Science.gov

Sample records for 26s proteasome complex

  1. The 26S Proteasome Complex: An Attractive Target for Cancer Therapy

    PubMed Central

    Frankland-Searby, Sarah; Bhaumik, Sukesh R.

    2011-01-01

    The 26S proteasome complex engages in an ATP-dependent proteolytic degradation of a variety of oncoproteins, transcription factors, cell cycle specific cyclins, cyclin-dependent kinase inhibitors, ornithine decarboxylase, and other key regulatory cellular proteins. Thus, the proteasome regulates either directly or indirectly many important cellular processes. Altered regulation of these cellular events is linked to the development of cancer. Therefore, the proteasome has become an attractive target for the treatment of numerous cancers. Several proteasome inhibitors that target the proteolytic active sites of the 26S proteasome complex have been developed and tested for anti-tumor activities. These proteasome inhibitors have displayed impressive anti-tumor functions by inducing apoptosis in different tumor types. Further, the proteasome inhibitors have been shown to induce cell cycle arrest, and inhibit angiogenesis, cell-cell adhesion, cell migration, immune and inflammatory responses, and DNA repair response. A number of proteasome inhibitors are now in clinical trials to treat multiple myeloma and solid tumors. Many other proteasome inhibitors with different efficiencies are being developed and tested for anti-tumor activities. Several proteasome inhibitors currently in clinical trials have shown significantly improved anti-tumor activities when combined with other drugs such as histone deacetylase (HDAC) inhibitors, Akt (protein kinase B) inhibitors, DNA damaging agents, Hsp90 (heat shock protein 90) inhibitors, and lenalidomide. The proteasome inhibitor bortezomib is now in the clinic to treat multiple myeloma and mantle cell lymphoma. Here, we discuss the 26S proteasome complex in carcinogenesis and different proteasome inhibitors with their potential therapeutic applications in treatment of numerous cancers. PMID:22037302

  2. Structure characterization of the 26S proteasome

    PubMed Central

    Kim, Ho Min; Yu, Yadong; Cheng, Yifan

    2010-01-01

    In all eukaryotic cells, 26S proteasome plays an essential role in the process of ATP-dependent protein degradation. In this review, we focus on structure characterization of the 26S proteasome. Although the progress towards a high-resolution structure of the 26S proteasome has been slow, the recently solved structures of various proteasomal subcomplexes have greatly enhanced our understanding of this large machinery. In addition to having an ATP-dependent proteolytic function, the 26S proteasome is also involved in many non-proteolytic cellular activities, which are often mediated by subunits in its 19S regulatory complex. Thus, we include a detailed discussion of the structures of 19S subunits, including proteasomal ATPases, ubiquitin receptors, deubiquitinating enzymes and subunits that contain PCI domain. PMID:20800708

  3. Molecular interaction of the proteasome (multicatalytic proteinase). Evidence that the proteasome is not a constituent of the '26 S' multienzyme complex.

    PubMed Central

    Seelig, A; Kloetzel, P M; Kuehn, L; Dahlmann, B

    1991-01-01

    On the basis of recent reports that suggested that proteasomes, via an ATP-dependent process, become integral components of a '26 S' complex possessing 3-carboxypropionyl-Leu-Leu-Val-Tyr 4-methylcoumarin-7-ylamide-hydrolysing activity, we have investigated the molecular interaction of proteasomes in ATP-stabilized fraction II (proteins absorbed on DEAE-matrix and eluted with 0.5 M-KCl) of rabbit reticulocytes and mouse liver. Analysis of the various extracts by (NH4)2SO4 fractionation, velocity-gradient centrifugation, non-denaturing PAGE and SDS/PAGE and immunoblotting with proteasome-specific antisera failed to identify the proteasome as part of a higher-molecular-mass '26 S' multienzyme complex. In all instances proteasomes are identified in their 'free' 650 kDa '20 S' form. In addition to the proteasome and independent of the presence of MgATP, we isolated a high-molecular-mass proteinase whose electrophoretic migration behaviour and sedimentation rate correspond to that of the previously described '26 S' proteinase. This '26 S' proteinase possesses a strong 3-carboxypropionyl-Leu-Leu-Val-Tyr 4-methylcoumarin-7-ylamide-hydrolysing activity and is composed of several non-identical polypeptides in the molecular-mass range 20-150 kDa. Despite its similarity to proteasomal enzyme activity, protein analysis and immunoblotting experiments demonstrate that neither the intact proteasome nor subunits thereof are components of the '26 S' proteinase complex. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. PMID:1741750

  4. An atomic model AAA-ATPase/20S core particle sub-complex of the 26S proteasome

    PubMed Central

    Förster, Friedrich; Lasker, Keren; Beck, Florian; Nickell, Stephan; Sali, Andrej; Baumeister, Wolfgang

    2009-01-01

    The 26S proteasome is the most downstream element of the ubiquitin-proteasome pathway of protein degradation. It is composed of the 20S core particle (CP) and the 19S regulatory particle (RP). The RP consists of 6 AAA-ATPases and at least 13 non-ATPase subunits. Based on a cryo-EM map of the 26S proteasome, structures of homologs, and physical protein-protein interactions we derive an atomic model of the AAA-ATPase-CP sub-complex. The ATPase order in our model (Rpt1/Rpt2/Rpt6/Rpt3/Rpt4/Rpt5) is in excellent agreement with the recently identified base-precursor complexes formed during the assembly of the RP. Furthermore, the atomic CP-AAA-ATPase model suggests that the assembly chaperone Nas6 facilitates CP-RP association by enhancing the shape complementarity between Rpt3 and its binding CP alpha subunits partners. PMID:19653995

  5. An atomic model AAA-ATPase/20S core particle sub-complex of the 26S proteasome.

    PubMed

    Förster, Friedrich; Lasker, Keren; Beck, Florian; Nickell, Stephan; Sali, Andrej; Baumeister, Wolfgang

    2009-10-16

    The 26S proteasome is the most downstream element of the ubiquitin-proteasome pathway of protein degradation. It is composed of the 20S core particle (CP) and the 19S regulatory particle (RP). The RP consists of 6 AAA-ATPases and at least 13 non-ATPase subunits. Based on a cryo-EM map of the 26S proteasome, structures of homologs, and physical protein-protein interactions we derive an atomic model of the AAA-ATPase-CP sub-complex. The ATPase order in our model (Rpt1/Rpt2/Rpt6/Rpt3/Rpt4/Rpt5) is in excellent agreement with the recently identified base-precursor complexes formed during the assembly of the RP. Furthermore, the atomic CP-AAA-ATPase model suggests that the assembly chaperone Nas6 facilitates CP-RP association by enhancing the shape complementarity between Rpt3 and its binding CP alpha subunits partners.

  6. An atomic model AAA-ATPase/20S core particle sub-complex of the 26S proteasome

    SciTech Connect

    Foerster, Friedrich; Lasker, Keren; Beck, Florian; Nickell, Stephan; Sali, Andrej; Baumeister, Wolfgang

    2009-10-16

    The 26S proteasome is the most downstream element of the ubiquitin-proteasome pathway of protein degradation. It is composed of the 20S core particle (CP) and the 19S regulatory particle (RP). The RP consists of 6 AAA-ATPases and at least 13 non-ATPase subunits. Based on a cryo-EM map of the 26S proteasome, structures of homologs, and physical protein-protein interactions we derive an atomic model of the AAA-ATPase-CP sub-complex. The ATPase order in our model (Rpt1/Rpt2/Rpt6/Rpt3/Rpt4/Rpt5) is in excellent agreement with the recently identified base-precursor complexes formed during the assembly of the RP. Furthermore, the atomic CP-AAA-ATPase model suggests that the assembly chaperone Nas6 facilitates CP-RP association by enhancing the shape complementarity between Rpt3 and its binding CP alpha subunits partners.

  7. Characterization of the 26S proteasome network in Plasmodium falciparum

    PubMed Central

    Wang, Lihui; Delahunty, Claire; Fritz-Wolf, Karin; Rahlfs, Stefan; Helena Prieto, Judith; Yates, John R.; Becker, Katja

    2015-01-01

    In eukaryotic cells, the ubiquitin-proteasome system as a key regulator of protein quality control is an excellent drug target. We therefore aimed to analyze the 26S proteasome complex in the malaria parasite Plasmodium falciparum, which still threatens almost half of the world’s population. First, we established an affinity purification protocol allowing for the isolation of functional 26S proteasome complexes from the parasite. Subunit composition of the proteasome and component stoichiometry were studied and physiologic interacting partners were identified via in situ protein crosslinking. Furthermore, intrinsic ubiquitin receptors of the plasmodial proteasome were determined and their roles in proteasomal substrate recognition were analyzed. Notably, PfUSP14 was characterized as a proteasome-associated deubiquitinase resulting in the concept that targeting proteasomal deubiquitinating activity in P. falciparum may represent a promising antimalarial strategy. The data provide insights into a profound network orchestrated by the plasmodial proteasome and identified novel drug target candidates in the ubiquitin-proteasome system. PMID:26639022

  8. Assembly, Structure and Function of the 26S proteasome

    PubMed Central

    Bedford, Lynn; Paine, Simon; Sheppard, Paul W.; Mayer, R. John; Roelofs, Jeroen

    2010-01-01

    The 26S proteasome is a large multi-protein complex involved in the regulated degradation of ubiquitinated proteins in the cell. The 26S proteasome has been shown to control an increasing number of essential biochemical mechanisms of the cellular lifecycle including DNA synthesis, repair, transcription, translation and cell signal transduction. Concurrently, it is increasingly seen that malfunction of the ubiquitin proteasome system contributes to the pathogenesis of disease. The recent identification of four molecular chaperones, in addition to five previously identified chaperones, have provided mechanistic insight into how this cellular megastructure is assembled in the cell. These data, together with new insights into the structure and function of the proteasome, provide a much better understanding of this complex protease. PMID:20427185

  9. The RPT2 Subunit of the 26S Proteasome Directs Complex Assembly, Histone Dynamics, and Gametophyte and Sporophyte Development in Arabidopsis[W

    PubMed Central

    Lee, Kwang-Hee; Minami, Atsushi; Marshall, Richard S.; Book, Adam J.; Farmer, Lisa M.; Walker, Joseph M.; Vierstra, Richard D.

    2011-01-01

    The regulatory particle (RP) of the 26S proteasome contains a heterohexameric ring of AAA-ATPases (RPT1-6) that unfolds and inserts substrates into the core protease (CP) for degradation. Through genetic analysis of the Arabidopsis thaliana gene pair encoding RPT2, we show that this subunit plays a critical role in 26S proteasome assembly, histone dynamics, and plant development. rpt2a rpt2b double null mutants are blocked in both male and female gamete transmission, demonstrating that the subunit is essential. Whereas rpt2b mutants are phenotypically normal, rpt2a mutants display a range of defects, including impaired leaf, root, trichome, and pollen development, delayed flowering, stem fasciation, hypersensitivity to mitomycin C and amino acid analogs, hyposensitivity to the proteasome inhibitor MG132, and decreased 26S complex stability. The rpt2a phenotype can be rescued by both RPT2a and RPT2b, indicative of functional redundancy, but not by RPT2a mutants altered in ATP binding/hydrolysis or missing the C-terminal hydrophobic sequence that docks the RPT ring onto the CP. Many rpt2a phenotypes are shared with mutants lacking the chromatin assembly factor complex CAF1. Like caf1 mutants, plants missing RPT2a or reduced in other RP subunits contain less histones, thus implicating RPT2 specifically, and the 26S proteasome generally, in plant nucleosome assembly. PMID:22158466

  10. The RPT2 subunit of the 26S proteasome directs complex assembly, histone dynamics, and gametophyte and sporophyte development in Arabidopsis.

    PubMed

    Lee, Kwang-Hee; Minami, Atsushi; Marshall, Richard S; Book, Adam J; Farmer, Lisa M; Walker, Joseph M; Vierstra, Richard D

    2011-12-01

    The regulatory particle (RP) of the 26S proteasome contains a heterohexameric ring of AAA-ATPases (RPT1-6) that unfolds and inserts substrates into the core protease (CP) for degradation. Through genetic analysis of the Arabidopsis thaliana gene pair encoding RPT2, we show that this subunit plays a critical role in 26S proteasome assembly, histone dynamics, and plant development. rpt2a rpt2b double null mutants are blocked in both male and female gamete transmission, demonstrating that the subunit is essential. Whereas rpt2b mutants are phenotypically normal, rpt2a mutants display a range of defects, including impaired leaf, root, trichome, and pollen development, delayed flowering, stem fasciation, hypersensitivity to mitomycin C and amino acid analogs, hyposensitivity to the proteasome inhibitor MG132, and decreased 26S complex stability. The rpt2a phenotype can be rescued by both RPT2a and RPT2b, indicative of functional redundancy, but not by RPT2a mutants altered in ATP binding/hydrolysis or missing the C-terminal hydrophobic sequence that docks the RPT ring onto the CP. Many rpt2a phenotypes are shared with mutants lacking the chromatin assembly factor complex CAF1. Like caf1 mutants, plants missing RPT2a or reduced in other RP subunits contain less histones, thus implicating RPT2 specifically, and the 26S proteasome generally, in plant nucleosome assembly.

  11. Phosphorylation of ATPase subunits of the 26S proteasome.

    PubMed

    Mason, G G; Murray, R Z; Pappin, D; Rivett, A J

    1998-07-01

    The 26S proteasome complex plays a major role in the non-lysosomal degradation of intracellular proteins. Purified 26S proteasomes give a pattern of more than 40 spots on 2D-PAGE gels. The positions of subunits have been identified by mass spectrometry of tryptic peptides and by immunoblotting with subunit-specific antipeptide antibodies. Two-dimensional polyacrylamide gel electrophoresis of proteasomes immunoprecipitated from [32P]phosphate-labelled human embryo lung L-132 cells revealed the presence of at least three major phosphorylated polypeptides among the regulatory subunits as well as the C8 and C9 components of the core 20S proteasome. Comparison with the positions of the regulatory polypeptides revealed a minor phosphorylated form to be S7 (MSS1). Antibodies against S4, S6 (TBP7) and S12 (MOV34) all cross-reacted at the position of major phosphorylated polypeptides suggesting that several of the ATPase subunits may be phosphorylated. The phosphorylation of S4 was confirmed by double immunoprecipitation experiments in which 26S proteasomes were immunoprecipitated as above and dissociated and then S4 was immunoprecipitated with subunit-specific antibodies. Antibodies against the non-ATPase subunit S10, which has been suggested by others to be phosphorylated, did not coincide with the position of a phosphorylated polypeptide. Some differences were observed in the 2D-PAGE pattern of proteasomes immunoprecipitated from cultured cells compared to purified rat liver 26S proteasomes suggesting possible differences in subunit compositions of 26S proteasomes.

  12. Structural analysis of the 26S proteasome by cryoelectron tomography.

    PubMed

    Nickell, Stephan; Mihalache, Oana; Beck, Florian; Hegerl, Reiner; Korinek, Andreas; Baumeister, Wolfgang

    2007-02-01

    The 26S proteasome is the key enzyme of intracellular protein degradation in eukaryotic cells. It is a multisubunit complex of 2.5 MDa confining the proteolytic action to an inner compartment with tightly controlled access. Structural studies of this intriguing molecular machine have been hampered by its intrinsic instability and its dynamics. Here we have used an unconventional approach to obtain a three-dimensional structure of the holocomplex uncompromised by preparation-induced alterations and unbiased by any starting model. We have performed a tomographic reconstruction, followed by averaging over approx. 150 individual reconstructions, of Drosophila 26S proteasomes suspended in a thin layer of amorphous ice.

  13. 26S Proteasome: Hunter and Prey in Auxin Signaling.

    PubMed

    Kong, Xiangpei; Zhang, Liangran; Ding, Zhaojun

    2016-07-01

    Auxin binds to TRANSPORT INHIBITOR RESPONSE 1 and AUXIN SIGNALLING F-BOX proteins (TIR1/AFBs) and promotes the degradation of Aux/IAA transcriptional repressors. The proteasome regulator PROTEASOME REGULATOR1 (PTRE1) has now been shown to be required for auxin-mediated repression of 26S proteasome activity, thus providing new insights into the fine-tuning of the homoeostasis of Aux/IAA proteins and auxin signaling. PMID:27246455

  14. Inherent Asymmetry in the 26S Proteasome Is Defined by the Ubiquitin Receptor RPN13*

    PubMed Central

    Berko, Dikla; Herkon, Ora; Braunstein, Ilana; Isakov, Elada; David, Yael; Ziv, Tamar; Navon, Ami; Stanhill, Ariel

    2014-01-01

    The 26S double-capped proteasome is assembled in a hierarchic event that is orchestrated by dedicated set of chaperons. To date, all stoichiometric subunits are considered to be present in equal ratios, thus providing symmetry to the double-capped complex. Here, we show that although the vast majority (if not all) of the double-capped 26S proteasomes, both 19S complexes, contain the ubiquitin receptor Rpn10/S5a, only one of these 19S particles contains the additional ubiquitin receptor Rpn13, thereby defining asymmetry in the 26S proteasome. These results were validated in yeast and mammals, utilizing biochemical and unbiased AQUA-MS methodologies. Thus, the double-capped 26S proteasomes are asymmetric in their polyubiquitin binding capacity. Our data point to a potential new role for ubiquitin receptors as directionality factors that may participate in the prevention of simultaneous substrates translocation into the 20S from both 19S caps. PMID:24429290

  15. Insights into the molecular architecture of the 26S proteasome.

    PubMed

    Nickell, Stephan; Beck, Florian; Scheres, Sjors H W; Korinek, Andreas; Förster, Friedrich; Lasker, Keren; Mihalache, Oana; Sun, Na; Nagy, István; Sali, Andrej; Plitzko, Jürgen M; Carazo, Jose-Maria; Mann, Matthias; Baumeister, Wolfgang

    2009-07-21

    Cryo-electron microscopy in conjunction with advanced image analysis was used to analyze the structure of the 26S proteasome and to elucidate its variable features. We have been able to outline the boundaries of the ATPase module in the "base" part of the regulatory complex that can vary in its position and orientation relative to the 20S core particle. This variation is consistent with the "wobbling" model that was previously proposed to explain the role of the regulatory complex in opening the gate in the alpha-rings of the core particle. In addition, a variable mass near the mouth of the ATPase ring has been identified as Rpn10, a multiubiquitin receptor, by correlating the electron microscopy data with quantitative mass spectrometry.

  16. Insights into the molecular architecture of the 26S proteasome

    PubMed Central

    Nickell, Stephan; Beck, Florian; Scheres, Sjors H. W.; Korinek, Andreas; Förster, Friedrich; Lasker, Keren; Mihalache, Oana; Sun, Na; Nagy, István; Sali, Andrej; Plitzko, Jürgen M.; Carazo, Jose-Maria; Mann, Matthias; Baumeister, Wolfgang

    2009-01-01

    Cryo-electron microscopy in conjunction with advanced image analysis was used to analyze the structure of the 26S proteasome and to elucidate its variable features. We have been able to outline the boundaries of the ATPase module in the “base” part of the regulatory complex that can vary in its position and orientation relative to the 20S core particle. This variation is consistent with the “wobbling” model that was previously proposed to explain the role of the regulatory complex in opening the gate in the α-rings of the core particle. In addition, a variable mass near the mouth of the ATPase ring has been identified as Rpn10, a multiubiquitin receptor, by correlating the electron microscopy data with quantitative mass spectrometry. PMID:19581588

  17. ARS5 is a component of the 26S proteasome complex and negatively regulates thiol biosynthesis and arsenic tolerance in Arabidopsis

    PubMed Central

    Sung, Dong-Yul; Kim, Tae-Houn; Komives, Elizabeth A.; Mendoza-Cózatl, David G.; Schroeder, Julian I.

    2010-01-01

    Summary A forward genetic screen in Arabidopsis led to the isolation of several arsenic tolerance mutants. ars5 is the strongest arsenate and arsenite resistant mutant identified in this genetic screen. Here, we report the characterization and cloning of the ars5 mutant gene. ars5 is shown to exhibit an increased accumulation of arsenic and thiol compounds during arsenic stress. Rough mapping together with microarray-based expression mapping identified the ars5 mutation in the alpha subunit F (PAF1) of the 26S proteasome complex. Characterization of an independent paf1 T-DNA insertion allele and complementation by PAF1 confirmed that paf1 mutation is responsible for the enhanced thiol accumulation and the arsenic tolerance phenotypes. Arsenic tolerance was not observed in a knockout mutant of the highly homologous PAF2 gene. However, genetic complementation of ars5 by over expression of PAF2 suggests that the PAF2 protein is functionally equivalent to PAF1 when expressed at high levels. No detectible difference was observed in total ubiquitinylated protein profiles between ars5 and wild type Arabidopsis, suggesting that the arsenic tolerance observed in ars5 is not derived from a general impairment in proteasome-mediated protein degradation. Quantitative RT-PCR showed that arsenic induces enhanced transcriptional activation of several key genes that function in glutathione and phytochelatin biosynthesis in wild type and this arsenic-induction of gene expression is more dramatic in ars5. The enhanced transcriptional response to arsenic and the increased accumulation of thiol compounds in ars5 compared to WT suggest the presence of a positive regulation pathway for thiol biosynthesis that is enhanced in the ars5 background. PMID:19453443

  18. Dss1 Is a 26S Proteasome Ubiquitin Receptor

    PubMed Central

    Paraskevopoulos, Konstantinos; Kriegenburg, Franziska; Tatham, Michael H.; Rösner, Heike I.; Medina, Bethan; Larsen, Ida B.; Brandstrup, Rikke; Hardwick, Kevin G.; Hay, Ronald T.; Kragelund, Birthe B.; Hartmann-Petersen, Rasmus; Gordon, Colin

    2014-01-01

    Summary The ubiquitin-proteasome system is the major pathway for protein degradation in eukaryotic cells. Proteins to be degraded are conjugated to ubiquitin chains that act as recognition signals for the 26S proteasome. The proteasome subunits Rpn10 and Rpn13 are known to bind ubiquitin, but genetic and biochemical data suggest the existence of at least one other substrate receptor. Here, we show that the phylogenetically conserved proteasome subunit Dss1 (Sem1) binds ubiquitin chains linked by K63 and K48. Atomic resolution data show that Dss1 is disordered and binds ubiquitin by binding sites characterized by acidic and hydrophobic residues. The complementary binding region in ubiquitin is composed of a hydrophobic patch formed by I13, I44, and L69 flanked by two basic regions. Mutations in the ubiquitin-binding site of Dss1 cause growth defects and accumulation of ubiquitylated proteins. PMID:25306921

  19. PiZ Mouse Liver Accumulates Polyubiquitin Conjugates That Associate with Catalytically Active 26S Proteasomes

    PubMed Central

    Haddock, Christopher J.; Blomenkamp, Keith; Gautam, Madhav; James, Jared; Mielcarska, Joanna; Gogol, Edward; Teckman, Jeffrey; Skowyra, Dorota

    2014-01-01

    Accumulation of aggregation-prone human alpha 1 antitrypsin mutant Z (AT-Z) protein in PiZ mouse liver stimulates features of liver injury typical of human alpha 1 antitrypsin type ZZ deficiency, an autosomal recessive genetic disorder. Ubiquitin-mediated proteolysis by the 26S proteasome counteracts AT-Z accumulation and plays other roles that, when inhibited, could exacerbate the injury. However, it is unknown how the conditions of AT-Z mediated liver injury affect the 26S proteasome. To address this question, we developed a rapid extraction strategy that preserves polyubiquitin conjugates in the presence of catalytically active 26S proteasomes and allows their separation from deposits of insoluble AT-Z. Compared to WT, PiZ extracts had about 4-fold more polyubiquitin conjugates with no apparent change in the levels of the 26S and 20S proteasomes, and unassembled subunits. The polyubiquitin conjugates had similar affinities to ubiquitin-binding domain of Psmd4 and co-purified with similar amounts of catalytically active 26S complexes. These data show that polyubiquitin conjugates were accumulating despite normal recruitment to catalytically active 26S proteasomes that were available in excess, and suggest that a defect at the 26S proteasome other than compromised binding to polyubiquitin chain or peptidase activity played a role in the accumulation. In support of this idea, PiZ extracts were characterized by high molecular weight, reduction-sensitive forms of selected subunits, including ATPase subunits that unfold substrates and regulate access to proteolytic core. Older WT mice acquired similar alterations, implying that they result from common aspects of oxidative stress. The changes were most pronounced on unassembled subunits, but some subunits were altered even in the 26S proteasomes co-purified with polyubiquitin conjugates. Thus, AT-Z protein aggregates indirectly impair degradation of polyubiquitinated proteins at the level of the 26S proteasome

  20. PiZ mouse liver accumulates polyubiquitin conjugates that associate with catalytically active 26S proteasomes.

    PubMed

    Haddock, Christopher J; Blomenkamp, Keith; Gautam, Madhav; James, Jared; Mielcarska, Joanna; Gogol, Edward; Teckman, Jeffrey; Skowyra, Dorota

    2014-01-01

    Accumulation of aggregation-prone human alpha 1 antitrypsin mutant Z (AT-Z) protein in PiZ mouse liver stimulates features of liver injury typical of human alpha 1 antitrypsin type ZZ deficiency, an autosomal recessive genetic disorder. Ubiquitin-mediated proteolysis by the 26S proteasome counteracts AT-Z accumulation and plays other roles that, when inhibited, could exacerbate the injury. However, it is unknown how the conditions of AT-Z mediated liver injury affect the 26S proteasome. To address this question, we developed a rapid extraction strategy that preserves polyubiquitin conjugates in the presence of catalytically active 26S proteasomes and allows their separation from deposits of insoluble AT-Z. Compared to WT, PiZ extracts had about 4-fold more polyubiquitin conjugates with no apparent change in the levels of the 26S and 20S proteasomes, and unassembled subunits. The polyubiquitin conjugates had similar affinities to ubiquitin-binding domain of Psmd4 and co-purified with similar amounts of catalytically active 26S complexes. These data show that polyubiquitin conjugates were accumulating despite normal recruitment to catalytically active 26S proteasomes that were available in excess, and suggest that a defect at the 26S proteasome other than compromised binding to polyubiquitin chain or peptidase activity played a role in the accumulation. In support of this idea, PiZ extracts were characterized by high molecular weight, reduction-sensitive forms of selected subunits, including ATPase subunits that unfold substrates and regulate access to proteolytic core. Older WT mice acquired similar alterations, implying that they result from common aspects of oxidative stress. The changes were most pronounced on unassembled subunits, but some subunits were altered even in the 26S proteasomes co-purified with polyubiquitin conjugates. Thus, AT-Z protein aggregates indirectly impair degradation of polyubiquitinated proteins at the level of the 26S proteasome

  1. Localization of the regulatory particle subunit Sem1 in the 26S proteasome

    SciTech Connect

    Bohn, Stefan; Sakata, Eri; Beck, Florian; Pathare, Ganesh R.; Schnitger, Jérôme; Nágy, Istvan; Baumeister, Wolfgang Förster, Friedrich

    2013-05-31

    Highlights: •26S proteasome subunit Sem1 was mapped using cryo-EM and cross-linking data. •C-terminal helix of Sem1 located near winged helix motif of Rpn7. •N-terminal part of Sem1 tethers Rpn7, Rpn3 and lid helical bundle. •Sem1 binds differently to PCI-domains of proteasome subunit Rpn7 and TREX-2 subunit Thp1. -- Abstract: The ubiquitin–proteasome system is responsible for regulated protein degradation in the cell with the 26S proteasome acting as its executive arm. The molecular architecture of this 2.5 MDa complex has been established recently, with the notable exception of the small acidic subunit Sem1. Here, we localize the C-terminal helix of Sem1 binding to the PCI domain of the subunit Rpn7 using cryo-electron microscopy single particle reconstruction of proteasomes purified from yeast cells with sem1 deletion. The approximate position of the N-terminal region of Sem1 bridging the cleft between Rpn7 and Rpn3 was inferred based on site-specific cross-linking data of the 26S proteasome. Our structural studies indicate that Sem1 can assume different conformations in different contexts, which supports the idea that Sem1 functions as a molecular glue stabilizing the Rpn3/Rpn7 heterodimer.

  2. Toward an integrated structural model of the 26S proteasome.

    PubMed

    Förster, Friedrich; Lasker, Keren; Nickell, Stephan; Sali, Andrej; Baumeister, Wolfgang

    2010-08-01

    The 26S proteasome is the end point of the ubiquitin-proteasome pathway and degrades ubiquitylated substrates. It is composed of the 20S core particle (CP), where degradation occurs, and the 19S regulatory particle (RP), which ensures substrate specificity of degradation. Whereas the CP is resolved to atomic resolution, the architecture of the RP is largely unknown. We provide a comprehensive analysis of the current structural knowledge on the RP, including structures of the RP subunits, physical protein-protein interactions, and cryoelectron microscopy data. These data allowed us to compute an atomic model for the CP-AAA-ATPase subcomplex. In addition to this atomic model, further subunits can be mapped approximately, which lets us hypothesize on the substrate path during its degradation.

  3. Toward an Integrated Structural Model of the 26S Proteasome*

    PubMed Central

    Förster, Friedrich; Lasker, Keren; Nickell, Stephan; Sali, Andrej; Baumeister, Wolfgang

    2010-01-01

    The 26S proteasome is the end point of the ubiquitin-proteasome pathway and degrades ubiquitylated substrates. It is composed of the 20S core particle (CP), where degradation occurs, and the 19S regulatory particle (RP), which ensures substrate specificity of degradation. Whereas the CP is resolved to atomic resolution, the architecture of the RP is largely unknown. We provide a comprehensive analysis of the current structural knowledge on the RP, including structures of the RP subunits, physical protein-protein interactions, and cryoelectron microscopy data. These data allowed us to compute an atomic model for the CP-AAA-ATPase subcomplex. In addition to this atomic model, further subunits can be mapped approximately, which lets us hypothesize on the substrate path during its degradation. PMID:20467039

  4. An atomic structure of the human 26S proteasome.

    PubMed

    Huang, Xiuliang; Luan, Bai; Wu, Jianping; Shi, Yigong

    2016-09-01

    We report the cryo-EM structure of the human 26S proteasome at an average resolution of 3.5 Å, allowing atomic modeling of 28 subunits in the core particle (CP) and 18 subunits in the regulatory particle (RP). The C-terminal residues of Rpt3 and Rpt5 subunits in the RP can be seen inserted into surface pockets formed between adjacent α subunits in the CP. Each of the six Rpt subunits contains a bound nucleotide, and the central gate of the CP α-ring is closed despite RP association. The six pore 1 loops in the Rpt ring are arranged similarly to a spiral staircase along the axial channel of substrate transport, which is constricted by the pore 2 loops. We also determined the cryo-EM structure of the human proteasome bound to the deubiquitinating enzyme USP14 at 4.35-Å resolution. Together, our structures provide a framework for mechanistic understanding of eukaryotic proteasome function.

  5. Uncommon functional properties of the first piscine 26S proteasome from the Antarctic notothenioid Trematomus bernacchii.

    PubMed

    Gogliettino, Marta; Balestrieri, Marco; Riccio, Alessia; Facchiano, Angelo; Fusco, Carmela; Palazzo, Vincenzo Cecere; Rossi, Mosè; Cocca, Ennio; Palmieri, Gianna

    2016-01-01

    Protein homoeostasis is a fundamental process allowing the preservation of functional proteins and it has a great impact on the life of the Antarctic organisms. However, the effect of low temperatures on protein turnover is poorly understood and the cold-adaptation of the degradation machinery remains an unresolved issue. As the 26S proteasome represents the main proteolytic system devoted to the controlled degradation of intracellular proteins, the purpose of the present study was to investigate the functions of this complex in the notothenioid Trematomus bernacchii, in order to better understand its role in the physiology of Antarctic fish. To this aim, we purified and characterized the 26S proteasome from T. bernacchii and isolated the cDNAs codifying seven of the 14 subunits belonging to the proteasome 20S core particle. Results provided evidences of the high resistance of the piscine 26S proteasome to oxidative agents and of its 'uncommon' ability to efficiently hydrolyse oxidized bovine serum albumin (BSA), suggesting that this enzymatic complex could play a key role in the antioxidant defense systems in fish inhabiting permanently cold marine environments. These unique properties were also reflected by the 3D model analysis, which revealed a higher structural stability of the piscine complex respect to the murine template. Finally, a comparative analysis, performed in a variety of tissues collected from T. bernacchii and the temperate fish Dicentrarchus labrax, showed a lower protein retention in the cold-adapted fish, possibly due to a better efficiency of its degradation machinery.

  6. Viruses and the 26S proteasome: hacking into destruction.

    PubMed

    Banks, Lawrence; Pim, David; Thomas, Miranda

    2003-08-01

    The discovery that the human papillomavirus E6 oncoprotein could direct the ubiquitination and degradation of the p53 tumour suppressor at the 26S proteasome was the beginning of a new view on virus-host interactions. A decade later, a plethora of viral proteins have been shown to direct host-cell proteins for proteolytic degradation. These activities are required for various aspects of the virus life-cycle from entry, through replication and enhanced cell survival, to viral release. As with oncogenes and cell-cycle control, the study of apparently simple viruses has provided a wealth of information on the function of a whole class of cellular proteins whose function is arguably as important as that of the kinases: the ubiquitin-protein ligases.

  7. Automated cryoelectron microscopy of "single particles" applied to the 26S proteasome.

    PubMed

    Nickell, Stephan; Beck, Florian; Korinek, Andreas; Mihalache, Oana; Baumeister, Wolfgang; Plitzko, Jürgen M

    2007-06-19

    The 26S proteasome is a large molecular machine with a central role in intracellular protein degradation in eukaryotes. The 2.5 MDa complex, which is built from two copies each of more than 30 different subunits, is labile and prone to dissociation into subcomplexes. Hence it is difficult if not impossible, to obtain structurally homogeneous preparations and, as a consequence, it is very cumbersome to obtain large numbers of images of the holocomplex. In this communication, we describe an automated procedure for the acquisition of large data sets of cryoelectron micrographs. The application of this procedure to the 26S proteasome from Drosophila has allowed us to determine the three-dimensional structure of the complex to a resolution of 2.9 nm and the prospects for further improvements are good.

  8. Proteolytic activity of the 26S proteasome is required for the meiotic resumption, germinal vesicle breakdown, and cumulus expansion of porcine cumulus-oocyte complexes matured in vitro.

    PubMed

    Yi, Young-Joo; Nagyova, Eva; Manandhar, Gaurishankar; Procházka, Radek; Sutovsky, Miriam; Park, Chang-Sik; Sutovsky, Peter

    2008-01-01

    The resumption of oocyte meiosis in mammals encompasses the landmark event of oocyte germinal vesicle (GV) breakdown (GVBD), accompanied by the modification of cell-to-cell communication and adhesion between the oocyte and surrounding cumulus cells. The concomitant cumulus expansion relies on microfilament-cytoskeletal remodeling and extracellular matrix (ECM) deposition. We hypothesized that this multifaceted remodeling event requires substrate-specific proteolysis by the ubiquitin-proteasome pathway (UPP). We evaluated meiotic progression, cytoskeletal dynamics, and the production of cumulus ECM in porcine cumulus-oocyte complexes (COCs) cultured with or without 10-200 microM MG132, a specific proteasomal inhibitor, for the first 22 h of in vitro maturation, followed by 22 h of culture with or without MG132. Treatment with 10 microM MG132 arrested 28.4% of oocytes in GV stage (vs. 1.3% in control), 43.1% in prometaphase I, and 16.2% in metaphase I, whereas 83.7% of control ova reached metaphase II (0% of MG132 reached metaphase II). The proportion of GV-stage ova increased progressively to >90% with increased concentration of MG132 (20-200 microM). Furthermore, MG132 blocked the extrusion of the first polar body and degradation of F-actin-rich transzonal projections (TZP) interconnecting cumulus cells with the oocyte. The microfilament disruptor cytochalasin E (CE) prevented cumulus expansion but accelerated the breakdown of TZPs. Ova treated with a combination of 10 microM MG132 and 10 microM CE underwent GVBD, despite the inhibition of proteasomal activity. However, 90.0% of cumulus-free ova treated with 10 microM MG132 remained in GV stage, compared with 16.7% GV ova in control. Cumulus expansion, retention of hyaluronic acid, and the deposition of cumulus ECM relying on the covalent transfer of heavy chains of inter-alpha trypsin inhibitor (IalphaI) were also inhibited by MG132. Cumulus expansion in control COCs was accompanied by the degradation of ubiquitin

  9. Structure of the 26S proteasome from Schizosaccharomyces pombe at subnanometer resolution

    PubMed Central

    Bohn, Stefan; Beck, Florian; Sakata, Eri; Walzthoeni, Thomas; Beck, Martin; Aebersold, Ruedi; Förster, Friedrich; Baumeister, Wolfgang; Nickell, Stephan

    2010-01-01

    The structure of the 26S proteasome from Schizosaccharomyces pombe has been determined to a resolution of 9.1 Å by cryoelectron microscopy and single particle analysis. In addition, chemical cross-linking in conjunction with mass spectrometry has been used to identify numerous residue pairs in close proximity to each other, providing an array of spatial restraints. Taken together these data clarify the topology of the AAA-ATPase module in the 19S regulatory particle and its spatial relationship to the α-ring of the 20S core particle. Image classification and variance analysis reveal a belt of high “activity” surrounding the AAA-ATPase module which is tentatively assigned to the reversible association of proteasome interacting proteins and the conformational heterogeneity among the particles. An integrated model is presented which sheds light on the early steps of protein degradation by the 26S complex. PMID:21098295

  10. Structure of the 26S proteasome from Schizosaccharomyces pombe at subnanometer resolution.

    PubMed

    Bohn, Stefan; Beck, Florian; Sakata, Eri; Walzthoeni, Thomas; Beck, Martin; Aebersold, Ruedi; Förster, Friedrich; Baumeister, Wolfgang; Nickell, Stephan

    2010-12-01

    The structure of the 26S proteasome from Schizosaccharomyces pombe has been determined to a resolution of 9.1 Å by cryoelectron microscopy and single particle analysis. In addition, chemical cross-linking in conjunction with mass spectrometry has been used to identify numerous residue pairs in close proximity to each other, providing an array of spatial restraints. Taken together these data clarify the topology of the AAA-ATPase module in the 19S regulatory particle and its spatial relationship to the α-ring of the 20S core particle. Image classification and variance analysis reveal a belt of high "activity" surrounding the AAA-ATPase module which is tentatively assigned to the reversible association of proteasome interacting proteins and the conformational heterogeneity among the particles. An integrated model is presented which sheds light on the early steps of protein degradation by the 26S complex.

  11. Atomic structure of the 26S proteasome lid reveals the mechanism of deubiquitinase inhibition

    PubMed Central

    Dambacher, Corey M; Worden, Evan J; Herzik, Mark A; Martin, Andreas; Lander, Gabriel C

    2016-01-01

    The 26S proteasome is responsible for the selective, ATP-dependent degradation of polyubiquitinated cellular proteins. Removal of ubiquitin chains from targeted substrates at the proteasome is a prerequisite for substrate processing and is accomplished by Rpn11, a deubiquitinase within the ‘lid’ sub-complex. Prior to the lid’s incorporation into the proteasome, Rpn11 deubiquitinase activity is inhibited to prevent unwarranted deubiquitination of polyubiquitinated proteins. Here we present the atomic model of the isolated lid sub-complex, as determined by cryo-electron microscopy at 3.5 Å resolution, revealing how Rpn11 is inhibited through its interaction with a neighboring lid subunit, Rpn5. Through mutagenesis of specific residues, we describe the network of interactions that are required to stabilize this inhibited state. These results provide significant insight into the intricate mechanisms of proteasome assembly, outlining the substantial conformational rearrangements that occur during incorporation of the lid into the 26S holoenzyme, which ultimately activates the deubiquitinase for substrate degradation. DOI: http://dx.doi.org/10.7554/eLife.13027.001 PMID:26744777

  12. Molecular architecture of the 26S proteasome holocomplex determined by an integrative approach

    PubMed Central

    Lasker, Keren; Förster, Friedrich; Bohn, Stefan; Walzthoeni, Thomas; Villa, Elizabeth; Unverdorben, Pia; Beck, Florian; Aebersold, Ruedi; Sali, Andrej; Baumeister, Wolfgang

    2012-01-01

    The 26S proteasome is at the executive end of the ubiquitin-proteasome pathway for the controlled degradation of intracellular proteins. While the structure of its 20S core particle (CP) has been determined by X-ray crystallography, the structure of the 19S regulatory particle (RP), which recruits substrates, unfolds them, and translocates them to the CP for degradation, has remained elusive. Here, we describe the molecular architecture of the 26S holocomplex determined by an integrative approach based on data from cryoelectron microscopy, X-ray crystallography, residue-specific chemical cross-linking, and several proteomics techniques. The “lid” of the RP (consisting of Rpn3/5/6/7/8/9/11/12) is organized in a modular fashion. Rpn3/5/6/7/9/12 form a horseshoe-shaped heterohexamer, which connects to the CP and roofs the AAA-ATPase module, positioning the Rpn8/Rpn11 heterodimer close to its mouth. Rpn2 is rigid, supporting the lid, while Rpn1 is conformationally variable, positioned at the periphery of the ATPase ring. The ubiquitin receptors Rpn10 and Rpn13 are located in the distal part of the RP, indicating that they were recruited to the complex late in its evolution. The modular structure of the 26S proteasome provides insights into the sequence of events prior to the degradation of ubiquitylated substrates. PMID:22307589

  13. Uncommon functional properties of the first piscine 26S proteasome from the Antarctic notothenioid Trematomus bernacchii

    PubMed Central

    Gogliettino, Marta; Balestrieri, Marco; Riccio, Alessia; Facchiano, Angelo; Fusco, Carmela; Palazzo, Vincenzo Cecere; Rossi, Mosè; Cocca, Ennio; Palmieri, Gianna

    2016-01-01

    Protein homoeostasis is a fundamental process allowing the preservation of functional proteins and it has a great impact on the life of the Antarctic organisms. However, the effect of low temperatures on protein turnover is poorly understood and the cold-adaptation of the degradation machinery remains an unresolved issue. As the 26S proteasome represents the main proteolytic system devoted to the controlled degradation of intracellular proteins, the purpose of the present study was to investigate the functions of this complex in the notothenioid Trematomus bernacchii, in order to better understand its role in the physiology of Antarctic fish. To this aim, we purified and characterized the 26S proteasome from T. bernacchii and isolated the cDNAs codifying seven of the 14 subunits belonging to the proteasome 20S core particle. Results provided evidences of the high resistance of the piscine 26S proteasome to oxidative agents and of its ‘uncommon’ ability to efficiently hydrolyse oxidized bovine serum albumin (BSA), suggesting that this enzymatic complex could play a key role in the antioxidant defense systems in fish inhabiting permanently cold marine environments. These unique properties were also reflected by the 3D model analysis, which revealed a higher structural stability of the piscine complex respect to the murine template. Finally, a comparative analysis, performed in a variety of tissues collected from T. bernacchii and the temperate fish Dicentrarchus labrax, showed a lower protein retention in the cold-adapted fish, possibly due to a better efficiency of its degradation machinery. PMID:26933238

  14. Basic leucine zipper protein Cnc-C is a substrate and transcriptional regulator of the Drosophila 26S proteasome.

    PubMed

    Grimberg, Kristian Björk; Beskow, Anne; Lundin, Daniel; Davis, Monica M; Young, Patrick

    2011-02-01

    While the 26S proteasome is a key proteolytic complex, little is known about how proteasome levels are maintained in higher eukaryotic cells. Here we describe an RNA interference (RNAi) screen of Drosophila melanogaster that was used to identify transcription factors that may play a role in maintaining levels of the 26S proteasome. We used an RNAi library against 993 Drosophila transcription factor genes to identify genes whose suppression in Schneider 2 cells stabilized a ubiquitin-green fluorescent protein reporter protein. This screen identified Cnc (cap 'n' collar [CNC]; basic region leucine zipper) as a candidate transcriptional regulator of proteasome component expression. In fact, 20S proteasome activity was reduced in cells depleted of cnc. Immunoblot assays against proteasome components revealed a general decline in both 19S regulatory complex and 20S proteasome subunits after RNAi depletion of this transcription factor. Transcript-specific silencing revealed that the longest of the seven transcripts for the cnc gene, cnc-C, was needed for proteasome and p97 ATPase production. Quantitative reverse transcription-PCR confirmed the role of Cnc-C in activation of transcription of genes encoding proteasome components. Expression of a V5-His-tagged form of Cnc-C revealed that the transcription factor is itself a proteasome substrate that is stabilized when the proteasome is inhibited. We propose that this single cnc gene in Drosophila resembles the ancestral gene family of mammalian nuclear factor erythroid-derived 2-related transcription factors, which are essential in regulating oxidative stress and proteolysis.

  15. The life cycle of the 26S proteasome: from birth, through regulation and function, and onto its death

    PubMed Central

    Livneh, Ido; Cohen-Kaplan, Victoria; Cohen-Rosenzweig, Chen; Avni, Noa; Ciechanover, Aaron

    2016-01-01

    The 26S proteasome is a large, ∼2.5 MDa, multi-catalytic ATP-dependent protease complex that serves as the degrading arm of the ubiquitin system, which is the major pathway for regulated degradation of cytosolic, nuclear and membrane proteins in all eukaryotic organisms. PMID:27444871

  16. Characterization of the Brain 26S Proteasome and its Interacting Proteins

    PubMed Central

    Tai, Hwan-Ching; Besche, Henrike; Goldberg, Alfred L.; Schuman, Erin M.

    2010-01-01

    Proteasome-mediated proteolysis is important for synaptic plasticity, neuronal development, protein quality control, and many other processes in neurons. To define proteasome composition in brain, we affinity purified 26S proteasomes from cytosolic and synaptic compartments of the rat cortex. Using tandem mass spectrometry, we identified the standard 26S subunits and a set of 28 proteasome-interacting proteins that associated substoichiometrically and may serve as regulators or cofactors. This set differed from those in other tissues and we also found several proteins that associated only with either the cytosolic or the synaptic proteasome. The latter included the ubiquitin-binding factor TAX1BP1 and synaptic vesicle protein SNAP-25. Native gel electrophoresis revealed a higher proportion of doubly-capped 26S proteasome (19S-20S-19S) in the cortex than in the liver or kidney. To investigate the interplay between proteasome regulation and synaptic plasticity, we exposed cultured neurons to glutamate receptor agonist NMDA. Within 4 h, this agent caused a prolonged decrease in the activity of the ubiquitin-proteasome system as shown by disassembly of 26S proteasomes, decrease in ubiquitin-protein conjugates, and dissociation of the ubiquitin ligases UBE3A (E6-AP) and HUWE1 from the proteasome. Surprisingly, the regulatory 19S particles were rapidly degraded by proteasomal, not lysosomal degradation, and the dissociated E3 enzymes also degraded. Thus the content of proteasomes and their set of associated proteins can be altered by neuronal activity, in a manner likely to influence synaptic plasticity and learning. PMID:20717473

  17. Purification and characterization of 26S proteasomes from human and mouse spermatozoa.

    PubMed

    Tipler, C P; Hutchon, S P; Hendil, K; Tanaka, K; Fishel, S; Mayer, R J

    1997-12-01

    We purified by fractionation on 10-40% glycerol gradients, 26S proteasomes from normal human spermatozoa. These proteasomes, which participate in the ATP-dependent degradation of ubiquitinated proteins, share a similar sedimentation coefficient to those purified from other human tissues. Fluorogenic peptide assays reveal they have chymotrypsin, trypsin and peptidyl-glutamyl-like peptide hydrolysing activities; the chymotrypsin activity is ablated by the specific 26S proteasome inhibitor MG132. Confirmation that these large proteases are 26S proteasomes is provided by detection of the 20S proteasome subunits HC2, XAPC7, RN3 and Z and regulatory ATPases MSS1, TBP1, SUG1 and SUG2 by Western analyses with monoclonal antisera. These antigens are found only in the gradient fractions enriched in proteolytic activities. We have also shown that, although mature spermatozoa from mice have considerably reduced amounts of a ubiquitin-conjugating enzyme (E2) and ubiquitin-protein conjugates in comparison with less mature germ cells, they retain relatively high values of 26S proteasome activity. This suggests that proteasomes may have further roles to play in normal sperm physiology.

  18. DNA damage modulates interactions between microRNAs and the 26S proteasome

    PubMed Central

    Tsimokha, Anna S; Kulichkova, Valentina A.; Karpova, Elena V.; Zaykova, Julia J.; Aksenov, Nikolai D; Vasilishina, Anastasia A.; Kropotov, Andrei V.; Antonov, Alexey; Barlev, Nikolai A.

    2014-01-01

    26S proteasomes are known as major non-lysosomal cellular machines for coordinated and specific destruction of ubiquitinylated proteins. The proteolytic activities of proteasomes are controlled by various post-translational modifications in response to environmental cues, including DNA damage. Besides proteolysis, proteasomes also associate with RNA hydrolysis and splicing. Here, we extend the functional diversity of proteasomes by showing that they also dynamically associate with microRNAs (miRNAs) both in the nucleus and cytoplasm of cells. Moreover, DNA damage induced by an anti-cancer drug, doxorubicin, alters the repertoire of proteasome-associated miRNAs, enriching the population of miRNAs that target cell cycle checkpoint regulators and DNA repair proteins. Collectively, these data uncover yet another potential mode of action for proteasomes in the cell via their dynamic association with microRNAs. PMID:25004448

  19. Convergence of the 26S proteasome and the REVOLUTA pathways in regulating inflorescence and floral meristem functions in Arabidopsis.

    PubMed

    Zhang, Zhenzhen; Wang, Hua; Luo, Dexian; Zeng, Minhuan; Huang, Hai; Cui, Xiaofeng

    2011-01-01

    The 26S proteasome is a large multisubunit proteolytic complex, regulating growth and development in eukaryotes by selective removal of short-lived regulatory proteins. Here, it is shown that the 26S proteasome and the transcription factor gene REVOLUTA (REV) act together in maintaining inflorescence and floral meristem (IM and FM) functions. The characterization of a newly identified Arabidopsis mutant, designated ae4 (asymmetric leaves1/2 enhancer4), which carries a mutation in the gene encoding the 26S proteasome subunit, RPN2a, is reported. ae4 and rev have minor defects in phyllotaxy structure and meristem initiation, respectively, whereas ae4 rev demonstrated strong developmental defects. Compared with the rev single mutant, an increased percentage of ae4 rev plants exhibited abnormal vegetative shoot apical and axillary meristems. After flowering, ae4 rev first gave rise to a few normal-looking flowers, and then flowers with reduced numbers of all types of floral organs. In late reproductive development, instead of flowers, the ae4 rev IM produced numerous filamentous structures, which contained cells seen only in the floral organs, and then carpelloid organs. In situ hybridization revealed that expression of the WUSCHEL and CLAVATA3 genes was severely down-regulated or absent in the late appearing ae4 rev primordia, but the genes were strongly expressed in top-layer cells of inflorescence tips. Double mutant plants combining rev with other 26S proteasome subunit mutants, rpn1a and rpn9a, resembled ae4 rev, suggesting that the 26S proteasome might act as a whole in regulating IM and FM functions.

  20. Mapping subunit contacts in the regulatory complex of the 26 S proteasome. S2 and S5b form a tetramer with ATPase subunits S4 and S7.

    PubMed

    Gorbea, C; Taillandier, D; Rechsteiner, M

    2000-01-14

    The 19 S regulatory complex (RC) of the 26 S proteasome is composed of at least 18 different subunits, including six ATPases that form specific pairs S4-S7, S6-S8, and S6'-S10b in vitro. One of the largest regulatory complex subunits, S2, was translated in reticulocyte lysate containing [(35)S]methionine and used to probe membranes containing SDS-polyacrylamide gel electrophoresis separated RC subunits. S2 bound to two ATPases, S4 and S7. Association of S2 with regulatory complex subunits was also assayed by co-translation and sedimentation. S2 formed an immunoprecipitable heterotrimer upon co-translation with S4 and S7. The non-ATPase S5b also formed a ternary complex with S4 and S7 and the three proteins assembled into a tetramer with S2. Neither S2 nor S5b formed complexes with S6'-S10b dimers or with S6-S8 oligomers. The use of chimeric ATPases demonstrated that S2 binds the NH(2)-terminal region of S4 and the COOH-terminal two-thirds of S7. Conversely, S5b binds the COOH-terminal two-thirds of S4 and to S7's NH(2)-terminal region. The demonstrated association of S2 with ATPases in the mammalian 19 S regulatory complex is consistent with and extends the recent finding that the yeast RC is composed of two subcomplexes, the lid and the base (Glickman, M. H., Rubin, D. M., Coux, O., Wefes, I., Pfeifer, G., Cejka, Z., Baumeister, W., Fried, V. A., and Finley, D. (1998) Cell 94, 615-623).

  1. Differential roles of the COOH termini of AAA subunits of PA700 (19 S regulator) in asymmetric assembly and activation of the 26 S proteasome.

    PubMed

    Gillette, Thomas G; Kumar, Brajesh; Thompson, David; Slaughter, Clive A; DeMartino, George N

    2008-11-14

    The 26 S proteasome is an energy-dependent protease that degrades proteins modified with polyubiquitin chains. It is assembled from two multi-protein subcomplexes: a protease (20 S proteasome) and an ATPase regulatory complex (PA700 or 19 S regulatory particle) that contains six different AAA family subunits (Rpt1 to -6). Here we show that binding of PA700 to the 20 S proteasome is mediated by the COOH termini of two (Rpt2 and Rpt5) of the six Rpt subunits that constitute the interaction surface between the subcomplexes. COOH-terminal peptides of either Rpt2 or Rpt5 bind to the 20 S proteasome and activate hydrolysis of short peptide substrates. Simultaneous binding of both COOH-terminal peptides had additive effects on peptide substrate hydrolysis, suggesting that they bind to distinct sites on the proteasome. In contrast, only the Rpt5 peptide activated hydrolysis of protein substrates. Nevertheless, the COOH-terminal peptide of Rpt2 greatly enhanced this effect, suggesting that proteasome activation is a multistate process. Rpt2 and Rpt5 COOH-terminal peptides cross-linked to different but specific subunits of the 20 S proteasome. These results reveal critical roles of COOH termini of Rpt subunits of PA700 in the assembly and activation of eukaryotic 26 S proteasome. Moreover, they support a model in which Rpt subunits bind to dedicated sites on the proteasome and play specific, nonequivalent roles in the asymmetric assembly and activation of the 26 S proteasome.

  2. Structure of the human 26S proteasome at a resolution of 3.9 Å

    PubMed Central

    Schweitzer, Andreas; Aufderheide, Antje; Rudack, Till; Beck, Florian; Pfeifer, Günter; Plitzko, Jürgen M.; Sakata, Eri; Schulten, Klaus; Förster, Friedrich; Baumeister, Wolfgang

    2016-01-01

    Protein degradation in eukaryotic cells is performed by the Ubiquitin-Proteasome System (UPS). The 26S proteasome holocomplex consists of a core particle (CP) that proteolytically degrades polyubiquitylated proteins, and a regulatory particle (RP) containing the AAA-ATPase module. This module controls access to the proteolytic chamber inside the CP and is surrounded by non-ATPase subunits (Rpns) that recognize substrates and deubiquitylate them before unfolding and degradation. The architecture of the 26S holocomplex is highly conserved between yeast and humans. The structure of the human 26S holocomplex described here reveals previously unidentified features of the AAA-ATPase heterohexamer. One subunit, Rpt6, has ADP bound, whereas the other five have ATP in their binding pockets. Rpt6 is structurally distinct from the other five Rpt subunits, most notably in its pore loop region. For Rpns, the map reveals two main, previously undetected, features: the C terminus of Rpn3 protrudes into the mouth of the ATPase ring; and Rpn1 and Rpn2, the largest proteasome subunits, are linked by an extended connection. The structural features of the 26S proteasome observed in this study are likely to be important for coordinating the proteasomal subunits during substrate processing. PMID:27342858

  3. Comparative resistance of the 20S and 26S proteasome to oxidative stress.

    PubMed Central

    Reinheckel, T; Sitte, N; Ullrich, O; Kuckelkorn, U; Davies, K J; Grune, T

    1998-01-01

    Oxidatively modified ferritin is selectively recognized and degraded by the 20S proteasome. Concentrations of hydrogen peroxide (H2O2) higher than 10 micromol/mg of protein are able to prevent proteolytic degradation. Exposure of the protease to high amounts of oxidants (H2O2, peroxynitrite and hypochlorite) inhibits the enzymic activity of the 20S proteasome towards the fluorogenic peptide succinyl-leucine-leucine-valine-tyrosine-methylcoumarylamide (Suc-LLVY-MCA), as well as the proteolytic degradation of normal and oxidant-treated ferritin. Fifty per cent inhibition of the degradation of the protein substrates was achieved using 40 micromol of H2O2/mg of proteasome. No change in the composition of the enzyme was revealed by electrophoretic analysis up to concentrations of 120 micromol of H2O2/mg of proteasome. In further experiments, it was found that the 26S proteasome, the ATP- and ubiquitin-dependent form of the proteasomal system, is much more susceptible to oxidative stress. Whereas degradation of the fluorogenic peptide, Suc-LLVY-MCA, by the 20S proteasome was inhibited by 50% with 12 micromol of H2O2/mg, 3 micromol of H2O2/mg was enough to inhibit ATP-stimulated degradation by the 26S proteasome by 50%. This loss in activity could be followed by the loss of band intensity in the non-denaturing gel. Therefore we concluded that the 20S proteasome was more resistant to oxidative stress than the ATP- and ubiquitin-dependent 26S proteasome. Furthermore, we investigated the activity of both proteases in K562 cells after H2O2 treatment. Lysates from K562 cells are able to degrade oxidized ferritin at a higher rate than non-oxidized ferritin, in an ATP-independent manner. This effect could be followed even after treatment of the cells with H2O2 up to a concentration of 2mM. The lactacystin-sensitive ATP-stimulated degradation of the fluorogenic peptide Suc-LLVY-MCA declined, after treatment of the cells with 1mM H2O2, to the same level as that obtained without

  4. Degradation of oxidized proteins by the proteasome: Distinguishing between the 20S, 26S, and immunoproteasome proteolytic pathways.

    PubMed

    Raynes, Rachel; Pomatto, Laura C D; Davies, Kelvin J A

    2016-08-01

    The proteasome is a ubiquitous and highly plastic multi-subunit protease with multi-catalytic activity that is conserved in all eukaryotes. The most widely known function of the proteasome is protein degradation through the 26S ubiquitin-proteasome system, responsible for the vast majority of protein degradation during homeostasis. However, the proteasome also plays an important role in adaptive immune responses and adaptation to oxidative stress. The unbound 20S proteasome, the core common to all proteasome conformations, is the main protease responsible for degrading oxidized proteins. During periods of acute stress, the 19S regulatory cap of the 26S proteasome disassociates from the proteolytic core, allowing for immediate ATP/ubiquitin-independent protein degradation by the 20S proteasome. Despite the abundance of unbound 20S proteasome compared to other proteasomal conformations, many publications fail to distinguish between the two proteolytic systems and often regard the 26S proteasome as the dominant protease. Further confounding the issue are the differential roles these two proteolytic systems have in adaptation and aging. In this review, we will summarize the increasing evidence that the 20S core proteasome constitutes the major conformation of the proteasome system and that it is far from a latent protease requiring activation by binding regulators.

  5. Near-atomic resolution structural model of the yeast 26S proteasome

    PubMed Central

    Beck, Florian; Unverdorben, Pia; Bohn, Stefan; Schweitzer, Andreas; Pfeifer, Günter; Sakata, Eri; Nickell, Stephan; Plitzko, Jürgen M.; Villa, Elizabeth; Baumeister, Wolfgang; Förster, Friedrich

    2012-01-01

    The 26S proteasome operates at the executive end of the ubiquitin-proteasome pathway. Here, we present a cryo-EM structure of the Saccharomyces cerevisiae 26S proteasome at a resolution of 7.4 Å or 6.7 Å (Fourier-Shell Correlation of 0.5 or 0.3, respectively). We used this map in conjunction with molecular dynamics-based flexible fitting to build a near-atomic resolution model of the holocomplex. The quality of the map allowed us to assign α-helices, the predominant secondary structure element of the regulatory particle subunits, throughout the entire map. We were able to determine the architecture of the Rpn8/Rpn11 heterodimer, which had hitherto remained elusive. The MPN domain of Rpn11 is positioned directly above the AAA-ATPase N-ring suggesting that Rpn11 deubiquitylates substrates immediately following commitment and prior to their unfolding by the AAA-ATPase module. The MPN domain of Rpn11 dimerizes with that of Rpn8 and the C-termini of both subunits form long helices, which are integral parts of a coiled-coil module. Together with the C-terminal helices of the six PCI-domain subunits they form a very large coiled-coil bundle, which appears to serve as a flexible anchoring device for all the lid subunits. PMID:22927375

  6. Near-atomic resolution structural model of the yeast 26S proteasome.

    PubMed

    Beck, Florian; Unverdorben, Pia; Bohn, Stefan; Schweitzer, Andreas; Pfeifer, Günter; Sakata, Eri; Nickell, Stephan; Plitzko, Jürgen M; Villa, Elizabeth; Baumeister, Wolfgang; Förster, Friedrich

    2012-09-11

    The 26S proteasome operates at the executive end of the ubiquitin-proteasome pathway. Here, we present a cryo-EM structure of the Saccharomyces cerevisiae 26S proteasome at a resolution of 7.4 Å or 6.7 Å (Fourier-Shell Correlation of 0.5 or 0.3, respectively). We used this map in conjunction with molecular dynamics-based flexible fitting to build a near-atomic resolution model of the holocomplex. The quality of the map allowed us to assign α-helices, the predominant secondary structure element of the regulatory particle subunits, throughout the entire map. We were able to determine the architecture of the Rpn8/Rpn11 heterodimer, which had hitherto remained elusive. The MPN domain of Rpn11 is positioned directly above the AAA-ATPase N-ring suggesting that Rpn11 deubiquitylates substrates immediately following commitment and prior to their unfolding by the AAA-ATPase module. The MPN domain of Rpn11 dimerizes with that of Rpn8 and the C-termini of both subunits form long helices, which are integral parts of a coiled-coil module. Together with the C-terminal helices of the six PCI-domain subunits they form a very large coiled-coil bundle, which appears to serve as a flexible anchoring device for all the lid subunits.

  7. Proteomics of the 26S proteasome in Spodoptera frugiperda cells infected with the nucleopolyhedrovirus, AcMNPV.

    PubMed

    Lyupina, Yulia V; Zatsepina, Olga G; Serebryakova, Marina V; Erokhov, Pavel A; Abaturova, Svetlana B; Kravchuk, Oksana I; Orlova, Olga V; Beljelarskaya, Svetlana N; Lavrov, Andrey I; Sokolova, Olga S; Mikhailov, Victor S

    2016-06-01

    Baculoviruses are large DNA viruses that infect insect species such as Lepidoptera and are used in biotechnology for protein production and in agriculture as insecticides against crop pests. Baculoviruses require activity of host proteasomes for efficient reproduction, but how they control the cellular proteome and interact with the ubiquitin proteasome system (UPS) of infected cells remains unknown. In this report, we analyzed possible changes in the subunit composition of 26S proteasomes of the fall armyworm, Spodoptera frugiperda (Sf9), cells in the course of infection with the Autographa californica multiple nucleopolyhedrovirus (AcMNPV). 26S proteasomes were purified from Sf9 cells by an immune affinity method and subjected to 2D gel electrophoresis followed by MALDI-TOF mass spectrometry and Mascot search in bioinformatics databases. A total of 34 homologues of 26S proteasome subunits of eukaryotic species were identified including 14 subunits of the 20S core particle (7 α and 7 β subunits) and 20 subunits of the 19S regulatory particle (RP). The RP contained homologues of 11 of RPN-type and 6 of RPT-type subunits, 2 deubiquitinating enzymes (UCH-14/UBP6 and UCH-L5/UCH37), and thioredoxin. Similar 2D-gel maps of 26S proteasomes purified from uninfected and AcMNPV-infected cells at 48hpi confirmed the structural integrity of the 26S proteasome in insect cells during baculovirus infection. However, subtle changes in minor forms of some proteasome subunits were detected. A portion of the α5(zeta) cellular pool that presumably was not associated with the proteasome underwent partial proteolysis at a late stage in infection.

  8. DBC2 resistance is achieved by enhancing 26S proteasome-mediated protein degradation.

    PubMed

    Collado, Denise; Yoshihara, Takashi; Hamaguchi, Masaaki

    2007-08-31

    Tumor suppressor gene DBC2 stops growth of tumor cells through regulation of CCND1. Interference of CCND1 down-regulation prevented growth arrest caused by DBC2 [T. Yoshihara, D. Collado, M. Hamaguchi, Cyclin D1 down-regulation is essential for DBC2's tumor suppressor function, Biochemical and biophysical research communications 358 (2007) 1076-1079]. It was also noted that DBC2 resistant cells eventually arose after repeated induction of DBC2 with muristerone A treatment [M. Hamaguchi, J.L. Meth, C. Von Klitzing, W. Wei, D. Esposito, L. Rodgers, T. Walsh, P. Welcsh, M.C. King, M.H. Wigler, DBC2, a candidate for a tumor suppressor gene involved in breast cancer, Proc. Natl. Acad. Sci. USA 99 (2002) 13647-13652]. In order to elucidate the mechanism of resistance acquisition, we analyzed DBC2 sensitive and resistant cells derived from the same progenitor cells (T-47D). We discovered that DBC2 protein was abundantly expressed in the sensitive cells when DBC2 was induced. In contrast, it was undetectable by western blot analysis in the resistant cells. We confirmed that the inducible gene expression system was responsive in both cells by detecting induced GFP. Additionally, inhibition of 26S proteasome by MG132 revealed production of DBC2 protein in the resistant cells. These findings indicate that the resistant T-47D cells survive DBC2 induction by rapid destruction of DBC2 through 26S proteasome-mediated protein degradation.

  9. Tomato 26S Proteasome subunit RPT4a regulates ToLCNDV transcription and activates hypersensitive response in tomato.

    PubMed

    Sahu, Pranav Pankaj; Sharma, Namisha; Puranik, Swati; Chakraborty, Supriya; Prasad, Manoj

    2016-01-01

    Involvement of 26S proteasomal subunits in plant pathogen-interactions, and the roles of each subunit in independently modulating the activity of many intra- and inter-cellular regulators controlling physiological and defense responses of a plant were well reported. In this regard, we aimed to functionally characterize a Solanum lycopersicum 26S proteasomal subunit RPT4a (SlRPT4) gene, which was differentially expressed after Tomato leaf curl New Delhi virus (ToLCNDV) infection in tolerant cultivar H-88-78-1. Molecular analysis revealed that SlRPT4 protein has an active ATPase activity. SlRPT4 could specifically bind to the stem-loop structure of intergenic region (IR), present in both DNA-A and DNA-B molecule of the bipartite viral genome. Lack of secondary structure in replication-associated gene fragment prevented formation of DNA-protein complex suggesting that binding of SlRPT4 with DNA is secondary structure specific. Interestingly, binding of SlRPT4 to IR inhibited the function of RNA Pol-II and subsequently reduced the bi-directional transcription of ToLCNDV genome. Virus-induced gene silencing of SlRPT4 gene incited conversion of tolerant attributes of cultivar H-88-78-1 into susceptibility. Furthermore, transient overexpression of SlRPT4 resulted in activation of programmed cell death and antioxidant enzymes system. Overall, present study highlights non-proteolytic function of SlRPT4 and their participation in defense pathway against virus infection in tomato. PMID:27252084

  10. Tomato 26S Proteasome subunit RPT4a regulates ToLCNDV transcription and activates hypersensitive response in tomato

    PubMed Central

    Sahu, Pranav Pankaj; Sharma, Namisha; Puranik, Swati; Chakraborty, Supriya; Prasad, Manoj

    2016-01-01

    Involvement of 26S proteasomal subunits in plant pathogen-interactions, and the roles of each subunit in independently modulating the activity of many intra- and inter-cellular regulators controlling physiological and defense responses of a plant were well reported. In this regard, we aimed to functionally characterize a Solanum lycopersicum 26S proteasomal subunit RPT4a (SlRPT4) gene, which was differentially expressed after Tomato leaf curl New Delhi virus (ToLCNDV) infection in tolerant cultivar H-88-78-1. Molecular analysis revealed that SlRPT4 protein has an active ATPase activity. SlRPT4 could specifically bind to the stem-loop structure of intergenic region (IR), present in both DNA-A and DNA-B molecule of the bipartite viral genome. Lack of secondary structure in replication-associated gene fragment prevented formation of DNA-protein complex suggesting that binding of SlRPT4 with DNA is secondary structure specific. Interestingly, binding of SlRPT4 to IR inhibited the function of RNA Pol-II and subsequently reduced the bi-directional transcription of ToLCNDV genome. Virus-induced gene silencing of SlRPT4 gene incited conversion of tolerant attributes of cultivar H-88-78-1 into susceptibility. Furthermore, transient overexpression of SlRPT4 resulted in activation of programmed cell death and antioxidant enzymes system. Overall, present study highlights non-proteolytic function of SlRPT4 and their participation in defense pathway against virus infection in tomato. PMID:27252084

  11. CDNA cloning of p112, the largest regulatory subunit of the human 26s proteasome, and functional analysis of its yeast homologue, sen3p.

    PubMed Central

    Yokota, K; Kagawa, S; Shimizu, Y; Akioka, H; Tsurumi, C; Noda, C; Fujimuro, M; Yokosawa, H; Fujiwara, T; Takahashi, E; Ohba, M; Yamasaki, M; DeMartino, G N; Slaughter, C A; Toh-e, A; Tanaka, K

    1996-01-01

    The 26S proteasome is a large multisubunit protease complex, the largest regulatory subunit of which is a component named p112. Molecular cloning of cDNA encoding human p112 revealed a polypeptide predicted to have 953 amino acid residues and a molecular mass of 105,865. The human p112 gene was mapped to the q37.1-q37.2 region of chromosome 2. Computer analysis showed that p112 has strong similarity to the Saccharomyces cerevisiae Sen3p, which has been listed in a gene bank as a factor affecting tRNA splicing endonuclease. The SEN3 also was identified in a synthetic lethal screen with the nin1-1 mutant, a temperature-sensitive mutant of NIN1. NIN1 encodes p31, another regulatory subunit of the 26S proteasome, which is necessary for activation of Cdc28p kinase. Disruption of the SEN3 did not affect cell viability, but led to temperature-sensitive growth. The human p112 cDNA suppressed the growth defect at high temperature in a SEN3 disruptant, indicating that p112 is a functional homologue of the yeast Sen3p. Maintenance of SEN3 disruptant cells at the restrictive temperature resulted in a variety of cellular dysfunctions, including defects in proteolysis mediated by the ubiquitin pathway, in the N-end rule system, in the stress response upon cadmium exposure, and in nuclear protein transportation. The functional abnormality induced by SEN3 disruption differs considerably from various phenotypes shown by the nin1-1 mutation, suggesting that these two regulatory subunits of the 26S proteasome play distinct roles in the various processes mediated by the 26S proteasome. Images PMID:8816993

  12. The pleiotropic role of the 26S proteasome subunit RPN10 in Arabidopsis growth and development supports a substrate-specific function in abscisic acid signaling.

    PubMed

    Smalle, Jan; Kurepa, Jasmina; Yang, Peizhen; Emborg, Thomas J; Babiychuk, Elena; Kushnir, Sergei; Vierstra, Richard D

    2003-04-01

    The 26S proteasome is an essential protease complex responsible for removing most short-lived intracellular proteins, especially those modified with polyubiquitin chains. We show here that an Arabidopsis mutant expressing an altered RPN10 subunit exhibited a pleiotropic phenotype consistent with specific changes in 26S proteasome function. rpn10-1 plants displayed reduced seed germination, growth rate, stamen number, genetic transmission through the male gamete, and hormone-induced cell division, which can be explained partially by a constitutive downregulation of the key cell cycle gene CDKA;1. rpn10-1 also was more sensitive to abscisic acid (ABA), salt, and sucrose stress and to DNA-damaging agents and had decreased sensitivity to cytokinin and auxin. Most of the phenotypes can be explained by a hypersensitivity to ABA, which is reflected at the molecular level by the selective stabilization of the short-lived ABA-signaling protein ABI5. Collectively, these results indicate that RPN10 affects a number of regulatory processes in Arabidopsis likely by directing specific proteins to the 26S proteasome for degradation. A particularly important role may be in regulating the responses to signals promulgated by ABA.

  13. Mouse homologue of yeast Prp19 interacts with mouse SUG1, the regulatory subunit of 26S proteasome

    SciTech Connect

    Sihn, Choong-Ryoul; Cho, Si Young; Lee, Jeong Ho; Lee, Tae Ryong; Kim, Sang Hoon . E-mail: shkim@khu.ac.kr

    2007-04-27

    Yeast Prp19 has been shown to involve in pre-mRNA splicing and DNA repair as well as being an ubiquitin ligase. Mammalian homologue of yeast Prp19 also plays on similar functional activities in cells. In the present study, we isolated mouse SUG1 (mSUG1) as binding partner of mouse Prp19 (mPrp19) by the yeast two-hybrid system. We confirmed the interaction of mPrp9 with mSUG1 by GST pull-down assay and co-immunoprecipitation assay. The N-terminus of mPrp19 including U-box domain was associated with the C-terminus of mSUG1. Although, mSUG1 is a regulatory subunit of 26S proteasome, mPrp19 was not degraded in the proteasome-dependent pathway. Interestingly, GFP-mPrp19 fusion protein was co-localized with mSUG1 protein in cytoplasm as the formation of the speckle-like structures in the presence of a proteasome inhibitor MG132. In addition, the activity of proteasome was increased in cells transfected with mPrp19. Taken together, these results suggest that mPrp19 involves the regulation of protein turnover and may transport its substrates to 26S proteasome through mSUG1 protein.

  14. The 26S proteasome is a multifaceted target for anti-cancer therapies

    PubMed Central

    Grigoreva, Tatyana A; Tribulovich, Vyacheslav G.; Garabadzhiu, Alexander V.; Melino, Gerry; Barlev, Nickolai A.

    2015-01-01

    Proteasomes play a critical role in the fate of proteins that are involved in major cellular processes, including signal transduction, gene expression, cell cycle, replication, differentiation, immune response, cellular response to stress, etc. In contrast to non-specific degradation by lysosomes, proteasomes are highly selective and destroy only the proteins that are covalently labelled with small proteins, called ubiquitins. Importantly, many diseases, including neurodegenerative diseases and cancers, are intimately connected to the activity of proteasomes making them an important pharmacological target. Currently, the vast majority of inhibitors are aimed at blunting the proteolytic activities of proteasomes. However, recent achievements in solving structures of proteasomes at very high resolution provided opportunities to design new classes of small molecules that target other physiologically-important enzymatic activities of proteasomes, including the de-ubiquitinating one. This review attempts to catalog the information available to date about novel classes of proteasome inhibitors that may have important pharmacological ramifications. PMID:26295307

  15. Compromising the 19S proteasome complex protects cells from reduced flux through the proteasome

    PubMed Central

    Tsvetkov, Peter; Mendillo, Marc L; Zhao, Jinghui; Carette, Jan E; Merrill, Parker H; Cikes, Domagoj; Varadarajan, Malini; van Diemen, Ferdy R; Penninger, Josef M; Goldberg, Alfred L; Brummelkamp, Thijn R; Santagata, Sandro; Lindquist, Susan

    2015-01-01

    Proteasomes are central regulators of protein homeostasis in eukaryotes. Proteasome function is vulnerable to environmental insults, cellular protein imbalance and targeted pharmaceuticals. Yet, mechanisms that cells deploy to counteract inhibition of this central regulator are little understood. To find such mechanisms, we reduced flux through the proteasome to the point of toxicity with specific inhibitors and performed genome-wide screens for mutations that allowed cells to survive. Counter to expectation, reducing expression of individual subunits of the proteasome's 19S regulatory complex increased survival. Strong 19S reduction was cytotoxic but modest reduction protected cells from inhibitors. Protection was accompanied by an increased ratio of 20S to 26S proteasomes, preservation of protein degradation capacity and reduced proteotoxic stress. While compromise of 19S function can have a fitness cost under basal conditions, it provided a powerful survival advantage when proteasome function was impaired. This means of rebalancing proteostasis is conserved from yeast to humans. DOI: http://dx.doi.org/10.7554/eLife.08467.001 PMID:26327695

  16. Downregulation of 26S proteasome catalytic activity promotes epithelial-mesenchymal transition

    PubMed Central

    van Baarsel, Eric D.; Metz, Patrick J.; Fisch, Kathleen; Widjaja, Christella E.; Kim, Stephanie H.; Lopez, Justine; Chang, Aaron N.; Geurink, Paul P.; Florea, Bogdan I.; Overkleeft, Hermen S.; Ovaa, Huib; Bui, Jack D.; Yang, Jing; Chang, John T.

    2016-01-01

    The epithelial-mesenchymal transition (EMT) endows carcinoma cells with phenotypic plasticity that can facilitate the formation of cancer stem cells (CSCs) and contribute to the metastatic cascade. While there is substantial support for the role of EMT in driving cancer cell dissemination, less is known about the intracellular molecular mechanisms that govern formation of CSCs via EMT. Here we show that β2 and β5 proteasome subunit activity is downregulated during EMT in immortalized human mammary epithelial cells. Moreover, selective proteasome inhibition enabled mammary epithelial cells to acquire certain morphologic and functional characteristics reminiscent of cancer stem cells, including CD44 expression, self-renewal, and tumor formation. Transcriptomic analyses suggested that proteasome-inhibited cells share gene expression signatures with cells that have undergone EMT, in part, through modulation of the TGF-β signaling pathway. These findings suggest that selective downregulation of proteasome activity in mammary epithelial cells can initiate the EMT program and acquisition of a cancer stem cell-like phenotype. As proteasome inhibitors become increasingly used in cancer treatment, our findings highlight a potential risk of these therapeutic strategies and suggest a possible mechanism by which carcinoma cells may escape from proteasome inhibitor-based therapy. PMID:26930717

  17. Fast axonal transport of the proteasome complex depends on membrane interaction and molecular motor function.

    PubMed

    Otero, Maria G; Alloatti, Matías; Cromberg, Lucas E; Almenar-Queralt, Angels; Encalada, Sandra E; Pozo Devoto, Victorio M; Bruno, Luciana; Goldstein, Lawrence S B; Falzone, Tomás L

    2014-04-01

    Protein degradation by the ubiquitin-proteasome system in neurons depends on the correct delivery of the proteasome complex. In neurodegenerative diseases, aggregation and accumulation of proteins in axons link transport defects with degradation impairments; however, the transport properties of proteasomes remain unknown. Here, using in vivo experiments, we reveal the fast anterograde transport of assembled and functional 26S proteasome complexes. A high-resolution tracking system to follow fluorescent proteasomes revealed three types of motion: actively driven proteasome axonal transport, diffusive behavior in a viscoelastic axonema and proteasome-confined motion. We show that active proteasome transport depends on motor function because knockdown of the KIF5B motor subunit resulted in impairment of the anterograde proteasome flux and the density of segmental velocities. Finally, we reveal that neuronal proteasomes interact with intracellular membranes and identify the coordinated transport of fluorescent proteasomes with synaptic precursor vesicles, Golgi-derived vesicles, lysosomes and mitochondria. Taken together, our results reveal fast axonal transport as a new mechanism of proteasome delivery that depends on membrane cargo 'hitch-hiking' and the function of molecular motors. We further hypothesize that defects in proteasome transport could promote abnormal protein clearance in neurodegenerative diseases.

  18. Structural Determinants Involved in the Regulation of CXCL14/BRAK Expression by the 26S Proteasome

    PubMed Central

    Peterson, Francis C.; Thorpe, Jeffery A.; Harder, Adam; Volkman, Brian F.; Schwarze, Steven R.

    2006-01-01

    The chemokine CXCL14/BRAK participates in immune surveillance by recruiting dendritic cells. CXCL14 gene expression is altered in a number of cancers, but protein expression levels have not been investigated. Here we report that CXCL14 protein can be expressed in primary epithelial cells, however in several immortalized and cancer cell lines this protein is targeted for polyubiquitylation and proteasomal degradation. We determined the NMR structure of CXCL14 to identify motifs controlling its expression. CXCL14 adopts the canonical chemokine tertiary fold but contains a unique five amino acid insertion (41VSRYR45) relative to other CXC chemokines. Deletion or substitution of key residues within this insertion prevented proteasomal degradation. Furthermore, we defined a 15 amino acid fragment of CXCL14 that is sufficient to induce proteasomal degradation. This study elucidates a post-translational mechanism for the loss of CXCL14 in cancer and a novel mode of chemokine regulation. PMID:16987528

  19. The multiubiquitin-chain-binding protein Mcb1 is a component of the 26S proteasome in Saccharomyces cerevisiae and plays a nonessential, substrate-specific role in protein turnover.

