1 {micro}Ci {sup 252}Cf source to cover a large solid angle for {gamma}-ray measurement with a reasonable reconstruction of the multiplicity. Neutron multiplicity was determined in certain cases by identifying the prompt {gamma} rays from individual fission fragment pairs. Multiplicity distributions from previous experiments and theoretical models were convolved with the response function of the array and compared to the present results. These results suggest a {gamma}-ray multiplicity spectrum broader than previous measurements and models, and provide no evidence of correlation with neutron multiplicity.

  13. Comparison of fission modes in {sup 252}Cf, {sup 257}Fm, and {sup 260}Md

    SciTech Connect

    van Aarle, J.; Siemon, K.; Patzelt, P.; Wild, J.F.; Lougheed, R.W.; Westmeier, W.

    1998-10-01

    Although the spontaneous-fission properties of heavy actinides have been studied for well over 35 years, many interesting and informative details continue to come into light. During the last decade, the spontaneous fission of {sup 252}Cf, {sup 257}Fm and {sup 260}Md has been extensively investigated at the Philipps University of Marburg (1{endash}4), by means of a gadolinium-doped liquid scintillation tank for neutron counting and surface barrier detectors for fission fragment detection. The three nuclides represent the transition from the well-known asymmetric fission yield distribution, as it is characteristic for {sup 252}Cf, to a much more symmetrical one, found in the fission of {sup 260}Md. Therefore, trends in the dynamical changes of fission properties have been derived from these studies. For the spontaneous fission of {sup 252}Cf and {sup 260}Md, it was already shown that different fission modes, as proposed by theoretical calculations of Brosa et al. (5), could be separated, using the correlation between the neutrons emitted in a fission event and both the observed fission-fragment mass and the total kinetic energy (1, 2). In the case of {sup 257}Fm, no theoretical calculations for fission modes exist. However, from the fission properties of the two surrounding actinides, one can expect at least three different fission modes, namely two {open_quotes}standard{close_quotes} and the {open_quotes}supershort{close_quotes} mode. In this paper, results from the recent {sup 257}Fm experiment will be presented and compared to systematics extracted from the fission properties of other heavy actinides. {copyright} {ital 1998 American Institute of Physics.}

  14. Prompt neutron fission spectrum mean energies for the fissile nuclides and /sup 252/Cf

    SciTech Connect

    Holden, N.E.

    1985-01-01

    The international standard for a neutron spectrum is that produced from the spontaneous fission of /sup 252/Cf, while the thermal neutron induced fission neutron spectra for the four fissile nuclides, /sup 233/U, /sup 235/U, /sup 239/Pu, and /sup 241/Pu are of interest from the standpoint of nuclear reactors. The average neutron energies of these spectra are tabulated. The individual measurements are recorded with the neutron energy range measured, the method of detection as well as the average neutron energy for each author. Also tabulated are the measurements of the ratio of mean energies for pairs of fission neutron spectra. 75 refs., 9 tabs. (LEW)

  15. Microscopic cold fission yields of {sup 252}Cf

    SciTech Connect

    Mirea, M.; Delion, D. S.; Sandulescu, A.

    2010-04-15

    We show that the sharp maximum corresponding to {sup 107}Mo in the fragment distribution of the {sup 252}Cf cold fission is actually a Sn-like radioactivity, similar to other decay processes in which magic nuclei are involved, namely alpha decay and heavy cluster emission, also called Pb-like radioactivity. It turns out that the mass asymmetry degree of freedom has a key role in connecting initial Sn with the final Mo isotopes along the fission path. We investigate the cold rearrangement of nucleons within the framework of the two-center shell model in order to compute the cold valleys in the charge equilibrated fragmentation potential. The fission yields are estimated by using the semiclassical penetration approach. We consider 5 degrees of freedom, namely the interfragment distance, the shapes of fragments, the neck parameter, and mass asymmetry. We found an isomeric minimum between the internal and external barriers. It turns out that the inner cold valley of the total potential energy is connected to the doubly magic isotope {sup 132}Sn.

  16. True ternary fission, the collinear cluster tripartition (CCT) of {sup 252}Cf

    SciTech Connect

    Oertzen, W. von; Pyatkov, Y. V.; Kamanin, D.

    2012-10-20

    In systematic work over the last decade (see Pyatkov et al. [12] and refs therein), the ternary fission decay of heavy nuclei, in {sup 235}U(n,fff) and {sup 252}Cf(sf) has been studied in a collinear geometry. The name used for this process is (CCT), with three fragments of similar size in a collinear decay, it is the true ternary fission. This decay has been observed in spontaneous fission as well as in a neutron induced reaction. The measurements are based on different experimental set-ups, with binary coincidences containing TOF and energy determinations. With two detector telescopes placed at 180 Degree-Sign , the measurements of masses and energies of each of the registered two fragments, give complete kinematic solutions. Thus the missing mass events in binary coincidences can be determined, these events are obtained by blocking one of the lighter fragments on a structure in front of the detectors. The relatively high yield of CCT (more than 10{sup -3} per binary fission) is explained. It is due to the favourable Q-values (more positive than for binary) and the large phase space of the ternary CCT-decay, dominated by three (magic) clusters: e.g. isotopes of Sn, Ca and Ni, {sup 132}Sn+{sup 50}Ca+{sup 70}Ni. It is shown that the collinear (prolate) geometry has the favoured potential energy relative to the oblate shapes. The ternary fission is considered to be a sequential process. With this assumption the kinetic energies of the fragments have been calculated by Vijay et al.. The third fragments have very low kinetic energies (below 20 MeV) and have thus escaped their detection in previous work on 'ternary fission', where in addition an oblate shape and a triangle for the momentum vectors have been assumed.

  17. Cluster description of cold (neutronless) α ternary fission of 252Cf

    NASA Astrophysics Data System (ADS)

    Săndulescu, A.; Carstoiu, F.; Bulboacă, I.; Greiner, W.

    1999-10-01

    A coplanar three body cluster model (two deformed fragments and an α particle) similar to the model used for the description of cold binary fission was employed for the description of cold (neutronless) α accompanied fission of 252Cf. No preformation factors were considered. The three body potential was computed with the help of a double folding potential generated by the M3Y-NN effective interaction and realistic fragment ground state deformations. From the minimum action principle, the α particle trajectory equations, the corresponding ternary barriers, and an approximate WKB expression for the barrier penetrability are obtained. The relative cold ternary yields were calculated as the ratio of the penetrability of a given ternary fragmentation and the sum of the penetrabilities of all possible cold ternary fragmentations. Different scenarios were considered depending on the trajectories of the fragments. It was shown that two regions of cold fragmentation exist, a deformed one corresponding to large fragment deformations and a spherical one around 132Sn, similarly to the case of the cold binary fission of 252Cf. We have shown that for the scenario corresponding to the Lagrange point, where all forces acting on the α particle are in equilibrium, the cold α ternary yields of 252Cf are strongly correlated with the cold binary yields of the daughter nucleus 248Cm into the same heavy fragments. For all other scenarios only the spherical splittings are favored. We concluded that due to the present available experimental data on cold α ternary yields only the Lagrange scenario could describe the cold α ternary fission of 252Cf.

  18. 252Cf fission-neutron spectrum using a simplified time-of-flight setup: An advanced teaching laboratory experiment

    NASA Astrophysics Data System (ADS)

    Becchetti, F. D.; Febbraro, M.; Torres-Isea, R.; Ojaruega, M.; Baum, L.

    2013-02-01

    The removal of PuBe and AmBe neutron sources from many university teaching laboratories (due to heightened security issues) has often left a void in teaching various aspects of neutron physics. We have recently replaced such sources with sealed 252Cf oil-well logging sources (nominal 10-100 μCi), and developed several experiments using them as neutron sources. This includes a fission-neutron time-of-flight experiment using plastic scintillators, which utilizes the prompt γ rays emitted in 252Cf spontaneous fission as a fast timing start signal. The experiment can be performed with conventional nuclear instrumentation and a 1-D multi-channel pulse-height analyzer, available in most advanced teaching laboratories. Alternatively, a more sophisticated experiment using liquid scintillators and n/γ pulse-shape discrimination can be performed. Several other experiments using these neutron sources are also feasible. The experiments can introduce students to the problem of detecting the dark matter thought to dominate the universe and to the techniques used to detect contraband fissionable nuclear materials.

  19. Fragments mass and charge distribution in the light particle accompanied fission of 252Cf

    NASA Astrophysics Data System (ADS)

    Karthikraj, C.; Ren, Zhongzhou

    2017-06-01

    The ternary fission mass and charge distribution of 252Cf for different light third fragments (A 3 = 4He, 10Be, 14C, 20O, 20Ne and 24Ne) are studied with the use of statistical theory of fission. Two different approaches are adopted to generate the possible ternary fragment combinations: in one case, the Z/A of the products is the same as 252Cf, in the other the finite-range droplet model (FRDM) data are used, creating all the possible combinations also with different Z/A. For the calculation of the nuclear level densities, single-particle level energies of FRDM are also used. When the lighter fragment A 3 is 4He, our calculated mass and charge distribution results, at T = 1 MeV, show the larger yield for the deformed fragment combinations which is in line with the experimental observation. Interestingly, for various third fragments, our calculated results at T = 2 MeV indicate that the favorable ternary configuration contains closed shell nucleus either Pb or Sn as the heaviest fragment. In addition, we have compared our calculated ternary isotopic yields with the available experimental and theoretical data.

  20. Measurement of the 23Na(n,2n) cross section in 235U and 252Cf fission neutron spectra

    NASA Astrophysics Data System (ADS)

    Košťál, Michal; Schulc, Martin; Rypar, Vojtěch; Losa, Evžen; Švadlenková, Marie; Baroň, Petr; Jánský, Bohumil; Novák, Evžen; Mareček, Martin; Uhlíř, Jan

    2017-09-01

    The presented paper aims to compare the calculated and experimental reaction rates of 23Na(n,2n)22Na in a well-defined reactor spectra and in the spontaneous fission spectrum of 252Cf. The experimentally determined reaction rate, derived using gamma spectroscopy of irradiated NaF sample, is used for average cross section determination.Estimation of this cross-section is important as it is included in International Reactor Dosimetry and Fusion File and is also relevant to the correct estimation of long-term activity of Na coolant in Sodium Fast Reactors. The calculations were performed with the MCNP6 code using ENDF/B-VII.0, JEFF-3.1, JEFF-3.2, JENDL-3.3, JENDL-4, ROSFOND-2010, CENDL-3.1 and IRDFF nuclear data libraries. In the case of reactor spectrum, reasonable agreement was not achieved with any library. However, in the case of 252Cf spectrum agreement was achieved with IRDFF, JEFF-3.1 and JENDL libraries.

  1. Monte Carlo Hauser-Feshbach predictions of prompt fission γ rays: Application to nth+235U, nth+239Pu, and 252Cf (sf)

    NASA Astrophysics Data System (ADS)

    Becker, B.; Talou, P.; Kawano, T.; Danon, Y.; Stetcu, I.

    2013-01-01

    The prompt neutron and γ emission from primary fission fragments are calculated for thermal neutron induced fission of 235U and 239Pu and for spontaneous fission of 252Cf using a Monte Carlo Hauser-Feshbach approach for the evaporation of the excited fission fragments. Remaining free model parameters, such as excitation energy sharing and initial spin distribution, are determined by comparison of the neutron emission characteristics with experimental data. Using the obtained parameters the γ-ray characteristics, e.g., γ spectrum, multiplicity distribution, average multiplicity and energy, and multiplicity distribution, are calculated and compared with available experimental data.

  2. New Data on the Ternary Fission of {sup 252}Cf from the Gammasphere Facility

    SciTech Connect

    Ter-Akopian, G.M.; Daniel, A.V.; Fomichev, A.S.; Popeko, G.S.; Rodin, A.M.; Oganessian, Yu.Ts.; Hamilton, J.H.; Ramayya, A.V.; Kormicki, J.; Hwang, J.K.; Fong, D.; Gore, P.; Cole, J.D.; Jandel, M.; Kliman, J.; Krupa, L.; Rasmussen, J.O.; Lee, I.Y.; Macchiavelli, A.O.; Fallon, P.

    2004-10-01

    Ternary fission of {sup 252}Cf was studied at Gammasphere using eight {delta}E x E particle telescopes. Helium, beryllium, boron, and carbon light charged particles (LCPs) emitted with kinetic energy more than 9, 21, 26, and 32 MeV, respectively, were identified. The 3368-keV {gamma} transition from the first 2{sup +} excited state in {sup 10}Be was found and the population probability ratio N(2{sup +})/N(0{sup +}) = 0.160 {+-} 0.025 was estimated. No evidence was found for 3368-keV {gamma} rays emitted from a triple molecular state. For the first time, charge distributions are obtained for ternary fission fragments emitted with helium, beryllium, and carbon LCPs.

  3. Beta spectroscopy of some neutron-rich cerium isotopes in252Cf fission products

    NASA Astrophysics Data System (ADS)

    Ebong, I. D. U.; Roy, R. R.

    1981-09-01

    The method of cyclic-time optimization has been used, in conjunction with a beta-Kx-ray coincidence technique, to obtain the beta spectrum of some decaying cerium isotopes in the fission products of252Cf. A Kurie plot of the beta spectrum revealed at least four beta groups. From the relative isotopic yields of Kx-ray the isotopic origin of each group has been determined. The coincidence method used in this study allows the measurement of beta groups feeding excited levels of daughter products with high internal conversion coefficients. The end-point energies and isotopic origin of the measured beta groups were as follows: 2.349(±0.100)MeV,145Ce; 1.715(±0.103)MeV,145Ce and148Ce; 1.267 (±0.103)MeV,145Ce; 0.748(±0.109) MeV,146Ce and148Ce.

  4. A cyclic time optimization approach to the study of 252Cf fission products

    NASA Astrophysics Data System (ADS)

    Price, R. I.; Ebong, I. D. U.; Adams, John A.; Roy, R. R.

    1980-05-01

    A K X-ray-beta particle coincidence technique has been investigated for the study of the beta decay of fission products from 252Cf. A fission-fragments transport system has been developed and its optimization curve used for the identification of the half-life associated with the K X-ray peak originating from the Mo → Tc decay high-resolution lithium-drifted silicon spectrometer and a plastic scintillation spectrometer were used in the analysis of the K X-rays and beta particles respectively. A half-life of (0.98 ± 0.03) min was associated with the K X-rays from technetium. A Kurie plot of the coincidence beta spectrum revealed at least three beta groups with end-point energies of (2.19 ± 0.19) MeV, (1.64 ± 0.14) MeV and (1.04 ± 0.10) MeV.

  5. Structures of the neutron-rich nuclei observed in fission of {sup 252}Cf

    SciTech Connect

    Ramayya, A. V.; Hamilton, J. H.; Goodin, C. J.; Brewer, N. T.; Hwang, J. K.; Luo, Y. X.; Liu, S. H.; Stone, N. J.; Daniel, A. V.; Zhu, S. J.

    2014-08-14

    Analysis of high statistics triple coincidence fission γ data from {sup 252}Cf at Gammasphere including angular correlations yielded well-expanded high-spin level schemes with more complete and reliable spin/parity assignments for {sup 82}Ge, {sup 118,120,122}Cd and {sup 114,115}Rh. Both the quasi-particle/hole couplings and quasi-rotational degrees of freedom are implied to play roles in these Cd isotopes. Evidence for triaxial shapes and octupole components in the Cd isotopes is presented. These Cd isotopes may have triaxial deformations. High-spin level schemes of {sup 114,115}Rh have been established for the first time. The existence of a relatively large signature splitting and an yrare band shows typical features of a triaxially deformed nucleus. Possible excited deformed rotational bands are observed, for the first time, in {sup 82}Ge. From the multipole mixing ratio measurement, the ground state configurations of {sup 109,111}Ru, as well as excited states in {sup 103,107}Mo and {sup 111}Ru were determined.

  6. Correlation Measurements with {sup 252}Cf to Characterize Fissile Material

    SciTech Connect

    Mattingly, J.K.

    2000-01-04

    Measurements using {sup 252}Cf as a timed source of neutrons and gammas have in recent years undergone significant maturation. These methods use {sup 252}Cf as an observable source of spontaneous fission neutrons and gammas in conjunction with one or more neutron- and/or gamma-sensitive detectors to measure the time-distribution of correlated detector counts following (a) an observed {sup 252}Cf-fission event and/or (b) a counting event in another detector. Detection of {sup 252}Cf spontaneous fission is frequently achieved via use of a small ionization chamber in which the {sup 252}Cf is contained--in this case the timing of source emission events is random. However, one application subsequently described uses a neutron-absorbent ''shutter'' to modulate {sup 252}Cf emissions to produce a neutron source with deterministic timing. Other applications, frequently termed noise-analysis measurements, transform the time-distributions to the frequency domain. Collectively, these correlation methods use {sup 252}Cf to ''excite'' the fissile material and the response of the material is measured by an array of detectors and analyzed using standard time-correlation and/or frequency-analysis techniques. In recent years numerous advances have been made in the application of these methods to in-situ, or field measurements directed at characterizing various configurations of fissile material in operational facilities.

  7. A new measurement of the 6Li(n,α)t cross section at MeV energies using a 252Cf fission chamber and 6Li scintillators

    DOE PAGES

    Kirsch, Leo Edward; Devlin, Matthew James; Mosby, Shea Morgan; ...

    2017-09-01

    We present a new measurement of the 6Li(n,α)t cross section from 245 keV to 10 MeV using a 252Cf fission chamber with 6LiI(Eu) and Cs2LiYCl6:Ce (CLYC) scintillators which act as both target and detector. Neutron energies are determined from the time of flight (TOF) method using the signals from spontaneous fission and reaction product recoil. Simulations of neutron downscatter in the crystals and fission chamber bring 6Li(n,α)t cross section values measured with the 6LiI(Eu) into agreement with previous experiments and evaluations, except for two resonances at 4.2 and 6.5 MeV introduced by ENDF/B-VII.1. Suspected neutron transport modeling issues cause themore » cross section values obtained with CLYC to be discrepant above 2 MeV.« less

  8. Status of the electron cyclotron resonance charge breeder for the {sup 252}Cf fission source project at ATLAS

    SciTech Connect

    Vondrasek, R. C.; Scott, R.; Carr, J.; Pardo, R. C.

    2008-02-15

    The construction of the Californium Rare Ion Breeder Upgrade, a new radioactive beam facility for the Argonne tandem linac accelerator system (ATLAS), is in progress. The facility will use fission fragments from a 1 Ci {sup 252}Cf source, thermalized and collected into a low-energy particle beam by a helium gas catcher. In order to reaccelerate these beams, the existing ATLAS ECR1 ion source has been redesigned to function as a charge breeder source. The design features, initial results, and status of this charge breeder configuration are presented.

  9. The content of 250Cf and 248Cm in 252Cf neutron sources and the effect on the neutron emission rate.

    PubMed

    Roberts, N J; Jones, L N

    2007-01-01

    One of the most common radionuclide neutron sources used for the calibration of detectors is (252)Cf. However, these sources also contain (250)Cf, which is present in the material from which the sources are made, and (248)Cm, which is formed as the daughter of (252)Cf via alpha-decay. Both decay by spontaneous fission with longer half-lives than (252)Cf. Consequently, as the source becomes older, the emission rate does not follow the decay curve of (252)Cf. Fits have been made to emission rate measurements of (252)Cf sources at NPL spanning over 30 y to deduce their (250)Cf and (248)Cm content. The emission rate of a source can be significantly underestimated if the presence of (250)Cf and (248)Cm is not taken into account, and this has been investigated for a typical (252)Cf source. The importance of this problem to other calibration laboratories and users of (252)Cf sources is emphasised.

  10. GAMMA DOSE RATE NEAR A NEW (252)Cf BRACHYTHERAPY SOURCE

    SciTech Connect

    Fortune, Eugene C; Gauld, Ian C; Wang, C

    2011-01-01

    A new generation of medical grade (252)Cf sources was developed in 2002 at the Oak Ridge National Laboratory. The combination of small size and large activity of (252)Cf makes the new source suitable to be used with the conventional high-dose-rate remote afterloading system for interstitial brachytherapy. A recent in-water calibration experiment showed that the measured gamma dose rates near the new source are slightly greater than the neutron dose rates, contradicting the well established neutron-to-gamma dose ratio of approximately 2:1 at locations near a (252)Cf brachytherapy source. Specifically, the MCNP-predicted gamma dose rate is a factor of two lower than the measured gamma dose rate at the distance of I cm, and the differences between the two results gradually diminish at distances farther away from the source. To resolve this discrepancy, we updated the source gamma spectrum by including in the ORIGEN-S data library the experimentally measured (252)Cf prompt gamma spectrum as well as the true (252)Cf spontaneous fission yield data to explicitly model delayed gamma emissions from fission products. We also investigated the bremsstrahlung X-rays produced by the beta particles emitted from fission product decays. The results show that the discrepancy of gamma dose rates is mainly caused by the omission of the bremsstrahlung X-rays in the MCNP runs. By including the bremsstrahlung X-rays, the MCNP results show that the gamma dose rates near a new (252)Cf source agree well with the measured results and that the gamma dose rates are indeed greater than the neutron dose rates.

  11. Results with the electron cyclotron resonance charge breeder for the 252Cf fission source project (Californium Rare Ion Breeder Upgrade) at Argonne Tandem Linac Accelerator System.

    PubMed

    Vondrasek, R; Kondrashev, S; Pardo, R; Scott, R; Zinkann, G P

    2010-02-01

    The construction of the Californium Rare Ion Breeder Upgrade, a new radioactive beam facility for the Argonne Tandem Linac Accelerator System (ATLAS), is nearing completion. The facility will use fission fragments from a 1 Ci (252)Cf source; thermalized and collected into a low-energy particle beam by a helium gas catcher. In order to reaccelerate these beams, an existing ATLAS electron cyclotron resonance (ECR) ion source was redesigned to function as an ECR charge breeder. Thus far, the charge breeder has been tested with stable beams of rubidium and cesium achieving charge breeding efficiencies of 9.7% into (85)Rb(17+) and 2.9% into (133)Cs(20+).

  12. Scission-point model predictions of fission-fragment mass and total kinetic energy distributions for 236U and 252Cf

    NASA Astrophysics Data System (ADS)

    Ivanyuk, Fedor; Hambsch, Franz-Josef; Carjan, Nicolae

    2017-09-01

    The total deformation energy at the moment of the neck rupture for 236U and 252Cf is calculated using the Strutinsky's prescription and nuclear shapes described in terms of Cassinian ovals generalized by the inclusion of four additional shape parameters: α1, α2, α3, and α4. The corresponding fragment-mass distributions are estimated supposing that each point in the deformation space is occupied according to a canonical distribution. The energy distributions of fission fragments are calculated assuming the point-charge approximation for the Coulomb interaction of fission fragments. Finally, an alternative definition of the nuclear scission point configuration relying on the minimization of liquid drop energy (optimal shape method) is used. Both definitions lead, for these two nuclei, to a reasonably good agreement with the experimental data.

  13. Results with the electron cyclotron resonance charge breeder for the {sup 252}Cf fission source project (Californium Rare Ion Breeder Upgrade) at Argonne Tandem Linac Accelerator System

    SciTech Connect

    Vondrasek, R.; Kondrashev, S.; Pardo, R.; Scott, R.; Zinkann, G. P.

    2010-02-15

    The construction of the Californium Rare Ion Breeder Upgrade, a new radioactive beam facility for the Argonne Tandem Linac Accelerator System (ATLAS), is nearing completion. The facility will use fission fragments from a 1 Ci {sup 252}Cf source; thermalized and collected into a low-energy particle beam by a helium gas catcher. In order to reaccelerate these beams, an existing ATLAS electron cyclotron resonance (ECR) ion source was redesigned to function as an ECR charge breeder. Thus far, the charge breeder has been tested with stable beams of rubidium and cesium achieving charge breeding efficiencies of 9.7% into {sup 85}Rb{sup 17+} and 2.9% into {sup 133}Cs{sup 20+}.

  14. Measuring the α/SF Branching Ratio of 252Cf with the NIFFTE TPC

    NASA Astrophysics Data System (ADS)

    Snyder, L.; Asner, D. M.; Baker, R. G.; Bundgaard, J.; Burgett, E.; Cunningham, M.; Deaven, J.; Duke, D. L.; Greife, U.; Grimes, S.; Heffner, M.; Hill, T.; Isenhower, D.; Klay, J. L.; Kleinrath, V.; Kornilov, N.; Laptev, A. B.; Loveland, W.; Massey, T. N.; Meharchand, R.; Qu, H.; Ruz, J.; Sangiorgio, S.; Seilhan, B.; Stave, S.; Tatishvili, G.; Thornton, R. T.; Tovesson, F.; Towell, D.; Towell, R. S.; Watson, S.; Wendt, B.; Wood, L.

    2014-05-01

    A fission TPC is being developed to measure the energy-dependent neutron induced fission cross sections of the major and minor actinides to an accuracy of better than 1%. Achieving such an accuracy will depend in part, on the ability of the TPC to provide precise tracking and identification of charged particles. A measurement of the α-decay to spontaneous fission branching ratio of 252Cf used to benchmark the performance of the TPC will be discussed.

  15. Measurement of the average number of prompt neutrons emitted per fission of /sup 233/U relative to /sup 252/Cf for the energy region 500 eV to 10 MeV and below 0. 3 eV

    SciTech Connect

    Gwin, R.; Spencer, R.R.; Ingle, R.W.

    1981-11-01

    The energy dependence of the average number of prompt fission neutrons emitted per fission, anti ..nu../sub p/(E), has been measured for /sup 233/U relative to anti ..nu../sub p/ for /sup 252/Cf over the neutron energy ranges 500 eV to 10 MeV and below 0.3 eV. A large Gd-loaded liquid scintillator was used to detect neutrons and the samples of /sup 233/U and /sup 252/Cf were contained in fission chambers. The present results for anti ..nu../sub p/(E) for /sup 233/U are in accord with the experimental results of Boldeman and the evaluated results of Lemmel in the thermal energy range, but in the neutron energy region between 100 keV and 1 MeV the present data are 1% or more larger than other experimental values.

  16. Spontaneous Fission

    DOE R&D Accomplishments Database

    Segre, Emilio

    1950-11-22

    The first attempt to discover spontaneous fission in uranium was made by [Willard] Libby, who, however, failed to detect it on account of the smallness of effect. In 1940, [K. A.] Petrzhak and [G. N.] Flerov, using more sensitive methods, discovered spontaneous fission in uranium and gave some rough estimates of the spontaneous fission decay constant of this substance. Subsequently, extensive experimental work on the subject has been performed by several investigators and will be quoted in the various sections. [N.] Bohr and [A.] Wheeler have given a theory of the effect based on the usual ideas of penetration of potential barriers. On this project spontaneous fission has been studied for the past several years in an effort to obtain a complete picture of the phenomenon. For this purpose the spontaneous fission decay constants {lambda} have been measured for separated isotopes of the heavy elements wherever possible. Moreover, the number {nu} of neutrons emitted per fission has been measured wherever feasible, and other characteristics of the spontaneous fission process have been studied. This report summarizes the spontaneous fission work done at Los Alamos up to January 1, 1945. A chronological record of the work is contained in the Los Alamos monthly reports.

  17. Subcritical measurements using the /sup 252/Cf source-driven neutron noise analysis method

    SciTech Connect

    Mihalczo, J.T.; Blakeman, E.D.; Ragan, G.E.; Kryter, R.C.

    1985-01-01

    This paper describes recent measurements of the subcritical neutron multiplication factor using the /sup 252/Cf source-driven neutron noise analysis method. This work was supported by a program of collaboration between the United States Department of Energy and the Power Reactor and Nuclear Fuel Development Corporation of Japan related to the development of fast breeder technology. The experiment reported consists of a configuration of two interacting tanks of uranyl nitrate aqueous solution with different uranium concentrations in each tank. The /sup 252/Cf-source-driven neutron noise analysis method obtains the subcriticality from the signals of three detectors: the first, a parallel plate ionization chamber with /sup 252/Cf electroplated on one of its plates that is located in or near the system containing the fissile material, and produces an electrical pulse for every spontaneous fission that occurs and thereby serves as a timed source of fission neutrons; and the second and third detectors that are placed in or near the system containing fissile material and serve to detect particles from the fission chain multiplication process. 9 refs.

  18. Validation of IRDFF in 252Cf standard and IRDF-2002 reference neutron fields

    SciTech Connect

    Simakov, Stanislav; Capote Noy, Roberto; Greenwood, Lawrence R.; Griffin, Patrick J.; Kahler, Albert; Pronyaev, Vladimir; Trkov, A.; Zolotarev, K. I.

    2016-05-02

    The results of validation of the latest release of International Reactor Dosimetry and Fusion File, IRDFF-1.03, in the standard 252Cf(s.f.) and reference 235U(nth,f) neutron benchmark fields are presented. The spectrum-averaged cross sections were shown to confirm the recommended spectrum for 252Cf spontaneous fission source; that was not the case for the current recommended spectra for 235U(nth,f). IRDFF was also validated in the spectra of the research reactor facilities ISNF, Sigma-Sigma and YAYOI, which are available in the IRDF- 2002 collection. Before this analysis, the ISFN spectrum was resimulated to remove unphysical oscillations in spectrum. IRDFF-1.03 was shown to reasonably reproduce the spectrum-averaged data measured in these fields except for the case of YAYOI.

  19. Validation of IRDFF in 252Cf Standard and IRDF-2002 Reference Neutron Fields

    NASA Astrophysics Data System (ADS)

    Simakov, Stanislav; Capote, Roberto; Greenwood, Lawrence; Griffin, Patrick; Kahler, Albert; Pronyaev, Vladimir; Trkov, Andrej; Zolotarev, Konstantin

    2016-02-01

    The results of validation of the latest release of International Reactor Dosimetry and Fusion File, IRDFF-1.03, in the standard 252Cf(s.f.) and reference 235U(nth,f) neutron benchmark fields are presented. The spectrum-averaged cross sections were shown to confirm IRDFF-1.03 in the 252Cf standard spontaneous fission spectrum; that was not the case for the current recommended spectra for 235U(nth,f). IRDFF was also validated in the spectra of the research reactor facilities ISNF, Sigma-Sigma and YAYOI, which are available in the IRDF-2002 collection. The ISNF facility was re-simulated to remove unphysical oscillations in the spectrum. IRDFF-1.03 was shown to reproduce reasonably well the spectrum-averaged data measured in these fields except for the case of YAYOI.

  20. Graphite moderated (252)Cf source.

    PubMed

    Sajo-Bohus, Laszlo; Barros, Haydn; Greaves, Eduardo D; Vega-Carrillo, Hector Rene

    2015-06-01

    The Thorium molten-salt reactor is an attractive and affordable nuclear power option for developing countries with insufficient infrastructure and limited technological capability. In the aim of personnel training and experience gathering at the Universidad Simon Bolivar there is in progress a project of developing a subcritical thorium liquid-fuel reactor. The neutron source to run this subcritical reactor is a (252)Cf source and the reactor will use high-purity graphite as moderator. Using the MCNP5 code the neutron spectra of the (252)Cf in the center of the graphite moderator has been estimated along the channel where the liquid thorium salt will be inserted; also the ambient dose equivalent due to the source has been determined around the moderator. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Multimodal fission and neutron evaporation

    SciTech Connect

    Brosa, U.

    1988-10-01

    The average multiplicities nu-bar(A) of prompt neutrons emitted in the spontaneous fission of /sup 252/Cf and /sup 258/Fm are derived. Two new features are predicted: A simple sawtooth for /sup 258/Fm and a triple one for /sup 252/Cf. Experiments to check these predictions should be feasible now.

  2. A New Facility For Non-Destructive Assay With A Time-Tagged {sup 252}Cf Source

    SciTech Connect

    Stevanato, L.; Caldogno, M.; Hao, Xin; Dima, R.; Fabris, D.; Nebbia, G.; Lunardon, M.; Moretto, S.; Pesente, S.; Viesti, G.; Sajo-Bohus, L.

    2011-06-01

    A new facility for Non-Destructive Assay based on a time-tagged {sup 252}Cf spontaneous fission source is now in operation at the Padova University. The system is designed to analyze samples with dimensions on the order of 20x20 cm{sup 2}, the material recognition being obtained by measuring simultaneously transmission of neutrons and gamma rays as a function of energy.

  3. Aspects of charge distribution measurement for 252Cf(sf)

    NASA Astrophysics Data System (ADS)

    Wang, Taofeng; Li, Guangwu; Zhu, Liping; Hen, Or; Zhang, Gaolong; Meng, Qinghua; Wang, Liming; Han, Hongyin; Xia, Haihong

    2017-09-01

    Measurements of charge distributions of fragments in the spontaneous fission of 252Cf have been performed using a unique detector setup consisting of a typical grid-ionization chamber coupled with a Δ E -E charged particle telescope. We find that the fragment mass dependency of the kinetic-energy-averaged width of the charge distribution shows a systematically decreasing trend with obvious fluctuations. The variation of the widths of the charge distribution with kinetic energy shows a pan-like shape. This is due to the large number of neutrons emitted at the high excitation energies and cold fragmentation at the low excitation energies. Deviation of the kinetic-energy-averaged most probable charge Zp from the unchanged charge distribution (UCD), Δ Z , as a function of the mass number of primary fragments, A*, changes from negative for mass asymmetric fission to positive near the symmetric fissions. Concerning the kinetic energy dependence of Zp given primary mass number A*, obvious increasing tendencies of Zp with increasing kinetic energy are observed.

  4. Absolute measurement of anti. nu. /sub p/ for /sup 252/Cf using the ORNL large liquid scintillator neutron detector

    SciTech Connect

    Spencer, R.R.; Gwin, R.; Ingle, R.

    1981-08-01

    The ORNL large liquid scintillator detector was used in a precise determination of anti ..nu../sub p/, the number of neutrons emitted promptly, for spontaneous fission of /sup 252/Cf. Measurements of the detector efficiency over a broad energy region were made by means of a proton-recoil technique employing the ORELA white neutron source. Monte Carlo calculation of the detector efficiency for a spectrum representative of /sup 252/Cf fission neutrons was calibrated with these elaborate measurements. The unusually flat response of the neutron detector resulted in elimination of several known sources of error. Experimental measurement was coupled with calculational methods to correct for other known errors. These measurements lead to an unusually small estimated uncertainty of 0.2% in the value obtained, anti ..nu../sub p/ = 3.773 +- 0.007.

  5. Prompt fission γ-ray data from spontaneous fission and the mechanism of fission-fragment de-excitation

    NASA Astrophysics Data System (ADS)

    Oberstedt, Stephan; Dragic, Aleksandar; Gatera, Angelique; Göök, Alf; Hambsch, Franz-Josef; Oberstedt, Andreas

    2017-09-01

    The investigation of prompt γ-ray emission in nuclear fission has a great relevance for the assessment of prompt heat generation in a reactor core and for the better understanding of the de-excitation mechanism of fission fragments. Some years ago experimental data was scarce and available only from a few fission reactions, 233,235U(nth, f), 239Pu(nth, f), and 252Cf(sf). Initiated by a high priority data request published by the OECD/NEA a dedicated prompt fission γ-ray measurement program is being conducted at the Joint Research Centre Geel. In recent years we obtained new and accurate prompt fission γ-ray spectrum (PFGS) characteristics (average number of photons per fission, average total energy per fission and mean photon energy) from 252Cf(sf), 235U(nth, f) and 239,241Pu(nth, f) within 2% of uncertainty. In order to understand the dependence of prompt fission γ-ray emission on the compound nuclear mass and excitation energy, we started a first measurement campaign on spontaneously fissioning plutonium and curium isotopes. Results on PFGS characteristics from 240,242Pu(sf) show a dependence on the fragment mass distribution rather than on the average prompt neutron multiplicity, pointing to a more complex competition between prompt fission γ-ray and neutron emission.

  6. Measurement and calculation of the emission anisotropy of an X1 252Cf neutron source.

    PubMed

    Hawkes, N P; Freedman, R; Tagziria, H; Thomas, D J

    2007-01-01

    The authors have measured the emission anisotropy from a (252)Cf spontaneous fission neutron source in an X1 encapsulation. The measurements were made in a large low-scatter laboratory using a long counter, and data were taken at angles varying in 10 degrees steps from 0 degrees to 180 degrees relative to the cylindrical axis of the source. Corrections were made for room scatter, loss of neutrons due to air scatter and detector dead time. Calculations corresponding to these measurements were subsequently carried out using the two Monte Carlo codes MCNP and MCBEND, and the results are compared with the measurements and with each other.

  7. Spontaneous fission of the heaviest elements

    SciTech Connect

    Hoffman, D.C.

    1989-04-01

    Although spontaneous fission was discovered in /sup 238/U in 1940, detailed studies of the process were first made possible in the 1960's with the availability of milligram quantities of /sup 252/Cf. The advent of solid-state detectors made it possible to perform measurements of coincident fission fragments from even very short-lived spontaneous fission activities or those available in only very small quantities. Until 1971 it was believed that the main features of the mass and kinetic-energy distributions were essentially the same as those for thermal neutron-induced fission and that all low-energy fission proceeded via asymmetric mass division with total kinetic energies which could be derived by linear extrapolation from those of lighter elements. In 1971, measurements of /sup 257/Fm showed an increase in symmetric mass division with anomalously high TKE's. Subsequent experiments showed that in /sup 258/Fm and /sup 259/Fm, the most probable mass split was symmetric with very high total kinetic energy. Measurements for the heavier elements have shown symmetric mass distributions with both high and low total kinetic energies. Recent results for spontaneous fission properties of the heaviest elements are reviewed and compared with theory. 31 refs., 8 figs., 1 tab.

  8. Results with the electron cyclotron resonance charge breeder for the 252Cf fission source project (Californium Rare Ion Breeder Upgrade) at Argonne Tandem Linac Accelerator System

    NASA Astrophysics Data System (ADS)

    Vondrasek, R.; Kondrashev, S.; Pardo, R.; Scott, R.; Zinkann, G. P.

    2010-02-01

    The construction of the Californium Rare Ion Breeder Upgrade, a new radioactive beam facility for the Argonne Tandem Linac Accelerator System (ATLAS), is nearing completion. The facility will use fission fragments from a 1 Ci C252f source; thermalized and collected into a low-energy particle beam by a helium gas catcher. In order to reaccelerate these beams, an existing ATLAS electron cyclotron resonance (ECR) ion source was redesigned to function as an ECR charge breeder. Thus far, the charge breeder has been tested with stable beams of rubidium and cesium achieving charge breeding efficiencies of 9.7% into R85b17+ and 2.9% into C133s20+.

  9. 252Cf spectrum-averaged cross section for the 63Cu(n, p)63Ni reaction

    NASA Astrophysics Data System (ADS)

    Imamura, M.; Shibata, T.; Shibata, S.; Ohkubo, T.; Satoh, S.; Nogawa, N.

    1999-01-01

    The 63Ni produced by the 63Cu(n, p)63Ni reaction provides a unique measure to estimate the fast-neutron fluence of the Hiroshima/Nagasaki atomic bomb. In the similarity of the fission neutron spectrum of 252Cf to that of 235U, we have measured activation cross sections of the 63Cu(n, p)63Ni reaction averaged for the 252Cf fission spectrum.

  10. Biomodal spontaneous fission

    SciTech Connect

    Hulet, E.K. )

    1989-09-26

    Investigations of mass and kinetic-energy distributions from spontaneous fission have been extended in recent years to an isotope of element 104 and, for half-lives, to an isotope of element 108. The results have been surprising in that spontaneous fission half-lives have turned out to be much longer than expected and mass and kinetic- energy distributions were found to abruptly shift away from those of the lighter actinides, showing two modes of fission. These new developments have caused a re-evaluation of our understanding of the fission process, bringing an even deeper appreciation of the role played by nuclear shell effects upon spontaneous fission properties. 16 refs., 10 figs.

  11. Sensitivity of 252Cf(sf) Neutron Observables to FREYA Inputs

    NASA Astrophysics Data System (ADS)

    Vogt, Ramona; Randrup, Jorgen; Talou, Patrick

    2016-09-01

    Within the framework of the fission event generator FREYA , (Fission Reaction Event Yield Algorithm) we have studied the sensitivity of various neutron observables to the yield distribution Y (A , Z , TKE) used as input to the code. Concentrating on the spontaneous fission of 252Cf, we generate a large number of different input yield distributions by performing simultaneous variations in the mass and charge yields as well as the kinetic energy distribution, governed by yield covariance matrices established from experimental data sets. For each of these input yield distributions, we then use FREYA to generate a large sample of complete fission events from which we extract various neutron observables, in particular the neutron multiplicity distribution, and the neutron spectrum associated with each multiplicity. On this basis, we are able to determine the sensitivity of those observables to the uncertainties in the input yield distribution obtained experimentally. This kind of study can be applied to any other case of interest and the information obtained can help to establish any needs and target accuracies required for further measurements to ensure reliable data validation. The work of J.R. was performed under the auspices of the U.S. Dept. of Energy by Lawrence Berkeley National Laboratory under Contract DE-AC02-05CH11231. The work of P.T. was performed under the auspices of the National Nuclear Security Administration.

  12. Neutron angular distribution in plutonium-240 spontaneous fission

    NASA Astrophysics Data System (ADS)

    Marcath, Matthew J.; Shin, Tony H.; Clarke, Shaun D.; Peerani, Paolo; Pozzi, Sara A.

    2016-09-01

    Nuclear safeguards applications require accurate fission models that exhibit prompt neutron anisotropy. In the laboratory reference frame, an anisotropic neutron angular distribution is observed because prompt fission neutrons carry momentum from fully accelerated fission fragments. A liquid organic scintillation detector array was used with pulse shape discrimination techniques to produce neutron-neutron cross-correlation time distributions and angular distributions from spontaneous fission in a 252Cf, a 0.84 g 240Pueff metal, and a 1.63 g 240Pueff metal sample. The effect of cross-talk, estimated with MCNPX-PoliMi simulations, is removed from neutron-neutron coincidences as a function of the angle between detector pairs. Fewer coincidences were observed at detector angles near 90°, relative to higher and lower detector angles. As light output threshold increases, the observed anisotropy increases due to spectral effects arising from fission fragment momentum transfer to emitted neutrons. Stronger anisotropy was observed in Cf-252 spontaneous fission prompt neutrons than in Pu-240 neutrons.

  13. ANISOTROPY FACTORS FOR A 252Cf SOURCE

    SciTech Connect

    Veinot, K. G.; Bogard, James S

    2009-01-01

    A new 252Cf source has been procured for use at the Dosimetry Applications and Research (DOSAR) facility at the Oak Ridge National Laboratory (ORNL). This source was encapsulated by the Californium Facility at ORNL, however, the encapsulation differs from previous designs designated as SR-Cf-100. The new encapsulation, designated SR-Cf-3000, has a similar cylindrical radius to the previous generation, but is 1.6 cm longer. Since the encapsulation geometries differ the amount of internal scattering of neutrons will also differ leading to changes in anisotropy factors between the two designs. Additionally, the different encapsulations will affect the absorbed dose and dose equivalent delivered per neutron emitted by the source since both the quantity and energy distribution of the emitted neutrons will vary with irradiation angle. This work presents the fluence anisotropy factors for the SR-Cf-3000 series encapsulation as well as absorbed dose and dose equivalent values calculated for various angles of irradiation. The fluence anisotropy factors vary from a maximum of 1.037 to a minimum of 0.641 for irradiation angles perpendicular and parallel to the source axis, respectively. Anisotropy in absorbed dose varied from a maximum of 1.033 to a minimum of 0.676 while anisotropy of dose equivalent varied from 1.035 to 0.657.

  14. Dynamics and energetics of a /sup 251/Cf-/sup 252/Cf power system

    SciTech Connect

    Harms, A.A. ); Cripps, G. )

    1988-06-01

    A combination fission-radioisotope compact power system involving the synergistic interaction of /sup 251/Cf and /sup 252/Cf is considered. Based on a nonlinear point kinetics formulation of the coupled reactions combined with the parametric incorporation of design and operational variables, it is shown that a stable autonomous power mode is readily attainable. This system appears particularly suitable for very long-life unattended operation for space and terrestrial applications.

  15. Student Experiments in Spontaneous Fission.

    ERIC Educational Resources Information Center

    Becchetti, F. D.; Ying, J. S.

    1981-01-01

    Advanced undergraduate experiments utilizing a commercially available, thin spontaneous fission source are described, including studies of the energy and mass distribution of the fission fragments and their energy and angular correlation. The experiments provide a useful introduction to fission, nuclear mass equations, heavy-ion physics, and…

  16. Student Experiments in Spontaneous Fission.

    ERIC Educational Resources Information Center

    Becchetti, F. D.; Ying, J. S.

    1981-01-01

    Advanced undergraduate experiments utilizing a commercially available, thin spontaneous fission source are described, including studies of the energy and mass distribution of the fission fragments and their energy and angular correlation. The experiments provide a useful introduction to fission, nuclear mass equations, heavy-ion physics, and…

  17. Sensitivity of the 252Cf(sf) neutron observables to the FREYA input yield functions Y(A, Z, TKE)

    NASA Astrophysics Data System (ADS)

    Randrup, Jørgen; Talou, Patrick; Vogt, Ramona

    2017-09-01

    Within the framework of the fission event generator FREYA, we are studying the sensitivity of various neutron observables to the yield distribution Y (A,Z,TKE) used as input to the code. Concentrating on spontaneous fission of 252Cf, we have sampled a large number of different input yield functions based on χ2 fits to the experimental data on Y (A) and Y (TKE|A). For each of these input yield distributions, we then use FREYA to generate a large sample of complete fission events from which we extract a variety of neutron observables, including the multiplicity distribution, the associated correlation coefficients, and its factorial moments, the dependence of the mean neutron multiplicity on the total fragment kinetic energy TKE and on the fragment mass number A, the neutron energy spectrum, and the two-neutron angular correlation function. In this way, we can determine the variation of these observables resulting from the uncertainties in the experimental mesurements. The imposition of a constraint on the resulting mean neutron multiplicity reduces the variation of the calculated neutron observables and provides a means for shrinking the uncertainties associated with the measured data.

  18. Feasibility of fissile mass assay of spent nuclear fuel using {sup 252}Cf-source-driven frequency-analysis

    SciTech Connect

    Mattingly, J.K.; Valentine, T.E.; Mihalczo, J.T.

    1996-10-01

    The feasibility was evaluated using MCNP-DSP, an analog Monte Carlo transport cod to simulate source-driven measurements. Models of an isolated Westinghouse 17x17 PWR fuel assembly in a 1500-ppM borated water storage pool were used. In the models, the fuel burnup profile was represented using seven axial burnup zones, each with isotopics estimated by the PDQ code. Four different fuel assemblies with average burnups from fresh to 32 GWd/MTU were modeled and analyzed. Analysis of the fuel assemblies was simulated by inducing fission in the fuel using a {sup 252}Cf source adjacent to the assembly and correlating source fissions with the response of a bank of {sup 3}He detectors adjacent to the assembly opposite the source. This analysis was performed at 7 different axial positions on each of the 4 assemblies, and the source-detector cross-spectrum signature was calculated for each of these 28 simulated measurements. The magnitude of the cross-spectrum signature follows a smooth upward trend with increasing fissile material ({sup 235}U and {sup 239}Pu) content, and the signature is independent of the concentration of spontaneously fissioning isotopes (e.g., {sup 244}Cm) and ({alpha},n) sources. Furthermore, the cross-spectrum signature is highly sensitive to changes in fissile material content. This feasibility study indicated that the signature would increase {similar_to}100% in response to an increase of only 0.1 g/cm{sup 3} of fissile material.

  19. Attributes and templates from active measurements with {sup 252}Cf

    SciTech Connect

    Mihalczo, J.T.; Mattingly, J.K.

    2000-02-01

    Active neutron interrogation is useful for the detection of shielded HEU and could also be used for Pu. In an active technique, fissile material is stimulated by an external neutron source to produce fission with the emanation of neutrons and gamma rays. The time distribution of particles leaving the fissile material is measured with respect to the source emission in a variety of ways. A variety of accelerator and radioactive sources can be used. Active interrogation of nuclear weapons/components can be used in two ways: template matching or attribute estimation. Template matching compares radiation signatures with known reference signatures and for treaty applications has the problem of authentication of the reference signatures along with storage and retrieval of templates. Attribute estimation determines, for example, the fissile mass from various features of the radiation signatures and does not require storage of radiation signatures but does require calibration, which can be repeated as necessary. A nuclear materials identification system (NMIS) has been in use at the Oak Ridge Y-12 Plant for verification of weapons components being received and in storage by template matching and has been used with calibrations for attribute (fissile mass) estimation for HEU metal. NMIS employs a {sup 252}Cf source of low intensity (< 2 x 10{sup 6} n/sec) such that the dose at 1 m is approximately twice that on a commercial airline at altitude. The use of such a source presents no significant safety concerns either for personnel or nuclear explosive safety, and has been approved for use at the Pantex Plant on fully assembled weapons systems.

  20. The SPIDER fission fragment spectrometer for fission product yield measurements

    DOE PAGES

    Meierbachtol, K.; Tovesson, F.; Shields, D.; ...

    2015-04-01

    We developed the SPectrometer for Ion DEtermination in fission Research (SPIDER) for measuring mass yield distributions of fission products from spontaneous and neutron-induced fission. The 2E–2v method of measuring the kinetic energy (E) and velocity (v) of both outgoing fission products has been utilized, with the goal of measuring the mass of the fission products with an average resolution of 1 atomic mass unit (amu). Moreover, the SPIDER instrument, consisting of detector components for time-of-flight, trajectory, and energy measurements, has been assembled and tested using 229Th and 252Cf radioactive decay sources. For commissioning, the fully assembled system measured fission productsmore » from spontaneous fission of 252Cf. Individual measurement resolutions were met for time-of-flight (250 ps FWHM), spacial resolution (2 mm FHWM), and energy (92 keV FWHM for 8.376 MeV). Finally, these mass yield results measured from 252Cf spontaneous fission products are reported from an E–v measurement.« less

  1. Plaque Therapy and Scatter Dose Using {sup 252}Cf Sources

    SciTech Connect

    Mark J. Rivard; Anita Mahajan

    2000-11-12

    As melanomas are radioresistant to conventional low-linear energy transfer (LET) radiations such as photons and electrons, {sup 252}Cf (high-LET due to neutrons) may offer more promising clinical results. Although {sup 252}Cf also emits photons and electrons, the majority of absorbed dose is imparted by the high-LET radiation. This study examines the impact of scattering material on the neutron dose distributions for {sup 252}Cf plaque therapy (used to treat surface lesions like melanoma). Neutrons were transported through a 10-cm-diam water phantom with a thickness of either 5 or 10 cm using the MCNP radiation transport code. The phantom was surrounded by vacuum; the {sup 252}Cf neutron energy spectrum was modeled as a Maxwellian distribution; and the source was a bare point positioned at 1.0, 0.5, or {epsilon} above or below the water/vacuum interface. These source positions were chosen to mimic the case where a plaque locates the source either above the skin's surface, e.g., 2{pi} scattering geometry, or if layers of tissue-equivalent bolus materials were placed atop the implant to provide radiation backscatter, 4{pi} geometry. Differences between the 2{pi} and 4{pi} geometries were maximized closest to the source and for source positions farthest from the water/vacuum interface. Therefore, the maximum radiation dose (closest to the {sup 252}Cf source) may be minimized by not including scattering material for plaque therapy. However, for nonrelativistic, elastic scattering for protons by neutrons, the proton range increases with neutron energy. This result was expected since the neutron energy spectrum degrades at increasing depth and the proportion of fast neutron dose to total dose is maximized closest to the source in the 2{pi} geometry. Future studies will examine this effect as a function of neutron energy, will consider synergy with the low-LET {sup 252}Cf dose component and include experimental measurements, and will assess this technique to possibly

  2. Spontaneous fission properties of superheavy elements

    NASA Astrophysics Data System (ADS)

    Heßberger, F. P.

    2017-04-01

    Spontaneous fission properties of transuranium isotopes are reviewed. Specific emphasis was laid on brief historical overviews of theoretical descriptions and experimental determination of basic properties as spontaneous fission half-lives, fission barriers, or total kinetic energy release in fission. Experimental spontaneous fission half-lives are compared with the results of recent theoretical predictions. Hindrance factors for spontaneous fission of odd-mass nuclei are discussed in context with the configuration (spin, parity) of the fissioning states and the change in energy of single particle levels at deformation. Kinetic energy release and mass distributions are discussed in the context of different fission modes, as symmetric and asymmetric or fission from elongated or compact shapes of the nascent fission fragments. An overview of recent fission barrier calculations of superheavy elements on the basis of macroscopic-microscopic models or self-consistent calculations is given, and the results are compared for selected examples.

  3. Regeneration in cervix cancer after sup 252 Cf neutron brachytherapy

    SciTech Connect

    Maruyama, Y.; Wierzbicki, J.; Feola, J.; Urano, M. )

    1990-07-01

    Regeneration of clonogens in human cervical cancer was assessed by the pathological evaluation of the hysterectomy specimen after intracavitary {sup 252}Cf neutron brachytherapy implants separated by varying time intervals followed by extrafascial hysterectomy. In this study, patients with bulky/barrel shaped Stage IB cervical cancers received {sup 252}Cf implants plus approximately 45 Gy of whole pelvis linear accelerator radiotherapy in approximately 25 fractions in 5 weeks followed by hysterectomy 4-6 weeks after radiotherapy. The specimens were studied grossly and microscopically for residual tumor. It was found that the fraction of positive specimens increased with elapsed time interval between implants. These findings support the hypothesis that there is repopulation of surviving clonogens with increased time interval between the implants. The observation also supports current concerns that rapid depopulation of tumor can lead to rapid repopulation, that is, rapid shrinkage of tumor can alter the physiological environment such that clonogens can rapidly regenerate.

  4. Compound dual radiation action theory for 252Cf brachytherapy.

    PubMed

    Wang, C K; Zhang, X

    2004-01-01

    The existing dosimetry protocol that uses the concept of RBE for 252Cf brachytherapy contains large uncertainties. A new formula has been developed to correlate the biological effect (i.e. cell survival fraction) resulting from a mixed n + gamma radiation field with two physical quantities and two biological quantities. The formula is based on a pathway model evolved from that of the compound-dual-radiation-action (CDRA) theory, previously proposed by Rossi and Zaider. The new model employs the recently published data on radiation-induced DNA lesions. The new formula is capable of predicting quantitatively the synergistic effect caused by the interactions between neutron events and gamma ray events, and it is intended to be included into a new dosimetry protocol for future 252Cf brachytherapy.

  5. Reactor production of sup 252 Cf and transcurium isotopes

    SciTech Connect

    Alexander, C.W.; Halperin, J.; Walker, R.L.; Bigelow, J.E.

    1990-01-01

    Berkelium, californium, einsteinium, and fermium are currently produced in the High Flux Isotope Reactor (HFIR) and recovered in the Radiochemical Engineering Development Center (REDC) at the Oak Ridge National Laboratory (ORNL). All the isotopes are used for research. In addition, {sup 252}Cf, {sup 253}Es, and {sup 255}Fm have been considered or are used for industrial or medical applications. ORNL is the sole producer of these transcurium isotopes in the western world. A wide range of actinide samples were irradiated in special test assemblies at the Fast Flux Test Facility (FFTF) at Hanford, Washington. The purpose of the experiments was to evaluate the usefulness of the two-group flux model for transmutations in the special assemblies with an eventual goal of determining the feasibility of producing macro amounts of transcurium isotopes in the FFTF. Preliminary results from the production of {sup 254g}Es from {sup 252}Cf will be discussed. 14 refs., 5 tabs.

  6. A pneumatic transfer system for special form {sup 252}Cf

    SciTech Connect

    Gehrke, R.J.; Berry, S.M.; Grafwallner, E.G.; Hoggan, J.M.

    1996-09-01

    A pneumatic transfer system has been developed for use with series 100 Special Form {sup 252}Cf. It was developed to reduce the exposure to personnel handling sources of {sup 252}Cf with masses up to 150 {micro}g by permitting remotely activated two-way transfer between the storage container and the irradiation position. The pneumatic transfer system also permits transfers for reproducible repetitive irradiation periods. In addition to the storage container equipped with quick-release fittings, the transfer system consists of an irradiation station, a control box with momentary contact switches to activate the air-pressure control valves and indicators to identify the location of the source, and connecting air hose and electrical wire. A source of 20 psig air and 110 volt electrical power are required for operation of the transfer system which can be easily moved and set up by one individual in 5 to 10 minutes. Tests have shown that rarely does a source become lodged in the transfer tubing, but two methods have been developed to handle incomplete transfers of the {sup 252}Cf source. The first method consists of closing one air vent to allow a pressure impulse to propel the source to the opposite side. The second method applies to those {sup 252}Cf capsules with a threaded or tapped end to which a small ferromagnetic piece can be attached; an incompletely transferred source in the transfer tube can then be guided to a position of safety by surrounding the transfer tubing containing the capsule with a horseshoe magnet attached to the end of a long pole.

  7. The average number of prompt neutrons and the distributions of prompt neutron emission number for spontaneous fission of plutonium-240, curium-242, and curium-244

    SciTech Connect

    Huanqiao, Z.; Shaoming, L.; Shengyue, D.; Zuhau, L.

    1984-03-01

    (The average number of prompt neutron v /SUB p/ and the distributions of prompt neutron number probability P(v) for spontaneous fission of /sup 240/Pu, /sup 242/Cm, and /sup 244/Cm relative to v /SUB p/ (/sup 252/Cf) have been measured using a large gadolinium-loaded liquid scintillation counter with a coincidence method.)The results were v /SUB p/ (/sup 240/Pu)=2.141+ or 0.016, v /SUB p/ (/sup 242/Cm)=2.562 + or - 0.020, and v /SUB p/ (/sup 244/Cm)= 2.721 + or - 0.021. (The measured distributions of prompt neutron number were fitted with Gaussian curves by a weighted least-squares method.) The widths of Gaussian distribution are 1.149 + or - 0.047, 1.159 + or - 0.074, and 1.175 + or 0.098 for /sup 240/Pu, /sup 242/Cm, and /sup 244/Cm, respectively. (The results as well as a previous measurement of spontaneous fission of /sup 252/Cf show the linear variation of sigma with v /SUB p/ at the first order of approximation.) The data were fitted by a least-squares method, and the result is given by a sigma= 0.980+0.076v /SUB p/ . This fact demonstrates the trend that the width of the excitation energy distribution of fission fragments increases with the average excitation energy of the fission fragments in the range of nuclides mentioned above.

  8. Event-by-Event Fission Modeling of Prompt Neutrons and Photons from Neutron-Induced and Spontaneous Fission with FREYA

    NASA Astrophysics Data System (ADS)

    Vogt, Ramona; Randrup, Jorgen

    2013-04-01

    The event-by-event fission Monte Carlo code FREYA (Fission Reaction Event Yield Algorithm) generates large samples of complete fission events. Using FREYA, it is possible to obtain the fission products as well as the prompt neutrons and photons emitted during the fission process, all with complete kinematic information. We can therefore extract any desired correlation observables. Concentrating on ^239Pu(n,f), ^240Pu(sf) and ^252Cf(sf), we compare our FREYA results with available data on prompt neutron and photon emission and present predictions for novel fission observables that could be measured with modern detectors.

  9. Neutron activation analysis detection limits using {sup 252}Cf sources

    SciTech Connect

    DiPrete, D.P.; Sigg, R.A.

    2000-07-01

    The Savannah River Technology Center (SRTC) developed a neutron activation analysis (NAA) facility several decades ago using low-flux {sup 252}Cf neutron sources. Through this time, the facility has addressed areas of applied interest in managing the Savannah River Site (SRS). Some applications are unique because of the site's operating history and its chemical-processing facilities. Because sensitivity needs for many applications are not severe, they can be accomplished using an {approximately}6-mg {sup 252}Cf NAA facility. The SRTC {sup 252}Cf facility continues to support applied research programs at SRTC as well as other SRS programs for environmental and waste management customers. Samples analyzed by NAA include organic compounds, metal alloys, sediments, site process solutions, and many other materials. Numerous radiochemical analyses also rely on the facility for production of short-lived tracers, yielding by activation of carriers and small-scale isotope production for separation methods testing. These applications are more fully reviewed in Ref. 1. Although the flux [{approximately}2 x 10{sup 7} n/cm{sup 2}{center_dot}s] is low relative to reactor facilities, more than 40 elements can be detected at low and sub-part-per-million levels. Detection limits provided by the facility are adequate for many analytical projects. Other multielement analysis methods, particularly inductively coupled plasma atomic emission and inductively coupled plasma mass spectrometry, can now provide sensitivities on dissolved samples that are often better than those available by NAA using low-flux isotopic sources. Because NAA allows analysis of bulk samples, (a) it is a more cost-effective choice when its sensitivity is adequate than methods that require digestion and (b) it eliminates uncertainties that can be introduced by digestion processes.

  10. Interstitial /sup 252/Cf neutron therapy for glioblastoma multiforme

    SciTech Connect

    Maruyama, Y.; Chin, H.W.; Young, A.B.; Bean, J.; Tibbs, P.; Beach, J.L.

    1982-12-01

    /sup 252/Cf brachytherapy has been combined with whole brain photon beam therapy to 6000 rads in 5-7 weeks. In early phase I studies, all patients selected for study tolerated the procedure and the subsequent photon beam therapy. All showed improvement in performance status and decreased tumor size by CT scan evaluation, but it became clear that these tumors are of large size and bulk, produce marked adjacent brain edema, and require individualized implant therapy as well as high-dose external beam irradiation if response is to occur.

  11. Spectrum average cross section measurement of (183)W (n, p)(183)Ta and (184)W (n, p)(184)Ta reaction cross section in (252)Cf(sf) neutron field.

    PubMed

    Makwana, Rajnikant; Mukherjee, S; Snoj, L; S Barala, S; Mehta, M; Mishra, P; Tiwari, S; Abhangi, M; Khirwadkar, S; Naik, H

    2017-09-01

    Neutron induced nuclear reactions are of prime importance for both fusion and fission nuclear reactor technology. Present work describes the first time measurement of spectrum average cross section of nuclear reactions (183)W(n,p)(183)Ta and (184)W(n,p)(184)Ta using (252)Cf spontaneous fission neutron source. Standard neutron activation analysis (NAA) technique was used. The neutron spectra were calculated using Monte Carlo N Particle Code (MCNP). The effects of self-shielding and back scattering were taken into account by optimizing the detector modeling. These effects along with efficiency of detector were corrected for volume sample in the actual source-detector geometry. The measured data were compared with the previously measured data available in Exchange Format (EXFOR) data base and evaluated data using EMPIRE - 3.2.2. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Resistive plate chamber neutron and gamma sensitivity measurement with a 252Cf source

    NASA Astrophysics Data System (ADS)

    Abbrescia, M.; Altieri, S.; Baratti, V.; Barnabà, O.; Belli, G.; Bruno, G.; Colaleo, A.; DeVecchi, C.; Guida, R.; Iaselli, G.; Imbres, E.; Loddo, F.; Maggi, M.; Marangelli, B.; Musitelli, G.; Nardò, R.; Natali, S.; Nuzzo, S.; Pugliese, G.; Ranieri, A.; Ratti, S.; Riccardi, C.; Romano, F.; Torre, P.; Vicini, A.; Vitulo, P.; Volpe, F.

    2003-06-01

    A bakelite double gap Resistive Plate Chamber (RPC), operating in avalanche mode, has been exposed to the radiation emitted from a 252Cf source to measure its neutron and gamma sensitivity. One of the two gaps underwent the traditional electrodes surface coating with linseed oil. RPC signals were triggered by fission events detected using BaF 2 scintillators. A Monte Carlo code, inside the GEANT 3.21 framework with MICAP interface, has been used to identify the gamma and neutron contributions to the total number of collected RPC signals. A neutron sensitivity of (0 .63 ±0 .02) ×10 -3 (average energy 2 MeV) and a gamma sensitivity of (14 .0 ±0 .5) ×10 -3 (average energy 1.5 MeV) have been measured in double gap mode. Measurements done in single gap mode have shown that both neutron and gamma sensitivity are independent of the oiling treatment.

  13. Moderated 252Cf neutron energy spectra in brain tissue and calculated boron neutron capture dose.

    PubMed

    Rivard, Mark J; Zamenhof, Robert G

    2004-11-01

    While there is significant clinical experience using both low- and high-dose (252)Cf brachytherapy, combination therapy using (10)B for neutron capture therapy-enhanced (252)Cf brachytherapy has not been performed. Monte Carlo calculations were performed in a brain phantom (ICRU 44 brain tissue) to evaluate the dose enhancement predicted for a range of (10)B concentrations over a range of distances from a clinical (252)Cf source. These results were compared to experimental measurements and calculations published in the literature. For (10)B concentrations 252)Cf fast neutron dose.

  14. Basic results of investigations of scission neutrons in nuclear fission at low excitation energies

    SciTech Connect

    Petrov, G. A. Gagarski, A. M.; Guseva, I. S.; Sokolov, V. E.; Val'ski, G. V.; Vorobiev, A. S.; Krinitcin, D. O.; Shcherbakov, O. A.; Nikolaev, D. V.; Pleva, Yu. S.; Petrova, V. I.; Zavarukhina, T. A.

    2008-07-15

    To estimate the main characteristics of neutrons emitted shortly before the scission of a fissioning nucleus, various experiments sensitive to the presence of these scission neutrons in thermal-neutron-induced fission of {sup 235}U and spontaneous fission of {sup 252}Cf were performed. The results of the experiments were analyzed within theoretical calculations allowing for various possible neutron-emission mechanisms, including the possibility of the emergence of neutrons from the scission of a nucleus.

  15. Spontaneous fission properties and lifetime systematics

    SciTech Connect

    Hoffman, D.C.

    1989-03-01

    Half-lives for spontaneous fission of nuclides with even and odd numbers of particles are compared with recent theoretical calculations. A summary of odd particle hindrance factors is given. The most recent measurements of kinetic-energy and mass distributions and neutron emission for spontaneous fission of the heaviest nuclides are summarized and discussed. 51 refs., 9 figs.

  16. Replacing a 252Cf source with a neutron generator in a shuffler - a conceptual design performed with MCNPX

    SciTech Connect

    Schear, Melissa A; Tobin, Stephen J

    2009-01-01

    The {sup 252}Cf shuffler has been widely used in nuclear safeguards and radioactive waste management to assay fissile isotopes, such as {sup 235}U or {sup 239}Pu, present in a variety of samples, ranging from small cans of uranium waste to metal samples weighing several kilograms. Like other non-destructive assay instruments, the shuffler uses an interrogating neutron source to induce fissions in the sample. Although shufflers with {sup 252}Cf sources have been reliably used for several decades, replacing this isotopic source with a neutron generator presents some distinct advantages. Neutron generators can be run in a continuous or pulsed mode, and may be turned off, eliminating the need for shielding and a shuffling mechanism in the shuffler. There is also essentially no dose to personnel during installation, and no reliance on the availability of {sup 252}Cf. Despite these advantages, the more energetic neutrons emitted from the neutron generator (141 MeV for D-T generators) present some challenges for certain material types. For example when the enrichment of a uranium sample is unknown, the fission of {sup 238}U is generally undesirable. Since measuring uranium is one of the main uses of a shuffler, reducing the delayed neutron contribution from {sup 238}U is desirable. Hence, the shuffler hardware must be modified to accommodate a moderator configuration near the source to tailor the interrogating spectrum in a manner which promotes sub-threshold fissions (below 1 MeV) but avoids the over-moderation of the interrogating neutrons so as to avoid self-shielding. In this study, where there are many material and geometry combinations, the Monte Carlo N-Particle eXtended (MCNPX) transport code was used to model, design, and optimize the moderator configuration within the shuffler geometry. The code is then used to evaluate and compare the assay performances of both the modified shuffler and the current {sup 252}Cf shuffler designs for different test samples. The

  17. Measurement of the 250Cf component in a 252Cf neutron source at KRISS.

    PubMed

    Kim, Jungho; Park, Hyeonseo; Choi, Kil-Oung

    2014-10-01

    Neutron emission rate measurements have been carried out at the Korea Research Institute of Standards and Science using a manganese sulphate bath system for (252)Cf and (241)Am-Be sources since 2004. The relative measurement method was chosen in 2012, and the neutron emission rates agreed with those by the absolute measurement method within uncertainties. The neutron emission rate of an old (252)Cf source has been measured three times: in 2004, 2009 and 2012. The (250)Cf component was fitted to a double-exponential function of (252)Cf+(250)Cf, and the ratio of the (250)Cf component to the (252)Cf component was estimated to be 7.8 % in 2004 and 46.8 % in 2012. Underestimation of the neutron emission rates of old (252)Cf sources can be corrected if the neutron emission rate of the (250)Cf component is taken into account.