    PubMed

    van Nocker, S; Sadis, S; Rubin, D M; Glickman, M; Fu, H; Coux, O; Wefes, I; Finley, D; Vierstra, R D

    1996-11-01

    The 26S proteasome is an essential proteolytic complex that is responsible for degrading proteins conjugated with ubiquitin. It has been proposed that the recognition of substrates by the 26S proteasome is mediated by a multiubiquitin-chain-binding protein that has previously been characterized in both plants and animals. In this study, we identified a Saccharomyces cerevisiae homolog of this protein, designated Mcb1. Mcb1 copurified with the 26S proteasome in both conventional and nickel chelate chromatography. In addition, a significant fraction of Mcb1 in cell extracts was present in a low-molecular-mass form free of the 26S complex. Recombinant Mcb1 protein bound multiubiquitin chains in vitro and, like its plant and animal counterparts, exhibited a binding preference for longer chains. Surprisingly, (delta)mcb1 deletion mutants were viable, grew at near-wild-type rates, degraded the bulk of short-lived proteins normally, and were not sensitive to UV radiation or heat stress. These data indicate that Mcb1 is not an essential component of the ubiquitin-proteasome pathway in S.cerevisiae. However, the (delta)mcb1 mutant exhibited a modest sensitivity to amino acid analogs and had increased steady-state levels of ubiquitin-protein conjugates. Whereas the N-end rule substrate, Arg-beta-galactosidase, was degraded at the wild-type rate in the (delta)mcb1 strain, the ubiquitin fusion degradation pathway substrate, ubiquitin-Pro-beta-galactosidase, was markedly stabilized. Collectively, these data suggest that Mcb1 is not the sole factor involved in ubiquitin recognition by the 26S proteasome and that Mcb1 may interact with only a subset of ubiquitinated substrates.

  20. cAMP-induced phosphorylation of 26S proteasomes on Rpn6/PSMD11 enhances their activity and the degradation of misfolded proteins.

    PubMed

    Lokireddy, Sudarsanareddy; Kukushkin, Nikolay Vadimovich; Goldberg, Alfred Lewis

    2015-12-29

    Although rates of protein degradation by the ubiquitin-proteasome pathway (UPS) are determined by their rates of ubiquitination, we show here that the proteasome's capacity to degrade ubiquitinated proteins is also tightly regulated. We studied the effects of cAMP-dependent protein kinase (PKA) on proteolysis by the UPS in several mammalian cell lines. Various agents that raise intracellular cAMP and activate PKA (activators of adenylate cyclase or inhibitors of phosphodiesterase 4) promoted degradation of short-lived (but not long-lived) cell proteins generally, model UPS substrates having different degrons, and aggregation-prone proteins associated with major neurodegenerative diseases, including mutant FUS (Fused in sarcoma), SOD1 (superoxide dismutase 1), TDP43 (TAR DNA-binding protein 43), and tau. 26S proteasomes purified from these treated cells or from control cells and treated with PKA degraded ubiquitinated proteins, small peptides, and ATP more rapidly than controls, but not when treated with protein phosphatase. Raising cAMP levels also increased amounts of doubly capped 26S proteasomes. Activated PKA phosphorylates the 19S subunit, Rpn6/PSMD11 (regulatory particle non-ATPase 6/proteasome subunit D11) at Ser14. Overexpression of a phosphomimetic Rpn6 mutant activated proteasomes similarly, whereas a nonphosphorylatable mutant decreased activity. Thus, proteasome function and protein degradation are regulated by cAMP through PKA and Rpn6, and activation of proteasomes by this mechanism may be useful in treating proteotoxic diseases.

  1. 26S Proteasome regulation of Ankrd1/CARP in adult rat ventricular myocytes and human microvascular endothelial cells

    SciTech Connect

    Samaras, Susan E.; Chen, Billy; Koch, Stephen R.; Sawyer, Douglas B.; Lim, Chee Chew; Davidson, Jeffrey M.

    2012-09-07

    Highlights: Black-Right-Pointing-Pointer The 26S proteasome regulates Ankrd1 levels in cardiomyocytes and endothelial cells. Black-Right-Pointing-Pointer Ankrd1 protein degrades 60-fold faster in endothelial cells than cardiomyocytes. Black-Right-Pointing-Pointer Differential degradation appears related to nuclear vs. sarcolemmal localization. Black-Right-Pointing-Pointer Endothelial cell density shows uncoupling of Ankrd1 mRNA and protein levels. -- Abstract: Ankyrin repeat domain 1 protein (Ankrd1), also known as cardiac ankyrin repeat protein (CARP), increases dramatically after tissue injury, and its overexpression improves aspects of wound healing. Reports that Ankrd1/CARP protein stability may affect cardiovascular organization, together with our findings that the protein is crucial to stability of the cardiomyocyte sarcomere and increased in wound healing, led us to compare the contribution of Ankrd1/CARP stability to its abundance. We found that the 26S proteasome is the dominant regulator of Ankrd1/CARP degradation, and that Ankrd1/CARP half-life is significantly longer in cardiomyocytes (h) than endothelial cells (min). In addition, higher endothelial cell density decreased the abundance of the protein without affecting steady state mRNA levels. Taken together, our data and that of others indicate that Ankrd1/CARP is highly regulated at multiple levels of its expression. The striking difference in protein half-life between a muscle and a non-muscle cell type suggests that post-translational proteolysis is correlated with the predominantly structural versus regulatory role of the protein in the two cell types.

  2. ATP-DEPENDENT STEPS IN THE BINDING OF UBIQUITIN CONJUGATES TO THE 26S PROTEASOME THAT COMMIT TO DEGRADATION

    PubMed Central

    Peth, Andreas; Uchiki, Tomoaki; Goldberg, Alfred L.

    2010-01-01

    Eukaryotic cells target proteins for degradation by the 26S proteasome by attaching a ubiquitin chain. Using a rapid assay, we analyzed the initial binding of ubiquitinated proteins to purified 26S particles as an isolated process at 4°C. Subunits Rpn10 and Rpn13 contribute equally to the high affinity binding of ubiquitin chains, but in their absence ubiquitin conjugates bind to another site with 4-fold lower affinity. Conjugate binding is stimulated 2-4 fold by binding of ATP or the nonhydrolyzable analog, ATPγS (but not ADP) to the 19S ATPases. Following this initial, reversible association, ubiquitin conjugates at 37°C become more tightly bound through a step that requires ATP hydrolysis and a loosely folded domain on the protein, but appears independent of ubiquitin. Unfolded or loosely folded polypeptides can inhibit this tighter binding. This commitment step precedes substrate deubiquitination and allows for selection of ubiquitinated proteins capable of being unfolded and efficiently degraded. PMID:21095592

  3. Tyrosine Nitration of PA700 Activates the 26S Proteasome to Induce Endothelial Dysfunction in Mice With Angiotensin II–Induced Hypertension

    PubMed Central

    Xu, Jian; Wang, Shuangxi; Wu, Yong; Song, Ping; Zou, Ming-Hui

    2010-01-01

    The ubiquitin-proteasome system has been implicated in oxidative stress–induced endothelial dysfunction in cardiovascular diseases. However, the mechanism by which oxidative stress alters the ubiquitin-proteasome system is poorly defined. The present study was conducted to determine whether oxidative modifications of PA700, a 26S proteasome regulatory subunit, contributes to angiotensin II (Ang II)–induced endothelial dysfunction. Exposure of human umbilical vein endothelial cells to low concentrations of Ang II, but not vehicle, for 6 hours significantly decreased the levels of tetrahydro-L-biopterin (BH4), an essential cofactor of endothelial NO synthase, which was accompanied by a decrease in GTP cyclohydrolase I, the rate-limiting enzyme for de novo BH4 synthesis. In addition, Ang II increased both tyrosine nitration of PA700 and the 26S proteasome activity, which were paralleled by increased coimmunoprecipitation of PA700 and the 20S proteasome. Genetic inhibition of NAD(P)H oxidase or administration of uric acid (a peroxynitrite scavenger) or NG-nitro-L-arginine methyl ester (nonselective NO synthase inhibitor) significantly attenuated Ang II–induced PA700 nitration, 26S proteasome activation, and reduction of GTP cyclohydrolase I and BH4. Finally, Ang II infusion in mice decreased the levels of both BH4 and GTP cyclohydrolase I and impaired endothelial-dependent relaxation in isolated aortas, and all of these effects were prevented by the administration of MG132, a potent inhibitor for 26S proteasome. We conclude that Ang II increases tyrosine nitration of PA700 resulting in accelerated GTP cyclohydrolase I degradation, BH4 deficiency, and consequent endothelial dysfunction in hypertension. PMID:19597039

  4. Dietary apigenin potentiates the inhibitory effect of interferon-α on cancer cell viability through inhibition of 26S proteasome-mediated interferon receptor degradation

    PubMed Central

    Li, Sheng; Yang, Li-juan; Wang, Ping; He, Yu-jiao; Huang, Jun-mei; Liu, Han-wei; Shen, Xiao-fei; Wang, Fei

    2016-01-01

    Background Type I interferons (IFN-α/β) have broad and potent immunoregulatory and antiproliferative activities. However, it is still known whether the dietary flavonoids exhibit their antiviral and anticancer properties by modulating the function of type I IFNs. Objective This study aimed at determining the role of apigenin, a dietary plant flavonoid abundant in common fruits and vegetables, on the type I IFN-mediated inhibition of cancer cell viability. Design Inhibitory effect of apigenin on human 26S proteasome, a known negative regulator of type I IFN signaling, was evaluated in vitro. Molecular docking was conducted to know the interaction between apigenin and subunits of 26S proteasome. Effects of apigenin on JAK/STAT pathway, 26S proteasome-mediated interferon receptor stability, and cancer cells viability were also investigated. Results Apigenin was identified to be a potent inhibitor of human 26S proteasome in a cell-based assay. Apigenin inhibited the chymotrypsin-like, caspase-like, and trypsin-like activities of the human 26S proteasome and increased the ubiquitination of endogenous proteins in cells. Results from computational modeling of the potential interactions of apigenin with the chymotrypsin site (β5 subunit), caspase site (β1 subunit), and trypsin site (β2 subunit) of the proteasome were consistent with the observed proteasome inhibitory activity. Apigenin enhanced the phosphorylation of signal transducer and activator of transcription proteins (STAT1 and STAT2) and promoted the endogenous IFN-α-regulated gene expression. Apigenin inhibited the IFN-α-stimulated ubiquitination and degradation of type I interferon receptor 1 (IFNAR1). Apigenin also sensitized the inhibitory effect of IFN-α on viability of cervical carcinoma HeLa cells. Conclusion These results suggest that apigenin potentiates the inhibitory effect of IFN-α on cancer cell viability by activating JAK/STAT signaling pathway through inhibition of 26S proteasome

  5. Functional study of hot pepper 26S proteasome subunit RPN7 induced by Tobacco mosaic virus from nuclear proteome analysis

    SciTech Connect

    Lee, Boo-Ja; Kwon, Sun Jae; Kim, Sung-Kyu; Kim, Ki-Jeong; Park, Chang-Jin; Kim, Young-Jin; Park, Ohkmae K.; Paek, Kyung-Hee . E-mail: khpaek95@korea.ac.kr

    2006-12-15

    Two-dimensional gel electrophoresis (2-DE) was applied for the screening of Tobacco mosaic virus (TMV)-induced hot pepper (Capsicum annuum cv. Bugang) nuclear proteins. From differentially expressed protein spots, we acquired the matched peptide mass fingerprint (PMF) data, analyzed by MALDI-TOF MS, from the non-redundant hot pepper EST protein FASTA database using the VEMS 2.0 software. Among six identified nuclear proteins, the hot pepper 26S proteasome subunit RPN7 (CaRPN7) was subjected to further study. The level of CaRPN7 mRNA was specifically increased during incompatible TMV-P{sub 0} interaction, but not during compatible TMV-P{sub 1.2} interaction. When CaRPN7::GFP fusion protein was targeted in onion cells, the nuclei had been broken into pieces. In the hot pepper leaves, cell death was exacerbated and genomic DNA laddering was induced by Agrobacterium-mediated transient overexpression of CaPRN7. Thus, this report presents that the TMV-induced CaRPN7 may be involved in programmed cell death (PCD) in the hot pepper plant.

  6. Salt stress-induced disassembly of Arabidopsis cortical microtubule arrays involves 26S proteasome-dependent degradation of SPIRAL1.

    PubMed

    Wang, Songhu; Kurepa, Jasmina; Hashimoto, Takashi; Smalle, Jan A

    2011-09-01

    The dynamic instability of cortical microtubules (MTs) (i.e., their ability to rapidly alternate between phases of growth and shrinkage) plays an essential role in plant growth and development. In addition, recent studies have revealed a pivotal role for dynamic instability in the response to salt stress conditions. The salt stress response includes a rapid depolymerization of MTs followed by the formation of a new MT network that is believed to be better suited for surviving high salinity. Although this initial depolymerization response is essential for the adaptation to salt stress, the underlying molecular mechanism has remained largely unknown. Here, we show that the MT-associated protein SPIRAL1 (SPR1) plays a key role in salt stress-induced MT disassembly. SPR1, a microtubule stabilizing protein, is degraded by the 26S proteasome, and its degradation rate is accelerated in response to high salinity. We show that accelerated SPR1 degradation is required for a fast MT disassembly response to salt stress and for salt stress tolerance.

  7. Ni(II), Cu(II), and Zn(II) Diethyldithiocarbamate Complexes Show Various Activities Against the Proteasome in Breast Cancer Cells

    PubMed Central

    Cvek, Boris; Milacic, Vesna; Taraba, Jan; Dou, Q. Ping

    2008-01-01

    A series of three complexes with diethyldithiocarbamate ligand and three different metals (Ni, Cu, Zn) was prepared, confirmed by X-ray crystallography, and tested in human breast cancer MDA-MB-231 cells. Zinc and copper complexes, but not nickel complex, were found to be more active against cellular 26S proteasome than against purified 20S proteasome core particle. One of the possible explanations is inhibition of JAMM domain in the 19S proteasome lid. PMID:18816109

  8. Role of 26S proteasome and HRD genes in the degradation of 3-hydroxy-3-methylglutaryl-CoA reductase, an integral endoplasmic reticulum membrane protein.

    PubMed Central

    Hampton, R Y; Gardner, R G; Rine, J

    1996-01-01

    3-hydroxy-3-methylglutaryl-CoA reductase (HMG-R), a key enzyme of sterol synthesis, is an integral membrane protein of the endoplasmic reticulum (ER). In both humans and yeast, HMG-R is degraded at or in the ER. The degradation of HMG-R is regulated as part of feedback control of the mevalonate pathway. Neither the mechanism of degradation nor the nature of the signals that couple the degradation of HMG-R to the mevalonate pathway is known. We have launched a genetic analysis of the degradation of HMG-R in Saccharomyces cerevisiae using a selection for mutants that are deficient in the degradation of Hmg2p, an HMG-R isozyme. The underlying genes are called HRD (pronounced "herd"), for HMG-CoA reductase degradation. So far we have discovered mutants in three genes: HRD1, HRD2, and HRD3. The sequence of the HRD2 gene is homologous to the p97 activator of the 26S proteasome. This p97 protein, also called TRAP-2, has been proposed to be a component of the mature 26S proteasome. The hrd2-1 mutant had numerous pleiotropic phenotypes expected for cells with a compromised proteasome, and these phenotypes were complemented by the human TRAP-2/p97 coding region. In contrast, HRD1 and HRD3 genes encoded previously unknown proteins predicted to be membrane bound. The Hrd3p protein was homologous to the Caenorhabditis elegans sel-1 protein, a negative regulator of at least two different membrane proteins, and contained an HRD3 motif shared with several other proteins. Hrd1p had no full-length homologues, but contained an H2 ring finger motif. These data suggested a model of ER protein degradation in which the Hrd1p and Hrd3p proteins conspire to deliver HMG-R to the 26S proteasome. Moreover, our results lend in vivo support to the proposed role of the p97/TRAP-2/Hrd2p protein as a functionally important component of the 26S proteasome. Because the HRD genes were required for the degradation of both regulated and unregulated substrates of ER degradation, the HRD genes are the

  9. Degradation of the encephalomyocarditis virus and hepatitis A virus 3C proteases by the ubiquitin/26S proteasome system in vivo

    SciTech Connect

    Schlax, Peter E.; Zhang Jin; Lewis, Elizabeth; Planchart, Antonio; Lawson, T. Glen . E-mail: tlawson@bates.edu

    2007-04-10

    We have isolated stably transfected mouse embryonic fibroblast cell lines that inducibly express either the mature encephalomyocarditis virus (EMCV) or hepatitis A virus (HAV) 3C protease and have used these cells to demonstrate that both proteins are subject to degradation in vivo by the ubiquitin/26S proteasome system. The detection of 3C protease expression in these cells requires inducing conditions and the presence of one of several proteasome inhibitors. Both 3C proteases are incorporated into conjugates with ubiquitin in vivo. HAV 3C protease expression has deleterious effects on cell viability, as determined by observation and counting of cells cultured in the absence or presence of inducing conditions. The EMCV 3C protease was found to be preferentially localized to the nucleus of induced cells, while the HAV 3C protease remains in the cytoplasm. The absence of polyubiquitinated EMCV 3C protease conjugates in nuclear fraction preparations suggests that localization to the nucleus can protect this protein from ubiquitination.

  10. Degradation of the encephalomyocarditis virus and hepatitis A virus 3C proteases by the ubiquitin/26S proteasome system in vivo.

    PubMed

    Schlax, Peter E; Zhang, Jin; Lewis, Elizabeth; Planchart, Antonio; Lawson, T Glen

    2007-04-10

    We have isolated stably transfected mouse embryonic fibroblast cell lines that inducibly express either the mature encephalomyocarditis virus (EMCV) or hepatitis A virus (HAV) 3C protease and have used these cells to demonstrate that both proteins are subject to degradation in vivo by the ubiquitin/26S proteasome system. The detection of 3C protease expression in these cells requires inducing conditions and the presence of one of several proteasome inhibitors. Both 3C proteases are incorporated into conjugates with ubiquitin in vivo. HAV 3C protease expression has deleterious effects on cell viability, as determined by observation and counting of cells cultured in the absence or presence of inducing conditions. The EMCV 3C protease was found to be preferentially localized to the nucleus of induced cells, while the HAV 3C protease remains in the cytoplasm. The absence of polyubiquitinated EMCV 3C protease conjugates in nuclear fraction preparations suggests that localization to the nucleus can protect this protein from ubiquitination. PMID:17150238

  11. Structure of a Proteasome Pba1-Pba2 Complex

    PubMed Central

    Stadtmueller, Beth M.; Kish-Trier, Erik; Ferrell, Katherine; Petersen, Charisse N.; Robinson, Howard; Myszka, David G.; Eckert, Debra M.; Formosa, Tim; Hill, Christopher P.

    2012-01-01

    The 20S proteasome is an essential, 28-subunit protease that sequesters proteolytic sites within a central chamber, thereby repressing substrate degradation until proteasome activators open the entrance/exit gate. Two established activators, Blm10 and PAN/19S, induce gate opening by binding to the pockets between proteasome α-subunits using C-terminal HbYX (hydrophobic-tyrosine-any residue) motifs. Equivalent HbYX motifs have been identified in Pba1 and Pba2, which function in proteasome assembly. Here, we demonstrate that Pba1-Pba2 proteins form a stable heterodimer that utilizes its HbYX motifs to bind mature 20S proteasomes in vitro and that the Pba1-Pba2 HbYX motifs are important for a physiological function of proteasomes, the maintenance of mitochondrial function. Other factors that contribute to proteasome assembly or function also act in the maintenance of mitochondrial function and display complex genetic interactions with one another, possibly revealing an unexpected pathway of mitochondrial regulation involving the Pba1-Pba2 proteasome interaction. Our determination of a proteasome Pba1-Pba2 crystal structure reveals a Pba1 HbYX interaction that is superimposable with those of known activators, a Pba2 HbYX interaction that is different from those reported previously, and a gate structure that is disrupted but not sufficiently open to allow entry of even small peptides. These findings extend understanding of proteasome interactions with HbYX motifs and suggest multiple roles for Pba1-Pba2 interactions throughout proteasome assembly and function. PMID:22930756

  12. BBX21, an Arabidopsis B-box protein, directly activates HY5 and is targeted by COP1 for 26S proteasome-mediated degradation.

    PubMed

    Xu, Dongqing; Jiang, Yan; Li, Jigang; Lin, Fang; Holm, Magnus; Deng, Xing Wang

    2016-07-01

    BBX21 (also known as SALT TOLERANCE HOMOLOG 2), a B-box (BBX)-containing protein, has been previously identified as a positive regulator of light signaling; however, the precise role of BBX21 in regulating seedling photomorphogenesis remains largely unclear. In this study, we report that CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1) interacts with BBX21 in vivo and is able to ubiquitinate BBX21 in vitro. Thus, BBX21 is targeted for 26S proteasome-mediated degradation in dark-grown Arabidopsis seedlings in a COP1-dependent manner. Moreover, we show that BBX21 binds to the T/G-box in the ELONGATED HYPOCOTYL 5 (HY5) promoter and directly activates HY5 expression in the light. Transgenic seedlings overexpressing BBX21 exhibit dramatically shortened hypocotyls in the light, and this phenotype is dependent on a functional HY5. Taken together, our data suggest a molecular base underlying BBX21-mediated seedling photomorphogenesis, indicating that BBX21 is a pivotal component involved in the COP1-HY5 regulatory hub. PMID:27325768

  13. Inhibition of Tumor Proteasome Activity by Gold Dithiocarbamato Complexes via both Redox-Dependent and –Independent Processes

    PubMed Central

    Milacic, Vesna; Ronconi, Luca; Fan, Yuhua; Bi, Caifeng; Fregona, Dolores; Dou, Q Ping

    2013-01-01

    We have previously reported on a gold(III) complex, namely [AuBr2(DMDT)] (N,N-dimethyldithiocarbamate) showing potent in vitro and in vivo growth inhibitory activities toward human cancer cells and identifying the cellular proteasome as one of the major targets. However, the importance of the oxidation state of the gold center and the involved mechanism of action has yet to be established. Here we show that both gold(III)- and gold(I)-dithiocarbamato species, namely [AuBr2(ESDT)] (AUL12) and [Au(ESDT)]2 (AUL15), could inhibit the chymotrypsin-like activity of purified 20S proteasome and 26S proteasome in human breast cancer MDA-MB-231 cells, resulting in accumulation of ubiquitinated proteins and proteasome target proteins, and induction of cell death, but at significantly different levels. Gold(I) and gold(III) compounds-mediated proteasome inhibition and cell death induction were completely reversed by the addition of a reducing agent, dithiothreitol or N-acetyl-l-cysteine, suggesting the involvement of redox processes. Furthermore, treatment of MDA-MB-231 cells with gold(III) compound (AUL12), but not the gold(I) analogue (AUL15), resulted in the production of significant level of reactive oxygen species. Our study provides strong evidence that the cellular proteasome is an imporant target of both gold(I) and gold(III) dithiocarbamates, but distinct cellular mechanisms of action are responsible for their different overall effect. PMID:19911377

  14. Cellular and computational studies of proteasome inhibition and apoptosis induction in human cancer cells by amino acid Schiff base–copper complexes

    PubMed Central

    Zuo, Jian; Bi, Caifeng; Fan, Yuhua; Buac, Daniela; Nardon, Chiara; Daniel, Kenyon G.; Dou, Q. Ping

    2013-01-01

    Proliferation and apoptosis pathways are tightly regulated in a cell by the ubiquitin–proteasome system (UPS) and alterations in the UPS may result in cellular transformation or other pathological conditions. Indeed, the proteasome is often found to be overactive in cancer cells. It has also been found that cancer cells are more sensitive to proteasome inhibition than normal cells, and therefore proteasome inhibitors are pursued as antitumor drugs. The use of the proteasome inhibitor Bortezomib for treatment of multiple myeloma and mantle cell lymphoma has proved this principle. Recent studies have suggested that copper complexes can inhibit proteasome activity and induce apoptosis in some human cancer cells. However, the involved molecular mechanism is unknown. In this study, we investigated the biological activities of four amino acid Schiff base–copper(II) complexes by using human breast (MDA-MB-231 and MCF-7) and prostate (PC-3) cancer cells. The complexes C1 and C3, but not their counterparts C2 and C4, inhibit the chymotrypsin-like activity of purified 20S proteasome and human cancer cellular 26S proteasome, cause accumulation of proteasome target proteins Bax and IκB-α, and induce growth inhibition and apoptosis in concentration- and time-dependent manners. Docking analysis shows that C1, but not C2 has hydrophobic, pi–pi, pi–cation and hydrogen bond interactions with the proteasomal chymotrypsin-like pocket and could stably fit into the S3 region, leading to specific inhibition. Our study has identified the mechanism of action of these copper complexes on inhibiting tumor cell proteasome and suggested their great potential as novel anticancer agents. PMID:23142973

  15. Induction of tumor cell apoptosis by taurine Schiff base copper complex is associated the with inhibition of proteasomal activity

    PubMed Central

    ZHANG, XIA; BI, CAIFENG; FAN, YUHUA; CUI, QIUZHI; CHEN, DI; XIAO, YAN; DOU, Q. PING

    2013-01-01

    Schiff bases have been intensively investigated due to their antibacterial and antitumor properties. Copper is a cofactor essential for the tumor angiogenesis processes, whereas other transition metals are not. Consistently, high serum or tissue levels of copper were found in many types of human cancer including breast, prostate, colon, lung, and brain, supporting the idea that copper could be used as a novel selective target for cancer therapies. In the current study we hypothesize that a synthetic taurine Schiff base copper complex (Compound 1) could suppress tumor cell growth via the direct inhibition of proteasome activity. Compound 1 potently inhibits the activity of purified 20S and 26S proteasome in human breast cancer MDA-MB-231 and leukemia Jurkat T cells. Inhibition of tumor cellular proteasomal activity by Compound 1 results in the accumulation of ubiquitinated protein and the proteasome target proteins p27 and Bax, followed by the induction of apoptosis. Our results strongly suggest that taurine Schiff base copper complexes, as potent proteasome inhibitors, have great potential to be developed into novel anticancer drugs. PMID:18949390

  16. ATP-dependent incorporation of 20S protease into the 26S complex that degrades proteins conjugated to ubiquitin.

    PubMed Central

    Eytan, E; Ganoth, D; Armon, T; Hershko, A

    1989-01-01

    Previous studies have indicated that the ATP-dependent 26S protease complex that degrades proteins conjugated to ubiquitin is formed by the assembly of three factors in an ATP-requiring process. We now identify one of the factors as the 20S "multicatalytic" protease, a complex of low molecular weight subunits widely distributed in eukaryotic cells. Comparison of the subunit compositions of purified 20S and 26S complexes indicates that the former is an integral part of the latter. By the use of detergent treatment to activate latent protease activity, we show that the 20S protease becomes incorporated into the 26S complex in the ATP-dependent assembly process. It thus seems that the 20S protease is the "catalytic core" of the 26S complex of the ubiquitin proteolytic pathway. Images PMID:2554287

  17. The recognition of ubiquitinated proteins by the proteasome.

    PubMed

    Grice, Guinevere L; Nathan, James A

    2016-09-01

    The ability of ubiquitin to form up to eight different polyubiquitin chain linkages generates complexity within the ubiquitin proteasome system, and accounts for the diverse roles of ubiquitination within the cell. Understanding how each type of ubiquitin linkage is correctly interpreted by ubiquitin binding proteins provides important insights into the link between chain recognition and cellular fate. A major function of ubiquitination is to signal degradation of intracellular proteins by the 26S proteasome. Lysine-48 (K48) linked polyubiquitin chains are well established as the canonical signal for proteasomal degradation, but recent studies show a role for other ubiquitin linked chains in facilitating degradation by the 26S proteasome. Here, we review how different types of polyubiquitin linkage bind to ubiquitin receptors on the 26S proteasome, how they signal degradation and discuss the implications of ubiquitin chain linkage in regulating protein breakdown by the proteasome. PMID:27137187

  18. Formation of proteasome-PA700 complexes directly correlates with activation of peptidase activity.

    PubMed

    Adams, G M; Crotchett, B; Slaughter, C A; DeMartino, G N; Gogol, E P

    1998-09-15

    The proteolytic activity of the eukaryotic 20S proteasome is stimulated by a multisubunit activator, PA700, which forms both 1:1 and 2:1 complexes with the proteasome. Formation of the complexes is enhanced by an additional protein assembly called modulator, which also stimulates the enzymatic activity of the proteasome only in the presence of PA700. Here we show that the binding of PA700 to the proteasome is cooperative, as is the activation of the proteasome's intrinsic peptidase activity. Modulator increases the extent of complex formation and peptidase activation, while preserving the cooperative kinetics. Furthermore, the increase in activity is not linear with the number of PA700 assemblies bound to the proteasome, but rather with the number of proteasome-PA700 complexes, regardless of the PA700:proteasome stoichiometry. Hence the stimulation of peptidase activity is fully (or almost fully) effected by the binding of a single PA700 to the 20S proteasome. The stimulation of peptidase by modulator is explained entirely by the increased number of proteasome-PA700 complexes formed in its presence, rather than by any substantial direct stimulation of catalysis. These observations are consistent with a model in which PA700, either alone or assisted by modulator, promotes conformational changes in the proteasome that activate the catalytic sites and/or facilitate access of peptide substrates to these sites. PMID:9737872

  19. Inhibition of the purified 20S proteasome by non-heme iron complexes

    PubMed Central

    Prakash, Jai; Schmitt, Sara M.; Dou, Q. Ping; Kodanko, Jeremy J.

    2013-01-01

    Polypyridyl pentadentate ligands N4Py (1) and Bn-TPEN (2), along with their respective iron complexes, have been investigated for their ability to inhibit the purified 20S proteasome. Results demonstrated that the iron complexes of both ligands are potent inhibitors of the 20S proteasome (IC50 = 9.2 μM for [FeII(OH2)(N4Py)]2+ (3) and 4.0 μM for [FeII(OH2)(Bn-TPEN)]2+ (4)). Control experiments showed that ligand 1 or FeII alone showed no inhibition, whereas 2 was moderately active (IC50 = 96 μM), suggesting that iron, when bound to these ligands, plays a key role in proteasome inhibition. Results from time-dependent inactivation studies suggest different modes of action for the iron complexes. Time-dependent decay of proteasome activity was observed upon incubation in the presence of 4, which accelerated in the presence of DTT, suggesting reductive activation of O2 and oxidation of the 20S proteasome as a mode of action. In contrast, loss of 20S proteasome activity was not observed with 3 over time, suggesting inhibition through direct binding of the iron complex to the enzyme. Inhibition of the 20S proteasome by 4 was not blocked by reactive oxygen species scavengers, consistent with a unique oxidant being responsible for the time-dependent inhibition observed. PMID:22170477

  20. The proteasome.

    PubMed

    Dalton, William S

    2004-12-01

    The proteasome is an abundant multicatalytic enzyme complex present in the cytoplasm and nucleus of all eukaryotic cells. The primary function of the proteasome is to degrade proteins. While it was once thought to act primarily as a cellular "garbage disposal" that removed damaged or misfolded proteins from cells, the proteasome is now known to also remove various short-lived proteins that regulate the cell cycle, cell growth, and differentiation. By regulating the turnover of these proteins via timely degradation and recycling, the proteasome plays a critical role in the maintenance of cellular homeostasis. Substrates of the proteasome include cell-cycle regulators, signaling molecules, tumor suppressors, transcription factors, and antiapoptotic proteins; over 80% of all cellular proteins are recycled through the proteasome. This article discusses the structure and function of the proteasome, and its role in malignant cells and as a therapeutic target.

  1. Cytoplasmic proteasomes are not indispensable for cell growth in Saccharomyces cerevisiae

    SciTech Connect

    Tsuchiya, Hikaru; Arai, Naoko; Tanaka, Keiji Saeki, Yasushi

    2013-07-05

    Highlights: •We succeeded to control the proteasome localization by the anchor-away technique. •Nuclear proteasome-depleted cells showed a lethal phenotype. •Cytoplasmic proteasomes are not indispensable for cell growth in dividing cells. -- Abstract: The 26S proteasome is an essential protease complex responsible for the degradation of ubiquitinated proteins in eukaryotic cells. In rapidly proliferating yeast cells, proteasomes are mainly localized in the nucleus, but the biological significance of the proteasome localization is still unclear. In this study, we investigated the relationship between the proteasome localization and the functions by the anchor-away technique, a ligand-dependent sequestration of a target protein into specific compartment(s). Anchoring of the proteasome to the plasma membrane or the ribosome resulted in conditional depletion of the nuclear proteasomes, whereas anchoring to histone resulted in the proteasome sequestration into the nucleus. We observed that the accumulation of ubiquitinated proteins in all the proteasome-targeted cells, suggesting that both the nuclear and cytoplasmic proteasomes have proteolytic functions and that the ubiquitinated proteins are produced and degraded in each compartment. Consistent with previous studies, the nuclear proteasome-depleted cells exhibited a lethal phenotype. In contrast, the nuclear sequestration of the proteasome resulted only in a mild growth defect, suggesting that the cytoplasmic proteasomes are not basically indispensable for cell growth in rapidly growing yeast cells.

  2. NAC1 regulates the recruitment of the proteasome complex into dendritic spines.

    PubMed

    Shen, Haowei; Korutla, Laxminarayana; Champtiaux, Nicholas; Toda, Shigenobu; LaLumiere, Ryan; Vallone, Joseph; Klugmann, Matthias; Blendy, Julie A; Mackler, Scott A; Kalivas, Peter W

    2007-08-15

    Coordinated proteolysis of synaptic proteins is required for synaptic plasticity, but a mechanism for recruiting the ubiquitin-proteasome system (UPS) into dendritic spines is not known. NAC1 is a cocaine-regulated transcriptional protein that was found to complex with proteins in the UPS, including cullins and Mov34. NAC1 and the proteasome were cotranslocated from the nucleus into dendritic spines in cortical neurons in response to proteasome inhibition or disinhibiting synaptic activity with bicuculline. Bicuculline also produced a progressive accumulation of the proteasome and NAC1 in the postsynaptic density. Recruitment of the proteasome into dendrites and postsynaptic density by bicuculline was prevented in neurons from mice harboring an NAC1 gene deletion or in neurons transfected with mutated NAC1 lacking the proteasome binding domain. These experiments show that NAC1 modulates the translocation of the UPS from the nucleus into dendritic spines, thereby suggesting a potential missing link in the recruitment of necessary proteolysis machinery for synaptic remodeling.

  3. Basic Leucine Zipper Protein Cnc-C Is a Substrate and Transcriptional Regulator of the Drosophila 26S Proteasome▿ †

    PubMed Central

    Grimberg, Kristian Björk; Beskow, Anne; Lundin, Daniel; Davis, Monica M.; Young, Patrick

    2011-01-01

    While the 26S proteasome is a key proteolytic complex, little is known about how proteasome levels are maintained in higher eukaryotic cells. Here we describe an RNA interference (RNAi) screen of Drosophila melanogaster that was used to identify transcription factors that may play a role in maintaining levels of the 26S proteasome. We used an RNAi library against 993 Drosophila transcription factor genes to identify genes whose suppression in Schneider 2 cells stabilized a ubiquitin-green fluorescent protein reporter protein. This screen identified Cnc (cap 'n’ collar [CNC]; basic region leucine zipper) as a candidate transcriptional regulator of proteasome component expression. In fact, 20S proteasome activity was reduced in cells depleted of cnc. Immunoblot assays against proteasome components revealed a general decline in both 19S regulatory complex and 20S proteasome subunits after RNAi depletion of this transcription factor. Transcript-specific silencing revealed that the longest of the seven transcripts for the cnc gene, cnc-C, was needed for proteasome and p97 ATPase production. Quantitative reverse transcription-PCR confirmed the role of Cnc-C in activation of transcription of genes encoding proteasome components. Expression of a V5-His-tagged form of Cnc-C revealed that the transcription factor is itself a proteasome substrate that is stabilized when the proteasome is inhibited. We propose that this single cnc gene in Drosophila resembles the ancestral gene family of mammalian nuclear factor erythroid-derived 2-related transcription factors, which are essential in regulating oxidative stress and proteolysis. PMID:21149573

  4. The effects of anti-DNA topoisomerase II drugs, etoposide and ellipticine, are modified in root meristem cells of Allium cepa by MG132, an inhibitor of 26S proteasomes.

    PubMed

    Żabka, Aneta; Winnicki, Konrad; Polit, Justyna Teresa; Maszewski, Janusz

    2015-11-01

    DNA topoisomerase II (Topo II), a highly specialized nuclear enzyme, resolves various entanglement problems concerning DNA that arise during chromatin remodeling, transcription, S-phase replication, meiotic recombination, chromosome condensation and segregation during mitosis. The genotoxic effects of two Topo II inhibitors known as potent anti-cancer drugs, etoposide (ETO) and ellipticine (EPC), were assayed in root apical meristem cells of Allium cepa. Despite various types of molecular interactions between these drugs and DNA-Topo II complexes at the chromatin level, which have a profound negative impact on the genome integrity (production of double-strand breaks, chromosomal bridges and constrictions, lagging fragments of chromosomes and their uneven segregation to daughter cell nuclei), most of the elicited changes were apparently similar, regarding both their intensity and time characteristics. No essential changes between ETO- and EPC-treated onion roots were noticed in the frequency of G1-, S-, G2-and M-phase cells, nuclear morphology, chromosome structures, tubulin-microtubule systems, extended distribution of mitosis-specific phosphorylation sites of histone H3, and the induction of apoptosis-like programmed cell death (AL-PCD). However, the important difference between the effects induced by the ETO and EPC concerns their catalytic activities in the presence of MG132 (proteasome inhibitor engaged in Topo II-mediated formation of cleavage complexes) and relates to the time-variable changes in chromosomal aberrations and AL-PCD rates. This result implies that proteasome-dependent mechanisms may contribute to the course of physiological effects generated by DNA lesions under conditions that affect the ability of plant cells to resolve topological problems that associated with the nuclear metabolic activities. PMID:26233708

  5. Surface induced dissociation yields substructure of Methanosarcina thermophila 20S proteasome complexes

    PubMed Central

    Ma, Xin; Loo, Joseph A.; Wysocki, Vicki H.

    2015-01-01

    Native mass spectrometry (MS) and surface induced dissociation (SID) have been applied to study the stoichiometry and quaternary structure of non-covalent protein complexes. In this study, Methanosarcina thermophila 20S proteasome, which consists of four stacked heptameric rings (α7β7β7α7 symmetry), has been selected to explore the SID dissociation pattern of a complicated stacked ring protein complex. SID produces both α and β subunits while collision induced dissociation (CID) produces only highly charged α subunit. In addition, the charge reduced 20S proteasome produces the α7β7 fragment, reflecting the stacked ring topology of the complex. The combination of SID and charge reduction is shown to be a powerful tool for the study of protein complex structure. PMID:26005366

  6. 1.15 Å resolution structure of the proteasome-assembly chaperone Nas2 PDZ domain

    SciTech Connect

    Singh, Chingakham R.; Lovell, Scott; Mehzabeen, Nurjahan; Chowdhury, Wasimul Q.; Geanes, Eric S.; Battaile, Kevin P.; Roelofs, Jeroen

    2014-03-25

    The proteasome-assembly chaperone Nas2 binds to the proteasome subunit Rpt5 using its PDZ domain. The structure of the Nas2 PDZ domain has been determined. The 26S proteasome is a 2.5 MDa protease dedicated to the degradation of ubiquitinated proteins in eukaryotes. The assembly of this complex containing 66 polypeptides is assisted by at least nine proteasome-specific chaperones. One of these, Nas2, binds to the proteasomal AAA-ATPase subunit Rpt5. The PDZ domain of Nas2 binds to the C-terminal tail of Rpt5; however, it does not require the C-terminus of Rpt5 for binding. Here, the 1.15 Å resolution structure of the PDZ domain of Nas2 is reported. This structure will provide a basis for further insights regarding the structure and function of Nas2 in proteasome assembly.

  7. 1,10-Phenanthroline promotes copper complexes into tumor cells and induces apoptosis by inhibiting the proteasome activity.

    PubMed

    Zhang, Zhen; Bi, Caifeng; Schmitt, Sara M; Fan, Yuhua; Dong, Lili; Zuo, Jian; Dou, Q Ping

    2012-12-01

    Indole-3-acetic acid and indole-3-propionic acid, two potent natural plant growth hormones, have attracted attention as promising prodrugs in cancer therapy. Copper is known to be a cofactor essential for tumor angiogenesis. We have previously reported that taurine, L-glutamine, and quinoline-2-carboxaldehyde Schiff base copper complexes inhibit cell proliferation and proteasome activity in human cancer cells. In the current study, we synthesized two types of copper complexes, dinuclear complexes and ternary complexes, to investigate whether a certain structure could easily carry copper into cancer cells and consequently inhibit tumor proteasome activity and induce apoptosis. We observed that ternary complexes binding with 1,10-phenanthroline are more potent proteasome inhibitors and apoptosis inducers than dinuclear complexes in PC-3 human prostate cancer cells. Furthermore, the ternary complexes potently inhibit proteasome activity before induction of apoptosis in MDA-MB-231 human breast cancer cells, but not in nontumorigenic MCF-10A cells. Our results suggest that copper complexes binding with 1,10-phenanthroline as the third ligand could serve as potent, selective proteasome inhibitors and apoptosis inducers in tumor cells, and that the ternary complexes may be good potential anticancer drugs.

  8. 1,10-Phenanthroline promotes copper complexes into tumor cells and induces apoptosis by inhibiting the proteasome activity.

    PubMed

    Zhang, Zhen; Bi, Caifeng; Schmitt, Sara M; Fan, Yuhua; Dong, Lili; Zuo, Jian; Dou, Q Ping

    2012-12-01

    Indole-3-acetic acid and indole-3-propionic acid, two potent natural plant growth hormones, have attracted attention as promising prodrugs in cancer therapy. Copper is known to be a cofactor essential for tumor angiogenesis. We have previously reported that taurine, L-glutamine, and quinoline-2-carboxaldehyde Schiff base copper complexes inhibit cell proliferation and proteasome activity in human cancer cells. In the current study, we synthesized two types of copper complexes, dinuclear complexes and ternary complexes, to investigate whether a certain structure could easily carry copper into cancer cells and consequently inhibit tumor proteasome activity and induce apoptosis. We observed that ternary complexes binding with 1,10-phenanthroline are more potent proteasome inhibitors and apoptosis inducers than dinuclear complexes in PC-3 human prostate cancer cells. Furthermore, the ternary complexes potently inhibit proteasome activity before induction of apoptosis in MDA-MB-231 human breast cancer cells, but not in nontumorigenic MCF-10A cells. Our results suggest that copper complexes binding with 1,10-phenanthroline as the third ligand could serve as potent, selective proteasome inhibitors and apoptosis inducers in tumor cells, and that the ternary complexes may be good potential anticancer drugs. PMID:23053530

  9. Evolution of proteasome regulators in eukaryotes.

    PubMed

    Fort, Philippe; Kajava, Andrey V; Delsuc, Fredéric; Coux, Olivier

    2015-05-01

    All living organisms require protein degradation to terminate biological processes and remove damaged proteins. One such machine is the 20S proteasome, a specialized barrel-shaped and compartmentalized multicatalytic protease. The activity of the 20S proteasome generally requires the binding of regulators/proteasome activators (PAs), which control the entrance of substrates. These include the PA700 (19S complex), which assembles with the 20S and forms the 26S proteasome and allows the efficient degradation of proteins usually labeled by ubiquitin tags, PA200 and PA28, which are involved in proteolysis through ubiquitin-independent mechanisms and PI31, which was initially identified as a 20S inhibitor in vitro. Unlike 20S proteasome, shown to be present in all Eukaryotes and Archaea, the evolutionary history of PAs remained fragmentary. Here, we made a comprehensive survey and phylogenetic analyses of the four types of regulators in 17 clades covering most of the eukaryotic supergroups. We found remarkable conservation of each PA700 subunit in all eukaryotes, indicating that the current complex PA700 structure was already set up in the last eukaryotic common ancestor (LECA). Also present in LECA, PA200, PA28, and PI31 showed a more contrasted evolutionary picture, because many lineages have subsequently lost one or two of them. The paramount conservation of PA700 composition in all eukaryotes and the dynamic evolution of PA200, PA28, and PI31 are discussed in the light of current knowledge on their physiological roles.

  10. Evolution of Proteasome Regulators in Eukaryotes

    PubMed Central

    Fort, Philippe; Kajava, Andrey V.; Delsuc, Fredéric; Coux, Olivier

    2015-01-01

    All living organisms require protein degradation to terminate biological processes and remove damaged proteins. One such machine is the 20S proteasome, a specialized barrel-shaped and compartmentalized multicatalytic protease. The activity of the 20S proteasome generally requires the binding of regulators/proteasome activators (PAs), which control the entrance of substrates. These include the PA700 (19S complex), which assembles with the 20S and forms the 26S proteasome and allows the efficient degradation of proteins usually labeled by ubiquitin tags, PA200 and PA28, which are involved in proteolysis through ubiquitin-independent mechanisms and PI31, which was initially identified as a 20S inhibitor in vitro. Unlike 20S proteasome, shown to be present in all Eukaryotes and Archaea, the evolutionary history of PAs remained fragmentary. Here, we made a comprehensive survey and phylogenetic analyses of the four types of regulators in 17 clades covering most of the eukaryotic supergroups. We found remarkable conservation of each PA700 subunit in all eukaryotes, indicating that the current complex PA700 structure was already set up in the last eukaryotic common ancestor (LECA). Also present in LECA, PA200, PA28, and PI31 showed a more contrasted evolutionary picture, because many lineages have subsequently lost one or two of them. The paramount conservation of PA700 composition in all eukaryotes and the dynamic evolution of PA200, PA28, and PI31 are discussed in the light of current knowledge on their physiological roles. PMID:25943340

  11. Pyrrolidine dithiocarbamate-zinc(II) and -copper(II) complexes induce apoptosis in tumor cells by inhibiting the proteasomal activity☆

    PubMed Central

    Milacic, Vesna; Chen, Di; Giovagnini, Lorena; Diez, Alejandro; Fregona, Dolores; Dou, Q. Ping

    2013-01-01

    Zinc and copper are trace elements essential for proper folding, stabilization and catalytic activity of many metalloenzymes in living organisms. However, disturbed zinc and copper homeostasis is reported in many types of cancer. We have previously demonstrated that copper complexes induced proteasome inhibition and apoptosis in cultured human cancer cells. In the current study we hypothesized that zinc complexes could also inhibit the proteasomal chymotrypsin-like activity responsible for subsequent apoptosis induction. We first showed that zinc(II) chloride was able to inhibit the chymotrypsin-like activity of a purified 20S proteasome with an IC50 value of 13.8 μM, which was less potent than copper(II) chloride (IC50 5.3 μM). We then compared the potencies of a pyrrolidine dithiocarbamate (PyDT)-zinc(II) complex and a PyDT-copper(II) complex to inhibit cellular proteasomal activity, suppress proliferation and induce apoptosis in various human breast and prostate cancer cell lines. Consistently, zinc complex was less potent than copper complex in inhibiting the proteasome and inducing apoptosis. Additionally, zinc and copper complexes appear to use somewhat different mechanisms to kill tumor cells. Zinc complexes were able to activate calpain-, but not caspase-3-dependent pathway, while copper complexes were able to induce activation of both proteases. Furthermore, the potencies of these PyDT-metal complexes depend on the nature of metals and also on the ratio of PyDT to the metal ion within the complex, which probably affects their stability and availability for interacting with and inhibiting the proteasome in tumor cells. PMID:18501397

  12. Pyrrolidine dithiocarbamate-zinc(II) and -copper(II) complexes induce apoptosis in tumor cells by inhibiting the proteasomal activity

    SciTech Connect

    Milacic, Vesna; Chen Di; Giovagnini, Lorena; Diez, Alejandro; Fregona, Dolores; Dou, Q. Ping

    2008-08-15

    Zinc and copper are trace elements essential for proper folding, stabilization and catalytic activity of many metalloenzymes in living organisms. However, disturbed zinc and copper homeostasis is reported in many types of cancer. We have previously demonstrated that copper complexes induced proteasome inhibition and apoptosis in cultured human cancer cells. In the current study we hypothesized that zinc complexes could also inhibit the proteasomal chymotrypsin-like activity responsible for subsequent apoptosis induction. We first showed that zinc(II) chloride was able to inhibit the chymotrypsin-like activity of a purified 20S proteasome with an IC{sub 50} value of 13.8 {mu}M, which was less potent than copper(II) chloride (IC{sub 50} 5.3 {mu}M). We then compared the potencies of a pyrrolidine dithiocarbamate (PyDT)-zinc(II) complex and a PyDT-copper(II) complex to inhibit cellular proteasomal activity, suppress proliferation and induce apoptosis in various human breast and prostate cancer cell lines. Consistently, zinc complex was less potent than copper complex in inhibiting the proteasome and inducing apoptosis. Additionally, zinc and copper complexes appear to use somewhat different mechanisms to kill tumor cells. Zinc complexes were able to activate calpain-, but not caspase-3-dependent pathway, while copper complexes were able to induce activation of both proteases. Furthermore, the potencies of these PyDT-metal complexes depend on the nature of metals and also on the ratio of PyDT to the metal ion within the complex, which probably affects their stability and availability for interacting with and inhibiting the proteasome in tumor cells.

  13. Pyrrolidine dithiocarbamate-zinc(II) and -copper(II) complexes induce apoptosis in tumor cells by inhibiting the proteasomal activity.

    PubMed

    Milacic, Vesna; Chen, Di; Giovagnini, Lorena; Diez, Alejandro; Fregona, Dolores; Dou, Q Ping

    2008-08-15

    Zinc and copper are trace elements essential for proper folding, stabilization and catalytic activity of many metalloenzymes in living organisms. However, disturbed zinc and copper homeostasis is reported in many types of cancer. We have previously demonstrated that copper complexes induced proteasome inhibition and apoptosis in cultured human cancer cells. In the current study we hypothesized that zinc complexes could also inhibit the proteasomal chymotrypsin-like activity responsible for subsequent apoptosis induction. We first showed that zinc(II) chloride was able to inhibit the chymotrypsin-like activity of a purified 20S proteasome with an IC(50) value of 13.8 microM, which was less potent than copper(II) chloride (IC(50) 5.3 microM). We then compared the potencies of a pyrrolidine dithiocarbamate (PyDT)-zinc(II) complex and a PyDT-copper(II) complex to inhibit cellular proteasomal activity, suppress proliferation and induce apoptosis in various human breast and prostate cancer cell lines. Consistently, zinc complex was less potent than copper complex in inhibiting the proteasome and inducing apoptosis. Additionally, zinc and copper complexes appear to use somewhat different mechanisms to kill tumor cells. Zinc complexes were able to activate calpain-, but not caspase-3-dependent pathway, while copper complexes were able to induce activation of both proteases. Furthermore, the potencies of these PyDT-metal complexes depend on the nature of metals and also on the ratio of PyDT to the metal ion within the complex, which probably affects their stability and availability for interacting with and inhibiting the proteasome in tumor cells. PMID:18501397

  14. Subcellular Distribution and Dynamics of Active Proteasome Complexes Unraveled by a Workflow Combining in Vivo Complex Cross-Linking and Quantitative Proteomics*

    PubMed Central

    Fabre, Bertrand; Lambour, Thomas; Delobel, Julien; Amalric, François; Monsarrat, Bernard; Burlet-Schiltz, Odile; Bousquet-Dubouch, Marie-Pierre

    2013-01-01

    Through protein degradation, the proteasome plays fundamental roles in different cell compartments. Although the composition of the 20S catalytic core particle (CP) has been well documented, little is known about the composition and dynamics of the regulatory complexes that play a crucial role in its activity, or about how they associate with the CP in different cell compartments, different cell lines, and in response to external stimuli. Because of difficulties performing acceptable cell fractionation while maintaining complex integrity, it has been challenging to characterize proteasome complexes by proteomic approaches. Here, we report an integrated protocol, combining a cross-linking procedure on intact cells with cell fractionation, proteasome immuno-purification, and robust label-free quantitative proteomic analysis by mass spectrometry to determine the distribution and dynamics of cellular proteasome complexes in leukemic cells. Activity profiles of proteasomes were correlated fully with the composition of protein complexes and stoichiometry. Moreover, our results suggest that, at the subcellular level, proteasome function is regulated by dynamic interactions between the 20S CP and its regulatory proteins—which modulate proteasome activity, stability, localization, or substrate uptake—rather than by profound changes in 20S CP composition. Proteasome plasticity was observed both in the 20S CP and in its network of interactions following IFNγ stimulation. The fractionation protocol also revealed specific proteolytic activities and structural features of low-abundance microsomal proteasomes from U937 and KG1a cells. These could be linked to their important roles in the endoplasmic reticulum associated degradation pathway in leukemic cells. PMID:23242550

  15. Proteomic profiling of expression of proteasomal subunits from livers of mice treated with diethylnitrosamine.

    PubMed

    Yuan, Fuqiang; Lu, Jia; You, Pan; Yang, Zengming; Yang, Pengyuan; Ma, Qiling; Tao, Tao

    2013-01-01

    The liver plays a central role in transforming and clearing chemicals and is susceptible to the toxicity from these agents. Diethylnitrosamine is metabolized primarily in the liver by cytochrome P-450 and can cause DNA damage. The 26S proteasome is a large proteolytic complex that degrades ubiquitinated proteins, and regulates many physiological processes. We used proteomics-based approaches to examine expressional differences of liver proteasomal subunits from diethylnitrosamine-treated mice. The expression of most proteasomal subunits was observed to be upregulated in the analysis of 2DE and MALDI-TOF MS/MS. Some of these differentially expressed proteasomal subunits were further confirmed by Western blot, RT-PCR, and immunohistochemistry. Our results provided useful information on the relationship between the proteasomal complex and related diseases.

  16. Uptake of pathogenic intracellular bacteria into human and murine macrophages downregulates the eukaryotic 26S protease complex ATPase gene.

    PubMed Central

    Schwan, W R; Kopecko, D J

    1997-01-01

    A differential PCR technique detected the transcriptional downregulation of the mss1 (mammalian suppressor of svg1) gene in murine J774A.1 macrophages following uptake of Salmonella typhimurium. This downregulation was also noted after entry of virulent strains of Listeria monocytogenes and Shigella flexneri, two other facultative intracellular bacterial species. In contrast, uptake of nonpathogenic Escherichia coli HB101, an aroA mutant of S. typhimurium, an invasion plasmid antigen B (ipaB) mutant of S. flexneri, hemolysin (hly) and positive-regulatory factor (prfA) mutants of L. monocytogenes, or latex beads produced mss1 expression levels similar to that of uninfected macrophages. Transcriptional downregulation of mss1 was also shown to occur in S. typhimurium-infected human U937 cells, albeit to an extent less than that in murine J774A.1 cells. In addition to a lower abundance of mss1 transcripts, we also demonstrate for the first time that less MSS1 protein was detected in intracellular-bacterium-infected cells (beginning about 1 h after entry of the pathogenic intracellular bacteria) than in noninfected cells. Some strains with specific mutations in characterized genes, such as an ipaB mutant strain of S. flexneri and an hly mutant strain of L. monocytogenes, did not elicit this lower level of expression of MSS1 protein. The decrease in MSS1 within infected macrophages resulted in an accumulation of ubiquitinated proteins, substrates for MSS1. Since MSS1 comprises the ATPase part of the 26S protease that degrades ubiquitinated proteins, we hypothesize that downregulation of the mss1 gene by intracellular bacterial entry may help subvert the host cell's normal defensive response to internalized bacteria, allowing the intracellular bacteria to survive. PMID:9353061

  17. Clioquinol and pyrrolidine dithiocarbamate complex with copper to form proteasome inhibitors and apoptosis inducers in human breast cancer cells

    PubMed Central

    Daniel, Kenyon G; Chen, Di; Orlu, Shirley; Cui, Qiuzhi Cindy; Miller, Fred R; Dou, Q Ping

    2005-01-01

    Introduction A physiological feature of many tumor tissues and cells is the tendency to accumulate high concentrations of copper. While the precise role of copper in tumors is cryptic, copper, but not other trace metals, is required for angiogenesis. We have recently reported that organic copper-containing compounds, including 8-hydroxyquinoline-copper(II) and 5,7-dichloro-8-hydroxyquinoline-copper(II), comprise a novel class of proteasome inhibitors and tumor cell apoptosis inducers. In the current study, we investigate whether clioquinol (CQ), an analog of 8-hydroxyquinoline and an Alzheimer's disease drug, and pyrrolidine dithiocarbamate (PDTC), a known copper-binding compound and antioxidant, can interact with copper to form cancer-specific proteasome inhibitors and apoptosis inducers in human breast cancer cells. Tetrathiomolybdate (TM), a strong copper chelator currently being tested in clinical trials, is used as a comparison. Methods Breast cell lines, normal, immortalized MCF-10A, premalignant MCF10AT1K.cl2, and malignant MCF10DCIS.com and MDA-MB-231, were treated with CQ or PDTC with or without prior interaction with copper, followed by measurement of proteasome inhibition and cell death. Inhibition of the proteasome was determined by levels of the proteasomal chymotrypsin-like activity and ubiquitinated proteins in protein extracts of the treated cells. Apoptotic cell death was measured by morphological changes, Hoechst staining, and poly(ADP-ribose) polymerase cleavage. Results When in complex with copper, both CQ and PDTC, but not TM, can inhibit the proteasome chymotrypsin-like activity, block proliferation, and induce apoptotic cell death preferentially in breast cancer cells, less in premalignant breast cells, but are non-toxic to normal/non-transformed breast cells at the concentrations tested. In contrast, CQ, PDTC, TM or copper alone had no effects on any of the cells. Breast premalignant or cancer cells that contain copper at concentrations

  18. Selective anticancer copper(II)-mixed ligand complexes: targeting of ROS and proteasomes.

    PubMed

    Ng, Chew Hee; Kong, Siew Ming; Tiong, Yee Lian; Maah, Mohd Jamil; Sukram, Nurhazwani; Ahmad, Munirah; Khoo, Alan Soo Beng

    2014-04-01

    Copper compounds can be alternatives to platinum-based anticancer drugs. This study investigated the effects of a series of ternary copper(II) complexes, [Cu(phen)(aa)(H2O)]NO3·xH2O 1-4 (phen = 1,10-phenanthroline; aa = gly (1), DL-ala (2), sar (3), C-dmg (4)), on metastatic and cisplatin-resistant MDA-MB-231 breast cancer cells and MCF10A non-cancerous breast cells, and some aspects of the mechanisms. These complexes were distinctively more antiproliferative towards and induced greater apoptotic cell death in MDA-MB-231 than in MCF10A cells. 2 and 4 could induce cell cycle arrest only in cancer cells. Further evidence from DCFH-DA assay showed higher induction of reactive oxygen species (ROS) in treated cancer cells but minimal ROS increase in normal cells. DNA double-strand breaks, via a γ-H2AX assay, were only detected in cancer cells treated with 5 μM of the complexes. These complexes poorly inhibited chymotrypsin-like activity in the 20S rabbit proteasome while they did not inhibit the three proteolytic sites of MDA-MB-231 cells at 10 μM. However, the complexes could inhibit degradation of ubiquinated proteins of MDA-MB-231 cells. In addition, compound 4 was found to be effective against cervical (Hela), ovarian (SKOV3), lung (A549, PC9), NPC (Hone1, HK1, C666-1), breast (MCF7, T47D), lymphoma and leukemia (Nalmawa, HL60) and colorectal (SW480, SW48, HCT118) cancer cell lines with IC50 values (24 h) in the 1.7-19.0 μM range. Single dose NCI60 screening of 4 showed the complex to be highly cytotoxic to most cancer cell types and more effective than cisplatin.

  19. Genetics of proteasome diseases.

    PubMed

    Gomes, Aldrin V

    2013-01-01

    The proteasome is a large, multiple subunit complex that is capable of degrading most intracellular proteins. Polymorphisms in proteasome subunits are associated with cardiovascular diseases, diabetes, neurological diseases, and cancer. One polymorphism in the proteasome gene PSMA6 (-8C/G) is associated with three different diseases: type 2 diabetes, myocardial infarction, and coronary artery disease. One type of proteasome, the immunoproteasome, which contains inducible catalytic subunits, is adapted to generate peptides for antigen presentation. It has recently been shown that mutations and polymorphisms in the immunoproteasome catalytic subunit PSMB8 are associated with several inflammatory and autoinflammatory diseases including Nakajo-Nishimura syndrome, CANDLE syndrome, and intestinal M. tuberculosis infection. This comprehensive review describes the disease-related polymorphisms in proteasome genes associated with human diseases and the physiological modulation of proteasome function by these polymorphisms. Given the large number of subunits and the central importance of the proteasome in human physiology as well as the fast pace of detection of proteasome polymorphisms associated with human diseases, it is likely that other polymorphisms in proteasome genes associated with diseases will be detected in the near future. While disease-associated polymorphisms are now readily discovered, the challenge will be to use this genetic information for clinical benefit. PMID:24490108

  20. Genetics of Proteasome Diseases

    PubMed Central

    Gomes, Aldrin V.

    2013-01-01

    The proteasome is a large, multiple subunit complex that is capable of degrading most intracellular proteins. Polymorphisms in proteasome subunits are associated with cardiovascular diseases, diabetes, neurological diseases, and cancer. One polymorphism in the proteasome gene PSMA6 (−8C/G) is associated with three different diseases: type 2 diabetes, myocardial infarction, and coronary artery disease. One type of proteasome, the immunoproteasome, which contains inducible catalytic subunits, is adapted to generate peptides for antigen presentation. It has recently been shown that mutations and polymorphisms in the immunoproteasome catalytic subunit PSMB8 are associated with several inflammatory and autoinflammatory diseases including Nakajo-Nishimura syndrome, CANDLE syndrome, and intestinal M. tuberculosis infection. This comprehensive review describes the disease-related polymorphisms in proteasome genes associated with human diseases and the physiological modulation of proteasome function by these polymorphisms. Given the large number of subunits and the central importance of the proteasome in human physiology as well as the fast pace of detection of proteasome polymorphisms associated with human diseases, it is likely that other polymorphisms in proteasome genes associated with diseases will be detected in the near future. While disease-associated polymorphisms are now readily discovered, the challenge will be to use this genetic information for clinical benefit. PMID:24490108

  1. Base-CP proteasome can serve as a platform for stepwise lid formation.

    PubMed

    Yu, Zanlin; Livnat-Levanon, Nurit; Kleifeld, Oded; Mansour, Wissam; Nakasone, Mark A; Castaneda, Carlos A; Dixon, Emma K; Fushman, David; Reis, Noa; Pick, Elah; Glickman, Michael H

    2015-01-27

    26S proteasome, a major regulatory protease in eukaryotes, consists of a 20S proteolytic core particle (CP) capped by a 19S regulatory particle (RP). The 19S RP is divisible into base and lid sub-complexes. Even within the lid, subunits have been demarcated into two modules: module 1 (Rpn5, Rpn6, Rpn8, Rpn9 and Rpn11), which interacts with both CP and base sub-complexes and module 2 (Rpn3, Rpn7, Rpn12 and Rpn15) that is attached mainly to module 1. We now show that suppression of RPN11 expression halted lid assembly yet enabled the base and 20S CP to pre-assemble and form a base-CP. A key role for Regulatory particle non-ATPase 11 (Rpn11) in bridging lid module 1 and module 2 subunits together is inferred from observing defective proteasomes in rpn11-m1, a mutant expressing a truncated form of Rpn11 and displaying mitochondrial phenotypes. An incomplete lid made up of five module 1 subunits attached to base-CP was identified in proteasomes isolated from this mutant. Re-introducing the C-terminal portion of Rpn11 enabled recruitment of missing module 2 subunits. In vitro, module 1 was reconstituted stepwise, initiated by Rpn11-Rpn8 heterodimerization. Upon recruitment of Rpn6, the module 1 intermediate was competent to lock into base-CP and reconstitute an incomplete 26S proteasome. Thus, base-CP can serve as a platform for gradual incorporation of lid, along a proteasome assembly pathway. Identification of proteasome intermediates and reconstitution of minimal functional units should clarify aspects of the inner workings of this machine and how multiple catalytic processes are synchronized within the 26S proteasome holoenzymes.

  2. Proteasome Activation is a Mechanism for Pyrazolone Small Molecules Displaying Therapeutic Potential in Amyotrophic Lateral Sclerosis

    PubMed Central

    2015-01-01

    Amyotrophic lateral sclerosis (ALS) is a progressive and ultimately fatal neurodegenerative disease. Pyrazolone containing small molecules have shown significant disease attenuating efficacy in cellular and murine models of ALS. Pyrazolone based affinity probes were synthesized to identify high affinity binding partners and ascertain a potential biological mode of action. Probes were confirmed to be neuroprotective in PC12-SOD1G93A cells. PC12-SOD1G93A cell lysates were used for protein pull-down, affinity purification, and subsequent proteomic analysis using LC-MS/MS. Proteomics identified the 26S proteasome regulatory subunit 4 (PSMC1), 26S proteasome regulatory subunit 6B (PSMC4), and T-complex protein 1 (TCP-1) as putative protein targets. Coincubation with appropriate competitors confirmed the authenticity of the proteomics results. Activation of the proteasome by pyrazolones was demonstrated in the absence of exogenous proteasome inhibitor and by restoration of cellular protein degradation of a fluorogenic proteasome substrate in PC12-SOD1G93A cells. Importantly, supplementary studies indicated that these molecules do not induce a heat shock response. We propose that pyrazolones represent a rare class of molecules that enhance proteasomal activation in the absence of a heat shock response and may have therapeutic potential in ALS. PMID:25001311

  3. A monoclonal antibody that distinguishes latent and active forms of the proteasome (multicatalytic proteinase complex)

    NASA Technical Reports Server (NTRS)

    Weitman, D.; Etlinger, J. D.

    1992-01-01

    Monoclonal antibodies (mAbs) were generated to proteasome purified from human erythrocytes. Five of six proteasome-specific mAbs reacted with three subunits in the molecular mass range of 25-28 kDa, indicating a common epitope. The other mAb (AP5C10) exhibited a more restricted reactivity, recognizing a 32-kDa subunit of the proteasome purified in its latent state. However, when the proteasome is isolated in its active state, AP5C10 reacts with a 28-kDa subunit, evidence for processing of the proteasome subunits during purification. Purified proteasome preparations which exhibited partial latency have both AP5C10 reactive subunits. Although the 32-kDa subunit appears required for latency, loss of this component and generation of the 28-kDa component are not obligatory for activation. The 32- and 28-kDa subunits can each be further resolved into three components by isoelectric focusing. The apparent loss of 4 kDa during the conversion of the 32- to 28-kDa subunit is accompanied by a shift to a more basic pI for each polypeptide. Western blots of the early steps of proteasome purification reveal an AP5C10-reactive protein at 41 kDa. This protein was separated from proteasomes by sizing chromatography and may represent a pool of precursor subunits. Since the 32-kDa subunit appears necessary for latency, it is speculated to play a regulatory role in ATP-dependent proteolytic activity.

  4. The P25 pathogenicity factor of Beet necrotic yellow vein virus targets the sugar beet 26S proteasome involved in the induction of a hypersensitive resistance response via interaction with an F-box protein.

    PubMed

    Thiel, Heike; Hleibieh, Kamal; Gilmer, David; Varrelmann, Mark

    2012-08-01

    P25, a Beet necrotic yellow vein virus (BNYVV) pathogenicity factor, interacts with a sugar beet protein with high homology to Arabidopsis thaliana kelch repeat containing F-box family proteins (FBK) of unknown function in yeast. FBK are members of the Skp1-Cullin-F-box (SCF) complex that mediate protein degradation. Here, we confirm this sugar beet FBK-P25 interaction in vivo and in vitro and provide evidence for in planta interaction and similar subcellular distribution in Nicotiana tabacum leaf cells. P25 even interacts with an FBK from A. thaliana, a BNYVV nonhost. FBK functional classification was possible by demonstrating the interaction with A. thaliana orthologs of Skp1-like (ASK) genes, a member of the SCF E3 ligase. By means of a yeast two-hybrid bridging assay, a direct effect of P25 on SCF-complex formation involving ASK1 protein was demonstrated. FBK transient Agrobacterium tumefaciens-mediated expression in N. benthamiana leaves induced a hypersensitive response. The full-length F-box protein consists of one F-box domain followed by two kelch repeats, which alone were unable to interact with P25 in yeast and did not lead to cell-death induction. The results support the idea that P25 is involved in virus pathogenicity in sugar beet and suggest suppression of resistance response. PMID:22512382

  5. Association of metals and proteasome activity in erythrocytes of prostate cancer patients and controls.

    PubMed

    Neslund-Dudas, Christine; Mitra, Bharati; Kandegedara, Ashoka; Chen, Di; Schmitt, Sara; Shen, Min; Cui, Qiuzhi; Rybicki, Benjamin A; Dou, Q Ping

    2012-10-01

    Information is lacking on the effects toxic environmental metals may have on the 26S proteasome. The proteasome is a primary vehicle for selective degradation of damaged proteins in a cell and due to its role in cell proliferation, inhibition of the proteasome has become a target for cancer therapy. Metals are essential to the proteasome's normal function and have been used within proteasome-inhibiting complexes for cancer therapy. This study evaluated the association of erythrocyte metal levels and proteasome chymotrypsin-like (CT-like) activity in age- and race-matched prostate cancer cases (n=61) and controls (n=61). Erythrocyte metals were measured by inductively coupled plasma mass spectrometry (ICP-MS). CT-like activity was measured by proteasome activity assay using a fluorogenic peptide substrate. Among cases, significant correlations between individual toxic metals were observed (r(arsenic-cadmium)=0.49, p<0.001; r(arsenic-lead)=0.26, p=0.04, r(cadmium-lead) 0.53, p<0.001), but there were no significant associations between metals and CT-like activity. In contrast, within controls there were no significant associations between metals, however, copper and lead levels were significantly associated with CT-like activity. The associations between copper and lead and proteasome activity (r(copper-CT-like)=-0.28, p=0.002 ; r(lead-CT-like)=0.23, p=0.011) remained significant in multivariable models that included all of the metals. These findings suggest that biologically essential metals and toxic metals may affect proteasome activity in healthy controls and, further, show that prostate cancer cases and controls differ in associations between metals and proteasome activity in erythrocytes. More research on toxic metals and the proteasome in prostate cancer is warranted.

  6. The tumor proteasome as a novel target for gold(III) complexes: implications for breast cancer therapy

    PubMed Central

    Milacic, Vesna; Dou, Q. Ping

    2009-01-01

    Although cisplatin plays a vital role in the treatment of several types of human cancer, its wide use is limited by the development of drug resistance and associated toxic side effects. Gold and gold complexes have been used to treat a wide range of ailments for many centuries. In recent years, the use of gold(III) complexes as an alternative to cisplatin treatment was proposed due to the similarities of gold and platinum. Gold(III) is isoelectronic with platinum(II) and gold(III) complexes have the same square-planar geometries as platinum(II) complexes, such as cisplatin. Although it was originally thought that gold(III) complexes might have the same molecular target as cisplatin, several lines of data indicated that proteins, rather than DNA, are targeted by gold complexes. We have recently evaluated cytotoxic and anti-cancer effects of several gold(III) dithiocarbamates against human breast cancer cells in vitro and in vivo. We have identified the tumor proteasome as an important target for gold(III) complexes and have shown that proteasome inhibition by gold(III) complexes is associated with apoptosis induction in breast cancer cells in vitro and in vivo. Furthermore, treatment of human breast tumor-bearing nude mice with a gold(III) dithiocarbamate complex was associated with tumor growth inhibition, supporting the significance of its potential development for breast cancer treatment. PMID:20047011

  7. L-Ornithine Schiff base-copper and -cadmium complexes as new proteasome inhibitors and apoptosis inducers in human cancer cells.

    PubMed

    Zhang, Zhongyu; Bi, Caifeng; Fan, Yuhua; Zhang, Nan; Deshmukh, Rahul; Yan, Xingchen; Lv, Xiuwen; Zhang, Pengfei; Zhang, Xia; Dou, Q Ping

    2015-01-01

    Ubiquitin-proteasome system (UPS) plays a crucial role in many cellular processes such as cell cycle, proliferation and apoptosis. Aberrant activation of UPS may result in cellular transformation or other altered pathological conditions. Previous studies have shown that metal-based complexes could inhibit proteasome activity and induce apoptosis in certain human cancer cells. In the current study, we report that the cadmium and copper complexes with heterocycle-ornithine Schiff base are potent inhibitors of proteasomal chymotrypsin-like (CT-like) activity, leading to induction of apoptosis in cancer cells. Two novel copper-containing complexes and two novel cadmium-containing complexes with different heterocycle-ornithine Schiff base structures as ligands were synthesized and characterized. We found that complexes Cu1, Cd1 and Cd2 show proteasome-inhibitory activities in human breast cancer MDA-MB-231 and human prostate cancer LNCaP cells, resulting in the accumulation of p27, a natural proteasome substrate and other ubiquitinated proteins, followed by the induction of apoptosis. Our results suggest that metal complexes with heterocycle-ornithine Schiff base have proteasome-inhibitory capabilities and have the potential to be developed into novel anticancer drugs.

  8. The proteasome assembly line

    PubMed Central

    Madura, Kiran

    2013-01-01

    The assembly of the proteasome — the cellular machine that eliminates unwanted proteins — is a carefully choreographed affair, involving a complex sequence of steps overseen by dedicated protein chaperones. PMID:19516331

  9. Bacterial Proteasomes

    PubMed Central

    Jastrab, Jordan B.; Darwin, K. Heran

    2015-01-01

    Interest in bacterial proteasomes was sparked by the discovery that proteasomal degradation is required for the pathogenesis of Mycobacterium tuberculosis, one of the world's deadliest pathogens. Although bacterial proteasomes are structurally similar to their eukaryotic and archaeal homologs, there are key differences in their mechanisms of assembly, activation, and substrate targeting for degradation. In this article, we compare and contrast bacterial proteasomes with their archaeal and eukaryotic counterparts, and we discuss recent advances in our understanding of how bacterial proteasomes function to influence microbial physiology. PMID:26488274

  10. Copper(II) ions affect the gating dynamics of the 20S proteasome: a molecular and in cell study.

    PubMed

    Santoro, Anna Maria; Monaco, Irene; Attanasio, Francesco; Lanza, Valeria; Pappalardo, Giuseppe; Tomasello, Marianna Flora; Cunsolo, Alessandra; Rizzarelli, Enrico; De Luigi, Ada; Salmona, Mario; Milardi, Danilo

    2016-01-01

    Due to their altered metabolism cancer cells are more sensitive to proteasome inhibition or changes of copper levels than normal cells. Thus, the development of copper complexes endowed with proteasome inhibition features has emerged as a promising anticancer strategy. However, limited information is available about the exact mechanism by which copper inhibits proteasome. Here we show that Cu(II) ions simultaneously inhibit the three peptidase activities of isolated 20S proteasomes with potencies (IC50) in the micromolar range. Cu(II) ions, in cell-free conditions, neither catalyze red-ox reactions nor disrupt the assembly of the 20S proteasome but, rather, promote conformational changes associated to impaired channel gating. Notably, HeLa cells grown in a Cu(II)-supplemented medium exhibit decreased proteasome activity. This effect, however, was attenuated in the presence of an antioxidant. Our results suggest that if, on one hand, Cu(II)-inhibited 20S activities may be associated to conformational changes that favor the closed state of the core particle, on the other hand the complex effect induced by Cu(II) ions in cancer cells is the result of several concurring events including ROS-mediated proteasome flooding, and disassembly of the 26S proteasome into its 20S and 19S components. PMID:27633879

  11. Copper(II) ions affect the gating dynamics of the 20S proteasome: a molecular and in cell study

    PubMed Central

    Santoro, Anna Maria; Monaco, Irene; Attanasio, Francesco; Lanza, Valeria; Pappalardo, Giuseppe; Tomasello, Marianna Flora; Cunsolo, Alessandra; Rizzarelli, Enrico; De Luigi, Ada; Salmona, Mario; Milardi, Danilo

    2016-01-01

    Due to their altered metabolism cancer cells are more sensitive to proteasome inhibition or changes of copper levels than normal cells. Thus, the development of copper complexes endowed with proteasome inhibition features has emerged as a promising anticancer strategy. However, limited information is available about the exact mechanism by which copper inhibits proteasome. Here we show that Cu(II) ions simultaneously inhibit the three peptidase activities of isolated 20S proteasomes with potencies (IC50) in the micromolar range. Cu(II) ions, in cell-free conditions, neither catalyze red-ox reactions nor disrupt the assembly of the 20S proteasome but, rather, promote conformational changes associated to impaired channel gating. Notably, HeLa cells grown in a Cu(II)-supplemented medium exhibit decreased proteasome activity. This effect, however, was attenuated in the presence of an antioxidant. Our results suggest that if, on one hand, Cu(II)-inhibited 20S activities may be associated to conformational changes that favor the closed state of the core particle, on the other hand the complex effect induced by Cu(II) ions in cancer cells is the result of several concurring events including ROS-mediated proteasome flooding, and disassembly of the 26S proteasome into its 20S and 19S components. PMID:27633879

  12. Proteasome inhibitors.

    PubMed

    Teicher, Beverly A; Tomaszewski, Joseph E

    2015-07-01

    Proteasome inhibitors have a 20 year history in cancer therapy. The first proteasome inhibitor, bortezomib (Velcade, PS-341), a break-through multiple myeloma treatment, moved rapidly through development from bench in 1994 to first approval in 2003. Bortezomib is a reversible boronic acid inhibitor of the chymotrypsin-like activity of the proteasome. Next generation proteasome inhibitors include carfilzomib and oprozomib which are irreversible epoxyketone proteasome inhibitors; and ixazomib and delanzomib which are reversible boronic acid proteasome inhibitors. Two proteasome inhibitors, bortezomib and carfilzomib are FDA approved drugs and ixazomib and oprozomib are in late stage clinical trials. All of the agents are potent cytotoxics. The disease focus for all the proteasome inhibitors is multiple myeloma. This focus arose from clinical observations made in bortezomib early clinical trials. Later preclinical studies confirmed that multiple myeloma cells were indeed more sensitive to proteasome inhibitors than other tumor cell types. The discovery and development of the proteasome inhibitor class of anticancer agents has progressed through a classic route of serendipity and scientific investigation. These agents are continuing to have a major impact in their treatment of hematologic malignancies and are beginning to be explored as potential treatment agent for non-cancer indications. PMID:25935605

  13. Regulation of the proteasome by ATP: implications for ischemic myocardial injury and donor heart preservation.

    PubMed

    Majetschak, Matthias

    2013-08-01

    Several lines of evidence suggest that proteasomes are involved in multiple aspects of myocardial physiology and pathology, including myocardial ischemia-reperfusion injury. It is well established that the 26S proteasome is an ATP-dependent enzyme and that ischemic heart disease is associated with changes in the ATP content of the cardiomyocyte. A functional link between the 26S proteasome, myocardial ATP concentrations, and ischemic cardiac injury, however, has been suggested only recently. This review discusses the currently available data on the pathophysiological role of the cardiac proteasome during ischemia and reperfusion in the context of the cellular ATP content. Depletion of the myocardial ATP content during ischemia appears to activate the 26S proteasome via direct regulatory effects of ATP on 26S proteasome stability and activity. This implies pathological degradation of target proteins by the proteasome and could provide a pathophysiological basis for beneficial effects of proteasome inhibitors in various models of myocardial ischemia. In contrast to that in the ischemic heart, reduced and impaired proteasome activity is detectable in the postischemic heart. The paradoxical findings that proteasome inhibitors showed beneficial effects when administered during reperfusion in some studies could be explained by their anti-inflammatory and immune suppressive actions, leading to reduction of leukocyte-mediated myocardial reperfusion injury. The direct regulatory effects of ATP on the 26S proteasome have implications for the understanding of the contribution of the 26S proteasome to the pathophysiology of the ischemic heart and its possible role as a therapeutic target.

  14. The proteasome: a proteolytic nanomachine of cell regulation and waste disposal.

    PubMed

    Wolf, Dieter H; Hilt, Wolfgang

    2004-11-29

    The final destination of the majority of proteins that have to be selectively degraded in eukaryotic cells is the proteasome, a highly sophisticated nanomachine essential for life. 26S proteasomes select target proteins via their modification with polyubiquitin chains or, in rare cases, by the recognition of specific motifs. They are made up of different subcomplexes, a 20S core proteasome harboring the proteolytic active sites hidden within its barrel-like structure and two 19S caps that execute regulatory functions. Similar complexes equipped with PA28 regulators instead of 19S caps are a variation of this theme specialized for the production of antigenic peptides required in immune response. Structure analysis as well as extensive biochemical and genetic studies of the 26S proteasome and the ubiquitin system led to a basic model of substrate recognition and degradation. Recent work raised new concepts. Additional factors involved in substrate acquisition and delivery to the proteasome have been discovered. Moreover, first insights in the tasks of individual subunits or subcomplexes of the 19S caps in substrate recognition and binding as well as release and recycling of polyubiquitin tags have been obtained. PMID:15571806

  15. Direct cellular delivery of human proteasomes to delay tau aggregation.

    PubMed

    Han, Dong Hoon; Na, Hee-Kyung; Choi, Won Hoon; Lee, Jung Hoon; Kim, Yun Kyung; Won, Cheolhee; Lee, Seung-Han; Kim, Kwang Pyo; Kuret, Jeff; Min, Dal-Hee; Lee, Min Jae

    2014-01-01

    The 26S proteasome is the primary machinery that degrades ubiquitin (Ub)-conjugated proteins, including many proteotoxic proteins implicated in neurodegeneraton. It has been suggested that the elevation of proteasomal activity is tolerable to cells and may be beneficial to prevent the accumulation of protein aggregates. Here we show that purified proteasomes can be directly transported into cells through mesoporous silica nanoparticle-mediated endocytosis. Proteasomes that are loaded onto nanoparticles through non-covalent interactions between polyhistidine tags and nickel ions fully retain their proteolytic activity. Cells treated with exogenous proteasomes are more efficient in degrading overexpressed human tau than endogenous proteasomal substrates, resulting in decreased levels of tau aggregates. Moreover, exogenous proteasome delivery significantly promotes cell survival against proteotoxic stress caused by tau and reactive oxygen species. These data demonstrate that increasing cellular proteasome activity through the direct delivery of purified proteasomes may be an effective strategy for reducing cellular levels of proteotoxic proteins. PMID:25476420

  16. 1.15 Å resolution structure of the proteasome-assembly chaperone Nas2 PDZ domain.

    PubMed

    Singh, Chingakham R; Lovell, Scott; Mehzabeen, Nurjahan; Chowdhury, Wasimul Q; Geanes, Eric S; Battaile, Kevin P; Roelofs, Jeroen

    2014-04-01

    The 26S proteasome is a 2.5 MDa protease dedicated to the degradation of ubiquitinated proteins in eukaryotes. The assembly of this complex containing 66 polypeptides is assisted by at least nine proteasome-specific chaperones. One of these, Nas2, binds to the proteasomal AAA-ATPase subunit Rpt5. The PDZ domain of Nas2 binds to the C-terminal tail of Rpt5; however, it does not require the C-terminus of Rpt5 for binding. Here, the 1.15 Å resolution structure of the PDZ domain of Nas2 is reported. This structure will provide a basis for further insights regarding the structure and function of Nas2 in proteasome assembly.

  17. 1.15 Å resolution structure of the proteasome-assembly chaperone Nas2 PDZ domain

    PubMed Central

    Singh, Chingakham R.; Lovell, Scott; Mehzabeen, Nurjahan; Chowdhury, Wasimul Q.; Geanes, Eric S.; Battaile, Kevin P.; Roelofs, Jeroen

    2014-01-01

    The 26S proteasome is a 2.5 MDa protease dedicated to the degradation of ubiquitinated proteins in eukaryotes. The assembly of this complex containing 66 polypeptides is assisted by at least nine proteasome-specific chaperones. One of these, Nas2, binds to the proteasomal AAA-ATPase subunit Rpt5. The PDZ domain of Nas2 binds to the C-terminal tail of Rpt5; however, it does not require the C-terminus of Rpt5 for binding. Here, the 1.15 Å resolution structure of the PDZ domain of Nas2 is reported. This structure will provide a basis for further insights regarding the structure and function of Nas2 in proteasome assembly. PMID:24699731

  18. Nuclear Import of Yeast Proteasomes

    PubMed Central

    Burcoglu, Julianne; Zhao, Liang; Enenkel, Cordula

    2015-01-01

    Proteasomes are highly conserved protease complexes responsible for the degradation of aberrant and short-lived proteins. In highly proliferating yeast and mammalian cells, proteasomes are predominantly nuclear. During quiescence and cell cycle arrest, proteasomes accumulate in granules in close proximity to the nuclear envelope/ER. With prolonged quiescence in yeast, these proteasome granules pinch off as membraneless organelles, and migrate as stable entities through the cytoplasm. Upon exit from quiescence, the proteasome granules clear and the proteasomes are rapidly transported into the nucleus, a process reflecting the dynamic nature of these multisubunit complexes. Due to the scarcity of studies on the nuclear transport of mammalian proteasomes, we summarised the current knowledge on the nuclear import of yeast proteasomes. This pathway uses canonical nuclear localisation signals within proteasomal subunits and Srp1/Kap95, and the canonical import receptor, named importin/karyopherin αβ. Blm10, a conserved 240 kDa protein, which is structurally related to Kap95, provides an alternative import pathway. Two models exist upon which either inactive precursor complexes or active holo-enzymes serve as the import cargo. Here, we reconcile both models and suggest that the import of inactive precursor complexes predominates in dividing cells, while the import of mature enzymes mainly occurs upon exit from quiescence. PMID:26262643

  19. Disulfiram promotes the conversion of carcinogenic cadmium to a proteasome inhibitor with pro-apoptotic activity in human cancer cells

    SciTech Connect

    Li Lihua; Yang Huanjie; Chen Di; Cui, Cindy; Ping Dou, Q.

    2008-06-01

    The ubiquitin-proteasome system is involved in various cellular processes, including transcription, apoptosis, and cell cycle. In vitro, in vivo, and clinical studies suggest the potential use of proteasome inhibitors as anticancer drugs. Cadmium (Cd) is a widespread environmental pollutant that has been classified as a human carcinogen. Recent study in our laboratory suggested that the clinically used anti-alcoholism drug disulfiram (DSF) could form a complex with tumor cellular copper, resulting in inhibition of the proteasomal chymotrypsin-like activity and induction of cancer cell apoptosis. In the current study, we report, for the first time, that DSF is able to convert the carcinogen Cd to a proteasome-inhibitor and cancer cell apoptosis inducer. Although the DSF-Cd complex inhibited the chymotrypsin-like activity of a purified 20S proteasome with an IC{sub 50} value of 32 {mu}mol/L, this complex was much more potent in inhibiting the chymotrypsin-like activity of prostate cancer cellular 26S proteasome. Inhibition of cellular proteasome activity by the DSF-Cd complex resulted in the accumulation of ubiquitinated proteins and the natural proteasome substrate p27, which was followed by activation of calpain and induction of apoptosis. Importantly, human breast cancer MCF10DCIS cells were much more sensitive to the DSF-Cd treatment than immortalized but non-tumorigenic human breast MCF-10A cells, demonstrating that the DSF-Cd complex could selectively induce proteasome inhibition and apoptosis in human tumor cells. Our work suggests the potential use of DSF for treatment of cells with accumulated levels of carcinogen Cd.

  20. Activation of Chymotrypsin-Like Activity of the Proteasome during Ischemia Induces Myocardial Dysfunction and Death.

    PubMed

    Sanchez, Gina; Berrios, Daniela; Olmedo, Ivonne; Pezoa, Javier; Riquelme, Jaime A; Montecinos, Luis; Pedrozo, Zully; Donoso, Paulina

    2016-01-01

    Inhibitors of the ubiquitin-proteasome system improve hemodynamic parameters and decrease the infarct size after ischemia reperfusion. The molecular basis of this protection is not fully understood since most available data report inhibition of the 26 proteasome after ischemia reperfusion. The decrease in cellular ATP levels during ischemia leads to the dissociation of the 26S proteasome into the 19S regulatory complex and the 20S catalytic core, which results in protein degradation independently of ubiquitination. There is scarce information on the activity of the 20S proteasome during cardiac ischemia. Accordingly, the aim of this work was to determine the effects of 30 minutes of ischemia, or 30 min of ischemia followed by 60 minutes of reperfusion on the three main peptidase activities of the 20S proteasome in Langendorff perfused rat hearts. We found that 30 min of ischemia produced a significant increase in the chymotrypsin-like activity of the proteasome, without changes in its caspase-like or trypsin-like activities. In contrast, all three activities were decreased upon reperfusion. Ixazomib, perfused before ischemia at a concentration that reduced the chymotrypsin-like activity to 50% of the control values, without affecting the other proteasomal activities, improved the hemodynamic parameters upon reperfusion and decreased the infarct size. Ixazomib also prevented the 50% reduction in RyR2 content observed after ischemia. The protection was lost, however, when simultaneous inhibition of chymotrypsin-like and caspase-like activities of the proteasome was achieved at higher concentration of ixazomib. Our results suggest that selective inhibition of chymotrypsin-like activity of the proteasome during ischemia preserves key proteins for cardiomyocyte function and exerts a positive impact on cardiac performance after reperfusion.

  1. Activation of Chymotrypsin-Like Activity of the Proteasome during Ischemia Induces Myocardial Dysfunction and Death

    PubMed Central

    Sanchez, Gina; Berrios, Daniela; Olmedo, Ivonne; Pezoa, Javier; Riquelme, Jaime A.; Montecinos, Luis; Pedrozo, Zully; Donoso, Paulina

    2016-01-01

    Inhibitors of the ubiquitin-proteasome system improve hemodynamic parameters and decrease the infarct size after ischemia reperfusion. The molecular basis of this protection is not fully understood since most available data report inhibition of the 26 proteasome after ischemia reperfusion. The decrease in cellular ATP levels during ischemia leads to the dissociation of the 26S proteasome into the 19S regulatory complex and the 20S catalytic core, which results in protein degradation independently of ubiquitination. There is scarce information on the activity of the 20S proteasome during cardiac ischemia. Accordingly, the aim of this work was to determine the effects of 30 minutes of ischemia, or 30 min of ischemia followed by 60 minutes of reperfusion on the three main peptidase activities of the 20S proteasome in Langendorff perfused rat hearts. We found that 30 min of ischemia produced a significant increase in the chymotrypsin-like activity of the proteasome, without changes in its caspase-like or trypsin-like activities. In contrast, all three activities were decreased upon reperfusion. Ixazomib, perfused before ischemia at a concentration that reduced the chymotrypsin-like activity to 50% of the control values, without affecting the other proteasomal activities, improved the hemodynamic parameters upon reperfusion and decreased the infarct size. Ixazomib also prevented the 50% reduction in RyR2 content observed after ischemia. The protection was lost, however, when simultaneous inhibition of chymotrypsin-like and caspase-like activities of the proteasome was achieved at higher concentration of ixazomib. Our results suggest that selective inhibition of chymotrypsin-like activity of the proteasome during ischemia preserves key proteins for cardiomyocyte function and exerts a positive impact on cardiac performance after reperfusion. PMID:27529620

  2. Activation of Chymotrypsin-Like Activity of the Proteasome during Ischemia Induces Myocardial Dysfunction and Death.

    PubMed

    Sanchez, Gina; Berrios, Daniela; Olmedo, Ivonne; Pezoa, Javier; Riquelme, Jaime A; Montecinos, Luis; Pedrozo, Zully; Donoso, Paulina

    2016-01-01

    Inhibitors of the ubiquitin-proteasome system improve hemodynamic parameters and decrease the infarct size after ischemia reperfusion. The molecular basis of this protection is not fully understood since most available data report inhibition of the 26 proteasome after ischemia reperfusion. The decrease in cellular ATP levels during ischemia leads to the dissociation of the 26S proteasome into the 19S regulatory complex and the 20S catalytic core, which results in protein degradation independently of ubiquitination. There is scarce information on the activity of the 20S proteasome during cardiac ischemia. Accordingly, the aim of this work was to determine the effects of 30 minutes of ischemia, or 30 min of ischemia followed by 60 minutes of reperfusion on the three main peptidase activities of the 20S proteasome in Langendorff perfused rat hearts. We found that 30 min of ischemia produced a significant increase in the chymotrypsin-like activity of the proteasome, without changes in its caspase-like or trypsin-like activities. In contrast, all three activities were decreased upon reperfusion. Ixazomib, perfused before ischemia at a concentration that reduced the chymotrypsin-like activity to 50% of the control values, without affecting the other proteasomal activities, improved the hemodynamic parameters upon reperfusion and decreased the infarct size. Ixazomib also prevented the 50% reduction in RyR2 content observed after ischemia. The protection was lost, however, when simultaneous inhibition of chymotrypsin-like and caspase-like activities of the proteasome was achieved at higher concentration of ixazomib. Our results suggest that selective inhibition of chymotrypsin-like activity of the proteasome during ischemia preserves key proteins for cardiomyocyte function and exerts a positive impact on cardiac performance after reperfusion. PMID:27529620

  3. Multiple assembly chaperones govern biogenesis of the proteasome regulatory particle base.

    PubMed

    Funakoshi, Minoru; Tomko, Robert J; Kobayashi, Hideki; Hochstrasser, Mark

    2009-05-29

    The central protease of eukaryotes, the 26S proteasome, has a 20S proteolytic core particle (CP) and an attached 19S regulatory particle (RP). The RP is further subdivided into lid and base subcomplexes. Little is known about RP assembly. Here, we show that four conserved assembly factors govern biogenesis of the yeast RP base. Nas2 forms a complex with the Rpt4 and Rpt5 ATPases and enhances 26S proteasome formation in vivo and in vitro. Other RP subcomplexes contain Hsm3, which is related to mammalian proteasome subunit S5b. Hsm3 also contributes to base assembly. Larger Hsm3-containing complexes include two additional proteins, Nas6 and Rpn14, which function as assembly chaperones as well. Specific deletion combinations affecting these four factors cause severe perturbations to RP assembly. Our results demonstrate that proteasomal RP biogenesis requires multiple, functionally overlapping chaperones and suggest a model in which subunits form specific subcomplexes that then assemble into the base.

  4. How the ubiquitin proteasome system regulates the regulators of transcription.

    PubMed

    Ee, Gary; Lehming, Norbert

    2012-01-01

    The ubiquitin proteasome system plays an important role in transcription. Monoubiquitination of activators is believed to aid their function, while the 26S proteasomal degradation of repressors is believed to restrict their function. What remains controversial is the question of whether the degradation of activators aids or restricts their function.

  5. Ubiquitin-proteasome pathway and cellular responses to oxidative stress

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The ubiquitin-proteasome pathway (UPP) is the primary cytosolic proteolytic machinery for the selective degradation of various forms of damaged proteins. Thus, the UPP is an important protein quality control mechanism. In the canonical UPP, both ubiquitin and the 26S proteasome are involved. Subs...

  6. Proteasome Activity Is Affected by Fluctuations in Insulin-Degrading Enzyme Distribution.

    PubMed

    Sbardella, Diego; Tundo, Grazia Raffaella; Sciandra, Francesca; Bozzi, Manuela; Gioia, Magda; Ciaccio, Chiara; Tarantino, Umberto; Brancaccio, Andrea; Coletta, Massimo; Marini, Stefano

    2015-01-01

    Insulin-Degrading-Enzyme (IDE) is a Zn2+-dependent peptidase highly conserved throughout evolution and ubiquitously distributed in mammalian tissues wherein it displays a prevalent cytosolic localization. We have recently demonstrated a novel Heat Shock Protein-like behaviour of IDE and its association with the 26S proteasome. In the present study, we examine the mechanistic and molecular features of IDE-26S proteasome interaction in a cell experimental model, extending the investigation also to the effect of IDE on the enzymatic activities of the 26S proteasome. Further, kinetic investigations indicate that the 26S proteasome activity undergoes a functional modulation by IDE through an extra-catalytic mechanism. The IDE-26S proteasome interaction was analyzed during the Heat Shock Response and we report novel findings on IDE intracellular distribution that might be of critical relevance for cell metabolism.

  7. Proteasome Activity Is Affected by Fluctuations in Insulin-Degrading Enzyme Distribution

    PubMed Central

    Sbardella, Diego; Tundo, Grazia Raffaella; Sciandra, Francesca; Bozzi, Manuela; Gioia, Magda; Ciaccio, Chiara; Tarantino, Umberto; Brancaccio, Andrea; Coletta, Massimo; Marini, Stefano

    2015-01-01

    Insulin-Degrading-Enzyme (IDE) is a Zn2+-dependent peptidase highly conserved throughout evolution and ubiquitously distributed in mammalian tissues wherein it displays a prevalent cytosolic localization. We have recently demonstrated a novel Heat Shock Protein-like behaviour of IDE and its association with the 26S proteasome. In the present study, we examine the mechanistic and molecular features of IDE-26S proteasome interaction in a cell experimental model, extending the investigation also to the effect of IDE on the enzymatic activities of the 26S proteasome. Further, kinetic investigations indicate that the 26S proteasome activity undergoes a functional modulation by IDE through an extra-catalytic mechanism. The IDE-26S proteasome interaction was analyzed during the Heat Shock Response and we report novel findings on IDE intracellular distribution that might be of critical relevance for cell metabolism. PMID:26186340

  8. A binuclear complex constituted by diethyldithiocarbamate and copper(I) functions as a proteasome activity inhibitor in pancreatic cancer cultures and xenografts.

    PubMed

    Han, Jinbin; Liu, Luming; Yue, Xiaoqiang; Chang, Jinjia; Shi, Weidong; Hua, Yongqiang

    2013-12-15

    It is a therapeutic strategy for cancers including pancreatic to inhibit proteasome activity. Disulfiram (DSF) may bind copper (Cu) to form a DSF-Cu complex. DSF-Cu is capable of inducing apoptosis in cancer cells by inhibiting proteasome activity. DSF is rapidly converted to diethyldithiocarbamate (DDTC) within bodies. Copper(II) absorbed by bodies is reduced to copper(I) when it enters cells. We found that DDTC and copper(I) could form a binuclear complex which might be entitled DDTC-Cu(I), and it had been synthesized by us in the laboratory. This study is to investigate the anticancer potential of this complex on pancreatic cancer and the possible mechanism. Pancreatic cancer cell lines, SW1990, PANC-1 and BXPC-3 were used for in vitro assays. Female athymic nude mice grown SW1990 xenografts were used as animal models. Cell counting kit-8 (cck-8) assay and flow cytometry were used for analyzing apoptosis in cells. A 20S proteasome assay kit was used in proteasome activity analysis. Western blot (WB) and immunohistochemistry (IHC) and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assays were used in tumor sample analysis. The results suggest that DDTC-Cu(I) inhibit pancreatic cancer cell proliferation and proteasome activity in vitro and in vivo. Accumulation of ubiquitinated proteins, and increased p27 as well as decreased NF-κB expression were detected in tumor tissues of DDTC-Cu(I)-treated group. Our data indicates that DDTC-Cu(I) is an effective proteasome activity inhibitor with the potential to be explored as a drug for pancreatic cancer.

  9. Proteins in aggregates functionally impact multiple neurodegenerative disease models by forming proteasome-blocking complexes

    PubMed Central

    Ayyadevara, Srinivas; Balasubramaniam, Meenakshisundaram; Gao, Yuan; Yu, Li-Rong; Alla, Ramani; Shmookler Reis, Robert

    2015-01-01

    Age-dependent neurodegenerative diseases progressively form aggregates containing both shared components (e.g., TDP-43, phosphorylated tau) and proteins specific to each disease. We investigated whether diverse neuropathies might have additional aggregation-prone proteins in common, discoverable by proteomics. Caenorhabditis elegans expressing unc-54p/Q40::YFP, a model of polyglutamine array diseases such as Huntington's, accrues aggregates in muscle 2–6 days posthatch. These foci, isolated on antibody-coupled magnetic beads, were characterized by high-resolution mass spectrometry. Three Q40::YFP-associated proteins were inferred to promote aggregation and cytotoxicity, traits reduced or delayed by their RNA interference knockdown. These RNAi treatments also retarded aggregation/cytotoxicity in Alzheimer's disease models, nematodes with muscle or pan-neuronal Aβ1–42 expression and behavioral phenotypes. The most abundant aggregated proteins are glutamine/asparagine-rich, favoring hydrophobic interactions with other random-coil domains. A particularly potent modulator of aggregation, CRAM-1/HYPK, contributed < 1% of protein aggregate peptides, yet its knockdown reduced Q40::YFP aggregates 72–86% (P < 10−6). In worms expressing Aβ1–42, knockdown of cram-1 reduced β-amyloid 60% (P < 0.002) and slowed age-dependent paralysis > 30% (P < 10−6). In wild-type worms, cram-1 knockdown reduced aggregation and extended lifespan, but impaired early reproduction. Protection against seeded aggregates requires proteasome function, implying that normal CRAM-1 levels promote aggregation by interfering with proteasomal degradation of misfolded proteins. Molecular dynamic modeling predicts spontaneous and stable interactions of CRAM-1 (or human orthologs) with ubiquitin, and we verified that CRAM-1 reduces degradation of a tagged-ubiquitin reporter. We propose that CRAM-1 exemplifies a class of primitive chaperones that are initially protective and highly

  10. Ubiquitin-proteasome pathway and cellular responses to oxidative stress

    PubMed Central

    Taylor, Allen

    2011-01-01

    The ubiquitin-proteasome pathway (UPP) is the primary cytosolic proteolytic machinery for the selective degradation of various forms of damaged proteins. Thus, the UPP is an important protein quality control mechanism. In the canonical UPP, both ubiquitin and the 26S proteasome are involved. Substrate proteins of the canonical UPP are first tagged by multiple ubiquitin molecules and then degraded by the 26S proteasome. However, in non-canonical UPP, proteins can be degraded by the 26S or the 20S proteasome without being ubiquitinated. It is clear that a proteasome is responsible for selective degradation of oxidized proteins, but the extent to which ubiquitination is involved in this process remains a subject of debate. While many publications suggest that the 20S proteasome degrades oxidized proteins independent of ubiquitin, there is also solid evidence indicating that ubiquitin and ubiquitination are involved in degradation of some forms of oxidized proteins. A fully functional UPP is required for cells to cope with oxidative stress and the activity of the UPP is also modulated by cellular redox status. Mild or transient oxidative stress up-regulates the ubiquitination system and proteasome activity in cells and tissues and transiently enhances intracellular proteolysis. Severe or sustained oxidative stress impairs the function of the UPP and decreases intracellular proteolysis. Both the ubiquitin conjugation enzymes and the proteasome can be inactivated by sustained oxidative stress, especially the 26S proteasome. Differential susceptibilities of the ubiquitin conjugation enzymes and the 26S proteasome to oxidative damage lead to an accumulation of ubiquitin conjugates in cells in response to mild oxidative stress. Thus, increased levels of ubiquitin conjugates in cells appear to be an indicator of mild oxidative stress. PMID:21530648

  11. Disulfiram promotes the conversion of carcinogenic cadmium to a proteasome inhibitor with pro-apoptotic activity in human cancer cells

    PubMed Central

    Li, Lihua; Yang, Huanjie; Chen, Di; Cui, Cindy; Dou, Q. Ping

    2013-01-01

    The ubiquitinproteasome system is involved in various cellular processes, including transcription, apoptosis, and cell cycle. In vitro, in vivo, and clinical studies suggest the potential use of proteasome inhibitors as anticancer drugs. Cadmium (Cd) is a widespread environmental pollutant that has been classified as a human carcinogen. Recent study in our laboratory suggested that the clinically used anti-alcoholism drug disulfiram (DSF) could form a complex with tumor cellular copper, resulting in inhibition of the proteasomal chymotrypsin-like activity and induction of cancer cell apoptosis. In the current study, we report, for the first time, that DSF is able to convert the carcinogen Cd to a proteasome-inhibitor and cancer cell apoptosis inducer. Although the DSF–Cd complex inhibited the chymotrypsin-like activity of a purified 20S proteasome with an IC50 value of 32 μmol/L, this complex was much more potent in inhibiting the chymotrypsin-like activity of prostate cancer cellular 26S proteasome. Inhibition of cellular proteasome activity by the DSF–Cd complex resulted in the accumulation of ubiquitinated proteins and the natural proteasome substrate p27, which was followed by activation of calpain and induction of apoptosis. Importantly, human breast cancer MCF10DCIS cells were much more sensitive to the DSF–Cd treatment than immortalized but non-tumorigenic human breast MCF-10A cells, demonstrating that the DSF–Cd complex could selectively induce proteasome inhibition and apoptosis in human tumor cells. Our work suggests the potential use of DSF for treatment of cells with accumulated levels of carcinogen Cd. PMID:18304598

  12. Functions of the Proteasome on Chromatin

    PubMed Central

    McCann, Tyler S.; Tansey, William P.

    2014-01-01

    The proteasome is a large self-compartmentalized protease complex that recognizes, unfolds, and destroys ubiquitylated substrates. Proteasome activities are required for a host of cellular functions, and it has become clear in recent years that one set of critical actions of the proteasome occur on chromatin. In this review, we discuss some of the ways in which proteasomes directly regulate the structure and function of chromatin and chromatin regulatory proteins, and how this influences gene transcription. We discuss lingering controversies in the field, the relative importance of proteolytic versus non-proteolytic proteasome activities in this process, and highlight areas that require further investigation. Our intention is to show that proteasomes are involved in major steps controlling the expression of the genetic information, that proteasomes use both proteolytic mechanisms and ATP-dependent protein remodeling to accomplish this task, and that much is yet to be learned about the full spectrum of ways that proteasomes influence the genome. PMID:25422899

  13. The Ubiquitin-Proteasome Pathway and Proteasome Inhibitors

    PubMed Central

    Myung, Jayhyuk; Kim, Kyung Bo

    2008-01-01

    The ubiquitin-proteasome pathway has emerged as a central player in the regulation of several diverse cellular processes. Here, we describe the important components of this complex biochemical machinery as well as several important cellular substrates targeted by this pathway and examples of human diseases resulting from defects in various components of the ubiquitin-proteasome pathway. In addition, this review covers the chemistry of synthetic and natural proteasome inhibitors, emphasizing their mode of actions toward the 20S proteasome. Given the importance of proteasome-mediated protein degradation in various intracellular processes, inhibitors of this pathway will continue to serve as both molecular probes of major cellular networks as well as potential therapeutic agents for various human diseases. PMID:11410931

  14. Proteasome Activators

    PubMed Central

    Stadtmueller, Beth M.; Hill, Christopher P.

    2011-01-01

    Summary Proteasomes degrade a multitude of protein substrates in the cytosol and nucleus, and thereby are essential for many aspects of cellular function. Because the proteolytic sites are sequestered in a closed barrel-shaped structure, activators are required to facilitate substrate access. Structural and biochemical studies of two activator families, 11S and Blm10, have provided insights to proteasome activation mechanisms, although the biological functions of these factors remain obscure. Recent advances have improved our understanding of the third activator family, including the 19S activator, which targets polyubiquitylated proteins for degradation. PMID:21211719

  15. Physiological levels of ATP Negatively Regulate Proteasome Function

    PubMed Central

    Huang, Hongbiao; Zhang, Xiaoyan; Li, Shujue; Liu, Ningning; Lian, Wen; McDowell, Emily; Zhou, Ping; Zhao, Canguo; Guo, Haiping; Zhang, Change; Yang, Changshan; Wen, Guangmei; Dong, Xiaoxian; Lu, Li; Ma, Ningfang; Dong, Weihua; Dou, Q. Ping; Wang, Xuejun; Liu, Jinbao

    2010-01-01

    Intracellular protein degradation by the ubiquitin-proteasome system is ATP-dependent and the optimal ATP concentration to activate proteasome function in vitro is ~100 μM. Intracellular ATP levels are generally in the low millimolar range but ATP at a level within this range was shown to inhibit proteasome peptidase activities in vitro. Here we report new evidence that supports a hypothesis that intracellular ATP at the physiological levels bidirectionally regulates 26S proteasome proteolytic function in the cell. First, we confirmed that ATP exerted bidirectional regulation on the 26S proteasome in vitro, with the optimal ATP concentration (between 50–100 μM) stimulating proteasome chymotrypsin-like activities. Second, we found that manipulating intracellular ATP levels also led to bidirectional changes in the levels of proteasome-specific protein substrates in cultured cells. Finally, measures to increase intracellular ATP enhanced, while decreasing intracellular ATP attenuated, the ability of proteasome inhibition to induce cell death. These data strongly suggest that endogenous ATP within the physiological concentration range can exert a negative impact on proteasome activities, allowing the cell to rapidly up-regulate proteasome activity upon ATP reduction under stress conditions. PMID:20805844

  16. A binuclear complex constituted by diethyldithiocarbamate and copper(I) functions as a proteasome activity inhibitor in pancreatic cancer cultures and xenografts

    SciTech Connect

    Han, Jinbin; Yue, Xiaoqiang; Chang, Jinjia; Shi, Weidong; Hua, Yongqiang

    2013-12-15

    It is a therapeutic strategy for cancers including pancreatic to inhibit proteasome activity. Disulfiram (DSF) may bind copper (Cu) to form a DSF–Cu complex. DSF–Cu is capable of inducing apoptosis in cancer cells by inhibiting proteasome activity. DSF is rapidly converted to diethyldithiocarbamate (DDTC) within bodies. Copper(II) absorbed by bodies is reduced to copper(I) when it enters cells. We found that DDTC and copper(I) could form a binuclear complex which might be entitled DDTC–Cu(I), and it had been synthesized by us in the laboratory. This study is to investigate the anticancer potential of this complex on pancreatic cancer and the possible mechanism. Pancreatic cancer cell lines, SW1990, PANC-1 and BXPC-3 were used for in vitro assays. Female athymic nude mice grown SW1990 xenografts were used as animal models. Cell counting kit-8 (cck-8) assay and flow cytometry were used for analyzing apoptosis in cells. A 20S proteasome assay kit was used in proteasome activity analysis. Western blot (WB) and immunohistochemistry (IHC) and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assays were used in tumor sample analysis. The results suggest that DDTC–Cu(I) inhibit pancreatic cancer cell proliferation and proteasome activity in vitro and in vivo. Accumulation of ubiquitinated proteins, and increased p27 as well as decreased NF-κB expression were detected in tumor tissues of DDTC–Cu(I)-treated group. Our data indicates that DDTC–Cu(I) is an effective proteasome activity inhibitor with the potential to be explored as a drug for pancreatic cancer. - Highlights: • A new structure of DDTC–Cu(I) was reported for the first time. • DDTC–Cu(I) dissolved directly in water was for in vitro and in vivo uses. • DDTC–Cu(I) demonstrated significant anticancer effect in vitro and in vivo. • DDTC–Cu(I) is capable of inhibiting proteasome activity in vitro and in vivo.

  17. Molecular Architecture and Assembly of the Eukaryotic Proteasome

    PubMed Central

    Tomko, Robert J.; Hochstrasser, Mark

    2013-01-01

    The eukaryotic ubiquitin-proteasome system is responsible for most cellular quality-control and regulatory protein degradation. Its substrates, which are usually modified by polymers of ubiquitin, are ultimately degraded by the 26S proteasome. This 2.6 MDa protein complex is separated into a barrel-shaped proteolytic 20S core particle (CP) of 28 subunits capped on one or both ends by a 19S regulatory particle (RP) comprising at least 19 subunits. The RP coordinates substrate recognition, removal of substrate polyubiquitin chains, and substrate unfolding and translocation into the CP for degradation. While many atomic structures of the CP have been determined, the RP has resisted high-resolution analysis. Recently, however, a combination of cryo-electron microscopy (cryo-EM), biochemical analysis, and crystal structure determination of several RP subunits has yielded a near-atomic resolution view of much of the complex. Major new insights into chaperone-assisted proteasome assembly have also recently been made. Here we review these novel findings. PMID:23495936

  18. Targeting Tumor Proteasome with Traditional Chinese Medicine

    PubMed Central

    Yang, Huanjie; Liu, Jinbao; Dou, Q. Ping

    2012-01-01

    The proteasome is a multicatalytic protease complex whose activity is required for the growth of normal or tumor cells. It has been shown that human cancer cells are more sensitive to proteasome inhibition than normal cells, indicating that the proteasome could be a target of chemotherapy. Studies suggest that traditional Chinese medicine (TCM) is an effective approach for cancer treatment. Here we reviewed several TCMs for their potential in treatment of cancer. This short review focuses mainly on the TCMs that potentially target the tumor cellular proteasome and NF-κB pathway whose activation is dependent on the proteasome activity. PMID:20156140

  19. Proteasomal degradation of preemptive quality control (pQC) substrates is mediated by an AIRAPL–p97 complex

    PubMed Central

    Braunstein, Ilana; Zach, Lolita; Allan, Susanne; Kalies, Kai-Uwe; Stanhill, Ariel

    2015-01-01

    The initial folding of secreted proteins occurs in the ER lumen, which contains specific chaperones and where posttranslational modifications may occur. Therefore lack of translocation, regardless of entry route or protein identity, is a highly toxic event, as the newly synthesized polypeptide is misfolded and can promiscuously interact with cytosolic factors. Mislocalized proteins bearing a signal sequence that did not successfully translocate through the translocon complex are subjected to a preemptive quality control (pQC) pathway and are degraded by the ubiquitin-proteasome system (UPS). In contrast to UPS-mediated, ER-associated degradation, few components involved in pQC have been identified. Here we demonstrate that on specific translocation inhibition, a p97–AIRAPL complex directly binds and regulates the efficient processing of polyubiquitinated pQC substrates by the UPS. We also demonstrate p97’s role in pQC processing of preproinsulin in cases of naturally occurring mutations within the signal sequence of insulin. PMID:26337389

  20. Decreased activity of the 20S proteasome in the brain white matter and gray matter of patients with multiple sclerosis.

    PubMed

    Zheng, Jianzheng; Bizzozero, Oscar A

    2011-04-01

    Carbonylated (oxidized) proteins are known to accumulate in the cerebral white matter (WM) and gray matter (GM) of patients with multiple sclerosis (MS). Although oxidative stress is necessary for carbonyl generation, it is the failure of the degradation systems that ultimately leads to the build-up of carbonylated proteins within tissues. In this study, we measured the activity of the 20S proteasome and other proteolytic systems in the cerebral WM and GM of 13 MS patients and 13 controls. We report that the activities of the three peptidases of the 20S proteasome (i.e. chymotrypsin-like, caspase-like and trypsin-like) in both MS-WM and MS-GM are greatly reduced. Interestingly, neither the amount of proteasome nor the levels of the catalytic subunits (β1, β2, and β5) are diminished in this disease. Proteins containing Lys-48 poly-ubiquitin also accumulate in MS tissues, indicating failure of the 26S proteasome as well. Levels of the regulatory caps 11S α and 19S are also lower in MS than in controls, suggesting that the activity of the more complex proteasomes may be reduced further. Finally, the activities of other proteases that might also remove oxidized proteins (calpain, cathepsin B, mitochondrial LonP) are not lessened in MS. Together, these studies suggest that direct inactivation of proteolytic centers in the 20S particle and/or the presence of specific inhibitors is the underlying cause of proteasomal dysfunction in MS.

  1. Multiple sclerosis autoantigen myelin basic protein escapes control by ubiquitination during proteasomal degradation.

    PubMed

    Belogurov, Alexey; Kudriaeva, Anna; Kuzina, Ekaterina; Smirnov, Ivan; Bobik, Tatyana; Ponomarenko, Natalia; Kravtsova-Ivantsiv, Yelena; Ciechanover, Aaron; Gabibov, Alexander

    2014-06-20

    The vast majority of cellular proteins are degraded by the 26S proteasome after their ubiquitination. Here, we report that the major component of the myelin multilayered membrane sheath, myelin basic protein (MBP), is hydrolyzed by the 26S proteasome in a ubiquitin-independent manner both in vitro and in mammalian cells. As a proteasomal substrate, MBP reveals a distinct and physiologically relevant concentration range for ubiquitin-independent proteolysis. Enzymatic deimination prevents hydrolysis of MBP by the proteasome, suggesting that an abnormally basic charge contributes to its susceptibility toward proteasome-mediated degradation. To our knowledge, our data reveal the first case of a pathophysiologically important autoantigen as a ubiquitin-independent substrate of the 26S proteasome.

  2. Proteasomal activities in the claw muscle tissue of European lobster, Homarus gammarus, during larval development.

    PubMed

    Götze, Sandra; Saborowski, Reinhard

    2011-10-01

    Decapod crustaceans grow discontinuously and gain size through complex molt processes. The molt comprises the loss of the old cuticle and, moreover, substantial reduction and re-organization of muscles and connective tissues. In adult lobsters, the muscle tissue of the massive claws undergoes significant atrophy of 40-75% before ecdysis. The degradation of this tissue is facilitated by calcium-dependent proteases and by the proteasome, an intra-cellular proteolytic multi-enzyme complex. In contrast to the adults, the involvement of the proteasome during the larval development is yet not validated. Therefore, we developed micro-methods to measure the 20S and the 26S proteasomal activities within mg- and sub-mg-quantities of the larval claw tissue of the European lobster, Homarus gammarus. Within the three larval stages (Z1-3) we distinguished between sub-stages of freshly molted/hatched (post-molt), inter-molt, and ready to molt (pre-molt) larvae. Juveniles were analyzed in the post-molt and in the inter-molt stage. The trypsin-like, the chymotrypsin-like, and the peptidyl-glutamyl peptide hydrolase activity (PGPH) of the 20S proteasome increased distinctly from freshly hatched larvae to pre-molt Z1. During the Z2 stage, the activities were highest in the post-molt animals, decreased in the inter-molt animals and increased again in the pre-molt animals. A similar but less distinct trend was evident in the Z3 stages. In the juveniles, the proteasomal activities decreased toward the lowest values. A similar pattern was present for the chymotrypsin-like activity of the 26S proteasome. The results show that the proteasome plays a significant role during the larval development of lobsters. This is not only reflected by the elevated activities, but also by the continuous change of the trypsin/chymotrypsin-ratio which may indicate a shift in the subunit composition of the proteasome and, thus, a biochemical adjustment to better cope with elevated protein turnover rates

  3. The Proteasome Is a Molecular Target of Environmental Toxic Organotins

    PubMed Central

    Shi, Guoqing; Chen, Di; Zhai, Guangshu; Chen, Marina S.; Cui, Qiuzhi Cindy; Zhou, Qunfang; He, Bin; Dou, Q. Ping; Jiang, Guibin

    2009-01-01

    Background Because of the vital importance of the proteasome pathway, chemicals affecting proteasome activity could disrupt essential cellular processes. Although the toxicity of organotins to both invertebrates and vertebrates is well known, the essential cellular target of organotins has not been well identified. We hypothesize that the proteasome is a molecular target of environmental toxic organotins. Objectives Our goal was to test the above hypothesis by investigating whether organotins could inhibit the activity of purified and cellular proteasomes and, if so, the involved molecular mechanisms and downstream events. Results We found that some toxic organotins [e.g., triphenyltin (TPT)] can potently and preferentially inhibit the chymotrypsin-like activity of purified 20S proteasomes and human breast cancer cellular 26S proteasomes. Direct binding of tin atoms to cellular proteasomes is responsible for the observed irreversible inhibition. Inhibition of cellular proteasomes by TPT in several human cell lines results in the accumulation of ubiquitinated proteins and natural proteasome target proteins, accompanied by induction of cell death. Conclusions The proteasome is one of the molecular targets of environmental toxic organotins in human cells, and proteasome inhibition by organotins contributes to their cellular toxicity. PMID:19337512

  4. Identification of proteasome subunit beta type 6 (PSMB6) associated with deltamethrin resistance in mosquitoes by proteomic and bioassay analyses.

    PubMed

    Sun, Linchun; Ye, Yuting; Sun, Haibo; Yu, Jing; Zhang, Li; Sun, Yan; Zhang, Donghui; Ma, Lei; Shen, Bo; Zhu, Changliang

    2013-01-01

    Deltamethrin (DM) insecticides are currently being promoted worldwide for mosquito control, because of the high efficacy, low mammalian toxicity and less environmental impact. Widespread and improper use of insecticides induced resistance, which has become a major obstacle for the insect-borne disease management. Resistance development is a complex and dynamic process involving many genes. To better understand the possible molecular mechanisms involved in DM resistance, a proteomic approach was employed for screening of differentially expressed proteins in DM-susceptible and -resistant mosquito cells. Twenty-seven differentially expressed proteins were identified by two-dimensional electrophoresis (2-DE) and mass spectrometry (MS). Four members of the ubiquitin-proteasome system were significantly elevated in DM-resistant cells, suggesting that the ubiquitin-proteasome pathway may play an important role in DM resistance. Proteasome subunit beta type 6 (PSMB6) is a member of 20S proteasomal subunit family, which forms the proteolytic core of 26S proteasome. We used pharmaceutical inhibitor and molecular approaches to study the contributions of PSMB6 in DM resistance: the proteasome inhibitor MG-132 and bortezomib were used to suppress the proteasomal activity and siRNA was designed to block the function of PSMB6. The results revealed that both MG-132 and bortezomib increased the susceptibility in DM-resistant cells and resistance larvae. Moreover, PSMB6 knockdown decreased cellular viability under DM treatment. Taken together, our study indicated that PSMB6 is associated with DM resistance in mosquitoes and that proteasome inhibitors such as MG-132 or bortezomib are suitable for use as a DM synergist for vector control.

  5. [Proteasome inhibitors in cancer therapy].

    PubMed

    Romaniuk, Wioletta; Ołdziej, Agnieszka Ewa; Zińczuk, Justyna; Kłoczko, Janusz

    2015-01-01

    Proteasomes are multisubunit enzyme complexes. They contain three enzymatic active sites which are termed chymotrypsin-like, trypsin-like, and caspase-like. The elementary function of the proteasomes is degradation of damaged proteins. Proteasome inhibition leads to accumulation of damaged protein, which leads to caspase activation and cell death. This relationship is used in cancer therapy. Bortezomib is the first proteasome inhibitor approved by the US Food and Drug Administration for the treatment of relapsed/refractory multiple myeloma. Carfilzomib belongs to the second generation of drugs, which was approved by the US FDA in 2012. Currently in the study phase there are four new inhibitors: ixazomib (MLN9780/MLN2238), delanzomib (CEP-18770), oprozomib (ONX0912/PR-047) and marizomib (NPI-0052). PMID:27259216

  6. ATP binds to proteasomal ATPases in pairs with distinct functional effects implying an ordered reaction cycle

    PubMed Central

    Smith, David M.; Fraga, Hugo; Reis, Christian; Kafri, Galit; Goldberg, Alfred L.

    2011-01-01

    In the eukaryotic 26S proteasome, the 20S particle is regulated by six AAA ATPase subunits, and in archaea by a homologous ring complex, PAN. To clarify the role of ATP in proteolysis, we studied how nucleotides bind to PAN. Although PAN has six identical subunits it binds ATPs in pairs, and its subunits exhibit three conformational states with high, low, or no affinity for ATP. When PAN binds two ATPγS molecules, or two ATPγS plus two ADP molecules it is maximally active in binding protein substrates, associating with the 20S particle, and promoting 20S gate-opening. However, binding of four ATPγS molecules reduces these functions. The 26S proteasome shows similar nucleotide dependence. These findings imply an ordered cyclical mechanism in which two ATPase subunits bind ATP simultaneously and dock into the 20S. These results can explain how these hexameric ATPases interact with and “wobble” on top of the heptameric 20S proteasome. PMID:21335235

  7. Localization of the proteasomal ubiquitin receptors Rpn10 and Rpn13 by electron cryomicroscopy.

    PubMed

    Sakata, Eri; Bohn, Stefan; Mihalache, Oana; Kiss, Petra; Beck, Florian; Nagy, Istvan; Nickell, Stephan; Tanaka, Keiji; Saeki, Yasushi; Förster, Friedrich; Baumeister, Wolfgang

    2012-01-31

    Two canonical subunits of the 26S proteasome, Rpn10 and Rpn13, function as ubiquitin (Ub) receptors. The mutual arrangement of these subunits--and all other non-ATPase subunits--in the regulatory particle is unknown. Using electron cryomicroscopy, we calculated difference maps between wild-type 26S proteasome from Saccharomyces cerevisiae and deletion mutants (rpn10Δ, rpn13Δ, and rpn10Δrpn13Δ). These maps allowed us to localize the two Ub receptors unambiguously. Rpn10 and Rpn13 mapped to the apical part of the 26S proteasome, above the N-terminal coiled coils of the AAA-ATPase heterodimers Rpt4/Rpt5 and Rpt1/Rpt2, respectively. On the basis of the mutual positions of Rpn10 and Rpn13, we propose a model for polyubiquitin binding to the 26S proteasome.

  8. Localization of the proteasomal ubiquitin receptors Rpn10 and Rpn13 by electron cryomicroscopy

    PubMed Central

    Sakata, Eri; Bohn, Stefan; Mihalache, Oana; Kiss, Petra; Beck, Florian; Nagy, Istvan; Nickell, Stephan; Tanaka, Keiji; Saeki, Yasushi; Förster, Friedrich; Baumeister, Wolfgang

    2012-01-01

    Two canonical subunits of the 26S proteasome, Rpn10 and Rpn13, function as ubiquitin (Ub) receptors. The mutual arrangement of these subunits—and all other non-ATPase subunits—in the regulatory particle is unknown. Using electron cryomicroscopy, we calculated difference maps between wild-type 26S proteasome from Saccharomyces cerevisiae and deletion mutants (rpn10Δ, rpn13Δ, and rpn10Δrpn13Δ). These maps allowed us to localize the two Ub receptors unambiguously. Rpn10 and Rpn13 mapped to the apical part of the 26S proteasome, above the N-terminal coiled coils of the AAA-ATPase heterodimers Rpt4/Rpt5 and Rpt1/Rpt2, respectively. On the basis of the mutual positions of Rpn10 and Rpn13, we propose a model for polyubiquitin binding to the 26S proteasome. PMID:22215586

  9. Proteasome targeting of proteins in Arabidopsis leaf mesophyll, epidermal and vascular tissues

    PubMed Central

    Svozil, Julia; Gruissem, Wilhelm; Baerenfaller, Katja

    2015-01-01

    Protein and transcript levels are partly decoupled as a function of translation efficiency and protein degradation. Selective protein degradation via the Ubiquitin-26S proteasome system (UPS) ensures protein homeostasis and facilitates adjustment of protein abundance during changing environmental conditions. Since individual leaf tissues have specialized functions, their protein composition is different and hence also protein level regulation is expected to differ. To understand UPS function in a tissue-specific context we developed a method termed Meselect to effectively and rapidly separate Arabidopsis thaliana leaf epidermal, vascular and mesophyll tissues. Epidermal and vascular tissue cells are separated mechanically, while mesophyll cells are obtained after rapid protoplasting. The high yield of proteins was sufficient for tissue-specific proteome analyses after inhibition of the proteasome with the specific inhibitor Syringolin A (SylA) and affinity enrichment of ubiquitylated proteins. SylA treatment of leaves resulted in the accumulation of 225 proteins and identification of 519 ubiquitylated proteins. Proteins that were exclusively identified in the three different tissue types are consistent with specific cellular functions. Mesophyll cell proteins were enriched for plastid membrane translocation complexes as targets of the UPS. Epidermis enzymes of the TCA cycle and cell wall biosynthesis specifically accumulated after proteasome inhibition, and in the vascular tissue several enzymes involved in glucosinolate biosynthesis were found to be ubiquitylated. Our results demonstrate that protein level changes and UPS protein targets are characteristic of the individual leaf tissues and that the proteasome is relevant for tissue-specific functions. PMID:26074939

  10. ahg12 is a dominant proteasome mutant that affects multiple regulatory systems for germination of Arabidopsis.

    PubMed

    Hayashi, Shimpei; Hirayama, Takashi

    2016-01-01

    The ubiquitin-proteasome system is fundamentally involved in myriad biological phenomena of eukaryotes. In plants, this regulated protein degradation system has a pivotal role in the cellular response mechanisms for both internal and external stimuli, such as plant hormones and environmental stresses. Information about substrate selection by the ubiquitination machinery has accumulated, but there is very little information about selectivity for substrates at the proteasome. Here, we report characterization of a novel abscisic acid (ABA)-hypersensitive mutant named ABA hypersensitive germination12 (ahg12) in Arabidopsis. The ahg12 mutant showed a unique pleiotropic phenotype, including hypersensitivity to ABA and ethylene, and hyposensitivity to light. Map-based cloning identified the ahg12 mutation to cause an amino acid conversion in the L23 loop of RPT5a, which is predicted to form the pore structure of the 19S RP complex of the proteasome. Transient expression assays demonstrated that some plant-specific signaling components accumulated at higher levels in the ahg12 mutant. These results suggest that the ahg12 mutation led to changes in the substrate preference of the 26S proteasome. The discovery of the ahg12 mutation thus will contribute to elucidate the characteristics of the regulated protein degradation system. PMID:27139926

  11. ahg12 is a dominant proteasome mutant that affects multiple regulatory systems for germination of Arabidopsis

    PubMed Central

    Hayashi, Shimpei; Hirayama, Takashi

    2016-01-01

    The ubiquitin-proteasome system is fundamentally involved in myriad biological phenomena of eukaryotes. In plants, this regulated protein degradation system has a pivotal role in the cellular response mechanisms for both internal and external stimuli, such as plant hormones and environmental stresses. Information about substrate selection by the ubiquitination machinery has accumulated, but there is very little information about selectivity for substrates at the proteasome. Here, we report characterization of a novel abscisic acid (ABA)-hypersensitive mutant named ABA hypersensitive germination12 (ahg12) in Arabidopsis. The ahg12 mutant showed a unique pleiotropic phenotype, including hypersensitivity to ABA and ethylene, and hyposensitivity to light. Map-based cloning identified the ahg12 mutation to cause an amino acid conversion in the L23 loop of RPT5a, which is predicted to form the pore structure of the 19S RP complex of the proteasome. Transient expression assays demonstrated that some plant-specific signaling components accumulated at higher levels in the ahg12 mutant. These results suggest that the ahg12 mutation led to changes in the substrate preference of the 26S proteasome. The discovery of the ahg12 mutation thus will contribute to elucidate the characteristics of the regulated protein degradation system. PMID:27139926

  12. The Ubiquitin Ligase Hul5 Promotes Proteasomal Processivity▿

    PubMed Central

    Aviram, Sharon; Kornitzer, Daniel

    2010-01-01

    The 26S proteasome is a large cytoplasmic protease that degrades polyubiquitinated proteins to short peptides in a processive manner. The proteasome 19S regulatory subcomplex tethers the target protein via its polyubiquitin adduct and unfolds the target polypeptide, which is then threaded into the proteolytic site-containing 20S subcomplex. Hul5 is a 19S subcomplex-associated ubiquitin ligase that elongates ubiquitin chains on proteasome-bound substrates. We isolated hul5Δ as a mutation with which fusions of an unstable cyclin to stable reporter proteins accumulate as partially processed products. These products appear transiently in the wild type but are strongly stabilized in 19S ATPase mutants and in the hul5Δ mutant, supporting a role for the ATPase subunits in the unfolding of proteasome substrates before insertion into the catalytic cavity and suggesting a role for Hul5 in the processive degradation of proteins that are stalled on the proteasome. PMID:20008553

  13. Enhanced rate of degradation of basic proteins by 26S immunoproteasomes.

    PubMed

    Raule, Mary; Cerruti, Fulvia; Cascio, Paolo

    2014-09-01

    Immunoproteasomes are alternative forms of proteasomes specialized in the generation of MHC class I antigenic peptides and important for efficient cytokine production. We have identified a new biochemical property of 26S immunoproteasomes, namely the ability to hydrolyze basic proteins at greatly increased rates compared to constitutive proteasomes. This enhanced degradative capacity is specific for basic polypeptides, since substrates with a lower content in lysine and arginine residues are hydrolyzed at comparable rates by constitutive and immunoproteasomes. Crucially, selective inhibition of the immunoproteasome tryptic subunit β2i strongly reduces degradation of basic proteins. Therefore, our data demonstrate the rate limiting function of the proteasomal trypsin-like activity in controlling turnover rates of basic protein substrates and suggest new biological roles for immunoproteasomes in maintaining cellular homeostasis by rapidly removing a potentially harmful excess of free histones that can build up under different pathophysiological conditions.

  14. Molecular mechanisms of proteasome plasticity in aging

    PubMed Central

    Rodriguez, Karl; Gaczynska, Maria; Osmulski, Pawel A.

    2010-01-01

    The ubiquitin-proteasome pathway plays a crucial role in regulation of intracellular protein turnover. Proteasome, the central protease of the pathway, encompasses multisubunit assemblies sharing a common catalytic core supplemented by regulatory modules and localizing to different subcellular compartments. To better comprehend age-related functions of the proteasome we surveyed content, composition and catalytic properties of the enzyme in cytosolic, microsomal and nuclear fractions. obtained from mouse livers subjected to organismal aging. We found that during aging subunit composition and subcellular distribution of proteasomes changed without substantial alterations in the total level of core complexes. We observed that the general decline in proteasomes functions was limited to nuclear and cytosolic compartments. Surprisingly, the observed changes in activity and specificity were linked to the amount of the activator module and distinct composition of the catalytic subunits. In contrast, activity, specificity and composition of the microsomal-associated proteasomes remained mostly unaffected by aging; however their relative contribution to the total activity was substantially elevated. Unexpectedly, the nuclear proteasomes were affected most profoundly by aging possibly triggering significant changes in cellular signaling and transcription. Collectively, the data indicate an age-related refocusing of proteasome from the compartment specific functions towards general protein maintenance. PMID:20080121

  15. Proteasomal degradation of the metabotropic glutamate receptor 1α is mediated by Homer-3 via the proteasomal S8 ATPase: Signal transduction and synaptic transmission.

    PubMed

    Rezvani, Khosrow; Baalman, Kelli; Teng, Yanfen; Mee, Maureen P; Dawson, Simon P; Wang, Hongmin; De Biasi, Mariella; Mayer, R John

    2012-07-01

    The metabotropic glutamate receptors (mGluRs) fine-tune the efficacy of synaptic transmission. This unique feature makes mGluRs potential targets for the treatment of various CNS disorders. There is ample evidence to show that the ubiquitin proteasome system mediates changes in synaptic strength leading to multiple forms of synaptic plasticity. The present study describes a novel interaction between post-synaptic adaptors, long Homer-3 proteins, and one of the 26S proteasome regulatory subunits, the S8 ATPase, that influences the degradation of the metabotropic glutamate receptor 1α (mGluR1α). We have shown that the two human long Homer-3 proteins specifically interact with human proteasomal S8 ATPase. We identified that mGluR1α and long Homer-3s immunoprecipitate with the 26S proteasome both in vitro and in vivo. We further found that the mGluR1α receptor can be ubiquitinated and degraded by the 26S proteasome and that Homer-3A facilitates this process. Furthermore, the siRNA mediated silencing of Homer-3 led to increased levels of total and plasma membrane-associated mGluR1α receptors. These results suggest that long Homer-3 proteins control the degradation of mGluR1α receptors by shuttling ubiquitinated mGluR-1α receptors to the 26S proteasome via the S8 ATPase which may modulate synaptic transmission.

  16. Identification of proteasome subunit beta type 2 associated with deltamethrin detoxification in Drosophila Kc cells by cDNA microarray analysis and bioassay analyses.

    PubMed

    Hu, Junli; Jiao, Dongxu; Xu, Qin; Ying, Xiaoli; Liu, Wei; Chi, Qingping; Ye, Yuting; Li, Xueyu; Cheng, Luogen

    2016-05-10

    Insecticide deltamethrin resistance has presented a difficult obstacle for pest control and the resistance development is complex and associated with many genes. To better understand the possible molecular mechanisms involved in DM stress, in this study, cDNA microarray analysis was employed. 448 differentially expressed genes with at least a 2-fold expression difference were identified in Drosophila cells after DM exposure. Moreover, some genes were confirmed with qPCR, which yielded results consistent with the microarray analysis. Three members of the ubiquitin-proteasome system were significantly elevated in DM-stressed cells, suggesting that the ubiquitin-proteasome pathway may play an important role in DM detoxification. The proteasome beta2 subunit (Prosbeta2) is a member of 20S proteasome subunit family, which forms the proteolytic core of 26S proteasome. Whether Prosbeta2 participates in DM detoxification requires further study. RNAi and heterologous expression were conducted to investigate the contribution of Prosbeta2 in DM detoxification. The results revealed Prosbeta2 knockdown significantly reduce the level of DM detoxification in RNAi-treated cells after 48 h. Overexpression of Prosbeta2 increased cellular viability. These detoxification results represent the first evidence that Prosbeta2 plays a role in the detoxification of DM, which may provide new idea and target for studying the molecular mechanisms of insect resistance.

  17. Proteasome-mediated destruction of the cyclin a/cyclin-dependent kinase 2 complex suppresses tumor cell growth in vitro and in vivo.

    PubMed

    Chen, Wei; Lee, Jeongwu; Cho, Steve Y; Fine, Howard A

    2004-06-01

    Cyclin-dependent kinases (cdks) represent potentially promising molecular targets for cancer therapeutic strategies. To evaluate the antitumor activity of selective cyclin/cdk inhibition, we constructed a chimeric protein composed of a F-box protein (TrCP) fused to a peptide comprising the cyclin/cdk2 binding motif in p21-like cdk inhibitors (TrCP-LFG). We now demonstrate that endogenous cyclin A and its binding substrate, cdk2, can be tethered to beta-TrCP, ubiquitinated, and effectively degraded. Degradation of cdk2 and cyclin A together, but not cdk2 alone, results in massive tumor cell apoptosis in vitro and in vivo in a proteasome-dependent manner with no toxicity to normal tissue. These data demonstrate that cyclin A and/or the cyclin A/cdk2 complex is a promising anticancer target with a high therapeutic index.

  18. Molecular characterization of NbPAF encoding the alpha6 subunit of the 20S proteasome in Nicotiana benthamiana.

    PubMed

    Kim, Moonil; Yang, Kyoung-Sil; Kim, Yu-Kyung; Paek, Kyung-Hee; Pai, Hyun-Sook

    2003-02-28

    The 26S proteasome involved in degradation of proteins covalently modified with polyubiquitin consists of the 20S proteasome and 19S regulatory complex. The NbPAF gene encoding the alpha6 subunit of the 20S proteasome was identified from Nicotiana benthamiana. NbPAF exhibits high sequence homology with the corresponding genes from Arabidopsis, human and yeast. The deduced amino acid sequence of NbPAF reveals that this protein contains the proteasome alpha-type subunits signature and nuclear localization signal at the N-terminus. The genomic Southern blot analysis suggests that the N. benthamiana genome contains one copy of NbPAF. The NbPAF mRNA was detected abundantly in flowers and weakly in roots and stems, but it was almost undetectable in mature leaves. In response to stresses, accumulation of the NbPAF mRNA was stimulated by methyl jasmonate, NaCl and salicylic acid, but not by abscisic acid and cold treatment in leaves. The NbPAF-GFP fusion protein was localized in the cytoplasm and nucleus. PMID:12661772

  19. The RNA-binding protein Musashi-1 regulates proteasome subunit expression in breast cancer- and glioma-initiating cells

    PubMed Central

    Lagadec, Chann; Vlashi, Erina; Frohnen, Patricia; Alhiyari, Yazeed; Chan, Mabel; Pajonk, Frank

    2014-01-01

    Cancer stem cells (CSCs) or tumor-initiating cells, similar to normal tissue stem cells, rely on developmental pathways, such as the Notch pathway, to maintain their stem cell state. One of the regulators of the Notch pathway is Musashi-1, a mRNA-binding protein. Musashi-1 promotes Notch signaling by binding to the mRNA of Numb, the negative regulator of Notch signaling, thus preventing its translation. Cancer stem cells have also been shown to down-regulate their 26S proteasome activity in several types of solid tumors, thus making them resistant to proteasome-inhibitors used as anti-cancer agents in the clinic. Interestingly, the Notch pathway can be inhibited by proteasomal degradation of the Notch intracellular domain (Notch-ICD), therefore down-regulation of the 26S proteasome activity can lead to stabilization of Notch-ICD. Here we present evidence that the down-regulation of the 26S proteasome in CSCs constitutes another level of control by which Musashi-1 promotes signaling through the Notch pathway and maintenance of the stem cell phenotype of this subpopulation of cancer cells. We demonstrate that Musashi-1 mediates the down-regulation of the 26S proteasome by binding to the mRNA of NF-YA, the transcriptional factor regulating 26S proteasome subunit expression, thus providing an additional route by which the degradation of Notch-ICD is prevented, and Notch signaling is sustained. PMID:24022895

  20. Protein Abundance Changes and Ubiquitylation Targets Identified after Inhibition of the Proteasome with Syringolin A*

    PubMed Central

    Svozil, Julia; Hirsch-Hoffmann, Matthias; Dudler, Robert; Gruissem, Wilhelm; Baerenfaller, Katja

    2014-01-01

    As proteins are the main effectors inside cells, their levels need to be tightly regulated. This is partly achieved by specific protein degradation via the Ubiquitin-26S proteasome system (UPS). In plants, an exceptionally high number of proteins are involved in Ubiquitin-26S proteasome system-mediated protein degradation and it is known to regulate most, if not all, important cellular processes. Here, we investigated the response to the inhibition of the proteasome at the protein level treating leaves with the specific inhibitor Syringolin A (SylA) in a daytime specific manner and found 109 accumulated and 140 decreased proteins. The patterns of protein level changes indicate that the accumulating proteins cause proteotoxic stress that triggers various responses. Comparing protein level changes in SylA treated with those in a transgenic line over-expressing a mutated ubiquitin unable to form polyubiquitylated proteins produced little overlap pointing to different response pathways. To distinguish between direct and indirect targets of the UPS we also enriched and identified ubiquitylated proteins after inhibition of the proteasome, revealing a total of 1791 ubiquitylated proteins in leaves and roots and 1209 that were uniquely identified in our study. The comparison of the ubiquitylated proteins with those changing in abundance after SylA-mediated inhibition of the proteasome confirmed the complexity of the response and revealed that some proteins are regulated both at transcriptional and post-transcriptional level. For the ubiquitylated proteins that accumulate in the cytoplasm but are targeted to the plastid or the mitochondrion, we often found peptides in their target sequences, demonstrating that the UPS is involved in controlling organellar protein levels. Attempts to identify the sites of ubiquitylation revealed that the specific properties of this post-translational modification can lead to incorrect peptide spectrum assignments in complex peptide mixtures

  1. Intracellular Dynamics of the Ubiquitin-Proteasome-System.

    PubMed

    Chowdhury, Maisha; Enenkel, Cordula

    2015-01-01

    The ubiquitin-proteasome system is the major degradation pathway for short-lived proteins in eukaryotic cells. Targets of the ubiquitin-proteasome-system are proteins regulating a broad range of cellular processes including cell cycle progression, gene expression, the quality control of proteostasis and the response to geno- and proteotoxic stress. Prior to degradation, the proteasomal substrate is marked with a poly-ubiquitin chain. The key protease of the ubiquitin system is the proteasome. In dividing cells, proteasomes exist as holo-enzymes composed of regulatory and core particles. The regulatory complex confers ubiquitin-recognition and ATP dependence on proteasomal protein degradation. The catalytic sites are located in the proteasome core particle. Proteasome holo-enzymes are predominantly nuclear suggesting a major requirement for proteasomal proteolysis in the nucleus. In cell cycle arrested mammalian or quiescent yeast cells, proteasomes deplete from the nucleus and accumulate in granules at the nuclear envelope (NE) / endoplasmic reticulum (ER) membranes. In prolonged quiescence, proteasome granules drop off the NE / ER membranes and migrate as stable organelles throughout the cytoplasm, as thoroughly investigated in yeast. When quiescence yeast cells are allowed to resume growth, proteasome granules clear and proteasomes are rapidly imported into the nucleus. Here, we summarize our knowledge about the enigmatic structure of proteasome storage granules and the trafficking of proteasomes and their substrates between the cyto- and nucleoplasm. Most of our current knowledge is based on studies in yeast. Their translation to mammalian cells promises to provide keen insight into protein degradation in non-dividing cells which comprise the majority of our body's cells. PMID:26339477

  2. Characterization of a new series of non-covalent proteasome inhibitors with exquisite potency and selectivity for the 20S [beta]5-subunit

    SciTech Connect

    Blackburn, Christopher; Gigstad, Kenneth M.; Hales, Paul; Garcia, Khristofer; Jones, Matthew; Bruzzese, Frank J.; Barrett, Cynthia; Liu, Jane X.; Soucy, Teresa A.; Sappal, Darshan S.; Bump, Nancy; Olhava, Edward J.; Fleming, Paul; Dick, Lawrence R.; Tsu, Christopher; Sintchak, Michael D.; Blank, Jonathan L.

    2012-04-30

    The mammalian 26S proteasome is a 2500 kDa multi-catalytic complex involved in intracellular protein degradation. We describe the synthesis and properties of a novel series of non-covalent di-peptide inhibitors of the proteasome used on a capped tri-peptide that was first identified by high-throughput screening of a library of approx. 350000 compounds for inhibitors of the ubiquitin-proteasome system in cells. We show that these compounds are entirely selective for the {beta}5 (chymotrypsin-like) site over the {beta}1 (caspase-like) and {beta}2 (trypsin-like) sites of the 20S core particle of the proteasome, and over a panel of less closely related proteases. Compound optimization, guided by X-ray crystallography of the liganded 20S core particle, confirmed their non-covalent binding mode and provided a structural basis for their enhanced in vitro and cellular potencies. We demonstrate that such compounds show low nanomolar IC{sub 50} values for the human 20S {beta}5 site in vitro, and that pharmacological inhibition of this site in cells is sufficient to potently inhibit the degradation of a tetra-ubiquitin-luciferase reporter, activation of NF{Kappa}B (nuclear factor {Kappa}B) in response to TNF-{alpha} (tumor necrosis factor-{alpha}) and the proliferation of cancer cells. Finally, we identified capped di-peptides that show differential selectivity for the {beta}5 site of the constitutively expressed proteasome and immunoproteasome in vitro and in B-cell lymphomas. Collectively, these studies describe the synthesis, activity and binding mode of a new series of non-covalent proteasome inhibitors with unprecedented potency and selectivity for the {beta}5 site, and which can discriminate between the constitutive proteasome and immunoproteasome in vitro and in cells.

  3. Serendipity in discovery of proteasome inhibitors.

    PubMed

    Dunn, Derek; Iqbal, Mohamed; Husten, Jean; Ator, Mark A; Chatterjee, Sankar

    2012-05-15

    Among its various catalytic activities, the 'chymotrypsin-like' activity of the proteasome, a large multicatalytic proteinase complex has emerged as the focus of drug discovery efforts in cancer therapy. Herein, a series of first generation (2S, 3R)-2-amino-3-hydroxybutyric acid derived proteasome inhibitors that were discovered serendipitously en route to original goal of generating a series of sterically constrained oxazoline derivatives has been reported. PMID:22503349

  4. Arabidopsis PROTEASOME REGULATOR1 is required for auxin-mediated suppression of proteasome activity and regulates auxin signalling

    PubMed Central

    Yang, Bao-Jun; Han, Xin-Xin; Yin, Lin-Lin; Xing, Mei-Qing; Xu, Zhi-Hong; Xue, Hong-Wei

    2016-01-01

    The plant hormone auxin is perceived by the nuclear F-box protein TIR1 receptor family and regulates gene expression through degradation of Aux/IAA transcriptional repressors. Several studies have revealed the importance of the proteasome in auxin signalling, but details on how the proteolytic machinery is regulated and how this relates to degradation of Aux/IAA proteins remains unclear. Here we show that an Arabidopsis homologue of the proteasome inhibitor PI31, which we name PROTEASOME REGULATOR1 (PTRE1), is a positive regulator of the 26S proteasome. Loss-of-function ptre1 mutants are insensitive to auxin-mediated suppression of proteasome activity, show diminished auxin-induced degradation of Aux/IAA proteins and display auxin-related phenotypes. We found that auxin alters the subcellular localization of PTRE1, suggesting this may be part of the mechanism by which it reduces proteasome activity. Based on these results, we propose that auxin regulates proteasome activity via PTRE1 to fine-tune the homoeostasis of Aux/IAA repressor proteins thus modifying auxin activity. PMID:27109828

  5. Arabidopsis PROTEASOME REGULATOR1 is required for auxin-mediated suppression of proteasome activity and regulates auxin signalling.

    PubMed

    Yang, Bao-Jun; Han, Xin-Xin; Yin, Lin-Lin; Xing, Mei-Qing; Xu, Zhi-Hong; Xue, Hong-Wei

    2016-01-01

    The plant hormone auxin is perceived by the nuclear F-box protein TIR1 receptor family and regulates gene expression through degradation of Aux/IAA transcriptional repressors. Several studies have revealed the importance of the proteasome in auxin signalling, but details on how the proteolytic machinery is regulated and how this relates to degradation of Aux/IAA proteins remains unclear. Here we show that an Arabidopsis homologue of the proteasome inhibitor PI31, which we name PROTEASOME REGULATOR1 (PTRE1), is a positive regulator of the 26S proteasome. Loss-of-function ptre1 mutants are insensitive to auxin-mediated suppression of proteasome activity, show diminished auxin-induced degradation of Aux/IAA proteins and display auxin-related phenotypes. We found that auxin alters the subcellular localization of PTRE1, suggesting this may be part of the mechanism by which it reduces proteasome activity. Based on these results, we propose that auxin regulates proteasome activity via PTRE1 to fine-tune the homoeostasis of Aux/IAA repressor proteins thus modifying auxin activity. PMID:27109828

  6. Bacterial Proteasome Activator Bpa (Rv3780) Is a Novel Ring-Shaped Interactor of the Mycobacterial Proteasome

    PubMed Central

    Delley, Cyrille L.; Laederach, Juerg; Ziemski, Michal; Bolten, Marcel; Boehringer, Daniel; Weber-Ban, Eilika

    2014-01-01

    The occurrence of the proteasome in bacteria is limited to the phylum of actinobacteria, where it is maintained in parallel to the usual bacterial compartmentalizing proteases. The role it plays in these organisms is still not fully understood, but in the human pathogen Mycobacterium tuberculosis (Mtb) the proteasome supports persistence in the host. In complex with the ring-shaped ATPase Mpa (called ARC in other actinobacteria), the proteasome can degrade proteins that have been post-translationally modified with the prokaryotic ubiquitin-like protein Pup. Unlike for the eukaryotic proteasome core particle, no other bacterial proteasome interactors have been identified to date. Here we describe and characterize a novel bacterial proteasome activator of Mycobacterium tuberculosis we termed Bpa (Rv3780), using a combination of biochemical and biophysical methods. Bpa features a canonical C-terminal proteasome interaction motif referred to as the HbYX motif, and its orthologs are only found in those actinobacteria encoding the proteasomal subunits. Bpa can inhibit degradation of Pup-tagged substrates in vitro by competing with Mpa for association with the proteasome. Using negative-stain electron microscopy, we show that Bpa forms a ring-shaped homooligomer that can bind coaxially to the face of the proteasome cylinder. Interestingly, Bpa can stimulate the proteasomal degradation of the model substrate β-casein, which suggests it could play a role in the removal of non-native or damaged proteins. PMID:25469515

  7. Pupylation-dependent and -independent proteasomal degradation in mycobacteria.

    PubMed

    Imkamp, Frank; Ziemski, Michal; Weber-Ban, Eilika

    2015-08-01

    Bacteria make use of compartmentalizing protease complexes, similar in architecture but not homologous to the eukaryotic proteasome, for the selective and processive removal of proteins. Mycobacteria as members of the actinobacteria harbor proteasomes in addition to the canonical bacterial degradation complexes. Mycobacterial proteasomal degradation, although not essential during normal growth, becomes critical for survival under particular environmental conditions, like, for example, during persistence of the pathogenic Mycobacterium tuberculosis in host macrophages or of environmental mycobacteria under starvation. Recruitment of protein substrates for proteasomal degradation is usually mediated by pupylation, the post-translational modification of lysine side chains with the prokaryotic ubiquitin-like protein Pup. This substrate recruitment strategy is functionally reminiscent of ubiquitination in eukaryotes, but is the result of convergent evolution, relying on chemically and structurally distinct enzymes. Pupylated substrates are recognized by the ATP-dependent proteasomal regulator Mpa that associates with the 20S proteasome core. A pupylation-independent proteasome degradation pathway has recently been discovered that is mediated by the ATP-independent bacterial proteasome activator Bpa (also referred to as PafE), and that appears to play a role under stress conditions. In this review, mechanistic principles of bacterial proteasomal degradation are discussed and compared with functionally related elements of the eukaryotic ubiquitin-proteasome system. Special attention is given to an understanding on the molecular level based on structural and biochemical analysis. Wherever available, discussion of in vivo studies is included to highlight the biological significance of this unusual bacterial degradation pathway. PMID:26352358

  8. Bufalin derivative BF211 inhibits proteasome activity in human lung cancer cells in vitro by inhibiting β1 subunit expression and disrupting proteasome assembly

    PubMed Central

    Sun, Peng; Feng, Li-xing; Zhang, Dong-mei; Liu, Miao; Liu, Wang; Mi, Tian; Wu, Wan-ying; Jiang, Bao-hong; Yang, Min; Hu, Li-hong; Guo, De-an; Liu, Xuan

    2016-01-01

    Aim: Bufalin is one of the active components in the traditional Chinese medicine ChanSu that is used to treat arrhythmia, inflammation and cancer. BF211 is a bufalin derivative with stronger cytotoxic activity in cancer cells. The aim of this study was to identify the putative target proteins of BF211 and the signaling pathways in cancer cells. Methods: A549 human lung cancer cells were treated with BF211. A SILAC-based proteomic analysis was used to detect the protein expression profiles of BF211-treated A549 cells. Cellular proteasome activities were examined using fluorogenic peptide substrates, and the binding affinities of BF211 to recombinant proteasome subunit proteins were evaluated using the Biacore assay. The expression levels of proteasome subunits were determined using RT-PCR and Western blotting, and the levels of the integral 26S proteasome were evaluated using native PAGE analysis. Results: The proteomic analysis revealed that 1282 proteins were differentially expressed in BF211-treated A549 cells, and the putative target proteins of BF211 were associated with various cellular functions, including transcription, translation, mRNA splicing, ribosomal protein synthesis and proteasome function. In A549 cells, BF211 (5, 10, and 20 nmol/L) dose-dependently inhibited the enzymatic activities of proteasome. But BF211 displayed a moderate affinity in binding to proteasome β1 subunit and no binding affinity to the β2 and β5 subunits. Moreover, BF211 (0.1, 1, and 10 nmol/L) did not inhibit the proteasome activities in the cell lysates. BF211 (5, 10, and 20 nmol/L) significantly decreased the expression level of proteasome β1 subunit and the levels of integral 26S proteasome in A549 cells. Similarly, knockdown of the β1 subunit with siRNA in A549 cells significantly decreased integral 26S proteasome and proteasome activity. Conclusion: BF211 inhibits proteasome activity in A549 cells by decreasing β1 subunit expression and disrupting proteasome assembly

  9. Hydrated and anhydrous forms of copper(II) complex of 3-methylpicolinic acid, and spectroscopic studies of their ROS-inducing and proteasome inhibition

    NASA Astrophysics Data System (ADS)

    Lai, Jing Wei; Chan, Cheang Wei; Ng, Chew Hee; Ooi, Ing Hong; Tan, Kong Wai; Maah, Mohd Jamil; Ng, Seik Weng

    2016-02-01

    The hydrated and anhydrous forms of the copper(II) complex of 3-methylpicolinic acid, monomeric [Cu(3Me-pic)2(H2O)]·H2O 1 and polymeric [Cu(3Me-pic)2]n2, were synthesized and characterized by FTIR, UV-visible spectroscopy, conductivity measurement, magnetic susceptibility determination, electron paramagnetic resonance (EPR) and light scattering. Crystal structure analysis of 2 shows that it has a doubly-bridged polymeric structure, involving diagonally stacked Cu(3Me-pic)2 units which are linked via carbonyl oxygen atoms of the 3Me-pic moieties. Analysis of EPR spectra at 133 K and 293 K suggests isotropic intermolecular spin interaction only in 2. Complex 2 dissolved in DMF and DMSO solvents to yield nano-size particles. Solution studies show aqueous solutions of 1 and 2 contain the same neutral Cu(3Me-pic)2 species, which generates less hydroxyl radicals from the reaction with hydrogen peroxide than their precursor CuCl2. The Cu(3Me-pic)2 species exhibit more selective inhibition of the β2 site of the 20S proteasome, among the three proteolytic sites.

  10. Activity-based imaging probes of the proteasome.

    PubMed

    Carmony, Kimberly Cornish; Kim, Kyung Bo

    2013-09-01

    Over the years, the proteasome has been extensively investigated due to its crucial roles in many important signaling pathways and its implications in diseases. Two proteasome inhibitors--bortezomib and carfilzomib--have received FDA approval for the treatment of multiple myeloma, thereby validating the proteasome as a chemotherapeutic target. As a result, further research efforts have been focused on dissecting the complex biology of the proteasome to gain the insight required for developing next-generation proteasome inhibitors. It is clear that chemical probes have made significant contributions to these efforts, mostly by functioning as inhibitors that selectively block the catalytic activity of proteasomes. Analogues of these inhibitors are now providing additional tools for visualization of catalytically active proteasome subunits, several of which allow real-time monitoring of proteasome activity in living cells as well as in in vivo settings. These imaging probes will provide powerful tools for assessing the efficacy of proteasome inhibitors in clinical settings. In this review, we will focus on the recent efforts towards developing imaging probes of proteasomes, including the latest developments in immunoproteasome-selective imaging probes. PMID:23700161

  11. Phosphorylation by p38 Mitogen-Activated Protein Kinase Promotes Estrogen Receptor α Turnover and Functional Activity via the SCFSkp2 Proteasomal Complex

    PubMed Central

    Bhatt, Shweta; Xiao, Zhen; Meng, Zhaojing

    2012-01-01

    The nuclear hormone receptor estrogen receptor α (ERα) mediates the actions of estrogens in target cells and is a master regulator of the gene expression and proliferative programs of breast cancer cells. The presence of ERα in breast cancer cells is crucial for the effectiveness of endocrine therapies, and its loss is a hallmark of endocrine-insensitive breast tumors. However, the molecular mechanisms underlying the regulation of the cellular levels of ERα are not fully understood. Our findings reveal a unique cellular pathway involving the p38 mitogen-activated protein kinase (p38MAPK)-mediated phosphorylation of ERα at Ser-294 that specifies its turnover by the SCFSkp2 proteasome complex. Consistently, we observed an inverse relationship between ERα and Skp2 or active p38MAPK in breast cancer cell lines and human tumors. ERα regulation by Skp2 was cell cycle stage dependent and critical for promoting the mitogenic effects of estradiol via ERα. Interestingly, by the knockdown of Skp2 or the inhibition of p38MAPK, we restored functional ERα protein levels and the control of gene expression and proliferation by estrogen and antiestrogen in ERα-negative breast cancer cells. Our findings highlight a novel pathway with therapeutic potential for restoring ERα and the responsiveness to endocrine therapy in some endocrine-insensitive ERα-negative breast cancers. PMID:22431515

  12. Novel Schiff base copper complexes of quinoline-2 carboxaldehyde as proteasome inhibitors in human prostate cancer cells.

    PubMed

    Adsule, Shreelekha; Barve, Vivek; Chen, Di; Ahmed, Fakhara; Dou, Q Ping; Padhye, Subhash; Sarkar, Fazlul H

    2006-11-30

    We report the synthesis of novel 1:1 Schiff base copper complexes of quinoline-2-carboxaldehyde showing dose-dependent, antiproliferative, and proapoptotic activity in PC-3 and LNCaP prostate cancer cells. We found that quinoline thiosemicarbazone 2 (FPA-137) was the most potent and inhibited proteosome activity in intact human prostate cancer PC-3 and LNCaP cells (IC50 of 4 and 3.2 microM, respectively) compared to clioquinol and pyrrolidine dithiocarbamate (IC50 of 10 and 20 microM), supporting the novelty of 2. PMID:17125278

  13. A Conserved 20S Proteasome Assembly Factor Requires a C-terminal HbYX Motif for Proteasomal Precursor Binding

    PubMed Central

    Kusmierczyk, Andrew R.; Kunjappu, Mary J.; Kim, Roger Y.; Hochstrasser, Mark

    2011-01-01

    Dedicated chaperones facilitate eukaryotic proteasome assembly, yet how they function remains largely unknown. Here we demonstrate that a yeast 20S proteasome assembly factor, Pba1–Pba2, requires a previously overlooked C-terminal HbYX (hydrophobic-tyrosine-X) motif for function. HbYX motifs in proteasome activators open the 20S proteasome entry pore, but Pba1–Pba2 instead binds inactive proteasomal precursors. We discovered an archaeal ortholog of this factor, here named PbaA, that also binds preferentially to proteasomal precursors in a HbYX-dependent fashion using the same proteasomal α-ring surface pockets bound by activators. Remarkably, PbaA and the related PbaB protein can be induced to bind mature 20S proteasomes if the active sites in the central chamber are occupied by inhibitors. Our data suggest an allosteric mechanism in which proteasome active-site maturation determines assembly chaperone binding, potentially shielding assembly intermediates or misassembled complexes from non-productive associations until assembly is complete. PMID:21499243

  14. Bacterial self-resistance to the natural proteasome inhibitor salinosporamide A.

    PubMed

    Kale, Andrew J; McGlinchey, Ryan P; Lechner, Anna; Moore, Bradley S

    2011-11-18

    Proteasome inhibitors have recently emerged as a therapeutic strategy in cancer chemotherapy, but susceptibility to drug resistance limits their efficacy. The marine actinobacterium Salinispora tropica produces salinosporamide A (NPI-0052, marizomib), a potent proteasome inhibitor and promising clinical agent in the treatment of multiple myeloma. Actinobacteria also possess 20S proteasome machinery, raising the question of self-resistance. We identified a redundant proteasome β-subunit, SalI, encoded within the salinosporamide biosynthetic gene cluster and biochemically characterized the SalI proteasome complex. The SalI β-subunit has an altered substrate specificity profile, 30-fold resistance to salinosporamide A, and cross-resistance to the FDA-approved proteasome inhibitor bortezomib. An A49V mutation in SalI correlates to clinical bortezomib resistance from a human proteasome β5-subunit A49T mutation, suggesting that intrinsic resistance to natural proteasome inhibitors may predict clinical outcomes.