  18. A radiobiological model for the relative biological effectiveness of high-dose-rate 252Cf brachytherapy.

    PubMed

    Rivard, Mark J; Melhus, Christopher S; Zinkin, Heather D; Stapleford, Liza J; Evans, Krista E; Wazer, David E; Odlozilíková, Anna

    2005-09-01

    While there is significant clinical experience using both low- and high-dose-rate 252Cf brachytherapy, there are minimal data regarding values for the neutron relative biological effectiveness (RBE) with both modalities. The aim of this research was to derive a radiobiological model for 252Cf neutron RBE and to compare these results with neutron RBE values used clinically in Russia. The linear-quadratic (LQ) model was used as the basis to characterize cell survival after irradiation, with identical cell killing rates (S(N) = S(gamma)) between 252Cf neutrons and photons used for derivation of RBE. Using this equality, a relationship among neutron dose and LQ radiobiological parameter (i.e., alpha(N), beta(N), alpha(gamma), beta(gamma)) was obtained without the need to specify the photon dose. These results were used to derive the 252Cf neutron RBE, which was then compared with Russian neutron RBE values. The 252Cf neutron RBE was determined after incorporating the LQ radiobiological parameters obtained from cell survival studies with fast neutrons and teletherapy photons. For single-fraction high-dose-rate neutron doses of 0.5, 1.0, 1.5 and 2.0 Gy, the total biologically equivalent doses were 1.8, 3.4, 4.7 and 6.0 RBE Gy with 252Cf neutron RBE values of 3.2, 2.9, 2.7 and 2.5, respectively. Using clinical data for late-responding reactions from 252Cf, Russian investigators created an empirical model that predicted high-dose-rate 252Cf neutron RBE values ranging from 3.6 to 2.9 for similar doses and fractionation schemes and observed that 252Cf neutron RBE increases with the number of treatment fractions. Using these relationships, our results were in general concordance with high-dose-rate 252Cf RBE values obtained from Russian clinical experience.

  19. All possible ternary fragmentations of {sup 252}Cf in collinear configuration

    SciTech Connect

    Manimaran, K.; Balasubramaniam, M.

    2011-03-15

    All possible ternary fragmentations in fission of {sup 252}Cf are studied in collinear configuration within a spherical approximation using the recently proposed ''three cluster model.'' The potential energy surface of collinear configuration exhibits a strong valley around {sup 48}Ca and its neighboring nuclei {sup 50}Ca, {sup 54}Ti, and {sup 60}Cr. Such strong minima are not seen in the potential energy surface of an equatorial configuration. As a consequence of strong minima in the potential, the overall relative yield is higher for the ternary fragmentation with {sup 48}Ca, {sup 50}Ca, {sup 54}Ti, {sup 60}Cr, and {sup 82}Ge as the third fragment. The results of potential energy and relative yield calculations reveal that collinear configuration increases the probability of emission of heavy fragments like {sup 48}Ca (doubly magic nucleus) and its neighboring nuclei as the third fragment. The obtained results indicate that the collinear configuration is the preferred configuration for intermediate nuclei ({sup 48}Ca, {sup 50}Ca, {sup 54}Ti, and {sup 60}Cr) as the third fragment in particle accompanied fission while the equatorial configuration may be a preferred configuration for light nuclei ({sup 4}He, {sup 10}Be) as the third fragment.

  20. /sup 252/Cf-source-driven neutron noise analysis method

    SciTech Connect

    Mihalczo, J.T.; King, W.T.; Blakeman, E.D.

    1985-01-01

    The /sup 252/Cf-source-driven neutron noise analysis method has been tested in a wide variety of experiments that have indicated the broad range of applicability of the method. The neutron multiplication factor k/sub eff/ has been satisfactorily detemined for a variety of materials including uranium metal, light water reactor fuel pins, fissile solutions, fuel plates in water, and interacting cylinders. For a uranyl nitrate solution tank which is typical of a fuel processing or reprocessing plant, the k/sub eff/ values were satisfactorily determined for values between 0.92 and 0.5 using a simple point kinetics interpretation of the experimental data. The short measurement times, in several cases as low as 1 min, have shown that the development of this method can lead to a practical subcriticality monitor for many in-plant applications. The further development of the method will require experiments oriented toward particular applications including dynamic experiments and the development of theoretical methods to predict the experimental observables.

  1. Sensitivity of calculations of {sup 252}Cf-source-driven noise analysis measurements to cross sections for aqueous fissile solutions

    SciTech Connect

    Valentine, T.E.; Mihalczo, J.T.

    1993-09-01

    Previous experiments have shown large changes in measured parameters such as the coherences and ratio of spectral densities for small changes in the measured configuration of fissile material and for small changes in k. This sensitivity was investigated by a variant of the Monte Carlo neutron transport code KENO-V.a, which calculates the time sequences of pulses at two detectors near a fissile assembly from the fission chain multiplication process initiated by a {sup 252}Cf source in or near the fissile assembly. This code directly calculates the noise analysis data from the {sup 252}Cf-source-driven neutron noise measurement method. Direct calculation of the experimental observables by the Monte Carlo method allows the benchmarking of calculational methods and cross sections. These calculations have shown a higher sensitivity of noise-measured quantities to cross sections and calculational methods than the neutron multiplication factor for aqueous fissile solutions. For example, the calculation with ENDF/B-IV cross sections yields a value of the coherence {gamma}{sub 23}{sup 2} 300% larger at low frequency than that from the Hansen-Roach cross sections. The coherence between detectors is a factor of 67 more sensitive to cross sections than the neutron multiplication factor, and this results from the coherence at low k being proportional to the fourth power of (k/{Delta}k). This increased sensitivity to calculational methods means that as far as validating calculational methods, a subcritical experiment at a k {approx} 0.9 by the {sup 252}Cf-source-driven noise analysis method may be more useful than an experiment at k {approx} 1. The noise-measured parameters can easily be obtained from measurements with an accuracy of {plus_minus}1% or less, and the precision of the Monte Carlo calculation of these quantities can also be {plus_minus}1% or less.

  2. Shielding design studies for a neutron irradiator system based on a 252Cf source.

    PubMed

    da Silva, A X; Crispim, V R

    2001-01-01

    This study aims to investigate a shielding design against neutrons and gamma rays from a source of 252Cf, using Monte Carlo simulation. The shielding materials studied were borated polyethylene, borated-lead polyethylene and stainless steel. The Monte Carlo code MCNP4B was used to design shielding for 252Cf based neutron irradiator systems. By normalising the dose equivalent rate values presented to the neutron production rate of the source, the resulting calculations are independent of the intensity of the actual 252Cf source. The results show that the total dose equivalent rates were reduced significantly by the shielding system optimisation.

  3. A multiple parallel-plate avalanche counter for fission-fragment detection

    NASA Astrophysics Data System (ADS)

    Wu, C. Y.; Henderson, R. A.; Haight, R. C.; Lee, H. Y.; Taddeucci, T. N.; Bucher, B.; Chyzh, A.; Devlin, M.; Fotiades, N.; Kwan, E.; O'Donnell, J. M.; Perdue, B. A.; Ullmann, J. L.

    2015-09-01

    A new low-mass multiple gas-filled parallel-plate avalanche counter for the fission-fragment detection has been developed to mark the fission occurrence in measurements of the prompt fission neutron energy spectrum as a function of incident neutron energy. It was used successfully for the neutron-induced fission of 235U and 239Pu with a total mass near 100 mg each and the spontaneous fission of 252Cf. Both the incident neutron energy and the prompt fission neutron energy are measured by using the time-of-flight method. The design and performance of this avalanche counter are described.

  4. Development of high-activity {sup 252}Cf sources for neutron brachytherapy

    SciTech Connect

    Martin, R.C.; Laxson, R.R.; Miller, J.H.; Wierzbicki, J.G.; Rivard, M.J.; Marsh, D.L.

    1996-10-01

    The Gershenson Radiation Oncology Center of Wayne State University (WSU), Detroit, Michigan, is using {sup 252}Cf medical sources for neutron brachytherapy. These sources are based on a 20-year-old design containing {le} 30 {micro}g {sup 252}Cf in the form of a cermet wire of Cf{sub 2}O{sub 3} in a palladium matrix. The Radiochemical Engineering Development Center (REDC) of Oak Ridge National Laboratory has been asked to develop tiny high-activity {sup 252}Cf neutron sources for use with remote afterloading equipment to reduce treatment times and dose to clinical personnel and to expedite treatment of brain and other tumors. To date, the REDC has demonstrated that {sup 252}Cf loadings can be greatly increased in cermet wires much smaller than before. Equipment designed for hot cell fabrication of these wires is being tested. A parallel program is under way to relicense the existing source design for fabrication at the REDC.

  5. Characteristics of spontaneous fission of 250No

    NASA Astrophysics Data System (ADS)

    Svirikhin, A. I.; Andreev, A. V.; Yeremin, A. V.; Izosimov, I. N.; Isaev, A. V.; Kuznetsov, A. N.; Kuznetsova, A. A.; Malyshev, O. N.; Popeko, A. G.; Popov, Y. A.; Sokol, E. A.; Chelnokov, M. L.; Chepigin, V. I.; Schneidman, T. M.; Gall, B.; Dorvaux, O.; Brione, P.; Hauschild, K.; Lopez-Martenz, A.; Rezynkina, K.; Mullins, S.; Jones, P.; Mosat, P.

    2017-07-01

    This study describes an experiment on investigating the properties of spontaneous fission of shortlived neutron-deficient nuclei synthesized in the reaction of complete fusion 48Ca + 204Pb = 252No*. The experiment is performed using the SHELS separator and the beam of multicharged ions at U-400 accelerator (LNR, JINR). Two activities undergoing spontaneous fission, which can be related to the ground and isomeric states of 250No nucleus, are registered. The half-lives, total kinetic energies of fission fragments, and neutron multiplicities are measured for the short-lived nuclei. The average number of neutrons per fission for the activity with t 1/2 = 5.1 ± 0.3 μs is = 4.38 ± 0.13 μs, and for nuclei with the half-life t 1/2 = 36 ± 3 μs it is xxxxx.

  6. Fission Measurements with Dance

    NASA Astrophysics Data System (ADS)

    Jandel, M.; Bredeweg, T. A.; Fowler, M. M.; Bond, E. M.; Chadwick, M. B.; Clement, R. R.; Couture, A.; O'Donnell, J. M.; Haight, R. C.; Keksis, A. L.; Reifarth, R.; Rundberg, R. S.; Ullmann, J. L.; Vieira, D. J.; Wilhelmy, J. B.; Wouters, J. M.; Agvaanluvsan, U.; Dashdorj, D.; Macri, R. A.; Parker, W. E.; Wilk, P. A.; Wu, C. Y.; Becker, J. A.; Angell, C. T.; Tonchev, A. P.; Baker, J. D.

    2008-08-01

    Neutron capture cross section measurements on actinides are complicated by the presence of neutron-induced fission. An efficient fission tagging detector used in coincidence with the Detector for Advanced Neutron Capture Experiments (DANCE) provides a powerful tool in undertaking simultaneous measurements of (n,γ) and (n,f) cross sections. Preliminary results on 235U(n,γ) and (n,f) and 242mAm(n,f) cross sections measured with DANCE and a custom fission-tagging parallel plate avalanche counter (PPAC) are presented. Additional measurements of γ-ray cluster multiplicity distributions for neutron-induced fission of 235U and 242mAm and spontaneous fission of 252Cf are shown, as well as γ-ray energy and average γ-ray energy distributions.

  7. Description of the /sup 252/Cf(sf) neutron spectrum in the framework of a generalized Madland-Nix model

    SciTech Connect

    Marten, H.; Seeliger, D.

    1986-08-01

    The Madland-Nix model (MNM) for the calculation of fission neutron spectra is modified considering the dependence on fragment mass number A. Further, an approximation of this generalized Madland-Nix model (GMNM) that takes into account the different center-of-mass system spectra for the light and heavy fragment groups is discussed. These new calculations are compared with two versions of the original MNM. In particular, the level density parameter, which was adjusted by fitting the calculated spectra to a Maxwellian distribution deduced from experimental data, becomes more reasonable in the framework of the GMNM. The results of the different model calculations are compared with experimental data on the /sup 252/Cf(sf) neutron spectrum in the 0.1- to 20-MeV energy range.

  8. A comparison of the expected costs of high dose rate brachytherapy using 252Cf versus 192Ir.

    PubMed

    Rivard, Mark J; Kirk, Bernadette L; Stapleford, Liza J; Wazer, David E

    2004-12-01

    A cost analysis to compare high dose rate (HDR) brachytherapy using either californium-252 (252Cf) or 192Ir was performed to determine the prospects of widespread clinical implementation of HDR 252Cf. Interest in the neutron-emitting 252Cf radioisotope as a radiotherapy nuclide has undergone a resurgence given recent efforts to fabricate HDR remotely afterloaded sources, and other efforts to create a miniature source for improved accessibility to a variety of anatomic sites. Therefore, HDR 252Cf brachytherapy may prove to be a potential rival to the use of HDR 192Ir remotely afterloaded brachytherapy--the current standard-of-care treatment modality using HDR brachytherapy. Considering the possible improvements in clinical efficacy using HDR 252Cf brachytherapy and the enormous costs of other high-LET radiation sources, the cost differences between 252Cf and 192Ir may be well-justified.

  9. Spontaneous fission of /sup 259/Fm

    SciTech Connect

    Hulet, E.K.; Lougheed, R.W.; Landrum, J.H.; Wild, J.F.; Hoffman, D.C.; Weber, J.; Wilhelmy, J.B.

    1980-03-01

    A 1.5-s spontaneous fission activity has been produced by irradiating /sup 257/Fm with 16-MeV tritons. On the basis of formation cross sections, fission half-life systematics, and the identification of other possible products, this 1.5-s activity has been attributed to /sup 259/Fm formed by the reaction /sup 257/Fm(t,p)/sup 259/Fm. /sup 259/Fm is the heaviest known isotope of Fm and has more neutrons than any other nuclide thus far identified. This measurement of the spontaneous fission of /sup 259/Fm is the first to show a narrow, predominantly symmetric, mass division from spontaneous fission. It is accompanied by a very high kinetic energy, the most probable total kinetic energy being 242 +- 6 MeV. These features show a marked acceleration in the trend toward more symmetric mass division and higher total kinetic energies than have been observed previously for the Fm isotopes as the mass increased.

  10. Late-time emission of prompt fission γ rays

    DOE PAGES

    Talou, Patrick; Kawano, Toshihiko; Stetcu, Ionel; ...

    2016-12-22

    The emission of prompt fission γ rays within a few nanoseconds to a few microseconds following the scission point is studied in the Hauser-Feshbach formalism applied to the deexcitation of primary excited fission fragments. Neutron and γ-ray evaporations from fully accelerated fission fragments are calculated in competition at each stage of the decay, and the role of isomers in the fission products, before β decay, is analyzed. The time evolution of the average total γ-ray energy, the average total γ-ray multiplicity, and the fragment-specific γ-ray spectra is presented in the case of neutron-induced fission reactions of 235U and 239Pu, asmore » well as spontaneous fission of 252Cf. The production of specific isomeric states is calculated and compared to available experimental data. About 7% of all prompt fission γ rays are predicted to be emitted between 10 ns and 5 μs following fission, in the case of 235U and 239Pu(nth,f) reactions, and up to 3% in the case of 252Cf spontaneous fission. The cumulative average total γ-ray energy increases by 2% to 5% in the same time interval. Lastly, those results are shown to be robust against significant changes in the model input parameters.« less

  11. Late-time emission of prompt fission γ rays

    NASA Astrophysics Data System (ADS)

    Talou, P.; Kawano, T.; Stetcu, I.; Lestone, J. P.; McKigney, E.; Chadwick, M. B.

    2016-12-01

    The emission of prompt fission γ rays within a few nanoseconds to a few microseconds following the scission point is studied in the Hauser-Feshbach formalism applied to the deexcitation of primary excited fission fragments. Neutron and γ -ray evaporations from fully accelerated fission fragments are calculated in competition at each stage of the decay, and the role of isomers in the fission products, before β decay, is analyzed. The time evolution of the average total γ -ray energy, the average total γ -ray multiplicity, and the fragment-specific γ -ray spectra is presented in the case of neutron-induced fission reactions of 235U and 239Pu, as well as spontaneous fission of 252Cf. The production of specific isomeric states is calculated and compared to available experimental data. About 7% of all prompt fission γ rays are predicted to be emitted between 10 ns and 5 μ s following fission, in the case of 235U and 239Pu(nth,f ) reactions, and up to 3% in the case of 252Cf spontaneous fission. The cumulative average total γ -ray energy increases by 2% to 5% in the same time interval. Finally, those results are shown to be robust against significant changes in the model input parameters.

  12. Spontaneous fission properties of the heavy elements: Bimodal fission

    SciTech Connect

    Hulet, E.K.

    1988-11-11

    We have measured the mass and kinetic-energy distributions from the spontaneous fission of SVYFm, SVYNo, SVZMd, SWMd, SW(104), and SWSNo. All are observed to fission with a symmetrical division of mass, whereas the total-kinetic-energy (TKE) distributions strongly deviated from the Gaussian shape characteristically found in the fission of all other actinides. When the TKE distributions are resolved into two Gaussian's, the constituent peaks lie near 200 and near 233 MeV. We conclude two modes or bimodal fission is occurring in five of the six nuclides studied. Both modes are possible in the same nuclide, but one generally predominates. We also conclude the low-energy but mass-symmetrical mode is likely to extend to far heavier nuclei; while the high-energy mode will be restricted to a smaller region, a region of nuclei defined by the proximity of the fragments to the strong neutron and proton shells in TSSn. 21 refs., 7 figs., 1 tab.

  13. Water-extended polyester neutron shield for a 252Cf neutron source.

    PubMed

    Vega-Carrillo, H R; Manzanares-Acuña, E; Hernández-Dávila, V M; Gallego, E; Lorente, A; Donaire, I

    2007-01-01

    A Monte Carlo study to determine the shielding features to neutrons of water-extended polyester was carried out. During calculations, (252)Cf and shielding were modelled and the neutron spectra as well as the H(10) were calculated in four sites. The calculation was extended to include a water shielding, the source in vacuum and in air. Besides neutron shielding characteristics, the Kerma in air due to gammas emitted by (252)Cf and due to capture gamma rays in the shielding were included.

  14. Design of a setup for 252Cf neutron source for storage and analysis purpose

    NASA Astrophysics Data System (ADS)

    Hei, Daqian; Zhuang, Haocheng; Jia, Wenbao; Cheng, Can; Jiang, Zhou; Wang, Hongtao; Chen, Da

    2016-11-01

    252Cf is a reliable isotopic neutron source and widely used in the prompt gamma ray neutron activation analysis (PGNAA) technique. A cylindrical barrel made by polymethyl methacrylate contained with the boric acid solution was designed for storage and application of a 5 μg 252Cf neutron source. The size of the setup was optimized with Monte Carlo code. The experiments were performed and the results showed the doses were reduced with the setup and less than the allowable limit. The intensity and collimating radius of the neutron beam could also be adjusted through different collimator.

  15. Beam-Port Design of a Radiobiological Dosimetry Experiment for {sup 10}B-Enhanced {sup 252}Cf Brachytherapy

    SciTech Connect

    Carla White; C.-K. Chris Wang; David Halpern; Casey Moore

    2000-11-12

    It has been previously suggested that the incorporation of {sup 10}B-labeled drugs into tumor cells might significantly increase the dose to the peripheral tumor cells in {sup 252}Cf brachytherapy. The dose enhancement comes from the thermal neutron capture reactions of {sup 10}B(n, {alpha}){sup 7}Li. As a new cancer treatment modality, this so-called {sup 10}{und B}-{und E}nhanced {sup 252}{und C}f {und B}rachy{und t}herapy (BECBT) is currently being commercialized by Isotron. One of the challenges for implementing BECBT has been to determine the maximum tolerable dose (MTD) to the normal tissue surrounding a tumor. Because the relative biological effectiveness for the {sup 10}B(n, {alpha}){sup 7}Li reaction products is greater than that for fission neutrons, the MTD should decrease as {sup 10}B concentration increases for BECBT. To more precisely determine the MTD for BECBT, we intend to conduct both in vitro (cell culture) and in vivo (rat) experiments with a 50-mg {sup 252}Cf source. We will use cell survival fraction and normal brain necrosis as the biological end points for the cell-culture experiments and rat experiments, respectively. To carry out these experiments, the neutron field to which the samples are exposed must contain a significant portion of thermal neutrons. The rat experiments further require the use of a very small and well-collimated neutron beam to effectively irradiate the rat brain while minimizing the dose to its whole body. This paper discusses the design criteria for the experimental neutron beam port and the computational work leading to its optimal configuration.

  16. Comparative toxicity of /sup 226/Ra, /sup 239/Pu, /sup 241/Am, /sup 249/Cf, and /sup 252/Cf in C57BL/Do black and albino mice

    SciTech Connect

    Taylor, G.N.; Mays, C.W.; Lloyd, R.D.; Gardner, P.A.; Talbot, L.R.; McFarland, S.S.; Pollard, I.A.; Atherton, D.R.; VanMoorhem, D.; Brammer, D.

    1983-09-01

    Groups of C57BL/Do (black and albino) mice were injected with graded activities of /sup 226/Ra, /sup 239/Pu, /sup 241/Am, /sup 249/Cf, or /sup 252/Cf and were followed throughout life. Bone sarcoma was the principal radiation-induced end point, and the risks associated with average skeletal doses of the four transuranium radionuclides, relative to radium, were determined. The relative biological effectiveness (RBE) was calculated for each emitter by dividing its risk coefficient (bone sarcomas per 10(/sup 6/) mouse-rad) by the risk coefficient for /sup 226/Ra. Combined data for males and females in both black and albino mice gave the following values +/- SD for the RBE relative to /sup 226/Ra . 1.0: /sup 239/Pu . 15.3 +/- 3.9, /sup 241/Am . 4.9 +/- 1.4, /sup 249/Cf . 5.0 +/- 1.4, and /sup 252/Cf . 2.6 +/- 0.8. About 70% of the tumors occurred in the axial skeleton, and the risk coefficient for females averaged about four times higher than for males when all five nuclides were included. The RBE of fission fragment irradiation from /sup 252/Cf for cancer induction, relative to alpha irradiation, for the combined data in all of the animals given /sup 252/Cf and /sup 249/Cf, was 0.02 +/- 0.28, in agreement with the calculated theoretical value of 0.03, based on the ratio of summed track lengths in tissue.

  17. Comparative toxicity of /sup 226/Ra, /sup 239/Pu, /sup 241/Am, /sup 249/Cf, and /sup 252/Cf in C57BL/Do black and albino mice

    SciTech Connect

    Taylor, G.N.; Mays, C.W.; Lloyd, R.D.; Gardner, P.A.; TAlbot, L.R.; McFarland, S.S.; Pollard, T.A.; Atherton, D.R.; vanMoorhem, D.; Brammer, D.

    1983-09-01

    Groups of C57BL/Do (black and albino) mice were injected with graded activities of /sup 226/Ra, /sup 239/Pu, /sup 241/Am, /sup 249/Cf, or /sup 252/Cf and were followed throughout life. Bone sarcoma was the principal radiation-induced end point, and the risks associated with average skeletal doses of the four transuranium radionuclides, relative to radium, were determined. The relative biological effectiveness (RBE) was calculated for each emitter by dividing its risk coefficient (bone sarcomas per 10/sup 6/ mouse-rad) by the risk coefficient for /sup 226/Ra. Combined data for males and females in both black and albino mice gave the following values +- SD for the RBE relative to /sup 226/Ra = 1.0: /sup 239/Pu = 15.3 +- 3.9, /sup 241/Am = 4.9 +- 1.4, /sup 249/Cf = 5.0 +- 1.4, and /sup 252/Cf = 2.6 +- 0.8. About 70% of the tumors occurred in the axial skeleton, and the risk coefficient for females averaged about four times higher than for males when all five nuclides were included. The RBE of fission fragment irradiation from /sup 252/Cf for cancer induction, relative to ..cap alpha.. irradiation, for the combined data in all of the animals given /sup 252/Cf and /sup 249/Cf, was 0.02 +- 0.28, in agreement with the calculated theoretical value of 0.03, based on the ratio of summed track lengths in tissue.

  18. Folding angle and excitation energy of fragments from 235U(n th,f) and 252Cf(sf) reactions

    NASA Astrophysics Data System (ADS)

    Haninger, T.; Hartmann, F. J.; Hofmann, P.; Kim, Y. S.; Lotfranaei, M. S.; von Egidy, T.; Märten, H.; Ruben, A.

    1994-05-01

    Coincident fragments from 235U(n th,f) and 252Cf(sf) reactions were investigated with a doublearm fission-fragment spectrometer and PIN-diode arrays. Based on the measurement of kinetic energy, velocity and direction of complementary fragments the total kinetic energy, the total mass, the individual fragment masses, the total number of emitted neutrons as well as the folding angle were deduced event by event. A nearly linear correlation between average folding angle and average total excitation energy of the fragments (and, consequently, the average number of neutrons) was found. Fragment deflection by prompt neutron emission is accordingly described by a complex statistical evaporation model in connection with a semi-empirical calculation of energy partition in nuclear fission. In addition, the folding-angle distribution due to ternary fission is estimated. All experimental fragment distributions and correlations are well repro- duced by the model calculations.

  19. Shielding of radiation fields generated by {sup 252}Cf in a concrete maze. Part 1: Experiment

    SciTech Connect

    Ipe, N.E.; McCall, R.C.; Jenkins, T.M.; Benson, E.

    1998-02-01

    A concrete room with a single-legged maze was constructed in order to simulate a medical accelerator room. Gamma and neutron measurements were performed along the maze with (a) a {sup 252}Cf source and (b) a tungsten-moderated {sup 252}Cf source placed inside the room. The measurements were repeated after placing an inner borated polyethylene door of varying thickness (2.54--10.16 cm) at 2 different locations. Measurements were also performed after lining the inside of the maze with different neutron moderating materials. The following results are reported: (1) the variation and contributions of individual components of the radiation fields as a function of distance along the maze, (2) the attenuation of neutron dose equivalent and reduction of capture gamma rays as a function of borated polyethylene (BPE) inner door thickness and location of the inner door; and (3) the effect of lining the maze corner with different neutron moderating materials.

  20. Spontaneous fission half-lives and their systematics

    SciTech Connect

    Holden, N.E.

    1998-03-01

    Spontaneous fission is a phenomenon exhibited by heavy nuclei, which can be a major mode of decay of nuclei of elements heavier than thorium and can be a determining factor in their stability. For purposes of this paper, spontaneous fission will be considered a process in which a nucleus breaks up into two approximately equal parts. The emission of light nuclei or heavy ions such as {sup 12}C, {sup 16}O, or {sup 32}S will not be considered. This radioactive decay mode is often much smaller than the spontaneous fission decay mode, although this is not true in all cases. Barwick noted that this might indicate that the assumed half-life for spontaneous fission of some older experiments might be partially due to heavy fragment radioactivity. Other than taking note of this potential correction to spontaneous fission half-lives, this decay mode of heavy fragment radioactivity will be ignored. Excited states of some heavy nuclei may decay via spontaneous fission. These so-called fission isomers will not be discussed here. Electron capture (EC) or beta-delayed fission is a process in which prompt fission of a sufficiently excited daughter state occurs following population by EC or beta decay. The fission activity will appear to decay with the half-life of the parent and was earlier confused in some cases with SF. This process has been discussed in detail in a review and will not be considered in this paper.

  1. On the use of a (252Cf-3He) assembly for landmine detection by the neutron back-scattering method.

    PubMed

    Elsheikh, N; Viesti, G; ElAgib, I; Habbani, F

    2012-04-01

    Experiments were carried out to optimize the performance of the neutron back-scattering (NBS) technique in landmine detection using an assembly consisting of three different layers placed above a (252)Cf neuron source, producing about 10(4)s(-1), in conjunction with a (3)He detector. The assembly was optimized experimentally. The selected assembly configuration was then examined against different (252)Cf stand-off distances and mine burial depths using dummy landmines. Furthermore, Monte Carlo simulations were performed to study the effect of the shield when a (252)Cf source in the range 10(4)-10(7)s(-1) was employed, and to optimize the geometry for future prototypes.

  2. Brazilian gamma-neutron dosemeter: response to 241AmBe and 252Cf neutron sources.

    PubMed

    Souto, E B; Campos, L L

    2011-03-01

    With the aim of improving the monitoring of workers potentially exposed to neutron radiation in Brazil, the IPEN/CNEN-SP in association with PRO-RAD designed and developed a passive individual gamma-neutron mixed-field dosemeter calibrated to be used to (241)AmBe sources. To verify the dosimetry system response to different neutron spectra, prototypes were irradiated with a (252)Cf source and evaluated using the dose-calculation algorithm developed for (241)AmBe sources.

  3. AN INTERLABORATORY COMPARISON ON THE DETERMINATION OF 241Am, 244Cm AND 252Cf IN URINE.

    PubMed

    Gerstmann, Udo C; Taubner, Kerstin; Hartmann, Martina

    2016-09-01

    An intercomparison exercise on the determination of (241)Am, (244)Cm and (252)Cf in urine was performed. Since it was designed with regard to emergency preparedness, the detection limit for each nuclide was set to 0.1 Bq per 24-h urine sample. Most of the participating laboratories were established bioassay laboratories. However, some laboratories that routinely determine (241)Am only in environmental samples were also invited in order to explore their potential for emergency bioassay analysis. Another aspect of the intercomparison was to investigate the performance of all laboratories concerning the chemical yields of the (243)Am tracer in comparison with (244)Cm and (252)Cf. In summary, both types of laboratories showed good results. There was a negative bias for the results of (244)Cm and (252)Cf, which can be explained by slightly different radiochemical behaviours of americium, curium and californium and which is in agreement with results reported in the literature. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Measured microdosimetric spectra and therapeutic potential of boron neutron capture enhancement of 252Cf brachytherapy.

    PubMed

    Burmeister, J; Kota, C; Maughan, R L

    2005-09-01

    Californium-252 is a neutron-emitting radioisotope used as a brachytherapy source for radioresistant tumors. Presented here are microdosimetric spectra measured as a function of simulated site diameter and distance from applicator tube 252Cf sources. These spectra were measured using miniature tissue-equivalent proportional counters (TEPCs). An investigation of the clinical potential of boron neutron capture (BNC) enhancement of 252Cf brachytherapy is also provided. The absorbed dose from the BNC reaction was measured using a boron-loaded miniature TEPC. Measured neutron, photon and BNC absorbed dose components are provided as a function of distance from the source. In general, the absorbed dose results show good agreement with results from other measurement techniques. A concomitant boost to 252Cf brachytherapy may be provided through the use of the BNC reaction. The potential magnitude of this BNC enhancement increases with increasing distance from the source and is capable of providing a therapeutic gain greater than 30% at a distance of 5 cm from the source, assuming currently achievable boron concentrations.

  5. A New Method of Prompt Fission Neutron Energy Spectrum Unfolding

    SciTech Connect

    Zeynalova, O. V.; Zeynalov, Sh.; Hambsch, F.-J.; Oberstedt, S.

    2010-11-25

    The prompt neutron emission in spontaneous fission of {sup 252}Cf has been investigated applying digital signal electronics along with associated digital signal processing algorithms. The goal was to find out the reasons of a long time existing discrepancy between theoretical calculations and the measurements of prompt fission neutron (PFN) emission dependence on the total kinetic energy (TKE) of fission fragments (FF). On the one hand the {sup 252}Cf(sf) reaction is one of the main references for nuclear data, on the other hand the understanding of PFN emission mechanism is very important for nuclear fission theory. Using a twin Frisch-grid ionization chamber for fission fragment (FF) detection and a NE213-equivalent neutron detector in total about 10{sup 7} fission fragment-neutron coincidences have been registered. Fission fragment kinetic energy, mass and angular distribution, neutron time-of-flight and pulse shape have been investigated using a 12 bit waveform digitizer. The signal waveforms have been analyzed using digital signal processing algorithms. For the first time the dependence of the number of emitted neutrons as a function of total kinetic energy (TKE) of the fragments is in very good agreement with theoretical calculations in the range of TKE from 140-220 MeV.

  6. A New Method of Prompt Fission Neutron Energy Spectrum Unfolding

    NASA Astrophysics Data System (ADS)

    Zeynalova, O. V.; Zeynalov, Sh.; Hambsch, F.-J.; Oberstedt, S.

    2010-11-01

    The prompt neutron emission in spontaneous fission of 252Cf has been investigated applying digital signal electronics along with associated digital signal processing algorithms. The goal was to find out the reasons of a long time existing discrepancy between theoretical calculations and the measurements of prompt fission neutron (PFN) emission dependence on the total kinetic energy (TKE) of fission fragments (FF). On the one hand the 252Cf (sf) reaction is one of the main references for nuclear data, on the other hand the understanding of PFN emission mechanism is very important for nuclear fission theory. Using a twin Frisch-grid ionization chamber for fission fragment (FF) detection and a NE213-equivalent neutron detector in total about 107 fission fragment-neutron coincidences have been registered. Fission fragment kinetic energy, mass and angular distribution, neutron time-of-flight and pulse shape have been investigated using a 12 bit waveform digitizer. The signal waveforms have been analyzed using digital signal processing algorithms. For the first time the dependence of the number of emitted neutrons as a function of total kinetic energy (TKE) of the fragments is in very good agreement with theoretical calculations in the range of TKE from 140-220 MeV.

  7. {sup 252}Cf-source-correlated transmission measurements for uranyl fluoride deposit in a 24-in.-OD process pipe

    SciTech Connect

    Uckan, T.; Mihalczo, J.T.; Valentine, T.E.; Mullens, J.A.; Wyatt, M.S.; Hannon, T.F.

    1998-06-01

    Characterization of a hydrated uranyl fluoride (UO{sub 2}F{sub 2}{center_dot}nH{sub 2}O) deposit in a 17-ft-long, 24-in.-OD process pipe at the former Oak Ridge Gaseous Diffusion Plant was successfully performed by using {sup 252}Cf-source-correlated time-of-flight (TOF) transmission measurements. These measurements of neutrons and gamma rays through the pipe from an external {sup 2521}Cf fission source were used to measure the deposit profile and its distribution along the pipe, the hydration (or H/U), and the total uranium mass. The measurements were performed with a source in an ionization chamber on one side of the pipe and detectors on the other. Scanning the pipe vertically and horizontally produced a spatial and time-dependent radiograph of the deposit in which transmitted gamma rays and neutrons were separated in time. The cross-correlation function between the source and the detector was measured with the Nuclear Weapons Identification System. After correcting for pipe effects, the deposit thickness was determined from the transmitted neutrons and H/U from the gamma rays. Results were consistent with a later intrusive observation of the shape and the color of the deposit; i.e., the deposit was annular and was on the top of the pipe at some locations, demonstrating the usefulness of this method for deposit characterization.

  8. Second primary malignancies after radiotherapy including HDR (252)Cf brachytherapy for cervical cancer.

    PubMed

    Samerdokiene, Vitalija; Valuckas, Konstantinas Povilas; Janulionis, Ernestas; Atkocius, Vydmantas; Rivard, Mark J

    2015-01-01

    Second primary malignancies (SPMs) are among the most serious late adverse effects after radiotherapy experienced over time by the increasing population of cancer survivors worldwide. The study aim was to determine the rate and distribution of SPMs for neutron- and photon-emitting brachytherapy (BT) sources for patients treated for cervical cancer. The cohort comprised 662 patients with invasive cervical cancer (Stages IIB and IIIB) and contributed 5,224 patient-years (PY) of observation. These patients were treated by radiotherapy during the 1989-1999 year period with cobalt-60 source ((60)Co) teletherapy. The first group of patients (N = 375; 3,154 PY) received high-dose-rate (HDR) californium-252 source ((252)Cf) BT, whereas the second group (N = 287; 2,070 PY) received HDR (60)Co BT. Over a 25-year period, 35 SPMs were observed, amounting to 5.3% of all observed patients: in 16 (2.4%) heavily, 2 (0.3%) moderately, 14 (2.1%) lightly irradiated body sites, and 3 (0.5%) other sites. Of these, 21 cases (5.6%) were observed in the HDR (252)Cf BT group, whereas 14 cases (4.9%) were observed in the HDR (60)Co BT group. Exposures received during (60)Co teletherapy and HDR BT with either (252)Cf or (60)Co had statistically equivalent (p = 0.68) effects on SPM development. Cure rates are improving, and therefore, there are more long-term survivors from cervical cancer. This study shows no significant difference in rates or distribution of SPMs in women treated with neutron BT compared with photon BT (p = 0.68). After reviewing related literature and our research results, it is evident that a detailed investigation of SPM frequency, localization, and dose to adjacent organs is a suitable topic for further research. Copyright © 2015 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  9. Brain tumour and infiltrations dosimetry of boron neutron capture therapy combined with 252Cf brachytherapy.

    PubMed

    Brandão, Sâmia F; Campos, Tarcísio P R

    2012-04-01

    This article presents a dosimetric investigation of boron neutron capture therapy (BNCT) combined with (252)Cf brachytherapy for brain tumour control. The study was conducted through computational simulation in MCNP5 code, using a precise and discrete voxel model of a human head, in which a hypothetical brain tumour was incorporated. A boron concentration ratio of 1:5 for healthy-tissue: tumour was considered. Absorbed and biologically weighted dose rates and neutron fluency in the voxel model were evaluated. The absorbed dose rate results were exported to SISCODES software, which generates the isodose surfaces on the brain. Analyses were performed to clarify the relevance of boron concentrations in occult infiltrations far from the target tumour, with boron concentration ratios of 1:1 up to 1:50 for healthy-tissue:infiltrations and healthy-tissue:tumour. The average biologically weighted dose rates at tumour area exceed up to 40 times the surrounding healthy tissue dose rates. In addition, the biologically weighted dose rates from boron have the main contribution at the infiltrations, especially far from primary tumour. In conclusion, BNCT combined with (252)Cf brachytherapy is an alternative technique for brain tumour treatment because it intensifies dose deposition at the tumour and at infiltrations, sparing healthy brain tissue.

  10. Test and evaluation results of the /sup 252/Cf shuffler at the Savannah River Plant

    SciTech Connect

    Crane, T.W.

    1981-03-01

    The /sup 252/Cf Shuffler, a nondestructive assay instrument employing californium neutron source irradiation and delayed-neutron counting, was developed for measuring /sup 235/U content of scrap and waste items generated at the Savannah River Plant (SRP) reactor fuel fabrication facility. The scrap and waste items include high-purity uranium-aluminum alloy ingots as well as pieces of castings, saw and lathe chips from machining operations, low-purity items such as oxides of uranium or uranium intermixed with flux materials found in recovery operations, and materials not recoverable at SRP such as floor sweepings or residues from the uranium scrap recovery operation. The uranium contains about 60% /sup 235/U with the remaining isotopes being /sup 236/U, /sup 238/U, and /sup 234/U in descending order. The test and evaluation at SRP concluded that the accuracy, safety, reliability, and ease of use made the /sup 252/Cf Shuffler a suitable instrument for routine use in an industrial, production-oriented plant.

  11. Direct Use of {sup 252}Cf for Land-Mine Detection

    SciTech Connect

    Esam M. A. Hussein; Edward J. Waller

    2000-11-12

    The use of {sup 252}Cf for detection of explosives has traditionally focused on employing thermal-neutron activation (TNA). However, the need to moderate the source to produce the required thermal neutrons wastes most of the original source and makes the detection device quite bulky. This and the relatively low-activation cross section demand the use of an intense source, thus requiring extensive shielding that further hinders the portability of the device. We have, therefore, undertaken a conceptual study to determine whether useful information to detect a small antipersonnel land mine can be obtained by direct use of the source's fast neutrons and the accompanying gamma rays. This study indicated that the presence of a land mine can be detected in principle by direct use of a {sup 252}Cf source via the amount of thermal neutron produced (indicative of hydrogen content), by the amount of neutrons below 100 keV (indicative of both hydrogen and carbon content), by the change in the spectrum of fast neutrons (indicative of nitrogen and oxygen content), and by the amount of scattered source photons (indicative of density). By combining these indicators, the presence of most other innocuous materials can be excluded. The engineering challenges currently being addressed include the elimination of direct exposure of the detector to the source particles, the effect of shielding, and adequately distinguishing between fast and slow neutrons without having to utilize the complex process of unfolding the detector's response to obtain the neutron energy spectrum.

  12. Half-lives of several states in isotopes produced in the SF of ^252Cf

    NASA Astrophysics Data System (ADS)

    Hwang, J. K.; Ramayya, A. V.; Hamilton, J. H.; Fong, D.; Beyer, C. J.; Gore, P. M.; Jones, E. F.; Teran, E.; Oberacker, V. E.; Umar, A. S.; Luo, Y. X.; Rasmussen, J. O.; Zhu, S. J.; Wu, S. C.; Lee, I. Y.; Fallon, P.; Stoyer, M. A.; Asztalos, S. J.; Ginter, T. N.; Cole, J. D.; Ter-Akopian, G. M.; Donangelo, R.

    2003-10-01

    Half-lives (T_1/2) of 15 states in isotopes produced in the SF of ^252Cf have been determined using a new technique. The ^252Cf source was placed inside the Gammasphere, and triple and higher fold coincidence events were recorded. The half-lives and quadrupole deformations of ^104Zr, ^152Ce, and ^158Sm are determined for the first time. Except for ^102Sr, ^104Zr(β_2=0.45(4)) and ^158Sm(β_2=0.46(5)) are the most deformed among medium and heavy nuclei. Large deformation could have its origin in the high spin down-sloping orbitals near Z=38,40,62 and N=40,64,96. These large prolate deformations at ^104Zr and ^158Sm are confirmed by Hartree-Fock-Bogoliubov calculations carried out in the present work. Further, an excited rotational band including seven new γ transitions in ^97Sr was also identified. The band head energy of the 829.8 keV state in ^97Sr has an half-life of 265(27) nsec.

  13. Application of 252Cf-PDMS to characterize airborne particles deposited in an Antarctic glacier.

    PubMed

    da Cunha, K Dias; Evangelista, H; Dalia, K C; Simões, J C; Barros Leite, C V

    2004-05-05

    The aim of this study is to apply the (252)Cf-PDMS (plasma desorption mass spectrometry) technique to characterize particles deposited in ice samples. This technique allows identification of molecular ions, even large molecules, desorbed from the sample surface, in contrast with PIXE (particle induced X-ray emission) or EDS (energy dispersive spectrometry). Two shallow snow cores obtained from different glacial drainage basins on King George Island ice cap, South Shetland Islands (Antarctica), were analyzed by PDMS. The chemical compounds identified in the ice mass spectra show that the particle contents of both samples were statistically different, indicating a non-homogeneous spatial deposition distribution for the deposited particles. The analysis of the ice mass spectra suggests some possible sources for the airborne particles. The mass spectra of ice samples collected at a site exposed directly to air masses coming from the Drake Passage show a significant contribution of particles from crustal and anthropogenic sources. However, the mass spectra of ice samples taken from a site on a slope towards a local inlet point out a high influence of marine aerosol. Therefore, it was concluded that particles deposited onto the ice cap were attributable to different aerosol sources, besides long-range atmospheric transport. The (252)Cf-PDMS technique can be considered a powerful tool for studies of snow and ice samples, providing important information for understanding the global atmospheric transport and deposition of airborne particles.

  14. Cross correlation method application to prompt fission neutron investigation

    NASA Astrophysics Data System (ADS)

    Zeynalova, O. V.; Zeynalov, Sh.; Nazarenko, M. A.; Hambsch, F.-J.; Oberstedt, S.

    2012-10-01

    Do The prompt neutron emission in spontaneous fission of 252Cf has been investigated applying cross correlation method and digital signal processing algorithms. A new mathematical approach for neutron/gamma pulse shape separation was developed and implemented for prompt fission neutron (PFN) time-of-flight measurement. The main goal was development of automated data analysis algorithms and procedures for data analysis with minimum human intervention. Experimental data was taken with a twin Frisch-grid ionization chamber and a NE213-equivalent neutron detector in an experimental setup similar to well work of C. Budtz-Jorgensen and H.-H. Knitter [1]. About 2*107 fission events were registered with 2*105 neutron/gamma detection in coincidence with fission fragments. Fission fragment kinetic energy, mass and angular distribution, neutron time-of-flight and pulse shape have been investigated using a 12 bit waveform digitizer.

  15. Developments toward Understanding and Improving the Low Energy Measurement Capabilities of a Fission Time Projection Chamber

    NASA Astrophysics Data System (ADS)

    Bundgaard, Jeremy J.

    Nuclear physicists have been recently called upon for new, high precision fission measurements to improve existing fission models, ultimately enabling engineers to design next generation reactors as well as guarding the nation's stockpile. In response, a resurgence in fission research is aimed at developing detectors to design and build new experiments to meet these needs. The Neutron Induced Fission Fragment Tracking Experiment (NIFFTE) collaboration has developed the fission Time Projection Chamber (fissionTPC) to measure neutron induced fission with unprecedented precision. The fissionTPC is annually deployed to the Los Alamos Neutron Science Center LANSCE where it operates with a neutron beam passing axially through the drift volume, irradiating heavy actinide targets to induce fission. The fissionTPC was developed at the Lawrence Livermore National Laboratory's (LLNL) TPC lab, where it is tested with spontaneous fission (SF) from radioactive sources, typically 252Cf and 244Cm, to characterize detector response, improve performance, and evolve the design. One of the experiments relevant for both nuclear energy and nonproliferation is to measure the neutron induced fission of 239Pu, which exhibits a high alpha activity, generating a large unwanted background for the fission measurements. The ratio of alpha to fission present in our neutron induced fission measurement of 239Pu is on the same order of magnitude as the 244Cm alpha/SF branching ratio. The high alpha rate required the TPC to be triggering on fission signals during beam time and we set out to build a trigger system, which, using 244Cm to produce a similar alpha to fission ratio as 239Pu in the neutron beam, we successfully demonstrated the viability of this approach. The trigger design has been evolved for use in NIFFTE's current measurements at LANSCE. In addition to several hardware and software contributions in the development and operation of the fissionTPC, a central purpose of this thesis was

  16. Spontaneous fission properties of sub 103 sup 259 Lr

    SciTech Connect

    Hamilton, T.M.; Gregorich, K.E.; Lee, D.M.; Czerwinski, K.R.; Hannink, N.J.; Kacher, C.D.; Kadkhodayan, B.; Kreek, S.A.; Nurmia, M.J.; Lane, M.R.; Neu, M.P.; Tuerler, A.; Hoffman, D.C. Chemistry Department, University of California, Berkeley, California 94720 )

    1992-11-01

    We have measured the mass and kinetic-energy distributions of fragments from the spontaneous fission of {sup 259}Lr. The {sup 259}Lr was produced via the {sup 248}Cm ({sup 15}N,4{ital n}) reaction with a production cross section of 100 nb using 81-MeV projectiles. The kinetic energies and times of the alpha particles and coincident fission fragments were measured using our rotating wheel system. From these data the half-life, mass, and kinetic-energy distributions were derived. The total kinetic-energy (TKE) distribution appears to consist of a single component with a most probable pre-neutron-emission TKE of 215{plus minus}3 MeV. The mass distribution is predominantly symmetric with a full width at half maximum of about 20 mass numbers. These results are consistent with trends observed for other trans-berkelium spontaneously fissioning isotopes. We determined the half-life to be 6.14{plus minus}0.36 s by measuring its alpha decay and the observed spontaneous fission half-life was consistent with that value. An energy of 8.439{plus minus}0.010 MeV was measured for the main alpha transition of {sup 259}Lr. We measured a spontaneous fission to alpha-decay ratio of 0.25{plus minus}0.03 which results in a partial half-life for spontaneous fission of 31{plus minus}4 s, if there are no other appreciable modes of decay.

  17. Fission and Properties of Neutron-Rich Nuclei - Proceedings of the Second International Conference

    NASA Astrophysics Data System (ADS)

    Hamilton, J. H.; Phillips, W. R.; Carter, H. K.

    The Table of Contents for the book is as follows: * Preface * Structure of Elementary Matter: Cold Valleys and Their Importance in Fission, Fusion and for Superheavy Nuclei * Tunnelling Phenomena in Nuclear Physics * Heavy Nuclei Studies Using Transfer Reactions * Isomeric Properties of Nuclei Near 78Ni * Investigation of Light Actinide Nuclei at Yale and Beyond * U-Projectile Fission at Relativistic Energies * Cluster Description of Cold Fission Modes in 252Cf * Neutron-pair Transfer Theory for Pear-shaped Ba Fission Fragments * New RMFA Parameters of Normal and Exotic Nuclei * Study of Fission Fragments from 12C+238U Reactions: Prompt and Delayed Spectroscopy * γ-Ray Angular Correlations in 252Cf and 248Cm Fission Fragments * Fragment Angular Momentum and Descent Dynamics in 252Cf Spontaneous Fission * The Experimental Investigation of Neutron-Rich Nuclei * High-Spin Structure of Some Odd-Z Nuclei with A ≈ 100 From Heavy-Ion Induced Fission * Coexistence of Symmetric and Asymmetric Nuclear Shapes and 10Be Ternary Fission * Octupole Effects in the Lanthanides * High Spin Structure of the 113-1l6Cd Isotopes Produced by Heavy-Ion Induced Fission Reaction * Temperature-Dependent Fission Barriers and Mass Distributions for 239U * Strength Distributions for Gamow Teller Transitions in Very Weakly Bound Systems * High Spin Fragmentation Spectroscopy * Search for a Four-Neutron Transfer From 8He to 4He * Microsecond Isomers in Fission Fragments in the Vicinity of the Doubly Magic 132Sn * Recent On-Line NMR/on Nuclear Magnetic Dipole Moments Near 132Sn: Meson Exchange Current Effects at the Shell Closure and Shell Model Treatment of Variation with Proton and Neutron Number * High-spin K-Isomers Beyond the Fusion Limit * High Energy Neutron Induced Fission: Charge Yield Distributions and Search and Spectroscopy of New Isomers * Hartree-Fock Mean-Field Models Using Separable Interactions * Variation of Fission Characteristics Over the Nuclear Chart * Investigation of

  18. Neutron-induced fission: properties of prompt neutron and γ rays as a function of incident energy

    NASA Astrophysics Data System (ADS)

    Stetcu, I.; Talou, P.; Kawano, T.

    2016-06-01

    We have applied the Hauser-Feshbach statistical theory, in a Monte-Carlo implementation, to the de-excitation of fission fragments, obtaining a reasonable description of the characteristics of neutrons and gamma rays emitted before beta decays toward stability. Originally implemented for the spontaneous fission of 252Cf and the neutroninduced fission of 235U and 239Pu at thermal neutron energy, in this contribution we discuss the extension of the formalism to incident neutron energies up to 20 MeV. For the emission of pre-fission neutrons, at incident energies beyond second-chance fission, we take into account both the pre-equilibrium and statistical pre-fission components. Phenomenological parameterizations of mass, charge and TKE yields are used to obtain the initial conditions for the fission fragments that subsequently decay via neutron and emissions. We illustrate this approach for 239Pu(n,f).

  19. Application of 252Cf plasma desorption mass spectrometry in dental research

    NASA Astrophysics Data System (ADS)

    Fritsch, Hans-Walter; Schmidt, Lothar; Köhl, Peter; Jungclas, Hartmut; Duschner, Heins

    1993-07-01

    Topically applied fluorides introduced in dental hygiene products elevate the concentration levels of fluoride in oral fluids and thus also affect chemical reactions of enamel de- and remineralisation. The chemical reactions on the surface of tooth enamel still are a subject of controversy. Here 252Cf-plasma desorption mass spectrometry and argon ion etching are used to analyse the molecular structure of the upper layes of enamel. The mass spectrum of untreated enamel is characterised by a series of cluster ions containing phosphate. It is evident that under certain conditions the molecular structure of the surface enamel is completely transformed by treatment with fluorides. The result of the degradation and precipitation processes is reflected by a total replacement of the phosphate by fluoride in the measured cluster ion distribution. Stepwise etching of the upper layers by Ar+ ions reveals the transition from a nearly pure CaF2 structure to the unchanged composition of the enamel mineral.

  20. Characteristics of the simulated workplace neutron fields using a 252Cf source surrounded with cylindrical moderators.

    PubMed

    Tsujimura, N; Yoshida, T

    2004-01-01

    The authors established the simulated workplace neutron fields using a 252Cf source surrounded with cylindrical moderators at the Japan Nuclear Cycle Development Institute (JNC), Tokai Works. The moderators are annular cylinders made of polymethyl methacrylate and steel. The neutron energy spectrum at the reference calibration point was evaluated from the calculations by MCNP-4B and the measurements by the Bonner multisphere spectrometer and the hydrogen-filled proportional counters. The calculated neutron spectra were in good agreements with the measured ones. These fields can provide the realistic neutron spectra similar to those encountered around the glove-boxes of the fabrication process of MOX (PuO2-UO2 mixed oxide) fuel.

  1. Pairing-induced speedup of nuclear spontaneous fission

    SciTech Connect

    Sadhukhan, Jhilam; Dobaczewski, J.; Nazarewicz, W.; Sheikh, J. A.; Baran, A.

    2014-12-22

    Collective inertia is strongly influenced at the level crossing at which the quantum system changes its microscopic configuration diabatically. Pairing correlations tend to make the large-amplitude nuclear collective motion more adiabatic by reducing the effect of these configuration changes. Competition between pairing and level crossing is thus expected to have a profound impact on spontaneous fission lifetimes. To elucidate the role of nucleonic pairing on spontaneous fission, we study the dynamic fission trajectories of 264Fm and 240Pu using the state-of-the-art self-consistent framework. We employ the superfluid nuclear density functional theory with the Skyrme energy density functional SkM* and a density-dependent pairing interaction. Along with shape variables, proton and neutron pairing correlations are taken as collective coordinates. The collective inertia tensor is calculated within the nonperturbative cranking approximation. The fission paths are obtained by using the least action principle in a four-dimensional collective space of shape and pairing coordinates. Pairing correlations are enhanced along the minimum-action fission path. For the symmetric fission of 264Fm, where the effect of triaxiality on the fission barrier is large, the geometry of the fission pathway in the space of the shape degrees of freedom is weakly impacted by pairing. This is not the case for 240Pu, where pairing fluctuations restore the axial symmetry of the dynamic fission trajectory. The minimum-action fission path is strongly impacted by nucleonic pairing. In some cases, the dynamical coupling between shape and pairing degrees of freedom can lead to a dramatic departure from the static picture. As a result, in the dynamical description of nuclear fission, particle-particle correlations should be considered on the same footing as those associated with shape degrees of freedom.

  2. Pairing-induced speedup of nuclear spontaneous fission

    DOE PAGES

    Sadhukhan, Jhilam; Dobaczewski, J.; Nazarewicz, W.; ...

    2014-12-22

    Collective inertia is strongly influenced at the level crossing at which the quantum system changes its microscopic configuration diabatically. Pairing correlations tend to make the large-amplitude nuclear collective motion more adiabatic by reducing the effect of these configuration changes. Competition between pairing and level crossing is thus expected to have a profound impact on spontaneous fission lifetimes. To elucidate the role of nucleonic pairing on spontaneous fission, we study the dynamic fission trajectories of 264Fm and 240Pu using the state-of-the-art self-consistent framework. We employ the superfluid nuclear density functional theory with the Skyrme energy density functional SkM* and a density-dependentmore » pairing interaction. Along with shape variables, proton and neutron pairing correlations are taken as collective coordinates. The collective inertia tensor is calculated within the nonperturbative cranking approximation. The fission paths are obtained by using the least action principle in a four-dimensional collective space of shape and pairing coordinates. Pairing correlations are enhanced along the minimum-action fission path. For the symmetric fission of 264Fm, where the effect of triaxiality on the fission barrier is large, the geometry of the fission pathway in the space of the shape degrees of freedom is weakly impacted by pairing. This is not the case for 240Pu, where pairing fluctuations restore the axial symmetry of the dynamic fission trajectory. The minimum-action fission path is strongly impacted by nucleonic pairing. In some cases, the dynamical coupling between shape and pairing degrees of freedom can lead to a dramatic departure from the static picture. As a result, in the dynamical description of nuclear fission, particle-particle correlations should be considered on the same footing as those associated with shape degrees of freedom.« less

  3. Spontaneous fission half-life of /sup 249/Cf

    SciTech Connect

    Tarantin, N.I.; Buklanov, G.V.; Kim Su Men; Korotkin, Yu.S.

    1987-11-01

    The authors describe a method for determining the spontaneous fission half-life of Cf 249 which is comprised in the preparatory stages of berkelium 249 separation by extraction chromatography and in the analytic stages of the detection of fission fragments using dielectric track detectors consisting of polyethylene terephthalate and muscovite. The half-life was calculated in the basis of the mass and composition of the sample material, the exposure time, the recording efficiency, and the number of recorded fission tracks, and was determined to be (8.5 plus or minus 0.5) multiplied by ten to the tenth power years after averaging measurement results. The ratio of the probabilities of Cf 249 decay by alpha particle emission and spontaneous fission was calculated from the ratio of their respective intensities.

  4. The discovery and spontaneous fission properties of /sup 262/No

    SciTech Connect

    Lougheed, R.W.; Hulet, E.K.; Wild, J.F.; Moody, K.J.; Dougan, R.J.; Gannett, C.M.; Henderson, R.A.; Hoffman, D.C.; Lee, D.M.

    1989-04-19

    We have discovered /sup 262/No, as the electron capture daughter of /sup 262/Lr(t/sub 1/2/ = 216 m). This new isotope of nobelium decays by spontaneous fission with about a 5-ms half-life which is several orders of magnitude longer than recent theoretical estimates. We measured a sharply symmetric fission-fragment mass division and a bimodal total kinetic energy distribution; the high-energy symmetric-fission path was most abundant. /sup 262/No is the first nuclide with 160 neutrons to be discovered and is the closest to the N = 162 neutron subshell for which enhanced stability is predicted. 14 refs., 3 figs.

  5. On the Effect of an Error in a Standard D2O-Moderated 252Cf Energy Spectrum

    SciTech Connect

    Frederick Cummings

    2009-12-01

    There appears to be an error in the neutron fluence for neutrons with energies between 9 and 10 MeV for the tabulated D2O-moderated 252Cf source in ISO 8529-1. The error contributes a total error to neutron dose values from this source of approximately 3%.

  6. A new facility for Non-Destructive Assay with a time-tagged {sup 252}Cf source

    SciTech Connect

    Stevanato, L.; Caldogno, M.; Hao Xin; Dima, R.; Fabris, D.; Nebbia, G.; Lunardon, M.; Moretto, S.; Pesente, S.; Viesti, G.; Sajo-Bohus, L.

    2010-08-04

    A new facility for non-destructive assay using a time-tagged {sup 252}Cf source is presented. The system is designed to analyze samples having maximum size of about 15x20 cm{sup 2}, the material recognition being obtained by measuring simultaneously transmission of neutrons and gamma rays.

  7. Insights into nuclear structure and the fission process from spontaneous fission

    SciTech Connect

    Hamilton, J.H.; Butler-Moore, K.; Ramayya, A.V.

    1993-12-31

    The {gamma}-rays emitted following spontaneous and induced fission are rich sources of information about the structure of neutron-rich nuclei and about the fission process itself. The study of spontaneous fissioning isotopes with large Ge detector arrays are providing a wealth of such information as seen, for example, in recent reports. In this paper we present some of our most recent results on nuclear structure studies and conclusions on the fission process itself. In our work, we have employed in spontaneous fission, a triple gamma coincidence study for the first time and a high resolution, X-ray detector-{gamma}-coincidence study. These data provide powerful ways of separating the gamma rays which belong to a particular nucleus. The triple coincidence technique was used to uniquely identify the levels in {sup 136}Te and higher spin states in its N=84 isotones, {sup 138}Xe and {sup 140}Ba{sup 171}. Some other examples of the level structures observed in the low and high mass partners are presented, including a detailed analysis of the backbending of the moment of inertia in {sup 112,114,116}Pd. Finally, we present the first examples of how our analysis allows one to extract a detailed picture of the dependence of the angular momentum on the mass and atomic numbers of the fission fragments and of the long-sought neutron multiplicity distribution from zero-n to ten-n as a function of the charge and mass asymmetry.

  8. The sup 252 Cf-source-driven noise measurements of unreflected uranium hydride cylinder subcriticality

    SciTech Connect

    Mihalczo, J.T.; Pare, V.K.; Blakeman, E.D. )

    1991-01-01

    Subcritical neutron multiplication factors have been measured by the {sup 252}Cf-source-driven noise analysis method for unreflected, 15.0-cm-diam uranium hydride cylinders of varying heights. Because of the difficulty and cost of controlling the H/U ratio in damp uranium (93.2 wt% {sup 235}U) oxide power and fabricating sufficient material for experiments, few experiments have been performed with materials of low H/U ratios. These measurements may provide alternate information that can be used for verifying calculational methods since the H/U ratio for this material is 3.00. These measurements, which are the first application of this method to uranium hydride, were performed at the Los Alamos National Laboratory Critical Experiments Facility in 1989. These measurements were used to demonstrate the capability of this measurement method for this type of material and to provide a benchmark experiment for calculational methods with slightly moderated systems. Previous experiments by this method were for a wide variety of well-moderated systems or unmoderated uranium metal cylinders.

  9. Measurements of gamma-ray dose from a moderated /sup 252/Cf source

    SciTech Connect

    McDonald, J.C.; Griffith, R.V.; Plato, P.; Miklos, J.

    1983-06-01

    The gamma-ray dose fraction from a moderated /sup 252/Cf source was determined by using three types of dosimetry systems. Measurements were carried out in air at a distance of 35 cm from the surface of the moderating sphere (50 cm from the source which is at the center of the sphere) to the geometrical center of each detector. The moderating sphere is 0.8-mm-thick stainless steel shell filled with D/sub 2/O and covered with 0.5 mm of cadmium. Measurements were also carried out with instruments and dosimeters positioned at the surface of a 40 cm x 40 cm x 15 cm plexiglass irradiation phantom whose front surface was also 35 cm from the surface of the moderating sphere. A-150 tissue-equivalent (TE) plastic ionization chambers and a TE proportional counter (TEPC) were used to measure tissue dose, from which the neutron dose equivalent was computed. The ratio of gamma-ray dose to the neutron dose equivalent was determined by using a relatively neutron-insensitive Geiger-Mueller (GM) counter and thermoluminescent dosimeters (TLD). In addition, the event-size spectrum measured by the TEPC was also used to compute the gamma-ray dose fraction. The average value for the ratio of gamma-ray dose to neutron dose equivalent was found to be 0.18 with an uncertainty of about +-18%.

  10. Spontaneous fission properties of {sup 262}{sub 104}Rf

    SciTech Connect

    Lane, M.R.; Gregorich, K.E.; Lee, D.M.; Mohar, M.F.; Hsu, M.; Kacher, C.D.; Kadkhodayan, B.; Neu, M.P.; Stoyer, N.J.; Sylwester, E.R.; Yang, J.C.; Hoffman, D.C. |

    1996-06-01

    We have measured the mass and kinetic-energy distributions of fragments from the spontaneous fission (SF) of {sup 262}{sub 104}Rf. The {sup 262}{sub 104}Rf was produced via the {sup 244}Pu({sup 22}Ne,4{ital n}) reaction with a production cross section of {approximately}0.7 nb using 114.4-MeV projectiles. The kinetic energies and times of the coincident fission fragments were measured using our rotating wheel system. From these data the half-life, mass, and kinetic-energy distributions were derived. The total kinetic-energy (TKE) distribution appears to consist of a single component with a most probable pre-neutron-emission TKE of 215{plus_minus}2 MeV. The mass distribution is symmetric with a full width at half maximum of about 22 mass numbers. These results are consistent with trends observed for other trans-berkelium spontaneously fissioning isotopes. We determined the half-life to be 2.1{plus_minus}0.2 s by measuring its spontaneous fission decay. We also attempted to observe the alpha decay of {sup 262}{sub 104}Rf by searching for alpha decay correlated in time with SF from the alpha daughter, 1.2-ms {sup 258}No. We observed no such decays and have set an upper limit of 0.8{percent} (68{percent} confidence level) on the alpha decay branch of {sup 262}{sub 104}Rf. {copyright} {ital 1996 The American Physical Society.}

  11. Assay of Low-Enriched Uranium using Spontaneous Fission Neutrons

    SciTech Connect

    Zucker, M. S.; Fainberg, A.

    1980-01-01

    Low-enriched uranium oxide in bulk containers can be assayed for safeguards purposes, using the neutrons from spontaneous fission of 238U as a signature, to complement enrichment and mass measurement. The penetrability of the fast fission neutrons allows the inner portion of bulk samples to register. The measurement may also be useful for measuring moisture content, of significance in process control. The apparatus used can be the same as for neutron correlation counting for Pu assay. The neutron multiplication observed in 238U is of intrinsic interest.

  12. Evaluation of the characteristics of the neutron reference field using D2O-moderated 252Cf source.

    PubMed

    Kowatari, M; Fujii, K; Takahashi, M; Yoshizawa, M; Shimizu, S; Kawasaki, K; Yamaguchi, Y

    2007-01-01

    The ambient/personal dose equivalent per fluence for D(2)O moderated (252)Cf neutron source was determined by measurement. An appropriate subtraction of the scattered neutrons is required for the accurate measurement of direct neutrons. A cubic shadow object was used for the subtraction of the scattered neutrons from the surroundings. The scattered neutrons to be subtracted vary with the position of the shadow object due to the large volume of the source. Using the Monte Carlo code MCNP-4C, the optimum positions of the shadow object were surveyed for subtracting the scattered neutrons. The energy spectra of direct neutrons were measured in the optimum position. The dosimetric parameters for the D(2)O moderated (252)Cf neutron source were reasonable, taking into account the uncertainties of the parameters.

  13. A Monte Carlo simulation and setup optimization of output efficiency to PGNAA thermal neutron using 252Cf neutrons

    NASA Astrophysics Data System (ADS)

    Zhang, Jin-Zhao; Tuo, Xian-Guo

    2014-07-01

    We present the design and optimization of a prompt γ-ray neutron activation analysis (PGNAA) thermal neutron output setup based on Monte Carlo simulations using MCNP5 computer code. In these simulations, the moderator materials, reflective materials, and structure of the PGNAA 252Cf neutrons of thermal neutron output setup are optimized. The simulation results reveal that the thin layer paraffin and the thick layer of heavy water moderating effect work best for the 252Cf neutron spectrum. Our new design shows a significantly improved performance of the thermal neutron flux and flux rate, that are increased by 3.02 times and 3.27 times, respectively, compared with the conventional neutron source design.

  14. Fabrication of 50-mg /sup 252/Cf neutron sources for the FDA (Food and Drug Administration) activation analysis facility

    SciTech Connect

    Bigelow, J.E.; Cagle, E.B.; Knauer, J.B.

    1987-01-01

    The Transuranium Processing Plant (TPP) at ORNL has been requested by the Food and Drug Administration (FDA) to furnish 200 mg of /sup 252/Cf for use in their new activation analysis facility. This paper discusses the procedure to be employed in fabricating the californium into four neutron sources, each containing a nominal 50-mg of /sup 252/Cf. The ORNL Model LSD (Large, Stainless steel, Doubly encapsulated) neutron source consists of a 6.33-mm-diam aluminum pellet doubly encapsulated in Type 304L stainless steel. The pellet is comprised of an aluminum tube holding Cf/sub 2/O/sub 2/SO/sub 4/ microspheres confined by pressed aluminum powder. The microspheres are prepared in a separate vessel and then transferred into the specially designed aluminum tube prior to pressing.

  15. The sup 252 Cf(sf) neutron spectrum in the 5- to 20-MeV energy range

    SciTech Connect

    Marten, H.; Richter, D.; Seeliger, D. ); Fromm, W.D. ); Bottger, R.; Klein, H. )

    1990-11-01

    This paper reports on the {sup 252}Cf neutron spectrum measured at high energies with a miniature ionization chamber and two different NE-213 neutron detectors. The gamma-ray background and the main cosmic background caused by muons were suppressed by applying efficient pulse-shape discrimination. On the basis of two-dimensional spectroscopy of the neutron time-of-flight and scintillation pulse height, the sliding bias method is used to minimize experimental uncertainties. The experimental data, corrected for several systematic influences, confirm earlier results that show negative deviations from a reference Maxwellian distribution with a 1.42-MeV spectrum temperature for neutron energies above 6 MeV. Experimental results of this work are compared with various statistical model approaches to the {sup 252}Cf(sf) neutron spectrum.