  15. A novel proteasome inhibitor suppresses tumor growth via targeting both 19S proteasome deubiquitinases and 20S proteolytic peptidases.

    PubMed

    Liu, Ningning; Liu, Chunjiao; Li, Xiaofen; Liao, Siyan; Song, Wenbin; Yang, Changshan; Zhao, Chong; Huang, Hongbiao; Guan, Lixia; Zhang, Peiquan; Liu, Shouting; Hua, Xianliang; Chen, Xin; Zhou, Ping; Lan, Xiaoying; Yi, Songgang; Wang, Shunqing; Wang, Xuejun; Dou, Q Ping; Liu, Jinbao

    2014-01-01

    The successful development of bortezomib-based therapy for treatment of multiple myeloma has established proteasome inhibition as an effective therapeutic strategy, and both 20S proteasome peptidases and 19S deubiquitinases (DUBs) are becoming attractive targets of cancer therapy. It has been reported that metal complexes, such as copper complexes, inhibit tumor proteasome. However, the involved mechanism of action has not been fully characterized. Here we report that (i) copper pyrithione (CuPT), an alternative to tributyltin for antifouling paint biocides, inhibits the ubiquitin-proteasome system (UPS) via targeting both 19S proteasome-specific DUBs and 20S proteolytic peptidases with a mechanism distinct from that of the FDA-approved proteasome inhibitor bortezomib; (ii) CuPT potently inhibits proteasome-specific UCHL5 and USP14 activities; (iii) CuPT inhibits tumor growth in vivo and induces cytotoxicity in vitro and ex vivo. This study uncovers a novel class of dual inhibitors of DUBs and proteasome and suggests a potential clinical strategy for cancer therapy. PMID:24912524

  16. A novel proteasome inhibitor suppresses tumor growth via targeting both 19S proteasome deubiquitinases and 20S proteolytic peptidases

    PubMed Central

    Liu, Ningning; Liu, Chunjiao; Li, Xiaofen; Liao, Siyan; Song, Wenbin; Yang, Changshan; Zhao, Chong; Huang, Hongbiao; Guan, Lixia; Zhang, Peiquan; Liu, Shouting; Hua, Xianliang; Chen, Xin; Zhou, Ping; Lan, Xiaoying; Yi, Songgang; Wang, Shunqing; Wang, Xuejun; Dou, Q. Ping; Liu, Jinbao

    2014-01-01

    The successful development of bortezomib-based therapy for treatment of multiple myeloma has established proteasome inhibition as an effective therapeutic strategy, and both 20S proteasome peptidases and 19S deubiquitinases (DUBs) are becoming attractive targets of cancer therapy. It has been reported that metal complexes, such as copper complexes, inhibit tumor proteasome. However, the involved mechanism of action has not been fully characterized. Here we report that (i) copper pyrithione (CuPT), an alternative to tributyltin for antifouling paint biocides, inhibits the ubiquitin-proteasome system (UPS) via targeting both 19S proteasome-specific DUBs and 20S proteolytic peptidases with a mechanism distinct from that of the FDA-approved proteasome inhibitor bortezomib; (ii) CuPT potently inhibits proteasome-specific UCHL5 and USP14 activities; (iii) CuPT inhibits tumor growth in vivo and induces cytotoxicity in vitro and ex vivo. This study uncovers a novel class of dual inhibitors of DUBs and proteasome and suggests a potential clinical strategy for cancer therapy. PMID:24912524

  17. The proteasome stress regulon is controlled by a pair of NAC transcription factors in arabidopsis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Proteotoxic stress is mitigated by a variety of mechanisms, including activation of the unfolded protein response and co-ordinated increases in protein chaperones and activities that direct proteolysis such as the 26S proteasome. Using RNA-seq analyses combined with either chemical inhibitors or mut...

  18. The proteasome stress regulon is controlled by a pair of NAC transcription factors in arabidopsis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Proteotoxic stress is mitigated by a variety of mechanisms, including activation of the unfolded protein response and coordinated increases in protein chaperones and activities that direct proteolysis such as the 26S proteasome. Using RNA-seq analyses combined with either chemical inhibitors or mut...

  19. Assaying Proteasomal Degradation in a Cell-free System in Plants

    PubMed Central

    García-Cano, Elena; Zaltsman, Adi; Citovsky, Vitaly

    2014-01-01

    The ubiquitin-proteasome pathway for protein degradation has emerged as one of the most important mechanisms for regulation of a wide spectrum of cellular functions in virtually all eukaryotic organisms. Specifically, in plants, the ubiquitin/26S proteasome system (UPS) regulates protein degradation and contributes significantly to development of a wide range of processes, including immune response, development and programmed cell death. Moreover, increasing evidence suggests that numerous plant pathogens, such as Agrobacterium, exploit the host UPS for efficient infection, emphasizing the importance of UPS in plant-pathogen interactions. The substrate specificity of UPS is achieved by the E3 ubiquitin ligase that acts in concert with the E1 and E2 ligases to recognize and mark specific protein molecules destined for degradation by attaching to them chains of ubiquitin molecules. One class of the E3 ligases is the SCF (Skp1/Cullin/F-box protein) complex, which specifically recognizes the UPS substrates and targets them for ubiquitination via its F-box protein component. To investigate a potential role of UPS in a biological process of interest, it is important to devise a simple and reliable assay for UPS-mediated protein degradation. Here, we describe one such assay using a plant cell-free system. This assay can be adapted for studies of the roles of regulated protein degradation in diverse cellular processes, with a special focus on the F-box protein-substrate interactions. PMID:24747194

  20. Bortezomib Amplifies Effect on Intracellular Proteasomes by Changing Proteasome Structure.

    PubMed

    Pitcher, David S; de Mattos-Shipley, Kate; Tzortzis, Konstantinos; Auner, Holger W; Karadimitris, Anastasios; Kleijnen, Maurits F

    2015-07-01

    The proteasome inhibitor Bortezomib is used to treat multiple myeloma (MM). Bortezomib inhibits protein degradation by inactivating proteasomes' active-sites. MM cells are exquisitely sensitive to Bortezomib - exhibiting a low-nanomolar IC(50) - suggesting that minimal inhibition of degradation suffices to kill MM cells. Instead, we report, a low Bortezomib concentration, contrary to expectation, achieves severe inhibition of proteasome activity in MM cells: the degree of inhibition exceeds what one would expect from the small proportion of active-sites that Bortezomib inhibits. Our data indicate that Bortezomib achieves this severe inhibition by triggering secondary changes in proteasome structure that further inhibit proteasome activity. Comparing MM cells to other, Bortezomib-resistant, cancer cells shows that the degree of proteasome inhibition is the greatest in MM cells and only there leads to proteasome stress, providing an explanation for why Bortezomib is effective against MM but not other cancers.

  1. Lysine Ubiquitination and Acetylation of Human Cardiac 20S Proteasomes

    PubMed Central

    Lau, Edward; Choi, Howard JH; Ng, Dominic CM; Meyer, David; Fang, Caiyun; Li, Haomin; Wang, Ding; Zelaya, Ivette M; Yates, John R; Lam, Maggie PY

    2016-01-01

    Purpose Altered proteasome functions are associated with multiple cardiomyopathies. While the proteasome targets poly-ubiquitinated proteins for destruction, it itself is modifiable by ubiquitination. We aim to identify the exact ubiquitination sites on cardiac proteasomes and examine whether they are also subject to acetylations. Experimental design Assembled cardiac 20S proteasome complexes were purified from five human hearts with ischemic cardiomyopathy, then analyzed by high-resolution MS to identify ubiquitination and acetylation sites. We developed a library search strategy that may be used to complement database search in identifying PTM in different samples. Results We identified 63 ubiquitinated lysines from intact human cardiac 20S proteasomes. In parallel, 65 acetylated residues were also discovered, 39 of which shared with ubiquitination sites. Conclusion and clinical relevance This is the most comprehensive characterization of cardiac proteasome ubiquitination to-date. There are significant overlaps between the discovered ubiquitination and acetylation sites, permitting potential crosstalk in regulating proteasome functions. The information presented here will aid future therapeutic strategies aimed at regulating the functions of cardiac proteasomes. PMID:24957502

  2. The inhibition mechanism of human 20S proteasomes enables next-generation inhibitor design.

    PubMed

    Schrader, Jil; Henneberg, Fabian; Mata, Ricardo A; Tittmann, Kai; Schneider, Thomas R; Stark, Holger; Bourenkov, Gleb; Chari, Ashwin

    2016-08-01

    The proteasome is a validated target for anticancer therapy, and proteasome inhibition is employed in the clinic for the treatment of tumors and hematological malignancies. Here, we describe crystal structures of the native human 20S proteasome and its complexes with inhibitors, which either are drugs approved for cancer treatment or are in clinical trials. The structure of the native human 20S proteasome was determined at an unprecedented resolution of 1.8 angstroms. Additionally, six inhibitor-proteasome complex structures were elucidated at resolutions between 1.9 and 2.1 angstroms. Collectively, the high-resolution structures provide new insights into the catalytic mechanisms of inhibition and necessitate a revised description of the proteasome active site. Knowledge about inhibition mechanisms provides insights into peptide hydrolysis and can guide strategies for the development of next-generation proteasome-based cancer therapeutics. PMID:27493187

  3. Proteasome proteolysis supports stimulated platelet function and thrombosis

    PubMed Central

    Gupta, Nilaksh; Li, Wei; Willard, Belinda; Silverstein, Roy L.; McIntyre, Thomas M.

    2014-01-01

    Objective Proteasome inhibitors are in use to treat hematologic cancers, but also reduce thrombosis. Whether the proteasome participates in platelet activation or function is opaque since little is known of the proteasome in these terminally differentiated cells. Approach and Results Platelets displayed all three primary proteasome protease activities, which MG132 and bortezomib (Velcade®) inhibited. Proteasome substrates are marked by ubiquitin, and platelets contained a functional ubiquitination system that modified the proteome by mono- and poly-ubiquitination. Systemic MG132 strongly suppressed formation of occlusive, platelet-rich thrombi in FeCl3-damaged carotid arteries. Transfusion of platelets treated ex vivo with MG132 and washed prior to transfusion into thrombocytopenic mice also reduced carotid artery thrombosis. Proteasome inhibition reduced platelet aggregation by low thrombin concentrations and ristocetin-stimulated agglutination through the GPIb-IX-V complex. This receptor was not appropriately internalized after proteasome inhibition in stimulated platelets, and spreading and clot retraction after MG132 exposure also were decreased. The effects of proteasome inhibitors were not confined to a single receptor as MG132 suppressed thrombin-, ADP-, and LPS-stimulated microparticle shedding. Proteasome inhibition increased ubiquitin decoration of cytoplasmic proteins, including the cytoskeletal proteins Filamin A and Talin-1. Mass spectrometry revealed a single MG132-sensitive tryptic cleavage after R1745 in an extended Filamin A loop, which would separate its actin-binding domain from its carboxy terminal GPIbα binding domain. Conclusions Platelets contain a ubiquitin/proteasome system that marks cytoskeletal proteins for proteolytic modification to promote productive platelet-platelet and platelet-wall interactions. PMID:24177323

  4. Reconfiguration of the proteasome during chaperone-mediated assembly

    PubMed Central

    Park, Soyeon; Li, Xueming; Kim, Ho Min; Singh, Chingakham Ranjit; Tian, Geng; Hoyt, Martin A.; Lovell, Scott; Battaile, Kevin P.; Zolkiewski, Michal; Coffino, Philip; Roelofs, Jeroen; Cheng, Yifan; Finley, Daniel

    2013-01-01

    The proteasomal ATPase ring, comprising Rpt1-Rpt6, associates with the heptameric α ring of the proteasome core particle (CP) in the mature proteasome, with the Rpt C-terminal tails inserting into pockets of the α ring1–4. Rpt ring assembly is mediated by four chaperones, each binding a distinct Rpt subunit5–10. We report that the base subassembly of the proteasome, which includes the Rpt ring, forms a high affinity complex with the CP. This complex is subject to active dissociation by the chaperones Hsm3, Nas6, and Rpn14. Chaperone-mediated dissociation was abrogated by a nonhydrolyzable ATP analog, indicating that chaperone action is coupled to nucleotide hydrolysis by the Rpt ring. Unexpectedly, synthetic Rpt tail peptides bound α pockets with poor specificity, except for Rpt6, which uniquely bound the α2/α3 pocket. Although the Rpt6 tail is not visualized within an α pocket in mature proteasomes2–4, it inserts into the α2/α3 pocket in the base-CP complex and is important for complex formation. Thus, the Rpt-CP interface is reconfigured when the lid complex joins the nascent proteasome to form the mature holoenzyme. PMID:23644457

  5. A Single α Helix Drives Extensive Remodeling of the Proteasome Lid and Completion of Regulatory Particle Assembly

    PubMed Central

    Tomko, Robert J.; Taylor, David W.; Chen, Zhuo A.; Wang, Hong-Wei; Rappsilber, Juri; Hochstrasser, Mark

    2015-01-01

    Summary Most short-lived eukaryotic proteins are degraded by the proteasome. A proteolytic core particle (CP) capped by regulatory particles (RPs) constitutes the 26S proteasome complex. RP biogenesis culminates with the joining of two large subcomplexes, the lid and base. In yeast and mammals, the lid appears to assemble completely before attaching to the base, but how this hierarchical assembly is enforced has remained unclear. Using biochemical reconstitutions, quantitative cross-linking/mass spectrometry, and electron microscopy, we resolve the mechanistic basis for the linkage between lid biogenesis and lid-base joining. Assimilation of the final lid subunit, Rpn12, triggers a large-scale conformational remodeling of the nascent lid that drives RP assembly, in part by relieving steric clash with the base. Surprisingly, this remodeling is triggered by a single Rpn12 α helix. Such assembly-coupled conformational switching is reminiscent of viral particle maturation and may represent a commonly used mechanism to enforce hierarchical assembly in multisubunit complexes. PMID:26451487

  6. Tau protein degradation is catalyzed by the ATP/ubiquitin-independent 20S proteasome under normal cell conditions

    PubMed Central

    Grune, Tilman; Botzen, Diana; Engels, Martina; Voss, Peter; Kaiser, Barbara; Jung, Tobias; Grimm, Stefanie; Ermak, Gennady; Davies, Kelvin J. A.

    2010-01-01

    Tau is the major protein exhibiting intracellular accumulation in Alzheimer disease. The mechanisms leading to its accumulation are not fully understood. It has been proposed that the proteasome is responsible for degrading tau but, since proteasomal inhibitors block both the ubiquitin-dependent 26S proteasome and the ubiqutin-independent 20S proteasome pathways, it is not clear which of these pathways is involved in tau degradation. Some involvement of the ubiquitin ligase, CHIP in tau degradation has also been postulated during stress. In the current studies, we utilized HT22 cells and tau-transfected E36 cells in order to test the relative importance or possible requirement of the ubiquitin-dependent 26S proteasomal system versus the ubiquitin-independent 20S proteasome, in tau degradation. By means of ATP-depletion, ubiquitinylation-deficient E36ts20 cells, a 19S proteasomal regulator subunit MSS1-siRNA approaches, and in vitro ubiquitinylation studies, we were able to demonstrate that ubiquitinylation is not required for normal tau degradation. PMID:20478262

  7. The ubiquitin-proteasome system regulates plant hormone signaling

    PubMed Central

    Santner, Aaron; Estelle, Mark

    2011-01-01

    SUMMARY Plants utilize the ubiquitin-proteasome system (UPS) to modulate nearly every aspect of growth and development. Ubiquitin is covalently attached to target proteins through the action of three enzymes known as E1, E2, and E3. The ultimate outcome of this post-translational modification depends on the nature of the ubiquitin linkage and the extent of polyubiquitination. In most cases, ubiquitination results in degradation of the target protein in the 26S proteasome. During the last 10 years it has become clear that the UPS plays a prominent regulatory role in hormone biology. E3 ubiquitin ligases in particular actively participate in hormone perception, de-repression of hormone signaling pathways, degradation of hormone specific transcription factors, and regulation of hormone biosynthesis. It is certain that additional functions will be discovered as more of the nearly 1200 potential E3s in plants are elucidated. PMID:20409276

  8. Shikonin Exerts Antitumor Activity via Proteasome Inhibition and Cell Death Induction in vitro and in vivo

    PubMed Central

    Yang, Huanjie; Zhou, Ping; Huang, Hongbiao; Chen, Di; Ma, Ningfang; Cui, Cindy Qiuzhi; Shen, Shouxing; Dong, Weihua; Zhang, Xiaoyan; Lian, Wen; Wang, Xuejun; Dou, Q. Ping; Liu, Jinbao

    2009-01-01

    Dysregulation of the ubiquitin-proteasome pathway plays an essential role in tumor growth and development. Shikonin, a natural naphthoquinone isolated from the traditional Chinese medicine Zi Cao (gromwell), has been reported to possess tumor cell-killing activity, and results from a clinical study using a shikonin-containing mixture demonstrated its safety and efficacy for the treatment of late-stage lung cancer. In the present study, we reported that shikonin is an inhibitor of tumor proteasome activity in vitro and in vivo. Our computational modeling predicts that the carbonyl carbons C1 and C4 of shikonin potentially interact with the catalytic site of β5 chymotryptic subunit of the proteasome. Indeed, shikonin potently inhibits the chymotrypsin-like activity of purified 20S proteasome (IC50 12.5 μmol/L) and tumor cellular 26S proteasome (IC50 between 2-16 μmol/L). Inhibition of the proteasome by shikonin in murine hepatoma H22, leukemia P388 and human prostate cancer PC-3 cultures resulted in accumulation of ubiquitinated proteins and several proteasome target proapoptotic proteins (IκB-α, Bax and p27), followed by induction of cell death. Shikonin treatment resulted in tumor growth inhibition in both H22 allografts and PC-3 xenografts, associated with suppression of the proteasomal activity and induction of cell death in vivo. Finally, shikonin treatment significantly prolonged the survival period of mice bearing P388 leukemia. Our results indicate that the tumor proteasome is one of the cellular targets of shikonin, and inhibition of the proteasome activity by shikonin contributes to its anti-tumor property. PMID:19165859

  9. Post-translational modification of cardiac proteasomes: functional delineation enabled by proteomics

    PubMed Central

    Scruggs, Sarah B.; Zong, Nobel C.; Wang, Ding; Stefani, Enrico

    2012-01-01

    Proteasomes are ubiquitously expressed multicatalytic complexes that serve as key regulators of protein homeostasis. There are several lines of evidence indicating that proteasomes exist in heterogeneous subpopulations in cardiac muscle, differentiated, in part, by post-translational modifications (PTMs). PTMs regulate numerous facets of proteasome function, including catalytic activities, complex assembly, interactions with associating partners, subcellular localization, substrate preference, and complex turnover. Classical technologies used to identify PTMs on proteasomes have lacked the ability to determine site specificity, quantify stoichiometry, and perform large-scale, multi-PTM analysis. Recent advancements in proteomic technologies have largely overcome these limitations. We present here a discussion on the importance of PTMs in modulating proteasome function in cardiac physiology and pathophysiology, followed by the presentation of a state-of-the-art proteomic workflow for identifying and quantifying PTMs of cardiac proteasomes. PMID:22523251

  10. Pseudomonas aeruginosa Cif protein enhances the ubiquitination and proteasomal degradation of the transporter associated with antigen processing (TAP) and reduces major histocompatibility complex (MHC) class I antigen presentation.

    PubMed

    Bomberger, Jennifer M; Ely, Kenneth H; Bangia, Naveen; Ye, Siying; Green, Kathy A; Green, William R; Enelow, Richard I; Stanton, Bruce A

    2014-01-01

    Cif (PA2934), a bacterial virulence factor secreted in outer membrane vesicles by Pseudomonas aeruginosa, increases the ubiquitination and lysosomal degradation of some, but not all, plasma membrane ATP-binding cassette transporters (ABC), including the cystic fibrosis transmembrane conductance regulator and P-glycoprotein. The goal of this study was to determine whether Cif enhances the ubiquitination and degradation of the transporter associated with antigen processing (TAP1 and TAP2), members of the ABC transporter family that play an essential role in antigen presentation and intracellular pathogen clearance. Cif selectively increased the amount of ubiquitinated TAP1 and increased its degradation in the proteasome of human airway epithelial cells. This effect of Cif was mediated by reducing USP10 deubiquitinating activity, resulting in increased polyubiquitination and proteasomal degradation of TAP1. The reduction in TAP1 abundance decreased peptide antigen translocation into the endoplasmic reticulum, an effect that resulted in reduced antigen available to MHC class I molecules for presentation at the plasma membrane of airway epithelial cells and recognition by CD8(+) T cells. Cif is the first bacterial factor identified that inhibits TAP function and MHC class I antigen presentation.

  11. Direct Ubiquitin Independent Recognition and Degradation of a Folded Protein by the Eukaryotic Proteasomes-Origin of Intrinsic Degradation Signals

    PubMed Central

    Singh Gautam, Amit Kumar; Balakrishnan, Satish; Venkatraman, Prasanna

    2012-01-01

    Eukaryotic 26S proteasomes are structurally organized to recognize, unfold and degrade globular proteins. However, all existing model substrates of the 26S proteasome in addition to ubiquitin or adaptor proteins require unstructured regions in the form of fusion tags for efficient degradation. We report for the first time that purified 26S proteasome can directly recognize and degrade apomyoglobin, a globular protein, in the absence of ubiquitin, extrinsic degradation tags or adaptor proteins. Despite a high affinity interaction, absence of a ligand and presence of only helices/loops that follow the degradation signal, apomyoglobin is degraded slowly by the proteasome. A short floppy F-helix exposed upon ligand removal and in conformational equilibrium with a disordered structure is mandatory for recognition and initiation of degradation. Holomyoglobin, in which the helix is buried, is neither recognized nor degraded. Exposure of the floppy F-helix seems to sensitize the proteasome and primes the substrate for degradation. Using peptide panning and competition experiments we speculate that initial encounters through the floppy helix and additional strong interactions with N-terminal helices anchors apomyoglobin to the proteasome. Stabilizing helical structure in the floppy F-helix slows down degradation. Destabilization of adjacent helices accelerates degradation. Unfolding seems to follow the mechanism of helix unraveling rather than global unfolding. Our findings while confirming the requirement for unstructured regions in degradation offers the following new insights: a) origin and identification of an intrinsic degradation signal in the substrate, b) identification of sequences in the native substrate that are likely to be responsible for direct interactions with the proteasome, and c) identification of critical rate limiting steps like exposure of the intrinsic degron and destabilization of an unfolding intermediate that are presumably catalyzed by the ATPases

  12. Structural Models for Interactions between the 20S Proteasome and Its PAN/19S Activators

    SciTech Connect

    Stadtmueller, B.; Ferrell, K; Whitby, F; Heroux, A; Robinson, H; Myszka, D; Hill, C

    2009-01-01

    Proteasome activity is regulated by sequestration of its proteolytic centers in a barrel-shaped structure that limits substrate access. Substrates enter the proteasome by means of activator complexes that bind to the end rings of proteasome alpha subunits and induce opening of an axial entrance/exit pore. The PA26 activator binds in a pocket on the proteasome surface using main chain contacts of its C-terminal residues and uses an internal activation loop to trigger gate opening by repositioning the proteasome Pro-17 reverse turn. Subunits of the unrelated PAN/19S activators bind with their C termini in the same pockets but can induce proteasome gate opening entirely from interactions of their C-terminal peptides, which are reported to cause gate opening by inducing a rocking motion of proteasome alpha subunits rather than by directly contacting the Pro-17 turn. Here we report crystal structures and binding studies of proteasome complexes with PA26 constructs that display modified C-terminal residues, including those corresponding to PAN. These findings suggest that PA26 and PAN/19S C-terminal residues bind superimposably and that both classes of activator induce gate opening by using direct contacts to residues of the proteasome Pro-17 reverse turn. In the case of the PAN and 19S activators, a penultimate tyrosine/phenylalanine residue contacts the proteasome Gly-19 carbonyl oxygen to stabilize the open conformation.

  13. Plant ubiquitin-proteasome pathway and its role in gibberellin signaling

    PubMed Central

    Wang, Feng; Deng, Xing Wang

    2011-01-01

    The ubiquitin-proteasome system (UPS) in plants, like in other eukaryotes, targets numerous intracellular regulators and thus modulates almost every aspect of growth and development. The well-known and best-characterized outcome of ubiquitination is mediating target protein degradation via the 26S proteasome, which represents the major selective protein degradation pathway conserved among eukaryotes. In this review, we will discuss the molecular composition, regulation and function of plant UPS, with a major focus on how DELLA protein degradation acts as a key in gibberellin signal transduction and its implication in the regulation of plant growth. PMID:21788985

  14. Proteasome structure, function, and lessons learned from beta-lactone inhibitors.

    PubMed

    Groll, Michael; Potts, Barbara C

    2011-12-01

    The 26S proteasome is the enzymatic core engine of the ubiquitin and proteasome dependent proteolytic system (UPS), the major eukaryotic pathway for regulated protein degradation. The UPS plays a pivotal role in cellular protein turnover, protein quality control, antigen processing, signal transduction, cell cycle regulation, cell differentiation and apoptosis, inspiring in-depth studies of proteasome structure and function and the search for selective inhibitors. Structural studies revealed that the 26S proteasome comprises up to two 19S regulatory caps flanking a cylindrical 20S core particle, which houses the proteolytic subunits and is present in all kingdoms of life. This review highlights current understanding of 20S architecture, maturation and assembly, the mechanism for selective degradation of protein substrates targeted for destruction, and relationships to other proteases. This knowledge base has benefited from structurally diverse proteasome inhibitors discovered from unique sources, including terrestrial and marine actinomycetes that produce the β-lactone-γ- lactam superfamily of inhibitors, including omuralide, salinosporamide A (marizomib; NPI-0052) and the cinnabaramides. These "minimalist inhibitors" utilize dense functionality to maximum efficiency for potent and selective proteasome inhibition and have advanced from biochemical tools to potential agrochemicals and anticancer agents. In this review, lessons learned from the β-lactone-γ-lactam superfamily are presented, with an emphasis on their unique binding mechanisms elucidated through structural biology in concert with medicinal chemistry. Distinctions between slowly reversible and irreversible inhibitors are discussed, together with the relationship of irreversible binding at the molecular level to prolonged duration proteasome inhibition in tumor cells, and in vitro and in vivo efficacy.

  15. Altered ubiquitin-proteasome signaling in right ventricular hypertrophy and failure.

    PubMed

    Rajagopalan, Viswanathan; Zhao, Mingming; Reddy, Sushma; Fajardo, Giovanni; Wang, Xuejun; Dewey, Shannamar; Gomes, Aldrin V; Bernstein, Daniel

    2013-08-15

    Alterations in the ubiquitin-proteasome system (UPS) have been described in left ventricular hypertrophy and failure, although results have been inconsistent. The role of the UPS in right ventricular (RV) hypertrophy (RVH) and RV failure (RVF) is unknown. Given the greater percent increase in RV mass associated with RV afterload stress, as present in many congenital heart lesions, we hypothesized that alterations in the UPS could play an important role in RVH/RVF. UPS expression and activity were measured in the RV from mice with RVH/RVF secondary to pulmonary artery constriction (PAC). Epoxomicin and MG132 were used to inhibit the proteasome, and overexpression of the 11S PA28α subunit was used to activate the proteasome. PAC mice developed RVH (109.3% increase in RV weight to body weight), RV dilation with septal shift, RV dysfunction, and clinical RVF. Proteasomal function (26S β₅ chymotrypsin-like activity) was decreased 26% (P < 0.05). Protein expression of 19S subunit Rpt5 (P < 0.05), UCHL1 deubiquitinase (P < 0.0001), and Smurf1 E3 ubiquitin ligase (P < 0.01) were increased, as were polyubiquitinated proteins (P < 0.05) and free-ubiquitins (P = 0.05). Pro-apoptotic Bax was increased (P < 0.0001), whereas anti-apoptotic Bcl-2 decreased (P < 0.05), resulting in a sixfold increase in the Bax/Bcl-2 ratio. Proteasomal inhibition did not accelerate RVF. However, proteasome enhancement by cardiac-specific proteasome overexpression partially improved survival. Proteasome activity is decreased in RVH/RVF, associated with upregulation of key UPS regulators and pro-apoptotic signaling. Enhancement of proteasome function partially attenuates RVF, suggesting that UPS dysfunction contributes to RVF.

  16. Fellutamide B is a Potent Inhibitor of the Mycobacterium tuberculosis Proteasome

    SciTech Connect

    Lin, G.; Li, D; Chidawanyika, T; Nathan, C; Li, H

    2010-01-01

    Via high-throughput screening of a natural compound library, we have identified a lipopeptide aldehyde, fellutamide B (1), as the most potent inhibitor of the Mycobacterium tuberculosis (Mtb) proteasome tested to date. Kinetic studies reveal that 1 inhibits both Mtb and human proteasomes in a time-dependent manner under steady-state condition. Remarkably, 1 inhibits the Mtb proteasome in a single-step binding mechanism with K{sub i} = 6.8 nM, whereas it inhibits the human proteasome {beta}5 active site following a two-step mechanism with K{sub i} = 11.5 nM and K*{sub i} = 0.93 nM. Co-crystallization of 1 bound to the Mtb proteasome revealed a structural basis for the tight binding of 1 to the active sites of the Mtb proteasome. The hemiacetal group of 1 in the Mtb proteasome takes the (R)-configuration, whereas in the yeast proteasome it takes the (S)-configuration, indicating that the pre-chiral CHO group of 1 binds to the active site Thr1 in a different orientation. Re-examination of the structure of the yeast proteasome in complex with 1 showed significant conformational changes at the substrate-binding cleft along the active site. These structural differences are consistent with the different kinetic mechanisms of 1 against Mtb and human proteasomes.

  17. Role of the Ubiquitin-Proteasome Systems in the Biology and Virulence of Protozoan Parasites.

    PubMed

    Muñoz, Christian; San Francisco, Juan; Gutiérrez, Bessy; González, Jorge

    2015-01-01

    In eukaryotic cells, proteasomes perform crucial roles in many cellular pathways by degrading proteins to enforce quality control and regulate many cellular processes such as cell cycle progression, signal transduction, cell death, immune responses, metabolism, protein-quality control, and development. The catalytic heart of these complexes, the 20S proteasome, is highly conserved in bacteria, yeast, and humans. However, until a few years ago, the role of proteasomes in parasite biology was completely unknown. Here, we summarize findings about the role of proteasomes in protozoan parasites biology and virulence. Several reports have confirmed the role of proteasomes in parasite biological processes such as cell differentiation, cell cycle, proliferation, and encystation. Proliferation and cell differentiation are key steps in host colonization. Considering the importance of proteasomes in both processes in many different parasites such as Trypanosoma, Leishmania, Toxoplasma, and Entamoeba, parasite proteasomes might serve as virulence factors. Several pieces of evidence strongly suggest that the ubiquitin-proteasome pathway is also a viable parasitic therapeutic target. Research in recent years has shown that the proteasome is a valid drug target for sleeping sickness and malaria. Then, proteasomes are a key organelle in parasite biology and virulence and appear to be an attractive new chemotherapeutic target.

  18. Role of the Ubiquitin-Proteasome Systems in the Biology and Virulence of Protozoan Parasites

    PubMed Central

    Muñoz, Christian; San Francisco, Juan; Gutiérrez, Bessy; González, Jorge

    2015-01-01

    In eukaryotic cells, proteasomes perform crucial roles in many cellular pathways by degrading proteins to enforce quality control and regulate many cellular processes such as cell cycle progression, signal transduction, cell death, immune responses, metabolism, protein-quality control, and development. The catalytic heart of these complexes, the 20S proteasome, is highly conserved in bacteria, yeast, and humans. However, until a few years ago, the role of proteasomes in parasite biology was completely unknown. Here, we summarize findings about the role of proteasomes in protozoan parasites biology and virulence. Several reports have confirmed the role of proteasomes in parasite biological processes such as cell differentiation, cell cycle, proliferation, and encystation. Proliferation and cell differentiation are key steps in host colonization. Considering the importance of proteasomes in both processes in many different parasites such as Trypanosoma, Leishmania, Toxoplasma, and Entamoeba, parasite proteasomes might serve as virulence factors. Several pieces of evidence strongly suggest that the ubiquitin-proteasome pathway is also a viable parasitic therapeutic target. Research in recent years has shown that the proteasome is a valid drug target for sleeping sickness and malaria. Then, proteasomes are a key organelle in parasite biology and virulence and appear to be an attractive new chemotherapeutic target. PMID:26090380

  19. A role for the proteasome in the turnover of Sup35p and in [PSI(+) ] prion propagation.

    PubMed

    Kabani, Mehdi; Redeker, Virginie; Melki, Ronald

    2014-05-01

    Yeast prions are superb models for understanding the mechanisms of self-perpetuating protein aggregates formation. [PSI(+) ] stands among the most documented yeast prions and results from self-assembly of the translation termination factor Sup35p into protein fibrils. A plethora of cellular factors were shown to affect [PSI(+) ] formation and propagation. Clearance of Sup35p prion particles is however poorly understood and documented. Here, we investigated the role of the proteasome in the degradation of Sup35p and in [PSI(+) ] prion propagation. We found that cells lacking the RPN4 gene, which have reduced intracellular proteasome pools, accumulated Sup35p and have defects in [PSI(+) ] formation and propagation. Sup35p is degraded in vitro by the 26S and 20S proteasomes in a ubiquitin-independent manner, generating an array of amyloidogenic peptides derived from its prion-domain. We also demonstrate the formation of a proteasome-resistant fragment spanning residues 83-685 which is devoid of the prion-domain that is essential for [PSI(+) ] propagation. Most important was the finding that the 26S and 20S proteasomes degrade Sup35p fibrils in vitro and abolish their infectivity. Our results point to an overlooked role of the proteasome in clearing toxic protein aggregates, and have important implications for a better understanding of the life cycle of infectious protein assemblies.

  20. Proteasomes are tightly associated to myofibrils in mature skeletal muscle.

    PubMed

    Bassaglia, Yann; Cebrian, José; Covan, Silvia; Garcia, Monica; Foucrier, Jean

    2005-01-15

    Proteasomes are the major actors of nonlysosomal cytoplasmic protein degradation. In particular, these large protein complexes (about 2500 kDa) are considered to be responsible for muscular degradation during skeletal muscle atrophy. Despite their unusual and important size, they are widely described as soluble and mobile in the cytoplasm. In mature skeletal muscle, we have previously observed a sarcomeric distribution of proteasomes, as revealed by the distribution of alpha1/p27K, a subunit of the 20S core-particle (prosome) of proteasome. Here, we extend these observations at the electron microscopic level in vivo. We also show that this sarcomeric pattern is dependent of the extension of the sarcomere. Using isolated myofibrils, we demonstrate that proteasomes are still attached to the myofibrils after the isolation procedure, and reproduce the observations made in vivo. In addition, the extraction of actin by gelsolin largely removes proteasomes from isolated myofibrils, but some of them are held in place after this extraction, showing a sarcomeric disposition in the absence of any detectable actin, and suggesting the existence of another molecular partner for these interactions. From these results, we conclude that most of detectable 20S proteasomes in skeletal muscle cells is tightly attached to the myofibrils. PMID:15561103

  1. Proteasome dysfunction induces muscle growth defects and protein aggregation.

    PubMed

    Kitajima, Yasuo; Tashiro, Yoshitaka; Suzuki, Naoki; Warita, Hitoshi; Kato, Masaaki; Tateyama, Maki; Ando, Risa; Izumi, Rumiko; Yamazaki, Maya; Abe, Manabu; Sakimura, Kenji; Ito, Hidefumi; Urushitani, Makoto; Nagatomi, Ryoichi; Takahashi, Ryosuke; Aoki, Masashi

    2014-12-15

    The ubiquitin-proteasome and autophagy-lysosome pathways are the two major routes of protein and organelle clearance. The role of the proteasome pathway in mammalian muscle has not been examined in vivo. In this study, we report that the muscle-specific deletion of a crucial proteasomal gene, Rpt3 (also known as Psmc4), resulted in profound muscle growth defects and a decrease in force production in mice. Specifically, developing muscles in conditional Rpt3-knockout animals showed dysregulated proteasomal activity. The autophagy pathway was upregulated, but the process of autophagosome formation was impaired. A microscopic analysis revealed the accumulation of basophilic inclusions and disorganization of the sarcomeres in young adult mice. Our results suggest that appropriate proteasomal activity is important for muscle growth and for maintaining myofiber integrity in collaboration with autophagy pathways. The deletion of a component of the proteasome complex contributed to myofiber degeneration and weakness in muscle disorders that are characterized by the accumulation of abnormal inclusions.

  2. Proteasome function is not impaired in healthy aging of the lung.

    PubMed

    Caniard, Anne; Ballweg, Korbinian; Lukas, Christina; Yildirim, Ali Ö; Eickelberg, Oliver; Meiners, Silke

    2015-10-01

    Aging is the progressive loss of cellular function which inevitably leads to death. Failure of proteostasis including the decrease in proteasome function is one hallmark of aging. In the lung, proteasome activity was shown to be impaired in age-related diseases such as chronic obstructive pulmonary disease. However, little is known on proteasome function during healthy aging. Here, we comprehensively analyzed healthy lung aging and proteasome function in wildtype, proteasome reporter and immunoproteasome knockout mice. Wildtype mice spontaneously developed senile lung emphysema while expression and activity of proteasome complexes and turnover of ubiquitinated substrates was not grossly altered in lungs of aged mice. Immunoproteasome subunits were specifically upregulated in the aged lung and the caspase-like proteasome activity concomitantly decreased. Aged knockout mice for the LMP2 or LMP7 immunoproteasome subunits showed no alteration in proteasome activities but exhibited typical lung aging phenotypes suggesting that immunoproteasome function is dispensable for physiological lung aging in mice. Our results indicate that healthy aging of the lung does not involve impairment of proteasome function. Apparently, the reserve capacity of the proteostasis systems in the lung is sufficient to avoid severe proteostasis imbalance during healthy aging. PMID:26540298

  3. APEH Inhibition Affects Osteosarcoma Cell Viability via Downregulation of the Proteasome

    PubMed Central

    Palumbo, Rosanna; Gogliettino, Marta; Cocca, Ennio; Iannitti, Roberta; Sandomenico, Annamaria; Ruvo, Menotti; Balestrieri, Marco; Rossi, Mosè; Palmieri, Gianna

    2016-01-01

    The proteasome is a multienzymatic complex that controls the half-life of the majority of intracellular proteins, including those involved in apoptosis and cell-cycle progression. Recently, proteasome inhibition has been shown to be an effective anticancer strategy, although its downregulation is often accompanied by severe undesired side effects. We previously reported that the inhibition of acylpeptide hydrolase (APEH) by the peptide SsCEI 4 can significantly affect the proteasome activity in A375 melanoma or Caco-2 adenocarcinoma cell lines, thus shedding new light on therapeutic strategies based on downstream regulation of proteasome functions. In this work, we investigated the functional correlation between APEH and proteasome in a panel of cancer cell lines, and evaluated the cell proliferation upon SsCEI 4-treatments. Results revealed that SsCEI 4 triggered a proliferative arrest specifically in osteosarcoma U2OS cells via downregulation of the APEH–proteasome system, with the accumulation of the typical hallmarks of proteasome: NF-κB, p21Waf1, and polyubiquitinylated proteins. We found that the SsCEI 4 anti-proliferative effect involved a senescence-like growth arrest without noticeable cytotoxicity. These findings represent an important step toward understanding the mechanism(s) underlying the APEH-mediated downregulation of proteasome in order to design new molecules able to efficiently regulate the proteasome system for alternative therapeutic strategies. PMID:27669226

  4. Proteasome function is not impaired in healthy aging of the lung.

    PubMed

    Caniard, Anne; Ballweg, Korbinian; Lukas, Christina; Yildirim, Ali Ö; Eickelberg, Oliver; Meiners, Silke

    2015-10-01

    Aging is the progressive loss of cellular function which inevitably leads to death. Failure of proteostasis including the decrease in proteasome function is one hallmark of aging. In the lung, proteasome activity was shown to be impaired in age-related diseases such as chronic obstructive pulmonary disease. However, little is known on proteasome function during healthy aging. Here, we comprehensively analyzed healthy lung aging and proteasome function in wildtype, proteasome reporter and immunoproteasome knockout mice. Wildtype mice spontaneously developed senile lung emphysema while expression and activity of proteasome complexes and turnover of ubiquitinated substrates was not grossly altered in lungs of aged mice. Immunoproteasome subunits were specifically upregulated in the aged lung and the caspase-like proteasome activity concomitantly decreased. Aged knockout mice for the LMP2 or LMP7 immunoproteasome subunits showed no alteration in proteasome activities but exhibited typical lung aging phenotypes suggesting that immunoproteasome function is dispensable for physiological lung aging in mice. Our results indicate that healthy aging of the lung does not involve impairment of proteasome function. Apparently, the reserve capacity of the proteostasis systems in the lung is sufficient to avoid severe proteostasis imbalance during healthy aging.

  5. APEH Inhibition Affects Osteosarcoma Cell Viability via Downregulation of the Proteasome.

    PubMed

    Palumbo, Rosanna; Gogliettino, Marta; Cocca, Ennio; Iannitti, Roberta; Sandomenico, Annamaria; Ruvo, Menotti; Balestrieri, Marco; Rossi, Mosè; Palmieri, Gianna

    2016-01-01

    The proteasome is a multienzymatic complex that controls the half-life of the majority of intracellular proteins, including those involved in apoptosis and cell-cycle progression. Recently, proteasome inhibition has been shown to be an effective anticancer strategy, although its downregulation is often accompanied by severe undesired side effects. We previously reported that the inhibition of acylpeptide hydrolase (APEH) by the peptide SsCEI 4 can significantly affect the proteasome activity in A375 melanoma or Caco-2 adenocarcinoma cell lines, thus shedding new light on therapeutic strategies based on downstream regulation of proteasome functions. In this work, we investigated the functional correlation between APEH and proteasome in a panel of cancer cell lines, and evaluated the cell proliferation upon SsCEI 4-treatments. Results revealed that SsCEI 4 triggered a proliferative arrest specifically in osteosarcoma U2OS cells via downregulation of the APEH-proteasome system, with the accumulation of the typical hallmarks of proteasome: NF-κB, p21(Waf1), and polyubiquitinylated proteins. We found that the SsCEI 4 anti-proliferative effect involved a senescence-like growth arrest without noticeable cytotoxicity. These findings represent an important step toward understanding the mechanism(s) underlying the APEH-mediated downregulation of proteasome in order to design new molecules able to efficiently regulate the proteasome system for alternative therapeutic strategies. PMID:27669226

  6. The cleavage preference of the proteasome governs the yield of antigenic peptides

    PubMed Central

    1995-01-01

    Proteasomes degrade endogenous proteins in the cytosol. The potential contribution of the proteasome to the effect of flanking sequences on the presentation of an antigenic epitope presented by the major histocompatibility complex class I allele Ld was studied. Peptides generated in cells from minigenes coding for peptides of 17- and 19- amino acid length were compared with the in vitro 20S proteasome degradation products of the respective synthetic peptides. The quality of generated peptides was independent of ubiquitination. In vivo and in vitro processing products were indistinguishable with respect to peptide size and abundance. Altering the neighboring sequence substantially improved the yield of the final antigenic nonapeptide by 20S proteasome cleavage. These results suggest that, in addition to the presence of major histocompatibility complex class I allelic motifs, the cleavage preference of the proteasome can define the antigenic potential of a protein. PMID:7500032

  7. Plasmid Vectors for Proteomic Analyses in Giardia: Purification of Virulence Factors and Analysis of the Proteasome

    PubMed Central

    Stadelmann, Britta; Birkestedt, Sandra; Hellman, Ulf; Svärd, Staffan G.

    2012-01-01

    In recent years, proteomics has come of age with the development of efficient tools for purification, identification, and characterization of gene products predicted by genome projects. The intestinal protozoan Giardia intestinalis can be transfected, but there is only a limited set of vectors available, and most of them are not user friendly. This work delineates the construction of a suite of cassette-based expression vectors for use in Giardia. Expression is provided by the strong constitutive ornithine carbamoyltransferase (OCT) promoter, and tagging is possible in both N- and C-terminal configurations. Taken together, the vectors are capable of providing protein localization and production of recombinant proteins, followed by efficient purification by a novel affinity tag combination, streptavidin binding peptide–glutathione S-transferase (SBP-GST). The option of removing the tags from purified proteins was provided by the inclusion of a PreScission protease site. The efficiency and feasibility of producing and purifying endogenous recombinant Giardia proteins with the developed vectors was demonstrated by the purification of active recombinant arginine deiminase (ADI) and OCT from stably transfected trophozoites. Moreover, we describe the tagging, purification by StrepTactin affinity chromatography, and compositional analysis by mass spectrometry of the G. intestinalis 26S proteasome by employing the Strep II-FLAG–tandem affinity purification (SF-TAP) tag. This is the first report of efficient production and purification of recombinant proteins in and from Giardia, which will allow the study of specific parasite proteins and protein complexes. PMID:22611020

  8. Chronic aspirin via dose-dependent and selective inhibition of cardiac proteasome possibly contributed a potential risk to the ischemic heart.

    PubMed

    Tan, Chunjiang; Chen, Wenlie; Wu, Yanbin; Lin, Jiumao; Lin, Ruhui; Tan, Xuerui; Chen, Songming

    2013-08-01

    Impaired cardiac proteasome has been reported in ischemic heart and heart failure. Recent data highlighted aspirin as an inhibitor of the ubiquitin-proteasome system, however, it's unclear whether it affects cardiac proteasome functions. Myocardial infarction (MI), sham or normal male SD rats were injected intraperitoneally with high (300 mg/kg), low (5 mg/kg) aspirin or saline (control) once a day for seven weeks. Parallel experiments were performed in the hypoxia/reoxygenated human ventricular myocytes. Dose-related increases in heart and ventricular weight, and impaired cardiac functions, were found more exacerbated in the aspirin-treated MI rat hearts than the saline-treated MI counterparts. The activity of 26S, 20S and 19S declined by about 30%, or the 20S proteasome subunits β5, β2 and β1 decreased by 40%, 20% and 30%, respectively, in the MI rats compared with the non-MI rats (P<0.05). Compared with the saline-treated MI rats, 26S and 20S in high or low dose aspirin-treated MI rats further decreased by 30% and 20%, β5 by 30% and 12%, and β1 by 40% and 30%, respectively, and the lost activity was correlated with the compromised cardiac functions or the decreased cell viability. The dose-related and selective inhibition of 26S and 20S proteasome, or the 20S proteasome subunits β5 and β1 by aspirin was comparable to their protein expressions in the MI rats and in the cultured cells. The impaired cardiac proteasome, enhanced by chronic aspirin treatment, attenuated the removal of oxidative and ubiquitinated proteins, and chronic aspirin treatment via selective and dose-dependent inhibition of cardiac proteasome possibly constituted a potential risk to ischemic heart.

  9. Potential Roles for Ubiquitin and the Proteasome during Ribosome Biogenesis‡

    PubMed Central

    Stavreva, Diana A.; Kawasaki, Miyuki; Dundr, Miroslav; Koberna, Karel; Müller, Waltraud G.; Tsujimura-Takahashi, Teruko; Komatsu, Wataru; Hayano, Toshiya; Isobe, Toshiaki; Raska, Ivan; Misteli, Tom; Takahashi, Nobuhiro; McNally, James G.

    2006-01-01

    We have investigated the possible involvement of the ubiquitin-proteasome system (UPS) in ribosome biogenesis. We find by immunofluorescence that ubiquitin is present within nucleoli and also demonstrate by immunoprecipitation that complexes associated with pre-rRNA processing factors are ubiquitinated. Using short proteasome inhibition treatments, we show by fluorescence microscopy that nucleolar morphology is disrupted for some but not all factors involved in ribosome biogenesis. Interference with proteasome degradation also induces the accumulation of 90S preribosomes, alters the dynamic properties of a number of processing factors, slows the release of mature rRNA from the nucleolus, and leads to the depletion of 18S and 28S rRNAs. Together, these results suggest that the UPS is probably involved at many steps during ribosome biogenesis, including the maturation of the 90S preribosome. PMID:16782897

  10. Determination of Protein Carbonylation and Proteasome Activity in Seeds.

    PubMed

    Xia, Qiong; El-Maarouf-Bouteau, Hayat; Bailly, Christophe; Meimoun, Patrice

    2016-01-01

    Reactive oxygen species (ROS) have been shown to be toxic but also function as signaling molecules in a process called redox signaling. In seeds, ROS are produced at different developmental stages including dormancy release and germination. Main targets of oxidation events by ROS in cell are lipids, nucleic acids, and proteins. Protein oxidation has various effects on their function, stability, location, and degradation. Carbonylation represents an irreversible and unrepairable modification that can lead to protein degradation through the action of the 20S proteasome. Here, we present techniques which allow the quantification of protein carbonyls in complex protein samples after derivatization by 2,4-dinitrophenylhydrazine (DNPH) and the determination proteasome activity by an activity-based protein profiling (ABPP) using the probe MV151. These techniques, routinely easy to handle, allow the rapid assessment of protein carbonyls and proteasome activity in seeds in various physiological conditions where ROS may act as signaling or toxic elements. PMID:27424756

  11. Structure and function based design of Plasmodium-selective proteasome inhibitors

    PubMed Central

    Li, Hao; O'Donoghue, Anthony J.; van der Linden, Wouter A.; Xie, Stanley C.; Yoo, Euna; Foe, Ian T.; Tilley, Leann; Craik, Charles S.; da Fonseca, Paula C. A.; Bogyo, Matthew

    2016-01-01

    The proteasome is a multi-component protease complex responsible for regulating key processes such as the cell cycle and antigen presentation1. Compounds that target the proteasome are potentially valuable tools for the treatment of pathogens that depend on proteasome function for survival and replication. In particular, proteasome inhibitors have been shown to be toxic for the malaria parasite Plasmodium falciparum at all stages of its life cycle2-5. Most compounds that have been tested against the parasite also inhibit the mammalian proteasome resulting in toxicity that precludes their use as therapeutic agents2,6. Therefore, better definition of the substrate specificity and structural properties of the Plasmodium proteasome could enable the development of compounds with sufficient selectivity to allow their use as anti-malarial agents. To accomplish this goal, we used a substrate profiling method to uncover differences in the specificities of the human and P. falciparum proteasome. We designed inhibitors based on amino acid preferences specific to the parasite proteasome, and found that they preferentially inhibit the β 2 subunit. We determined the structure of the P. falciparum 20S proteasome bound to the inhibitor using cryo-electron microscopy (cryo-EM) and single particle analysis, to a resolution of 3.6 Å. These data reveal the unusually open P. falciparum β2 active site and provide valuable information regarding active site architecture that can be used to further refine inhibitor design. Furthermore, consistent with the recent finding that the proteasome is important for stress pathways associated with resistance of artemisinin (ART) family anti-malarials7,8, we observed growth inhibition synergism with low doses of this β 2 selective inhibitor in ART sensitive and resistant parasites. Finally, we demonstrated that a parasite selective inhibitor could be used to attenuate parasite growth in vivo without significant toxicity to the host. Thus, the

  12. Structure- and function-based design of Plasmodium-selective proteasome inhibitors.

    PubMed

    Li, Hao; O'Donoghue, Anthony J; van der Linden, Wouter A; Xie, Stanley C; Yoo, Euna; Foe, Ian T; Tilley, Leann; Craik, Charles S; da Fonseca, Paula C A; Bogyo, Matthew

    2016-02-11

    The proteasome is a multi-component protease complex responsible for regulating key processes such as the cell cycle and antigen presentation. Compounds that target the proteasome are potentially valuable tools for the treatment of pathogens that depend on proteasome function for survival and replication. In particular, proteasome inhibitors have been shown to be toxic for the malaria parasite Plasmodium falciparum at all stages of its life cycle. Most compounds that have been tested against the parasite also inhibit the mammalian proteasome, resulting in toxicity that precludes their use as therapeutic agents. Therefore, better definition of the substrate specificity and structural properties of the Plasmodium proteasome could enable the development of compounds with sufficient selectivity to allow their use as anti-malarial agents. To accomplish this goal, here we use a substrate profiling method to uncover differences in the specificities of the human and P. falciparum proteasome. We design inhibitors based on amino-acid preferences specific to the parasite proteasome, and find that they preferentially inhibit the β2-subunit. We determine the structure of the P. falciparum 20S proteasome bound to the inhibitor using cryo-electron microscopy and single-particle analysis, to a resolution of 3.6 Å. These data reveal the unusually open P. falciparum β2 active site and provide valuable information about active-site architecture that can be used to further refine inhibitor design. Furthermore, consistent with the recent finding that the proteasome is important for stress pathways associated with resistance of artemisinin family anti-malarials, we observe growth inhibition synergism with low doses of this β2-selective inhibitor in artemisinin-sensitive and -resistant parasites. Finally, we demonstrate that a parasite-selective inhibitor could be used to attenuate parasite growth in vivo without appreciable toxicity to the host. Thus, the Plasmodium proteasome is a

  13. Structure- and function-based design of Plasmodium-selective proteasome inhibitors.

    PubMed

    Li, Hao; O'Donoghue, Anthony J; van der Linden, Wouter A; Xie, Stanley C; Yoo, Euna; Foe, Ian T; Tilley, Leann; Craik, Charles S; da Fonseca, Paula C A; Bogyo, Matthew

    2016-02-11

    The proteasome is a multi-component protease complex responsible for regulating key processes such as the cell cycle and antigen presentation. Compounds that target the proteasome are potentially valuable tools for the treatment of pathogens that depend on proteasome function for survival and replication. In particular, proteasome inhibitors have been shown to be toxic for the malaria parasite Plasmodium falciparum at all stages of its life cycle. Most compounds that have been tested against the parasite also inhibit the mammalian proteasome, resulting in toxicity that precludes their use as therapeutic agents. Therefore, better definition of the substrate specificity and structural properties of the Plasmodium proteasome could enable the development of compounds with sufficient selectivity to allow their use as anti-malarial agents. To accomplish this goal, here we use a substrate profiling method to uncover differences in the specificities of the human and P. falciparum proteasome. We design inhibitors based on amino-acid preferences specific to the parasite proteasome, and find that they preferentially inhibit the β2-subunit. We determine the structure of the P. falciparum 20S proteasome bound to the inhibitor using cryo-electron microscopy and single-particle analysis, to a resolution of 3.6 Å. These data reveal the unusually open P. falciparum β2 active site and provide valuable information about active-site architecture that can be used to further refine inhibitor design. Furthermore, consistent with the recent finding that the proteasome is important for stress pathways associated with resistance of artemisinin family anti-malarials, we observe growth inhibition synergism with low doses of this β2-selective inhibitor in artemisinin-sensitive and -resistant parasites. Finally, we demonstrate that a parasite-selective inhibitor could be used to attenuate parasite growth in vivo without appreciable toxicity to the host. Thus, the Plasmodium proteasome is a

  14. Biochemical characterization and role of the proteasome in the oxidative stress response of adult Schistosoma mansoni worms.

    PubMed

    de Paula, Renato Graciano; Ornelas, Alice Maria de Magalhães; Morais, Enyara Rezende; Borges, William de Castro; Natale, Massimo; Magalhães, Lizandra Guidi; Rodrigues, Vanderlei

    2014-08-01

    The trematode Schistosoma mansoni, an important parasite of humans, is the principle agent of the disease schistosomiasis. In the human host, one of the most important stress factors of this parasite is the oxidative stress generated by both the metabolism of the worm and the immune system of the host. The proteasomal system is responsible for protein homeostasis during oxidative stress. The 26S proteasome is a multicatalytic protease formed by two compartments, a 20S core and regulatory particle 19S, and controls the degradation of intracellular proteins, hence regulating many cellular processes. In the present report, we describe the biochemical characterization and role of the 20S proteasome in the response of adult S. mansoni worms exposed to hydrogen peroxide. Characterization of the response to the oxidative stress included the evaluation of viability, egg production, mortality, tegument integrity, and both expression and activity of proteasome. We observed decreases in viability, egg production as well as 100% mortality at the higher concentrations of hydrogen peroxide tested. The main changes observed in the tegument of adult worms were peeling as well as the appearance of bubbles and a decrease of spines on the tubercles. Furthermore, there were increases in 26S activity to the same extent as 20S proteasome activity, although there was increase of 20S proteasome content, suggesting that degradation of protein oxidized in adult worms is due to the 20S proteasome. It was demonstrated that adult S. mansoni worms are sensitive to oxidative stress, and that a variety of processes in this parasite are altered under this condition. The work contributes to a better understanding of the mechanisms employed by S. mansoni to survive under oxidative stress. PMID:24870249

  15. Structural Insights into the Regulatory Particle of the Proteasome from Methanocaldococcus jannaschii

    SciTech Connect

    Zhang, F.; Hu, M; Tian, G; Zhang, P; Finley, D; Jeffrey, P; Shi, Y

    2009-01-01

    Eukaryotic proteasome consists of a core particle (CP), which degrades unfolded protein, and a regulatory particle (RP), which is responsible for recognition, ATP-dependent unfolding, and translocation of polyubiquitinated substrate protein. In the archaea Methanocaldococcus jannaschii, the RP is a homohexameric complex of proteasome-activating nucleotidase (PAN). Here, we report the crystal structures of essential elements of the archaeal proteasome: the CP, the ATPase domain of PAN, and a distal subcomplex that is likely the first to encounter substrate. The distal subcomplex contains a coiled-coil segment and an OB-fold domain, both of which appear to be conserved in the eukaryotic proteasome. The OB domains of PAN form a hexameric ring with a 13 A pore, which likely constitutes the outermost constriction of the substrate translocation channel. These studies reveal structural codes and architecture of the complete proteasome, identify potential substrate-binding sites, and uncover unexpected asymmetry in the RP of archaea and eukaryotes.

  16. Mouse zygote-specific proteasome assembly chaperone important for maternal-to-zygotic transition

    PubMed Central

    Shin, Seung-Wook; Shimizu, Natsumi; Tokoro, Mikiko; Nishikawa, Satoshi; Hatanaka, Yuki; Anzai, Masayuki; Hamazaki, Jun; Kishigami, Satoshi; Saeki, Kazuhiro; Hosoi, Yoshihiko; Iritani, Akira; Murata, Shigeo; Matsumoto, Kazuya

    2013-01-01

    Summary During the maternal-to-zygotic transition (MZT), maternal proteins in oocytes are degraded by the ubiquitin–proteasome system (UPS), and new proteins are synthesized from the zygotic genome. However, the specific mechanisms underlying the UPS at the MZT are not well understood. We identified a molecule named zygote-specific proteasome assembly chaperone (ZPAC) that is specifically expressed in mouse gonads, and expression of ZPAC was transiently increased at the mouse MZT. ZPAC formed a complex with Ump1 and associated with precursor forms of 20S proteasomes. Transcription of ZPAC genes was also under the control of an autoregulatory feedback mechanism for the compensation of reduced proteasome activity similar to Ump1 and 20S proteasome subunit gene expression. Knockdown of ZPAC in early embryos caused a significant reduction of proteasome activity and decrease in Ump1 and mature proteasomes, leading to accumulation of proteins that need to be degraded at the MZT and early developmental arrest. Therefore, a unique proteasome assembly pathway mediated by ZPAC is important for progression of the mouse MZT. PMID:23429752

  17. Prolonged Proteasome Inhibition Cyclically Upregulates Oct3/4 and Nanog Gene Expression, but Reduces Induced Pluripotent Stem Cell Colony Formation

    PubMed Central

    Floyd, Elizabeth Z.; Staszkiewicz, Jaroslaw; Power, Rachel A.; Kilroy, Gail; Kirk-Ballard, Heather; Barnes, Christian W.; Strickler, Karen L.; Rim, Jong S.; Harkins, Lettie L.; Gao, Ru; Kim, Jeong

    2015-01-01

    Abstract There is ample evidence that the ubiquitin–proteasome system is an important regulator of transcription and its activity is necessary for maintaining pluripotency and promoting cellular reprogramming. Moreover, proteasome activity contributes to maintaining the open chromatin structure found in pluripotent stem cells, acting as a transcriptional inhibitor at specific gene loci generally associated with differentiation. The current study was designed to understand further the role of proteasome inhibition in reprogramming and its ability to modulate endogenous expression of pluripotency-related genes and induced pluripotent stem cells (iPSCs) colony formation. Herein, we demonstrate that acute combinatorial treatment with the proteasome inhibitors MG101 or MG132 and the histone deacetylase (HDAC) inhibitor valproic acid (VPA) increases gene expression of the pluripotency marker Oct3/4, and that MG101 alone is as effective as VPA in the induction of Oct3/4 mRNA expression in fibroblasts. Prolonged proteasome inhibition cyclically upregulates gene expression of Oct3/4 and Nanog, but reduces colony formation in the presence of the iPSC induction cocktail. In conclusion, our results demonstrate that the 26S proteasome is an essential modulator in the reprogramming process. Its inhibition enhances expression of pluripotency-related genes; however, efficient colony formation requires proteasome activity. Therefore, discovery of small molecules that increase proteasome activity might lead to more efficient cell reprogramming and generation of pluripotent cells. PMID:25826722

  18. Suppression of BRCA1 sensitizes cells to proteasome inhibitors

    PubMed Central

    Gu, Y; Bouwman, P; Greco, D; Saarela, J; Yadav, B; Jonkers, J; Kuznetsov, S G

    2014-01-01

    BRCA1 is a multifunctional protein best known for its role in DNA repair and association with breast and ovarian cancers. To uncover novel biologically significant molecular functions of BRCA1, we tested a panel of 198 approved and experimental drugs to inhibit growth of MDA-MB-231 breast cancer cells depleted for BRCA1 by siRNA. 26S proteasome inhibitors bortezomib and carfilzomib emerged as a new class of selective BRCA1-targeting agents. The effect was confirmed in HeLa and U2OS cancer cell lines using two independent siRNAs, and in mouse embryonic stem (ES) cells with inducible deletion of Brca1. Bortezomib treatment did not cause any increase in nuclear foci containing phosphorylated histone H2AX, and knockdown of BRCA2 did not entail sensitivity to bortezomib, suggesting that the DNA repair function of BRCA1 may not be directly involved. We found that a toxic effect of bortezomib on BRCA1-depleted cells is mostly due to deregulated cell cycle checkpoints mediated by RB1-E2F pathway and 53BP1. Similar to BRCA1, depletion of RB1 also conferred sensitivity to bortezomib, whereas suppression of E2F1 or 53BP1 together with BRCA1 reduced induction of apoptosis after bortezomib treatment. A gene expression microarray study identified additional genes activated by bortezomib treatment only in the context of inactivation of BRCA1 including a critical involvement of the ERN1-mediated unfolded protein response. Our data indicate that BRCA1 has a novel molecular function affecting cell cycle checkpoints in a manner dependent on the 26S proteasome activity. PMID:25522274

  19. Characterisation of 20S Proteasome in Tritrichomonas foetus and Its Role during the Cell Cycle and Transformation into Endoflagellar Form.

    PubMed

    Pereira-Neves, Antonio; Gonzaga, Luiz; Menna-Barreto, Rubem F S; Benchimol, Marlene

    2015-01-01

    Proteasomes are intracellular complexes that control selective protein degradation in organisms ranging from Archaea to higher eukaryotes. These structures have multiple proteolytic activities that are required for cell differentiation, replication and maintaining cellular homeostasis. Here, we document the presence of the 20S proteasome in the protist parasite Tritrichomonas foetus. Complementary techniques, such as a combination of whole genome sequencing technologies, bioinformatics algorithms, cell fractionation and biochemistry and microscopy approaches were used to characterise the 20S proteasome of T. foetus. The 14 homologues of the typical eukaryotic proteasome subunits were identified in the T. foetus genome. Alignment analyses showed that the main regulatory and catalytic domains of the proteasome were conserved in the predicted amino acid sequences from T. foetus-proteasome subunits. Immunofluorescence assays using an anti-proteasome antibody revealed a labelling distributed throughout the cytosol as punctate cytoplasmic structures and in the perinuclear region. Electron microscopy of a T. foetus-proteasome-enriched fraction confirmed the presence of particles that resembled the typical eukaryotic 20S proteasome. Fluorogenic assays using specific peptidyl substrates detected presence of the three typical peptidase activities of eukaryotic proteasomes in T. foetus. As expected, these peptidase activities were inhibited by lactacystin, a well-known specific proteasome inhibitor, and were not affected by inhibitors of serine or cysteine proteases. During the transformation of T. foetus to endoflagellar form (EFF), also known as pseudocyst, we observed correlations between the EFF formation rates, increases in the proteasome activities and reduced levels of ubiquitin-protein conjugates. The growth, cell cycle and EFF transformation of T. foetus were inhibited after treatment with lactacystin in a dose-dependent manner. Lactacystin treatment also resulted in

  20. Characterisation of 20S Proteasome in Tritrichomonas foetus and Its Role during the Cell Cycle and Transformation into Endoflagellar Form

    PubMed Central

    Pereira-Neves, Antonio; Gonzaga, Luiz; Menna-Barreto, Rubem F. S.; Benchimol, Marlene

    2015-01-01

    Proteasomes are intracellular complexes that control selective protein degradation in organisms ranging from Archaea to higher eukaryotes. These structures have multiple proteolytic activities that are required for cell differentiation, replication and maintaining cellular homeostasis. Here, we document the presence of the 20S proteasome in the protist parasite Tritrichomonas foetus. Complementary techniques, such as a combination of whole genome sequencing technologies, bioinformatics algorithms, cell fractionation and biochemistry and microscopy approaches were used to characterise the 20S proteasome of T. foetus. The 14 homologues of the typical eukaryotic proteasome subunits were identified in the T. foetus genome. Alignment analyses showed that the main regulatory and catalytic domains of the proteasome were conserved in the predicted amino acid sequences from T. foetus-proteasome subunits. Immunofluorescence assays using an anti-proteasome antibody revealed a labelling distributed throughout the cytosol as punctate cytoplasmic structures and in the perinuclear region. Electron microscopy of a T. foetus-proteasome-enriched fraction confirmed the presence of particles that resembled the typical eukaryotic 20S proteasome. Fluorogenic assays using specific peptidyl substrates detected presence of the three typical peptidase activities of eukaryotic proteasomes in T. foetus. As expected, these peptidase activities were inhibited by lactacystin, a well-known specific proteasome inhibitor, and were not affected by inhibitors of serine or cysteine proteases. During the transformation of T. foetus to endoflagellar form (EFF), also known as pseudocyst, we observed correlations between the EFF formation rates, increases in the proteasome activities and reduced levels of ubiquitin-protein conjugates. The growth, cell cycle and EFF transformation of T. foetus were inhibited after treatment with lactacystin in a dose-dependent manner. Lactacystin treatment also resulted in

  1. Bacterial proteasome and PafA, the pup ligase, interact to form a modular protein tagging and degradation machine.

    PubMed

    Forer, Nadav; Korman, Maayan; Elharar, Yifat; Vishkautzan, Marina; Gur, Eyal

    2013-12-17

    Proteasome-containing bacteria possess a tagging system that directs proteins to proteasomal degradation by conjugating them to a prokaryotic ubiquitin-like protein (Pup). A single ligating enzyme, PafA, is responsible for Pup conjugation to lysine side chains of protein substrates. As Pup is recognized by the regulatory subunit of the proteasome, Pup functions as a degradation tag. Pup presents overlapping regions for binding of the proteasome and PafA. It was, therefore, unclear whether Pup binding by the proteasome regulatory subunit, Mpa, and by PafA are mutually exclusive events. The work presented here provides evidence for the simultaneous interaction of Pup with both Mpa and PafA. Surprisingly, we found that PafA and Mpa can form a complex both in vitro and in vivo. Our results thus suggest that PafA and the proteasome can function as a modular machine for the tagging and degradation of cytoplasmic proteins. PMID:24228735

  2. Blm10 facilitates nuclear import of proteasome core particles

    PubMed Central

    Weberruss, Marion H; Savulescu, Anca F; Jando, Julia; Bissinger, Thomas; Harel, Amnon; Glickman, Michael H; Enenkel, Cordula

    2013-01-01

    Short-lived proteins are degraded by proteasome complexes, which contain a proteolytic core particle (CP) but differ in the number of regulatory particles (RPs) and activators. A recently described member of conserved proteasome activators is Blm10. Blm10 contains 32 HEAT-like modules and is structurally related to the nuclear import receptor importin/karyopherin β. In proliferating yeast, RP-CP assemblies are primarily nuclear and promote cell division. During quiescence, RP-CP assemblies dissociate and CP and RP are sequestered into motile cytosolic proteasome storage granuli (PSG). Here, we show that CP sequestration into PSG depends on Blm10, whereas RP sequestration into PSG is independent of Blm10. PSG rapidly clear upon the resumption of cell proliferation and proteasomes are relocated into the nucleus. Thereby, Blm10 facilitates nuclear import of CP. Blm10-bound CP serves as an import receptor–cargo complex, as Blm10 mediates the interaction with FG-rich nucleoporins and is dissociated from the CP by Ran-GTP. Thus, Blm10 represents the first CP-dedicated nuclear import receptor in yeast. PMID:23982732

  3. Subnormothermic Perfusion in the Isolated Rat Liver Preserves the Antioxidant Glutathione and Enhances the Function of the Ubiquitin Proteasome System

    PubMed Central

    Alva, Norma; Sanchez-Nuño, Sergio; Dewey, Shannamar; Gomes, Aldrin V.

    2016-01-01

    The reduction of oxidative stress is suggested to be one of the main mechanisms to explain the benefits of subnormothermic perfusion against ischemic liver damage. In this study we investigated the early cellular mechanisms induced in isolated rat livers after 15 min perfusion at temperatures ranging from normothermia (37°C) to subnormothermia (26°C and 22°C). Subnormothermic perfusion was found to maintain hepatic viability. Perfusion at 22°C raised reduced glutathione levels and the activity of glutathione reductase; however, lipid and protein oxidation still occurred as determined by malondialdehyde, 4-hydroxynonenal-protein adducts, and advanced oxidation protein products. In livers perfused at 22°C the lysosomal and ubiquitin proteasome system (UPS) were both activated. The 26S chymotrypsin-like (β5) proteasome activity was significantly increased in the 26°C (46%) and 22°C (42%) groups. The increased proteasome activity may be due to increased Rpt6 Ser120 phosphorylation, which is known to enhance 26S proteasome activity. Together, our results indicate that the early events produced by subnormothermic perfusion in the liver can induce oxidative stress concomitantly with antioxidant glutathione preservation and enhanced function of the lysosomal and UPS systems. Thus, a brief hypothermia could trigger antioxidant mechanisms and may be functioning as a preconditioning stimulus. PMID:27800122

  4. Proteasome function shapes innate and adaptive immune responses.

    PubMed

    Kammerl, Ilona E; Meiners, Silke

    2016-08-01

    The proteasome system degrades more than 80% of intracellular proteins into small peptides. Accordingly, the proteasome is involved in many essential cellular functions, such as protein quality control, transcription, immune responses, cell signaling, and apoptosis. Moreover, degradation products are loaded onto major histocompatibility class I molecules to communicate the intracellular protein composition to the immune system. The standard 20S proteasome core complex contains three distinct catalytic active sites that are exchanged upon stimulation with inflammatory cytokines to form the so-called immunoproteasome. Immunoproteasomes are constitutively expressed in immune cells and have different proteolytic activities compared with standard proteasomes. They are rapidly induced in parenchymal cells upon intracellular pathogen infection and are crucial for priming effective CD8(+) T-cell-mediated immune responses against infected cells. Beyond shaping these adaptive immune reactions, immunoproteasomes also regulate the function of immune cells by degradation of inflammatory and immune mediators. Accordingly, they emerge as novel regulators of innate immune responses. The recently unraveled impairment of immunoproteasome function by environmental challenges and by genetic variations of immunoproteasome genes might represent a currently underestimated risk factor for the development and progression of lung diseases. In particular, immunoproteasome dysfunction will dampen resolution of infections, thereby promoting exacerbations, may foster autoimmunity in chronic lung diseases, and possibly contributes to immune evasion of tumor cells. Novel pharmacological tools, such as site-specific inhibitors of the immunoproteasome, as well as activity-based probes, however, hold promises as innovative therapeutic drugs for respiratory diseases and biomarker profiling, respectively. PMID:27343191

  5. Proteasome function shapes innate and adaptive immune responses.

    PubMed

    Kammerl, Ilona E; Meiners, Silke

    2016-08-01

    The proteasome system degrades more than 80% of intracellular proteins into small peptides. Accordingly, the proteasome is involved in many essential cellular functions, such as protein quality control, transcription, immune responses, cell signaling, and apoptosis. Moreover, degradation products are loaded onto major histocompatibility class I molecules to communicate the intracellular protein composition to the immune system. The standard 20S proteasome core complex contains three distinct catalytic active sites that are exchanged upon stimulation with inflammatory cytokines to form the so-called immunoproteasome. Immunoproteasomes are constitutively expressed in immune cells and have different proteolytic activities compared with standard proteasomes. They are rapidly induced in parenchymal cells upon intracellular pathogen infection and are crucial for priming effective CD8(+) T-cell-mediated immune responses against infected cells. Beyond shaping these adaptive immune reactions, immunoproteasomes also regulate the function of immune cells by degradation of inflammatory and immune mediators. Accordingly, they emerge as novel regulators of innate immune responses. The recently unraveled impairment of immunoproteasome function by environmental challenges and by genetic variations of immunoproteasome genes might represent a currently underestimated risk factor for the development and progression of lung diseases. In particular, immunoproteasome dysfunction will dampen resolution of infections, thereby promoting exacerbations, may foster autoimmunity in chronic lung diseases, and possibly contributes to immune evasion of tumor cells. Novel pharmacological tools, such as site-specific inhibitors of the immunoproteasome, as well as activity-based probes, however, hold promises as innovative therapeutic drugs for respiratory diseases and biomarker profiling, respectively.

  6. Dss1 associating with the proteasome functions in selective nuclear mRNA export in yeast

    SciTech Connect

    Mannen, Taro; Andoh, Tomoko; Tani, Tokio

    2008-01-25

    Dss1p is an evolutionarily conserved small protein that interacts with BRCA2, a tumor suppressor protein, in humans. The Schizosaccharomyces pombe strain lacking the dss1{sup +} gene ({delta}dss1) shows a temperature-sensitive growth defect and accumulation of bulk poly(A){sup +} RNA in the nucleus at a nonpermissive temperature. In situ hybridization using probes for several specific mRNAs, however, revealed that the analyzed mRNAs were exported normally to the cytoplasm in {delta}dss1, suggesting that Dss1p is required for export of some subsets of mRNAs. We identified the pad1{sup +} gene, which encodes a component of the 26S proteasome, as a suppressor for the ts{sup -} phenotype of {delta}dss1. Unexpectedly, overexpression of Pad1p could suppress neither the defect in nuclear mRNA export nor a defect in proteasome function. In addition, loss of proteasome functions does not cause defective nuclear mRNA export. Dss1p seems to be a multifunctional protein involved in nuclear export of specific sets of mRNAs and the ubiquitin-proteasome pathway in fission yeast.

  7. Urban renewal in the nucleus: is protein turnover by proteasomes absolutely required for nuclear receptor-regulated transcription?

    PubMed

    Nawaz, Zafar; O'Malley, Bert W

    2004-03-01

    The importance of the ubiquitin proteasome pathway in higher eukaryotes has been well established in cell cycle regulation, signal transduction, and cell differentiation, but has only recently been linked to nuclear hormone receptor-regulated gene transcription. Characterization of a number of ubiquitin proteasome pathway enzymes as coactivators and observations that several nuclear receptors are ubiquitinated and degraded in the course of their nuclear activities provide evidence that ubiquitin proteasome-mediated protein degradation plays an integral role in eukaryotic transcription. In addition to receptors, studies have revealed that coactivators are ubiquitinated and degraded via the proteasome. The notion that the ubiquitin proteasome pathway is involved in gene transcription is further strengthened by the fact that ubiquitin proteasome pathway enzymes are recruited to the promoters of target genes and that proteasome-dependent degradation of nuclear receptors is required for efficient transcriptional activity. These findings suggest that protein degradation is coupled with nuclear receptor coactivation activity. It is possible that the ubiquitin proteasome pathway modulates transcription by promoting remodeling and turnover of the nuclear receptor-transcription complex. In this review, we discus the possible role of the ubiquitin proteasome pathway in nuclear hormone receptor-regulated gene transcription.

  8. The proteasomal subunit Rpn6 is a molecular clamp holding the core and regulatory subcomplexes together

    PubMed Central

    Pathare, Ganesh Ramnath; Nagy, István; Bohn, Stefan; Unverdorben, Pia; Hubert, Agnes; Körner, Roman; Nickell, Stephan; Lasker, Keren; Sali, Andrej; Tamura, Tomohiro; Nishioka, Taiki; Förster, Friedrich; Baumeister, Wolfgang; Bracher, Andreas

    2012-01-01

    Proteasomes execute the degradation of most cellular proteins. Although the 20S core particle (CP) has been studied in great detail, the structure of the 19S regulatory particle (RP), which prepares ubiquitylated substrates for degradation, has remained elusive. Here, we report the crystal structure of one of the RP subunits, Rpn6, and we describe its integration into the cryo-EM density map of the 26S holocomplex at 9.1 Å resolution. Rpn6 consists of an α-solenoid-like fold and a proteasome COP9/signalosome eIF3 (PCI) module in a right-handed suprahelical configuration. Highly conserved surface areas of Rpn6 interact with the conserved surfaces of the Pre8 (alpha2) and Rpt6 subunits from the alpha and ATPase rings, respectively. The structure suggests that Rpn6 has a pivotal role in stabilizing the otherwise weak interaction between the CP and the RP. PMID:22187461

  9. The proteasomal subunit Rpn6 is a molecular clamp holding the core and regulatory subcomplexes together.

    PubMed

    Pathare, Ganesh Ramnath; Nagy, István; Bohn, Stefan; Unverdorben, Pia; Hubert, Agnes; Körner, Roman; Nickell, Stephan; Lasker, Keren; Sali, Andrej; Tamura, Tomohiro; Nishioka, Taiki; Förster, Friedrich; Baumeister, Wolfgang; Bracher, Andreas

    2012-01-01

    Proteasomes execute the degradation of most cellular proteins. Although the 20S core particle (CP) has been studied in great detail, the structure of the 19S regulatory particle (RP), which prepares ubiquitylated substrates for degradation, has remained elusive. Here, we report the crystal structure of one of the RP subunits, Rpn6, and we describe its integration into the cryo-EM density map of the 26S holocomplex at 9.1 Å resolution. Rpn6 consists of an α-solenoid-like fold and a proteasome COP9/signalosome eIF3 (PCI) module in a right-handed suprahelical configuration. Highly conserved surface areas of Rpn6 interact with the conserved surfaces of the Pre8 (alpha2) and Rpt6 subunits from the alpha and ATPase rings, respectively. The structure suggests that Rpn6 has a pivotal role in stabilizing the otherwise weak interaction between the CP and the RP.

  10. Suppression of cytochrome P450 3A protein levels by proteasome inhibitors.

    SciTech Connect

    Zangar, Richard C. ); Kocarek, Thomas A.; Shen, Shang; Bollinger, Nikki ); Dahn, Michael S.; Lee, Donna W.