  16. Intracavitary moderator balloon combined with 252Cf brachytherapy and boron neutron capture therapy, improving dosimetry in brain tumour and infiltrations

    PubMed Central

    Brandão, S F

    2015-01-01

    Objective: This article proposes a combination of californium-252 (252Cf) brachytherapy, boron neutron capture therapy (BNCT) and an intracavitary moderator balloon catheter applied to brain tumour and infiltrations. Methods: Dosimetric evaluations were performed on three protocol set-ups: 252Cf brachytherapy combined with BNCT (Cf-BNCT); Cf-BNCT with a balloon catheter filled with light water (LWB) and the same set-up with heavy water (HWB). Results: Cf-BNCT-HWB has presented dosimetric advantages to Cf-BNCT-LWB and Cf-BNCT in infiltrations at 2.0–5.0 cm from the balloon surface. However, Cf-BNCT-LWB has shown superior dosimetry up to 2.0 cm from the balloon surface. Conclusion: Cf-BNCT-HWB and Cf-BNCT-LWB protocols provide a selective dose distribution for brain tumour and infiltrations, mainly further from the 252Cf source, sparing the normal brain tissue. Advances in knowledge: Malignant brain tumours grow rapidly and often spread to adjacent brain tissues, leading to death. Improvements in brain radiation protocols have been continuously achieved; however, brain tumour recurrence is observed in most cases. Cf-BNCT-LWB and Cf-BNCT-HWB represent new modalities for selectively combating brain tumour infiltrations and metastasis. PMID:25927876

  17. New source moderator geometry to improve performance of 252Cf and 241Am Be source-based PGNAA setups

    NASA Astrophysics Data System (ADS)

    Naqvi, A. A.; Abdelmonem, M. S.; Al-Misned, Ghada; Al-Ghamdi, Hanan

    2006-06-01

    The gamma ray yield from a 252Cf and a 241Am-Be source-based Prompt Gamma Ray Activation Analysis (PGNAA) setup has been observed to increase with enclosing their neutrons sources in a high-density polyethylene moderator. The prompt gamma rays yield from both setups depends upon the moderator length and the source position in it. For both setups, the optimum moderator length is found to be 7 cm. The optimum position of the neutron source inside moderator of the 252Cf and the 241Am-Be source-based PGNAA setups was found to be at a distance of 0.5 and 0.75 cm from the moderator-end facing the sample, respectively. Due to enclosure of the source in the moderator, about three-fold increase has been observed in the yield of prompt gamma rays from a Portland cement sample of a 252Cf and a 241Am-Be source-based PGNAA setups.

  18. Intracavitary moderator balloon combined with (252)Cf brachytherapy and boron neutron capture therapy, improving dosimetry in brain tumour and infiltrations.

    PubMed

    Brandão, S F; Campos, T P R

    2015-07-01

    This article proposes a combination of californium-252 ((252)Cf) brachytherapy, boron neutron capture therapy (BNCT) and an intracavitary moderator balloon catheter applied to brain tumour and infiltrations. Dosimetric evaluations were performed on three protocol set-ups: (252)Cf brachytherapy combined with BNCT (Cf-BNCT); Cf-BNCT with a balloon catheter filled with light water (LWB) and the same set-up with heavy water (HWB). Cf-BNCT-HWB has presented dosimetric advantages to Cf-BNCT-LWB and Cf-BNCT in infiltrations at 2.0-5.0 cm from the balloon surface. However, Cf-BNCT-LWB has shown superior dosimetry up to 2.0 cm from the balloon surface. Cf-BNCT-HWB and Cf-BNCT-LWB protocols provide a selective dose distribution for brain tumour and infiltrations, mainly further from the (252)Cf source, sparing the normal brain tissue. Malignant brain tumours grow rapidly and often spread to adjacent brain tissues, leading to death. Improvements in brain radiation protocols have been continuously achieved; however, brain tumour recurrence is observed in most cases. Cf-BNCT-LWB and Cf-BNCT-HWB represent new modalities for selectively combating brain tumour infiltrations and metastasis.

  19. [Clinical analysis of combination of (252)Cf neutron intracavitary brachytherapy and external beam radiotherapy for 110 cervical cancer patients].

    PubMed

    Bu, Jie; Li, Ren; Song, Wei; Cao, Jing-xu; Wang, Ying-xuan

    2010-08-01

    To evaluate the curative effect and complication of (252)Cf brachytherapy on cervical cancer. From Nov 2002 to Nov 2007, 110 cervical cancer patients were treated by combination of (252)Cf neutron intracavitary brachytherapy and external beam radiotherapy. There were 2 cases of stage Ib, 5 stage IIa, 57 stage IIb, 2 stage IIIa, 41 stage IIIb, 2 stage IVa, and 1 stage IVb. The whole pelvic cavity was irradiated with 8 MV X-ray, 1.8 Gy/fraction, 4 - 5 times per week. The total dose of external beam radiotherapy was 40 - 50 Gy (the center of whole pelvic field was blocked by 4 cm in width after 20 - 30 Gy). (252)Cf neutron intracavitary brachytherapy was delivered at 6 - 8 Gy(i)/fraction, and the total dose of reference point A was 30-51 Gy(i). The median dose was 42 Gy(i). The overall 3-year survival rate of all patients was 79.2%, and the local control rate was 90.0%. In particular, the 3-year survival rate was 1/2 for stage I, 84.3% for stage II, 53.7% for stage III. The difference between stage II and stage III was statistically significant (P < 0.05). The 3-year survival in cervical lesions larger than or equal to 4 cm and those less than 4 cm was 68.1% and 71.2%, respectively (P > 0.05). The 3-year survival rate of patients with and without anemia was 42.4% and 78.2%, respectively (P < 0.05). The 3-year survival rate of patients with squamous cell carcinoma and adenocarcinoma was 78.5% and 76.9%, respectively (P > 0.05). The late radiation complications of rectum and bladder was 11.8% (13/110) and 2.7% (3/110), respectively. It is concluded that (252)Cf is a better source for intracavitary brachytherapy. According to our initial experience, (252)Cf has advantages of a high local control rate, especially to bulky tumor and adenocarcinoma.

  20. New fit of thermal neutron constants (TNC) for 233,235U, 239,241Pu and 252Cf(sf): Microscopic vs. maxwellian data

    NASA Astrophysics Data System (ADS)

    Pronyaev, Vladimir G.; Capote, Roberto; Trkov, Andrej; Noguere, Gilles; Wallner, Anton

    2017-09-01

    An IAEA project to update the Neutron Standards is near completion. Traditionally, the Thermal Neutron Constants (TNC) evaluated data by Axton for thermal-neutron scattering, capture and fission on four fissile nuclei and the total nu-bar of 252Cf(sf) are used as input in the combined least-square fit with neutron cross section standards. The evaluation by Axton (1986) was based on a least-square fit of both thermal-spectrum averaged cross sections (Maxwellian data) and microscopic cross sections at 2200 m/s. There is a second Axton evaluation based exclusively on measured microscopic cross sections at 2200 m/s (excluding Maxwellian data). Both evaluations disagree within quoted uncertainties for fission and capture cross sections and total multiplicities of uranium isotopes. There are two factors, which may lead to such difference: Westcott g-factors with estimated 0.2% uncertainties used in the Axton's fit, and deviation of the thermal spectra from Maxwellian shape. To exclude or mitigate the impact of these factors, a new combined GMA fit of standards was undertaken with Axton's TNC evaluation based on 2200 m/s data used as a prior. New microscopic data at the thermal point, available since 1986, were added to the combined fit. Additionally, an independent evaluation of TNC was undertaken using CONRAD code. Both GMA and CONRAD results are consistent within quoted uncertainties. New evaluation shows a small increase of fission and capture thermal cross sections, and a corresponding decrease in evaluated thermal nubar for uranium isotopes and 239Pu.

  1. Coal liquefaction process streams characterization and evaluation: The application of [sup 252]Cf-plasma desorption mass spectrometry to analysis of direct coal liquefaction heavy products

    SciTech Connect

    Larsen, J.W.; Lapucha, A.R.

    1992-10-01

    This study demonstrated the feasibility of using [sup 252]Cf PDMS, GPC, and MPLC for the examination of the tetrahydrofuran (THF)-soluble portion of distillation resid materials derived from direct coal liquefaction. The [sup 252]Cf-PDMS technique was used to determine molecular weight distributions of twenty-five THF-soluble resids. In order to detemine if [sup 252]Cf-PDMS responds differently to different chemical classes of compounds, Lehigh separated five of the samples into chemically distinct fractions by MPLC, then analyzed the parent samples, their fractions, and the re-mixed fractions by [sup 252]Cf-PDMS and GPC. Irreversible alteration of the samples upon separation was noted by Lehigh. This was confirmed by use of gas chromatographic (GC) analyses. The noted irreversible alterations prevented a direct comparison of the remixed materials and the original samples. Thus, the selective response of [sup 252]Cf-PDMS to different chemical classes of compounds could not be confirmed or ruled out. The number average molecular weights (M[sub n]) obtained by [sup 252]Cf-PDMS and GPC agreed well. However, the weight average molecular weights (M[sub w]) obtained by GPC are always higher than the corresponding [sup 252]Cf-PDMS results. Number average molecular weights and weight average molecular weights obtained with [sup 252]Cf-PDMS and GPC were compared with those obtained by field ionization mass spectrometry (FIMS), previously reported by SRI International for the parent resid samples from which the Lehigh THF-soluble samples were derived.

  2. Coal liquefaction process streams characterization and evaluation: The application of {sup 252}Cf-plasma desorption mass spectrometry to analysis of direct coal liquefaction heavy products

    SciTech Connect

    Larsen, J.W.; Lapucha, A.R.

    1992-10-01

    This study demonstrated the feasibility of using {sup 252}Cf PDMS, GPC, and MPLC for the examination of the tetrahydrofuran (THF)-soluble portion of distillation resid materials derived from direct coal liquefaction. The {sup 252}Cf-PDMS technique was used to determine molecular weight distributions of twenty-five THF-soluble resids. In order to detemine if {sup 252}Cf-PDMS responds differently to different chemical classes of compounds, Lehigh separated five of the samples into chemically distinct fractions by MPLC, then analyzed the parent samples, their fractions, and the re-mixed fractions by {sup 252}Cf-PDMS and GPC. Irreversible alteration of the samples upon separation was noted by Lehigh. This was confirmed by use of gas chromatographic (GC) analyses. The noted irreversible alterations prevented a direct comparison of the remixed materials and the original samples. Thus, the selective response of {sup 252}Cf-PDMS to different chemical classes of compounds could not be confirmed or ruled out. The number average molecular weights (M{sub n}) obtained by {sup 252}Cf-PDMS and GPC agreed well. However, the weight average molecular weights (M{sub w}) obtained by GPC are always higher than the corresponding {sup 252}Cf-PDMS results. Number average molecular weights and weight average molecular weights obtained with {sup 252}Cf-PDMS and GPC were compared with those obtained by field ionization mass spectrometry (FIMS), previously reported by SRI International for the parent resid samples from which the Lehigh THF-soluble samples were derived.

  3. Spontaneous fission properties of 2. 9-s sup 256 No

    SciTech Connect

    Hoffman, D.C.; Lee, D.M.; Gregorich, K.E.; Nurmia, M.J.; Chadwick, R.B.; Chen, K.B.; Czerwinski, K.R.; Gannett, C.M.; Hall, H.L.; Henderson, R.A.; Kadkhodayan, B.; Kreek, S.A.; Leyba, J.D. Chemistry Department, University of California, Berkeley, Berkeley, California 94720)

    1990-02-01

    We have measured the mass and kinetic-energy distributions of fragments from the spontaneous fission of {sup 256}No produced via the {sup 248}Cm({sup 12}C,4{ital n}) reaction. The production cross section using 71-MeV {sup 12}C projectiles was found to be 250 nb. The total kinetic energy for spontaneous fission of {sup 256}No is 196{plus minus}3 MeV. The mass distribution is very broad (full width at half maximum of {similar to}50 mass units) with no appreciable decrease in yield for symmetric mass division. {sup 256}No seems to be the transition nucleus between the asymmetric mass division observed for spontaneous fission of the lighter No isotopes and the symmetric mass division observed for the heavier No isotopes. Its properties are similar to those of {sup 257}Fm, the isotope at which this transition occurs in the Fm isotopes, but the {sup 256}No mass distribution is broader than that for {sup 257}Fm, and its average total kinetic energy for symmetric mass division is about 15 MeV lower. We determined the half-life of {sup 256}No to be 2.91{plus minus}0.05 s by measuring its {alpha} decay. We measured a spontaneous fission to {alpha} ratio of 0.0053{sub {minus}0.0003}{sup +0.0006}, which gives a partial half-life for spontaneous fission of 550{sub {minus}70}{sup +40} s. An energy of 8.448{plus minus}0.006 MeV was measured for the {alpha}-particle decay to the ground state of {sup 252}Fm, allowing us to calculate the mass excess for {sup 256}No as 87820{plus minus}8 keV. The energy of the 2{sup +} rotational level in the {sup 252}Fm daughter is 47{plus minus}5 keV, and the intensity of the 8.402-MeV {alpha} group populating this level is (13{plus minus}2)%.

  4. True ternary fission

    NASA Astrophysics Data System (ADS)

    Vijayaraghavan, K. R.; Balasubramaniam, M.; von Oertzen, W.

    2015-04-01

    The study of the ternary fission of nuclei has received new interest recently. It is of general interest for nuclear dynamics, although the process is very rare. In the present work, we discuss the possibilities of true ternary fission (fragment masses A >30 ) in 252Cf for different mass splits. These mass splits are strongly favored in a collinear geometry. Based on the three cluster model (TCM), it is shown that the true ternary fission into fragments with almost equal masses is one of the possible fission modes in 252Cf . For general decays it is shown that the formation of the lightest fragment at the center has the highest probability. Further the formation of tin isotopes and/or other closed shell fragments are favored. For the decay products the presence of closed shell nuclei among the three fragments enhances the decay probabilities.

  5. [The expression of APE1 and its correlation with prognostic significance after 252Cf radiotherapy in cervical cancer].

    PubMed

    Qing, Yi; Wang, Dong; Lei, Xin; Xiang, De-Bing; Li, Meng-Xia; Li, Zeng-Peng; Shan, Jin-Lu

    2009-01-01

    To investigate the expression feature of the apurinic/apyrimidinic endonuclease (APE1) and its correlation with clinicopathology and prognostic significance after 252Cf radiotherapy in cervical cancer. The expression of APE1 was detected by immunohistochemistry technique in 89 cases of cervical cancer (treated by 252Cf), 15 cases cervical intraepithelial neoplasia (CIN) and 10 cases of normal cervical tissue, and its association with clinicopathological data as well as prognosis were analyzed. The expression of APE1 in cervical cancer is higher significantly than that in normal cervical tissue and CIN (P < 0.01). In normal cervical tissue and CIN, the APE1 express was located in the nucleus. In cervical cancer, the APE1 express was located in the nucleus (59), cytoplasm (8) or nucleus and cytoplasm (22), the location of APE1 was related with FIGO stage and pathological grade (P < 0.01), and not related with lymph node metastasis. The level of APE1 express related with FIGO stage, pathological grade and lymph node metastasis (P < 0.05), and not related with age and pathological type. The Kaplan-Meier survival analysis demonstrated that the survival time of the group of APE1 nucleus expression (median survival time is 70.9 months) and the group of APE1 low expression (median survival time is 75.8 months) is longer significantly than that of the group of APE1 cytoplasm expression (median survival time is 57.8 months) and the group of APE1 high expression (median survival time is 56.5 months) (P = 0.025, 0.001). The dystopic express of APE1 might play a pivotal role in carcinogenesis and progression of cervical cancer, and the express of APE1 might estimate the prognosis after 252Cf radiotherapy.

  6. Ground state spontaneous fission half-lives from thorium to fermium

    SciTech Connect

    Holden, N.E.

    1988-01-01

    Measurements of the half-lives for spontaneous fission of the nuclidic ground states of elements from thorium to fermium have been compiled and evaluated. Recommended values are presented. An attempt has been made to distinguish between spontaneous fission and heavy ion emission. Spontaneously fissioning isomers have not been considered here. The difference between even-even nuclides and odd-even, even-odd and odd-odd nuclides are discussed. 3 tabs.

  7. Coincident measurements of prompt fission γ rays and fission fragments at DANCE

    NASA Astrophysics Data System (ADS)

    Walker, C. L.; Baramsai, B.; Jandel, M.; Rusev, G.; Couture, A.; Mosby, S.; Ullmann, J.; Kawano, T.; Stetcu, I.; Talou, P.

    2015-10-01

    Modern statistical approaches to modeling fission involve the calculation of not only average quantities but also fully correlated distributions of all fission products. Applications such as those involving the detection of special nuclear materials also rely on fully correlated data of fission products. Experimental measurements of correlated data are thus critical to the validation of theory and the development of important applications. The goal of this experiment was to measure properties of prompt fission gamma-ray emission as a function of fission fragments' total kinetic energy in the spontaneous fission of 252Cf. The measurement was carried out at the Detector for Advanced Neutron Capture Experiments (DANCE), a 4 π γ-ray calorimeter. A prototype design consisting of two silicon detectors was installed in the center of DANCE, allowing simultaneous measurement of fission fragments and γ rays. Effort has been taken to simulate fragment kinetic energy losses as well as γ-ray attenuation in DANCE using such tools as GEANT4 and SRIM. Theoretical predictions generated by the code CGMF were also incorporated as input for these simulations. Results from the experiment and simulations will be presented, along with plans for future measurements.

  8. Radioluminescence of solid neodymium-doped laser materials excited by α-particles and fission fragments

    NASA Astrophysics Data System (ADS)

    Seregina, E. A.; Seregin, A. A.

    2013-02-01

    The characteristics of radioluminescence of Nd3+ : Y3Al5O12 crystals and laser glasses under excitation by plutonium-239 (239Pu) α-particles, as well as by α-particles and spontaneous fission fragments of californium-252 (252Cf), are studied. The radioluminescence branching ratios βij for the transition from the 2F25/2 level to the 2S+1LJ levels in Nd3+ : Y3Al5O12 crystals are measured. Radioluminescence from the 2P3/2 level to low-lying levels is observed. The βij ratios for transitions from the high-lying 2F25/2, 4D3/2, and 2P3/2 levels are theoretically calculated. The lifetimes of metastable levels of Nd3+ excited by 252Cf fission fragments are measured. The efficiency of the conversion of energy of α-particles and fission fragments to the energy of optical radiation of Nd3+ : Y3Al5O12 crystals and laser glasses is determined.

  9. Radioluminescence of solid neodymium-doped laser materials excited by {alpha}-particles and fission fragments

    SciTech Connect

    Seregina, E A; Seregin, A A

    2013-02-28

    The characteristics of radioluminescence of Nd{sup 3+} : Y{sub 3}Al{sub 5}O{sub 12} crystals and laser glasses under excitation by plutonium-239 ({sup 239}Pu) {alpha}-particles, as well as by {alpha}-particles and spontaneous fission fragments of californium-252 ({sup 252}Cf), are studied. The radioluminescence branching ratios {beta}{sub ij} for the transition from the {sup 2}F2{sub 5/2} level to the {sup 2S+1}L{sub J} levels in Nd{sup 3+} : Y{sub 3}Al{sub 5}O{sub 12} crystals are measured. Radioluminescence from the {sup 2}P{sub 3/2} level to low-lying levels is observed. The {beta}{sub ij} ratios for transitions from the high-lying {sup 2}F2{sub 5/2}, {sup 4}D{sub 3/2}, and {sup 2}P{sub 3/2} levels are theoretically calculated. The lifetimes of metastable levels of Nd{sup 3+} excited by {sup 252}Cf fission fragments are measured. The efficiency of the conversion of energy of {alpha}-particles and fission fragments to the energy of optical radiation of Nd{sup 3+} : Y{sub 3}Al{sub 5}O{sub 12} crystals and laser glasses is determined. (active media)

  10. Time-zero fission-fragment detector based on low-pressure multiwire proportional chambers

    SciTech Connect

    Assamagan, Ketevi; Baker, O.; Bayatian, G.; Carlini, Roger; Danagoulian, Areg; Eden, Thomas; Egiyan, Kim; Ent, Rolf; Fenker, Howard; Gan, Liping; Gasparian, Ashot; Grigoryan, Hovhannes; Greenwood, Z; Gueye, Paul; Hashimoto, Osamu; Johnston, Kathleen; Keppel, Cynthia; Knyazian, S.; Majewski, Stanislaw; Magaryan, A; Margarian, Yu.; Marikyan, Gagik; Martoff, Charles; Mkrtchyan, Hamlet; PARLAKYAN, L.; Parlakyan, L.; Sato, Ikuro; Sawafta, Reyad; Simicevic, Neven; Tadevosyan, Vardan; Takahashi, Toshiyuki; Tang, Liguang; VARTANYAN, G.; Vulcan, William; Wells, Steven; Wood, Stephen

    1999-05-01

    A time-zero fission fragment (FF) detector, based on the technique of low-pressure multiwire proportional chambers (LPMWPC), has been designed and constructed for the heavy hypernuclear lifetime experiment (E95-002) at Thomas Jefferson National Accelerator Facility. Its characteristics and the method of time-zero reconstruction were investigated using fission fragments from a 252Cf spontaneous fission source. The influence of the ionization energy loss was also studied. It is shown that Heptane, Hexane, and Isobutane gases at a pressure of 1z2Torr are all suitable for such a FF detector. As desired by experiment, a timing resolution of about 200ps (FWHM) for a chamber size of 21z21cm2 was achieved.

  11. Structure of Kr,9190 nuclei: Solving the puzzle of their population in fission

    NASA Astrophysics Data System (ADS)

    RzÄ ca-Urban, T.; Sieja, K.; Urban, W.; Czerwiński, M.; Blanc, A.; Jentschel, M.; Mutti, P.; Köster, U.; Soldner, T.; de France, G.; Simpson, G. S.; Ur, C. A.

    2017-06-01

    Excited states of Kr,9190 nuclei have been populated following the cold-neutron-induced fission of a 235U target. The γ rays emitted following fission reactions were measured using the highly efficient array of high-purity Ge detectors, EXILL, at the Institute-Laue-Langevin, Grenoble. The surprisingly low population of 91Kr reported in the spontaneous fission of 252Cf measurement has been explained and new level schemes of Kr,9190 nuclei were established. Moderate γ collectivity is observed in both nuclei. Large-scale shell-model calculations support the experimental picture of the Z =36 , Kr isotopes forming a border line between lower-Z nuclei showing moderate γ collectivity and the heavier-Z nuclei, where distinct shape changes are observed.

  12. A comparison of {sup 252}Cf and 14-MeV neutron excitation to identify chemical warfare agents by PGNAA

    SciTech Connect

    Caffrey, A.J.; Harlow, B.D.; Edwards, A.J.; Krebs, K.M.; Jones, J.L.; Yoon, W.; Zabriskie, J.M.; Dougan, A.D.

    2000-07-01

    Since 1992, Idaho National Engineering and Environmental Laboratory's portable isotopic neutron spectrometry (PINS) system has been widely used for the nondestructive assessment of munitions suspected to contain chemical warfare agents, such as the nerve agent sarin. PINS is a {sup 252}Cf-based prompt gamma-ray neutron activation analysis (PGNAA) system. The standard PINS system employs a partially moderated 5-{micro}g {sup 252}Cf source emitting 10{sup 7} n/s to excite the atomic nuclei inside the item under test. The chemical elements inside the item are revealed by their characteristic gamma-ray spectrum, measured by a high-resolution high-purity germanium gamma-ray spectrometer. The system computer then infers the fill compound or mixture from the elemental data extracted from the gamma-ray spectrum. Reliable PINS assessments can be completed in as little as 100 s for favorable cases such as white phosphorus smoke munitions, but normally, a 1000 to 3000 live-second counting interval is required. To improve PINS throughput when hundreds or more munitions must be assessed, they are evaluating the possible advantages of 14-MeV neutron excitation over their current radioisotopic source.

  13. Future research program on prompt γ-ray emission in nuclear fission

    NASA Astrophysics Data System (ADS)

    Oberstedt, S.; Billnert, R.; Hambsch, F.-J.; Lebois, M.; Oberstedt, A.; Wilson, J. N.

    2015-12-01

    In recent years the measurement of prompt fission γ-ray spectra (PFGS) has gained renewed interest, after about forty years since the first comprehensive studies of the reactions 235U(n th , f), 239Pu(n th ,f) and 252Cf(sf). The renaissance was initiated by requests for new values especially for γ-ray multiplicity and average total energy release per fission in neutron-induced fission of 235U and 239Pu. Both isotopes are considered the most important ones with respect to the modeling of innovative cores required for the Generation-IV reactors, the majority working with fast neutrons. During the last 5 years we have conducted a systematic study of spectral data for thermal-neutron-induced fission on 235U and 241Pu as well as for the spontaneous fission of 252Cf with unprecedented accuracy. From the new data we conclude that those reactions do not considerably contribute to the observed heat excess and suspect other reactions playing a significant role. Possible contributions may originate from fast-neutron-induced reactions on 238U, which is largely present in the fuel, or from γ-induced fission from neutron capture in the construction material. A first experiment campaign on prompt γ-ray emission from fast-neutron-induced fission on 235,238U was successfully performed in order to test our assumptions. In the following we attempt to summarize, what has been done in the field to date, and to motivate future measurement campaigns exploiting dedicated neutron and photon beams as well as upcoming highly efficient detector assemblies.

  14. In-beam gamma-ray spectroscopy of {sup 248,250,252}Cf by neutron-transfer reactions using a Cf target

    SciTech Connect

    Takahashi, R.; Ishii, T.; Asai, M.; Nagae, D.; Makii, H.; Tsukada, K.; Toyoshima, A.; Ishii, Y.; Matsuda, M.; Makishima, A.; Shizuma, T.; Kohno, T.; Ogawa, M.

    2010-05-15

    The ground-state bands of {sup 248,250,252}Cf have been established up to the 10{sup +}, 12{sup +}, and 10{sup +} states, respectively, by in-beam gamma-ray spectroscopy using neutron-transfer reactions with a 153-MeV {sup 18}O beam and a highly radioactive Cf target. The deexcitation gamma rays in {sup 248,250,252}Cf were identified by taking coincidences with outgoing particles of {sup 16-19}O measured with Si DELTAE-E detectors, and by selecting their kinetic energies. Moments of inertia of {sup 248,250,252}Cf were discussed in terms of the N=152 deformed shell gap.

  15. Structure of fragment energy spectra in spontaneous fission of sup 242 Cm and fast-neutron fission of sup 242 m Am

    SciTech Connect

    Fomushkin, E.F.; Vinogradov, Y.I.; Gavrilov, V.V.; Novoselov, G.F.; Shvetsov, A.M.

    1989-05-01

    A technique for measurement of the energy spectra of fission fragments is discussed. The fine structure found in the spectra of fragments from spontaneous fission of {sup 242}Cm and fast-neutron fission of {sup 242{ital m}}Am is analyzed. The quantitative parameters of the structure and their analogy with the characteristics of cold fission are discussed.

  16. The Spontaneous Mutation Rate in the Fission Yeast Schizosaccharomyces pombe.

    PubMed

    Farlow, Ashley; Long, Hongan; Arnoux, Stéphanie; Sung, Way; Doak, Thomas G; Nordborg, Magnus; Lynch, Michael

    2015-10-01

    The rate at which new mutations arise in the genome is a key factor in the evolution and adaptation of species. Here we describe the rate and spectrum of spontaneous mutations for the fission yeast Schizosaccharomyces pombe, a key model organism with many similarities to higher eukaryotes. We undertook an ∼1700-generation mutation accumulation (MA) experiment with a haploid S. pombe, generating 422 single-base substitutions and 119 insertion-deletion mutations (indels) across the 96 replicates. This equates to a base-substitution mutation rate of 2.00 × 10(-10) mutations per site per generation, similar to that reported for the distantly related budding yeast Saccharomyces cerevisiae. However, these two yeast species differ dramatically in their spectrum of base substitutions, the types of indels (S. pombe is more prone to insertions), and the pattern of selection required to counteract a strong AT-biased mutation rate. Overall, our results indicate that GC-biased gene conversion does not play a major role in shaping the nucleotide composition of the S. pombe genome and suggest that the mechanisms of DNA maintenance may have diverged significantly between fission and budding yeasts. Unexpectedly, CpG sites appear to be excessively liable to mutation in both species despite the likely absence of DNA methylation. Copyright © 2015 by the Genetics Society of America.

  17. The Spontaneous Mutation Rate in the Fission Yeast Schizosaccharomyces pombe

    PubMed Central

    Farlow, Ashley; Long, Hongan; Arnoux, Stéphanie; Sung, Way; Doak, Thomas G.; Nordborg, Magnus; Lynch, Michael

    2015-01-01

    The rate at which new mutations arise in the genome is a key factor in the evolution and adaptation of species. Here we describe the rate and spectrum of spontaneous mutations for the fission yeast Schizosaccharomyces pombe, a key model organism with many similarities to higher eukaryotes. We undertook an ∼1700-generation mutation accumulation (MA) experiment with a haploid S. pombe, generating 422 single-base substitutions and 119 insertion-deletion mutations (indels) across the 96 replicates. This equates to a base-substitution mutation rate of 2.00 × 10−10 mutations per site per generation, similar to that reported for the distantly related budding yeast Saccharomyces cerevisiae. However, these two yeast species differ dramatically in their spectrum of base substitutions, the types of indels (S. pombe is more prone to insertions), and the pattern of selection required to counteract a strong AT-biased mutation rate. Overall, our results indicate that GC-biased gene conversion does not play a major role in shaping the nucleotide composition of the S. pombe genome and suggest that the mechanisms of DNA maintenance may have diverged significantly between fission and budding yeasts. Unexpectedly, CpG sites appear to be excessively liable to mutation in both species despite the likely absence of DNA methylation. PMID:26265703

  18. Utilization of a /sup 252/Cf-/sup 235/U fueled subcritical multiplier for neutron activation analysis. Rev

    SciTech Connect

    Wogman, N.A.; Lepel, E.A.

    1984-02-01

    A /sup 252/Cf neutron activation analysis facility developed in 1975 has been used for the routine multielement analysis of a wide variety of solid and liquid samples. The present neutron flux is on the order of 10/sup 9/ thermal neutrons per cm/sup 2/ per second. Following activation, the radioisotopes are analyzed through their photon emissions with lithium drifted germanium detectors, anticoincidence shielded germanium detectors and NaI(T1) coincidence spectrometers. Although over 65 elements have been measured in environmental materials with this system, typical analyses include the elements Na, Al, Cl, K, Ca, Ti, V, Mn, Br, Sr, Rb, Ba, and Dy. Detection limits range from the sub parts per million upward. Over 8000 samples have been analyzed at an amortized neutron cost per sample of $31.

  19. Monte Carlo simulation optimisation of zinc sulphide based fast-neutron detector for radiography using a 252Cf source

    NASA Astrophysics Data System (ADS)

    Meshkian, Mohsen

    2016-02-01

    Neutron radiography is rapidly extending as one of the methods for non-destructive screening of materials. There are various parameters to be studied for optimising imaging screens and image quality for different fast-neutron radiography systems. Herein, a Geant4 Monte Carlo simulation is employed to evaluate the response of a fast-neutron radiography system using a 252Cf neutron source. The neutron radiography system is comprised of a moderator as the neutron-to-proton converter with suspended silver-activated zinc sulphide (ZnS(Ag)) as the phosphor material. The neutron-induced protons deposit energy in the phosphor which consequently emits scintillation light. Further, radiographs are obtained by simulating the overall radiography system including source and sample. Two different standard samples are used to evaluate the quality of the radiographs.

  20. A Monte Carlo Study on the Effect of Various Neutron Capturers on Dose Distribution in Brachytherapy with 252Cf Source

    PubMed Central

    Firoozabadi, M.M.; Izadi Vasafi, Gh.; Karimi-sh, K.

    2017-01-01

    Background: In neutron interaction with matter and reduction of neutron energy due to multiple scatterings to the thermal energy range, increasing the probability of thermal neutron capture by neutron captures makes dose enhancement in the tumors loaded with these materials. Objective: The purpose of this study is to evaluate dose distribution in the presence of 10B, 157Gd and 33S neutron capturers and to determine the effect of these materials on dose enhancement rate for 252Cf brachytherapy source. Methods: Neutron-ray flux and energy spectra, neutron and gamma dose rates and dose enhancement factor (DEF) are determined in the absence and presence of 10B, 157Gd and 33S using Monte Carlo simulation. Results: The difference in the thermal neutron flux rate in the presence of 10B and 157Gd is significant, while the flux changes in the fast and epithermal energy ranges are insensible. The dose enhancement factor has increased with increasing distance from the source and reached its maximum amount equal to 258.3 and 476.1 cGy/h/µg for 157Gd and 10B, respectively at about 8 cm distance from the source center. DEF for 33S is equal to one. Conclusion: Results show that the magnitude of dose augmentation in tumors containing 10B and 157Gd in brachytherapy with 252Cf source will depend not only on the capture product dose level, but also on the tumor distance from the source. 33S makes dose enhancement under specific conditions that these conditions depend on the neutron energy spectra of source, the 33S concentration in tumor and tumor distance from the source. PMID:28451575

  1. Fission properties of the 1. 5-s spontaneous fission activity produced in bombardmentof /sup 248/Cm with /sup 18/O

    SciTech Connect

    Hoffman, D.C.; Lee, D.; Ghiorso, A.; Nurmia, M.J.; Aleklett, K.; Leino, M.

    1981-08-01

    We have measured the mass and kinetic-energy distributions of fragments from the spontaneous fission of a 1.5-s activity produced in bombardments of /sup 248/Cm with 95-MeV /sup 18/O ions. Its spontaneous fission decay exhibits a very symmetric, narrow (full width at half maximum = 12 mass units) mass distribution, a very high total kinetic energy of 234 +- 2 MeV, and increasing total kinetic energy with increasingly symmetric mass division. Based on its half-life and the similarity of its fission properties to the unique fission properties so far only observed for /sup 258/Fm and /sup 259/Fm, the most likely assignment of this activity is to the known /sup 259/Fm. However, assignment to some as yet undiscovered neutron-rich heavy element isotope such as /sup 260/Md cannot be unequivocally excluded.

  2. A methodology for the intercomparison of nuclear fission codes using TALYS

    NASA Astrophysics Data System (ADS)

    Mattera, Andrea; Al-Adili, Ali; Lantz, Mattias; Pomp, Stephan; Rakopoulos, Vasileios; Solders, Andreas

    2017-09-01

    Codes for the calculation of fission observables are frequently used to describe experimentally observed phenomena as well as provide predictions in cases where measurements are missing. Assumptions in the models, and tuning of parameters within the codes, often result in a good reproduction of experimental data. In this work we propose a methodology, coded in the newly developed program DELFIN (De-Excitation of FIssion fragmeNts), that can be used to compare some of the assumptions of the various models. Our code makes use of the fission fragments information after scission and processes them in an independent and consistent fashion to obtain measurable fission observables (such as ν(A) distributions and Isomeric Fission Yield ratios). All the available information from the models, such as fragments' excitation energies, spin distributions and yields are provided as input to DELFIN that uses the nuclear reaction code TALYS to handle the de-excitation of the fission fragments. In this way we decouple the fragments relaxation from the actual fission models. We report here the first results of a comparison carried out on the GEF, Point-by-Point and FREYA models for thermal fission of 235U and 239Pu and spontaneous fission of 252Cf.

  3. Long-term results for Stage IIIB cervical cancer patients receiving external beam radiotherapy combined with either HDR (252)Cf or HDR (60)Co intracavitary brachytherapy.

    PubMed

    Ulinskas, K; Janulionis, E; Valuckas, K P; Samerdokiene, V; Atkocius, V; Rivard, M J

    2016-01-01

    The aim of this work was to compare the long-term curative effects and complications of patients diagnosed with cervical cancer International Federation of Gynecology and Obstetrics IIIB (n = 430) as treated with Californium-252 ((252)Cf) or cobalt-60 ((60)Co) intracavitary brachytherapy (ICBT) combined with external beam radiotherapy (EBRT). Cervical cancer cases with a history of treatment with (252)Cf or (60)Co ICBT combined with EBRT were selected from the Lithuanian National Cancer Institute database. Complications and second primary malignancies were compared in both patients groups. Estimates of the 5-, 10-, and 15-year overall survival and disease-free survival rates were computed with the Kaplan-Meier method and a Cox proportional hazards model applied using STATA software. At 5, 10, and 15 years, the overall survival rates were 46.9%, 39.3%, and 34.6% for the (252)Cf group and 35.4%, 26.9%, and 22.5% for the (60)Co group (p = 0.004), respectively. The disease-free survival rates were 42.1%, 35.0%, and 31.0% for the (252)Cf group and 32.0%, 25.1%, and 21.4% for the (60)Co group (p = 0.009), respectively. Histopathologic type of adenocarcinoma increased the risk of death for the (252)Cf group (hazard ratio 3.62). Histopathologic tumor type (hazard ratio 7.48) and recurrence (hazard ratio 2.83) were factors that statistically and significantly influenced the patient prognosis for the (60)Co group. Applying (252)Cf ICBT with EBRT was effective for International Federation of Gynecology and Obstetrics IIIB cervical cancer patients. Moreover, long-term followup data demonstrated higher survival rates in patients treated with (252)Cf ICBT than (60)Co ICBT. Complications in patients treated with neutron ICBT were not more frequent or severe than those treated with (60)Co ICBT. Copyright © 2016 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  4. Energy and Angular Correlations of Fission Products

    NASA Astrophysics Data System (ADS)

    Peters, William; Smith, M. S.; Pain, S. D.; Febbraro, M.; Galindo-Uribarri, A.; Jones, K. L.; Smith, K.; Grzywacz, R.; Temanson, E.; Cizewski, J. A.

    2016-09-01

    Despite the discovery of fission nearly 80 years ago and its importance to nuclear energy, national security, and astrophysics; there are very few measurements that correlate multiple fission products. A proof-of-principle experiment is underway at Oak Ridge National Lab to measure the energy and angle correlation between prompt fission neutrons, gamma rays, and fragments in time-coincidence. The angular and energy spectrum of the prompt neutrons and /or gamma rays with respect to fragment mass, could reveal new details concerning the energy balance between these products and will be essential for benchmarking advanced fission models. An array of neutron and gamma-ray detectors is positioned opposite dual time-of-flight detectors and a total-energy detector to determine one fragment mass. Preliminary results from a spontaneous 252Cf source will be presented, along with plans for future improvements. Research sponsored in part by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U.S. Department of Energy.

  5. A double-Bragg detector with digital signal processing for the event-by-event study of fission in actinide nuclei

    NASA Astrophysics Data System (ADS)

    Frost, R. J. W.; Smith, A. G.

    2016-09-01

    In the current paper, a windowless double-Bragg chamber incorporating full signal digitisation has been developed for the purpose of studying the energy (E), mass (A), charge (Z) and angular distributions (θ, Φ) of nuclei generated by fission. This device measures E for each fission fragment by collection of the charge produced during ionisation of the fill gas. Subsequent digitisation of the signals from each of two anodes yields information on dE/dx, as well as electron collection time, which can be further used for polar angle (θ) determination. Frisch-grid and cathode signals are also digitised and are used both for anode signal correction and to produce further information on θ. To verify the operation of this detector, three angular determination techniques from the literature were implemented, and the results were found to be consistent with the referenced paper. Current results from the spontaneous fission of 252Cf are presented.

  6. Properties of true quaternary fission of nuclei with allowance for its multistep and sequential character

    SciTech Connect

    Kadmensky, S. G. Titova, L. V.; Bulychev, A. O.

    2015-07-15

    An analysis of basicmechanisms of binary and ternary fission of nuclei led to the conclusion that true ternary and quaternary fission of nuclei has a sequential two-step (three-step) character, where, at the first step, a fissile nucleus emits a third light particle (third and fourth light particles) under shakeup effects associated with a nonadiabatic character of its collective deformation motion, whereupon the residual nucleus undergoes fission to two fission fragments. Owing to this, the formulas derived earlier for the widths with respect to sequential two- and three-step decays of nuclei in constructing the theory of two-step twoproton decays and multistep decays in chains of genetically related nuclei could be used to describe the relative yields and angular and energy distributions of third and fourth light particles emitted in (α, α), (t, t), and (α, t) pairs upon the true quaternary spontaneous fission of {sup 252}Cf and thermal-neutron-induced fission of {sup 235}U and {sup 233}U target nuclei. Mechanisms that explain a sharp decrease in the yield of particles appearing second in time and entering into the composition of light-particle pairs that originate from true quaternary fission of nuclei in relation to the yields of analogous particles in true ternary fission of nuclei are proposed.

  7. Search for instantaneous radiation near the instant of break momentum of various fissioning nuclear systems at low excitation energies

    SciTech Connect

    Vorobyev, A. S. Val'ski, G. V.; Gagarskii, A. M.; Guseva, I. S.; Petrov, G. A.; Petrova, V. I.; Serebrin, A. Yu.; Sokolov, V. E.; Shcherbakov, O. A.

    2011-12-15

    The main results of studying the properties of 'instantaneous' neutrons and {gamma} photons during the fission of {sup 233,235}U(n{sub th}, f) and {sup 239}Pu(n{sub th}, f) nuclei and spontaneous fission of {sup 252}Cf, which were performed on the WWR-M reactor at the St. Petersburg Nuclear Physics Institute, Russian Academy of Sciences, are presented. Along with obtaining the main characteristics of the instantaneous radiation from fission fragments, these studies were also aimed at gaining deeper insight into such exotic processes as the emission of break neutrons and {gamma} photons from a fissioning nucleus near the break point. These investigations were performed on different experimental setups using different analytical methods. This approach allowed us not only to find but also to reduce to minimum possible systematic effects. The yields of break neutrons were found to be about (5-7) Multiplication-Sign 10{sup -2} of the total number of neutrons per {sup 233,235}U(n, f) fission event and approximately twice as much for {sup 239}Pu(n, f) and {sup 252}Cf. The coefficient of T-odd asymmetry for {gamma} photons is in agreement with the estimate obtained on the assumption that the observed effect is mainly related to the {gamma} photons emitted by excited fragments with highly oriented angular momenta. This fact gave grounds to conclude that the desired break {gamma} photons cannot be reliably selected (within the obtained experimental accuracy) against the much larger background of {gamma} photons from fission fragments.

  8. Benchmark Experiments of Thermal Neutron and Capture Gamma-Ray Distributions in Concrete Using {sup 252}Cf

    SciTech Connect

    Asano, Yoshihiro; Sugita, Takeshi; Hirose, Hideyuki; Suzaki, Takenori

    2005-10-15

    The distributions of thermal neutrons and capture gamma rays in ordinary concrete were investigated by using {sup 252}Cf. Two subjects are considered. One is the benchmark experiments for the thermal neutron and the capture gamma-ray distributions in ordinary concrete. The thermal neutron and the capture gamma-ray distributions were measured by using gold-foil activation detectors and thermoluminescence detectors. These were compared with the simulations by using the discrete ordinates code ANISN with two different group structure types of cross-section library of a new Japanese version, JENDL-3.3, showing reasonable agreement with both fine and rough structure groups of thermal neutron energy. The other is a comparison of the simulations with two different cross-section libraries, JENDL-3.3 and ENDF/B-VI, for the deep penetration of neutrons in the concrete, showing close agreement in 0- to 100-cm-thick concrete. However, the differences in flux grow with an increase in concrete thickness, reaching up to approximately eight times near 4-m thickness.

  9. Californium-252 (252Cf) versus conventional gamma radiation in the brachytherapy of advanced cervical carcinoma long-term treatment results of a randomized study.

    PubMed

    Tacev, Taco; Ptácková, Blanka; Strnad, Vratislav

    2003-06-01

    When photon radiotherapy is applied to cervical carcinoma, it has been observed that, despite important progress in radiotherapy technique and quality assurance, no significant increase in curative rates has resulted. Among the reasons for this is the varying radiosensitivity of different tumor subpopulations. Treatment with californium-252 ((252)Cf), as a source of gamma/neutron radiation in brachytherapy, provides properties and new treatment modalities that help to overcome this factor. From January 1985 to June 1993, 227 women with stage IIB and IIIB cervical carcinoma were treated in a randomized brachytherapy study as follows: (1) 117 patients (55 with stage IIB, 62 with stage IIIB) were treated with (252)Cf during the 1st week of therapy by 6 Gy (40 Gy-eq) of the neutron component in point A. Supplementation by a 16-Gy dose with (226)Ra or (137)Cs was done in the 5th week. (2) 110 patients (50 with stage IIB, 60 with stage IIIB) were treated solely by gamma radiation ((226)Ra or (137)Cs). A dose of 56 Gy in point A was applied in two fractions at the 3rd and 5th week, respectively. The dose of 56 Gy-equivalents was completed by external radiation with 40 Gy. The total radiation doses at points A and B amounted to 85 Gy and 59 Gy, respectively. The treatment results were compared. The overall 5-year survival rate for all stages IIB and IIIB was better by 18.9% for (252)Cf patients than for patients receiving conventional treatment (75.2% vs. 56.3%, respectively; p < 0.001). In the stage IIIB (252)Cf group, it was significantly better by 22.8% than for the conventional group (66.1% vs. 43.3%, respectively; p < 0.003). The higher survival rate in (252)Cf patients was the result of significantly less local relapses compared with patients treated conventionally (12,8% vs. 31.8%; p < 0.0009). The importance of neutron source (252)Cf in the brachytherapy of cervical carcinoma by overcoming the tumor resistance to conventional photon irradiation has been confirmed.

  10. Microscopic modeling of mass and charge distributions in the spontaneous fission of 240Pu

    DOE PAGES

    Sandhukhan, Jhilam; Nazarewicz, Witold; Schunck, Nicolas

    2016-01-20

    We propose a methodology to calculate microscopically the mass and charge distributions of spontaneous fission yields. We combine the multidimensional minimization of collective action for fission with stochastic Langevin dynamics to track the relevant fission paths from the ground-state configuration up to scission. The nuclear potential energy and collective inertia governing the tunneling motion are obtained with nuclear density functional theory in the collective space of shape deformations and pairing. As a result, we obtain a quantitative agreement with experimental data and find that both the charge and mass distributions in the spontaneous fission of 240Pu are sensitive both tomore » the dissipation in collective motion and to adiabatic fission characteristics.« less

  11. Event-by-event study of neutron observables in spontaneous and thermal fission

    SciTech Connect

    Vogt, R; Randrup, J

    2011-09-14

    The event-by-event fission model FREYA is extended to spontaneous fission of actinides and a variety of neutron observables are studied for spontaneous fission and fission induced by thermal neutrons with a view towards possible applications for SNM detection. We have shown that event-by-event models of fission, such as FREYA, provide a powerful tool for studying fission neutron correlations. Our results demonstrate that these correlations are significant and exhibit a dependence on the fissioning nucleus. Since our method is phenomenological in nature, good input data are especially important. Some of the measurements employed in FREYA are rather old and statistics limited. It would be useful to repeat some of these studies with modern detector techniques. In addition, most experiments made to date have not made simultaneous measurements of the fission products and the prompt observables, such as neutron and photons. Such data, while obviously more challenging to obtain, would be valuable for achieving a more complete understanding of the fission process.

  12. Evaluation of the /sup 252/Cf-source-driven neutron noise analysis method for measuring the subcriticality of LWR fuel storage casks

    SciTech Connect

    Mihalczo, J.T.

    1987-01-01

    The /sup 252/Cf-source-driven neutron noise analysis method was evaluated to determine if it could be used to measure the subcriticality of storage casks of burnt light water reactor (LWR) fuel submerged in fuel storage pools, fully loaded and as they are being loaded. Measurements of k/sub eff/ would provide the parameter most directly related to the criticality safety of storage cask configurations of LWR fuel and could allow proper credit for fuel burnup without reliance on calculations. This, in turn, could lead to more cost-effective cask designs. Evaluation of the method for this application was based on experiments already completed at a critical experiments facility using arrays of pressurized water reactor (PWR) fuel pins typical of the size of storage cask configurations, the existence of neutron detectors that can function in shipping cask environments, and the ability to construct ionization chambers containing /sup 252/Cf of adequate intensity for these measurements.

  13. Shielding evaluation of a medical linear accelerator vault in preparation for installing a high-dose rate 252Cf remote afterloader.

    PubMed

    Melhus, C S; Rivard, M J; Kurkomelis, J; Liddle, C B; Massé, F X

    2005-01-01

    In support of the effort to begin high-dose rate 252Cf brachytherapy treatments at Tufts-New England Medical Center, the shielding capabilities of a clinical accelerator vault against the neutron and photon emissions from a 1.124 mg 252Cf source were examined. Outside the clinical accelerator vault, the fast neutron dose equivalent rate was below the lower limit of detection of a CR-39 etched track detector and below 0.14 +/- 0.02 muSv h(-1) with a proportional counter, which is consistent, within the uncertainties, with natural background. The photon dose equivalent rate was also measured to be below background levels (0.1 muSv h(-1)) using an ionisation chamber and an optically stimulated luminescence dosemeter. A Monte Carlo simulation of neutron transport through the accelerator vault was performed to validate measured values and determine the thermal-energy to low-energy neutron component. Monte Carlo results showed that the dose equivalent rate from fast neutrons was reduced by a factor of 100,000 after attenuation through the vault wall, and the thermal-energy neutron dose equivalent rate would be an additional factor of 1000 below that of the fast neutrons. Based on these findings, the shielding installed in this facility is sufficient for the use of at least 5.0 mg of 252Cf.

  14. Second malignancies following conventional or combined 252Cf neutron brachytherapy with external beam radiotherapy for breast cancer

    PubMed Central

    Valuckas, Konstantinas Povilas; Atkocius, Vydmantas; Kuzmickiene, Irena; Aleknavicius, Eduardas; Liukpetryte, Sarune; Ostapenko, Valerijus

    2013-01-01

    We retrospectively evaluated the risk of second malignancies among 832 patients with inner or central breast cancer treated with conventional external beam schedule (CRT group), or neutron brachytherapy using Californium-252 (252Cf) sources and hypofractionated external beam radiotherapy (HRTC group), between 1987 and 1996 at the Institute of Oncology, Vilnius University. Patients were observed until the occurrences of death or development of a second malignancy, or until 31 December 2009, whichever was earlier. Median follow-up time was 10.4 years (range, 1.2–24.1 years). Risk of second primary cancers was quantified using standardized incidence ratios (SIRs). Cox proportional hazards regression models were used to estimate hazard ratios (HRs). There was a significant increase in the risk of second primary cancers compared with the general population (SIR 1.3, 95% CI 1.1–1.5). The observed number of second primary cancers was also higher than expected for breast (SIR 1.8, 95% CI 1.3–2.4) and lung cancer (SIR 3.8, 95% CI 2.0–6.7). For second breast cancer, no raised relative risk was observed during the period ≥10 or more years after radiotherapy. Compared with the CRT group, HRTC patients had a not statistically significant higher risk of breast cancer. Increased relative risks were observed specifically for age at initial diagnosis of <50 years (HR 2.9, 95% CI 1.6–5.2) and for obesity (HR 2.8, 95% CI 1.1–7.2). PMID:23397075

  15. Evaluation of time-dose and fractionation for sup 252 Cf neutrons in preoperative bulky/barrel-cervix carcinoma radiotherapy

    SciTech Connect

    Maruyama, Y.; Wierzbicki, J. )

    1990-12-01

    Time-dose fractionation factors (TDF) were calculated for 252Cf (Cf) neutron therapy versus 137Cs for intracavitary use in the preoperative treatment of bulky/barrel-shaped Stage IB cervix cancers. The endpoint assessed was gross and microscopic tumor eradication from the hysterectomy specimen. We reviewed the data obtained in clinical trials between 1976-1987 at the University of Kentucky Medical Center. Preoperative photon therapy was approximately 45 Gy of whole pelvis irradiation in 5 weeks for both 137Cs and Cf treated patients. 137Cs implant was done after pelvic irradiation x1 to a mean dose of 2104 +/- 36 cGy at point A at a dose rate of 50.5 cGy/h. There were 37.5% positive specimens. Using Cf intracavitary implants, dose varied from 109 to 459 neutron cGy in 1-2 sessions. Specimens were more frequently cleared of tumor (up to 100% at appropriate dose) and showed a dose-response relationship, both by nominal dose and by TDF adjusted analysis of dose, dose-rate, number of sessions, and overall time. Limited understanding of relative biological effectiveness, schedule, effect of implants, and dose rate all made it difficult to use TDF to study neutron effects. Relative biological effectiveness (RBE) was estimated and showed that for Cf, RBE was a complex function of treatment variables. In the pilot clinical studies, a value of 6.0 had been assumed. The present findings of RBE for tumor destruction are larger than those assumed. Cf was effective for cervix tumor therapy and produced control without significant side effects due to the brachytherapy method used. The TDF model was of limited value in the present analysis and more information is still needed for RBE, dose-rate, and fractionation effects for Cf neutrons to develop a more sophisticated and relevant model.

  16. A Monte Carlo comparison of PGNAA system performance using 252Cf neutrons, 2.8-MeV neutrons and 14-MeV neutrons

    NASA Astrophysics Data System (ADS)

    Naqvi, A. A.

    2003-10-01

    Monte Carlo simulations were carried out to compare performance of a 252Cf neutron and a 14-MeV neutron-based prompt γ-ray neutron activation analysis (PGNAA) system with that of the 2.8-MeV neutron-based PGNAA system at King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, Saudi Arabia. Since the energy of neutron beam used in the KFUPM PGNAA system is very close to that produced by a DD neutron generator, performance comparison between a DD and a DT neutron generator-based PGNAA system is highly desired. For the sake of comparison, the calculations were carried out for the PGNAA system with geometry similar to the KFUPM PGNAA system. These calculations were required to determine improvement in performance of the KFUPM PGNAA system if its 2.8-MeV neutron source is replaced by a 252Cf neutron source or a 14-MeV neutron source. Results of the calculations revealed that the geometry of the 252Cf neutron and the 2.8-MeV neutron-based PGNAA system are not significantly different but the geometry of the 14-MeV neutron-based system is significantly different from that of the 2.8-MeV neutron-based PGNAA system. Accordingly, the prompt γ-ray yields from the 252Cf neutron and the 2.8-MeV neutron-based PGNAA system is comparable but prompt γ-ray yields from 14-MeV neutron-based PGNAA system are about three times smaller than that from the 2.8-MeV neutron-based PGNAA system. This study has shown that performance of the 252Cf neutron-based PGNAA system is comparable with that of the 2.8-MeV neutron-based PGNAA system but the performance of the 14-MeV neutron-based PGNAA system is poorer than that of the 2.8-MeV neutron-based PGNAA system.

  17. Spontaneous fission half-lives of heavy nuclei in ground state and in isomeric state

    NASA Astrophysics Data System (ADS)

    Ren, Zhongzhou; Xu, Chang

    2005-09-01

    We generalize the formulas of spontaneous fission half-lives of even-even nuclei in their ground state to both the case of odd nuclei and the case of fission isomers [Phys. Rev. C 71 (2005) 014309]. The spontaneous fission half-lives of odd- A nuclei and of odd-odd nuclei in the ground state are calculated by Swiatecki's formula, by its generalized form, and by a new formula where the blocking effect of unpaired nucleon on the half-lives has been taken into account with different mechanisms. By introducing a blocking factor or a generalized seniority in the formulas of the half-lives of even-even nuclei, we can reasonably reproduce the experimental fission half-lives of odd- A nuclei and of odd-odd nuclei with the same parameters used in ground state of even-even nuclei. For spontaneous fission of the isomers in transuranium nuclei the new formula can be simplified into a three-parameter formula and the isomeric half-lives can be well reproduced by the formula. The new formula of the isomeric half-lives is as good as Metag's formula of fission isomers. The half-lives of isomers from these formulas are very accurate and therefore these formulas can give reliable predictions for half-lives of new isomers of neighboring nuclei.

  18. Prompt neutron emission from the spontaneous fission of sup 260 Md

    SciTech Connect

    Wild, J.F.; van Aarle, J.; Westmeier, W.; Lougheed, R.W.; Hulet, E.K.; Moody, K.J.; Dougan, R.J.; Koop, E.; Glaser, R.E.; Brandt, R.; Patzelt, P. Philipps University, D-3550, Marburg an der Lahn, )

    1990-02-01

    We have made the first measurement of the number of neutrons emitted from the spontaneous fission of a nuclide in which very high fragment energies dominate the fission process. In bombardments of {sup 254}Es, we produced a large sample of 28-d {sup 260}Md, which was neutron counted in a 1-m-diameter spherical tank containing a Gd-doped scintillator solution. The average number of neutrons emitted per fission is only 2.58{plus minus}0.11, substantially less than for other actinides. A linear dependence of neutron multiplicity on fragment-excitation energy is observed to the highest values of total kinetic energy.

  19. Neutron emission as a function of fragment energy in the spontaneous fission of /sup 260/Md

    SciTech Connect

    Wild, J.F.; van Aarle, J.; Westmeiser, W.; Lougheed, R.W.; Hulet, E.K.; Moody, K.J.; Dougan, R.J.; Brandt, R.; Patzelt, P.

    1989-04-19

    We have made the first measurement of the number of neutrons emitted in the spontaneous fission of a nuclide in which very high fragment energies dominate the fission process. In bombardments of /sup 254/Es, we produced 28-d /sup 260/Md, which was neutron-counted in a 1-m-diam spherical tank containing a Gd-doped scintillator solution. The average number of neutrons emitted per fission is only 2.58 +- 0.11, substantially less than for other actinides. A direct correlation of neutron multiplicity with fragment excitation energy is clearly demonstrated. 3 refs., 5 figs.

  20. Total prompt γ-ray emission in fission

    NASA Astrophysics Data System (ADS)

    Wu, C. Y.; Chyzh, A.; Kwan, E.; Henderson, R. A.; Bredeweg, T. A.; Haight, R. C.; Hayes-Sterbenz, A. C.; Lee, H. Y.; O'Donnell, J. M.; Ullmann, J. L.

    2017-09-01

    The total prompt γ-ray energy distributions were measured for the neutron-induced fission of 235U, 239,241Pu at incident neutron energy of 0.025 eV-100 keV, and the spontaneous fission of 252Cf using the Detector for Advanced Neutron Capture Experiments (DANCE) array in coincidence with the detection of fission fragments by a parallel-plate avalanche counter. Corrections were made to the measured distribution by unfolding the two-dimension spectrum of total prompt γ-ray energy vs multiplicity using a simulated DANCE response matrix. A summary of this work is presented with the emphasis on the comparison of total prompt fission γ-ray energy between our results and previous ones. The mean values of the total prompt γ-ray energy ⟨Eγ,tot⟩, determined from the unfolded distributions, are ˜20% higher than those derived from measurements using single γ-ray detector for all the fissile nuclei studied.

  1. Development of a thin scintillation films fission-fragment detector and a novel neutron source

    NASA Astrophysics Data System (ADS)

    Rusev, G.; Jandel, M.; Baramsai, B.; Bond, E. M.; Bredeweg, T. A.; Couture, A.; Daum, J. K.; Favalli, A.; Ianakiev, K. D.; Iliev, M. L.; Mosby, S.; Roman, A. R.; Springs, R. K.; Ullmann, J. L.; Walker, C. L.

    2015-08-01

    Investigation of prompt fission and neutron-capture Υ rays from fissile actinide samples at the Detector for Advanced Neutron Capture Experiments (DANCE) requires use of a fission-fragment detector to provide a trigger or a veto signal. A fission-fragment detector based on thin scintillating films and silicon photomultipliers has been built to serve as a trigger/veto detector in neutron-induced fission measurements at DANCE. The fissile material is surrounded by scintillating films providing a 4π detection of the fission fragments. The scintillations were registered with silicon photomultipliers. A measurement of the 235U(n,f) reaction with this detector at DANCE revealed a correct time-of-flight spectrum and provided an estimate for the efficiency of the prototype detector of 11.6(7)%. Design and test measurements with the detector are described. A neutron source with fast timing has been built to help with detector-response measurements. The source is based on the neutron emission from the spontaneous fission of 252Cf and the same type of scintillating films and silicon photomultipliers. Overall time resolution of the source is 0.3 ns. Design of the source and test measurements with it are described. An example application of the source for determining the neutron/gamma pulse-shape discrimination by a stilbene crystal is given.

  2. Development of a thin scintillation films fission-fragment detector and a novel neutron source

    DOE PAGES

    Rusev, Gencho Yordanov; Jandel, Marian; Baramsai, Bayarbadrakh; ...

    2015-08-26

    Here, investigation of prompt fission and neutron-capture Υ rays from fissile actinide samples at the Detector for Advanced Neutron Capture Experiments (DANCE) requires use of a fission-fragment detector to provide a trigger or a veto signal. A fission-fragment detector based on thin scintillating films and silicon photomultipliers has been built to serve as a trigger/veto detector in neutron-induced fission measurements at DANCE. The fissile material is surrounded by scintillating films providing a 4π detection of the fission fragments. The scintillations were registered with silicon photomultipliers. A measurement of the 235U(n,f) reaction with this detector at DANCE revealed a correct time-of-flightmore » spectrum and provided an estimate for the efficiency of the prototype detector of 11.6(7)%. Design and test measurements with the detector are described. A neutron source with fast timing has been built to help with detector-response measurements. The source is based on the neutron emission from the spontaneous fission of 252Cf and the same type of scintillating films and silicon photomultipliers. Overall time resolution of the source is 0.3 ns. Design of the source and test measurements with it are described. An example application of the source for determining the neutron/gamma pulse-shape discrimination by a stilbene crystal is given.« less

  3. Microarray analysis of DNA damage repair gene expression profiles in cervical cancer cells radioresistant to 252Cf neutron and X-rays

    PubMed Central

    2010-01-01

    Background The aim of the study was to obtain stable radioresistant sub-lines from the human cervical cancer cell line HeLa by prolonged exposure to 252Cf neutron and X-rays. Radioresistance mechanisms were investigated in the resulting cells using microarray analysis of DNA damage repair genes. Methods HeLa cells were treated with fractionated 252Cf neutron and X-rays, with a cumulative dose of 75 Gy each, over 8 months, yielding the sub-lines HeLaNR and HeLaXR. Radioresistant characteristics were detected by clone formation assay, ultrastructural observations, cell doubling time, cell cycle distribution, and apoptosis assay. Gene expression patterns of the radioresistant sub-lines were studied through microarray analysis and verified by Western blotting and real-time PCR. Results The radioresistant sub-lines HeLaNR and HeLaXR were more radioresisitant to 252Cf neutron and X-rays than parental HeLa cells by detecting their radioresistant characteristics, respectively. Compared to HeLa cells, the expression of 24 genes was significantly altered by at least 2-fold in HeLaNR cells. Of these, 19 genes were up-regulated and 5 down-regulated. In HeLaXR cells, 41 genes were significantly altered by at least 2-fold; 38 genes were up-regulated and 3 down-regulated. Conclusions Chronic exposure of cells to ionizing radiation induces adaptive responses that enhance tolerance of ionizing radiation and allow investigations of cellular radioresistance mechanisms. The insights gained into the molecular mechanisms activated by these "radioresistance" genes will lead to new therapeutic targets for cervical cancer. PMID:20184742

  4. Multidimensional Skyrme-density-functional study of the spontaneous fission of 238U

    SciTech Connect

    Sadhukhan, J.; Mazurek, K.; Dobaczewski, J.; Nazarewicz, W.; Sheikh, J. A.; Baran, A.

    2015-01-01

    We determined the spontaneous fission lifetime of 238U by a minimization of the action integral in a three-dimensional space of collective variables. Apart from the mass-distribution multipole moments Q20 (elongation) and Q30 (left–right asymmetry), we also considered the pairing-fluctuation parameter λ2 as a collective coordinate. The collective potential was obtained self-consistently using the Skyrme energy density functional SkM*. The inertia tensor was obtained within the nonperturbative cranking approximation to the adiabatic time-dependent Hartree–Fock–Bogoliubov approach. As a result, the pairing-fluctuation parameter λ2 allowed us to control the pairing gap along the fission path, which significantly changed the spontaneous fission lifetime.

  5. Systematics of α-decay and spontaneous fission half-lives of super-heavy nuclei

    NASA Astrophysics Data System (ADS)

    Silisteanu, Ion; Anghel, Claudia-Ioana

    2017-01-01

    Simple relationships derived from the systematics of data and calculated α-decay and spontaneous fission half-lives are used to predict half-lives and branches for many still unknown super-heavy nuclei. Half-life calculations are performed within the shell model rate theory for α-decay, and a dynamical approach for spontaneous fission defined essentially by the shape, the hight of fission barrier, the fissility and nuclear deformations. Extensive half-lives predictions are made for many unknown super-heavy nuclei. The comparison of the behavior of measured α-decay properties with expectations from theoretical approximations (with and without; finite size corrections, resonance scattering effects, deformations and shell structure) provides insight into the accuracy of current nuclear models for the reaction dynamics and structure.

  6. Multidimensional Skyrme-density-functional study of the spontaneous fission of 238U

    DOE PAGES

    Sadhukhan, J.; Mazurek, K.; Dobaczewski, J.; ...

    2015-01-01

    We determined the spontaneous fission lifetime of 238U by a minimization of the action integral in a three-dimensional space of collective variables. Apart from the mass-distribution multipole moments Q20 (elongation) and Q30 (left–right asymmetry), we also considered the pairing-fluctuation parameter λ2 as a collective coordinate. The collective potential was obtained self-consistently using the Skyrme energy density functional SkM*. The inertia tensor was obtained within the nonperturbative cranking approximation to the adiabatic time-dependent Hartree–Fock–Bogoliubov approach. As a result, the pairing-fluctuation parameter λ2 allowed us to control the pairing gap along the fission path, which significantly changed the spontaneous fission lifetime.

  7. Microscopic Phase-Space Exploration Modeling of ^{258}Fm Spontaneous Fission.

    PubMed

    Tanimura, Yusuke; Lacroix, Denis; Ayik, Sakir

    2017-04-14

    We show that the total kinetic energy (TKE) of nuclei after the spontaneous fission of ^{258}Fm can be well reproduced using simple assumptions on the quantum collective phase space explored by the nucleus after passing the fission barrier. Assuming energy conservation and phase-space exploration according to the stochastic mean-field approach, a set of initial densities is generated. Each density is then evolved in time using the nuclear time-dependent density-functional theory with pairing. This approach goes beyond the mean-field theory by allowing spontaneous symmetry breaking as well as a wider dynamical phase-space exploration leading to larger fluctuations in collective space. The total kinetic energy and mass distributions are calculated. New information on the fission process: fluctuations in scission time, strong correlation between TKE and collective deformation, as well as prescission particle emission, are obtained. We conclude that fluctuations of the TKE and mass are triggered by quantum fluctuations.

  8. Development of position-sensitive time-of-flight spectrometer for fission fragment research

    SciTech Connect

    Arnold, C. W.; Tovesson, F.; Meierbachtol, K.; Bredeweg, T.; Jandel, M.; Jorgenson, H. J.; Laptev, A.; Rusev, G.; Shields, D. W.; White, M.; Blakeley, R. E.; Mader, D. M.; Hecht, A. A.

    2014-07-09

    A position-sensitive, high-resolution time-of-flight detector for fission fragments has been developed. The SPectrometer for Ion DEtermination in fission Research (SPIDER) is a 2E–2v spectrometer designed to measure the mass of light fission fragments to a single mass unit. The time pick-off detector pairs to be used in SPIDER have been tested with α-particles from 229Th and its decay chain and α-particles and spontaneous fission fragments from 252Cf. Each detector module is comprised of thin electron conversion foil, electrostatic mirror, microchannel plates, and delay-line anodes. Particle trajectories on the order of 700 mm are determined accurately to within 0.7 mm. Flight times were measured with 250 ps resolution FWHM. Computed particle velocities are accurate to within 0.06 mm/ns corresponding to a precision of 0.5%. As a result, an ionization chamber capable of 400 keV energy resolution coupled with the velocity measurements described here will pave the way for modestly efficient measurements of light fission fragments with unit mass resolution.

  9. Development of position-sensitive time-of-flight spectrometer for fission fragment research

    DOE PAGES

    Arnold, C. W.; Tovesson, F.; Meierbachtol, K.; ...

    2014-07-09

    A position-sensitive, high-resolution time-of-flight detector for fission fragments has been developed. The SPectrometer for Ion DEtermination in fission Research (SPIDER) is a 2E–2v spectrometer designed to measure the mass of light fission fragments to a single mass unit. The time pick-off detector pairs to be used in SPIDER have been tested with α-particles from 229Th and its decay chain and α-particles and spontaneous fission fragments from 252Cf. Each detector module is comprised of thin electron conversion foil, electrostatic mirror, microchannel plates, and delay-line anodes. Particle trajectories on the order of 700 mm are determined accurately to within 0.7 mm. Flightmore » times were measured with 250 ps resolution FWHM. Computed particle velocities are accurate to within 0.06 mm/ns corresponding to a precision of 0.5%. As a result, an ionization chamber capable of 400 keV energy resolution coupled with the velocity measurements described here will pave the way for modestly efficient measurements of light fission fragments with unit mass resolution.« less

  10. Improved fission neutron energy discrimination with 4He detectors through pulse filtering

    NASA Astrophysics Data System (ADS)

    Zhu, Ting; Liang, Yinong; Rolison, Lucas; Barker, Cathleen; Lewis, Jason; Gokhale, Sasmit; Chandra, Rico; Kiff, Scott; Chung, Heejun; Ray, Heather; Baciak, James E.; Enqvist, Andreas; Jordan, Kelly A.