    2003-06-01

    We have previously reported that CYP3A cross-links with polyubiquitinated proteins in microsomes from nicardipine-treated rats in a process that is distinct from classical polyubiquitination. To further examine the role of the proteasome in CYP3A degradation, we investigated the effects of proteasome inhibitors lactacystin, MG132, proteasome inhibitor 1, and hemin in primary cultures of rat and human hepatocytes. With the exception of hemin, these agents increased the total pool of ubiquitinated proteins in microsomes isolated from rat hepatocytes, indicating that lactacystin, MG132, and proteasome inhibitor 1 effectively inhibited the proteasome in these cells. All four agents caused a reduction in the amount of the major approximately 55-kDa CYP3A band, opposite to what would be expected if the ubiquitin-proteasome pathway degraded CYP3A. Only hemin treatment caused an increase in high molecular mass (HMM) CYP3A bands. Because hemin treatment did not alter levels of ubiquitin in CYP3 A immunoprecipitates, the HMM CYP3A bands formed in response to hemin treatment clearly were not due to proteasome inhibition. Rather, because hemin treatment also caused an increase in HMM CYP3A in the detergent-insoluble fraction of the 10,000g pellet, the HMM CYP3A seems to represent a large protein complex that is unlikely to primarily represent ubiquitination.

  11. Suppression of cytochrome P450 3A protein levels by proteasome inhibitors.

    PubMed

    Zangar, Richard C; Kocarek, Thomas A; Shen, Shang; Bollinger, Nikki; Dahn, Michael S; Lee, Donna W

    2003-06-01

    We have previously reported that CYP3A cross-links with polyubiquitinated proteins in microsomes from nicardipine-treated rats in a process that is distinct from classical polyubiquitination. To further examine the role of the proteasome in CYP3A degradation, we investigated the effects of proteasome inhibitors lactacystin, MG132, proteasome inhibitor 1, and hemin in primary cultures of rat and human hepatocytes. With the exception of hemin, these agents increased the total pool of ubiquitinated proteins in microsomes isolated from rat hepatocytes, indicating that lactacystin, MG132, and proteasome inhibitor 1 effectively inhibited the proteasome in these cells. All four agents caused a reduction in the amount of the major approximately 55-kDa CYP3A band, opposite to what would be expected if the ubiquitin-proteasome pathway degraded CYP3A. Only hemin treatment caused an increase in high molecular mass (HMM) CYP3A bands. Because hemin treatment did not alter levels of ubiquitin in CYP3A immunoprecipitates, the HMM CYP3A bands formed in response to hemin treatment clearly were not due to proteasome inhibition. Rather, because hemin treatment also caused an increase in HMM CYP3A in the detergent-insoluble fraction of the 10,000g pellet, the HMM CYP3A seems to represent a large protein complex that is unlikely to primarily represent ubiquitination.

  12. An evolutionarily conserved pathway controls proteasome homeostasis.

    PubMed

    Rousseau, Adrien; Bertolotti, Anne

    2016-08-11

    The proteasome is essential for the selective degradation of most cellular proteins, but how cells maintain adequate amounts of proteasome is unclear. Here we show that there is an evolutionarily conserved signalling pathway controlling proteasome homeostasis. Central to this pathway is TORC1, the inhibition of which induced all known yeast 19S regulatory particle assembly-chaperones (RACs), as well as proteasome subunits. Downstream of TORC1 inhibition, the yeast mitogen-activated protein kinase, Mpk1, acts to increase the supply of RACs and proteasome subunits under challenging conditions in order to maintain proteasomal degradation and cell viability. This adaptive pathway was evolutionarily conserved, with mTOR and ERK5 controlling the levels of the four mammalian RACs and proteasome abundance. Thus, the central growth and stress controllers, TORC1 and Mpk1/ERK5, endow cells with a rapid and vital adaptive response to adjust proteasome abundance in response to the rising needs of cells. Enhancing this pathway may be a useful therapeutic approach for diseases resulting from impaired proteasomal degradation. PMID:27462806

  13. Formation of Tankyrase Inhibitor-Induced Degradasomes Requires Proteasome Activity

    PubMed Central

    Pedersen, Nina Marie; Thorvaldsen, Tor Espen; Schultz, Sebastian Wolfgang; Wenzel, Eva Maria; Stenmark, Harald

    2016-01-01

    In canonical Wnt signaling, the protein levels of the key signaling mediator β-catenin are under tight regulation by the multimeric destruction complex that mediates proteasomal degradation of β-catenin. In colorectal cancer, destruction complex activity is often compromised due to mutations in the multifunctional scaffolding protein Adenomatous Polyposis Coli (APC), leading to a stabilization of β-catenin. Recently, tankyrase inhibitors (TNKSi), a novel class of small molecule inhibitors, were shown to re-establish a functional destruction complex in APC-mutant cancer cell lines by stabilizing AXIN1/2, whose protein levels are usually kept low via poly(ADP-ribosyl)ation by the tankyrase enzymes (TNKS1/2). Surprisingly, we found that for the formation of the morphological correlates of destruction complexes, called degradasomes, functional proteasomes are required. In addition we found that AXIN2 is strongly upregulated after 6 h of TNKS inhibition. The proteasome inhibitor MG132 counteracted TNKSi-induced degradasome formation and AXIN2 stabilization, and this was accompanied by reduced transcription of AXIN2. Mechanistically we could implicate the transcription factor FoxM1 in this process, which was recently shown to be a transcriptional activator of AXIN2. We observed a substantial reduction in TNKSi-induced stabilization of AXIN2 after siRNA-mediated depletion of FoxM1 and found that proteasome inhibition reduced the active (phosphorylated) fraction of FoxM1. This can explain the decreased protein levels of AXIN2 after MG132 treatment. Our findings have implications for the design of in vitro studies on the destruction complex and for clinical applications of TNKSi. PMID:27482906

  14. Autophagy and ubiquitin-proteasome system contribute to sperm mitophagy after mammalian fertilization.

    PubMed

    Song, Won-Hee; Yi, Young-Joo; Sutovsky, Miriam; Meyers, Stuart; Sutovsky, Peter

    2016-09-01

    Maternal inheritance of mitochondria and mtDNA is a universal principle in human and animal development, guided by selective ubiquitin-dependent degradation of the sperm-borne mitochondria after fertilization. However, it is not clear how the 26S proteasome, the ubiquitin-dependent protease that is only capable of degrading one protein molecule at a time, can dispose of a whole sperm mitochondrial sheath. We hypothesized that the canonical ubiquitin-like autophagy receptors [sequestosome 1 (SQSTM1), microtubule-associated protein 1 light chain 3 (LC3), gamma-aminobutyric acid receptor-associated protein (GABARAP)] and the nontraditional mitophagy pathways involving ubiquitin-proteasome system and the ubiquitin-binding protein dislocase, valosin-containing protein (VCP), may act in concert during mammalian sperm mitophagy. We found that the SQSTM1, but not GABARAP or LC3, associated with sperm mitochondria after fertilization in pig and rhesus monkey zygotes. Three sperm mitochondrial proteins copurified with the recombinant, ubiquitin-associated domain of SQSTM1. The accumulation of GABARAP-containing protein aggregates was observed in the vicinity of sperm mitochondrial sheaths in the zygotes and increased in the embryos treated with proteasomal inhibitor MG132, in which intact sperm mitochondrial sheaths were observed. Pharmacological inhibition of VCP significantly delayed the process of sperm mitophagy and completely prevented it when combined with microinjection of autophagy-targeting antibodies specific to SQSTM1 and/or GABARAP. Sperm mitophagy in higher mammals thus relies on a combined action of SQSTM1-dependent autophagy and VCP-mediated dislocation and presentation of ubiquitinated sperm mitochondrial proteins to the 26S proteasome, explaining how the whole sperm mitochondria are degraded inside the fertilized mammalian oocytes by a protein recycling system involved in degradation of single protein molecules. PMID:27551072

  15. A novel copper complex induces paraptosis in colon cancer cells via the activation of ER stress signalling.

    PubMed

    Gandin, Valentina; Pellei, Maura; Tisato, Francesco; Porchia, Marina; Santini, Carlo; Marzano, Cristina

    2012-01-01

    Platinum anticancer drugs have been used for three decades despite their serious side effects and the emerging of resistance phenomena. Recently, a phosphine copper(I) complex, [Cu(thp)(4)][PF(6)] (CP), gained special attention because of its strong antiproliferative effects. CP killed human colon cancer cells more efficiently than cisplatin and oxaliplatin and it overcame platinum drug resistance. CP preferentially reduced cancer cell viability whereas non-tumour cells were poorly affected. Colon cancer cells died via a programmed cell death whose transduction pathways were characterized by the absence of hallmarks of apoptosis. The inhibition of 26S proteasome activities induced by CP caused intracellular accumulation of polyubiquitinated proteins and the functional suppression of the ubiquitin-proteasome pathway thus triggering endoplasmic reticulum stress. These data, providing a mechanistic characterization of CP-induced cancer cell death, shed light on the signaling pathways involved in paraptosis thus offering a new tool to overcome apoptosis-resistance in colon cancer cells.

  16. Molecular study on copper-mediated tumor proteasome inhibition and cell death.

    PubMed

    Xiao, Yan; Chen, Di; Zhang, Xia; Cui, Qiuzhi; Fan, Yuhua; Bi, Caifeng; Dou, Q Ping

    2010-07-01

    The metal ion copper is a cofactor essential for maintaining normal biological and physical functions in human beings. High copper levels have been found in variety of tumor tissues and are involved in tumor angiogenesis processes. The ubiquitin-proteasome system plays an important role in cell growth and apoptosis and has been shown as a novel target for cancer therapy. We previously reported that some organic copper complexes can inhibit the proteasomal chymotrypsin-like activity and induce apoptosis in human cancer cells and xenograft models. In the current study, we investigated the effect of oxidation status of copper, Cu(I) or Cu(II), on inhibition of proteasome activity, induction of apoptosis, and induction of reactive oxygen species (ROS) in human cancer cells. We report four major findings here: i) both Cu(I) and Cu(II) could inhibit the chymotrypsin-like activity of purified 20S proteasome, but Cu(I) was more potent than Cu(II), ii) purified 20S proteasome protein was able to reduce Cu(II) to Cu(I), suggesting that Cu(I) is the oxidation status of copper that directly reacts with the proteasome, iii) when complexed with the copper ligand neocuproine, Cu(I) showed higher ability to induce ROS production in cancer cells, compared with Cu(II), iv) addition of a ROS scavenger in the cancer cell culture-blocked copper-induced ROS generation, but did not overcome copper-mediated proteasome-inhibitory and cell death-inducing events, demonstrating the ROS-independent proteasome-inhibitory property of copper complexes.

  17. Proteasome inhibition induces both antioxidant and hb f responses in sickle cell disease via the nrf2 pathway.

    PubMed

    Pullarkat, Vinod; Meng, Zhuo; Tahara, Stanley M; Johnson, Cage S; Kalra, Vijay K

    2014-01-01

    Oxidant stress is implicated in the manifestations of sickle cell disease including hemolysis and vascular occlusion. Strategies to induce antioxidant response as well as Hb F (α2γ2) have the potential to ameliorate the severity of sickle cell disease. Nuclear factor (erythroid-derived 2)-like 2 (NFE2L2 or Nrf2) is a transcription factor that regulates antioxidant enzymes as well as γ-globin transcription. The Nrf2 in the cytoplasm is bound to its adapter protein Keap-1 that targets Nrf2 for proteasomal degradation, thereby preventing its nuclear translocation. We examined whether inhibiting the 26S proteasome using the clinically applicable proteasome inhibitors bortezomib and MLN 9708 would promote nuclear translocation of Nrf2, and thereby induce an antioxidant response and as well as Hb F in sickle cell disease. Proteasome inhibitors induced reactive oxygen species (ROS) and thereby increased Nrf2-dependent antioxidant enzyme transcripts, elevated cellular glutathione (GSH) levels and γ-globin transcripts as well as Hb F levels in the K562 cell line and also in erythroid burst forming units (BFU-E) generated from peripheral blood mononuclear cells of sickle cell disease patients. These responses were abolished by siRNA-mediated knockdown of Nrf2. Proteasome inhibitors, especially newer oral agents such as MLN9708 have the potential to be readily translated to clinical trials in sickle cell disease with the dual end points of antioxidant response and Hb F induction.

  18. Two-substrate association with the 20S proteasome at single-molecule level.

    PubMed

    Hutschenreiter, Silke; Tinazli, Ali; Model, Kirstin; Tampé, Robert

    2004-07-01

    The bipartite structure of the proteasome raises the question of functional significance. A rational design for unraveling mechanistic details of the highly symmetrical degradation machinery from Thermoplasma acidophilum pursues orientated immobilization at metal-chelating interfaces via affinity tags fused either around the pore apertures or at the sides. End-on immobilization of the proteasome demonstrates that one pore is sufficient for substrate entry and product release. Remarkably, a 'dead-end' proteasome can process only one substrate at a time. In contrast, the side-on immobilized and free proteasome can bind two substrates, presumably one in each antechamber, with positive cooperativity as analyzed by surface plasmon resonance and single-molecule cross-correlation spectroscopy. Thus, the two-stroke engine offers the advantage of speeding up degradation without enhancing complexity. PMID:15175655

  19. Two-substrate association with the 20S proteasome at single-molecule level.

    PubMed

    Hutschenreiter, Silke; Tinazli, Ali; Model, Kirstin; Tampé, Robert

    2004-07-01

    The bipartite structure of the proteasome raises the question of functional significance. A rational design for unraveling mechanistic details of the highly symmetrical degradation machinery from Thermoplasma acidophilum pursues orientated immobilization at metal-chelating interfaces via affinity tags fused either around the pore apertures or at the sides. End-on immobilization of the proteasome demonstrates that one pore is sufficient for substrate entry and product release. Remarkably, a 'dead-end' proteasome can process only one substrate at a time. In contrast, the side-on immobilized and free proteasome can bind two substrates, presumably one in each antechamber, with positive cooperativity as analyzed by surface plasmon resonance and single-molecule cross-correlation spectroscopy. Thus, the two-stroke engine offers the advantage of speeding up degradation without enhancing complexity.

  20. Two-substrate association with the 20S proteasome at single-molecule level

    PubMed Central

    Hutschenreiter, Silke; Tinazli, Ali; Model, Kirstin; Tampé, Robert

    2004-01-01

    The bipartite structure of the proteasome raises the question of functional significance. A rational design for unraveling mechanistic details of the highly symmetrical degradation machinery from Thermoplasma acidophilum pursues orientated immobilization at metal-chelating interfaces via affinity tags fused either around the pore apertures or at the sides. End-on immobilization of the proteasome demonstrates that one pore is sufficient for substrate entry and product release. Remarkably, a ‘dead-end' proteasome can process only one substrate at a time. In contrast, the side-on immobilized and free proteasome can bind two substrates, presumably one in each antechamber, with positive cooperativity as analyzed by surface plasmon resonance and single-molecule cross-correlation spectroscopy. Thus, the two-stroke engine offers the advantage of speeding up degradation without enhancing complexity. PMID:15175655

  1. Aggresome-like structure induced by isothiocyanates is novel proteasome-dependent degradation machinery

    PubMed Central

    Mi, Lixin; Gan, Nanqin; Chung, Fung-Lung

    2009-01-01

    Unwanted or misfolded proteins are either refolded by chaperones or degraded by the ubiquitin-proteasome system (UPS). When UPS is impaired, misfolded proteins form aggregates, which are transported along microtubules by motor protein dynein towards the juxta-nuclear microtubule organizing center to form aggresome, a single cellular garbage disposal complex. Because aggresome formation results from proteasome failure, aggresome components are degraded through the autophagy/lysosome pathway. Here we report that small molecule isothiocyanates (ITCs) can induce formation of aggresome-like structure (ALS) through covalent modification of cytoplasmic α- and β-tubulin. The formation of ALS is related to neither proteasome inhibition nor oxidative stress. ITC-induced ALS is a proteasome-dependent assembly for emergent removal of misfolded proteins, suggesting that the cell may have a previously unknown strategy in coping with crisis of misfolded proteins. PMID:19682429

  2. Aggresome-like structure induced by isothiocyanates is novel proteasome-dependent degradation machinery

    SciTech Connect

    Mi, Lixin; Gan, Nanqin; Chung, Fung-Lung

    2009-10-16

    Unwanted or misfolded proteins are either refolded by chaperones or degraded by the ubiquitin-proteasome system (UPS). When UPS is impaired, misfolded proteins form aggregates, which are transported along microtubules by motor protein dynein towards the juxta-nuclear microtubule-organizing center to form aggresome, a single cellular garbage disposal complex. Because aggresome formation results from proteasome failure, aggresome components are degraded through the autophagy/lysosome pathway. Here we report that small molecule isothiocyanates (ITCs) can induce formation of aggresome-like structure (ALS) through covalent modification of cytoplasmic {alpha}- and {beta}-tubulin. The formation of ALS is related to neither proteasome inhibition nor oxidative stress. ITC-induced ALS is a proteasome-dependent assembly for emergent removal of misfolded proteins, suggesting that the cell may have a previously unknown strategy to cope with misfolded proteins.

  3. Proteasome regulates turnover of toxic human amylin in pancreatic cells

    PubMed Central

    Singh, Sanghamitra; Trikha, Saurabh; Sarkar, Anjali; Jeremic, Aleksandar M.

    2016-01-01

    Toxic human amylin (hA) oligomers and aggregates are implicated in the pathogenesis of type 2 diabetes mellitus (T2DM). Although recent studies demonstrated a causal connection between hA uptake and toxicity in pancreatic cells, the mechanism of amylin’s clearance following its internalization and its relationship to toxicity is yet to be determined, and hence was investigated here. Using pancreatic rat insulinoma β-cells and human islets as model systems, we show that hA, following its internalization, first accumulates in the cytosol followed by its translocation into nucleus, and to a lesser extent lysosomes, keeping the net cytosolic amylin content low. An increase in hA accumulation in the nucleus of pancreatic cells correlated with its cytotoxicity, suggesting that its excessive accumulation in the nucleus is detrimental. hA interacted with 20S core and 19S lid subunits of the β-cell proteasomal complex, as suggested by immunoprecipitation and confocal microscopy studies, which subsequently resulted in a decrease in the proteasome’s proteolytic activity in these cells. In vitro binding and activity assays confirmed an intrinsic and potent ability of amylin to interact with the 20S core complex thereby modulating its proteolytic activity. Interestingly, less toxic and aggregation incapable rat amylin (rA) showed a comparable inhibitory effect on proteasome activity and protein ubiquitination, decoupling amylin aggregation/toxicity and amylin-induced protein stress. In agreement with these studies, inhibition of proteasomal proteolytic activity significantly increased intracellular amylin content and toxicity. Taken together, our results suggest a pivotal role of proteasomes in amylin’s turnover and detoxification in pancreatic cells. PMID:27340132

  4. Activation of Cell Surface Bound 20S Proteasome Inhibits Vascular Cell Growth and Arteriogenesis

    PubMed Central

    Ito, Wulf D.; Lund, Natalie; Zhang, Ziyang; Buck, Friedrich; Lellek, Heinrich; Horst, Andrea; Machens, Hans-Günther; Schunkert, Heribert; Schaper, Wolfgang; Meinertz, Thomas

    2015-01-01

    Arteriogenesis is an inflammatory process associated with rapid cellular changes involving vascular resident endothelial progenitor cells (VR-EPCs). Extracellular cell surface bound 20S proteasome has been implicated to play an important role in inflammatory processes. In our search for antigens initially regulated during collateral growth mAb CTA 157-2 was generated against membrane fractions of growing collateral vessels. CTA 157-2 stained endothelium of growing collateral vessels and the cell surface of VR-EPCs. CTA 157-2 bound a protein complex (760 kDa) that was identified as 26 kDa α7 and 21 kDa β3 subunit of 20S proteasome in mass spectrometry. Furthermore we demonstrated specific staining of 20S proteasome after immunoprecipitation of VR-EPC membrane extract with CTA 157-2 sepharose beads. Functionally, CTA 157-2 enhanced concentration dependently AMC (7-amino-4-methylcoumarin) cleavage from LLVY (N-Succinyl-Leu-Leu-Val-Tyr) by recombinant 20S proteasome as well as proteasomal activity in VR-EPC extracts. Proliferation of VR-EPCs (BrdU incorporation) was reduced by CTA 157-2. Infusion of the antibody into the collateral circulation reduced number of collateral arteries, collateral proliferation, and collateral conductance in vivo. In conclusion our results indicate that extracellular cell surface bound 20S proteasome influences VR-EPC function in vitro and collateral growth in vivo. PMID:26146628

  5. Starvation Induces Proteasome Autophagy with Different Pathways for Core and Regulatory Particles*

    PubMed Central

    Waite, Kenrick A.; Mota-Peynado, Alina De-La; Vontz, Gabrielle; Roelofs, Jeroen

    2016-01-01

    The proteasome is responsible for the degradation of many cellular proteins. If and how this abundant and normally stable complex is degraded by cells is largely unknown. Here we show that in yeast, upon nitrogen starvation, proteasomes are targeted for vacuolar degradation through autophagy. Using GFP-tagged proteasome subunits, we observed that autophagy of a core particle (CP) subunit depends on the deubiquitinating enzyme Ubp3, although a regulatory particle (RP) subunit does not. Furthermore, upon blocking of autophagy, RP remained largely nuclear, although CP largely localized to the cytosol as well as granular structures within the cytosol. In all, our data reveal a regulated process for the removal of proteasomes upon nitrogen starvation. This process involves CP and RP dissociation, nuclear export, and independent vacuolar targeting of CP and RP. Thus, in addition to the well characterized transcriptional up-regulation of genes encoding proteasome subunits, cells are also capable of down-regulating cellular levels of proteasomes through proteaphagy. PMID:26670610

  6. Decreased proteasomal function accelerates cigarette smoke-induced pulmonary emphysema in mice.

    PubMed

    Yamada, Yosuke; Tomaru, Utano; Ishizu, Akihiro; Ito, Tomoki; Kiuchi, Takayuki; Ono, Ayako; Miyajima, Syota; Nagai, Katsura; Higashi, Tsunehito; Matsuno, Yoshihiro; Dosaka-Akita, Hirotoshi; Nishimura, Masaharu; Miwa, Soichi; Kasahara, Masanori

    2015-06-01

    Chronic obstructive pulmonary disease (COPD) is a disease common in elderly people, characterized by progressive destruction of lung parenchyma and chronic inflammation of the airways. The pathogenesis of COPD remains unclear, but recent studies suggest that oxidative stress-induced apoptosis in alveolar cells contributes to emphysematous lung destruction. The proteasome is a multicatalytic enzyme complex that plays a critical role in proteostasis by rapidly destroying misfolded and modified proteins generated by oxidative and other stresses. Proteasome activity decreases with aging in many organs including lungs, and an age-related decline in proteasomal function has been implicated in various age-related pathologies. However, the role of the proteasome system in the pathogenesis of COPD has not been investigated. Recently, we have established a transgenic (Tg) mouse model with decreased proteasomal chymotrypsin-like activity, showing age-related phenotypes. Using this model, we demonstrate here that decreased proteasomal function accelerates cigarette smoke (CS)-induced pulmonary emphysema. CS-exposed Tg mice showed remarkable airspace enlargement and increased foci of inflammation compared with wild-type controls. Importantly, apoptotic cells were found in the alveolar walls of the affected lungs. Impaired proteasomal activity also enhanced apoptosis in cigarette smoke extract (CSE)-exposed fibroblastic cells derived from mice and humans in vitro. Notably, aggresome formation and prominent nuclear translocation of apoptosis-inducing factor were observed in CSE-exposed fibroblastic cells isolated from Tg mice. Collective evidence suggests that CS exposure and impaired proteasomal activity coordinately enhance apoptotic cell death in the alveolar walls that may be involved in the development and progression of emphysema in susceptible individuals such as the elderly.

  7. Why does threonine, and not serine, function as the active site nucleophile in proteasomes?

    PubMed

    Kisselev, A F; Songyang, Z; Goldberg, A L

    2000-05-19

    Proteasomes belong to the N-terminal nucleophile group of amidases and function through a novel proteolytic mechanism, in which the hydroxyl group of the N-terminal threonines is the catalytic nucleophile. However, it is unclear why threonine has been conserved in all proteasomal active sites, because its replacement by a serine in proteasomes from the archaeon Thermoplasma acidophilum (T1S mutant) does not alter the rates of hydrolysis of Suc-LLVY-amc (Seemüller, E., Lupas, A., Stock, D., Lowe, J., Huber, R., and Baumeister, W. (1995) Science 268, 579-582) and other standard peptide amide substrates. However, we found that true peptide bonds in decapeptide libraries were cleaved by the T1S mutant 10-fold slower than by wild type (wt) proteasomes. In degrading proteins, the T1S proteasome was 3.5- to 6-fold slower than the wt, and this difference increased when proteolysis was stimulated using the proteasome-activating nucleotidase (PAN) ATPase complex. With mutant proteasomes, peptide bond cleavage appeared to be rate-limiting in protein breakdown, unlike with wt. Surprisingly, a peptide ester was hydrolyzed by both particles much faster than the corresponding amide, and the T1S mutant cleaved it faster than the wt. Moreover, the T1S mutant was inactivated by the ester inhibitor clasto-lactacystin-beta-lactone severalfold faster than the wt, but reacted with nonester irreversible inhibitors at similar rates. T1A and T1C mutants were completely inactive in all these assays. Thus, proteasomes lack additional active sites, and the N-terminal threonine evolved because it allows more efficient protein breakdown than serine. PMID:10809725

  8. Computational prediction of cleavage using proteasomal in vitro digestion and MHC I ligand data*

    PubMed Central

    Lu, Yu-feng; Sheng, Hao; Zhang, Yi; Li, Zhi-yang

    2013-01-01

    Proteasomes are responsible for the production of the majority of cytotoxic T lymphocyte (CTL) epitopes. Hence, it is important to identify correctly which peptides will be generated by proteasomes from an unknown protein. However, the pool of proteasome cleavage data used in the prediction algorithms, whether from major histocompatibility complex (MHC) I ligand or in vitro digestion data, is not identical to in vivo proteasomal digestion products. Therefore, the accuracy and reliability of these models still need to be improved. In this paper, three types of proteasomal cleavage data, constitutive proteasome (cCP), immunoproteasome (iCP) in vitro cleavage, and MHC I ligand data, were used for training cleave-site predictive methods based on the kernel-function stabilized matrix method (KSMM). The predictive accuracies of the KSMM+pair coefficients were 75.0%, 72.3%, and 83.1% for cCP, iCP, and MHC I ligand data, respectively, which were comparable to the results from support vector machine (SVM). The three proteasomal cleavage methods were combined in turn with MHC I-peptide binding predictions to model MHC I-peptide processing and the presentation pathway. These integrations markedly improved MHC I peptide identification, increasing area under the receiver operator characteristics (ROC) curve (AUC) values from 0.82 to 0.91. The results suggested that both MHC I ligand and proteasomal in vitro degradation data can give an exact simulation of in vivo processed digestion. The information extracted from cCP and iCP in vitro cleavage data demonstrated that both cCP and iCP are selective in their usage of peptide bonds for cleavage. PMID:24009202

  9. Native structure of rat liver immune proteasomes.

    PubMed

    Stepanova, A A; Lyupina, Yu V; Sharova, N P; Erokhov, P A

    2016-05-01

    Native structure of active forms of rat liver immune proteasomes has been studied by two-dimensional electrophoresis method modified for analysis of unpurified protein fractions. The developed method allowed revealing the proteasome immune subunits LMP7 and LMP2 in 20S subparticles and in the structures bound to one or two PA28αβ activators, but not to the PA700 activator, which is involved in the hydrolysis of ubiquitinated proteins. The results obtained indicate the participation of the immune proteasomes in delicate regulatory mechanisms based on the production of biologically active peptides and exclude their participation in processes of crude degradation of "rotated" ubiquitinated proteins. PMID:27417720

  10. Ubiquitination and proteasome degradation of the E6 proteins of human papillomavirus types 11 and 18.

    PubMed

    Stewart, Deborah; Kazemi, Shirin; Li, Suiyang; Massimi, Paola; Banks, Lawrence; Koromilas, Antonis E; Matlashewski, Greg

    2004-06-01

    Human papillomaviruses (HPVs) are aetiological agents for genital warts and cervical cancer, the different pathologies of which are dependent on the type of HPV infection. Oncogenic HPV types associated with cancer are carcinogens by virtue of their oncogene products, which target key regulators of cell proliferation and apoptosis. The viral E6 protein from oncogenic HPV types plays a central role in carcinogenesis by exploiting the cellular proteasome degradation pathway in order to mediate the degradation of cellular proteins, most notably the prototype tumour suppressor protein p53. Much less is known about the cellular targets of E6 from the non-oncogenic HPV types associated with genital warts. It is also unclear what factors influence the level and stability of the viral E6 proteins in cells. This report demonstrates that both oncogenic and non-oncogenic HPV E6 proteins (from types 18 and 11, respectively) are ubiquitinated and targeted for degradation by the 26S proteasome. E6 domains required for the induction of p53 or DLG degradation, or E6AP binding, are not involved in proteasome-mediated degradation of HPV-18 E6. These results provide insight into the cellular modulation of E6 protein levels from both high-risk and low-risk HPV types. PMID:15166424

  11. Survival of mycobacteria depends on proteasome-mediated amino acid recycling under nutrient limitation

    PubMed Central

    Elharar, Yifat; Roth, Ziv; Hermelin, Inna; Moon, Alexandra; Peretz, Gabriella; Shenkerman, Yael; Vishkautzan, Marina; Khalaila, Isam; Gur, Eyal

    2014-01-01

    Intracellular protein degradation is an essential process in all life domains. While in all eukaryotes regulated protein degradation involves ubiquitin tagging and the 26S-proteasome, bacterial prokaryotic ubiquitin-like protein (Pup) tagging and proteasomes are conserved only in species belonging to the phyla Actinobacteria and Nitrospira. In Mycobacterium tuberculosis, the Pup-proteasome system (PPS) is important for virulence, yet its physiological role in non-pathogenic species has remained an enigma. We now report, using Mycobacterium smegmatis as a model organism, that the PPS is essential for survival under starvation. Upon nitrogen limitation, PPS activity is induced, leading to accelerated tagging and degradation of many cytoplasmic proteins. We suggest a model in which the PPS functions to recycle amino acids under nitrogen starvation, thereby enabling the cell to maintain basal metabolic activities. We also find that the PPS auto-regulates its own activity via pupylation and degradation of its components in a manner that promotes the oscillatory expression of PPS components. As such, the destructive activity of the PPS is carefully balanced to maintain cellular functions during starvation. PMID:24986881

  12. Black tea polyphenols inhibit tumor proteasome activity.

    PubMed

    Mujtaba, Taskeen; Dou, Q Ping

    2012-01-01

    Tea is a widely consumed beverage and its constituent polyphenols have been associated with potential health benefits. Although black tea polyphenols have been reported to possess potent anticancer activities, the effect of its polyphenols, theaflavins on the tumor's cellular proteasome function, an important biological target in cancer prevention, has not been carefully studied. Here black tea extract (T5550) enriched in theaflavins inhibited the chymotrypsin-like (CT) activity of the proteasome and proliferation of human multiple myeloma cells in a dose-dependent manner. Also an isolated theaflavin (TF-1) can bind to, and inhibit the purified 20S proteasome, accompanied by suppression of tumor cell proliferation, suggesting that the tumor proteasome is an important target whose inhibition is at least partially responsible for the anticancer effects of black tea.

  13. Inhibitors Selective for Mycobacterial Versus Human Proteasomes

    SciTech Connect

    Lin, G.; Li, D; Sorio de Carvalho, L; Deng, H; Tao, H; Vogt, G; Wu, K; Schneider, J; Chidawanyika, T; et. al.

    2009-01-01

    Many anti-infectives inhibit the synthesis of bacterial proteins, but none selectively inhibits their degradation. Most anti-infectives kill replicating pathogens, but few preferentially kill pathogens that have been forced into a non-replicating state by conditions in the host. To explore these alternative approaches we sought selective inhibitors of the proteasome of Mycobacterium tuberculosis. Given that the proteasome structure is extensively conserved, it is not surprising that inhibitors of all chemical classes tested have blocked both eukaryotic and prokaryotic proteasomes, and no inhibitor has proved substantially more potent on proteasomes of pathogens than of their hosts. Here we show that certain oxathiazol-2-one compounds kill non-replicating M.?tuberculosis and act as selective suicide-substrate inhibitors of the M.?tuberculosis proteasome by cyclocarbonylating its active site threonine. Major conformational changes protect the inhibitor-enzyme intermediate from hydrolysis, allowing formation of an oxazolidin-2-one and preventing regeneration of active protease. Residues outside the active site whose hydrogen bonds stabilize the critical loop before and after it moves are extensively non-conserved. This may account for the ability of oxathiazol-2-one compounds to inhibit the mycobacterial proteasome potently and irreversibly while largely sparing the human homologue.

  14. Selective increase of in vivo firing frequencies in DA SN neurons after proteasome inhibition in the ventral midbrain.

    PubMed

    Subramaniam, Mahalakshmi; Kern, Beatrice; Vogel, Simone; Klose, Verena; Schneider, Gaby; Roeper, Jochen

    2014-09-01

    The impairment of protein degradation via the ubiquitin-proteasome system (UPS) is present in sporadic Parkinson's disease (PD), and might play a key role in selective degeneration of vulnerable dopamine (DA) neurons in the substantia nigra pars compacta (SN). Further evidence for a causal role of dysfunctional UPS in familial PD comes from mutations in parkin, which results in a loss of function of an E3-ubiquitin-ligase. In a mouse model, genetic inactivation of an essential component of the 26S proteasome lead to widespread neuronal degeneration including DA midbrain neurons and the formation of alpha-synuclein-positive inclusion bodies, another hallmark of PD. Studies using pharmacological UPS inhibition in vivo had more mixed results, varying from extensive degeneration to no loss of DA SN neurons. However, it is currently unknown whether UPS impairment will affect the neurophysiological functions of DA midbrain neurons. To answer this question, we infused a selective proteasome inhibitor into the ventral midbrain in vivo and recorded single DA midbrain neurons 2 weeks after the proteasome challenge. We found a selective increase in the mean in vivo firing frequencies of identified DA SN neurons in anesthetized mice, while those in the ventral tegmental area (VTA) were unaffected. Our results demonstrate that a single-hit UPS inhibition is sufficient to induce a stable and selective hyperexcitability phenotype in surviving DA SN neurons in vivo. This might imply that UPS dysfunction sensitizes DA SN neurons by enhancing 'stressful pacemaking'.

  15. Lipopolysaccharide Induces Degradation of Connexin43 in Rat Astrocytes via the Ubiquitin-Proteasome Proteolytic Pathway

    PubMed Central

    Liao, Chih-Kai; Jeng, Chung-Jiuan; Wang, Hwai-Shi; Wang, Shu-Huei; Wu, Jiahn-Chun

    2013-01-01

    The astrocytic syncytium plays a critical role in maintaining the homeostasis of the brain through the regulation of gap junction intercellular communication (GJIC). Changes to GJIC in response to inflammatory stimuli in astrocytes may have serious effects on the brain. We have previously shown that lipopolysaccharide (LPS) reduces connexin43 (Cx43) expression and GJIC in cultured rat astrocytes via a toll-like receptor 4-mediated signaling pathway. In the present study, treatment of astrocytes with LPS resulted in a significant increase in levels of the phosphorylated forms of stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK) -1, -2, and -3 for up to 18 h. An increase in nuclear transcription factor NF-κB levels was also observed after 8 h of LPS treatment and was sustained for up to 18 h. The LPS-induced decrease in Cx43 protein levels and inhibition of GJIC were blocked by the SAPK/JNK inhibitor SP600125, but not by the NF-κB inhibitor BAY11-7082. Following blockade of de novo protein synthesis by cycloheximide, LPS accelerated Cx43 degradation. Moreover, the LPS-induced downregulation of Cx43 was blocked following inhibition of 26S proteasome activity using the reversible proteasome inhibitor MG132 or the irreversible proteasome inhibitor lactacystin. Immunoprecipitation analyses revealed an increased association of Cx43 with both ubiquitin and E3 ubiquitin ligase Nedd4 in astrocytes after LPS stimulation for 6 h and this effect was prevented by SP600125. Taken together, these results suggest that LPS stimulation leads to downregulation of Cx43 expression and GJIC in rat astrocytes by activation of SAPK/JNK and the ubiquitin-proteasome proteolytic pathway. PMID:24236122

  16. Rpn1 provides adjacent receptor sites for substrate binding and deubiquitination by the proteasome

    PubMed Central

    Shi, Yuan; Chen, Xiang; Elsasser, Suzanne; Stocks, Bradley B.; Tian, Geng; Lee, Byung-Hoon; Shi, Yanhong; Zhang, Naixia; de Poot, Stefanie A. H.; Tuebing, Fabian; Sun, Shuangwu; Vannoy, Jacob; Tarasov, Sergey G.; Engen, John R.; Finley, Daniel; Walters, Kylie J.

    2016-01-01

    , multipoint binding of ubiquitin chains. The structures of the T1 site in its free state and complexed with monoubiquitin or K48-linked diubiquitin were solved, revealing that three neighboring outer helices from the T1 toroid engage two ubiquitins. This binding mode leads to a preference for certain ubiquitin chain types, especially K6- and K48-linked chains, in a distinct configuration that can position substrates close to the entry port of the proteasome. The fate of proteasome-docked ubiquitin conjugates is determined by a competition between deubiquitination and substrate degradation. We find that proximal to the T1 site within the Rpn1 toroid is a second UBL-binding site, T2, that does not assist in ubiquitin chain recognition, but rather in chain disassembly, by binding to the UBL domain of deubiquitinating enzyme Ubp6. Importantly, the UBL interactors at T1 and T2 are distinct, assigning substrate localization to T1 and substrate deubiquitination to T2. CONCLUSION A ligand-binding hotspot was identified in the Rpn1 toroid, consisting of two adjacent receptor sites, T1 and T2. The Rpn1 toroid represents a novel class of binding domains for ubiquitin and UBL proteins. This study thus defines a novel two-site recognition domain intrinsic to the proteasome that uses homologous ubiquitin/UBL-class ligands to assemble substrates, substrate shuttling factors, and a deubiquitinating enzyme in close proximity. A ligand-binding hotspot in the proteasome for assembling substrates and cofactors Schematic (top) and model structure (bottom, left) mapping the UBL-binding Rpn1 T1 (indigo) and T2 (orange) sites. (Bottom, right) Enlarged region of the proteasome to illustrate the Rpn1 T1 and T2 sites bound to a ubiquitin chain (yellow) and deubiquitinating enzyme Ubp6 (green), respectively. PDB 4CR2 and 2B9R were used for this figure. Hundreds of pathways for degradation converge at ubiquitin recognition by proteasome. Here we found that the five known proteasomal ubiquitin receptors

  17. Unfolding knots by proteasome-like systems: simulations of the behaviour of folded and neurotoxic proteins.

    PubMed

    Wojciechowski, Michał; Gómez-Sicilia, Àngel; Carrión-Vázquez, Mariano; Cieplak, Marek

    2016-08-16

    Knots in proteins have been proposed to resist proteasomal degradation. Ample evidence associates proteasomal degradation with neurodegeneration. One interesting possibility is that indeed knotted conformers stall this machinery leading to toxicity. However, although the proteasome is known to unfold mechanically its substrates, at present there are no experimental methods to emulate this particular traction geometry. Here, we consider several dynamical models of the proteasome in which the complex is represented by an effective potential with an added pulling force. This force is meant to induce the translocation of a protein or a polypeptide into the catalytic chamber. The force is either constant or applied periodically. The translocated proteins are modelled in a coarse-grained fashion. We do comparative analysis of several knotted globular proteins and the transiently knotted polyglutamine tracts of length 60 alone and fused in exon 1 of the huntingtin protein. Huntingtin is associated with Huntington's disease, a well-known genetically determined neurodegenerative disease. We show that the presence of a knot hinders and sometimes even jams translocation. We demonstrate that the probability to do so depends on the protein, the model of the proteasome, the magnitude of the pulling force, and the choice of the pulled terminus. In any case, the net effect would be a hindrance in the proteasomal degradation process in the cell. This would then yield toxicity via two different mechanisms: one through toxic monomers compromising degradation and another by the formation of toxic oligomers. Our work paves the way for the mechanistic investigation of the mechanical unfolding of knotted structures by the proteasome and its relation to toxicity and disease. PMID:27425826

  18. Proteasome Modulates Positive and Negative Translational Regulators in Long-Term Synaptic Plasticity

    PubMed Central

    Dong, Chenghai; Bach, Svitlana V.; Haynes, Kathryn A.

    2014-01-01

    Proteolysis by the ubiquitin-proteasome pathway appears to have a complex role in synaptic plasticity, but its various functions remain to be elucidated. Using late phase long-term potentiation (L-LTP) in the hippocampus of the mouse as a model for long-term synaptic plasticity, we previously showed that inhibition of the proteasome enhances induction but blocks maintenance of L-LTP. In this study, we investigated the possible mechanisms by which proteasome inhibition has opposite effects on L-LTP induction and maintenance. Our results show that inhibiting phosphatidyl inositol-3 kinase or blocking the interaction between eukaryotic initiation factors 4E (eIF4E) and 4G (eIF4G) reduces the enhancement of L-LTP induction brought about by proteasome inhibition suggesting interplay between proteolysis and the signaling pathway mediated by mammalian target of rapamycin (mTOR). Also, proteasome inhibition leads to accumulation of translational activators in the mTOR pathway such as eIF4E and eukaryotic elongation factor 1A (eEF1A) early during L-LTP causing increased induction. Furthermore, inhibition of the proteasome causes a buildup of translational repressors, such as polyadenylate-binding protein interacting protein 2 (Paip2) and eukaryotic initiation factor 4E-binding protein 2 (4E-BP2), during late stages of L-LTP contributing to the blockade of L-LTP maintenance. Thus, the proteasome plays a critical role in regulating protein synthesis during L-LTP by tightly controlling translation. Our results provide novel mechanistic insights into the interplay between protein degradation and protein synthesis in long-term synaptic plasticity. PMID:24573276

  19. Repression of protein translation and mTOR signaling by proteasome inhibitor in colon cancer cells

    SciTech Connect

    Wu, William Ka Kei; Volta, Viviana; Cho, Chi Hin; Wu, Ya Chun; Li, Hai Tao; Yu, Le; Li, Zhi Jie; Sung, Joseph Jao Yiu

    2009-09-04

    Protein homeostasis relies on a balance between protein synthesis and protein degradation. The ubiquitin-proteasome system is a major catabolic pathway for protein degradation. In this respect, proteasome inhibition has been used therapeutically for the treatment of cancer. Whether inhibition of protein degradation by proteasome inhibitor can repress protein translation via a negative feedback mechanism, however, is unknown. In this study, proteasome inhibitor MG-132 lowered the proliferation of colon cancer cells HT-29 and SW1116. In this connection, MG-132 reduced the phosphorylation of mammalian target of rapamycin (mTOR) at Ser2448 and Ser2481 and the phosphorylation of its downstream targets 4E-BP1 and p70/p85 S6 kinases. Further analysis revealed that MG-132 inhibited protein translation as evidenced by the reductions of {sup 35}S-methionine incorporation and polysomes/80S ratio. Knockdown of raptor, a structural component of mTOR complex 1, mimicked the anti-proliferative effect of MG-132. To conclude, we demonstrate that the inhibition of protein degradation by proteasome inhibitor represses mTOR signaling and protein translation in colon cancer cells.

  20. The Role of the Ubiquitin Proteasome System in Ischemia and Ischemic Tolerance

    PubMed Central

    Meller, Robert

    2010-01-01

    Ubiquitin modification targets a protein for rapid degradation by the proteasome. However, poly-ubiquitination of proteins can result in multiple functions depending on the topology of the ubiquitin chain. Therefore ubiquitin signaling offers a more complex and versatile biology compared to many other post translational modifications. One area of potential for the application of this knowledge is the field of ischemia-induced brain damage, as occurs following a stroke. The ubiquitin proteasome system may exert a dual role on neuronal outcome following ischemia. Harmful ischemia results in an overload of the ubiquitin proteasome system, and blocking the proteasome reduces brain infarction following ischemia. However, the rapid and selective degradation of proteins following brief ischemia results in endogenous protection against ischemia. Therefore further understanding of the molecular signaling mechanisms which regulate the ubiquitin proteasome system may reveal novel therapeutic targets to reduce brain damage when ischemia is predicted, or to reduce the activation of the cell death mechanisms and the inflammatory response following stroke. The aim of this review is to discuss some of the recent advances in the understanding of protein ubiquitination and its implications for novel stroke therapies. PMID:19181875

  1. Proteasome Inhibitors Block Development of Plasmodium spp.

    PubMed Central

    Gantt, Soren M.; Myung, Joon Mo; Briones, Marcelo R. S.; Li, Wei Dong; Corey, E. J.; Omura, Satoshi; Nussenzweig, Victor; Sinnis, Photini

    1998-01-01

    Proteasomes degrade most of the proteins inside eukaryotic cells, including transcription factors and regulators of cell cycle progression. Here we show that nanomolar concentrations of lactacystin, a specific irreversible inhibitor of the 20S proteasome, inhibit development of the exoerythrocytic and erythrocytic stages of the malaria parasite. Although lactacystin-treated Plasmodium berghei sporozoites are still invasive, their development into exoerythrocytic forms (EEF) is inhibited in vitro and in vivo. Erythrocytic schizogony of P. falciparum in vitro is also profoundly inhibited when drug treatment of the synchronized parasites is prior, but not subsequent, to the initiation of DNA synthesis, suggesting that the inhibitory effect of lactacystin is cell cycle specific. Lactacystin reduces P. berghei parasitemia in rats, but the therapeutic index is very low. Along with other studies showing that lactacystin inhibits stage-specific transformation in Trypanosoma and Entamoeba spp., these findings highlight the potential of proteasome inhibitors as drugs for the treatment of diseases caused by protozoan parasites. PMID:9756786

  2. Pri sORF peptides induce selective proteasome-mediated protein processing.

    PubMed

    Zanet, J; Benrabah, E; Li, T; Pélissier-Monier, A; Chanut-Delalande, H; Ronsin, B; Bellen, H J; Payre, F; Plaza, S

    2015-09-18

    A wide variety of RNAs encode small open-reading-frame (smORF/sORF) peptides, but their functions are largely unknown. Here, we show that Drosophila polished-rice (pri) sORF peptides trigger proteasome-mediated protein processing, converting the Shavenbaby (Svb) transcription repressor into a shorter activator. A genome-wide RNA interference screen identifies an E2-E3 ubiquitin-conjugating complex, UbcD6-Ubr3, which targets Svb to the proteasome in a pri-dependent manner. Upon interaction with Ubr3, Pri peptides promote the binding of Ubr3 to Svb. Ubr3 can then ubiquitinate the Svb N terminus, which is degraded by the proteasome. The C-terminal domains protect Svb from complete degradation and ensure appropriate processing. Our data show that Pri peptides control selectivity of Ubr3 binding, which suggests that the family of sORF peptides may contain an extended repertoire of protein regulators.

  3. Dithiocarbamate-based coordination compounds as potent proteasome inhibitors in human cancer cells.

    PubMed

    Buac, Daniela; Schmitt, Sara; Ventro, George; Kona, Fathima Rani; Dou, Q Ping

    2012-10-01

    Dithiocarbamates are a class of metal-chelating compounds with various applications in medicine. They have been used for the treatment of bacterial and fungal infections, possible treatment of AIDS, and most recently cancer. Their anti-tumor effects can in part be attributed to their ability to complex tumor cellular copper, leading to binding to and inhibition of the proteasome and in turn initiating tumor cell-specific apoptosis. Current chemotherapeutic agents are highly toxic and therefore their efficacy in the eradication of tumors is greatly limited. As a result many scientists have joined the quest for novel targeted therapies in hopes of reducing toxicity while maximizing potency and proteasome inhibition has become an attractive therapy in this regard. Here we discuss the origins, mechanism, and evolution of dithiocarbamates as potent proteasome inhibitors and therefore anti-cancer agents. PMID:22931591

  4. Dithiocarbamate-Based Coordination Compounds as Potent Proteasome Inhibitors in Human Cancer Cells

    PubMed Central

    Buac, Daniela; Schmitt, Sara; Ventro, George; Kona, Fathima Rani; Dou, Q. Ping

    2013-01-01

    Dithiocarbamates are a class of metal-chelating compounds with various applications in medicine. They have been used for the treatment of bacterial and fungal infections, possible treatment of AIDS, and most recently cancer. Their anti-tumor effects can in part be attributed to their ability to complex tumor cellular copper, leading to binding to and inhibition of the proteasome and in turn initiating tumor cell-specific apoptosis. Current chemotherapeutic agents are highly toxic and therefore their efficacy in the eradication of tumors is greatly limited. As a result many scientists have joined the quest for novel targeted therapies in hopes of reducing toxicity while maximizing potency and proteasome inhibition has become an attractive therapy in this regard. Here we discuss the origins, mechanism, and evolution of dithiocarbamates as potent proteasome inhibitors and therefore anti-cancer agents. PMID:22931591

  5. The ubiquitin-proteasomal system is critical for multiple myeloma: implications in drug discovery

    PubMed Central

    Cao, Biyin; Mao, Xinliang

    2011-01-01

    Bortezomib is a specific inhibitor of proteasomes, the most important protease complexes in protein degradation. Bortezomib can induce apoptosis of a variety of cancer cells, including leukemia, lymphoma, multiple myeloma, breast cancers, prostate cancers, lung cancers, and so on. However, extensive studies and overall evaluation suggested that multiple myeloma is the most sensitive and the best responsive disease which was later approved by Food and Drug Administration for bortezomib treatment. Because proteasomes are an essential component in the ubiquitin-proteasomal protein degradation pathway, the discovery of bortezomib implicates that the UPS is critical for myeloma pathophysiology. The UPS also contains ubiquitin, ubiquitin-activating enzymes (E1), ubiquitin-conjugating enzymes (E2), ubiquitin ligases (E3) and deubiquitinases (Dubs). In this review, we examined and analyzed the recent advancements of the UPS components in multiple myeloma and its implications in drug discovery for myeloma treatment. PMID:22432065

  6. Inhibition of 19S proteasome-associated deubiquitinases by metal-containing compounds.

    PubMed

    Liu, Ningning; Huang, Hongbiao; Dou, Q Ping; Liu, Jinbao

    2015-01-01

    Copper and gold complexes have clinical activity in several diseases including cancer. Recently, we have reported that the anti-cancer activity of copper (II) pyrithione CuPT and gold (I) complex auranofin is associated with targeting the 19S proteasome-associated deubiquitinases (DUBs), UCHL5 and USP14. Here we discuss metal DUB inhibitors in treating cancer and other diseases. (from Editor). Several copper and gold complexes have clinical activity in treating some human diseases including cancer. Recently, we have reported that the anti-cancer activity of copper (II) pyrithione CuPT and gold (I) complex auranofin is tightly associated with their ability to target and inhibit the 19S proteasome-associated deubiquitinases (DUBs), UCHL5 and USP14. In this article we review small molecule inhibitors of DUBs and 19S proteasome-associated DUBs. We then describe and discuss the ubique nature of CuPT and auranofin, which is inhibition of 19S proteasome-associated UCHL5 and USP14. We finally suggest the potential to develop novel, specific metal-based DUB inhibitors for treating cancer and other diseases. PMID:26097878

  7. Inhibition of 19S proteasome-associated deubiquitinases by metal-containing compounds

    PubMed Central

    Liu, Ningning; Huang, Hongbiao; Ping Dou, Q.; Liu, Jinbao

    2015-01-01

    Copper and gold complexes have clinical activity in several diseases including cancer. Recently, we have reported that the anti-cancer activity of copper (II) pyrithione CuPT and gold (I) complex auranofin is associated with targeting the 19S proteasome-associated deubiquitinases (DUBs), UCHL5 and USP14. Here we discuss metal DUB inhibitors in treating cancer and other diseases. (from Editor). Several copper and gold complexes have clinical activity in treating some human diseases including cancer. Recently, we have reported that the anti-cancer activity of copper (II) pyrithione CuPT and gold (I) complex auranofin is tightly associated with their ability to target and inhibit the 19S proteasome-associated deubiquitinases (DUBs), UCHL5 and USP14. In this article we review small molecule inhibitors of DUBs and 19S proteasome-associated DUBs. We then describe and discuss the ubique nature of CuPT and auranofin, which is inhibition of 19S proteasome-associated UCHL5 and USP14. We finally suggest the potential to develop novel, specific metal-based DUB inhibitors for treating cancer and other diseases PMID:26097878

  8. Effect of age on proteasomal activity of T cells and macrophages

    Technology Transfer Automated Retrieval System (TEKTRAN)

    T cell function is impaired with aging. Proteasome activity in T cells is important for T cell activation and its activity in macrophages is required for processing antigens in order to be presented via class I major histocompatibility complex to CD8+ T cells. Since studies have demonstrated that pr...

  9. Trial Watch: Proteasomal inhibitors for anticancer therapy

    PubMed Central

    Obrist, Florine; Manic, Gwenola; Kroemer, Guido; Vitale, Ilio; Galluzzi, Lorenzo

    2015-01-01

    The so-called “ubiquitin-proteasome system” (UPS) is a multicomponent molecular apparatus that catalyzes the covalent attachment of several copies of the small protein ubiquitin to other proteins that are generally (but not always) destined to proteasomal degradation. This enzymatic cascade is crucial for the maintenance of intracellular protein homeostasis (both in physiological conditions and in the course of adaptive stress responses), and regulates a wide array of signaling pathways. In line with this notion, defects in the UPS have been associated with aging as well as with several pathological conditions including cardiac, neurodegenerative, and neoplastic disorders. As transformed cells often experience a constant state of stress (as a result of the hyperactivation of oncogenic signaling pathways and/or adverse microenvironmental conditions), their survival and proliferation are highly dependent on the integrity of the UPS. This rationale has driven an intense wave of preclinical and clinical investigation culminating in 2003 with the approval of the proteasomal inhibitor bortezomib by the US Food and Drug Administration for use in multiple myeloma patients. Another proteasomal inhibitor, carfilzomib, is now licensed by international regulatory agencies for use in multiple myeloma patients, and the approved indications for bortezomib have been extended to mantle cell lymphoma. This said, the clinical activity of bortezomib and carfilzomib is often limited by off-target effects, innate/acquired resistance, and the absence of validated predictive biomarkers. Moreover, the antineoplastic activity of proteasome inhibitors against solid tumors is poor. In this Trial Watch we discuss the contribution of the UPS to oncogenesis and tumor progression and summarize the design and/or results of recent clinical studies evaluating the therapeutic profile of proteasome inhibitors in cancer patients. PMID:27308423

  10. The role of Hsp90 in protein complex assembly.

    PubMed

    Makhnevych, Taras; Houry, Walid A

    2012-03-01

    Hsp90 is a ubiquitous and essential molecular chaperone that plays central roles in many signaling and other cellular pathways. The in vivo and in vitro activity of Hsp90 depends on its association with a wide variety of cochaperones and cofactors, which form large multi-protein complexes involved in folding client proteins. Based on our proteomic work mapping the molecular chaperone interaction networks in yeast, especially that of Hsp90, as well as, on experiments and results presented in the published literature, one major role of Hsp90 appears to be the promotion and maintenance of proper assembly of protein complexes. To highlight this role of Hsp90, the effect of the chaperone on the assembly of the following seven complexes is discussed in this review: snoRNP, RNA polymerase II, phosphatidylinositol-3 kinase-related protein kinase (PIKK), telomere complex, kinetochore, RNA induced silencing complexes (RISC), and 26S proteasome. For some complexes, it is observed that Hsp90 mediates complex assembly by stabilizing an unstable protein subunit and facilitating its incorporation into the complex; for other complexes, Hsp90 promotes change in the composition of that complex. In all cases, Hsp90 does not appear to be part of the final assembled complex. This article is part of a Special Issue entitled:Heat Shock Protein 90 (HSP90). PMID:21945180

  11. Proteasome activity and proteasome subunit transcripts in human spermatozoa separated by a discontinuous Percoll gradient.

    PubMed

    Rosales, O; Opazo, C; Diaz, E S; Villegas, J V; Sanchez, R; Morales, P

    2011-04-01

    Human semen is composed of a heterogeneous population of spermatozoa with varying degrees of structural and functional differentiation and normality, which result in subpopulations of different quality. Using a discontinuous Percoll gradient, we separated three subsets of spermatozoa (65/45%, 90/65% and 90% fractions) from normozoospermic semen samples from healthy donors and proceeded to characterise their morphology, viability, motility and proteasome activity. In addition, the presence of proteasome subunit transcripts was investigated using reverse transcription-polymerase chain reaction (RT-PCR). The results obtained showed significant differences in sperm motility, viability and morphology between the cells collected from each of the fractions. In particular, normal sperm morphology was 4.5 times higher in the 90% pellet in comparison with the 65/45% interface. In addition, there were significant differences in proteasomal activity between spermatozoa recovered from the 90% pellet and spermatozoa recovered from the 65/45% interface. Finally, there was a positive correlation between sperm proteasomal enzymatic activity and sperm motility and normal morphology after separation by a discontinuous Percoll gradient. The results of the RT-PCR revealed the presence of transcripts for the proteasome subunits β1, β2 and β5 in the human spermatozoa analysed. In conclusion, poor quality spermatozoa isolated from a Percoll gradient display an intrinsic proteasome activity deficiency, which may be associated with their low fertilising potential.

  12. Proteasome as a Molecular Target of Microcystin-LR

    PubMed Central

    Zhu, Zhu; Zhang, Li; Shi, Guoqing

    2015-01-01

    Proteasome degrades proteins in eukaryotic cells. As such, the proteasome is crucial in cell cycle and function. This study proved that microcystin-LR (MC-LR), which is a toxic by-product of algal bloom, can target cellular proteasome and selectively inhibit proteasome trypsin-like (TL) activity. MC-LR at 1 nM can inhibit up to 54% of the purified 20S proteasome TL activity and 43% of the proteasome TL activity in the liver of the cyprinid rare minnow (Gobiocypris rarus). Protein degradation was retarded in GFP-CL1-transfected PC-3 cells because MC-LR inhibited the proteasome TL activity. Docking studies indicated that MC-LR blocked the active site of the proteasome β2 subunit; thus, the proteasome TL activity was inhibited. In conclusion, MC-LR can target proteasome, selectively inhibit proteasome TL activity, and retard protein degradation. This study may be used as a reference of future research on the toxic mechanism of MC-LR. PMID:26090622

  13. Dynamic recruitment of active proteasomes into polyglutamine initiated inclusion bodies.

    PubMed

    Schipper-Krom, Sabine; Juenemann, Katrin; Jansen, Anne H; Wiemhoefer, Anne; van den Nieuwendijk, Rianne; Smith, Donna L; Hink, Mark A; Bates, Gillian P; Overkleeft, Hermen; Ovaa, Huib; Reits, Eric

    2014-01-01

    Neurodegenerative disorders such as Huntington's disease are hallmarked by neuronal intracellular inclusion body formation. Whether proteasomes are irreversibly recruited into inclusion bodies in these protein misfolding disorders is a controversial subject. In addition, it has been proposed that the proteasomes may become clogged by the aggregated protein fragments, leading to impairment of the ubiquitin-proteasome system. Here, we show by fluorescence pulse-chase experiments in living cells that proteasomes are dynamically and reversibly recruited into inclusion bodies. As these recruited proteasomes remain catalytically active and accessible to substrates, our results challenge the concept of proteasome sequestration and impairment in Huntington's disease, and support the reported absence of proteasome impairment in mouse models of Huntington's disease.

  14. The 19S proteasome activator promotes human cytomegalovirus immediate early gene expression through proteolytic and nonproteolytic mechanisms.

    PubMed

    Winkler, Laura L; Kalejta, Robert F

    2014-10-01

    Proteasomes are large, multisubunit complexes that support normal cellular activities by executing the bulk of protein turnover. During infection, many viruses have been shown to promote viral replication by using proteasomes to degrade cellular factors that restrict viral replication. For example, the human cytomegalovirus (HCMV) pp71 protein induces the proteasomal degradation of Daxx, a cellular transcriptional repressor that can silence viral immediate early (IE) gene expression. We previously showed that this degradation requires both the proteasome catalytic 20S core particle (CP) and the 19S regulatory particle (RP). The 19S RP associates with the 20S CP to facilitate protein degradation but also plays a 20S CP-independent role promoting transcription. Here, we present a nonproteolytic role of the 19S RP in HCMV IE gene expression. We demonstrate that 19S RP subunits are recruited to the major immediate early promoter (MIEP) that directs IE transcription. Depletion of 19S RP subunits generated a defect in RNA polymerase II elongation through the MIE locus during HCMV infection. Our results reveal that HCMV commandeers proteasome components for both proteolytic and nonproteolytic roles to promote HCMV lytic infection. Importance: Proteasome inhibitors decrease or eliminate 20S CP activity and are garnering increasing interest as chemotherapeutics. However, an increasing body of evidence implicates 19S RP subunits in important proteolytic-independent roles during transcription. Thus, pharmacological inhibition of the 20S CP as a means to modulate proteasome function toward therapeutic effect is an incomplete capitalization on the potential of this approach. Here, we provide an additional example of nonproteolytic 19S RP function in promoting HCMV transcription. These data provide a novel system with which to study the roles of different proteasome components during transcription, a rationale for previously described shifts in 19S RP subunit localization during

  15. Gel-based chemical cross-linking analysis of 20S proteasome subunit-subunit interactions in breast cancer.

    PubMed

    Song, Hai; Xiong, Hua; Che, Jing; Xi, Qing-Song; Huang, Liu; Xiong, Hui-Hua; Zhang, Peng

    2016-08-01

    The ubiquitin-proteasome system plays a pivotal role in breast tumorigenesis by controlling transcription factors, thus promoting cell cycle growth, and degradation of tumor suppressor proteins. However, breast cancer patients have failed to benefit from proteasome inhibitor treatment partially due to proteasome heterogeneity, which is poorly understood in malignant breast neoplasm. Chemical crosslinking is an increasingly important tool for mapping protein three-dimensional structures and proteinprotein interactions. In the present study, two cross-linkers, bis (sulfosuccinimidyl) suberate (BS(3)) and its water-insoluble analog disuccinimidyl suberate (DSS), were used to map the subunit-subunit interactions in 20S proteasome core particle (CP) from MDA-MB-231 cells. Different types of gel electrophoresis technologies were used. In combination with chemical cross-linking and mass spectrometry, we applied these gel electrophoresis technologies to the study of the noncovalent interactions among 20S proteasome subunits. Firstly, the CP subunit isoforms were profiled. Subsequently, using native/SDSPAGE, it was observed that 0.5 mmol/L BS(3) was a relatively optimal cross-linking concentration for CP subunit-subunit interaction study. 2-DE analysis of the cross-linked CP revealed that α1 might preinteract with α2, and α3 might pre-interact with α4. Moreover, there were different subtypes of α1α2 and α3α4 due to proteasome heterogeneity. There was no significant difference in cross-linking pattern for CP subunits between BS(3) and DSS. Taken together, the gel-based characterization in combination with chemical cross-linking could serve as a tool for the study of subunit interactions within a multi-subunit protein complex. The heterogeneity of 20S proteasome subunit observed in breast cancer cells may provide some key information for proteasome inhibition strategy. PMID:27465334

  16. Endoplasmic reticulum stress and proteasomal system in amyotrophic lateral sclerosis.

    PubMed

    Karademir, Betul; Corek, Ceyda; Ozer, Nesrin Kartal

    2015-11-01

    Protein processing including folding, unfolding and degradation is involved in the mechanisms of many diseases. Unfolded protein response and/or endoplasmic reticulum stress are accepted to be the first steps which should be completed via protein degradation. In this direction, proteasomal system and autophagy play important role as the degradation pathways and controlled via complex mechanisms. Amyotrophic lateral sclerosis is a multifactorial neurodegenerative disease which is also known as the most catastrophic one. Mutation of many different genes are involved in the pathogenesis such as superoxide dismutase 1, chromosome 9 open reading frame 72 and ubiquilin 2. These genes are mainly related to the antioxidant defense systems, endoplasmic reticulum stress related proteins and also protein aggregation, degradation pathways and therefore mutation of these genes cause related disorders.This review focused on the role of protein processing via endoplasmic reticulum and proteasomal system in amyotrophic lateral sclerosis which are the main players in the pathology. In this direction, dysfunction of endoplasmic reticulum associated degradation and related cell death mechanisms that are autophagy/apoptosis have been detailed.

  17. Plasminogen activator inhibitor type 1 interacts with alpha3 subunit of proteasome and modulates its activity.

    PubMed

    Boncela, Joanna; Przygodzka, Patrycja; Papiewska-Pajak, Izabela; Wyroba, Elzbieta; Osinska, Magdalena; Cierniewski, Czeslaw S

    2011-02-25

    Plasminogen activator inhibitor type-1 (PAI-1), a multifunctional protein, is an important physiological regulator of fibrinolysis, extracellular matrix homeostasis, and cell motility. Recent observations show that PAI-1 may also be implicated in maintaining integrity of cells, especially with respect to cellular proliferation or apoptosis. In the present study we provide evidence that PAI-1 interacts with proteasome and affects its activity. First, by using the yeast two-hybrid system, we found that the α3 subunit of proteasome directly interacts with PAI-1. Then, to ensure that the PAI-1-proteasome complex is formed in vivo, both proteins were coimmunoprecipitated from endothelial cells and identified with specific antibodies. The specificity of this interaction was evidenced after transfection of HeLa cells with pCMV-PAI-1 and coimmunoprecipitation of both proteins with anti-PAI-1 antibodies. Subsequently, cellular distribution of the PAI-1-proteasome complexes was established by immunogold staining and electron microscopy analyses. Both proteins appeared in a diffuse cytosolic pattern but also could be found in a dense perinuclear and nuclear location. Furthermore, PAI-1 induced formation of aggresomes freely located in endothelial cytoplasm. Increased PAI-1 expression abrogated degradation of degron analyzed after cotransfection of HeLa cells with pCMV-PAI-1 and pd2EGFP-N1 and prevented degradation of p53 as well as IκBα, as evidenced both by confocal microscopy and Western immunoblotting.

  18. Plasminogen Activator Inhibitor Type 1 Interacts with α3 Subunit of Proteasome and Modulates Its Activity*

    PubMed Central

    Boncela, Joanna; Przygodzka, Patrycja; Papiewska-Pajak, Izabela; Wyroba, Elzbieta; Osinska, Magdalena; Cierniewski, Czeslaw S.

    2011-01-01

    Plasminogen activator inhibitor type-1 (PAI-1), a multifunctional protein, is an important physiological regulator of fibrinolysis, extracellular matrix homeostasis, and cell motility. Recent observations show that PAI-1 may also be implicated in maintaining integrity of cells, especially with respect to cellular proliferation or apoptosis. In the present study we provide evidence that PAI-1 interacts with proteasome and affects its activity. First, by using the yeast two-hybrid system, we found that the α3 subunit of proteasome directly interacts with PAI-1. Then, to ensure that the PAI-1-proteasome complex is formed in vivo, both proteins were coimmunoprecipitated from endothelial cells and identified with specific antibodies. The specificity of this interaction was evidenced after transfection of HeLa cells with pCMV-PAI-1 and coimmunoprecipitation of both proteins with anti-PAI-1 antibodies. Subsequently, cellular distribution of the PAI-1-proteasome complexes was established by immunogold staining and electron microscopy analyses. Both proteins appeared in a diffuse cytosolic pattern but also could be found in a dense perinuclear and nuclear location. Furthermore, PAI-1 induced formation of aggresomes freely located in endothelial cytoplasm. Increased PAI-1 expression abrogated degradation of degron analyzed after cotransfection of HeLa cells with pCMV-PAI-1 and pd2EGFP-N1 and prevented degradation of p53 as well as IκBα, as evidenced both by confocal microscopy and Western immunoblotting. PMID:21135093

  19. Myostatin Activates the Ubiquitin-Proteasome and Autophagy-Lysosome Systems Contributing to Muscle Wasting in Chronic Kidney Disease.

    PubMed

    Wang, Dong-Tao; Yang, Ya-Jun; Huang, Ren-Hua; Zhang, Zhi-Hua; Lin, Xin

    2015-01-01

    Our evidence demonstrated that CKD upregulated the expression of myostatin, TNF-α, and p-IkBa and downregulated the phosphorylation of PI3K, Akt, and FoxO3a, which were also associated with protein degradation and muscle atrophy. The autophagosome formation and protein expression of autophagy-related genes were increased in muscle of CKD rats. The mRNA level and protein expression of MAFbx and MuRF-1 were also upregulated in CKD rats, as well as proteasome activity of 26S. Moreover, activation of myostatin elicited by TNF-α induces C2C12 myotube atrophy via upregulating the expression of autophagy-related genes, including MAFbx and MuRF1 and proteasome subunits. Inactivation of FoxO3a triggered by PI3K inhibitor LY294002 prevented the myostatin-induced increase of expression of MuRF1, MAFbx, and LC3-II protein in C2C12 myotubes. The findings were further consolidated by using siRNA interference and overexpression of myostatin. Additionally, expression of myostatin was activated by TNF-α via a NF-κB dependent pathway in C2C12 myotubes, while inhibition of NF-κB activity suppressed myostatin and improved myotube atrophy. Collectively, myostatin mediated CKD-induced muscle catabolism via coordinate activation of the autophagy and the ubiquitin-proteasome systems. PMID:26448817

  20. Design Principles Involving Protein Disorder Facilitate Specific Substrate Selection and Degradation by the Ubiquitin-Proteasome System.

    PubMed

    Guharoy, Mainak; Bhowmick, Pallab; Tompa, Peter

    2016-03-25

    The ubiquitin-proteasome system (UPS) regulates diverse cellular pathways by the timely removal (or processing) of proteins. Here we review the role of structural disorder and conformational flexibility in the different aspects of degradation. First, we discuss post-translational modifications within disordered regions that regulate E3 ligase localization, conformation, and enzymatic activity, and also the role of flexible linkers in mediating ubiquitin transfer and reaction processivity. Next we review well studied substrates and discuss that substrate elements (degrons) recognized by E3 ligases are highly disordered: short linear motifs recognized by many E3s constitute an important class of degrons, and these are almost always present in disordered regions. Substrate lysines targeted for ubiquitination are also often located in neighboring regions of the E3 docking motifs and are therefore part of the disordered segment. Finally, biochemical experiments and predictions show that initiation of degradation at the 26S proteasome requires a partially unfolded region to facilitate substrate entry into the proteasomal core.

  1. Proteasome inhibitors induce auditory hair cell death through peroxisome dysfunction.

    PubMed

    Lee, Joon No; Kim, Seul-Gi; Lim, Jae-Young; Kim, Se-Jin; Choe, Seong-Kyu; Park, Raekil

    2015-01-01

    Even though bortezomib, a proteasome inhibitor, is a powerful chemotherapeutic agent used to treat multiple myeloma (MM) and other lymphoma cells, recent clinical reports suggest that the proteasome inhibitor therapy may be associated with severe bilateral hearing loss. We herein investigated the adverse effect of proteasome inhibitor on auditory hair cells. Treatment of a proteasome inhibitor destroys stereocilia bundles of hair cells resulting in the disarray of stereocilia in the organ of Corti explants. Since proteasome activity may be potentially important for biogenesis and function of the peroxisome, we tested whether proteasome activity is necessary for maintaining functional peroxisomes. Our results showed that treatment of a proteasome inhibitor significantly decreases both the number of peroxisomes and expression of peroxisomal proteins such as PMP70 and Catalase. In addition, we also found that proteasome inhibitor impairs the import pathway of PTS1-peroxisome matrix proteins. Taken together, our findings support recent clinical reports of hearing loss associated with proteasome inhibition. Mechanistically, peroxisome dysfunction may contribute to hair cell damage and hearing loss in response to the treatment of a proteasome inhibitor.

  2. Primary proteasome inhibition results in cardiac dysfunction

    PubMed Central

    Herrmann, Joerg; Wohlert, Christine; Saguner, Ardan M.; Flores, Ana; Nesbitt, Lisa L.; Chade, Alejandro; Lerman, Lilach O.; Lerman, Amir

    2013-01-01

    Aims The proteasome prevents the intracellular accumulation of proteins and its impairment can lead to structural and functional alterations, as noted for the coronary vasculature in a previous study. Utilizing the same model, this study was designed to test the hypothesis that chronic proteasome inhibition (PSI) also leads to structural and functional changes of the heart. Methods and results Female domestic pigs were randomized to a normal diet without (N) or with twice-weekly subcutaneous injections of the proteasome inhibitor MLN-273 (0.08 mg/kg, N + PSI, n = 5 each group). In vivo data on cardiac structure and function as well as myocardial perfusion and microvascular permeability response to adenosine and dobutamine were obtained by electron beam computed tomography after 11 weeks. Subsequent ex vivo myocardial analyses included immunoblotting, immunostaining, TUNEL (terminal deoxynucleotidyl transferase dUTP nick end labelling), Masson trichrome, and Congo red staining. Compared with N, an increase in LV mass was observed in N + PSI (106.5 ± 16.4 g vs. 183.1 ± 24.2 g, P < 0.05). The early to late diastolic filling ratio was increased in N + PSI vs. N (3.5 ± 0.6 vs. 1.8 ± 0.1, P < 0.05). The EF tended to be lower (46 ± 12% and 53 ± 9%, respectively) and cardiac output was significantly lower in N + PSI than in N (2.9 ± 1.1 vs. 4.7 ± 1.1 L/min, P < 0.05). Tissue analyses demonstrated an accumulation of proteasome substrates, apoptosis, and fibrosis in the PSI group. Compared with N, the myocardial perfusion response was reduced and microvascular permeability was increased in N + PSI. Conclusion The current study demonstrates that chronic proeasome inhibition affects the cardiovascular system, leading to functional and structural alteration of the heart consistent with a hypertrophic–restrictive cardiomyopathy phenotype. PMID:23616520

  3. Reply to Vangala et al.: Complete inhibition of the proteasome reduces new proteasome production by causing Nrf1 aggregation.

    PubMed

    Sha, Zhe; Goldberg, Alfred L

    2016-09-26

    An important adaptation of cells to proteasome inhibition is the induction of new proteasomes via the transcription factor Nrf1 [1,2], which is produced as a precursor bound to the endoplasmic reticulum (ER) through its amino terminus. Nrf1 was reported to require proteolytic processing to enter the nucleus [3]. Increased proteasome production is induced by low concentrations of proteasome inhibitors that reduce proteolysis by <50%. Surprisingly, in earlier studies we found that proteasome induction and Nrf1 processing to its shorter form (which we estimated to be 75 kDa [2]) were suppressed by high concentrations of inhibitors that markedly reduce proteasome activity [4]. This unusual bimodal concentration dependence implied that some proteasome function was necessary for Nrf1 processing. Because we found that Nrf1 processing also required ubiquitin conjugation [2], we previously proposed that Nrf1 processing is catalyzed by partially inhibited proteasomes [2]. However, Vangala et al.[5] present compelling evidence that conversion of the ER-bound Nrf1 to the shorter form, which they describe as 110 kDa, is independent of proteasomes and is not blocked by high concentrations of proteasome inhibitors. Therefore, we investigated the basis for these differing results. Here we report that we and Vangala et al. have studied the same processed form of Nrf1, the actual molecular weight of which appears to be 90-95 kDa. We confirm our earlier finding [2] that high concentrations of proteasome inhibitors suppress proteasome induction and accumulation of processed Nrf1 in soluble lysates. However, we now show that the inhibitors do so not by blocking Nrf1 processing, but instead by causing the processed Nrf1 to aggregate. Therefore, Nrf1 must be cleaved by a non-proteasomal endoprotease that we show requires ubiquitination. Finally, we provide evidence supporting the recent report that Ddi1/Ddi2 is the critical protease [6,7]. PMID:27676298

  4. The proteasomal de-ubiquitinating enzyme POH1 promotes the double-strand DNA break response

    PubMed Central

    Butler, Laura R; Densham, Ruth M; Jia, Junying; Garvin, Alexander J; Stone, Helen R; Shah, Vandna; Weekes, Daniel; Festy, Frederic; Beesley, James; Morris, Joanna R

    2012-01-01

    The regulation of Ubiquitin (Ub) conjugates generated by the complex network of proteins that promote the mammalian DNA double-strand break (DSB) response is not fully understood. We show here that the Ub protease POH1/rpn11/PSMD14 resident in the 19S proteasome regulatory particle is required for processing poly-Ub formed in the DSB response. Proteasome activity is required to restrict tudor domain-dependent 53BP1 accumulation at sites of DNA damage. This occurs both through antagonism of RNF8/RNF168-mediated lysine 63-linked poly-Ub and through the promotion of JMJD2A retention on chromatin. Consistent with this role POH1 acts in opposition to RNF8/RNF168 to modulate end-joining DNA repair. Additionally, POH1 acts independently of 53BP1 in homologous recombination repair to promote RAD51 loading. Accordingly, POH1-deficient cells are sensitive to DNA damaging agents. These data demonstrate that proteasomal POH1 is a key de-ubiquitinating enzyme that regulates ubiquitin conjugates generated in response to damage and that several aspects of the DSB response are regulated by the proteasome. PMID:22909820

  5. The proteasome controls presynaptic differentiation through modulation of an on-site pool of polyubiquitinated conjugates

    PubMed Central

    Pinto, Maria J.; Alves, Pedro L.; Martins, Luís; Pedro, Joana R.; Ryu, Hyun R.; Jeon, Noo Li; Taylor, Anne M.

    2016-01-01

    Differentiation of the presynaptic terminal is a complex and rapid event that normally occurs in spatially specific axonal regions distant from the soma; thus, it is believed to be dependent on intra-axonal mechanisms. However, the full nature of the local events governing presynaptic assembly remains unknown. Herein, we investigated the involvement of the ubiquitin–proteasome system (UPS), the major degradative pathway, in the local modulation of presynaptic differentiation. We found that proteasome inhibition has a synaptogenic effect on isolated axons. In addition, formation of a stable cluster of synaptic vesicles onto a postsynaptic partner occurs in parallel to an on-site decrease in proteasome degradation. Accumulation of ubiquitinated proteins at nascent sites is a local trigger for presynaptic clustering. Finally, proteasome-related ubiquitin chains (K11 and K48) function as signals for the assembly of presynaptic terminals. Collectively, we propose a new axon-intrinsic mechanism for presynaptic assembly through local UPS inhibition. Subsequent on-site accumulation of proteins in their polyubiquitinated state triggers formation of presynapses. PMID:27022091

  6. Involvement of proteasomal subunits zeta and iota in RNA degradation.

    PubMed Central

    Petit, F; Jarrousse, A S; Dahlmann, B; Sobek, A; Hendil, K B; Buri, J; Briand, Y; Schmid, H P

    1997-01-01

    We have identified two distinct subunits of 20 S proteasomes that are associated with RNase activity. Proteasome subunits zeta and iota, eluted from two-dimensional Western blots, hydrolysed tobacco mosaic virus RNA, whereas none of the other subunits degraded this substrate under the same conditions. Additionally, proteasomes were dissociated by 6 M urea, and subunit zeta, containing the highest RNase activity, was isolated by anion-exchange chromatography and gel filtration. Purified subunit zeta migrated as a single spot on two-dimensional PAGE with a molecular mass of approx. 28 kDa. Addition of anti-(subunit zeta) antibodies led to the co-precipitation of this proteasome subunit and nuclease activity. This is the first evidence that proteasomal alpha-type subunits are associated with an enzymic activity, and our results provide further evidence that proteasomes may be involved in cellular RNA metabolism. PMID:9337855

  7. Substrate Ubiquitination Controls the Unfolding Ability of the Proteasome.

    PubMed

    Reichard, Eden L; Chirico, Giavanna G; Dewey, William J; Nassif, Nicholas D; Bard, Katelyn E; Millas, Nickolas E; Kraut, Daniel A

    2016-08-26

    In eukaryotic cells, proteins are targeted to the proteasome for degradation by polyubiquitination. These proteins bind to ubiquitin receptors, are engaged and unfolded by proteasomal ATPases, and are processively degraded. The factors determining to what extent the proteasome can successfully unfold and degrade a substrate are still poorly understood. We find that the architecture of polyubiquitin chains attached to a substrate affects the ability of the proteasome to unfold and degrade the substrate, with K48- or mixed-linkage chains leading to greater processivity than K63-linked chains. Ubiquitin-independent targeting of substrates to the proteasome gave substantially lower processivity of degradation than ubiquitin-dependent targeting. Thus, even though ubiquitin chains are removed early in degradation, during substrate engagement, remarkably they dramatically affect the later unfolding of a protein domain. Our work supports a model in which a polyubiquitin chain associated with a substrate switches the proteasome into an activated state that persists throughout the degradation process. PMID:27405762

  8. Combination Treatment with Sublethal Ionizing Radiation and the Proteasome Inhibitor, Bortezomib, Enhances Death-Receptor Mediated Apoptosis and Anti-Tumor Immune Attack

    PubMed Central

    Cacan, Ercan; Spring, Alexander M.; Kumari, Anita; Greer, Susanna F.; Garnett-Benson, Charlie

    2015-01-01

    Sub-lethal doses of radiation can modulate gene expression, making tumor cells more susceptible to T-cell-mediated immune attack. Proteasome inhibitors demonstrate broad anti-tumor activity in clinical and pre-clinical cancer models. Here, we use a combination treatment of proteasome inhibition and irradiation to further induce immunomodulation of tumor cells that could enhance tumor-specific immune responses. We investigate the effects of the 26S proteasome inhibitor, bortezomib, alone or in combination with radiotherapy, on the expression of immunogenic genes in normal colon and colorectal cancer cell lines. We examined cells for changes in the expression of several death receptors (DR4, DR5 and Fas) commonly used by T cells for killing of target cells. Our results indicate that the combination treatment resulted in increased cell surface expression of death receptors by increasing their transcript levels. The combination treatment further increases the sensitivity of carcinoma cells to apoptosis through FAS and TRAIL receptors but does not change the sensitivity of normal non-malignant epithelial cells. Furthermore, the combination treatment significantly enhances tumor cell killing by tumor specific CD8+ T cells. This study suggests that combining radiotherapy and proteasome inhibition may simultaneously enhance tumor immunogenicity and the induction of antitumor immunity by enhancing tumor-specific T-cell activity. PMID:26703577

  9. A conserved role for the 20S proteasome and Nrf2 transcription factor in oxidative stress adaptation in mammals, Caenorhabditis elegans and Drosophila melanogaster

    PubMed Central

    Pickering, Andrew M.; Staab, Trisha A.; Tower, John; Sieburth, Derek; Davies, Kelvin J. A.

    2013-01-01

    SUMMARY In mammalian cells, hydrogen peroxide (H2O2)-induced adaptation to oxidative stress is strongly dependent on an Nrf2 transcription factor-mediated increase in the 20S proteasome. Here, we report that both Caenorhabditis elegans nematode worms and Drosophila melanogaster fruit flies are also capable of adapting to oxidative stress with H2O2 pre-treatment. As in mammalian cells, this adaptive response in worms and flies involves an increase in proteolytic activity and increased expression of the 20S proteasome, but not of the 26S proteasome. We also found that the increase in 20S proteasome expression in both worms and flies, as in mammalian cells, is important for the adaptive response, and that it is mediated by the SKN-1 and CNC-C orthologs of the mammalian Nrf2 transcription factor, respectively. These studies demonstrate that stress mechanisms operative in cell culture also apply in disparate intact organisms across a wide biological diversity. PMID:23038734

  10. Spatial arrangement and functional role of α subunits of proteasome activator PA28 in hetero-oligomeric form

    SciTech Connect

    Sugiyama, Masaaki; Sahashi, Hiroki; Kurimoto, Eiji; Takata, Shin-ichi; Yagi, Hirokazu; Kanai, Keita; Sakata, Eri; Minami, Yasufumi; Tanaka, Keiji; Kato, Koichi

    2013-03-01

    Highlights: ► Homologous α and β subunits are alternatively arranged in the PA28 heptameric ring. ► The flexible loops of the three α subunits surround the site of substrate entry. ► The loops serve as gatekeepers that selectively hinder passage of longer peptides. - Abstract: A major form of proteasome activator PA28 is a heteroheptamer composed of interferon-γ-inducible α and β subunits, which share approximately 50% amino acid identity and possess distinct insert loops. This activator forms a complex with the 20S proteasome and thereby stimulates proteasomal degradation of peptides in an ATP-independent manner, giving rise to smaller antigenic peptides presented by major histocompatibility complex class I molecules. In this study, we performed biophysical and biochemical characterization of the structure and function of the PA28 hetero-oligomer. Deuteration-assisted small-angle neutron scattering demonstrated three α and four β subunits are alternately arranged in the heptameric ring. In this arrangement, PA28 loops surround the central pore of the heptameric ring (site for peptide entry). Activating the 20S proteasome with a PA28 mutant that lacked the α subunit loops cleaved model substrates longer than a nonapeptide with better efficiency when compared to wild-type PA28. Based on these data, we hypothesize that the flexible PA28 loops act as gatekeepers, which function to select the length of peptide substrates to be transported between the proteolytic chamber and the extra-proteasomal medium.

  11. Evaluation of copper-dependent proteasome-inhibitory and apoptosis-inducing activities of novel pyrrolidine dithiocarbamate analogues.

    PubMed

    Yu, Zhiyong; Wang, Fei; Milacic, Vesna; Li, Xiaofeng; Cui, Qiuzhi Cindy; Zhang, Bin; Yan, Bing; Dou, Q Ping

    2007-12-01

    Apoptosis has a central role in the pathogenesis of many human diseases, one of which is cancer. One of the most important strategies to regulate apoptosis is via the ubiquitin-proteasome pathway. It has been shown that inhibition of proteasomal chymotrypsin-like activity is a strong apoptosis-inducing stimulus and that actively proliferating cancer cells are more sensitive to proteasome inhibitors than normal or untransformed cells. Dithioscarbamates are a class of metal-chelating compounds with various applications in medicine. We reported previously that certain members of dithiocarbamates, such as pyrrolidine dithiocarbamate (PDTC), diethyldithiocarbamate and disulfiram, are able to bind with tumor cellular copper, forming an active complex with proteasome-inhibitory, apoptosis-inducing and anti-cancer activities. In the current study, we synthesized eight PDTC analogues with substitutions made to the pyrrolidine ring and studied their structure-activity relationships. We found that substitution of the pyrrolidine ring with piperidine had almost no effect on their proteasome-inhibitory and anti-proliferative potencies in human breast cancer cells. However, after the pyrrolidine ring was substituted with morpholine, the activity of the mixtures slightly decreased but was completely lost when piperazine with the attached ethyl group was used for the substitution. This structure-activity relationship was confirmed by the results generated with the corresponding copper complexes. Our data further support the novel concept of using accumulated copper in human cancer cells as a selective approach for chemotherapy. PMID:17982703

  12. Could inhibition of the proteasome cause mad cow disease?

    PubMed

    Hooper, Nigel M

    2003-04-01

    The proteasome is the cellular machinery responsible for the degradation of normal and misfolded proteins. Inhibitors of the proteasome are being evaluated as therapeutic agents and recent work suggests that such inhibition might promote the neurotoxic properties of the prion protein (the causative agent of mad cow disease) and its conformational conversion to the infectious form, thus raising the question as to whether proteasome inhibitors might facilitate the development of prion diseases. PMID:12679058

  13. Could inhibition of the proteasome cause mad cow disease?

    PubMed

    Hooper, Nigel M

    2003-04-01

    The proteasome is the cellular machinery responsible for the degradation of normal and misfolded proteins. Inhibitors of the proteasome are being evaluated as therapeutic agents and recent work suggests that such inhibition might promote the neurotoxic properties of the prion protein (the causative agent of mad cow disease) and its conformational conversion to the infectious form, thus raising the question as to whether proteasome inhibitors might facilitate the development of prion diseases.

  14. Differential regulation of the REGγ–proteasome pathway by p53/TGF-β signalling and mutant p53 in cancer cells

    PubMed Central

    Ali, Amjad; Wang, Zhuo; Fu, Junjiang; Ji, Lei; Liu, Jiang; Li, Lei; Wang, Hui; Chen, Jiwu; Caulin, Carlos; Myers, Jeffrey N.; Zhang, Pei; Xiao, Jianru; Zhang, Bianhong; Li, Xiaotao

    2013-01-01

    Proteasome activity is frequently enhanced in cancer to accelerate metastasis and tumorigenesis. REGγ, a proteasome activator known to promote p53/p21/p16 degradation, is often overexpressed in cancer cells. Here we show that p53/TGF-β signalling inhibits the REGγ–20S proteasome pathway by repressing REGγ expression. Smad3 and p53 interact on the REGγ promoter via the p53RE/SBE region. Conversely, mutant p53 binds to the REGγ promoter and recruits p300. Importantly, mutant p53 prevents Smad3/N-CoR complex formation on the REGγ promoter, which enhances the activity of the REGγ–20S proteasome pathway and contributes to mutant p53 gain of function. Depletion of REGγ alters the cellular response to p53/TGF-β signalling in drug resistance, proliferation, cell cycle progression and proteasome activity. Moreover, p53 mutations show a positive correlation with REGγ expression in cancer samples. These findings suggest that targeting REGγ–20S proteasome for cancer therapy may be applicable to human tumours with abnormal p53/Smad protein status. Furthermore, this study demonstrates a link between p53/TGF-β signalling and the REGγ–20S proteasome pathway, and provides insight into the REGγ/p53 feedback loop. PMID:24157709

  15. Proteasomes and protein conjugation across domains of life

    PubMed Central

    Maupin-Furlow, Julie

    2012-01-01

    Like other energy-dependent proteases, proteasomes, which are found across the three domains of life, are self-compartmentalized and important in the early steps of proteolysis. Proteasomes degrade improperly synthesized, damaged or misfolded proteins and hydrolyse regulatory proteins that must be specifically removed or cleaved for cell signalling. In eukaryotes, proteins are typically targeted for proteasome-mediated destruction through polyubiquitylation, although ubiquitin-independent pathways also exist. Interestingly, actinobacteria and archaea also covalently attach small proteins (prokaryotic ubiquitin-like protein (Pup) and small archaeal modifier proteins (Samps), respectively) to certain proteins, and this may serve to target the modified proteins for degradation by proteasomes. PMID:22183254

  16. Isolation and purification of proteasomes from primary cells.

    PubMed

    Steers, Nicholas J; Peachman, Kristina K; Alving, Carl R; Rao, Mangala

    2014-11-03

    Proteasomes play an important role in cell homeostasis and in orchestrating the immune response by systematically degrading foreign proteins and misfolded or damaged host cell proteins. We describe a protocol to purify functionally active proteasomes from human CD4(+) T cells and dendritic cells derived from peripheral blood mononuclear cells. The purification is a three-step process involving ion-exchange chromatography, ammonium sulfate precipitation, and sucrose density gradient ultracentrifugation. This method can be easily adapted to purify proteasomes from cell lines or from organs. Methods to characterize and visualize the purified proteasomes are also described.

  17. Proteasome inhibitors suppress the protein expression of mutant p53.

    PubMed

    Halasi, Marianna; Pandit, Bulbul; Gartel, Andrei L

    2014-01-01

    Tumor suppressor p53 is one of the most frequently mutated genes in cancer, with almost 50% of all types of cancer expressing a mutant form of p53. p53 transactivates the expression of its primary negative regulator, HDM2. HDM2 is a ubiquitin ligase, which initiates the proteasomal degradation of p53 following ubiquitination. Proteasome inhibitors, by targeting the ubiquitin proteasome pathway inhibit the degradation of the majority of cellular proteins including wild-type p53. In contrast, in this study we found that the protein expression of mutant p53 was suppressed following treatment with established or novel proteasome inhibitors. Furthermore, for the first time we demonstrated that Arsenic trioxide, which was previously shown to suppress mutant p53 protein level, exhibits proteasome inhibitory activity. Proteasome inhibitor-mediated suppression of mutant p53 was partially rescued by the knockdown of HDM2, suggesting that the stabilization of HDM2 by proteasome inhibitors might be responsible for mutant p53 suppression to some extent. This study suggests that suppression of mutant p53 is a general property of proteasome inhibitors and it provides additional rationale to use proteasome inhibitors for the treatment of tumors with mutant p53.

  18. Proteasome inhibitors suppress the protein expression of mutant p53

    PubMed Central

    Halasi, Marianna; Pandit, Bulbul; Gartel, Andrei L

    2014-01-01

    Tumor suppressor p53 is one of the most frequently mutated genes in cancer, with almost 50% of all types of cancer expressing a mutant form of p53. p53 transactivates the expression of its primary negative regulator, HDM2. HDM2 is a ubiquitin ligase, which initiates the proteasomal degradation of p53 following ubiquitination. Proteasome inhibitors, by targeting the ubiquitin proteasome pathway inhibit the degradation of the majority of cellular proteins including wild-type p53. In contrast, in this study we found that the protein expression of mutant p53 was suppressed following treatment with established or novel proteasome inhibitors. Furthermore, for the first time we demonstrated that Arsenic trioxide, which was previously shown to suppress mutant p53 protein level, exhibits proteasome inhibitory activity. Proteasome inhibitor-mediated suppression of mutant p53 was partially rescued by the knockdown of HDM2, suggesting that the stabilization of HDM2 by proteasome inhibitors might be responsible for mutant p53 suppression to some extent. This study suggests that suppression of mutant p53 is a general property of proteasome inhibitors and it provides additional rationale to use proteasome inhibitors for the treatment of tumors with mutant p53. PMID:25485499

  19. Regulation of Cardiac Proteasomes by Ubiquitination, Sumoylation, and Beyond

    PubMed Central

    Cui, Ziyou; Scruggs, Sarah B.; Gilda, Jennifer E.; Ping, Peipei; Gomes, Aldrin V.

    2013-01-01

    The ubiquitin-proteasome system (UPS) is the major intracellular degradation system, and its proper function is critical to the health and function of cardiac cells. Alterations in cardiac proteasomes have been linked to several pathological phenotypes, including cardiomyopathies, ischemia-reperfusion injury, heart failure, and hypertrophy. Defects in proteasome-dependent cellular protein homeostasis can be causal for the initiation and progression of certain cardiovascular diseases. Emerging evidence suggests that the UPS can specifically target proteins that govern pathological signaling pathways for degradation, thus altering downstream effectors and disease outcomes. Alterations in UPS-substrate interactions in disease occur, in part, due to direct modifications of 19S, 11S or 20S proteasome subunits. Post-translational modifications (PTMs) are one facet of this proteasomal regulation, with over 400 known phosphorylation sites, over 500 ubiquitination sites and 83 internal lysine acetylation sites, as well as multiple sites for caspase cleavage, glycosylation (such as O-GlcNAc modification), methylation, nitrosylation, oxidation, and sumoylation. Changes in cardiac proteasome PTMs, which occur in ischemia and cardiomyopathies, are associated with changes in proteasome activity and proteasome assembly; however several features of this regulation remain to be explored. In this review, we focus on how some of the less common PTMs affect proteasome function and alter cellular protein homeostasis. PMID:24140722

  20. Phosphorylation and Methylation of Proteasomal Proteins of the Haloarcheon Haloferax volcanii

    DOE PAGES

    Humbard, Matthew A.; Reuter, Christopher J.; Zuobi-Hasona, Kheir; Zhou, Guangyin; Maupin-Furlow, Julie A.

    2010-01-01

    Promore » teasomes are composed of 20S core particles (CPs) ofα- andβ-type subunits that associate with regulatory particle AAA ATPases such as the proteasome-activating nucleotidase (PAN) complexes of archaea. In this study, the roles and additional sites of post-translational modification of proteasomes were investigated using the archaeonHaloferax volcaniias a model. Indicative of phosphorylation, phosphatase-sensitive isoforms ofα1andα2were detected by 2-DE immunoblot. To map these and other potential sites of post-translational modification, proteasomes were purified and analyzed by tandem mass spectrometry (MS/MS). Using this approach, several phosphosites were mapped includingα1Thr147,α2 Thr13/Ser14 and PAN-A Ser340. Multiple methylation sites were also mapped toα1, thus, revealing a new type of proteasomal modification. bing the biological role ofα1and PAN-A phosphorylation by site-directed mutagenesis revealed dominant negative phenotypes for cell viability and/or pigmentation forα1variants including Thr147Ala, Thr158Ala and Ser58Ala. AnH. volcaniiRio1p Ser/Thr kinase homolog was purified and shown to catalyze autophosphorylation and phosphotransfer toα1. Theα1variants in Thr and Ser residues that displayed dominant negative phenotypes were significantly reduced in their ability to accept phosphoryl groups from Rio1p, thus, providing an important link between cell physiology and proteasomal phosphorylation.« less

  1. Phylogenetic relationships within Cornus (Cornaceae) based on 26S rDNA sequences.

    PubMed

    Fan, C

    2001-06-01

    Phylogenetic relationships within the dogwood genus Cornus have been highly controversial due to the great morphological heterogeneity. Earlier phylogenetic analyses of Cornus using chloroplast DNA (cpDNA) data (including rbcL and matK sequences, as well as restriction sites) and morphological characters suggested incongruent relationships within the genus. The present study generated sequence data from the nuclear gene 26S rDNA for Cornus to test the phylogenetic hypotheses based on cpDNA and morphological data. The 26S rDNA sequence data obtained represent 16 species, 13 from Cornus and three from outgroups, having an aligned length of 3380 bp. Both parsimony and maximum likelihood analyses of these sequences were conducted. Trees resulting from these analyses suggest relationships among subgroups of Cornus consistent with those inferred from cpDNA data. That is, the dwarf dogwood (subg. Arctocrania) and the big-bracted dogwood (subg. Cynoxylon and subg. Syncarpea) clades are sisters, which are, in turn, sister to the cornelian cherries (subg. Cornus and subg. Afrocrania). This red-fruited clade is sister to the blue- or white-fruited dogwoods (subg. Mesomora, subg. Kraniopsis, and subg. Yinquania). Within the blue- or white-fruited clade, C. oblonga (subg. Yinquania) is sister to the remainder, and subg. Mesomora is sister to subg. Kraniopsis. These relationships were also suggested by the combined 26S rDNA and cpDNA data, but with higher bootstrap and Bremer support in the combined analysis. The 26S rDNA sequence data of Cornus consist of 12 expansion segments spanning 1034 bp. These expansion segments evolve approximately four times as fast as the conserved core regions. The study provides an example of phylogenetic utility of 26S rDNA sequences below the genus level. PMID:11410478

  2. Disassembly of the self-assembled, double-ring structure of proteasome α7 homo-tetradecamer by α6

    PubMed Central

    Ishii, Kentaro; Noda, Masanori; Yagi, Hirokazu; Thammaporn, Ratsupa; Seetaha, Supaporn; Satoh, Tadashi; Kato, Koichi; Uchiyama, Susumu

    2015-01-01

    The 20S core particle of the eukaryotic proteasome is composed of two α- and two β-rings, each of which is a hetero-heptamer composed of seven homologous but distinct subunits. Although formation of the eukaryotic proteasome is a highly ordered process assisted by assembly chaperones, α7, an α-ring component, has the unique property of self-assembling into a homo-tetradecamer. We used biophysical methods to characterize the oligomeric states of this proteasome subunit and its interaction with α6, which makes direct contacts with α7 in the proteasome α-ring. We determined a crystal structure of the α7 tetradecamer, which has a double-ring structure. Sedimentation velocity analytical ultracentrifugation and mass spectrometric analysis under non-denaturing conditions revealed that α7 exclusively exists as homo-tetradecamer in solution and that its double-ring structure is disassembled upon the addition of α6, resulting in a 1:7 hetero-octameric α6–α7 complex. Our findings suggest that proteasome formation involves the disassembly of non-native oligomers, which are assembly intermediates. PMID:26657688

  3. Ubiquitin proteasome system research in gastrointestinal cancer.

    PubMed

    Zhong, Jia-Ling; Huang, Chang-Zhi

    2016-02-15

    The ubiquitin proteasome system (UPS) is important for the degradation of proteins in eukaryotic cells. It is involved in nearly every cellular process and plays an important role in maintaining body homeostasis. An increasing body of evidence has linked alterations in the UPS to gastrointestinal malignancies, including esophageal, gastric and colorectal cancers. Here, we summarize the current literature detailing the involvement of the UPS in gastrointestinal cancer, highlighting its role in tumor occurrence and development, providing information for therapeutic targets research and anti-gastrointestinal tumor drug design. PMID:26909134

  4. Ubiquitin proteasome system research in gastrointestinal cancer

    PubMed Central

    Zhong, Jia-Ling; Huang, Chang-Zhi

    2016-01-01

    The ubiquitin proteasome system (UPS) is important for the degradation of proteins in eukaryotic cells. It is involved in nearly every cellular process and plays an important role in maintaining body homeostasis. An increasing body of evidence has linked alterations in the UPS to gastrointestinal malignancies, including esophageal, gastric and colorectal cancers. Here, we summarize the current literature detailing the involvement of the UPS in gastrointestinal cancer, highlighting its role in tumor occurrence and development, providing information for therapeutic targets research and anti-gastrointestinal tumor drug design. PMID:26909134

  5. Purification and characterization of Candida albicans 20S proteasome: identification of four proteasomal subunits.

    PubMed

    Fernández Murray, P; Biscoglio, M J; Passeron, S

    2000-03-15

    The 20S proteasome from yeast cells of Candida albicans was purified by successive chromatographic steps to apparent homogeneity, as judged by nondenaturing and denaturing polyacrylamide gel electrophoresis. Its molecular mass was estimated to be 640 kDa by gel filtration. Polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate gave at least 10 bands in the range 20-32 kDa. Two-dimensional electrophoresis revealed the presence of at least 14 polypeptides. By electron microscopy after negative staining, the proteasome preparation appeared as typical symmetrical barrel-shaped particles. The enzyme cleaved the peptidyl-arylamide bonds in the model synthetic substrates Cbz-G-G-L-p-nitroanilide, Cbz-G-G-R-beta-naphthylamide, and Cbz-L-L-E-beta-naphthylamide (chymotrypsin-like, trypsin-like, and peptidylglutamyl-peptide-hydrolyzing activities). The differential sensitivity of these activities to aldehyde peptides and sodium dodecyl sulfate supported the multicatalytic nature of this enzyme. Three proteasomal subunits were identified as alpha6/Pre5, alpha3/Y13, and alpha5/Pup2 by internal sequencing of tryptic fragments. Their sequences perfectly matched the corresponding deduced amino acid sequences of the C. albicans genes. A fourth subunit was identified as alpha7/Prs1 by immunorecognition with a monoclonal antibody specific for C8, the human proteasome subunit homologue. Treatment of the intact isolated 20S proteasome with acid phosphatase and Western blot analysis of the separated components indicated that the alpha7/Prs1 subunit is obtained as a multiply phosphorylated protein.

  6. Cryo-EM reveals the conformation of a substrate analogue in the human 20S proteasome core

    NASA Astrophysics Data System (ADS)

    da Fonseca, Paula C. A.; Morris, Edward P.

    2015-07-01

    The proteasome is a highly regulated protease complex fundamental for cell homeostasis and controlled cell cycle progression. It functions by removing a wide range of specifically tagged proteins, including key cellular regulators. Here we present the structure of the human 20S proteasome core bound to a substrate analogue inhibitor molecule, determined by electron cryo-microscopy (cryo-EM) and single-particle analysis at a resolution of around 3.5 Å. Our map allows the building of protein coordinates as well as defining the location and conformation of the inhibitor at the different active sites. These results open new prospects to tackle the proteasome functional mechanisms. Moreover, they also further demonstrate that cryo-EM is emerging as a realistic approach for general structural studies of protein-ligand interactions.

  7. Cryo-EM reveals the conformation of a substrate analogue in the human 20S proteasome core.

    PubMed

    da Fonseca, Paula C A; Morris, Edward P

    2015-07-02

    The proteasome is a highly regulated protease complex fundamental for cell homeostasis and controlled cell cycle progression. It functions by removing a wide range of specifically tagged proteins, including key cellular regulators. Here we present the structure of the human 20S proteasome core bound to a substrate analogue inhibitor molecule, determined by electron cryo-microscopy (cryo-EM) and single-particle analysis at a resolution of around 3.5 Å. Our map allows the building of protein coordinates as well as defining the location and conformation of the inhibitor at the different active sites. These results open new prospects to tackle the proteasome functional mechanisms. Moreover, they also further demonstrate that cryo-EM is emerging as a realistic approach for general structural studies of protein-ligand interactions.

  8. Pyrrolidine dithiocarbamate and zinc inhibit proteasome-dependent proteolysis.

    PubMed

    Kim, Insook; Kim, Chul Hoon; Kim, Joo Hee; Lee, Jinu; Choi, Jun Jeong; Chen, Zheng Ai; Lee, Min Goo; Chung, Kwang Chul; Hsu, Chung Y; Ahn, Young Soo

    2004-08-01

    Proteasomes play important roles in a variety of cellular processes such as cell cycle progression, signal transduction and immune responses. Proteasome activity is important in maintaining rapid turnover of short-lived proteins, as well as preventing accumulation of misfolded or damaged proteins. Alteration in ubiquitin-proteasome function may be detrimental to its crucial role in maintaining cellular homeostasis. Here, we have found that treatment of pyrrolidine dithiocarbamate (PDTC), a zinc ionophore, resulted in the accumulation of several proteasome substrates including p53 and p21 in HeLa cells. The PDTC effect was due to an extended half-life of these proteins through the mobilization of zinc. PDTC and/or zinc also increased fluorescence intensity of Ub(G76V)-GFP fusion protein that is degraded rapidly by the ubiquitin-proteasome system. Treatment of cells with zinc induced formation of ubiquitinated inclusions in the centrosome, a histological marker of proteasome inhibition. Western blotting showed zinc-induced increase in laddering bands of polyubiquitin-conjugated proteins. In vitro study, zinc inhibited the ubiquitin-independent proteasomal degradations of p21 and alpha-synuclein. These results suggest that zinc may modulate cell functions through its action on the turnover of proteins that are susceptible to proteasome-dependent proteolysis. PMID:15242777

  9. Association of plasminogen activator inhibitor type 2 (PAI-2) with proteasome within endothelial cells activated with inflammatory stimuli.

    PubMed

    Boncela, Joanna; Przygodzka, Patrycja; Papiewska-Pajak, Izabela; Wyroba, Elzbieta; Cierniewski, Czeslaw S

    2011-12-16

    Quiescent endothelial cells contain low concentrations of plasminogen activator inhibitor type 2 (PAI-2). However, its synthesis can be rapidly stimulated by a variety of inflammatory mediators. In this study, we provide evidence that PAI-2 interacts with proteasome and affects its activity in endothelial cells. To ensure that the PAI-2·proteasome complex is formed in vivo, both proteins were coimmunoprecipitated from endothelial cells and identified with specific antibodies. The specificity of this interaction was evidenced after (a) transfection of HeLa cells with pCMV-PAI-2 and coimmunoprecipitation of both proteins with anti-PAI-2 antibodies and (b) silencing of the PAI-2 gene using specific small interfering RNA (siRNA). Subsequently, cellular distribution of the PAI-2·proteasome complexes was established by immunogold staining and electron microscopy analyses. As judged by confocal microscopy, both proteins appeared in a diffuse cytosolic pattern, but they also could be found in a dense perinuclear and nuclear location. PAI-2 was not polyubiquitinated, suggesting that it bound to proteasome not as the substrate but rather as its inhibitor. Consistently, increased PAI-2 expression (a) abrogated degradation of degron analyzed after cotransfection of HeLa cells with pCMV-PAI-2 and pd2EGFP-N1, (b) prevented degradation of p53, as evidenced both by confocal microscopy and Western immunoblotting, and (c) inhibited proteasome cleavage of specific fluorogenic substrate. This suggests that PAI-2, in endothelial cells induced with inflammatory stimuli, can inhibit proteasome and thus tilt the balance favoring proapoptotic signaling.

  10. Association of Plasminogen Activator Inhibitor Type 2 (PAI-2) with Proteasome within Endothelial Cells Activated with Inflammatory Stimuli*

    PubMed Central

    Boncela, Joanna; Przygodzka, Patrycja; Papiewska-Pajak, Izabela; Wyroba, Elzbieta; Cierniewski, Czeslaw S.

    2011-01-01

    Quiescent endothelial cells contain low concentrations of plasminogen activator inhibitor type 2 (PAI-2). However, its synthesis can be rapidly stimulated by a variety of inflammatory mediators. In this study, we provide evidence that PAI-2 interacts with proteasome and affects its activity in endothelial cells. To ensure that the PAI-2·proteasome complex is formed in vivo, both proteins were coimmunoprecipitated from endothelial cells and identified with specific antibodies. The specificity of this interaction was evidenced after (a) transfection of HeLa cells with pCMV-PAI-2 and coimmunoprecipitation of both proteins with anti-PAI-2 antibodies and (b) silencing of the PAI-2 gene using specific small interfering RNA (siRNA). Subsequently, cellular distribution of the PAI-2·proteasome complexes was established by immunogold staining and electron microscopy analyses. As judged by confocal microscopy, both proteins appeared in a diffuse cytosolic pattern, but they also could be found in a dense perinuclear and nuclear location. PAI-2 was not polyubiquitinated, suggesting that it bound to proteasome not as the substrate but rather as its inhibitor. Consistently, increased PAI-2 expression (a) abrogated degradation of degron analyzed after cotransfection of HeLa cells with pCMV-PAI-2 and pd2EGFP-N1, (b) prevented degradation of p53, as evidenced both by confocal microscopy and Western immunoblotting, and (c) inhibited proteasome cleavage of specific fluorogenic substrate. This suggests that PAI-2, in endothelial cells induced with inflammatory stimuli, can inhibit proteasome and thus tilt the balance favoring proapoptotic signaling. PMID:21976669

  11. Increased hepatic receptor interacting protein kinase 3 expression due to impaired proteasomal functions contributes to alcohol-induced steatosis and liver injury

    PubMed Central

    Wang, Shaogui; Ni, Hong-Min; Dorko, Kenneth; Kumer, Sean C.; Schmitt, Timothy M.; Nawabi, Atta; Komatsu, Masaaki; Huang, Heqing; Ding, Wen-Xing

    2016-01-01

    Chronic alcohol exposure increased hepatic receptor-interacting protein kinase (RIP) 3 expression and necroptosis in the liver but its mechanisms are unclear. In the present study, we demonstrated that chronic alcohol feeding plus binge (Gao-binge) increased RIP3 but not RIP1 protein levels in mouse livers. RIP3 knockout mice had decreased serum alanine amino transferase activity and hepatic steatosis but had no effect on hepatic neutrophil infiltration compared with wild type mice after Gao-binge alcohol treatment. The hepatic mRNA levels of RIP3 did not change between Gao-binge and control mice, suggesting that alcohol-induced hepatic RIP3 proteins are regulated at the posttranslational level. We found that Gao-binge treatment decreased the levels of proteasome subunit alpha type-2 (PSMA2) and proteasome 26S subunit, ATPase 1 (PSMC1) and impaired hepatic proteasome function. Pharmacological or genetic inhibition of proteasome resulted in the accumulation of RIP3 in mouse livers. More importantly, human alcoholics had decreased expression of PSMA2 and PSMC1 but increased protein levels of RIP3 compared with healthy human livers. Moreover, pharmacological inhibition of RIP1 decreased Gao-binge-induced hepatic inflammation, neutrophil infiltration and NF-κB subunit (p65) nuclear translocation but failed to protect against steatosis and liver injury induced by Gao-binge alcohol. In conclusion, results from this study suggest that impaired hepatic proteasome function by alcohol exposure may contribute to hepatic accumulation of RIP3 resulting in necroptosis and steatosis while RIP1 kinase activity is important for alcohol-induced inflammation. PMID:26769846

  12. Phosphorylation of the C-terminal tail of proteasome subunit α7 is required for binding of the proteasome quality control factor Ecm29

    PubMed Central

    Wani, Prashant S.; Suppahia, Anjana; Capalla, Xavier; Ondracek, Alex; Roelofs, Jeroen

    2016-01-01

    The proteasome degrades many short-lived proteins that are labeled with an ubiquitin chain. The identification of phosphorylation sites on the proteasome subunits suggests that degradation of these substrates can also be regulated at the proteasome. In yeast and humans, the unstructured C-terminal region of α7 contains an acidic patch with serine residues that are phosphorylated. Although these were identified more than a decade ago, the molecular implications of α7 phosphorylation have remained unknown. Here, we showed that yeast Ecm29, a protein involved in proteasome quality control, requires the phosphorylated tail of α7 for its association with proteasomes. This is the first example of proteasome phosphorylation dependent binding of a proteasome regulatory factor. Ecm29 is known to inhibit proteasomes and is often found enriched on mutant proteasomes. We showed that the ability of Ecm29 to bind to mutant proteasomes requires the α7 tail binding site, besides a previously characterized Rpt5 binding site. The need for these two binding sites, which are on different proteasome subcomplexes, explains the specificity of Ecm29 for proteasome holoenzymes. We propose that alterations in the relative position of these two sites in different conformations of the proteasome provides Ecm29 the ability to preferentially bind specific proteasome conformations. PMID:27302526

  13. Overview of Proteasome Inhibitor-Based Anti-cancer Therapies: Perspective on Bortezomib and Second Generation Proteasome Inhibitors versus Future Generation Inhibitors of Ubiquitin-Proteasome System

    PubMed Central

    Dou, Q. Ping; Zonder, Jeffrey A.

    2014-01-01

    Over the past ten years, proteasome inhibition has emerged as an effective therapeutic strategy for treating multiple myeloma (MM) and some lymphomas. In 2003, Bortezomib (BTZ) became the first proteasome inhibitor approved by the U.S. Food and Drug Administration (FDA). BTZ-based therapies have become a staple for the treatment of MM at all stages of the disease. The survival rate of MM patients has improved significantly since clinical introduction of BTZ and other immunomodulatory drugs. However, BTZ has several limitations. Not all patients respond to BTZ-based therapies and relapse occurs in many patients who initially responded. Solid tumors, in particular, are often resistant to BTZ. Furthermore, BTZ can induce dose-limiting peripheral neuropathy (PN). The second generation proteasome inhibitor Carfizomib (CFZ; U.S. FDA approved in August 2012) induces responses in a minority of MM patients relapsed from or refractory to BTZ. There is less PN compared to BTZ. Four other second-generation proteasome inhibitors (Ixazomib, Delanzomib, Oprozomib and Marizomib) with different pharmacologic properties and broader anticancer activities, have also shown some clinical activity in bortezomib-resistant cancers. While the mechanism of resistance to bortezomib in human cancers still remains to be fully understood, targeting the immunoproteasome, ubiquitin E3 ligases, the 19S proteasome and deubiquitinases in pre-clinical studies represents possible directions for future generation inhibitors of ubiquitin-proteasome system in the treatment of MM and other cancers. PMID:25092212

  14. RNAi screening reveals proteasome- and Cullin3-dependent stages in vaccinia virus infection.

    PubMed

    Mercer, Jason; Snijder, Berend; Sacher, Raphael; Burkard, Christine; Bleck, Christopher Karl Ernst; Stahlberg, Henning; Pelkmans, Lucas; Helenius, Ari

    2012-10-25

    A two-step, automated, high-throughput RNAi silencing screen was used to identify host cell factors required during vaccinia virus infection. Validation and analysis of clustered hits revealed previously unknown processes during virus entry, including a mechanism for genome uncoating. Viral core proteins were found to be already ubiquitinated during virus assembly. After entering the cytosol of an uninfected cell, the viral DNA was released from the core through the activity of the cell's proteasomes. Next, a Cullin3-based ubiquitin ligase mediated a further round of ubiquitination and proteasome action. This was needed in order to initiate viral DNA replication. The results accentuate the value of large-scale RNAi screens in providing directions for detailed cell biological investigation of complex pathways. The list of cell functions required during poxvirus infection will, moreover, provide a resource for future virus-host cell interaction studies and for the discovery of antivirals. PMID:23084750

  15. Discovery of new [Formula: see text] proteasome inhibitors using a knowledge-based computational screening approach.

    PubMed

    Mehra, Rukmankesh; Chib, Reena; Munagala, Gurunadham; Yempalla, Kushalava Reddy; Khan, Inshad Ali; Singh, Parvinder Pal; Khan, Farrah Gul; Nargotra, Amit

    2015-11-01

    Mycobacterium tuberculosis bacteria cause deadly infections in patients [Corrected]. The rise of multidrug resistance associated with tuberculosis further makes the situation worse in treating the disease. M. tuberculosis proteasome is necessary for the pathogenesis of the bacterium validated as an anti-tubercular target, thus making it an attractive enzyme for designing Mtb inhibitors. In this study, a computational screening approach was applied to identify new proteasome inhibitor candidates from a library of 50,000 compounds. This chemical library was procured from the ChemBridge (20,000 compounds) and the ChemDiv (30,000 compounds) databases. After a detailed analysis of the computational screening results, 50 in silico hits were retrieved and tested in vitro finding 15 compounds with [Formula: see text] values ranging from 35.32 to 64.15 [Formula: see text]M on lysate. A structural analysis of these hits revealed that 14 of these compounds probably have non-covalent mode of binding to the target and have not reported for anti-tubercular or anti-proteasome activity. The binding interactions of all the 14 protein-inhibitor complexes were analyzed using molecular docking studies. Further, molecular dynamics simulations of the protein in complex with the two most promising hits were carried out so as to identify the key interactions and validate the structural stability.

  16. Interactions of PAN's C-termini with archaeal 20S proteasome and implications for the eukaryotic proteasome–ATPase interactions

    PubMed Central

    Yu, Yadong; Smith, David M; Kim, Ho Min; Rodriguez, Victor; Goldberg, Alfred L; Cheng, Yifan

    2010-01-01

    Protein degradation in the 20S proteasome is regulated in eukaryotes by the 19S ATPase complex and in archaea by the homologous PAN ATPase ring complex. Subunits of these hexameric ATPases contain on their C-termini a conserved hydrophobic-tyrosine-X (HbYX) motif that docks into pockets in the 20S to stimulate the opening of a gated substrate entry channel. Here, we report the crystal structure of the archaeal 20S proteasome in complex with the C-terminus of the archaeal proteasome regulatory ATPase, PAN. This structure defines the detailed interactions between the critical C-terminal HbYX motif and the 20S α-subunits and indicates that the intersubunit pocket in the 20S undergoes an induced-fit conformational change on binding of the HbYX motif. This structure together with related mutagenesis data suggest how in eukaryotes certain proteasomal ATPases bind to specific pockets in an asymmetrical manner to regulate gate opening. PMID:20019667

  17. Dynamics of the striped bass (Morone saxatilis) ovary proteome reveal a complex network of the translasome.

    PubMed

    Reading, Benjamin J; Williams, Valerie N; Chapman, Robert W; Williams, Taufika Islam; Sullivan, Craig V

    2013-04-01

    We evaluated changes in the striped bass (Morone saxatilis) ovary proteome during the annual reproductive cycle using label-free quantitative mass spectrometry and a novel machine learning analysis based on K-means clustering and support vector machines. Modulated modularity clustering was used to group co-variable proteins into expression modules and Gene Ontology (GO) biological process and KEGG pathway enrichment analyses were conducted for proteins within those modules. We discovered that components of the ribosome along with translation initiation and elongation factors generally decrease as the annual ovarian cycle progresses toward ovulation, concomitant with a slight increase in components of the 26S-proteasome. Co-variation within more than one expression module of components from these two multi-protein complexes suggests that they are not only co-regulated, but that co-regulation occurs through more than one sub-network. These components also co-vary with subunits of the TCP-1 chaperonin system and enzymes of intermediary metabolic pathways, suggesting that protein folding and cellular bioenergetic state play important roles in protein synthesis and degradation. We provide further evidence to suggest that protein synthesis and degradation are intimately linked, and our results support function of a proteasome-ribosome supercomplex known as the translasome. PMID:23414552

  18. Dynamics of the striped bass (Morone saxatilis) ovary proteome reveal a complex network of the translasome.

    PubMed

    Reading, Benjamin J; Williams, Valerie N; Chapman, Robert W; Williams, Taufika Islam; Sullivan, Craig V

    2013-04-01

    We evaluated changes in the striped bass (Morone saxatilis) ovary proteome during the annual reproductive cycle using label-free quantitative mass spectrometry and a novel machine learning analysis based on K-means clustering and support vector machines. Modulated modularity clustering was used to group co-variable proteins into expression modules and Gene Ontology (GO) biological process and KEGG pathway enrichment analyses were conducted for proteins within those modules. We discovered that components of the ribosome along with translation initiation and elongation factors generally decrease as the annual ovarian cycle progresses toward ovulation, concomitant with a slight increase in components of the 26S-proteasome. Co-variation within more than one expression module of components from these two multi-protein complexes suggests that they are not only co-regulated, but that co-regulation occurs through more than one sub-network. These components also co-vary with subunits of the TCP-1 chaperonin system and enzymes of intermediary metabolic pathways, suggesting that protein folding and cellular bioenergetic state play important roles in protein synthesis and degradation. We provide further evidence to suggest that protein synthesis and degradation are intimately linked, and our results support function of a proteasome-ribosome supercomplex known as the translasome.

  19. Altered epidermal lipid processing and calcium distribution in the KID syndrome mouse model Cx26S17F

    PubMed Central

    Bosen, Felicitas; Celli, Anna; Crumrine, Debra; vom Dorp, Katharina; Ebel, Philipp; Jastrow, Holger; Dörmann, Peter; Winterhager, Elke; Mauro, Theodora; Willecke, Klaus

    2016-01-01

    The keratitis–ichthyosis–deafness (KID) syndrome is caused by mutations in the gap junctional channel protein connexin 26 (Cx26), among them the mutation Cx26S17F. Heterozygous Cx26S17F mice resemble the human KID syndrome, i.e. exhibiting epidermal hyperplasia and hearing impairments. Newborn Cx26S17F mice show a defective epidermal water barrier as well as altered epidermal lipid secretion and location. Linoleoyl ω-esterified ceramides are strongly decreased on the skin surface of Cx26S17F mice. Moreover, the epidermal calcium gradient is altered in the mutant mice. These alterations may be caused by an abnormal Cx26S17F channel function that leads to a defective epidermal water barrier, which in turn may trigger the hyperproliferation seen in the KID syndrome. PMID:26070424

  20. Structural Insights on the Mycobacterium tuberculosis Proteasomal ATPase Mpa

    SciTech Connect

    Wang, T.; Li, H; Lin, G; Tang, C; Li, D; Nathan, C; Heran Darwin, K

    2009-01-01

    Proteasome-mediated protein turnover in all domains of life is an energy-dependent process that requires ATPase activity. Mycobacterium tuberculosis (Mtb) was recently shown to possess a ubiquitin-like proteasome pathway that plays an essential role in Mtb resistance to killing by products of host macrophages. Here we report our structural and biochemical investigation of Mpa, the presumptive Mtb proteasomal ATPase. We demonstrate that Mpa binds to the Mtb proteasome in the presence of ATPS, providing the physical evidence that Mpa is the proteasomal ATPase. X-ray crystallographic determination of the conserved interdomain showed a five stranded double {beta} barrel structure containing a Greek key motif. Structure and mutational analysis indicate a major role of the interdomain for Mpa hexamerization. Our mutational and functional studies further suggest that the central channel in the Mpa hexamer is involved in protein substrate translocation and degradation. These studies provide insights into how a bacterial proteasomal ATPase interacts with and facilitates protein degradation by the proteasome.

  1. N-terminal residues regulate proteasomal degradation of AANAT.

    PubMed

    Huang, Zheping; Liu, Tiecheng; Borjigin, Jimo

    2010-04-01

    Serotonin N-acetyltransferase (AANAT) catalyzes the conversion of serotonin to N-acetylserotonin, which is the immediate precursor for formation of melatonin. Although it is known that AANAT is degraded via the proteasomal proteolysis, detailed mechanisms are not defined. In this paper, we tested the in vivo role of proteasome inhibition on AANAT activity and melatonin release and examined the amino acid residues in AANAT that contribute to the proteasome degradation. We have shown that inhibition of proteasome activities in vivo in the intact pineal gland fails to prevent the light-induced suppression of melatonin secretion. Furthermore, in cell lines stably expressing AANAT, inhibition of proteasomal proteolysis, which resulted in a large accumulation of AANAT protein, similarly failed to increase AANAT enzyme activity proportional to the amount of proteins accumulated. Site-directed mutagenesis analysis of AANAT revealed that the AANAT degradation is independent of lysine and the two surface cysteine residues. Deletion analysis of N-terminus identified the second amino acid leucine (L2) as the key residue that contributes to the proteasomal proteolysis of AANAT protein. These results suggest that rat AANAT protein is degraded via the N-end rule pathway of proteasomal proteolysis and the leucine at the N-terminus appears to be the key residue recognized by N-end rule pathway.

  2. Development of novel proteasome inhibitors based on phthalazinone scaffold.

    PubMed

    Yang, Lingfei; Wang, Wei; Sun, Qi; Xu, Fengrong; Niu, Yan; Wang, Chao; Liang, Lei; Xu, Ping

    2016-06-15

    In this study we designed a series of proteasome inhibitors using pyridazinone as initial scaffold, and extended the structure with rational design by computer aided drug design (CADD). Two different synthetic routes were explored and the biological evaluation of the phthalazinone derivatives was investigated. Most importantly, electron positive triphenylphosphine group was first introduced in the structure of proteasome inhibitors and potent inhibition was achieved. As 6c was the most potent inhibitor of proteasome, we examined the structure-activity relationship (SAR) of 6c analogs. PMID:27158142

  3. Zinc ionophores pyrithione inhibits herpes simplex virus replication through interfering with proteasome function and NF-κB activation.

    PubMed

    Qiu, Min; Chen, Yu; Chu, Ying; Song, Siwei; Yang, Na; Gao, Jie; Wu, Zhiwei

    2013-10-01

    Pyrithione (PT), known as a zinc ionophore, is effective against several pathogens from the Streptococcus and Staphylococcus genera. The antiviral activity of PT was also reported against a number of RNA viruses. In this paper, we showed that PT could effectively inhibit herpes simplex virus types 1 and 2 (HSV-1 and HSV-2). PT inhibited HSV late gene (Glycoprotein D, gD) expression and the production of viral progeny, and this action was dependent on Zn(2+). Further studies showed that PT suppressed the expression of HSV immediate early (IE) gene, the infected cell polypeptide 4 (ICP4), but had less effect on another regulatory IE protein, ICP0. It was found that PT treatment could interfere with cellular ubiquitin-proteasome system (UPS), leading to the inhibition of HSV-2-induced IκB-α degradation to inhibit NF-κB activation and enhanced promyelocytic leukemia protein (PML) stability in nucleus. However, PT did not show direct inhibition of 26S proteasome activity. Instead, it induced Zn(2+) influx, which facilitated the dysregulation of UPS and the accumulation of intracellular ubiquitin-conjugates. UPS inhibition by PT caused disruption of IκB-α degradation and NF-κB activation thus leading to marked reduction of viral titer. PMID:23867132

  4. Transcriptome analysis reveals link between proteasomal and mitochondrial pathways in Parkinson's disease.

    PubMed

    Duke, D C; Moran, L B; Kalaitzakis, M E; Deprez, M; Dexter, D T; Pearce, R K B; Graeber, M B

    2006-07-01

    There is growing evidence that dysfunction of the mitochondrial respiratory chain and failure of the cellular protein degradation machinery, specifically the ubiquitin-proteasome system, play an important role in the pathogenesis of Parkinson's disease. We now show that the corresponding pathways of these two systems are linked at the transcriptomic level in Parkinsonian substantia nigra. We examined gene expression in medial and lateral substantia nigra (SN) as well as in frontal cortex using whole genome DNA oligonucleotide microarrays. In this study, we use a hypothesis-driven approach in analysing microarray data to describe the expression of mitochondrial and ubiquitin-proteasomal system (UPS) genes in Parkinson's disease (PD). Although a number of genes showed up-regulation, we found an overall decrease in expression affecting the majority of mitochondrial and UPS sequences. The down-regulated genes include genes that encode subunits of complex I and the Parkinson's-disease-linked UCHL1. The observed changes in expression were very similar for both medial and lateral SN and also affected the PD cerebral cortex. As revealed by "gene shaving" clustering analysis, there was a very significant correlation between the transcriptomic profiles of both systems including in control brains. Therefore, the mitochondria and the proteasome form a higher-order gene regulatory network that is severely perturbed in Parkinson's disease. Our quantitative results also suggest that Parkinson's disease is a disease of more than one cell class, i.e. that it goes beyond the catecholaminergic neuron and involves glia as well.

  5. Copper-binding compounds as proteasome inhibitors and apoptosis inducers in human cancer.

    PubMed

    Daniel, Kenyon G; Chen, Di; Yan, Bing; Dou, Q Ping

    2007-01-01

    The trace element copper is vital to the healthy functioning of organisms. Copper is used in a multitude of cellular activities including respiration, angiogenesis, and immune responses. Recently, copper has become a focus in medical research ranging from Alzheimer's disease to cancer. Copper modulation has been suggested to be a potential modality for therapy in these diseases. Several copper-binding compounds have been found to spontaneously complex with copper and form active proteasome inhibitors and apoptosis inducers. This review examines compounds in the quinoline and dithiocarbamate families and from the National Cancer Institute (NCI) Diversity Set that bind with copper and act as anticancer agents. In each case, it is shown that these compounds can bind with copper, inhibit the proteasome activity, and induce apoptosis in cancer cells. These activities are absent when copper is not present. Compounds alone, clioquinol and pyrrolidinedithiocarbamate as examples, are shown to have no effects in normal breast cells. Current research suggests that a possible therapeutic modality for cancer may be developed using the difference of high copper load in tumors versus low copper load in normal cells. This strategy would convert tumor cellular copper into a potent, specific proteasome inhibitor and apoptosis inducer. Thus, this approach could pave the way for the development of nontoxic anticancer therapy.

  6. Replication of the rotavirus genome requires an active ubiquitin-proteasome system.

    PubMed

    López, Tomás; Silva-Ayala, Daniela; López, Susana; Arias, Carlos F

    2011-11-01

    Here we show that the ubiquitin-proteasome system is required for the efficient replication of rotavirus RRV in MA104 cells. The proteasome inhibitor MG132 decreased the yield of infectious virus under conditions where it severely reduces the synthesis of not only viral but also cellular proteins. Addition of nonessential amino acids to the cell medium restored both viral protein synthesis and cellular protein synthesis, but the production of progeny viruses was still inhibited. In medium supplemented with nonessential amino acids, we showed that MG132 does not affect rotavirus entry but inhibits the replication of the viral genome. It was also shown that it prevents the efficient incorporation into viroplasms of viral polymerase VP1 and the capsid proteins VP2 and VP6, which could explain the inhibitory effect of MG132 on genome replication and infectious virus yield. We also showed that ubiquitination is relevant for rotavirus replication since the yield of rotavirus progeny in cells carrying a temperature-sensitive mutation in the E1 ubiquitin-activating enzyme was reduced at the restrictive temperature. In addition, overexpression of ubiquitin in MG132-treated MA104 cells partially reversed the effect of the inhibitor on virus yield. Altogether, these data suggest that the ubiquitin-proteasome (UP) system has a very complex interaction with the rotavirus life cycle, with both the ubiquitination and proteolytic activities of the system being relevant for virus replication.

  7. The genetic basis for the biosynthesis of the pharmaceutically important class of epoxyketone proteasome inhibitors

    PubMed Central

    Schorn, Michelle; Zettler, Judith; Noel, Joseph P.; Dorrestein, Pieter C.; Moore, Bradley S.; Kaysser, Leonard

    2013-01-01

    The epoxyketone proteasome inhibitors are an established class of therapeutic agents for the treatment of cancer. Their unique α′,β′-epoxyketone pharmacophore allows binding to the catalytic β-subunits of the proteasome with extraordinary specificity. Here we report the characterization of the first gene clusters for the biosynthesis of natural peptidyl-epoxyketones. The clusters for epoxomicin, the lead compound for the anti-cancer drug Kyprolis™, and for eponemycin were identified in the actinobacterial producer strains ATCC 53904 and Streptomyces hygroscopicus ATCC 53709, respectively, using a modified protocol for Ion Torrent PGM genome sequencing. Both gene clusters code for a hybrid non-ribosomal peptide synthetase/polyketide synthase multifunctional enzyme complex and homologous redox enzymes. Epoxomicin and eponemycin were heterologously produced in Streptomyces albus J1046 via whole pathway expression. Moreover, we employed mass spectral molecular networking for a new comparative metabolomics approach in a heterologous system and discovered a number of putative epoxyketone derivatives. With this study we have definitively linked epoxyketone proteasome inhibitors and their biosynthesis genes for the first time in any organism, which will now allow for their detailed biochemical investigation. PMID:24168704

  8. Novel 8-hydroxylquinoline analogs induce copper-dependent proteasome inhibition and cell death in human breast cancer cells.

    PubMed

    Milacic, Vesna; Jiao, Peifu; Zhang, Bin; Yan, Bing; Dou, Q Ping

    2009-12-01

    An elevated level of copper (Cu), which is necessary for the growth and metastasis of tumor cells, has been found in many types of cancer, including breast, prostate, lung and brain. Although its molecular basis is unclear, this tumor-specific Cu elevation has been proposed to be a novel target for developing selective anti-cancer therapies. We previously reported that 8-hydroxylquinoline (8-OHQ) is able to form a Cu complex that inhibits the proteasome and induces apoptosis in cultured cancer cells. Toward the goal of discovering novel 8-OHQ analogs as potential anti-copper and anti-cancer drugs, in the current study we synthesized several 8-OHQ analogs and their copper complexes and evaluated their biological activities in human breast cancer cells. We report that when substitutions are made on the hydroxyl group of 8-OHQ, their copper mixtures have profound effects on the proteasome-inhibitory and apoptosis-inducing abilities in breast cancer MDA-MB-231 cells. In addition, the proteasome-inhibitory and apoptosis-inducing activities of 8-OHQ analog-copper mixtures are determined by both the polarity and position of the substituents. Finally, a synthetic complex of 8-OHQ analog-copper was able to inhibit the proteasome activity, induce cell death and suppress the growth selectively in breast cancer MDA-MB-231 cells, but not in normal immortalized human breast MCF-10A cells. Our results support the concept that human cancer cells and tissues, which contain an elevated copper level and are highly dependent on proteasome activity for their survival, should be sensitive to treatment with anti-copper drugs such as the novel 8-OHQ analogs described here.

  9. Inhibition of Interjacent Ribonucleic Acid (26S) Synthesis in Cells Infected by Sindbis Virus

    PubMed Central

    Scheele, Christina M.; Pfefferkorn, E. R.

    1969-01-01

    The interrelationship of viral ribonucleic acid (RNA) and protein synthesis in cells infected by Sindbis virus was investigated. When cultures were treated with puromycin early in the course of infection, the synthesis of interjacent RNA (26S) was preferentially inhibited. A similar result was obtained by shifting cells infected by one temperature-sensitive mutant defective in RNA synthesis from the permissive (29 C) to the nonpermissive (41.5 C) temperature. Under both conditions, the viral RNA produced appeared to be fully active biologically. Once underway, the synthesis of viral RNA in wild-type Sindbis infections did not require concomitant protein synthesis. PMID:5817400

  10. Conserved Sequence Preferences Contribute to Substrate Recognition by the Proteasome*

    PubMed Central

    Yu, Houqing; Singh Gautam, Amit K.; Wilmington, Shameika R.; Wylie, Dennis; Martinez-Fonts, Kirby; Kago, Grace; Warburton, Marie; Chavali, Sreenivas; Inobe, Tomonao; Finkelstein, Ilya J.; Babu, M. Madan

    2016-01-01

    The proteasome has pronounced preferences for the amino acid sequence of its substrates at the site where it initiates degradation. Here, we report that modulating these sequences can tune the steady-state abundance of proteins over 2 orders of magnitude in cells. This is the same dynamic range as seen for inducing ubiquitination through a classic N-end rule degron. The stability and abundance of His3 constructs dictated by the initiation site affect survival of yeast cells and show that variation in proteasomal initiation can affect fitness. The proteasome's sequence preferences are linked directly to the affinity of the initiation sites to their receptor on the proteasome and are conserved between Saccharomyces cerevisiae, Schizosaccharomyces pombe, and human cells. These findings establish that the sequence composition of unstructured initiation sites influences protein abundance in vivo in an evolutionarily conserved manner and can affect phenotype and fitness. PMID:27226608

  11. Calreticulin and Arginylated Calreticulin Have Different Susceptibilities to Proteasomal Degradation*

    PubMed Central

    Goitea, Victor E.; Hallak, Marta E.

    2015-01-01

    Post-translational arginylation has been suggested to target proteins for proteasomal degradation. The degradation mechanism for arginylated calreticulin (R-CRT) localized in the cytoplasm is unknown. To evaluate the effect of arginylation on CRT stability, we examined the metabolic fates and degradation mechanisms of cytoplasmic CRT and R-CRT in NIH 3T3 and CHO cells. Both CRT isoforms were found to be proteasomal substrates, but the half-life of R-CRT (2 h) was longer than that of cytoplasmic CRT (0.7 h). Arginylation was not required for proteasomal degradation of CRT, although R-CRT displays ubiquitin modification. A CRT mutant incapable of dimerization showed reduced metabolic stability of R-CRT, indicating that R-CRT dimerization may protect it from proteasomal degradation. Our findings, taken together, demonstrate a novel function of arginylation: increasing the half-life of CRT in cytoplasm. PMID:25969538

  12. Rational Design of Proteasome Inhibitors as Antimalarial Drugs.

    PubMed

    Le Chapelain, Camille; Groll, Michael

    2016-05-23

    One life, two strategies: Crucial structural differences between the human and the Plasmodium falciparum proteasomes were recently identified. A combination of cryo-EM and functional characterization enabled the design of a selective antimalarial proteasome inhibitor that shows low toxicity in the host. When used with artemisinin, this ligand offers a new approach for the efficient treatment of malaria at all stages of the parasite lifecycle.

  13. The Role of the Proteasome in Heart Disease

    PubMed Central

    Li, Yi-Fan; Wang, Xuejun

    2010-01-01

    Intensive investigations into the pathophysiological significance of the proteasome in the heart did not start until the beginning of the past decade but exciting progresses have been made and are summarized here as two fronts. First, strong evidence continues to emerge to support a novel hypothesis that proteasome functional insufficiency represents a common pathological phenomenon in a large subset of heart disease, compromises protein quality control in heart muscle cells, and thereby acts as a major pathogenic factor promoting the progression of the subset of heart disease to congestive heart failure. This front is represented by the studies on the ubiquitin-proteasome system (UPS) in cardiac proteinopathy, which have taken advantage of a transgenic mouse model expressing a fluorescence reporter for UPS proteolytic function. Second, pharmacological inhibition of the proteasome has been explored experimentally as a potential therapeutic strategy to intervene some forms of heart disease, such as pressure overload cardiac hypertrophy, viral myocarditis, and myocardial ischemic injury. Not only between the two fronts but also within each one, a multitude of inconsistency and controversy remain to be explained and clarified. At present, the controversy perhaps reflects the sophistication of cardiac proteasomes in terms of the composition, assembly, and regulation, as well as the intricacy and diversity of heart disease in terms of its etiology and pathogenesis. A definitive role of altered proteasome function in the development of various forms of heart disease remains to be established. PMID:20840877

  14. Inhibition of TRIP1/S8/hSug1, a component of the human 19S proteasome, enhances mitotic apoptosis induced by spindle poisons.

    PubMed

    Yamada, Hiroshi Y; Gorbsky, Gary J

    2006-01-01

    Mitotic spindle poisons (e.g., Taxol and vinblastine), used as chemotherapy drugs, inhibit mitotic spindle function, activate the mitotic spindle checkpoint, arrest cells in mitosis, and then cause cell death by mechanisms that are poorly understood. By expression cloning, we identified a truncated version of human TRIP1 (also known as S8, hSug1), an AAA (ATPases associated with diverse cellular activities) family ATPase subunit of the 19S proteasome regulatory complex, as an enhancer of spindle poison-mediated apoptosis. Stable expression of the truncated TRIP1/S8/hSug1 in HeLa cells [OP-TRIP1(88-406)] resulted in a decrease of measurable cellular proteasome activity, indicating that OP-TRIP1(88-406) had a dominant-negative effect on proteasome function. OP-TRIP1(88-406) revealed an increased apoptotic response after treatment with spindle poisons or with proteasome inhibitors. The increased apoptosis coincided with a significant decrease in expression of BubR1, a kinase required for activation and maintenance of the mitotic spindle checkpoint in response to treatment with spindle poisons. Small interfering RNA (siRNA)-mediated knockdown of TRIP1/S8/hSug1 resulted in a reduction of general proteasome activity and an increase in mitotic index. The siRNA treatment also caused increased cell death after spindle poison treatment. These results indicate that inhibition of TRIP1/S8/hSug1 function by expression of a truncated version of the protein or by siRNA-mediated suppression enhances cell death in response to spindle poison treatment. Current proteasome inhibitor drugs in trial as anticancer agents target elements of the 20S catalytic subcomplex. Our results suggest that targeting the ATPase subunits in 19S regulatory complex in the proteasome may enhance the antitumor effects of spindle poisons.

  15. Structural Basis for the Assembly and Gate Closure Mechanisms of the Mycobacterium tuberculosis 20S Proteasome

    SciTech Connect

    Lin, D.; Li, H; Wang, T; Pan, H; Lin, G; Li, H

    2010-01-01

    Mycobacterium tuberculosis (Mtb) possesses a proteasome system analogous to the eukaryotic ubiquitin-proteasome pathway. Mtb requires the proteasome to resist killing by the host immune system. The detailed assembly process and the gating mechanism of Mtb proteasome have remained unknown. Using cryo-electron microscopy and X-ray crystallography, we have obtained structures of three Mtb proteasome assembly intermediates, showing conformational changes during assembly, and explaining why the {beta}-subunit propeptide inhibits rather than promotes assembly. Although the eukaryotic proteasome core particles close their protein substrate entrance gates with different amino terminal peptides of the seven {alpha}-subunits, it has been unknown how a prokaryotic proteasome might close the gate at the symmetry axis with seven identical peptides. We found in the new Mtb proteasome crystal structure that the gate is tightly sealed by the seven identical peptides taking on three distinct conformations. Our work provides the structural bases for assembly and gating mechanisms of the Mtb proteasome.

  16. Structural basis for the assembly and gate closure mechanisms of the Mycobacterium tuberculosis 20S proteasome

    SciTech Connect

    Li, D.; Li, H.; Li, H.; Wang, T.; Pan, H.; Lin, G.

    2010-06-16

    Mycobacterium tuberculosis (Mtb) possesses a proteasome system analogous to the eukaryotic ubiquitin-proteasome pathway. Mtb requires the proteasome to resist killing by the host immune system. The detailed assembly process and the gating mechanism of Mtb proteasome have remained unknown. Using cryo-electron microscopy and X-ray crystallography, we have obtained structures of three Mtb proteasome assembly intermediates, showing conformational changes during assembly, and explaining why the {beta}-subunit propeptide inhibits rather than promotes assembly. Although the eukaryotic proteasome core particles close their protein substrate entrance gates with different amino terminal peptides of the seven {alpha}-subunits, it has been unknown how a prokaryotic proteasome might close the gate at the symmetry axis with seven identical peptides. We found in the new Mtb proteasome crystal structure that the gate is tightly sealed by the seven identical peptides taking on three distinct conformations. Our work provides the structural bases for assembly and gating mechanisms of the Mtb proteasome.

  17. Evasion from proteasomal degradation by mutated Fos proteins expressed from FBJ-MSV and FBR-MSV osteosarcomatogenic retroviruses.

    PubMed

    Acquaviva, Claire; Bossis, Guillaume; Ferrara, Patrizia; Brockly, Frédérique; Jariel-Encontre, Isabelle; Piechaczyk, Marc

    2002-09-01

    c-Fos proto-oncoprotein is highly unstable, which is crucial for rapid gene expression shut-off and control of its intrinsic oncogenic potential. It is massively degraded by the proteasome in vivo in various situations. Although there is evidence that c-Fos can be ubiquitinylated in vitro, the unambiguous demonstration that ubiquitinylation is necessary for recognition and subsequent hydrolysis by the proteasome in vivo is still lacking. Moreover, genetic analysis have also indicated that c-Fos can be addressed to the proteasome via different mechanisms depending on the conditions studied. c-Fos has been transduced by two murine osteosarcomatogenic retroviruses under mutated forms which are more stable and more oncogenic. The stabilization is not simply accounted for by simple deletion of a C-terminal c-Fos destabilizer but, rather, by a complex balance between opposing destabilizing and stabilizing mutations. Though mutations in viral Fos proteins confer full resistance to proteasomal degradation, stabilization is limited because mutations also entail sensitivity to (an) unidentified proteolytic system(s). This observation is consistent with the idea that Fos-expressing viruses have evolved gene expression controls that avoid high protein accumulation-linked apoptosis.

  18. Light-Regulated Hypocotyl Elongation Involves Proteasome-Dependent Degradation of the Microtubule Regulatory Protein WDL3 in Arabidopsis[C][W][OA

    PubMed Central

    Liu, Xiaomin; Qin, Tao; Ma, Qianqian; Sun, Jingbo; Liu, Ziqiang; Yuan, Ming; Mao, Tonglin

    2013-01-01

    Light significantly inhibits hypocotyl cell elongation, and dark-grown seedlings exhibit elongated, etiolated hypocotyls. Microtubule regulatory proteins function as positive or negative regulators that mediate hypocotyl cell elongation by altering microtubule organization. However, it remains unclear how plants coordinate these regulators to promote hypocotyl growth in darkness and inhibit growth in the light. Here, we demonstrate that WAVE-DAMPENED 2–LIKE3 (WDL3), a microtubule regulatory protein of the WVD2/WDL family from Arabidopsis thaliana, functions in hypocotyl cell elongation and is regulated by a ubiquitin-26S proteasome–dependent pathway in response to light. WDL3 RNA interference Arabidopsis seedlings grown in the light had much longer hypocotyls than controls. Moreover, WDL3 overexpression resulted in overall shortening of hypocotyl cells and stabilization of cortical microtubules in the light. Cortical microtubule reorganization occurred slowly in cells from WDL3 RNA interference transgenic lines but was accelerated in cells from WDL3-overexpressing seedlings subjected to light treatment. More importantly, WDL3 protein was abundant in the light but was degraded through the 26S proteasome pathway in the dark. Overexpression of WDL3 inhibited etiolated hypocotyl growth in regulatory particle non-ATPase subunit-1a mutant (rpn1a-4) plants but not in wild-type seedlings. Therefore, a ubiquitin-26S proteasome–dependent mechanism regulates the levels of WDL3 in response to light to modulate hypocotyl cell elongation. PMID:23653471

  19. From Bortezomib to other Inhibitors of the Proteasome and Beyond

    PubMed Central

    Buac, Daniela; Shen, Min; Schmitt, Sara; Kona, Fathima Rani; Deshmukh, Rahul; Zhang, Zhen; Neslund-Dudas, Christine; Mitra, Bharati; Dou, Q. Ping

    2013-01-01

    The cancer drug discovery field has placed much emphasis on the identification of novel and cancer-specific molecular targets. A rich source of such targets for the design of novel anti-tumor agents is the ubiqutin-proteasome system (UP-S), a tightly regulated, highly specific pathway responsible for the vast majority of protein turnover within the cell. Because of its critical role in almost all cell processes that ensure normal cellular function, its inhibition at one point in time was deemed non-specific and therefore not worth further investigation as a molecular drug target. However, today the proteasome is one of the most promising anti-cancer drug targets of the century. The discovery that tumor cells are in fact more sensitive to proteasome inhibitors than normal cells indeed paved the way for the design of its inhibitors. Such efforts have led to bortezomib, the first FDA approved proteasome inhibitor now used as a frontline treatment for newly diagnosed multiple myeloma (MM), relapsed/refractory MM and mantle cell lymphoma. Though successful in improving clinical outcomes for patients with hematological malignancies, relapse often occurs in those who initially responded to bortezomib. Therefore, the acquisition of bortezomib resistance is a major issue with its therapy. Furthermore, some neuro-toxicities have been associated with bortezomib treatment and its efficacy in solid tumors is lacking. These observations have encouraged researchers to pursue the next generation of proteasome inhibitors, which would ideally overcome bortezomib resistance, have reduced toxicities and a broader range of anti-cancer activity. This review summarizes the success and limitations of bortezomib, and describes recent advances in the field, including, and most notably, the most recent FDA approval of carfilzomib in July, 2012, a second generation proteasome inhibitor. Other proteasome inhibitors currently in clinical trials and those that are currently experimental grade

  20. Heterohexameric Ring Arrangement of the Eukaryotic Proteasomal ATPases: Implications for Proteasome Structure and Assembly

    PubMed Central

    Tomko, Robert J.; Funakoshi, Minoru; Schneider, Kyle; Wang, Jimin; Hochstrasser, Mark

    2010-01-01

    Summary The proteasome has a paramount role in eukaryotic cell regulation. It consists of a proteolytic core particle (CP) bound to one or two regulatory particles (RPs). Each RP is believed to include six different AAA+ ATPases in a heterohexameric ring that binds the CP while unfolding and translocating substrates into the core. No atomic-resolution RP structures are available. Guided by crystal structures of related homohexameric prokaryotic ATPases, we use disulfide engineering to show that the eukaryotic ATPases form a ring with the arrangement Rpt1-Rpt2-Rpt6-Rpt3-Rpt4-Rpt5 in fully assembled proteasomes. This arrangement is consistent with known assembly intermediates. The new quaternary organization clarifies the functional overlap of specific RP assembly chaperones and led us to identify a potential RP assembly intermediate that includes four ATPases (Rpt6-Rpt3-Rpt4-Rpt5) and their cognate chaperones (Rpn14, Nas6, and Nas2). Finally, the ATPase ring structure casts light on alternative RP structural models and the mechanism of RP action. PMID:20471945

  1. Inhibition of human preadipocyte proteasomal activity by HIV protease inhibitors or specific inhibitor lactacystin leads to a defect in adipogenesis, which involves matrix metalloproteinase-9.

    PubMed

    De Barros, Sandra; Zakaroff-Girard, Alexia; Lafontan, Max; Galitzky, Jean; Bourlier, Virginie

    2007-01-01

    In a previous publication, we reported that human immunodeficiency virus (HIV) protease inhibitors (PIs) inhibited the differentiation of human preadipocytes in primary culture, reducing the expression and secretion of matrix metalloproteinase 9 (MMP-9). The present work was performed to clarify this mechanism. Interestingly, HIV-PIs have been reported to be inhibitors of the proteasome complex, which is known to regulate nuclear factor (NF)-kappaB activation and transcription of its target genes, among them MMP-9. We thus investigated the potential involvement of the proteasome in the antiadipogenic effects of HIV-PIs. The effect of four HIV-PIs was tested on preadipocyte proteasomal activity, and chronic treatment with the specific proteasome inhibitor lactacystin was performed to evaluate alterations of adipogenesis and MMP-9 expression/secretion. Finally, modifications of the NF-kappaB pathway induced by either HIV-PIs or lactacystin were studied. We demonstrated that preadipocyte proteasomal activity was decreased by several HIV-PIs and that chronic treatment with lactacystin mimicked the effects of HIV-PIs by reducing adipogenesis and MMP-9 expression/secretion. Furthermore, we observed an intracellular accumulation of the NF-kappaB inhibitor, IkappaBbeta, with chronic treatment with HIV-PIs or lactacystin as well as a decrease in MMP-9 expression induced by acute tumor necrosis factor-alpha stimulation. These results indicate that inhibition of the proteasome by specific (lactacystin) or nonspecific (HIV-PIs) inhibitors leads to a reduction of human adipogenesis, and they therefore implicate deregulation of the NF-kappaB pathway and the related decrease of the key adipogenic factor, MMP-9. This study adds significantly to recent reports that have linked HIV-PI-related lipodystrophic syndrome with altered proteasome function, endoplasmic reticulum stress, and metabolic disorders.

  2. The novel β2-selective proteasome inhibitor LU-102 synergizes with bortezomib and carfilzomib to overcome proteasome inhibitor resistance of myeloma cells.

    PubMed

    Kraus, Marianne; Bader, Juergen; Geurink, Paul P; Weyburne, Emily S; Mirabella, Anne C; Silzle, Tobias; Shabaneh, Tamer B; van der Linden, Wouter A; de Bruin, Gerjan; Haile, Sarah R; van Rooden, Eva; Appenzeller, Christina; Li, Nan; Kisselev, Alexei F; Overkleeft, Herman; Driessen, Christoph

    2015-10-01

    Proteasome inhibitor resistance is a challenge for myeloma therapy. Bortezomib targets the β5 and β1 activity, but not the β2 activity of the proteasome. Bortezomib-resistant myeloma cells down-regulate the activation status of the unfolded protein response, and up-regulate β2 proteasome activity. To improve proteasome inhibition in bortezomib-resistant myeloma and to achieve more efficient UPR activation, we have developed LU-102, a selective inhibitor of the β2 proteasome activity. LU-102 inhibited the β2 activity in intact myeloma cells at low micromolar concentrations without relevant co-inhibition of β1 and β5 proteasome subunits. In proteasome inhibitor-resistant myeloma cells, significantly more potent proteasome inhibition was achieved by bortezomib or carfilzomib in combination with LU-102, compared to bortezomib/carfilzomib alone, resulting in highly synergistic cytotoxic activity of the drug combination via endoplasmatic reticulum stress-induced apoptosis. Combining bortezomib/carfilzomib with LU-102 significantly prolonged proteasome inhibition and increased activation of the unfolded protein response and IRE1-a activity. IRE1-α has recently been shown to control myeloma cell differentiation and bortezomib sensitivity (Leung-Hagesteijn, Cancer Cell 24:3, 289-304). Thus, β2-selective proteasome inhibition by LU-102 in combination with bortezomib or carfilzomib results in synergistic proteasome inhibition, activation of the unfolded protein response, and cytotoxicity, and overcomes bortezomib/carfilzomib resistance in myeloma cells in vitro.

  3. Several components of SKP1/Cullin/F-box E3 ubiquitin ligase complex and associated factors play a role in Agrobacterium-mediated plant transformation.

    PubMed

    Anand, Ajith; Rojas, Clemencia M; Tang, Yuhong; Mysore, Kirankumar S

    2012-07-01

    • Successful genetic transformation of plants by Agrobacterium tumefaciens requires the import of bacterial T-DNA and virulence proteins into the plant cell that eventually form a complex (T-complex). The essential components of the T-complex include the single stranded T-DNA, bacterial virulence proteins (VirD2, VirE2, VirE3 and VirF) and associated host proteins that facilitate the transfer and integration of T-DNA. The removal of the proteins from the T-complex is likely achieved by targeted proteolysis mediated by VirF and the plant ubiquitin proteasome complex. • We evaluated the involvement of the host SKP1/culin/F-box (SCF)-E3 ligase complex and its role in plant transformation. Gene silencing, mutant screening and gene expression studies suggested that the Arabidopsis homologs of yeast SKP1 (suppressor of kinetochore protein 1) protein, ASK1 and ASK2, are required for Agrobacterium-mediated plant transformation. • We identified the role for SGT1b (suppressor of the G2 allele of SKP1), an accessory protein that associates with SCF-complex, in plant transformation. We also report the differential expression of many genes that encode F-box motif containing SKP1-interacting proteins (SKIP) upon Agrobacterium infection. • We speculate that these SKIP genes could encode the plant specific F-box proteins that target the T-complex associated proteins for polyubiquitination and subsequent degradation by the 26S proteasome. PMID:22486382

  4. Proteasome Inhibitors in the Treatment of Multiple Myeloma

    PubMed Central

    Shah, Jatin J.; Orlowski, Robert Z.

    2016-01-01

    Targeting intracellular protein turnover by inhibiting the ubiquitin-proteasome pathway as a strategy for cancer therapy is a new addition to our chemotherapeutic armamentarium, and has seen its greatest successes against multiple myeloma. The first-in-class proteasome inhibitor bortezomib was initially approved for treatment of patients in the relapsed/refractory setting as a single agent, and was recently shown to induce even greater benefits as part of rationally-designed combinations that overcome chemoresistance. Modulation of proteasome function is also a rational approach to achieve chemosensitization to other anti-myeloma agents, and bortezomib has now been incorporated into the front-line setting. Bortezomib-based induction regimens are able to achieve higher overall response rates and response qualities than was the case with prior standards of care, and unlike these older approaches, maintain efficacy in patients with clinically- and molecularly-defined high-risk disease. Second-generation proteasome inhibitors with novel properties, such as NPI-0052 and carfilzomib, are entering the clinical arena, and showing evidence of anti-myeloma activity. In this spotlight review, we provide an overview of the current state of the art use of bortezomib and other proteasome inhibitors against multiple myeloma, and highlight areas for future study that will further optimize our ability to benefit patients with this disease. PMID:19741722

  5. Proteasome Inhibition Suppresses Dengue Virus Egress in Antibody Dependent Infection.

    PubMed

    Choy, Milly M; Zhang, Summer L; Costa, Vivian V; Tan, Hwee Cheng; Horrevorts, Sophie; Ooi, Eng Eong

    2015-11-01

    The mosquito-borne dengue virus (DENV) is a cause of significant global health burden, with an estimated 390 million infections occurring annually. However, no licensed vaccine or specific antiviral treatment for dengue is available. DENV interacts with host cell factors to complete its life cycle although this virus-host interplay remains to be fully elucidated. Many studies have identified the ubiquitin proteasome pathway (UPP) to be important for successful DENV production, but how the UPP contributes to DENV life cycle as host factors remains ill defined. We show here that proteasome inhibition decouples infectious virus production from viral RNA replication in antibody-dependent infection of THP-1 cells. Molecular and imaging analyses in β-lactone treated THP-1 cells suggest that proteasome function does not prevent virus assembly but rather DENV egress. Intriguingly, the licensed proteasome inhibitor, bortezomib, is able to inhibit DENV titers at low nanomolar drug concentrations for different strains of all four serotypes of DENV in primary monocytes. Furthermore, bortezomib treatment of DENV-infected mice inhibited the spread of DENV in the spleen as well as the overall pathological changes. Our findings suggest that preventing DENV egress through proteasome inhibition could be a suitable therapeutic strategy against dengue. PMID:26565697

  6. Proteasome Inhibition Suppresses Dengue Virus Egress in Antibody Dependent Infection

    PubMed Central

    Costa, Vivian V.; Tan, Hwee Cheng; Horrevorts, Sophie; Ooi, Eng Eong

    2015-01-01

    The mosquito-borne dengue virus (DENV) is a cause of significant global health burden, with an estimated 390 million infections occurring annually. However, no licensed vaccine or specific antiviral treatment for dengue is available. DENV interacts with host cell factors to complete its life cycle although this virus-host interplay remains to be fully elucidated. Many studies have identified the ubiquitin proteasome pathway (UPP) to be important for successful DENV production, but how the UPP contributes to DENV life cycle as host factors remains ill defined. We show here that proteasome inhibition decouples infectious virus production from viral RNA replication in antibody-dependent infection of THP-1 cells. Molecular and imaging analyses in β-lactone treated THP-1 cells suggest that proteasome function does not prevent virus assembly but rather DENV egress. Intriguingly, the licensed proteasome inhibitor, bortezomib, is able to inhibit DENV titers at low nanomolar drug concentrations for different strains of all four serotypes of DENV in primary monocytes. Furthermore, bortezomib treatment of DENV-infected mice inhibited the spread of DENV in the spleen as well as the overall pathological changes. Our findings suggest that preventing DENV egress through proteasome inhibition could be a suitable therapeutic strategy against dengue. PMID:26565697

  7. Quiescent fibroblasts are protected from proteasome inhibition–mediated toxicity

    PubMed Central

    Legesse-Miller, Aster; Raitman, Irene; Haley, Erin M.; Liao, Albert; Sun, Lova L.; Wang, David J.; Krishnan, Nithya; Lemons, Johanna M. S.; Suh, Eric J.; Johnson, Elizabeth L.; Lund, Benjamin A.; Coller, Hilary A.

    2012-01-01

    Proteasome inhibition is used as a treatment strategy for multiple types of cancers. Although proteasome inhibition can induce apoptotic cell death in actively proliferating cells, it is less effective in quiescent cells. In this study, we used primary human fibroblasts as a model system to explore the link between the proliferative state of a cell and proteasome inhibition–mediated cell death. We found that proliferating and quiescent fibroblasts have strikingly different responses to MG132, a proteasome inhibitor; proliferating cells rapidly apoptosed, whereas quiescent cells maintained viability. Moreover, MG132 treatment of proliferating fibroblasts led to increased superoxide anion levels, juxtanuclear accumulation of ubiquitin- and p62/SQSTM1-positive protein aggregates, and apoptotic cell death, whereas MG132-treated quiescent cells displayed fewer juxtanuclear protein aggregates, less apoptosis, and higher levels of mitochondrial superoxide dismutase. In both cell states, reducing reactive oxygen species with N-acetylcysteine lessened protein aggregation and decreased apoptosis, suggesting that protein aggregation promotes apoptosis. In contrast, increasing cellular superoxide levels with 2-methoxyestradiol treatment or inhibition of autophagy/lysosomal pathways with bafilomycin A1 sensitized serum-starved quiescent cells to MG132-induced apoptosis. Thus, antioxidant defenses and the autophagy/lysosomal pathway protect serum-starved quiescent fibroblasts from proteasome inhibition–induced cytotoxicity. PMID:22875985

  8. Proteasome Inhibition Suppresses Dengue Virus Egress in Antibody Dependent Infection.

    PubMed

    Choy, Milly M; Zhang, Summer L; Costa, Vivian V; Tan, Hwee Cheng; Horrevorts, Sophie; Ooi, Eng Eong

    2015-11-01

    The mosquito-borne dengue virus (DENV) is a cause of significant global health burden, with an estimated 390 million infections occurring annually. However, no licensed vaccine or specific antiviral treatment for dengue is available. DENV interacts with host cell factors to complete its life cycle although this virus-host interplay remains to be fully elucidated. Many studies have identified the ubiquitin proteasome pathway (UPP) to be important for successful DENV production, but how the UPP contributes to DENV life cycle as host factors remains ill defined. We show here that proteasome inhibition decouples infectious virus production from viral RNA replication in antibody-dependent infection of THP-1 cells. Molecular and imaging analyses in β-lactone treated THP-1 cells suggest that proteasome function does not prevent virus assembly but rather DENV egress. Intriguingly, the licensed proteasome inhibitor, bortezomib, is able to inhibit DENV titers at low nanomolar drug concentrations for different strains of all four serotypes of DENV in primary monocytes. Furthermore, bortezomib treatment of DENV-infected mice inhibited the spread of DENV in the spleen as well as the overall pathological changes. Our findings suggest that preventing DENV egress through proteasome inhibition could be a suitable therapeutic strategy against dengue.