    2017-03-01

    This paper presents experimental and computational techniques implemented for 4He gas scintillation detectors for induced fission neutron detection. Fission neutrons are produced when natural uranium samples are actively interrogated by 2.45 MeV deuterium-deuterium fusion reaction neutrons. Fission neutrons of energies greater than 2.45 MeV can be distinguished by their different scintillation pulse height spectra since 4He detectors retain incident fast neutron energy information. To enable the preferential detection of fast neutrons up to 10 MeV and suppress low-energy event counts, the detector photomultiplier gain is lowered and trigger threshold is increased. Pile-up and other unreliable events due to the interrogating neutron flux and background radiation are filtered out prior to the evaluation of pulse height spectra. With these problem-specific calibrations and data processing, the 4He detector's accuracy at discriminating fission neutrons up to 10 MeV is improved and verified with 252Cf spontaneous fission neutrons. Given the 4He detector's ability to differentiate fast neutron sources, this proof-of-concept active-interrogation measurement demonstrates the potential of special nuclear materials detection using a 4He fast neutron detection system.

  11. Total prompt γ-ray emission in fission

    NASA Astrophysics Data System (ADS)

    Wu, C. Y.; Chyzh, A.; Kwan, E.; Henserson, R. A.; Bredeweg, T. A.; Haight, R. C.; Hayes-Sterbenz, A. C.; Lee, H. Y.; O'Donnell, J. M.; Ullmann, J. L.

    2016-06-01

    The total prompt γ-ray energy distributions for the neutron-induced fission of 235U, 239,241Pu at incident neutron energy of 0.025 eV ‒ 100 keV, and the spontaneous fission of 252Cf were measured using the Detector for Advanced Neutron Capture Experiments (DANCE) array in coincidence with the detection of fission fragments by a parallel-plate avalanche counter. DANCE is a highly segmented, highly efficient 4π γ-ray calorimeter. Corrections were made to the measured distribution by unfolding the two-dimension spectrum of total γ-ray energy vs multiplicity using a simulated DANCE response matrix. The mean values of the total prompt γ-ray energy, determined from the unfolded distributions, are ~ 20% higher than those derived from measurements using single γ-ray detector for all the fissile nuclei studied. This raises serious concern on the validity of the mean total prompt γ-ray energy obtained from the product of mean values for both prompt γ-ray energy and multiplicity.

  12. Highly accurate measurements of the spontaneous fission half-life of 240,242Pu

    NASA Astrophysics Data System (ADS)

    Salvador-Castiñeira, P.; Bryś, T.; Eykens, R.; Hambsch, F.-J.; Moens, A.; Oberstedt, S.; Sibbens, G.; Vanleeuw, D.; Vidali, M.; Pretel, C.

    2013-12-01

    Fast spectrum neutron-induced fission cross-section data for transuranic isotopes are of special demand from the nuclear data community. In particular highly accurate data are needed for the new generation IV nuclear applications. The aim is to obtain precise neutron-induced fission cross sections for 240Pu and 242Pu. To do so, accurate data on spontaneous fission half-lives must be available. Also, minimizing uncertainties in the detector efficiency is a key point. We studied both isotopes by means of a twin Frisch-grid ionization chamber with the goal of improving the present data on the neutron-induced fission cross section. For the two plutonium isotopes the high α-particle decay rates pose a particular problem to experiments due to piling-up events in the counting gas. Argon methane and methane were employed as counting gases, the latter showed considerable improvement in signal generation due to its higher drift velocity. The detection efficiency for both samples was determined, and improved spontaneous fission half-lives were obtained with very low statistical uncertainty (0.13% for 240Pu and 0.04% for 242Pu): for 240Pu, T1/2,SF=1.165×1011 yr (1.1%), and for 242Pu, T1/2,SF=6.74×1010 yr (1.3%). Systematic uncertainties are due to sample mass (0.4% for 240Pu and 0.9% for 242Pu) and efficiency (1%).

  13. QUALIFICATION OF THE SAVANNAH RIVER SITE 252CF SHUFFLER FOR RECEIPT VERIFICATION MEASUREMENTS OF MIXED U-PU OXIDES STORED IN 9975 SHIPPING CONTAINERS

    SciTech Connect

    Dubose, F.

    2011-05-26

    To extend their ability to perform accountability and verification measurements of {sup 235}U in a U-Pu oxide matrix, the K-Area Material Storage facility commissioned the development and construction of a Passive/Active {sup 252}Cf Shuffler. A series of {sup 252}Cf, PuO{sub 2}, and U-Pu oxide standards, in addition to a single U{sub 3}O{sub 8} standard, were measured to characterize and calibrate the shuffler. Accompanying these measurements were simulations using MCNP5/MCNPX, aimed at isolating the neutron countrate contributions for each of the isotopes present. Two calibration methods for determining the {sup 235}U content in mixed UPu oxide were then developed, yielding comparable results. The first determines the {sup 235}U mass by estimating the {sup 239}Pu/{sup 235}U ratio-dependent contributions from the primary delayed neutron contributors. The second defines an average linear response based on the {sup 235}U and {sup 239}Pu mass contents. In each case, it was observed that self-shielding due to {sup 235}U mass has a large influence on the observed rates, requiring bounds on the applicable limits of each calibration method.

  14. Evaluation of the /sup 252/Cf-source-driven neutron noise analysis method for measuring the subcriticality of LWR fuel storage casks

    SciTech Connect

    Mihalczo, J.T.

    1987-11-15

    The /sup 252/Cf-source-driven neutron noise analysis method was evaluated to determine if it could be used to measure the subcriticality of storage casks of burnt LWR fuel submerged in fuel storage pools, fully loaded and as they are being loaded. The motivation for this evaluation was that measurements of k/sub eff/ would provide the parameter most directly related to the criticality safety of storage cask configurations of LWR fuel and could allow proper credit for fuel burnup without reliance on calculations. This in turn could lead to more cost-effective cask designs. Evaluation of the method for this application was based on (1) experiments already completed at a critical experiments facility using arrays of PWR fuel pins typical of the size of storage cask configurations, (2) the existence of neutron detectors that can function in shipping cask environments, and (3) the ability to construct ionization chambers containing /sup 252/Cf of adequate intensity for these measurements. These three considerations are discussed.

  15. Multidimensionally constrained relativistic Hartree-Bogoliubov study of spontaneous nuclear fission

    NASA Astrophysics Data System (ADS)

    Zhao, Jie; Lu, Bing-Nan; Nikšić, Tamara; Vretenar, Dario

    2015-12-01

    Background: Recent microscopic studies, based on the theoretical framework of nuclear energy density functionals, have analyzed dynamic (least action) and static (minimum energy) fission paths, and it has been shown that in addition to the important role played by nonaxial and/or octupole collective degrees of freedom, fission paths crucially depend on the approximations adopted in calculating the collective inertia. Purpose: To analyze effects of triaxial and octupole deformations, as well as approximations to the collective inertia, on the symmetric and asymmetric spontaneous fission dynamics, and compare with results of recent studies based on the self-consistent Hartree-Fock-Bogoliubov (HFB) method. Methods: Deformation energy surfaces, collective potentials, and perturbative and nonperturbative cranking collective inertia tensors are calculated using the multidimensionally-constrained relativistic Hartree-Bogoliubov (MDC-RHB) model, with the energy density functionals PC-PK1 and DD-PC1. Pairing correlations are treated in the Bogoliubov approximation using a separable pairing force of finite range. The least-action principle is employed to determine dynamic spontaneous fission paths. Results: The dynamics of spontaneous fission of 264Fm and 250Fm is explored. The fission paths, action integrals, and the corresponding half-lives predicted by the functionals PC-PK1 and DD-PC1 are compared and, in the case of 264Fm, discussed in relation with recent results obtained using the HFB model based on the Skyrme functional SkM* and a density dependent mixed pairing interaction. Conclusions: The inclusion of nonaxial quadrupole and octupole shape degrees of freedom is essential for a quantitative analysis of fission dynamics. The action integrals and, consequently, the half-lives crucially depend on the approximation used to calculate the effective collective inertia along the fission path. The perturbative cranking approach underestimates the effects of structural

  16. Superprolate shape of the spontaneous-fission isomer /sup 240/Am/sup m/

    SciTech Connect

    Pauling, L.

    1980-10-01

    A superprolate structure for nuclei with Aapprox.240 proposed in 1965 on the basis of the polyspheron theory leads to the value 0.66 for the deformation parameter ..beta... This value agrees well with a recently reported experimental value, 0.66 +- 0.04 for the spontaneous-fission isomer /sup 240/Am/sup m/, obtained by Bemis et al. from their measurement of the optical isomer shift. This agreement provides additional support for the proposed superprolate structure.

  17. Total and spontaneous fission half-lives of the americium and curium nuclides

    SciTech Connect

    Holden, N.E.

    1984-01-01

    The total half-life and the half-life for spontaneous fission are evaluated for the various long-lived nuclides of interest. Recommended values are presented for /sup 241/Am, /sup 242m/Am, /sup 243/Am, /sup 242/Cm, /sup 243/Cm, /sup 244/Cm, /sup 245/Cm, /sup 246/Cm, /sup 247/Cm, /sup 248/Cm, and /sup 250/Cm. The uncertainties are provided at the 95% confidence limit for each of the recommended values.

  18. SEARCH FOR AN 80-ms SPONTANEOUS FISSION ACTIVITY IN BOMBARDMENTS OF 249Bk WITH 15N

    SciTech Connect

    Nitschke, J.M.; Fowler, M.; Ghiorso, A.; Leber, R.E.; Nurmia, M.J.; Somerville, L.P.; Williams, K.E.; Hulet, E.K.; Landrum, J.H.; Lougheed, R.W.; Wild, J.F.; Bemis, Jr., C.E.; Silva, R.J.; Eskola, P.

    1980-01-01

    A rotating drum system was used to search for an 80-ms spontaneous fission (sf) activity in the reaction of {sup 15}N with {sup 249}Bk. No such activity was found beyond a cross section limit of 0.3 {+-} 0.3 nb. A sf activity with a half-life of about 20 ms and a formation cross section of 12 nb at 82 MeV was observed. The identity of this activity has not been determined.

  19. Correlations in prompt neutrons and gamma-rays from Cf-252 spontaneous fission

    NASA Astrophysics Data System (ADS)

    Marcath, M. J.; Shin, T. H.; Fulvio, A. Di; Clarke, S. D.; Pozzi, S. A.

    2017-09-01

    New event-by-event fission models have prompt neutrons and gamma-rays that are correlated in time, energy, and multiplicity, however there is limited measurement data available to validate these models. Measurement of high-order fission neutron and gamma-ray coincidences is difficult and there has previously been little motivation to measure properties of both particle types simultaneously. High-order Cf-252 spontaneous fission neutron and gamma-ray coincidences were measured with a cylindrical array of 22 liquid organic and 8 NaI(Tl) scintillation detectors, 50 cm from a central axis. Waveforms were acquired and saved for post-processing using four time-synchronized CAEN V1720 digitizers. Liquid organic scintillator waveforms were analyzed with off-line pulse shape discrimination techniques to categorize neutron and gamma-ray detections. Detected multiplicity was compared with MCNPX-PoliMi simulation results, where built-in fission models and event-by-event fission models, CGMF and FREYA, have been implemented. Additionally, measured neutron energy by time-of-flight and gamma-ray energy correlated by detected multiplicity were compared to simulated results.

  20. Spontaneous fission, cluster emission and alpha decay of 222 Ra in a unified description

    NASA Astrophysics Data System (ADS)

    Mirea, Mihail; Budaca, Radu; Sandulescu, Aureliu

    2017-05-01

    Three disintegration modes of the parent nucleus 222 Ra, namely the fission, the cluster emission and the alpha decay, are treated in a unified manner. The half-lives are calculated by taking into account the penetration probabilities through the potential barrier along disintegration trajectories in the deformation space appropriate to each kind of decay. These trajectories start from the same parent ground state configuration. The disintegration paths are obtained from the least action principle. The deformation energy is calculated within the macroscopic-microscopic procedure based on the Woods-Saxon two center shell model. The effective mass is determined microscopically with the cranking method and the Gaussian Overlap Approximation. The nuclear shape parametrization is characterized by the most important five degrees of freedom encountered in fission, corresponding to the elongation, the mass asymmetry, the necking and the two fragment deformations. Partial half-life results for alpha-decay and cluster emission processes treated as superasymmetric fission agree with the experimental data. The spontaneous fission half-life is predicted. Molecular states are evidenced for the superasymmetric fission process as a result of the large shell effects in the nascent fragments.

  1. Impact of low-energy photons on the characteristics of prompt fission γ -ray spectra

    NASA Astrophysics Data System (ADS)

    Oberstedt, A.; Billnert, R.; Hambsch, F.-J.; Oberstedt, S.

    2015-07-01

    In this paper we report on a new study of prompt γ -rays from the spontaneous fission of 252Cf . Photons were measured in coincidence with fission fragments by employing four different lanthanide halide scintillation detectors. Together with results from a previous work of ours, we determined characteristic parameters with high precision, such as the average γ -ray multiplicity ν¯γ=(8.29 ±0.13 ), the average energy per photon ɛγ=(0.80 ±0.02 ) MeV, and the total γ -ray energy release per fission Eγ ,tot=(6.65 ±0.10 ) MeV. The excellent agreement between the individual results obtained in all six measurements proves the good repeatability of the applied experimental technique. The impact of low-energy photons, i.e., below 500 keV, on prompt fission γ -ray spectra characteristics has been investigated as well by comparing our results with those taken with the DANCE detector system, which appears to suffer from absorption effects in the low-energy region. Correction factors for this effect were estimated, giving results comparable to ours as well as to historical ones. From this we demonstrate that the different techniques of determining the average γ -ray multiplicity, either from a properly measured and normalized spectrum or a measured multiplicity distribution, give equivalent and consistent results.

  2. Experimental Constraints on Neutrino Spectra Following Fission

    NASA Astrophysics Data System (ADS)

    Napolitano, Jim; Daya Bay Collaboration

    2016-09-01

    We discuss new initiatives to constrain predictions of fission neutrino spectra from nuclear reactors. These predictions are germane to the understanding of reactor flux anomalies; are needed to reduce systematic uncertainty in neutrino oscillation spectra; and inform searches for the diffuse supernova neutrino background. The initiatives include a search for very high- Q beta decay components to the neutrino spectrum from the Daya Bay power plant; plans for a measurement of the β- spectrum from 252Cf fission products; and precision measurements of the 235U fission neutrino spectrum from PROSPECT and other very short baseline reactor experiments.

  3. Thermal neutron imaging with rare-earth-ion-doped LiCaAlF 6 scintillators and a sealed 252Cf source

    NASA Astrophysics Data System (ADS)

    Kawaguchi, Noriaki; Yanagida, Takayuki; Fujimoto, Yutaka; Yokota, Yuui; Kamada, Kei; Fukuda, Kentaro; Suyama, Toshihisa; Watanabe, Kenichi; Yamazaki, Atsushi; Chani, Valery; Yoshikawa, Akira

    2011-10-01

    Thermal neutron imaging with Ce-doped LiCaAlF 6 crystals has been performed. The prototype of the neutron imager using a Ce-doped LiCaAlF 6 scintillating crystal and a position sensitive photomultiplier tube (PSPMT) which had 64 multi-channel anode was developed. The Ce-doped LiCaAlF 6 single crystal was grown by the Czochralski method. A plate with dimensions of a diameter of 50×2 mm 2 was cut from the grown crystal, polished, and optically coupled to PSPMT by silicone grease. The 252Cf source (<1 MBq) was sealed with 43 mm of polyethylene for neutron thermalization. Alphabet-shaped Cd pieces with a thickness of 2 mm were used as a mask for the thermal neutrons. After corrections for the pedestals and gain of each pixel, we successfully obtained two-dimensional neutron images using Ce-doped LiCaAlF 6.

  4. Monte Carlo calculations of doses to tiles irradiated by 60Co and 252Cf simulating atomic bomb gamma-ray fluences.

    PubMed

    Uehara, S; Hoshi, M; Sawada, S; Nagatomo, T; Ichikawa, Y

    1988-03-01

    Dose calculations for tiles exposed to the Hiroshima atomic bomb radiations were undertaken. A Monte Carlo code, ABOMB, was developed which considers the characteristics of atomic bomb gamma-ray fluences and geometrical configurations. ABOMB was applied to tile dose calculations for the available photon sources with definite fluences. Its validity was tested by comparing the depth-dose curves calculated for 60Co and 252Cf beams with the equivalent experimental data obtained in the laboratory. Selection of parameters, contribution of backscattering, and computing time also were considered. Present calculations are considered to be accurate with uncertainties less than +/- 10%, and may be useful for correcting or reinforcing atomic bomb gamma-ray doses, together with tile dose measurements by thermoluminescent (TL) dosimetry.

  5. Preliminary investigation of the /sup 252/Cf-source-driven noise analysis method of subcriticality measurement in LWR fuel storage and initial loading applications

    SciTech Connect

    King, W.T.; Mihalczo, J.T.; Blakeman, E.D.

    1984-01-01

    The ability of the /sup 252/Cf-source-driven neutron noise analysis method to measure subcriticality has been demonstrated in a variety of experimental configurations of fissile materials. Calculations for an approximately 4-m-dia configuration of light water reactor (LWR) fuel elements indicated the feasibility of measuring the subcriticality of large, loosely coupled arrays of LWR fuel elements by this same method. These analysis suggested application to the initial loading of both pressurized and boiling water reactors, zero-power testing of reactors (such as shutdown margin measurements after initial loading), light water reactor refueling, and safe storage of LWR spent fuel. In the fuel storage application, direct measurement of subcriticality in the actual fuel storage facilities provides the parameter which is directly related to criticality safety.

  6. Uranium and plutonium total half-lives and for the spontaneous fission branch

    SciTech Connect

    Holden, N.E.

    1985-01-01

    The long-lived nuclides of the uranium and plutonium elements are of interest for their use in nuclear reactors, as well as in certain safeguard applications, e.g., alpha counting is often used to determine the amount of material present. The total half-life and the half-life for spontaneous fission are evaluated for these various long-lived nuclides of interest. The various experiments have been reanalyzed and recommended values are presented for /sup 232,233,234/U, /sup 235,236,238/U, and for /sup 236,238,239,240,241,242,244/Pu. These values improve upon preliminary estimates previously presented, in particular with respect to the uncertainties reported. The /sup 234/U half-life of 2.456 +- 0.005 x 10/sup 5/ years impacts directly on the 2200 meters/second fission cross section of /sup 235/U, since earlier measurements used values of 2.47 to 2.5 x 10/sup 5/ years and obtained correspondingly lower cross sections. In a similar manner, the /sup 239/Pu half-life is 1.25% lower than earlier estimates, which results in a 1.25% increase in the 2200 m/s fission cross section for /sup 239/Pu in some earlier cross section measurements. The total half-lives for the uranium nuclides were reviewed some time ago. At that time, the only spontaneous fission value which was evaluated was /sup 238/U. Recently, the uranium and plutonium nuclides were reviewed for both total and fission half-lives. The general procedure followed in this paper has been to review each of the experiments and revise the published values for the latest estimates of the various parameters used by the original authors. For the case of the total half-lives of uranium, only differences from the original work have been discussed. 120 refs., 23 tabs.

  7. Evaluating fission neutron-multiplicity data

    SciTech Connect

    Zucker, M.S.; Holden, N.E.

    1992-12-31

    The present work had its origins in the practical need to obtain P{sub {nu}} for the purpose of calculating the theoretical response of instrumentation that used a correlation technique to assay spontaneously fissioning nuclides. The assay results are proportional to the factorial moments calculated with the P{sub {nu}} distribution. Obtaining experimentally derived sets of P{sub {nu}} from many sources reported over several decades led immediately to the problem of evaluating the data: Aside from the trivial problem of sometimes not being properly normalized, the first moments ({nu}) = ({nu}) = {Sigma}{nu}P{sub {nu}} were typically not in accord with the best recent evaluations, or the calibration of detector efficiency was based on obsolete values for ({nu}) for supposedly well-characterized ``standard`` nuclides such as {sup 252}Cf. The problem of evaluating P{sub {nu}} is unusual in that, compared to the usual situation where the quantities being evaluated are single numbers, the P{sub {nu}} are sets of numbers, that moreover, are constrained so that {Sigma}P{sub {nu}}{triple_bond} 1 and {Sigma}{nu} P{sub {nu}} = ({nu}), where ({nu}) is usually determined more accurately from a separate experiment than it can be calculated from the experimentally derived P{sub {nu}} distribution.

  8. Microscopic modeling of mass and charge distributions in the spontaneous fission of 240Pu

    SciTech Connect

    Sandhukhan, Jhilam; Nazarewicz, Witold; Schunck, Nicolas

    2016-01-20

    We propose a methodology to calculate microscopically the mass and charge distributions of spontaneous fission yields. We combine the multidimensional minimization of collective action for fission with stochastic Langevin dynamics to track the relevant fission paths from the ground-state configuration up to scission. The nuclear potential energy and collective inertia governing the tunneling motion are obtained with nuclear density functional theory in the collective space of shape deformations and pairing. As a result, we obtain a quantitative agreement with experimental data and find that both the charge and mass distributions in the spontaneous fission of 240Pu are sensitive both to the dissipation in collective motion and to adiabatic fission characteristics.

  9. α decay and spontaneous fission half-lives of nuclei around 270Hs

    NASA Astrophysics Data System (ADS)

    Anghel, C. I.; Silişteanu, I.

    2017-03-01

    α decay and spontaneous fission half-lives of 81 superheavy nuclei with Z =104 -112 and N =158 -166 have been calculated with simple formulas extracted from the systematics of measured and calculated half-lives. Half-life calculations are performed within the shell model and one-body rate theories for α decay and a dynamical approach for spontaneous fission defined essentially by the shape, the height of fission barrier, the fissility, and the nuclear deformations. We obtained a rather good accordance between calculated and experimental half-lives for 30 nuclei with measured Qα values. We predicted with different fitting formulas the most probable half-lives for 51 nuclides at which there are no experimental data. The rms values for experimental and theoretical half-lives are evaluated and discussed. The comparison of theoretical calculations with experimental data allows us to draw conclusions on the role of the nuclear structure and shell effects in low-energy decay processes.

  10. Spontaneous fission properties of sup 258 Fm, sup 259 Md, sup 260 Md, sup 258 No, and sup 260 (104): Bimodal fission

    SciTech Connect

    Hulet, E.K.; Wild, J.F.; Dougan, R.J.; Lougheed, R.W.; Landrum, J.H.; Dougan, A.D.; Baisden, P.A.; Henderson, C.M.; Dupzyk, R.J. ); Hahn, R.L.; and others

    1989-08-01

    We have measured the mass and kinetic-energy distributions from the spontaneous fission of {sup 258}Fm, {sup 258}No, {sup 259}Md, {sup 260}Md, and {sup 260}(104). All are observed to fission with a symmetrical division of mass. The total-kinetic-energy distributions strongly deviated from the Gaussian shape characteristically found in the fission of all other actinides. When the total-kinetic-energy distributions are resolved into two Gaussians, the constituent peaks lie near 200 and 233 MeV. We conclude that both low- and high-energy fission modes occur in four of the five nuclides studied. We call this property bimodal fission.'' Even though both modes are possible in the same nuclide, one generally predominates. We offer an explanation for each mode based on shell structures of the fissioning nucleus and of its fragments. The appearance of both modes of fission in this region of the nuclide chart seems to be a coincidence in that the opportunity to divide into near doubly magic Sn fragments occurs in the same region where the second fission barrier is expected to drop in energy below the ground state of the fissioning nucleus. Appropriate paths on the potential-energy surface of deformation have been found by theorists, but no physical grounds have been advanced that would allow the near equal populations we observe traveling each path. We suggest that this failure to find a reason for somewhat equal branching may be a fundamental flaw of current fission models. Assuming the proposed origins of these modes are correct, we conclude the low-energy, but also mass-symmetrical mode is likely to extend to far heavier nuclei. The high-energy mode will be restricted to a smaller region, a realm of nuclei defined by the proximity of the fragments to the strong neutron and proton shells in {sup 132}Sn.

  11. Total and spontaneous fission half-lives of the uranium and plutonium nuclides

    SciTech Connect

    Holden, N.E.

    1984-01-01

    The total half-life and the half-life for spontaneous fission are evaluated for the various long-lived nuclides of interest. Recommended values are presented for /sup 232/U, /sup 233/U, /sup 234/U, /sup 235/U, /sup 236/U, /sup 238/U, /sup 236/Pu, /sup 238/Pu, /sup 239/Pu, /sup 240/Pu, /sup 241/Pu, /sup 242/Pu, and /sup 244/Pu. The uncertainties are provided at the 95% confidence limit for each of the recommended values.

  12. Neutron-fragment and Neutron-neutron Correlations in Low-energy Fission

    SciTech Connect

    Lestone, J.P.

    2016-01-15

    A computational method has been developed to simulate neutron emission from thermal-neutron induced fission of {sup 235}U and from spontaneous fission of {sup 252}Cf. Measured pre-emission mass-yield curves, average total kinetic energies and their variances, both as functions of mass split, are used to obtain a representation of the distribution of fragment velocities. Measured average neutron multiplicities as a function of mass split and their dependence on total kinetic energy are used. Simulations can be made to reproduce measured factorial moments of neutron-multiplicity distributions with only minor empirical adjustments to some experimental inputs. The neutron-emission spectra in the rest-frame of the fragments are highly constrained by ENDF/B-VII.1 prompt-fission neutron-spectra evaluations. The n-f correlation measurements of Vorobyev et al. (2010) are consistent with predictions where all neutrons are assumed to be evaporated isotropically from the rest frame of fully accelerated fragments. Measured n-f and n-n correlations of others are a little weaker than the predictions presented here. These weaker correlations could be used to infer a weak scission-neutron source. However, the effect of neutron scattering on the experimental results must be studied in detail before moving away from a null hypothesis that all neutrons are evaporated from the fragments.

  13. Measurements of charge distributions of the fragments in the low energy fission reaction

    NASA Astrophysics Data System (ADS)

    Wang, Taofeng; Han, Hongyin; Meng, Qinghua; Wang, Liming; Zhu, Liping; Xia, Haihong

    2013-01-01

    The measurement for charge distributions of fragments in spontaneous fission 252Cf has been performed by using a unique style of detector setup consisting of a typical grid ionization chamber and a ΔΕ-Ε particle telescope, in which a thin grid ionization chamber served as the ΔΕ-section and the E-section was an Au-Si surface barrier detector. The typical physical quantities of fragments, such as mass number and kinetic energies as well as the deposition in the gas ΔΕ detector and E detector were derived from the coincident measurement data. The charge distributions of the light fragments for the fixed mass number A2* and total kinetic energy (TKE) were obtained by the least-squares fits for the response functions of the ΔΕ detector with multi-Gaussian functions representing the different elements. The results of the charge distributions for some typical fragments are shown in this article which indicates that this detection setup has the charge distribution capability of Ζ:ΔΖ>40:1. The experimental method developed in this work for determining the charge distributions of fragments is expected to be employed in the neutron induced fissions of 232Th and 238U or other low energy fission reactions.

  14. Fissible Deposit Characterization at the Former Oak Ridge K-25 Gaseous Diffusion Plant by {sup 252}CF-Source-Driven Measurements

    SciTech Connect

    Hannon, T.F.; Mihalczo, J.T.; Mullens, J.A.; Uckan, T.; Valentine, T.E.; Wyatt, M.S.

    1998-05-01

    largest deposits with the {sup 252}Cf-source-driven transmission (CFSDT) technique, an active neutron interrogation method developed for use at the Oak Ridge Y-12 Plant to identify nuclear weapons components in containers. The active CFSDT measurement technique uses CFSDT time-of-flight measurements of prompt neutrons and gamma rays from an externally introduced {sup 252}Cf source.

  15. DSP Algorithms for Fission Fragment and Prompt Fission Neutron Spectroscopy

    SciTech Connect

    Zeynalova, O.; Zeynalov, Sh.; Hambsch, F.-J.; Oberstedt, S.; Fabry, I.

    2009-10-29

    Digital signal processing (DSP) algorithms are in high demand for modern nuclear fission investigation due to importance of increase the accuracy of fissile nuclear data for new generation of nuclear power stations. DSP algorithms for fission fragment (FF) and prompt fission neutron (PFN) spectroscopy are described in the present work. The twin Frisch-grid ionization chamber (GTIC) is used to measure the kinetic energy-, mass- and angular distributions of the FF in the {sup 252}Cf(SF) reaction. Along with the neutron time-of-flight (TOF) measurement the correlation between neutron emission and FF mass and energy is investigated. The TOF is measured between common cathode of the GTIC and the neutron detector (ND) pulses. Waveform digitizers (WFD) having 12 bit amplitude resolution and 100 MHz sampling frequency are used for the detector pulse sampling. DSP algorithms are developed as recursive procedures to perform the signal processing, similar to those available in various nuclear electronics modules, such as constant fraction discriminator (CFD), pulse shape discriminator (PSD), peak-sensitive analogue-to-digital converter (pADC) and pulse shaping amplifier (PSA). To measure the angle between FF and the cathode plane normal to the GTIC a new algorithm is developed having advantage over the traditional analogue pulse processing schemes. Algorithms are tested by comparing the numerical simulation of the data analysis of the {sup 252}Cf(SF) reaction with data available from literature.

  16. Erratum to "Multi-modal fission in collinear ternary cluster decay of 252Cf(sf,fff)" [Phys. Lett. B 746 (2015) 223

    NASA Astrophysics Data System (ADS)

    von Oertzen, W.; Nasirov, A. K.; Tashkodjaev, R. B.

    2016-11-01

    The scale of the ordinate axis of Fig. 4 on page 226 of PLB 746 (2015) 223 was incorrect. The new version of Fig. 4 (which is "Fig. 1" in the present note) with the correct ordinate axis is given here (upper part). The lower part shows the previous version. Five potential wells and barriers are shown. Considering a sequential process two barriers are relevant for the decay, with equal barriers for the symmetric cases with a smaller fragment at the center (in these cases only one barrier is shown). For the asymmetric case of 70Ni + 50Ca + 132Sn, two different barriers appear, denoted as (B1) and (B2), which correspond to the interactions of the middle cluster 50Ca with the outer nuclei 70Ni and 132Sn, respectively. In a sequential mechanism the separation of 132Sn from the other part via the barrier B2 having the smaller height, is favoured for the first step. For the second step the barrier (B1) between Ni and Ca, appears at smaller distances (dot-dashed curve) and is higher. The order of the barriers of the five channels is unchanged, compared to the figure in Ref. W. von Oertzen et al., Phys. Lett. B 746 (2015) 223.

  17. Corrigendum to "Multi-modal Fission in Collinear Ternary Cluster decay of 252Cf(sf,fff)" [Phys. Lett. B 746 (2015) 223

    NASA Astrophysics Data System (ADS)

    von Oertzen, W.; Nasirov, A. K.; Tashkodjaev, R. B.

    2017-02-01

    The scale of the ordinate axis of Fig. 4 on page 226 of PLB 746 (2015) 223 was incorrect. The new version of Fig. 4 (which is "Fig. 1" in the present note) with the correct ordinate axis is given here (upper part). The lower part shows the previous version. Five potential wells and barriers are shown. Considering a sequential process, two barriers are relevant for the sequential decay, with equal barriers for the symmetric cases with a smaller fragment at the center (in these cases only one barrier is shown). For the asymmetric case of 70Ni + 50Ca + 132Sn, two different barriers appear, denoted as (B1) and (B2), which correspond to the interactions of the middle cluster 50Ca with the outer nuclei 70Ni and 132Sn, respectively. In a sequential mechanism the separation of 132Sn from the other part via the barrier B2 has the smaller height, thus it is favored for the first step. For the second step the barrier (B1) between Ni and Ca, appears at smaller distances (dot-dashed curve) and is higher. The order of the barriers of the five channels is unchanged, compared to the figure in Ref. W. von Oertzen et al., Phys. Lett. B 746 (2015) 223.

  18. Light-charged-particle emission in the spontaneous fission of /sup 250/Cf, /sup 256/Fm, and /sup 257/Fm

    SciTech Connect

    Wild, J.F.; Baisden, P.A.; Dougan, R.J.; Hulet, E.K.; Lougheed, R.W.; Landrum, J.H.

    1985-08-01

    We have measured the energy spectra for the emission of long-range ..cap alpha.. particles from the spontaneous fission of /sup 250/Cf, /sup 256/Fm, and /sup 257/Fm, and for tritons and protons from the spontaneous fission of /sup 250/Cf and /sup 256/Fm. We have determined ..cap alpha.., triton, and proton emission probabilities and estimated total light-particle emission probabilities for these nuclides. We compare these and known emission probabilities for five other spontaneously fissioning nuclides with the deformation energy available at scission and show that there is a possible correlation that is consistent with a one-body dissipation mechanism for transferring release energy to particle clusters.

  19. Quantization in Classical Mechanics and Diffusion Mechanism of Alpha Decay, Proton and Cluster Radioactivity, Spontaneous Fission

    SciTech Connect

    Rusov, V. D.; Vlasenko, D. S.; Deliyergiyev, M. A.; Mavrodiev, S. Cht.

    2010-01-01

    Based on the Chetaev generalized theorem the Schroedinger equation as the stability condition of trajectories in classical dynamics in the presence of dissipative forces is derived. In the framework of this approach the alternative model for unified description of alpha decay, spontaneous fission, cluster and proton radioactivity and is developed. We show the possibility of the classical (without tunneling) description of radioactive decay of heavy nuclei, when the so called noise-induced transition or, in other words, the stochastic channel of radioactive decay conditioned by the Kramers diffusion mechanism is generated under certain conditions.Using the ENSDF nuclear data, we have found the parametrized solutions of the Kramers equation of the Langevin type by the Alexandrov dynamic auto-regularization method (REGN-Dubna program). These solutions describe with high-accuracy the dependences of half-life (the decay probability) of heavy radioactive nuclei on total kinetic energy of daughter decay products.Verification of the inverse problem solution in the framework of the universal Kramers description of alpha decay, spontaneous fission, cluster and proton radioactivity, which based on the newest experimental data for alpha-decay of even-even superheavy nuclei (Z = 114, 116, 118), shows good coincidence of the experimental and theoretical dependences of half-life on alpha-decay energy.

  20. Quantization in Classical Mechanics and Diffusion Mechanism of Alpha Decay, Proton and Cluster Radioactivity, Spontaneous Fission

    NASA Astrophysics Data System (ADS)

    Rusov, V. D.; Mavrodiev, S. Cht.; Vlasenko, D. S.; Deliyergiyev, M. À.

    2010-01-01

    Based on the Chetaev generalized theorem the Schroedinger equation as the stability condition of trajectories in classical dynamics in the presence of dissipative forces is derived. In the framework of this approach the alternative model for unified description of alpha decay, spontaneous fission, cluster and proton radioactivity and is developed. We show the possibility of the classical (without tunneling) description of radioactive decay of heavy nuclei, when the so called noise-induced transition or, in other words, the stochastic channel of radioactive decay conditioned by the Kramers diffusion mechanism is generated under certain conditions. Using the ENSDF nuclear data, we have found the parametrized solutions of the Kramers equation of the Langevin type by the Alexandrov dynamic auto-regularization method (REGN-Dubna program). These solutions describe with high-accuracy the dependences of half-life (the decay probability) of heavy radioactive nuclei on total kinetic energy of daughter decay products. Verification of the inverse problem solution in the framework of the universal Kramers description of alpha decay, spontaneous fission, cluster and proton radioactivity, which based on the newest experimental data for alpha-decay of even-even superheavy nuclei (Z = 114, 116, 118), shows good coincidence of the experimental and theoretical dependences of half-life on alpha-decay energy.

  1. Rapid separation of individual lanthanide elements from mixed fission products

    SciTech Connect

    Baker, J.D.

    1980-11-01

    A microprocessor-controlled radiochemical separation system has been developed to separate lanthanide elements rapidly from fission products. The system is composed of two high performance liquid chromatography columns coupled in series by a stream-splitting injection valve. The first column separates the lanthanide group by extraction-chromatography using dihexyldiethylcarbamylmethyleneophoshate (DHDECMP) adsorbed on Vydac C/sub 8/ resin. The second column isolates the individual lanthanide elements by cation exchange using Aminex A-9 resin with ..cap alpha..-hydroxyisobutyric acid (..cap alpha..-HIBA) as the eluent. With this system, the fission-product lanthanide isotope /sup 158/Sm has been identified for the first time. It was produced from a spontaneously fissioning /sup 252/Cf source. Twenty-seven gamma-rays have been assigned to this activity which decays with a half-life of 5.51 +- 0.09 min. The /sup 158/Sm assignment is based upon the radiochemical separation of the Sm fraction from the lanthanide fission products and the observation of the growth and decay of the 45.9 min /sup 158/Eu daughter from an initially pure 5 min parent. The emission probability of the 324-keV gamma ray of /sup 158/Sm was also determined, from the growth and decay of the /sup 158/Eu daughter, to be 10.6 +- 1.2 gamma rays per 100 decays. Several new gamma rays have been identified by half-life as belonging to the decay of /sup 157/Sm. Gamma-ray energies and relative intensities for /sup 157/Sm and /sup 158/Sm are reported.

  2. A probe for neutron activation analysis in a drill hole using 252Cf, and a Ge(Li) detector cooled by a melting cryogen

    USGS Publications Warehouse

    Tanner, A.B.; Moxham, R.M.; Senftle, F.E.; Baicker, J.A.

    1972-01-01

    A sonde has been built for high-resolution measurement of natural or neutron-induced gamma rays in boreholes. The sonde is 7.3 cm in diameter and about 2.2 m in length and weighs about 16 kg. The lithium-compensated germanium semiconductor detector is stabilized at -185 to -188??C for as much as ten hours by a cryostatic reservoir containing melting propane. During periods when the sonde is not in use the propane is kept frozen by a gravity-fed trickle of liquid nitrogen from a reservoir temporarily attached to the cryostat section. A 252Cf source, shielded from the detector, may be placed in the bottom section of the sonde for anlysis by measurement of neutron-activation or neutron-capture gamma rays. Stability of the cryostat with changing hydrostatic pressure, absence of vibration, lack of need for power to the cryostat during operation, and freedom of orientation make the method desirable for borehole, undersea, space, and some laboratory applications. ?? 1972.

  3. In Plant Measurement and Analysis of Mixtures of Uranium and Plutonium TRU-Waste Using a {sup 252}Cf Shuffler Instrument

    SciTech Connect

    Hurd, J.R.

    1998-11-02

    The active-passive {sup 252}Cf shuffler instrument, installed and certified several years ago in Los Alamos National Laboratory's plutonium facility, has now been calibrated for different matrices to measure Waste Isolation Pilot Plant (WIPP)-destined transuranic (TRU)-waste. Little or no data currently exist for these types of measurements in plant environments where sudden large changes in the neutron background radiation can significantly distort the results. Measurements and analyses of twenty-two 55-gallon drums, consisting of mixtures of varying quantities of uranium and plutonium in mostly noncombustible matrices, have been recently completed at the plutonium facility. The calibration and measurement techniques, including the method used to separate out the plutonium component, will be presented and discussed. Calculations used to adjust for differences in uranium enrichment from that of the calibration standards will be shown. Methods used to determine various sources of both random and systematic error will be indicated. Particular attention will be directed to those problems identified as arising from the plant environment. The results of studies to quantify the aforementioned distortion effects in the data will be presented. Various solution scenarios will be outlined, along with those adopted here.

  4. Challenges using a {sup 252}Cf shuffler instrument in a plant environment to measure mixtures of uranium and plutonium transuranic waste

    SciTech Connect

    Hurd, J.R.

    1999-08-29

    An active-passive {sup 252}Cf shuffler instrument, installed and certified several years ago at Los Alamos National Laboratory's plutonium facility, has now been calibrated for different matrices to measure Waste Isolation Pilot Plant (WIPP)-destined transuranic (TRU) waste. Little or no data currently exist for these types of measurements in plant environments where sudden large changes in the neutron background radiation can significantly distort the results. Measurements and analyses of twenty-two 55-gallon drums, consisting of mixtures of varying quantities of uranium and plutonium in mostly noncombustible matrices, have been recently completed at the plutonium facility. The calibration and measurement techniques, including the method used to separate out the plutonium component, will be presented and discussed. Calculations used to adjust for differences in uranium enrichment from that of the calibration standards will be shown. Methods used to determine various sources of both random and systematic error will be indicated. Particular attention will be directed to those problems identified as arising from the plant environment. The results of studies to quantify the aforementioned distortion effects in the data will be presented. Various solution scenarios will be outlined, along with those adopted here.

  5. Competition between alpha-decay and spontaneous fission at isotopes of superheavy elements Rf, Db, and Sg

    SciTech Connect

    Anghel, Claudia Ioana; Silisteanu, Andrei Octavian

    2015-12-07

    The most important decay modes for heavy and superheavy nuclei are their α-decay and spontaneous fission. This work investigates the evolution and the competition of these decay modes in long isotopic sequences. The partial half-lives are given by minimal sets of parameters extracted from the fit of experimental data and theoretical results. A summary of the experimental and calculated α-decay and spontaneous fission half-lives of the isotopes of elements Rf, Db, and Sg is presented. Some half-life extrapolations for nuclides not yet known are also obtained.

  6. Interpretation of the mechanism of spontaneous fission of heavy nuclei in the framework of dinuclear system conception

    NASA Astrophysics Data System (ADS)

    Volkov, V. V.; Cherepanov, E. A.; Kalandarov, Sh. A.

    2016-11-01

    The new approach to the interpretation of the process of spontaneous fission of heavy nuclei is suggested. It is based on nuclear physics data which are obtained in heavy ion collisions. The process of spontaneous fission consists of three sequential stages: clusterization of the valent nucleons of a heavy nucleus into a light nucleus-cluster, which leads to the formation of a dinuclear system; evolution of the dinuclear system which proceeds by nucleon transfer from the heavy to light nucleus and decay of the dinuclear system from the equilibrium configuration into two fragments.

  7. Total and spontaneous fission half-lives for americium and curium nuclides

    SciTech Connect

    Holden, N.E.

    1985-01-01

    The long-lived nuclides of the americium curium elements are of interest for their use in certain safeguard applications and for nuclear reactor burnup studies in waste management. Recommended values are presented for /sup 241,242m,243/Am, and for /sup 242,243,244,245,246,247,248,250/Cm. These values result from a consistent evaluation of all these half-lives. These preliminary estimates were presented earlier. The uncertainties are provided at the 95% confidence limit for each of the recommended values. It will be noted that many of the recommended errors considerably exceed errors quoted by individual authors in their publication, by up to an order of magnitude, e.g., the total half-life of /sup 242,246,248/Cm and the spontaneous fission half-life of /sup 244/Cm. 65 refs., 18 tabs.

  8. Total and spontaneous fission half-lives for americium and curium nuclides

    NASA Astrophysics Data System (ADS)

    Holden, N. E.

    The long-lived nuclides of the americium curium elements are of interest for their use in certain safeguard applications and for nuclear reactor burnup studies in waste management. Recommended values are presented for /sup 241,242m,243/Am, and for /sup 242,243,244,245,246,247,248,250/Cm. These values result from a consistent evaluation of all these half-lives. These preliminary estimates were presented earlier. The uncertainties are provided at the 95% confidence limit for each of the recommended values. It will be noted that many of the recommended errors considerably exceed errors quoted by individual authors in their publication, by up to an order of magnitude, e.g., the total half-life of /sup 242,246,248/Cm and the spontaneous fission half-life of (244)Cm.

  9. Relative biological efficiency for the induction of various gene mutations in normal and enriched with 10B Tradescantia cells by neutrons from 252Cf source.

    PubMed

    Cebulska-Wasilewska, A; Schneider, K; Kim, J K

    2001-03-01

    The effectiveness of neutrons from a Californium-252 source in the induction of various abnormalities in the Tradescantia clone 4430 stamen hair cells (Trad-SH assay) were studied. A special attention was paid to check whether any enhancement in effects is visible in the cells enriched with boron ions. Inflorescences, normal or pretreated with chemicals containing boron, were irradiated in the air with neutrons from a 252Cf source at KAERI, Taejon, Korea. To estimate the relative biological effectiveness (RBE) of the beam under the study, numbers of Tradescantia inflorescence without chemical pretreatment were irradiated with various doses of X-rays. The ranges of radiation doses used for neutrons were 0-1.0Gy and for X-rays 0-0.5Gy. Following the culturing according to standard procedures screening of gene and lethal mutations in somatic cells of stamen hairs was done in the extended period, between days 7 and 19 after exposures. Maximal RBE values for the induction of pink, colorless and lethal mutations were evaluated from comparison of the slopes in linear parts of the dose response curves obtained after irradiation with X-rays and californium source. The RBE(max) value or the induction of gene mutation was estimated as 7.2 comparing the value 5.6 in the studies reported earlier. The comparison of dose-response curves and its alteration, due to changes in the cells and plants environment during and after irradiation, explains the observed differences. Inflorescence pretreated with borax responded to neutrons differently depending on the biological end points. Although, for the induction of pink mutations no significant difference was observed, though, in the case of cell lethality, pretreated with boron ion plants have shoved a statistically significant increase of the RBE value from 5.5 to 34.7, and in the case of colorless mutations from 1.6 to 5.6.

  10. Spontaneous Fission Modes and Lifetimes of Superheavy Elements in the Nuclear Density Functional Theory

    SciTech Connect

    Staszczak, A,

    2013-01-01

    Background: The reactions with the neutron-rich 48Ca beam and actinide targets resulted in the detection of new superheavy (SH) nuclides with Z=104 118. The unambiguous identification of the new isotopes, however, still poses a problem because their -decay chains terminate by spontaneous fission (SF) before reaching the known region of the nuclear chart. The understanding of the competition between -decay and SF channels in SH nuclei is, therefore, of crucial importance for our ability to map the SH region and to assess its extent.

    Purpose: We perform self-consistent calculations of the competing decay modes of even-even SH isotopes with 108 Z 126 and 148 N 188.

    Methods: We use the state-of-the-art computational framework based on self-consistent symmetry-unrestricted nuclear density functional theory capable of describing the competition between nuclear attraction and electrostatic repulsion. We apply the SkM* Skyrme energy density functional. The collective mass tensor of the fissioning superfluid nucleus is computed by means of the cranking approximation to the adiabatic time-dependent Hartree-Fock-Bogoliubov (HFB) approach. This paper constitutes a systematic self-consistent study of spontaneous fission in the SH region, carried out at a full HFB level, that simultaneously takes into account both triaxiality and reflection asymmetry.

    Results: Breaking axial symmetry and parity turns out to be crucial for a realistic estimate of collective action; it results in lowering SF lifetimes by more than 7 orders of magnitude in some cases. We predict two competing SF modes: reflection symmetric modes and reflection asymmetric modes.

    Conclusions: The shortest-lived SH isotopes decay by SF; they are expected to lie in a narrow corridor formed by 280Hs, 284Fl, and 118284Uuo that separates the regions of SH nuclei synthesized in cold-fusion and hot-fusion reactions. The region of long-lived SH nuclei is expected to be centered on 294Ds with a total half-life of

  11. Spontaneous fission modes and lifetimes of superheavy elements in the nuclear density functional theory

    NASA Astrophysics Data System (ADS)

    Staszczak, A.; Baran, A.; Nazarewicz, W.

    2013-02-01

    Background: The reactions with the neutron-rich 48Ca beam and actinide targets resulted in the detection of new superheavy (SH) nuclides with Z=104-118. The unambiguous identification of the new isotopes, however, still poses a problem because their α-decay chains terminate by spontaneous fission (SF) before reaching the known region of the nuclear chart. The understanding of the competition between α-decay and SF channels in SH nuclei is, therefore, of crucial importance for our ability to map the SH region and to assess its extent.Purpose: We perform self-consistent calculations of the competing decay modes of even-even SH isotopes with 108≤Z≤126 and 148≤N≤188.Methods: We use the state-of-the-art computational framework based on self-consistent symmetry-unrestricted nuclear density functional theory capable of describing the competition between nuclear attraction and electrostatic repulsion. We apply the SkM* Skyrme energy density functional. The collective mass tensor of the fissioning superfluid nucleus is computed by means of the cranking approximation to the adiabatic time-dependent Hartree-Fock-Bogoliubov (HFB) approach. This paper constitutes a systematic self-consistent study of spontaneous fission in the SH region, carried out at a full HFB level, that simultaneously takes into account both triaxiality and reflection asymmetry.Results: Breaking axial symmetry and parity turns out to be crucial for a realistic estimate of collective action; it results in lowering SF lifetimes by more than 7 orders of magnitude in some cases. We predict two competing SF modes: reflection symmetric modes and reflection asymmetric modes.Conclusions: The shortest-lived SH isotopes decay by SF; they are expected to lie in a narrow corridor formed by 280Hs, 284Fl, and 118284Uuo that separates the regions of SH nuclei synthesized in “cold-fusion” and “hot-fusion” reactions. The region of long-lived SH nuclei is expected to be centered on 294Ds with a total half

  12. Interaction of three fission fragments and yields of various ternary fragments

    NASA Astrophysics Data System (ADS)

    Denisov, V. Yu.; Pilipenko, N. A.; Sedykh, I. Yu.

    2017-01-01

    The interaction potential energy of the three deformed fragments formed in fission of 252Cf is studied for various combinations of three-fragment fission. The lowest height of the potential energy ridge between three touching and separated deformed fragments is sought. The excitation energies of various three-deformed-fragment configurations, at the lowest barrier heights related to the yield of the corresponding configuration, are considered in detail. The most probable three-fragment fission configurations are discussed. The yields of various ternary fragments in fission of 250Cf agree well with available experimental data.

  13. Benchmarking nuclear fission theory

    DOE PAGES

    Bertsch, G. F.; Loveland, W.; Nazarewicz, W.; ...

    2015-05-14

    We suggest a small set of fission observables to be used as test cases for validation of theoretical calculations. Thus, the purpose is to provide common data to facilitate the comparison of different fission theories and models. The proposed observables are chosen from fission barriers, spontaneous fission lifetimes, fission yield characteristics, and fission isomer excitation energies.

  14. Benchmarking nuclear fission theory

    SciTech Connect

    Bertsch, G. F.; Loveland, W.; Nazarewicz, W.; Talou, P.

    2015-05-14

    We suggest a small set of fission observables to be used as test cases for validation of theoretical calculations. Thus, the purpose is to provide common data to facilitate the comparison of different fission theories and models. The proposed observables are chosen from fission barriers, spontaneous fission lifetimes, fission yield characteristics, and fission isomer excitation energies.

  15. 1987 Neutron and gamma personnel dosimeter intercomparison study using a D/sub 2/O-moderated /sup 252/Cf source

    SciTech Connect

    Swaja, R.E.; West, L.E.; Sims, C.S.; Welty, T.J.

    1989-05-01

    The thirteenth Personnel Dosimetry Intercomparison Study (i.e., PDIS 13) was conducted during April 1987 as a joint effort by Oak Ridge National Laboratory's (ORNL) Dosimetry Applications Research Group and the Southwest Radiation Calibration Center at the University of Arkansas. A total of 48 organizations (34 from the US and 14 from abroad) participated in PDIS 13. Participants submitted a total of 1,113 neutron and gamma dosimeters for this mixed field study. The dosimeters were transferred by mail and were handled by experimental personnel at ORNL and the University of Arkansas. The type of neutron dosimeter and the percentage of participants submitting that type are as follows: TLD-albedo (49%), direct interaction TLD (31%), CR-39 (17%), film (3%). The type of gamma dosimeter and the percentage of participants submitting that type are as follows: Li/sub 2/B/sub 4/O/sub 7/, alone or in combination with CaSO/sub 4/, (69%), /sup 7/LiF (28%), natural LiF (3%). Radiation exposures in PDIS 13 were limited to 0.5 and 1.5 mSv from /sup 252/Cf moderated by 15-cm of D/sub 2/O. Traditional exposures using the Health Physics Research Reactor (HPRR) were not possible due to the fact that all reactors at ORNL, including the HPRR, were shutdown by order of the Department of Energy at the time the intercomparison was performed. Planned exposures using a /sup 238/PuBe source were negated by a faulty timing mechanism. Based on accuracy and precision, direct interaction TLD dosimeters exhibited the best performance in PDIS 13 neutron measurements. They were followed, in order of best performance, by CR-39, TLD albedo, and film. The Li/sub 2/B/sub 4/O/sub 7/ type TLD dosimeters exhibited the best performance in PDIS 13 gamma measurements. They were followed by natural LiF, /sup 7/LiF, and film. 12 refs., 1 fig., 5 tabs.

  16. Advanced modeling of prompt fission neutrons

    SciTech Connect

    Talou, Patrick

    2009-01-01

    Theoretical and numerical studies of prompt fission neutrons are presented. The main results of the Los Alamos model often used in nuclear data evaluation work are reviewed briefly, and a preliminary assessment of uncertainties associated with the evaluated prompt fission neutron spectrum for n (0.5 MeV)+{sup 239}Pu is discussed. Advanced modeling of prompt fission neutrons is done by Monte Carlo simulations of the evaporation process of the excited primary fission fragments. The successive emissions of neutrons are followed in the statistical formalism framework, and detailed information, beyond average quantities, can be inferred. This approach is applied to the following reactions: {sup 252}Cf (sf), n{sub th} + {sup 239}Pu, n (0.5 MeV)+{sup 235}U, and {sup 236}Pu (sf). A discussion on the merits and present limitations of this approach concludes this presentation.

  17. Searches for superheavy elements in nature: Cosmic-ray nuclei; spontaneous fission

    NASA Astrophysics Data System (ADS)

    Ter-Akopian, G. M.; Dmitriev, S. N.

    2015-12-01

    There is little chance that superheavy nuclei with lifetimes of no less than 100 million years are present on the stability island discovered at present. Also, pessimistic are the results of estimates made about their nucleosynthesis in r-process. Nevertheless, the search for these nuclei in nature is justified in view of the fundamental importance of this topic. The first statistically significant data set was obtained by the LDEF Ultra-Heavy Cosmic-Ray Experiment, consisting of 35 tracks of actinide nuclei in galactic cosmic rays. Because of their exceptionally long exposure time in Galaxy, olivine crystals extracted from meteorites generate interest as detectors providing unique data regarding the nuclear composition of ancient cosmic rays. The contemporary searches for superheavy elements in the earth matter rely on knowledge obtained from chemical studies of artificially synthesized superheavy nuclei. New results finding out the chemical behavior of superheavy elements should be employed to obtain samples enriched in their homologues. The detection of rare spontaneous fission events and the technique of accelerator mass spectrometry are employed in these experiments.

  18. Americium and curium total half-lives and for the spontaneous fission branch

    SciTech Connect

    Holden, N.E.

    1985-01-01

    The long-lived nuclides of the americium and curium elements are of interest for their use in certain safeguard applications and for nuclear reactor burnup studies in waste management. Recommended values are presented for /sup 241,242m,243/Am, and for /sup 242,243,244,245,246,247,248,250/Cm. These values result from a consistent evaluation of all these half-lives. These preliminary estimates were presented earlier. The uncertainties are provided at the 95% confidence limit for each of the recommended values. It will be noted that many of the recommended errors considerably exceed errors quoted by individual authors in their publication, by up to an order of magnitude, e.g. the total half-life of /sup 242,246,248/Cm and the spontaneous fission half-life of /sup 244/Cm. These preliminary estimates for the half-lives were given previously. Efforts continue to reevaluate the various experiments to better gauge the systematic errors involved and reassess the total error.

  19. Microscopic description of the competition between spontaneous fission and α-decay in neutron-rich Ra, U and Pu nuclei

    NASA Astrophysics Data System (ADS)

    Rodríguez-Guzmán, R.; Robledo, L. M.

    2017-06-01

    Constrained mean-field calculations, based on the Gogny-D1M energy density functional, have been carried out to describe fission in Ra, U and Pu nuclei with neutron number 144 ≤ N ≤ 176. Fission paths, collective masses and zero-point quantum vibrational and rotational corrections are used to compute the spontaneous fission half-lives. We also pay attention to isomeric states along the considered fission paths. Alpha decay half-lives have also been computed using a parametrization of the Viola-Seaborg formula. Though there exists a strong variance of the predicted fission rates with respect to the details involved in their computation a robust trend is obtained indicating, that with increasing neutron number fission dominates over α-decay. Our results also suggest that a dynamical treatment of pairing correlations is required within the microscopic studies of the fission process in heavy nuclear systems.

  20. The spontaneous fission of 8Be and the fusion at sub-coloumb barrier energies in the time-dependent cluster theory

    NASA Astrophysics Data System (ADS)

    Drożdż, S.; Okolowicz, J.; Ploszajczak, M.

    1983-08-01

    The time-dependent cluster theory is applied for a description of the spontaneous fission of 8Be and for a calculation of the α-α fusion cross section at sub-Coulomb barrier energies. The calculated spontaneous fission decay width Γ(cal) ≅ 7.5 eV reproduces the experimental value Γ(ex) = 6.8 +/- 1.7 eV.

  1. 12. 3-min /sup 256/Cf and 43-min /sup 258/Md and systematics of the spontaneous fission propertiesof heavy nuclides

    SciTech Connect

    Hoffman, D.C.; Wilhelmy, J.B.; Weber, J.; Daniels, W.R.; Hulet, E.K.; Lougheed, R.W.; Landrum, J.H.; Wild, J.F.; Dupzyk, R.J.

    1980-03-01

    The new isotope 12.3-min /sup 256/Cf was produced via the /sup 254/Cf(t,p) reaction, and a new 43-min isomer of /sup 258/Md was produced via the /sup 255/Es(..cap alpha..,n) reaction. The fragment mass and kinetic energy distributions from the spontaneous fission of /sup 256/Cf were found to be very similar to those from the spontaneous fission of lighter Cf isotopes. The mass division is primarily asymmetric, and the average total kinetic energy is 189.8 +- 0.9 MeV. The 43-min /sup 258/Md presumably decays by electron capture and provides an opportunity to study the mass and kinetic energy distributions from the spontaneous fission of the 380-..mu..s /sup 258/Fm daughter. The observed narrow, symmetric mass distribution and the most probable total kinetic energy of 238 +- 3 MeV are similar to those reported for the spontaneous fission of /sup 259/Fm but show a sharp increase in symmetric mass division and total kinetic energy compared to /sup 257/Fm and the lighter Fm isotopes. No such abrupt change in properties was observed for /sup 256/Cf, which, like /sup 258/Fm, has 158 neutrons. The marked difference between the spontaneous fission properties of the heavier Fm isotopes and those of other spontaneously fissioning nuclides is compared to some theoretical predictions.

  2. Observation of new spontaneous fission activities from elements 100 to 105

    SciTech Connect

    Somerville, L.P.

    1982-03-01

    Several new Spontaneous Fission (SF) activities have been found. No definite identification could be made for any of the new SF activities; however, half-lives and possible assignments to element-104 isotopes consistent with several cross bombardments include /sup 257/Rf(3.8 s, 14% SF), /sup 258/Rf(13 ms), /sup 259/Rf(approx. 3 s, 8% SF), /sup 260/Rf(approx. 20 ms), and /sup 262/Rf(approx. 50 ms). The 80-ms SF activity claimed by the Dubna group for the discovery of element 104 (/sup 260/104) was not observed. A difficulty exists in the interpretation that /sup 260/Rf is a approx. 20-ms SF activity: in order to be correct, for example, the SF activities with half-lives between 14 and 24 ms produced in the reactions 109- to 119-MeV /sup 18/O + /sup 248/Cm, 88- to 100-MeV /sup 15/N + /sup 249/Bk, and 96-MeV /sup 18/O + /sup 249/Cf must be other nuclides due to their large production cross sections, or the cross sections for production of /sup 260/Rf must be enhanced by unknown mechanisms. Based on calculated total production cross sections a possible approx. 1% electron-capture branch in /sup 258/Lr(4.5 s) to the SF emitter /sup 258/No(1.2 ms) and an upper limit of 0.05% for SF branching in /sup 254/No(55 s) were determined. Other measured half-lives from unknown nuclides produced in respective reactions include approx. 1.6 s (/sup 18/O + /sup 248/CM), indications of a approx. 47-s SF activity (75-MeV /sup 12/C + /sup 249/Cf), and two or more SF activities with 3 s less than or equal to T/sub 1/2/ less than or equal to 60 s (/sup 18/O + /sup 249/Bk). The most exciting conclusion of this work is that if the tentative assignments to even-even element 104 isotopes are correct, there would be a sudden change in the SF half-life systematics at element 104 which has been predicted theoretically and attributed to the disappearance of the second hump of the double-humped fission barrier.

  3. Counting neutrons from the spontaneous fission of {sup 238}U using scintillation detectors and mixed field analysers

    SciTech Connect

    Parker, Helen M. O'D.; Joyce, Malcolm J.; Jones, Ashley

    2015-07-01

    It is well documented that {sup 238}U decays by spontaneous fission, and that it is the main component of most nuclear fuels. As nuclear fuels are largely classed as Special Nuclear Material (SNM), they have to be fully accounted for by owners and processing facilities. One possible method for verifying declared amounts of SNM is to count the spontaneous neutrons produced from {sup 238}U. Using four EJ-309 liquid scintillation detectors and a mixed field analyser, spontaneous neutrons from 16.4 g of depleted uranium (0.3% enrichment) have been assayed. The assay method shows promising results and this proof of principle will be researched further in order for it to be applied in an industrial setting. (authors)

  4. SOURCES-3A: A code for calculating ({alpha}, n), spontaneous fission, and delayed neutron sources and spectra

    SciTech Connect

    Perry, R.T.; Wilson, W.B.; Charlton, W.S.

    1998-04-01

    In many systems, it is imperative to have accurate knowledge of all significant sources of neutrons due to the decay of radionuclides. These sources can include neutrons resulting from the spontaneous fission of actinides, the interaction of actinide decay {alpha}-particles in ({alpha},n) reactions with low- or medium-Z nuclides, and/or delayed neutrons from the fission products of actinides. Numerous systems exist in which these neutron sources could be important. These include, but are not limited to, clean and spent nuclear fuel (UO{sub 2}, ThO{sub 2}, MOX, etc.), enrichment plant operations (UF{sub 6}, PuF{sub 4}, etc.), waste tank studies, waste products in borosilicate glass or glass-ceramic mixtures, and weapons-grade plutonium in storage containers. SOURCES-3A is a computer code that determines neutron production rates and spectra from ({alpha},n) reactions, spontaneous fission, and delayed neutron emission due to the decay of radionuclides in homogeneous media (i.e., a mixture of {alpha}-emitting source material and low-Z target material) and in interface problems (i.e., a slab of {alpha}-emitting source material in contact with a slab of low-Z target material). The code is also capable of calculating the neutron production rates due to ({alpha},n) reactions induced by a monoenergetic beam of {alpha}-particles incident on a slab of target material. Spontaneous fission spectra are calculated with evaluated half-life, spontaneous fission branching, and Watt spectrum parameters for 43 actinides. The ({alpha},n) spectra are calculated using an assumed isotropic angular distribution in the center-of-mass system with a library of 89 nuclide decay {alpha}-particle spectra, 24 sets of measured and/or evaluated ({alpha},n) cross sections and product nuclide level branching fractions, and functional {alpha}-particle stopping cross sections for Z < 106. The delayed neutron spectra are taken from an evaluated library of 105 precursors. The code outputs the magnitude

  5. Microscopic Phase-Space Exploration Modeling of Fm 258 Spontaneous Fission

    NASA Astrophysics Data System (ADS)

    Tanimura, Yusuke; Lacroix, Denis; Ayik, Sakir

    2017-04-01

    We show that the total kinetic energy (TKE) of nuclei after the spontaneous fission of Fm 258 can be well reproduced using simple assumptions on the quantum collective phase space explored by the nucleus after passing the fission barrier. Assuming energy conservation and phase-space exploration according to the stochastic mean-field approach, a set of initial densities is generated. Each density is then evolved in time using the nuclear time-dependent density-functional theory with pairing. This approach goes beyond the mean-field theory by allowing spontaneous symmetry breaking as well as a wider dynamical phase-space exploration leading to larger fluctuations in collective space. The total kinetic energy and mass distributions are calculated. New information on the fission process: fluctuations in scission time, strong correlation between TKE and collective deformation, as well as prescission particle emission, are obtained. We conclude that fluctuations of the TKE and mass are triggered by quantum fluctuations.

  6. Neutron-neutron angular correlations in spontaneous and neutron-induced fission

    NASA Astrophysics Data System (ADS)

    Vogt, Ramona; Randrup, Jorgen

    2015-04-01

    For many years, the state of the art for treating fission in radiation transport codes has involved sampling from average distributions. However, such average fission models have limited interaction-by-interaction capabilities. Energy is not explicitly conserved and no correlations are available because all particles are emitted isotropically and independently. However, in a true fission event, the energies, momenta and multiplicities of emitted particles are correlated. Such correlations are interesting for many modern applications, including detecting small amounts of material and detector development. Event-by-event generation of complete fission events are particularly useful because it is possible to obtain the fission products as well as the prompt neutrons and photons emitted during the fission process, all with complete kinematic information. It is therefore possible to extract any desired correlation observables. Such codes, when included in broader Monte Carlo transport codes, like MCNP, can be made broadly available. We compare results from our fast event-by-event fission code FREYA (Fission Reaction Event Yield Algorithm) with available neutron-neutron angular correlation data and study the sensitivities of these observables to the model inputs. This work was done under the auspices of the US DOE by (RV) LLNL, Contract DE-AC52-07NA27344, and by (JR) LBNL, Contract DE-AC02-05CH11231. We acknowledge support of the Office of Defense Nuclear Nonproliferation Research and Development in DOE/NNSA.

  7. New Prompt Fission γ-ray Data in Response to the OECD/NEA High Priority Request

    NASA Astrophysics Data System (ADS)

    Oberstedt, S.; Billnert, R.; Belgya, T.; Borcea, R.; Bryś, T.; Geerts, W.; Göök, A.; Hambsch, F.-J.; Kish, Z.; Martinez Perez, T.; Oberstedt, A.; Szentmiklosi, L.; Vidali, M.

    2014-05-01

    In this paper we report about new prompt fission γ-ray measurements, which we have performed with highly efficient γ-ray detectors based on lanthanide-halide crystals, aiming at very fast timing in conjunction with a good energy resolution. About four decades after the experiments were performed, whose results are still used for current evaluations, we present new spectral prompt fission γ-ray data from the reactions 252Cf(SF) and 235U(nth, f). Based on our new findings we recommend to replace the current ENDF/B-VII.1 evaluation for 252Cf(SF) and 235U(nth,f) as well as to perform new measurements for 238U(n, f) and 241Pu(n, f).

  8. BREAKING OF AXIAL AND REFLECTION SYMMETRIES IN SPONTANEOUS FISSION OF FERMIUM ISOTOPES

    SciTech Connect

    Staszczak, A.; Nazarewicz, Witold; Baran, Andrzej K

    2011-01-01

    The nuclear fission phenomenon is a magnificent example of a quantal collective motion during which the nucleus evolves in a multidimensional space representing shapes with different geometries. The triaxial degrees of freedom are usually important around the inner fission barrier, and reduce the fission barrier height by several MeV. Beyond the inner barrier, reflection-asymmetric shapes corresponding to asymmetric elongated fragments come into play. We discuss the interplay between different symmetry breaking mechanisms in the case of even-even fermium isotopes using the Skyrme HFB formalism.

  9. Breaking of Axial and Reflection Symmetries in Spontaneous Fission of Fermium Isotopes

    NASA Astrophysics Data System (ADS)

    Staszczak, A.; Baran, A.; Nazarewicz, W.

    The nuclear fission phenomenon is a magnificent example of a quantal collective motion during which the nucleus evolves in a multidimensional space representing shapes with different geometries. The triaxial degrees of freedom are usually important around the inner fission barrier, and reduce the fission barrier height by several MeV. Beyond the inner barrier, reflection-asymmetric shapes corresponding to asymmetric elongated fragments come into play. We discuss the interplay between different symmetry breaking mechanisms in the case of even-even fermium isotopes using the Skyrme HFB formalism.

  10. SOURCES 4C : a code for calculating ([alpha],n), spontaneous fission, and delayed neutron sources and spectra.

    SciTech Connect

    Wilson, W. B.; Perry, R. T.; Shores, E. F.; Charlton, W. S.; Parish, Theodore A.; Estes, G. P.; Brown, T. H.; Arthur, Edward D. ,; Bozoian, Michael; England, T. R.; Madland, D. G.; Stewart, J. E.

    2002-01-01

    SOURCES 4C is a computer code that determines neutron production rates and spectra from ({alpha},n) reactions, spontaneous fission, and delayed neutron emission due to radionuclide decay. The code is capable of calculating ({alpha},n) source rates and spectra in four types of problems: homogeneous media (i.e., an intimate mixture of a-emitting source material and low-Z target material), two-region interface problems (i.e., a slab of {alpha}-emitting source material in contact with a slab of low-Z target material), three-region interface problems (i.e., a thin slab of low-Z target material sandwiched between {alpha}-emitting source material and low-Z target material), and ({alpha},n) reactions induced by a monoenergetic beam of {alpha}-particles incident on a slab of target material. Spontaneous fission spectra are calculated with evaluated half-life, spontaneous fission branching, and Watt spectrum parameters for 44 actinides. The ({alpha},n) spectra are calculated using an assumed isotropic angular distribution in the center-of-mass system with a library of 107 nuclide decay {alpha}-particle spectra, 24 sets of measured and/or evaluated ({alpha},n) cross sections and product nuclide level branching fractions, and functional {alpha}-particle stopping cross sections for Z < 106. The delayed neutron spectra are taken from an evaluated library of 105 precursors. The code provides the magnitude and spectra, if desired, of the resultant neutron source in addition to an analysis of the'contributions by each nuclide in the problem. LASTCALL, a graphical user interface, is included in the code package.

  11. SOURCES 4A: A Code for Calculating (alpha,n), Spontaneous Fission, and Delayed Neutron Sources and Spectra

    SciTech Connect

    Madland, D.G.; Arthur, E.D.; Estes, G.P.; Stewart, J.E.; Bozoian, M.; Perry, R.T.; Parish, T.A.; Brown, T.H.; England, T.R.; Wilson, W.B.; Charlton, W.S.

    1999-09-01

    SOURCES 4A is a computer code that determines neutron production rates and spectra from ({alpha},n) reactions, spontaneous fission, and delayed neutron emission due to the decay of radionuclides. The code is capable of calculating ({alpha},n) source rates and spectra in four types of problems: homogeneous media (i.e., a mixture of {alpha}-emitting source material and low-Z target material), two-region interface problems (i.e., a slab of {alpha}-emitting source material in contact with a slab of low-Z target material), three-region interface problems (i.e., a thin slab of low-Z target material sandwiched between {alpha}-emitting source material and low-Z target material), and ({alpha},n) reactions induced by a monoenergetic beam of {alpha}-particles incident on a slab of target material. Spontaneous fission spectra are calculated with evaluated half-life, spontaneous fission branching, and Watt spectrum parameters for 43 actinides. The ({alpha},n) spectra are calculated using an assumed isotropic angular distribution in the center-of-mass system with a library of 89 nuclide decay {alpha}-particle spectra, 24 sets of measured and/or evaluated ({alpha},n) cross sections and product nuclide level branching fractions, and functional {alpha}-particle stopping cross sections for Z < 106. The delayed neutron spectra are taken from an evaluated library of 105 precursors. The code outputs the magnitude and spectra of the resultant neutron source. It also provides an analysis of the contributions to that source by each nuclide in the problem.

  12. Determination of the half-lives of. cap alpha. disintegration and spontaneous fission of /sup 242/Cm

    SciTech Connect

    Chang, H.Q.; Xu, J.C.; Wen, T.Q.

    1981-04-01

    Followup measurements have been made by using the method of low geometry for ..cap alpha.. disintegration of /sup 242/Cm. It has been obtained that the half-life of ..cap alpha.. disintegration is T/sub ..cap alpha../ = 163.02 +- 0.11 d. This value is in accord with other recent results. Besides, the method of the specific activity has been used to determine the half-life of spontaneous fission of /sup 242/Cm, T/sub f/ = (7.46 +- 0.06) x 10/sup 6/ yr. This value has provided a check for two appreciably different existing results.

  13. Systematic study on the competition between α-decay and spontaneous fission of superheavy nuclei

    NASA Astrophysics Data System (ADS)

    Zhang, Y. L.; Wang, Y. Z.

    2017-10-01

    The competition between α-decay and spontaneous fission (SF) of Z = 112 isotopes are studied. The α-decay half-lives are estimated by the generalized liquid-drop model (GLDM) and several sets of analytic formulas. These formulas include the Royer formula, Viola-Seaborg semiempirical (VSS) formula and universal decay law (UDL). For the SF, its half-lives are calculated by using the Xu, Ren, Karpov and Santhosh formulas. It is shown that the predicted α-decay half-lives by different approaches are more or less identical. However, the SF half-lives are highly sensitive to models. To test the accuracies of different SF formulas, the half-lives of 56 even-even heavy nuclei are calculated by these formulas. By comparing with the experimental data, it is found that the Xu formula is the most accurate one to reproduce the experimental SF half-lives. This allows us to make a systematic prediction on the competition between α-decay and SF of even-even superheavy nuclei (SHN) with Z = 104- 120 by using the Xu formula and the above mentioned models on α-decay. The calculations suggest that 258,260104, 268-276110, 270-280112, 272-286114, 274-294116, 284-302118 and 292-308120 have smaller α-decay half-lives than those of SF. Thus these nuclei can be synthesized and identified via α-decay in the laboratory. In addition, it is observed that N = 162, 178, 184 and 196 may be the submagic or magic numbers. Finally, an extensive study on the possible α-decay chains for Z = 120 isotopes is performed. It is predicted that six sequential α-decay chains can be observed from 292-296120, four α-decay chains from 298120, three α-decay chains from 300,302120, two α-decay chains from 304,306120, and only one α-decay chain from 308120. These nuclei are the most likely candidates to be synthesized experimentally via α-decay in the near future.

  14. The half-life of lead with respect to spontaneous fission

    SciTech Connect

    Zakharova, V.P.; Zenkevich, V.S.; Funshtein, V.B.

    1995-04-01

    The authors report results of an experiment to measure the half life of lead 208 against fission. The impetus for this work is earlier work in the case of fermium isotopes, where it was found that addition of two neutrons to fermium, producing isotopes which could decay to fragments with near magic numbers, resulted in tremendous decreases in fission lifetimes. The authors had assumed the same effect could be seen in lead 208. This experiment has put a lower bound of 2{times}10{sup 19} yr on this decay in lead 208.

  15. Fragment mass and kinetic-energy distributions from spontaneous fission of the neutron-deficient isotopes, 1. 2-s /sup 246/Fm and 38-s /sup 248/Fm

    SciTech Connect

    Hoffman, D.; Lee, D.; Ghiorso, A.; Nurmia, M.; Aleklett, K.

    1980-10-01

    We have measured the mass and kinetic-energy distributions for fragments from the spontaneous fission of 1.2-s /sup 246/Fm and 38-s /sup 248/Fm. The mass distributions are highly asymmetric and the average total kinetic energies of 199 +- 4 MeV and 198 +- 4 MeV, respectively, are consistent with systematics for lower Z actinides. Their properties are in contrast to those of /sup 258/Fm and /sup 259/Fm, whose spontaneous fission results in narrowly symmetric mass distributions accompanied by unusually high total kinetic energies.

  16. Laser-optical studies of the spontaneous-fission isomer /sup 240m/Am

    SciTech Connect

    Beene, J.R.; Bemis, C.E. Jr.; Kramer, S.D.; Young, J.P.

    1982-01-01

    Improved optical pumping experiments on the /sup 240m/Am fission isomer have been performed using the Laser Induced Nuclear Polarization (LINUP) technique. Results of these experiments are discussed in terms of the constraints they place on the spectroscopic properties of /sup 240m/Am. In addition, a quantitative analysis of the isomer shift in terms of nuclear shape is undertaken making use of recent muonic x-ray data on /sup 241/Am and /sup 243/Am.

  17. Shape Coexistence, Triaxiality, Chiral Bands in Neutron-Rich Nuclei and Hot Fission Mode

    NASA Astrophysics Data System (ADS)

    Hamilton, J. H.; Ramayya, A. V.; Hwang, J. K.; Zhu, S. J.; Luo, Y. X.; Rasmussen, J. O.; Gore, P. M.; Jones, E. F.; Fong, D.; Li, K.; Beyer, C. J.; Chaturvedi, L.; Xu, R. Q.; Yang, L. M.; Jiang, Z.; Zhang, Z.; Xiou, S. D.; Zhang, X. Q.; Ter-Akopian, G. M.; Daniel, A. V.; Oganessian, Yu.; Dimitrov, V.; Frauendorf, S.; Gelberg, A.; Kormicki, J.; Gilat, J.; Lee, I. Y.; Fallon, P.; Cole, J. D.; Drigert, M. W.; Stoyer, M. A.; Ginter, T. N.; Wu, S. C.; Donangelo, R.

    2005-09-01

    The structure of neutron-rich nuclei in the A=100 region have been investigated via prompt γ-γ-γ coincidences in the spontaneous fission of 252Cf at Gammasphere. New levels are observed in 93,95,97Sr, 99,101Y, 101,105Nb, 104,106Mo, 105,107,109Tc, 111,113Rh and 115,117Ag. The level structures show a clear evolution from spherical single particle structures seen in Sr, to symmetric, large prolate deformation in Y, to increasing triaxial shapes with increasing Z in Nb, Mo, Tc, Rh and Ag. Rigid triaxial-plus-rotor calculations were carried out for 107Tc and 111,113Rh. Best fits in 107Tc and 111,113Rb are for prolate β2 ~ 0.3 and γ increasing from -22.5° in 107Tc to near maximum triaxiality, γ = -28° in 111,113Rh. A K= 1/2 intruder band with symmetric deformation is found to coexist with the triaxial asymmetric bands in the Tc and Rh nuclei. In 106Mo, two sets of ΔI=1 bands have all the characteristics of chiral doublets. Tilted axis cranking calculations support the chiral assignment and indicate these form a new type of chiral band with a one and two phonon chiral vibrational nature associated essentially with the neutrons. These new type chiral doublets demonstrate the general nature of chirality in nuclei. Binary yields of Mo-Ba and Ru-Xe were determined with higher accuracy. The hot fission mode is seen only in Mo-Ba where it goes via a type of hyperdeformed shape for 144,145,146Ba with a 4.7% intensity.

  18. Detector Calibration to Spontaneous Fission for the Study of Superheavy Elements Using Gas-Filled Recoil Ion Separator

    NASA Astrophysics Data System (ADS)

    Takeyama, Mirei; Kaji, Daiya; Morimoto, Kouji; Wakabayashi, Yasuo; Tokanai, Fuyuki; Morita, Kosuke

    Detector response to spontaneous fission (SF) of heavy nuclides produced in the 206Pb(48Ca,2n)252No reaction was investigated using a gas-filled recoil ion separator (GARIS). Kinetic energy distributions of the SF originating from 252No were observed by tuning implantation depth of evaporation residue (ER) to the detector. The focal plane detector used in the GARIS experiments was well calibrated by comparing with the known total kinetic energy (TKE) of SF due to 252No. The correction value for the TKE calculation was deduced as a function of the implantation depth of 252No to the detector. Furthermore, we have investigated the results by comparing with those obtained by a computer simulation using the particle and heavy ion transport code system (PHITS).

  19. HALF-LIVES OF LONG-LIVED A-DECAY, B-DECAY, BB-DECAY AND SPONTANEOUS FISSION NUCLIDES.

    SciTech Connect

    HOLDEN,N.E.

    2001-06-29

    In his review of radionuclides for dating purposes, Roth noted that there were a large number of nuclides, normally considered ''stable'' but which are radioactive with a very long half-life. Roth suggested that I review the data on the half-life values of these long-lived nuclides for a discussion session at the next meeting. These half-life values for long-lived nuclides include those due to various decay modes, {alpha}-decay, {beta}-decay, electron capture decay, {beta}{beta}-decay and spontaneous fission decay. This report is preliminary but will provide a quick overview of the extensive table of data on the recommendations from that review.

  20. Prompt Fission γ-ray Spectra Characteristics - A First Summary

    NASA Astrophysics Data System (ADS)

    Oberstedt, S.; Billnert, R.; Gatera, A.; Geerts, W.; Halipré, P.; Hambsch, F.-J.; Lebois, M.; Oberstedt, A.; Marini, P.; Vidali, M.; Wilson, J. N.

    In this work we give an overview of our investigations of prompt γ-ray emission in nuclear fission. This work was conducted during the last five years in response to a high priority nuclear data request formulated by the OECD/NEA. The aim was to reveal data deficiencies responsible for a severe under-prediction of the prompt γ heating in nuclear reactor cores. We obtained new prompt fission γ-ray spectral (PFGS) data for 252Cf(SF) as well as for thermal-neutron induced fission on 235U(nth,f) and 241Pu(nth,f). In addition, first PFGS measurements with a fast-neutron beam were accomplished, too. The impact of the new data and future data needs are discussed.

  1. Fission Reaction Event Yield Algorithm

    SciTech Connect

    Hagmann, Christian; Verbeke, Jerome; Vogt, Ramona; Roundrup, Jorgen

    2016-05-31

    FREYA (Fission Reaction Event Yield Algorithm) is a code that simulated the decay of a fissionable nucleus at specified excitation energy. In its present form, FREYA models spontaneous fission and neutron-induced fission up to 20 MeV. It includes the possibility of neutron emission from the nuclear prior to its fussion (nth chance fission).

  2. Paleotemperature regime studies of the Barents Sea sediments through spontaneous fission-track analysis

    SciTech Connect

    Il`chenko, V.L.

    1995-09-01

    The results obtained are compared to earlier data on vitrinite reflectance and the catagenetic alteration grade of disseminated organic matter studied in samples from the same boreholes and stratigraphic intervals. Accessory apatite from terricrenous sediments is usable as a geothermometer of higher sensitivity than that based on epigenetic alterations of organic matter. The fission-track analysis data on the paleothermal history of terrigenous sediments from the South Barents Depression are presented. Apatite from six offshore boreholes in the South Barents shelf (Severo-Guliaev, Kurentsov, Murman, Severo-Kil`din, Shtokman, and Ludlov fields) is studied. Paleotemperature values lying within or beyond the upper limit of the oil-productive thermal interval are considered important factors stimulating the generation of hydrocarbons.

  3. Accurate measurement of a fission chamber efficiency using the prompt fission neutron method

    NASA Astrophysics Data System (ADS)

    Mathieu, Ludovic; Aïche, Mourad; Kessedjian, Grégoire; Czajkowski, Serge; Jurado, Beatriz; Marini, Paola; Tsekhanovich, Igor

    2017-09-01

    Fission Chambers (FC) are often used to determine fission cross sections and to measure the neutron beam flux via standard neutron-induced fission reactions. Thus, the fission detection efficiency is a key parameter. Several methods exist to determine this efficiency, with a final accuracy not better than 1%. The detection of prompt fission neutrons allows events related to the fission process to be tagged, and enables the efficiency to be inferred with accuracy of the order of few 0.1%. This method is very robust since it is independent in first order to several factors like geometry, used materials or neutron contour selection. To obtain high accuracy, few corrections have still to be taken into account. In particular, the neutron detectors have to cover several detection angles. In addition, the background contribution of neutrons from cosmic rays or from an accelerator has to be removed. Several experiments based on the use of a 252Cf source are presented to describe all these points.

  4. Long-term {alpha}- and spontaneous fission measurement of a Rf/Db sample chemically prepared in a {sup 48}Ca on {sup 243}Am experiment

    SciTech Connect

    Dressler, Rugard; Eichler, Robert; Schumann, Dorothea; Shishkin, Sergey

    2009-05-15

    Results from long-term measurements of a chemically separated Db/Rf sample prepared from the products of a {sup 48}Ca on {sup 243}Am irradiation are presented. The sample with the highest spontaneous fission activity out of eight samples produced in the course of chemical experiments performed in 2004 was selected for these measurements. We conclude that there is no evidence for SF-decay originating from heavy actinide isotopes in this sample. Hence, it is appropriate to assign the SF-events observed in this experiment to decay products of {sup 288}115.

  5. Estimation of 240Pu Mass in a Waste Tank Using Ultra-Sensitive Detection of Radioactive Xenon Isotopes from Spontaneous Fission

    SciTech Connect

    Bowyer, Ted W.; Gesh, Christopher J.; Haas, Derek A.; Hayes, James C.; Mahoney, Lenna A.; Meacham, Joseph E.; Mendoza, Donaldo P.; Olsen, Khris B.; Prinke, Amanda M.; Reid, Bruce D.; Woods, Vincent T.

    2014-12-01

    We report on a technique to detect and quantify the amount of 240Pu in a large tank used to store nuclear waste from plutonium production at the Hanford nuclear site. While the contents of this waste tank are known from previous grab sample measurements, our technique could allow for determination of the amount of 240Pu in the tank without costly sample retrieval and analysis of this highly radioactive material. This technique makes an assumption, which was confirmed, that 240Pu dominates the spontaneous fissions occurring in the tank.

  6. Study of electron-capture delayed fission in Am-232

    SciTech Connect

    Kreek, S.A.; Hall, H.L.; Hoffman, D.C.; Strellis, D.; Gregorich, K.E.

    1996-03-18

    An automated x-ray-fission coincidence system was designed and constructed by LLNL and Lawrence Berkeley National Laboratory (LBNL) for use inside the Gammasphere high efficiency gamma-ray detector array at LBNL. The x-ray-fission coincidence apparatus detection station consists of two surface barrier detectors (for detection of fission fragments) and two high-purity Ge (HPGe) planar x-ray detectors (for measurement of x-rays and low-energy gamma rays). The detection station is placed inside Gammasphere at the 88-Inch Cyclotron at LBNL and used in conjunction with Gammasphere to measure the x-rays, low-energy gamma-rays and fission fragments resulting from the ECDF process. A series of collaborative experiment between LLNL, LBNL, and LANL utilizing various components of the x-ray-fission coincidence apparatus to measure x-rays and gamma-rays in the decay of a stationary {sup 252}Cf source were performed to test the various components of the x-ray-fission coincidence apparatus. The test experiments have been completed and the data is currently being analyzed by LBNL. Preliminary test results indicate that the system performed better than expected (e.g., the x-ray detectors performed better than expected with no evidence of microphonic noise that would reduce the photon energy resolution).

  7. Fission Mode Influence on Prompt Neutrons and γ-rays Emitted in the Reaction 239Pu(nth,f)

    NASA Astrophysics Data System (ADS)

    Serot, O.; Litaize, O.; Regnier, D.

    Recently, a Monte-Carlo code, which simulates the fission fragment de-excitation process, has been developed at CEA- Cadarache. Our aim is to get a tool capable to predict spectra and multiplicities of prompt particles (neutron and gamma) and to investigate possible correlations between fission observables. One of the main challenges is to define properly the share of the available excitation energy at scission between the two nascent fission fragments. Initially, after the full acceleration of the fission fragments, these excitation energies were treated within a Fermi-gas approximation in aT2 (where a and T stand for the level density parameter and the nuclear temperature) and a mass dependent law of the temperature ratio (RT=TL/TH, with TL and TH the temperature of the light and heavy fragment) has been proposed. With this RT-law, the main fission observables of the 252Cf(sf) could be reproduced. Here, in order to take into account the fission modes by which the fissioning nucleus undergoes to fission, we have adopted a specific RT-law for each fission mode. For actinides, the main fission modes are called Standard I, Standard II and Super Long (following Brosa's terminology). This new procedure has been applied in the case of the thermal neutron induced fission of 239Pu, reaction for which fission modes are rather well known.

  8. Light fragment preformation in cold fission of 282Cn

    NASA Astrophysics Data System (ADS)

    Poenaru, D. N.; Gherghescu, R. A.

    2016-11-01

    In a previous article, published in Phys. Rev. C 94, 014309 (2016), we have shown for the first time that the best dynamical trajectory during the deformation toward fission of the superheavy nucleus 286Fl is a linearly increasing radius of the light fragment, R_2. This macroscopic-microscopic result reminds us about the α or cluster preformation at the nuclear surface, assumed already in 1928, and proved microscopically many times. This time we give more detailed arguments for the nucleus 282Cn. Also similar figures are presented for heavy nuclei 240Pu and 252 Cf. The deep minimum of the total deformation energy near the surface is shown for the first time as a strong argument for cluster preformation.

  9. Neutron-multiplicity experiments for enhanced fission modelling

    NASA Astrophysics Data System (ADS)

    Al-Adili, Ali; Tarrío, Diego; Hambsch, Franz-Josef; Göök, Alf; Jansson, Kaj; Solders, Andreas; Rakapoulos, Vasileios; Gustavsson, Cecilia; Lantz, Mattias; Mattera, Andrea; Oberstedt, Stephan; Prokofiev, Alexander V.; Sundén, Erik A.; Vidali, Marzio; Österlund, Michael; Pomp, Stephan

    2017-09-01

    The nuclear de-excitation process of fission fragments (FF) provides fundamental information for the understanding of nuclear fission and nuclear structure in neutron-rich isotopes. The variation of the prompt-neutron multiplicity, ν(A), as a function of the incident neutron energy (En) is one of many open questions. It leads to significantly different treatments in various fission models and implies that experimental data are analyzed based on contradicting assumptions. One critical question is whether the additional excitation energy (Eexc) is manifested through an increase of ν(A) for all fragments or for the heavy ones only. A systematic investigation of ν(A) as a function of En has been initiated. Correlations between prompt-fission neutrons and fission fragments are obtained by using liquid scintillators in conjunction with a Frisch-grid ionization chamber. The proof-of-principle has been achieved on the reaction 235U(nth,f) at the Van De Graff (VdG) accelerator of the JRC-Geel using a fully digital data acquisition system. Neutrons from 252Cf(sf) were measured separately to quantify the neutron-scattering component due to surrounding shielding material and to determine the intrinsic detector efficiency. Prelimenary results on ν(A) and spectrum in correlation with FF properties are presented.

  10. Bimodal fission

    SciTech Connect

    Hulet, E.K.

    1989-04-19

    In recent years, we have measured the mass and kinetic-energy distributions from the spontaneous fission of /sup 258/Fm, /sup 259/Md, /sup 260/Md, /sup 258/No, /sup 262/No, and /sup 260/(104). All are observed to fission with a symmetrical division of mass, whereas the total-kinetic-energy (TKE) distributions strongly deviated from the Gaussian shape characteristically found in the fission of all other actinides. When the TKE distributions are resolved into two Gaussians the constituent peaks lie near 200 and near 233 MeV. We conclude two modes or bimodal fission is occurring in five of the six nuclides studied. Both modes are possible in the same nuclides, but one generally predominates. We also conclude the low-energy but mass-symmetrical mode is likely to extend to far heavier nuclei; while the high-energy mode will be restricted to a smaller region, a region of nuclei defined by the proximity of the fragments to the strong neutron and proton shells in /sup 132/Sn. 16 refs., 7 figs., 1 tab.

  11. Ternary fission of a heavy nuclear system within a three-center shell model

    NASA Astrophysics Data System (ADS)

    Karpov, A. V.

    2016-12-01

    Background: Since more than 40 years of theoretical and experimental studies of true ternary fission, one is still quite far from its understanding. The true ternary fission channel, being strongly suppressed by the macroscopic properties of the potential energy, may, however, be present with a significant probability due to shell effects. Purpose: Development of a model for the multidimensional potential energy suitable for analysis of the nucleus-nucleus collisions with the possibility of ternary exit channel. Study of the potential possibility of fission of actinides into three heavy fragments. Method: The asymmetric three-center shell model of deformed nucleus is developed in this paper. The model can be applied for analysis of ternary as well as binary fission processes. Results: The potential energy surfaces for few ternary combinations in the fission channel are calculated for the 252Cf nucleus. Their properties are discussed. Conclusions: The potential energy structures are compared with the experimental observations. It was found that the potential energy has pronounced valleys favorable for ternary fission with formation of doubly magic tin as one of the fragments and two other lighter fragments. The positions of the found fission valleys are in a good agreement with the experimental data.

  12. Fission properties of the heaviest elements

    SciTech Connect

    Moller, P. |||; Nix, R.

    1995-03-01

    The authors discuss fission properties of the heaviest elements. In particular they focus on stability with respect to spontaneous fission and on the prospects of extending the region of known nuclei beyond the peninsula of currently known nuclides.

  13. The competition between alpha decay and spontaneous fission in odd-even and odd-odd nuclei in the range 99 ≤ Z ≤ 129

    NASA Astrophysics Data System (ADS)

    Santhosh, K. P.; Priyanka, B.

    2015-08-01

    The predictions on the mode of decay of the odd-even and odd-odd isotopes of heavy and superheavy nuclei with Z = 99- 129, in the range 228 ≤ A ≤ 336, have been done within the Coulomb and proximity potential model for deformed nuclei (CPPMDN). A comparison of our calculated alpha half lives with the values computed using other theoretical models shows good agreement with each other. An extensive study on the spontaneous fission half lives of all the isotopes under study has been performed to identify the long-lived isotopes in the mass region. The study reveals that the alpha decay half lives and the mode of decay of the isotopes with Z = 109, 111, 113, 115 and 117, evaluated using our formalisms, agree well with the experimental observations. As our study on the odd-even and odd-odd isotopes of Z = 99- 129 predicts that, the isotopes 238,240-25499, 244,246-258101, 248,250,252-260,262103, 254,256,258-262,264105, 258,260,262-264,266107, 262,264,266-274109, 266,268-279111, 270-284,286113, 272-289,291115, 274-299117, 276-307119, 281-314121, 287-320,322123, 295-325125, 302-327127 and 309-329129 survive fission and have alpha decay channel as the prominent mode of decay, these nuclei could possibly be synthesized in the laboratory and this could be of great interest to the experimentalists. The behavior of these nuclei against the proton decay has also been studied to identify the probable proton emitters in this region of nuclei.

  14. Monte-Carlo Hauser-Feshbach simulations of prompt fission gamma-ray properties

    NASA Astrophysics Data System (ADS)

    Stetcu, Ionel; Talou, Patrick; Kawano, Toshihiko; Jandel, Marian

    2014-09-01

    Properties of prompt fission neutrons and γ rays, emitted before the weak decays of the fission fragments toward stability, are important for both nuclear technologies and a better understanding of the fission process. In the present work, we use the Hauser-Feshbach model to simulate the de-excitation of the fully accelerated fission fragments treated as compound nuclei. Our Monte-Carlo implementation of the Hauser-Feshbach statistical model, which takes into account the competition between the neutron and γ emissions, allows the description of both average quantities, like in the Los Alamos model, and correlations between the emitted particles. Our simulations will be compared against available experimental data and current evaluations. In particular, we will compare our average γ-ray spectrum with recent measurements at the research reactor KFKI in Budapest for the 235U(nth , f) and 252Cf(sf) reactions, as well as multiplicity-dependent distributions obtained at the DANCE facility at LANSCE. Properties of prompt fission neutrons and γ rays, emitted before the weak decays of the fission fragments toward stability, are important for both nuclear technologies and a better understanding of the fission process. In the present work, we use the Hauser-Feshbach model to simulate the de-excitation of the fully accelerated fission fragments treated as compound nuclei. Our Monte-Carlo implementation of the Hauser-Feshbach statistical model, which takes into account the competition between the neutron and γ emissions, allows the description of both average quantities, like in the Los Alamos model, and correlations between the emitted particles. Our simulations will be compared against available experimental data and current evaluations. In particular, we will compare our average γ-ray spectrum with recent measurements at the research reactor KFKI in Budapest for the 235U(nth , f) and 252Cf(sf) reactions, as well as multiplicity-dependent distributions obtained at the

  15. Angular momentum of fission fragments in low energy fission of actinides

    SciTech Connect

    Naik, H.; Dange, S.P.; Singh, R.J.

    2005-01-01

    Independent isomeric yield ratios (IYR) of {sup 128}Sb, {sup 130}Sb, {sup 132}Sb, {sup 131}Te, {sup 133}Te, {sup 132}I, {sup 134}I, {sup 136}I, {sup 135}Xe, and {sup 138}Cs have been determined in fast neutron induced fission of {sup 232}Th, {sup 238}U, {sup 240}Pu, and {sup 244}Cm as well as in thermal neutron induced fission of {sup 232}U and {sup 238}Pu using radiochemical and offline {gamma}-ray spectrometric techniques. From the IYR, fragment angular momenta (J{sub rms}) have been deduced using a spin-dependent statistical model analysis. These data along with the literature data for {sup 230}Th*, {sup 234}U*, {sup 236}U*, {sup 240}Pu*, {sup 242}Pu*, {sup 244}Cm(SF), {sup 246}Cm*, {sup 250}Cf*, and {sup 252}Cf(SF) for fifteen even-Z fissioning systems show the following important features: (i) The J{sub rms} of the odd-Z fission products are higher than those of the even-Z fission products, indicating the odd-even effect. For both the odd-Z and even-Z fission products, the J{sub rms} increase with Z{sub F}{sup 2}/A{sub F}. (ii) The J{sub rms} of fragments with spherical 50-p and 82-n shells are lower compared to those of fragments outside the spherical shell, indicating the effect of shell closure proximity. (iii) The J{sub rms} of the fission products increase with mass number in spite of fluctuations in shell closure proximity and odd-even effects but do not show any correlation with the neutron emission curve. (iv) In all fifteen even-Z fissioning systems from Th to Cf, the yield-weighted J{sub rms} values show an anticorrelation with the elemental yields. (v) The odd-even fluctuation on J{sub rms} does not change drastically from Th to Cf, unlike the proton odd-even effect ({delta}{sub p}) which decreases significantly with the increase of Coulomb parameter (Z{sub F}{sup 2}/A{sub F}{sup 1/3})

  16. Xe-135 Production from Cf-252

    SciTech Connect

    C. A. McGrath; T. P. Houghton; J. K. Pfeiffer; R. K. Hague

    2012-03-01

    135Xe is a good indicator that fission has occurred and is a valuable isotope that helps enforce the Comprehensive Test Ban Treaty. Due to its rather short half life and minimal commercial interest, there are no known sources where 135Xe can be purchased. Readily available standards of this isotope for calibrating collection and analytical techniques would be very useful. 135Xe can be produced in the fissioning of actinide isotopes, or by neutron capture on 134Xe. Since the neutron capture cross section of 134Xe is 3 mB, neutron capture is a low yield, though potentially useful, production route. 135Xe is also produced by spontaneous fission of 252Cf. 252Cf has a spontaneous fission rate of about 6 x 1011 s-1g-1. The cumulative yield from the spontaneous fission of 252Cf is 4.19%; and the competing neutron capture reaction that depletes 135Xe in thermal reactor systems is negligible because the neutron capture cross-section is low for fast fission neutrons. At the INL, scientists have previously transported fission products from an electroplated 252Cf thin source for the measurement of nuclear data of short-lived fission products using a technique called He-Jet collection. We have applied a similar system to the collection of gaseous 135Xe, in order to produce valuable standards of this isotope.

  17. Microscopic description of complex nuclear decay: Multimodal fission

    NASA Astrophysics Data System (ADS)

    Staszczak, A.; Baran, A.; Dobaczewski, J.; Nazarewicz, W.

    2009-07-01

    Our understanding of nuclear fission, a fundamental nuclear decay, is still incomplete due to the complexity of the process. In this paper, we describe a study of spontaneous fission using the symmetry-unrestricted nuclear density functional theory. Our results show that the observed bimodal fission can be explained in terms of pathways in multidimensional collective space corresponding to different geometries of fission products. We also predict a new phenomenon of trimodal spontaneous fission for some rutherfordium, seaborgium, and hassium isotopes.

  18. Microscopic description of complex nuclear decay: Multimodal fission

    SciTech Connect

    Staszczak, A.; Baran, A.; Dobaczewski, J.; Nazarewicz, W.

    2009-07-15

    Our understanding of nuclear fission, a fundamental nuclear decay, is still incomplete due to the complexity of the process. In this paper, we describe a study of spontaneous fission using the symmetry-unrestricted nuclear density functional theory. Our results show that the observed bimodal fission can be explained in terms of pathways in multidimensional collective space corresponding to different geometries of fission products. We also predict a new phenomenon of trimodal spontaneous fission for some rutherfordium, seaborgium, and hassium isotopes.

  19. Fission fragment mass and energy distributions as a function of incident neutron energy measured in a lead slowing-down spectrometer

    SciTech Connect

    Romano, C.; Danon, Y.; Block, R.; Thompson, J.; Blain, E.; Bond, E.

    2010-01-15

    A new method of measuring fission fragment mass and energy distributions as a function of incident neutron energy in the range from below 0.1 eV to 1 keV has been developed. The method involves placing a double-sided Frisch-gridded fission chamber in Rensselaer Polytechnic Institute's lead slowing-down spectrometer (LSDS). The high neutron flux of the LSDS allows for the measurement of the energy-dependent, neutron-induced fission cross sections simultaneously with the mass and kinetic energy of the fission fragments of various small samples. The samples may be isotopes that are not available in large quantities (submicrograms) or with small fission cross sections (microbarns). The fission chamber consists of two anodes shielded by Frisch grids on either side of a single cathode. The sample is located in the center of the cathode and is made by depositing small amounts of actinides on very thin films. The chamber was successfully tested and calibrated using 0.41+-0.04 ng of {sup 252}Cf and the resulting mass distributions were compared to those of previous work. As a proof of concept, the chamber was placed in the LSDS to measure the neutron-induced fission cross section and fragment mass and energy distributions of 25.3+-0.5 mug of {sup 235}U. Changes in the mass distributions as a function of incident neutron energy are evident and are examined using the multimodal fission mode model.

  20. Radioactive beams from Californium fission at the CARIBU facility

    NASA Astrophysics Data System (ADS)

    Savard, Guy; Pardo, Richard; Baker, Sam; Davids, Cary; Peterson, Don; Phillips, Don; Vondrasek, Rick; Zabransky, Bruce; Zinkann, Gary

    2009-10-01

    The Californium Rare Ion Breeder Upgrade (CARIBU) of the ATLAS superconducting linac facility aims at providing low energy and reaccelerated neutron-rich radioactive beams to address key nuclear physics and astrophysics questions. These beams are obtained from fission fragments of a 1 Ci ^252Cf source, thermalized and collected into a low-energy particle beam by a helium gas catcher, mass analyzed by an isobar separator, and charge breed to higher charge states for acceleration in ATLAS. The method described is fast and universal and short-lived isotope yield scale essentially with Californium fission yields. Expected intensities of reaccelerated beams are up to ˜5x10^5 (10^7 at low energy) far-from-stability ions per second on target. Initial commissioning is being performed with weaker 2.5 and 80 mCi sources. Commissioning results, together with the nuclear physics and astrophysics program that will be pursued with the neutron-rich beams made available, will be presented. Plans for installation of the 1 Ci source will be discussed.

  1. The SPIDER fission fragment spectrometer for fission product yield measurements

    SciTech Connect

    Meierbachtol, K.; Tovesson, F.; Shields, D.; Arnold, C.; Blakeley, R.; Bredeweg, T.; Devlin, M.; Hecht, A. A.; Heffern, L. E.; Jorgenson, J.; Laptev, A.; Mader, D.; O׳Donnell, J. M.; Sierk, A.; White, M.

    2015-04-01

    We developed the SPectrometer for Ion DEtermination in fission Research (SPIDER) for measuring mass yield distributions of fission products from spontaneous and neutron-induced fission. The 2E–2v method of measuring the kinetic energy (E) and velocity (v) of both outgoing fission products has been utilized, with the goal of measuring the mass of the fission products with an average resolution of 1 atomic mass unit (amu). Moreover, the SPIDER instrument, consisting of detector components for time-of-flight, trajectory, and energy measurements, has been assembled and tested using 229Th and 252Cf radioactive decay sources. For commissioning, the fully assembled system measured fission products from spontaneous fission of 252Cf. Individual measurement resolutions were met for time-of-flight (250 ps FWHM), spacial resolution (2 mm FHWM), and energy (92 keV FWHM for 8.376 MeV). Finally, these mass yield results measured from 252Cf spontaneous fission products are reported from an E–v measurement.

  2. Membrane fission by protein crowding.

    PubMed

    Snead, Wilton T; Hayden, Carl C; Gadok, Avinash K; Zhao, Chi; Lafer, Eileen M; Rangamani, Padmini; Stachowiak, Jeanne C

    2017-04-18

    Membrane fission, which facilitates compartmentalization of biological processes into discrete, membrane-bound volumes, is essential for cellular life. Proteins with specific structural features including constricting rings, helical scaffolds, and hydrophobic membrane insertions are thought to be the primary drivers of fission. In contrast, here we report a mechanism of fission that is independent of protein structure-steric pressure among membrane-bound proteins. In particular, random collisions among crowded proteins generate substantial pressure, which if unbalanced on the opposite membrane surface can dramatically increase membrane curvature, leading to fission. Using the endocytic protein epsin1 N-terminal homology domain (ENTH), previously thought to drive fission by hydrophobic insertion, our results show that membrane coverage correlates equally with fission regardless of the hydrophobicity of insertions. Specifically, combining FRET-based measurements of membrane coverage with multiple, independent measurements of membrane vesiculation revealed that fission became spontaneous as steric pressure increased. Further, fission efficiency remained equally potent when helices were replaced by synthetic membrane-binding motifs. These data challenge the view that hydrophobic insertions drive membrane fission, suggesting instead that the role of insertions is to anchor proteins strongly to membrane surfaces, amplifying steric pressure. In line with these conclusions, even green fluorescent protein (GFP) was able to drive fission efficiently when bound to the membrane at high coverage. Our conclusions are further strengthened by the finding that intrinsically disordered proteins, which have large hydrodynamic radii yet lack a defined structure, drove fission with substantially greater potency than smaller, structured proteins.

  3. Benchmark test of neutron transport calculations: indium, nickel, gold, europium, and cobalt activation with and without energy moderated fission neutrons by iron simulating the Hiroshima atomic bomb casing.

    PubMed

    Iwatani, K; Hoshi, M; Shizuma, K; Hiraoka, M; Hayakawa, N; Oka, T; Hasai, H

    1994-10-01

    A benchmark test of the Monte Carlo neutron and photon transport code system (MCNP) was performed using a bare- and energy-moderated 252Cf fission neutron source which was obtained by transmission through 10-cm-thick iron. An iron plate was used to simulate the effect of the Hiroshima atomic bomb casing. This test includes the activation of indium and nickel for fast neutrons and gold, europium, and cobalt for thermal and epithermal neutrons, which were inserted in the moderators. The latter two activations are also to validate 152Eu and 60Co activity data obtained from the atomic bomb-exposed specimens collected at Hiroshima and Nagasaki, Japan. The neutron moderators used were Lucite and Nylon 6 and the total thickness of each moderator was 60 cm or 65 cm. Measured activity data (reaction yield) of the neutron-irradiated detectors in these moderators decreased to about 1/1,000th or 1/10,000th, which corresponds to about 1,500 m ground distance from the hypocenter in Hiroshima. For all of the indium, nickel, and gold activity data, the measured and calculated values agreed within 25%, and the corresponding values for europium and cobalt were within 40%. From this study, the MCNP code was found to be accurate enough for the bare- and energy-moderated 252Cf neutron activation calculations of these elements using moderators containing hydrogen, carbon, nitrogen, and oxygen.

  4. Benchmark test of neutron transport calculations: Indium, nickel, gold, europium, and cobalt activation with and without energy moderated fission neutrons by iron simulating the Hiroshima atomic bomb casing

    SciTech Connect

    Iwatani, Kazuo; Shizuma, Kiyoshi; Hasai, Hiromi; Hoshi, Masaharu; Hiraoka, Masayuki; Hayakawa, Norihiko; Oka, Takamitsu

    1994-10-01

    A benchmark test of the Monte Carlo neutron and photon transport code system (MCNP) was performed using a bare- and energy-moderated {sup 252}Cf fission neutron source which was obtained by transmission through 10-cm-thick iron. An iron plate was used to simulate the effect of the Hiroshima atomic bomb casing. This test includes the activation of indium and nickel for fast neutrons and gold, europium, and cobalt for thermal and epithermal neutrons, which were inserted in the moderators. The latter two activations are also to validate {sup 152}Eu and {sup 60}Co activity data obtained from the atomic bomb-exposed specimens collected at Hiroshima and Nagasaki, Japan. The neutron moderators used were Lucite and Nylon 6 and the total thickness of each moderator was 60 cm or 65 cm. Measured activity data (reaction yield) of the neutron-irradiated detectors in these moderators decreased to about 1/1,000th or 1/10,000th, which corresponds to about 1,500 m ground distance from the hypocenter in Hiroshima. For all of the indium, nickel, and gold activity data, the measured and calculated values agreed within 25%, and the corresponding values for europium and cobalt were within 40%. From this study, the MCNP code was found to be accurate enough for the bare- and energy-moderated {sup 252}Cf neutron activation calculations of these elements using moderators containing hydrogen, carbon, nitrogen, and oxygen. 18 refs., 10 figs., 4 tabs.

  5. Triaxial quadrupole dynamics and the inner fission barrier of some heavy even-even nuclei

    NASA Astrophysics Data System (ADS)

    Benrabia, K.; Medjadi, D. E.; Imadalou, M.; Quentin, P.

    2017-09-01

    Background: Inner fission barriers of actinide nuclei have been known for a long time to be unstable with respect to the axial symmetry. On the other hand, taking into account the effect of the relevant adiabatic mass parameter reduces or even may wash out this instability. A proper treatment of the dynamics for both axial and triaxial modes is thus crucial to accurately determine the corresponding fission barriers. This entails in particular an accurate description of pairing correlations. Purpose: We evaluate the potential energies, moments of inertia, and vibrational mass parameters in a two-dimensional relevant deformation space (corresponding to the usual β and γ quadrupole deformation parameters) for four actinide nuclei (236U, 240Pu, 248Cm, and 252Cf). We assess the relevance of our approach to describe the dynamics for a triaxial mode by computing the low energy spectra (exploring thus mainly the equilibrium deformation region). We evaluate the inner fission barrier heights releasing the axial symmetry constraint. Method: Calculations within the Hartree-Fock plus BCS approach are performed using the SkM* Skyrme effective interaction in the particle-hole channel and a seniority force in the particle-particle channel. The intensity of this residual interaction has been fixed to allow a good reproduction of some odd-even mass differences in the actinide region. Adiabatic mass parameters for the rotational and vibrational modes are calculated using the Inglis-Belyaev formula supplemented by a global renormalization factor taking into account the so-called Thouless-Valatin corrections. Spectra are obtained through the diagonalization of the corresponding Bohr collective Hamiltonian. Results: The experimental low energy spectra are qualitatively well reproduced by our calculations for the considered nuclei. Inner fission barrier heights are calculated and compared with available estimates from various experimental data. The reproduction of the data is better

  6. Investigation of phenomenological models for the Monte Carlo simulation of the prompt fission neutron and {gamma} emission

    SciTech Connect

    Litaize, O.; Serot, O.

    2010-11-15

    A Monte Carlo simulation of the fission fragment deexcitation process was developed in order to analyze and predict postfission-related nuclear data which are of crucial importance for basic and applied nuclear physics. The basic ideas of such a simulation were already developed in the past. In the present work, a refined model is proposed in order to make a reliable description of the distributions related to fission fragments as well as to prompt neutron and {gamma} energies and multiplicities. This refined model is mainly based on a mass-dependent temperature ratio law used for the initial excitation energy partition of the fission fragments and a spin-dependent excitation energy limit for neutron emission. These phenomenological improvements allow us to reproduce with a good agreement the {sup 252}Cf(sf) experimental data on prompt fission neutron multiplicity {nu}(A), {nu}(TKE), the neutron multiplicity distribution P({nu}), as well as their energy spectra N(E), and lastly the energy release in fission.

  7. Eulogy for a neutron activation analysis facility

    SciTech Connect

    Lepel, E.A.

    2000-07-01

    A relatively inexpensive facility for neutron activation analysis (NAA) was developed in the early 1970s at Pacific Northwest National Laboratory (PNNL). With the availability of large {sup 252}Cf sources, a subcritical facility was designed that could contain up to 100 mg of {sup 252}Cf (T{sub 1/2} = 2.645 yr and a spontaneous fission yield of 2.34 x 10{sup 9} n/s{center_dot}mg{sup {minus}1}). The {sup 252}Cf source was surrounded by a hexagonal array of {sup 235}U enriched fuel rods, which provided a 10- to 20-fold multiplication of the neutrons emitted from the {sup 252}Cf source. This assembly was located near the bottom of a 1.52-m-diam x 6.10-m-deep water-filled pool. The Neutron Multiplier Facility (NMF) was operational from November 1977 to April 1998--a period of 20.4 yr. The NMF began operation with {approximately}100 mg of {sup 252}Cf, and because of decay of the {sup 252}Cf, it had decreased to 0.34 mg at the time of shutdown. Decommissioning of the NMF began April 1998 and was completed in October 1999.

  8. Nuclear Fission

    NASA Astrophysics Data System (ADS)

    Denschlag, J. O.

    This chapter first gives a survey on the history of the discovery of nuclear fission. It briefly presents the liquid-drop and shell models and their application to the fission process. The most important quantities accessible to experimental determination such as mass yields, nuclear charge distribution, prompt neutron emission, kinetic energy distribution, ternary fragment yields, angular distributions, and properties of fission isomers are presented as well as the instrumentation and techniques used for their measurement. The contribution concentrates on the fundamental aspects of nuclear fission. The practical aspects of nuclear fission are discussed in http://dx.doi.org/10.1007/978-1-4419-0720-2_57 of Vol. 6.

  9. Neutron standard data

    SciTech Connect

    Peelle, R.; Conde, H.

    1988-01-01

    The neutron standards are reviewed with emphasis on the evaluation for ENDFB-VI. Also discussed are the neutron spectrum of /sup 252/Cf spontaneous fission, activation cross sections for neutron flux measurement, and standards for neutron energies greater than 20 MeV. Recommendations are made for future work. 21 refs., 6 figs., 3 tabs.

  10. Fission: The first 50 years

    SciTech Connect

    Vandenbosch, R.

    1989-01-01

    The possibility of fission had been largely unanticipated prior to its discovery in 1938. This process, with its dramatically large energy release and its formation of previously unknown nuclides, immediately captured the imagination of the scientific community. Both theoretical and experimental developments occurred at a rapid pace. I will begin my discussion of fission with the far-reaching paper of Bohr and Wheeler, who in little more than half a year laid out a framework for understanding many features of the fission process. I will then turn to our current understanding of a number of aspects of fission. One of these is the pronounced tendency of many nuclear species to fission asymmetrically. In fact, the discovery of fission was based on the identification of barium isotopes produced in asymmetric fission. The dramatic changes in the preferred mass division and kinetic energy release with the addition of only a few neutrons to the spontaneously fissioning Fermium isotopes will be emphasized. The problem of the dynamics of saddle to scission will be discussed---this is one aspect of fission for which we do not have all the answers. Another dynamical effect to be discussed is the apparent failure of transition state theory at high excitation energies. The role of single particle (shell) effects in enriching the structure if the potential energy surface will be explored. Spontaneously fissioning isomers and intermediate structure resonances will be discussed. The recognition that short-lived fission isomers are superdeformed shape isomers has been followed by the recent observation of superdeformed shape isomers in the rare earth region. 18 refs., 3 figs.

  11. Simultaneous measurement of (n,γ) and (n,fission) cross sections with the DANCE array

    NASA Astrophysics Data System (ADS)

    Bredeweg, T. A.; Jandel, M.; Fowler, M. M.; Bond, E. M.; O'Donnell, J. M.; Reifarth, R.; Rundberg, R. S.; Ullmann, J. L.; Vieira, D. J.; Wilhelmy, J. B.; Wouters, J. M.; Macri, R. A.; Wu, C. Y.; Becker, J. A.

    2006-10-01

    We have recently begun a program of high precision measurements of the key production and destruction reactions of important radiochemical diagnostic isotopes, including several isotopes of uranium, plutonium and americium. The Detector for Advanced Neutron Capture Experiments (DANCE), a 4π BaF2 array located at the Los Alamos Neutron Science Center, will be used to measure the neutron capture cross sections for most of the isotopes of interest. Since neutron capture measurements on many of the actinides are complicated by the presence of γ-rays arising from low-energy neutron-induced fission, we are currently using a dual parallel-plate avalanche counter with the target material electro-deposited directly on the center cathode foil. This design provides a high efficiency for detecting fission fragments and allows loading of pre-assembled target/detector assemblies into the neutron beam line at DANCE. An outline of the current experimental program will be presented as well as results from measurements on ^235U and ^252Cf that utilized the fission-tag detector.

  12. Simultaneous measurement of (n, γ) and (n, fission) cross sections with the DANCE 4π BaF 2 array

    NASA Astrophysics Data System (ADS)

    Bredeweg, T. A.; Fowler, M. M.; Becker, J. A.; Bond, E. M.; Chadwick, M. B.; Clement, R. R. C.; Esch, E.-I.; Ethvignot, T.; Granier, T.; Jandel, M.; Macri, R. A.; O'Donnell, J. M.; Reifarth, R.; Rundberg, R. S.; Ullmann, J. L.; Vieira, D. J.; Wilhelmy, J. B.; Wouters, J. M.; Wu, C. Y.

    2007-08-01

    We have recently begun a program of high precision measurements of the key production and destruction reactions of important radiochemical diagnostic isotopes, including several isotopes of uranium, plutonium and americium. The detector for advanced neutron capture experiments (DANCE), a 4π BaF2 array located at the Los Alamos Neutron Science Center, will be used to measure the neutron capture cross sections for most of the isotopes of interest. However, neutron capture measurements on many of the actinides are complicated by the presence of prompt γ-rays arising from low energy neutron-induced fission, which competes with neutron capture to varying degrees. Previous measurements of 235U using the DANCE array have shown that we can partially resolve capture from fission events based on total γ-ray calorimetry (i.e. total γ-ray energy versus γ-ray multiplicity). The addition of a dedicated fission-tagging detector to the DANCE array has greatly improved our ability to separate these two competing processes. In addition to higher quality neutron capture data, the addition of a fission-tagging detector offers a means to determine the capture-to-fission ratio (σγ/σf) in a single measurement, which should reduce the effect of systematic uncertainties. We are currently using a dual parallel-plate avalanche counter (PPAC) with the target material electro-deposited directly on the center cathode foil. This design provides a high efficiency for detecting fission fragments and allows loading of pre-assembled target/detector assemblies into the neutron beam line at DANCE. Results from tests of the fission-tag detector, as well as preliminary results from measurements on 235U and 252Cf that utilized the fission-tag detector will be presented.

  13. New prompt fission gamma-ray spectral data from 239Pu(nth, f) in response to a high priority request from OECD Nuclear Energy Agency

    NASA Astrophysics Data System (ADS)

    Gatera, Angélique; Belgya, Tamás; Geerts, Wouter; Göök, Alf; Hambsch, Franz-Josef; Lebois, Matthieu; Maróti, Boglárka; Oberstedt, Stephan; Oberstedt, Andreas; Postelt, Frederik; Qi, Liqiang; Szentmiklósi, Laszló; Vidali, Marzio; Zeiser, Fabio

    2017-09-01

    Benchmark reactor calculations have revealed an underestimation of γ-heat following fission of up to 28%. To improve the modelling of new nuclear reactors, the OECD/NEA initiated a nuclear data High Priority Request List (HPRL) entry for the major isotopes (235U, 239Pu). In response to that HPRL entry, we executed a dedicated measurement program on prompt fission γ-rays employing state-of-the-art lanthanum bromide (LaBr3) detectors with superior timing and good energy resolution. Our new results from 252Cf(sf), 235U(nth,f) and 241Pu(nth,f) provide prompt fission γ-ray spectra characteristics : average number of photons per fission, average total energy per fission and mean photon energy; all within 2% of uncertainty. We present preliminary results on 239Pu(nth,f), recently measured at the Budapest Neutron Centre and supported by the CHANDA Trans-national Access Activity, as well as discussing our different published results in comparison to the historical data and what it says about the discrepancy observed in the benchmark calculations.

  14. FY04&05 LDRD Final Report Fission Fragment Sputtering

    SciTech Connect

    Ebbinghaus, B; Trelenberg, T; Meier, T; Felter, T; Sturgeon, J; Kuboda, A; Wolfer, B

    2006-02-22

    Fission fragments born within the first 7 {micro}m of the surface of U metal can eject a thousand or more atoms per fission event. Existing data in the literature show that the sputtering yield ranges from 10 to 10,000 atoms per fission event near the surface, but nothing definitive is known about the energy of the sputtered clusters. Experimental packages were constructed allowing the neutron irradiation of natural uranium foils to investigate the amount of material removed per fission event and the kinetic energy distribution of the sputtered atoms. Samples were irradiated but were never analyzed after irradiation. Similar experiments were attempted in a non-radioactive environment using accelerator driven ions in place of fission induced fragments. These experiments showed that tracks produced parallel to the surface (and not perpendicular to the surface) are the primary source of the resulting particulate ejecta. Modeling studies were conducted in parallel with the experimental work. Because the reactor irradiation experiments were not analyzed, data on the energy of the resulting particulate ejecta was not obtained. However, some data was found in the literature on self sputtering of {sup 252}Cf that was used to estimate the velocity and hence the energy of the ejected particulates. Modeling of the data in the literature showed that the energy of the ejecta was much lower than had been anticipated. A mechanism to understand the nature of the ejecta was pursued. Initially it was proposed that the fission fragment imparts its momenta on the electrons which then impart their momenta on the nuclei. Once the nuclei are in motion, the particulate ejecta would result. This initial model was wrong. The error was in the assumption that the secondary electrons impart their momenta directly on the nuclei. Modeling and theoretical considerations showed that the secondary electrons scatter many times before imparting all their momenta. As a result, their energy transfer is

  15. Fifty years with nuclear fission

    SciTech Connect

    Behrens, J.W.; Carlson, A.D. )

    1989-01-01

    The news of the discovery of nuclear fission, by Otto Hahn and Fritz Strassmann in Germany, was brought to the United States by Niels Bohr in January 1939. Since its discovery, the United States, and the world for that matter, has never been the same. It therefore seemed appropriate to acknowledge the fifieth anniversary of its discovery by holding a topical meeting entitled, Fifty Years with Nuclear Fission,'' in the United States during the year 1989. The objective of the meeting was to bring together pioneers of the nuclear industry and other scientists and engineers to report on reminiscences of the past and on the more recent development in fission science and technology. The conference highlighted the early pioneers of the nuclear industry by dedicated a full day (April 26), consisting of two plenary sessions, at the National Academy of Sciences (NAS) in Washington, DC. More recent developments in fission science and technology in addition to historical reflections were topics for two fully days of sessions (April 27 and 28) at the main site of the NIST in Gaithersburg, Maryland. The wide range of topics covered in this Volume 1 by this topical meeting included plenary invited, and contributed sessions entitled: Preclude to the First Chain Reaction -- 1932 to 1942; Early Fission Research -- Nuclear Structure and Spontaneous Fission; 50 Years of Fission, Science, and Technology; Nuclear Reactors, Secure Energy for the Future; Reactors 1; Fission Science 1; Safeguards and Space Applications; Fission Data; Nuclear Fission -- Its Various Aspects; Theory and Experiments in Support of Theory; Reactors and Safeguards; and General Research, Instrumentation, and By-Product. The individual papers have been cataloged separately.

  16. Theoretical Description of the Fission Process

    SciTech Connect

    Witold Nazarewicz

    2003-07-01

    The main goals of the project can be summarized as follows: Development of effective energy functionals that are appropriate for the description of heavy nuclei. Our goal is to improve the existing energy density (Skyrme) functionals to develop a force that will be used in calculations of fission dynamics. Systematic self-consistent calculations of binding energies and fission barriers of actinide and trans-actinide nuclei using modern density functionals. This will be followed by calculations of spontaneous fission lifetimes and mass and charge divisions using dynamic adiabatic approaches based on the WKB approximation. Investigate novel microscopic (non-adiabatic) methods to study the fission process.

  17. Bimodal Fission in the Skyrme-Hartree-Fock Approach

    SciTech Connect

    Staszczak, A.; Dobaczewski, J.; Nazarewicz, Witold

    2007-01-01

    Spontaneous fission properties of 256Fm, 258Fm, and 260Fm isotopes are studied within the Skyrme-Hartree-Fock+BCS framework. In the particle-hole channel we take the Skyrme SkM* effective force, while in the particle-particle channel we employ the seniority pairing interaction. Three static fission paths for all investigated heavy fermium isotopes are found. The analysis of these fission modes allows to describe observed asymmetric fission of 256Fm, as well as bimodal fission of 258Fm and symmetric fission in 260Fm.

  18. Dynamical Aspects of Nuclear Fission

    NASA Astrophysics Data System (ADS)

    Kliman, J.; Itkis, M. G.; Gmuca, Š.

    2008-11-01

    Fission dynamics. Dependence of scission-neutron yield on light-fragment mass for [symbol]=1/2 [et al.]. Dynamics of capture quasifission and fusion-fission competition / L. Stuttgé ... [et al.] -- Fission-fission. The processes of fusion-fission and quasi-fission of superheavy nuclei / M. G. Itkis ... [et al.]. Fission and quasifission in the reactions [symbol]Ca+[symbol]Pb and [symbol]Ni+[symbol]W / G. N. Knyazheva ... [et al.]. Mass-energy characteristics of reactions [symbol]Fe+[symbol][symbol][symbol]266Hs and [symbol]Mg+[symbol]Cm[symbol][symbol]Hs at Coulomb barrier / L. Krupa ... [et al.]. Fusion of heavy ions at extreme sub-barrier energies / Ş. Mişicu and H. Esbensen. Fusion and fission dynamics of heavy nuclear system / V. Zagrebaev and W. Greiner. Time-dependent potential energy for fusion and fission processes / A. V. Karpov ... [et al.] -- Superheavy elements. Advances in the understanding of structure and production mechanisms for superheavy elements / W. Greiner and V. Zagrebaev. Fission barriers of heaviest nuclei / A. Sobiczewski ... [et al.]. Possibility of synthesizing doubly magic superheavy nuclei / Y Aritomo ... [et al.]. Synthesis of superheavy nuclei in [symbol]Ca-induced reactions / V. K. Utyonkov ... [et al.] -- Fragmentation. Production of neutron-rich nuclei in the nucleus-nucleus collisions around the Fermi energy / M. Veselský. Signals of enlarged core in [symbol]Al / Y. G. Ma ... [et al.] -- Exotic modes. New insight into the fission process from experiments with relativistic heavy-ion beams / K.-H. Schmidt ... [et al.]. New results for the intensity of bimodal fission in binary and ternary spontaneous fission of [symbol]Cf / C. Goodin ... [et al.]. Rare fission modes: study of multi-cluster decays of actinide nuclei / D. V. Kamanin ... [et al.]. Energy distribution of ternary [symbol]-particles in [symbol]Cf(sf) / M. Mutterer ... [et al.]. Preliminary results of experiment aimed at searching for collinear cluster tripartition of

  19. Development of prototype induced-fission-based Pu accountancy instrument for safeguards applications.

    PubMed

    Seo, Hee; Lee, Seung Kyu; An, Su Jung; Park, Se-Hwan; Ku, Jeong-Hoe; Menlove, Howard O; Rael, Carlos D; LaFleur, Adrienne M; Browne, Michael C

    2016-09-01

    Prototype safeguards instrument for nuclear material accountancy (NMA) of uranium/transuranic (U/TRU) products that could be produced in a future advanced PWR fuel processing facility has been developed and characterized. This is a new, hybrid neutron measurement system based on fast neutron energy multiplication (FNEM) and passive neutron albedo reactivity (PNAR) methods. The FNEM method is sensitive to the induced fission rate by fast neutrons, while the PNAR method is sensitive to the induced fission rate by thermal neutrons in the sample to be measured. The induced fission rate is proportional to the total amount of fissile material, especially plutonium (Pu), in the U/TRU product; hence, the Pu amount can be calibrated as a function of the induced fission rate, which can be measured using either the FNEM or PNAR method. In the present study, the prototype system was built using six (3)He tubes, and its performance was evaluated for various detector parameters including high-voltage (HV) plateau, efficiency profiles, dead time, and stability. The system's capability to measure the difference in the average neutron energy for the FNEM signature also was evaluated, using AmLi, PuBe, (252)Cf, as well as four Pu-oxide sources each with a different impurity (Al, F, Mg, and B) and producing (α,n) neutrons with different average energies. Future work will measure the hybrid signature (i.e., FNEM×PNAR) for a Pu source with an external interrogating neutron source after enlarging the cavity size of the prototype system to accommodate a large-size Pu source (~600g Pu).

  20. Nuclear Fission and Fission{minus}Product Spectroscopy: Second International Workshop. Proceedings

    SciTech Connect

    Fioni, G.; Faust, H.; Oberstedt, S.; Hambsch, F.

    1998-10-01

    These proceedings represent papers presented at the Second International Workshop on Nuclear Fission and Fission{minus}Product Spectroscopy held in Seyssins, France in April, 1998. The objective was to bring together the specialists in the field to overview the situation and to assess our present understanding of the fission process. The topics presented at the conference included nuclear waste management, incineration, neutron driven transmutation, leakage etc., radioactive beams, neutron{minus}rich nuclei, neutron{minus}induced and spontaneous fission, ternary fission phenomena, angular momentum, parity and time{minus}reversal phenomena, and nuclear fission at higher excitation energy. Modern spectroscopic tools for gamma spectroscopy as applied to fission were also discussed. There were 53 papers presented at the conference,out of which 3 have been abstracted for the Energy,Science and Technology database.(AIP)

  1. The Need for Precise and Well-documented Experimental Data on Prompt Fission Neutron Spectra from Neutron-induced Fission of {sup 239}Pu

    SciTech Connect

    Neudecker, D. Taddeucci, T.N.; Haight, R.C.; Lee, H.Y.; White, M.C.; Rising, M.E.

    2016-01-15

    The spectrum of neutrons emitted promptly after {sup 239}Pu(n,f)—a so-called prompt fission neutron spectrum (PFNS)—is a quantity of high interest, for instance, for reactor physics and global security. However, there are only few experimental data sets available that are suitable for evaluations. In addition, some of those data sets differ by more than their 1-σ uncertainty boundaries. We present the results of MCNP studies indicating that these differences are partly caused by underestimated multiple scattering contributions, over-corrected background, and inconsistent deconvolution methods. A detailed uncertainty quantification for suitable experimental data was undertaken including these effects, and test-evaluations were performed with the improved uncertainty information. The test-evaluations illustrate that the inadequately estimated effects and detailed uncertainty quantification have an impact on the evaluated PFNS and associated uncertainties as well as the neutron multiplicity of selected critical assemblies. A summary of data and documentation needs to improve the quality of the experimental database is provided based on the results of simulations and test-evaluations. Given the possibly substantial distortion of the PFNS by multiple scattering and background effects, special care should be taken to reduce these effects in future measurements, e.g., by measuring the {sup 239}Pu PFNS as a ratio to either the {sup 235}U or {sup 252}Cf PFNS.

  2. The need for precise and well-documented experimental data on prompt fission neutron spectra from neutron-induced fission of 239Pu

    DOE PAGES

    Neudecker, Denise; Taddeucci, Terry Nicholas; Haight, Robert Cameron; ...

    2016-01-06

    The spectrum of neutrons emitted promptly after 239Pu(n,f)—a so-called prompt fission neutron spectrum (PFNS)—is a quantity of high interest, for instance, for reactor physics and global security. However, there are only few experimental data sets available that are suitable for evaluations. In addition, some of those data sets differ by more than their 1-σ uncertainty boundaries. We present the results of MCNP studies indicating that these differences are partly caused by underestimated multiple scattering contributions, over-corrected background, and inconsistent deconvolution methods. A detailed uncertainty quantification for suitable experimental data was undertaken including these effects, and test-evaluations were performed with themore » improved uncertainty information. The test-evaluations illustrate that the inadequately estimated effects and detailed uncertainty quantification have an impact on the evaluated PFNS and associated uncertainties as well as the neutron multiplicity of selected critical assemblies. A summary of data and documentation needs to improve the quality of the experimental database is provided based on the results of simulations and test-evaluations. Furthermore, given the possibly substantial distortion of the PFNS by multiple scattering and background effects, special care should be taken to reduce these effects in future measurements, e.g., by measuring the 239Pu PFNS as a ratio to either the 235U or 252Cf PFNS.« less

  3. Fission Spectrum

    DOE R&D Accomplishments Database

    Bloch, F.; Staub, H.

    1943-08-18

    Measurements of the spectrum of the fission neutrons of 25 are described, in which the energy of the neutrons is determined from the ionization produced by individual hydrogen recoils. The slow neutrons producing fission are obtained by slowing down the fast neutrons from the Be-D reaction of the Stanford cyclotron. In order to distinguish between fission neutrons and the remaining fast cyclotron neutrons both the cyclotron current and the pusle amplifier are modulated. A hollow neutron container, in which slow neutrons have a lifetime of about 2 milliseconds, avoids the use of large distances. This method results in much higher intensities than the usual modulation arrangement. The results show a continuous distribution of neutrons with a rather wide maximum at about 0.8 MV falling off to half of its maximum value at 2.0 MV. The total number of netrons is determined by comparison with the number of fission fragments. The result seems to indicate that only about 30% of the neutrons have energies below .8 MV. Various tests are described which were performed in order to rule out modification of the spectrum by inelastic scattering. Decl. May 4, 1951

  4. Estimation of the number of prompt fission gamma rays

    SciTech Connect

    Valentine, T.E.

    2000-07-01

    The correlation between the total gamma-ray energy from fission and the number of prompt neutrons emitted from fission is used to estimate the average number of prompt gamma rays from fission in lieu of performing a measurement. Competition in the emission of prompt gamma rays and neutrons from the de-excitation of fission fragments has been observed experimentally. Mathematical models were used to estimate the properties of prompt gamma rays from the spontaneous fission of various nuclides that are encountered in nuclear safeguard applications. The estimated prompt gamma-ray parameters for spontaneous fission of {sup 238}U, {sup 238}Pu, {sup 240}Pu, {sup 242}Pu, {sup 242}Cm, and {sup 244}Cm are presented. The total prompt gamma-ray energy was estimated using the average number of neutrons from fission for each nuclide. The average energy of prompt gamma rays from fission was estimated, and the average number of prompt gamma rays from fission was estimated. The data presented can be used to characterize spontaneous fission isotopes commonly encountered in nuclear safeguard applications. This information may prove useful for development of advanced nondestructive assay methods. Furthermore, the models presented in this summary provide a mechanism to estimate gamma-ray properties for any fission process. The use of models to estimate gamma-ray properties from fission highlights the fact that little experimental data exist for many spontaneous fission nuclides. Measurements of the gamma-ray properties not only would be useful for developing nondestructive assay methods but also would provide additional information about the fission process.

  5. SPIDER Progress Towards High Resolution Correlated Fission Product Data

    NASA Astrophysics Data System (ADS)

    Shields, Dan; Meierbachtol, Krista; Tovesson, Fredrik; Arnold, Charles; Blackeley, Rick; Bredeweg, Todd; Devlin, Matt; Hecht, Adam; Jandel, Marian; Jorgenson, Justin; Nelson, Ron; White, Morgan; Spider Team

    2014-09-01

    The SPIDER detector (SPectrometer for Ion DEtermination in fission Research) is under development with the goal of obtaining high-resolution, high-efficiency, correlated fission product data needed for many applications including the modeling of next generation nuclear reactors, stockpile stewardship, and the fundamental understanding of the fission process. SPIDER simultaneously measures velocity and energy of both fission products to calculate fission product yields (FPYs), neutron multiplicity (ν), and total kinetic energy (TKE). A detailed description of the prototype SPIDER detector components will be presented. Characterization measurements with alpha and spontaneous fission sources will also be discussed. LA-UR-14-24875. The SPIDER detector (SPectrometer for Ion DEtermination in fission Research) is under development with the goal of obtaining high-resolution, high-efficiency, correlated fission product data needed for many applications including the modeling of next generation nuclear reactors, stockpile stewardship, and the fundamental understanding of the fission process. SPIDER simultaneously measures velocity and energy of both fission products to calculate fission product yields (FPYs), neutron multiplicity (ν), and total kinetic energy (TKE). A detailed description of the prototype SPIDER detector components will be presented. Characterization measurements with alpha and spontaneous fission sources will also be discussed. LA-UR-14-24875. This work is in part supported by LANL Laboratory Directed Research and Development Projects 20110037DR and 20120077DR.

  6. Measurement of {sup 235}U content and flow of UF{sub 6} using delayed neutrons or gamma rays following induced fission

    SciTech Connect

    Stromswold, D.C.; Peurrung, A.J.; Reeder, P.L.; Perkins, R.W.

    1996-06-01

    Feasibility experiments conducted at Pacific Northwest National Laboratory demonstrate that either delayed neutrons or energetic gamma rays from short-lived fission products can be used to monitor the blending of UF{sub 6} gas streams. A {sup 252}Cf neutron source was used to induce {sup 235}U fission in a sample, and delayed neutrons and gamma rays were measured after the sample moved {open_quotes}down-stream.{close_quotes} The experiments used a UO{sub 2} powder that was transported down the pipe to simulate the flowing UF{sub 6} gas. Computer modeling and analytic calculation extended the test results to a flowing UF{sub 6} gas system. Neutron or gamma-ray measurements made at two downstream positions can be used to indicate both the {sup 235}U content and UF{sub 6} flow rate. Both the neutron and gamma-ray techniques have the benefits of simplicity and long-term reliability, combined with adequate sensitivity for low-intrusion monitoring of the blending process. Alternatively, measuring the neutron emission rate from (a, n) reactions in the UF{sub 6} provides an approximate measure of the {sup 235}U content without using a neutron source to induce fission.