  9. Crystal structure of N-{N-[N-acetyl-(S)-leucyl]-(S)-leucyl}norleucinal (ALLN), an inhibitor of proteasome

    DOE PAGES

    Czerwinski, Andrzej; Basava, Channa; Dauter, Miroslawa; Dauter, Zbigniew

    2015-03-01

    The title compound, C20H37N3O4, also known by the acronym ALLN, is a tripeptidic inhibitor of the proteolytic activity of the proteasomes, enzyme complexes implicated in several neurodegenerative diseases and other disorders, including cancer. Thus, the crystal structure of ALLN, solved from synchrotron radiation diffraction data, revealed the molecules in extended conformation of the backbone and engaging all peptide N and O atoms in intermolecular hydrogen bonds forming an infinite antiparallel β-sheet.

  10. The cyclosome, a large complex containing cyclin-selective ubiquitin ligase activity, targets cyclins for destruction at the end of mitosis.

    PubMed Central

    Sudakin, V; Ganoth, D; Dahan, A; Heller, H; Hershko, J; Luca, F C; Ruderman, J V; Hershko, A

    1995-01-01

    The ubiquitin-mediated degradation of mitotic cyclins is required for cells to exit from mitosis. Previous work with cell-free systems has revealed four components required for cyclin-ubiquitin ligation and proteolysis: a nonspecific ubiquitin-activating enzyme E1, a soluble fraction containing a ubiquitin carrier protein activity called E2-C, a crude particulate fraction containing a ubiquitin ligase (E3) activity that is activated during M-phase, and a constitutively active 26S proteasome that degrades ubiquitinated proteins. Here, we identify a novel approximately 1500-kDa complex, termed the cyclosome, which contains a cyclin-selective ubiquitin ligase activity, E3-C. E3-C is present but inactive during interphase; it can be activated in vitro by the addition of cdc2, enabling the transfer of ubiquitin from E2-C to cyclin. The kinetics of E3-C activation suggest the existence of one or more intermediates between cdc2 and E3-C. Cyclosome-associated E3-C acts on both cyclin A and B, and requires the presence of wild-type N-terminal destruction box motifs in each cyclin. Ubiquitinated cyclins are then rapidly recognized and degraded by the proteasome. These results identify the cyclosome-associated E3-C as the component of the cyclin destruction machinery whose activity is ultimately regulated by cdc2 and, as such, the element directly responsible for setting mitotic cyclin levels during early embryonic cell cycles. Images PMID:7787245

  11. Proteasome system dysregulation and treatment resistance mechanisms in major depressive disorder

    PubMed Central

    Minelli, A; Magri, C; Barbon, A; Bonvicini, C; Segala, M; Congiu, C; Bignotti, S; Milanesi, E; Trabucchi, L; Cattane, N; Bortolomasi, M; Gennarelli, M

    2015-01-01

    Several studies have demonstrated that allelic variants related to inflammation and the immune system may increase the risk for major depressive disorder (MDD) and reduce patient responsiveness to antidepressant treatment. Proteasomes are fundamental complexes that contribute to the regulation of T-cell function. Only one study has shown a putative role of proteasomal PSMA7, PSMD9 and PSMD13 genes in the susceptibility to an antidepressant response, and sparse data are available regarding the potential alterations in proteasome expression in psychiatric disorders such as MDD. The aim of this study was to clarify the role of these genes in the mechanisms underlying the response/resistance to MDD treatment. We performed a case-control association study on 621 MDD patients, of whom 390 were classified as treatment-resistant depression (TRD), and we collected peripheral blood cells and fibroblasts for mRNA expression analyses. The analyses showed that subjects carrying the homozygous GG genotype of PSMD13 rs3817629 had a twofold greater risk of developing TRD and exhibited a lower PSMD13 mRNA level in fibroblasts than subjects carrying the A allele. In addition, we found a positive association between PSMD9 rs1043307 and the presence of anxiety disorders in comorbidity with MDD, although this result was not significant following correction for multiple comparisons. In conclusion, by confirming the involvement of PSMD13 in the MDD treatment response, our data corroborate the hypothesis that the dysregulation of the complex responsible for the degradation of intracellular proteins and potentially controlling autoimmunity- and immune tolerance–related processes may be involved in several phenotypes, including the TRD. PMID:26624926

  12. Proteasome inhibition and its therapeutic potential in multiple myeloma

    PubMed Central

    Chari, Ajai; Mazumder, Amitabha; Jagannath, Sundar

    2010-01-01

    Due to an unmet clinical need for treatment, the first in class proteasome inhibitor, bortezomib, moved from drug discovery to FDA approval in multiple myeloma in an unprecedented eight years. In the wake of this rapid approval arose a large number of questions about its mechanism of action and toxicity as well as its ultimate role in the treatment of this disease. In this article, we briefly review the preclinical and clinical development of the drug as the underpinning for a systematic review of the large number of clinical trials that are beginning to shed some light on the full therapeutic potential of bortezomib in myeloma. We conclude with our current understanding of the mechanism of action of this agent and a discussion of the novel proteasome inhibitors under development, as it will be progress in these areas that will ultimately determine the true potential of proteasome inhibition in myeloma. PMID:21116326

  13. Transcriptional upregulation of BAG3 upon proteasome inhibition

    SciTech Connect

    Wang Huaqin Liu Haimei; Zhang Haiyan; Guan Yifu; Du Zhenxian

    2008-01-11

    Proteasome inhibitors exhibit antitumoral activity against malignancies of different histology. Emerging evidence indicates that antiapoptotic factors may also accumulate as a consequence of exposure to these drugs, thus it seems plausible that activation of survival signaling cascades might compromise their antitumoral effects. Bcl-2-associated athanogene (BAG) family proteins are characterized by their property of interaction with a variety of partners involved in modulating the proliferation/death balance, including heat shock proteins (HSP), Bcl-2, Raf-1. In this report, we demonstrated that BAG3 is a novel antiapoptotic molecule induced by proteasome inhibitors in various cancer cells at the transcriptional level. Moreover, we demonstrated that BAG3 knockdown by siRNA sensitized cancer cells to MG132-induced apoptosis. Taken together, our results suggest that BAG3 induction might represents as an unwanted molecular consequence of utilizing proteasome inhibitors to combat tumors.

  14. The molecular mechanisms of acquired proteasome inhibitor resistance

    PubMed Central

    Kale, Andrew J.; Moore, Bradley S.

    2012-01-01

    The development of proteasome inhibitors (PIs) has transformed the treatment of multiple myeloma and mantle cell lymphoma. To date, two PIs have been FDA approved, the boronate peptide bortezomib and, most recently, the epoxyketone peptide carfilzomib. However, intrinsic and acquired resistance to PIs, for which the underlying mechanisms are poorly understood, may limit their efficacy. In this perspective, we discuss recent advances in the molecular understanding of PI resistance through acquired bortezomib resistance in human cell lines to evolved saliniosporamide A (marizomib) resistance in nature. Resistance mechanisms discussed include the upregulation of proteasome subunits and mutations of the catalytic β-subunits. Additionally, we explore potential strategies to overcome PI resistance. PMID:22978849

  15. Characterization of a Proteasome and TAP-independent Presentation of Intracellular Epitopes by HLA-B27 Molecules*

    PubMed Central

    Magnacca, Adriana; Persiconi, Irene; Nurzia, Elisa; Caristi, Silvana; Meloni, Francesca; Barnaba, Vincenzo; Paladini, Fabiana; Raimondo, Domenico; Fiorillo, Maria Teresa; Sorrentino, Rosa

    2012-01-01

    Nascent HLA-class I molecules are stabilized by proteasome-derived peptides in the ER and the new complexes proceed to the cell surface through the post-ER vesicles. It has been shown, however, that less stable complexes can exchange peptides in the Trans Golgi Network (TGN). HLA-B27 are the most studied HLA-class I molecules due to their association with Ankylosing Spondylitis (AS). Chimeric proteins driven by TAT of HIV have been exploited by us to deliver viral epitopes, whose cross-presentation by the HLA-B27 molecules was proteasome and TAP-independent and not restricted to Antigen-Presenting Cells (APC). Here, using these chimeric proteins as epitope suppliers, we compared with each other and with the HLA-A2 molecules, the two HLA-B*2705 and B*2709 alleles differing at residue 116 (D116H) and differentially associated with AS. We found that the antigen presentation by the two HLA-B27 molecules was proteasome-, TAP-, and APC-independent whereas the presentation by the HLA-A2 molecules required proteasome, TAP and professional APC. Assuming that such difference could be due to the unpaired, highly reactive Cys-67 distinguishing the HLA-B27 molecules, C67S mutants in HLA-B*2705 and B*2709 and V67C mutant in HLA-A*0201 were also analyzed. The results showed that this mutation did not influence the HLA-A2-restricted antigen presentation while it drastically affected the HLA-B27-restricted presentation with, however, remarkable differences between B*2705 and B*2709. The data, together with the occurrence on the cell surface of unfolded molecules in the case of C67S-B*2705 mutant but not in that of C67S-B*2709 mutant, indicates that Cys-67 has a more critical role in stabilizing the B*2705 rather than the B*2709 complexes. PMID:22807446

  16. Comparative physical mapping of the 18S-5.8S-26S rDNA in three sorghum species.

    PubMed

    Sang, Y; Liang, G H

    2000-10-01

    The physical locations of the 18S-5.8S-26S rDNA sequences were examined in three sorghum species by fluorescence in situ hybridization (FISH) using biotin-labeled heterologous 18S-5.8S-26S rDNA probe (pTa71). Each 18S-5.8S-26S rDNA locus occurred at two sites on the chromosomes in Sorghum bicolor (2n = 20) and S. versicolor (2n = 10), but at four sites on the chromosomes of S. halepense (2n = 40) and the tetraploid S. versicolor (2n = 20). Positions of the rDNA loci varied from the interstitial to terminal position among the four accessions of the three sorghum species. The rDNA data are useful for investigation of chromosome evolution and phylogeny. This study excluded S. versicolor as the possible progenitor of S. bicolor.

  17. Role of the ubiquitin-proteasome system in brain ischemia: friend or foe?

    PubMed

    Caldeira, Margarida V; Salazar, Ivan L; Curcio, Michele; Canzoniero, Lorella M T; Duarte, Carlos B

    2014-01-01

    The ubiquitin-proteasome system (UPS) is a catalytic machinery that targets numerous cellular proteins for degradation, thus being essential to control a wide range of basic cellular processes and cell survival. Degradation of intracellular proteins via the UPS is a tightly regulated process initiated by tagging a target protein with a specific ubiquitin chain. Neurons are particularly vulnerable to any change in protein composition, and therefore the UPS is a key regulator of neuronal physiology. Alterations in UPS activity may induce pathological responses, ultimately leading to neuronal cell death. Brain ischemia triggers a complex series of biochemical and molecular mechanisms, such as an inflammatory response, an exacerbated production of misfolded and oxidized proteins, due to oxidative stress, and the breakdown of cellular integrity mainly mediated by excitotoxic glutamatergic signaling. Brain ischemia also damages protein degradation pathways which, together with the overproduction of damaged proteins and consequent upregulation of ubiquitin-conjugated proteins, contribute to the accumulation of ubiquitin-containing proteinaceous deposits. Despite recent advances, the factors leading to deposition of such aggregates after cerebral ischemic injury remain poorly understood. This review discusses the current knowledge on the role of the UPS in brain function and the molecular mechanisms contributing to UPS dysfunction in brain ischemia with consequent accumulation of ubiquitin-containing proteins. Chemical inhibitors of the proteasome and small molecule inhibitors of deubiquitinating enzymes, which promote the degradation of proteins by the proteasome, were both shown to provide neuroprotection in brain ischemia, and this apparent contradiction is also discussed in this review. PMID:24157661

  18. Proteasome and thiol involvement in quality control of glycosylphosphatidylinositol anchor addition.

    PubMed Central

    Wilbourn, B; Nesbeth, D N; Wainwright, L J; Field, M C

    1998-01-01

    Improperly processed secretory proteins are degraded by a hydrolytic system that is associated with the endoplasmic reticulum (ER) and appears to involve re-export of lumenal proteins into the cytoplasm for ultimate degradation by the proteasome. The chimaeric protein hGHDAF28, which contains a crippled glycosylphosphatidylinositol (GPI) C-terminal signal peptide, is degraded by a pathway highly similar to that for other ER-retained proteins and is characterized by formation of disulphide-linked aggregates, failure to reach the Golgi complex and intracellular degradation with a half life of approximately 2 h. Here we show that N-acetyl-leucinal-leucinal-norleucinal, MG-132 and lactacystin, all inhibitors of the proteasome, protect hGHDAF28; hGHDAF28 is still proteolytically cleaved in the presence of lactacystin or MG-132, by the removal of approximately 2 kDa, but the truncated fragment is not processed further. We demonstrate that the ubiquitination system accelerates ER-degradation of hGHDAF28, but is not essential to the process. Overall, these findings indicate that GPI quality control is mediated by the cytoplasmic proteasome. We also show that the presence of a cysteine residue in the GPI signal of hGHDAF28 is required for retention and degradation, as mutation of this residue to serine results in secretion of the fusion protein, implicating thiol-mediated retention as a mechanism for quality control of some GPI signals. Removal of the cysteine also prevents inclusion of hGHDAF28 in disulphide-linked aggregates, indicating that aggregate formation is an additional retention mechanism for this class of protein. Therefore our data suggest that an unpaired terminal cysteine is the retention motif of the hGHDAF28 GPI-processing signal and that additional information may be required for efficient engagement of ER quality control systems by the majority of GPI signals which lack cysteine residues. PMID:9576858

  19. Proteasome-Mediated Processing of Def1, a Critical Step in the Cellular Response to Transcription Stress

    PubMed Central

    Wilson, Marcus D.; Harreman, Michelle; Taschner, Michael; Reid, James; Walker, Jane; Erdjument-Bromage, Hediye; Tempst, Paul; Svejstrup, Jesper Q.

    2013-01-01

    Summary DNA damage triggers polyubiquitylation and degradation of the largest subunit of RNA polymerase II (RNAPII), a “mechanism of last resort” employed during transcription stress. In yeast, this process is dependent on Def1 through a previously unresolved mechanism. Here, we report that Def1 becomes activated through ubiquitylation- and proteasome-dependent processing. Def1 processing results in the removal of a domain promoting cytoplasmic localization, resulting in nuclear accumulation of the clipped protein. Nuclear Def1 then binds RNAPII, utilizing a ubiquitin-binding domain to recruit the Elongin-Cullin E3 ligase complex via a ubiquitin-homology domain in the Ela1 protein. This facilitates polyubiquitylation of Rpb1, triggering its proteasome-mediated degradation. Together, these results outline the multistep mechanism of Rpb1 polyubiquitylation triggered by transcription stress and uncover the key role played by Def1 as a facilitator of Elongin-Cullin ubiquitin ligase function. PMID:23993092

  20. The Ubiquitin-Proteasome Pathway and Synaptic Plasticity

    ERIC Educational Resources Information Center

    Hegde, Ashok N.

    2010-01-01

    Proteolysis by the ubiquitin-proteasome pathway (UPP) has emerged as a new molecular mechanism that controls wide-ranging functions in the nervous system, including fine-tuning of synaptic connections during development and synaptic plasticity in the adult organism. In the UPP, attachment of a small protein, ubiquitin, tags the substrates for…

  1. Exploring the Ubiquitin-Proteasome Protein Degradation Pathway in Yeast

    ERIC Educational Resources Information Center

    Will, Tamara J.; McWatters, Melissa K.; McQuade, Kristi L.

    2006-01-01

    This article describes an undergraduate biochemistry laboratory investigating the ubiquitin-proteasome pathway in yeast. In this exercise, the enzyme beta-galactosidase (beta-gal) is expressed in yeast under the control of a stress response promoter. Following exposure to heat stress to induce beta-gal expression, cycloheximide is added to halt…

  2. Ubiquitin/proteasome pathway impairment in neurodegeneration: therapeutic implications

    PubMed Central

    Huang, Qian; Figueiredo-Pereira, Maria E.

    2010-01-01

    The ubiquitin/proteasome pathway is the major proteolytic quality control system in cells. In this review we discuss the impact of a deregulation of this pathway on neuronal function and its causal relationship to the intracellular deposition of ubiquitin protein conjugates in pathological inclusion bodies in all the major chronic neurodegenerative disorders, such as Alzheimer’s, Parkinson’s and Huntington’s diseases as well as amyotrophic lateral sclerosis. We describe the intricate nature of the ubiquitin/proteasome pathway and discuss the paradox of protein aggregation, i.e. its potential toxic/protective effect in neurodegeneration. The relations between some of the dysfunctional components of the pathway and neurodegeneration are presented. We highlight possible ubiquitin/proteasome pathway-targeting therapeutic approaches, such as activating the proteasome, enhancing ubiquitination and promoting SUMOylation that might be important to slow/treat the progression of neurodegeneration. Finally, a model time line is presented for neurodegeneration starting at the initial injurious events up to protein aggregation and cell death, with potential time points for therapeutic intervention. PMID:20131003

  3. Therapeutic potential of proteasome inhibitors in congenital erythropoietic porphyria

    PubMed Central

    Blouin, Jean-Marc; Duchartre, Yann; Costet, Pierre; Lalanne, Magalie; Ged, Cécile; Lain, Ana; Millet, Oscar; de Verneuil, Hubert; Richard, Emmanuel

    2013-01-01

    Congenital erythropoietic porphyria (CEP) is a rare autosomal recessive disorder characterized by uroporphyrinogen III synthase (UROS) deficiency resulting in massive porphyrin accumulation in blood cells, which is responsible for hemolytic anemia and skin photosensitivity. Among the missense mutations actually described up to now in CEP patients, the C73R and the P248Q mutations lead to a profound UROS deficiency and are usually associated with a severe clinical phenotype. We previously demonstrated that the UROSC73R mutant protein conserves intrinsic enzymatic activity but triggers premature degradation in cellular systems that could be prevented by proteasome inhibitors. We show evidence that the reduced kinetic stability of the UROSP248Q mutant is also responsible for increased protein turnover in human erythroid cells. Through the analysis of EGFP-tagged versions of UROS enzyme, we demonstrate that both UROSC73R and UROSP248Q are equally destabilized in mammalian cells and targeted to the proteasomal pathway for degradation. We show that a treatment with proteasomal inhibitors, but not with lysosomal inhibitors, could rescue the expression of both EGFP-UROS mutants. Finally, in CEP mice (UrosP248Q/P248Q) treated with bortezomib (Velcade), a clinically approved proteasome inhibitor, we observed reduced porphyrin accumulation in circulating RBCs and urine, as well as reversion of skin photosensitivity on bortezomib treatment. These results of medical importance pave the way for pharmacologic treatment of CEP disease by preventing certain enzymatically active UROS mutants from early degradation by using proteasome inhibitors or chemical chaperones. PMID:24145442

  4. Therapeutic potential of proteasome inhibitors in congenital erythropoietic porphyria.

    PubMed

    Blouin, Jean-Marc; Duchartre, Yann; Costet, Pierre; Lalanne, Magalie; Ged, Cécile; Lain, Ana; Millet, Oscar; de Verneuil, Hubert; Richard, Emmanuel

    2013-11-01

    Congenital erythropoietic porphyria (CEP) is a rare autosomal recessive disorder characterized by uroporphyrinogen III synthase (UROS) deficiency resulting in massive porphyrin accumulation in blood cells, which is responsible for hemolytic anemia and skin photosensitivity. Among the missense mutations actually described up to now in CEP patients, the C73R and the P248Q mutations lead to a profound UROS deficiency and are usually associated with a severe clinical phenotype. We previously demonstrated that the UROS(C73R) mutant protein conserves intrinsic enzymatic activity but triggers premature degradation in cellular systems that could be prevented by proteasome inhibitors. We show evidence that the reduced kinetic stability of the UROS(P248Q) mutant is also responsible for increased protein turnover in human erythroid cells. Through the analysis of EGFP-tagged versions of UROS enzyme, we demonstrate that both UROS(C73R) and UROS(P248Q) are equally destabilized in mammalian cells and targeted to the proteasomal pathway for degradation. We show that a treatment with proteasomal inhibitors, but not with lysosomal inhibitors, could rescue the expression of both EGFP-UROS mutants. Finally, in CEP mice (Uros(P248Q/P248Q)) treated with bortezomib (Velcade), a clinically approved proteasome inhibitor, we observed reduced porphyrin accumulation in circulating RBCs and urine, as well as reversion of skin photosensitivity on bortezomib treatment. These results of medical importance pave the way for pharmacologic treatment of CEP disease by preventing certain enzymatically active UROS mutants from early degradation by using proteasome inhibitors or chemical chaperones. PMID:24145442

  5. Open-gate mutants of the mammalian proteasome show enhanced ubiquitin-conjugate degradation.

    PubMed

    Choi, Won Hoon; de Poot, Stefanie A H; Lee, Jung Hoon; Kim, Ji Hyeon; Han, Dong Hoon; Kim, Yun Kyung; Finley, Daniel; Lee, Min Jae

    2016-01-01

    When in the closed form, the substrate translocation channel of the proteasome core particle (CP) is blocked by the convergent N termini of α-subunits. To probe the role of channel gating in mammalian proteasomes, we deleted the N-terminal tail of α3; the resulting α3ΔN proteasomes are intact but hyperactive in the hydrolysis of fluorogenic peptide substrates and the degradation of polyubiquitinated proteins. Cells expressing the hyperactive proteasomes show markedly elevated degradation of many established proteasome substrates and resistance to oxidative stress. Multiplexed quantitative proteomics revealed ∼ 200 proteins with reduced levels in the mutant cells. Potentially toxic proteins such as tau exhibit reduced accumulation and aggregate formation. These data demonstrate that the CP gate is a key negative regulator of proteasome function in mammals, and that opening the CP gate may be an effective strategy to increase proteasome activity and reduce levels of toxic proteins in cells. PMID:26957043

  6. Open-gate mutants of the mammalian proteasome show enhanced ubiquitin-conjugate degradation

    PubMed Central

    Choi, Won Hoon; de Poot, Stefanie A. H.; Lee, Jung Hoon; Kim, Ji Hyeon; Han, Dong Hoon; Kim, Yun Kyung; Finley, Daniel; Lee, Min Jae

    2016-01-01

    When in the closed form, the substrate translocation channel of the proteasome core particle (CP) is blocked by the convergent N termini of α-subunits. To probe the role of channel gating in mammalian proteasomes, we deleted the N-terminal tail of α3; the resulting α3ΔN proteasomes are intact but hyperactive in the hydrolysis of fluorogenic peptide substrates and the degradation of polyubiquitinated proteins. Cells expressing the hyperactive proteasomes show markedly elevated degradation of many established proteasome substrates and resistance to oxidative stress. Multiplexed quantitative proteomics revealed ∼200 proteins with reduced levels in the mutant cells. Potentially toxic proteins such as tau exhibit reduced accumulation and aggregate formation. These data demonstrate that the CP gate is a key negative regulator of proteasome function in mammals, and that opening the CP gate may be an effective strategy to increase proteasome activity and reduce levels of toxic proteins in cells. PMID:26957043

  7. Abscisic acid promotes proteasome-mediated degradation of the transcription coactivator NPR1 in Arabidopsis thaliana.

    PubMed

    Ding, Yezhang; Dommel, Matthew; Mou, Zhonglin

    2016-04-01

    Proteasome-mediated turnover of the transcription coactivator NPR1 is pivotal for efficient activation of the broad-spectrum plant immune responses known as localized acquired resistance (LAR) and systemic acquired resistance (SAR) in adjacent and systemic tissues, respectively, and requires the CUL3-based E3 ligase and its adaptor proteins, NPR3 and NPR4, which are receptors for the signaling molecule salicylic acid (SA). It has been shown that SA prevents NPR1 turnover under non-inducing and LAR/SAR-inducing conditions, but how cellular NPR1 homeostasis is maintained remains unclear. Here, we show that the phytohormone abscisic acid (ABA) and SA antagonistically influence cellular NPR1 protein levels. ABA promotes NPR1 degradation via the CUL3(NPR) (3/) (NPR) (4) complex-mediated proteasome pathway, whereas SA may protect NPR1 from ABA-promoted degradation through phosphorylation. Furthermore, we demonstrate that the timing and strength of SA and ABA signaling are critical in modulating NPR1 accumulation and target gene expression. Perturbing ABA or SA signaling in adjacent tissues alters the temporal dynamic pattern of NPR1 accumulation and target gene transcription. Finally, we show that sequential SA and ABA treatment leads to dynamic changes in NPR1 protein levels and target gene expression. Our results revealed a tight correlation between sequential SA and ABA signaling and dynamic changes in NPR1 protein levels and NPR1-dependent transcription in plant immune responses. PMID:26865090

  8. Salinosporamide Natural Products: Potent 20S Proteasome Inhibitors as Promising Cancer Chemotherapeutics

    PubMed Central

    Gulder, Tobias A. M.

    2010-01-01

    Proteasome inhibitors are rapidly evolving as potent treatment options in cancer therapy. One of the most promising drug candidates of this type is salinosporamide A from the bacterium Salinispora tropica. This marine natural product possesses a complex, densely functionalized γ-lactam-β-lactone pharmacophore, which is responsible for its irreversible binding to its target, the β subunit of the 20S proteasome. Salinosporamide A entered phase I clinical trials for the treatment of multiple myeloma only three years after its discovery. The strong biological activity and the challenging structure of this compound have fueled intense academic and industrial research in recent years, which has led to the development of more than ten syntheses, the elucidation of its biosynthetic pathway, and the generation of promising structure–activity relationships and oncological data. Salinosporamide A thus serves as an intriguing example of the successful interplay of modern drug discovery and biomedical research, medicinal chemistry and pharmacology, natural product synthesis and analysis, as well as biosynthesis and bioengineering. PMID:20927786

  9. An asymmetric interface between the regulatory particle and core particle of the proteasome

    PubMed Central

    Tian, Geng; Park, Soyeon; Lee, Min Jae; Huck, Bettina; McAllister, Fiona; Hill, Christopher P.; Gygi, Steven P.; Finley, Daniel

    2011-01-01

    The S. cerevisiae proteasome comprises a 19-subunit regulatory particle (RP) and 28-subunit core particle (CP). To be degraded, substrates must cross the CP-RP interface, a site of complex conformational changes and regulatory events. This interface includes two aligned heteromeric rings: the six ATPase (Rpt) subunits of the RP and the seven α subunits of the CP. Rpt C-termini bind intersubunit cavities of the α ring, thus directing CP gating and proteasome assembly. We used crosslinking to map the Rpt C-termini to the α subunit pockets. This reveals an unexpected asymmetry: one side of the ring shows 1:1 contacts of Rpt2–α4, Rpt6–α3, and Rpt3–α2, whereas, on the opposite side, the Rpt1, Rpt4, and Rpt5 tails each crosslink to multiple α pockets. Rpt-CP crosslinks are all sensitive to nucleotide, implying that ATP hydrolysis drives dynamic alterations at the CP-RP interface. PMID:22037170

  10. Multiplexed metagenome mining using short DNA sequence tags facilitates targeted discovery of epoxyketone proteasome inhibitors

    PubMed Central

    Owen, Jeremy G.; Charlop-Powers, Zachary; Smith, Alexandra G.; Ternei, Melinda A.; Calle, Paula Y.; Reddy, Boojala Vijay B.; Montiel, Daniel; Brady, Sean F.

    2015-01-01

    In molecular evolutionary analyses, short DNA sequences are used to infer phylogenetic relationships among species. Here we apply this principle to the study of bacterial biosynthesis, enabling the targeted isolation of previously unidentified natural products directly from complex metagenomes. Our approach uses short natural product sequence tags derived from conserved biosynthetic motifs to profile biosynthetic diversity in the environment and then guide the recovery of gene clusters from metagenomic libraries. The methodology is conceptually simple, requires only a small investment in sequencing, and is not computationally demanding. To demonstrate the power of this approach to natural product discovery we conducted a computational search for epoxyketone proteasome inhibitors within 185 globally distributed soil metagenomes. This led to the identification of 99 unique epoxyketone sequence tags, falling into 6 phylogenetically distinct clades. Complete gene clusters associated with nine unique tags were recovered from four saturating soil metagenomic libraries. Using heterologous expression methodologies, seven potent epoxyketone proteasome inhibitors (clarepoxcins A–E and landepoxcins A and B) were produced from these pathways, including compounds with different warhead structures and a naturally occurring halohydrin prodrug. This study provides a template for the targeted expansion of bacterially derived natural products using the global metagenome. PMID:25831524

  11. Multiplexed metagenome mining using short DNA sequence tags facilitates targeted discovery of epoxyketone proteasome inhibitors.

    PubMed

    Owen, Jeremy G; Charlop-Powers, Zachary; Smith, Alexandra G; Ternei, Melinda A; Calle, Paula Y; Reddy, Boojala Vijay B; Montiel, Daniel; Brady, Sean F

    2015-04-01

    In molecular evolutionary analyses, short DNA sequences are used to infer phylogenetic relationships among species. Here we apply this principle to the study of bacterial biosynthesis, enabling the targeted isolation of previously unidentified natural products directly from complex metagenomes. Our approach uses short natural product sequence tags derived from conserved biosynthetic motifs to profile biosynthetic diversity in the environment and then guide the recovery of gene clusters from metagenomic libraries. The methodology is conceptually simple, requires only a small investment in sequencing, and is not computationally demanding. To demonstrate the power of this approach to natural product discovery we conducted a computational search for epoxyketone proteasome inhibitors within 185 globally distributed soil metagenomes. This led to the identification of 99 unique epoxyketone sequence tags, falling into 6 phylogenetically distinct clades. Complete gene clusters associated with nine unique tags were recovered from four saturating soil metagenomic libraries. Using heterologous expression methodologies, seven potent epoxyketone proteasome inhibitors (clarepoxcins A-E and landepoxcins A and B) were produced from these pathways, including compounds with different warhead structures and a naturally occurring halohydrin prodrug. This study provides a template for the targeted expansion of bacterially derived natural products using the global metagenome.

  12. Quantitative Proteomic Analysis Revealed 4-(methylnitrosamino)-1-(3-pyridinyl)-1-butanone-induced Up-regulation of 20S Proteasome in Cultured Human Fibroblast Cells

    PubMed Central

    Prins, John M.; Wang, Yinsheng

    2012-01-01

    The tobacco-specific N-nitrosamine, 4-(methylnitrosamino)-1-(3-pyridinyl)-1-butanone (NNK), is a well-known carcinogen. Although the ability of the metabolically activated form of NNK to generate DNA adducts is well established, little is known about the cellular pathways perturbed by NNK in its native state. In this study, we utilized stable isotope labeling by amino acid in cell culture (SILAC), together with mass spectrometry, to assess the perturbation of protein expression in GM00637 human skin fibroblast cells upon NNK exposure. With this approach, we were able to quantify 1412 proteins and 137 of them were with significantly altered expression following NNK exposure, including the up-regulation of all subunits of the 20S proteasome core complex. The up-regulation of the 20S core complex was also reflected by a significant increase in 20S proteasome activities in GM00637, IMR90 and MCF-7 cells upon NNK treatment. Furthermore, the β-adrenergic receptor (β-AR) antagonist propranolol could attenuate significantly the NNK-induced increase in proteasome activity in all the three cell lines, suggesting that up-regulation of the 20S proteasome may be mediated through the β-AR. Additionally, we found that NNK treatment altered the expression levels of other important proteins including mitochondrial proteins, cytoskeleton-associated proteins, and proteins involved in glycolysis and gluconeogenesis. Results from the present study provided novel insights into the cellular mechanisms targeted by NNK. PMID:22369695

  13. Induction of Caspase-3-like activity in Rice following release of cytochrome-f from the chloroplast and subsequent interaction with the Ubiquitin-Proteasome System

    PubMed Central

    Wang, Hongjuan; Zhu, Xiaonan; Li, Huan; Cui, Jing; Liu, Cheng; Chen, Xi; Zhang, Wei

    2014-01-01

    It has been known that the process of leaf senescence is accompanied by programmed cell death (PCD), and the previous study indicated that dark-induced senescence in detached leaves from rice led to the release of cytochrome f (Cyt f) from chloroplast into the cytoplasm. In this study, the effects of Cyt f on PCD were studied both in vitro and in vivo. In a cell-free system, purified Cyt f activated caspase-3-like protease and endonuclease OsNuc37, and induced DNA fragmentation. Furthermore, Cyt f-induced caspase-3-like activity could be inhibited by MG132, which suggests that the activity was attributed to the 26S proteasome. Conditional expression of Cyt f in the cytoplasm could also activate caspase-3-like activity and DNA fragmentation. Fluorescein diacetate staining and annexin V-FITC/PI double staining demonstrated that Cyt f expression in cytoplasm significantly increased the percentage of PCD protoplasts. Yeast two-hybrid screening showed that Cyt f might interact with E3-ubiquitin ligase and RPN9b, the subunits of the ubiquitin proteasome system (UPS), and other PCD-related proteins. Taken together, these results suggest that the released Cyt f from the chloroplast into the cytoplasm might activate or rescue caspase-3-like activity by interacting with the UPS, ultimately leading to the induction of PCD. PMID:25103621

  14. Cell cycle -dependent proteolysis in plants. Identification Of the destruction box pathway and metaphase arrest produced by the proteasome inhibitor mg132

    PubMed Central

    Genschik, P; Criqui, MC; Parmentier, Y; Derevier, A; Fleck, J

    1998-01-01

    It is widely assumed that mitotic cyclins are rapidly degraded during anaphase, leading to the inactivation of the cell cycle-dependent protein kinase Cdc2 and allowing exit from mitosis. The proteolysis of mitotic cyclins is ubiquitin/26S proteasome mediated and requires the presence of the destruction box motif at the N terminus of the proteins. As a first attempt to study cyclin proteolysis during the plant cell cycle, we investigated the stability of fusion proteins in which the N-terminal domains of an A-type and a B-type tobacco mitotic cyclin were fused in frame with the chloramphenicol acetyltransferase (CAT ) reporter gene and constitutively expressed in transformed tobacco BY2 cells. For both cyclin types, the N-terminal domains led the chimeric cyclin-CAT fusion proteins to oscillate in a cell cycle-specific manner. Mutations within the destruction box abolished cell cycle-specific proteolysis. Although both fusion proteins were degraded after metaphase, cyclin A-CAT proteolysis was turned off during S phase, whereas that of cyclin B-CAT was turned off only during the late G2 phase. Thus, we demonstrated that mitotic cyclins in plants are subjected to post-translational control (e.g., proteolysis). Moreover, we showed that the proteasome inhibitor MG132 blocks BY2 cells during metaphase in a reversible way. During this mitotic arrest, both cyclin-CAT fusion proteins remained stable. PMID:9836745

  15. Stimulation of ubiquitin-proteasome pathway through the expression of amidohydrolase for N-terminal asparagine (Ntan1) in cultured rat hippocampal neurons exposed to static magnetism.

    PubMed

    Hirai, Takao; Taniura, Hideo; Goto, Yasuaki; Ogura, Masato; Sng, Judy C G; Yoneda, Yukio

    2006-03-01

    In order to elucidate mechanisms underlying modulation by static magnetism of the cellular functionality and/or integrity in the brain, we screened genes responsive to brief magnetism in cultured rat hippocampal neurons using differential display analysis. We have for the first time cloned and identified Ntan1 (amidohydrolase for N-terminal asparagine) as a magnetism responsive gene in rat brain. Ntan1 is an essential component of a protein degradation signal, which is a destabilizing N-terminal residue of a protein, in the N-end rule. In situ hybridization histochemistry revealed abundant expression of Ntan1 mRNA in hippocampal neurons in vivo. Northern blot analysis showed that Ntan1 mRNA was increased about three-fold after 3 h in response to brief magnetism. Brief magnetism also increased the transcriptional activity of Ntan1 promoter by luciferase reporter assay. Brief magnetism induced degradation of microtubule-associated protein 2 (MAP2) without affecting cell morphology and viability, which was prevented by a selective inhibitor of 26S proteasome in hippocampal neurons. Overexpression of Ntan1 using recombinant Ntan1 adenovirus vector resulted in a marked decrease in the MAP2 protein expression in hippocampal neurons. Our results suggest that brief magnetism leads to the induction of Ntan1 responsible for MAP2 protein degradation through ubiquitin-proteasome pathway in rat hippocampal neurons.

  16. N-Terminal α7 Deletion of the Proteasome 20S Core Particle Substitutes for Yeast PI31 Function

    PubMed Central

    Yashiroda, Hideki; Toda, Yousuke; Otsu, Saori; Takagi, Kenji; Mizushima, Tsunehiro

    2014-01-01

    The proteasome core particle (CP) is a conserved protease complex that is formed by the stacking of two outer α-rings and two inner β-rings. The α-ring is a heteroheptameric ring of subunits α1 to α7 and acts as a gate that restricts entry of substrate proteins into the catalytic cavity formed by the two abutting β-rings. The 31-kDa proteasome inhibitor (PI31) was originally identified as a protein that binds to the CP and inhibits CP activity in vitro, but accumulating evidence indicates that PI31 is required for physiological proteasome activity. To clarify the in vivo role of PI31, we examined the Saccharomyces cerevisiae PI31 ortholog Fub1. Fub1 was essential in a situation where the CP assembly chaperone Pba4 was deleted. The lethality of Δfub1 Δpba4 was suppressed by deletion of the N terminus of α7 (α7ΔN), which led to the partial activation of the CP. However, deletion of the N terminus of α3, which activates the CP more efficiently than α7ΔN by gate opening, did not suppress Δfub1 Δpba4 lethality. These results suggest that the α7 N terminus has a role in CP activation different from that of the α3 N terminus and that the role of Fub1 antagonizes a specific function of the α7 N terminus. PMID:25332237

  17. An adenosine triphosphate-independent proteasome activator contributes to the virulence of Mycobacterium tuberculosis

    DOE PAGES

    Jastrab, Jordan B.; Wang, Tong; Murphy, J. Patrick; Bai, Lin; Hu, Kuan; Merkx, Remco; Huang, Jessica; Chatterjee, Champak; Ovaa, Huib; Gygi, Steven P.; et al

    2015-03-23

    Mycobacterium tuberculosis encodes a proteasome that is highly similar to eukaryotic proteasomes and is required to cause lethal infections in animals. The only pathway known to target proteins for proteasomal degradation in bacteria is pupylation, which is functionally analogous to eukaryotic ubiquitylation. However, evidence suggests that the M. tuberculosis proteasome contributes to pupylation-independent pathways as well. To identify new proteasome cofactors that might contribute to such pathways, we isolated proteins that bound to proteasomes overproduced in M. tuberculosis and found a previously uncharacterized protein, Rv3780, which formed rings and capped M. tuberculosis proteasome core particles. Rv3780 enhanced peptide and proteinmore » degradation by proteasomes in an adenosine triphosphate (ATP)-independent manner. We identified putative Rv3780-dependent proteasome substrates and found that Rv3780 promoted robust degradation of the heat shock protein repressor, HspR. Importantly, an M. tuberculosis Rv3780 mutant had a general growth defect, was sensitive to heat stress, and was attenuated for growth in mice. Collectively, these data demonstrate that ATP-independent proteasome activators are not confined to eukaryotes and can contribute to the virulence of one the world’s most devastating pathogens.« less

  18. An adenosine triphosphate-independent proteasome activator contributes to the virulence of Mycobacterium tuberculosis

    SciTech Connect

    Jastrab, Jordan B.; Wang, Tong; Murphy, J. Patrick; Bai, Lin; Hu, Kuan; Merkx, Remco; Huang, Jessica; Chatterjee, Champak; Ovaa, Huib; Gygi, Steven P.; Li, Huilin; Darwin, K. Heran

    2015-03-23

    Mycobacterium tuberculosis encodes a proteasome that is highly similar to eukaryotic proteasomes and is required to cause lethal infections in animals. The only pathway known to target proteins for proteasomal degradation in bacteria is pupylation, which is functionally analogous to eukaryotic ubiquitylation. However, evidence suggests that the M. tuberculosis proteasome contributes to pupylation-independent pathways as well. To identify new proteasome cofactors that might contribute to such pathways, we isolated proteins that bound to proteasomes overproduced in M. tuberculosis and found a previously uncharacterized protein, Rv3780, which formed rings and capped M. tuberculosis proteasome core particles. Rv3780 enhanced peptide and protein degradation by proteasomes in an adenosine triphosphate (ATP)-independent manner. We identified putative Rv3780-dependent proteasome substrates and found that Rv3780 promoted robust degradation of the heat shock protein repressor, HspR. Importantly, an M. tuberculosis Rv3780 mutant had a general growth defect, was sensitive to heat stress, and was attenuated for growth in mice. Collectively, these data demonstrate that ATP-independent proteasome activators are not confined to eukaryotes and can contribute to the virulence of one the world’s most devastating pathogens.

  19. An adenosine triphosphate-independent proteasome activator contributes to the virulence of Mycobacterium tuberculosis

    PubMed Central

    Jastrab, Jordan B.; Wang, Tong; Murphy, J. Patrick; Bai, Lin; Hu, Kuan; Merkx, Remco; Huang, Jessica; Chatterjee, Champak; Ovaa, Huib; Gygi, Steven P.; Li, Huilin; Darwin, K. Heran

    2015-01-01

    Mycobacterium tuberculosis encodes a proteasome that is highly similar to eukaryotic proteasomes and is required to cause lethal infections in animals. The only pathway known to target proteins for proteasomal degradation in bacteria is pupylation, which is functionally analogous to eukaryotic ubiquitylation. However, evidence suggests that the M. tuberculosis proteasome contributes to pupylation-independent pathways as well. To identify new proteasome cofactors that might contribute to such pathways, we isolated proteins that bound to proteasomes overproduced in M. tuberculosis and found a previously uncharacterized protein, Rv3780, which formed rings and capped M. tuberculosis proteasome core particles. Rv3780 enhanced peptide and protein degradation by proteasomes in an adenosine triphosphate (ATP)-independent manner. We identified putative Rv3780-dependent proteasome substrates and found that Rv3780 promoted robust degradation of the heat shock protein repressor, HspR. Importantly, an M. tuberculosis Rv3780 mutant had a general growth defect, was sensitive to heat stress, and was attenuated for growth in mice. Collectively, these data demonstrate that ATP-independent proteasome activators are not confined to eukaryotes and can contribute to the virulence of one the world's most devastating pathogens. PMID:25831519

  20. Tight Junction Protein 1 Modulates Proteasome Capacity and Proteasome Inhibitor Sensitivity in Multiple Myeloma via EGFR/JAK1/STAT3 Signaling.

    PubMed

    Zhang, Xing-Ding; Baladandayuthapani, Veerabhadran; Lin, Heather; Mulligan, George; Li, Bin; Esseltine, Dixie-Lee W; Qi, Lin; Xu, Jianliang; Hunziker, Walter; Barlogie, Bart; Usmani, Saad Z; Zhang, Qing; Crowley, John; Hoering, Antje; Shah, Jatin J; Weber, Donna M; Manasanch, Elisabet E; Thomas, Sheeba K; Li, Bing-Zong; Wang, Hui-Han; Zhang, Jiexin; Kuiatse, Isere; Tang, Jin-Le; Wang, Hua; He, Jin; Yang, Jing; Milan, Enrico; Cenci, Simone; Ma, Wen-Cai; Wang, Zhi-Qiang; Davis, Richard Eric; Yang, Lin; Orlowski, Robert Z

    2016-05-01

    Proteasome inhibitors have revolutionized outcomes in multiple myeloma, but they are used empirically, and primary and secondary resistance are emerging problems. We have identified TJP1 as a determinant of plasma cell proteasome inhibitor susceptibility. TJP1 suppressed expression of the catalytically active immunoproteasome subunits LMP7 and LMP2, decreased proteasome activity, and enhanced proteasome inhibitor sensitivity in vitro and in vivo. This occurred through TJP1-mediated suppression of EGFR/JAK1/STAT3 signaling, which modulated LMP7 and LMP2 levels. In the clinic, high TJP1 expression in patient myeloma cells was associated with a significantly higher likelihood of responding to bortezomib and a longer response duration, supporting the use of TJP1 as a biomarker to identify patients most likely to benefit from proteasome inhibitors. PMID:27132469

  1. Colorectal Carcinogenesis, Radiation Quality, and the Ubiquitin-Proteasome Pathway

    PubMed Central

    Datta, Kamal; Suman, Shubhankar; Kumar, Santosh; Fornace, Albert J

    2016-01-01

    Adult colorectal epithelium undergoes continuous renewal and maintains homeostatic balance through regulated cellular proliferation, differentiation, and migration. The canonical Wnt signaling pathway involving the transcriptional co-activator β-catenin is important for colorectal development and normal epithelial maintenance, and deregulated Wnt/β-catenin signaling has been implicated in colorectal carcinogenesis. Colorectal carcinogenesis has been linked to radiation exposure, and radiation has been demonstrated to alter Wnt/β-catenin signaling, as well as the proteasomal pathway involved in the degradation of the signaling components and thus regulation of β-catenin. The current review discusses recent progresses in our understanding of colorectal carcinogenesis in relation to different types of radiation and roles that radiation quality plays in deregulating β-catenin and ubiquitin-proteasome pathway (UPP) for colorectal cancer initiation and progression. PMID:26819641

  2. TRIB1 Is Regulated Post-Transcriptionally by Proteasomal and Non-Proteasomal Pathways.

    PubMed

    Soubeyrand, Sébastien; Martinuk, Amy; Lau, Paulina; McPherson, Ruth

    2016-01-01

    The TRIB1 gene has been associated with multiple malignancies, plasma triglycerides and coronary artery disease (CAD). Despite the clinical significance of this pseudo-kinase, there is little information on the regulation of TRIB1. Previous studies reported TRIB1 mRNA to be unstable, hinting that TRIB1 might be subject to post-transcriptional regulation. This work explores TRIB1 regulation, focusing on its post-transcriptional aspects. In 3 distinct model systems (HEK293T, HeLa and arterial smooth muscle cells) TRIB1 was undetectable as assessed by western blot. Using recombinant TRIB1 as a proxy, we demonstrate TRIB1 to be highly unstable at the protein and RNA levels. By contrast, recombinant TRIB1 was stable in cellular extracts. Blocking proteasome function led to increased protein steady state levels but failed to rescue protein instability, demonstrating that the 2 processes are uncoupled. Unlike as shown for TRIB2, CUL1 and TRCPβ did not play a role in mediating TRIB1 instability although TRCPβ suppression increased TRIB1 expression. Lastly, we demonstrate that protein instability is independent of TRIB1 subcellular localization. Following the identification of TRIB1 nuclear localization signal, a cytosolic form was engineered. Despite being confined to the cytosol, TRIB1 remained unstable, suggesting that instability occurs at a stage that precedes its nuclear translocation and downstream nuclear function. These results uncover possible avenues of intervention to regulate TRIB1 function by identifying two distinct regulatory axes that control TRIB1 at the post-transcriptional level. PMID:27019349

  3. TRIB1 Is Regulated Post-Transcriptionally by Proteasomal and Non-Proteasomal Pathways

    PubMed Central

    Soubeyrand, Sébastien; Martinuk, Amy; Lau, Paulina; McPherson, Ruth

    2016-01-01

    The TRIB1 gene has been associated with multiple malignancies, plasma triglycerides and coronary artery disease (CAD). Despite the clinical significance of this pseudo-kinase, there is little information on the regulation of TRIB1. Previous studies reported TRIB1 mRNA to be unstable, hinting that TRIB1 might be subject to post-transcriptional regulation. This work explores TRIB1 regulation, focusing on its post-transcriptional aspects. In 3 distinct model systems (HEK293T, HeLa and arterial smooth muscle cells) TRIB1 was undetectable as assessed by western blot. Using recombinant TRIB1 as a proxy, we demonstrate TRIB1 to be highly unstable at the protein and RNA levels. By contrast, recombinant TRIB1 was stable in cellular extracts. Blocking proteasome function led to increased protein steady state levels but failed to rescue protein instability, demonstrating that the 2 processes are uncoupled. Unlike as shown for TRIB2, CUL1 and TRCPβ did not play a role in mediating TRIB1 instability although TRCPβ suppression increased TRIB1 expression. Lastly, we demonstrate that protein instability is independent of TRIB1 subcellular localization. Following the identification of TRIB1 nuclear localization signal, a cytosolic form was engineered. Despite being confined to the cytosol, TRIB1 remained unstable, suggesting that instability occurs at a stage that precedes its nuclear translocation and downstream nuclear function. These results uncover possible avenues of intervention to regulate TRIB1 function by identifying two distinct regulatory axes that control TRIB1 at the post-transcriptional level. PMID:27019349

  4. Anticancer activity and computational modeling of ternary copper (II) complexes with 3-indolecarboxylic acid and 1,10-phenanthroline.

    PubMed

    Zhang, Zhen; Wang, Huiyun; Wang, Qibao; Yan, Maocai; Wang, Huannan; Bi, Caifeng; Sun, Shanshan; Fan, Yuhua

    2016-08-01

    Metal-containing compounds have been extensively studied for many years as potent proteasome inhibitors. The 20S proteasome, the main component of the ubiquitin proteasome pathway, is one of the excellent targets in anticancer drug development. We recently reported that several copper complexes were able to inhibit cancer-special proteasome and induce cell death in human cancer cells. However, the involved molecular mechanism is not known yet. We therefore synthesized three copper complexes and investigated their abilities on inhibiting proteasome activity and inducting apoptosis in human breast cancer cells. Furthermore, we employed molecular dockings to analyze the possible interaction between the synthetic copper complexes and the β5 subunit of proteasome which only reflects the chymotrypsin-like activity. Our results demonstrate that three Cu(II) complexes possess potent proteasome inhibition capability in a dose-dependent and time-dependent manner in MDA-MB-231 human breast cancer cells. They could bind to the β5 subunit of the 20S proteasome, which consequently cause deactivation of the proteasome and tumor cell death. The present study is significant for providing important theoretical basis for design and synthesis of anticancer drugs with low toxicity, high efficiency and high selectivity. PMID:27278680

  5. In vitro and in vivo anticancer activity of copper(I) complexes with homoscorpionate tridentate tris(pyrazolyl)borate and auxiliary monodentate phosphine ligands.

    PubMed

    Gandin, Valentina; Tisato, Francesco; Dolmella, Alessandro; Pellei, Maura; Santini, Carlo; Giorgetti, Marco; Marzano, Cristina; Porchia, Marina

    2014-06-12

    Tetrahedral copper(I) TpCuP complexes 1-15, where Tp is a N,N,N-tris(azolyl)borate and P is a tertiary phosphine, have been synthesized and characterized by means of NMR, ESI-MS, and XAS-EXAFS, and X-ray diffraction analyses on the representative complexes 1 and 10, respectively. All copper(I) complexes were evaluated for their antiproliferative activity against a panel of human cancer cell lines (including cisplatin and multidrug-resistant sublines). The two most effective complexes [HB(pz)3]Cu(PCN), 1, and [HB(pz)3]Cu(PTA), 2, showed selectivity toward tumor vs normal cells, inhibition of 26S proteasome activity associated with endoplasmic reticulum (ER) stress, and unfolded protein response (UPR) activation. No biochemical hallmarks of apoptosis were detected, and morphology studies revealed an extensive cytoplasmic vacuolization coherently with a paraptosis-like cell death mechanism. Finally, the antitumor efficacy of complex 1 was validated in the murine Lewis Lung Carcinoma (LLC) model. PMID:24793739

  6. Evolutionary dynamics and preferential expression of homeologous 18S-5.8S-26S nuclear ribosomal genes in natural and artificial glycine allopolyploids.

    PubMed

    Joly, Simon; Rauscher, Jason T; Sherman-Broyles, Susan L; Brown, A H D; Doyle, Jeff J

    2004-07-01

    Polyploidy is an important evolutionary process in plants, but much remains to be learned about the evolution of gene expression in polyploids. Evolution and expression of the 18S-5.8S-26S ribosomal gene family was investigated at homeologous loci in the Glycine subgenus Glycine perennial soybean polyploid complex, which consists of several diploid genomes that have formed allopolyploids in various combinations, often recurrently. A semiquantitative PCR method targeting the internal transcribed spacer (ITS) of the 18S-5.8S-26S nuclear ribosomal DNA (nrDNA) was used to survey the ratio between homeologous repeats in polyploid genomes and to test for preferential expression of homeologous nrDNA loci. Most natural polyploids possess one predominant nrDNA homeolog in their genome. Analysis of F2 segregation in an artificial cross suggested that in some plants, most or all repeats at one homeologous locus have been lost, whereas in other plants two loci remain, but both have been homogenized by concerted evolution. In most natural allopolyploids harboring a relatively balanced ratio of homeologs, one homeolog was expressed preferentially, but in the majority of plants, low levels of transcription could be detected from the other homeolog. Individuals within some tetraploid taxa varied as to which homeolog was expressed preferentially. In some plants, the degree of preferential expression also varied among tissues. Preferential expression was absent in synthetic polyploids and in some artificial diploid hybrids, suggesting that nucleolar dominance is not necessarily a direct result of hybridization or polyploidization. The establishment of preferential expression in Glycine allopolyploids appears to be either stochastic within lineages or genotype specific. PMID:15084677

  7. Natural alleles of a proteasome α2 subunit gene contribute to thermotolerance and adaptation of African rice.

    PubMed

    Li, Xin-Min; Chao, Dai-Yin; Wu, Yuan; Huang, Xuehui; Chen, Ke; Cui, Long-Gang; Su, Lei; Ye, Wang-Wei; Chen, Hao; Chen, Hua-Chang; Dong, Nai-Qian; Guo, Tao; Shi, Min; Feng, Qi; Zhang, Peng; Han, Bin; Shan, Jun-Xiang; Gao, Ji-Ping; Lin, Hong-Xuan

    2015-07-01

    Global warming threatens many aspects of human life, for example, by reducing crop yields. Breeding heat-tolerant crops using genes conferring thermotolerance is a fundamental way to help deal with this challenge. Here we identify a major quantitative trait locus (QTL) for thermotolerance in African rice (Oryza glaberrima), Thermo-tolerance 1 (TT1), which encodes an α2 subunit of the 26S proteasome involved in the degradation of ubiquitinated proteins. Ubiquitylome analysis indicated that OgTT1 protects cells from heat stress through more efficient elimination of cytotoxic denatured proteins and more effective maintenance of heat-response processes than achieved with OsTT1. Variation in TT1 has been selected for on the basis of climatic temperature and has had an important role in local adaptation during rice evolution. In addition, we found that overexpression of OgTT1 was associated with markedly enhanced thermotolerance in rice, Arabidopsis and Festuca elata. This discovery may lead to an increase in crop security in the face of the ongoing threat of global warming.

  8. Natural alleles of a proteasome α2 subunit gene contribute to thermotolerance and adaptation of African rice.

    PubMed

    Li, Xin-Min; Chao, Dai-Yin; Wu, Yuan; Huang, Xuehui; Chen, Ke; Cui, Long-Gang; Su, Lei; Ye, Wang-Wei; Chen, Hao; Chen, Hua-Chang; Dong, Nai-Qian; Guo, Tao; Shi, Min; Feng, Qi; Zhang, Peng; Han, Bin; Shan, Jun-Xiang; Gao, Ji-Ping; Lin, Hong-Xuan

    2015-07-01

    Global warming threatens many aspects of human life, for example, by reducing crop yields. Breeding heat-tolerant crops using genes conferring thermotolerance is a fundamental way to help deal with this challenge. Here we identify a major quantitative trait locus (QTL) for thermotolerance in African rice (Oryza glaberrima), Thermo-tolerance 1 (TT1), which encodes an α2 subunit of the 26S proteasome involved in the degradation of ubiquitinated proteins. Ubiquitylome analysis indicated that OgTT1 protects cells from heat stress through more efficient elimination of cytotoxic denatured proteins and more effective maintenance of heat-response processes than achieved with OsTT1. Variation in TT1 has been selected for on the basis of climatic temperature and has had an important role in local adaptation during rice evolution. In addition, we found that overexpression of OgTT1 was associated with markedly enhanced thermotolerance in rice, Arabidopsis and Festuca elata. This discovery may lead to an increase in crop security in the face of the ongoing threat of global warming. PMID:25985140

  9. The role of allostery in the ubiquitin-proteasome system

    PubMed Central

    Liu, Jin; Nussinov, Ruth

    2012-01-01

    The Ubiquitin-Proteasome System is involved in many cellular processes including protein degradation. Degradation of a protein via this system involves two successive steps: ubiquitination and degradation. Ubiquitination tags the target protein with ubiquitin-like proteins, such as ubiquitin, SUMO and NEDD8, via a cascade involving three enzymes: activating enzyme E1, conjugating enzyme E2, and E3 ubiquitin ligases. The proteasomes recognize the ubiquitin-like protein tagged substrate proteins and degrade them. Accumulating evidence indicates that allostery is a central player in the regulation of ubiquitination, as well as deubiquitination and degradation. Here, we provide an overview of the key mechanistic roles played by allostery in all steps of these processes, and highlight allosteric drugs targeting them. Throughout the review, we emphasize the crucial mechanistic role played by linkers in allosterically controlling the Ubiquitin-Proteasome System action by biasing the sampling of the conformational space, which facilitate the catalytic reactions of the ubiquitination and degradation. Finally, we propose that allostery may similarly play key roles in the regulation of molecular machines in the cell, and as such allosteric drugs can be expected to be increasingly exploited in therapeutic regimes. PMID:23234564

  10. Ubiquitin-Mediated Proteasomal Degradation of Oleosins is Involved in Oil Body Mobilization During Post-Germinative Seedling Growth in Arabidopsis.

    PubMed

    Deruyffelaere, Carine; Bouchez, Isabelle; Morin, Halima; Guillot, Alain; Miquel, Martine; Froissard, Marine; Chardot, Thierry; D'Andrea, Sabine

    2015-07-01

    In oleaginous seeds, lipids--stored in organelles called oil bodies (OBs)--are degraded post-germinatively to provide carbon and energy for seedling growth. To date, little is known about how OB coat proteins, known as oleosins, control OB dynamics during seed germination. Here, we demonstrated that the sequential proteolysis of the five Arabidopsis thaliana oleosins OLE1-OLE5 begins just prior to lipid degradation. Several post-translational modifications (e.g. phosphorylation and ubiquination) of oleosins were concomitant with oleosin degradation. Phosphorylation occurred only on the minor OLE5 and on an 8 kDa proteolytic fragment of OLE2. A combination of immunochemical and proteomic approaches revealed ubiquitination of the four oleosins OLE1-OLE4 at the onset of OB mobilization. Ubiquitination topology was surprisingly complex. OLE1 and OLE2 were modified by three distinct and predominantly exclusive motifs: monoubiquitin, K48-linked diubiquitin (K48Ub(2)) and K63-linked diubiquitin. Ubiquitinated oleosins may be channeled towards specific degradation pathways according to ubiquitination type. One of these pathways was identified as the ubiquitin-proteasome pathway. A proteasome inhibitor (MG132) reduced oleosin degradation and induced cytosolic accumulation of K48Ub(2)-oleosin aggregates. These results indicate that K48Ub(2)-modified oleosins are selectively extracted from OB coat and degraded by the proteasome. Proteasome inhibition also reduced lipid hydrolysis, providing in vivo evidence that oleosin degradation is required for lipid mobilization.

  11. Chemical cross-linking/mass spectrometry targeting acidic residues in proteins and protein complexes.

    PubMed

    Leitner, Alexander; Joachimiak, Lukasz A; Unverdorben, Pia; Walzthoeni, Thomas; Frydman, Judith; Förster, Friedrich; Aebersold, Ruedi

    2014-07-01

    The study of proteins and protein complexes using chemical cross-linking followed by the MS identification of the cross-linked peptides has found increasingly widespread use in recent years. Thus far, such analyses have used almost exclusively homobifunctional, amine-reactive cross-linking reagents. Here we report the development and application of an orthogonal cross-linking chemistry specific for carboxyl groups. Chemical cross-linking of acidic residues is achieved using homobifunctional dihydrazides as cross-linking reagents and a coupling chemistry at neutral pH that is compatible with the structural integrity of most protein complexes. In addition to cross-links formed through insertion of the dihydrazides with different spacer lengths, zero-length cross-link products are also obtained, thereby providing additional structural information. We demonstrate the application of the reaction and the MS identification of the resulting cross-linked peptides for the chaperonin TRiC/CCT and the 26S proteasome. The results indicate that the targeting of acidic residues for cross-linking provides distance restraints that are complementary and orthogonal to those obtained from lysine cross-linking, thereby expanding the yield of structural information that can be obtained from cross-linking studies and used in hybrid modeling approaches. PMID:24938783

  12. Chemical cross-linking/mass spectrometry targeting acidic residues in proteins and protein complexes

    PubMed Central

    Leitner, Alexander; Joachimiak, Lukasz A.; Unverdorben, Pia; Walzthoeni, Thomas; Frydman, Judith; Förster, Friedrich; Aebersold, Ruedi

    2014-01-01

    The study of proteins and protein complexes using chemical cross-linking followed by the MS identification of the cross-linked peptides has found increasingly widespread use in recent years. Thus far, such analyses have used almost exclusively homobifunctional, amine-reactive cross-linking reagents. Here we report the development and application of an orthogonal cross-linking chemistry specific for carboxyl groups. Chemical cross-linking of acidic residues is achieved using homobifunctional dihydrazides as cross-linking reagents and a coupling chemistry at neutral pH that is compatible with the structural integrity of most protein complexes. In addition to cross-links formed through insertion of the dihydrazides with different spacer lengths, zero-length cross-link products are also obtained, thereby providing additional structural information. We demonstrate the application of the reaction and the MS identification of the resulting cross-linked peptides for the chaperonin TRiC/CCT and the 26S proteasome. The results indicate that the targeting of acidic residues for cross-linking provides distance restraints that are complementary and orthogonal to those obtained from lysine cross-linking, thereby expanding the yield of structural information that can be obtained from cross-linking studies and used in hybrid modeling approaches. PMID:24938783

  13. The transition zone protein Rpgrip1l regulates proteasomal activity at the primary cilium

    PubMed Central

    Lier, Johanna Maria; Burmühl, Stephan; Struchtrup, Andreas; Deutschmann, Kathleen; Vetter, Maik; Leu, Tristan; Reeg, Sandra; Grune, Tilman; Rüther, Ulrich

    2015-01-01

    Mutations in RPGRIP1L result in severe human diseases called ciliopathies. To unravel the molecular function of RPGRIP1L, we analyzed Rpgrip1l−/− mouse embryos, which display a ciliopathy phenotype and die, at the latest, around birth. In these embryos, cilia-mediated signaling was severely disturbed. Defects in Shh signaling suggested that the Rpgrip1l deficiency causes an impairment of protein degradation and protein processing. Indeed, we detected a cilia-dependent decreased proteasomal activity in the absence of Rpgrip1l. We found different proteasomal components localized to cilia and identified Psmd2, a component of the regulatory proteasomal 19S subunit, as an interaction partner for Rpgrip1l. Quantifications of proteasomal substrates demonstrated that Rpgrip1l regulates proteasomal activity specifically at the basal body. Our study suggests that Rpgrip1l controls ciliary signaling by regulating the activity of the ciliary proteasome via Psmd2. PMID:26150391

  14. Calcium-dependent proteasome activation is required for axonal neurofilament degradation.

    PubMed

    Park, Joo Youn; Jang, So Young; Shin, Yoon Kyung; Suh, Duk Joon; Park, Hwan Tae

    2013-12-25

    Even though many studies have identified roles of proteasomes in axonal degeneration, the molecular mechanisms by which axonal injury regulates proteasome activity are still unclear. In the present study, we found evidence indicating that extracellular calcium influx is an upstream regulator of proteasome activity during axonal degeneration in injured peripheral nerves. In degenerating axons, the increase in proteasome activity and the degradation of ubiquitinated proteins were significantly suppressed by extracellular calcium chelation. In addition, electron microscopic findings revealed selective inhibition of neurofilament degradation, but not microtubule depolymerization or mitochondrial swelling, by the inhibition of calpain and proteasomes. Taken together, our findings suggest that calcium increase and subsequent proteasome activation are an essential initiator of neurofilament degradation in Wallerian degeneration.

  15. Quantitative time-resolved analysis reveals intricate, differential regulation of standard- and immuno-proteasomes.

    PubMed

    Liepe, Juliane; Holzhütter, Hermann-Georg; Bellavista, Elena; Kloetzel, Peter M; Stumpf, Michael P H; Mishto, Michele

    2015-01-01

    Proteasomal protein degradation is a key determinant of protein half-life and hence of cellular processes ranging from basic metabolism to a host of immunological processes. Despite its importance the mechanisms regulating proteasome activity are only incompletely understood. Here we use an iterative and tightly integrated experimental and modelling approach to develop, explore and validate mechanistic models of proteasomal peptide-hydrolysis dynamics. The 20S proteasome is a dynamic enzyme and its activity varies over time because of interactions between substrates and products and the proteolytic and regulatory sites; the locations of these sites and the interactions between them are predicted by the model, and experimentally supported. The analysis suggests that the rate-limiting step of hydrolysis is the transport of the substrates into the proteasome. The transport efficiency varies between human standard- and immuno-proteasomes thereby impinging upon total degradation rate and substrate cleavage-site usage.

  16. Computational Approaches for the Discovery of Human Proteasome Inhibitors: An Overview.

    PubMed

    Guedes, Romina A; Serra, Patrícia; Salvador, Jorge A R; Guedes, Rita C

    2016-01-01

    Proteasome emerged as an important target in recent pharmacological research due to its pivotal role in degrading proteins in the cytoplasm and nucleus of eukaryotic cells, regulating a wide variety of cellular pathways, including cell growth and proliferation, apoptosis, DNA repair, transcription, immune response, and signaling processes. The last two decades witnessed intensive efforts to discover 20S proteasome inhibitors with significant chemical diversity and efficacy. To date, the US FDA approved to market three proteasome inhibitors: bortezomib, carfilzomib, and ixazomib. However new, safer and more efficient drugs are still required. Computer-aided drug discovery has long being used in drug discovery campaigns targeting the human proteasome. The aim of this review is to illustrate selected in silico methods like homology modeling, molecular docking, pharmacophore modeling, virtual screening, and combined methods that have been used in proteasome inhibitors discovery. Applications of these methods to proteasome inhibitors discovery will also be presented and discussed to raise improvements in this particular field. PMID:27438821

  17. Quantitative time-resolved analysis reveals intricate, differential regulation of standard- and immuno-proteasomes.

    PubMed

    Liepe, Juliane; Holzhütter, Hermann-Georg; Bellavista, Elena; Kloetzel, Peter M; Stumpf, Michael P H; Mishto, Michele

    2015-01-01

    Proteasomal protein degradation is a key determinant of protein half-life and hence of cellular processes ranging from basic metabolism to a host of immunological processes. Despite its importance the mechanisms regulating proteasome activity are only incompletely understood. Here we use an iterative and tightly integrated experimental and modelling approach to develop, explore and validate mechanistic models of proteasomal peptide-hydrolysis dynamics. The 20S proteasome is a dynamic enzyme and its activity varies over time because of interactions between substrates and products and the proteolytic and regulatory sites; the locations of these sites and the interactions between them are predicted by the model, and experimentally supported. The analysis suggests that the rate-limiting step of hydrolysis is the transport of the substrates into the proteasome. The transport efficiency varies between human standard- and immuno-proteasomes thereby impinging upon total degradation rate and substrate cleavage-site usage. PMID:26393687

  18. Changes in expression of proteasome in rats at different stages of atherosclerosis.

    PubMed

    Ismawati; Oenzil, Fadil; Yanwirasti; Yerizel, Eti

    2016-06-01

    It has been suggested that proteasome system has a role in initiation, progression, and complication stages of atherosclerosis. Although there is still controversy, there has been no research that compares the expression of proteasome in tissue and serum at each of these stages. This study aimed to investigated the expression of proteasome at different stages of atherosclerosis using rat model. We measured the expression of aortic proteasome by immunohistochemical analyses and were then analyzed using ImageJ software for percentage of area and integrated density. We used Photoshop version 3.0 to analyze aortic proteasome expression as a comparison. We measured serum proteasome expression by enzyme linked immunosorbents assays. Kruskal-Wallis test was used to compare mean value of percentage of area and serum proteasome. Analysis of variance test was used to compare mean value of integrated density. Correlation test between vascular proteasome expression and serum proteasome expression was made using Spearman test. A P-value of 0.05 was considered statistically significant. Compared with normal, percentage of area was higher in initiation, progression, and complication. Compared with normal, integrated density was higher in initiation and further higher in progression and complication. Data from Image J is similar with data from Photoshop. Serum proteasome expression was higher in initiation compared with normal, and further higher in progression and complication. It was concluded that there were different vascular proteasome expression and serum proteasome expression at the stages of atherosclerosis. These results may be used in research into new marker and therapeutic target in atherosclerosis.

  19. Changes in expression of proteasome in rats at different stages of atherosclerosis

    PubMed Central

    Oenzil, Fadil; Yanwirasti; Yerizel, Eti

    2016-01-01

    It has been suggested that proteasome system has a role in initiation, progression, and complication stages of atherosclerosis. Although there is still controversy, there has been no research that compares the expression of proteasome in tissue and serum at each of these stages. This study aimed to investigated the expression of proteasome at different stages of atherosclerosis using rat model. We measured the expression of aortic proteasome by immunohistochemical analyses and were then analyzed using ImageJ software for percentage of area and integrated density. We used Photoshop version 3.0 to analyze aortic proteasome expression as a comparison. We measured serum proteasome expression by enzyme linked immunosorbents assays. Kruskal-Wallis test was used to compare mean value of percentage of area and serum proteasome. Analysis of variance test was used to compare mean value of integrated density. Correlation test between vascular proteasome expression and serum proteasome expression was made using Spearman test. A P-value of 0.05 was considered statistically significant. Compared with normal, percentage of area was higher in initiation, progression, and complication. Compared with normal, integrated density was higher in initiation and further higher in progression and complication. Data from Image J is similar with data from Photoshop. Serum proteasome expression was higher in initiation compared with normal, and further higher in progression and complication. It was concluded that there were different vascular proteasome expression and serum proteasome expression at the stages of atherosclerosis. These results may be used in research into new marker and therapeutic target in atherosclerosis. PMID:27382511

  20. Clinical Use of Proteasome Inhibitors in the Treatment of Multiple Myeloma

    PubMed Central

    Merin, Noah M.; Kelly, Kevin R.

    2014-01-01

    Multiple myeloma (MM) is an incurable hematological malignancy characterized by the clonal proliferation of neoplastic plasma cells. The use of proteasome inhibitors in the treatment of MM has led to significant improvements in outcomes. This article reviews data on the use of the two approved proteasome inhibitors (bortezomib and carlfilzomib), as well as newer agents under development. Emphasis is placed on the clinical use of proteasome inhibitors, including management of side effects and combination with other agents. PMID:25545164

  1. Proteasome inhibitors induce apoptosis and reduce viral replication in primary effusion lymphoma cells.

    PubMed

    Saji, Chiaki; Higashi, Chizuka; Niinaka, Yasufumi; Yamada, Koji; Noguchi, Kohji; Fujimuro, Masahiro

    2011-12-01

    Primary effusion lymphoma (PEL) is an aggressive neoplasm caused by Kaposi's sarcoma-associated herpesvirus (KSHV). This study provides evidence that proteasomal activity is required for both survival of PEL cells stably harboring the KSHV genome and viral replication of KSHV. We evaluated the cytotoxic effects of proteasome inhibitors on PEL cells. The proteasome inhibitors MG132, lactacystin, and proteasome inhibitor I dramatically inhibited cell proliferation and induced apoptosis of PEL cells through the accumulation of p21 and p27. Furthermore, proteasome inhibitors induced the stabilization of NF-κB inhibitory molecule (IκBα) and suppressed the transcriptional activity of NF-κB in PEL cells. The NF-κB specific inhibitor BAY11-7082 also induced apoptosis in PEL cells. The constitutive activation of NF-κB signaling is essential for the survival and growth of B cell lymphoma cells, including PEL cells. NF-κB signaling is upregulated by proteasome-dependent degradation of IκBα. The suppression of NF-κB signaling by proteasome inhibitors may contribute to the induction of apoptosis in PEL cells. In addition, proteasome activity is required for KSHV replication in KSHV latently infected PEL cells. MG132 reduced the production of progeny virus from PEL cells at low concentrations, which do not affect PEL cell growth. These findings suggest that proteasome inhibitors may represent a novel strategy for the treatment of KSHV infection and KSHV-associated lymphomas.

  2. Structural analysis of the dodecameric proteasome activator PafE in Mycobacterium tuberculosis

    DOE PAGES

    Bai, Lin; Hu, Kuan; Wang, Tong; Jastrab, Jordan B.; Darwin, K. Heran; Li, Huilin

    2016-03-21

    Here, the human pathogen Mycobacterium tuberculosis (Mtb) requires a proteasome system to cause lethal infections in mice. We recently found that proteasome accessory factor E (PafE, Rv3780) activates proteolysis by the Mtb proteasome independently of adenosine triphosphate (ATP). Moreover, PafE contributes to the heat-shock response and virulence of Mtb. Here, we show that PafE subunits formed four-helix bundles similar to those of the eukaryotic ATP-independent proteasome activator subunits of PA26 and PA28. However, unlike any other known proteasome activator, PafE formed dodecamers with 12-fold symmetry, which required a glycine-XXX-glycine-XXX-glycine motif that is not found in previously described activators. Intriguingly, themore » truncation of the PafE carboxyl-terminus resulted in the robust binding of PafE rings to native proteasome core particles and substantially increased proteasomal activity, suggesting that the extended carboxyl-terminus of this cofactor confers suboptimal binding to the proteasome core particle. Collectively, our data show that proteasomal activation is not limited to hexameric ATPases in bacteria.« less

  3. Assembly of an Evolutionarily Conserved Alternative Proteasome Isoform in Human Cells

    PubMed Central

    Padmanabhan, Achuth; Vuong, Simone Anh-Thu; Hochstrasser, Mark

    2016-01-01

    Summary Targeted intracellular protein degradation in eukaryotes is largely mediated by the proteasome. Here we report formation of an alternative proteasome isoform in human cells, previously found only in budding yeast, which bears an altered subunit arrangement in the outer ring of the proteasome core particle. These proteasomes result from incorporation of an additional α4 (PSMA7) subunit in the position normally occupied by α3 (PSMA4). Assembly of ‘α4-α4’ proteasomes depends on the relative cellular levels of α4 and α3, and on the proteasome assembly chaperone PAC3. The oncogenic tyrosine kinases ABL and ARG and the tumor suppressor BRCA1 regulate cellular α4 levels and formation of α4-α4 proteasomes. Cells primed to assemble α4-α4 proteasomes exhibit enhanced resistance to toxic metal ions. Taken together, our results establish the existence of a novel mammalian proteasome isoform and suggest a potential role in enabling cells to adapt to environmental stresses. PMID:26997268

  4. Structural analysis of the dodecameric proteasome activator PafE in Mycobacterium tuberculosis.

    PubMed

    Bai, Lin; Hu, Kuan; Wang, Tong; Jastrab, Jordan B; Darwin, K Heran; Li, Huilin

    2016-04-01

    The human pathogen Mycobacterium tuberculosis (Mtb) requires a proteasome system to cause lethal infections in mice. We recently found that proteasome accessory factor E (PafE, Rv3780) activates proteolysis by the Mtb proteasome independently of adenosine triphosphate (ATP). Moreover, PafE contributes to the heat-shock response and virulence of Mtb Here, we show that PafE subunits formed four-helix bundles similar to those of the eukaryotic ATP-independent proteasome activator subunits of PA26 and PA28. However, unlike any other known proteasome activator, PafE formed dodecamers with 12-fold symmetry, which required a glycine-XXX-glycine-XXX-glycine motif that is not found in previously described activators. Intriguingly, the truncation of the PafE carboxyl-terminus resulted in the robust binding of PafE rings to native proteasome core particles and substantially increased proteasomal activity, suggesting that the extended carboxyl-terminus of this cofactor confers suboptimal binding to the proteasome core particle. Collectively, our data show that proteasomal activation is not limited to hexameric ATPases in bacteria. PMID:27001842

  5. Structural analysis of the dodecameric proteasome activator PafE in Mycobacterium tuberculosis

    PubMed Central

    Bai, Lin; Hu, Kuan; Wang, Tong; Jastrab, Jordan B.; Darwin, K. Heran; Li, Huilin

    2016-01-01

    The human pathogen Mycobacterium tuberculosis (Mtb) requires a proteasome system to cause lethal infections in mice. We recently found that proteasome accessory factor E (PafE, Rv3780) activates proteolysis by the Mtb proteasome independently of adenosine triphosphate (ATP). Moreover, PafE contributes to the heat-shock response and virulence of Mtb. Here, we show that PafE subunits formed four-helix bundles similar to those of the eukaryotic ATP-independent proteasome activator subunits of PA26 and PA28. However, unlike any other known proteasome activator, PafE formed dodecamers with 12-fold symmetry, which required a glycine-XXX-glycine-XXX-glycine motif that is not found in previously described activators. Intriguingly, the truncation of the PafE carboxyl-terminus resulted in the robust binding of PafE rings to native proteasome core particles and substantially increased proteasomal activity, suggesting that the extended carboxyl-terminus of this cofactor confers suboptimal binding to the proteasome core particle. Collectively, our data show that proteasomal activation is not limited to hexameric ATPases in bacteria. PMID:27001842

  6. The tumor suppressor ING3 is degraded by SCF(Skp2)-mediated ubiquitin-proteasome system.

    PubMed

    Chen, G; Wang, Y; Garate, M; Zhou, J; Li, G

    2010-03-11

    The inhibitor of growth family member 3 (ING3) has been shown to modulate transcription, cell cycle control and apoptosis. We previously reported that nuclear ING3 expression was remarkably reduced in melanomas, which correlated with a poorer patient survival, suggesting that decreased ING3 expression may be associated with melanoma progression. However, the mechanism of diminished ING3 expression in melanoma is not clear. Here we show that ING3 level was decreased in metastatic melanoma cells because of a rapid degradation. Furthermore, we showed that ING3 undergoes degradation through the ubiquitin-proteasome pathway. ING3 physically interacts with subunits of E3 ligase Skp1-Cullin-F-box protein complex (SCF complex). Knockdown of F-box protein S-phase kinase-associated protein 2 (Skp2) reduces the ubiquitination of ING3 and significantly stabilizes ING3 in melanoma cells. In addition, lysine 96 residue is essential for ING3 ubiquitination as its mutation to arginine dramatically abrogated ING3 degradation. Disruption of ING3 degradation stimulated ING3-induced G1 cell-cycle arrest and enhanced ultraviolet-induced apoptosis. Taken together, our data show that ING3 is degraded by the ubiquitin-proteasome pathway through the SCF(Skp2) complex and interruption of ING3 degradation enhances the tumor-suppressive function of ING3, which provides a potential cancer therapeutic approach by interfering ING3 degradation. PMID:19935701

  7. [Detection and analysis of Tetrahymena pyriformis 26S ribosomal DNA domain sequences, differing in degree of evolutionary conservation].

    PubMed

    Mukha, D V; Sidorenko, A P

    1995-01-01

    Domains of different evolutionary conservatism were defined in the 26S rDNA sequence of T. pyriformis. The fragment of studied DNA (1212 bp) showing high evolutionary conservatism was cloned. It was shown this fragment of DNA may be used to a probe for blot-hybridization analysis of the structure of rDNA from various taxa, protists to mammals. Superconservative and hypervariable domains were defined. The first are good for the primers for PCR analysis of rDNA from various taxa, the second--for species specific primers.