  7. Status of fission yield data

    SciTech Connect

    England, T.R.; Blachot, J.

    1988-01-01

    In this paper we summarize the current status of the recent US evaluation for 34 fissioning nuclides at one or more neutron incident energies and for spontaneous fission. Currently there are 50 yields sets, and for each we have independent and cumulative yields and uncertainties for approximately 1100 fission products. When finalized the recommended data will become part of Version VI of the US ENDF/B. Other major evaluations in progress that are included in a recently formed IAEA Coordinated Research Program are also summarized. In a second part we review two empirical models in use to estimate independent yields. Comparison of model estimates with measured data is presented, including a comparison with some recent data obtained from Lohengrin (Cf-249 T). 18 refs., 13 figs., 3 tabs.

  8. Theoretical Description of the Fission Process

    SciTech Connect

    Witold Nazarewicz

    2009-10-25

    Advanced theoretical methods and high-performance computers may finally unlock the secrets of nuclear fission, a fundamental nuclear decay that is of great relevance to society. In this work, we studied the phenomenon of spontaneous fission using the symmetry-unrestricted nuclear density functional theory (DFT). Our results show that many observed properties of fissioning nuclei can be explained in terms of pathways in multidimensional collective space corresponding to different geometries of fission products. From the calculated collective potential and collective mass, we estimated spontaneous fission half-lives, and good agreement with experimental data was found. We also predicted a new phenomenon of trimodal spontaneous fission for some transfermium isotopes. Our calculations demonstrate that fission barriers of excited superheavy nuclei vary rapidly with particle number, pointing to the importance of shell effects even at large excitation energies. The results are consistent with recent experiments where superheavy elements were created by bombarding an actinide target with 48-calcium; yet even at high excitation energies, sizable fission barriers remained. Not only does this reveal clues about the conditions for creating new elements, it also provides a wider context for understanding other types of fission. Understanding of the fission process is crucial for many areas of science and technology. Fission governs existence of many transuranium elements, including the predicted long-lived superheavy species. In nuclear astrophysics, fission influences the formation of heavy elements on the final stages of the r-process in a very high neutron density environment. Fission applications are numerous. Improved understanding of the fission process will enable scientists to enhance the safety and reliability of the nation’s nuclear stockpile and nuclear reactors. The deployment of a fleet of safe and efficient advanced reactors, which will also minimize radiotoxic

  9. Reliability of Monte Carlo simulations in modeling neutron yields from a shielded fission source

    NASA Astrophysics Data System (ADS)

    McArthur, Matthew S.; Rees, Lawrence B.; Czirr, J. Bart

    2016-08-01

    Using the combination of a neutron-sensitive 6Li glass scintillator detector with a neutron-insensitive 7Li glass scintillator detector, we are able to make an accurate measurement of the capture rate of fission neutrons on 6Li. We used this detector with a 252Cf neutron source to measure the effects of both non-borated polyethylene and 5% borated polyethylene shielding on detection rates over a range of shielding thicknesses. Both of these measurements were compared with MCNP calculations to determine how well the calculations reproduced the measurements. When the source is highly shielded, the number of interactions experienced by each neutron prior to arriving at the detector is large, so it is important to compare Monte Carlo modeling with actual experimental measurements. MCNP reproduces the data fairly well, but it does generally underestimate detector efficiency both with and without polyethylene shielding. For non-borated polyethylene it underestimates the measured value by an average of 8%. This increases to an average of 11% for borated polyethylene.

  10. Three-cluster model for the {alpha}-accompanied fission of californium nuclei

    SciTech Connect

    Manimaran, K.; Balasubramaniam, M.

    2009-02-15

    A three-cluster model is proposed to explain the particle-accompanied binary fission of radioactive nuclei. The model is developed as an extension of the preformed cluster model of Gupta and collaborators. The advantage of this model is that, for a fixed third fragment, we can calculate the fragmentation potential minimized in charge coordinate. For our study we chose the various neutron-deficient to neutron-rich californium nuclei, whose analysis reveals that the closed-shell effect of any one of the fragments in ternary fragmentation presents itself as the most favorable configuration to be observed. As one goes from a neutron-deficient to a neutron-rich californium isotope, the role of the neutron closed shell associated with any one of the preferred fragments changes to that of the proton closed shell, and for very neutron rich isotopes of californium the presence of a double closed shell nucleus enhances the decay probability. The quadrupole deformation of the light fragment (A{sub 2}) associated with the preferred configuration in the symmetric mass region also has a transition from positive to negative deformation as one goes from neutron-deficient to neutron-rich californium isotopes. The calculated relative yields of different fragmentation channels are compared with the available experimental yields for {sup 252}Cf.

  11. γ-ray studies of the fission of 238U induced by 12C, spectroscopy and fission dynamics

    NASA Astrophysics Data System (ADS)

    Houry, M.; Korten, W.; Le Coz, Y.; Lucas, R.; Theisen, Ch.; Barreau, G.; Doan, T. P.; Aiche, M.; Aleonard, M. M.; Chemin, J. F.; Scheurer, J. N.; Belier, G.; Meot, V.; Ethvignot, Th.; Durell, J.; Grimwood, D.; Phillips, W. R.; Roach, A.; Smith, A. G.; Varley, B. J.; Deloncle, I.; Porquet, M. G.; Astier, A.; Perries, S.; Redon, N.

    1998-10-01

    Fission studies have been known for a long time to provide neutron-rich nuclei in various states of excitation energy, spin and deformation. Although many studies have been performed concerning fission fragments from spontaneous fission and neutron induced fission, a renewed interest in fission-fragment spectroscopy has occurred with the elaboration of large Ge detector arrays such as EUROBALL. We have recently performed an experiment with EUROBALL III using SAPhIR; a fission-fragment detector made from photovoltaic cells. The compact and versatile geometry of SAPhIR allows it to be installed inside the γ-ray detector, and to obtain additional information from the fission process as well as a timing reference. Neutron-rich nuclei have been populated in the fusion-fission reaction 238U+12C leading to the compound nucleus 250Cf. First results of this experiment are presented.

  12. Fission meter

    DOEpatents

    Rowland, Mark S [Alamo, CA; Snyderman, Neal J [Berkeley, CA

    2012-04-10

    A neutron detector system for discriminating fissile material from non-fissile material wherein a digital data acquisition unit collects data at high rate, and in real-time processes large volumes of data directly into information that a first responder can use to discriminate materials. The system comprises counting neutrons from the unknown source and detecting excess grouped neutrons to identify fission in the unknown source.

  13. Possibility of using Curium-248 for the development of the reference neutron sources

    SciTech Connect

    Alexandrov, B.M.; Batenkov, O.I.; Blinov, M.V.

    1993-12-31

    Neutron sources on the base of {sup 252}Cf spontaneous fission are widely used. They have great specific neutron yields and comparative low gamma-ray background. But their half-lifes are rather short. The spectrum of {sup 252}Cf spontaneous fission neutrons was recommended by IAEA as an international standard spectrum. {sup 248}Cm is of special interest for a preparation on its base long-lived reference neutron sources. On the one hand its half-life (3.5 10{sup 5} years) is essentially greater than that of {sup 252}Cf (2.7 years), and on the other hand the intensity of {sup 248}Cm spontaneous fission is high enough (10{sup 4} fiss/mg s) which enables to use it in various scientific and practical purposes. For {sup 248}Cm there is practically information only about the middle energy of the spectrum. In this report the {sup 248}Cm spontaneous fission neutron spectrum measurement results are presented for the determination of the possibility of the use of this isotope as international standard and for purposes of a development of reference long-lived neutron sources on {sup 248}Cm base.

  14. Membrane Fission: Model for Intermediate Structures

    PubMed Central

    Kozlovsky, Yonathan; Kozlov, Michael M.

    2003-01-01

    Membrane budding-fission is a fundamental process generating intracellular carriers of proteins. Earlier works were focused only on formation of coated buds connected to the initial membrane by narrow membrane necks. We present the theoretical analysis of the whole pathway of budding-fission, including the crucial stage where the membrane neck undergoes fission and the carrier separates from the donor membrane. We consider two successive intermediates of the reaction: 1), a constricted membrane neck coming out of aperture of the assembling protein coat, and 2), hemifission intermediate resulting from self-fusion of the inner monolayer of the neck, while its outer monolayer remains continuous. Transformation of the constricted neck into the hemifission intermediate is driven by the membrane stress produced in the neck by the protein coat. Although apparently similar to hemifusion, the fission is predicted to have an opposite dependence on the monolayer spontaneous curvature. Analysis of the further stages of the process demonstrates that in all practically important cases the hemifission intermediate decays spontaneously into two separate membranes, thereby completing the fission process. We formulate the “job description” for fission proteins by calculating the energy they have to deliver and the radii of the protein coat aperture which have to be reached to drive the fission process. PMID:12829467

  15. Current Issues in Nuclear Data Evaluation Methodology: {sup 235}U Prompt Fission Neutron Spectra and Multiplicity for Thermal Neutrons

    SciTech Connect

    Trkov, A.; Capote, R.; Pronyaev, V.G.

    2015-01-15

    Issues in evaluation methodology of the prompt fission neutron spectra (PFNS) and neutron multiplicity for the thermal-neutron-induced fission of the {sup 235}U are discussed. The inconsistency between the experimental differential and integral data is addressed. By using differential data as ”shape data” good consistency was achieved between available sets of differential data. Integral dosimetry data have been used to define the PFNS slope at high outgoing neutron energies, where the quality of the differential data is poor. The inclusion into the fit of measured integral (spectrum-averaged) cross sections had a very small impact in the region where differential PFNS data are abundant and accurate, but removed the discrepancy with integral data at higher neutron emission energies. All experimental data are consistently fitted giving a PFNS average energy of 2.008 MeV. The impact on criticality prediction of the newly evaluated PFNS was tested. The highly enriched {sup 235}U solution assemblies with high leakage HEU-SOL-THERM-001 and HEU-SOL-THERM-009 benchmarks are the most sensitive to the PFNS. Criticality calculations for those solutions show a significant increase in reactivity if the average neutron energy of the fission neutrons is reduced from the ENDF/B-VI.5 value of 2.03 MeV. The proposed reduction of the PFNS average energy by 1.1% can be compensated by reducing the average number of neutrons per fission ν{sup ¯} at the thermal energy to the Gwin et al. measured value. The simple least-squares PFNS fit was confirmed by a more sophisticated combined fit of differential PFNS data for {sup 233,235}U, {sup 239}Pu and {sup 252}Cf nuclides with the generalised least-squares method using the GMA and GANDR codes.

  16. Current Issues in Nuclear Data Evaluation Methodology: 235U Prompt Fission Neutron Spectra and Multiplicity for Thermal Neutrons

    NASA Astrophysics Data System (ADS)

    Trkov, A.; Capote, R.; Pronyaev, V. G.

    2015-01-01

    Issues in evaluation methodology of the prompt fission neutron spectra (PFNS) and neutron multiplicity for the thermal-neutron-induced fission of the 235U are discussed. The inconsistency between the experimental differential and integral data is addressed. By using differential data as "shape data" good consistency was achieved between available sets of differential data. Integral dosimetry data have been used to define the PFNS slope at high outgoing neutron energies, where the quality of the differential data is poor. The inclusion into the fit of measured integral (spectrum-averaged) cross sections had a very small impact in the region where differential PFNS data are abundant and accurate, but removed the discrepancy with integral data at higher neutron emission energies. All experimental data are consistently fitted giving a PFNS average energy of 2.008 MeV. The impact on criticality prediction of the newly evaluated PFNS was tested. The highly enriched 235U solution assemblies with high leakage HEU-SOL-THERM-001 and HEU-SOL-THERM-009 benchmarks are the most sensitive to the PFNS. Criticality calculations for those solutions show a significant increase in reactivity if the average neutron energy of the fission neutrons is reduced from the ENDF/B-VI.5 value of 2.03 MeV. The proposed reduction of the PFNS average energy by 1.1% can be compensated by reducing the average number of neutrons per fission νbar at the thermal energy to the Gwin et al. measured value. The simple least-squares PFNS fit was confirmed by a more sophisticated combined fit of differential PFNS data for 233,235U, 239Pu and 252Cf nuclides with the generalised least-squares method using the GMA and GANDR codes.

  17. Optimizing moderation of He-3 neutron detectors for shielded fission sources

    SciTech Connect

    Rees, Lawrence B.; Czirr, J. Bart

    2012-07-10

    Abstract: The response of 3-He neutron detectors is highly dependent on the amount of moderator incorporated into the detector system. If there is too little moderation, neutrons will not react with the 3-He. If there is too much moderation, neutrons will not reach the 3-He. In applications for portal or border monitors where 3He detectors are used to interdict illicit Importation of plutonium, the fission source is always shielded to some extent. Since the energy distribution of neutrons emitted from the source depends on the amount and type of shielding present, the optimum placement of moderating material around 3-He tubes is a function of shielding. In this paper, we use Monte Carlo techniques to model the response of 3-He tubes placed in polyethylene boxes for moderation. To model the shielded fission neutron source, we use a 252-Cf source placed in the center of spheres of water of varying radius. Detector efficiency as a function of box geometry and shielding are explored. We find that increasing the amount of moderator behind and to the sides of the detector generally improves the detector response, but that benefits are limited if the thickness of the polyethylene moderator is greater than about 5-7 cm. The thickness of the moderator in front of the 3He tubes, however, is very important. For bare sources, about 5-6 cm of moderator is optimum, but as the shielding increases, the optimum thickness of this moderator decreases to 0-1 cm. A two-tube box with a moderator thickness of 5 cm in front of the first tube and a thickness of 1 cm in front of the second tube is proposed to improve the detector's sensitivity to lower-energy neutrons.

  18. Optimizing moderation of He-3 neutron detectors for shielded fission sources

    DOE PAGES

    Rees, Lawrence B.; Czirr, J. Bart

    2012-07-10

    Abstract: The response of 3-He neutron detectors is highly dependent on the amount of moderator incorporated into the detector system. If there is too little moderation, neutrons will not react with the 3-He. If there is too much moderation, neutrons will not reach the 3-He. In applications for portal or border monitors where 3He detectors are used to interdict illicit Importation of plutonium, the fission source is always shielded to some extent. Since the energy distribution of neutrons emitted from the source depends on the amount and type of shielding present, the optimum placement of moderating material around 3-He tubesmore » is a function of shielding. In this paper, we use Monte Carlo techniques to model the response of 3-He tubes placed in polyethylene boxes for moderation. To model the shielded fission neutron source, we use a 252-Cf source placed in the center of spheres of water of varying radius. Detector efficiency as a function of box geometry and shielding are explored. We find that increasing the amount of moderator behind and to the sides of the detector generally improves the detector response, but that benefits are limited if the thickness of the polyethylene moderator is greater than about 5-7 cm. The thickness of the moderator in front of the 3He tubes, however, is very important. For bare sources, about 5-6 cm of moderator is optimum, but as the shielding increases, the optimum thickness of this moderator decreases to 0-1 cm. A two-tube box with a moderator thickness of 5 cm in front of the first tube and a thickness of 1 cm in front of the second tube is proposed to improve the detector's sensitivity to lower-energy neutrons.« less

  19. Reflection Asymmetric Shapes in the Neutron-Rich 140,143Ba Isotopes

    NASA Astrophysics Data System (ADS)

    Zhu Sheng-jiang (S, J. Zhu; Wang, Mu-ge; J, H. Hamilton; A, V. Ramayya; B, R. S. Babu; W, C. Ma; Long, Gui-lu; Deng, Jing-kang; Zhu, Ling-yan; Li, Ming; T, N. Ginter; J, Komicki; J, D. Cole; R, Aryaeinejad; Y, K. Dardenne; M, W. Drigert; J, O. Rasmussen; Ts, Yu Oganessian; M, A. Stoyer; S, Y. Chu; K, E. Gregorich; M, F. Mohar; S, G. Prussin; I, Y. Lee; N, R. Johnson; F, K. McGowan

    1997-08-01

    Level schemes for the neutron-rich 140,143Ba nuclei have been determined by study of prompt γ-rays in spontaneous fission of 252Cf. The level pattern and enhanced E1 transitions between π = + and π = - bands show reflection asymmetric shapes with simplex quantum number s = +1 in 140Ba and s = ±i in 143Ba, respectively. The octupole deformation stability with spin variation has been discussed.

  20. Improvements and Extensions of the Neutron Cross Section and Fluence Standards

    NASA Astrophysics Data System (ADS)

    Carlson, A. D.; Pronyaev, V. G.; Capote, R.; Hambsch, F.-J.; Käppeler, F.; Lederer, C.; Mannhart, W.; Mengoni, A.; Nelson, R. O.; Plompen, A. J. M.; Schillebeeckx, P.; Simakov, S.; Talou, P.; Tagesen, S.; Vonach, H.; Vorobyev, A.; Wallner, A.

    2014-04-01

    Improvements have been made to the nuclear data standards largely as a result of an IAEA Data Development Project. The work includes the traditional activities related to standards, extending the energy ranges of some standards, and reference data that are not as well known as the standards but can be very useful in the measurements of certain types of cross sections. Also included is an effort to improve evaluations of 235U thermal and 252Cf spontaneous fission neutron spectra.

  1. Fifty years with nuclear fission. Volume 1

    SciTech Connect

    Behrens, J.W.; Carlson, A.D.

    1989-12-31

    The news of the discovery of nuclear fission, by Otto Hahn and Fritz Strassmann in Germany, was brought to the United States by Niels Bohr in January 1939. Since its discovery, the United States, and the world for that matter, has never been the same. It therefore seemed appropriate to acknowledge the fifieth anniversary of its discovery by holding a topical meeting entitled, ``Fifty Years with Nuclear Fission,`` in the United States during the year 1989. The objective of the meeting was to bring together pioneers of the nuclear industry and other scientists and engineers to report on reminiscences of the past and on the more recent development in fission science and technology. The conference highlighted the early pioneers of the nuclear industry by dedicated a full day (April 26), consisting of two plenary sessions, at the National Academy of Sciences (NAS) in Washington, DC. More recent developments in fission science and technology in addition to historical reflections were topics for two fully days of sessions (April 27 and 28) at the main site of the NIST in Gaithersburg, Maryland. The wide range of topics covered in this Volume 1 by this topical meeting included plenary invited, and contributed sessions entitled: Preclude to the First Chain Reaction -- 1932 to 1942; Early Fission Research -- Nuclear Structure and Spontaneous Fission; 50 Years of Fission, Science, and Technology; Nuclear Reactors, Secure Energy for the Future; Reactors 1; Fission Science 1; Safeguards and Space Applications; Fission Data; Nuclear Fission -- Its Various Aspects; Theory and Experiments in Support of Theory; Reactors and Safeguards; and General Research, Instrumentation, and By-Product. The individual papers have been cataloged separately.

  2. Porous fission fragment tracks in fluorapatite

    SciTech Connect

    Li Weixing; Ewing, Rodney C.; Wang Lumin; Sun Kai; Lang, Maik; Trautmann, Christina

    2010-10-01

    Fission tracks caused by the spontaneous fission of {sup 238}U in minerals, as revealed by chemical etching, are extensively used to determine the age and thermal history of Earth's crust. Details of the structure and annealing of tracks at the atomic scale have remained elusive, as the original track is destroyed during chemical etching. By combining transmission electron microscopy with in situ heating, we demonstrate that fission tracks in fluorapatite are actually porous tubes, instead of having an amorphous core, as generally assumed. Direct observation shows thermally induced track fragmentation in fluoapatite, in clear contrast to the amorphous tracks in zircon, which gradually ''fade'' without fragmentation. Rayleigh instability and the thermal emission of vacancies control the annealing of porous fission tracks in fluorapatite.

  3. Comprehensive overview of the Point-by-Point model of prompt emission in fission

    NASA Astrophysics Data System (ADS)

    Tudora, A.; Hambsch, F.-J.

    2017-08-01

    The investigation of prompt emission in fission is very important in understanding the fission process and to improve the quality of evaluated nuclear data required for new applications. In the last decade remarkable efforts were done for both the development of prompt emission models and the experimental investigation of the properties of fission fragments and the prompt neutrons and γ-ray emission. The accurate experimental data concerning the prompt neutron multiplicity as a function of fragment mass and total kinetic energy for 252Cf(SF) and 235 ( n, f) recently measured at JRC-Geel (as well as other various prompt emission data) allow a consistent and very detailed validation of the Point-by-Point (PbP) deterministic model of prompt emission. The PbP model results describe very well a large variety of experimental data starting from the multi-parametric matrices of prompt neutron multiplicity ν (A,TKE) and γ-ray energy E_{γ}(A,TKE) which validate the model itself, passing through different average prompt emission quantities as a function of A ( e.g., ν(A), E_{γ}(A), < ɛ \\rangle (A) etc.), as a function of TKE ( e.g., ν (TKE), E_{γ}(TKE)) up to the prompt neutron distribution P (ν) and the total average prompt neutron spectrum. The PbP model does not use free or adjustable parameters. To calculate the multi-parametric matrices it needs only data included in the reference input parameter library RIPL of IAEA. To provide average prompt emission quantities as a function of A, of TKE and total average quantities the multi-parametric matrices are averaged over reliable experimental fragment distributions. The PbP results are also in agreement with the results of the Monte Carlo prompt emission codes FIFRELIN, CGMF and FREYA. The good description of a large variety of experimental data proves the capability of the PbP model to be used in nuclear data evaluations and its reliability to predict prompt emission data for fissioning nuclei and incident energies

  4. Verification of threshold activation detection (TAD) technique in prompt fission neutron detection using scintillators containing 19F

    NASA Astrophysics Data System (ADS)

    Sibczynski, P.; Kownacki, J.; Moszyński, M.; Iwanowska-Hanke, J.; Syntfeld-Każuch, A.; Gójska, A.; Gierlik, M.; Kaźmierczak, Ł.; Jakubowska, E.; Kędzierski, G.; Kujawiński, Ł.; Wojnarowicz, J.; Carrel, F.; Ledieu, M.; Lainé, F.

    2015-09-01

    In the present study ⌀ 5''× 3'' and ⌀ 2''× 2'' EJ-313 liquid fluorocarbon as well as ⌀ 2'' × 3'' BaF2 scintillators were exposed to neutrons from a 252Cf neutron source and a Sodern Genie 16GT deuterium-tritium (D+T) neutron generator. The scintillators responses to β- particles with maximum endpoint energy of 10.4 MeV from the n+19F reactions were studied. Response of a ⌀ 5'' × 3'' BC-408 plastic scintillator was also studied as a reference. The β- particles are the products of interaction of fast neutrons with 19F which is a component of the EJ-313 and BaF2 scintillators. The method of fast neutron detection via fluorine activation is already known as Threshold Activation Detection (TAD) and was proposed for photofission prompt neutron detection from fissionable and Special Nuclear Materials (SNM) in the field of Homeland Security and Border Monitoring. Measurements of the number of counts between 6.0 and 10.5 MeV with a 252Cf source showed that the relative neutron detection efficiency ratio, defined as epsilonBaF2 / epsilonEJ-313-5'', is 32.0% ± 2.3% and 44.6% ± 3.4% for front-on and side-on orientation of the BaF2, respectively. Moreover, the ⌀ 5'' EJ-313 and side-on oriented BaF2 were also exposed to neutrons from the D+T neutron generator, and the relative efficiency epsilonBaF2 / epsilonEJ-313-5'' was estimated to be 39.3%. Measurements of prompt photofission neutrons with the BaF2 detector by means of data acquisition after irradiation (out-of-beam) of nuclear material and between the beam pulses (beam-off) techniques were also conducted on the 9 MeV LINAC of the SAPHIR facility.

  5. Fission Half Lives of Fermium Isotopes Within Skyrme Hartree-Fock Theory

    NASA Astrophysics Data System (ADS)

    Baran, A.; Staszczak, A.; Nazarewicz, W.

    Nuclear fission barriers, mass parameters and spontaneous fission half lives of fermium isotopes calculated in a framework of the Skyrme Hartree-Fock-Bogoliubov model with the SkM* force are discussed. Zero-point energy corrections in the ground state are determined for each nucleus using the Gaussian overlap approximation of the generator coordinate method and in the cranking formalism. Results of spontaneous fission half lives are compared to experimental data.

  6. FISSION HALF LIVES OF FERMIUM ISOTOPES WITHIN SKYRME HARTREE-FOCK-BOGOLIUBOV THEORY

    SciTech Connect

    Baran, A.; Staszczak, Andrzej; Nazarewicz, A.

    2011-01-01

    Nuclear fission barriers, mass parameters and spontaneous fission half lives of fermium isotopes calculated in a framework of the Skyrme Hartree-Fock-Bogoliubov model with the SkM* force are discussed. Zero-point energy corrections in the ground state are determined for each nucleus using the Gaussian overlap approximation of the generator coordinate method and in the cranking formalism. Results of spontaneous fission half lives are compared to experimental data.

  7. Fission xenon from extinct Pu-244 in 14,301.

    NASA Technical Reports Server (NTRS)

    Drozd, R.; Hohenberg, C. M.; Ragan, D.

    1972-01-01

    Xenon extracted in step-wise heating of lunar breccia 14,301 contains a fission-like component in excess of that attributable to uranium decay during the age of the solar system. There seems to be no adequate source for this component other than Pu-244. Verification that this component is in fact due to the spontaneous fission of extinct Pu-244 comes from the derived spectrum which is similar to that observed from artificially produced Pu-244. It thus appears that Pu-244 was extant at the time lunar crustal material cooled sufficiently to arrest the thermal diffusion of xenon. Subsequent history has apparently maintained the isotopic integrity of plutonium fission xenon. Of major importance are details of the storage itself. Either the fission component is the result of in situ fission of Pu-244 and subsequent storage in 14,301 material, or the fission xenon was stored in an intermediate reservoir before incorporation into 14,301.

  8. Prompt fission gamma-ray studies at DANCE

    SciTech Connect

    Jandel, M.; Rusev, G.; Bond, E. M.; Bredeweg, T. A.; Chadwick, M. B.; Couture, A.; Fowler, M.. M; Haight, R. C.; Kawano, T.; Keksis, A. L.; Mosby, S. M.; O’Donnell, J. M.; Rundberg, R. S.; Stetcu, I.; Talou, P.; Ullmann, J. L.; Vieira, D. J.; Wilhelmy, J. B.; Stoyer, M. A.; Haslett, R. J.; Henderson, R. A.; Becker, J. A.; Wu, C. Y.

    2014-11-26

    Measurements of correlated data on prompt-fission γ-rays (PFG) have been carried out for various actinide isotopes in recent years using the Detector for Advanced Neutron Capture Experiments (DANCE) at Los Alamos National Laboratory (LANL). We have developed a model that conveniently parametrizes the correlated data of γ-ray multiplicity and energy. New results on two- dimensional prompt-fission γ-ray multiplicity versus energy distributions from spontaneous fission on ²⁵²Cf and neutron-induced fission on 242mAm are presented together with previously obtained results on 233,235U and ²³⁹Pu. Correlated PFG data from ²⁵²Cf are also compared to results of the detailed theoretical model developed at LANL, for different thresholds of PFG energies. Future plans to measure correlated data on fission fragments, prompt fission neutrons and γ-rays at DANCE are presented.

  9. p-Terphenyl: An alternative to liquid scintillators for neutron detection

    NASA Astrophysics Data System (ADS)

    Sardet, A.; Varignon, C.; Laurent, B.; Granier, T.; Oberstedt, A.

    2015-08-01

    A detailed characterization of doped paraterphenyl (p-Terphenyl) neutron detectors was obtained by means of γ-sources and a 252Cf fission chamber. The intrinsic timing resolution, the energy resolution up to 2 MeVee, and the electron-equivalent energy calibration were determined using γ-sources. The neutron time-of-flight spectrum from the spontaneous fission of 252Cf provided information on the proton energy calibration, the light output function, and the intrinsic neutron detection efficiency between 0 and 8 MeV for a threshold of 250 keV. Measurements of the latter were also performed using monoenergetic neutron beams. The applied experimental methods were cross-checked using two BC501A scintillation detectors, which were previously calibrated at the Physikalisch-Technische Bundesanstalt in Braunschweig, Germany. Results were compared to Monte-Carlo simulations performed using NRESP7 and NEFF7 codes.

  10. Enhanced trigger for the NIFFTE fissionTPC in presence of high-rate alpha backgrounds

    NASA Astrophysics Data System (ADS)

    Bundgaard, Jeremy; Niffte Collaboration

    2015-10-01

    Nuclear physics and nuclear energy communities call for new, high precision measurements to improve existing fission models and design next generation reactors. The Neutron Induced Fission Fragment Tracking experiment (NIFFTE) has developed the fission Time Projection Chamber (fissionTPC) to measure neutron induced fission with unrivaled precision. The fissionTPC is annually deployed to the Weapons Neutron Research facility at Los Alamos Neutron Science Center where it operates with a neutron beam passing axially through the drift volume, irradiating heavy actinide targets to induce fission. The fissionTPC was developed at the Lawrence Livermore National Laboratory's TPC lab, where it measures spontaneous fission from radioactive sources to characterize detector response, improve performance, and evolve the design. To measure 244Cm, we've developed a fission trigger to reduce the data rate from alpha tracks while maintaining a high fission detection efficiency. In beam, alphas from 239Pu are a large background when detecting fission fragments; implementing the fission trigger will greatly reduce this background. The implementation of the cathode fission trigger in the fissionTPC will be presented along with a detailed study of its efficiency.

  11. Evaluation of the thermal-neutron constants for /sup 233/U, /sup 235/U, /sup 239/Pu and /sup 241/Pu

    SciTech Connect

    Stehn, J.R.; Divadeenam, M.; Holden, N.E.

    1982-01-01

    A consistent set of best values of the 2200 meter/second neutron cross sections, Westcott g-factors, and fission neutron yields for /sup 233/U, /sup 235/U, /sup 239/Pu and /sup 241/Pu are presented. A least squares fitting program, LSF, is used to obtain the best fit and to estimate the sensitivity of these fissile parameters to the quoted uncertainties in experimental data. The half-lives of the uranium and plutonium nuclides have been evaluated and these have been used to reassess the significant experimental data. The latest revision of the spontaneous fission neutron yield anti nu, of /sup 252/Cf and the foil thickness corrections to the fission neutron yield ratios of fissile nuclei to /sup 252/Cf are included. These lead to greater consistency in the data used for anti nu (/sup 252/Cf). Similarly, the /sup 234/U half-life as revised leads to improved consistency in the /sup 235/U fission cross section. Comparison is made with the values from ENDF/B-V and other evaluations.

  12. Collinear cluster tripartition channel in the reaction {sup 235}U(n{sub th}, f)

    SciTech Connect

    Pyatkov, Yu. V.; Kamanin, D. V.; Kopach, Yu. N.; Alexandrov, A. A.; Alexandrova, I. A.; Borzakov, S. B.; Voronov, Yu. N.; Zhuchko, V. E.; Kuznetsova, E. A. Panteleev, Ts.; Tyukavkin, A. N.

    2010-08-15

    Investigation of the {sup 235}U(n{sub th}, f) reaction using the miniFOBOS double-arm time-of-flight spectrometer of fission fragments confirmed manifestations of the earlier unknown many-body, at least ternary, decay involving almost collinear decay-product escape, which were first observed in the spontaneous fission of {sup 252}Cf(sf). The use of variables sensitive to the nuclear charge of fission fragments allowed the reliability of identification of decay events to be increased and new decay modes to be revealed.

  13. Our 50-year odyssey with fission: Summary

    SciTech Connect

    Nix, J.R.

    1989-01-01

    On the occasion of this International Conference on Fifty Years Research in Nuclear Fission, we summarize our present understanding of the fission process and the challenges that lie ahead. The basic properties of fission arise from a delicate competition between disruptive Coulomb forces, cohesive nuclear forces, and fluctuating shell and pairing forces. These static forces are primarily responsible for such experimental phenomena as deformed ground-state nuclear shapes, fission into fragments of unequal size, sawtooth neutron yields, spontaneously fissioning isomers, broad resonances and narrow intermediate structure in fission cross sections, and cluster radioactivity. However, inertial and dissipative forces also play decisive roles in the dynamical evolution of a fissioning nucleus. The energy dissipated between the saddle and scission points is small for low initial excitation energy at the saddle point and increases with increasing excitation energy. At moderate excitation energies, the dissipation of collective energy into internal single-particle excitation energy proceeds largely through the interaction of nucleons with the mean field and with each other in the vicinity of the nuclear surface, as well as through the transfer of nucleons between the two portions of the evolving dumbell-like system. These unique dissipation mechanisms arise from the Pauli exclusion principle for fermions and the details of the nucleon-nucleon interaction, which make the mean free path of a nucleon near the Fermi surface at low excitation energy longer than the nuclear radius. With its inverse process of heavy-ion fusion reactions, fission continues to yield surprises in the study of large-amplitude collective nuclear motion. 87 refs., 12 figs.

  14. Comparison of various parametrizations of the double-humped fission barrier

    SciTech Connect

    Bhandari, B.S.; Khaliquzzaman, M. )

    1991-07-01

    The double-humped potential barriers in actinide nuclei in the fission direction have been parametrized using three different procedures, namely, the smoothly joined parabolic segments, third-degree polynomials passing through and with zero slopes at the successive extremum points, and straight-line segments connecting the successive extremum points. The fission penetrabilities through the barriers and the ground-state spontaneous fission half-lives for a wide variety of 25 actinide nuclides have been calculated for these different parametrizations. Our results clearly indicate that while the third-degree polynomial and the straight-line parametrizations of the double-humped fission barrier lead to approximately similar results on the fission penetrability and fission half-lives, the corresponding results using the smoothly joined parabolic segment parametrization differ significantly by almost two to five orders of magnitude depending on the specific type of the fissioning nucleus and on the parameters of its corresponding double-humped fission barrier.

  15. Point-by-Point model description of average prompt neutron data as a function of total kinetic energy of fission fragments

    NASA Astrophysics Data System (ADS)

    Tudora, A.

    2013-03-01

    The experimental data of average prompt neutron multiplicity as a function of total kinetic energy of fragments <ν>(TKE) exhibit, especially in the case of 252Cf(SF), different slopes dTKE/dν and different behaviours at low TKE values. The Point-by-Point (PbP) model can describe these different behaviours. The higher slope dTKE/dν and the flattening of <ν> at low TKE exhibited by a part of experimental data sets is very well reproduced when the PbP multi-parametric matrix ν(A,TKE) is averaged over a double distribution Y(A,TKE). The lower slope and the almost linear behaviour over the entire TKE range exhibited by other data sets is well described when the same matrix ν(A,TKE) is averaged over a single distribution Y(A). In the case of average prompt neutron energy in SCM as a function of TKE, different dTKE/dɛ slopes are also obtained by averaging the same PbP matrix ɛ(A,TKE) over Y(A,TKE) and over Y(A). The results are exemplified for three fissioning systems benefiting of experimental data as a function of TKE: 252Cf(SF), 235U(nth,f) and 239Pu(nth,f). In the case of 234U(n,f) for the first time it was possible to calculate <ν>(TKE) and <ɛ>(TKE) at many incident energies by averaging the PbP multi-parametric matrices over the experimental Y(A,TKE) distributions recently measured at IRMM for 14 incident energies in the range 0.3-5 MeV. The results revealed that the slope dTKE/dν does not vary with the incident energy and the flattening of <ν> at low TKE values is more pronounced at low incident energies. The average model parameters dependences on TKE resulted from the PbP treatment allow the use of the most probable fragmentation approach, having the great advantage to provide results at many TKE values in a very short computing time compared to PbP and Monte Carlo treatments.

  16. Rupturing the hemi-fission intermediate in membrane fission under tension: Reaction coordinates, kinetic pathways, and free-energy barriers

    NASA Astrophysics Data System (ADS)

    Zhang, Guojie; Müller, Marcus

    2017-08-01

    Membrane fission is a fundamental process in cells, involved inter alia in endocytosis, intracellular trafficking, and virus infection. Its underlying molecular mechanism, however, is only incompletely understood. Recently, experiments and computer simulation studies have revealed that dynamin-mediated membrane fission is a two-step process that proceeds via a metastable hemi-fission intermediate (or wormlike micelle) formed by dynamin's constriction. Importantly, this hemi-fission intermediate is remarkably metastable, i.e., its subsequent rupture that completes the fission process does not occur spontaneously but requires additional, external effects, e.g., dynamin's (unknown) conformational changes or membrane tension. Using simulations of a coarse-grained, implicit-solvent model of lipid membranes, we investigate the molecular mechanism of rupturing the hemi-fission intermediate, such as its pathway, the concomitant transition states, and barriers, as well as the role of membrane tension. The membrane tension is controlled by the chemical potential of the lipids, and the free-energy landscape as a function of two reaction coordinates is obtained by grand canonical Wang-Landau sampling. Our results show that, in the course of rupturing, the hemi-fission intermediate undergoes a "thinning → local pinching → rupture/fission" pathway, with a bottle-neck-shaped cylindrical micelle as a transition state. Although an increase of membrane tension facilitates the fission process by reducing the corresponding free-energy barrier, for biologically relevant tensions, the free-energy barriers still significantly exceed the thermal energy scale kBT.

  17. Rupturing the hemi-fission intermediate in membrane fission under tension: Reaction coordinates, kinetic pathways, and free-energy barriers.

    PubMed

    Zhang, Guojie; Müller, Marcus

    2017-08-14

    Membrane fission is a fundamental process in cells, involved inter alia in endocytosis, intracellular trafficking, and virus infection. Its underlying molecular mechanism, however, is only incompletely understood. Recently, experiments and computer simulation studies have revealed that dynamin-mediated membrane fission is a two-step process that proceeds via a metastable hemi-fission intermediate (or wormlike micelle) formed by dynamin's constriction. Importantly, this hemi-fission intermediate is remarkably metastable, i.e., its subsequent rupture that completes the fission process does not occur spontaneously but requires additional, external effects, e.g., dynamin's (unknown) conformational changes or membrane tension. Using simulations of a coarse-grained, implicit-solvent model of lipid membranes, we investigate the molecular mechanism of rupturing the hemi-fission intermediate, such as its pathway, the concomitant transition states, and barriers, as well as the role of membrane tension. The membrane tension is controlled by the chemical potential of the lipids, and the free-energy landscape as a function of two reaction coordinates is obtained by grand canonical Wang-Landau sampling. Our results show that, in the course of rupturing, the hemi-fission intermediate undergoes a "thinning → local pinching → rupture/fission" pathway, with a bottle-neck-shaped cylindrical micelle as a transition state. Although an increase of membrane tension facilitates the fission process by reducing the corresponding free-energy barrier, for biologically relevant tensions, the free-energy barriers still significantly exceed the thermal energy scale kBT.

  18. Microscopic Calculations of 240Pu Fission

    SciTech Connect

    Younes, W; Gogny, D

    2007-09-11

    Hartree-Fock-Bogoliubov calculations have been performed with the Gogny finite-range effective interaction for {sup 240}Pu out to scission, using a new code developed at LLNL. A first set of calculations was performed with constrained quadrupole moment along the path of most probable fission, assuming axial symmetry but allowing for the spontaneous breaking of reflection symmetry of the nucleus. At a quadrupole moment of 345 b, the nucleus was found to spontaneously scission into two fragments. A second set of calculations, with all nuclear moments up to hexadecapole constrained, was performed to approach the scission configuration in a controlled manner. Calculated energies, moments, and representative plots of the total nuclear density are shown. The present calculations serve as a proof-of-principle, a blueprint, and starting-point solutions for a planned series of more comprehensive calculations to map out a large set of scission configurations, and the associated fission-fragment properties.

  19. Discovery of a new mode of nuclear fission

    SciTech Connect

    Hulet, E.K.; Wild, J.F.; Dougan, R.J.; Lougheed, R.W.; Landrum, J.H.; Dougan, A.D.; Schaedel, M.; Hahn, R.L.; Baisden, P.A.; Henderson, C.M.

    1986-01-01

    We measured the mass and kinetic-energy partitioning in the spontaneous fission of /sup 258/Fm, /sup 259/Md, /sup 260/Md, /sup 258/No, and /sup 260/(104). Surprisingly, these energy distributions were skewed upward or downward from the peak in each case, except for /sup 260/(104), indicating a composite of two energy distributions. We interpret this as a new mode of fission in which there is mixture of liquid-drop-like and fragment-shell-directed symmetric fission.

  20. Bimodal symmetric fission observed in the heaviest elements

    SciTech Connect

    Hulet, E.K.; Wild, J.F.; Dougan, R.J.; Lougheed, R.W.; Landrum, J.H.; Dougan, A.D.; Schadel, M.; Hahn, R.L.; Baisden, P.A.; Henderson, C.M.

    1986-01-27

    We measured the mass and kinetic-energy partitioning in the spontaneous fission of /sup 258/Fm, /sup 259/Md, /sup 260/Md, /sup 258/No, and /sup 260/(104). All fissioned with mass distributions that were symmetric. Total-kinetic-energy distributions peaked near either 200 or 235 MeV. Surprisingly, these energy distributions were skewed upward or downward from the peak in each case, except for /sup 260/(104), indicating a composite of two energy distributions. We interpret this as a mixture of liquid-drop-like and fragment-shell directed symmetric fission, although theory had not anticipated this phenomenon.

  1. Synthesis of superheavy element 120 via {sup 50}Ti+{sup A}Cf hot fusion reactions

    SciTech Connect

    Liu, Z. H.; Bao Jingdong

    2009-11-15

    Synthesis of superheavy element 120 in terms of the {sup 50}Ti+{sup 249-252}Cf fusion-evaporation reactions is evaluated and discussed. It is found that the reactions of {sup 250,251}Cf({sup 50}Ti,3n){sup 297,298}120 and {sup 251,252}Cf({sup 50}Ti,4n){sup 297,298}120 are relatively favorable with the maximum evaporation-residue cross sections of 0.12, 0.09, 0.11, and 0.25 pb, respectively. However, {sup 252}Cf may be difficult to be target because its spontaneous fission will bring about serious background in the experiment. Fusion probabilities for different target-projectile combinations leading to the formation of surperheavy nucleus {sup 302}120 are estimated with the ''fusion-by-diffusion'' model and presented as a function of the Coulomb parameter Z{sub 1}Z{sub 2}/(A{sub 1}{sup 1/3}+A{sub 2}{sup 1/3}). Among the reactions {sup 50}Ti+{sup 252}Cf, {sup 54}Cr+{sup 248}Cm, {sup 58}Fe+{sup 244}Pu, and {sup 64}Ni+{sup 238}U, the reaction {sup 50}Ti+{sup 252}Cf has the largest fusion probability. Synthesis of superheavy element 120 is of essential importance for determining whether the magic proton shell should be at Z=114 or at higher proton numbers Z=120-126. Therefore, the experiment to produce isotopes with Z=120 in the fusion reactions {sup 50}Ti+{sup 250,251}Cf is of great interest.

  2. Capture cross section measurement analysis in the Californium-252 spectrum with the Monte Carlo method.

    PubMed

    Manojlovič, Stanko; Trkov, Andrej; Žerovnik, Gašper; Snoj, Luka

    2015-07-01

    Absolute average capture cross sections of gold, thorium, tantalum, molybdenum, copper and strontium in (252)Cf spontaneous fission neutron spectrum were simulated for two types of experiment setups preformed by Z. Dezso and J. Csikai and by L. Green. The experiments were simulated with MCNP5 using cross section data from the ENDF/B-VII.0 library. The determination of neutron backscattering was calculated with the use of neutron flagging. Correction factors to experimentally measured values were determined to obtain average cross sections in a pure (252)Cf spontaneous fission spectrum. Influence of concrete wall thickness, air moisture and room size on the average cross section was analyzed. Correction factors amounted to about 30%. Corrected values corresponding to average cross sections in a pure (252)Cf spectrum were calculated for (197)Au, (232)Th, (181)Ta, (98)Mo, (65)Cu and (84)Sr. Average cross sections were also calculated with the RR_UNC software using IRDFF-v.1.05 and ENDF/B-VII.0 libraries. The revised average radiative capture cross sections are 75.5±0.1 mb for (197)Au, 87.0±1.6 mb for (232)Th , 98.0±4.5 mb for (181)Ta, 21.2±0.5 mb for (98)Mo, 10.3±0.3 mb for (63)Cu, and 34.9±6.5 mb for (84)Sr.

  3. Selective perturbation of in vivo linear energy transfer using high- Z vaginal applicators for Cf-252 brachytherapy

    NASA Astrophysics Data System (ADS)

    Rivard, M. J.; Evans, K. E.; Leal, L. C.; Kirk, B. L.

    2004-01-01

    Californium-252 ( 252Cf) brachytherapy sources emit both neutrons and photons, and have the potential to vastly improve the current standard-of-practice for brachytherapy. While hydrogenous materials readily attenuate the 252Cf fission energy neutrons, high- Z materials are utilized to attenuate the 252Cf gamma-rays. These differences in shielding materials may be exploited when treating with a vaginal applicator to possibly improve patient survival through perturbation of the in vivo linear energy transfer radiation.

  4. Predetonation probability of a fission-bomb core

    NASA Astrophysics Data System (ADS)

    Reed, B. Cameron

    2010-08-01

    An undergraduate-level derivation of the probability that a uranium or plutonium fission bomb will suffer an uncontrolled predetonation due to neutrons liberated in spontaneous fissions in the fissile material is developed. Consistent with what was learned by Los Alamos bomb designers during World War II, it is shown why uncontrolled predetonation was not a problem for a U-235 bomb of the Little Boy "gun" design but necessitated development of implosion engineering for the Pu-239 Trinity and Fat Man bombs where the cores were contaminated with highly spontaneously fissile Pu-240.

  5. Stability and synthesis of superheavy elements: Fighting the battle against fission - example of 254No

    NASA Astrophysics Data System (ADS)

    Lopez-Martens, A.; Henning, G.; Khoo, T. L.; Seweryniak, D.; Alcorta, M.; Asai, M.; Back, B. B.; Bertone, P.; Boilley, D.; Carpenter, M. P.; Chiara, C. J.; Chowdhury, P.; Gall, B.; Greenlees, P. T.; Gurdal, G.; Hauschild, K.; Heinz, A.; Hoffman, C. R.; Janssens, R. V. F.; Karpov, A. V.; Kay, B. P.; Kondev, F. G.; Lakshmi, S.; Lauristen, T.; Lister, C. J.; McCutchan, E. A.; Nair, C.; Piot, J.; Potterveld, D.; Reiter, P.; Rowley, N.; Rogers, A. M.; Zhu, S.

    2016-12-01

    Superheavy nuclei exist solely due to quantum shell effects, which create a pocket in the potential-energy surface of the nucleus, thus providing a barrier against spontaneous fission. Determining the height of the fission barrier and its angular-momentum dependence is important to quantify the role that microscopic shell corrections play in enhancing and extending the limits of nuclear stability. In this talk, the first measurement of a fission barrier in the very heavy nucleus 254No will be presented.

  6. Fission gas detection system

    DOEpatents

    Colburn, Richard P.

    1985-01-01

    A device for collecting fission gas released by a failed fuel rod which device uses a filter to pass coolant but which filter blocks fission gas bubbles which cannot pass through the filter due to the surface tension of the bubble.

  7. Fission Xenon on Mars

    NASA Technical Reports Server (NTRS)

    Mathew, K. J.; Marti, K.; Marty, B.

    2002-01-01

    Fission Xe components due to Pu-244 decay in the early history of Mars have been identified in nakhlites; as in the case of ALH84001 and Chassigny the fission gas was assimilated into indigenous solar-type Xe. Additional information is contained in the original extended abstract.

  8. Geometry of membrane fission.

    PubMed

    Frolov, Vadim A; Escalada, Artur; Akimov, Sergey A; Shnyrova, Anna V

    2015-01-01

    Cellular membranes define the functional geometry of intracellular space. Formation of new membrane compartments and maintenance of complex organelles require division and disconnection of cellular membranes, a process termed membrane fission. Peripheral membrane proteins generally control membrane remodeling during fission. Local membrane stresses, reflecting molecular geometry of membrane-interacting parts of these proteins, sum up to produce the key membrane geometries of fission: the saddle-shaped neck and hour-glass hemifission intermediate. Here, we review the fundamental principles behind the translation of molecular geometry into membrane shape and topology during fission. We emphasize the central role the membrane insertion of specialized protein domains plays in orchestrating fission in vitro and in cells. We further compare individual to synergistic action of the membrane insertion during fission mediated by individual protein species, proteins complexes or membrane domains. Finally, we describe how local geometry of fission intermediates defines the functional design of the protein complexes catalyzing fission of cellular membranes. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  9. The Fission Barrier Landscape

    SciTech Connect

    Phair, L.; Moretto, L. G.

    2008-04-17

    Fission excitation functions have been measured for a chain of neighboring compound nuclei from {sup 207}Po to {sup 212}Po. We present a new analysis which provides a determination of the fission barriers and ground state shell effects with nearly spectroscopic accuracy. The accuracy achieved in this analysis may lead to a future detailed exploration of the saddle mass surface and its spectroscopy.

  10. NBC operation manual including the multi-position add-a-source function

    SciTech Connect

    Menlove, H.O.; Foster, L.A.; Baca, J.

    1994-03-01

    This manual describes the design modifications and operating characteristics of a 200-l-drum neutron coincidence counter. The counter has six shielded banks of {sup 3}He tubes and JSR-11 shift register coincidence electronics. The modified design has a counting efficiency of 19.3%. The neutron counter measures the spontaneous-fission rate from the plutonium, and when this is combined with the plutonium isotopic ratios, we can determine the plutonium mass. The system includes the new multi-position add-a-source (AS) technique that uses a small {sup 252}Cf source to determine the drum`s matrix perturbation to the plutonium assay. The {sup 252}Cf source is measured at three positions on the exterior of the drum to obtain the spatial distribution for the matrix correction. This manual gives the performance and calibration parameters. The matrix corrections by the AS technique are accurate to a few percent for typical applications.

  11. Resonant tunneling and the bimodal symmetric fission of sup 258 Fm

    SciTech Connect

    Bhandari, B.S. )

    1991-02-25

    The concept of resonant tunneling is invoked to explain the sharp drop in the measured spontaneous-fission half-life when going from {sup 256}Fm to {sup 258}Fm. Various consequences of such a suggestion on the other observed characteristics of the bimodal symmetric fission of {sup 258}Fm are briefly discussed.

  12. Spontaneous Partitioning of Californium from Curium: Curious Cases from the Crystallization of Curium Coordination Complexes

    SciTech Connect

    Cary, Samantha K.; Silver, Mark A.; Liu, Guokui; Wang, Jamie C.; Bogart, Justin A.; Stritzinger, Jared T.; Arico, Alexandra A.; Hanson, Kenneth; Schelter, Eric J.; Albrecht-Schmitt, Thomas E.

    2015-12-07

    The reaction of 248CmCl3 with excess 2,6-pyridinedicarboxylic acid (DPA) under mild solvothermal conditions results in crystallization of the tris-chelate complex Cm(HDPA)3·H2O. Approximately half of the curium remains in solution at the end of this process, and evaporation of the mother liquor results in crystallization of the bis-chelate complex [Cm(HDPA)- (H2DPA)(H2O)2Cl]Cl·2H2O. 248Cm is the daughter of the α decay of 252Cf and is extracted in high purity from this parent. However, trace amounts of 249,250,251Cf are still present in all samples of 248Cm. During the crystallization of Cm(HDPA)3·H2O and [Cm(HDPA)(H2DPA)(H2O)2Cl]Cl·2H2O, californium(III) spontaneously separates itself from the curium complexes and is found doped within crystals of DPA in the form of Cf(HDPA)3. These results add to the growing body of evidence that the chemistry of californium is fundamentally different from that of earlier actinides.

  13. Spontaneous Partitioning of Californium from Curium: Curious Cases from the Crystallization of Curium Coordination Complexes.

    PubMed

    Cary, Samantha K; Silver, Mark A; Liu, Guokui; Wang, Jamie C; Bogart, Justin A; Stritzinger, Jared T; Arico, Alexandra A; Hanson, Kenneth; Schelter, Eric J; Albrecht-Schmitt, Thomas E

    2015-12-07

    The reaction of (248)CmCl3 with excess 2,6-pyridinedicarboxylic acid (DPA) under mild solvothermal conditions results in crystallization of the tris-chelate complex Cm(HDPA)3 · H2O. Approximately half of the curium remains in solution at the end of this process, and evaporation of the mother liquor results in crystallization of the bis-chelate complex [Cm(HDPA)(H2DPA)(H2O)2Cl]Cl·2H2O. (248)Cm is the daughter of the α decay of (252)Cf and is extracted in high purity from this parent. However, trace amounts of (249,250,251)Cf are still present in all samples of (248)Cm. During the crystallization of Cm(HDPA)3 · H2O and [Cm(HDPA)(H2DPA)(H2O)2Cl]Cl · 2H2O, californium(III) spontaneously separates itself from the curium complexes and is found doped within crystals of DPA in the form of Cf(HDPA)3. These results add to the growing body of evidence that the chemistry of californium is fundamentally different from that of earlier actinides.

  14. Mass-asymmetric fission in the 40ca+142Nd reaction

    NASA Astrophysics Data System (ADS)

    Prasad, E.; Hinde, D. J.; Williams, E.; Dasgupta, M.; Carter, I. P.; Cook, K. J.; Jeung, D. Y.; Luong, D. H.; McNeil, S.; Palshetkar, C. S.; Rafferty, D. C.; Simenel, C.; Wakhle, A.; Ramachandran, K.; Khuyagbaatar, J.; Dullmann, Ch. E.; Lommel, B.; Kindler, B.

    2016-09-01

    Shell effects play a major role in fission. Mass-asymmetric fission observed in the spontaneous and low energy fission of actinide nuclei was explained by incorporating the fragment shell properties in liquid drop model. Asymmetric fission has also been observed in the low energy fission of neutron-deficient 180Hg nuclei in recent β-delayed fission experiments. This low-energy β-delayed fission has been explained in terms of strong shell effects in pre-scission configurations associated with the system after capture. Calculations predicted asymmetric fission for heavier Hg isotopes as well, at compound nuclear excitation energy as high as 40 MeV. To explore the evolution of fission fragment mass distribution as a function of neutron and proton numbers and also with excitation energy, fission fragment mass distributions have been measured for the 40Ca+142Nd reaction forming the compound nucleus 182Hg at energies around the capture barrier, using the Heavy Ion Accelerator Facility and CUBE spectrometer at the Australian National University. Mass-asymmetric fission is observed in this reaction at an excitation energy of 33.6 MeV. The results are consistent with the β-delayed fission measurements and indicate the presence of shell effects even at higher exciation energies.

  15. The 4π neutron detector CARMEN

    NASA Astrophysics Data System (ADS)

    Ledoux, X.; Laborie, J.-M.; Pras, P.; Lantuéjoul-Thfoin, I.; Varignon, C.

    2017-02-01

    CARMEN is a 4π neutron detector filled with a gadolinium-loaded liquid scintillator built to measure neutron multiplicity distributions. It is used to study fission and (n,xn) reactions. In addition to neutron multiplicity measurements, CARMEN can be used to measure neutron energy spectra with the time-of-flight technique, thanks to the time properties of the prompt signal. The detector, detection technique and efficiency determination are presented in detail. Two examples are also presented: the measurement of 252Cf spontaneous fission neutron multiplicity probability distribution and the measurement of the neutron energy spectrum emitted by an Am-Be radioactive source.

  16. The effect of α-damage on fission-track annealing in zircon

    USGS Publications Warehouse

    Kasuya, M.; Naeser, C.W.

    1988-01-01

    The thermal stability of confined fission-track lengths in four zircon samples having different spontaneous track densities (i.e. different amounts of ??-damage) has been studied by one hour isochronal annealing experiments. The thermal stability of spontaneous track lengths is independent of initial spontaneous track density. The thermal stability of induced track lengths in pre-annealed zircon, however, is significantly higher than that of spontaneous track lengths. The results indicate that the presence of ??-damage lowers the thermal stability of fission-tracks in zircon. ?? 1988.

  17. Effect of α-damage on fission-track annealing in zircon

    USGS Publications Warehouse

    Kasuya, Masao; Naeser, Charles W.

    1988-01-01

    The thermal stability of confined fission-track lengths in four zircon samples having different spontaneous track densities (i.e., different amounts of ??-damage) has been studied by one-hour isochronal annealing experiments. The thermal stability of spontaneous track lengths is independent of initial spontaneous track density. The thermal stability of induced track lengths in pre-annealed zircon, however, is significantly higher than that of spontaneous track lengths. The results indicate that the presence of ??-damage lowers the thermal stability of fission-tracks in zircon.

  18. Bimodal fission of Hs*

    NASA Astrophysics Data System (ADS)

    Itkis, I. M.; Itkis, M. G.; Knyazheva, G. N.; Kozulin, E. M.; Loktev, T. A.; Novikov, K. V.; Hanappe, F.; Vardaci, E.

    2014-05-01

    Mass and energy distributions of fission fragments obtained in the reactions 22Ne + 249Cf, 26Mg + 248Cm, and 22Ne + 238U have been measured. A special attention will be paid on the properties of mass-energy distribution of fission fragments obtained in the reaction 26Mg + 248Cm at an excitation energy of 35 MeV. At this energy shell effects should become more effective in fission, the TKE distribution of symmetric fragments obtained in the reaction 26Mg + 248Cm differs strongly from a Gaussian shape. Besides a low-energy component, a high-energy component, not foreseen in the LDM, arises. This is attributed to the fact that both fission fragments are close to the spherical neutron shell N = 82. It means that for the compound nucleus 274Hs*, formed in the reaction 26Mg + 248Cm, the phenomenon of bimodal fission was observed for the first time. For the compound nucleus 260No* formed in the reaction 22Ne + 238U at the initial excitation energy of 41 MeV the bimodal fission as well as superasymmetric fission were observed.

  19. Microscopic Theory of Nuclear Fission: A Review

    DOE PAGES

    Schunck, N.; Robledo, L. M.

    2016-10-11

    This paper reviews how nuclear fission is described within nuclear density functional theory. A distinction should be made between spontaneous fission, where half-lives are the main observables and quantum tunnelling the essential concept, and induced fission, where the focus is on fragment properties and explicitly time-dependent approaches are often invoked. Overall, the cornerstone of the density functional theory approach to fission is the energy density functional formalism. The basic tenets of this method, including some well-known tools such as the Hartree–Fock–Bogoliubov (HFB) theory, effective two-body nuclear potentials such as the Skyrme and Gogny force, finite-temperature extensions and beyond mean-field corrections,more » are presented succinctly. The energy density functional approach is often combined with the hypothesis that the time-scale of the large amplitude collective motion driving the system to fission is slow compared to typical time-scales of nucleons inside the nucleus. In practice, this hypothesis of adiabaticity is implemented by introducing (a few) collective variables and mapping out the many-body Schrödinger equation into a collective Schrödinger-like equation for the nuclear wave-packet. The region of the collective space where the system transitions from one nucleus to two (or more) fragments defines what are called the scission configurations. The inertia tensor that enters the kinetic energy term of the collective Schrödinger-like equation is one of the most essential ingredients of the theory, since it includes the response of the system to small changes in the collective variables. For this reason, the two main approximations used to compute this inertia tensor, the adiabatic time-dependent HFB and the generator coordinate method, are presented in detail, both in their general formulation and in their most common approximations. The collective inertia tensor enters also the Wentzel–Kramers–Brillouin (WKB) formula

  20. Microscopic theory of nuclear fission: a review.

    PubMed

    Schunck, N; Robledo, L M

    2016-11-01

    This article reviews how nuclear fission is described within nuclear density functional theory. A distinction should be made between spontaneous fission, where half-lives are the main observables and quantum tunnelling the essential concept, and induced fission, where the focus is on fragment properties and explicitly time-dependent approaches are often invoked. Overall, the cornerstone of the density functional theory approach to fission is the energy density functional formalism. The basic tenets of this method, including some well-known tools such as the Hartree-Fock-Bogoliubov (HFB) theory, effective two-body nuclear potentials such as the Skyrme and Gogny force, finite-temperature extensions and beyond mean-field corrections, are presented succinctly. The energy density functional approach is often combined with the hypothesis that the time-scale of the large amplitude collective motion driving the system to fission is slow compared to typical time-scales of nucleons inside the nucleus. In practice, this hypothesis of adiabaticity is implemented by introducing (a few) collective variables and mapping out the many-body Schrödinger equation into a collective Schrödinger-like equation for the nuclear wave-packet. The region of the collective space where the system transitions from one nucleus to two (or more) fragments defines what are called the scission configurations. The inertia tensor that enters the kinetic energy term of the collective Schrödinger-like equation is one of the most essential ingredients of the theory, since it includes the response of the system to small changes in the collective variables. For this reason, the two main approximations used to compute this inertia tensor, the adiabatic time-dependent HFB and the generator coordinate method, are presented in detail, both in their general formulation and in their most common approximations. The collective inertia tensor enters also the Wentzel-Kramers-Brillouin (WKB) formula used to extract

  1. Microscopic theory of nuclear fission: a review

    NASA Astrophysics Data System (ADS)

    Schunck, N.; Robledo, L. M.

    2016-11-01

    This article reviews how nuclear fission is described within nuclear density functional theory. A distinction should be made between spontaneous fission, where half-lives are the main observables and quantum tunnelling the essential concept, and induced fission, where the focus is on fragment properties and explicitly time-dependent approaches are often invoked. Overall, the cornerstone of the density functional theory approach to fission is the energy density functional formalism. The basic tenets of this method, including some well-known tools such as the Hartree-Fock-Bogoliubov (HFB) theory, effective two-body nuclear potentials such as the Skyrme and Gogny force, finite-temperature extensions and beyond mean-field corrections, are presented succinctly. The energy density functional approach is often combined with the hypothesis that the time-scale of the large amplitude collective motion driving the system to fission is slow compared to typical time-scales of nucleons inside the nucleus. In practice, this hypothesis of adiabaticity is implemented by introducing (a few) collective variables and mapping out the many-body Schrödinger equation into a collective Schrödinger-like equation for the nuclear wave-packet. The region of the collective space where the system transitions from one nucleus to two (or more) fragments defines what are called the scission configurations. The inertia tensor that enters the kinetic energy term of the collective Schrödinger-like equation is one of the most essential ingredients of the theory, since it includes the response of the system to small changes in the collective variables. For this reason, the two main approximations used to compute this inertia tensor, the adiabatic time-dependent HFB and the generator coordinate method, are presented in detail, both in their general formulation and in their most common approximations. The collective inertia tensor enters also the Wentzel-Kramers-Brillouin (WKB) formula used to extract

  2. Microscopic Theory of Nuclear Fission: A Review

    SciTech Connect

    Schunck, N.; Robledo, L. M.

    2016-10-11

    This paper reviews how nuclear fission is described within nuclear density functional theory. A distinction should be made between spontaneous fission, where half-lives are the main observables and quantum tunnelling the essential concept, and induced fission, where the focus is on fragment properties and explicitly time-dependent approaches are often invoked. Overall, the cornerstone of the density functional theory approach to fission is the energy density functional formalism. The basic tenets of this method, including some well-known tools such as the Hartree–Fock–Bogoliubov (HFB) theory, effective two-body nuclear potentials such as the Skyrme and Gogny force, finite-temperature extensions and beyond mean-field corrections, are presented succinctly. The energy density functional approach is often combined with the hypothesis that the time-scale of the large amplitude collective motion driving the system to fission is slow compared to typical time-scales of nucleons inside the nucleus. In practice, this hypothesis of adiabaticity is implemented by introducing (a few) collective variables and mapping out the many-body Schrödinger equation into a collective Schrödinger-like equation for the nuclear wave-packet. The region of the collective space where the system transitions from one nucleus to two (or more) fragments defines what are called the scission configurations. The inertia tensor that enters the kinetic energy term of the collective Schrödinger-like equation is one of the most essential ingredients of the theory, since it includes the response of the system to small changes in the collective variables. For this reason, the two main approximations used to compute this inertia tensor, the adiabatic time-dependent HFB and the generator coordinate method, are presented in detail, both in their general formulation and in their most common approximations. The collective inertia tensor enters also the Wentzel–Kramers–Brillouin (WKB) formula used to

  3. Nuclear fission of Fm isotopes

    SciTech Connect

    Asano, T.; Wada, T.; Ohta, M.; Chiba, S.

    2010-06-01

    Multi-modal fission has been systematically investigated for the series of isotopes of Fm and Cf. The multi-dimensional Langevin-type stochastic differential equation is used for the dynamical calculation. The primary fission mode changes from mass-asymmetric fission to mass-symmetric fission with the increase of neutron numbers for both Fm and Cf cases.

  4. Langevin model of low-energy fission

    DOE PAGES

    Sierk, Arnold John

    2017-09-05

    Since the earliest days of fission, stochastic models have been used to describe and model the process. For a quarter century, numerical solutions of Langevin equations have been used to model fission of highly excited nuclei, where microscopic potential-energy effects have been neglected. In this paper I present a Langevin model for the fission of nuclei with low to medium excitation energies, for which microscopic effects in the potential energy cannot be ignored. I solve Langevin equations in a five-dimensional space of nuclear deformations. The macroscopic-microscopic potential energy from a global nuclear structure model well benchmarked to nuclear masses ismore » tabulated on a mesh of approximately 107 points in this deformation space. The potential is defined continuously inside the mesh boundaries by use of a moving five-dimensional cubic spline approximation. Because of reflection symmetry, the effective mesh is nearly twice this size. For the inertia, I use a (possibly scaled) approximation to the inertia tensor defined by irrotational flow. A phenomenological dissipation tensor related to one-body dissipation is used. A normal-mode analysis of the dynamical system at the saddle point and the assumption of quasiequilibrium provide distributions of initial conditions appropriate to low excitation energies, and are extended to model spontaneous fission. A dynamical model of postscission fragment motion including dynamical deformations and separation allows the calculation of final mass and kinetic-energy distributions, along with other interesting quantities. The model makes quantitative predictions for fragment mass and kinetic-energy yields, some of which are very close to measured ones. Varying the energy of the incident neutron for induced fission allows the prediction of energy dependencies of fragment yields and average kinetic energies. With a simple approximation for spontaneous fission starting conditions, quantitative predictions are made for

  5. Langevin model of low-energy fission

    NASA Astrophysics Data System (ADS)

    Sierk, Arnold J.

    2017-09-01

    Background: Since the earliest days of fission, stochastic models have been used to describe and model the process. For a quarter century, numerical solutions of Langevin equations have been used to model fission of highly excited nuclei, where microscopic potential-energy effects have been neglected. Purpose: In this paper I present a Langevin model for the fission of nuclei with low to medium excitation energies, for which microscopic effects in the potential energy cannot be ignored. Method: I solve Langevin equations in a five-dimensional space of nuclear deformations. The macroscopic-microscopic potential energy from a global nuclear structure model well benchmarked to nuclear masses is tabulated on a mesh of approximately 107 points in this deformation space. The potential is defined continuously inside the mesh boundaries by use of a moving five-dimensional cubic spline approximation. Because of reflection symmetry, the effective mesh is nearly twice this size. For the inertia, I use a (possibly scaled) approximation to the inertia tensor defined by irrotational flow. A phenomenological dissipation tensor related to one-body dissipation is used. A normal-mode analysis of the dynamical system at the saddle point and the assumption of quasiequilibrium provide distributions of initial conditions appropriate to low excitation energies, and are extended to model spontaneous fission. A dynamical model of postscission fragment motion including dynamical deformations and separation allows the calculation of final mass and kinetic-energy distributions, along with other interesting quantities. Results: The model makes quantitative predictions for fragment mass and kinetic-energy yields, some of which are very close to measured ones. Varying the energy of the incident neutron for induced fission allows the prediction of energy dependencies of fragment yields and average kinetic energies. With a simple approximation for spontaneous fission starting conditions

  6. Analusis by 252Cf plasma desorption mass spectrometry of Bordetella pertussis endotoxin after nitrous deamination

    NASA Astrophysics Data System (ADS)

    Deprun, C.; Karibian, D.; Caroff, M.

    1993-07-01

    Endotoxic lipopolysaccharides (LPSs) are the major components of Gram-negative bacterial outer membrane. Like many amphipathic molecules, they pose problems of heterogeneity, purity, solubility, and aggregation. Nevertheless, PDMS has recently have been applied to unmodified endotoxins composed of LPS having uip to five sugar units in their saccharide chain. The B. Pertussis LPSs, most of which have a dodecasaccharide domain, ahve been analysed by classical methods and the masses of the separate lipid and saccharide domains determined after rupture of the bond linking them. However, the acid treatment employed for these and most chemical analyses can also modify structures in the vicinity of the bond. In order to investigate this biologically-important region, the endotoxin was treated to nitrous deamination, which shortens the saccharide chain to five sugars, but preserves the acid-labile region of the LPS. The PDM spectrum of this derivative, which required new conditions for its desorption, confirmed the structure analysis and demonstrated the presence of at least four molecular species.

  7. Utilization of /sup 252/Cf-/sup 235/U fueled subcritical multiplier for neutron activation analysis

    SciTech Connect

    Wogman, N.A.; Lepel, E.A.

    1983-10-05

    Neutron activation analysis is normally performed at thermal fluxes of 10/sup 13/ n/cm/sup 2//s irradiating samples of a few milligrams. When a ten thousand-fold larger sample is available, neutron activation can be performed at proportionately lower fluxes. Thus, a 10 g sample irradiated at 10/sup 9/ n/cm/sup 2//s contains as much activity as a 1 mg sample irradiated at 10/sup 13/ n/cm/sup 2//s. This paper describes the utilization of a subcritical multiplier operating at about 10/sup 9/ n/cm/sup 2//s for the activation of a broad range of sample types and elemental concentrations.

  8. /sup 252/Cf-based direct uranium logging system. Final report

    SciTech Connect

    Steinman, D.K.; Stokes, J.; Adams, J.A.; Pepper, C.S.; Bryan, D.E.; Smith, W.J.; Atwell, T.; Friesenhahn, S.; Dittrich, T.R.; Houston, D.H.

    1980-01-01

    Volume II comprises three appendices: reduced logging data from the field trips; samples of other output formats utilized by the data management software; and cost/benefit summaries for the field trips in 1978.

  9. Fission Systems for Mars Exploration

    NASA Technical Reports Server (NTRS)

    Houts, Michael G.; Kim, T.; Dorney, D. J.; Swint, Marion Shayne

    2012-01-01

    Fission systems are used extensively on earth, and 34 such systems have flown in space. The energy density of fission is over 10 million times that of chemical reactions, giving fission the potential to eliminate energy density constraints for many space missions. Potential safety and operational concerns with fission systems are well understood, and strategies exist for affordably developing such systems. By enabling a power-rich environment and highly efficient propulsion, fission systems could enable affordable, sustainable exploration of Mars.

  10. Membrane Shape at the Edge of the Dynamin Helix Sets Location and Duration of the Fission Reaction

    PubMed Central

    Morlot, Sandrine; Galli, Valentina; Klein, Marius; Chiaruttini, Nicolas; Manzi, John; Humbert, Frédéric; Dinis, Luis; Lenz, Martin; Cappello, Giovanni; Roux, Aurélien

    2013-01-01

    SUMMARY The GTPase dynamin polymerizes into a helical coat that constricts membrane necks of endocytic pits to promote their fission. However, the dynamin mechanism is still debated because constriction is necessary but not sufficient for fission. Here, we show that fission occurs at the interface between the dynamin coat and the uncoated membrane. At this location, the considerable change in membrane curvature increases the local membrane elastic energy, reducing the energy barrier for fission. Fission kinetics depends on tension, bending rigidity, and the dynamin constriction torque. Indeed, we experimentally find that the fission rate depends on membrane tension in vitro and during endocytosis in vivo. By estimating the energy barrier from the increased elastic energy at the edge of dynamin and measuring the dynamin torque, we show that the mechanical energy spent on dynamin constriction can reduce the energy barrier for fission sufficiently to promote spontaneous fission. PMID:23101629

  11. Membrane shape at the edge of the dynamin helix sets location and duration of the fission reaction.

    PubMed

    Morlot, Sandrine; Galli, Valentina; Klein, Marius; Chiaruttini, Nicolas; Manzi, John; Humbert, Frédéric; Dinis, Luis; Lenz, Martin; Cappello, Giovanni; Roux, Aurélien

    2012-10-26

    The GTPase dynamin polymerizes into a helical coat that constricts membrane necks of endocytic pits to promote their fission. However, the dynamin mechanism is still debated because constriction is necessary but not sufficient for fission. Here, we show that fission occurs at the interface between the dynamin coat and the uncoated membrane. At this location, the considerable change in membrane curvature increases the local membrane elastic energy, reducing the energy barrier for fission. Fission kinetics depends on tension, bending rigidity, and the dynamin constriction torque. Indeed, we experimentally find that the fission rate depends on membrane tension in vitro and during endocytosis in vivo. By estimating the energy barrier from the increased elastic energy at the edge of dynamin and measuring the dynamin torque, we show that the mechanical energy spent on dynamin constriction can reduce the energy barrier for fission sufficiently to promote spontaneous fission. :

  12. Fission and fusion scenarios for magnetic microswimmer clusters.

    PubMed

    Guzmán-Lastra, Francisca; Kaiser, Andreas; Löwen, Hartmut

    2016-11-22

    Fission and fusion processes of particle clusters occur in many areas of physics and chemistry from subnuclear to astronomic length scales. Here we study fission and fusion of magnetic microswimmer clusters as governed by their hydrodynamic and dipolar interactions. Rich scenarios are found that depend crucially on whether the swimmer is a pusher or a puller. In particular a linear magnetic chain of pullers is stable while a pusher chain shows a cascade of fission (or disassembly) processes as the self-propulsion velocity is increased. Contrarily, magnetic ring clusters show fission for any type of swimmer. Moreover, we find a plethora of possible fusion (or assembly) scenarios if a single swimmer collides with a ringlike cluster and two rings spontaneously collide. Our predictions are obtained by computer simulations and verifiable in experiments on active colloidal Janus particles and magnetotactic bacteria.

  13. Fission and fusion scenarios for magnetic microswimmer clusters

    PubMed Central

    Guzmán-Lastra, Francisca; Kaiser, Andreas; Löwen, Hartmut

    2016-01-01

    Fission and fusion processes of particle clusters occur in many areas of physics and chemistry from subnuclear to astronomic length scales. Here we study fission and fusion of magnetic microswimmer clusters as governed by their hydrodynamic and dipolar interactions. Rich scenarios are found that depend crucially on whether the swimmer is a pusher or a puller. In particular a linear magnetic chain of pullers is stable while a pusher chain shows a cascade of fission (or disassembly) processes as the self-propulsion velocity is increased. Contrarily, magnetic ring clusters show fission for any type of swimmer. Moreover, we find a plethora of possible fusion (or assembly) scenarios if a single swimmer collides with a ringlike cluster and two rings spontaneously collide. Our predictions are obtained by computer simulations and verifiable in experiments on active colloidal Janus particles and magnetotactic bacteria. PMID:27874006

  14. Fission and fusion scenarios for magnetic microswimmer clusters

    DOE PAGES

    Guzmán-Lastra, Francisca; Kaiser, Andreas; Löwen, Hartmut

    2016-11-22

    Fission and fusion processes of particle clusters occur in many areas of physics and chemistry from subnuclear to astronomic length scales. Here we study fission and fusion of magnetic microswimmer clusters as governed by their hydrodynamic and dipolar interactions. Rich scenarios are found that depend crucially on whether the swimmer is a pusher or a puller. In particular a linear magnetic chain of pullers is stable while a pusher chain shows a cascade of fission (or disassembly) processes as the self-propulsion velocity is increased. Contrarily, magnetic ring clusters show fission for any type of swimmer. Moreover, we find a plethoramore » of possible fusion (or assembly) scenarios if a single swimmer collides with a ringlike cluster and two rings spontaneously collide. Lastly, our predictions are obtained by computer simulations and verifiable in experiments on active colloidal Janus particles and magnetotactic bacteria.« less

  15. Fission and fusion scenarios for magnetic microswimmer clusters

    NASA Astrophysics Data System (ADS)

    Guzmán-Lastra, Francisca; Kaiser, Andreas; Löwen, Hartmut

    2016-11-01

    Fission and fusion processes of particle clusters occur in many areas of physics and chemistry from subnuclear to astronomic length scales. Here we study fission and fusion of magnetic microswimmer clusters as governed by their hydrodynamic and dipolar interactions. Rich scenarios are found that depend crucially on whether the swimmer is a pusher or a puller. In particular a linear magnetic chain of pullers is stable while a pusher chain shows a cascade of fission (or disassembly) processes as the self-propulsion velocity is increased. Contrarily, magnetic ring clusters show fission for any type of swimmer. Moreover, we find a plethora of possible fusion (or assembly) scenarios if a single swimmer collides with a ringlike cluster and two rings spontaneously collide. Our predictions are obtained by computer simulations and verifiable in experiments on active colloidal Janus particles and magnetotactic bacteria.

  16. Fission and fusion scenarios for magnetic microswimmer clusters

    SciTech Connect

    Guzmán-Lastra, Francisca; Kaiser, Andreas; Löwen, Hartmut

    2016-11-22

    Fission and fusion processes of particle clusters occur in many areas of physics and chemistry from subnuclear to astronomic length scales. Here we study fission and fusion of magnetic microswimmer clusters as governed by their hydrodynamic and dipolar interactions. Rich scenarios are found that depend crucially on whether the swimmer is a pusher or a puller. In particular a linear magnetic chain of pullers is stable while a pusher chain shows a cascade of fission (or disassembly) processes as the self-propulsion velocity is increased. Contrarily, magnetic ring clusters show fission for any type of swimmer. Moreover, we find a plethora of possible fusion (or assembly) scenarios if a single swimmer collides with a ringlike cluster and two rings spontaneously collide. Lastly, our predictions are obtained by computer simulations and verifiable in experiments on active colloidal Janus particles and magnetotactic bacteria.

  17. Fission properties and production mechanisms for the heaviest known elements

    SciTech Connect

    Hoffman, D.C.

    1981-01-01

    Mass yields of the spontaneous fission of Fm isotopes, Cf isotopes, and /sup 259/Md are discussed. Actinide yields were measured for bombardments of /sup 248/Cm with /sup 16/O, /sup 18/O, /sup 20/Ne, and /sup 22/Ne. A superheavy product might be produced by bombarding /sup 248/Cm with /sup 48/Ca ions. 12 figures. (DLC)

  18. Fission in a Plasma

    SciTech Connect

    Younes, W.

    2016-10-26

    A three-year theory project was undertaken to study the fission process in extreme astrophysical environments, such as the crust of neutron stars. In the first part of the project, the effect of electron screening on the fission process was explored using a microscopic approach. For the first time, these calculations were carried out to the breaking point of the nucleus. In the second part of the project, the population of the fissioning nucleus was calculated within the same microscopic framework. These types of calculations are extremely computer-intensive and have seldom been applied to heavy deformed nuclei, such as fissioning actinides. The results, tools and methodologies produced in this work will be of interest to both the basic-science and nuclear-data communities.

  19. Microscopic Theory of Fission

    SciTech Connect

    Younes, W.; Gogny, D.

    2008-04-17

    In recent years, the microscopic method has been applied to the notoriously difficult problem of nuclear fission with unprecedented success. In this paper, we discuss some of the achievements and promise of the microscopic method, as embodied in the Hartree-Fock method using the Gogny finite-range effective interaction, and beyond-mean-field extensions to the theory. The nascent program to describe induced fission observables using this approach at the Lawrence Livermore National Laboratory is presented.

  20. Singlet exciton fission photovoltaics.

    PubMed

    Lee, Jiye; Jadhav, Priya; Reusswig, Philip D; Yost, Shane R; Thompson, Nicholas J; Congreve, Daniel N; Hontz, Eric; Van Voorhis, Troy; Baldo, Marc A

    2013-06-18

    Singlet exciton fission, a process that generates two excitons from a single photon, is perhaps the most efficient of the various multiexciton-generation processes studied to date, offering the potential to increase the efficiency of solar devices. But its unique characteristic, splitting a photogenerated singlet exciton into two dark triplet states, means that the empty absorption region between the singlet and triplet excitons must be filled by adding another material that captures low-energy photons. This has required the development of specialized device architectures. In this Account, we review work to develop devices that harness the theoretical benefits of singlet exciton fission. First, we discuss singlet fission in the archetypal material, pentacene. Pentacene-based photovoltaic devices typically show high external and internal quantum efficiencies. They have enabled researchers to characterize fission, including yield and the impact of competing loss processes, within functional devices. We review in situ probes of singlet fission that modulate the photocurrent using a magnetic field. We also summarize studies of the dissociation of triplet excitons into charge at the pentacene-buckyball (C60) donor-acceptor interface. Multiple independent measurements confirm that pentacene triplet excitons can dissociate at the C60 interface despite their relatively low energy. Because triplet excitons produced by singlet fission each have no more than half the energy of the original photoexcitation, they limit the potential open circuit voltage within a solar cell. Thus, if singlet fission is to increase the overall efficiency of a solar cell and not just double the photocurrent at the cost of halving the voltage, it is necessary to also harvest photons in the absorption gap between the singlet and triplet energies of the singlet fission material. We review two device architectures that attempt this using long-wavelength materials: a three-layer structure that uses

  1. Late-time emission of prompt fission γ rays

    SciTech Connect

    Talou, Patrick; Kawano, Toshihiko; Stetcu, Ionel; Lestone, John Paul; McKigney, Edward Allen; Chadwick, Mark Benjamin

    2016-12-22

    The emission of prompt fission γ rays within a few nanoseconds to a few microseconds following the scission point is studied in the Hauser-Feshbach formalism applied to the deexcitation of primary excited fission fragments. Neutron and γ-ray evaporations from fully accelerated fission fragments are calculated in competition at each stage of the decay, and the role of isomers in the fission products, before β decay, is analyzed. The time evolution of the average total γ-ray energy, the average total γ-ray multiplicity, and the fragment-specific γ-ray spectra is presented in the case of neutron-induced fission reactions of 235U and 239Pu, as well as spontaneous fission of 252Cf. The production of specific isomeric states is calculated and compared to available experimental data. About 7% of all prompt fission γ rays are predicted to be emitted between 10 ns and 5 μs following fission, in the case of 235U and 239Pu(nth,f) reactions, and up to 3% in the case of 252Cf spontaneous fission. The cumulative average total γ-ray energy increases by 2% to 5% in the same time interval. Lastly, those results are shown to be robust against significant changes in the model input parameters.

  2. General Description of Fission Observables: GEF Model Code

    NASA Astrophysics Data System (ADS)

    Schmidt, K.-H.; Jurado, B.; Amouroux, C.; Schmitt, C.

    2016-01-01

    The GEF ("GEneral description of Fission observables") model code is documented. It describes the observables for spontaneous fission, neutron-induced fission and, more generally, for fission of a compound nucleus from any other entrance channel, with given excitation energy and angular momentum. The GEF model is applicable for a wide range of isotopes from Z = 80 to Z = 112 and beyond, up to excitation energies of about 100 MeV. The results of the GEF model are compared with fission barriers, fission probabilities, fission-fragment mass- and nuclide distributions, isomeric ratios, total kinetic energies, and prompt-neutron and prompt-gamma yields and energy spectra from neutron-induced and spontaneous fission. Derived properties of delayed neutrons and decay heat are also considered. The GEF model is based on a general approach to nuclear fission that explains a great part of the complex appearance of fission observables on the basis of fundamental laws of physics and general properties of microscopic systems and mathematical objects. The topographic theorem is used to estimate the fission-barrier heights from theoretical macroscopic saddle-point and ground-state masses and experimental ground-state masses. Motivated by the theoretically predicted early localisation of nucleonic wave functions in a necked-in shape, the properties of the relevant fragment shells are extracted. These are used to determine the depths and the widths of the fission valleys corresponding to the different fission channels and to describe the fission-fragment distributions and deformations at scission by a statistical approach. A modified composite nuclear-level-density formula is proposed. It respects some features in the superfluid regime that are in accordance with new experimental findings and with theoretical expectations. These are a constant-temperature behaviour that is consistent with a considerably increased heat capacity and an increased pairing condensation energy that is

  3. General Description of Fission Observables: GEF Model Code

    SciTech Connect

    Schmidt, K.-H.; Schmitt, C.

    2016-01-15

    The GEF (“GEneral description of Fission observables”) model code is documented. It describes the observables for spontaneous fission, neutron-induced fission and, more generally, for fission of a compound nucleus from any other entrance channel, with given excitation energy and angular momentum. The GEF model is applicable for a wide range of isotopes from Z = 80 to Z = 112 and beyond, up to excitation energies of about 100 MeV. The results of the GEF model are compared with fission barriers, fission probabilities, fission-fragment mass- and nuclide distributions, isomeric ratios, total kinetic energies, and prompt-neutron and prompt-gamma yields and energy spectra from neutron-induced and spontaneous fission. Derived properties of delayed neutrons and decay heat are also considered. The GEF model is based on a general approach to nuclear fission that explains a great part of the complex appearance of fission observables on the basis of fundamental laws of physics and general properties of microscopic systems and mathematical objects. The topographic theorem is used to estimate the fission-barrier heights from theoretical macroscopic saddle-point and ground-state masses and experimental ground-state masses. Motivated by the theoretically predicted early localisation of nucleonic wave functions in a necked-in shape, the properties of the relevant fragment shells are extracted. These are used to determine the depths and the widths of the fission valleys corresponding to the different fission channels and to describe the fission-fragment distributions and deformations at scission by a statistical approach. A modified composite nuclear-level-density formula is proposed. It respects some features in the superfluid regime that are in accordance with new experimental findings and with theoretical expectations. These are a constant-temperature behaviour that is consistent with a considerably increased heat capacity and an increased pairing condensation energy that is

  4. Monte-Carlo Generation of Time Evolving Fission Chains

    SciTech Connect

    Verbeke, Jerome M.; Kim, Kenneth S.; Prasad, Manoj K.; Snyderman, Neal J.

    2013-08-01

    About a decade ago, a computer code was written to model neutrons from their “birth” to their final “death” in thermal neutron detectors (3He tubes): SrcSim had enough physics to track the neutrons in multiplying systems, appropriately increasing and decreasing the neutron population as they interacted by absorption, fission and leakage. The theory behind the algorithms assumed that all neutrons produced in a fission chain were all produced simultaneously, and then diffused to the neutron detectors. For cases where the diffusion times are long compared to the fission chains, SrcSim is very successful. Indeed, it works extraordinarily well for thermal neutron detectors and bare objects, because it takes tens of microseconds for fission neutrons to slow down to thermal energies, where they can be detected. Microseconds are a very long time compared to the lengths of the fission chains. However, this inherent assumption in the theory prevents its use to cases where either the fission chains are long compared to the neutron diffusion times (water-cooled nuclear reactors, or heavily moderated object, where the theory starts failing), or the fission neutrons can be detected shortly after they were produced (fast neutron detectors). For these cases, a new code needs to be written, where the underlying assumption is not made. The purpose of this report is to develop an algorithm to generate the arrival times of neutrons in fast neutron detectors, starting from a neutron source such as a spontaneous fission source (252Cf) or a multiplying source (Pu). This code will be an extension of SrcSim to cases where correlations between neutrons in the detectors are on the same or shorter time scales as the fission chains themselves.

  5. Modernizing the Fission Basis

    NASA Astrophysics Data System (ADS)

    Tonchev, Anton; Henderson, Roger; Schunck, Nicolas; Sroyer, Mark; Vogt, Ramona

    2016-09-01

    In 1939, Niels Bohr and John Wheeler formulated a theory of neutron-induced nuclear fission based on the hypothesis of the compound nucleus. Their theory, the so-called ``Bohr hypothesis,'' is still at the heart of every theoretical fission model today and states that the decay of a compound nucleus for a given excitation energy, spin, and parity is independent of its formation. We propose the first experiment to validate to 1-2% absolute uncertainties the practical consequences of the Bohr hypothesis during induced nuclear fission. We will compare the fission product yields (FPYs) of the same 240Pu compound nucleus produced via two different reactions (i) n+239Pu and (ii) γ+240 Pu. These high-precision FPYs measurements will be extremely beneficial for our fundamental understanding of the nuclear fission process and nuclear reactions from first principles. This work was performed under the auspices of US DOE by LLNL under Contract DE-AC52-07NA27344. Funding was provided via the LDRD-ERD-069 project.

  6. Evidence for bimodal fission in the heaviest elements

    SciTech Connect

    Hulet, E.K.

    1987-12-10

    We have measured the mass and kinetic-energy partitioning in the spontaneous fission of five heavy nuclides: /sup 258/Fm, /sup 259/Md, /sup 260/Md, /sup 258/No, and /sup 260/(104). Each was produced by heavy-ion reactions with either /sup 248/Cm, /sup 249/Bk, or /sup 254/Es targets. Energies of correlated fragments from the isotopes with millisecond half lives, /sup 258/No and /sup 260/(104), were measured on-line by a special rotating-wheel instrument, while the others were determined off-line after mass separation. All fissioned with mass distributions that were symmetric. Total-kinetic-energy distributions peaked near either 200 or 235 MeV. Surprisingly, because only a single Gaussian energy distribution had been observed previously in actinide fission, these energy distributions were skewed upward or downward from the peak in each case, except for /sup 260/(104), indicating a composite of two energy distributions. We were able to fit accurately two Gaussian curves to the gross energy distributions from the four remaining nuclides. From the multiple TKE distributions and the shapes of the mass distributions, we conclude that there is a low-energy fission component with liquid-drop characteristics which is admixed with a much higher-energy component due to closed fragment shells. We now have further evidence for this conclusion from measurements of the neutron multiplicity in the spontaneous fission of /sup 260/Md.

  7. Evidence for bimodal fission in the heaviest elements

    SciTech Connect

    Hulet, E.K.; Wild, J.F.; Lougheed, R.W.; Dougan, R.J.; Landrum, J.H.; Dougan, A.D.; Schaedel, M.; Hahn, R.L.; Baisden, P.A.; Henderson, C.M.

    1987-08-01

    We have measured the mass and kinetic-energy partitioning in the spontaneous fission of five heavy nuclides: /sup 258/Fm, /sup 259/Md, /sup 260/Md /sup 258/No, and /sup 260/(104). Each was produced by heavy-ion reactions with either /sup 248/Cm, /sup 249/Bk, or /sup 254/Es targets. Energies of correlated fragments from the isotopes with millisecond half lives, /sup 258/No and /sup 260/(104), were measured on-line by a special rotating-wheel instrument, while the others were determined off-line after mass separation. All fissioned with mass distributions that were symmetric. Total-kinetic-energy distributions peaked near either 200 or 235 MeV. Surprisingly, because only a single Gaussian energy distribution had been observed previously in actinide fission, these energy distributions were skewed upward or downward from the peak in each case, except for /sup 260/(104), indicating a composite of two energy distributions. We were able to fit accurately two Gaussian curves to the gross energy distributions from the four remaining nuclides. From the multiple TKE distributions and the shapes of the mass distributions, we conclude that there is a low-energy fission component with liquid-drop characteristics which is admixed with a much higher-energy component due to closed fragment shells. We now have further evidence for this conclusion from measurements of the neutron multiplicity in the spontaneous fission of /sup 260/Md. 25 refs., 9 figs.

  8. Testing actinide fission yield treatment in CINDER90 for use in MCNP6 burnup calculations

    SciTech Connect

    Fensin, Michael Lorne; Umbel, Marissa

    2015-09-18

    Most of the development of the MCNPX/6 burnup capability focused on features that were applied to the Boltzman transport or used to prepare coefficients for use in CINDER90, with little change to CINDER90 or the CINDER90 data. Though a scheme exists for best solving the coupled Boltzman and Bateman equations, the most significant approximation is that the employed nuclear data are correct and complete. Thus, the CINDER90 library file contains 60 different actinide fission yields encompassing 36 fissionable actinides (thermal, fast, high energy and spontaneous fission). Fission reaction data exists for more than 60 actinides and as a result, fission yield data must be approximated for actinides that do not possess fission yield information. Several types of approximations are used for estimating fission yields for actinides which do not possess explicit fission yield data. The objective of this study is to test whether or not certain approximations of fission yield selection have any impact on predictability of major actinides and fission products. Further we assess which other fission products, available in MCNP6 Tier 3, result in the largest difference in production. Because the CINDER90 library file is in ASCII format and therefore easily amendable, we assess reasons for choosing, as well as compare actinide and major fission product prediction for the H. B. Robinson benchmark for, three separate fission yield selection methods: (1) the current CINDER90 library file method (Base); (2) the element method (Element); and (3) the isobar method (Isobar). Results show that the three methods tested result in similar prediction of major actinides, Tc-99 and Cs-137; however, certain fission products resulted in significantly different production depending on the method of choice.

  9. Cluster preformation at the nuclear surface in cold fission

    NASA Astrophysics Data System (ADS)

    Poenaru, D. N.; Gherghescu, R. A.

    2017-04-01

    Microscopic theories of alpha decay and cluster radioactivity explain these decay modes as a quantum tunnelling of a preformed cluster at the nuclear surface. In the present work we show that in a spontaneous cold-fission process the shell plus pairing corrections, calculated with Strutinsky's procedure based on the two-center shell model, may give a strong argument for preformation of a light fission fragment near the nuclear surface. It is obtained when the radius of the light fragment, R 2, is increased linearly with the separation distance, R, of the two fragments, while for R 2 = const one gets the well-known two-hump potential barrier for heavy and superheavy nuclei. Nuclear-physics community also contributed to nanocluster physics by applying the macroscopic-microscopic method to explain the shell effects experimentally observed since 1984. Applications are shown for two nuclei, 260Rf and 264Sg, whose half-life against spontaneous fission is very well known. We stress a new aspect of the cold spontaneous fission, unifying its theory with that of α- and cluster decays, all having in common a preformed light cluster which will penetrate the potential barrier by quantum tunelling.

  10. Fission Product Library and Resource

    SciTech Connect

    Burke, J. T.; Padgett, S.

    2016-09-29

    Fission product yields can be extracted from an irradiated sample by performing gamma ray spectroscopy on the whole sample post irradiation. There are several pitfalls to avoid when trying to determine a specific isotope's fission product yield.

  11. Process for treating fission waste

    DOEpatents

    Rohrmann, Charles A.; Wick, Oswald J.

    1983-01-01

    A method is described for the treatment of fission waste. A glass forming agent, a metal oxide, and a reducing agent are mixed with the fission waste and the mixture is heated. After melting, the mixture separates into a glass phase and a metal phase. The glass phase may be used to safely store the fission waste, while the metal phase contains noble metals recovered from the fission waste.

  12. Fission modelling with FIFRELIN

    NASA Astrophysics Data System (ADS)

    Litaize, Olivier; Serot, Olivier; Berge, Léonie

    2015-12-01

    The nuclear fission process gives rise to the formation of fission fragments and emission of particles (n,γ , e-) . The particle emission from fragments can be prompt and delayed. We present here the methods used in the FIFRELIN code, which simulates the prompt component of the de-excitation process. The methods are based on phenomenological models associated with macroscopic and/or microscopic ingredients. Input data can be provided by experiment as well as by theory. The fission fragment de-excitation can be performed within Weisskopf (uncoupled neutron and gamma emission) or a Hauser-Feshbach (coupled neutron/gamma emission) statistical theory. We usually consider five free parameters that cannot be provided by theory or experiments in order to describe the initial distributions required by the code. In a first step this set of parameters is chosen to reproduce a very limited set of target observables. In a second step we can increase the statistics to predict all other fission observables such as prompt neutron, gamma and conversion electron spectra but also their distributions as a function of any kind of parameters such as, for instance, the neutron, gamma and electron number distributions, the average prompt neutron multiplicity as a function of fission fragment mass, charge or kinetic energy, and so on. Several results related to different fissioning systems are presented in this work. The goal in the next decade will be i) to replace some macroscopic ingredients or phenomenological models by microscopic calculations when available and reliable, ii) to be a support for experimentalists in the design of detection systems or in the prediction of necessary beam time or count rates with associated statistics when measuring fragments and emitted particle in coincidence iii) extend the model to be able to run a calculation when no experimental input data are available, iv) account for multiple chance fission and gamma emission before fission, v) account for the

  13. Prompt fission gamma-ray studies at DANCE

    DOE PAGES

    Jandel, M.; Rusev, G.; Bond, E. M.; ...

    2014-11-26

    Measurements of correlated data on prompt-fission γ-rays (PFG) have been carried out for various actinide isotopes in recent years using the Detector for Advanced Neutron Capture Experiments (DANCE) at Los Alamos National Laboratory (LANL). We have developed a model that conveniently parametrizes the correlated data of γ-ray multiplicity and energy. New results on two- dimensional prompt-fission γ-ray multiplicity versus energy distributions from spontaneous fission on ²⁵²Cf and neutron-induced fission on 242mAm are presented together with previously obtained results on 233,235U and ²³⁹Pu. Correlated PFG data from ²⁵²Cf are also compared to results of the detailed theoretical model developed at LANL,more » for different thresholds of PFG energies. Future plans to measure correlated data on fission fragments, prompt fission neutrons and γ-rays at DANCE are presented.« less

  14. Assessing theoretical uncertainties in fission barriers of superheavy nuclei

    DOE PAGES

    Agbemava, S. E.; Afanasjev, A. V.; Ray, D.; ...

    2017-05-26

    Here, theoretical uncertainties in the predictions of inner fission barrier heights in superheavy elements have been investigated in a systematic way for a set of state-of-the-art covariant energy density functionals which represent major classes of the functionals used in covariant density functional theory. They differ in basic model assumptions and fitting protocols. Both systematic and statistical uncertainties have been quantified where the former turn out to be larger. Systematic uncertainties are substantial in superheavy elements and their behavior as a function of proton and neutron numbers contains a large random component. The benchmarking of the functionals to the experimental datamore » on fission barriers in the actinides allows to reduce the systematic theoretical uncertainties for the inner fission barriers of unknown superheavy elements. However, even then they on average increase on moving away from the region where benchmarking has been performed. In addition, a comparison with the results of non-relativistic approaches is performed in order to define full systematic theoretical uncertainties over the state-of-the-art models. Even for the models benchmarked in the actinides, the difference in the inner fission barrier height of some superheavy elements reaches $5-6$ MeV. This uncertainty in the fission barrier heights will translate into huge (many tens of the orders of magnitude) uncertainties in the spontaneous fission half-lives.« less

  15. A new UK fission yield evaluation UKFY3.7

    NASA Astrophysics Data System (ADS)

    Mills, Robert William

    2017-09-01

    The JEFF neutron induced and spontaneous fission product yield evaluation is currently unchanged from JEFF-3.1.1, also known by its UK designation UKFY3.6A. It is based upon experimental data combined with empirically fitted mass, charge and isomeric state models which are then adjusted within the experimental and model uncertainties to conform to the physical constraints of the fission process. A new evaluation has been prepared for JEFF, called UKFY3.7, that incorporates new experimental data and replaces the current empirical models (multi-Gaussian fits of mass distribution and Wahl Zp model for charge distribution combined with parameter extrapolation), with predictions from GEF. The GEF model has the advantage that one set of parameters allows the prediction of many different fissioning nuclides at different excitation energies unlike previous models where each fissioning nuclide at a specific excitation energy had to be fitted individually to the relevant experimental data. The new UKFY3.7 evaluation, submitted for testing as part of JEFF-3.3, is described alongside initial results of testing. In addition, initial ideas for future developments allowing inclusion of new measurements types and changing from any neutron spectrum type to true neutron energy dependence are discussed. Also, a method is proposed to propagate uncertainties of fission product yields based upon the experimental data that underlies the fission yield evaluation. The covariance terms being determined from the evaluated cumulative and independent yields combined with the experimental uncertainties on the cumulative yield measurements.

  16. Assessing theoretical uncertainties in fission barriers of superheavy nuclei

    NASA Astrophysics Data System (ADS)

    Agbemava, S. E.; Afanasjev, A. V.; Ray, D.; Ring, P.

    2017-05-01

    Theoretical uncertainties in the predictions of inner fission barrier heights in superheavy elements have been investigated in a systematic way for a set of state-of-the-art covariant energy density functionals which represent major classes of the functionals used in covariant density functional theory. They differ in basic model assumptions and fitting protocols. Both systematic and statistical uncertainties have been quantified where the former turn out to be larger. Systematic uncertainties are substantial in superheavy elements and their behavior as a function of proton and neutron numbers contains a large random component. The benchmarking of the functionals to the experimental data on fission barriers in the actinides allows reduction of the systematic theoretical uncertainties for the inner fission barriers of unknown superheavy elements. However, even then, on average they increase on moving away from the region where benchmarking has been performed. In addition, a comparison with the results of nonrelativistic approaches is performed in order to define full systematic theoretical uncertainties over the state-of-the-art models. Even for the models benchmarked in the actinides, the difference in the inner fission barrier height of some superheavy elements reaches 5 -6 MeV. This uncertainty in the fission barrier heights will translate into huge (many tens of the orders of magnitude) uncertainties in the spontaneous fission half-lives.

  17. Uncertainties in nuclear fission data

    NASA Astrophysics Data System (ADS)

    Talou, Patrick; Kawano, Toshihiko; Chadwick, Mark B.; Neudecker, Denise; Rising, Michael E.

    2015-03-01

    We review the current status of our knowledge of nuclear fission data, and quantify uncertainties related to each fission observable whenever possible. We also discuss the roles that theory and experiment play in reducing those uncertainties, contributing to the improvement of our fundamental understanding of the nuclear fission process as well as of evaluated nuclear data libraries used in nuclear applications.

  18. Evaluation and compilation of fission product yields 1993

    SciTech Connect

    England, T.R.; Rider, B.F.

    1995-12-31

    This document is the latest in a series of compilations of fission yield data. Fission yield measurements reported in the open literature and calculated charge distributions have been used to produce a recommended set of yields for the fission products. The original data with reference sources, and the recommended yields axe presented in tabular form. These include many nuclides which fission by neutrons at several energies. These energies include thermal energies (T), fission spectrum energies (F), 14 meV High Energy (H or HE), and spontaneous fission (S), in six sets of ten each. Set A includes U235T, U235F, U235HE, U238F, U238HE, Pu239T, Pu239F, Pu241T, U233T, Th232F. Set B includes U233F, U233HE, U236F, Pu239H, Pu240F, Pu241F, Pu242F, Th232H, Np237F, Cf252S. Set C includes U234F, U237F, Pu240H, U234HE, U236HE, Pu238F, Am241F, Am243F, Np238F, Cm242F. Set D includes Th227T, Th229T, Pa231F, Am241T, Am241H, Am242MT, Cm245T, Cf249T, Cf251T, Es254T. Set E includes Cf250S, Cm244S, Cm248S, Es253S, Fm254S, Fm255T, Fm256S, Np237H, U232T, U238S. Set F includes Cm243T, Cm246S, Cm243F, Cm244F, Cm246F, Cm248F, Pu242H, Np237T, Pu240T, and Pu242T to complete fission product yield evaluations for 60 fissioning systems in all. This report also serves as the primary documentation for the second evaluation of yields in ENDF/B-VI released in 1993.

  19. Elastocapillary Instability in Mitochondrial Fission

    NASA Astrophysics Data System (ADS)

    Gonzalez-Rodriguez, David; Sart, Sébastien; Babataheri, Avin; Tareste, David; Barakat, Abdul I.; Clanet, Christophe; Husson, Julien

    2015-08-01

    Mitochondria are dynamic cell organelles that constantly undergo fission and fusion events. These dynamical processes, which tightly regulate mitochondrial morphology, are essential for cell physiology. Here we propose an elastocapillary mechanical instability as a mechanism for mitochondrial fission. We experimentally induce mitochondrial fission by rupturing the cell's plasma membrane. We present a stability analysis that successfully explains the observed fission wavelength and the role of mitochondrial morphology in the occurrence of fission events. Our results show that the laws of fluid mechanics can describe mitochondrial morphology and dynamics.

  20. Design of a californium-based epithermal neutron beam for neutron capture therapy.

    PubMed

    Yanch, J C; Kim, J K; Wilson, M J

    1993-08-01

    The potential of the spontaneously fissioning isotope, 252Cf, to provide epithermal neutrons for use in boron neutron capture therapy (BNCT) has been investigated using Monte Carlo simulation. The Monte Carlo code MCNP was used to design an assembly composed of a 26 cm long, 11 cm radius cylindrical D2O moderator followed by a 64 cm long Al filter. Lithium filters are placed between the moderator and the filter and between the Al and the patient. A reflector surrounding the moderator/filter assembly is required in order to maintain adequate therapy flux at the patient position. An ellipsoidal phantom composed of skull- and brain-equivalent material was used to determine the dosimetric effect of this beam. It was found that both advantage depths and advantage ratios compare very favourably with reactor and accelerator epithermal neutron sources. The dose rate obtainable, on the other hand, is 4.1 RBE cGy min-1, based on a very large (1.0 g) source of 252Cf. This dose rate is two to five times lower than those provided by existing reactor beams and can be viewed as a drawback of using 252Cf as a neutron source. Radioisotope sources, however, do offer the advantage of in-hospital installation.

  1. Testing actinide fission yield treatment in CINDER90 for use in MCNP6 burnup calculations

    DOE PAGES

    Fensin, Michael Lorne; Umbel, Marissa

    2015-09-18

    Most of the development of the MCNPX/6 burnup capability focused on features that were applied to the Boltzman transport or used to prepare coefficients for use in CINDER90, with little change to CINDER90 or the CINDER90 data. Though a scheme exists for best solving the coupled Boltzman and Bateman equations, the most significant approximation is that the employed nuclear data are correct and complete. Thus, the CINDER90 library file contains 60 different actinide fission yields encompassing 36 fissionable actinides (thermal, fast, high energy and spontaneous fission). Fission reaction data exists for more than 60 actinides and as a result, fissionmore » yield data must be approximated for actinides that do not possess fission yield information. Several types of approximations are used for estimating fission yields for actinides which do not possess explicit fission yield data. The objective of this study is to test whether or not certain approximations of fission yield selection have any impact on predictability of major actinides and fission products. Further we assess which other fission products, available in MCNP6 Tier 3, result in the largest difference in production. Because the CINDER90 library file is in ASCII format and therefore easily amendable, we assess reasons for choosing, as well as compare actinide and major fission product prediction for the H. B. Robinson benchmark for, three separate fission yield selection methods: (1) the current CINDER90 library file method (Base); (2) the element method (Element); and (3) the isobar method (Isobar). Results show that the three methods tested result in similar prediction of major actinides, Tc-99 and Cs-137; however, certain fission products resulted in significantly different production depending on the method of choice.« less

  2. A thrust-sheet propulsion concept using fissionable elements

    NASA Technical Reports Server (NTRS)

    Moeckel, W. E.

    1976-01-01

    A space propulsion concept is proposed and analyzed which consists of a thin sheet coated on one side with fissionable material, so that nuclear power is converted directly into propulsive power. Thrust is available both from ejected fission fragments and from thermal radiation. Optimum thicknesses are determined for the active and substrate layers. This concept is shown to have potential mission capability (in terms of velocity increments) superior to that of all other advanced propulsion concepts for which performance estimates are available. A suitable spontaneously fissioning material such as Cf-254 could provide an extremely high-performance first stage beyond earth orbit. In contrast with some other advanced nuclear propulsion concepts, there is no minimum size below which this concept is infeasible.

  3. Cold fission description with constant and varying mass asymmetries

    NASA Astrophysics Data System (ADS)

    Duarte, S. B.; Rodríguez, O.; Tavares, O. A. P.; Gonçalves, M.; García, F.; Guzmán, F.

    1998-05-01

    Different descriptions for varying the mass asymmetry in the fragmentation process are used to calculate the cold fission barrier penetrability. The relevance of the appropriate choice for both the description of the prescission phase and inertia coefficient to unify alpha decay, cluster radioactivity, and spontaneous cold fission processes in the same theoretical framework is explicitly shown. We calculate the half-life of all possible partition modes of nuclei of A>200 following the most recent Mass Table by Audi and Wapstra. It is shown that if one uses the description in which the mass asymmetry is maintained constant during the fragmentation process, the experimental half-life values and mass yield of 234U cold fission are satisfactorily reproduced.

  4. A thrust-sheet propulsion concept using fissionable elements

    NASA Technical Reports Server (NTRS)

    Moeckel, W. E.

    1976-01-01

    A space propulsion concept is proposed and analyzed which consists of a thin sheet coated on one side with fissionable material, so that nuclear power is converted directly into propulsive power. Thrust is available both from ejected fission fragments and from thermal radiation. Optimum thicknesses are determined for the active and substrate layers. This concept is shown to have potential mission capability (in terms of velocity increments) superior to that of all other advanced propulsion concepts for which performance estimates are available. A suitable spontaneously fissioning material such as Cf254 could provide an extremely high-performance first stage beyond earth orbit. In contrast with some other advanced nuclear propulsion concepts, there is no minimum size below which this concept is infeasible.

  5. Beta-delayed fission probabilities of transfermium nuclei, involved in the r-process

    NASA Astrophysics Data System (ADS)

    Panov, I.; Lutostansky, Yu; Thielemann, F.-K.

    2016-01-01

    For the nucleosynthesis of heavy and superheavy nuclei fission becomes very important when the r-process runs in a very high neutron density environment. In part, fission is responsible for the formation of heavy nuclei due to the inclusion of fission products as new seed nuclei (fission cycling). More than that, beta-delayed fission, along with spontaneous fission, is responsible in the late stages of the r-process for the suppression of superheavy element yields. For beta-delayed fission probability calculations a model description of the beta-strength- functions is required. Extended theoretical predictions for astro-physical applications were provided long ago, and new predictions also for superheavy nuclei with uptodate nuclear input are needed. For the further extension of data to heavier transactinides the models of strength- functions should be modified, taking into account more complicated level schemes. In our present calculations the strength-function model is based on the quasi-particle approximation of Finite Fermi Systems Theory. The probabilities of beta-delayed fission and beta-delayed neutron emission are calculated for some transfermium neutron-rich nuclei, and the influence of beta-delayed fission upon superheavy element formation is discussed.

  6. IDENTIFICATION OF HIGH-SPIN STATES IN NEUTRON-RICH 88,90,92Kr AND 86Se

    SciTech Connect

    J. D. Cole

    2011-08-01

    Level schemes of even-even neutron-rich {sup 88-92}Kr and {sup 86}Se have been investigated by measuring triple-{gamma} coincidence data from the spontaneous fission of {sup 252}Cf with the Gammasphere detector array. The level scheme of {sup 88}Kr has been extended up to 7169 keV state. Several new excited states with new transitions have been identified in {sup 90,92}Kr and {sup 86}Se. Spins and parities have been assigned to levels in these nuclei by following regional systematics and angular correlation measurements. The level structures of the N = 52, 54, Se, Kr, and Sr isotones are discussed.

  7. Nuclear structure of the odd-odd N=85 neutron-rich nucleus {sup 140}Cs

    SciTech Connect

    Liu, S. H.; Hamilton, J. H.; Ramayya, A. V.; Hwang, J. K.; Luo, Y. X.; Rasmussen, J. O.; Daniel, A. V.; Ter-Akopian, G. M.; Zhu, S. J.; Ma, W. C.

    2010-03-15

    High-spin excited states in the neutron-rich nucleus {sup 140}Cs were re-investigated from the spontaneous fission of {sup 252}Cf with the Gammasphere detector array. Seven new transitions at low and moderate spin and 13 at high spin were observed in {sup 140}Cs and the level scheme of {sup 140}Cs was extended to 3794 keV with a new sideband. Spins and parities were assigned to levels based on angular correlation measurements and the systematics in the N=85 isotones.

  8. Evidence for octupole excitations in the odd-odd neutron-rich nucleus {sup 142}Cs

    SciTech Connect

    Liu, S. H.; Hamilton, J. H.; Ramayya, A. V.; Hwang, J. K.; Luo, Y. X.; Rasmussen, J. O.; Zhu, S. J.; Ma, W. C.; Daniel, A. V.; Ter-Akopian, G. M.

    2010-05-15

    High-spin states in the neutron-rich nucleus {sup 142}Cs are reinvestigated from a study of the spontaneous fission of {sup 252}Cf with the Gammasphere detector array. A new level scheme is built and spin-parities are assigned to levels based on angular correlation measurements and systematics. The new structure of {sup 142}Cs is proposed to be related to octupole correlations. The electric dipole moment of {sup 142}Cs is measured and a dramatic decrease of the dipole moments with increasing neutron numbers in the Cs isotopic chain is found.

  9. New excitations in Ba142 and Ce144: Evolution of γ bands in the N=86 isotones

    DOE PAGES

    Naidja, H.; Nowacki, F.; Bounthong, B.; ...

    2017-06-02

    New excited states in 142Ba and 144Ce are investigated by means of prompt γ-ray spectroscopy of the radiation following spontaneous fission of 252Cf. Measurements of angular correlations and the observed branchings allowed the assignment of spins and parities with confidence. The new measurements are reinforced by shell-model calculations where energy levels, electric transitions, and magnetic moments are consistent with experimental data. Lastly, the presence of collectivity in the N = 86 isotones is confirmed by clear signatures of soft triaxial γ bands in both nuclei.

  10. Collective Band Structures in the Neutron-Rich 107,109Ru Nuclei

    NASA Astrophysics Data System (ADS)

    Zhu, Sheng-jiang; Gan, Cui-yun; J, Hamilton H.; A, Ramayya V.; B, Babu R. S.; M, Sakhaee; W, Ma C.; Long, Gui-lu; Deng, Jing-kang; Zhu, Ling-yan; Li, Ming; Yang, Li-ming; J, Komicki; J, Cole D.; R, Aryaeinejad; Y, Dardenne K.; M, Drigert W.; J, Rasmussen O.; M, Stoyer A.; S, Chu Y.; K, Gregorich E.; M, Mohar F.; S, Prussin G.; I, Lee Y.; N, Johnson R.; F, McGowan K.

    1998-11-01

    The levels in neutron-rich odd-A 107,109Ru nuclei have been investigated by using γ-γ- and γ-γ-γ-coincidence studies of the prompt γ-rays from the spontaneous fission of 252Cf. The ground state bands and the negative parity bands are identified and expanded in both nuclei. Triaxial rotor plus particle model calculations indicate the ground state bands originate from ν(d5/2 + g7/2) quasiparticle configurations and the negative parity bands are from νh11/2 orbital.

  11. Oblate deformation in neutron-rich Ag,119118

    NASA Astrophysics Data System (ADS)

    Wang, E. H.; Hamilton, J. H.; Ramayya, A. V.; Liu, Y. X.; Li, H. J.; Dai, A. C.; Liang, W. Y.; Xu, F. R.; Hwang, J. K.; Liu, S. H.; Brewer, N. T.; Luo, Y. X.; Rasmussen, J. O.; Sun, Y.; Zhu, S. J.; Ter-Akopian, G. M.; Oganessian, Yu. Ts.

    2017-06-01

    High-spin-level schemes of Ag,119118 are established for the first time by analyzing the high statistics γ -γ -γ and γ -γ -γ -γ coincidence data from the spontaneous fission of 252Cf at Gammasphere. Two bands with 12 new levels in 118Ag and three bands with 14 new levels in 119Ag have been identified. A total Routhian surface calculation and projected shell model calculation have been performed to understand the behavior of these two nuclei. The calculations indicate oblate shape in Ag,119118.

  12. Reinvestigation of s=+/- i octupole bands in neutron-rich 141Xe

    NASA Astrophysics Data System (ADS)

    Huang, Y.; Zhu, S. J.; Hamilton, J. H.; Chen, Y. J.; Wang, E. H.; Ramayya, A. V.; Xiao, Z. G.; Li, H. J.; Luo, Y. X.; Rasmussen, J. O.; Ter-Akopian, G. M.; Oganessian, Yu Ts

    2017-09-01

    High-spin level structures in neutron-rich 141Xe nucleus have been reinvestigated by measuring the triple fold and four-fold γ coincidence data obtained in the spontaneous fission of 252Cf. Several new levels and transitions are identified. The previously proposed s=+/- i octupole bands have been significatively updated and expanded. The systematic characteristics of the octupole deformation and octupole correlations are discussed. Reflection asymmetric shell model calculations for the s=+/- i octupole bands of 141Xe are in good agreement with the experimental data.

  13. New excitations in 142Ba and 144Ce: Evolution of γ bands in the N =86 isotones

    NASA Astrophysics Data System (ADS)

    Naïdja, H.; Nowacki, F.; Bounthong, B.; Czerwiński, M.; RzÄ ca-Urban, T.; Rogiński, T.; Urban, W.; Wiśniewski, J.; Sieja, K.; Smith, A. G.; Smith, J. F.; Simpson, G. S.; Ahmad, I.; Greene, J. P.

    2017-06-01

    New excited states in 142Ba and 144Ce are investigated by means of prompt γ -ray spectroscopy of the radiation following spontaneous fission of 252Cf. Measurements of angular correlations and the observed branchings allowed the assignment of spins and parities with confidence. The new measurements are reinforced by shell-model calculations where energy levels, electric transitions, and magnetic moments are consistent with experimental data. The presence of collectivity in the N =86 isotones is confirmed by clear signatures of soft triaxial γ bands in both nuclei.

  14. Extended optical model for fission

    DOE PAGES

    Sin, M.; Capote, R.; Herman, M. W.; ...

    2016-03-07

    A comprehensive formalism to calculate fission cross sections based on the extension of the optical model for fission is presented. It can be used for description of nuclear reactions on actinides featuring multi-humped fission barriers with partial absorption in the wells and direct transmission through discrete and continuum fission channels. The formalism describes the gross fluctuations observed in the fission probability due to vibrational resonances, and can be easily implemented in existing statistical reaction model codes. The extended optical model for fission is applied for neutron induced fission cross-section calculations on 234,235,238U and 239Pu targets. A triple-humped fission barrier ismore » used for 234,235U(n,f), while a double-humped fission barrier is used for 238U(n,f) and 239Pu(n,f) reactions as predicted by theoretical barrier calculations. The impact of partial damping of class-II/III states, and of direct transmission through discrete and continuum fission channels, is shown to be critical for a proper description of the measured fission cross sections for 234,235,238U(n,f) reactions. The 239Pu(n,f) reaction can be calculated in the complete damping approximation. Calculated cross sections for 235,238U(n,f) and 239Pu(n,f) reactions agree within 3% with the corresponding cross sections derived within the Neutron Standards least-squares fit of available experimental data. Lastly, the extended optical model for fission can be used for both theoretical fission studies and nuclear data evaluation.« less

  15. Extended optical model for fission

    SciTech Connect

    Sin, M.; Capote, R.; Herman, M. W.; Trkov, A.

    2016-03-07

    A comprehensive formalism to calculate fission cross sections based on the extension of the optical model for fission is presented. It can be used for description of nuclear reactions on actinides featuring multi-humped fission barriers with partial absorption in the wells and direct transmission through discrete and continuum fission channels. The formalism describes the gross fluctuations observed in the fission probability due to vibrational resonances, and can be easily implemented in existing statistical reaction model codes. The extended optical model for fission is applied for neutron induced fission cross-section calculations on 234,235,238U and 239Pu targets. A triple-humped fission barrier is used for 234,235U(n,f), while a double-humped fission barrier is used for 238U(n,f) and 239Pu(n,f) reactions as predicted by theoretical barrier calculations. The impact of partial damping of class-II/III states, and of direct transmission through discrete and continuum fission channels, is shown to be critical for a proper description of the measured fission cross sections for 234,235,238U(n,f) reactions. The 239Pu(n,f) reaction can be calculated in the complete damping approximation. Calculated cross sections for 235,238U(n,f) and 239Pu(n,f) reactions agree within 3% with the corresponding cross sections derived within the Neutron Standards least-squares fit of available experimental data. Lastly, the extended optical model for fission can be used for both theoretical fission studies and nuclear data evaluation.

  16. Extended optical model for fission

    NASA Astrophysics Data System (ADS)

    Sin, M.; Capote, R.; Herman, M. W.; Trkov, A.

    2016-03-01

    A comprehensive formalism to calculate fission cross sections based on the extension of the optical model for fission is presented. It can be used for description of nuclear reactions on actinides featuring multi-humped fission barriers with partial absorption in the wells and direct transmission through discrete and continuum fission channels. The formalism describes the gross fluctuations observed in the fission probability due to vibrational resonances, and can be easily implemented in existing statistical reaction model codes. The extended optical model for fission is applied for neutron induced fission cross-section calculations on 234,235,238U and 239Pu targets. A triple-humped fission barrier is used for U,235234(n ,f ) , while a double-humped fission barrier is used for 238U(n ,f ) and 239Pu(n ,f ) reactions as predicted by theoretical barrier calculations. The impact of partial damping of class-II/III states, and of direct transmission through discrete and continuum fission channels, is shown to be critical for a proper description of the measured fission cross sections for 234,235,238U(n ,f ) reactions. The 239Pu(n ,f ) reaction can be calculated in the complete damping approximation. Calculated cross sections for U,238235(n ,f ) and 239Pu(n ,f ) reactions agree within 3% with the corresponding cross sections derived within the Neutron Standards least-squares fit of available experimental data. The extended optical model for fission can be used for both theoretical fission studies and nuclear data evaluation.

  17. Fission-induced plasmas

    NASA Technical Reports Server (NTRS)

    Harries, W. L.; Shiu, Y. J.

    1979-01-01

    The possibility of creating a plasma from fission fragments, and to utilize the energy of the particles to create population inversion that would lead to laser action is investigated. An investigation was made of various laser materials which could be used for nuclear-pumped lasing. The most likely candidate for a fissioning material in the gaseous form is uranium hexafluoride - UF6, and experiments were performed to investigate materials that would be compatible with it. One of the central problems in understanding a fission-induced plasma is to obtain a model of the electron behavior, and some preliminary calculations are presented. In particular, the rates of various processes are discussed. A simple intuitive model of the electron energy distribution function is also shown. The results were useful for considering a mathematical model of a nuclear-pumped laser. Next a theoretical model of a (3)He-Ar nuclear-pumped laser is presented. The theory showed good qualitative agreement with the experimental results.

  18. Fission yield measurements at IGISOL

    NASA Astrophysics Data System (ADS)

    Lantz, M.; Al-Adili, A.; Gorelov, D.; Jokinen, A.; Kolhinen, V. S.; Mattera, A.; Moore, I.; Penttilä, H.; Pomp, S.; Prokofiev, A. V.; Rakopoulos, V.; Rinta-Antila, S.; Simutkin, V.; Solders, A.

    2016-06-01

    The fission product yields are an important characteristic of the fission process. In fundamental physics, knowledge of the yield distributions is needed to better understand the fission process. For nuclear energy applications good knowledge of neutroninduced fission-product yields is important for the safe and efficient operation of nuclear power plants. With the Ion Guide Isotope Separator On-Line (IGISOL) technique, products of nuclear reactions are stopped in a buffer gas and then extracted and separated by mass. Thanks to the high resolving power of the JYFLTRAP Penning trap, at University of Jyväskylä, fission products can be isobarically separated, making it possible to measure relative independent fission yields. In some cases it is even possible to resolve isomeric states from the ground state, permitting measurements of isomeric yield ratios. So far the reactions U(p,f) and Th(p,f) have been studied using the IGISOL-JYFLTRAP facility. Recently, a neutron converter target has been developed utilizing the Be(p,xn) reaction. We here present the IGISOL-technique for fission yield measurements and some of the results from the measurements on proton induced fission. We also present the development of the neutron converter target, the characterization of the neutron field and the first tests with neutron-induced fission.

  19. Kinetic energy deficit in the symmetric fission of /sup 259/Md. [Light particle emission in /sup 256/Fm fission

    SciTech Connect

    Hulet, E.K.; Wild, J.F.; Lougheed, R.W.; Baisden, P.A.; Dougan, R.J.; Mustafa, M.G.

    1980-10-01

    The fragment energies of about 725 coincidence events have now been observed in the spontaneous fission (SF) decay of 105-min /sup 259/Md since its discovery in 1977. The fission of /sup 259/Md is characterized by a symmetric mass distribution, similar to those of /sup 258/Fm and /sup 259/Fm, but with a broad total kinetic energy (anti TKE) distribution which peaks at about 195 MeV, in contrast to those of /sup 258/Fm and /sup 259/Fm, for which the anti TKE is about 240 MeV. This kinetic energy deficit, approx. 40 MeV, has been postulated to be due to the emission of hydrogen-like particles by /sup 259/Md at the scission point in a large fraction of the fissions, leaving the residual fissioning nucleus with 100 protons. The residual nucleus would then be able to divide into two ultrastable tin-like fission fragments, but with less kinetic energy than that observed in the SF of /sup 258/Fm and /sup 259/Fm, because of binding-energy losses and a reduction in the Coulomb repulsion of the major fragments. To test this hypothesis, counter-telescope experiments aimed at detecting and identifying these light particles were performed. In 439 SF events 3 + 3 protons of the appropriate energy were observed, too few to account for the kinetic energy deficit in the fission of /sup 259/Md. There seems to be no explanation for this problem within the framework of current fission theory. These results are discussed along with preliminary measurements of light-particle emission in the SF of /sup 256/Fm. 5 figures.

  20. Shape trends and triaxiality in neutron-rich odd-mass Y and Nbisotopes

    SciTech Connect

    Luo, Y.X.; Rasmussen, J.O.; Gelberg, A.; Stefanescu, I.; Hamilton, J.H.; Ramayya, A.V.; Hwang, J.K.; Zhu, S.J.; Gore, P.M.; Fong,D.; Jones, E.F.; Wu, S.C.; Lee, I.Y.; Ginter, T.N.; Ma, W.C.; Ter-Akopian, G.M.; Daniel, A.V.; Stoyer, M.A.; Donangelo, R.

    2004-09-28

    New level schemes of Y and Nb isotopes are proposed based on measurements of prompt gamma rays from 252Cf fission at Gammasphere. Shape trends regarding triaxiality and quadrupole deformations are studied.

  1. Measurement of Fission Product Yields from Fast-Neutron Fission

    NASA Astrophysics Data System (ADS)

    Arnold, C. W.; Bond, E. M.; Bredeweg, T. A.; Fowler, M. M.; Moody, W. A.; Rusev, G.; Vieira, D. J.; Wilhelmy, J. B.; Becker, J. A.; Henderson, R.; Kenneally, J.; Macri, R.; McNabb, D.; Ryan, C.; Sheets, S.; Stoyer, M. A.; Tonchev, A. P.; Bhatia, C.; Bhike, M.; Fallin, B.; Gooden, M. E.; Howell, C. R.; Kelley, J. H.; Tornow, W.

    2014-09-01

    One of the aims of the Stockpile Stewardship Program is a reduction of the uncertainties on fission data used for analyzing nuclear test data [1,2]. Fission products such as 147Nd are convenient for determining fission yields because of their relatively high yield per fission (about 2%) and long half-life (10.98 days). A scientific program for measuring fission product yields from 235U,238U and 239Pu targets as a function of bombarding neutron energy (0.1 to 15 MeV) is currently underway using monoenergetic neutron beams produced at the 10 MV Tandem Accelerator at TUNL. Dual-fission chambers are used to determine the rate of fission in targets during activation. Activated targets are counted in highly shielded HPGe detectors over a period of several weeks to identify decaying fission products. To date, data have been collected at neutron bombarding energies 4.6, 9.0, 14.5 and 14.8 MeV. Experimental methods and data reduction techniques are discussed, and some preliminary results are presented.

  2. Ternary fission of nuclei into comparable fragments

    SciTech Connect

    Karpeshin, F. F.

    2015-07-15

    The problem of nuclear fission into three comparable fragments is considered. A mechanism of true ternary fission is proposed. In contrast to sequential fission, where the three fragments arise upon two sequential events of binary fission, the mechanism in question relies on a scenario that originally involves fission into three fragments. This mechanism is driven by a hexadecapole deformation of the fissioning nucleus, in contrast to binary fission associated with quadrupole vibrations of the nuclear surface. The fragment-mass ratios are estimated. The dynamics of formation of collinear fragments and their subsequent motion in opposite directions is traced. The calculated probability of true ternary fission complies with observed values.

  3. TREATMENT OF FISSION PRODUCT WASTE

    DOEpatents

    Huff, J.B.

    1959-07-28

    A pyrogenic method of separating nuclear reactor waste solutions containing aluminum and fission products as buring petroleum coke in an underground retort, collecting the easily volatile gases resulting as the first fraction, he uminum chloride as the second fraction, permitting the coke bed to cool and ll contain all the longest lived radioactive fission products in greatly reduced volume.

  4. Membrane biology: fission behind BARs.

    PubMed

    Haucke, Volker

    2012-06-05

    Membrane bending is accomplished in part by amphipathic helix insertion into the bilayer and the assembly of BAR domain scaffolds preparing the membrane for fission. Two recent studies highlight the roles of amphipathic helices and BAR scaffolds in membrane fission and establish the structural basis of membrane bending by the N-BAR protein endophilin.

  5. Fission fragment driven neutron source

    DOEpatents

    Miller, Lowell G.; Young, Robert C.; Brugger, Robert M.

    1976-01-01

    Fissionable uranium formed into a foil is bombarded with thermal neutrons in the presence of deuterium-tritium gas. The resulting fission fragments impart energy to accelerate deuterium and tritium particles which in turn provide approximately 14 MeV neutrons by the reactions t(d,n).sup.4 He and d(t,n).sup.4 He.

  6. Nuclear Fission Research at IRMM

    SciTech Connect

    Hambsch, Franz-Josef

    2005-05-24

    The Institute for Reference Materials and Measurements (IRMM) will celebrate its 45th anniversary in 2005. With its 150-MeV Geel Electron Linear Accelerator (GELINA) and 7-MV Van de Graaff accelerator as multi-purpose neutron sources, it served the nuclear physics community for this period.The research in the field of nuclear fission was focused in recent years on both the measurement and calculation of fission cross sections, and the measurement of fission fragment properties.Fission cross sections were determined for 233Pa and 234U; the fission process was studied in the resolved resonance region of 239Pu(n,f) and for 251Cf(nth,f). These measurements derive their interest from accelerator driven systems, the thorium fuel cycle, high temperature reactors, safety issues of current reactors, and basic physics. The measurements are supported by several modeling efforts that aim at improving model codes and nuclear data evaluation.

  7. Fifty years with nuclear fission

    SciTech Connect

    Behrens, J.W.; Carlson, A.D. )

    1989-01-01

    The news of the discovery of nucler fission, by Otto Hahn and Fritz Strassmann in Germany, was brought to the United States by Niels Bohr in January 1939. Since its discovery, the United States, and the world for that matter, has never been the same. It therefore seemed appropriate to acknowledge the fiftieth anniversary of its discovery by holding a topical meeting entitled, Fifty years with nuclear fission,'' in the United States during the year 1989. The objective of the meeting was to bring together pioneers of the nuclear industry and other scientists and engineers to report on reminiscences of the past and on the more recent developments in fission science and technology. The conference highlighted the early pioneers of the nuclear industry by dedicating a full day (April 26), consisting of two plenary sessions, at the National Academy of Sciences (NAS) in Washington, DC. More recent developments in fission science and technology in addition to historical reflections were topics for two full days of sessions (April 27 and 28) at the main sites of the NIST in Gaithersburg, Maryland. The wide range of topics covered by Volume 2 of this topical meeting included plenary invited, and contributed sessions entitled, Nuclear fission -- a prospective; reactors II; fission science II; medical and industrial applications by by-products; reactors and safeguards; general research, instrumentation, and by-products; and fission data, astrophysics, and space applications. The individual papers have been cataloged separately.

  8. Spallation-induced fission reactions

    NASA Astrophysics Data System (ADS)

    Benlliure, J.; Rodríguez-Sánchez, J. L.

    2017-03-01

    During the last decade spallation-induced fission reactions have received particular attention because of their impact in the design of spallation-neutron sources or radioactive beam facilities, but also in the understanding of the fission process at high excitation energy. In this paper, we review the main progress brought by modern experimental techniques, in particular those based in the inverse kinematic, as well as the achievements in modelling these reactions. We will also address future possibilities for improving the investigation of fission dynamics.

  9. Fission at intermediate nucleon energies

    NASA Astrophysics Data System (ADS)

    Lo Meo, S.; Mancusi, D.; Massimi, C.; Vannini, G.; Ventura, A.

    2014-07-01

    In the present work Monte Carlo calculations of fission of actinides and pre- actinides induced by protons and neutrons in the energy range from 100 MeV to 1 GeV are carried out by means of a recent version of the Liège Intranuclear Cascade Model, INCL++, coupled with different evaporation-fission codes, in particular GEMINI++ and ABLA07. Fission model parameters are adjusted on experimental (p, f) cross sections and used to predict (n, f) cross sections, in order to provide a theoretical support to the campaign of neutron cross section measurements at the n_TOF facility at CERN.

  10. The binary fission origin of the moon

    NASA Technical Reports Server (NTRS)

    Binder, Alan B.

    1986-01-01

    The major arguments for and against the binary fission model of lunar origin are reviewed. Unresolved problems include: (1) how the protoearth acquired sufficient angular velocity to fission, and (2) how the earth-moon system lost its excess angular momentum after fission. Despite these uncertainties, the compositional similarities between the earth's mantle and the bulk moon suggest that the fission model is worth considering. The proposed sequence of events in the formation of the moon by binary fission is given.

  11. Fission of rotating fermium isotopes

    NASA Astrophysics Data System (ADS)

    Baran, A.; Staszczak, A.

    2014-05-01

    In this paper we discuss the process of fission of even fermium isotopes, on the basis of their rotational states. The nuclear intrinsic vorticity and its coupling to the global rotation of the nucleus are used to simulate the interaction between the rotational motion and the pairing field, and lead to pairing quenching in the case of higher angular momentum states. The rotation leads to a decreasing of the fission barrier heights. The ingredients of the model—ground state fission barriers, pairing correlation energies and the cranking moments of inertia—are obtained within the self-consistent Hartree-Fock-Bogoliubov framework using the Skyrme \\text{Sk}{{\\text{M}}^{*}} energy density functional. Fission barriers and half-lives are estimated for spins I up to I = 16ℏ.

  12. Ternary Fission of CF Isotopes

    NASA Astrophysics Data System (ADS)

    Vermote, S.; Wagemans, C.; Serot, O.; Soldner, T.; Geltenbort, P.; Almahamid, I.; Lukens, W.; Floyd, J.

    2008-04-01

    During the last years, different Cm and Cf isotopes have been studied by our research group in the frame of a systematic investigation of gas emission characteristics in ternary fission. In this paper we report on the energy distribution and the emission probability of 3H, 4He and 6He particles emitted in neutron induced ternary fission of 249Cf and 251Cf. Both measurements were performed at the high flux reactor of the Institute Laue-Langevin (Grenoble, France), using suited ΔE-E telescope detectors, consisting of well-calibrated silicon surface barrier detectors. In this way, the available database can be expanded with new results for Z=98 isotopes, for which the information on neutron induced ternary fission is almost nonexistent. These measurements are important for the systematic investigation of gas emission characteristics in ternary fission.

  13. Simulated fissioning of uranium and testing of the fission-track dating method

    USGS Publications Warehouse

    McGee, V.E.; Johnson, N.M.; Naeser, C.W.

    1985-01-01

    A computer program (FTD-SIM) faithfully simulates the fissioning of 238U with time and 235U with neutron dose. The simulation is based on first principles of physics where the fissioning of 238U with the flux of time is described by Ns = ??f 238Ut and the fissioning of 235U with the fluence of neutrons is described by Ni = ??235U??. The Poisson law is used to set the stochastic variation of fissioning within the uranium population. The life history of a given crystal can thus be traced under an infinite variety of age and irradiation conditions. A single dating attempt or up to 500 dating attempts on a given crystal population can be simulated by specifying the age of the crystal population, the size and variation in the areas to be counted, the amount and distribution of uranium, the neutron dose to be used and its variation, and the desired ratio of 238U to 235U. A variety of probability distributions can be applied to uranium and counting-area. The Price and Walker age equation is used to estimate age. The output of FTD-SIM includes the tabulated results of each individual dating attempt (sample) on demand and/or the summary statistics and histograms for multiple dating attempts (samples) including the sampling age. An analysis of the results from FTD-SIM shows that: (1) The external detector method is intrinsically more precise than the population method. (2) For the external detector method a correlation between spontaneous track count, Ns, and induced track count, Ni, results when the population of grains has a stochastic uranium content and/or when the counting areas between grains are stochastic. For the population method no correlation can exist. (3) In the external detector method the sampling distribution of age is independent of the number of grains counted. In the population method the sampling distribution of age is highly dependent on the number of grains counted. (4) Grains with zero-track counts, either in Ns or Ni, are in integral part of

  14. Rapid disappearance of shell effects in the fission of transfermium nuclei

    SciTech Connect

    Hulet, E.K.

    1983-01-01

    In the last fifteen years we have learned that nuclear shells have a very broad and pervasive impact on the fission process. In the first few decades after the discovery of nuclear fission, the nucleus was treated as a drop of liquid with smoothly varying attractive and repulsive forces. Although this model still forms the underlying basis for fission, we also observe large effects from the superimposition of shell corrections derived from coupling the quantum states of individual nucleons. The consequences of single-particle coupling on the fission process can be striking and may often overshadow that originating from the intrinsic liquid-drop component. Here, we point out several major features attributable to shell effects in the spontaneous fission (SF) of the lighter actinides, the sudden transition to symmetric fission in the fermium isotopes, and finally new experimental information indicating another transition in the SF of transfermium nuclides due to the disappearance of shell perturbations. In each transition, the abruptness is surprising, and for the moment, such rapid changes in fission behavior lack a theoretical rationale.