  8. The Ubiquitin–Proteasome System of Saccharomyces cerevisiae

    PubMed Central

    Finley, Daniel; Ulrich, Helle D.; Sommer, Thomas; Kaiser, Peter

    2012-01-01

    Protein modifications provide cells with exquisite temporal and spatial control of protein function. Ubiquitin is among the most important modifiers, serving both to target hundreds of proteins for rapid degradation by the proteasome, and as a dynamic signaling agent that regulates the function of covalently bound proteins. The diverse effects of ubiquitylation reflect the assembly of structurally distinct ubiquitin chains on target proteins. The resulting ubiquitin code is interpreted by an extensive family of ubiquitin receptors. Here we review the components of this regulatory network and its effects throughout the cell. PMID:23028185

  9. JMJ24 targets CHROMOMETHYLASE3 for proteasomal degradation in Arabidopsis

    PubMed Central

    Deng, Shulin; Jang, In-Cheol; Su, Linlin; Xu, Jun; Chua, Nam-Hai

    2016-01-01

    H3K9 methylation is usually associated with DNA methylation, and together they symbolize transcriptionally silenced heterochromatin. A number of proteins involved in epigenetic processes have been characterized. However, how the stability of these proteins is regulated at the post-translational level is largely unknown. Here, we show that an Arabidopsis JmjC domain protein, JMJ24, possesses ubiquitin E3 ligase activity. JMJ24 directly targets a DNA methyltransferase, CHROMOMETHYLASE 3 (CMT3), for proteasomal degradation to initiate destabilization of the heterochromatic state of endogenous silenced loci. Our results uncover an additional connection between two conserved epigenetic modifications: histone modification and DNA methylation. PMID:26798133

  10. RHOBTB3 promotes proteasomal degradation of HIFα through facilitating hydroxylation and suppresses the Warburg effect

    PubMed Central

    Zhang, Chen-Song; Liu, Qi; Li, Mengqi; Lin, Shu-Yong; Peng, Yongying; Wu, Di; Li, Terytty Yang; Fu, Qiang; Jia, Weiping; Wang, Xinjun; Ma, Teng; Zong, Yue; Cui, Jiwen; Pu, Chengfei; Lian, Guili; Guo, Huiling; Ye, Zhiyun; Lin, Sheng-Cai

    2015-01-01

    Hypoxia-inducible factors (HIFs) are master regulators of adaptive responses to low oxygen, and their α-subunits are rapidly degraded through the ubiquitination-dependent proteasomal pathway after hydroxylation. Aberrant accumulation or activation of HIFs is closely linked to many types of cancer. However, how hydroxylation of HIFα and its delivery to the ubiquitination machinery are regulated remains unclear. Here we show that Rho-related BTB domain-containing protein 3 (RHOBTB3) directly interacts with the hydroxylase PHD2 to promote HIFα hydroxylation. RHOBTB3 also directly interacts with the von Hippel-Lindau (VHL) protein, a component of the E3 ubiquitin ligase complex, facilitating ubiquitination of HIFα. Remarkably, RHOBTB3 dimerizes with LIMD1, and constructs a RHOBTB3/LIMD1-PHD2-VHL-HIFα complex to effect the maximal degradation of HIFα. Hypoxia reduces the RHOBTB3-centered complex formation, resulting in an accumulation of HIFα. Importantly, the expression level of RHOBTB3 is greatly reduced in human renal carcinomas, and RHOBTB3 deficiency significantly elevates the Warburg effect and accelerates xenograft growth. Our work thus reveals that RHOBTB3 serves as a scaffold to organize a multi-subunit complex that promotes the hydroxylation, ubiquitination and degradation of HIFα. PMID:26215701

  11. Cables1 controls p21/Cip1 protein stability by antagonizing proteasome subunit alpha type 3.

    PubMed

    Shi, Z; Li, Z; Li, Z J; Cheng, K; Du, Y; Fu, H; Khuri, F R

    2015-05-01

    The cyclin-dependent kinase (CDK) inhibitor 1A, p21/Cip1, is a vital cell cycle regulator, dysregulation of which has been associated with a large number of human malignancies. One critical mechanism that controls p21 function is through its degradation, which allows the activation of its associated cell cycle-promoting kinases, CDK2 and CDK4. Thus delineating how p21 is stabilized and degraded will enhance our understanding of cell growth control and offer a basis for potential therapeutic interventions. Here we report a novel regulatory mechanism that controls the dynamic status of p21 through its interaction with Cdk5 and Abl enzyme substrate 1 (Cables1). Cables1 has a proposed role as a tumor suppressor. We found that upregulation of Cables1 protein was correlated with increased half-life of p21 protein, which was attributed to Cables1/p21 complex formation and supported by their co-localization in the nucleus. Mechanistically, Cables1 interferes with the proteasome (Prosome, Macropain) subunit alpha type 3 (PSMA3) binding to p21 and protects p21 from PSMA3-mediated proteasomal degradation. Moreover, silencing of p21 partially reverses the ability of Cables1 to induce cell death and inhibit cell proliferation. In further support of a potential pathophysiological role of Cables1, the expression level of Cables1 is tightly associated with p21 in both cancer cell lines and human lung cancer patient tumor samples. Together, these results suggest Cables1 as a novel p21 regulator through maintaining p21 stability and support the model that the tumor-suppressive function of Cables1 occurs at least in part through enhancing the tumor-suppressive activity of p21. PMID:24975575

  12. Structure of the Mycobacterium tuberculosis proteasome and mechanism of inhibition by a peptidyl boronate

    SciTech Connect

    Hu,G.; Lin, G.; Wang, M.; Dick, L.; Xu, R.; Nathan, C.; Li, H.

    2006-01-01

    Mycobacterium tuberculosis (Mtb) has the remarkable ability to resist killing by human macrophages. The 750 kDa proteasome, not available in most eubacteria except Actinomycetes, appears to contribute to Mtb's resistance. The crystal structure of the Mtb proteasome at 3.0 Angstroms resolution reveals a substrate-binding pocket with composite features of the distinct {beta}1, {beta}2 and {beta}5 substrate binding sites of eukaryotic proteasomes, accounting for the broad specificity of the Mtb proteasome towards oligopeptides described in the companion article [Lin et al. (2006), Mol Microbiol doi:10.1111/j.1365-2958.2005.05035.x]. The substrate entrance at the end of the cylindrical proteasome appears open in the crystal structure due to partial disorder of the a-subunit N-terminal residues. However, cryo-electron microscopy of the core particle reveals a closed end, compatible with the density observed in negative-staining electron microscopy that depended on the presence of the N-terminal octapeptides of the a-subunits in the companion article, suggesting that the Mtb proteasome has a gated structure. We determine for the first time the proteasomal inhibition mechanism of the dipeptidyl boronate N-(4-morpholine)carbonyl-{beta}-(1-naphthyl)-l-alanine-l-leucine boronic acid (MLN-273), an analogue of the antimyeloma drug bortezomib. The structure improves prospects for designing Mtb-specific proteasomal inhibitors as a novel approach to chemotherapy of tuberculosis.

  13. Ubiquitin enzymes, ubiquitin and proteasome activity in blood mononuclear cells of MCI, Alzheimer and Parkinson patients.

    PubMed

    Ullrich, C; Mlekusch, R; Kuschnig, A; Marksteiner, J; Humpel, C

    2010-09-01

    Alzheimer's disease (AD) is a severe chronic neurodegenerative disease. During aging and neurodegeneration, misfolded proteins accumulate and activate the ubiquitin-proteasome system. The aim of the present study is to explore whether ubiquitin-activating enzyme E1, ubiquitin-conjugating enzyme E2, ubiquitin or proteasome activity are affected in peripheral blood mononuclear cells (PBMC) of AD, mild cognitive impairment (MCI) and Parkinson's disease (PD) patients compared to healthy subjects. PBMCs were isolated from EDTA blood samples and extracts were analyzed by Western Blot. Proteasome activity was measured with fluorogenic substrates. When compared to healthy subjects, the concentration of enzyme E1 was increased in PBMCs of AD patients, whereas the concentration of the enzyme E2 was decreased in these same patients. Ubiquitin levels and proteasome activity were unchanged in AD patients. No changes in enzyme expression or proteasome activity was observed in MCI patients compared to healthy and AD subjects. In PD patients E2 levels and proteasomal activity were significantly reduced, while ubiquitin and E1 levels were unchanged. The present investigation demonstrates the differences in enzyme and proteasome activity patterns of AD and PD patients. These results suggest that different mechanisms are involved in regulating the ubiquitin-proteasomal system in different neurodegenerative diseases.

  14. The aspartyl protease DDI2 activates Nrf1 to compensate for proteasome dysfunction

    PubMed Central

    Koizumi, Shun; Irie, Taro; Hirayama, Shoshiro; Sakurai, Yasuyuki; Yashiroda, Hideki; Naguro, Isao; Ichijo, Hidenori; Hamazaki, Jun; Murata, Shigeo

    2016-01-01

    In response to proteasome dysfunction, mammalian cells upregulate proteasome gene expression by activating Nrf1. Nrf1 is an endoplasmic reticulum-resident transcription factor that is continually retrotranslocated and degraded by the proteasome. Upon proteasome inhibition, Nrf1 escapes degradation and is cleaved to become active. However, the processing enzyme for Nrf1 remains obscure. Here we show that the aspartyl protease DNA-damage inducible 1 homolog 2 (DDI2) is required to cleave and activate Nrf1. Deletion of DDI2 reduced the cleaved form of Nrf1 and increased the full-length cytosolic form of Nrf1, resulting in poor upregulation of proteasomes in response to proteasome inhibition. These defects were restored by adding back wild-type DDI2 but not protease-defective DDI2. Our results provide a clue for blocking compensatory proteasome synthesis to improve cancer therapies targeting proteasomes. DOI: http://dx.doi.org/10.7554/eLife.18357.001 PMID:27528193

  15. Secomycalolide A: A New Proteasome Inhibitor Isolated from a Marine Sponge of the Genus Mycale

    PubMed Central

    Tsukamoto, Sachiko; Koimaru, Keiichirou; Ohta, Tomihisa

    2005-01-01

    A new oxazole-containing proteasome inhibitor, secomycalolide A, together with known mycalolide A and 30-hydroxymycalolide A, was isolated from a marine sponge of the genus Mycale. They showed proteasome inhibitory activities with IC50 values of 11–45 μg/mL.

  16. Proteasome inhibitors reduce luciferase and beta-galactosidase activity in tissue culture cells.

    PubMed

    Deroo, Bonnie J; Archer, Trevor K

    2002-06-01

    Reporter enzymes are commonly used in cell biology to study transcriptional activity of genes. Recently, reporter enzymes in combination with compounds that inhibit proteasome function have been used to study the effect of blocking transcription factor degradation on gene activation. While investigating the effect of proteasome inhibition on steroid receptor activation of the mouse mammary tumor virus (MMTV) promoter, we found that treatment with proteasome inhibitors enhanced glucocorticoid activation of the promoter attached to a chloramphenicol acetyltransferase (CAT) reporter, but inhibited activation of MMTV attached to a firefly luciferase or beta-galactosidase reporter. MMTV RNA levels under these conditions correlated with the promoter activity observed using the CAT reporter, suggesting that proteasome inhibitor treatment interfered with luciferase or beta-galactosidase reporter assays. Washout experiments demonstrated that the majority of luciferase activity was lost if the proteasome inhibitor was added at the same time luciferase was produced, not once the functional protein was made, suggesting that proteasome inhibition interferes with production of luciferase protein. Indeed, we found that proteasome inhibitor treatment dramatically reduced the levels of luciferase and beta-galactosidase protein produced, as determined by Western blot. Thus, treatment with proteasome inhibitors interferes with luciferase and beta-galactosidase reporter assays, possibly by inhibiting production of a functional reporter protein.

  17. A novel combination treatment for breast cancer cells involving BAPTA-AM and proteasome inhibitor bortezomib

    PubMed Central

    YERLIKAYA, AZMI; ERDOĞAN, ELIF; OKUR, EMRAH; YERLIKAYA, ŞERIFE; SAVRAN, BIRCAN

    2016-01-01

    Glucose-regulated protein 78 kDa/binding immunoglobulin protein (GRP78/BIP) is a well-known endoplasmic reticulum (ER) chaperone protein regulating ER stress by facilitating protein folding, assembly and Ca2+ binding. GRP78 is also a member of the heat shock protein 70 gene family and induces tumor cell survival and resistance to chemotherapeutics. Bortezomib is a highly specific 26S proteasome inhibitor that has been approved as treatment for patients with multiple myeloma. The present study first examined the dose- and time-dependent effects of bortezomib on GRP78 expression levels in the highly metastatic mouse breast cancer 4T1 cell line using western blot analysis. The analysis results revealed that GRP78 levels were significantly increased by bortezomib at a dose as low as 10 nM. Time-dependent experiments indicated that the accumulation of GRP78 was initiated after a 24 h incubation period following the addition of 10 nM bortezomib. Subsequently, the present study determined the half maximal inhibitory concentration of intracellular calcium chelator BAPTA-AM (13.6 µM) on 4T1 cells. The combination effect of BAPTA-AM and bortezomib on the 4T1 cells was investigated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and WST-1 assays and an iCELLigence system. The results revealed that the combination of 10 nM bortezomib + 5 µM BAPTA-AM is more cytotoxic compared with monotherapies, including 10 nM bortezomib, 1 µM BAPTA-AM and 5 µM BAPTA-AM. In addition, the present results revealed that bortezomib + BAPTA-AM combination causes cell death through the induction of apoptosis. The present results also revealed that bortezomib + BAPTA-AM combination-induced apoptosis is associated with a clear increase in the phosphorylation of stress-activated protein kinase/Jun amino-terminal kinase SAPK/JNK. Overall, the present results suggest that bortezomib and BAPTA-AM combination therapy may be a novel therapeutic strategy for breast cancer treatment

  18. The anaphase promoting complex is required for memory function in mice.

    PubMed

    Kuczera, Tanja; Stilling, Roman Manuel; Hsia, Hung-En; Bahari-Javan, Sanaz; Irniger, Stefan; Nasmyth, Kim; Sananbenesi, Farahnaz; Fischer, Andre

    2011-01-01

    Learning and memory processes critically involve the orchestrated regulation of de novo protein synthesis. On the other hand it has become clear that regulated protein degradation also plays a major role in neuronal plasticity and learning behavior. One of the key pathways mediating protein degradation is proteosomal protein destruction. The anaphase-promoting complex/cyclosome (APC/C) is an E3 ubiquitin ligase that targets proteins for proteosomal degradation by the 26S proteasome. While the APC/C is essential for cell cycle progression it is also expressed in postmitotic neurons where it has been implicated with axonal outgrowth and neuronal survival. In this study we addressed the role of APC/C in learning and memory function by generating mice that lack the essential subunit APC2 from excitatory neurons of the adult forebrain. Those animals are viable but exhibit a severe impairment in the ability to extinct fear memories, a process critical for the treatment of anxiety diseases such as phobia or post-traumatic stress disorder. Since deregulated protein degradation and APC/C activity has been implicated with neurodegeneration we also analyzed the effect of Apc2 deletion in a mouse model for Alzheimer's disease. In our experimental setting loss of APC2 form principle forebrain neurons did not affect the course of pathology in an Alzheimer's disease mouse model. In conclusion, our data provides genetic evidence that APC/C activity in the adult forebrain is required for cognitive function.

  19. Ubiquitination and proteasomal degradation of ATG12 regulates its proapoptotic activity

    PubMed Central

    Haller, Martina; Hock, Andreas K; Giampazolias, Evangelos; Oberst, Andrew; Green, Douglas R; Debnath, Jayanta; Ryan, Kevin M; Vousden, Karen H; Tait, Stephen W G

    2015-01-01

    During macroautophagy, conjugation of ATG12 to ATG5 is essential for LC3 lipidation and autophagosome formation. Additionally, ATG12 has ATG5-independent functions in diverse processes including mitochondrial fusion and mitochondrial-dependent apoptosis. In this study, we investigated the regulation of free ATG12. In stark contrast to the stable ATG12–ATG5 conjugate, we find that free ATG12 is highly unstable and rapidly degraded in a proteasome-dependent manner. Surprisingly, ATG12, itself a ubiquitin-like protein, is directly ubiquitinated and this promotes its proteasomal degradation. As a functional consequence of its turnover, accumulation of free ATG12 contributes to proteasome inhibitor-mediated apoptosis, a finding that may be clinically important given the use of proteasome inhibitors as anticancer agents. Collectively, our results reveal a novel interconnection between autophagy, proteasome activity, and cell death mediated by the ubiquitin-like properties of ATG12. PMID:25629932

  20. A Scan for Human-Specific Relaxation of Negative Selection Reveals Unexpected Polymorphism in Proteasome Genes

    PubMed Central

    Somel, Mehmet; Wilson Sayres, Melissa A.; Jordan, Gregory; Huerta-Sanchez, Emilia; Fumagalli, Matteo; Ferrer-Admetlla, Anna; Nielsen, Rasmus

    2013-01-01

    Environmental or genomic changes during evolution can relax negative selection pressure on specific loci, permitting high frequency polymorphisms at previously conserved sites. Here, we jointly analyze population genomic and comparative genomic data to search for functional processes showing relaxed negative selection specifically in the human lineage, whereas remaining evolutionarily conserved in other mammals. Consistent with previous studies, we find that olfactory receptor genes display such a signature of relaxation in humans. Intriguingly, proteasome genes also show a prominent signal of human-specific relaxation: multiple proteasome subunits, including four members of the catalytic core particle, contain high frequency nonsynonymous polymorphisms at sites conserved across mammals. Chimpanzee proteasome genes do not display a similar trend. Human proteasome genes also bear no evidence of recent positive or balancing selection. These results suggest human-specific relaxation of negative selection in proteasome subunits; the exact biological causes, however, remain unknown. PMID:23699470

  1. Proteasome inhibitors induce p53-independent apoptosis in human cancer cells.

    PubMed

    Pandit, Bulbul; Gartel, Andrei L

    2011-01-01

    Proteasome inhibitors are used against human cancer, but their mechanisms of action are not entirely understood. For example, the role of the tumor suppressor p53 is controversial. We reevaluated the role of p53 in proteasome inhibitor-induced apoptosis by using isogenic human cancer cell lines with different p53 status. We found that well-known proteasome inhibitors such as MG132 and bortezomib, as well as the recently discovered proteasome inhibitor thiostrepton, induced p53-independent apoptosis in human cancer cell lines that correlated with p53-independent induction of proapoptotic Noxa but not Puma protein. In addition, these drugs inhibited growth of several cancer cell lines independently of p53 status. Notably, thiostrepton induced more potent apoptosis in HepG2 cells with p53 knockdown than in parental cells with wild-type p53. Our data confirm that proteasome inhibitors generally induce p53-independent apoptosis in human cancer cells.

  2. Hyperfine structure of the 4{f}^{8}5{d}^{2}6s configuration in the Tb atom

    NASA Astrophysics Data System (ADS)

    Furmann, B.; Stefanska, D.; Krzykowski, A.

    2016-01-01

    Within this work new experimental results concerning the hyperfine structure (hfs) in the terbium atom are presented. Hfs constants A and B for eight levels belonging to the even-parity configuration 4{f}85{d}26s were determined, based on the results of measurements performed using the laser-induced fluorescence method in a hollow cathode discharge at 18 spectral lines. The configuration 4{f}85{d}26s in the terbium atom was hitherto very scarcely investigated; for seven of the levels examined within this work results concerning the hfs were obtained for the first time. As a by-product, hfs constants for 12 odd-parity levels, involved as upper levels in the transitions investigated, were also determined. A preliminary attempt at a semi-empirical analysis of Tb I hfs on a multi-configuration basis, based on the results of this work, yielded a value of the one-electron {a}6s10 parameter as well as the respective radial integral {< {r}-3> }6s10, which can be compared with the values along the lanthanide elements series reported in the literature. More conclusive results can certainly be obtained once the experimental database for Tb I becomes more extensive.

  3. Disease-proportional proteasomal degradation of missense dystrophins.

    PubMed

    Talsness, Dana M; Belanto, Joseph J; Ervasti, James M

    2015-10-01

    The 427-kDa protein dystrophin is expressed in striated muscle where it physically links the interior of muscle fibers to the extracellular matrix. A range of mutations in the DMD gene encoding dystrophin lead to a severe muscular dystrophy known as Duchenne (DMD) or a typically milder form known as Becker (BMD). Patients with nonsense mutations in dystrophin are specifically targeted by stop codon read-through drugs, whereas out-of-frame deletions and insertions are targeted by exon-skipping therapies. Both treatment strategies are currently in clinical trials. Dystrophin missense mutations, however, cause a wide range of phenotypic severity in patients. The molecular and cellular consequences of such mutations are not well understood, and there are no therapies specifically targeting this genotype. Here, we have modeled two representative missense mutations, L54R and L172H, causing DMD and BMD, respectively, in full-length dystrophin. In vitro, the mutation associated with the mild phenotype (L172H) caused a minor decrease in tertiary stability, whereas the L54R mutation associated with a severe phenotype had a more dramatic effect. When stably expressed in mammalian muscle cells, the mutations caused steady-state decreases in dystrophin protein levels inversely proportional to the tertiary stability and directly caused by proteasomal degradation. Both proteasome inhibitors and heat shock activators were able to increase mutant dystrophin to WT levels, establishing the new cell lines as a platform to screen for potential therapeutics personalized to patients with destabilized dystrophin. PMID:26392559

  4. Ubiquitin, Proteasomes and Proteolytic Mechanisms Activated by Kidney Disease

    PubMed Central

    Rajan, Vik; Mitch, William E.

    2008-01-01

    Summary The ubiquitin-proteasome system (UPS) includes 3 enzymes that conjugate ubiquitin to intracellular proteins that are then recognized and degraded in the proteasome. The process participates in the regulation of cell metabolism. In the kidney, the UPS regulates the turnover of transporters and signaling proteins and its activity is down regulated in acidosis-induced proximal tubular cell hypertrophy. In chronic kidney disease (CKD), muscle wasting occurs because complications of CKD including acidosis, insulin resistance, inflammation, and increased angiotensin II levels stimulate the UPS to degrade muscle proteins. This response also includes caspase-3 and calpains which act to cleave muscle proteins to provide substrates for the UPS. For example, caspase-3 degrades actomyosin, leaving a 14kD fragment of actin in muscle. The 14 kD actin fragment is increased in muscle of patient with kidney disease, burn injury and surgery. In addition, acidosis, insulin resistance, inflammation and angiotensin II stimulate glucocorticoid production. Glucocorticoids are also required for the muscle wasting that occurs in CKD. Thus, the UPS is involved in regulating kidney function and participates in highly organized responses that degrade muscle protein in response to loss of kidney function. PMID:18723090

  5. Disease-proportional proteasomal degradation of missense dystrophins

    PubMed Central

    Talsness, Dana M.; Belanto, Joseph J.; Ervasti, James M.

    2015-01-01

    The 427-kDa protein dystrophin is expressed in striated muscle where it physically links the interior of muscle fibers to the extracellular matrix. A range of mutations in the DMD gene encoding dystrophin lead to a severe muscular dystrophy known as Duchenne (DMD) or a typically milder form known as Becker (BMD). Patients with nonsense mutations in dystrophin are specifically targeted by stop codon read-through drugs, whereas out-of-frame deletions and insertions are targeted by exon-skipping therapies. Both treatment strategies are currently in clinical trials. Dystrophin missense mutations, however, cause a wide range of phenotypic severity in patients. The molecular and cellular consequences of such mutations are not well understood, and there are no therapies specifically targeting this genotype. Here, we have modeled two representative missense mutations, L54R and L172H, causing DMD and BMD, respectively, in full-length dystrophin. In vitro, the mutation associated with the mild phenotype (L172H) caused a minor decrease in tertiary stability, whereas the L54R mutation associated with a severe phenotype had a more dramatic effect. When stably expressed in mammalian muscle cells, the mutations caused steady-state decreases in dystrophin protein levels inversely proportional to the tertiary stability and directly caused by proteasomal degradation. Both proteasome inhibitors and heat shock activators were able to increase mutant dystrophin to WT levels, establishing the new cell lines as a platform to screen for potential therapeutics personalized to patients with destabilized dystrophin. PMID:26392559

  6. Proteasome inhibitors in multiple myeloma: 10 years later

    PubMed Central

    Richardson, Paul G.; Cavo, Michele; Orlowski, Robert Z.; San Miguel, Jesús F.; Palumbo, Antonio; Harousseau, Jean-Luc

    2012-01-01

    Proteasome inhibition has emerged as an important therapeutic strategy in multiple myeloma (MM). Since the publication of the first phase 1 trials of bortezomib 10 years ago, this first-in-class proteasome inhibitor (PI) has contributed substantially to the observed improvement in survival in MM patients over the past decade. Although first approved as a single agent in the relapsed setting, bortezomib is now predominantly used in combination regimens. Furthermore, the standard twice-weekly schedule may be replaced by weekly infusion, especially when bortezomib is used as part of combination regimens in frontline therapy. Indeed, bortezomib is an established component of induction therapy for patients eligible or ineligible for autologous stem cell transplantation. Bortezomib has also been incorporated into conditioning regimens before autologous stem cell transplantation, as well as into post-ASCT consolidation therapy, and in the maintenance setting. In addition, a new route of bortezomib administration, subcutaneous infusion, has recently been approved. Recently, several new agents have been introduced into the clinic, including carfilzomib, marizomib, and MLN9708, and trials investigating these “second-generation” PIs in patients with relapsed/refractory MMs have demonstrated positive results. This review provides an overview of the role of PIs in the treatment of MM, focusing on developments over the past decade. PMID:22645181

  7. Oxidative stress and proteasome inhibitors in multiple myeloma.

    PubMed

    Lipchick, Brittany C; Fink, Emily E; Nikiforov, Mikhail A

    2016-03-01

    Multiple myeloma is a form of plasma cell neoplasm that accounts for approximately 10% of all hematological malignancies. Recently, several novel drugs have been discovered that almost doubled the overall survival of multiple myeloma patients. One of these drugs, the first-in-class proteasome inhibitor bortezomib (Velcade) has demonstrated remarkable response rates in multiple myeloma patients, and yet, currently this disease remains incurable. The major factor undermining the success of multiple myeloma treatment is a rapidly emerging resistance to the available therapy. Thus, the development of stand-alone or adjuvant anti-myeloma agents becomes of paramount importance. Overproduction of intracellular reactive oxygen species (ROS) often accompanies malignant transformation due to oncogene activation and/or enhanced metabolism in tumor cells. As a result, these cells possess higher levels of ROS and lower levels of antioxidant molecules compared to their normal counterparts. Unbalanced production of ROS leads to oxidative stress which, if left unchecked, could be toxic for the cell. In multiple myeloma cells where high rates of immunoglobulin synthesis is an additional factor contributing to overproduction of ROS, further induction of oxidative stress can be an effective strategy to cope with this disease. Here we will review the available data on the role of oxidative stress in the cytotoxicity of proteasome inhibitors and the use of ROS-inducing compounds as anti-myeloma agents. PMID:26827824

  8. 20S proteasome activation promotes life span extension and resistance to proteotoxicity in Caenorhabditis elegans.

    PubMed

    Chondrogianni, Niki; Georgila, Konstantina; Kourtis, Nikos; Tavernarakis, Nektarios; Gonos, Efstathios S

    2015-02-01

    Protein homeostasis (proteostasis) is one of the nodal points that need to be preserved to retain physiologic cellular/organismal balance. The ubiquitin-proteasome system (UPS) is responsible for the removal of both normal and damaged proteins, with the proteasome being the downstream effector. The proteasome is the major cellular protease with progressive impairment of function during aging and senescence. Despite the documented age-retarding properties of proteasome activation in various cellular models, simultaneous enhancement of the 20S core proteasome content, assembly, and function have never been reported in any multicellular organism. Consequently, the possible effects of the core proteasome modulation on organismal life span are elusive. In this study, we have achieved activation of the 20S proteasome at organismal level. We demonstrate enhancement of proteasome levels, assembly, and activity in the nematode Caenorhabditis elegans, resulting in life span extension and increased resistance to stress. We also provide evidence that the observed life span extension is dependent on the transcriptional activity of Dauer formation abnormal/Forkhead box class O (DAF-16/FOXO), skinhead-1 (SKN-1), and heat shock factor-1 (HSF-1) factors through regulation of downstream longevity genes. We further show that the reported beneficial effects are not ubiquitous but they are dependent on the genetic context. Finally, we provide evidence that proteasome core activation might be a potential strategy to minimize protein homeostasis deficiencies underlying aggregation-related diseases, such as Alzheimer's disease (AD) or Huntington's disease (HD). In summary, this is the first report demonstrating that 20S core proteasome up-regulation in terms of both content and activity is feasible in a multicellular eukaryotic organism and that in turn this modulation promotes extension of organismal health span and life span. PMID:25395451

  9. The activation sequence of cellular protein handling systems after proteasomal inhibition in dopaminergic cells

    PubMed Central

    Xiong, Rui; Siegel, David; Ross, David

    2013-01-01

    Dysfunction of protein handling has been implicated in many neurodegenerative diseases and inhibition of the ubiquitin-proteasome system (UPS) has been linked to the formation of protein aggregates and proteinopathies in such diseases. While proteasomal inhibition could trigger an array of downstream protein handling changes including up-regulation of heat shock proteins (HSPs), induction of molecular chaperones, activation of the ER stress/unfolded protein response (UPR), autophagy and aggresome formation, little is known of the relationship of proteasomal inhibition to the sequence of activation of these diverse protein handling systems. In this study we utilized the reversible proteasome inhibitor MG132 and examined the activity of several major protein handling systems in the immortalized dopaminergic neuronal N27 cell line. In the early phase (up to 6 hours after proteasomal inhibition), MG132 induced time-dependent proteasomal inhibition which resulted in stimulation of the UPR, increased autophagic flux and stimulated heat shock protein response as determined by increased levels of phosphorylation of the eukaryotic translation initiation factor 2 alpha (eIF2α), C/EBP homologous protein (CHOP)/GADD153, turnover of autophagy related microtubule-associated protein 1 light chain 3 (LC3) and increased levels of Hsp70 respectively. After prolonged proteasomal inhibition induced by MG132, we observed the formation of vimentin-caged aggresome-like inclusion bodies. A recovery study after MG132-induced proteasomal inhibition indicated that the autophagy-lysosomal pathway participated in the clearance of aggresomes. Our data characterizes the relationship between proteasome inhibition and activation of other protein handling systems. These data also indicated that the induction of alternate protein handling systems and their temporal relationships may be important factors that determine the extent of accumulation of misfolded proteins in cells as a result of

  10. Functional interactions between mRNA turnover and surveillance and the ubiquitin proteasome system.

    PubMed

    Brooks, Seth A

    2010-01-01

    The proteasome is a critical regulator of protein levels within the cell and is essential for maintaining homeostasis. A functional proteasome is required for effective mRNA surveillance and turnover. During transcription, the proteasome localizes to sites of DNA breaks, degrading RNA polymerase II and terminating transcription. For fully transcribed and processed messages, cytoplasmic surveillance is initiated with the pioneer round of translation. The proteasome is recruited to messages bearing premature termination codons, which trigger nonsense-mediated decay (NMD), as well as messages lacking a termination codon, which trigger nonstop decay, to degrade the aberrant protein produced from these messages. A number of proteins involved in mRNA translation are regulated in part by proteasome-mediated decay, including the initiation factors eIF4G, eIF4E, and eIF3a, and the poly(A)-binding protein (PABP) interacting protein, Paip2. eIF4E-BP (4E-BP) is differentially regulated by the proteasome: truncated to generate a protein with higher eIF4B binding or completely degraded, depending on its phosphorylation status. Finally, a functional proteasome is required for AU-rich-element (ARE)-mediated decay but the specific role the proteasome plays is unclear. There is data indicating the proteasome can bind to AREs, act as an endonuclease, and degrade ARE-binding proteins. How these events interact with the 5'-to-3' and 3'-to-5' decay pathways is unclear at this time; however, data is provided indicating that proteasomes colocalize with Xrn1 and the exosome RNases Rrp44 and Rrp6 in untreated HeLa cells. PMID:21935888

  11. The HIV-1 Protein Vpr Targets the Endoribonuclease Dicer for Proteasomal Degradation to Boost Macrophage Infection

    PubMed Central

    Klockow, Laurieann Casey; Sharifi, Hamayun J.; Wen, Xiaoyun; Flagg, Meg; Furuya, Andrea K. M.; Nekorchuk, Michael; de Noronha, Carlos M.

    2013-01-01

    The HIV-1 protein Vpr enhances macrophage infection, triggers G2 cell cycle arrest, and targets cells for NK-cell killing. Vpr acts through the CRL4DCAF1 ubiquitin ligase complex to cause G2 arrest and trigger expression of NK ligands. Corresponding ubiquitination targets have not been identified. UNG2 and SMUG1 are the only known substrates for Vpr-directed depletion through CRL4DCAF1. Here we identify the endoribonuclease Dicer as a target of HIV-1 Vpr-directed proteasomal degradation through CRL4DCAF1. We show that HIV-1 Vpr inhibits short hairpin RNA function as expected upon reduction of Dicer levels. Dicer inhibits HIV-1 replication in T cells. We demonstrate that Dicer also restricts HIV-1 replication in human monocyte-derived macrophages (MDM) and that reducing Dicer expression in MDMs enhances HIV-1 infection in a Vpr-dependent manner. Our results support a model in which Vpr complexes with human Dicer to boost its interaction with the CRL4DCAF1 ubiquitin ligase complex and its subsequent degradation. PMID:23849790

  12. Modifications in endopeptidase and 20S proteasome expression and activities in cadmium treated tomato (Solanum lycopersicum L.) plants.

    PubMed

    Djebali, Wahbi; Gallusci, Philippe; Polge, Cécile; Boulila, Latifa; Galtier, Nathalie; Raymond, Philippe; Chaibi, Wided; Brouquisse, Renaud

    2008-02-01

    The effects of cadmium (Cd) on cellular proteolytic responses were investigated in the roots and leaves of tomato (Solanum lycopersicum L., var Ibiza) plants. Three-week-old plants were grown for 3 and 10 days in the presence of 0.3-300 microM Cd and compared to control plants grown in the absence of Cd. Roots of Cd treated plants accumulated four to fivefold Cd as much as mature leaves. Although 10 days of culture at high Cd concentrations inhibited plant growth, tomato plants recovered and were still able to grow again after Cd removal. Tomato roots and leaves are not modified in their proteolytic response with low Cd concentrations (< or =3 microM) in the incubation medium. At higher Cd concentration, protein oxidation state and protease activities are modified in roots and leaves although in different ways. The soluble protein content of leaves decreased and protein carbonylation level increased indicative of an oxidative stress. Conversely, protein content of roots increased from 30 to 50%, but the amount of oxidized proteins decreased by two to threefold. Proteolysis responded earlier in leaves than in root to Cd stress. Additionally, whereas cysteine- and metallo-endopeptidase activities, as well as proteasome chymotrypsin activity and subunit expression level, increased in roots and leaves, serine-endopeptidase activities increased only in leaves. This contrasted response between roots and leaves may reflect differences in Cd compartmentation and/or complexation, antioxidant responses and metabolic sensitivity to Cd between plant tissues. The up-regulation of the 20S proteasome gene expression and proteolytic activity argues in favor of the involvement of the 20S proteasome in the degradation of oxidized proteins in plants.

  13. Tumor Cellular Proteasome Inhibition and Growth Suppression by 8-Hydroxyquinoline and Clioquinol Requires Their Capabilities to Bind Copper and Transport Copper into Cells

    PubMed Central

    Zhai, Shumei; Yang, Lei; Cui, Qiuzhi Cindy; Sun, Ying; Dou, Q. Ping; Yan, Bing

    2009-01-01

    We have previously reported that when mixed with copper, 8-hydroxyquinoline (8-OHQ) and its analog clioquinol (CQ) inhibited the proteasomal activity and proliferation in cultured human cancer cells. CQ treatment of high copper-containing human tumor xenografts also caused cancer suppression, associated with proteasome inhibition in vivo. However, the nature of copper dependence of these events has not been elucidated experimentally. In the current study, by using chemical probe molecules that mimic structures of 8-OHQ and CQ, but have no copper binding capability, we dissected the complex cellular processes elicited by 8-OHQ-Cu or CQ-Cu mixture and revealed that copper-binding to 8-OHQ or CQ is required for transportation of copper complex into human breast cancer cells and the consequent proteasome-inhibitory, growth-suppressive and apoptosis-inducing activities. In contrast, the non-copper-binding analogs of 8-OHQ or CQ blocked the very first step – copper binding in this chain of events mediated by 8-OHQ-Cu or CQ-Cu. PMID:19809836

  14. Dyclonine and alverine citrate enhance the cytotoxic effects of proteasome inhibitor MG132 on breast cancer cells

    PubMed Central

    JU, DONGHONG; WANG, XIAOGANG; XIE, YOUMING

    2014-01-01

    Proteasome is an important target in cancer therapy. To enhance the efficacy of proteasome inhibitors is a challenging task due to the paucity of understanding the functional interactions between proteasome and other cellular pathways in mammalian cells. Taking advantage of the knowledge gained from Saccharomyces cerevisiae, we show that dyclonine and alverine citrate, the major components of two over-the-counter medicines, can substantially enhance the cytotoxic effects of proteasome inhibitor MG132 on breast cancer cells. This study also highlights an important yeast genetic approach to identification of potential therapeutics that can be used for combination therapy with proteasome inhibitors. PMID:19148544

  15. Dyclonine and alverine citrate enhance the cytotoxic effects of proteasome inhibitor MG132 on breast cancer cells.

    PubMed

    Ju, Donghong; Wang, Xiaogang; Xie, Youming

    2009-02-01

    Proteasome is an important target in cancer therapy. To enhance the efficacy of proteasome inhibitors is a challenging task due to the paucity of understanding the functional interactions between proteasome and other cellular pathways in mammalian cells. Taking advantage of the knowledge gained from Saccharomyces cerevisiae, we show that dyclonine and alverine citrate, the major components of two over-the-counter medicines, can substantially enhance the cytotoxic effects of proteasome inhibitor MG132 on breast cancer cells. This study also highlights an important yeast genetic approach to identification of potential therapeutics that can be used for combination therapy with proteasome inhibitors. PMID:19148544

  16. Tert-butylhydroquinone lowers blood pressure in AngII-induced hypertension in mice via proteasome-PTEN-Akt-eNOS pathway

    PubMed Central

    Xu, Bing-Can; Long, Hui-Bao; Luo, Ke-Qin

    2016-01-01

    Tert-butylhydroquinone (tBHQ), as an antioxidant, has been widely used for many years to prevent oxidization of food products. The aim of this study was to investigate whether tBHQ activates endothelial nitric oxide synthase (eNOS) to prevent endothelial dysfunction and lower blood pressure. The role of Akt in tBHQ-induced eNOS phosphorylation was examined in human umbilical vein endothelial cells (HUVEC) or in mice. tBHQ treatment of HUVEC increased both Akt-Ser473 phosphorylation, accompanied with increased eNOS-Ser1177 phosphorylation and NO release. Mechanically, pharmacologic or genetic inhibition of Akt abolished tBHQ-enhanced NO release and eNOS phosphorylation in HUVEC. Gain-function of PTEN or inhibition of 26S proteasome abolished tBHQ-enhanced Akt phosphorylation in HUVEC. Ex vivo analysis indicated that tBHQ improved Ach-induced endothelium-dependent relaxation in LPC-treated mice aortic arteries, which were abolished by inhibition of Akt or eNOS. In animal study, administration of tBHQ significantly increased eNOS-Ser1177 phosphorylation and acetylcholine-induced vasorelaxation, and lowered AngII-induced hypertension in wildtype mice, but not in mice deficient of Akt or eNOS. In conclusion, tBHQ via proteasome-dependent degradation of PTEN increases Akt phosphorylation, resulting in upregulation of eNOS-derived NO production and consequent improvement of endothelial function in vivo. In this way, tBHQ lowers blood pressure in hypertensive mice. PMID:27435826

  17. Ca2O3Fe2.6S2: an antiferromagnetic Mott insulator at proximity to bad metal

    NASA Astrophysics Data System (ADS)

    Zhang, Han; Wu, Xiaozhi; Li, Dandan; Jin, Shifeng; Chen, Xiao; Zhang, Tao; Lin, Zhiping; Shen, Shijie; Yuan, Duanduan; Chen, Xiaolong

    2016-04-01

    We report here the first layered iron oxychalcogenide Ca2O3Fe2.6S2 that contains both planar [Ca2FeO2]2+ and [Fe2OS2]2- layers with the shortest Fe-Fe bond length. This compound is a narrow band gap (~0.073 eV) Mott insulator. The observed antiferromagnetic (AFM) transition at 77 K is due to the ordered Fe vacancies, which can be suppressed by partial substitution of Se for S. We show that the vacancy-free phase Ca2O3Fe3S2 may become a metal with moderate electron correlation comparable to the parent compound LaOFeAs of corresponding superconductors. Our results imply that iron oxychalcogenide can be converted from an AFM Mott insulator into a bad metal like iron pnictides through Fe-Fe bond length shrinking.

  18. p97-dependent retrotranslocation and proteolytic processing govern formation of active Nrf1 upon proteasome inhibition

    PubMed Central

    Radhakrishnan, Senthil K; den Besten, Willem; Deshaies, Raymond J

    2014-01-01

    Proteasome inhibition elicits an evolutionarily conserved response wherein proteasome subunit mRNAs are upregulated, resulting in recovery (i.e., ‘bounce-back’) of proteasome activity. We previously demonstrated that the transcription factor Nrf1/NFE2L1 mediates this homeostatic response in mammalian cells. We show here that Nrf1 is initially translocated into the lumen of the ER, but is rapidly and efficiently retrotranslocated to the cytosolic side of the membrane in a manner that depends on p97/VCP. Normally, retrotranslocated Nrf1 is degraded promptly by the proteasome and active species do not accumulate. However, in cells with compromised proteasomes, retrotranslocated Nrf1 escapes degradation and is cleaved N-terminal to Leu-104 to yield a fragment that is no longer tethered to the ER membrane. Importantly, this cleavage event is essential for Nrf1-dependent activation of proteasome gene expression upon proteasome inhibition. Our data uncover an unexpected role for p97 in activation of a transcription factor by relocalizing it from the ER lumen to the cytosol. DOI: http://dx.doi.org/10.7554/eLife.01856.001 PMID:24448410

  19. The proteasome is an integral part of solar ultraviolet a radiation-induced gene expression.

    PubMed

    Catalgol, Betul; Ziaja, Isabella; Breusing, Nicolle; Jung, Tobias; Höhn, Annika; Alpertunga, Buket; Schroeder, Peter; Chondrogianni, Niki; Gonos, Efstathios S; Petropoulos, Isabelle; Friguet, Bertrand; Klotz, Lars-Oliver; Krutmann, Jean; Grune, Tilman

    2009-10-30

    Solar ultraviolet (UV) A radiation is a well known trigger of signaling responses in human skin fibroblasts. One important consequence of this stress response is the increased expression of matrix metalloproteinase-1 (MMP-1), which causes extracellular protein degradation and thereby contributes to photoaging of human skin. In the present study we identify the proteasome as an integral part of the UVA-induced, intracellular signaling cascade in human dermal fibroblasts. UVA-induced singlet oxygen formation was accompanied by protein oxidation, the cross-linking of oxidized proteins, and an inhibition of the proteasomal system. This proteasomal inhibition subsequently led to an accumulation of c-Jun and phosphorylated c-Jun and activation of activator protein-1, i.e. transcription factors known to control MMP-1 expression. Increased transcription factor activation was also observed if the proteasome was inhibited by cross-linked proteins or lactacystin, indicating a general mechanism. Most importantly, inhibition of the proteasome was of functional relevance for UVA-induced MMP-1 expression, because overexpression of the proteasome or the protein repair enzyme methionine sulfoxide reductase prevented the UVA-induced induction of MMP-1. These studies show that an environmentally relevant stimulus can trigger a signaling pathway, which links intracellular and extracellular protein degradation. They also identify the proteasome as an integral part of the UVA stress response.

  20. Proteasome Inhibition Promotes Parkin-Ubc13 Interaction and Lysine 63-Linked Ubiquitination

    PubMed Central

    Ng, Xiao-Hui; Henry-Basil, Adeline; Sim, Roy W. X.; Tan, Jeanne M. M.; Chai, Chou; Lim, Kah-Leong

    2013-01-01

    Disruption of the ubiquitin-proteasome system, which normally identifies and degrades unwanted intracellular proteins, is thought to underlie neurodegeneration. Supporting this, mutations of Parkin, a ubiquitin ligase, are associated with autosomal recessive parkinsonism. Remarkably, Parkin can protect neurons against a wide spectrum of stress, including those that promote proteasome dysfunction. Although the mechanism underlying the preservation of proteasome function by Parkin is hitherto unclear, we have previously proposed that Parkin-mediated K63-linked ubiquitination (which is usually uncoupled from the proteasome) may serve to mitigate proteasomal stress by diverting the substrate load away from the machinery. By means of linkage-specific antibodies, we demonstrated here that proteasome inhibition indeed promotes K63-linked ubiquitination of proteins especially in Parkin-expressing cells. Importantly, we further demonstrated that the recruitment of Ubc13 (an E2 that mediates K63-linked polyubiquitin chain formation exclusively) by Parkin is selectively enhanced under conditions of proteasomal stress, thus identifying a mechanism by which Parkin could promote K63-linked ubiquitin modification in cells undergoing proteolytic stress. This mode of ubiquitination appears to facilitate the subsequent clearance of Parkin substrates via autophagy. Consistent with the proposed protective role of K63-linked ubiquitination in times of proteolytic stress, we found that Ubc13-deficient cells are significantly more susceptible to cell death induced by proteasome inhibitors compared to their wild type counterparts. Taken together, our study suggests a role for Parkin-mediated K63 ubiquitination in maintaining cellular protein homeostasis, especially during periods when the proteasome is burdened or impaired. PMID:24023840

  1. Proteasome-mediated turnover of the transcriptional activator FIT is required for plant iron-deficiency responses.

    PubMed

    Sivitz, Alicia; Grinvalds, Claudia; Barberon, Marie; Curie, Catherine; Vert, Grégory

    2011-06-01

    Plants display a number of responses to low iron availability in order to increase iron uptake from the soil. In the model plant Arabidopsis thaliana, the ferric-chelate reductase FRO2 and the ferrous iron transporter IRT1 control iron entry from the soil into the root epidermis. To maintain iron homeostasis, the expression of FRO2 and IRT1 is tightly controlled by iron deficiency at the transcriptional level. The basic helix-loop-helix (bHLH) transcription factor FIT represents the most upstream actor known in the iron-deficiency signaling pathway, and directly regulates the expression of the root iron uptake machinery genes FRO2 and IRT1. However, how FIT is controlled by iron and acts to activate transcription of its targets remains obscure. Here we show that FIT mRNA and endogenous FIT protein accumulate in Arabidopsis roots upon iron deficiency. However, using plants constitutively expressing FIT, we observed that FIT protein accumulation is reduced in iron-limited conditions. This post-transcriptional regulation of FIT is perfectly synchronized with the accumulation of endogenous FIT and IRT1 proteins, and therefore is part of the early responses to low iron. We demonstrated that such regulation affects FIT protein stability under iron deficiency as a result of 26S proteasome-dependent degradation. In addition, we showed that FIT post-translational regulation by iron is required for FRO2 and IRT1 gene expression. Taken together our results indicate that FIT transcriptional and post-translational regulations are integrated in plant roots to ensure that the positive regulator FIT accumulates as a short-lived protein following iron shortage, and to allow proper iron-deficiency responses.

  2. The role of ubiquitin-proteasome pathway in spermatogenesis.

    PubMed

    Lianhua, Dong; Maoliang, Ran; Zhi, Li; Fuzhi, Peng; Bin, Chen

    2016-09-01

    Ubiquitin-proteasome pathway (UPP) is the main pathway of protein degradation in eukaryotic cells. The UPP plays very important roles in cell cycle progression, apoptosis, stress response and growth and development through regulating protein interaction, protein activity, protein localization and signal transduction. Previous studies have shown that the UPP is essential for regulating acrosome and tail biogenesis during spermatogenesis in human and animals. The dysregulation of UPP during spermatogenesis results in sperm deformity and reduced sperm motility and leads to reproductive system diseases such as oligospermatism, infertility and testicular tumors. In this review, we summarized the signal transduction and regulation mechanism of UPP in spermatogenesis, which may provide references for future studies. PMID:27644740

  3. Proteasome inhibitors induce apoptosis and reduce viral replication in primary effusion lymphoma cells

    SciTech Connect

    Saji, Chiaki; Higashi, Chizuka; Niinaka, Yasufumi; Yamada, Koji; Noguchi, Kohji; Fujimuro, Masahiro

    2011-12-02

    Highlights: Black-Right-Pointing-Pointer Constitutive NF-{kappa}B signaling is essential for the survival and growth of PEL cells. Black-Right-Pointing-Pointer NF-{kappa}B signaling is upregulated by the proteasome-dependent degradation of I{kappa}B{alpha}. Black-Right-Pointing-Pointer Proteasome inhibitors suppress NF-{kappa}B signaling and induce apoptosis in PEL cells through stabilization of I{kappa}B{alpha}. Black-Right-Pointing-Pointer Proteasome inhibitors suppress viral replication in PEL cells during lytic KSHV infection. -- Abstract: Primary effusion lymphoma (PEL) is an aggressive neoplasm caused by Kaposi's sarcoma-associated herpesvirus (KSHV). This study provides evidence that proteasomal activity is required for both survival of PEL cells stably harboring the KSHV genome and viral replication of KSHV. We evaluated the cytotoxic effects of proteasome inhibitors on PEL cells. The proteasome inhibitors MG132, lactacystin, and proteasome inhibitor I dramatically inhibited cell proliferation and induced apoptosis of PEL cells through the accumulation of p21 and p27. Furthermore, proteasome inhibitors induced the stabilization of NF-{kappa}B inhibitory molecule (I{kappa}B{alpha}) and suppressed the transcriptional activity of NF-{kappa}B in PEL cells. The NF-{kappa}B specific inhibitor BAY11-7082 also induced apoptosis in PEL cells. The constitutive activation of NF-{kappa}B signaling is essential for the survival and growth of B cell lymphoma cells, including PEL cells. NF-{kappa}B signaling is upregulated by proteasome-dependent degradation of I{kappa}B{alpha}. The suppression of NF-{kappa}B signaling by proteasome inhibitors may contribute to the induction of apoptosis in PEL cells. In addition, proteasome activity is required for KSHV replication in KSHV latently infected PEL cells. MG132 reduced the production of progeny virus from PEL cells at low concentrations, which do not affect PEL cell growth. These findings suggest that proteasome inhibitors

  4. The interrelationship of proteasome impairment and oligomeric intermediates in neurodegeneration

    PubMed Central

    Deger, Jennifer M; Gerson, Julia E; Kayed, Rakez

    2015-01-01

    Various neurodegenerative diseases are characterized by the accumulation of amyloidogenic proteins such as tau, α-synuclein, and amyloid-β. Prior to the formation of these stable aggregates, intermediate species of the respective proteins—oligomers—appear. Recently acquired data have shown that oligomers may be the most toxic and pathologically significant to neurodegenerative diseases such as Alzheimer’s and Parkinson’s. The covalent modification of these oligomers may be critically important for biological processes in disease. Ubiquitin and small ubiquitin-like modifiers are the commonly used tags for degradation. While the modification of large amyloid aggregates by ubiquitination is well established, very little is known about the role ubiquitin may play in oligomer processing and the importance of the more recently discovered sumoylation. Many proteins involved in neurodegeneration have been found to be sumoylated, notably tau protein in brains afflicted with Alzheimer’s. This evidence suggests that while the cell may not have difficulty recognizing dangerous proteins, in brains afflicted with neurodegenerative disease, the proteasome may be unable to properly digest the tagged proteins. This would allow toxic aggregates to develop, leading to even more proteasome impairment in a snowball effect that could explain the exponential progression in most neurodegenerative diseases. A better understanding of the covalent modifications of oligomers could have a huge impact on the development of therapeutics for neurodegenerative diseases. This review will focus on the proteolysis of tau and other amyloidogenic proteins induced by covalent modification, and recent findings suggesting a relationship between tau oligomers and sumoylation. PMID:26053162

  5. The 20S proteasome core, active within apoptotic exosome-like vesicles, induces autoantibody production and accelerates rejection.

    PubMed

    Dieudé, Mélanie; Bell, Christina; Turgeon, Julie; Beillevaire, Deborah; Pomerleau, Luc; Yang, Bing; Hamelin, Katia; Qi, Shijie; Pallet, Nicolas; Béland, Chanel; Dhahri, Wahiba; Cailhier, Jean-François; Rousseau, Matthieu; Duchez, Anne-Claire; Lévesque, Tania; Lau, Arthur; Rondeau, Christiane; Gingras, Diane; Muruve, Danie; Rivard, Alain; Cardinal, Héloise; Perreault, Claude; Desjardins, Michel; Boilard, Éric; Thibault, Pierre; Hébert, Marie-Josée

    2015-12-16

    Autoantibodies to components of apoptotic cells, such as anti-perlecan antibodies, contribute to rejection in organ transplant recipients. However, mechanisms of immunization to apoptotic components remain largely uncharacterized. We used large-scale proteomics, with validation by electron microscopy and biochemical methods, to compare the protein profiles of apoptotic bodies and apoptotic exosome-like vesicles, smaller extracellular vesicles released by endothelial cells downstream of caspase-3 activation. We identified apoptotic exosome-like vesicles as a central trigger for production of anti-perlecan antibodies and acceleration of rejection. Unlike apoptotic bodies, apoptotic exosome-like vesicles triggered the production of anti-perlecan antibodies in naïve mice and enhanced anti-perlecan antibody production and allograft inflammation in mice transplanted with an MHC (major histocompatibility complex)-incompatible aortic graft. The 20S proteasome core was active within apoptotic exosome-like vesicles and controlled their immunogenic activity. Finally, we showed that proteasome activity in circulating exosome-like vesicles increased after vascular injury in mice. These findings open new avenues for predicting and controlling maladaptive humoral responses to apoptotic cell components that enhance the risk of rejection after transplantation. PMID:26676607

  6. Proteasomal degradation of retinoid X receptor α reprograms transcriptional activity of PPARγ in obese mice and humans

    PubMed Central

    Lefebvre, Bruno; Benomar, Yacir; Guédin, Aurore; Langlois, Audrey; Hennuyer, Nathalie; Dumont, Julie; Bouchaert, Emmanuel; Dacquet, Catherine; Pénicaud, Luc; Casteilla, Louis; Pattou, Francois; Ktorza, Alain; Staels, Bart; Lefebvre, Philippe

    2010-01-01

    Obese patients have chronic, low-grade inflammation that predisposes to type 2 diabetes and results, in part, from dysregulated visceral white adipose tissue (WAT) functions. The specific signaling pathways underlying WAT dysregulation, however, remain unclear. Here we report that the PPARγ signaling pathway operates differently in the visceral WAT of lean and obese mice. PPARγ in visceral, but not subcutaneous, WAT from obese mice displayed increased sensitivity to activation by its agonist rosiglitazone. This increased sensitivity correlated with increased expression of the gene encoding the ubiquitin hydrolase/ligase ubiquitin carboxyterminal esterase L1 (UCH-L1) and with increased degradation of the PPARγ heterodimerization partner retinoid X receptor α (RXRα), but not RXRβ, in visceral WAT from obese humans and mice. Interestingly, increased UCH-L1 expression and RXRα proteasomal degradation was induced in vitro by conditions mimicking hypoxia, a condition that occurs in obese visceral WAT. Finally, PPARγ-RXRβ heterodimers, but not PPARγ-RXRα complexes, were able to efficiently dismiss the transcriptional corepressor silencing mediator for retinoid and thyroid hormone receptors (SMRT) upon agonist binding. Increasing the RXRα/RXRβ ratio resulted in increased PPARγ responsiveness following agonist stimulation. Thus, the selective proteasomal degradation of RXRα initiated by UCH-L1 upregulation modulates the relative affinity of PPARγ heterodimers for SMRT and their responsiveness to PPARγ agonists, ultimately activating the PPARγ-controlled gene network in visceral WAT of obese animals and humans. PMID:20364085

  7. Electron microscopy and in vitro deneddylation reveal similar architectures and biochemistry of isolated human and Flag-mouse COP9 signalosome complexes

    SciTech Connect

    Rockel, Beate; Schmaler, Tilo; Huang, Xiaohua; Dubiel, Wolfgang

    2014-07-25

    Highlights: • Deneddylation rates of human erythrocyte and mouse fibroblast CSN are very similar. • 3D models of native human and mouse CSN reveal common architectures. • The cryo-structure of native mammalian CSN shows a horseshoe subunit arrangement. - Abstract: The COP9 signalosome (CSN) is a regulator of the ubiquitin (Ub) proteasome system (UPS). In the UPS, proteins are Ub-labeled for degradation by Ub ligases conferring substrate specificity. The CSN controls a large family of Ub ligases called cullin-RING ligases (CRLs), which ubiquitinate cell cycle regulators, transcription factors and DNA damage response proteins. The CSN possesses structural similarities with the 26S proteasome Lid complex and the translation initiation complex 3 (eIF3) indicating similar ancestry and function. Initial structures were obtained 14 years ago by 2D electron microscopy (EM). Recently, first 3D molecular models of the CSN were created on the basis of negative-stain EM and single-particle analysis, mostly with recombinant complexes. Here, we compare deneddylating activity and structural features of CSN complexes purified in an elaborate procedure from human erythrocytes and efficiently pulled down from mouse Flag-CSN2 B8 fibroblasts. In an in vitro deneddylation assay both the human and the mouse CSN complexes deneddylated Nedd8-Cul1 with comparable rates. 3D structural models of the erythrocyte CSN as well as of the mouse Flag-CSN were generated by negative stain EM and by cryo-EM. Both complexes show a central U-shaped segment from which several arms emanate. This structure, called the horseshoe, is formed by the PCI domain subunits. CSN5 and CSN6 point away from the horseshoe. Compared to 3D models of negatively stained CSN complexes, densities assigned to CSN2 and CSN4 are better defined in the cryo-map. Because biochemical and structural results obtained with CSN complexes isolated from human erythrocytes and purified by Flag-CSN pulldown from mouse B8 fibroblasts

  8. Changes in the Expression and the Enzymic Properties of the 20S Proteasome in Sugar-Starved Maize Roots. Evidence for an in Vivo Oxidation of the Proteasome1

    PubMed Central

    Basset , Gilles; Raymond, Philippe; Malek, Lada; Brouquisse, Renaud

    2002-01-01

    The 20S proteasome (multicatalytic proteinase) was purified from maize (Zea mays L. cv DEA 1992) roots through a five-step procedure. After biochemical characterization, it was shown to be similar to most eukaryotic proteasomes. We investigated the involvement of the 20S proteasome in the response to carbon starvation in excised maize root tips. Using polyclonal antibodies, we showed that the amount of proteasome increased in 24-h-carbon-starved root tips compared with freshly excised tips, whereas the mRNA levels of α3 and β6 subunits of 20S proteasome decreased. Moreover, in carbon-starved tissues, chymotrypsin-like and caseinolytic activities of the 20S proteasome were found to increase, whereas trypsin-like activities decreased. The measurement of specific activities and kinetic parameters of 20S proteasome purified from 24-h-starved root tips suggested that it was subjected to posttranslational modifications. Using dinitrophenylhydrazine, a carbonyl-specific reagent, we observed an increase in carbonyl residues in 20S proteasome purified from starved root tips. This means that 20S proteasome was oxidized during starvation treatment. Moreover, an in vitro mild oxidative treatment of 20S proteasome from non-starved material resulted in the activation of chymotrypsin-like, peptidyl-glutamyl-peptide hydrolase and caseinolytic-specific activities and in the inhibition of trypsin-like specific activities, similar to that observed for proteasome from starved root tips. Our results provide the first evidence, to our knowledge, for an in vivo carbonylation of the 20S proteasome. They suggest that sugar deprivation induces an oxidative stress, and that oxidized 20S proteasome could be associated to the degradation of oxidatively damaged proteins in carbon starvation situations. PMID:11891269

  9. The proteasome immunosubunits, PA28 and ER-aminopeptidase 1 protect melanoma cells from efficient MART-126-35 -specific T-cell recognition.

    PubMed

    Keller, Martin; Ebstein, Frédéric; Bürger, Elke; Textoris-Taube, Kathrin; Gorny, Xenia; Urban, Sabrina; Zhao, Fang; Dannenberg, Tanja; Sucker, Antje; Keller, Christin; Saveanu, Loredana; Krüger, Elke; Rothkötter, Hermann-Josef; Dahlmann, Burkhardt; Henklein, Petra; Voigt, Antje; Kuckelkorn, Ulrike; Paschen, Annette; Kloetzel, Peter-Michael; Seifert, Ulrike

    2015-12-01

    The immunodominant MART-1(26(27)-35) epitope, liberated from the differentiation antigen melanoma antigen recognized by T cells/melanoma antigen A (MART-1/Melan-A), has been frequently targeted in melanoma immunotherapy, but with limited clinical success. Previous studies suggested that this is in part due to an insufficient peptide supply and epitope presentation, since proteasomes containing the immunosubunits β5i/LMP7 (LMP, low molecular weight protein) or β1i/LMP2 and β5i/LMP7 interfere with MART-1(26-35) epitope generation in tumor cells. Here, we demonstrate that in addition the IFN-γ-inducible proteasome subunit β2i/MECL-1 (multicatalytic endopeptidase complex-like 1), proteasome activator 28 (PA28), and ER-resident aminopeptidase 1 (ERAP1) impair MART-1(26-35) epitope generation. β2i/MECL-1 and PA28 negatively affect C- and N-terminal cleavage and therefore epitope liberation from the proteasome, whereas ERAP1 destroys the MART-1(26-35) epitope by overtrimming activity. Constitutive expression of PA28 and ERAP1 in melanoma cells indicate that both interfere with MART-1(26-35) epitope generation even in the absence of IFN-γ. In summary, our results provide first evidence that activities of different antigen-processing components contribute to an inefficient MART-1(26-35) epitope presentation, suggesting the tumor cell's proteolytic machinery might have an important impact on the outcome of epitope-specific immunotherapies.

  10. Proteasome activity is required for the stage-specific transformation of a protozoan parasite

    PubMed Central

    1996-01-01

    A prominent feature of the life cycle of intracellular parasites is the profound morphological changes they undergo during development in the vertebrate and invertebrate hosts. In eukaryotic cells, most cytoplasmic proteins are degraded in proteasomes. Here, we show that the transformation in axenic medium of trypomastigotes of Trypanosoma cruzi into amastigote-like organisms, and the intracellular development of the parasite from amastigotes into trypomastigotes, are prevented by lactacystin, or by a peptide aldehyde that inhibits proteasome function. Clasto-lactacystin, an inactive analogue of lactacystin, and cell-permeant peptide aldehyde inhibitors of T. cruzi cysteine proteinases have no effect. We have also identified the 20S proteasomes from T. cruzi as a target of lactacystin in vivo. Our results document the essential role of proteasomes in the stage-specific transformation of a protozoan. PMID:8920878

  11. Secondary Metabolites Produced by an Endophytic Fungus Pestalotiopsis sydowiana and Their 20S Proteasome Inhibitory Activities.

    PubMed

    Xia, Xuekui; Kim, Soonok; Liu, Changheng; Shim, Sang Hee

    2016-01-01

    Fungal endophytes have attracted attention due to their functional diversity. Secondary metabolites produced by Pestalotiopsis sydowiana from a halophyte, Phragmites communis Trinus, were investigated. Eleven compounds, including four penicillide derivatives (1-4) and seven α-pyrone analogues (5-10) were isolated from cultures of P. sydowiana. The compounds were identified based on spectroscopic data. The inhibitory activities against the 20S proteasome were evaluated. Compounds 1-3, 5, and 9-10 showed modest proteasome inhibition activities, while compound 8 showed strong activity with an IC50 of 1.2 ± 0.3 μM. This is the first study on the secondary metabolites produced by P. sydowiana and their proteasome inhibitory activities. The endophytic fungus P. sydowiana might be a good resource for proteasome inhibitors. PMID:27447600

  12. Additive loss-of-function proteasome subunit mutations in CANDLE/PRAAS patients promote type I IFN production.

    PubMed

    Brehm, Anja; Liu, Yin; Sheikh, Afzal; Marrero, Bernadette; Omoyinmi, Ebun; Zhou, Qing; Montealegre, Gina; Biancotto, Angelique; Reinhardt, Adam; Almeida de Jesus, Adriana; Pelletier, Martin; Tsai, Wanxia L; Remmers, Elaine F; Kardava, Lela; Hill, Suvimol; Kim, Hanna; Lachmann, Helen J; Megarbane, Andre; Chae, Jae Jin; Brady, Jilian; Castillo, Rhina D; Brown, Diane; Casano, Angel Vera; Gao, Ling; Chapelle, Dawn; Huang, Yan; Stone, Deborah; Chen, Yongqing; Sotzny, Franziska; Lee, Chyi-Chia Richard; Kastner, Daniel L; Torrelo, Antonio; Zlotogorski, Abraham; Moir, Susan; Gadina, Massimo; McCoy, Phil; Wesley, Robert; Rother, Kristina I; Rother, Kristina; Hildebrand, Peter W; Brogan, Paul; Krüger, Elke; Aksentijevich, Ivona; Goldbach-Mansky, Raphaela

    2015-11-01

    Autosomal recessive mutations in proteasome subunit β 8 (PSMB8), which encodes the inducible proteasome subunit β5i, cause the immune-dysregulatory disease chronic atypical neutrophilic dermatosis with lipodystrophy and elevated temperature (CANDLE), which is classified as a proteasome-associated autoinflammatory syndrome (PRAAS). Here, we identified 8 mutations in 4 proteasome genes, PSMA3 (encodes α7), PSMB4 (encodes β7), PSMB9 (encodes β1i), and proteasome maturation protein (POMP), that have not been previously associated with disease and 1 mutation in PSMB8 that has not been previously reported. One patient was compound heterozygous for PSMB4 mutations, 6 patients from 4 families were heterozygous for a missense mutation in 1 inducible proteasome subunit and a mutation in a constitutive proteasome subunit, and 1 patient was heterozygous for a POMP mutation, thus establishing a digenic and autosomal dominant inheritance pattern of PRAAS. Function evaluation revealed that these mutations variably affect transcription, protein expression, protein folding, proteasome assembly, and, ultimately, proteasome activity. Moreover, defects in proteasome formation and function were recapitulated by siRNA-mediated knockdown of the respective subunits in primary fibroblasts from healthy individuals. Patient-isolated hematopoietic and nonhematopoietic cells exhibited a strong IFN gene-expression signature, irrespective of genotype. Additionally, chemical proteasome inhibition or progressive depletion of proteasome subunit gene transcription with siRNA induced transcription of type I IFN genes in healthy control cells. Our results provide further insight into CANDLE genetics and link global proteasome dysfunction to increased type I IFN production. PMID:26524591

  13. Additive loss-of-function proteasome subunit mutations in CANDLE/PRAAS patients promote type I IFN production

    PubMed Central

    Brehm, Anja; Liu, Yin; Sheikh, Afzal; Marrero, Bernadette; Omoyinmi, Ebun; Zhou, Qing; Montealegre, Gina; Biancotto, Angelique; Reinhardt, Adam; Almeida de Jesus, Adriana; Pelletier, Martin; Tsai, Wanxia L.; Remmers, Elaine F.; Kardava, Lela; Hill, Suvimol; Kim, Hanna; Lachmann, Helen J.; Megarbane, Andre; Chae, Jae Jin; Brady, Jilian; Castillo, Rhina D.; Brown, Diane; Casano, Angel Vera; Gao, Ling; Chapelle, Dawn; Huang, Yan; Stone, Deborah; Chen, Yongqing; Sotzny, Franziska; Lee, Chyi-Chia Richard; Kastner, Daniel L.; Torrelo, Antonio; Zlotogorski, Abraham; Moir, Susan; Gadina, Massimo; McCoy, Phil; Wesley, Robert; Rother, Kristina; Hildebrand, Peter W.; Brogan, Paul; Krüger, Elke; Aksentijevich, Ivona; Goldbach-Mansky, Raphaela

    2015-01-01

    Autosomal recessive mutations in proteasome subunit β 8 (PSMB8), which encodes the inducible proteasome subunit β5i, cause the immune-dysregulatory disease chronic atypical neutrophilic dermatosis with lipodystrophy and elevated temperature (CANDLE), which is classified as a proteasome-associated autoinflammatory syndrome (PRAAS). Here, we identified 8 mutations in 4 proteasome genes, PSMA3 (encodes α7), PSMB4 (encodes β7), PSMB9 (encodes β1i), and proteasome maturation protein (POMP), that have not been previously associated with disease and 1 mutation in PSMB8 that has not been previously reported. One patient was compound heterozygous for PSMB4 mutations, 6 patients from 4 families were heterozygous for a missense mutation in 1 inducible proteasome subunit and a mutation in a constitutive proteasome subunit, and 1 patient was heterozygous for a POMP mutation, thus establishing a digenic and autosomal dominant inheritance pattern of PRAAS. Function evaluation revealed that these mutations variably affect transcription, protein expression, protein folding, proteasome assembly, and, ultimately, proteasome activity. Moreover, defects in proteasome formation and function were recapitulated by siRNA-mediated knockdown of the respective subunits in primary fibroblasts from healthy individuals. Patient-isolated hematopoietic and nonhematopoietic cells exhibited a strong IFN gene-expression signature, irrespective of genotype. Additionally, chemical proteasome inhibition or progressive depletion of proteasome subunit gene transcription with siRNA induced transcription of type I IFN genes in healthy control cells. Our results provide further insight into CANDLE genetics and link global proteasome dysfunction to increased type I IFN production. PMID:26524591

  14. Validation of the 2nd Generation Proteasome Inhibitor Oprozomib for Local Therapy of Pulmonary Fibrosis

    PubMed Central

    Semren, Nora; Habel-Ungewitter, Nunja C.; Fernandez, Isis E.; Königshoff, Melanie; Eickelberg, Oliver; Stöger, Tobias; Meiners, Silke

    2015-01-01

    Proteasome inhibition has been shown to prevent development of fibrosis in several organs including the lung. However, effects of proteasome inhibitors on lung fibrosis are controversial and cytotoxic side effects of the overall inhibition of proteasomal protein degradation cannot be excluded. Therefore, we hypothesized that local lung-specific application of a novel, selective proteasome inhibitor, oprozomib (OZ), provides antifibrotic effects without systemic toxicity in a mouse model of lung fibrosis. Oprozomib was first tested on the human alveolar epithelial cancer cell line A549 and in primary mouse alveolar epithelial type II cells regarding its cytotoxic effects on alveolar epithelial cells and compared to the FDA approved proteasome inhibitor bortezomib (BZ). OZ was less toxic than BZ and provided high selectivity for the chymotrypsin-like active site of the proteasome. In primary mouse lung fibroblasts, OZ showed significant anti-fibrotic effects, i.e. reduction of collagen I and α smooth muscle actin expression, in the absence of cytotoxicity. When applied locally into the lungs of healthy mice via instillation, OZ was well tolerated and effectively reduced proteasome activity in the lungs. In bleomycin challenged mice, however, locally applied OZ resulted in accelerated weight loss and increased mortality of treated mice. Further, OZ failed to reduce fibrosis in these mice. While upon systemic application OZ was well tolerated in healthy mice, it rather augmented instead of attenuated fibrotic remodelling of the lung in bleomycin challenged mice. To conclude, low toxicity and antifibrotic effects of OZ in pulmonary fibroblasts could not be confirmed for pulmonary fibrosis of bleomycin-treated mice. In light of these data, the use of proteasome inhibitors as therapeutic agents for the treatment of fibrotic lung diseases should thus be considered with caution. PMID:26340365

  15. Proteasome Dysfunction Mediates High Glucose-Induced Apoptosis in Rodent Beta Cells and Human Islets

    PubMed Central

    Broca, Christophe; Varin, Elodie; Armanet, Mathieu; Tourrel-Cuzin, Cécile; Bosco, Domenico; Dalle, Stéphane; Wojtusciszyn, Anne

    2014-01-01

    The ubiquitin/proteasome system (UPS), a major cellular protein degradation machinery, plays key roles in the regulation of many cell functions. Glucotoxicity mediated by chronic hyperglycaemia is detrimental to the function and survival of pancreatic beta cells. The aim of our study was to determine whether proteasome dysfunction could be involved in beta cell apoptosis in glucotoxic conditions, and to evaluate whether such a dysfunction might be pharmacologically corrected. Therefore, UPS activity was measured in GK rats islets, INS-1E beta cells or human islets after high glucose and/or UPS inhibitor exposure. Immunoblotting was used to quantify polyubiquitinated proteins, endoplasmic reticulum (ER) stress through CHOP expression, and apoptosis through the cleavage of PARP and caspase-3, whereas total cell death was detected through histone-associated DNA fragments measurement. In vitro, we found that chronic exposure of INS-1E cells to high glucose concentrations significantly decreases the three proteasome activities by 20% and leads to caspase-3-dependent apoptosis. We showed that pharmacological blockade of UPS activity by 20% leads to apoptosis in a same way. Indeed, ER stress was involved in both conditions. These results were confirmed in human islets, and proteasome activities were also decreased in hyperglycemic GK rats islets. Moreover, we observed that a high glucose treatment hypersensitized beta cells to the apoptotic effect of proteasome inhibitors. Noteworthily, the decreased proteasome activity can be corrected with Exendin-4, which also protected against glucotoxicity-induced apoptosis. Taken together, our findings reveal an important role of proteasome activity in high glucose-induced beta cell apoptosis, potentially linking ER stress and glucotoxicity. These proteasome dysfunctions can be reversed by a GLP-1 analog. Thus, UPS may be a potent target to treat deleterious metabolic conditions leading to type 2 diabetes. PMID:24642635

  16. The unique N-terminal insert in the ribosomal protein, phosphoprotein P0, of Tetrahymena thermophila: Bioinformatic evidence for an interaction with 26S rRNA.

    PubMed

    Pagano, Giovanni J; King, Roberta S; Martin, Lenore M; Hufnagel, Linda A

    2015-06-01

    Phosphoprotein P0 (P0) is part of the stalk complex of the eukaryotic large ribosomal subunit necessary for recruiting elongation factors. While the P0 sequence is highly conserved, our group noted a 15-16 residue insert exclusive to the P0s of ciliated protists, including Tetrahymena thermophila. We hypothesized that this insert may have a function unique in ciliated protists, such as stalk regulation via phosphorylation of the insert. Almost no mention of this insert exists in the literature, and although the T. thermophila ribosome has been crystallized, there is limited structural data for Tetrahymena's P0 (TtP0) and its insert. To investigate the structure and function of the TtP0 insert, we performed in silico analyses. The TtP0 sequence was scanned with phosphorylation site prediction tools to detect the likelihood of phosphorylation in the insert. TtP0's sequence was also used to produce a homology model of the N-terminal domain of TtP0, including the insert. When the insert was modeled in the context of the 26S rRNA, it associated with a region identified as expansion segment 7B (ES7B), suggesting a potential functional interaction between ES7B and the insert in T. thermophila. We were not able to obtain sufficient data to determine whether a similar relationship exists in other ciliated protists. This study lays the groundwork for future experimental studies to verify the presence of TtP0 insert/ES7 interactions in Tetrahymena, and to explore their functional significance during protein synthesis.

  17. Nrf1 can be processed and activated in a proteasome-independent manner.

    PubMed

    Vangala, Janakiram R; Sotzny, Franziska; Krüger, Elke; Deshaies, Raymond J; Radhakrishnan, Senthil K

    2016-09-26

    In response to proteasome inhibition, the transcription factor Nrf1 facilitates de novo synthesis of proteasomes by inducing proteasome subunit (PSM) genes [1,2]. Previously, we showed that activation of the p120 form of Nrf1, a membrane-bound protein in the endoplasmic reticulum (ER) with the bulk of its polypeptide in the lumen, involves its retrotranslocation into the cytosol in a manner that depends on the AAA-ATPase p97/VCP [3]. This is followed by proteolytic processing and mobilization of the transcriptionally active p110 form of Nrf1 to the nucleus. A subsequent study suggested that site-specific proteolytic processing of Nrf1 by the proteasome yields an active 75 kDa fragment [4]. We show here that under conditions where all three active sites of the proteasome are completely blocked, p120 Nrf1 can still be proteolytically cleaved to the p110 form, which is translocated to the nucleus to activate transcription of PSM genes. Thus, our results indicate that a proteasome-independent pathway can promote the release of active p110 Nrf1 from the ER membrane. PMID:27676297

  18. Proteasome inhibition reverses hedgehog inhibitor and taxane resistance in ovarian cancer.

    PubMed

    Steg, Adam D; Burke, Mata R; Amm, Hope M; Katre, Ashwini A; Dobbin, Zachary C; Jeong, Dae Hoon; Landen, Charles N

    2014-08-30

    The goal of this study was to determine whether combined targeted therapies, specifically those against the Notch, hedgehog and ubiquitin-proteasome pathways, could overcome ovarian cancer chemoresistance. Chemoresistant ovarian cancer cells were exposed to gamma-secretase inhibitors (GSI-I, Compound E) or the proteasome inhibitor bortezomib, alone and in combination with the hedgehog antagonist, LDE225. Bortezomib, alone and in combination with LDE225, was evaluated for effects on paclitaxel efficacy. Cell viability and cell cycle analysis were assessed by MTT assay and propidium iodide staining, respectively. Proteasome activity and gene expression were determined by luminescence assay and qPCR, respectively. Studies demonstrated that GSI-I, but not Compound E, inhibited proteasome activity, similar to bortezomib. Proteasome inhibition decreased hedgehog target genes (PTCH1, GLI1 and GLI2) and increased LDE225 sensitivity in vitro. Bortezomib, alone and in combination with LDE225, increased paclitaxel sensitivity through apoptosis and G2/M arrest. Expression of the multi-drug resistance gene ABCB1/MDR1 was decreased and acetylation of α-tubulin, a marker of microtubule stabilization, was increased following bortezomib treatment. HDAC6 inhibitor tubastatin-a demonstrated that microtubule effects are associated with hedgehog inhibition and sensitization to paclitaxel and LDE225. These results suggest that proteasome inhibition, through alteration of microtubule dynamics and hedgehog signaling, can reverse taxane-mediated chemoresistance. PMID:25216523

  19. Induction of autophagy by proteasome inhibitor is associated with proliferative arrest in colon cancer cells

    SciTech Connect

    Wu, William Ka Kei Wu Yachun; Yu Le; Li Zhijie; Sung, Joseph Jao Yiu; Cho, C.H.

    2008-09-19

    The ubiquitin-proteasome system (UPS) and lysosome-dependent macroautophagy (autophagy) are two major intracellular pathways for protein degradation. Blockade of UPS by proteasome inhibitors has been shown to activate autophagy. Recent evidence also suggests that proteasome inhibitors may inhibit cancer growth. In this study, the effect of a proteasome inhibitor MG-132 on the proliferation and autophagy of cultured colon cancer cells (HT-29) was elucidated. Results showed that MG-132 inhibited HT-29 cell proliferation and induced G{sub 2}/M cell cycle arrest which was associated with the formation of LC3{sup +} autophagic vacuoles and the accumulation of acidic vesicular organelles. MG-132 also increased the protein expression of LC3-I and -II in a time-dependent manner. In this connection, 3-methyladenine, a Class III phosphoinositide 3-kinase inhibitor, significantly abolished the formation of LC3{sup +} autophagic vacuoles and the expression of LC3-II but not LC3-I induced by MG-132. Taken together, this study demonstrates that inhibition of proteasome in colon cancer cells lowers cell proliferation and activates autophagy. This discovery may shed a new light on the novel function of proteasome in the regulation of autophagy and proliferation in colon cancer cells.

  20. Proteasome inhibitor MG-132 lowers gastric adenocarcinoma TMK1 cell proliferation via bone morphogenetic protein signaling

    SciTech Connect

    Wu, William Ka Kei; Sung, Joseph Jao Yiu; Yu Le; Cho, C.H.

    2008-06-27

    Proteasome inhibitor is a novel class of cancer therapeutics, of which the mechanism of action is not fully understood. It is reported that proteasome inhibitor enhances bone morphogenetic protein (BMP) signaling in osteoblasts to stimulate bone formation. BMP signaling is also an important tumor-suppressing pathway in gastric carcinogenesis. We therefore sought to determine the anti-mitogenic effect of proteasome inhibition in relation to BMP signaling in gastric cancer cells. Results showed that proteasome inhibitor MG-132 significantly suppressed the proliferation and the colony-forming ability of gastric cancer TMK1 cells. In this connection, MG-132 activated BMP signaling, manifested as an increase in Smad1/5/8 phosphorylation and up-regulation of p21{sup Waf1/Cip1} mRNA and protein expression. Knockdown of BMP receptor II by RNA interference abolished Smad1/5/8 phosphorylation, p21{sup Waf1/Cip1} induction, and the inhibition of cell proliferation induced by MG-132. Further analysis revealed that MG-132 up-regulated the expression of BMP1 and BMP4 and suppressed the expression of Smad6. Knockdown of Smad6 also mimicked the effect of MG-132 on BMP signaling. Collectively, these findings suggest that inhibition of proteasome suppresses gastric cancer cell proliferation via activation of BMP signaling. This discovery may open up a novel therapeutic avenue to proteasome inhibitors for the management of gastric cancer.