  15. Advanced Space Fission Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Houts, Michael G.; Borowski, Stanley K.

    2010-01-01

    Fission has been considered for in-space propulsion since the 1940s. Nuclear Thermal Propulsion (NTP) systems underwent extensive development from 1955-1973, completing 20 full power ground tests and achieving specific impulses nearly twice that of the best chemical propulsion systems. Space fission power systems (which may eventually enable Nuclear Electric Propulsion) have been flown in space by both the United States and the Former Soviet Union. Fission is the most developed and understood of the nuclear propulsion options (e.g. fission, fusion, antimatter, etc.), and fission has enjoyed tremendous terrestrial success for nearly 7 decades. Current space nuclear research and technology efforts are focused on devising and developing first generation systems that are safe, reliable and affordable. For propulsion, the focus is on nuclear thermal rockets that build on technologies and systems developed and tested under the Rover/NERVA and related programs from the Apollo era. NTP Affordability is achieved through use of previously developed fuels and materials, modern analytical techniques and test strategies, and development of a small engine for ground and flight technology demonstration. Initial NTP systems will be capable of achieving an Isp of 900 s at a relatively high thrust-to-weight ratio. The development and use of first generation space fission power and propulsion systems will provide new, game changing capabilities for NASA. In addition, development and use of these systems will provide the foundation for developing extremely advanced power and propulsion systems capable of routinely and affordably accessing any point in the solar system. The energy density of fissile fuel (8 x 10(exp 13) Joules/kg) is more than adequate for enabling extensive exploration and utilization of the solar system. For space fission propulsion systems, the key is converting the virtually unlimited energy of fission into thrust at the desired specific impulse and thrust

  16. Energy dependence of the neutron multiplicity P/sub nu/ in fast neutron induced fission of /sup 235,238/U and /sup 239/Pu

    SciTech Connect

    Zucker, M.S.; Holden, N.E.

    1986-01-01

    Certain applications require knowledge of the higher moments of the neutron multiplicity probability. It can be shown that the second factorial moment is proportional to the fission rate in the sample, and that the third factorial moment can be of use in disentangling spontaneous fission from induced fission. Using a source of unpublished work in which neutron multiplicities were derived for the fast neutron induced fission of U-235, U-238, and Pu-239, the multiplicity probability has been calculated as a function of neutron energy for the energy range 0 to 10 MeV. (DWL)

  17. The Microscopic Theory of Fission

    SciTech Connect

    Younes, W; Gogny, D

    2009-06-09

    Fission-fragment properties have been calculated for thermal neutron-induced fission on a {sup 239}Pu target, using constrained Hartree-Fock-Bogoliubov calculations with a finite-range effective interaction. A quantitative criterion based on the interaction energy between the nascent fragments is introduced to define the scission configurations. The validity of this criterion is benchmarked against experimental measurements of the kinetic energies and of multiplicities of neutrons emitted by the fragments.

  18. Mechanism of Cytokinetic Contractile Ring Constriction in Fission Yeast

    PubMed Central

    Stachowiak, Matthew R.; Laplante, Caroline; Chin, Harvey F.; Guirao, Boris; Karatekin, Erdem; Pollard, Thomas D.; O’Shaughnessy, Ben

    2014-01-01

    SUMMARY Cytokinesis involves constriction of a contractile actomyosin ring. The mechanisms generating ring tension and setting the constriction rate remain unknown, since the organization of the ring is poorly characterized, its tension was rarely measured, and constriction is coupled to other processes. To isolate ring mechanisms we studied fission yeast protoplasts, where constriction occurs without the cell wall. Exploiting the absence of cell wall and actin cortex, we measured ring tension and imaged ring organization, which was dynamic and disordered. Computer simulations based on the amounts and biochemical properties of the key proteins showed that they spontaneously self-organize into a tension-generating bundle. Together with rapid component turnover, the self-organization mechanism continuously reassembles and remodels the constricting ring. Ring constriction depended on cell shape, revealing that the ring operates close to conditions of isometric tension. Thus, the fission yeast ring sets its own tension, but other processes set the constriction rate. PMID:24914559

  19. RAPID QUANTITATION OF URANIUM FROM MIXED FISSION PRODUCT SAMPLES

    SciTech Connect

    Haney, Morgan M.; Seiner, Brienne N.; Finn, Erin C.; Friese, Judah I.

    2016-03-09

    Chemical similarities between U(VI) and Mo(VI) create challenges for separation and quantification of uranium from a mixed fission product sample. The purpose of this work was to demonstrate the feasibility of using Eichrom’s® UTEVA resin in addition to a tellurium spontaneous deposition to improve the quantitation of 235U using gamma spectroscopy. The optimized method demonstrated a consistent chemical yield of 74 ± 3 % for uranium. This procedure was evaluated using 1.41x1012 fissions produced from an irradiated HEU sample. The uranium was isotopically yielded by HPGe, and the minimum detectable activity (MDA) determined from the gamma spectra. The MDA for 235U, 237U, and 238U was reduced by a factor of two. The chemical isolation of uranium was successfully achieved in less than four hours, with a separation factor of 1.41x105 from molybdenum.

  20. A compact gas-filled avalanche counter for DANCE

    DOE PAGES

    Wu, C. Y.; Chyzh, A.; Kwan, E.; ...

    2012-08-04

    A compact gas-filled avalanche counter for the detection of fission fragments was developed for a highly segmented 4π γ-ray calorimeter, namely the Detector for Advanced Neutron Capture Experiments located at the Lujan Center of the Los Alamos Neutron Science Center. It has been used successfully for experiments with 235U, 238Pu,239Pu, and 241Pu isotopes to provide a unique signature to differentiate the fission from the competing neutron-capture reaction channel. We also used it to study the spontaneous fission in 252Cf. The design and performance of this avalanche counter for targets with extreme α-decay rate up to ~2.4×108/s are described.

  1. A compact gas-filled avalanche counter for DANCE

    SciTech Connect

    Wu, C. Y.; Chyzh, A.; Kwan, E.; Henderson, R. A.; Gostic, J. M.; Carter, D.; Bredeweg, T. A.; Couture, A.; Jandel, M.; Ullmann, J. L.

    2012-08-04

    A compact gas-filled avalanche counter for the detection of fission fragments was developed for a highly segmented 4π γ-ray calorimeter, namely the Detector for Advanced Neutron Capture Experiments located at the Lujan Center of the Los Alamos Neutron Science Center. It has been used successfully for experiments with 235U, 238Pu,239Pu, and 241Pu isotopes to provide a unique signature to differentiate the fission from the competing neutron-capture reaction channel. We also used it to study the spontaneous fission in 252Cf. The design and performance of this avalanche counter for targets with extreme α-decay rate up to ~2.4×108/s are described.

  2. Neutron Emission in Fission And Quasi-Fission of Hs

    SciTech Connect

    Itkis, I. M.; Itkis, M. G.; Knyazheva, G. N.; Kozulin, E. M.; Krupa, L.; Hanappe, F.; Dorvaux, O.; Stuttge, L.

    2010-04-30

    Mass and energy distributions of fission-like fragments obtained in the reactions {sup 26}Mg+{sup 248}Cm, {sup 36}S+{sup 238}U and {sup 58}Fe+{sup 208}Pb leading to the formation of {sup 266,274}Hs are reported. From the analysis of TKE distributions for symmetric fragment it was found that at energies below the Coulomb barrier the bimodal fission of {sup 274}Hs, formed in the reaction {sup 26}Mg+{sup 248}Cm, is observed, while in the reaction {sup 36}S+{sup 238}U at these energies the main part of the symmetric fragments arises from the quasi-fission process. At energies above the Coulomb barrier the fusion-fission is a main process leading to the formation of symmetric fragment for the both reactions. In the case of {sup 58}Fe+{sup 208}Pb reaction the quasi-fission process is the main reaction mechanism at all measured energies. The pre- and post-scission neutron multiplicities as a function of the fragment mass have been obtained for all studied reactions.

  3. Passive NMIS Measurements to Estimate the Shape of Plutonium Assemblies

    SciTech Connect

    Mattingly, J.K.; Chiang, L.G.; March-Leuba, J.A.; Mihalczo, J.T.; Mullens, J.A.; Perez, R.B.; Valentine, T.E.

    1999-07-22

    A new technique to estimate the shape attribute of plutonium assemblies using the Nuclear Materials Identification System (NMIS) is described. The proposed method possesses a number of advantages. It is passive no external radiation source is required to estimate the shape of plutonium assemblies. Instead, inherent gamma and neutron emissions from spontaneous fission of {sup 240}Pu and subsequent induced fission of {sup 239}Pu are detected to estimate the shape attribute. The technique is also stationary: shape is estimated without scanning the assembly by moving the detectors relative to the assembly. The proposed method measures third order correlations between triplets of gamma/neutron-sensitive detectors. The real coincidence of a pair of gammas is used as a ''trigger'' to approximately identify the time of a spontaneous or induced fission event. The spatial location of this fission event is inferred from the real coincidence of a subsequent neutron with the initial pair of correlated gammas by using the neutron's time-of-flight (approximately the delay between the gamma pair and the neutron) and the fission neutron spectra of {sup 240}Pu and {sup 239}Pu. The spatial distribution of fission sites and hence the approximate shape of the plutonium assembly is thereby inferred by measuring the distribution of a large number of these correlated triplets. Proof-of-principle measurements were performed using {sup 252}Cf as a surrogate for {sup 240}Pu to demonstrate that the technique is feasible. For the simple shapes approximated with {sup 252}Cf sources, the measurements showed that the proposed method is capable of correctly identifying the shape and accurately estimating its size to within a few percent of actual.

  4. Energy production using fission fragment rockets

    SciTech Connect

    Chapline, G.; Matsuda, Y.

    1991-08-01

    Fission fragment rockets are nuclear reactors with a core consisting of thin fibers in a vacuum, and which use magnetic fields to extract the fission fragments from the reactor core. As an alternative to ordinary nuclear reactors, fission fragment rockets would have the following advantages: Approximately twice as efficient if one can directly convert the fission fragment energy into electricity; by reducing the buildup of a fission fragment inventory in the reactor one could avoid a Chernobyl type disaster; and collecting the fission fragments outside the reactor could simplify the waste disposal problem. 6 refs., 4 figs., 2 tabs.

  5. The Response of an Albedo Neutron Dosimeter to Moderated AmBe and 252(Cf) Neutron Sources.

    DTIC Science & Technology

    2014-09-26

    20814 G. K. RIEL, K. Woo, J. C . Y. WANG, AND N . E. SCOFIELD Naval Surjace Weapons Center, White Oak Silver Spring, MD 20910 July 23, 1985 NAVAL RESEARCH...LA80RATORY Approved for public release-, distribution unlimited. -z Z-VP 9 S C .- ,1CASS- c CAflON OF TH!S PAGE- REPORT DOCUMENTATION PAGE * ~ ! R...GROUP -~Persunnel radiation monitoring, Neutron dosimetry, .2 ___________________________Radiation dosimetry / Albedo neutron dosimetry N ~~Neutrons

  6. On the effect of an error in a standard D2O-moderated 252Cf energy spectrum.

    PubMed

    Cummings, F M

    2009-12-01

    There appears to be an error in the neutron fluence for neutrons with energies between 9 and 10 MeV for the tabulated D2O-moderated Cf source in ISO 8529-1. If the referenced spectrum is used as tabulated, the error contributes a total error to neutron dose values from this source of approximately 3%.

  7. Calculation of Ambient (H*(10)) and Personal (Hp(10)) Dose Equivalent from a 252Cf Neutron Source

    SciTech Connect

    Traub, Richard J.

    2010-03-26

    The purpose of this calculation is to calculate the neutron dose factors for the Sr-Cf-3000 neutron source that is located in the 318 low scatter room (LSR). The dose factors were based on the dose conversion factors published in ICRP-21 Appendix 6, and the Ambient dose equivalent (H*(10)) and Personal dose equivalent (Hp(10)) dose factors published in ICRP Publication 74.

  8. Physics of enriched uranyl fluoride deposit characterizations using active neutron and gamma interrogation techniques with {sup 252}Cf

    SciTech Connect

    Wyatt, M.S.; Uckan, T.; Mihalczo, J.T.; Valentine, T.E.; Hannon, T.F.

    1998-08-01

    A method was developed and successfully applied to characterize large uranyl fluoride (UO{sub 2}F{sub 21}) deposits at the former Oak Ridge Gaseous Diffusion Plant. These deposits were formed by a wet air in-leakage into the UF{sub 6} process gas lines over a period of years. The resulting UO{sub 2}F{sub 2} is hygroscopic, readily absorbing moisture from the air to form hydrates as UO{sub 2}F{sub 2}-nH{sub 2}O. The ratio of hydrogen to uranium, denoted H/U, can vary from 0--16, and has significant nuclear criticality safety impacts for large deposits. In order to properly formulate the required course of action, a non-intrusive characterization of the distribution of the fissile material within the pipe, its total mass, and amount of hydration was needed. The Nuclear Weapons Identification System (NWIS) previously developed at the Oak Ridge Y-12 Plant for identification of uranium weapons components in storage containers was used to successfully characterize the distribution, hydration, and total mass of these deposits.

  9. Fission gas in thoria

    NASA Astrophysics Data System (ADS)

    Kuganathan, Navaratnarajah; Ghosh, Partha S.; Galvin, Conor O. T.; Arya, Ashok K.; Dutta, Bijon K.; Dey, Gautam K.; Grimes, Robin W.

    2017-03-01

    The fission gases Xe and Kr, formed during normal reactor operation, are known to degrade fuel performance, particularly at high burn-up. Using first-principles density functional theory together with a dispersion correction (DFT + D), in ThO2 we calculate the energetics of neutral and charged point defects, the di-vacancy (DV), different neutral tri-vacancies (NTV), the charged tetravacancy (CTV) defect cluster geometries and their interaction with Xe and Kr. The most favourable incorporation point defect site for Xe or Kr in defective ThO2 is the fully charged thorium vacancy. The lowest energy NTV in larger supercells of ThO2 is NTV3, however, a single Xe atom is most stable when accommodated within a NTV1. The di-vacancy (DV) is a significantly less favoured incorporation site than the NTV1 but the CTV offers about the same incorporation energy. Incorporation of a second gas atom in a NTV is a high energy process and more unfavourable than accommodation within an existing Th vacancy. The bi-NTV (BNTV) cluster geometry studied will accommodate one or two gas atoms with low incorporation energies but the addition of a third gas atom incurs a high energy penalty. The tri-NTV cluster (TNTV) forms a larger space which accommodates three gas atoms but again there is a penalty to accommodate a fourth gas atom. By considering the energy to form the defect sites, solution energies were generated showing that in ThO2-x the most favourable solution equilibrium site is the NTV1 while in ThO2 it is the DV.

  10. Compact fission counter for DANCE

    SciTech Connect

    Wu, C Y; Chyzh, A; Kwan, E; Henderson, R; Gostic, J; Carter, D; Bredeweg, T; Couture, A; Jandel, M; Ullmann, J

    2010-11-06

    The Detector for Advanced Neutron Capture Experiments (DANCE) consists of 160 BF{sub 2} crystals with equal solid-angle coverage. DANCE is a 4{pi} {gamma}-ray calorimeter and designed to study the neutron-capture reactions on small quantities of radioactive and rare stable nuclei. These reactions are important for the radiochemistry applications and modeling the element production in stars. The recognition of capture event is made by the summed {gamma}-ray energy which is equivalent of the reaction Q-value and unique for a given capture reaction. For a selective group of actinides, where the neutron-induced fission reaction competes favorably with the neutron capture reaction, additional signature is needed to distinguish between fission and capture {gamma} rays for the DANCE measurement. This can be accomplished by introducing a detector system to tag fission fragments and thus establish a unique signature for the fission event. Once this system is implemented, one has the opportunity to study not only the capture but also fission reactions. A parallel-plate avalanche counter (PPAC) has many advantages for the detection of heavy charged particles such as fission fragments. These include fast timing, resistance to radiation damage, and tolerance of high counting rate. A PPAC also can be tuned to be insensitive to {alpha} particles, which is important for experiments with {alpha}-emitting actinides. Therefore, a PPAC is an ideal detector for experiments requiring a fast and clean trigger for fission. A PPAC with an ingenious design was fabricated in 2006 by integrating amplifiers into the target assembly. However, this counter was proved to be unsuitable for this application because of issues related to the stability of amplifiers and the ability to separate fission fragments from {alpha}'s. Therefore, a new design is needed. A LLNL proposal to develop a new PPAC for DANCE was funded by NA22 in FY09. The design goal is to minimize the mass for the proposed counter

  11. Thorium-uranium fission radiography

    NASA Technical Reports Server (NTRS)

    Haines, E. L.; Weiss, J. R.; Burnett, D. S.; Woolum, D. S.

    1976-01-01

    Results are described for studies designed to develop routine methods for in-situ measurement of the abundance of Th and U on a microscale in heterogeneous samples, especially rocks, using the secondary high-energy neutron flux developed when the 650 MeV proton beam of an accelerator is stopped in a 42 x 42 cm diam Cu cylinder. Irradiations were performed at three different locations in a rabbit tube in the beam stop area, and thick metal foils of Bi, Th, and natural U as well as polished silicate glasses of known U and Th contents were used as targets and were placed in contact with mica which served as a fission track detector. In many cases both bare and Cd-covered detectors were exposed. The exposed mica samples were etched in 48% HF and the fission tracks counted by conventional transmitted light microscopy. Relative fission cross sections are examined, along with absolute Th track production rates, interaction tracks, and a comparison of measured and calculated fission rates. The practicality of fast neutron radiography revealed by experiments to data is discussed primarily for Th/U measurements, and mixtures of other fissionable nuclei are briefly considered.

  12. Thorium-uranium fission radiography

    NASA Technical Reports Server (NTRS)

    Haines, E. L.; Weiss, J. R.; Burnett, D. S.; Woolum, D. S.

    1976-01-01

    Results are described for studies designed to develop routine methods for in-situ measurement of the abundance of Th and U on a microscale in heterogeneous samples, especially rocks, using the secondary high-energy neutron flux developed when the 650 MeV proton beam of an accelerator is stopped in a 42 x 42 cm diam Cu cylinder. Irradiations were performed at three different locations in a rabbit tube in the beam stop area, and thick metal foils of Bi, Th, and natural U as well as polished silicate glasses of known U and Th contents were used as targets and were placed in contact with mica which served as a fission track detector. In many cases both bare and Cd-covered detectors were exposed. The exposed mica samples were etched in 48% HF and the fission tracks counted by conventional transmitted light microscopy. Relative fission cross sections are examined, along with absolute Th track production rates, interaction tracks, and a comparison of measured and calculated fission rates. The practicality of fast neutron radiography revealed by experiments to data is discussed primarily for Th/U measurements, and mixtures of other fissionable nuclei are briefly considered.

  13. Ternary Fission of {sup 249}Cf(n,f) and {sup 250}Cf(SF)

    SciTech Connect

    University of Gent, B-9000 Gent, Belgium; CEA Cadarache, F-13108 Saint-Paul-lez-Durance, France; Institute Laue-Langevin, F-38042 Grenoble, France; EC-JRC Institute for Reference Materials and Measurements, B-2440 Geel, Belgium; Wadsworth Center, New York State Department of Health, Albany NY 12201, USA; Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Vermote, S.; Wagemans, C.; Serot, O.; Soldner, T.; Geltenbort, P.; Gils, J. Van; Almahamid, I.; Tian, G.; Rao, L.

    2011-09-01

    During the last years, several Cm and Cf isotopes have been studied by our research group in the frame of a systematic investigation of gas emission characteristics in ternary fission. Here we report on new results on the energy distribution and the emission probability of {sup 3}H, {sup 4}He and {sup 6}He particles emitted in the spontaneous ternary fission of {sup 250}Cf (E{sub exc} = 0 MeV) and in the neutron induced ternary fission of {sup 249}Cf (E{sub exc} = 6.625 MeV). Both measurements were performed using suited and well-calibrated ΔE-E telescope detectors, at the IRMM (Geel, Belgium) for the spontaneous fission and at the very intense neutron beam PF1b at the Institute Laue-Langevin (Grenoble, France) for the neutron induced fission measurement. In this way, the existing database can be enlarged with new results for Z=98 isotopes, which is important for the systematic investigation. Moreover, the investigation of the 'isotope couple' {sup 249}Cf(n,f) - {sup 250}Cf(SF), together with corresponding data for other isotopes, will yield valuable information on the influence of the excitation energy on the particle emission probabilities.

  14. Unusually low fragment energies in the symmetric fission of /sup 259/Md

    SciTech Connect

    Wild, J.F.; Hulet, E.K.; Lougheed, R.W.; Baisden, P.A.; Landrum, J.H.; Dougan, R.J.; Mustafa, M.G.

    1982-10-01

    The 103-min isotope /sup 259/Md has been identified as the daughter of an electron-capture decay branch of /sup 259/No produced via the /sup 248/Cm(/sup 18/O,..cap alpha..3n) reaction. Chemical separations were used to confirm the identity of /sup 259/Md, which decays by spontaneous fission. The kinetic energies of coincident fission fragments were measured, corresponding to a fragment mass which is highly symmetric, similar to those of /sup 258/Fm and /sup 259/Fm. However, the total kinetic energy distribution for /sup 259/Md is considerably broader (FWHM approx.60 MeV) than those of /sup 258/Fm and /sup 259/Fm, and peaks at 201 MeV, about 35--40 MeV lower in energy. Furthermore, the maximum total Kinetic energy of 215 MeV for mass-symmetric events is about 30 MeV lower than for similar events from the spontaneous fission of /sup 258/Fm and /sup 259/Fm. A hypothesis that this energy difference resulted from the emission of light, hydrogen-like particles at scission in a large fraction of /sup 259/Md spontaneous fission decays was shown to be unfounded. From experiments to observe such particles with counter telescopes, an upper limit of 5% was determined for the fraction of fission events accompanied by light-particle emission. The total kinetic energy deficit at mass symmetry must, therefore, be distributed between internal excitation energy and fragment deformation energy at scission. Although the presence of a large amount of fragment deformation energy seems incompatible with symmetric fission into spherical Sn-like fragments, we prefer this explanation because the low total kinetic energy suggests a lowered Coulomb energy resulting from greater separation of the charge centers of deformed fragments at scission.

  15. PRODUCING ENERGY AND RADIOACTIVE FISSION PRODUCTS

    DOEpatents

    Segre, E.; Kennedy, J.W.; Seaborg, G.T.

    1959-10-13

    This patent broadly discloses the production of plutonium by the neutron bombardment of uranium to produce neptunium which decays to plutonium, and the fissionability of plutonium by neutrons, both fast and thermal, to produce energy and fission products.

  16. Fission Matrix Capability for MCNP Monte Carlo

    NASA Astrophysics Data System (ADS)

    Brown, Forrest; Carney, Sean; Kiedrowski, Brian; Martin, William

    2014-06-01

    We describe recent experience and results from implementing a fission matrix capability into the MCNP Monte Carlo code. The fission matrix can be used to provide estimates of the fundamental mode fission distribution, the dominance ratio, the eigenvalue spectrum, and higher mode forward and adjoint eigenfunctions of the fission neutron source distribution. It can also be used to accelerate the convergence of the power method iterations and to provide basis functions for higher-order perturbation theory. The higher-mode fission sources can be used in MCNP to determine higher-mode forward fluxes and tallies, and work is underway to provide higher-mode adjoint-weighted fluxes and tallies. Past difficulties and limitations of the fission matrix approach are overcome with a new sparse representation of the matrix, permitting much larger and more accurate fission matrix representations. The new fission matrix capabilities provide a significant advance in the state-of-the-art for Monte Carlo criticality calculations.

  17. Computer program FPIP-REV calculates fission product inventory for U-235 fission

    NASA Technical Reports Server (NTRS)

    Brown, W. S.; Call, D. W.

    1967-01-01

    Computer program calculates fission product inventories and source strengths associated with the operation of U-235 fueled nuclear power reactor. It utilizes a fission-product nuclide library of 254 nuclides, and calculates the time dependent behavior of the fission product nuclides formed by fissioning of U-235.

  18. Measurements of the neutron-induced fission cross section of sup 242 Cm and sup 238 Pu by lead slowing down time spectrometer

    SciTech Connect

    Alam, B.

    1987-01-01

    The neutron-induced fission cross section of {sup 242}Cm and {sup 238}Pu have been measured from 0.1 eV to 100 keV energy range using the Rensselaer Polytechnic Institute's Gaerttner Laboratory Electron Linac as a pulsed neutron source and the Rensselaer Intense Neutron Spectrometer (RINS) system to obtain an adequate ratio of the neutron-induced fission signal to that due to spontaneous fission background. A special fission chamber design employing multiple pairs of hemispherical electrodes coupled with fast electronics ({approx}nsec rise-time) combine to suppress the alpha pileup effects. The fission cross section of {sup 242}Cm and {sup 238}Pu reported in this thesis were obtained from simultaneous measurements on {sup 235}U, {sup 238}Pu and {sup 242}Cm, and these data were normalized to the resolution-broadened ENDF/B-V {sup 235} U fission cross section. The fission areas and the widths for the resolved low-energy resonances of {sup 242}Cm and {sup 238}Pu were determined. The resolution-broadened ENDF/B-V {sup 238}Pu fission data are generally in poor agreement with the measured fission data and a new evaluation on {sup 238}Pu has been recommended. The measured fission cross section of {sup 242}Cm cannot be compared because no evaluation or measurement on this nuclide is available in the energy region of the present measurements.

  19. Process for treating fission waste. [Patent application

    DOEpatents

    Rohrmann, C.A.; Wick, O.J.

    1981-11-17

    A method is described for the treatment of fission waste. A glass forming agent, a metal oxide, and a reducing agent are mixed with the fission waste and the mixture is heated. After melting, the mixture separates into a glass phase and a metal phase. The glass phase may be used to safely store the fission waste, while the metal phase contains noble metals recovered from the fission waste.

  20. Nuclear fission with diffusive dynamics

    NASA Astrophysics Data System (ADS)

    Cha, D.; Bertsch, G. F.

    1992-07-01

    We investigate the dynamics of nuclear fission, assuming purely diffusive motion up to the saddle point. The resulting Smoluchowski equation is solved for conditions appropriate to the 16O+142Nd-->158Er reaction at 207 MeV. The solution is characterized by an equilibration time τ0 for the system to reach steady state, and the fission decay rate in steady state, Λ. We find that the equilibration time τ0 plays a very small role in determining the number of prescission neutrons. The diffusion coefficient extracted from the experimental data is larger than the theoretical in the work of Bush, Bertsch, and Brown by a factor of 5-11.

  1. Search for Singlet Fission Chromophores

    SciTech Connect

    Havlas, Z.; Akdag, A.; Smith, M. B.; Dron, P.; Johnson, J. C.; Nozik, A. J.; Michl, J.

    2012-01-01

    Singlet fission, in which a singlet excited chromophore shares its energy with a ground-state neighbor and both end up in their triplet states, is of potential interest for solar cells. Only a handful of compounds, mostly alternant hydrocarbons, are known to perform efficiently. In view of the large number of conditions that a successful candidate for a practical cell has to meet, it appears desirable to extend the present list of high performers to additional classes of compounds. We have (i) identified design rules for new singlet fission chromophores and for their coupling to covalent dimers, (ii) synthesized them, and (iii) evaluated their performance as neat solids or covalent dimers.

  2. Ballistic piston fissioning plasma experiment.

    NASA Technical Reports Server (NTRS)

    Miller, B. E.; Schneider, R. T.; Thom, K.; Lalos, G. T.

    1971-01-01

    The production of fissioning uranium plasma samples such that the fission fragment stopping distance is less than the dimensions of the plasma is approached by using a ballistic piston device for the compression of uranium hexafluoride. The experimental apparatus is described. At room temperature the gun can be loaded up to 100 torr UF6 partial pressure, but at compression a thousand fold increase of pressure can be obtained at a particle density on the order of 10 to the 19th power per cu cm. Limited spectral studies of UF6 were performed while obtaining the pressure-volume data. The results obtained and their implications are discussed.

  3. Fission at intermediate neutron energies

    NASA Astrophysics Data System (ADS)

    Lo Meo, S.; Mancusi, D.; Massimi, C.; Vannini, G.; Ventura, A.

    2014-09-01

    In the present work, as a theoretical support to the campaign of neutron cross section measurements at the n_TOF facility at CERN[1], Monte Carlo calculations of fission induced by neutrons in the energy range from 100 MeV to 1 GeV are carried out by means of a recent version of the Liege Intranuclear Cascade Model, INCL++[6], coupled with different evaporation-fission codes, such as Gemini++[7] and ABLA07[8]. Theoretical cross sections are compared with experimental data obtained by the n_TOF collaboration and perspectives for future theoretical work are outlined.

  4. Fission prompt gamma-ray multiplicity distribution measurements and simulations at DANCE

    SciTech Connect

    Chyzh, A; Wu, C Y; Ullmann, J; Jandel, M; Bredeweg, T; Couture, A; Norman, E

    2010-08-24

    The nearly energy independence of the DANCE efficiency and multiplicity response to {gamma} rays makes it possible to measure the prompt {gamma}-ray multiplicity distribution in fission. We demonstrate this unique capability of DANCE through the comparison of {gamma}-ray energy and multiplicity distribution between the measurement and numerical simulation for three radioactive sources {sup 22}Na, {sup 60}Co, and {sup 88}Y. The prospect for measuring the {gamma}-ray multiplicity distribution for both spontaneous and neutron-induced fission is discussed.

  5. Fast-neutron-induced fission of 242Pu at nELBE

    NASA Astrophysics Data System (ADS)

    Kögler, Toni; Beyer, Roland; Dietz, Mirco; Junghans, Arnd R.; Lorenz, Christian; Müller, Stefan E.; Reinhardt, Tobias P.; Schmidt, Konrad; Schwengner, Ronald; Takacs, Marcell P.; Wagner, Andreas

    2017-09-01

    The fast neutron-induced fission cross section of 242Pu was determined in the range of 0.5 MeV to 10 MeV relative to 235U(n,f) at the neutron time-of-flight facility nELBE. The number of target nuclei was calculated by means of measuring the spontaneous fission rate of 242Pu. Neutron transport simulations with Geant4 and MCNP6 are used to correct the relative cross section for neutron scattering. The determined results are in good agreement with current experimental and evaluated data sets.

  6. Neutronics for critical fission reactors and subcritical fission in hybrids

    SciTech Connect

    Salvatores, Massimo

    2012-06-19

    The requirements of future innovative nuclear fuel cycles will focus on safety, sustainability and radioactive waste minimization. Critical fast neutron reactors and sub-critical, external source driven systems (accelerator driven and fusion-fission hybrids) have a potential role to meet these requirements in view of their physics characteristics. This paper provides a short introduction to these features.

  7. Fission track analysis, rift shoulder uplift, and tectonic modeling of the Norwegian Continental Margin

    SciTech Connect

    Andriessen, P.; Van Der Beek, P.; Cloetingh, S.; Rohrman, M. )

    1993-09-01

    Apatite fission track analysis from southern Norway and Sweden, across the Permian Carboniferous Oslo rift, are presented and discussed in relation to different rifting scenarios. Vertical and horizontal apatite fission tack profiles in middle and southern Norway unravel the post-Carboniferous history of the Fennoscandian shield. Fission track apatite ages range from 240 Ma in the south to 160 Ma in the north, and according to spontaneous fission track length measurements, they must be interpreted as mixed ages, indicating minor amounts of Paleozoic-Mesozoic sedimentary cover. Apatite fission track length and age modeling suggest rapid cooling and uplift in the Tertiary for the southernmost part of Norway, suggesting a differential uplift of the basement. the obtained data are important for the reconstruction of burial and thermal histories of Cenozoic sedimentary basins of the Norwegian continental margin in the northern North Sea, where diverse rifting events, intraplate stress regimes, and inversion tectonics are involved. Fission track analysis puts constraints on tectonic modeling of uplift of rift flanks and the Norwegian continental margin and yields information for these assessment of hydrocarbon potentials of the sedimentary basins.

  8. Development of a thin scintillation films fission-fragment detector and a novel neutron source

    SciTech Connect

    Rusev, Gencho Yordanov; Jandel, Marian; Baramsai, Bayarbadrakh; Bond, Evelyn M.; Bredeweg, Todd Allen; Couture, Aaron Joseph; Daum, Jaimie Kay; Favalli, Andrea; Ianakiev, Kiril Dimitrov; Iliev, Metodi L.; Mosby, Shea Morgan; Roman, Audrey Rae; Springs, Rebecca Kristien; Ullmann, John Leonard; Walker, Carrie Lynn

    2015-08-26

    Here, investigation of prompt fission and neutron-capture Υ rays from fissile actinide samples at the Detector for Advanced Neutron Capture Experiments (DANCE) requires use of a fission-fragment detector to provide a trigger or a veto signal. A fission-fragment detector based on thin scintillating films and silicon photomultipliers has been built to serve as a trigger/veto detector in neutron-induced fission measurements at DANCE. The fissile material is surrounded by scintillating films providing a 4π detection of the fission fragments. The scintillations were registered with silicon photomultipliers. A measurement of the 235U(n,f) reaction with this detector at DANCE revealed a correct time-of-flight spectrum and provided an estimate for the efficiency of the prototype detector of 11.6(7)%. Design and test measurements with the detector are described. A neutron source with fast timing has been built to help with detector-response measurements. The source is based on the neutron emission from the spontaneous fission of 252Cf and the same type of scintillating films and silicon photomultipliers. Overall time resolution of the source is 0.3 ns. Design of the source and test measurements with it are described. An example application of the source for determining the neutron/gamma pulse-shape discrimination by a stilbene crystal is given.

  9. The role of off-line mass spectrometry in nuclear fission.

    PubMed

    De Laeter, J R

    1996-01-01

    The role of mass spectrometry in nuclear fission has been invaluable since 1940, when A. O. C. Nier separated microgram quantities of (235) U from (238) U, using a gas source mass spectrometer. This experiment enabled the fissionable nature of (235) U to be established. During the Manhattan Project, the mass spectrometer was used to measure the isotope abundances of uranium after processing in various separation systems, in monitoring the composition of the gaseous products in the Oak Ridge Diffusion Plant, and as a helium leak detector. Following the construction of the first reactor at the University of Chicago, it was necessary to unravel the nuclear systematics of the various fission products produced in the fission process. Off-line mass spectrometry was able to identify stable and long-lived isotopes produced in fission, but more importantly, was used in numerous studies of the distribution of mass of the cumulative fission yields. Improvements in sensitivity enabled off-line mass spectrometric studies to identify fine structure in the mass-yield curve and, hence, demonstrate the importance of shell structure in nuclear fission. Solid-source mass spectrometry was also able to measure the cumulative fission yields in the valley of symmetry in the mass-yield curve, and enabled spontaneous fission yields to be quantified. Apart from the accurate measurement of abundances, the stable isotope mass spectrometric technique has been invaluable in establishing absolute cumulative fission yields for many isotopes making up the mass-yield distribution curve for a variety of fissile nuclides. Extensive mass spectrometric studies of noble gases in primitive meteorites revealed the presence of fission products from the now extinct nuclide (244) Pu, and have eliminated the possibility of fission products from a super-heavy nuclide contributing to isotopic anomalies in meteoritic material. Numerous mass spectrometric studies of the isotopic and elemental abundances of

  10. Ternary fission of 260No in equatorial configuration

    NASA Astrophysics Data System (ADS)

    Ismail, M.; Seif, W. M.; Hashem, A. S.

    2016-10-01

    Spontaneous ternary fission is one of the observed decay modes of heavy nuclei. We systematically investigate the equatorial ternary fission of the 260No isotope. In the framework of the three-cluster model, the three-body interaction potential is calculated in terms of the folded M3Y-Reid nucleon-nucleon force and the Coulomb one. The relative orientations of the deformed heavy nuclei participating in the fragmentation process are taken into account. All possible emitted light particles with even mass numbers A = 4-52 are considered. The favored fragmentation channels are estimated as the ones characterized with peaks in the Q-value and local minima in the fragmentation potential. In the absence of nuclear deformations, the closed shell effects are found to play the key role in determining the channels of minimum fragmentation potential and the involved two heavier fragments tend to be of comparable sizes. Inclusion of nuclear deformations manifest the participation of highly deformed prolate nuclei, with large mass asymmetry, as heavy fragment partners in the estimated favored fragmentation channels. The results indicate that the equatorial ternary fission of 260No is most favored with the light emitted nuclei 4,6,8 2He and 10 4Be through the fragmentation channels 155 60Nd + 4 2He + 101 0Zr, 153 60Nd + 6 2He + 101 40Zr, 152 60Nd + 8 2He + 100 40Zr, and 152 0Nd + 10 4Be + 98 38Sr, respectively.

  11. Radiochemistry and the Study of Fission

    SciTech Connect

    Rundberg, Robert S.

    2016-11-14

    These are slides from a lecture given at UC Berkeley. Radiochemistry has been used to study fission since it’ discovery. Radiochemical methods are used to determine cumulative mass yields. These measurements have led to the two-mode fission hypothesis to model the neutron energy dependence of fission product yields. Fission product yields can be used for the nuclear forensics of nuclear explosions. The mass yield curve depends on both the fuel and the neutron spectrum of a device. Recent studies have shown that the nuclear structure of the compound nucleus can affect the mass yield distribution. The following topics are covered: In the beginning: the discovery of fission; forensics using fission products: what can be learned from fission products, definitions of R-values and Q-values, fission bases, K-factors and fission chambers, limitations; the neutron energy dependence of the mass yield distribution (the two mode fission hypothesis); the influence of nuclear structure on the mass yield distribution. In summary: Radiochemistry has been used to study fission since it’s discovery. Radiochemical measurement of fission product yields have provided the highest precision data for developing fission models and for nuclear forensics. The two-mode fission hypothesis provides a description of the neutron energy dependence of the mass yield curve. However, data is still rather sparse and more work is needed near second and third chance fission. Radiochemical measurements have provided evidence for the importance of nuclear states in the compound nucleus in predicting the mass yield curve in the resonance region.

  12. Centromeric chromatin in fission yeast.

    PubMed

    Partridge, Janet F

    2008-05-01

    A fundamental requirement for life is the ability of cells to divide properly and to pass on to their daughters a full complement of genetic material. The centromere of the chromosome is essential for this process, as it provides the DNA sequences on which the kinetochore (the proteinaceous structure that links centromeric DNA to the spindle microtubules) assembles to allow segregation of the chromosomes during mitosis. It has long been recognized that kinetochore assembly is subject to epigenetic control, and deciphering how centromeres promote faithful chromosome segregation provides a fascinating intellectual challenge. This challenge is made more difficult by the scale and complexity of DNA sequences in metazoan centromeres, thus much research has focused on dissecting centromere function in the single celled eukaryotic yeasts. Interestingly, in spite of similarities in the genome size of budding and fission yeasts, they seem to have adopted some striking differences in their strategy for passing on their chromosomes. Budding yeast have "point" centromeres, where a 125 base sequence is sufficient for mitotic propagation, whereas fission yeast centromeres are more reminiscent of the large repetitive centromeres of metazoans. In addition, the centromeric heterochromatin which coats centromeric domains of fission yeast and metazoan centromeres and is critical for their function, is largely absent from budding yeast centromeres. This review focuses on the assembly and maintenance of centromeric chromatin in the fission yeast.

  13. Space Fission System Test Effectiveness

    SciTech Connect

    Houts, Mike; Schmidt, Glen L.; Van Dyke, Melissa; Godfroy, Tom; Martin, James; Bragg-Sitton, Shannon; Dickens, Ricky; Salvail, Pat; Harper, Roger

    2004-02-04

    Space fission technology has the potential to enable rapid access to any point in the solar system. If fission propulsion systems are to be developed to their full potential, however, near-term customers need to be identified and initial fission systems successfully developed, launched, and utilized. One key to successful utilization is to develop reactor designs that are highly testable. Testable reactor designs have a much higher probability of being successfully converted from paper concepts to working space hardware than do designs which are difficult or impossible to realistically test. ''Test Effectiveness'' is one measure of the ability to realistically test a space reactor system. The objective of this paper is to discuss test effectiveness as applied to the design, development, flight qualification, and acceptance testing of space fission systems. The ability to perform highly effective testing would be particularly important to the success of any near-term mission, such as NASA's Jupiter Icy Moons Orbiter, the first mission under study within NASA's Project Prometheus, the Nuclear Systems Program.

  14. Energetics of the fission process

    NASA Astrophysics Data System (ADS)

    Gönnenwein, Friedrich

    1994-09-01

    The mass asymmetry of fragments from nuclear fission of heavy nuclei is reviewed. While mass asymmetry is a common and well-known phenomenon for low-energy fission of the lighter actinides, more recent experiments have demonstrated that, for the heaviest actinides, the mass distribution switches to a symmetric one. On the other hand, it has been discovered that, though for fissioning nuclei with mass numbers A225 the mass distribution is basically symmetric, an asymmetric component is clearly to be identified for nuclei down to the Pb-region. In the absence of a generally accepted dynamical theory of fission, the above experimental findings are discussed in terms of static energy considerations. Triggered from the outset by the structure of the potential energy surface at the saddlepoint, the energy balance at the scission point between the available energy ( Q-value) of the reaction and the Coulomb and deformation energy of the nascent fragments is shown to steer the characteristics of the fragment mass distributions.

  15. Space Fission System Test Effectiveness

    NASA Astrophysics Data System (ADS)

    Houts, Mike; Schmidt, Glen L.; van Dyke, Melissa; Godfroy, Tom; Martin, James; Bragg-Sitton, Shannon; Dickens, Ricky; Salvail, Pat; Harper, Roger

    2004-02-01

    Space fission technology has the potential to enable rapid access to any point in the solar system. If fission propulsion systems are to be developed to their full potential, however, near-term customers need to be identified and initial fission systems successfully developed, launched, and utilized. One key to successful utilization is to develop reactor designs that are highly testable. Testable reactor designs have a much higher probability of being successfully converted from paper concepts to working space hardware than do designs which are difficult or impossible to realistically test. ``Test Effectiveness'' is one measure of the ability to realistically test a space reactor system. The objective of this paper is to discuss test effectiveness as applied to the design, development, flight qualification, and acceptance testing of space fission systems. The ability to perform highly effective testing would be particularly important to the success of any near-term mission, such as NASA's Jupiter Icy Moons Orbiter, the first mission under study within NASA's Project Prometheus, the Nuclear Systems Program.

  16. Etching fission tracks in zircons.

    PubMed

    Naeser, C W

    1969-07-25

    A new technique has been developed whereby fission tracks can be etched in zircon with a solution of sodiuim hydroxide at 220 degrees C. Etching time varied between 15 minutes and 5 houtrs. Colored zircon required less etching time than the colorless varieties.

  17. Space Fission Propulsion System Development Status

    NASA Technical Reports Server (NTRS)

    Houts, Mike; VanDyke, Melissa; Godfroy, Tom; Pedersen, Kevin; Martin, James; Dickens, Ricky; Williams, Eric; Harper, Roger; Salvail, Pat; Hrbud, Ivana; hide

    2001-01-01

    The world's first man-made self-sustaining fission reaction was achieved in 1942. Since then fission has been used to propel submarines, generate tremendous amounts of electricity, produce medical isotopes, and provide numerous other benefits to society. Fission systems operate independently of solar proximity or orientation, and are thus well suited for deep spare or planetary surface missions. In addition, the fuel for fission systems (enriched uranium) is virtually non-radioactive. The primary safety issue with fission systems is avoiding inadvertent system start - addressing this issue through proper system design is straightforward. Despite the relative simplicity and tremendous potential of space fission systems, the development and utilization of these systems has proven elusive. The first use of fission technology in space occurred 3 April 1965 with the US launch of the SNAP-10A reactor. There have been no additional US uses of space fission system. While space fission system were used extensively by the former Soviet Union, their application was limited to earth-orbital missions. Early space fission systems must be safely and affordably utilized if Ae are to reap the benefits of advanced space fission systems.

  18. Two neutron correlations in photo-fission

    NASA Astrophysics Data System (ADS)

    Dale, D. S.; Kosinov, O.; Forest, T.; Burggraf, J.; Stave, S.; Warren, G.; Starovoitova, V.

    2016-09-01

    A large body of experimental work has established the strong kinematical correlation between fission fragments and fission neutrons. Here, we report on the progress of investigations of the potential for strong two neutron correlations arising from the nearly back-to-back nature of the two fission fragments that emit these neutrons in the photo-fission process. In initial measurements, a pulsed electron linear accelerator was used to generate bremsstrahlung photons that impinged upon an actinide target, and the energy and opening angle distributions of coincident neutrons were measured using a large acceptance neutron detector array. A planned comprehensive set of measurements of two neutron correlations in the photo-fission of actinides is expected to shed light on several fundamental aspects of the fission process including the multiplicity distributions associated with the light and heavy fission fragments, the nuclear temperatures of the fission fragments, and the mass distribution of the fission fragments as a function of energy released. In addition to these measurements providing important nuclear data, the unique kinematics of fission and the resulting two neutron correlations have the potential to be the basis for a new tool to detect fissionable materials. A key technical challenge of this program arises from the need to perform coincidence measurements with a low duty factor, pulsed electron accelerator. This has motivated the construction of a large acceptance neutron detector array, and the development of data analysis techniques to directly measure uncorrelated two neutron backgrounds.

  19. Space Fission Propulsion System Development Status

    NASA Technical Reports Server (NTRS)

    Houts, Mike; VanDyke, Melissa; Godfroy, Tom; Pedersen, Kevin; Martin, James; Dickens, Ricky; Williams, Eric; Harper, Roger; Salvail, Pat; Hrbud, Ivana; Rodgers, Stephen L. (Technical Monitor)

    2001-01-01

    The world's first man-made self-sustaining fission reaction was achieved in 1942. Since then fission has been used to propel submarines, generate tremendous amounts of electricity, produce medical isotopes, and provide numerous other benefits to society. Fission systems operate independently of solar proximity or orientation, and are thus well suited for deep spare or planetary surface missions. In addition, the fuel for fission systems (enriched uranium) is virtually non-radioactive. The primary safety issue with fission systems is avoiding inadvertent system start - addressing this issue through proper system design is straightforward. Despite the relative simplicity and tremendous potential of space fission systems, the development and utilization of these systems has proven elusive. The first use of fission technology in space occurred 3 April 1965 with the US launch of the SNAP-10A reactor. There have been no additional US uses of space fission system. While space fission system were used extensively by the former Soviet Union, their application was limited to earth-orbital missions. Early space fission systems must be safely and affordably utilized if Ae are to reap the benefits of advanced space fission systems.

  20. Two neutron correlations in photo-fission

    SciTech Connect

    Dale, D. S.; Kosinov, O.; Forest, T.; Burggraf, J.; Stave, S.; Warren, G.; Starovoitova, V.

    2016-01-01

    A large body of experimental work has established the strong kinematical correlation between fission fragments and fission neutrons. Here, we report on the progress of investigations of the potential for strong two neutron correlations arising from the nearly back-to-back nature of the two fission fragments that emit these neutrons in the photo-fission process. In initial measurements, a pulsed electron linear accelerator was used to generate bremsstrahlung photons that impinged upon an actinide target, and the energy and opening angle distributions of coincident neutrons were measured using a large acceptance neutron detector array. A planned comprehensive set of measurements of two neutron correlations in the photo-fission of actinides is expected to shed light on several fundamental aspects of the fission process including the multiplicity distributions associated with the light and heavy fission fragments, the nuclear temperatures of the fission fragments, and the mass distribution of the fission fragments as a function of energy released. In addition to these measurements providing important nuclear data, the unique kinematics of fission and the resulting two neutron correlations have the potential to be the basis for a new tool to detect fissionable materials. A key technical challenge of this program arises from the need to perform coincidence measurements with a low duty factor, pulsed electron accelerator. This has motivated the construction of a large acceptance neutron detector array, and the development of data analysis techniques to directly measure uncorrelated two neutron backgrounds.

  1. Fission yield studies at the IGISOL facility

    NASA Astrophysics Data System (ADS)

    Penttilä, H.; Elomaa, V.-V.; Eronen, T.; Hakala, J.; Jokinen, A.; Kankainen, A.; Moore, I. D.; Rahaman, S.; Rinta-Antila, S.; Rissanen, J.; Rubchenya, V.; Saastamoinen, A.; Weber, C.; Äystö, J.

    2012-04-01

    Low-energy-particle-induced fission is a cost-effective way to produce neutron-rich nuclei for spectroscopic studies. Fission has been utilized at the IGISOL to produce isotopes for decay and nuclear structure studies, collinear laser spectroscopy and precision mass measurements. The ion guide technique is also very suitable for the fission yield measurements, which can be performed very efficiently by using the Penning trap for fission fragment identification and counting. The proton- and neutron-induced fission yield measurements at the IGISOL are reviewed, and the independent isotopic yields of Zn, Ga, Rb, Sr, Cd and In in 25MeV deuterium-induced fission are presented for the first time. Moving to a new location next to the high intensity MCC30/15 light-ion cyclotron will allow also the use of the neutron-induced fission to produce the neutron rich nuclei at the IGISOL in the future.

  2. Space Fission Propulsion System Development Status

    NASA Technical Reports Server (NTRS)

    Houts, M.; Van Dyke, M. K.; Godfroy, T. J.; Pedersen, K. W.; Martin, J. J.; Dickens, R.; Williams, E.; Harper, R.; Salvail, P.; Hrbud, I.

    2001-01-01

    The world's first man-made self-sustaining fission reaction was achieved in 1942. Since then fission has been used to propel submarines, generate tremendous amounts of electricity, produce medical isotopes, and provide numerous other benefits to society. Fission systems operate independently of solar proximity or orientation, and are thus well suited for deep space or planetary surface missions. In addition, the fuel for fission systems (enriched uranium) is virtually non-radioactive. The primary safety issue with fission systems is avoiding inadvertent system start. Addressing this issue through proper system design is straight-forward. Despite the relative simplicity and tremendous potential of space fission systems, the development and utilization of these systems has proven elusive. The first use of fission technology in space occurred 3 April 1965 with the US launch of the SNAP-10A reactor. There have been no additional US uses of space fission systems. While space fission systems were used extensively by the former Soviet Union, their application was limited to earth-orbital missions. Early space fission systems must be safely and affordably utilized if we are to reap the benefits of advanced space fission systems. NASA's Marshall Space Flight Center, working with Los Alamos National Laboratory (LANL), Sandia National Laboratories, and others, has conducted preliminary research related to a Safe Affordable Fission Engine (SAFE). An unfueled core has been fabricated by LANL, and resistance heaters used to verify predicted core thermal performance by closely mimicking heat from fission. The core is designed to use only established nuclear technology and be highly testable. In FY01 an energy conversion system and thruster will be coupled to the core, resulting in an 'end-to-end' nuclear electric propulsion demonstrator being tested using resistance heaters to closely mimic heat from fission. Results of the SAFE test program will be presented. The applicability

  3. Space Fission Propulsion System Development Status

    NASA Technical Reports Server (NTRS)

    Houts, M.; Van Dyke, M. K.; Godfroy, T. J.; Pedersen, K. W.; Martin, J. J.; Dickens, R.; Williams, E.; Harper, R.; Salvail, P.; Hrbud, I.

    2001-01-01

    The world's first man-made self-sustaining fission reaction was achieved in 1942. Since then fission has been used to propel submarines, generate tremendous amounts of electricity, produce medical isotopes, and provide numerous other benefits to society. Fission systems operate independently of solar proximity or orientation, and are thus well suited for deep space or planetary surface missions. In addition, the fuel for fission systems (enriched uranium) is virtually non-radioactive. The primary safety issue with fission systems is avoiding inadvertent system start. Addressing this issue through proper system design is straight-forward. Despite the relative simplicity and tremendous potential of space fission systems, the development and utilization of these systems has proven elusive. The first use of fission technology in space occurred 3 April 1965 with the US launch of the SNAP-10A reactor. There have been no additional US uses of space fission systems. While space fission systems were used extensively by the former Soviet Union, their application was limited to earth-orbital missions. Early space fission systems must be safely and affordably utilized if we are to reap the benefits of advanced space fission systems. NASA's Marshall Space Flight Center, working with Los Alamos National Laboratory (LANL), Sandia National Laboratories, and others, has conducted preliminary research related to a Safe Affordable Fission Engine (SAFE). An unfueled core has been fabricated by LANL, and resistance heaters used to verify predicted core thermal performance by closely mimicking heat from fission. The core is designed to use only established nuclear technology and be highly testable. In FY01 an energy conversion system and thruster will be coupled to the core, resulting in an 'end-to-end' nuclear electric propulsion demonstrator being tested using resistance heaters to closely mimic heat from fission. Results of the SAFE test program will be presented. The applicability

  4. Fission and Properties of Neutron-Rich Nuclei

    NASA Astrophysics Data System (ADS)

    Hamilton, Joseph H.; Ramayya, A. V.; Carter, H. K.

    2008-08-01

    . Fission-fragment spectroscopy with STEFF / A. G. Smith ... [et al.]. Gamma ray multiplicity of [symbol]Cf spontaneous fission using LiBerACE / D. L. Bleuel ... [et al.]. Excitation energy dependence of fragment mass and total kinetic energy distributions in proton-induced fission of light actinides / I. Nishinaka ... [et al.]. A dynamical calculation of multi-modal nuclear fission / T. Wada and T. Asano. Structure of fission potential energy surfaces in ten-dimensional spaces / V. V. Pashkevich, Y. K Pyatkov and A. V. Unzhakova. A possible enhancement of nuclear fission in scattering with low energy charged particles / V. Gudkov. Dynamical multi-break processes in the [symbol]Sn + [symbol]Ni system at 35 MeV/Nucleon / M. Papa and ISOSPIN-RE VERSE collaboration -- New experimental techniques. MTOF - a high resolution isobar separator for studies of exotic decays / A. Piechaczek ... [et al.]. Development of ORRUBA: a silicon array for the measurement of transfer reactions in inverse kinematics / S. D. Pain ... [et al.]. Indian national gamma array: present & future / R. K. Bhowmik. Absolute intensities of [symbol] rays emitted in the decay of [symbol]U / H. C. Griffin -- Superheavy elements theory and experiments / M. G. Itkis ... [et al.]. Study of superheavy elements at SHIP / S. Hofinann. Heaviest nuclei from [symbol]Ca-induced reactions / Yu. Ts. Oaanessian. Superheavy nuclei and giant nuclear systems / W. Greiner and V. Zagrebaev. Fission approach to alpha-decay of superheavy nuclei / D.N. Poenaru and W. Greiner. Superheavy elements in the Magic Islands / C. Samanta. Relativistic mean field studies of superheavy nuclei / A. V. Afanas jev. Understanding the synthesis of the heaviest nuclei / W. Loveland -- Mass measurements and g-factors. G factor measurements in neutron-rich [symbol]Cf fission fragments, measured using the gammasphere array / R. Orlandi ... [et al.]. Technique for measuring angular correlations and g-factors in neutron rich nuclei produced by the

  5. A fission fragment detector for correlated fission output studies

    NASA Astrophysics Data System (ADS)

    Mosby, S.; Tovesson, F.; Couture, A.; Duke, D. L.; Kleinrath, V.; Meharchand, R.; Meierbachtol, K.; O'Donnell, J. M.; Perdue, B.; Richman, D.; Shields, D.

    2014-09-01

    A digital data acquisition system has been combined with a double Frisch gridded ionization chamber for use at both moderated and unmoderated neutron sources at the Los Alamos Neutron Science (LANSCE) facility. The high efficiency of the instrument combined with intense LANSCE beams and new acquisition system permits fission output measurements across 11 orders of magnitude incident neutron energy. The acquisition and analysis system is presented along with the first in-beam performance tests of the setup.

  6. Bright fission: singlet fission into a pair of emitting states.

    PubMed

    Casanova, David

    2015-06-09

    This paper reintroduces and explores the generation of two bright states from a single photon via a singlet fission mechanism in organic materials. This particular photophysical process is labeled here as bright fission (BF). The central part of the study is devoted to set the theoretical foundations of BF by discussing possible electronic mechanisms, the role of different excited states with various physical nature, the presence of competing deactivation channels, and the possible requirements for the BF viability. In a second part, some of the properties related to BF are computationally explored in anthracene. The analysis of computed high-lying excited states identifies several optical transitions as good candidates to trigger BF in anthracene. The approximation of excitonic couplings of these high energy levels to other electronic states within the same energy range suggests possible paths to populate electronic configurations potentially able to split in two independent spin singlets, i.e. singlet-singlet states. The study also explores the electronic structure of the energetically lowest singlet-singlet states in anthracene dimers and discusses the presence of charge transfer configurations and their relation to the singlet-singlet manifold. The computational results suggest fast relaxation to the lowest singlet-singlet state, from which the excitonic fission may occur. All in all, the present work aims at motivating to pursue further efforts in the study of the BF process in organic materials.

  7. Spontaneous actin dynamics in contractile rings

    NASA Astrophysics Data System (ADS)

    Kruse, Karsten; Wollrab, Viktoria; Thiagarajan, Raghavan; Wald, Anne; Riveline, Daniel

    Networks of polymerizing actin filaments are known to be capable to self-organize into a variety of structures. For example, spontaneous actin polymerization waves have been observed in living cells in a number of circumstances, notably, in crawling neutrophils and slime molds. During later stages of cell division, they can also spontaneously form a contractile ring that will eventually cleave the cell into two daughter cells. We present a framework for describing networks of polymerizing actin filaments, where assembly is regulated by various proteins. It can also include the effects of molecular motors. We show that the molecular processes driven by these proteins can generate various structures that have been observed in contractile rings of fission yeast and mammalian cells. We discuss a possible functional role of each of these patterns. The work was supported by Agence Nationale de la Recherche, France, (ANR-10-LABX-0030-INRT) and by Deutsche Forschungsgemeinschaft through SFB1027.

  8. Experimental study of the three-component structure of mass-energy distributions of fission fragments of nuclei in the vicinity of Pb

    SciTech Connect

    Gruzintsev, E.N.; Itkis, M.G.; Kotlov, Y.V.; Okolovich, V.N.; Rusanov, A.Y.; Smirenkin, G.N.

    1988-05-01

    Measurements and a regression analysis of mass-energy distributions of fission fragments of the nuclei /sup 213/At, /sup 210/Po, and /sup 205/Bi were carried out, demonstrating a three-component structure in the kinetic energy spectra of fragments. The nature of this phenomenon is discussed, as well as its similarity to the recently observed bimodal spontaneous fission of nuclei in the vicinity of Fm.

  9. Marmot-Fission-Gas-Diffusion

    SciTech Connect

    Andersson, Anders; Matthews, Christopher

    2016-10-22

    The MARMOT-FISSION-GAS-DIFFUSION software solves a coupled set of partial differential equations describing fission gas evolution in UO2 nuclear fuel. It is part of the MARMOT code, which builds on the MOOSE framework. Both the MARMOT code and the MOOSE framework are developed and maintained by Idaho National Laboratory. The model in MARMOT-FISSION-GAS-DIFFUSION consists of a set of continuum reaction-diffusion equations capturing formation and annihilation of defects, reactions between defects, diffusion of defects and segregation of defects to grain boundaries. Defects refer to vacancies and interstitials as well fission gas atoms (Xe) occupying various trap sites such as uranium and oxygen vacancies and interstitials sites. The code can treat a large number of defect types. The model is formulated within the phase field framework to be compatible with other MARMOT kernels. The driving forces for all reactions, diffusion and segregation events are consistently formulated as a variational derivatives of the free energy of the system. The rates of the reactions are controlled by the corresponding kinetic coefficients. The free energy and the kinetic coefficients for UO2 have been parameterized by lower length scale simulations. The code can be used to simulate defect evolution in a prescribed UO2 microstructure as well as to solve defect clustering problems that control effective diffusivities under both thermal and irradiation conditions. It I possible to extend the current UO2 model to other fuel types such as accident tolerant fuels based on the U3Si2 compound. This would obviously require a new set of material properties describing the behavior of defects in U3Si2 rather than UO2. The framework is however designed to be generic.

  10. A practical method of estimating standard error of age in the fission track dating method

    USGS Publications Warehouse

    Johnson, N.M.; McGee, V.E.; Naeser, C.W.

    1979-01-01

    A first-order approximation formula for the propagation of error in the fission track age equation is given by PA = C[P2s+P2i+P2??-2rPsPi] 1 2, where PA, Ps, Pi and P?? are the percentage error of age, of spontaneous track density, of induced track density, and of neutron dose, respectively, and C is a constant. The correlation, r, between spontaneous are induced track densities is a crucial element in the error analysis, acting generally to improve the standard error of age. In addition, the correlation parameter r is instrumental is specifying the level of neutron dose, a controlled variable, which will minimize the standard error of age. The results from the approximation equation agree closely with the results from an independent statistical model for the propagation of errors in the fission-track dating method. ?? 1979.

  11. Analysis of the scintillation mechanism in a pressurized {sup 4}He fast neutron detector using pulse shape fitting

    SciTech Connect

    Kelley, R.P. Ray, H.; Jordan, K.A.; Murer, D.

    2015-03-15

    An empirical investigation of the scintillation mechanism in a pressurized {sup 4}He gas fast neutron detector was conducted using pulse shape fitting. Scintillation signals from neutron interactions were measured and averaged to produce a single generic neutron pulse shape from both a {sup 252}Cf spontaneous fission source and a (d,d) neutron generator. An expression for light output over time was then developed by treating the decay of helium excited states in the same manner as the decay of radioactive isotopes. This pulse shape expression was fitted to the measured neutron pulse shape using a least-squares optimization algorithm, allowing an empirical analysis of the mechanism of scintillation inside the {sup 4}He detector. A further understanding of this mechanism in the {sup 4}He detector will advance the use of this system as a neutron spectrometer. For {sup 252}Cf neutrons, the triplet and singlet time constants were found to be 970 ns and 686 ns, respectively. For neutrons from the (d,d) generator, the time constants were found to be 884 ns and 636 ns. Differences were noted in the magnitude of these parameters compared to previously published data, however the general relationships were noted to be the same and checked with expected trends from theory. Of the excited helium states produced from a {sup 252}Cf neutron interaction, 76% were found to be born as triplet states, similar to the result from the neutron generator of 71%. The two sources yielded similar pulse shapes despite having very different neutron energy spectra, validating the robustness of the fits across various neutron energies.

  12. Analysis of the scintillation mechanism in a pressurized 4He fast neutron detector using pulse shape fitting

    NASA Astrophysics Data System (ADS)

    Kelley, R. P.; Murer, D.; Ray, H.; Jordan, K. A.

    2015-03-01

    An empirical investigation of the scintillation mechanism in a pressurized 4He gas fast neutron detector was conducted using pulse shape fitting. Scintillation signals from neutron interactions were measured and averaged to produce a single generic neutron pulse shape from both a 252Cf spontaneous fission source and a (d,d) neutron generator. An expression for light output over time was then developed by treating the decay of helium excited states in the same manner as the decay of radioactive isotopes. This pulse shape expression was fitted to the measured neutron pulse shape using a least-squares optimization algorithm, allowing an empirical analysis of the mechanism of scintillation inside the 4He detector. A further understanding of this mechanism in the 4He detector will advance the use of this system as a neutron spectrometer. For 252Cf neutrons, the triplet and singlet time constants were found to be 970 ns and 686 ns, respectively. For neutrons from the (d,d) generator, the time constants were found to be 884 ns and 636 ns. Differences were noted in the magnitude of these parameters compared to previously published data, however the general relationships were noted to be the same and checked with expected trends from theory. Of the excited helium states produced from a 252Cf neutron interaction, 76% were found to be born as triplet states, similar to the result from the neutron generator of 71%. The two sources yielded similar pulse shapes despite having very different neutron energy spectra, validating the robustness of the fits across various neutron energies.

  13. Plutonium-244 fission tracks - Evidence in a lunar rock 3.95 billion years old.

    NASA Technical Reports Server (NTRS)

    Hutcheon, I. D.; Price, P. B.

    1972-01-01

    Tracks attributed to the spontaneous fission of plutonium-244 and of uranium-238 were detected in a large whitlockite crystal in the lunar breccia 14321 from the Fra Mauro formation. For a track-retention age of 3.95 b.y., the number of plutonium tracks relative to the number of uranium tracks is 0.51 plus or minus 0.15, provided that the rock was not heavily neutron-irradiated 3.95 b.y. ago.

  14. Collective Inertia and Fission Barriers Within the Skyrme-Hartree-Fock Theory

    SciTech Connect

    Baran, A.; Staszczak, A.; Dobaczewski, J.; Nazarewicz, Witold

    2007-01-01

    Spontaneous fission barriers, quadrupole inertia tensor, and zero-point quadrupole correlation energy are calculated for 252,256,258Fm in the framework of the self-consistent Skyrme-Hartree-Fock+BCS theory. Two ways of computing collective inertia are employed: the Gaussian Overlap Approximation to the Generator Coordinate Method and cranking ansatz. The Skyrme results are compared with those of the Gogny-Hartree-Fock-Bogoliubov model.

  15. Comparative evaluation of solar, fission, fusion, and fossil energy resources. Part 2: Power from nuclear fission

    NASA Technical Reports Server (NTRS)

    Clement, J. D.

    1973-01-01

    Different types of nuclear fission reactors and fissionable materials are compared. Special emphasis is placed upon the environmental impact of such reactors. Graphs and charts comparing reactor facilities in the U. S. are presented.

  16. Coherent singlet fission activated by symmetry breaking

    NASA Astrophysics Data System (ADS)

    Miyata, Kiyoshi; Kurashige, Yuki; Watanabe, Kazuya; Sugimoto, Toshiki; Takahashi, Shota; Tanaka, Shunsuke; Takeya, Jun; Yanai, Takeshi; Matsumoto, Yoshiyasu

    2017-10-01

    Singlet fission, in which a singlet exciton is converted to two triplet excitons, is a process that could be beneficial in photovoltaic applications. A full understanding of the dynamics of singlet fission in molecular systems requires detailed knowledge of the relevant potential energy surfaces and their (conical) intersections. However, obtaining such information is a nontrivial task, particularly for molecular aggregates. Here we investigate singlet fission in rubrene crystals using transient absorption spectroscopy and state-of-the-art quantum chemical calculations. We observe a coherent and ultrafast singlet-fission channel as well as the well-known and conventional thermally assisted incoherent channel. This coherent channel is accessible because the conical intersection for singlet fission on the excited-state potential energy surface is located very close to the equilibrium position of the ground-state potential energy surface and also because of the excitation of an intermolecular symmetry-breaking mode, which activates the electronic coupling necessary for singlet fission.

  17. MODELING AND FISSION CROSS SECTIONS FOR AMERICIUM.

    SciTech Connect

    ROCHMAN, D.; HERMAN, M.; OBLOZINSKY, P.

    2005-05-01

    This is the final report of the work performed under the LANL contract on the modeling and fission cross section for americium isotopes (May 2004-June 2005). The purpose of the contract was to provide fission cross sections for americium isotopes with the nuclear reaction model code EMPIRE 2.19. The following work was performed: (1) Fission calculations capability suitable for americium was implemented to the EMPIRE-2.19 code. (2) Calculations of neutron-induced fission cross sections for {sup 239}Am to {sup 244g}Am were performed with EMPIRE-2.19 for energies up to 20 MeV. For the neutron-induced reaction of {sup 240}Am, fission cross sections were predicted and uncertainties were assessed. (3) Set of fission barrier heights for each americium isotopes was chosen so that the new calculations fit the experimental data and follow the systematics found in the literature.

  18. Predictions of characteristics of prompt-fission γ -ray spectra from the n +238U reaction up to En=20 MeV

    NASA Astrophysics Data System (ADS)

    Oberstedt, A.; Billnert, R.; Oberstedt, S.

    2017-09-01

    Systematics from 2001, describing prompt-fission γ -ray spectra (PFGS) characteristics as a function of mass and atomic number of the fissioning system, was revisited and parameters were revised, based on recent experimental results. Although originally expressed for spontaneous and thermal-neutron induced fission, validity for fast neutrons was assumed and applied to predict PFGS characteristics for the reaction n +238U up to incident neutron energies of En=20 MeV . The results from this work are in good agreement with corresponding results from both model calculations and experiments.

  19. RECOVERY OF ALUMINUM FROM FISSION PRODUCTS

    DOEpatents

    Blanco, R.E.; Higgins, I.R.

    1962-11-20

    A method is given for recovertng aluminum values from aqueous solutions containing said values together with fission products. A mixture of Fe/sub 2/O/ sub 3/ and MnO/sub 2/ is added to a solution containing aluminum and fission products. The resulting aluminum-containing supernatant is then separated from the fission product-bearing metal oxide precipitate and is contacted with a cation exchange resin. The aluminum sorbed on the resin is then eluted and recovered. (AEC)

  20. Fission-product retention in HTGR fuels

    SciTech Connect

    Homan, F.J.; Kania, M.J.; Tiegs, T.N.

    1982-01-01

    Retention data for gaseous and metallic fission products are presented for both Triso-coated and Biso-coated HTGR fuel particles. Performance trends are established that relate fission product retention to operating parameters, such as temperature, burnup, and neutron exposure. It is concluded that Biso-coated particles are not adequately retentive of fission gas or metallic cesium, and Triso-coated particles which retain cesium still lose silver. Design implications related to these performance trends are identified and discussed.